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Preface

The 4th International Web Rule Symposium (RuleML 2010), co-located in
Alexandria, Virginia, USA (near Washington, DC) with the 13th International
Business Rules Forum Conference 2010, was organized to meet colleagues and to
exchange ideas from all subareas of Web rule technology. The aims of RuleML
2010 were both to present new and interesting research results and to show suc-
cessfully deployed rule-based applications. This annual symposium is the flagship
event of the Rule Markup Language (RuleML) Initiative.

The RuleML Initiative (www.ruleml.org) is a non-profit umbrella organiza-
tion of several technical groups organized by representatives from academia,
industry and public sectors working on rule technologies and applications. Its
aim is to promote the study, research and application of rules in heterogeneous
distributed environments such as the Web. RuleML maintains effective links with
other major international societies and acts as an intermediary between various
“specialized” rule vendor, application, industrial and academic research groups,
as well as standardization efforts including W3C, OMG and OASIS.

After a series of successful international RuleML workshops and conferences,
the RuleML symposia, held since 2007, constitute a new kind of event where
the Web rules and logic community joins the established, practically oriented
business rules community (www.businessrulesforum.com). The symposium sup-
ports the idea that there is a successful path from high-quality research results
to deployed applications. Hence, the RuleML Symposium is research-based and
industry-focused: its main goal is to build a bridge between academia and indus-
try in the field of Web rules, semantic technology, and business processes, and so
to stimulate the cooperation and interoperability between business and research,
by bringing together rule system providers, participants in rule standardization
efforts, open source communities, practitioners and researchers.

The contributions in this volume include one abstract and one paper for the
two invited keynote presentations, one extended abstract of an invited demo, one
track paper (by Grigoris Antoniou and Antonis Bikakis, the track chairs, outlin-
ing a new research line for a topic not already presented in 2009) and a selection
of 14 full papers and 7 short papers chosen from a pool of 42 submissions by au-
thors from 22 countries. The accepted papers address a wide range of rule topics.
In addition to some miscellaneous rule topics, most papers fall within the fol-
lowing track topics: Rules, Semantic Technology, and Cross-Industry Standards;
Rule Transformation and Extraction; Rules and Uncertainty; Rules and Norms;
Rules and Inferencing; Rule-Based Event Processing and Reaction Rules; and
Rule-Based Distributed/Multi-Agent Systems.

The accepted papers were carefully selected after a rigorous peer-review pro-
cess where each paper was evaluated by a panel of at least three members of
the international Program Committee. We thank the reviewers for their effort
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and very valuable contribution; without them it would not be possible to main-
tain and improve the high scientific standard the symposium has now achieved.
We thank the authors for submitting good papers, responding to the review-
ers’ comments, and abiding by our production schedule. We thank the keynote
and invited demo speakers for their interesting presentations. And we thank the
Business Rules Forum organizers for enabling this fruitful co-location of the 13th
International Business Rules Forum Conference 2010 and RuleML 2010.

The real success of rule technology will be measured by the applications that
use the technology rather than by the technology itself. To emphasize the practi-
cal use of rule technologies, RuleML 2010 continued the tradition of hosting the
International Rule Challenge. The challenge offers participants the opportunity
to demonstrate their commercial and open source tools, use cases, benchmarks,
and applications. It was the ideal forum for those wanting to understand how
rules technology can produce benefits, both technically and commercially.

The RuleML 2010 Symposium was financially supported by industrial compa-
nies and research institutes and was technically supported by several professional
societies. We thank our sponsors, whose financial support helped us to organize
this event, and whose technical support enabled us to attract many high-quality
submissions.

August 2010 Mike Dean
John Hall

Antonino Rotolo
Said Tabet
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Logical Spreadsheets

Michael Genesereth

Stanford University, USA
genesereth@stanford.edu

Abstract. Logical spreadsheets are spreadsheets in which formulas are
written as logical constraints rather than function definitions. Allowing
logical constraints in spreadsheets substantially increases their utility. At
the same time, it poses interesting technical challenges, notably the rep-
resentation of logical constraints (both static and dynamic), query and
update in the face of data incompleteness and inconsistency, and support
for collaborative work on distributed spreadsheets. In this presentation,
we describe logical spreadsheets in detail and offer some approaches to
dealing with these underlying challenges.

While logical spreadsheet technology is useful in specialized appli-
cations, it is even more useful as a general technology for the World
Wide Web, turning ordinary Web forms into logical forms (sometimes
called websheets). Moreover, the concept and technology of collabora-
tive websheets can be further generalized to collaborative management
of arbitrary logical databases. We close with thoughts about how this
generalized technology can be used to produce a key component of the
Semantic Web, viz. a World Data Web in which concepts and relation-
ships replace documents and links, in which rules replace code, and in
which query and update replace keyword search and file management.

M. Dean et al. (Eds.): RuleML 2010, LNCS 6403, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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NIEM Canonical XML Dictionaries and Rule Engine 
Systems 

David Webber 

OASIS CAM TC Chair,  
630 Boston Road, Suite M-102  

Billerica, MA 01821, 
United States of America 
drrwebber@acm.org 

Abstract. NIEM is the National Information Exchange Model strategy adopted 
in US government agencies to align their domain information exchanges. The 
aim is to provide government information exchanges that are consistent and 
interoperable by using the NIEM.gov approach that relies on repeatable and 
predictable patterns and techniques. This presents a range of challenges to 
implementers including mapping from domain vocabularies to NIEM and 
applying an appropriate rule validation framework. Also creating exchange 
schema structure definitions and generating testing data sample instances. How 
can rule engines assist in automating these processes? The methods NIEM 
advocates using have been criticized as being heavy-weight and cumbersome; 
how can rule-based techniques dramatically simplify the challenges that 
developers face in exploiting the NIEM-based approach?  

Keywords: NIEM, dictionary, canonical, core, components, XML, exchange, 
validation, XSD, schema, template, framework, OASIS, CAM, content 
assembly, CCTS. 

1   Introduction 

Creating reliable information exchanges using the NIEM (National Information 
Exchange Model) approach presents a variety of challenges to developers.  First there 
is the perceived complexity of the NIEM schemas themselves, which are deliberately 
over inclusive of components and thereby provide too much for the developer who is 
therefore required to select a subset mapping. For example, the components listed 
under “person” contain about 1.5Mbytes of structure and rule definition information 
for aspects relating to a person, their name, demographics, location, family, history, 
employment and so on.  Indeed, mapping from a local application domain to the 
NIEM components is part of the initial barrier and is time consuming given the 
plethora of components and domain choices in NIEM. Therefore, mapping and 
component matching agents are one potential area to apply rule technologies. 
Otherwise, done manually the expedience is to use a semblance of obvious base 
component parts from NIEM rather than rigorous mapping (e.g. map to generic 
PersonName instead of locating and using BuildingOwnerName). In addition 
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implementers then redundantly create local extensions for the remainder of an 
exchange structure leading to yet more abundance of component definitions. 

Another area of challenge is the development of formal W3C XML Schema for 
NIEM.  Again NIEM itself is using complex and arcane W3C XML Schema syntax to 
mimic modelling techniques and behaviours, whereas interoperable exchange schema 
require the opposite: simple clear and consistent syntax that can be implemented 
across any platform and system software of user partners.  Software developers who 
are not adept in understanding of W3C XML Schema face a steep learning curve to 
assimilate NIEM techniques.  This again presents an opportunity for the use of rule 
agents that can take simpler abstract representations of information exchange 
structures and components and automatically generate NIEM compatible W3C XML 
Schema without any specialized knowledge required of developers.   

To enable this requires building neutral representation syntax dictionaries of these 
NIEM components for use by agent systems and for human use in discovery and 
search tools.  These canonical XML component dictionaries [1] are the focus of this 
paper.  A canonical collection contains the component parts without redundancy and 
hence represents the building blocks from which the desired information exchange 
structures can be assembled. 

Related to the use of canonical components is the quality of their definitions. 
Hence the need for automatic evaluation of existing schema components to detect 
potential interoperability issues, and to apply the NIEM Naming and Design Rules 
(NDR) that are intended to ensure component definitions are consistent and more 
reusable.  Spelling and abbreviation checks are important to avoid redundancy and 
ensure consistent discovery across collections.  Agent tools can check rules far more 
reliably than manual inspection, especially of large and complex structures and 
schemas.  Having consistent component definitions is essential for deriving canonical 
XML components in dictionaries. 

Last but not least are the challenges of testing, test case generation and validation 
of actual exchange structure instances, including in an operational environment.  
These are traditional areas where rule agent technology has been applied. 

Summarizing these areas for the application of canonical XML dictionary 
technology, we have needs for: 

• Neutral representation dictionaries of NIEM components 
• Mapping from domain vocabularies to NIEM schema components 
• Automatic W3C XML Schema syntax generation to NIEM style guidelines 
• NIEM Naming and Design Rule (NDR) and interoperability factors checking 
• Test case generation, testing and validation framework 

Each of these areas is reviewed here in turn and related to how canonical XML 
dictionaries are used. An introduction to the current state of available agent tools is 
provided with a focus particularly on those that are exploiting techniques and XML 
standards from the OASIS Content Assembly Mechanism (CAM) specifications. 
Specific references are made to the open source implementation of the CAM editor 
toolkit on Sourceforge.net and how those XSLT script tools are tackling these 
challenges.   
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Writing rule based agent components in XSLT with XPath expressions has proven 
to be an extremely powerful way of implementing the required XML handling and 
logic. We also touch on performance aspects relating to XML runtime rule evaluation 
and how approaches such as OASIS CAM templates provide can also facilitate use of 
external rule engines.   

Unfortunately space restrictions limit the ability to consider the formal system 
design and approach in depth.  An introduction and overview is provided here while 
more formal details can be found in the OASIS CAM specifications along with 
tutorial materials describing the reference Sourceforge implementation of the CAM 
toolkit itself. Similarly use cases are mentioned but a full worked example is out of 
scope. Again the Sourceforge resources provide plenty of examples of dictionary 
implementations for actual NIEM domain and other industry vocabularies that can be 
downloaded and examined. 

2   NIEM Canonical Dictionaries and OASIS CAM 

2.1   Neutral Assembly Component Dictionaries 

Developing canonical XML dictionaries requires a target XML format for storing the 
semantic information about the components in the dictionary. The current OASIS 
CAM draft technical specification [2] provides a condensed dictionary structure that 
contains the semantics of information components and their relationships. This 
follows the main aspects of the UN/CEFACT Core Components Technical 
Specification (CCTS) [3] and the XML4CCTS Schema designed to present structure 
components and their model relationships. This OASIS dictionary specification is 
further designed to be compatible with use in spreadsheet formats so as to also aid 
human viewing and discovery of matching components. A dictionary pack is 
available as open source of the NIEM domain dictionaries expressed in the OASIS 
canonical XML format [4]. These were derived from the NIEM domain Schemas 
available from the NIEM web site (http://www.niem.gov). Each NIEM domain 
schema was processed initially into the OASIS CAM template format and then from 
there directly into the canonical XML dictionary format using XSLT processing 
scripts. These XSLT scripts are available with the open source CAM editor toolkit on 
Sourceforge, or directly from the project open source code repository there 
(http://www.sourceforge.net/projects/camprocessor).  The scripts illustrate how agent 
technology can be successfully built using the XSLT scripting language and XPath 
expressions to operate on XML target content. These scripts have been refined over a 
three year period to the point now where they represent a very significant agent 
resource honed in processing W3C XML Schema syntax and the models and 
structures expressed using that.   Over 5,000 lines of logic are now contained in the 
scripts and hundreds of rules for handling W3C XML Schema syntax and the vagaries 
of its use for expressing XML structure representations.   

While the OASIS CAM template format is designed to provide equivalent 
constructs for much of W3C XML Schema syntax, however the many abstract 
modelling concepts from W3C XML Schema are stored as annotations within the 
template format and thus separate from the content rules. There is a clear delineation 
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within the CAM template with three separate sections for structure layout, content 
rules and cardinality, and definitions as annotations and documentation elements (see 
diagram in Figure 2 below for illustration). 

With regard to information loss between an original W3C XML Schema and the 
equivalent CAM template representation it is important to consider the roles; CAM 
templates are aimed at precisely defining actual contextual XML instances for 
business information exchanges, whereas W3C XML Schema provide a wider 
definition set of all possible structure variations that it may be possible to construct.  
Many of these structure variations however will undoubtedly be invalid for a given 
business information exchange context.  W3C Schema does not address that whereas 
CAM templates have specific XPath rule constructs available for this.  Also, by 
exploiting the canonical dictionary format approach, components can be harvested 
from across a set of W3C XML Schema and thus provide capabilities that are not 
present in W3C XML Schema (harvesting is discussed in following sections below). 

Next here we consider the dictionary semantic content and format itself. Figure 1 
here shows the conceptual information stored in the component dictionaries. 

 

Fig. 1. Conceptual representation of schema components in a neutral format 

Then this conceptual representation is mapped to the physical structure 
representation for each item as shown in Figure 2 below.   

The physical dictionary components structure is persisted in XML elements and 
attributes that mirror this structure layout and named entities (see Appendix A). The 
full XML specification is available from the OASIS CAM committee web site 
downloads repository (http://www.oasis-open.org/committees/cam). Here we have 
provided a high level overview of how information is stored in a canonical XML 
dictionary according to the OASIS technical specifications (for an example of CAM  
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Fig. 2. Physical structure representation of schema components dictionary 

template syntax for structure, rules and definitions shown here in Figure 2 please see 
Appendix B). In addition section 2.3 below provides more details on the component 
types shown above (ABIE, BBIE and ASBIE). First we consider how agent software 
can exploit the information in the components dictionary for mapping purposes. 

2.2   Mapping from Domains to NIEM Schema Components 

Lists of components for a domain can be harvested from a variety of sources. The 
primary preferred source is a data modelling tool that can export the definitions as 
W3C XML Schema (XSD) file formats. Alternatively existing domain exchange 
schema can be harvested for their components. Once a template is built of the 
components this can then be compared to the NIEM dictionary catalogue of 
components and a cross-reference spreadsheet built.  Currently this processing is 
implemented in XSLT scripting language using simple direct name pattern matching. 
However, significant work [5] has been done already in OASIS within the SET 
(Semantic Support for Electronic Business Document Interoperability) technical 
committee on using Java and OWL based presentations of component structures to do 
proximity and structure based matching by Professor Asuman Dodak’s team at Ankara 
University in Turkey. Our plans include leveraging this work for future enhanced 
mapping capabilities and also for recommending changes and enhancements to NIEM 
itself to better facilitate mapping. Further work of interest in this area is the MITRE 
Corporation joint project with Google, Inc. on the OpenII toolset available as a Google 
open source project (http://projects.google.com/openii). Currently this is more focused 
on statistically analysing collections of components to determine potential alignment 
and proximity rather than directly supporting physical mapping. Clearly there is 
significant potential for further research on using agent technologies to facilitate 
mapping of related domain components in the future. 
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Fig. 3. Relationships of semantic representation technologies 

Figure 3 here shows how all these semantic technologies relate together. 
The current approach is now only leveraging what is available in the first three 

columns in the diagram here (see “compare to dictionary” tool in the CAM toolkit 
download from Sourceforge). The potential is to incorporate technologies from all the 
columns to more effectively tackle the challenges of assisting mapping of domains to 
NIEM vocabularies and dictionaries of components. 

2.3   Relating Schema Constructs to Neutral Syntax Components   

As shown in Figure 2 above the dictionary components are organized as three related 
types. First there are atomic Basic Business Information Entities (BBIE) components. 
These equate to XML singleton elements without any child elements.  Then there is 
Aggregate Business Information Entities (ABIE) that provides a container for one or 
more BBIE child elements along with the cardinality of those children (optional or 
repeatable), and can reference further ABIE components also. The third structure 
construct, Associated Business Information Entities (ASBIE) equate to XML 
attributes and hence may be found applied to a BBIE as children, or may be children 
of the parent element in an ABIE.  The collection of ABIE, BBIE and ASBIE 
components are harvested below the root XML structure element. The ABIE’s only 
shown nesting to the immediate one level below the parent. To augment the structure 
representation the Structure Context consists of XPath expressions that denote where 
a component may normally occur.   

Associated with each component the facets and enumerations are captured in the 
Content Type and Content Mask neutral definition details. Unlike W3C XSD Schema 
syntax these are intended to be simple, atomic and human readable. So an enumerated  
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list for colours would be represented as of Content Type “string” and Content Mask 
“Red, Green, Blue, Yellow, Black, White”.  Similarly a date would be of Content Type 
“date” and the Content Mask “YYYY-MM-DD”. The OASIS CAM specification 
contains full details for these type and content representations. Next we look at how 
these representations are used to construct a schema definition from the component 
definitions. 

2.4   Automatic W3C XML Schema Syntax Generation in NIEM Style 

The canonical XML dictionaries enable a neutral syntax approach to designing XML 
exchange schema. This allows practitioners to simply outline the desired XML 
structure components by referencing parent component definitions (ABIE items) in 
the canonical XML dictionary.  Then by running that component outline through an 
expander tool that references the desired dictionaries to expand each of the 
component schema definitions into a complete exchange schema structure. The CAM 
toolkit download from Sourceforge contains several working examples of these 
outline blueprints and the resulting full complete exchanges including NIEM and 
LEXS domain examples.  Figure 4 here illustrates the components and tools needed to 
implement this process. 

 

Fig. 4. Generating exchange structure from canonical XML dictionary components 

Using the completed exchange template there is a further agent tool that then is 
able to generate the NIEM compatible W3C XML Schema representation of the 
structure and its content rules and definitions. This tool uses an XML configuration 
file that contains rules of how the various schemas are organized in physical folders 
and also details of namespaces for the various domains contained in the NIEM family 
of schema. Figure 5 illustrates a collection of schema generated automatically by the 
tool from a template representation similar to that in Figure 4. 
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Fig. 5. Generating exchange W3C XML Schema from template representation 

The software agents written using XSLT scripts in this complete process are able 
to therefore assemble the desired exchange components from the neutral dictionary 
definitions and then from there to write the complex W3C XML Schema syntax 
required by NIEM across a collection of folders organized by namespace domains. To 
achieve this manually typically takes weeks of schema editing and can be achieved 
instead in a few hours of development and testing using the tooling automation. In 
addition the W3C XML Schema syntax written is conformant to the Naming and 
Design Rules (NDR) checks and more importantly is deliberately simple and concise 
so as to avoid using complex schema constructs that may be interoperability issues. 
The next section looks at the requirements for interoperability checking. 

2.5   NIEM Naming and Design Rule (NDR) and Interoperability Factor 
Checking 

When developing NIEM information exchange schema, there are a range of 
guidelines, principles and best practices that have been determined to significantly 
improve the quality of resulting production exchanges. NIEM itself has 193 NDR 
rules1 specific to utilizing nuances of W3C XML Schema syntax.  Many of these are 
complex and arcane. Producing agent software that is able to check for these 
automatically is therefore of high value for practitioners with NIEM development 
projects. For this specific implementation using OASIS CAM templates, we selected 
a subset if only 33 rules from the NIEM 193 rules. These represent those with the 
                                                           
1 NIEM Naming and Design Rules (NIEM NDR) specification version 1.3 - 
http://www.niem.gov/pdf/NIEM-NDR-1-3.pdf 
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highest value and also those that can be evaluated and determined by a software 
agent. Many of the NIEM NDR rules are subjective rules for human evaluation.   

In addition to the 33 rules, an additional 6 rules that are not in NIEM are applied 
and these all relate to best practices from field experience with using W3C XML 
Schema to detect inconsistencies and logic errors. The evaluation tool that applies the 
rules reports errors, issues and warnings as a HTML report and also attempts to 
provide a scoring system where 10 represents no items detected and then points are 
deducted for items found and their severity. The report output can also be used for 
spell checking purposes of the element names used in the XML structure. 

An example of these rules is comparing the name of an item to its content type 
definition. If a structure item is named with the word “date” in its item name, then the 
agent expects to see date content restrictions in the content definition and will produce 
a warning report if these are not present. Overall the agent script here implements a 
powerful set of checks that has proven invaluable in detecting and correcting a whole 
range of errors in exchange schema. In testing, the agent was able to detect errors in 
several popular industry standard schema sets that had gone unnoticed in some cases 
for over two years of widespread use worldwide. In other cases, the agent has been 
able to greatly improve the quality of industry standards that are currently under 
development, detecting inconsistencies and errors in initial draft schema, and further 
validating the approach. 

In addition there is a renaming and rule alignment tool. This contains a powerful 
set of customizable rules that aim to ensure consistent naming of components and 
application of corresponding content rules. Rule sets include common typo and 
spelling errors (300 rules), NIEM domain abbreviations (several hundred), NIEM 
reference terms (25 content qualification terms such as number, name, date, Id, text, 
description and so on)  and associated with these expected content restriction rules. 
The renaming tool can be utilized prior to running the NDR evaluation to correct 
common issues with Schema definitions. For example a Schema element may be 
named: Lst_Calender_Upt_Dt  and this will be corrected by the renaming tools to be 
LastCalendarUpdateDate which will then correctly pass the NDR checking. A 
renaming spreadsheet is also produced so that spell checking can be performed and 
post-rename analysis. This allows fine tuning of the customizable rules and then 
iteration until a stable point is reached. This is particularly useful when harvesting 
dictionary components from enterprise data models or existing schema where 
correction of the original source may be problematic. 

There is a governance and review process in place for evaluating NIEM exchange 
schema and the associated NIEM Information Exchange Package Documentation 
(IEPD). The renaming and NDR evaluation tools are used to assess quality of the 
resulting exchange schema and to recommend improvements and changes during the 
review process. This is deliberately flexible to permit developers to tailor exchanges 
to suit production requirements while also allowing them to avoid known pitfalls and 
interoperability issues early in the development cycle. 

2.6   Test Case Generation, Testing and Validation Framework  

Another area where the use of OASIS CAM templates with NIEM facilitates the use of 
agent technology is in test case generation and validation of example XML instances. 
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Previously, XML test case generator tools had been extremely simplistic and relied on 
manual editing to complete actual examples for testing purposes. The OASIS CAM 
template approach is a key facilitator because it uses actual physical structure instances 
in the definitions of the templates themselves. These then serve as master templates for 
the agent software to generate examples from. In addition, a content hinting 
mechanism is available that allows explicit real values to be provided to the agent 
scripts. These augment the rules that the agent script uses to make actual content match 
the definitions of the content rules in the template. The result is that the agent script is 
able to generate sets of realistic examples that are both valid and invalid. For testing 
purposes, being able to make invalid examples is equally if not more important than 
exercising anticipated valid logic paths. 

To complete the validation framework here, the OASIS CAM specification allows 
for development of a fully featured validation engine. The open source CAMV engine 
has been developed for exactly this purpose. It is a fully self contained validation 
agent written in Java and is able to deploy in thread safe mode in application 
containers. IBM recently implemented a major automotive industry solution using this 
CAMV engine [7]. See the reference for complete implementation and design details. 
It should be noted that specific performance metrics are not provided although the 
solution has been able to operate without degrading the existing overall application 
throughput. Balancing concerns regarding the real time performance of any 
interpreted rule based approach compared to the desired production performance is an 
implementation and business needs decision. Additionally the CAMV engine 
architecture does permit calling external rule engines to augment the rule checking 
possible using the OASIS CAM rules syntax. Examples of rule engine extension are 
included in the Sourceforge CAM toolkit download. 

With regard to NIEM applications, the key point to note is that the CAMV agent is 
able to implement selected validation by using context rules expressed in XPath 
syntax.  The W3C XML Schema validation by contrast only permits one validation 
mode – error / fail.  This means that W3C XML Schema based validation is extremely 
brittle in actual production environments and is often disabled or ignored because of 
the maintenance and support issues this would entail.  By contrast the CAMV 
approach allows warnings and informational status reporting and outcomes, which 
results in a flexible and adaptive validation framework that can accept a wide range of 
input XML structure instances as valid.   

For NIEM based applications this is of vital important when the information 
exchanges contain urgent content such as with emergency management applications. 
The worst case scenario is that a potential alert notification was blocked because it did 
not pass some arcane validation edit check that is embedded in middleware 
processing. Whereas in contrast a context rule based solution can report warnings 
instead of errors and therefore allow remediation and delivery to occur instead of 
rejection and failure to process. 

3   Conclusion 

We have presented here how using canonical XML dictionaries can provide multiple 
opportunities for using rule based associated agent technologies to support the 
implementation of complex extensive and multi-faceted software development 
approaches as found in NIEM. 
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Today’s application development environments are increasingly complex and 
challenging for software development staff to assimilate and become proficient with. 
In Appendix C is provided a chart of the anticipated performance improvements that 
can be gained compared to current manual tasks involved in developing NIEM 
exchange schema. Additionally using agent based approaches can dramatically reduce 
the learning curve needed for practioners and ensure a consistent and reliable set of 
software products results. Furthermore the task faced by reviewers and the associated 
approval process can be automated to allow rigorous testing and evaluation. Without 
these tools, reviewers have little practical chance of successfully providing quality 
assurance given the demands of management to deliver solutions in a timely manner. 
Similarly developers also fail to maintain documentation artifacts. 

Equally important is the use of open public standards and specifications and open 
source based software tools. These ensure that the criteria and approach can be peer 
reviewed and crosschecked or adapted to suit a particular development project’s needs 
and domain idiosyncrasies. Making all of these aspects configurable through XML 
scripting technology and XML rule control files dramatically improves the usefulness 
and applicability of the overall toolkit solution. 

4   Related Work 

Schematron XML validation framework and ISO specification 
http://www.schematron.com/resources.html 
Reference Saxon XSLT engine implementation and Sourceforge project 
http://saxon.sourceforge.net/  
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Appendix A – Example NIEM Dictionary Entry XML  

This section shows an example of the physical XML used to represent the items in a 
dictionary. In this case the example is taken from the NIEM International Trade (IT) 
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domain. The XML syntax fragment shown below in Figure 6 illustrates the 
representation of NIEM components in a dictionary format.  Items shown (prefixed 
with it:) include Stevedore ID Code, Previous Custom Document, Declaration Packaging, 
Duty Tax Fee, and Duty Tax Fee Assessment Basis Quantity. 

 

Fig. 6. XML syntax representation of NIEM dictionary components 

The text in green is the comment produced by the XSLT script about the options 
and files used to generate the dictionary programmatically. Each Property element 
entry represents an Item. The description of each associated attribute of the element 
entry is provided next. 

The CCTS attribute denotes Parent (ABIE) or Child 
(BBIE) entities. These are UN/CEFACT CCTS 
specification terms for collections of Business 
Information Entities. Some entries have been 
collapsed to show only the top line (13 lines). 

UID is the Unique ID generated using the 
XSLT hashing algorithm.  The prefix is the 
namespace for the dictionary.   

Children are expressed as XPath terms, starting 
with the structure locator for the parent, followed 
by each of the child items. 

Group can denote a logical abstract 
collection of items that this item belongs to. 

Context is a collection of XPath locator terms for 
everywhere the item is used structurally by other 
items in the dictionary. 

Where refers to external schema that the 
definitions are derived from.  For 
dictionaries built by merging definitions 
across a collection of schema this helps 
identify the sources. 

Definition is a textual description of the purpose 
of the item.  It should not be self-referencing, but 
instead describe the context of its use in physical 
world. 

Label is an aid to display the content on 
forms or reports. 
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The Notes attribute is an aid for user interfaces for 
content entry hints. 

Language is the ISO code for the default 
content. 

Anno is programmatic annotation derived from 
the CAM template that relates to this item. 

Rules are programmatic XPath expressions 
that control the usage of this item and 
potentially relate to other items or control 
different picture masks for the content. 

 

Fig. 7. XML syntax representation of CAM Template 



 NIEM Canonical XML Dictionaries and Rule Engine Systems 15 

Appendix B – Example CAM Template XML  

Here is shown below an example CAM template to illustrate the XML syntax and 
structure components from the OASIS CAM specification. 

Appendix C – Comparing NIEM IEPD Timelines  

Here below is shown two illustrative tables of the types of tasks required in a NIEM 
IEPD (Information Exchange Package Documentation) and the estimated potential 
impacts of using rule driven tools to automate much of the processes compared to 
existing manual practices. 

 

 

Fig. 8. NIEM IEPD Process Metrics Compared 
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Abstract. The Object Management Group’s “Semantics of Business
Vocabulary and Business Rules (SBVR)” standard is a synthesis from
four disciplines: terminology science, natural language grammar struc-
tures, formal logic and the practice of applying the business rules
approach in organizations. The SBVR specification (like all OMG spec-
ifications) is directed primarily at tool developers. As a result some of
SBVR’s most important capabilities for practitioners are not self-evident
from just reading the specification document. This paper will illustrate
how a number of these SBVR features can be implemented in a tool to
deliver significant value to SBVR users.

Building on a Foundation of Identifiable Business and
Professional Communities

Clause 1: Scope of the SBVR specification says:

This specification is applicable to the domain of business vocabularies
and business rules of all kinds of business activities of all kinds of orga-
nizations. It is conceptualized optimally for business people rather than
automated rules processing, and is designed to be used for business pur-
poses, independent of information systems designs.

The terminology part of SBVR, which is built on the ISO TC 37 Terminology
standards, is about documenting and managing the special purpose language of
an organization, profession, discipline, or industry as an asset. This places termi-
nology management within the well established field of Knowledge Management
in which knowing what communities you belong to is a core technique.

An SBVR model—a ‘body of shared meanings’ comprising noun concepts,
verb concepts and rules—is owned by a semantic community, typically a business
or equivalent not-for-profit organization. Assumptions about meanings being the
same very often turn out to be wrong, so it is important to establish semantic
communities as boundaries across which no assumptions are made about seman-
tic equivalents.

A business may be part of wider semantic communities such as shared interest
groups, either by domain (healthcare, telecommunications, insurance, etc.) or by
discipline (human resources, finance, project management etc.), from which it
might adopt part of its SBVR model.

M. Dean et al. (Eds.): RuleML 2010, LNCS 6403, pp. 16–19, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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An effective SBVR tool must support:

– Association of an SBVR model with its owning semantic community;
– Explicit adoption of all or integral parts of another semantic community’s

concepts, both from SBVR models and from authoritative non-SBVR sources
such as industry glossaries and ontologies, standards and regulations;

– Ability to explicit assert that two meanings in different semantic communi-
ties are the same—of course, after sufficient analysis to demonstrate that is
true.

In order to be shared, an SBVR model must have at least one representation—
definitions and statements in text in a given natural language, icons, graphics,
etc. Each representation is owned by a speech community, which is part of the
semantic community that owns the model. A semantic community includes at
least one speech community, and may include several, ranging from speakers
of different natural languages to specialists such as lawyers, accountants and
engineers who need specialized terminology for their disciplines.

An effective SBVR tool must support:

– Different representations of the same underlying model, including: i) differ-
ent natural languages, and ii) synonyms, synonymous forms and homonyms
that are connected to exactly one clearly-defined meaning in a given context
within a given natural language;

– Association of a representation of an SBVR model with its owning speech
community.

Separating Meaning from Its Expression

A common misconception is that SBVR Structured English (the styled subset
of English used in the SBVR specification) is SBVR. It is not. SBVR Struc-
tured English is a non-normative notation for representing SBVR models. Other,
equivalent, notations may be used, both in representing the models themselves,
and in user interfaces with SBVR tools. An effective SBVR tool must maintain
an internal model of an SBVR ‘body of shared meanings’ that is independent of
the notations used for its representation.

This separation has to be built into the heart of the architecture of both the
tool’s database and software. In SBVR all of the connections that are used to
construct meanings are made among meaning-model elements, independent of
their representation in expressions. Implementing this is essential if an SBVR
tool is to support the same, shared meaning across natural languages and differ-
ent terms used by different speech communities in the same natural language.

While there are multiple speech communities for a given natural language,
having one speech community identified as the core speech community for each
language enables the speech communities for that language to add only those
terms that are different for them. The same holds true in a tool’s being able to
identify and utilize a core language for each semantic community. That way, as
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terms for additional natural languages are added, they can be done first where
there is least understanding of the core language, again added by exception
as needed. This requires significant tool support when the tool decides which
preferred terms to present to a given speech community.

Building Meanings Out of Their Component Parts and
Not by Using Expression Syntax

A key aspect of making a clean separation of meaning from expression is to
provide tool support for building up all of the semantics of each meaning from
the components of that meaning and connections with other meaning constructs
without any reference to expression syntax or grammar. In SBVR noun concepts
are composed of characteristics, which are the meaning of adjectives and adjec-
tival phrases. Verb Concepts are composed of noun concepts plus verbs, verb
phrases and prepositions. Rules are composed of verb concepts and keywords
(“rule” words). Good tool support leverages these meaning structures to enable
exploration and navigation of meanings using the representation expressions of
any chosen speech community.

Tying All Uses of Representation Expressions Directly to
the Meanings They Represent

One of the biggest benefits of using defined terminology is that, with good tool
support, it is possible to see the exact meaning the author of a document or a rule
intended for each entry used from the terminology. The most easily used method
is for the preferred definition in the language of the current speech community
to be shown as a tooltip when the mouse hovers over the expression. XHTML
and CSS are the most universal standards for providing this kind of capability.
Using CSS systematically also enables a using organization to customize the way
the representation expressions are displayed visually.

The ability to display changed representation expressions where ever they
used on the next refresh of the input screen, report or document is evidence
that tool is remembering the semantics of what the author intended. This is
further illustrated in the ability to change the current speech community on the
fly so that input screens, queries, and reports, as well as text documents, show
the preferred terms of the new speech community immediately upon refreshing
them.

Enabling Rule Authors to Have the Necessary Support
from Terminology Authors

The majority of the work of creating formally defined business rules, as high as
80%, is the work of creating the terminology with which they are composed. Fur-
thermore, terminology and business rules arise out of different business activities
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and are the responsibility of different groups of people. To enable the collabora-
tion between business terminologists and business professionals who make policy,
a tool needs to provide features that facilitate this collaboration between ter-
minologists and policy-makers. Designs For ManagementTM accomplishes this
by providing the ability for policy-makers to compose new verb concepts out of
existing nouns, verbs, and prepositions or request new ones in a way that they
can be used while they are still only requests.

Providing Semantic Data Definitions Based on SBVR
Terminology

The SBVR metamodel (defined in Clauses 8, 9, 11 & 12 of the specification)
supports the documentation of the special purpose language used by business
people to communicate with each other. However, the formal logic interpretation
for SBVR (Clause 10 of the specification) is formulated in terms of the meaning
of the data that will be supported in some IT application. While these two parts
of SBVR are closely aligned, by definition a transformation is required between
them. There is great IT value to be obtained from SBVR terminology in addition
to its primary purpose of removing ambiguity from business communication. Tool
support for this transformation to the not-standardized metamodel implied by
SBVR Clause 10 can provide what is in effect a Semantic Data Dictionary, which
removes ambiguity from Business Requirements for Application Software.

Bridging to IT System Design Tools

There exists in the marketplace a set of increasingly practical and platform-
independent graphic modeling tools for IT systems design. Providing a transfor-
mation to the parts of these tools that are closest to the Business Requirements
of Application Software adds a great deal of additional IT benefit. Key trans-
forms are from the Semantic Data Dictionary to a logical data model and from
automatable business rules to a rules language such as production rules.
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Abstract. During the last two years, our developments regarding the
design of the FLOPER tool (“Fuzzy LOgic Programming Environment
for Research”), have been devoted to implant in its core a rule-based, easy
representation of lattices representing fuzzy notions of truth degrees be-
yond the boolean case, in order to work with flexible programs belonging
to the so-called multi-adjoint logic approach. Now, the system improves
its initial running/debugging/tracing capabilities for managing this kind
of fuzzy logic programs, with new options for manipulating in a classical
Prolog style the mathematical foundations of the enrichment introduced
by multi-adjoint lattices. In particular, we show that for a given program
and query, many different answers can be obtained when changing the
assumption of truth in a single work session. The experience related here
evidences the expressive power of Prolog rules (i.e., clauses) for imple-
menting rich versions of multi-adjoint lattices in a very easy way, as well
as its crucial role in further fuzzy logic computations.

1 Introduction

Research in the fields of Declarative Programming and Fuzzy Logic have tradi-
tionally provided programming languages and techniques with important appli-
cations in the areas of AI, rule-based systems, and so on [3,17,21]. In particular,
Logic Programming [16] has been widely used for problem solving and knowl-
edge representation in the past. Nevertheless, traditional logic languages do not
incorporate techniques or constructs to explicitly deal with uncertainty and ap-
proximate reasoning in a natural way.

To fulfill this gap, Fuzzy Logic Programming has emerged as an interesting
and still growing research area trying to consolidate the efforts for introduc-
ing fuzzy logic into logic programming. During the last decades, several fuzzy
logic programming systems have been developed, such as [2,4,6,15,13,27] and the
many-valued logic programming language of [25,26], where the classical inference
� This work was supported by the EU (FEDER), and the Spanish Science and Innova-

tion Ministry (MICIN) under grant TIN 2007-65749 and by the Castilla-La Mancha
Administration under grant PII1I09-0117-4481.
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mechanism of SLD–Resolution has been replaced by a fuzzy variant which is able
to handle partial truth and to reason with uncertainty.

This is the case of multi-adjoint logic programming [20,18,19], a powerful and
promising approach in the area. In this framework, a program can be seen as
a set of rules each one annotated by a truth degree and a goal is a query to
the system plus a substitution (initially the empty substitution, denoted by id).
Admissible steps (a generalization of the classical modus ponens inference rule)
are systematically applied on goals in a similar way to classical resolution steps
in pure logic programming, thus returning a state composed by a computed sub-
stitution together with an expression where all atoms have been exploited. Next,
during the so called interpretive phase (see [10,22]), this expression is interpreted
under a given lattice, hence returning a pair 〈truth degree; substitution〉 which is
the fuzzy counterpart of the classical notion of computed answer used in pure
logic programming.

The main goal of the present paper is to present our last developments per-
formed on the FLOPER system (see [1,21,24] and visit http://www.dsi.uclm.
es/investigacion/dect/FLOPERpage.htm) which enables the introduction of
different notions of multi-adjoint lattices for managing truth degrees even in a
single work-session without changing a given multi-adjoint logic program and
goal. Nowadays, the tool provides facilities for executing and debugging (by gen-
erating declarative traces) such kind of fuzzy programs, by means of two main
representation (high/low-level, Prolog-based) ways which are somehow antago-
nistics regarding simplicity and accuracy features.

The structure of the paper is as follows. In Section 2, we summarize the main
features of multi-adjoint logic programming, both language syntax and proce-
dural semantics. Section 3 presents a discussion on multi-adjoint lattices and
their nice representation by using standard Prolog code, in order to facilitate its
further assimilation inside the FLOPER tool, as described in Section 4. Finally,
in Section 5 we give our conclusions and some lines of future work.

2 Multi-adjoint Logic Programming

This section summarizes the main features of multi-adjoint logic programming
(see [20,18,19] for a complete formulation of this framework). In what follows,
we will use the abbreviation MALP for referencing programs belonging to this
setting.

2.1 MALP Syntax

We work with a first order language, L, containing variables, constants, func-
tion symbols, predicate symbols, and several (arbitrary) connectives to increase
language expressiveness: implication connectives (←1,←2, . . .); conjunctive op-
erators (denoted by &1, &2, . . .), disjunctive operators (∨1,∨2, . . .), and hybrid
operators (usually denoted by @1, @2, . . .), all of them are grouped under the
name of “aggregators”.
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Aggregation operators are useful to describe/specify user preferences. An ag-
gregation operator, when interpreted as a truth function, may be an arithmetic
mean, a weighted sum or in general any monotone application whose arguments
are values of a complete bounded lattice L. For example, if an aggregator @ is
interpreted as [[@]](x, y, z) = (3x + 2y + z)/6, we are giving the highest prefer-
ence to the first argument, then to the second, being the third argument the
least significant.

Although these connectives are binary operators, we usually generalize them
as functions with an arbitrary number of arguments. So, we often write
@(x1, . . . , xn) instead of @(x1, . . . , @(xn−1, xn), . . .). By definition, the truth
function for an n-ary aggregation operator [[@]] : Ln → L is required to be
monotonous and fulfills [[@]](�, . . . ,�) = �, [[@]](⊥, . . . ,⊥) = ⊥.

Additionally, our language L contains the values of a multi-adjoint lattice
〈L,	,←1, &1, . . . ,←n, &n〉, equipped with a collection of adjoint pairs 〈←i, &i〉,
where each &i is a conjunctor which is intended to the evaluation of modus
ponens [20]. More exactly, in this setting the following items must be satisfied:

– 〈L,	〉 is a bounded lattice, i.e. it has bottom and top elements, denoted by
⊥ and �, respectively.

– Each operation &i is increasing in both arguments.
– Each operation ←i is increasing in the first argument and decreasing in the

second.
– If 〈&i,←i〉 is an adjoint pair in 〈L,	〉 then, for any x, y, z ∈ L, we have

that: x 	 (y ←i z) if and only if (x &i z) 	 y.

This last condition, called adjoint property, could be considered the most impor-
tant feature of the framework (in contrast with many other approaches) which
justifies most of its properties regarding crucial results for soundness, complete-
ness, applicability, etc.

In general, L may be the carrier of any complete bounded lattice where a
L-expression is a well-formed expression composed by values and connectives of
L, as well as variable symbols and primitive operators (i.e., arithmetic symbols
such as ∗, +, min, etc...).

In what follows, we assume that the truth function of any connective @ in L is
given by its corresponding connective definition, that is, an equation of the form
@(x1, . . . , xn) � E, where E is a L-expression not containing variable symbols
apart from x1, . . . , xn. For instance, in what follows we will be mainly concerned
with the following classical set of adjoint pairs (conjunctors and implications)
in 〈[0, 1],≤〉, where labels L, G and P mean respectively Łukasiewicz logic, Gödel
intuitionistic logic and product logic (which different capabilities for modeling
pessimist, optimist and realistic scenarios, respectively):

&P(x, y) � x ∗ y ←P (x, y) � min(1, x/y) Product

&G(x, y) � min(x, y) ←G (x, y) �
{

1 if y ≤ x

x otherwise
Gödel

&L(x, y) � max(0, x + y − 1) ←L (x, y) � min{x− y + 1, 1} Łukasiewicz
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A rule is a formula H ←i B, where H is an atomic formula (usually called
the head) and B (which is called the body) is a formula built from atomic for-
mulas B1, . . . , Bn — n ≥ 0 —, truth values of L, conjunctions, disjunctions and
aggregations. A goal is a body submitted as a query to the system. Roughly
speaking, a multi-adjoint logic program is a set of pairs 〈R; α〉 (we often write
“R with α”), where R is a rule and α is a truth degree (a value of L) expressing
the confidence of a programmer in the truth of rule R. By abuse of language,
we sometimes refer a tuple 〈R; α〉 as a “rule”.

2.2 MALP Procedural Semantics

The procedural semantics of the multi–adjoint logic language L can be thought
of as an operational phase (based on admissible steps) followed by an interpre-
tive one. In the following, C[A] denotes a formula where A is a sub-expression
which occurs in the –possibly empty– context C[]. Moreover, C[A/A′] means the
replacement of A by A′ in context C[], whereas Var(s) refers to the set of dis-
tinct variables occurring in the syntactic object s, and θ[Var(s)] denotes the
substitution obtained from θ by restricting its domain to Var(s).

Definition 1 (Admissible Step). Let Q be a goal and let σ be a substitution.
The pair 〈Q; σ〉 is a state and we denote by E the set of states. Given a program
P, an admissible computation is formalized as a state transition system, whose
transition relation →AS ⊆ (E×E) is the smallest relation satisfying the following
admissible rules (where we always consider that A is the selected atom in Q and
mgu(E) denotes the most general unifier of an equation set E [14]):

1) 〈Q[A]; σ〉 →AS 〈(Q[A/v&iB])θ; σθ〉,
if θ = mgu({A′ = A}), 〈A′←iB; v〉 in P and B is not empty.

2) 〈Q[A]; σ〉 →AS 〈(Q[A/v])θ; σθ〉,
if θ = mgu({A′ = A}) and 〈A′←i; v〉 in P.

Note that the second case could be subsumed by the first one, after expressing
each fact 〈A′←i; v〉 as a program rule of the form 〈A′←i�; v〉. As usual, rules are
taken renamed apart. We shall use the symbols →AS1 and →AS2 to distinguish
between computation steps performed by applying one of the specific admissible
rules. Also, the application of a rule on a step will be annotated as a superscript
of the →AS symbol.

Definition 2. Let P be a program, Q a goal and “id” the empty substitution.
An admissible derivation is a sequence 〈Q; id〉→AS . . .→AS〈Q′; θ〉. When Q′ is a
formula not containing atoms (i.e., a L-expression), the pair 〈Q′; σ〉, where σ =
θ[Var(Q)], is called an admissible computed answer (a.c.a.) for that derivation.

Example 1. Let P be the multi-adjoint fuzzy logic program described in Figure
1 where the equation defining the average aggregator @aver must obviously has
the form: @aver(x1, x2) � (x1 + x2)/2. Now, we can generate the admissible
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Multi-adjoint logic program P :

R1 : p(X) ←P &G(q(X), @aver(r(X), s(X))) with 0.9
R2 : q(a) ← with 0.8
R3 : r(X) ← with 0.7
R4 : s(X) ← with 0.5

Admissible derivation:

〈p(X); id〉 →AS1
R1

〈&P(0.9, &G(q(X1), @aver(r(X1), s(X1)))); {X/X1}〉 →AS2
R2

〈&P(0.9, &G(0.8, @aver(r(a), s(a)))); {X/a, X1/a}〉 →AS2
R3

〈&P(0.9, &G(0.8, @aver(0.7, s(a)))); {X/a, X1/a, X2/a}〉 →AS2
R4

〈&P(0.9, &G(0.8, @aver(0.7, 0.5))); {X/a, X1/a, X2/a, X3/a}〉

Interpretive derivation:

〈&P(0.9, &G(0.8, @aver(0.7, 0.5))); {X/a}〉 →IS

〈&P(0.9, &G(0.8, 0.6)); {X/a}〉 →IS

〈&P(0.9, 0.6); {X/a}〉 →IS

〈0.54; {X/a}〉.

Fig. 1. MALP program P with admissible/interpretive derivations for goal p(X)

derivation shown in Figure 1 (we underline the selected atom in each step). So,
the admissible computed answer (a.c.a.) in this case is composed by the pair:
〈&P(0.9, &G(0.8, @aver(0.7, 0.5))); θ〉, where θ only refers to bindings related with
variables in the goal, i.e., θ = {X/a, X1/a, X2/a, X3/a}[Var(p(X))] = {X/a}.

If we exploit all atoms of a given goal, by applying admissible steps as much as
needed during the operational phase, then it becomes a formula with no atoms (a
L-expression) which can be then directly interpreted w.r.t. lattice L by applying
the following definition we initially presented in [10]:

Definition 3 (Interpretive Step). Let P be a program, Q a goal and σ a
substitution. Assume that [[@]] is the truth function of connective @ in the lattice
〈L,	〉 associated to P, such that, for values r1, . . . , rn, rn+1 ∈ L, we have that
[[@]](r1, . . . , rn) = rn+1. Then, we formalize the notion of interpretive computa-
tion as a state transition system, whose transition relation →IS ⊆ (E × E) is
defined as the least one satisfying:

〈Q[@(r1, . . . , rn)]; σ〉 →IS 〈Q[@(r1, . . . , rn)/rn+1];σ〉
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Definition 4. Let P be a program and 〈Q; σ〉 an a.c.a., that is, Q is a goal not
containing atoms (i.e., a L-expression). An interpretive derivation is a sequence
〈Q; σ〉→IS . . .→IS〈Q′; σ〉. When Q′ = r ∈ L, being 〈L,	〉 the lattice associ-
ated to P, the state 〈r; σ〉 is called a fuzzy computed answer (f.c.a.) for that
derivation.

Example 2. If we complete the previous derivation of Example 1 by applying 3
interpretive steps in order to obtain the final f.c.a. 〈0.54; {X/a}〉, we generate
the interpretive derivation shown in Figure 1.

3 Truth-Degrees and Multi-adjoint Lattices in Practice

We have recently conceived a very easy way to model truth-degree lattices for
being included into the FLOPER tool. All relevant components of each lattice
can be encapsulated inside a Prolog file which must necessarily contain the defi-
nitions of a minimal set of predicates defining the set of valid elements (including
special mentions to the “top” and “bottom” ones), the full or partial ordering
established among them, as well as the repertoire of fuzzy connectives which
can be used for their subsequent manipulation. In order to simplify our explana-
tion, assume that file “bool.pl” refers to the simplest notion of (a binary) adjoint
lattice, thus implementing the following set of predicates:

– member/1 which is satisfied when being called with a parameter representing
a valid truth degree. In the case of finite lattices, it is also recommend to
implement members/1 which returns in one go a list containing the whole
set of truth degrees. For instance, in the Boolean case, both predicates
can be simply modeled by the Prolog facts: member(0)., member(1). and
members([0,1]).

– bot/1 and top/1 obviously answer with the top and bottom element of the
lattice, respectively. Both are implemented into “bool.pl” as bot(0). and
top(1).

– leq/2 models the ordering relation among all the possible pairs of truth
degrees, and obviously it is only satisfied when it is invoked with two elements
verifying that the first parameter is equal or smaller than the second one. So,
in our example it suffices with including into “bool.pl” the facts: leq(0,X).
and leq(X,1).

– Finally,givensomefuzzyconnectivesoftheform&label1(conjunction),∨label2 (dis-
junction)or@label3 (aggregation)witharitiesn1,n2andn3 respectively,wemust
provide clauses defining the connective predicates “and_label1/(n1+1)”,
“or_label2/(n2+1)” and“agr_label3/(n3+1)”,wheretheextraargumentofeach
predicateisintendedtocontaintheresultachievedaftertheevaluationoftheproper
connective.Forinstance,intheBooleancase,thefollowingtwofactsmodelinavery
easywaythebehaviouroftheclassicalconjunctionoperation:and_bool(0,_,0).
and_bool(1,X,X).
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member(X) :- number(X),0=<X,X=<1. %% no members/1 (infinite lattice)

bot(0). top(1). leq(X,Y) :- X=<Y.

and\_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_sub(U1,1,U2),pri_max(0,U2,Z).
and_godel(X,Y,Z):- pri_min(X,Y,Z).
and_prod(X,Y,Z) :- pri_prod(X,Y,Z).

or_luka(X,Y,Z) :- pri_add(X,Y,U1),pri_min(U1,1,Z).
or_godel(X,Y,Z) :- pri_max(X,Y,Z).
or_prod(X,Y,Z) :- pri_prod(X,Y,U1),pri_add(X,Y,U2),pri_sub(U2,U1,Z).

agr_aver(X,Y,Z) :- pri_add(X,Y,U),pri_div(U,2,Z).

pri_add(X,Y,Z) :- Z is X+Y. pri_min(X,Y,Z) :- (X=<Y,Z=X;X>Y,Z=Y).
pri_sub(X,Y,Z) :- Z is X-Y. pri_max(X,Y,Z) :- (X=<Y,Z=Y;X>Y,Z=X).
pri_prod(X,Y,Z) :- Z is X * Y. pri_div(X,Y,Z) :- Z is X/Y.

Fig. 2. Multi-adjoint lattice modeling truth degrees in the real interval [0,1] (“num.pl”)

The reader can easily check that the use of lattice “bool.pl” when working with
MALP programs whose rules have the form:

“A ←bool &bool(B1, . . . , Bn) with 1”
.... being A and Bi typical atoms1, successfully mimics the behaviour of classical
Prolog programs where clauses accomplish with the shape “A : − B1, . . . , Bn”.
As a novelty in the fuzzy setting, when evaluating goals according to the proce-
dural semantics described in Section 2, each output will contain the correspond-
ing Prolog’s substitution (i.e., the crisp notion of computed answer obtained by
means of classical SLD-resolution) together with the maximum truth degree 1.

On the other hand and following the Prolog style regulated by the previous
guidelines, in file “num.lat” we have included the clauses shown in Figure 2.
Here, we have modeled the more flexible lattice (that we will mainly use in our
examples, beyond the boolean case) which enables the possibility of working
with truth degrees in the infinite space (note that this condition disables the
implementation of the consulting predicate “members/1”) of the real numbers
between 0 and 1, allowing too the possibility of using conjunction and disjunction
operators recasted from the three typical fuzzy logics proposals described before
(i.e., the Łukasiewicz, Gödel and product logics), as well as a useful description
for the hybrid aggregator average.

Note also that we have included definitions for auxiliary predicates, whose
names always begin with the prefix “pri_”. All of them are intended to describe
primitive/arithmetic operators (in our case +, −, ∗, /, min and max) in a
Prolog style, for being appropriately called from the bodies of clauses defining
predicates with higher levels of expressivity (this is the case for instance, of the

1 Here we also assume that several versions of the classical conjunction operation have
been implemented with different arities.
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three kinds of fuzzy connectives we are considering: conjuntions, disjunctions
and agreggations).

Since till now we have considered two classical, fully ordered lattices (with a
finite and infinite number of elements, collected in files “bool.pl” and “num.pl”,
respectively), we wish now to introduce a different case coping with a very simple
lattice where not always any pair of truth degrees are comparable. So, consider
the following partially ordered multi-adjoint lattice in the diagram below for
which the conjunction and implication connectives based on the Gödel intuis-
tionistic logic described in Section 2 conform an adjoint pair.... but with the
particularity now that, in the general case, the Gödel ’s conjunction must be
expressed as &G(x, y) � inf(x, y), where it is important to note that we must
replace the use of “min” by “inf ” in the connective definition.

�

α β

⊥

member(bottom). member(alpha).
member(beta). member(top).

members([bottom,alpha,beta,top]).

leq(bottom,X). leq(alpha,alpha). leq(alpha,top).
leq(beta,beta). leq(beta,top). leq(X,top).

and_godel(X,Y,Z) :- pri_inf(X,Y,Z).

pri_inf(bottom,X,bottom):-!.
pri_inf(alpha,X,alpha):-leq(alpha,X),!.
pri_inf(beta,X,beta):-leq(beta,X),!.
pri_inf(top,X,X):-!.
pri_inf(X,Y,bottom).

To this end, observe in the Prolog code accompanying the figure above that we
have introduced five clauses defining the new primitive operator “pri_inf/3”
which is intended to return the infimum of two elements. Related with this fact,
we must point out the following aspects:

– Note that since truth degrees α and β (or their corresponding representations
as Prolog terms “alpha” and “beta” used for instance in the definition(s)
of “members(s)/1”) are incomparable then, any call to goals of the form
“?- leq(alpha,beta).” or “?- leq(beta,alpha).” will always fail.

– Fortunately, a goal of the form “?- pri_inf(alpha,beta,X).”, or alterna-
tively “?- pri_inf(beta,alpha,X).”, instead of failing, successfully pro-
duces the desired result “X=bottom”.

– Noteanywaythattheimplementationofthe“pri_inf/1”predicateismandatory
forcodingthegeneraldefinitionof“and_godel/3”.
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4 The FLOPER System in Action

As detailed in [1,21], our parser has been implemented by using the classical
DCG’s (Definite Clause Grammars) resource of the Prolog language, since it
is a convenient notation for expressing grammar rules. Once the application is
loaded inside a Prolog interpreter (in our case, Sicstus Prolog v.3.12.5), it shows
a menu which includes options for loading, parsing, listing and saving fuzzy
programs, as well as for executing fuzzy goals (see Figure 3).

All these actions are based in the translation of the fuzzy code into standard
Prolog code. The key point is to extend each atom with an extra argument,
called truth variable of the form “_TVi”, which is intended to contain the truth
degree obtained after the subsequent evaluation of the atom. For instance, the
first clause in our target program is translated into:

p(X,_TV0) :- q(X,_TV1),
r(X,_TV2),
s(X,_TV3),
agr_aver(_TV2,_TV3,_TV4),
and_godel(_TV1,_TV4,_TV5),
and_prod(0.9,_TV5,_TV0).

Moreover, the second clause in our target program, becomes the pure Prolog
fact “q(a,0.8)” while a fuzzy goal like “p(X)”, is translated into the pure Pro-
log goal: “p(X, Truth_degree)” (note that the last truth degree variable is not
anonymous now) for which the Prolog interpreter returns the desired fuzzy com-
puted answer [Truth_degree = 0.54, X = a]. The previous set of options suffices
for running fuzzy programs (the “run” choice also uses the clauses contained in
“num.pl”, which represent the default lattice): all internal computations (includ-
ing compiling and executing) are pure Prolog derivations whereas inputs (fuzzy
programs and goals) and outputs (fuzzy computed answers) have always a fuzzy
taste, thus producing the illusion on the final user of being working with a purely
fuzzy logic programming tool.

On the other hand, as showed in the down-middle, dark part of Figure 3,
FLOPER has been recently equipped with a new option, called “loadLat” for
allowing the possibility of changing the multi-adjoint lattice associated to a given
program. For instance, assume that “new_num.pl” contains the same Prolog
code than “num.pl” with the exception of the definition regarding the average
aggregator. Now, instead of computing the average of two truth degrees, let
us consider the average between the results achieved after applying to both
elements, the disjunctions operators described by Gödel and Łukasiewicz, that
is: @aver(x1, x2) � (∨G(x1, x2)+∨L(x1, x2))∗0.5. The corresponding Prolog clause
modeling such definition into the “new_num.pl” file could be:

agr_aver(X,Y,Z) :- or_godel(X,Y,Z1),
or_luka(X,Y,Z2),
pri_add(Z1,Z2,Z3),
pri_prod(Z3,0.5,Z).
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Fig. 3. Example of a work session with FLOPER showing “Small Interpretive Steps”
and program/goal menus

and now, by selecting again the “run” option (without changing the program and
goal), the system would display the new solution: [Truth_degree = 0.72, X = a].

However, when trying to go beyond program execution, the previous method
becomes insufficient. In particular, observe that we can only simulate complete
fuzzy derivations (by performing the corresponding Prolog derivations based on
SLD-resolution) but we can not generate partial derivations or even apply a
single admissible step on a given fuzzy expression. This kind of low-level manipu-
lations are mandatory when trying to incorporate to the tool some program trans-
formation techniques such as those based on fold/unfold (i.e., contraction and
expansion of sub-expressions of a program using the definitions of this program
or of a preceding one, thus generating more efficient code) or partial evaluation
we have described in [5,9,12]. For instance, our fuzzy unfolding transformation is
defined as the replacement of a program rule R : (A ←i B with v) by the set
of rules {Aσ ←i B′ with v | 〈B; id〉 →AS 〈B′; σ〉}, which obviously requires the
implementation of mechanisms for generating derivations of a single step, rear-
ranging the body of a program rule, applying substitutions to its head, etc.

To this end, in [21] we have presented a new low-level representation for the
fuzzy code which currently offers the possibility of performing debugging actions
such as tracing a FLOPER work session. The idea is collect in detail all relevant
components associated to each fuzzy rule, such as its number inside the program,
composition of the atom conforming its head, kind of implication connecting the
head and its body, details about connectives and atoms composing this body
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and attached weight. For instance, after parsing the first rule of our program, we
obtain the following expression which is asserted into the interpreter’s database
as a Prolog fact (which it is never executed directly, in contrast with the high-
level, Prolog-based representation, showed at the beginning of this section):

rule(1,
head(atom(pred(p,1),[var(’X’)])),
impl(prod),
body(and(godel,2,

[ atom(pred(q,1),[var(’X’)]),
agr(aver,2,[ atom(pred(r,1),[var(’X’)]),

atom(pred(s,1),[var(’X’)])
]

)
]

)
),

td(0.9)
).

Two more examples: substitutions are modeled by lists of terms of the form
link(V, T) where V and T contains the code associated to an original variable
and its corresponding (linked) fuzzy term, respectively, whereas a state is rep-
resented by a term with functor state/2. We have implemented predicates for
manipulating such kind of code at a very low level in order to unify expressions,
compose substitutions, apply admisible/interpretive steps, etc...

Looking again to the darked part of Figure 3, observe in the FLOPER’s
goal menu the “tree” and “depth” options, which are useful for tracing execu-
tion trees and fixing the maximum length allowed for their branches (initially
3), respectively. Working with these options is crucial when the “run” choice
fails: remember that this last option is based on the generation of pure logic
SLD-derivations which might fall in loop or directly fail in some cases as the
experiments of [21] show, in contrast with the traces (based on finite, non-failed,
admissible derivations) that the “tree” option displays. As we are going to
illustrate in what follows, the system displays states on different lines, appropri-
ately indented to distinguish the proper relationship -parent/child/grandchild...-
among nodes on unfolding trees. Each node contains an state (composed by the
corresponding goal and substitution) preceded by the number of the program
rule used by the admissible step leading to it (root nodes always labeled with
the virtual, non existing rule R0).

Strongly related with these last options, the “ismode” choice showed at the
bottom of Figure 3, decides among three levels of detail when visualizing the
interpretive phase performed during the generation of “unfolding trees”. It is im-
portant to remark that together with the possibility of introducing multi-adjoint
lattices, it represents our last record achieved in the development of the FLOPER
tool. When the user selects such choice, three options are offered:
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• “Large” means to obtain the final result in one go. For instance, for our
running example (with the second notion of “average”) FLOPER draws:

R0 <p(X),{}>
R1 <&prod(0.9,&godel(q(X1),@aver(r(X1),s(X1)))),{X/X1} >
R2 <&prod(0.9,&godel(0.8,@aver(r(a),s(a)))),{X/a,X1/a}>
R3 <&prod(0.9,&godel(0.8,@aver(0.7,s(a)))),{X/a,X1/a,X11/a}>
R4 <&prod(0.9,&godel(0.8,@aver(0.7,0.5))),{X/a,X1/a,X11/a}>
result < 0.7200000000000001,{X/a,X1/a,X11/a}>

• “Medium” implements the notion of “interpretive step” according Definition 3
[10] which in our case produces the picture (note here that those states produces
during the interpretive phase are preceded by the word “is” instead of the num-
ber of a program rule, since no rules are exploited in this case in contrast with
admissible steps):

R0 <p(X),{}>
R1 <&prod(0.9,&godel(q(X1),@aver(r(X1),s(X1)))),{X/X1}>
R2 <&prod(0.9,&godel(0.8,@aver(r(a),s(a)))),{X/a,X1/a}>
R3 <&prod(0.9,&godel(0.8,@aver(0.7,s(a)))),{X/a,X1/a,X11/a}>
R4 <&prod(0.9,&godel(0.8,@aver(0.7,0.5))),{X/a,X1/a,X11/a}>
is <&prod(0.9,&godel(0.8,0.85)),{X/a,X1/a,X11/a,_16/a}>
is <&prod(0.9,0.8),{X/a,X1/a,X11/a,_16/a}>
is <0.7200000000000001,{X/a,X1/a,X11/a,_16/a}>

• “Small” allows to visualize in detail both the direct/indirect calls to connective
definitions and primitive operators performed along the whole interpretive phase
(see [22,24]). The reader can observe at the beginning of Figure 3, the aspect
offered by FLOPER when visualizing in detail the behaviour of our running
example, where the set of “small interpretive steps” are (we omit here the initial
fourth states- associated to admissible steps- since they coincide with our two
last illustrations above):

...
R4 <&prod(0.9,&godel(0.8,@aver(0.7,0.5))),{X/a,X1/a,X11/a,_16/a}>
sis1 <&prod(0.9,&godel(0.8,#prod(#add(|godel(0.7,0.5),|luka( ..
sis1 <&prod(0.9,&godel(0.8,#prod(#add(#max(0.7,0.5),|luka(0.7.
sis2 <&prod(0.9,&godel(0.8,#prod(#add(0.7,|luka(0.7,0.5)), ..
sis1 <&prod(0.9,&godel(0.8,#prod(#add(0.7,#min(#add(0.7, ...
sis2 <&prod(0.9,&godel(0.8,#prod(#add(0.7,#min(1.2,1)), ...
sis2 <&prod(0.9,&godel(0.8,#prod(#add(0.7,1),0.5))), .....
sis2 <&prod(0.9,&godel(0.8,#prod(1.7,0.5))), {X/a,X1/a ..
sis2 <&prod(0.9,&godel(0.8,0.85)), {X/a,X1/a,X11/a, ....
sis1 <&prod(0.9,#min(0.8,0.85)), {X/a,X1/a,X11/a, .....
sis2 <&prod(0.9,0.8), {X/a,X1/a,X11/a,_16/a}>
sis1 <#prod(0.9,0.8), {X/a,X1/a,X11/a,_16/a}>
sis2 <0.7200000000000001, {X/a,X1/a,X11/a,_16/a}>
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Fig. 4. Building a graphical interface for FLOPER

Observe in this last case that during the interpretive phase we apply “small
interpretive steps” of kind →SIS1 or →SIS2 (according to [24]). The intuitive
idea is that, whereas a →SIS1 step “expands” a connective definition on the next
state, the role of evaluating primitive operators is played by→SIS2 steps. Notice
in the figure that each primitive operators is always labeled by prefix “#”). These
facts justify why in our Prolog-based implementation of multi-adjoint lattices,
clauses defining connective predicates only perform calls to predicates of the
form “and_*”, “or_*”, “agr_*” (useful for identifying further →SIS1 steps) or
“pri_*” (associated to →SIS2 steps).

5 Conclusions and Future Work

The experience acquired in our research group regarding the design of techniques
and methods based on fuzzy logic in close relationship with the so-called multi-
adjoint logic programming approach ([10,5,9,11,12,7,8,22,23]), has motivated our
interest for putting in practice all our developments around the design of the
FLOPER environment [21,24]. Our philosophy is to friendly connect this fuzzy
framework with Prolog programmers: our system, apart for being implemented
in Prolog, also translates the fuzzy code to classical clauses (in two different
representations) and, what is more, in this paper we have also shown that a
wide range of lattices modeling powerful and flexible notions of truth degrees
also admit a nice rule-based characterizations into Prolog.
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Apart for our ongoing efforts devoted to providing FLOPER with a graphical
interface as illustrated in Figure 42, nowadays we are especially interested in ex-
tending the tool with testing techniques for automatically checking that lattices
modeled according the Prolog-based method established in this paper, verify the
requirements of our fuzzy setting (with special mention to the adjoint property).
For the future, we have in mind to provide an interface with rules written in
Fuzzy-RuleML and other fuzzy languages like the ones presented in [26,13] (the
XSB system supports GAP).
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Abstract. The integration of distinct reasoning styles such as the ones
exploited by description logics and rule-based systems is still an open
challenge because of the differences among them. Such integration may
be achieved by following two complementary approaches: loose integra-
tion vs. tight integration. Loosely integrated hybrid systems couple ex-
isting tools, so they have to handle mutual interactions and keep their
models aligned. Tightly-coupled hybrid systems, instead, are based on a
unified model supporting both reasoning styles.

In this paper we present a basic implementation of a fuzzy tableau al-
gorithm for description logics by means of rules. It is a step towards tight
integration because it requires only one rule engine while preserving the
semantics of both reasoning styles. In particular, the adoption of a fuzzy
tableau in a fuzzy rule engine allowed us to extend the expressiveness of
the latter while handling description logics reasoning coherently.

Keywords: Rule-Based Systems, Description Logic, Tableau Reason-
ing, Fuzzy Systems.

1 Introduction

Recently, there has been a growing interest about the combination of domain
representation systems based on some type of Description Logics, and rule-based
systems, mainly in the context of the Semantic Web technologies.

Description Logics (and the Semantic Web initiative) already provide lan-
guages and tools for representing and reasoning upon a certain domain. In par-
ticular, formal languages for knowledge representation are given, together with
algorithms for detecting inconsistencies, for classifying new concepts (w.r.t. pre-
vious knowledge), and for recognizing individuals w.r.t. to a given set (hierarchy)
of concepts. Rule-based systems, instead, have been largely used to express ap-
plications logic in terms of rules, thus easing the process of coding the high-level
logic (the business logic) into a procedural-like, executable specification. Rule-
based systems take as input external stimuli (the happening of events) and react
(by triggering the rules) producing some effects. The causal relation between
observed facts (inputs) and the observed effects (outcomes) is defined by the
rules that the user specifies as “knowledge base”.

M. Dean et al. (Eds.): RuleML 2010, LNCS 6403, pp. 35–49, 2010.
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As both these technologies are reaching a good maturity level, the need for a
comprehensive and unifying approach is emerging. As recognized also in [1,9,26],
domain-based applications could greatly benefit from such integration, at both
the levels of language expressiveness, as well as at the level of algorithms and
reasoning tools. Several solutions have been already proposed in the literature, ei-
ther achieving this integration in a loosely manner [12,2], or with a more tighter
integration [17,28]. However, such attempts have been limited by many theo-
retical issues. To cite one, Description Logics are usually based on the Open
World Assumption (OWA), while rule-based reasoners often assume the Close
World Assumption (CWA) hypothesis: combining both the assumptions with-
out providing a comprehensive semantics turns to be very hard. Moreover, a
further aspect is emerging as of fundamental importance when dealing with
real-life domains: the Description Logics adopted within the Semantic Web ini-
tiative support only “crisp” concepts and formulas, but more realistic models
should also allow for imperfection [30]. Indeed, several works have already tried
to integrate the different concepts: technological integration of rule-based and
DL-based systems has been studied [3,10] and even implemented within several
existing frameworks. Similarly, many researches has been carried out on the in-
tegration of imperfect reasoning and logic-based system, both rule-based and
description-oriented. In the latter case, in particular, both probabilistic and/or
fuzzy extensions of DL have been proposed: a detailed survey can be found in
[31]. To the best of our knowledge, however, no mainstream tool supporting on-
tological reasoning, rule-based reasoning, and fuzzy reasoning at the same time
is currently available.

In this paper, we present our preliminary results about a more comprehensive
approach to all these aspects. Building on previous works [8], we aim to achieve
a tighter integration, where a single reasoner accommodates for rule-based, DL-
aware, and fuzzy-based reasoning. To this end, we start from Drools Chance [22],
a fuzzy-capable extension of the state-of-the-art rule-based reasoner Drools1. By
means of a semantics based on many-valued fuzzy logic, we can model both the
OWA and the CWA reasoning styles in terms of fuzzy intervals attached to each
conclusion. Moreover, our framework allows for a unified, single representation
of rules, A-Box and T-Box facts/axioms.

The paper is organized as follows: Section 2 is dedicated to an analysis of the
related works and existing solutions; Section 3, instead, describes the proposed
solution and discusses some examples.

2 Integrating RBSs with DLs

2.1 Rule-based vs. Description-Oriented Reasoning

In general, integrating different reasoning styles is a rather difficult task, since
quite often the assumptions made by one of them does not meet the requirements
of the others, and vice versa. In particular, [13,24,29] has determined that the

1 http://jboss.org/drools

http://jboss.org/drools
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combination of ontological and rule-based reasoning is especially tricky because
of the Open World Assumption and the Closed World Assumption.

As explained by [27], rule-based systems are typically based on the Closed
World Assumption, which basically says that everything not explicitly asserted
as true has to be considered as false. This assumption allows to infer the most
information possible from available data. However, it makes the inference non-
-monotonic, in the sense that any new information may invalidate some of the
deduction done so far. So, this type of inference can be applied when the available
facts are reasonably stable, i.e., all the information available at a certain time
has already been collected. On the contrary, ontologies and description logics
in general adhere to the Open World Assumption, which only considers true
(or false) what can be effectively determined as such. This kind of inference is
actually safer than the previous one since new conclusions never contradict the
rest of the knowledge, but the price to pay is that some formulas can neither be
proven to be true, nor false.

Technically speaking, a successful integration is also difficult to achieve be-
cause it soon leads to undecidability. As depicted by [19], in fact, DL models
are often infinite and, being their knowledge incomplete, they can be completed
in several ways. Rule languages, instead, are meant to query finite knowledge
bases or, in the worst case, finitely enumerable structures. Problems, then, may
arise when knowledge is not restricted properly since it may prevent the system
mixing both reasoning styles from being decidable. Nevertheless, [1,9,26] showed
that the combination of such reasoning paradigms is a fundamental case in many
domains.

2.2 Loose vs. Tight Integration

From a methodological point of view, the possible integration approaches can
be reduced to three [10]: two of them, namely loose and tight integration, are
complementary while the third, embedded integration, can be seen a compro-
mise between the other two. Loosely-coupled systems delegate each reasoning
task they support to different sub-systems, so they require a preliminary study
to identify which reasoners are available and their peculiarity in terms of expres-
siveness and ease of integration: once the most appropriate set of tool has been
identified, a unifying framework has to be created to enable interoperability be-
tween tools by means of entailment, to keep the knowledge within their models
aligned and finally to hide the implementative details.

The implementation of tightly-coupled systems, instead, involves (i) the defi-
nition of a coherent theory enough complex to support all the desired reasoning
styles; and (ii) the development of a single reasoner able to understand its lan-
guage and semantics, and to manage the expressed knowledge accordingly.

Aswehadtheopportunitytoexperienceinapreviouswork([8]inwhichwedeveloped
an initial loosely-integrated solutionbasedonDrools,Pellet andFuzzyDL), tightly-
-integratedsystemstypicallyshowbetterexpressivenessandperformanceatthecost
of a higher degreeof complexitywhereas loosely-integratedonesare simplerbut still
challengingduetoaligningissues.
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Eventually, embedded solutions tend to combine the simplicity of the ap-
proaches based on loose integration with the expressiveness (and possibly the
efficiency) of tightly-coupled systems by implanting several reasoning behaviours
into a unique system exploiting a unified formalism.

2.3 Existing Approaches

There exist several concrete solutions combining rule- and DL-based reasoning
at the same time.

Jena2 is a flexible framework adopting mainly a loosely-based approach: it
includes a hybrid forward/backward chaining rule engine, but also allows to plug
in different reasoners to support the other required reasoning styles. Likewise,
SweetRules3, is an even richer integrated toolkit for semantic web revolving
around RuleML and many other W3C standards that works with ontologies.
Algernon4, instead, is a forward/backward chaining rule reasoner embedded in
Protégé: the rule engine processes and manipulates the facts inferred from the
ontology, possibly expanding it. Similarly, the CLASSIC DL reasoner adopts
simple procedural rules (equivalent to plain horn rules), on top of an ontology
which can be exploited to evaluate such rules [12].

A tighter approach has been adopted in O-Device [21], where the axioms of
DL are converted in FOL and then rewritten using rules. As will be discussed in
Section 3, however, this approach poses some additional limitations.

An even tighter level of integration requires the definition of a common logic
framework: the intersection of logic programs and description logics, rooted in
the common origins of first order logic, has been found and named Description
Logics Program (DLP) by [14] and a translation procedure has been proposed by
[18]. Thanks to those advancements, [25] has developed dlpconvert, a tool that
converts and handles the DLP fragment of OWL ontologies to Datalog clauses.
In [23] and [20], the authors define practices to reason upon large amount of
individuals within description logics by exploiting respectively bottom-up Dat-
alog and Deductive Database inference (with SHOIN expressiveness) and top-
down Prolog resolution (with SHIQ expressiveness). Moreover, since Deductive
Database supports rules natively, an extension capable of full rule handling can
be achieved by simply appending rules to the existing knowledge base.

Despite their remarkable expressive power, none of these systems supports
non-boolean reasoning natively. Actually, there exist several tools supporting
“fuzzy logic”, but one has to distinguish between the ones implementing “fuzzy
logic in a broad sense” [15], from those which intend fuzzy logic in the math-
ematical sense. Nevertheless, in the context of rule-based reasoning, Clips and
Jess had a proper fuzzy extension (FuzzyClips5 and FuzzyJess6 respectively),
in addition to other attempts to integrate generic logic programming and fuzzy
2 http://jena.sourceforge.net/
3 http://sweetrules.semwebcentral.org
4 http://algernon-j.sourceforge.net/
5 http://www.nrc-cnrc.gc.ca/eng/projects/iit/fuzzy-reasoning.html
6 http://www.csie.ntu.edu.tw/~sylee/courses/FuzzyJ/FuzzyJess.htm

http://jena.sourceforge.net/
http://sweetrules.semwebcentral.org
http://algernon-j.sourceforge.net/
http://www.nrc-cnrc.gc.ca/eng/projects/iit/fuzzy-reasoning.html
http://www.csie.ntu.edu.tw/~sylee/courses/FuzzyJ/FuzzyJess.htm
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logic such as FRIL [5], a prolog-like language and interpreter. In parallel, many
theoretical works [31] show the possibility to integrate an uncertain semantic in
several families of DLs, but only a few concrete systems actually exist, such as
DeLorean7, FiRe8 and FuzzyDL9.

3 Embedding (Fuzzy) DL Reasoning in Production Rules

3.1 A Few Considerations on Integration Issues

Recently, Business Logic Integration Platforms (BLIP) have become relevant
tools for the modelling of business processes and to provide support during their
execution, possibly in distributed and heterogeneous contexts such as the world
wide web. Most of such tools use rules to encode the business logic and exploit
(production) rule engines to execute them, finding applications in fields - just to
cite some of the ones we are involved in - ranging from environmental defence
to tourism to medicine. When different parties are involved, it is convenient to
share a common language allowing to exchange information: while initiatives
such as RuleML and RIF provide a solution at the syntactic level, defining a
standard language, an appealing way to share semantics is to build rules on top
of some mutually recognized ontology.

The integration of an ontology in a rule-based system, then, poses several
issues: (i) there should be a way for the engine to import an existing ontology as
well as a way to define it internally; (ii) the engine should be capable to query
the ontology, since an ontology usually asserts a compact model which allows to
infer additional implicit information; (iii) the conditions expressed in the rules
should be defined using the concepts from the ontology T-Box and evaluated
against entities in the ontology A-Box.

Drools is possibly the only open source BLIP offering many of the advanced
functionalities useful for the development of business applications, from work-
flow to event to planning capabilities, but unfortunately lacks support for
“semantic” applications. One of the goals of this paper, then, is to use it as
a case study, showing a possible way to embed DL reasoning natively in the
object-oriented production rule system.

The theoretical possibility of integrating a rule-based system with an onto-
logic description has been discussed in [3], where it is shown that basic RDF
and RDFS reasoning can be performed using an appropriate set of rules, trans-
forming the axioms in an appropriate set of FOL formulas which, in turn, can
be translated into rules. Moreover, the same procedure can be applied to OWL
axioms, obtaining rules which use transitivity, symmetry, domain/range, inverse,
type and inheritance relations to compute the closure of a (descriptive) knowl-
edge base. A concrete implementation of this approach using a a RETE-based
engine is described in [21].

7 http://webdiis.unizar.es/~fbobillo/delorean.php
8 http://www.image.ece.ntua.gr/~nsimou/FiRE/
9 http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html

http://webdiis.unizar.es/~fbobillo/delorean.php
http://www.image.ece.ntua.gr/~nsimou/FiRE/
http://gaia.isti.cnr.it/~straccia/software/fuzzyDL/fuzzyDL.html
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This implementation of DL reasoning, however, has a few relevant differences
from its counterpart in more dedicated “semantic” reasoners. First of all, the
former adopts the CWA while the latter uses the OWA: this means, for example,
that an individual x could be considered a member, say, of a class defined by the
concept ∀R.C by a rule-based reasoner, but not by a semantic one, because even
if all the known instances y such that R(x, y) holds have type C, there could
always exist another R-related element z for which C(z) does not hold. While
this “pragmatic” behaviour may be desirable in some cases, the user should be
allowed to choose which approach to use according to the application’s needs.

Moreover, while (CWA) testing (i.e.decidingwhether an entitybelongs to a class
definedbyaconcept)andthusrecognition (i.e.findingthemostspecificconcept(s)an
instanceismemberof)involveaparticularA-boxinstance,apureT-boxproblemsuch
assubsumption (i.e.decidingwhetheraconceptisasubconceptofanotherornot)and
thenclassification(i.e.reconstructingtheminimalhierarchygivenasetofconcepts)[4]
can’tbeperformedsafelyandsoundlyusingonlythelimitedpopulationofindividuals
presentintheA-boxatagivenmoment.

These problems motivated the search for a way to integrate the reasoning style
of a semantic engine in a rule-based one, in addition to importing the facts and
concepts contained in a semantic rule base. Given that reasoning under OWA
can be modelled more naturally using a 3-valued logic instead of a boolean
one, the choice of Drools becomes even more convenient because such a logic
is supported using the Drools Chance extension [22] which is currently being
developed as a part of the core engine. Moreover, the same extension supports
different (interval) many-valued fuzzy logics: in the rest of this section, then, we
will discuss how this feature allows to integrate a simple many-valued description
logic and its related reasoning framework in a seamless way.

3.2 Proposed Architecture

Loose Integration. In a previous work [8], we experimented with a loose inte-
gration of rule-based and semantic reasoning, using Drools as main system and
invoking the subordinated reasoners - Pellet and FuzzyDL - as needed. Drools
offers two convenient ways to do so : custom evaluators - pluggable interfaces
for predicate evaluation functions - and fact pulling using the featured keyword
from. Exploiting the Jena framework and the JenaBeans API, as in rule 1.1,
it is possible to invoke a reasoner like Pellet for recognition purposes whenever
a fact is matched against a pattern. Jena automatically serializes an annotated
(Java) object into its description, feeds it to Pellet, performs the query and re-
covers the result. A similar approach allows to interact with FuzzyDL, but the
(de)serialization operations have to be performed manually. The second alterna-
tive, instead, is to retrieve previously inferred facts from the external reasoner’s
working memory, exposed by Jena as a collection.

This trivial approach turned out to be unsatisfactory from many point of views:
each one of the different reasoners uses a private knowledge base andaprivatework-
ing memory, which must be kept aligned at the cost of some communication over-
head; moreover, the initial mapping requires a considerable effort from the user.
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Listing 1.1. Loose integration example

rule "Loose1"

when
$o : Object ( t h i s isA "SomeConcept " )
$p : Statement ( p r ed i c a t e == "Prop" , . . . )

from i n f e r r edMode l
then . . . end

Embedded Integration Overview. To avoid these additional costs, we studied the
possibility of emulating the behaviour of a semantic reasoner using production
rules, thus allowing to share knowledge and data between the reasoners - in fact,
using only one reasoner and allowing the user to choose the desired behaviour.
It turns out that a fuzzy tableau algorithm such as the one proposed by Straccia
and Bobillo in [7] can easily be adapted and integrated in a RETE network
according to the procedure described in this section. More properly, one can
consider a family of related tableaux algorithms which depend on two main
degrees of freedom: the expressiveness of the description logic used to construct
the formulas and the family of many-valued logic used to evaluate them.

The latter issue is already addressed in Drools Chance, which can be config-
ured to use different “imperfect” logic frameworks (e.g. many-valued or proba-
bilistic logic) combined with different models of generalized truth degrees (e.g.
real values, intervals, fuzzy numbers, . . . ). Being natively supported in the rule
engine working memory, the fuzzy tableau rules can draw the fuzzy facts directly
from it; likewise, the inferred semantic facts can trigger other rules naturally,
with their associated degrees combined and propagated in a transparent way.
The proposed architecture, then, can be outlined as shown in Figure 1:

1. A set of semantic concept definitions, expressed using an extended version
of Drools’ native DRL language, is parsed. The same intermediate Abstract
Sytntax Tree (AST) representation could be obtained by parsing a T-Box
expressed in some more standard language.

2. The resulting AST is visited to build a set of rules which, all together,
implement a (fuzzy) tableau. In particular, appropriate rule templates are
instantiated as will be discussed in Section 3.3

3. The same intermediate AST can be built from the parsing of other standard
ontology languages

4. Optionally, the AST can be used to build CWA recognition rules, as in [21]
5. Optionally, the AST can be used to build dynamic beans, as in [21]. This

feature is currently under development
6. The rules are compiled and merged in the main RETE

Language extensions. While there exist several families of Description Log-
ics10 with different expressiveness and complexity, at the moment our prototype
supports only a many-valued extension of ALC, where derived concepts are de-
fined by equivalence within an acyclic T-Box based on �Lukasiewicz’s logic. The
10 http://dl.kr.org

http://dl.kr.org
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DRL
DL

RETE
TABLAST

Templates

Fig. 1. Architecture Outline

language and the semantics of its fuzzy extension are the usual as can be found
in [32] and [7]. The limitations on the language, which will be addressed in fu-
ture works, reduce its expressiveness, but guarantee the correctness of several
reasoning algorithms [6].

To be compatible with the existing Drools language, we decided to extend
the DRL declare feature, adopting the Manchester syntax [16]. Originally, this
construct had been designed to declare beans “on-the-fly” by listing the fields
and their types. In [21], it has been shown that this is equivalent to a fragment
of ALC with number restriction and concrete datatypes: in fact, the declaration
of a field F of type T is equivalent to the constructor ∃≤1F.T .

So, legacy declarations can be assimilated to a conjunction of ∃R.C state-
ments11. Extended ones, instead, can exploit the standard connective construc-
tors, mapped using the keywords and, or and not, and the quantified ones,
mapped using the keywords some and all. For example, consider the (not so
realistic) definition of the concept “Engineering professor”: a subset of profes-
sors characterized by having at least one male student. The corresponding DL
formulas EngineeringProfessor ≡ Professor � ∃HasStudent.Male can be
written as shown in rule 1.2. Additional information, such as namespaces, can
be provided using metadata annotations.

Listing 1.2. Example declaration

declare Eng ineer ingPro fe s s o r @[ ns=... ]
as Pro f e s s o r

and HasStudent some Male
end

3.3 (Fuzzy) Tableau Algorithm

A tableau algorithm [4] is a procedure to verify the consistency of a given knowl-
edge base: in fact, it has been shown that all other common tableau problems,
including recognition and subsumption, can be transformed to a consistency
verification problem. The algorithm uses a generative procedure to search for
a consistent interpretation, applying rules, ordered by priority, corresponding
to DL constructors. The implementation of a tableau algorithm in a produc-
tion rule system, however, is not trivial because such systems do not normally
support explicit logical negation (i.e. it is not possible to state that a fact is

11 Notice that, at the moment, the mapping is not perfect.
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false) and, more importantly, do not support the backtracking mechanism re-
quired by the non-deterministic tableau rules. However, both problems can be
circumvented using the fuzzy tableau algorithm present in [7], which is also a
generalization of and thus compatible with the boolean case. The algorithm re-
duces the consistency check to a numeric optimization problem, solved using a
dedicated component. The actual class of this problem depends on the family of
(many-valued) logic adopted: since �Lukasiewicz’s operators are linear, choosing
them causes the problem to fall within the Mixed Integer Linear Programming
(MILP) class.

While Drools does have a Solver module, at the moment it does not sup-
port MILP problems, so we resorted to the open source solver GLPK12, invoked
through the interface Java ILP13, planning to do a tighter integration at a later
time. This interface offers the convenient abstraction of Problems, Constraints,
Variables and Linear combinations thereof. The main advantage of this ap-
proach is that all the non-determinism is delegated to the solver: the tableau
generation, then, becomes deterministic and suitable for a production rule im-
plementation.

As already noted, a tableau implicitly makes the open-world assumption: in
many-valued logic, this means that it is not possible to entail an exact truth
value, but only a lower or an upper bound (the latter by entailment of the nega-
tion of a formula). The IDegree interface of Drools Chance allows to model
many-valued truth degrees with interval-bounded variables (see also [32]): these
variable degrees, compatible with JavaILP Variables, are generated and com-
bined in the tableau. At each step, a generation rule processes a DL constructor
(a logical connective or a quantifier). The degrees associated to the operands,
then, are connected using an abstract operator whose implementation is pro-
vided by an external Factory - the same which generates the operators for the
normal production rules.

In order to practically implement the rule-based tableau, each concept dec-
laration is first parsed to obtain an AST tree, then negations are resolved by
cancelling double negations and embedding the surviving ones in their operands’
nodes using a dedicated flag. Eventually, the tree is further split into a set of
elementary sub-trees: to do so, every operator/quantifier node is replaced by a
uniquely identified “mock” type node. This node is instantiated twice: one copy
is attached to the former operator node’s father, while the other replaces the
operator node itself and is connected to its children. An example is shown in
figure 2.

Every elementary tree is then used to instantiate a pair of rule templates,
choosing the templates according to the type of the original operator. The mock
types are used to chain and propagate information during the generation process:
whenever an instance of a mock type is generated, its children are generated and
their associated Variables are combined and constrained appropriately to their
parent’s one. Whenever a variable-degree Type fact is about to be generated by

12 http://www.gnu.org/software/glpk/
13 http://javailp.sourceforge.net/

http://www.gnu.org/software/glpk/
http://javailp.sourceforge.net/
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Fig. 2. AST Splitting

the tableau, the system exploits the engine’s insertion and merging features to
look whether an equivalent fact for the same object and type is already present,
so that the existing degrees can be imported as bounds for the variable in the
optimization problem. Notice that since assertions can be positive or negative,
there must exist two distinct rules for each mock type.

For example, the and tree of Figure 2 yields a (positive) rule shown in pseudo-
code in 1.3. Values between brackets are parametric and derived from the AST;
the and constraint, generated by an appropriate Factory, depends instead on
the parent’s degree and is extracted using the degree() helper method. The
additional fact in the premise, finally, is used to associate each rule activation
and the temporary facts it generates to a specific tableau instance, allowing
multiple queries to be performed at the same time as well as clearing the WM
after a problem has been solved.

Listing 1.3. Tableau Rule example

rule "AND_[klass_x]"

salience . . . // used to en f o r c e p r i o r i t y
when

QueryContext ( $prob : problem )
Type ( $xlab : l a b e l , $neg : negated == [ f a l s e ] ,

$x : subject , ob j e c t == "[klass_x]" )
then

St r ing [ ] chClass = new St r ing [ ] { [ . . . ] } ;
boolean [ ] chNeg = new boolean [ ] { [ . . . ] } ;

// f o r each Child [ j ]
// gene rat e / c o l l e c t Type (x , chClass [ j ] , chNeg [ j ] )
// generat e v a r i ab l e degree s

Object parentVar = $neg ? degree ( ) : degree ( ) . neg ( ) ;
Constra intFactory . addAndConstraint(

chldVars , parentVar , $prob ) ;
end
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All the dynamically generated rules are appended to a common header which
contains, among other things, the rule which invokes the solve() method on a
query problem and generates the final response.

3.4 Tableau Queries : Comparing OWA and CWA

The tableau, even in its rule-based version, works by (fuzzy) refutation. In order
to prove that the “real” truth degree εA of a formula A is true to at least degree
τ , it minimizes τ under the constraint ε¬A ≤ 1 − τ [7]. The value τ can be
considered the fuzzy degree of necessity of A being true: the minimization of
1− τ , then, is a refutation in the sense that it maximizes the necessity of ¬A or,
equivalently [11], that it finds the minimum allowed degree of possibility for A.
Informally: since it is not possible for ε to be lower than that value, that one is
the best necessity bound.

The problems of test and subsumption, then, can be reduced to finding the
greatest necessity (lower) bound for the formulas A(x) and A(·) → B(·) respec-
tively. In their rule-based version, the former is triggered by the insertion of a
Query fact, the test fact Type(x,"not A"), where x is the individual to be tested,
and the constraint εType ≤ 1− τ . The latter, instead, requires a Query fact, the
test facts Type(x,"A")/τ1 and Type(x,"B")/τ2 (where, in this case, x is a new
mock object) and the constraint ¬(τ1 → τ2) ≤ 1 − τ , which in �Lukasiewicz’s
logic reduces to τ1 − τ2 ≤ 1− τ .

The same tableau rules can also be used to compute the upper bound 1− ϕ
of a formula [32], i.e. the possibility of its being true. To do so, it is sufficient
to compute the necessity ϕ of the negation of a formula: for test problems the
objective becomes Type(x,"A") constrained by /(1 − ϕ), while in the case of
subsumption the only difference is in the constraint, which is based on the
implication-equivalent disjunction ¬A ∨ B instead of the conjunction A ∧ ¬B
(in practice, ϕ2 − ϕ1 ≥ 1− ϕ).

To better exploit this feature, Drools Chance is configured to use [τ, 1 −
ϕ] intervals as truth degrees: the tableau query, then, produces facts such as
Type(x,"A") and SubConceptOf("A","B") whose interval degree derives from
the two tableau queries. These facts are indistinguishable from the others in the
WM and can be used as needed. Moreover, the possibilistic interval representa-
tion is a generalization of three-valued logic14, so it can take into account the
cases when the tableau can’t provide a definite answer for neither the positive
nor the negative query.

Recovering the default behaviour. A further advantage of this approach is the
possibility to reduce the fuzzy intervals to simpler cases. If the lower bound alone
is considered, the result of a tableau query coincides with a traditional inference
under OWA; the upper bound, instead, is normally constrained by the existing
facts and thus connected to an inference under CWA. Hence, the fuzzy interval
attached to each conclusion brings both the results of applying CWA and OWA
to the same query. Note, however, that although we map both CWA and OWA
14 The “third” value is easily modelled by [0, 1].
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to fuzzy intervals, it is not possible to map such fuzzy intervals to CWA/OWA.
In the general case, in fact, fuzzy intervals retain much more information than
the CWA/OWA models. This means that each computed result (in the general
case) can be interpreted only in terms of the underlying fuzzy logic. It is up to
the user to decide how to reduce the rich information represented by the fuzzy
interval in terms of a boolean conclusion under CWA/OWA.

To support the user in such a task, we propose two unary pattern operators, nec
and pos, which return a precise degree instead of an interval and thus are com-
patible with simpler degree representations. Their definitions are, respectively:

– nec: [τ, 1− ϕ] �→ [τ, τ ]
– pos: [τ, 1− ϕ] �→ [1− ϕ, 1 − ϕ].

Using either in front of a tableau-generated pattern not only allows to choose
between closed- and open-world assumption, but also to use the tableau rules in
a system where simple fuzzy values are used in place of intervals, at the expense
of being forced to choose either assumption every time. Although the formal
connection to (fuzzy) modal logic is still object of study, we have also defined
the related operators T ≡ nec (“true”), F ≡ not nec (“false”) and U ≡ pos
and not nec (“unknown”), returning respectively τ , ϕ and ϕ− τ . The degrees,
while intuitively acceptable, introduce a second-order evaluation feature which
we haven’t studied thoroughly yet.

4 Examples

As an example, consider the problem of testing whether an individual x matches
with the concept EngineeringProfessor described in 1.2. If no other individ-
ual exists in the WM, the ∃HasStudent.Male evaluates to [0, 1]: while it is
possible for one to exist, it is not necessary because no existing object makes
the contrary impossible. Assume, instead, that other rules have generated the
facts HasStudent(x,y)[0.7,0.8], Male(y)[0.8,1], HasStudent(x,z)[0.3,0.4] and, fi-
nally, Male(z)[0,0.2]. In this case, the existential part of the concept evaluates to
[0.5, 1]. Since it relies on the OWA, the possibility remains unchanged, but the
necessity is now conditioned by the best of the available facts, i.e. the one for
which the relation HasStudent and the type Male condition hold simultaneously.
To get a non-trivial answer, it is also necessary to have the fact Professor(x)
in the WM. If, for example, it is associated to the degree [0.9, 0.95], the result of
the test query will be Type(x,EngineeringProfessor[0.4,0.95]. Notice that the
lower bound (i.e. nec Type(...)) would be equivalent to the one returned by
the reactive test rule 1.4 which could be generated trivially from the DL defi-
nition. The upper bound, instead, remains different in the two cases: the exist
quantifier in the CWA rule, in fact, returns 0.8 (leading to 0.75 in the final
result), which is different from the upper bound computed using the OWA.

Given the current level of expressiveness of the language, instead, the fuzzy
subsumption queries are coherent with the corresponding boolean ones since
there is no way to express partial subsumption relations between concepts. It
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is important to remark, however, that with a trivial rule-based approach such
queries are not possible. While the rules involving Type relations discussed in
[21] can be generated and applied at run-time, they operate and complete the
A-box, but can hardly reason on the T-box. Likewise, a CWA subsumption rule
such as 1.5 is not safe because it is not based on the analysis of the description
of the two concepts, but on the analysis of the properties of a (limited) number
of individuals present in the WM at a given time.

Listing 1.4. CWA Test Rule

rule "EngineeringProfessor"

when
$t : Type ( $x : subject , ob j e c t == "Prof" )
exists ( HasStudent ( sub j e c t == $x , $y : ob j e c t )

Type ( sub j e c t == $y , ob j e c t == "Male" )
then insert ( new Type ( $x , "EngProf" , degree ( ) ) ) ; end

Listing 1.5. CWA Subsumption Rule - Unsafe

rule "Human -> Mortal"

when
fora l l ( $t : Type ( $x : subject , ob j e c t == "Human" )

( Type ( sub j e c t == $x , ob j e c t == "Human" )
implies
Type ( sub j e c t == $x , ob j e c t == "Mortal" )

then insert (
new SubConceptOf ( "Human" , "Mortal" , degree ( ) ) ) ;

end

5 Conclusions and Future Developments

This work has shown a possible way to integrate many-valued logics, description
logics and production rules in the context of a single engine. Although the cur-
rent implementation of our prototype is limited to the expressiveness provided
by the ALC DL family, it supersedes previous attempts in many aspects. It pro-
vides a single, unified model for facts, concepts and rules, letting the user to
specify within the same context both the ontological knowledge as well as the
operational knowledge. Since the data model - the Working Memory - is shared,
we managed to avoid the interfacing, coherency and communication problems
connected to the use of different reasoners in the same architecture. Moreover,
the tool supports fuzzy extensions to both aspects, and through such extensions
it tries to avoid the dichotomy between OWA and CWA reasoning styles. The
next step will be the upgrade of the expressiveness of the supported logics, both
in term of DL features and in term of fuzzy logic families. To do so, the tableau
rules will have to be expanded and, possibly, a more powerful solver will have to
be integrated. As the expressiveness increases, it will be possible to implement
more powerful recognition and classification algorithms which, in our plans, will
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also allow us to define a better mapping between the declared concepts and the
(Java) classes used to implement the individuals. In parallel, a more compact
and efficient way to use semantic predicates in rules and to evaluate them in
RETE nodes is being studied to improve readability and performance.

The prototype, developed in a branch of Drools, is to be integrated in the
next version of the engine and will be made available in the SVN repository at
http://anonsvn.jboss.org/repos/labs/labs/jbossrules/
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Abstract. An Adaptive Process Management System (APMS) allows for 
flexible, dynamic and even ad hoc adaptation of business processes based on 
case data, context and events. It is also important that APMS technology ensure 
error-free process execution and compliance with semantic constraints. 
However, most process design tools tend to be rigid or they handle only syntactic 
constraints. This restricts their value in real-world applications considerably. 
This paper presents a new approach to validate process change operations against 
semantic constraints using an integer programming formulation. The formulation 
allows us to describe existential as well as coordination (such as before-after 
ordering sequence) relationships between tasks in a process in a common way.  
It can then be solved to not only check full or strong compliance, but also 
determine the minimum set of additional process changes required to ensure 
weak compliance. Notions of strong and weak compliance are discussed and 
illustrated with a detailed example. We argue that this approach is more elegant 
and superior to a pure logic based approach.  

Keywords: business process adaptation, semantic constraints, rules, ECA, 
complex events, change patterns, weak compliance, strong compliance. 

1   Introduction 

Today's organizations often face continuous and unprecedented changes in their 
business environment. Hence, there is a strong demand for Adaptive Process 
Management Systems (APMS) that allow flexible adaptation of processes. Process 
adaptation is a strategy to deal with exceptional situations during workflow execution. 
Thus, if such exception can be captured and modeled, business processes can adapt to 
it automatically without human intervention. In addition, APMS technology should 
ensure error-free process execution and compliance to external regulations and 
internal business policies. Thus, two conflicting goals need to be balanced – the need 
for control versus the need to provide sufficient flexibility for workflows to adapt to a 
constantly changing environment.  

Process adaptation is defined as the capability to react to uncertainty in a process 
model through change or a running process instance through deviation. The 



 Ensuring Compliance with Semantic Constraints in Process Adaptation 51 

uncertainty may arise from the case data, context, and real-time events. There are 
several ways to incorporate flexibility into a process design. First, ECA (Event-
condition-action) rules are a popular approach to catch unanticipated events and adapt 
to exceptions [1]. This can allow an APMS to deviate from normal execution. Second, 
process flexibility is provided by under-specification. An underspecified model is 
described as a list of tasks to be executed and a set of constraints that apply to them. 
At run time, any instance that satisfies the constraints is valid. A third notion of 
flexibility is based on separation of business policy from process control flow by 
parameterizing aspects of the process description with business policy elements 
instead of hard-coding them.  

Of course, it is very important that process flexibility should not violate structural 
and semantic constraints. Structural constraints refer to the control of process 
execution at the structural level. For example, by verifying the absence of deadlocks 
and inconsistent data in a process model at design time, an APMS can determine that 
a process is structurally correct. This is necessary to guarantee error-free execution of 
a workflow both before and after making changes. Semantic constraints stem from 
domain specific requirements and express dependencies, incompatibilities, and 
existence conditions between activities [2]. As an example, such a constraint may 
state that: possible drug interaction between amoxicillin and oral contraceptives 
prohibits a patient from taking both medications within, say, 7 days of each other. In 
addition, similar constraints are also required to ensure that the process models are 
compliant with policies and regulations (both internal and external) as well. Hence, an 
APMS must guarantee that process changes will not violate both structural and 
semantic constraints. The work in reference [2] provides a useful inspiration for our 
work, but it focuses more on a constraint framework for compliance support and 
formal compliance criteria. It also does not discuss a constraint language, instead 
relying on natural language examples.  

The main focus of our paper is on developing techniques for detecting and 
handling semantic constraint violations. We assume that process change operations 
are generated by ECA-like rules that are triggered when certain events occur, or 
context related conditions in the environment are satisfied.  Our main contributions 
are: (1) giving a formal language to describe a variety of semantic constraints; (2) 
expressing semantic constraints as an integer programming (IP) formulation; and, (3) 
showing how an IP formulation is solved and analyzed to determine and correct 
violations.  

This paper is organized as follows. In section 2, we give background on business 
process management notation and introduce semantic constraints. Section 3 presents a 
framework for ECA rules and discusses various change operations or actions for 
adapting a process produced by such rules in response to events based on case data 
and context. Then in section 4, we present a formal specification of semantic 
constraints and show how the problem of checking compliance of constraints to 
change operations checking can be formulated as in integer program (IP).  We also 
show how the IP can be solved and solution analyzed.  We discuss related work and 
our advantages in section 5. Lastly, section 6 concludes the paper and presents future 
work.  
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2   Preliminaries 

2.1   Basic Notations in Business Process Management 

A business process is mainly formed by tasks that need to be performed by resources 
to complete the process. To support the execution of each process, a process model 
needs to be defined by a formal language (e.g., BPMN, BPEL). Let M = (T, N, E, Res, 
Dat) to denote a process model, where T denotes the set of all tasks, N denotes the set 
of all control nodes, E represents the set of all edges connecting tasks and control 
nodes, Res denotes a set of all resources, and Dat denotes related data. The node N∈ 
{start, end, sequence, parallel, choice, loop} means it has six types. The start node 
and end node are required for each process model to specify the beginning and the 
end of a process. In this paper, we also use process type or process template to refer to 
process model since they are often used interchangeably.  

 

Fig. 1. A simplified clinical process for proximal femoral fracture, adapted from [3] 

Fig. 1 presents a simplified clinical pathway for proximal femoral fracture in 
BPMN notation [4]. This process model is coordinated by a series of tasks. After 
patient admission (T1), the task anamnesis & examination (T2) is conducted. Then, 
depending upon the result of examination, if the patient has clinical suspicious of 
proximal femoral facture, she has to take imaging diagnosis, which is composed of 
three parallel tasks: MRI (T5), Sonography (T6), and CT (T7); otherwise, she is 
diagnosed and prepared for therapy (T3), followed by customized therapy (T4). 
Further, depending on the results of her imaging diagnosis, she is either treated with 
therapy (T8) or surgery (T9 and T10).  

Finally, the patient will be discharged and documented (T11). The ordering 
relationship of tasks can be easily told from this process model. For example, T1 is 
followed by T2, implying the sequential control flow. T5, T6, and T7 are executed in 
parallel, denoted by AND-split and AND-join. T8 and T9 are executed in choice, 
denoted by OR-split and OR-join. The semantics of an OR-split node is that one or 
more branches can be pursued at this node. Hence, it is like a multi-choice structure. 
All the paths initiated at the OR-split node must finish and meet at the corresponding 
OR-join node. At an AND-split node, all branches are followed and they meet at an 
AND-join.   

Based on the process model, at run time a process instance is created and executed 
for a specific case. A process instance records an actual execution of a process 
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model. For example, a patient named Mary was admitted by the hospital, and then 
underwent anamnesis and examination. The result indicated that she was not 
suspicious of proximal femoral fracture, thus she did not need imaging diagnosis. 
However, her symptom was further examined and diagnosed. After that, she took a 
therapy and was discharged. This is a typical process instance following the process 
model in Fig.1. The actual execution path of this instance can be recorded as {start, 
T1, T2, T3, T4, T11, end}. For a running process instance, a task can have the 
following status values: activated, executing, done, aborted, suspended, and not 
activated. One process model may have hundreds or thousands of process instances 
running at the same time.  

2.2   Semantic Constraints 

A process is balanced by control (through constraints) and flexibility (through change 
operations). Traditional APMS only consider structural constraints that deal with 
structural correctness of the modified process, such as deadlock and infinite loop. A 
large number of studies have been devoted towards this research effort, and handled 
this problem very well. Thus, in this paper we only focus on semantic constraints. We 
define semantic constraint as a domain specific restriction on business processes 
which needs to be compliant with during process execution. A process model or 
instance that violates semantic constraints may be still syntactically correct, but not 
applicable to a real world scenario because it is semantically wrong. This is 
particularly important for a knowledge-intensive environment where domain 
knowledge plays a critical role in process design. For example, a patient with bacterial 
infection is usually administered with amoxicillin or clindamycin. In addition, we 
should add a semantic constraint that medication of amoxicillin is forbidden for 
patients who are hypersensitive to penicillin. In an application, a doctor may handle a 
number of cases each day and she may not recall specific patients. A certain patient 
may be sensitive to amoxicillin and react badly to it. Thus, the APMS should provide 
compliance checking mechanism to avoid these problems. Other examples for 
semantic constraints include:  

• Symptom examination and diagnosis should be performed before therapy. 
• A patient with a cardiac pacemaker is not allowed to have a MRI test. 
• A patient must not be administered Aspirin and Marcumar within 5 days of 

each other to avoid possible interactions. 

During process design, the semantic constraints for a particular business process 
should be acquired from domain experts written in English-like language and then 
transformed into a language understandable by computers. The original process model 
is usually verified and compliant with predefined constraints. However, when change 
or deviation takes place, such semantic constraints can be easily violated. Our paper 
aims to propose a formal definition for semantic constraints and provide a compliance 
checking mechanism to ensure no process change or adaptation will violate these 
constraints. This mechanism is also incorporated into an ECA framework.  
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3   An Extended-ECA Model for Compliant Process Adaptation 

In this section, we present an extended-ECA framework for automatically adapting 
business processes and checking compliance with semantic constraints.  

3.1   Rule Specification 

Rules (or production rules) are usually expressed in the format of “If condition Then 
action” to encode appropriate knowledge. They are usually invoked by a user or an 
application and then processed by the rule engine. Reaction rules are represented in 
the format of Event-Condition-Action (ECA) and they can be automatically triggered 
when the specified event occurs. In APMS, reaction rules have been used to handle 
deviations [5, 6], which allow a process instance to deviate temporarily from its 
associated standard process templates for exception cases. An ECA rule can react to 
events in real time. After an event (E) occurs, a condition clause (C) is checked. If it 
is satisfied, then the action (A) is performed. An example ECA rule is: 

 
     ECA ( 

event (PatientConditionUpdate),  
condition (Patient.isPregnant == true), 
Action (Delete(CTScan), Delete(X-ray test)) 
 

In this rule, as soon as a patient's condition is updated an event is generated. Then, 
a condition (“pregnancy”) is tested and if true, then any CT scan or X-ray tasks are 
removed from the process.  

ECA rules are a flexible way to achieve process adaptation, in contrast to, say, a 
series of nested if-then-else statements that hurt workflow readability. There are a 
variety of rule-based event processing languages, e.g., Drools [7] and Reaction 
RuleML [8]. For a comprehensive survey on existing event processing languages 
(EPL) in terms of their syntax, application domain, and features, see reference [9]. A 
variant of ECA called ECA-LP formalism [10] handles more advanced rules 
represented as a 6-ary tuple [10]: ECA (T, E, C, A, P, EL). In addition to the three 
elements above, it also includes T (time), P (post condition) and EL (else action). 
Time is absolute (“5pm of July 29th, 2010”), relative (“5 hours from 'now'”), or 
periodic (“every 10 seconds”). EL represents an alternative action if the condition is 
false, while the post condition is checked for satisfaction after the action is finished. 

The ECA-LP formalism provides a richer syntax than ECA for expressing rules to 
model the needs of a flexible process designer. Moreover, many efforts are being 
devoted to developing such a homogeneous language and transforming it into 
RuleML [11], which is becoming a standard in the rule research community. Many 
languages also support complex events based on conjunction, disjunction and negation 
of events. Moreover, temporal relationships between events, such as: before, after, 
during, at, etc. may also be stated. In this paper, we assume that in general, the action 
part of an ECA-like rule specifies an action to be performed to modify or adapt a 
business process. This action may be a change operation to insert, delete, move, 
replace, or swap certain tasks in the process. We discuss such change operations next. 
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3.2   Change Operations  

Process change operations (or adaptation patterns) are actions from triggered ECA-
like rules in reaction to complex events. To enable maximum flexibility, a variety of 
adaptation patterns should be designed and supported in APMS. A comprehensive 
survey of available change patterns and change support features was described in 
reference [12] based on empirical evidence from large case studies. In addition, 
reference [5] presented a variety of operations that can be done to change a process 
model or instance. We define primitive change operations (see Table 1) as atomic 
operations at the task level since they are indivisible units of making changes to a 
process, and serve as a foundation for composing more advanced adaptation patterns.  

Table 1. Primitive change operations 

Expression  Meaning 
insert (T, N1, N2, [cond*]) Insert T  between N1 and N2, i.e. after N1 and before N2 
delete (T) Remove T from the process 
move (T, N1, N2, [cond]) Move T to a new position between N1 and N2 
replace (T1, T2) Replace T1 with T2 
swap (T1, T2) Swap the position of T1 and T2 in the process 
repeat(T, t) Repeat task T for time period t   

*cond is an optional parameter that should be specified as the condition if T is inserted as a 
choice or loop structure; same for the move operation 

These operations can provide process flexibility both at the process model and 
instance levels. A change can be associated with a specific process model identified 
by a process_ID, or with a process instance by a instance_ID. Permitting change at 
the process model level allows long-term flexibility in the standard operations; while, 
change at the process instance level permits short-term flexibility so that an instance 
can deviate temporarily from a standard process model. For example, applying 
delete(T) on a process instance only allows the current instance to skip task T while 
other process instances are still executing T. If we apply this change on a process 
model, then it will remove task T permanently from this model and all instances 
derived from this model will be affected accordingly. 

Detailed steps for performing change operations, and validation of change conflicts 
at the structural level, are discussed in reference [6]. For example, if both delete(T) 
and move(T, T1, T2) should be carried out to the same process, it will cause a conflict 
because task T can either be deleted or moved, but not both. An incompatibility table 
is created to check whether any two are operations compatible. However, compliance 
of change operations against semantic constraints is not possible with this mechanism. 
Also note that this list of change operations is typical, but not exhaustive.  It is 
difficult to make a claim of completeness since notions of completeness are also 
domain specific. Other change operations we plan to add in later work are postpone, 
prepone, and repeat actions.  

In the next section, we address how to handle semantic constraints which is a key 
contribution of this paper. Our goal is to be able to check if a set of primitive, non-
conflicting change operations that are correct at the structural level are also compliant 
with a given set of semantic constraints.  
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4   Compliance Checking with Semantic Constraints Using IP 

The importance of semantic constraints has been mentioned in reference [13], but 
only two types of semantic constraints (i.e., dependency and exclusion) are 
considered there. We adapt the constraints used to specify interdependencies of tasks 
and validate process variants from reference [14], and use them to model semantic 
constraints, since the underlying semantics are the same. Further, our study provides a 
formal definition for specifying these constraints, and a novel approach based on 
integer programming (IP) for compliance checking.  

4.1   Specification and Property of Semantic Constraints 

Table 2 presents a comprehensive set of semantic constraints and their meanings. To 
enable the validity checking of a constraint set and the compliance checking of 
change operations, we propose a formal definition to semantic constraints so as to 
enable automatic checking. Each task Ti is considered a propositional variable ranging 
over domain Di = {0, 1}. Let Ti = 1 indicate the presence of task Ti, and Ti = 0 its 
absence. With this notation, we can use equations or inequalities to present other 
constraints such as coexist, ex-choice, etc. In addition, we define the sequential 
relationship of Ti and Tj as ,  with domain ,  = {0, 1}. ,  = 1 means Tj must be 
executed after Ti. ,  = 0 means Tj can be executed before or in parallel with Ti. 
Obviously, we must ensure  , , 1. This set of constraints represents most 
common scenarios, but a claim of completeness is difficult to make.  

Table 2. Formal specification of semantic constraints 

Constraint Meaning  Formal 
Specification  

Prop-
erty * 

mandatory (T) T must be executed.  T = 1  N/A 
forbidden (T) T is not allowed to be executed.  T = 0 N/A 
coexist (T1, T2) T1 and T2 must be both selected or 

be both unselected. 
T1  = T2  M, T  

choice (T1, T2) Only one of T1 and T2 must be 
executed.  

T1 + T2 = 1  M 

choice (T1, T2, …, 
Tn, m) [n ≥ m] 

Exactly m of T1, T2, …, Tn should 
be executed. 

T1 + T2 +…+ Tn = m N/A 

dependency (T1, T2) The presence of T1 also imposes 
the restriction that T2 must be 
included. 

T1 ≤ T2 T 

exclusion (T1, T2) The presence of T1 imposes the 
restriction that T2 must be 
excluded. 

T1 + T2 ≤1 M 

cardinality (T, min, 
max) [max ≥ min] 

The execution time of T is between 
min and max. 

N/A N/A 

sequence (T1, T2) T2 must be executed after T1. S1,2 = 1 T 
*M: commutative; T: transitive 
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Some semantic constraints are commutative and/or transitive. Our definitions 
provide a well-founded representation of these properties that lends itself well to 
reasoning. For example: 

 
For commutativity: 
C1: coexist (T1, T2) ↔ coexist (T2, T1) is equivalent to T1 = T2 ↔ T2 = T1  

C2: choice (T1, T2) ↔ choice (T2, T1) is equivalent to T1 + T2 = 1 ↔ T2 + T1 = 1  
C3: exclusion (T1, T2) ↔ exclusive (T2, T1) is equivalent to T1 + T2 ≤ 1 ↔ T2 + T1 ≤ 1  

 
For transitivity: 
T1: coexist (T1, T2), coexist (T2, T3) → coexist (T1, T3) is equivalent to: 
      T1 = T2, T2 = T3 → T1 = T3  
T2: dependency (T1, T2), dependency (T2, T3) → dependency (T1, T3) is equivalent to: 
      T1 ≤ T2, T2 ≤ T3 → T1 ≤ T3  
T3: sequence (Ti, Tj) and sequence (Tj, Tk) → sequence (Ti, Tk) is equivalent to: 
     Si,k  Si,j+ Sj,k – 1, Si,k  Si,j , Si,k  Sj,k 

 
Thus, coexistence, dependency and sequence relationships between multiple tasks 

can thus be easily represented because of the transitivity property.  

4.2   Implicit, Redundant and Conflicting Constraints 

To describe a process model, an end user will consult with domain experts and define 
a set of semantic constraints, among which implicit, redundant, and conflicting 
constraints may exist. Thus, we propose an algorithm to infer implicit constraints, and 
resolve redundancy and conflict issues. This provides the foundation for further 
compliance checking of change operations.  

Two constraints C1, C2 can be composed together to derive new constraints.  
Such implicit constraints can be inferred using the definition of constraints as a 
system of equations. For example, say, 

 C1: T1 and T2 must coexist (i.e., T1 = T2),  
 C2: T2 is dependent on T3 (i.e., T2 ≤ T3).  

From the equations representing C1 and C2, one can derive a new expression T1 ≤ 
T3. Semantically, this means that T1 is also dependent on T3. Detection of such 
implicit constraints can help remove redundancy. For the above example, if an 
explicit constraint, C3: T1 ≤ T3 were defined, then it can be removed because it creates 
a redundancy. Conflicting constraints on the other hand will lead to inconsistencies 
and must be resolved before they can be applied. For the above example, if an explicit 
constraint C3: T3 ≤ T1 were defined, it would create a conflict since T1 ≤ T3 and T3 ≤ 
T1 cannot be both true.  

When the constraint set is large, we need an algorithm to resolve the redundancies 
and conflicts. Table 3 gives the listing of such an algorithm. The composition of two 
constraints, say, C1 and C2 can be represented as C1  C2. In the above example,  

 C1  C2 = (T1 ≤ T3),  
 C1  C2  C3 = fail.  
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If two constraints conflict (line 4), then a message is generated by the algorithm to 
notify the user (line 5), while if they are redundant (line 7) then one of them is 
removed (line10). We don't discuss details of which one of the redundant constraints 
to remove. If they are independent, their composition is ∅ and no action is needed 
(line 14). For example (T1 = T2)  (T3 + T4 ≤ 1) = ∅. The time complexity for this 
algorithm is Θ(n3), where n denotes the number of semantic constraints. Thus, the 
composition of two constraints produces a value of ∅ or “fail”, if a result is not found.  

Table 3. Algorithm for validating the constraint set 

Input: initial constraint set vector SC,  
Output: complete and sound constraint set vector SC 

Constraint_validation (parameter: SC) 
1:  Define n = SC.size 
2:  FOR i = 1 to n                         // go through all the constraints in the set 
3:        FOR j = i+1 to n 
4:             IF SC[i]  SC[j] = fail          // composition failed from a constraint 

conflict 
5:                   Print "constraints SC[i] and SC[j] conflict." 
6:                    break;  
7:             ELSE IF SC[i]  SC[j] ≠ ∅           // redundant constraints 
8:                   FOR k = j+1 to n  
9:                        IF SC[k] == SC[i]  SC[j] 
10:                             SC.remove (SC[k])        // remove the redundant 

constraint 
11:                        END IF 
12:                  END FOR 
13:              ELSE                                             
14:                   do nothing;                               // independent constraints     
15:              END IF 
16:        END FOR 
17:  END FOR 

4.3   Compliance Checking for Change Operations 

During process adaptation, the triggered change operations need to be validated to 
ensure their compliance to predefined semantic constraints. Here, we assume that the 
semantic constraint set has been validated using the algorithm in Table 3, and it is 
sound and conflict-free. In this section, we introduce how compliance checking can be 
handled as a standard integer programming (IP) problem, using the definitions above.  

At a specific point in time when a complex event is detected, let us denote a process 
instance as P = (T, D, SC, CP), where T = {T1, T2, …, Tn} denote the set of all tasks, D 
= {D1, D2, …, Dn}, Di ∈{0, 1}, i  [1, n], denote the respective domain for task set T, 
SC = {SC1, SC2, …, SCk} denote a set of semantic constraints defined for P, and CP = 
{OP1, OP2, …, OPm} denote a set of change operations to be applied on P. We assume 
the current state of P is compliant with SC (i.e., ) and our goal is to: 

 (1) decide whether CP is compliant with SC;  
 (2) if CP is not totally compliant find:  
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      (a) the maximal subset of CP that is compliant with SC.  
      (b) the minimum set of additions to CP to make CP compliant with SC. 

Since our goal is to get the cumulative effects of a series of change operations, we can 
decompose this problem by verifying each operation OP against SC. Let Δ  denote 
the compensation needed for OP to be compliant with SC. We can identify three types 
of OP in terms of compliance.  

 = , Δ = ∅                   , Δ ∅                   , Δ = ∅                    

(a) Strong compliance. CP is compliant with SC without compensation;   
(b) Weak compliance (with compensation operations). CP is compliant with 

SC, providing that Δ  is carried out in addition to CP, so that .  
(c) Non-compliance. CP is non-compliant with SC. In other words, no 

compensable operations Δ  can be found so that  .  

Our goal is to find the optimal compliant change pattern (OCPA), defined as =Δ , where Δ represents the minimal (in terms of size) compensation required 
to CP in order to make the change strongly compliant, or, if not, then weakly 
compliant.  

Now, the problem to find  Δ  is formulated as an integer program and solved with 
the LPSolve tool [15], to verify that all semantic constraints are satisfied. For each 
task Ti, variables Xi and Yi are defined to denote the allowed changes in its status (i.e., 
presence or absence), and Xi,j and Yi,j to denote the allowed change for task execution 
sequence (i.e., in sequence or not). Their meaning is defined as follows: 

 = 1,    0 10,   = 1,  1  0 0,  

, = 1, ,   0 10,   , = 1, ,  1  0 0,  

An   or ,  above represents a change from 0 to 1 (i.e. a task or a sequence 
relationship is added), while a  or ,  represents a removal of a task or a sequence 
relationship. Both types of changes are possible. Then, we define  , 0 1 to represent the new task status after possible changes, and 
define  ,   , , , , 0  , , , 1 to reflect the new task pair 
execution sequence after possible changes. Our objective is to find if there is a 
solution to minimize the total number of changes represented by the objective 
function   ∑ ∑ , , . Three results are possible in accordance 
with the above three cases:  
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(1) a solution is found with all variable values 0, and the objective function also 0; 
(2) a non-zero solution is found with non-zero values assigned to some variables;  
(3) no feasible solution is found.  

The feasible solution for Xi, Yi, Xi,j and Yi,j, denotes the status and sequential changes 
required task or sequential relationship.  As shown in Table 4, the change operations 
can be specified in the same formalism as semantic constraints to check their 
compliance.  

Table 4. Specification of change operations for compliance checking 

Change operations  Formal constraint specification 
insert (T, N1, N2): insert task T 
between tasks N1 and N2 

T = 1,  ,  =1, , = 1 

delete (T): delete task T T = 0 
move (T, N1, N2): move task T to 
between node N1 and N2 

,  =1, , = 1; remove any sequence status 
constraints for the former position of T 

replace (T1,T2): replace T1  by 
T2 

T1 = 0, T2 = 1,  ,  =1, , = 1 (note: [N1, N2] 
denotes the original position for T1) 

swap (T1 , T2): swap tasks T1 and 
T2 

,  =1, , = 1, ,  =1, , = 1 (note: [N1, N2] 
and [N3, N4] denotes the original positions for T1 and T2) 

4.4   Example 

To illustrate our approach, we continue with the example in Fig. 1. In addition, we 
define two new tasks: task T12 as “amoxicillin medication”, and T13 as “Therapy C”. 
Thus, T = {T1, T2, …, T13}. We can define a validated set of semantic constraints for 
this process (i.e., with no redundancy or conflict): SC = {SC1, SC2, …, SC7}. Their 
description and formal definitions are provided in Table 5.  

Table 5. Semantic constraints for clinical process in Fig. 1 

# Semantic meaning  Definition 
SC1 T3 (diagnosis & preparation) is dependent on T4 (therapy A)  T3 ≤ T4 
SC2 T9 (surgical planning) and T10 (surgery) must coexist T9 = T10 
SC3 T3 (diagnosis & preparation) must be done before T4 (therapy A)  S3,4 = 1 
SC4 T2 (anamnesis & examination) is mandatory T2 = 1 
SC5 T12 (medication of amoxicillin) and T13 (Therapy C) are exclusive 

since they have the same function  
T12 +T13 ≤ 1 

SC6 At least 2 imaging diagnoses are needed to ensure accuracy. T5 + T6 + T7  
2 

SC7 T9 (surgical planning) must be executed before T10 (surgery)  S9,10 = 1 

Now we use the process described in the above section to check the compliance of 
change operations. Say, upon completion of T2, a patient status change is triggered 
because the system detects this patient is pregnant, hypersensitive to penicillin, and has 
a bacterial infection. This necessitates therapy and medication changes. Moreover, 
because of the equipment availability schedule, the surgery step T10 has to be advanced 
to before the surgical planning step. Hence, a set of five change operations is triggered:  
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 CP = {OP0, OP1, OP2, OP3, OP4}, where:  
    OP0 = delete (T7), i.e. delete CT scan task (T7).     
    OP1 = delete (T4), i.e. delete the Therapy A task. 
    OP2 = insert (T12, T2,), i.e. insert 'amoxicillin medication' task after T2 
    OP3 = swap (T9, T10), i.e. swap 'surgical planning' and 'surgery' tasks 
    OP4 = replace (T8, T13), replace the task 'Therapy B' with 'Therapy C' 
 

We use the notation introduced in section 4.3 to define variables and can construct the 
following formulation:  

Objective: Minimize ∑ ∑ , ,  

Such that: 
    Semantic constraints:                                         … SC1 =                                      … SC2 , , , = 1;   , , 1                             … SC3 = 1                                                              … SC4 1                              … SC5  2                    … SC6 , , , = 1;   , , 1                          … SC7 

 
Task status constraints (from known values): 
     = 1; = 1; = 1; = 1; = 1; = 1;                …TS1 
     = 1; = 1; = 1; = 1; = 1; = 0; = 0;       
 
Sequence status constraints: 
    ,  = 1; ,  =  1; ,  =  1; ,  =  1; ,  =  1;  ,  = 1;  …SS1 
    ,  = 1; ,  = 1; ,  = 1; …. 
     ,  =  1; ,  =  1; ,  =  1; ,  = 1;  ,  = 1;          
 

We can solve this formulation in the LPSolve tool [15]. We found a feasible solution 
with the objective and all variable values 0. These constraints capture the existing 
process description and the semantic constraints that apply to it.  

4.5   Analysis of the Example and Results 

Now, the change operations are also converted into constraints as follows:  
  Change operations: 0:  = 0                                   1: = 0                                                                                       2: = 1, , = 1                                                    

OP3: ,  = 1                                                            
OP4:   = 0; T13 = 1;  S ,  =1; S ,  = 1                              

For each operation we modify the IP formulation using the change_IP algorithm: 
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Algorithm change_IP 
(1) Semantic constraints: for each operation pertaining to task , replace  
with the value assigned to  in the change operation.  
(2) Semantic constraints: similarly, for a sequence variable  , , replace , ,,  with the value assigned to ,  in the change operation. 
(3) Task status constraints: update the constraint to assign the new value as per the 
change operation. If  was 1, but is to be deleted then set = 0.  
(4) Sequence status constraints: If a deleted task, say  appears in a sequence 
constraint as ,  or , , then delete this constraint since the task is deleted. If task  
is replaced by task , then replace all i occurrences by k in ,  or , , for all j.  

After these modifications, we solve the new IP formulation using LPSolve.  Table 6 
shows the results of adding the operations one at a time. The last column gives the 
values of the objective function (Obj), and the non-zero variables in the solution. In 
row 1, Obj is 0; thus, the operation is allowed. In row 2, Obj and Y3 are both 1. This 
indicates that task T3 should be deleted. This is a compensation operation for task T4 
because T3 is dependent on T4. Moreover, OP3 is infeasible, while OP2 and OP4 are 
allowed. Thus, Δ  = {delete(T3), cancel(OP3)}. Thus, by applying Δ , it is possible 
to take the process into a state with no constraint violations.  

Table 6. Results of analyzing change operations using the IP approach 

Change operation New constraint(s) Result 
OP0: Delete task    = 0                        Obj = 0; the operation is allowed  
OP1: Delete task    = 0                        Obj = 1; Y3 =1; compensate: i.e. 

delete task T3  
OP2:  
insert (T12, T2) 

= 1, , = 1, 
 , = 1 

Obj = 0; the operation is allowed 

OP3: swap (T9, T10) ,  = 1                      Obj = 2; operation is infeasible 
OP4:  
replace (T8, T13) 

  = 0; T13 = 1;  S ,=1; S ,  =1; S , =1;      
Obj = 0; operation is allowed 

5   Discussion and Related Work 

The integer programming (IP) based approach has several advantages over a logic 
based approach, such as first order predicate logic. First, it is very difficult to express 
m-of-n constraints in logic such as SC6 in Table 5.  Second, logic does not allow us 
to find an optimal solution to ensure weak compliance as we can do with the IP 
method. Thirdly, commutative and transitive relationships can be expressed more 
simply and elegantly in the proposed formalism as compared to that with logic. 
Finally, IP formulations can be solved very efficiently using a variety of open source 
tools. A more exhaustive evaluation is out of our current scope and is left for future 
work.  

Two streams of research efforts are involved in the flexible process modeling area: 
the imperative (or change-based) approach which provides a variety of change 
patterns (e.g., delete or insert a task) that can be applied to the process model or 
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instance, and the declarative (or constraint-based) approach which uses constraints to 
restrict possible task execution options. The imperative approach adds the exception 
handling capability to existing workflow management systems [16-18]. Among 
research prototypes, ADEPTflex [19] supports a comprehensive set of operations for 
dynamic workflow adaptation at both the process model and instance level. It is based 
on a manual approach where the user has to decide which events constitute logical 
failures and which adaptations have to be performed. CBRFlow [20] uses a case-
based reasoning approach to support adaptations of predefined workflow models to 
changing circumstances by allowing annotation of business rules during runtime via 
incremental evaluation of the user. However, users must be actively involved in the 
inference process during each case. The manual approaches do not scale because they 
are time consuming and error prone.  

Recent studies on adaptation are useful but also have limitations. AgentWork [6] 
provides the ability to modify process instances by dropping and adding individual 
tasks based on events, and ECA rules. It also gives a table for checking compatibility 
of various operations. However, semantic issues are neglected. FLOWer [21] is a case 
handling paradigm which describes only the preferred way of doing things and a 
variety of mechanism are offered to allow users to deviate in a controlled manner.  

The declarative approach limits the process flexibility by enforcing required 
constraints among tasks. To increase flexibility in an imperative process, more 
execution paths have to be modeled explicitly, whereas increasing the flexibility in 
declarative processes is accomplished by reducing the number of constraints, or 
weakening the existing constraints [22]. Other studies using the declarative approach, 
such as [23], present a foundation set of constraints which allows ad hoc changes to 
workflows for highly flexible processes, based on the concept of “pockets of 
flexibility”. They also provide a discussion on both static verification (i.e., conflict 
validation) and dynamic verification (i.e., template validation). Reference [14] 
proposed constraint modeling including selection and scheduling constraints. 
Selection constraints are used to conceptually express task selection requirements and 
scheduling constraints model the temporal property of each task in a process template. 
Although they mentioned validation of constraints and process templates, they do not 
provide a formalized mechanism for validation. The Declare framework [24] is 
developed to address the full spectrum of flexibility while at the same time supporting 
the user with recommendations and other process-mining-based diagnostics. 

6   Conclusion  

Increasingly, processes that arise in healthcare and other applications need flexibility 
and ease of adaptability to changes and events in the environment.  They cannot be 
treated as rigid production processes. Rule based approaches, such as ECA, lend 
themselves well to the design of such processes. However, it is also important to 
ensure that changes conform to semantic constraints. We propose a new approach for 
detecting and correcting any violations to such constraints. It is based on a formal 
language for describing constraints that captures a large set of existential and 
coordination relationships among tasks, an integer programming formulation, and 
solution and analysis techniques. When change operations occur, by using a notion of 
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weak compliance, we can determine a minimum set of additional process changes 
required to restore compliance. This feature is not possible with first-order logic. 

So far we only have a basic proof of concept. But in future work our goal is to have 
a more complete implementation, and integrate it within a BPM environment with 
suitable plug-ins. We plan to do more exhaustive testing with larger examples. In 
particular, we would like to include transitivity of the sequence relationship in the 
examples, and show how our approach can identify transitivity problems that arise 
from change operations. Finally, we plan to align our approach with the new Rule 
Interchange Format (RIF) that has become a W3C standard in June 2010 [25].    
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Abstract. Business Rule Management (BRM) and Business Process 
Management (BPM) present two viable strategies for improving organizational 
efficiency and effectiveness as well as achieving enterprise agility. In addition, 
both approaches aim at establishing a close IT-business alignment. Recently, 
semantic paradigms have been introduced in order to achieve a close relationship 
and automated understanding between BRM/BPM models and natural language. 
This paper presents a prototypical approach for integrating business rules into a 
natural language-like and strongly IT-supported subject-predicate-object notation 
of subject oriented business process models based on a shared organizational 
semantic vocabulary. Scientific findings derived from this approach are used to 
establish a consistent procedure model for representing and linking business 
rules and processes within ontologies. 

Keywords: Rule-based Event Processing and Reaction Rules, Subject oriented 
business process modeling, Ontologies. 

1   Introduction 

The areas of business rules and business process management (BPM) can be seen as 
two different perspectives for achieving IT-business alignment and enterprise agility 
[1]. Business rules are required to be derived from an organization’s strategy and need 
to be kept well separated from business processes [2]. Nevertheless, business rules are 
often implicitly included when modeling business processes according to BPM 
principles. Another challenge is the establishment of a shared business vocabulary 
within decision-intensive and process focused organizations as well as to preserve 
consistency and integrity within the contents of this ‘organizational dictionary’. 
Recent approaches for defining and interchanging natural language based business 
vocabulary and business rules intensively relate to the OMG standard Semantic of 
Business Vocabulary and Rules (SBVR)1. SBVR realizes a core principle of the 
                                                           
1 SBVR http://www.omg.org/spec/SBVR/ 
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business rules approach by expressing rules with fact types being built on concepts 
expressed by terms. As a result, controlled natural language definitions such as SBVR 
Structured English can be used to establish meta models for establishing business 
rules [3]. 

In the area of business process management, the use of natural language is not 
necessarily seen as the starting point for building models. This paper presents a first 
approach for applying the business rules concept to the subject oriented business 
process modeling (S-BPM) approach. The main motivation is that both concepts are 
easy to understand and focus on using the natural language as basis for creating 
models, leading to the assumption for the general feasibility of a rule and process 
integration within that environment. A prototype was developed using the jCOM1 
BPM Suite2 as S-BPM modeling tool and the Rules Composer component of 
Microsoft BizTalk Server3 for defining business rules. Deductions taken from this 
approach led to a procedure model for representing and linking business rules and 
processes within ontologies. 

The paper is structured as follows: Section 2 briefly explains the concepts of 
business rules, S-BPM and areas of application for ontologies. Section 3 focuses on 
establishing a prototype for rule enactment within S-BPM. Section 4 presents a 
consistent procedure model for representing and linking business rules and processes 
by use of ontologies. Section 5 concludes the paper. 

2   Background 

2.1   S-BPM Approach 

Subject oriented business process modeling (S-BPM) brings together the two 
concepts of flow-based and object oriented process descriptions. The idea is to present 
an easy to learn and reusable approach where real-life processes can be immediately 
captured in an abstract form [4]. 

The underlying concept is to describe business processes starting from written 
definitions in the natural language by using the generic elements of human 
communication, namely subject, predicate, and object. As this modeling language is 
very easy to learn and understand by non-IT personnel, it can help a lot in order to 
close the gap between business-oriented and IT-focused environments. Moreover, the 
mapping into the machine-understandable Semantic Web RDF triple syntax of 
“subject predicate object” becomes easier. Having a look at the Business Process 
Modeling Notation (BPMN), it shows that although it is one of the most commonly 
used modeling standards, only a few modeling symbols are actually used in practice 
[5], pointing to a too high degree of complexity. 

As already revealed by the name, S-BPM primarily focuses on all subjects being 
involved in a process. The subjects exhibit internal behaviors to transform data 
objects and trigger interactions which are grammatically equivalent to predicates. 

                                                           
2 jCOM1 S-BPM Suite - http://jcom1.com/cms/index.php?id=152&L=1 
3 Microsoft BizTalk Server –  
 http://www.microsoft.com/biztalk/en/us/default.aspx 
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Consequently, the use of predicates leads to the need for objects as elements being 
affected by subject interactions. 

Following these principles, the basic grammatical constituents of the sequence 
flows “Customer (subject1) sends (predicate1) request (object1)” and “Vendor 
(subject2) creates (predicate2) offer (object2)” can be modeled within the S-BPM 
approach, before they are combined to a generic process (see Figure 1). 

Having a look at the jCOM1 BPM suite as the practical application of S-BPM, the 
basic elements are expressed in the following way: 

• Subjects are directly expressed by a modeling shape 
• Objects are comparable to messages. They can be represented as so called 

“business objects” making use of XML schemas representing data structures 
• Predicates are defined by the internal behavior of subjects, making use of three 

basic modeling shapes: send action, receive action, and internal function. 

 

Fig. 1. Sample S-BPM process model within the jCOM1 BPM suite 

One of the major advantages of the jCOM1 BPM suite is also that process models 
can be immediately validated meaning they can be executed on a web server during 
design time. This enables direct workflow integration and facilitates modifications or 
changes to S-BPM processes. 

2.2   Business Rules Approach 

In general, business rules are instructions or restrictions triggered by business events. 
Hence, they represent derivatives from a company’s strategy and aim at establishing 
unified descriptions of a company’s business activities in order to achieve customer 
satisfaction and an effective use of resources [6]. 

To give an example, a business rule might be defined as follows: If the total 
amount of an order exceeds $5000, a rebate of 5% is granted. The example illustrates 
that, similar to the S-BPM approach described above, business rules are also defined 
using natural language aiming at providing a fully integrated approach for executing 
business directives defined by people with business background within IT systems. 

An important prerequisite for the integration of the business rules approach is the 
definition of a business vocabulary. This ensures a consistent use of language terms 
throughout the whole company [7]. Typically, business rules in IT environments are 
expressed as reaction rules, relating to the general definitions of rules [8]: 
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• Normative rules: They serve as constraints on data structures to ensure consistency 
and compliance with business logic.  

• Reaction rules: They are used for programming rule-based, reactive systems and 
can be classified in Event-Condition-Action (ECA) rules and production rules [9]. 

• Derivation rules: These rules serve to derive knowledge from knowledge. They 
can, for instance, act as a filter on a large amount of data. Derivation rules can 
occur in combination with normative and reactive rules and also serve to derive 
implicit facts using forward or backward reasoning [10]. 

2.3   Ontologies 

Over the last years, various aspects have been discovered of how ontologies can lead 
to improvements within the area of information systems such as for evaluating 
business process modeling languages [11], bringing together languages describing 
software systems [12] or serving as meta model to validate the correctness of business 
process models based on natural language [13]. Different types of ontologies have 
been developed which can serve as organizational reference ontology such as top 
level ontologies (e.g. TOVE [14]), business model ontologies (e.g. REA [15]) or other 
upper level ontologies (e.g. SUMO [16]). 

3   Rule Enactment within S-BPM 

An overview of the technical concept for linking business rules and S-BPM is 
presented in Figure 2. The general approach was to establish a shared business 
vocabulary by establishing a commonly used XML schema. Regarding rule, 
enactment, the BizTalk Rules composer was selected to serve as repository for 
providing business rules to jCOM1 BPM suite where processes and integrated rules 
could be instantly validated and executed. 

 

Fig. 2. Technical concept of linking business rules and S-BPM 

The most feasible approach identified when creating the prototype was to create 
code snippets with a general structure of the rules, based on the rule data model and to 
define dynamic parts of the rules such as business objects names and values from this 
structure. By allowing database queries for modifications to these parts during 
runtime, a flexible rule integration within S-BPM models was achieved.  

The overall approach for modeling and enacting business rules within S-BPM is 
graphically displayed in Figure 3: 
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Fig. 3. Enacting business rules in S-BPM notations 

4   Procedure Model for Representing and Linking Business Rules 
and Processes within Ontologies 

The evaluation of the approach clearly revealed challenges regarding the discovery of 
common standards, the definition of a complex business vocabulary and the 
avoidance of semantic gaps within this vocabulary. These challenges can be 
overcome, having a look at the general attributes of ontologies: 

• Ontologies serving as meta models can help to overcome problems regarding 
different modeling standards. As soon as models can be exported in a way that 
enables annotation, the ontology serves as common basis for the models. 

• Regarding the definition and maintenance of a complex business vocabulary, 
ontologies provide ideal support by providing methods for validation and 
verification of semantic environments. 

• Based on findings and prototypes regarding the representation reactive business 
rules in ontologies [17], solutions to the problems of having semantic gaps in 
heterogeneous modeling environments and ECA statements which are not entirely 
decoupled from business processes are identified by establishing ontologies that 
are specifically tailored to the description of reactive rules. 

The following procedure model presents the approach for a synergistic alignment of 
business process and business rules within ontologies (see Figure 4). The model is 
based on an initial procedure model for integrated modeling of rules and processes 
[18], an execution environment for semantic process modeling [19] and the procedure 
used for the integration of S-BPM and business rules presented earlier in this paper. 

The first step is to define overall business objectives which will be expressed by 
rules and processes. The experiences derived from the implementation of business 
rules into S-BPM have shown that it is essential to establish a common business 
vocabulary. The definition of business objectives will lead to the definition of such a 
business vocabulary describing business objects and activities involved. At this early 
stage, a reference ontology needs to be adopted according to the capabilities required 
for the semantic representation of the semantic business environment. Such a 
reference ontology, can also be a combination of top and upper level ontologies, 
which have been presented earlier in this paper [20]. 
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Fig. 4. Procedure model for linking business rules and processes within ontologies 

After the adoption of a reference ontology, modeling of rules and processes can be 
carried out. The idea is to allow the use of independent modeling environment and to 
establish links directly within the ontology. On the process side, core processes are 
identified and initial process models are drafted. Within the S-BPM modeling 
approach of the jCOM1 suite, this would mean to capture the core processes in 
written or electronic form by collaborating with all people being involved in the 
process. On the rules side, reactive business rules are modeled. Modeling of rules and 
processes is done according to the already established business vocabulary, which can 
of course be extended if necessary. 

Based on the core process definitions, modeling of business processes can be 
performed at workflow level. At this point, in order to preserve consistency and 
integrity within the ontological definitions, normative and declarative rules need to be 
put in place. Following the goal of unified rule modeling, it is advisable to define 
normative ontological rules being valid for business processes in the same 
environment as executable business rules. A continuous cross-checking needs to be 
performed between these rules and workflow-enabled business processes. 

Mapping of rules and processes is continuously carried out using the respective 
annotation to the reference ontology. Hence, the models need to be exported in a 
standardized format before they are ontologically annotated. 

Regarding the actual execution of integrated business processes and rules within IT 
environments, the goal is to provide the rules and processes model as distributed 
semantic web services via a standardized choreography interfaces [21]. 

5   Conclusions and Future Work 

Prototypic work has shown that the concepts of subject oriented process modeling and 
business rules, both being based on natural language statements, can be combined, 
leading towards the goal of achieving enterprise agility. When aiming for a common 
integration of business rules and processes, several questions arise in context of 
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keeping consistency and integrity within the models and a commonly shared business 
vocabulary. The application of ontologies can help to overcome these conceptual and 
technical challenges. 

By following the general concepts of business rules and business process 
management and ontological modeling, it becomes possible to develop a procedure 
model for combining business rules and processes within ontologies. 

Further research will be required to practically apply the presented procedure 
model. Taken the findings from the integration of business rules into the S-BPM 
approach, an ontological representation of subject oriented process models together 
with integrated business rules will provide further insights into the potential of the 
integration of S-BPM and business rules within ontologies and will serve as a proof of 
the practicability of the presented procedure model. 
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Abstract. Context, Context Representation and Contextual Reasoning consti-
tute central notions in the Ambient Intelligence vision to transform our living
and working environments into ’intelligent spaces’. Ontology-based models have
been argued to satisfy all demands concerning context representation. Rule-based
reasoning has already been successfully integrated in ontology-based applications
for domains with similar requirements (e.g. the Web), while it offers significant
advantages concerning its deployment in the Ambient Intelligence domain. In this
paper, we analyze the general challenges of contextual reasoning, argue about the
suitability of rule-based reasoning, and describe the deployment of such methods
in two different settings; in a centralized semantics-based context management
framework for Ambient Intelligence, and in a totally distributed system of logic-
based abient agents.

1 Introduction

Rules and Inferencing constitutes a subfield of Artificial Intelligence, which studies
logic-based models, methods and tools aimed at automating inference in computer sys-
tems. Over the last years a great number of studies have focused on different forms
of rule-based inferencing, including classical, modal, deontic, defeasible, spatiotempo-
ral and contextual reasoning, as well as on their applications to several domains, with
Business Rule Processing and Web-Centered Reasoning being the most prominent and
successful examples. This paper focuses on another domain with much more demand-
ing requirements and challenges, where rules are expected to play a significant role; the
Ambient Intelligence domain.

Ambient Intelligence constitutes a new paradigm of interaction between agents acting
on behalf of humans, smart objects and devices. Its ultimate goal is the transformation
of our living and working environments into ’intelligent spaces’, which are able to
adapt to changes in contexts as well as to their users’ needs and desires. This requires
augmenting the environments with sensing, computing, communicating and reasoning
capabilities. Ambient Intelligence environments are expected to support humans in their
every day tasks and activities in a personalized, adaptive, seamless and unobtrusive
fashion. To achieve this, an Ambient Intelligence system, either if this has the form of
a stand-alone application or of a system of agents lying on a variety of devices, must
have a thorough understanding of its context, namely of any information that may be
relevant to the interaction between the user and the system. Methods and technologies
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from the fields of Knowledge and Reasoning are expected to provide valuable tools in
these efforts.

As it becomes obvious, context is a central notion in the field of Ambient Intelli-
gence. Context is typically derived from heterogeneous information sources and in-
cludes various concepts, such as the roles of people interacting with the environment,
their profiles, the devices that they use and their capabilities, their interests,
relationships, tasks, activities, intentions and current state, as well as the state of the
environment itself, its spatial and temporal dimensions and others. The fact that this in-
formation comes at heterogeneous formats prevents applications from interpreting and
using it without prior knowledge of the context representation. As a consequence, the
need for a semantically explicit context representation has emerged, in order for inde-
pendently developed applications to be able to comprehend it in a common manner and
to interoperate within a integrated environment. The approaches for context representa-
tion have been classified by [1] to six main categories:

1. key-value models, e.g. [2], where services are described with a list of simple at-
tributes in a key-value manner;

2. markup scheme models, e.g. the CC/PP Context Extension proposed in [3], a XML-
based format for exchanging context descriptions;

3. graphical models, e.g. the Context Modeling Language proposed in [4];
4. object oriented models, e.g. the Active Object Model of the GUIDE project [5],

where all context data is encapsulated within active objects;
5. logic-based models, e.g. the First Order Logic-based model used in Gaia [6];
6. ontology-based models, which is the most common approach.

Ontologies meet the representation requirements set by many studies in terms of type
and level of formality, expressiveness, flexibility and extensibility, generality, granular-
ity and valid context constraining [1,7,8].

On top of the context representation model, appropriate reasoning mechanisms are
required to exploit the available context information and add intelligence to the systems.
The general aim of contextual reasoning is to derive meaningful high-level information
from the available raw context data, and based on this knowledge to determine the
appropriate system behavior in order to adapt to its context and to the user’s needs and
desires. The challenges to this direction are numerous and are mainly caused by the
imperfect nature of context and the special characteristics of the environments and the
devices that operate in them. The various approaches that have been proposed so far for
contextual reasoning on top of ontology-based context models may be classified to the
following categories:

1. ontological reasoning, where a set of Description Logic rules are primarily used to
derive implicit knowledge from the context knowledge base (e.g. [9,10]). Although
they naturally integrate with the underlying ontology-based representation model,
they offer limited expressive and reasoning capabilities;

2. rule-based reasoning, where richer reasoning models are enabled by more expres-
sive rule languages, such as First Order Logic (e.g. [6]), Logic Programming (e.g.
[11,12]) and Defeasible Logic (e.g. [13]);
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3. probabilistic reasoning, which integrates ontology-based models with probabilistic
models, such as Bayesian networks [14], in order to explicitly model uncertainty
in the context data, confidence in the available sources, and causal relationships
between various contexts. The rich expressive capabilities constitute the main ad-
vantage of such approaches, while their high complexity and the requirement to
explicitly and precisely define uncertainty are their main limitations concerning
their deployment in Ambient Intelligence systems.

In the rest of the paper, we focus our attention on rule-based reasoning approaches.
Specifically, in Section 2, we analyze the general challenges of contextual reasoning
and discuss how rule-based methods may offer efficient solutions. In Sections 3 and 4,
we discuss two different directions of contextual reasoning with respect to the allocation
of the reasoning tasks. In Section 3, we describe the centralized rule-based approach
that we have followed in a context management framework for Ambient Intelligence,
while Section 4 describes a totally distributed reasoning framework, where the reason-
ing tasks are distributed among a set of logic-based agents, interacting through a set of
bridge rules. Section 5 concludes with a comparison of the two approaches and with
a discussion on open problems and possible future research directions with respect to
contextual reasoning in Ambient Intelligence.

2 Rule-based Contextual Reasoning: Challenges and Benefits

The challenges of contextual reasoning in Ambient Intelligence environments result
mainly from the imperfect nature of context. Henricksen and Indulska in [15] charac-
terize four types of imperfect context information: unknown, ambiguous, imprecise, and
erroneous. Sensor or connectivity failures (which are inevitable in wireless connections)
result in situations, that not all context data is available at any time. When data about
a context property comes from multiple sources, then context may become ambiguous.
Imprecision is common in sensor-derived information, while erroneous context arises
as a result of human or hardware errors. Moreover, the entities that operate in such envi-
ronments are expected to have different goals, experiences and perceptive capabilities.
They typically have restricted computing capabilities and may use distinct vocabularies
to describe their context. Due to the highly dynamic and open nature of the environment
(various entities join and leave the environment at random times) and the unreliable and
restricted by the range of the transmitters wireless communications, ambient agents do
not typically know a priori all other entities that are present at a specific time instance
nor can they communicate directly with all of them. The problem becomes even more
challenging if we also consider the potentially vast amount of available context infor-
mation, the distribution of this knowledge to several heterogenous distributed entities
and the need for quick adaptation to changes in context.

Rule-based reasoning has already been applied with success to several domains with
similar challenges and requirements, such as the Web. Assuming an ontology-based
underlying representational model, the main benefits of adopting a rule-based reasoning
model are:

1. Simplicity and flexibility. Rules are, in general, easy to write and comprehend
as most rule languages adopt a natural-language-like syntax. Moreover, they offer
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flexibility in the sense that they are easy to adapt, alter and maintain, making them
an attractive solution for non-expert users. The development of Ambient Intelli-
gence systems requires cooperation between people with different research back-
grounds who must be enabled to easily design the operational behavior of ambient
agents, and such features are of great importance.

2. Formality. Rule languages are based on formal logics and have a well-defined syn-
tax and semantics. In Ambient Intelligence environments, using formal expressions
allows heterogenous agents to communicate, and share and combine their knowl-
edge and beliefs avoiding ambiguities and mistranslation.

3. Expressivity. Among the desirable features of contextual reasoning in Ambient
Intelligence systems is also the rich expressive capabilities of the underlying lan-
guage. Compared to ontology languages, rule languages have much more expres-
sive power. For the domain of Ambient Intelligence, some important features that
rule languages may support include: (a) reactivity, using Event Condition Action
rules; (b) uncertainty, supported mainly by nonmonotonic rule languages; and (c)
modularity, which we further analyze below.

4. Modularity. Modularity in the rule bases may be a great benefit for context-based
systems. It provides better maintainability of the rule base, enables detecting the
causes or effects of specific changes in context, and allows managing rules either in
a single rule base as well as in several rule bases possibly distributed over several
different ambient agents.

5. High-level abstraction - Information hiding. In Ambient Intelligence systems,
where most information sources are sensors that provide raw low-level context data,
the reasoning mechanisms must enable combining this data to infer higher-level
context knowledge, and prescribing the system behavior using higher-level abstrac-
tions. Rule languages and systems provide such mechanisms, allowing to define
several levels of reasoning, which share a limited part of the available knowledge
hiding meaningless, not relevant or protected (e.g. by privacy policies) information.

6. Integration with ontology models. The integration of rules and ontologies has
been extensively studied in the recent years, resulting in several Semantic Web rule
languages (e.g. SWRL [16], TRIPLE [17], DLP [18]) and rule systems (e.g. Jena1,
Jess2, DLV [19], SweetJess [20], DR-DEVICE[21], DR-Prolog[22]), and offering
several efficient and ready-to-use solutions with respect to rule-based reasoning on
top of ontology-based context models. Furthermore, the research efforts of (a) the
RuleML Markup Initiative 3 and (b) the Rule Interchange Format Working Group
primarily deal with the standardization of rules for the Semantic Web, which will
provide a more formal and steady basis for knowledge sharing between distributed
agents.

In the following sections, we describe how rule-based contextual reasoning is used in
practice in two different implementations, which are built upon two completely different
architectures.

1 Jena, http://jena.sourceforge.net/index.html
2 Jess, http://www.jessrules.com
3 RuleML, http://www.ruleml.org/

http://jena.sourceforge.net/index.html
http://www.jessrules.com
http://www.ruleml.org/
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Fig. 1. Context Management Framework for Ambient Intelligence

3 A Centralized Approach

In this section, we describe the rule-based methods that we have employed in a central-
ized reasoning framework for Ambient Intelligence. The design goals of the framework
have been the efficient representation, monitoring and dissemination of any low- or
high-level context information, as well as the support for a number of general-purpose
and domain-specific inferencing tasks.

The reasoning framework is part of a large-scale Ambient Intelligence facility that is
being implemented in ICS-FORTH and has completed its first year of life. It expands in
a three-room set up, where a multitude of different -hardware and software- technolo-
gies contribute services, such as camera network support for 2D person localization
and 3D head pose estimation, RFID, iris and audio sensors for person identification and
speech recognition, and multi-protocol wireless communications.

The framework is based on a hybrid event-based reasoning architecture depicted in
Fig. 1 (a more detailed description of the system architecture is available at [23]), which
comprises four main components:

– the Event Manager, which receives and processes incoming events from the ambi-
ent infrastructure;

– the rule-based Reasoning Engine, which undertakes all required inferencing and
reasoning tasks;

– the Context Knowledge Base, which stores context information on top of an ontology-
basedrepresentationmodel;

– the Communication Module, which forwards Reasoning Engine requests for action
execution to appropriate services.

A middleware layer acts as a medium for information flow between heterogeneous ser-
vices and applications. Services denote standalone entities that implement specific func-
tionalities and provide low-level context information about world aspects, such as voice
recognition, localization and light management, whereas applications group together
service instances to provide an Ambient Intelligence experience in smart rooms. As
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obvious, the system is built upon a centralized architecture; all relevant context infor-
mation is provided by services to the central context management framework, which has
the full responsibility to process, combine and transform this information into higher-
level context knowledge, store this knowledge in the central knowledge base, and apply
an appropriate set of rules to achieve a context-aware behavior.

At the core of the system architecture stands an OWL context knowledge base, which
captures the meaning and relations of concepts regarding low-level context acquired
from sensors, high-level context inferred through reasoning, user and device profil-
ing information, spatial features and resource characteristics. The rule-based reasoning
engine is implemented in Jess and enables reasoning tasks of several types, such as
high-level context inference, query answering and reactive to context changes decision
making. The rules have an Event-Condition-Action (ECA) form; on a specific Event
arrival, Conditions are evaluated and if they hold, Action is executed.

Three specific requirements that we wanted to address using this centralized reason-
ing architecture are: (a) seamless interaction with the supported context-aware services,
(b) real-time handling of the potentially vast amount of available context information;
and (c) resolution of conflicts that may arise by competing policies, which may repre-
sent user preferences, system behavior policies or application policies.

Seamless interaction. Enabling service provision is an anywhere, any-time and for all
fashion is among the primary goals of Ambient Intelligence. Systems should always be
able to deliver services to the user, but also to adjust services to the user’s context. In
our system, this is achieved through sensing, high-level context inference and context-
aware reasoning. The system keeps track of the user’s context, which is obtained by
the available sensors, and records all context changes in the central context knowledge
base. The inferencing mechanism of the Reasoner enables detecting specific situations.
In this way, we can draw conclusions of the form: ’the user is sleeping’ or ’the user
is having a phone call conversation’. For each of the supported services, we have pre-
defined policies in the form of rules that describe the way that the service should be
delivered to the user. Consider, for example, the user of a web application (e.g. e-mail
application), who is moving between the rooms of his apartment. While in his office, he
accesses the application through his desktop PC. When he moves to other rooms, where
there is no PC available, the system provides access to the application through his mo-
bile phone, unless there is a screen available that can be used for viewing purposes. In
any case, the system provides seamless interaction with the application, adapting the
type of interaction to the user’s context.

Vast amount of available context information. The volume of sensory data in smart
environments may be potentially vast, while the rates of context change are high. A
system must be able to process this data on the fly in order to achieve a reactive behavior.
We handle such problems using two general methods:

(a) Context Classification. The system supports multiple levels of knowledge struc-
turing, and each system component registers only to the appropriate abstraction. In this
way, while the localization subsystem uses data from the installed cameras to evaluate a
user’s location in a room, a map service receives only two coordinates for each detected
person at a rate of three messages per second. The context knowledge base, on the other
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hand, records only substantial changes in the user’s position, i.e. the id of each new map
area that the user enters, as this is evaluated by the map service.

(b) Context segmentation. The intuition behind this method is that not all context
data is relevant in every state. In a state that the lights in a room with cameras are off,
the data derived from a camera-based localization subsystem should be ignored and
the rules that take into account the user’s position should not be considered. To this
direction, we have deployed a module-based mechanism, which enables dividing the
whole set of rules into rule subsets, i.e. modes that prescribe alternate system behavior.
Each rule set is assigned to a particular predefined context state, and certain rules allow
for the shifting between states when certain context changes are recorded.

Inconsistency resolution. In a setting that several different types of policies may be
applied (e.g. user preferences, system behavior policy, application policies etc.), in-
consistencies between competing policies are to be expected. Consider, for example,
the case that two different users are located in the same room. The policies that pre-
scribe the system’s behavior may be conflicting for the two users. The system must be
able to resolve such types of conflicts in a principled way. Our solution is based on
a priority-based mechanism that classifies rules in sets of different priority using the
salience value feature of Jess. Rules with highest priority always fire first, while those
with lowest priority do not fire unless all the others do.

4 Contextual Defeasible Reasoning, a Totally Distributed
Approach

A totally distributed rule-based approach for contextual reasoning is the Contextual
Defeasible Reasoning (CDL) approach proposed in [24]. CDL adopts ideas from:

– Defeasible Logic [25] - it is rule-based, skeptical, and uses priorities to resolve
conflicts among rules;

– Multi-Context Systems [26,27], which can be abstractedly defined as a set of con-
texts, which can be thought of as logic theories, and a set of inference rules (known
as mapping or bridge rules) that enable information flow between different
contexts.

4.1 Main Features

In CDL, the Multi-Context Systems model is enriched through defeasible rules, and a
preference relation reflecting the trust each context assigns to other contexts. Specifi-
cally, CDL defines a MCS C as a collection of distributed context theories Ci: A context
Ci is defined as a tuple of the form (Vi, Ri, Ti), where Vi is the vocabulary used by Ci,
Ri is a set of rules, and Ti is a preference ordering on C. Vi is a set of positive and
negative literals, and it is assumed that each context uses a distinct vocabulary.

Ri consists of two sets of rules: the set of local rules and the set of mapping rules.
The body of a local rule is a conjunction of local literals (literals that are contained in
Vi), while its head contains a local literal. There are two types of local rules:
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– Strict rules, of the form
rl
i : a1

i , a
2
i , ...a

n−1
i → an

i

They express sound local knowledge and are interpreted in the classical sense:
whenever the literals in the body of the rule (a1

i , a
2
i , ...a

n−1
i ) are strict consequences

of the local theory, then so is the conclusion of the rule (an
i ). Strict rules with empty

body denote factual knowledge.
– Defeasible rules, of the form

rd
i : b1

i , b
2
i , ...b

n−1
i ⇒ bn

i

They are used to express uncertainty, in the sense that a defeasible rule (rd
i ) cannot

be applied to support its conclusion (bn
i ) if there is adequate contrary evidence.

Mapping rules associate literals from the local vocabulary Vi (local literals) with literals
from the vocabularies of other contexts (foreign literals). The body of each such rule is
a conjunction of local and foreign literals, while its head contains a single local literal.
Mapping rules are modeled as defeasible rules of the form:

rm
i : a1

i , a
2
j , ...a

n−1
k ⇒ an

i

rm
i associates local literals of Ci (e.g. a1

i ) with local literals of Cj (a2
j ), Ck (an−1

k ) and
possibly other contexts. an

i is a local literal of the theory that has defined rm
i (Ci).

Finally, each context Ci defines a strict total preference ordering Ti on C to express
its confidence on the knowledge it imports from other contexts. This is of the form:

Ti = [Ck, Cl, ..., Cn]

According to Ti, Ck is preferred to Cl by Ci, if the rank of Ck is lower than the rank
of Cl in Ti. The strict total preference ordering enables resolving all potential conflicts
that may arise from the interaction of contexts through their mapping rules.

Contextual reasoning proceeds roughly as follows (more details are available in
[24]): when a context Ci processes a query q, it may query through bridge rules other
contexts, which in turn may pass on queries to further contexts. Based on the infor-
mation collected, Ci builds a support set and a blocking set for the query q; these sets
contain information about the contexts from which (supporting or attacking) informa-
tion was received. These are compared to each other, based on the preference order Ti,
and a positive or negative conclusion is drawn.

In the simplest case, a context Cj responses to a query issued by context Ci only
with true/false. In more complex strategies [28], Cj returns more information regarding
the support and blocking sets it built in order to evaluate the appropriate answer. The
intuition behind these strategies is that imported knowledge should be evaluated not
only based on their ’source’, e.g. Cj , but also on the way that the ’source’ acquired
this knowledge. Specifically, the three alternative strategies rely on the exchange of
additional information describing respectively:

– whether the answer is based on local knowledge of Cj , or on combined knowledge
of Cj and other contexts. Answers based on local knowledge are always preferred
in this case.
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– the contexts that are involved in the derivation of the returned answer. Specifically,
Cj in this case returns the support set / blocking set for the query, which represents
its best justification for the answer.

– the contexts that are involved in all possible derivations of the answer. In this case,
the support set / blocking set, which is returned by Cj , contains information about
all possible justifications for the answer.

Selection of the right strategy depends, among others, on the requirements regarding
efficiency and privacy protection. With respect to complexity, it is obvious that the latter
strategies (especially the last one) impose a much heavier overhead in terms of size of
messages exchanged between the system contexts and computational complexity of the
algorithm used for query evaluation.

Privacy, on the other hand, is also an important issue in such environments. The latter
two strategies require the agents to disclose the identities of the agents that are involved
in the derivation of their knowledge. We argue, that in real Ambient Intelligence en-
vironments or similar settings that our methods can be applied (e.g. social networks),
disclosing this type of information to third parties may be part of an agreement that the
agents make, and possibly depends on the privacy policies of the involved agents. For
example, an agent may agree to disclose part of its knowledge to another trusted agent,
but disagree with the fact that the other agent may reveal its identity to a third party that
it may not a priori know or trust. In this case, the latter two strategies are not acceptable,
and the agents should resort to one of the first two strategies.

4.2 Application to Ambient Intelligence

CDL has already been applied in real scenarios of several domains, including the Se-
mantic Web [29], Social Networks [30] and Ambient Intelligence [31]. All scenarios re-
quire the deployment of CDL algorithms in a variety of stationary and mobile devices.
This is achieved using an implementation of CDL methods in Prolog and lightweight
Prolog systems. Figure 2 depicts a layered overview of a system node.

– The Reasoning and Inference layer is where contextual reasoning is performed. Its
implementation is based on the Java 2 Micro edition (J2ME) programming lan-
guage, which enables java applications on any mobile device that features a Java
Virtual Machine - nowadays the vast majority of cell phones, PDAs and set top
boxes. The layer implements Contextual Defeasible Logic using a Prolog imple-
mentation of the distributed query evalaution algorithms described in [24] and a
lightweight Prolog engine, TuProlog [32]. The latter is based on ideas of the logic
metaprogram that simulates the proof theoretic semantics of Defeasible Logic [33].

– The Profile and Knowledge Management layer stores the local context knowledge
of the node, which can be also accessed remotely through the communication layer.

– The Communications layer provides a protocol for handling all incoming or outgo-
ing communication of the application using any networking capabilities provided
by a given device. The system currently supports (a) access to the Internet through
WiFi, GPRS or 3G, (b) access to other devices using P2P connections based on
Bluetooth, and (c) use of GSM cellular network to send and receive SMSs.
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Fig. 2. System Node Layered Architecture

– On top of all layers lies the Application layer, which orchestrates all underlying
component interactions.

In [31], we describe a use case scenario that highlights the benefits of CDL in the Am-
bient Intelligence domain. The scenario involves a context-aware mobile phone, which
has been configured by its owner, Professor Amber, to take decisions about whether it
should ring in case of incoming calls based on his preferences and context. Prof. Amber
has the following preferences: His phone should ring in case of an incoming call, unless
it is in silent mode or he is giving a lecture. Such preferences are represented by two
local defeasible rules:

rd
11 : incoming call1,¬lecture1 ⇒ ring1

rd
12 : silent mode1 ⇒ ¬ring1

Suppose that Prof. Amber is currently located in a university classroom. It is class
time, but he has just finished with a course lecture, and still remains in the classroom
reading his emails on his laptop. The mobile phone receives an incoming call, while it
is in normal mode. The local knowledge of the mobile phone (C1), which includes in-
formation about the mode of the phone and incoming calls, is encoded in the following
strict local rules.

rl
13 :→ incoming call1

rl
14 :→ normal1

In case the mobile phone cannot reach a decision based on its local knowledge, it
imports knowledge from other ambient agents. In this case, to determine whether Prof.
Amber is giving a lecture, it connects through the university wireless network with Prof.
Amber’s laptop (C2), a localization service (C3) and the classroom manager (C4, a sta-
tionary computer installed in the university classroom), and imports information about
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Prof. Amber’s scheduled events, location, and the classroom state through mapping
rules rm

15 and rm
16.

rm
15 : classtime2, location class3 ⇒ lecture1

rm
16 : ¬class activity4 ⇒ ¬lecture1

The local context knowledge of the laptop, the localization service, and the classroom
manager is encoded in rules rl

21, rl
31 and rl

41, respectively. The classroom manager
infers whether there is active class activity based on information it imports (through
rule rm

42) about the number of people detected in the classroom (detected) from a person
detection service (C5).

rl
21 :→ classtime2

rl
31 :→ location class3

rl
41 :→ detected(1)4

rm
42 : detected(1)5 ⇒ ¬class activity4

The mobile phone is configured to give highest priority to information imported from
the classroom manager and lowest priority to information imported from the laptop (in
the sense that Prof. Amber considers that his calendar information is inaccurate). This
is encoded in preference ordering T1 = [C4, C3, C5, C2]. This ordering is used by the
mobile phone to resolve the conflict caused by competing rules rm

15 and rm
16. Following

the simplest strategy, the system will give priority to rm
16, as this involves knowledge

from the classroom manager (C4), which is preferred to knowledge from contexts C2
(laptop) and C3 (localization service). Using the conclusion of rm

16, the system will
eventually reach the decision to ring.

The second strategy, however, will lead to the contrary decision. The information that
it is class time and that Prof. Amber is located in a university classroom, is part of the
local knowledge of contexts C2 (laptop) and C3 (localization service), respectively. On
the other hand, the conclusion that there is no class activity is derived by C4 (classroom
manager) based on external information about the presence of people in the classroom,
which it imports from C5 (person detection service). Therefore, rule r15 will override
rule r16, the mobile phone will infer that Prof. Amber is currently giving a lecture and
the phone will not ring.

Following the third or fourth strategy, the classroom manager will inform the mobile
phone about its conclusion that there is no class activity and will additionally send the
list of contexts that were involved in this inference, which actually contains only context
C5 (person detection service). In order to resolve the conflict caused by rules r15 and
r16, the mobile phone will compare contexts C2 and C3, which support the lecture
conclusion, with contexts C4 and C5, which support the contrary conclusion, based on
T1. As C2 is in the end of this preference list, the phone will infer that there is no lecture,
and will eventually reach the decision to ring.

5 Discussion

Rule based approaches have already been applied to several Ambient Intelligence sys-
tems, offering many benefits including flexibility, formality, modularity, reactivity, in-
formation hiding and efficient support by reasoning engines. The approaches that we
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presented in the previous two sections, although based on totally different reasoning
architectures, highlight how such features can be beneficial for contextual reasoning.
Below, we discuss how the reasoning architecture itself is also very important in Ambi-
ent Intelligence systems, based on the comparison of the two approaches with respect
to the special characteristics and requirements of the specific domain.

– Distribution of knowledge. In ambient environments, knowledge is typically dis-
tributed among several different entities. For this reason, distributed reasoning solu-
tions are more natural, since centralized approaches require periodically collecting
all available information in a central entity. When the frequency of context change
is high, which is the typical case for such environments, updating the central knowl-
edge base may become a critical challenge.

– Reasoning with the ’whole picture’. On the other hand, collecting all available in-
formation in a central place ensures reasoning with the ’whole picture’, which may
provide with more useful conclusions about the state of the system. In the dis-
tributed case, where agents share only part of their local knowledge, the final con-
clusions that ambient agents reach may not be based on all available knowledge.

– Scalability. In centralized reasoning architectures, we assume that a central entity
is enabled to communicate with all involved entities and reason with all available
information. Even if we assume that a powerful central computer can undertake
all the required reasoning tasks, the communication with the central entity cannot
always be guaranteed due to the restrictions posed by wireless communications.
Therefore, if we consider environments that are broader than closed areas, such as
rooms, offices or houses, we cannot rely on centralized architectures.

– Computational issues. As mentioned above, centralized architectures require the
existence of a powerful central reasoning engine. In such environments, the amount
of available information may be potentially vast, therefore we must ensure that the
central engine has the computational power to efficiently process all available in-
formation and react in time to changes in context. On the other hand, distributing
the reasoning tasks to all involved entities requires adding reasoning capabilities
to devices with limited computing power, such as mobile phones. However, as we
described in Section 4, using lightweight reasoning algorithms and lightweight rea-
soning engines, such as TuProlog, may offer efficient solutions.

– Communication issues. If we focus on indoor environments, where there are no
communication restrictions, another issue is the communication overhead in terms
of size and number of messages. Centralized solutions require updating the central
knowledge base with all context changes, which may result in long update messages
to the central node. On the other hand, distributed solutions such as Contextual
Defeasible Reasoning require (in the simplest form) the exchange of single boolean
values between the ambient agents. The number of messages, though, for a single
query evaluation process, may be exponential to the number of nodes. However,
in contrast with centralized approaches that require agents to send updates to the
central base whenever they detect changes in their context, in CDL communication
is imposed only when an external query is posed to a system node.

– Points of failure. Centralized approaches have always the disadvantage of the single
point of failure. A single failure to the central entity may be enough to disable the
entire system. Distributed approaches, on the other hand, can afford such failures.
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Failing to communicate with a system node will only restrict the access to the local
knowledge of this node, narrowing the underlying distributed knowledge base.

– Privacy. This is a very critical issue, which has not yet been adequately studied
in the Ambient Intelligence domain. Collecting all available knowledge from an
ambient agent, e.g. the user’s personal agent, may be in contrast with the agent’s
privacy policy. In centralized approaches, this actually means that the system is able
to reason with part of this agent’s knowledge; the one that it is permitted to share.
In distributed approaches, information hiding and localized reasoning ensures that
this part of the agent’s knowledge may be used in the reasoning process without
disclosing it to the other parties.

Choosing the best reasoning approach with respect to the allocation of the reasoning
tasks depends on several parameters, such as the targeted environment, the available
means of communication, the computational, communication and reasoning capabilities
of the involved devices, and the specific needs and requirements of the use cases that we
want to support. Although the two described approaches clearly demonstrate how rule-
based inferencing can address specific problems with respect to contextual reasoning
in Ambient Intelligence, the list of open problems is still long, and we have identified
several opportunities for future research in this area. Below, we list some critical issues
along with possible future research directions.

– Privacy and Security. Retaining the user’s privacy and providing a secure environ-
ment for collaboration between ambient agents are key issues for Ambient Intel-
ligence. Due to the open nature of the environments, and the unnoticeable ways
in which various sensors may access the user’s personal data, these issues become
critical and require principled solutions. From our perspective, an access-control
language and framework would be significant contributions to such efforts.

– Planning. Ambient agents are expected to have their individual capabilities, desires
and goals. However, the ultimate goal of Ambient Intelligence is to enable agents
forming teams in order to achieve common objectives that are in line with the users’
desires. Ambient agents must not only be able to communicate and share their
knowledge, but also develop common plans, and coordinate their actions in order
to execute these plans effectively. The heterogeneity of the involved devices, the
restrictions of wireless communications, and the imperfection and distribution of
the available knowledge make distributed planning in such environments a really
challenging problem that cannot be handled by classical planning approaches.

– Learning. Based on the experience from other domains, we argue that the intelli-
gence of a system is to a large extent determined by its learning capabilities. An
Ambient Intelligence system should learn from the user’s behavior so as to be able
to identify the user’s needs and desires. Learning can also be used for computational
reasons. Learning how other agents act in certain situations, may help an agent to
conduct conclusions about other agents’ state, needs and objectives based only on
its experience, avoiding unnecessary communication and computations.

Overall, the Ambient Intelligence domain, apart from its key role in facilitating our
every day tasks, may also serve as an interesting test bed for AI methods. Rules and
Inferencing are already in the mainstream of such efforts enabling the development
of formal models and methods for context representation and reasoning, while their
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combination with other fields of AI, such activity recognition, reasoning about action,
agent coordination, distributed planning and learning is expected to provide valuable
solutions to the critical challenges of the domain.
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Abstract. The background for this work lies in the visions of ubiquitous sys-
tems and semantic web. To realize this vision in embedded domains we have im-
plemented an interoperability platform called Smart-M3, which allows sharing
of RDF information. In this paper we investigate integrating reasoning capabil-
ities to this platform for solving problems arising from resource allocation and
conflict resolution under preferences in dynamic context sensitive environments.
Additional goals for our work is to take into account requirements for efficiency,
scalability and localized reasoning. For this we are investigating Answer Set Pro-
gramming (ASP) techniques in particular. We present an integration framework
for using an ASP solver Smodels with Smart-M3 and we demonstrate its use
within a use case. Both the framework and the rules described in this paper are
available for trial.

1 Introduction

The background for this work lies in the visions of ubiquitous systems and semantic
web. We expect that the amount of devices and objects with computers having digital
communcation facilities embedded in the environment will continue its growth. These
devices contain information and functionality which is then available for other devices
like mobile devices or personal computers. The line between various types and roles
of devices will also blur. Together these devices form a smart space, an abstract entity,
which makes services available for the user in a seamless way using the most suitable
available resources. This is a realization of the ubiquitous computing vision [30].

To guarantee interoperability between the participants, a common ground needs to
be defined. Typically this has been achieved by standardization but the number of par-
ticipating devices, vendors, product domains, and produced information is large and,
thus, creating a common standard is hard as is changing an existing one [4].

Semantic Web [1] approaches offer one solution to this by mechanisms which al-
low handling and representing semistructured information. At the lowest level, the Re-
source Description Framework [22] (RDF) is used to present the information as a set
of triples. The structures which are built on top of RDF can be specified by knowledge
representation languages such as RDF-Schema [23] (RDFS) or web ontology language
[21] (OWL). These languages are used to define ontologies which describe the shared
vocabulary for modeling a particular domain. Exhaustively defining and agreeing on
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ontologies for all or most domains and participants is a similar effort to standardiza-
tion but the semantic web approach gives the possibility of leaving information only
partially defined.

The semantic web route to interoperability assumes that the relevant information is
published as RDF so that participants of a smart space can handle that information. The
original semantic web vision was that the semantic information would accompany web
pages and be fairly tied to the web infrastructure. We assume that the web infrastruc-
ture may not be the most suitable mechanism for smart spaces because of privacy and
efficiency reasons. This has been the motivation for implementing Smart-M3 [20], an
interoperability platform which allows devices to share and access local semantic in-
formation, while also allowing the more global semantic information to be available.
Logically, Smart-M3 has two kinds of elements: a single Semantic Information Broker,
SIB, a blackboard like RDF-store to which several nodes can connect and exchange in-
formation. It may be that a logical SIB spans over several devices, internally handling
the required synchronization. Smart-M3 provides a set of primitives for manipulating
the RDF content and ontologies can be used to define larger structures in the published
information. However, for applications which need to allocate resources and resolve
conflicts, these means are not sufficient and additional mechanisms are required.

In this paper the aim is to develop a methodology for handling resource allocation
and conflict resolution on top of Smart-M3. This is a very dynamic and context sen-
sitive setting because typically the availability of resources and their usage depends
on various dynamically changing conditions and because resources and users are fre-
quently added or removed. We put forward rule-based constraint programming and, in
particular, Answer Set Programming (ASP) [19,17,15] as an interesting framework for
developing such a methodology.

In Smart-M3 the required information is in the RDF format which matches well with
the rule-based approach. Each RDF triple can be interpreted as a fact of arity two and,
hence, it is straightforward to represent RDF content in a rule base and to include RDF
triples as first class components in rules. When new information is derived by deducing
new facts, the information can easily be rendered in the RDF native format. Moreover,
rules provide a natural way of defining new concepts (views) from the underlying RDF
information base. Furthermore, the rules themselves can easily be represented using
RDF. Having the behavior description given in the rule form as data opens up possi-
bilities for modifying and augmenting the behavior. Hence, the rule-based approach
offers well-suited features for the application area and, e.g., Wielemaker et. al [31] have
proposed Prolog to be fundament for application development for the semantic web.

ASP is a rule-based approach that enjoys a number of properties which makes it an
attractive alternative for handling resource allocation and conflict resolution. Rule based
constraints in ASP provide a natural way of expressing dynamic context dependent con-
straints needed in this area. When compared to Prolog, ASP rules are fully declarative.
This facilitates considerably maintaining, extending, combining and distributing con-
straint sets. When compared to description logics, ASP supports well the setting where
resource allocation and conflict resolution typically have multiple possible solutions
and where preferences and optimization techniques are used to select the most suitable
solution.
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Moreover, the rule format provides an attractive approach between rigid standard
based solutions and completely ad hoc ways for handling resource allocation and con-
flict resolution. Using rules it is possible, e.g., to tailor resource allocation by providing
new rules giving preferences or other additional constraints important to the user and to
combine them with other constraints required by the environment, technical properties
of the device, or the intended business logic.

Our target of defining common structures for coordination is similar to workflows [2]
and a data-oriented approach [5] but we rely on a simpler execution model and on
defining data structures by means of ontologies. Our update mechanism is similar
to earlier efforts in combining rule-based approaches with updates to an underlying
database [16,2] but our update semantics is separated from the used rule language itself.
The work is also related to efforts on combining rules and semantic web [3] where the
approach using dlvhex being perhaps the closest. However, we are aim at using ASP
techniques local in a node such that nodes communicate asynchronously through the
SIB whereas the related work is more aiming at using rules to integrate difference infor-
mation sources. The idea of combining semantic web technologies to a blackboard-type
system is not new. Khushraj et al. [10] present a framework combining tuple spaces with
a service framework, where service descriptions and other information are published as
tuples, which can then be matched by means of an ontology based mechanism and de-
scription logic reasoner. Simperl et al. [25] also describe an extension to tuple spaces
and they describe a similar access protocol as Smart-M3. Mrohs et al. [18] present a ser-
vice framework with distributed service and reasoning resources. There are also several
approaches like [11,12] in which a blackboard-like system is used for sharing context
information. The key difference is that our framework is conceptually simpler, based
on an declarative ASP rule language allowing flexible extensibility and having a single
logical blackboard for all information.

The rest of the paper is structured as follows. Section 2 introduces the Smart-M3
system and Section 3 two uses cases that will used to illustrate how typical resource al-
location and conflict resolution tasks in smart spaces can be solved using the proposed
techniques. Section 4 summarizes the key relevant features of ASP for this work. Sec-
tion 5 presents our approach to integrating ASP to Smart-M3 and then demonstrates
how resource allocation and conflict resolution problems can be solved using the ASP
enhanced Smart-M3 system. Section 6 provides information on the implementation of
the integrated system and Section 7 concludes the paper.

2 Smart-M3

The Smart-M3 system provides a set of primitives for a node participating in a smart
space to manipulate the RDF triples on the SIB: insert and delete both use a list of triples
which are atomically committed or removed from the SIB. An update uses two lists,
one for deletion, another for insertion. The commit is done atomically, first perform-
ing deletes and then inserts. This resolves possible conflicts in deleting and inserting
the same triple content. Further primitives are a query and a subscription (a persistent
query). The queries can consist of a set of triples where one or more of the elements
may be an “any” element as well as SPARQL [28] or WQL [13] queries. It is guar-
anteed that for a single node, the operations are done in the same order as they were
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performed by the node. For operations performed by parallel or distributed nodes, the
only guarantee given is that for a received operation, the SIB will process no operation
received later before processing the earlier operations.

Currently, none of the operations will fail due to the information content but we ex-
pect that an upcoming access control mechanism will change this. Before a node can
use the primitives to manipulate information it must join a particular named smart
space and at the same time provide credentials. This allows tagging information with
ownership and access rights and the idea is to extend Smart-M3 with privacy mech-
anisms using these features. Also we expect that we will implement a “test-and-set”
type of primitive which allows basic synchronization. Without the latter, there is no
guarantee of information persistence between primitives.

The definition of a Smart-M3 application is very loose: it is the result of the combined
actions of the participating nodes, which may appear and disappear spontaneously. Each
node can always operate on the triple level, however, if the node has an understanding of
an ontology pertaining to the triples, they may be interpreted as forming larger concep-
tual entities. Figure 1 shows an example logical architecture of such a system consisting
of several nodes which are logically separate but may reside physically in the same de-
vice or in several devices. The SIB appears logically as one entity but it may also be
physically distributed across multiple devices. The distribution of the SIB is not han-
dled in this work. Each participating node may be able to interpret the RDF information
according to predefined ontologies.

This approach works well when there are nodes which only write information and
the potential mash up and further processing of available information is done in one
reader node internally. However, when nodes compete for the same resources and need
to synchronize with each other, the loose coupling becomes more challenging and for
this work we assume that the nodes do share a common small ontology.

The implementations of the nodes themselves are not limited to any particular sys-
tem or runtime, as long as the platform has an implementation of the SSA protocol. The
SSA protocol operates on the triple level but it is also possible to build the application
logic on different ontologies and libraries generated from them, which allows working
on a higher abstraction level. In principle a node can choose its own used ontologies
independently, but especially when there is a need for synchronization a common vo-
cabulary on the triple or ontology level is needed.

SIB

SSAP triple level

O1 O2 ...

Node implementation

SSAP triple level

O1 O2 ...

Node implementation

SSAP triple level

O1 O2 ...

Node implementation

O1 O2

SSAP triple level

O1 O2 ...

Node implementation

Fig. 1. A diagram of logical architecture with multiple nodes and the SIB
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3 Use Cases

The general operation by entities that wish to participate in the smart space is that they
publish information to the SIB about their capabilities, resources, and state and use
similar information other nodes have published for their operation. Not all the state of
the node needs to be published but we expect the nodes to behave sensibly so that they
keep their published state consistent with their internal state and also that the nodes
observe and react to the information on the SIB. Note that this partial visibility and
controllability of the node also carries the possibility of later introducing more of each.

Specifically, we are interested in ubiquitous computing-like scenarios. In such a set-
ting there are several computing resources that can be used by the participants of a
specific smart space to fulfil more abstract functionalities also represented in the smart
space. The resource usage and availability may change dynamically and there may be
preferences according which the resources are allocated in competing situations.

For a concrete example we have defined two use cases “music follows user” and
“read aloud message”, whose mashup we think covers a relevant subset of the typical
patterns of use. The narration for the “music follows user” use case is that a user starts
listening to music on her mobile device (MD), using the loudspeaker and keypad of
the MD to listen and control. When entering her car, she can seamlessly use the car
loudspeakers and the steering wheel buttons and when exiting the car, she can continue
the listening but only with the resources of the MD. The intuition behind this is that the
user should have the best available resources at her disposal. The “read aloud message”
use case consists of monitoring an account for messages and upon receiving one, using
a text-to-speech functionality to read the content of the message for the user. In the car
this would be useful for delivering traffic announcements. Both of the use cases exist
in the same smart space and compete for the use of audio resources, not necessarily for
the same individual resource but for the user’s attention.

Whenever a device joins this smart space, it publishes information about
its capabilities and resources. In this case both the MD and the car publish
information about themselves and their capabilities as instances of predefined
classes to the SIB. Here we use the SPICE mobile ontologies [29] and specifi-
cally classes dcs:Device, dcs:AcousticModalityCapability and dcs:
KeypadInputCapability whose names are self describing. We assume for sim-
plicity that once the connection between the device and the SIB disappears, the pub-
lished information is removed as well. We could modify the SPICE ontologies and the
messaging ontologies to directly include additional bookkeeping information but this is
not scalable for other use cases as each of them may need some specific information.
Instead we define generic concepts including bookkeeping and just refer to the use case
specific ones by means of relations.

When a node wishes to use the capabilities of a device, it publishes an instance of
the Activity class (hence Activity), using the uses property to target the desired
Capability. An Activity has a state, active, which indicates whether it is running or
not. Additional, non-essential properties for an Activity include importance, con-
taining a free form value and requires, which targets a type of a Capability. It is
expected that the creator of the Activity monitors the active property and honors it
so that when it has value “no”, the behaviour is in paused state. A Capability which

dcs:Device
dcs:AcousticModalityCapability
dcs:KeypadInputCapability
dcs:KeypadInputCapability
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is targeted by the uses relation may commit to the use by publishing a commits
relation between itself and the Activity which uses it. Once all uses relations have
been committed to, the Activity is ready to operate and its active property can be
changed to “yes”.

There is also a Preference class which associates a free text entry to a numeric
value. The preferences may be aggregated to a named collection and there may be sev-
eral such collections. It is expected that these are provided by the user but it might also
be sensible to have some default values, which may even be hardcoded by the system
designer. For equally valued preferences, we expect a nondeterministic choice. Devices,
Capabilities, Preferences and Activities with their associated relations form a common
ontology that we expect each participating entity to share. One of the expectations for
this and other similar systems is that there may be an unpredictable number of Capabil-
ities appearing and disappearing dynamically and that these are not necessarily owned
by the users. For example, the same “music follows user” use case should be valid in
the user’s home environment or in cars of other people. The underlying idea is that the
same implementation for the use case is valid in many environments.

The potential transient nature, large number, and ownership of the Capabilities means
that it is not sensible to have a single global arbiter which manages the Capabilities and
the Activities. We expect that each Capability manages itself, that is, decides indepen-
dently on whether it commits itself. At this point policies may be in effect regarding
what kind of entities may use the Capability.

4 Answer Set Programming

Logic programs with the stable model semantics [8] have emerged as an attractive
knowledge representation formalism and as an approach to solving search problems
using the answer set programming (ASP) paradigm [19,17,15]. The basic idea is to en-
code a given search problem as a set of rules such that the stable models of the rules
correspond to the solutions of the original problem. Hence, a solution to a given prob-
lem can be found by giving the logic program encoding as input to an ASP solver which
computes a stable model of the encoding and then a solution of the original problem
can be extracted from the computed stable model.

The basic idea in this paradigm is to interpret the rules of a program as constraints
on a solution set for the program. A solution set is a set of atoms, and a normal logic
program rule of the form

a :- b1, . . . , bm,not c1, . . . ,not cn. (1)

is seen as a constraint on this set stating that if b1, . . . , bm are in the solution set and
none of c1, . . . , cn are included, then a must be included in the set. A very natural
definition for the solution sets is provided by stable models [8]. Models of a program
are sets of ground atoms. A set of atoms Δ is said to satisfy an atom a if a ∈ Δ and a
negative literal not a if a �∈ Δ. A rule r of the form (1) is satisfied by Δ if the head a
is satisfied whenever every body literal b1, . . . ,not cn is satisfied by Δ and a program
Π is satisfied by Δ if each rule in Π is satisfied by Δ.
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Stable models of a program are sets of ground atoms which satisfy all the rules of the
program and are justified by the rules. This is captured using the concept of a reduct.
For a program Π and a set of atoms Δ, the reduct ΠΔ is defined by

ΠΔ = {a :- b1, . . . , bm. | a :- b1, . . . , bm,not c1, . . . ,not cn. ∈ Π,
{c1, . . . , cn} ∩Δ = ∅}

i.e., a reduct ΠΔ does not contain any negative literals and, hence, has a unique subset
minimal set of atoms satisfying it.

Definition 1. A set of atoms Δ is a stable model of a program Π iff Δ is the unique
minimal set of atoms satisfying ΠΔ.

Current answer set programming systems such as Smodels [24], dlv [14], and
clasp [7] support a richer modelling language than normal logic programs. In par-
ticular, Smodels supports, for example, integrity constraints, choice rules, cardinality
and weight constraints, rules with variables, and conditional literals.

– A integrity constraint (denial) of the form :- b1, . . . ,not bk. excludes any stable
model where the body holds.

– A choice rule of the form {a1, . . . , al} :- b1, . . . ,not bk. allows to include a
subset of {a1, . . . , al} to a stable model whenever the body of the rule holds in the
model.

– A cardinality constraint of the form l{b1, . . . , bm,not c1, . . . ,not cn}u is sat-
isfied in a model if at least l and at most u of the literals {b1, . . . ,not cn} are
satisfied in the model where l < u are integers.

– A weight constraint l{b1 = wb1 , . . . , bm = wbm ,not c1 = wc1 , . . . ,not cn =
wcn}u is a generalization where each literal bi is assigned a (positive) integer
weight wbi and such a constraint is satisfied in a model if the sum of weights of
the satisfied literals in the model is at least l but at most u.

– For rules with variables the semantics is based on Herbrand interpretations where
a rule with variables is interpreted as the set of its ground instantiations such that
the variables are substituted by ground terms from the Herbrand universe of the
program. In order to guarantee that determining stable model existence remains
decidable, typically ASP systems require some kind of a safeness condition for
rules with variables. For the Smodels system the rules are required to be domain
restricted which makes it possible to use function symbols but to preserve decid-
ability. A domain restricted program can be thought of as being divided into two
parts: ΠDefs defining domain predicates and ΠCs containing all other rules. The
rules ΠDefs for the domain predicates form a stratified program (i.e., no recursion
through negation) and all the rules in Π are domain-restricted in the sense that ev-
ery variable in a rule must appear in a domain predicate which appears positively
in the body of the rule.

– Conditional literals are of the form l : d where l is a literal and the conditional part
d is a domain predicate and they are required to be domain-restricted in the sense
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that each variable in the rule appears in a domain predicate which is a positive body
predicate or the conditional part of some conditional literal in the rule.
When using conditional literals we need to distinguish between local and global
variables in a rule. The idea is that global variables quantify over the whole rule
but the scope of a local variable is a single conditional literal. We do not introduce
any notation to make the distinction explicit but use the following convention: a
variable is local to a conditional literal if it appears only in this literal in the rule
and all other variables are global to the rule.

Example 1. Consider the graph colorability problem where a problem instance is given
by a set of facts vertex/1, edge/2, color/1, for the vertices and edges of the
graph and the available colors, respectively. Then the ASP encoding of the problem is

1 {colored(X,C):color(C) } 1 :- vertex(X).
:- edge(X,Y), colored(X,C), colored(Y,C), color(C).

where the first rule includes for each vertex x exactly one atom colored(x,c)
such that c is one of the available colors and the second rule is an integrity constraint
saying that there is no model such that there is an edge (x,y) with end points as-
signed the same color. Here vertex/1, edge/2, color/1 are domain predicates
but colored/2 is not. In the first rule X is a global variable while C is a local one for
the conditional literal.

Now given a set of facts describing a graph and the available colors, this set of facts
and the two rules have a stable model exactly when the graph is colorable using the
available colors and the coloring can be read directly from a stable model (the atoms of
the form colored(x,c)).

5 Integrating ASP to Smart-M3

The integration of a rule engine to Smart-M3 is based on a simple execution model. A
node makes a query on the SIB content. Then the rules and the rule base constructed
from the SIB contents are executed by the ASP system and facts with predetermined
names in the resulting stable model are interpreted by an external entity possibly leading
to facts being committed or deleted atomically in the SIB. We have limited support for
reactivity so that the above cycle can be triggered by changes in the SIB contents. For
simplicity we assume that the described rules are executed for every change in the SIB.
Hence, the overall execution of a set of nodes is an asynchronous process where the
nodes query the SIB, do some inferences and then make atomic updates in the SIB in
an interleaved fashion.

Below we illustrate the use of ASP techniques in solving resource allocation and
conflict resolution problems in the two use cases introduced in Section 3. In ASP such
a problem is solved by constructing a set of rules such that the stable models of the rule
set corresponds to the solutions of the original problem.

We have two levels of rule sets: the Capability specific level, which allows Capa-
bilities to manage themselves individually, and the higher level rules which pertain to
Activities and allow policies and decisions related to aggregates of the defined entities.
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This is a part of the partitioning mechanism, which we expect to enhance scalability.
We assume that a relatively small number of Capabilities (e.g. associated to a partic-
ular device) are managed by a single rule engine containing the rules in a set called
resource.lp. This rule engine may execute in the same physical device as the Ca-
pabilities. The association between the Capabilities and the rule engine managing them
is arbitrary, however. It may be that for a limited resource device the managing rules
are executed on another device. The mechanism for assigning rule engines to particular
entities is not in the scope of this paper. For the Activities we have another set of rules
activity.lp, which can be associated with several Activities.

As explained in Section 3, it may be that there will be a uses relation between an
Activity instance and Capability instance indicating that the Activity wants to
use the Capability. If the Capability accepts this, it makes a commits relation between
the same instances. The rules in resource.lp deal with managing this from the
point of view of a Capability. The predicate to_commit is designed to choose a set of
capability-activity pairs satisfying the following principles for a managed Capability:

1. All available capacity should be used if needed.
2. Activities with higher preference should be given priority.
3. Activities already committed to should be kept if they are not replaced by Activities

with higher preference.

Below we illustrate how ASP can be used to express these kinds of typical resource
allocation constraints by walking through the rules implementing the principles above.

We start with a rule that chooses from the used Capabilities any number of capability-
activity pairs to the relation to_commit indicating the chosen commitments after the
rule execution. We employ the Smodels choice rule to implement the choice of at most
M to_commit facts limited by the Capability specific maximum M (via max_users
relation).

{to_commit(Cap,Act):used(Cap,Act)} M :- max_users(Cap,M),
non_dangling(Cap), managed_cap(Cap).

Then the three principles given above to restrict the choices can be implemented by
denials (integrity constraints). First, we consider the condition that all available capacity
should be used if needed. It can be expressed as a denial stating that for a Capability
specific maximum M, it cannot be that up to M−1 commits have been chosen but there is
an Activity Act1 which requests access (indicated by the predicate used) and Act1
is not among the chosen Activities to be committed by the Capability:

:- {to_commit(Cap,Act):used(Cap,Act)} M-1, used(Cap,Act1),
not to_commit(Cap,Act1), max_users(Cap,M).

The second principle, Activities with higher preference should be given priority, can
be stated with a denial saying that it cannot be the case that a used Activity ActBad has
been chosen to be committed (1-2) but another used Activity ActGood has not been
chosen for commitment (3-4) and ActGood has higher preference than ActBad, i.e.,
the preference value of ActGood is smaller than that of ActBad (5-7).

to_commit
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:- to_commit(Cap,ActBad), % 1
used(Cap,ActBad), % 2
not to_commit(Cap,ActGood), % 3
used(Cap,ActGood), % 4
available_option(P,X,ActGood), % 5
available_option(P,Y,ActBad), % 6
X < Y. % 7

The third principle (Activities already committed to should be kept if they are not
replaced by Activities with higher preference) can be stated similar to the second prin-
ciple: it cannot be the case that a used Activity ActBad not already committed to is
chosen to be committed (1-3) but a used Activity ActGood already committed to is not
chosen to be committed (4-6) and ActGood is at least as preferable as ActBad (7-9).

:- to_commit(Cap,ActBad), % 1
not committed_to(Cap,ActBad), % 2
used(Cap,ActBad), % 3
committed_to(Cap,ActGood), % 4
not to_commit(Cap,ActGood), % 5
used(Cap,ActGood), % 6
available_option(P,X,ActGood), % 7
available_option(P,Y,ActBad), % 8
X <= Y. % 9

Figure 2 illustrates some auxiliary predicates. For Capabilities which have dangling
commits, we define a predicate retract which will be used to trigger the removal
of the particular commit. The rule for predicate committed_to captures the pairs of
(Cap, Act) where a particular managed Capability instance Cap has committed itself
to an Activity Act (indicated by the uses -commits pair of relations). Similarly, the
rule for used captures managed capability-entity pairs in the uses relation but posing
no constrains on type or other properties of the entity. For the predicate dangling
capturing the capability-activity pairs where the Capability has committed to the Ac-
tivity but the Activity has removed the uses relation, we employ the closed world as-
sumption on the SIB information, i.e., if there is no information on the "wp1:uses"
relation in the SIB for a particular Activity-Capability pair, we assume that this instance
of the predicate is false. Using this predicate also the predicate non_dangling can
be easily defined.

The preference mechanism is based on having a free text importance property
in the Activity instance. We expect that the information store contains a mapping
ranking between the string and a numerical value. Technically, the importance and
the credentials of the Activity is related to the uses relation, which can be thought
of as the connection request. From the RDF point of view we could have associated
them with the relation itself, but for this work it is more straightforward to have it in the
Activity. The available_option combines the ranking which maps the impor-
tance string to a numerical value with a given Activity. The first argument P is the name
of string-value mappings, which can later be used to enable multiple mappings.
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retract(Cap,Act) :-
managed_cap(Cap),
dangling(Cap,Act).

committed_to(Cap,Act) :-
managed_cap(Cap),
"rdf:type"(Cap,

"dcs:Capability"),
"wp1:uses"(Act,Cap),
"wp1:commits"(Cap,Act).

used(Cap,X) :-
managed_cap(Cap),
"rdf:type"(Cap,

"dcs:Capability"),
"wp1:uses"(X,Cap).

dangling(Cap,X) :-
managed_cap(Cap),
"rdf:type"(Cap,

"dcs:Capability"),
"wp1:commits"(Cap,X),
not "wp1:uses"(X,Cap).

Fig. 2. Examples of auxiliary predicates

available_option(P,I,Act) :-
ranking(P,ImpStr,I), available(Act,ImpStr).

Finally, we can connect the primitives for inserting and deleting particular triples to
the store with the derived facts. For example, we insert a “wp1:commits" triple for
a Capability and Activity to commit but not yet committed to.

i(Cap,"wp1:commits",Act) :-
managed_cap(Cap), "rdf:type"(Act,"wp1:Activity"),
not committed_to(Cap,Act), to_commit(Cap,Act).

It is possible to define rules over the i and d predicates, which may preprocess them
independently. This can be a way of implementing common policies over the insertions
and deletions. A possibility is that we interpret predicates i and d outside of the ASP
solver and leave the further actions up to the external interpreter, which may resolve the
conflict, for example, by triggering another higher level rule set.

Many of the above rules contain the managed_cap/1 relation stating whether
a Capability instance is being “managed” by the rules. In this paper we expect it
to be defined outside of the described rules as a parametrization for the rule engine.
We could read this parametrization from the SIB, but this requires more synchroniza-
tion. Here we expect that any Capability sets up a rule engine for itself. However, the
managed_cap/1 mechanism allows for many Capabilities to express their desire to
be managed, so it is possible to have several Capabilities handled by one instance of the
rule engine.

Similar as for Capabilities we have a set of rules which pertain to Activities as a
whole in activities.lp, as entities which may have multiple requests towards
Capabilities. At simplest the rules detect whenever all uses relations have a corre-
sponding commits relation and then set the active property to “yes”. We expect
that the entities which created the Activity instance monitor this property and do not
engage in further behaviour before that. Likewise, if the active property is changed
to “no”, they should honor that as well. This enables a primitive co-operative multi-
tasking scheduling, where the rules act as the scheduler. These rules can be bound to
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individual Activity instances using a similar mechanism as for the Capabilities and this
approach is scalable as it only observes properties directly associated with the Activity.

Activities use the same priority mechanism as Capabilities, so it is possible to com-
pare and select between any two Activity instances. Conflicts between Activities with
different priorities for the same Capabilities are automatically handled by the mecha-
nism explained above.

deadlock(A):-
"rdf:type"(A,"wp1:Activity"),
waiting_closure(A,A).

waiting_closure(A1,A2) :-
"rdf:type"(A1,"wp1:Activity"),
"rdf:type"(A2,"wp1:Activity"),
waitingfor(A1,A2).

waiting_closure(A1,A3) :-
"rdf:type"(A1,"wp1:Activity"),
"rdf:type"(A2,"wp1:Activity"),
"rdf:type"(A3,"wp1:Activity"),
waitingfor(A1,A2),
waiting_closure(A2,A3).

Fig. 3. Rules for detecting deadlocked Activities

However, we may want to check that multiple Activities with more than one uses
relation are not mutually deadlocked, in a similar manner as in the dining philosophers
problem. In practice this should be resolved by Activity specific timers, which would
trigger retracting the uses relations and retrying later. In Figure 3 we present another
solution, where we detect this kinds of deadlocks based on waitingfor relation be-
tween two arbitrary Activities A1 and A2 where A1 is waiting for a fully booked Ca-
pability already committed to A2. For the circular chain of waiting Activities, we pick
one which we temporarily put to sleep in order to break the deadlock. In our case we
optimistically awaken the sleeping Activity by the next time the rules fire. At this point
there is no guarantee that the same state would not reoccur. The downside of these
rules is that they are not bound for a limited number of Activities but need to access
potentially all of them, which can be detrimental for scalability.

6 Implementation

The implementation of the Smart-M3 is publicly available [20] and we have used this
platform in multiple use cases. It is also used as the reference platform within the EU
Artemis/SOFIA project [27], which aims to produce an ecosystem for semantic inter-
operability. The use case implementations exist on a range of platforms and runtimes
including i386 and Armel; Windows, Linux and Symbian; Python, C, C++ and C#.
So far our experience consists of implementations using procedural and object-oriented
languages [20,9,6,26]. In all these cases a part of the behaviour could have been straight-
forwardly implemented or expressed by means of rules and a part of the implementa-
tions essentially implements a simple rule set and its support mechanisms.

For the integration we use a command-line tool ssls giving access to Smart-M3
operations with some additional convenience features as well as a possibility of in-
terfacing external tools to operate on the results of the operations. We use ssls to
integrate ASP with Smart-M3 as a node of the system and ssls interprets certain facts
such that the SIB contents will be manipulated. The facts for adding triples to insert and
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delete buffers are correspondingly i and d, both of arity three. Note that both i and
d are ssls commands for adding triples to the buffers, which are then committed by
the SSAP command update. After all generated facts have been parsed the update
command is issued which will cause atomically the deletions to occur, followed by
the insertions. As the ASP systems we have used the Smodels systems available at
http://www.tcs.hut.fi/Software/smodels/.

player:Activity
keypad:Capability

loudspeaker:Capability

messaging:Activity

active=no
uses

uses

resource.lp
commits

resource.lp
commits

activity.lp

active=yes

active=no
uses

resource.lp
retract(commits)

activity.lp

active=no
commits

activity.lp

active=yes

Fig. 4. An illustration of the behaviour of
rules

As an example of the behaviour Figure 4
shows how the rules operate in a simple case.
The vertical timelines correspond to the in-
stances on the SIB. We have two Capabili-
ties, a keypad and a loudspeaker and initially
one Activity for playing. The “player” ac-
tivity places a uses relations between itself
and both capabilities. This triggers the exe-
cution of the resource.lp rules for both
Capabilities and they commit to the “player”.
After this the activity.lp rules are ex-
ecuted and the “player” is set to be active.
Once another Activity, “messaging”, appears,
it places a uses relation targeting the loud-
speaker. In this example the capabilities only
serve one user, so this is a conflict. The
resource.lp rules are triggered for the
loudspeaker and the previous commit is retracted and the “messaging” is committed
to. This triggeres the activity.lp rules, which make “player” inactive and “mes-
saging” active. Note that here we do not make any distinction on where the entities
and the rule execution physically resides. Both ssls and the rules described in this
paper are available along with an example setup to illustrate their behaviour, including
the above example at http://sourceforge.net/projects/ssls/files/
(both ruleml090710.tar.gz and dated ssls).

7 Conclusions and Future Work

We have presented a rule-based approach to locally deciding resource allocation in a
dynamic and distributed environment. We have made a prototype implementation avail-
able and plan to use it in future case studies. We see the role of the ASP techniques to
provide a powerful reasoning engine for resource allocation and related conflict reso-
lution and configuration tasks. We expect that for more low-level tasks related to node
management, communication, and coordination, a more procedural host platform is
needed. The current ssls tool seems already quite adequate but it is interesting to see
what extensions are needed in future applications.

Our approach to local decision making is motivated by the expected large amount
of available information. The other guidelines we have followed have arisen from the
reactive nature of the system: our rules have been written in a defensive manner to

http://www.tcs.hut.fi/Software/smodels/
http://sourceforge.net/projects/ssls/files/
ruleml090710.tar.gz
ssls
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operate in a changing environment. In addition to trialing this approach within use cases,
we aim to create a test setup to verify the scalability of our approach with measurements.
Furthermore, we aim to optimize the amount of traffic between an individual rule engine
node and the SIB based on analyzing the rules themselves.

The second major work item is to take advantage of the ASP features of optimization
and deriving several possible answers. We aim to produce mechanisms which would
enable optimized solutions either locally or within a controlled amount of locality. We
expect that the upcoming synchronization mechanism for M3 will require and enable
new features in these rules. Finally, it may be that the we start defining process structures
similar to [5]. Combination of this approach with (partial) publishing the rules on the
SIB itself would allow us to coordinate the distributed execution of the rules.
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Abstract. We propose a systematic investigation on how to modify a preference
relation in a defeasible logic theory to change the conclusions of the theory itself.
We argue that the approach we adopt is applicable to legal reasoning, where users,
in general, cannot change facts and rules, but can propose their preferences about
the relative strength of the rules.

We provide a comprehensive study of the possible combinatorial cases and we
identify and analyse the cases where the revision process is successful.

1 Introduction

Typically skeptical non-monotonic formalisms are equipped with techniques to address
conflicts, where a conflict is a combination of reasoning chains leading to a contradic-
tion. The most common device to handle conflicts is a preference or superiority relation
over the elements used by the formalism to reason. These elements can be formulae,
axioms, rules or arguments, and the preference relation states that one of such elements
is to be preferred to another one when both can be used.

In this research we concentrate on a specific rule-based non-monotonic formalism,
Defeasible Logic, but the motivation behind the particular technical development ap-
plies in general to other rule-based formalisms. In a rule based formalism, typically
knowledge is described in facts (describing immutable propositions/statements about a
case), rules (describing relationships between a set of premises and a conclusion), and
preference relation or superiority relation (describing the relative strength of rules). A
revision operation transforms a theory by changing some of its elements, that is: facts,
rules and superiority relation. Revision based on change of facts corresponds to an up-
date operation [1], revision based on modification of rules has been investigated in [2],
to the best of our knowledge, revision of non-monotonic theories based on modifica-
tions of the underlying superiority relation has been neglected so far. In this paper we
concentrate on this issue, and we argue that, while little attention has been dedicated to
this topic, it has natural correspondences to reasoning patterns in legal reasoning.

The paper is organised as follows: In Section 2 we motivate that reasoning over pref-
erences on rules and on how to modify the preferences is a natural reasoning pattern
in legal reasoning. Then in Section 3 we introduce Defeasible Logic, the formalism
chosen for our investigation; in particular we introduce new auxiliary proof tags to de-
scribe derivations in Defeasible logic. The new proof tags do not modify the expressive
power of the logic, but they identify patterns where instances of the superiority rela-
tion contribute to the derivation of a conclusion. Armed with this technical machinery,
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we provide an exhaustive analysis of the cases and conditions under which revision
operation modifying only the superiority relation are successful (Section 4). Section 5
concludes the paper with a short discussion of related and future wok.

2 Norms and Preferences in Legal Reasoning

It has been argued [3] that some aspects of legal reasoning can be captured by non-
monotonic rule based formalisms. The main intuition is that norms can be represented
by rules, facts to the evidence in cases, and the superiority relation is induced by legal
principles determining how to solve conflicts between norms.

We take the stance that, typically in the legal reasoning domain, we do not have
control over the rules (norms) and on how to modify them, but there is some control
on how they can be used. A normal single citizen has no power to change the Law, and
has no power on what norms are effective in the jurisdiction she is situated in. These
powers instead are reserved to persons, entities and institutions specifically designated
to do so, for example, the parliament, and, under some given constraints, also by judges
(in Common Law juridical system, especially).

However, a citizen can argue that a norm instead of another norm applies in a specific
case. This amounts to say that one norm is to be preferred to the other in the case.

Prima-facie conflicts appear in legal systems for a few main reasons, among which
we can easily identify three major representatives: (1) norms from different sources,
(2) norms emitted at different times, and (3) exceptions. These phenomena are well
understood and principles to solve such issues existed for a long time in legal theory, and
are still used, for instance, as an argument to drive constitutional judgement against a
given norm or a given sentence. Here we list the three major legal principles, expressing
preferences among rules to be applied [4].

Lex Superior. When there is a conflict between two norms from different sources,
the norms originating from the legislative source higher in the legislative source
hierarchy takes precedence over the other norm.

Lex Posterior. According to this principle a norm emitted after another norm takes
precedence over the older norm.

Lex Specialis. This principle states that when a norm is limited to a specific set of
admissible circumstances, and under more general conditions another norm applies,
the most specific norm prevails.

Besides the above principles a legislator can explicitly establish that one norm prevails
over a conflicting norm.

The intuition behind the above principles (and eventually others) is that when there
are two conflicting norms, and the two norms are applicable in a specific case, we can
apply one of these principles to create an instance of a superiority relation that discrim-
inates between the two conflicting norms. However, there is further complication. What
about if several principles apply and these produce opposite preferences? This is when
revision of preferences is relevant. The following example illustrates this situation.

Charlie is an immigrant living in Italy, who is interested in joining the Italian Army,
based on Law 91 of 1992. However, his application is rejected, based upon a constitu-
tional norm (Article 51 of the Italian Constitution). The two norms Law 91 and Article
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51 are in conflict thus the Army’s decision is based on the lex superior principle. Char-
lies appeals against the decision in court. The facts of the case are undisputed, and so
are the norms to be applied and their interpretation. Thus the only chance for Bob,
Charlie’s lawyer, to overturn the decision is to argue that Law 91 overrides Article 51
of the constitution. Thus Bob, Charlie’s advocate, counter-argues appealing to the lex
specialis principle since Law 91 of 1992 explicitly covers the case of a foreigner who
applies for joining the Army for the purpose of obtaining citizenship.

The two arguments do not discuss about facts and rules that hold in the case. They
disagree about which rule prevails over the other, Article 51 of the Constitution or Law
91. In particular, Bob’s argument can be see as an argument where the relative strength
of the two rules is reversed compared to the argument of the Army’s lawyer, and it is an
argument to revise the previous decision.

The mechanism sketched above attains at the notion of strategic reasoning, where a
discussant looks at the best argument to be used in a case to prove a given claim.

In the current literature about formalisms apt to model normative and legal reason-
ing, a simple and efficient non-monotonic formalism which has been discussed in the
community is defeasible logic. This system is described in detail in the next section.

One of the strong aspects of defeasible logic is its characterisation in terms of argu-
mentation semantics [5]. In other words, it is possible to relate it to general reasoning
structure in non-monotonic reasoning, that is based on the notion of admissible reason-
ing chain. An admissible reasoning chain is an argument in favour of a thesis. For these
reasons, much research effort has been spent upon defeasible logic, and once formu-
lated in a complete way it encompasses other (skeptical) formalisms proposed for legal
reasoning [5,6].

Most interestingly, in defeasible logic we can reach positive conclusions as well as
negative conclusions, thus it gives understanding to both accept a conclusion as well as
reject a conclusion. This is particularly advantageous when trying to address the issues
determined by reasoning conflicts.

This paper provides a comprehensive study of the conditions under which it is possi-
ble to revise a defeasible theory by changing the superiority relation of the theory, that
is changing the relative strength of conflicting rules.

3 Defeasible Logics

A defeasible theory consists of five different kinds of knowledge: facts, strict rules,
defeasible rules, defeaters, and a superiority relation [7]. Examples of facts and rules
below are standard in the literature of the field.

Facts denote simple pieces of information that are considered always to be true.
For example, a fact is that Sylvester is a cat: cat(Sylvester). A rule r consists of its
antecedent A(r) which is a finite set of literals, an arrow, and its consequent (or head)
C(r), which is a single literal. A strict rule is a rule in which whenever the premises are
indisputable (e.g. facts) then so is the conclusion, e.g.

cat(X)→ mammal(X),
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which means “Every cat is a mammal”. A defeasible rule is a rule that can be defeated
by contrary evidence: “Cats typically eat birds”, written formally:

cat(X)⇒ eatBirds(X).

The underlying idea is that if we know that something is a cat, then we may conclude
that it eats birds, unless there is other evidence that it may not. Defeasible rules with an
empty antecedent are “almost” facts. Defeaters are rules that can not be used to draw
any conclusions. Their only use is to prevent some conclusions, i.e. to defeat defeasible
rules by producing evidence to the contrary. An example is “If a cat has just fed itself,
then it might not eat birds”, formally

justFed(X) � ¬eatBirds(X).

The superiority relation among rules is used to define where one rule may override the
conclusion of another one, e.g. given the defeasible rules

r : cat(X)⇒ eatBirds(X)
r′ : domesticCat(X)⇒ ¬eatBirds(X)

which would contradict one another if Sylvester is both a cat and a domestic cat, they
do not if we state that r′ > r, leading Sylvester not to eat birds. Notice that in defeasible
logic the superiority relation determines the relative strength of two conflicting rules.

Like in [7], we consider only a propositional version of this logic, and we do not take
in account function symbols. Every expression with variables represents the finite set
of its variable-free instances.

A defeasible theory D is a triple (F,R,>), where F is a finite consistent set of literals
called facts, R is a finite set of rules, and > is an acyclic superiority relation on R. The
set of all strict rules in R is denoted by Rs, and the set of strict and defeasible rules by
Rsd . We name R[q] the rule set in R with head q. A conclusion of D is a tagged literal
and can have one of the following forms:

1. +Δq, which means that q is definitely provable in D, i.e. there is a definite proof for
q, that is a proof using facts, and strict rules only;

2. −Δq, which means that q definitely not provable in D (i.e., a definite proof for q
does not exist);

3. +∂q, which means that q is defeasibly provable in D;
4. −∂q, which means that q is defeasibly not provable in D.

A proof (or derivation) is a finite sequence P = (P(1), . . . ,P(i)) of tagged literals where
for each n, 0≤ n≤ i the following conditions (proof conditions) are satisfied.1

+Δ : If P(n + 1) = +Δq then
(1) q ∈ F or
(2) ∃r ∈ Rs[q]∀a ∈ A(r) : +Δa ∈ P(1..n)

1 P(1..i) denotes the initial part of the sequence of length i, and ∼p the complement of a literal
p.
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−Δ : If P(n + 1) =−Δq then
(1) q /∈ F and
(2) ∀r ∈ Rs[q]∃a ∈ A(r) :−Δa ∈ P(1..n)

The proof conditions just given are meant to represent forward chaining of facts and
strict rules (+Δ ), and that it is not possible to obtain a conclusion just by using forward
chaining of facts and strict rules (−Δ ).

+∂ : If P(n + 1) = +∂q then either
(1) +Δq ∈ P(1..n) or
(2) (2.1) ∃r ∈ Rsd [q]∀a ∈ A(r) : +∂a ∈ P(1..n) and

(2.2)−Δ∼q ∈ P(1..n) and
(2.3) ∀s ∈ R[∼q] either

(2.3.1) ∃a ∈ A(s) :−∂a ∈ P(1..n) or
(2.3.2) ∃t ∈ Rsd [q] such that

∀a ∈ A(t) : +∂a ∈ P(1..n) and t > s.

−∂ : If P(n + 1) =−∂q then
(1)−Δq ∈ P(1..n) and
(2) (2.1) ∀r ∈ Rsd [q] ∃a ∈ A(r) :−∂a ∈ P(1..n) or

(2.2) +Δ∼q ∈ P(1..n) or
(2.3) ∃s ∈ R[∼q] such that

(2.3.1) ∀a ∈ A(s) : +∂a ∈ P(1..n) and
(2.3.2) ∀t ∈ Rsd [q] either

∃a ∈ A(t) :−∂a ∈ P(1..n) or t �> s.

The main idea of the conditions for a defeasible proof (+∂ ) is that there is an applicable
rule, i.e., a rule whose all antecedents are already defeasibly provable and for every rule
for the opposite conclusion either the rule is discarded, i.e., one of the antecedents is
not defeasibly provable, or the rule is defeated by a stronger applicable rule for the
conclusion we want to prove. The conditions for −∂ show that any systematic attempt
to defeasibly prove the conclusion fails.

In this paper, we do not make use of strict rules, nor defeaters2, since every revision
changes only priority among defeasible rules (the only rules that act in our framework),
but we need to introduce eight new types of tagged literals. As it will be clear in the
rest of the paper, they would be of significant utility in simplifying the categorisation
process, and consequently, the revision calculus.

5. +Σq, which means there is a reasoning chain supporting q;
6. −Σq, which means there is not a reasoning chain supporting q;
7. +σq, which means there exists a reasoning chain supporting q that is not defeated

by any applicable reasoning chain attacking it;

2 The restriction does not result in any loss of generality: (1) the superiority relation does not
play any role in proving definite conclusions, and (2) for defeasible conclusions [7] proves that
it is always possible to remove (a) strict rules from the superiority relation and (b) defeaters
from the theory to obtain an equivalent theory without defeaters and where the strict rules are
not involved in the superiority relation.
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8. −σq, which means that every reasoning chain supporting q is attacked by an appli-
cable reasoning chain;

9. +ϕq, which means there exists a reasoning chain that defeasibly proves q made of
elements such that there does not exist any rule for the opposite conclusion;

10. −ϕq, which means that for every reasoning chain supporting q there exists an ele-
ment such that a rule for the opposite conclusion could fire;

11. +ωq, which means there exists a reasoning chain supporting q that defeasibly
proves every its antecedent;

12. −ωq, which means that in every reasoning chain supporting q, at least one of its
antecedents is not defeasibly provable.

The tagged literals can be formally defined by the following proof conditions as:

+Σ : If P(n + 1) = +Σq then
(1) q ∈ F or
(2) ∃r ∈ Rsd[q]∀a ∈ A(r) : +Σa ∈ P(1..n)

−Σ : If P(n + 1) =−Σq then
(1) q /∈ F and
(2) ∀r ∈ Rsd[q]∃a ∈ A(r) :−Σa ∈ P(1..n)

+σ : If P(n + 1) = +σq then
(1) q ∈ F or
(2) (2.1) ∃r ∈ Rsd [q]∀a ∈ A(r) : +σa ∈ P(1..n) and

(2.2) ∀s ∈ R[∼q]∃a ∈ A(s) such that
−∂a ∈ P(1..n) or s �> r.

−σ : If P(n + 1) =−σq then
(1) q /∈ F and
(2) (2.1) ∀r ∈ Rsd [q]∃a ∈ A(r) :−σa ∈ P(1..n) or

(2.2) ∃s ∈ R[∼q] such that
∀a ∈ A(s) : +∂a ∈ P(1..n) and s > r.

Notice that the definitions given above for ±σ are weak forms of the notion of support
proposed in [8,9] for the definition of an ambiguity propagating variant of defeasible
logic, in the sense that these definitions are less selective than the ones of [8].

+ϕ : If P(n + 1) = +ϕq then
(1) q ∈ F or
(2) (2.1) ∃r ∈ Rsd [q]∀a ∈ A(r) : +ϕa ∈ P(1..n) and

(2.2) ∀s ∈ R[∼q]∃a ∈ A(s) :−Σa ∈ P(1..n).

−ϕ : If P(n + 1) =−ϕq then
(1) q /∈ F and
(2) (2.1) ∀r ∈ Rsd [q]∃a ∈ A(r) :−ϕa ∈ P(1..n) or

(2.2) ∃s ∈ R[∼q]∀a ∈ A(s) : +Σa ∈ P(1..n).

+ω : If P(n + 1) = +ωq then
(1) q ∈ F or
(2) ∃r ∈ Rsd [q]∀a ∈ A(r) : +∂a ∈ P(1..n).



110 G. Governatori et al.

−ω : If P(n + 1) =−ωq then
(1) q /∈ F and
(2) ∀r ∈ Rsd [q]∃a ∈ A(r) :−∂a ∈ P(1..n).

By the above definitions, it is straightforward to derive the implication chains reported
below in Figure a -(b) .

+Δ +ϕ +∂

+ω

+σ

+Σ

(a) Positive implication chain

−Δ−ϕ−∂

−ω

−σ

−Σ

(b) negative implication chain

Fig. 1. Implication chains

One could think that +σ implies +ω (and symmetrically,−ω implies−σ ). It is not
so. To better explain this fact, and the meaning of the proof conditions, we present an
illustrative example.

Example 1
⇒r1 a ⇒r2 c ⇒r3 d
∨ ∧
⇒r4 ¬a ⇒r5 ¬d ⇒r6 p

⇒r7 b ⇒r8 ¬c

⇒r9 ¬b

⇒r10 e ⇒r11 f

with r1 > r4, and r5 > r3. In this theory, we can obtain the following conclusions:

a b c d e f p

+ +∂ +σ +∂ +ω +φ +φ +∂
− −φ −∂ −∂ −σ −φ

¬a ¬b ¬c ¬d ¬e ¬ f ¬p

+ +ω +σ +σ +∂
− −∂ −∂ −ω −φ −Σ −Σ −Σ

From the definitions above and the example, we can take some theoretical results about
the proof tags that will be used during the revision process described in Section 4.

Proposition 1. Given a consistent defeasible theory D, if we have +ϕ p for a literal p,
then −Σ∼p.
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Proof. Let us suppose D is a consistent defeasible theory, and +ϕ p holds for a literal
p. Now, if we assume that +Σ∼p, we say that there exists a reasoning chain supporting
∼p which fails somewhere, leading also to −ϕ p to hold, against the hypothesis.3 A
contradiction.

The opposite does not hold (literal p in Example 1). The next proposition states formally
the following idea: if we can defeasibly prove a literal p, and we know also that there
exists a chain leading to ∼p with all the antecedents defeasibly proved, then such a
chain has to be defeated by a priority rule at the last proof step (by the rule proving p).

Proposition 2. Given a consistent defeasible theory D, if +∂ p∧+ω∼p holds for a
literal p, then −σ∼p.

Proof. By definition of +∂ , we have that condition below

(2.3) ∀s ∈ R[∼q] either
(2.3.1) ∃a ∈ A(s) :−∂a ∈ P(1..n) or
(2.3.2) ∃t ∈ Rsd [q] such that

∀a ∈ A(t) : +∂a ∈ P(1..n) and t > s.

holds for p. In fact condition (2.3.2) has to be true since we know condition (2.3.1) is
not, because

+∂ p =⇒ ∃r ∈ R[p].∀a ∈ A(r) : +∂a
+ω∼p =⇒ ∃s ∈ R[∼p].∀a ∈ A(s) : +∂a

}
=⇒

∃t ∈ R[p].∀a ∈ A(t) : +∂a and t > s.

This is the definition of −σ∼p. Since all the premises of ∼p are defeasibly proved by
hypothesis, and we have proved that the chain is defeated, then it has to loose on the
last proof step.

4 Preference Defeasible Revision

Here we analyse the processes of revision in a defeasible theory, when no changes to
the rules and facts are allowed. Henceforth, when no confusion arises, every time we
speak about a (revision) transformation we refer to a (revision) transformation acting
only on the superiority relation.

In the legal domain, when two lawyers dispute a case, there are four situations in
which each of them can be if she revises the superiority relation employed by the other
one.

(a) The revision process supports the argument of reasonable doubt. Someone proves
that the rules imply a given conclusion. If the preference is revised then we can
derive that this is not the case, showing thus that the conclusion was not beyond
reasonable doubt.

3 All proof conditions given in this paper obey the principle of strong negation, thus for any
literal p and any proof tag # it is not possible to have both +#p and −#p. [9]
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(b) The revision process beats the argument of beyond reasonable doubt. Analogously
to situation (a), someone proves that the rules do not imply a given conclusion. If
the preference is revised then we can derive that this is indeed the case.

(c) The revision process supports the argument of proof of innocence/guilt. Someone
proves that the rules imply a given conclusion. If the preference is revised then we
can derive that the opposite holds.

(d) The revision process cannot support a given thesis.

Revising a defeasible theory by changing only the priority among its rules means study-
ing how an hypothetic revision operator works in the three cases reported below:

(1) how to obtain −∂ p, starting from +∂ p;
(2) how to obtain +∂∼p, starting from +∂ p;
(3) how to obtain +∂ p, starting from −∂ p.

We name these three revisions canonical. We provide an exhaustive analysis, based on
the definitions above, in the next subsections.

The situation (a) is represented by the canonical case (1). The situation (b) is repre-
sented by the canonical case (3). Situation (c) is represented by the canonical case (2).
The situation (d) arises when the condition +ϕ p holds.

In this case, if one of the parties argues in favour of a thesis in a defeasible way, then
the counter-part cannot exhibit a proof of the opposite, independently of the changes in
the superiority relation.

In the cases (1) and (2) analysed below, we know that −∂¬p holds, since D is a
consistent theory in which +∂ p holds. Furthermore, Proposition 3 allows us not to
consider a tree with branches tagged by ±ϕ .

Notice that some revisions do not indeed modify the knowledge in the system. For
instance, revising a theory from +∂ p to −∂∼p is useless.

The above reasoning proves that we have canonical revisions, revisions that are equiv-
alent to canonical ones and useless revisions, thus we have the following theorem.

Theorem 1. The revision of the preference relation in a defeasible theory is either
canonical or useless.

Proposition 3 states that if there is no way to defeat a chain supporting a literal p, there
is no revision transformation which leads to defeasibly derive∼p.

Proposition 3. Given a consistent defeasible theory D, if for a literal p holds +ϕ p,
then there does not exist a transformation to obtain +∂∼p.

Proof. Given any theory, to obtain a defeasible proof of a literal q, there must exist at
least a reasoning chain for q, i.e. +Σq. This is in contradiction with Proposition 1 which
states that if +ϕ∼q holds, also −Σ∼q does.

For every consistent theory, +∂ p =⇒ −∂∼p, [7], Proposition 3 states also that with
the same premises it is impossible to revise the theory in order to obtain −∂ p.

We are now ready to go onto the systematic analysis of the combinations arising
from the above defined model. We list the cases by tagging each macroscopic case by
the name Canonical case and the combinations depending upon the analytical schema
introduced above by the name Instance.
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From +∂ p to −∂ p
(−ϕ p∧+Σ∼p)

+ω∼p

+σ∼p −σ∼p

−ω∼p

+σ∼p −σ∼p

Fig. 2. From +∂ p to −∂ p: revision cases

4.1 Canonical Case: From +∂ p to −∂ p

Instance −Σ∼p∧+∂ p: This first case is not reported in Figure 2 since the premises
are not true (−Σ∼p holds). This means there is no supporting chains for∼p, so we can
not operate on them. Holding −ϕ p, this means there exists at least one of its premises
that could be defeated by a rule leading to the opposite conclusion. Thus, in order to
obtain −∂ p, we have to revise the theory putting at least one of such rules be able to
fire (to defeat, or at least to have the same power of a rule which actually proves one of
the antecedents in the chain supporting p).

Instance +ω∼p∧+σ∼p: As stated in Proposition 2 this branch represents an impos-
sible case for any consistent defeasible theory.

Instance +ω∼p∧−σ∼p: By the straightforward implication of Proposition 2, the
chain supporting ∼p fails on the last proof step defeated by priorities for rules which
defeasibly prove p. Thus, we have only to erase these priorities.

Instance −ω∼p∧+σ∼p: Since there exists a chain Pnp (whilst Pp denotes the proof
for p) supporting ∼p which is never defeated (−ω∼p condition tells us only that such
a chain fails before the last proof step), a revision process does not have to operate on
a chain supporting p. We have to strengthen Pnp changing so many priorities to let a
rule in Pnp, which leads to an opposite conclusion of a rule in Pp, have at least the same
strength of such a rule in Pp. In this process, we do not remove any priority rule among
elements in Pp, but only add priority rules to let a rule in Pnp win.

Instance −ω∼p∧−σ∼p: The reasoning chain Pnp supporting∼p is defeated, but not
necessarily by a chain proving p (Pp). The case is analogous of the above, but: probably
we have to act not only on Pnp, but also on Pp; we do not have only to introduce priority
rules, but also to erase (invert) them. This case represents the most general situation,
where less information is given: a revision is possible, but we do not know a priori
where to change the theory.

4.2 Canonical Case: From +∂ p to +∂∼p

We follow the cases depicted in the search tree in Figure 2, in order to explain how a
revision operator should work. We change the root label when revising from +∂ p to
+∂∼p, taking in account the same premises (−ϕ p∧+Σ∼p). Once more, our revision
tree does not take in account tags ±ϕ for the same reasons explained in Section 4.
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Instance +ω∼p∧+σ∼p: As stated in Proposition 2 this branch represents an impos-
sible case for any consistent defeasible theory.

Instance +ω∼p∧−σ∼p: Proposition 2 states that the chain supporting ∼p fails on
the last proof step. This, combined with −σ∼p, implies this last step is defeated by
a priority for the rule which defeasibly proves p. In fact, there would exist more than
one chain that fails on the last step, and also more than one chain which proves p. We
propose two different approaches. We name P the set of chains proving defeasibly p,
Pls ⊆ P the chains that prove defeasibly p for which there is a priority rule that applies
at the last proof step (against a chain that proves∼p), and N the set of chains for which
the premises hold:

1. We choose a chain in N. We invert the priority rule for every chain in Pls that wins
at the last proof step. We introduce a new priority for making it win against any
remaining chain in P.

2. In this approach we have two neatly distinguished cases:
(a) ||Pls||> ||N||: for every chain in N we invert the priority rules on the last proof

step. For every remaining chain in P, we add a priority rule between the defea-
sible rule used in the last proof step of a chain in N and the rule used in the last
proof step of a chain in P (possibly different for each chain in N) such that the
chain in P looses.

(b) ||N|| > ||Pls||: firstly we choose a number ||Pls|| of chains in N and invert the
priority rule on the step that makes them loose. If at the end of this step there
are still chains in P that defeasibly prove p, we go on with the method used for
the case (2)(a), only looking at the subset of chains in N on which we operated
at the first step.

The two approaches rely on different underlying ideas. In the first case we want a unique
winning chain. This makes the revision procedure faster than the second method, we do
not have to choose every time a different chain where to act. Moreover, it guarantees to
make at most many changes as the second one (in general, it revises the theory with the
minimum number of changes).

The strength of the second method relies on the concept of team defeaters: we give
power not only to a single element, but to a team of rules. Thus, in the first method if
the only winning chain would be defeated, the entire revision process must be repeated,
whilst in the second method if one of the winning rule would be beaten, we have to
repair only for it, but not for all the other chains that continue to win.

Let us consider the following simple example:

⇒r1 p ⇒r2 p
∨ ∨
⇒r3 ¬p ⇒r4 ¬p

The first approach would give in output: {r1 > r3,r4 > r1,r4 > r2} (if the second chain
for¬p would be chosen to win), erasing one priority rule and introducing two, whilst the
second approach would lead to have the following priority rule set: {r3 > r1,r4 > r2},
erasing two priority rules, and introducing two. It is easy to see that if r4 would be
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defeated by a rule rs, in the first case we have to entirely revise the theory, for example,
let r3 win among r1 and r2, while in the second case we have only to introduce r3 > r2.

Instance −ω∼p∧+σ∼p: There exists at least a chain supporting ∼p, which is not
defeated. To revise the theory, we have to choose one of them and, starting from ∼p
go back in the chain to the ambiguity point (where holds P(i) = +∂ pi ∧P(i + 1) =
−∂ pi+1), strengthen the chain adding a priority rule where a rule leading to an an-
tecedent in the chain for ∼p and a rule for the opposite have the same strength.

Instance −ω∼p∧−σ∼p: Every chain supporting ∼p is defeated at least one time. A
first approach one could be tempted to use is to go back in the chain searching for the
point where P(i) = +σ pi∧P(i+1)=−σ pi+1. Note that this is not enough to guarantee
the chain to win. Let us consider the following example.

From + ∂ to − ∂ From + σ to −σ
⇒r1 a ⇒r2 b ⇒r3 c ⇒r4 p

∧
⇒r5 ¬a ⇒r6 ¬c

As it can be easily seen, letting r3 win over r6 is not sufficient. We have also to introduce
a priority rule between r1 and r5. Thus, we have to act exactly as in the previous case,
with the solely difference that every time a rule in the chain supporting ¬p is defeated,
the priority rule has to be inverted.

4.3 Canonical Case: From −∂ p to +∂ p

We start this case, saying that −∂∼p has to hold since, if it is not so, the case is analo-
gous of the previous revision from +∂q to +∂∼q. Moreover, we do not take in consid-
eration the case when −Σ p holds, as if there are no chains leading to p, there will be
no revision to obtain +∂ p. The cases are the ones reported in Figure 3.

From −∂ p to + ∂ p
(−∂∼p∧+Σ p)

+ω p∧+σ p −ω p
(−ω∼p)

+σ p −σ p

Fig. 3. From −∂ p to +∂ p: revision cases

Note that +ω p and −σ p can not hold at the same time: as all the premises for p are
proven, the chain has to fail on the last step, i.e. it has to be defeated by a firing rule for
∼p. This would defeasibly prove∼p, but this can not happen since we have stated that
−∂∼p holds. Furthermore,−ω p implies that also−ω∼p holds, since if it is not so, we
have either +ω p, or +∂∼p, both of them against the hypothesis.
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Instance +ω p∧+σ p: Since there would exist more than one chain such that +ω p∧
+σ p holds, we have to choose one of them, and introduce as many priority rules as the
number of chains where +ω∼p holds.

Instance −ω p ∧+σ p: This case is analogous to the revision case: From +∂ p to
+∂∼p: −ω∼p∧+σ∼p.

Instance−ω p∧−σ p: This case is analogous to the case: From+∂ p to+∂∼p:−ω∼p∧
−σ∼p.

We have to remark that conditions ±σ∼p do not give information on the revision pro-
cess, since they do not tell if the changes will apply on chains for∼p, or not. Referring
to the example proposed below, we can see that, holding +σ∼p, there exists a revision
which involves the chain for ∼p (introducing r1 > r3, and r2 > r4), and the other one
that does not (introducing r5 > r6).

⇒r1 a ⇒r2 p
⇒r3 ¬a⇒r4 ¬p

⇒r5 b ⇒r6 p
⇒r6 ¬b

An analogous situation can be proposed for −σ∼p.

⇒r1 a ⇒r2 p
⇒r3 ¬a⇒r4 b ⇒r5 ¬p

∧
⇒r6 ¬b

⇒r7 c ⇒r8 p
⇒r9 ¬c

In here, there exist two revisions: one introducing r1 > r3 and r2 > r4, and the other one
which introduces r7 > r9.

Note that in all the canonical cases, the revision mechanism guarantees that no new
cycle can be introduced. We can formulate the above result, that is a straightforward
consequence of the case analysis presented here.

Theorem 2. Revising superiority relation generates a superiority relation.

5 Conclusions and Further Work

A large number of real-life cases in legal reasoning, information security, digital foren-
sic, and even engineering or medical diagnosis, exhibit the two circumstances: (a) dif-
ferent persons have different preferences, and (b) decision making depends upon the
order the rules are applied. When defeasible rules are in conflict, and then potentially
generate inconsistencies, decision making may require preferences. In the same way,
belief revision in presence of inconsistent information requires preference revision.
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Notice that in non-monotonic reasoning, revision is not necessarily triggered by in-
consistencies. [2] investigates revision for defeasible logic and relationships with AGM
postulates. While the ultimate aim is similar to that of the present paper – i.e., trans-
forming a theory to make a previously provable (resp. non provable), non provable
(resp. provable) – the approach is different, and more akin to standard belief revision.
More precisely, revision is achieved by introducing new exceptional rules. Furthermore
they discuss how to adapt the AGM postulates for non-monotonic reasoning.

In this work we are not interested in examining conformance with the AGM postu-
lates. [10] show that, typically, belief revision methodologies are not suitable to changes
in theories intended for legal reasoning, and similarly they show that it is possible to
revise theories fully satisfying the AGM postulates, but then the outcome is totally
meaningless from a legal point of view. Anyway, to investigate the relationships be-
tween AGM and the approach presented here one has to adjust the AGM postulates to
be meaningful (e.g., what is the meaning of expansion or contraction, when the opera-
tion is defined on instances of the preference relation).

Preference revision is just one of the aspects of legal interpretation. [11,12] propose a
defeasible logic framework to model extensive and restrictive legal interpretation. This
is achieved by using revision mechanisms on constitutive rules, where the mechanism is
defined to change the strength of existing constitutive rules. It is an interesting question
whether extensive and restrictive interpretation can be modelled as preference revision
operators. An important aspect of legal interpretation is finding the legal rules to be
applied in a case, in this work we assumed that the relevant rules have already been
discovered, and in case of conflicts, preference revision can be used to solve them.

Closely related to our work are [13,14]. They propose extensions of an argumentation
framework and defeasible logic, where the superiority relation is dynamically derived
from arguments and rules in given theories. The main difference with these works is that
we investigate general conditions under which it is possible to modify the superiority
relation to change the conclusions of a theory, while they provide specific mechanisms
but no guarantees that a change will happen. [13] is motivated, as us, by legal reasoning,
and they use rules to encode the legal principles we mentioned in the introduction. We
leave the investigation to the relationships with these works as future research.

Apart from the applications sketched above we shall investigate two limits to the
revision operator:

– Revision of preference should not involve minimal defeasible rules. This constraint
captures the idea that a rule that wins against all other rules is a basic juridical
principle;

– Under given circumstances the revision process should not, for at least a subset
of “protected” pairs violate the original preferential order. For instance we should
not revise those preferences that are unquestioned because derived by commonly
accepted principles or explicitly expressed by the legislator, as discussed in the
introduction.

We unashamedly avoided, in this phase, any computational analysis of the introduced
operator, but clearly a deeper investigation will include also the definition of that
aspects.
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1 Introduction

Defeasible Logic (DL) [1,2] is a skeptical approach to non-monotonic reasoning. It is
based on a logic programming-like language and is a simple, efficient but flexible for-
malism capable of dealing with many different intuitions of non-monotonic reasoning
in a natural and meaningful way [3].

The main advantage of using DL over other non-monotonic formalisms is certainly
due to its low computation complexity: Conclusions of DL can be derived in linear time
(wrt the size of a theory) [4] and several efficient implementations exist [5,6,7]. Besides,
due to its built-in preference handling facilities, it also capable to derive plausible con-
clusions from incomplete and conflicting information in a declarative way.

Recently, [8] has investigated the relationships among several variants of DL, cap-
turing the intuitions of different reasoning issues, such as ambiguity blocking and prop-
agation, and team defeat. Our focus is on the computational aspect of these variants.
We have devised algorithms to compute in linear time the extensions of the ambiguity
propagation variants and well-founded semantics of DL. For the well-founded variant
we have established a way to compute the unfounded set of a defeasible theory. In addi-
tion, by combining the algorithms together, we can handle the well-founded variants of
ambiguity blocking and ambiguity propagation of DL maintaining linear complexity.

The outline of this paper is as follows. Section 2 gives a brief introduction and
modular construction to the syntax and semantics of defeasible logic. Section 3 and
4 describe the algorithms proposed to compute the ambiguity propagation variant and
well-founded semantics of DL respectively, followed by a conclusion.
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2 Basics of Defeasible Logic

InthisSectionweprovideashortoutlineofDLandtheconstructionofvariantscapturingdif-
ferentintuitionsofnon-monotonicreasoningbasedonamodularandparametriseddefinition
oftheprooftheoryofthelogic.Forthefulldetails,wereferto[9,10,8].

A defeasible theory D is a triple (F,R,>) where F and R are finite set of facts and
rules respectively, and > is an acyclic superiority relation on R. Facts are logical state-
ments describing indisputable facts; they are represented by (atomic) propositions (i.e.,
literals). A rule r describes the relations between a set of literals (the antecedent A(r),
which can be empty) and a literal (the consequent C(r)). In writing rules we omit set
notation for antecedents. There are three types of rules: strict rules (r : A(r)→ C(r)),
defeasible rules (r : A(r)⇒C(r)), and defeaters (r : A(r) � C(r)). Strict rules are rules
in the classical sense, the conclusion follows every time the antecedents hold; a defea-
sible rule is allowed to assert its conclusion in case there is not contrary evidence to the
conclusion. Defeaters cannot support conclusions but they provide contrary evidence to
them. The superiority relation > describes the relative strength of rules, and it is used
to obtain a conclusion when there are applicable conflicting rules.

DL is able to distinguish positive conclusions from negative conclusions, that is lit-
erals that can be proved and literals that are refuted, in addition it is able to determine
the strength of a conclusion, i.e., whether something is concluded using only strict rules
and facts or whether we have a defeasible conclusion, a conclusion can be retracted if
more evidence is provided. Accordingly, for a literal p we can have the following four
types of conclusions, called tagged literals: +Δ p (p is definitely provable),−Δ p (p is
definitely refuted), +∂ p (p is defeasible provable), and −∂ p (p is defeasibly refuted).
At the heart of DL we have its proof theory that tell us how to derive tagged literals.
A proof is a sequence of tagged literals obeying proof conditions corresponding to in-
ference rules. The inference rules establish when we can add a literals at the end of
a sequence of tagged literals based on conditions on the elements of a theory and the
previous tagged literals in the sequence.

The structure of the proof conditions has an argumentation flavour:

To prove +∂ p
Phase 1: There is an applicable rule for p and
Phase 2: For every rule for∼ p (the complement of p) either

Sub-Phase 1: the rule is discarded, or
Sub-Phase 2: the rule is defeated by a (stronger) rule for p

The notion of a rule being applicable means that all the antecedents of the rule are prov-
able (with the appropriate strength); a rule is discarded if at least one of the antecedents
is refuted (with the appropriate strength), and finally a rule is defeated, if there is a
(stronger) rule for the complement of the conclusion that is applicable (again with the
appropriate strength).

The above structure enables us to define several variants of DL by giving different
parameters (i.e., this is what we mean ‘with the appropriate strength’ in the previous
paragraph). In particular we address the distinction between ambiguity blocking and
ambiguity propagation.
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3 Ambiguity Propagation

Intuitively a literal p is ambiguous iff there exist two chains of reasoning with one
supports the conclusion p is true while another supports the conclusion ¬p is true, one
supports the conclusion p is true whereas one supports the conclusion ¬p is true, and
the superiority relation does not resolve this conflict.

Example 1. Consider the following theory:
⇒a a⇒c ⇒¬d

⇒b b⇒¬c ¬c⇒d

Literals c and ¬c are ambiguous, since in both cases we have ‘chains’ or reasoning
leading to them. More specifically, we can prove both +∂a and +∂b since there are no
rules for their complements, and their rules have empty antecedents, thus the condition
that all element of the antecedent are provable is trivially satisfied. At this stage, we
have applicable rules for c and ¬c. Since the superiority relation is empty we cannot
solve the conflict, thus both literals are refuted, i.e., we prove −∂c and −∂¬c. Then
we have the rule ¬c ⇒ c and ⇒ ¬d. In this case the first rule is discarded since ¬c
is refuted. This allows us to conclude +∂¬d. In this case the ambiguity of c and ¬c
is restricted to them and it does not propagate to literals depending on them. we refer
to this kind of reasoning as ambiguity blocking. On the other hand, one can reason as
follows: we have a chain of rules leading to d and none of these rules is overruled by
other rules; similarly we have chain of rules leading to ¬d, and, again the rules in this
chain are not defeated. Thus we have no way to solve the conflict, thus d and ¬d are
ambiguous and we have to refute them; in this case we speak of ambiguity propagation:
there are conflicts in intermediate steps of chains of rules, but these are not defeated.
These two lines of reasoning are both valid and appropriate in particular applications.
Accordingly, we want to be able to model both of them. The proof conditions described
above are suitable for ambiguity blocking. To capture ambiguity propagation one has to
make more hard to provide an argument, and easier to give a counter-argument. To this
end the notion of support (Σ) is introduced.

A literal p is supported if
Phase 1: There is a supported rule for p and
Phase 2: Every rule for ∼ p stronger than it is not applicable

Armed with the notion just defined, the ambiguity propagating version of DL is ob-
tained from the same scheme as that of the ambiguity blocking DL, where we stipulate
that a rule is discarded if at least one of the elements in its antecedent are not sup-
ported (according the construction just given). In addition, a rule is supported if all the
elements of its antecedent are supported.

3.1 Computing Consequences in DL with Ambiguity Propagation

Following the idea of [4] the algorithms to compute the extension of the ambiguity
propagation variant of a DL are based on a series of (theory) transformations that allow
us to (1) assert whether a literal is provable or not (and its strength) and (2) progressively
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reduce and simplify a theory. The key ideas rely on the fact that once we have estab-
lished that a literal is positively provable, we can remove it from the antecedent of rules
that contain it without affecting the extension of the theory. Similarly, when it is es-
tablished that a literal p cannot be proven then those rules with p in their antecedent
become inapplicable and the rule can be removed from the theory.

Algorithm 1 computes the consequences of ambiguity propagation variants of DL.
In the algorithm, p ranges over literals and s ranges over conclusions. S holds those
proven conclusions that have not been used to derived further consequences; while K
accumulates over the set of conclusions that have been proven and used. D is the input
defeasible theory without superiority relations and defeaters1.

Algorithm 1. Inference algorithm for ambi-
guity propagation

Algorithm: ComputeDefeasibleAP(D)

Data: D = (F,R, /0): a defeasible theory
Result: Kap: set of defeasible conclusions

derived
1 initialize S
2 Kap = /0
3 while S is not empty do
4 S = S \{s} for some s ∈S ;

Kap = Kap ∪{s}
5 switch s do
6 case +∂ap p:
7 foreach r ∈ Rsd : p ∈ A(r) do
8 remove p from A(r)
9 if A(r) is empty then

10 h = C(r)
11 if ¬h ∈ Σ+ then
12 S = S ∪{−∂aph}
13 remove:

∀r ∈ Rsd : h ∈ A(r)
14 else if Rsd[¬h] is null then
15 S = S ∪{+∂aph}
16 remove:

∀r ∈ Rsd : ¬h ∈ A(r)

17 case −∂ap p:
18 foreach r ∈ Rsd : p ∈ A(r) do
19 Rsd = Rsd \{r}
20 if Rsd [C(r)] is null then
21 S = S ∪{−∂apC(r)}

The algorithm first starts by
initializing S with the set of
conclusions that are know to be
defeasibly true: all the facts and
the heads of rules with empty an-
tecedent. Then it iterates on S un-
til S = /0. Whenever a literal p
cannot be proved, those rules with
p in their antecedent become inap-
plicable and thus removed from the
theory.

For positive defeasible provabil-
ity, before inserting +∂ap into the
conclusion set, we have to deter-
mine whether the complementary
literal is in the supporting set. If
the complementary literal is in the
supporting set, then the literal is
refuted and thus −∂ap is derived.
Otherwise, we have to ensure that
all rules with ¬h in their head
are either refuted or inapplicable,
before deriving the +∂ap conclu-
sion. Consider the case as shown
in example 1. Before inserting d in
+∂ap, we have to evaluate whether
the complement of d, i.e., ¬d, is
supported or not. Since the com-
plementary literal (¬d in this case)
is supported, we have to conclude
that d cannot be proved defeasibly
(under ambiguity propagation).

1 Defeasible theories with superiority relations and/or defeaters, can be transformed into equiv-
alent theories without superiority relations and defeaters using the techniques described in [9].
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The discussion above shows how definite and defeasible conclusions can be de-
rived from a defeasible theory, which is a bit tedious. However, computing the sup-
ported/unsupported set of a defeasible theory is very straight forward.

Algorithm 2. Inference algorithm for
Support- and Unsupport-set computation

Algorithm: ComputeSupport(D)

Data: D = (F,R, /0): a defeasible theory
Result: Σ+ - set of supported literals
Result: Σ− - set of unsupported literals

1 L + = F ∪ {a ∈ L | ∃r ∈ Rsd [a] : A(r) = /0}
2 L − = {a ∈ L | Rsd[a] is empty}
3 Σ+ = 0
4 Σ− = 0
5 while L + is not empty do
6 L + = L + \{l} for some l ∈L +

7 Σ+ = Σ+∪{l}
8 foreach r ∈ Rsd : l ∈ A(r) do
9 remove l from A(r)

10 if A(r) is empty then
11 L + = L +∪{C(r)}
12 Rsd = Rsd \{r}

13 while L − is not empty do
14 L − = L − \{l} for some l ∈L −
15 Σ− = Σ− ∪{l}
16 foreach r ∈ Rsd , l ∈ A(r) do
17 L − = L −∪{C(r)}
18 Rsd = Rsd \{r}

ComputeSupport (algorithm 2)
shows how the support/unsupport
set of a defeasible theory is com-
puted. The idea behind this algo-
rithm is very simple. Whenever there
exists a line of reasoning that would
lead us to conclude p, we will say
that p is supported irrespective of
whether its complementary literal,
i.e., ¬p, is supported or not.

The algorithm is similar to the
algorithm we discussed before. It
starts by initializing two variables:
L +, which stores the set of liter-
als that can be proved definitely, and
L −, which stores the set of literals
that are known to be unprovable. The
algorithms then iterate on both sets
to derive the supported and unsup-
ported set respectively. That is, for
each cycle of the iteration, a posi-
tively proved literal will be removed
from the bodies of all other rules.
Whenever the antecedent of a rule
becomes empty, its head will then
become a new supported literal for
future iterations. On the other hand,

whenever a literal p found to be negatively provable, then all rules with p in their an-
tecedent will be removed from the theory and their heads will be inserted into the un-
supported set. These two steps go on until both L + and L − become empty.

Executions of the above algorithms can be thought of as execution of transition sys-
tem on states. As the algorithm proceed, the theory D is simplified and new conclusions
are accumulated. The translations for the positive conclusions are based on forward
chaining while the negative conclusions are derived by a dual process.

4 Well-Founded Semantics

Well-founded semantics [11] is a fixpoint semantics which was originally developed to
provide reasonable interpretation of logic program with negation, but has since been
applied to extended logic programs and non-monotonic reasoning. It is a skeptical ap-
proximation of answer set semantics such that every well-founded consequences of
a logic program P is contained in every answer set of P. Whilst some programs are
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not consistent under answer set semantics, well-founded semantics assigns a coherent
meaning to all programs.

Example 2. Consider the following example:
r1:⇒ doResearch(John) r2: doResearch(X)⇒ publishPapers(X)
r3: publishPapers(X), teachAtUni(X)⇒ professor(X) r4: professor(X)⇒ doResearch(X)
r5: professor(X)⇒ teachAtUni(X) r6: teachAtUni(X)⇒ highReputation(X)
r7:⇒¬highReputation(X) r6 > r7
Given a person John who does research at university, we would like to ask if John
is a professor. To derive professor(John) we must derive publishPapers(John) and
teachAtUni(John). To derive teachAtUni(John) we need to check professor(John). And
we enter in an infinite loop. Consequently neither could we show highReputation(John).

The notion of unfounded sets is the cornerstone of well-founded semantics. These sets
provide the basis to derive negative conclusions in the well-founded semantics. Intu-
itively these are collections of literals with no external support. The only way to prove
an unfounded set literal is to use literals that are themselves unfounded.

Definition 1. Given a theory D , its Herbrand base H, and a partial interpretation I,
a set U ⊆ H is an unfounded set with respect to I iff each atom α ∈ U satisfies the
following condition: For each instantiated rule R of D whose head is α one of the
following holds:

– Some subgoal of the body is false in I.
– Some positive subgoal of the body occurs in U.

In example 2, the set {teachAtUni(John), professor(John), highReputation(John),
¬highReputation(John)} is an unfounded set with respect to the defeasible theory.
However, either highReputation(John) or ¬highReputation(John) can be derived if we
can remove the loop caused by professor(John) (r3) and teachAtUni(John) (r5). Thus
only professor(John) and teachAtUni(John) constitute an unfounded set under DL.

4.1 Computing Consequences in DL with Well-Founded Semantic

To nullify evidence DL has to be able to disprove rules [12]. This means that the proof
system should be able to demonstrate in a finite number of steps that there is no proof
of the rule and thus remove them from the theory. As conclusions cannot be derived
using circular arguments, loops detection plays a crucial role in deriving conclusions
under well-founded semantics. Failure-by-looping provides a mechanism for falsifying
a literal when it is within a loop with no external support. It helps to simplify a theory
by removing inapplicable rules and makes theory becomes decisive, i.e., all rules in the
theory are either provable or unprovable [13].

Definition 2. [14] Given a theory D , let L be the set of literals appear in D . Then a
loop in D is a set of literals L⊆L s.t. for any two literals p1, p2 ∈ L there exists a path
from p1 to p2 in the literal dependency graph of D all of whose vertices belong to L.

In other words, the subgraph of the literal dependcy graph ofD is strongly connected [15].
Fromthedefinitionoftheunfoundedsetanyrulewhoseheadbelongstoanunfoundedset,or
thereexistsanunfoundedliteralintheirbody,isinapplicable.Sinceunfoundedsetsarefinite,
wehavethefollowingconsequence.
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Proposition 1. [15] Given a theory D , a partial interpretation I, and unfounded set
UD w.r.t. I. If UD �= /0, we have L⊆UD for some loop L in D that is unfounded w.r.t. I.

The above proposition states that any non-empty unfounded set is a super set of some
loop that is itself unfounded. Owing to the fact that loops are bounded above by the
strongly-connected-components (SCC) in the literal dependency graph, algorithm 3
shows the algorithm used to compute the unfounded set of a defeasible theory.

Algorithm 3. Unfounded set computation
Algorithm: ComputeUnfoundedSet(l,D)

Data: l: a literal in L
Data: D = (F,R, /0): a defeasible theory
Result: U : set of unfounded literals in D

1 U = { /0}
2 l.id = cnt++
3 S .push(l)
4 P .push(l)
5 foreach r ∈ Rsd : l ∈ A(r) do
6 c = C(r)
7 if c.id ==−1 then
8 L = L \c
9 ComputeUn f oundedSet(c,D)

10 else if c.groupId ==−1 then
11 while P is not empty and

P .top().id > c.id do
12 P .pop()

13 while P �= /0 and
P .top().pre > min(l.pre,¬l.pre) do

14 P .pop()

15 if P .top().id == l.id then
16 P .pop()
17 else
18 return

19 repeat
20 t = S .pop()
21 t.groupId = gcnt
22 U = U ∪{t}
23 until S is empty or t == l
24 gcnt++

In the algorithm, the designated
initial situation is that D is the sim-
plified defeasible theory s.t. Rsd �=
{ /0} but with no further conclusions
can be derived; and L is the set
of literals that appear in D . S is a
stack used to keep track on the set
of processed literals; while P , an-
other stack, containing literals on the
search path, is used to decide when
to pop the set of SCC from S . The
variables cnt and gcnt store the id
of a literal and the group id of the
SCC that the literal belongs to re-
spectively. Lastly, U contains the lit-
erals to be extended to an unfounded
set.

The algorithm works based on
two observations: (1) when we reach
the end of the recursive function, we
know that we will not encounter any
more literals in the same strongly
connected set since all literals that
can be processed have already been
passed (line 5-12); (2) the back links
in the graph provide a second path
from one literal to another and bind
together the SCC (line 13-22).

The algorithm first finds the high-
est literal reachable based on the lit-
eral dependency graph. A literal will
be pushed onto the stack on entry
to the recursive function; and pops

them (with assigned SCC id) after visited the final member of each SCC. So at the end
of the recursive procedure it will return to us all literals encountered since entry that be-
long to the same SCC, i.e., the set of literals that are unfounded. The algorithm extends
the unfounded set through each iteration. That is, to calculate the greatest unfounded
set, we have to iterate ComputeUnfoundedSet through the set of literals that appear in
the defeasible theory D .
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As discussed before, failure-by-looping provides a mechanism to remove literals in
loops with no external support. That is falsifying all literals in the greatest unfounded
set helps to remove loops in the literal dependency graph of a defeasible theory, and
thus the well-founded model of the theory can be derived subsequently.

5 Related Works

A number of defeasible logic reasoners and systems have been proposed in the recent
year to cover well-founded variants as well as other intuitions of non-monotonic rea-
soning. The approaches to define a well-founded variant can be classified under three
categories: failure-by-loop [1,16,13]; unfounded set [17]; translation to other formalism
or extended logic programming [18,6,19].

Nute [2] was the first to propose a form of loop-to-failure, but he did not related the
logic to well-founded-semantics, and it was limited to a basic variant, and no implemen-
tation was proposed. [16] extended the work, and related the variant to well-founded
defeasible logic, but they claim that the resulting variant is ambiguity propagation, and
those two notions are entangled. [12] adopts a more sophisticated failure-by-loop al-
gorithm for a clausal variant of defeasible logic (with the consequent increase of the
computational complexity).2

The unfounded set approach on which the current paper is based was proposed
in [17] where a bottom-up approach was presented. The bottom-up approach led to
metaprogram representation of defeasible logic and defeasible theories, with the conse-
quent development of the family of defeasible logic framework [20,10].

The meta-program approach is at the foundation of the approaches based on trans-
formation in other formalisms. DR-Prolog [19] provides a Semantic Web enabled im-
plementation of defeasible logic. DR-Prolog directly implements the meta-programs of
[20], covering thus various variants, and the well-founded variants are obtained by in-
voking a well-founded version of a Prolog interpreter. The system is query based and
does not compute the extension of a theory.

Other logic formalisms, such as CLIPS or other extended logic programs have been
used to implement some variants of the DL [18,6] so that conclusions can be drawn
using the underlying reasoning engine. However, most of the systems are query based
and do not compute directly the extension of a theory. However transformation based
approach may lead to some counterintuitive results [3] as, in most cases, the represen-
tational properties of defeasible logic cannot be captured correctly.

6 Conclusions

This paper presents algorithms for computing the consequences of the ambiguity prop-
agation variant and well-founded semantics of defeasible logic. It contributes to the
computational aspect of the two variants in a practical approach such that consequences
of both variants (as well as their combination) can be computed with linear complexity,

2 See http://www.cit.griffith.edu.au/~arock/defeasible/Defeasible.cgi for a
query based reasoner implementing various variants.

http://www.cit.griffith.edu.au/~arock/defeasible/Defeasible.cgi
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which make DL a possible candidate for some computational demanding jobs, or tasks
that require immediate response, such as reasoning on the Semantic web.

Recently [8] has studies several variants of defeasible logic based on their abstract
presentation of the proof theory. However, the relations between the ambiguity propa-
gation variant, the well-founded semantics, and the well-founded variants of ambiguity
propagation is still unclear and further investigation is needed.
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Abstract. Declarative technologies have made great strides in expressivity 
between SQL and SBVR. SBVR models are more expressive that SQL 
schemas, but not as imminently executable yet. In this paper, we complete the 
architecture of a system that can execute SBVR models. We do this by 
describing how SBVR rules can be transformed into SQL DML so that they can 
be automatically checked against the database using a standard SQL query. In 
particular, we describe a formalization of the basic structure of an SQL query 
which includes aggregate functions, arithmetic operations, grouping, and 
grouping on condition. We do this while staying within a predicate calculus 
semantics which can be related to the standard SBVR-LF specification and 
equip it with a concrete semantics for expressing business rules formally. Our 
approach to transforming SBVR rules into standard SQL queries is thus 
generic, and the resulting queries can be readily executed on a relational schema 
generated from the SBVR model.  

Keywords: SBVR, SQL, Declarative Programming, Business Rules, Predicate 
Calculus, Formal Semantics. 

1   Introduction 

The Business Rules Approach [1] has made significant strides in bridging the spheres 
of everyday human interactions and information technology. An outgrowth of that 
movement was the OMG standard Semantics of Business Vocabulary and Rules 
(SBVR) [2], which brought together research from linguistics, formal logics, as well 
as practical expertise. SBVR Models are considered constructs that are supposed to 
help businesses communicate with each other and also business people to 
communicate with implementers of information technology. Direct transformation of 
SBVR models into executable code is generally not encouraged and has often resulted 
in rather harsh compromises of SBVR’s meta-model and intended use when 
attempted [3]. The reason for this mismatch is the chasm between the declarative 
paradigm implemented by SBVR and the imperative procedural paradigm that is at 
the heart of most modern programming and business process languages. So thus far, 
human programmers are needed to interpret and convert the SBVR models into real-
world applications. An alternative approach, called Generative Information Systems 
[4], was presented by the authors of this paper that allowed for real-world systems to 
be produced by inferring the appropriate reaction directly from a model, without the 
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need for an intermediate code generation step, and without the need for explicitly 
defined business processes. A significant aspect of that model was the method of 
generating schemas for a relational database from the SBVR Vocabulary, and 
converting rules into SQL queries to verify the consistency of the data set. This last 
step, had been only sketched out in the original paper, as the theoretical framework 
required for this undertaking is significant. This paper addresses precisely these issues 
and examines in detail the conversion of SBVR rules into SQL queries for the 
purpose of validating the consistency of a given data set with the SBVR model. 

2   Generative Information Systems 

This section summarizes the architecture of Generative Information Systems (GIS) in 
[7] to provide the appropriate context for the rest of the paper. A GIS is based around 
the concept that the logic of the system is accessible to the owner of the system, and 
that any change in the logic is immediately reflected in the operation of the system. 
The architecture as can be seen in Figure 1, specifies that both the RESTful API and 
the relational database schema (in SQL-DDL) are to be generated from the model.  

 

Fig. 1. Connections between REST, SBVR and Relational Databases 

The end user can place requests on the system through the API. These requests get 
evaluated through the ruleset, and if they represent a legal transition and their result is 
a system in a consistent state, they are applied to the dataset. If not, the inconsistency 
is presented to the user, who can amend the request to take account of the new 
information. Through this back and forth negotiation, the user either concludes that 
the request is fundamentally incompatible with the system, or reaches a formulation 
of the request that satisfies both the original goal and the system’s consistency 
requirements. This is, in an abstract sense, what many processes achieve. By guiding 
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the user through a sequence of steps, they determine what change needs to be made to 
the system state to satisfy the user’s request while maintaining consistency. We call 
thus abstract process the ‘meta-process’. Its advantage over the traditional process-
driven message is that it can respond to unforeseen requests by the user, in contrast to 
the hardcoded process model which is constrained to the design-time foresight of the 
developers. More detail on this process can be seen in Figure 2. 

 
User: 
POST <en101> 
http://domain.org/students/John/courses/ 

 
System: 
403 Forbidden  
 
It is necessary that each student is registered for at most five courses 
 

Student_Name  Number_of_Courses  Names_of_Courses  
John  6  PY101, MA101, EN121, 

CS101, AF302, MG102   
User: 
[Start Transaction] 
DELETE 
http://domain.org/students/John/courses/ma101 
 
POST <en101> 
http://domain.org/students/John/courses/ 
[End Transaction] 

System:  
200 OK 

Fig. 2. The meta-process control structure 

The way that consistency is currently checked is by performing a sequence of 
actions on the database as a transactional unit. First, a transaction is initiated. 
Secondly, the updates are applied to the dataset. If the database schema makes this 
impossible, the updates are rejected. If it is allowed, the relevant rules are checked 
against the dataset to make sure they are not violated. If they are violated, updates are 
rolled back and the details of the violation returned to the user. If the rules are not 
violated, the transaction proceeds. This mechanism is suitable for a proof of concept, 
but may have scalability limitations for concurrent systems. Optimizations can be 
explored that avoid the round-trip to the database. It is however interesting to note 
that this rough process of adding tentative information to the knowledge base, then 
checking for consistency, and deleting in case of violation, counterintuitively seems to 
be the way that the human brain deals with new knowledge. [5] This does not mean 
that the method is ideal, but it is an interesting parallel that we noted after setting the 
foundations for Generative Information Systems architecture. 

The step in the above process that was left least defined is the one where the 
updated dataset is checked against relevant rules for consistency. This is done by 
transforming each rule to an SQL query that requests violations to the rule to be 
returned (Figure 3). The precise mechanism by which this is carried out is the focus of 
this paper. 
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Fig. 3. From SBVR Structured English, to SBVR Logical Formulation, to an SQL query 

3   Vocabularies to SQL Schemas 

For rules to be validated over a dataset however, first there must be a schema for that 
dataset. As our starting point is an SBVR model, it is the vocabulary that is the 
obvious candidate for becoming the scaffold for our schema. The detailed process has 
been described in our previous work so here we will instead go through an example 
scenario which we will use throughout this paper. The model for our example can be 
seen in Table 1. One aspect not covered in previous work is that of primitive data 
types. We can see that the term Name has a concept type of Varchar(255). This can be 
read as a reference to a vocabulary of primitive data types that a generative 
information system is built on. These terms are essentially terminal symbols that get 
mapped directly onto programming language data types. We use the data types that 
are fundamental to SQL as this is our target data store. Another novel convention is 
that since the Name is had by Student , this relation is constrained to a one-to-one 
cardinality, and Name has no other attributes than its value, we render it an attribute of 
the table  with which it is associated rather than representing it in a separate table, 
similarly for Code and Title. 

The result of converting the vocabulary (and some of the more basic rules) into a 
schema can be seen in Figure 4. 

4   A Predicate Calculus for Advanced SQL DML Constructs 

We have seen how an SBVR vocabulary can be used to generate a relational schema. 
In the remainder of the paper, we are concerned with translating SBVR rules into  
 

 
 SELECT student.name AS Student_Name,  
     Count (course.id) AS Number_of_Courses 
 FROM student, course, student_is-registered-for_course  
 WHERE student.id = student_ is-registered-for_course.studentID  
         AND student_is-registered-for_course.courseID = course.id 
 GROUP BY student.id   
 HAVING COUNT(course.id) > 5 ;  
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Table 1. Example SBVR Model 

Terms Fact Types Rules 
Student 
 
Module 
 
Course 
 
Name 
Concept-type: Varchar(255) 
 
Code 
Concept-type: Varchar(255) 
 
Title 
Concept-type: Varchar(255) 

Student is registered for course 
 
Student is enrolled in module 
 
Module is available for course 
 
Student is under probation 
 
Student has name 
 
Course has title 
 
Module has code 
 

It is necessary that each student is 
registered for at most five courses. 
 
It is necessary that each student that 
is under probation is registered for at 
most three courses. 
 
It is obligatory that each student has 
exactly one name. 
 
It is obligatory that each course has 
exactly one title 
 
It is obligatory that each module has 
exactly one code. 

 
CREATE TABLE student (id INT NOT NULL AUTO_INCREMENT, name VARCHAR(255), 
 is-under-probation BOOL, level INT, primary Key (id)); 
 
CREATE TABLE course (id INT NOT NULL AUTO_INCREMENT, 
 code VARCHAR(255), primary Key (id)); 
 
CREATE TABLE module (id INT NOT NULL AUTO_INCREMENT, 
 title VARCHAR(255), primary Key (id)); 
 
CREATE TABLE student_is-enrolled-in_module (studentID INT, moduleID INT, 
 primary Key (studentID, moduleID), 
 foreign Key (studentID) references student(id), 
 foreign Key (moduleID) references module(id)); 
 
CREATE TABLE student_is-registered-for_course (studentID INT, courseID INT, 
 primary Key (studentID, courseID), 
 foreign Key (studentID) references student(id), 
 foreign Key (courseID) references course(id)); 
 
CREATE TABLE course_is-available-for_module (courseID INT, moduleID INT, 
 primary Key (courseID, module_id), 
 foreign Key (courseID) references course(id), 
 foreign Key (moduleID) references module(id)); 

Fig. 4. Resulting SQL DDL Schema 

SQL queries. This operational rendering of business rules is more challenging. Thus, 
we want to prove the correctness of the transformation from SBVR-LF to SQL DML. 
SBVR-LF has a formal foundation based on first-order or predicate logic, and its 
variations [2]. SQL has established theoretical foundations [8] and a sound semantics 
for its basic constructs (SELECT-FROM-WHERE) is based on a tuple relational 
calculus [6]. This standard semantics however does not cover more advanced SQL 
DML constructs, such as arithmetic operations, aggregate functions [10], grouping, 
and grouping on condition. In this section we describe a tuple relational calculus 
extension that equips such constructs with a clearly defined semantics – this is 
necessary for operationalising SBVR rules which are more expressive than basic SQL 
queries (e.g. see running example). The result is a predicate calculus with identity, 
which establishes a generic mapping between SBVR-LF and SQL DML, as discussed 
in Section 5. We use the student enrollment example to illustrate our approach. 
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4.1   Basic Structure of an SQL Query 

Our predicate calculus formalisation of SQL DML makes use of tuple variables. A 
tuple variable is a variable that ranges over a named relation (table). The general form 
of a query in tuple relational calculus is  

)}(|{ xx F  

where x is the set of tuples for which the expression )(xF is true. The relation is 

defined somewhere inside )(xF . As we will see, in our approach we make this 

explicit by separating the filter from the domain.  
If only some attributes of x are of interest, the above expression takes the form  

)}(|),..,,(: 21 x{x Fxxx m  

where mxx ,..,1 are attributes of the relation which is the result of the query (i.e. 

attributes of a tuple x ). This set is created by selecting all tuples x for which )(xF is 

true, and then projecting those tuples on attributes mxx ,..,1 . The result of a query on a 

set of tuples (relation) is either a set of tuples matching a certain condition or a value 
(when using aggregate functions, cf. Section 4.3). For example, the 
query )}(|),(:{ xx studentidname returns a set of tuples which contain attributes name 

and id from the student relation. 
A predicate )(xP is a function that maps each element x of a set S  to the value 

‘true’ or ‘false’, i.e., },{: falsetrueSP → . 

Let Nx ∈ - so x  is an element of the set of natural numbers. Then the predicate 

0)(1 ≥≡ xxP is true for all x while the predicate 0)(2 <≡ xxP  is false for all x.  

Predicates can consist of one expression (as in  above) or as a combination of 
expressions. These combinations arise by combining expressions using the usual first-
order or predicate logic operators (e.g. see [9]) given in Table 2. 

Table 2. Logical connectives 

  ∧  (conjunction)   ∨  (disjunction)    ¬ (negation)  ⇒ (implication) 

Let Nx ∈ , as before. The predicate 107)(3 >∧<≡ xxxP combines the expressions 

7<x and 10>x  (and is false for all Nx ∈ ). The predicate 63)(4 <∧≥≡ xxxP is 

true for x = 3,4,5 and false for all other Nx ∈ . Predicates can be used to define sets. 
For example, )}(|{ 11 xPNxxS ∧∈= denotes the set of all x such that x is natural 

number ( Nx ∈ ) and satisfies the predicate 1P (where 0)(1 ≥≡ xxP , as before).  

We have seen that 1P is true for all x which means that 1S is the set of natural 

numbers, and we can write NxPNxxS =∧∈= )}(|{ 11 . Similarly, we have that 

∅=∧∈= )}(|{ 32 xPNxxS where predicate 1P  is as defined before. 
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The fact that predicates can be used to define sets is well-known in mathematics 
and is central to our approach – we will be using the set membership to identify 
relations and the predicate as the selection condition on the tuples of these relations. 

If p and q are expressions that valuate to true or false, sometimes called WFFs for 
Well-Formed Formulae in the literature, e.g. see [6], then the following equations 
hold. These are standard in first-order logic, e.g. see [9], so we list them here in Table 
3 without further explanation. A thorough treatment can be found in [9]. 

Table 3. Equations on expressions (WWF) 

pp ≡¬¬ )(  qpqp ¬∨¬≡∧¬ )(  qpqp ¬∧¬≡∨¬ )(  
qpqp ∨¬≡⇒  )()()( rpqprqp ∧∨∧≡∨∧ )()()( rpqprqp ∨∧∨≡∧∨  

 
We now turn our attention to the basic structure of a query expressed in SQL DML 

in our formalization which is an extension to the tuple relational calculus while 
staying within the predicate calculus semantics – in particular, we will be concerned 
with setting up formal semantics for transforming SBVR rules to SQL queries based 
on a predicate calculus with identity. 

Since our interest is in transforming SBVR rules to SQL queries on the relational 
schema generated by the SBVR model, we will be concerned with predicates that 
define sets of tuples. The general form of a query in our predicate calculus is  

)}()({ xxx P|D ∧  

where )x(x n,..,: 1x is the set of tuples from a domain )(xD , and )(xD specifies the set 

of all possible tuples that x ranges over, i.e. a relation with nxx ,..,1 attributes, and 

)(xP is a predicate on the set of all tuples in )(xD . For example, 

}'6081958'.)({ =∧ idstudent|student xx returns the set of all tuples x from the relation 

student whose attribute id has the value 6081958. (Note that student.id is a primary 
key in our schema, given in Section 3, so this expression would return a single tuple.) 

The expression )}()({ xxx P|D ∧ in the extended predicate calculus considered here 

is mapped to SQL DML as: 
         SELECT    DISTINCT x  
         FROM       )(xD  

         WHERE    )(xP  ; 

The SQL keyword DISTINCT is used to remove duplicates.  
If we are only interested in certain attributes nxx ,..,1 in the result x and not all 

attributes mxx ,..,1 of the relation specified in )(xD , then we write for the projection 

)}()(..,,{ 21 xxx P)|Dxx:(x n ∧  

which is mapped to SQL DML as: 

   SELECT    DISTINCT nxx ,..,1  

   FROM       )(xD  

   WHERE    )(xP  ; 



 Generating SQL Queries from SBVR Rules 135 

To express the JOIN statements in SQL DML which applies to two or more relations, 
we need to take a closer look at )(xD . In standard tuple relational calculus semantics, 

it is well known that joining two relations means taking the Cartesian product ( × ) of 
the two relations. In our formalization, the join of two relations (tables) is captured in 

)(xD which is what is used to specify the set of all tuples from which the returned set 

of tuples x come from. The join condition, if any, is then added in the predicate )(xP - 

and that is in addition to the selection condition, if any. 
Therefore, if we want to join tuples from relations k,..,, yyy 21 we write  

}((...
2(1(|),...,1(: )P)kD)D)Dnxx xyyy{x ∧×××  

where )D)kD)D)D xyyy ((...
2(1( =××× . This is mapped onto SQL DML as: 

   SELECT    nxx ,..,1  

   FROM       )D)D)D kyyy (...
2(1( ×××  

   WHERE    )(xP  ; 

Note that k,..,, yyy 21 denote relations (sets of tuples) while nxx ,..,1 is the list of 

attributes returned after the join of the relations, and this is denoted by ),...,(: 1 nxxx . 

It is also worth pointing out that selection conditions on attributes of k,..,, yyy 21 are 

included in )(xP since they are applied after the Cartesian product on these relations 

has been applied. For example,  

×× )__()(|).(,.,.(:{ cirfsDstudentDidcourseCOUNTnamestudentidstudentx  

}..__.__.)( idcoursecourseIDcirfsstudentIDcirfsidstudentcourseD =∧=∧×  

is transformed into: 

 SELECT      student.id, student.name, COUNT(student.id) 
 FROM         student, s_irf_c, course 
WHERE       student.id = s_irf_c.studentID AND s_irf_c.courseID = course.id ; 

We now turn our attention to arithmetic operations and aggregate functions. 

4.2   Arithmetic Operations and Aggregate Functions  

In SQL, arithmetic operations may appear in the SELECT clause, as in: 

SELECT Salary*1.1, EmpID, EmpName 
FROM  Employee 
WHERE DeptName = ‘Research’; 

which reflects the values of a 10% increase in salaries in the Research department. So 
we need to apply this arithmetic operation as a function on the returned set of tuples 
x . For this reason, we write 

)}()(|)({ xxx PDE ∧  
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where )(xE is a function on x that includes addition (+), subtraction (-), multiplication 

(*), division (/), or a combination of these on one or more attributes of the tuples in 
x , i.e. tuples from )(xD which satisfy )(xP . 

Often, arithmetic operations only apply to certain attributes in the set of returned 
tuples x . So E should be applied to the attributes of x rather than across x . Thus, 

)}()(|))(),...,(),(.({ 21 xxx PDxExExE n ∧  

where )( ixE , ni ..1= , is applied to some attributes, in which case it is one or more of 

‘+’, ‘-’, ‘*’, ‘/’ and not applied to others, in which case we have ii xxE =)( (identity). 

In similar fashion, we can address the aggregate functions in SQL DML, i.e. SUM, 
AVG, MIN, MAX, COUNT. To take into account the fact that an arithmetic operation 
may have been already applied to a certain attribute, we define F as a composite 
function on E so that ))(())(( ii xEFxEF = . In other words, F is applied to the 

output of E , and  we write 

)}()(|)))(()),...,(()),((.({ 21 xxx PDxEFxEFxEF n ∧  

Note that if F  is the aggregate function COUNT, for some attribute ix , then 

)( ixE must be the identity, i.e. ii xxE =)( , so that only attribute names are allowed in 

this case and no arithmetic operations.  
This predicate calculus construction is mapped onto SQL DML as 

SELECT ))(()),...,(()),(( 21 nxEFxEFxEF  

    FROM )(xD  

   WHERE )(xP ; 

For example,  

}3.)(|)).(,.,..({ =∧ levelstudentstudentidstudentCOUNTnamestudentidstudent xx  

is mapped onto the query: 

SELECT student.id, COUNT(student.id) 
FROM  student 
WHERE student.level = ‘3’ ; 

and returns the number of final year students in the dataset. 
We now turn our attention to grouping and filtering on groups. 

4.3   Grouping and Having 

The grouping operation on a database comes down to stating the desired grouping 
attribute(s) and the grouping condition, if any. The grouping condition selects those 
groups that satisfy the condition and discards those who do not. In our formalisation, 
the grouping attributes are specified before the projected attributes (and therefore will 
be mapped onto the SELECT clause in SQL DML) while the grouping condition will 
be part of the predicate itself. We note that it cannot be included in )(xP , like we did 

for JOIN, because the grouping condition applies to the results of the grouping 
operation, i.e., once the groups have been formed by the grouping operations.  
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Therefore, if we want to group a relation by a set of attributes ml xx ,... (a subset of 

all the attributes nxx ,...1 of the relation), we write 

)}()(,..,,,..,{ 1 xx:xx P)|Dx(x)x:(x nml ∧  

)x(x ml ,.., and )x(x n,..,1 need not be disjoint but both need to be subsets of the set of 

attributes of )nx(xD ,..,1)( =x . Finally, we note that )(xD may be the result of the 

Cartesian product of a number of relations, as before. 
The above expression in our predicate calculus is mapped onto SQL DML as: 

SELECT nxx ,..,1  

FROM  )(xD  

WHERE )(xP  

GROUP BY ml xx ,..,  

For example,  

|).(,.,.(:,.:{ idcourseCOUNTnamestudentidstudentidstudent xx  

∧×× )()__()(| courseDcirfsDstudentD  

}..__.__. idcoursecourseIDcirfsstudentIDcirfsidstudent =∧=∧  

returns the number of courses a student has taken, and does this for every student. 
This translates to the following SQL query: 

SELECT student.id, student.name, COUNT(course.id) 
FROM  student, s_irf_c, course 
WHERE student.id = s_irf_c.studentID  AND 

AND s_irf_c.courseID = course.id 
GROUP BY student.id ; 

Next we may add the grouping condition as an additional predicate )(xH which 

applies to the result (set of tuples) of the grouping operation, i.e. to the set of 
attributes in )x(x)x(x nml ,..,,.., 1⊆ . Therefore, we write 

)}()}()(,..,,,..,{|,..,{ 11 xxx:xxx HP)|Dx(x)x:(x)x:(x nmln ∧∧  

which is mapped onto SQL DML as: 
SELECT nxx ,..,1  

FROM  )(xD  

WHERE )(xP  

GROUP BY ml xx ,..,  

HAVING )(xH  

Note that this is different to a nested predicate calculus expression because a nested 
query would simply apply a selection condition to the result of the inner query but 
could project onto different attributes. In contrast, a grouping condition only filters 
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the groups returned by the grouping operation, and thus cannot apply a further 
projection. For a nested query we would write 

)}()}()(,..,,,..,{|,..,{ '
1

''
1 xxx:xxx PP)|Dx(x)x:(x)x:(x nmln ∧∧  

which would in turn map onto the following SQL DML: 

SELECT  ''
1 ,.., nxx  

FROM   ( SELECT nxx ,..,1  

  FROM  )(xD  

  WHERE )(xP ) 

  GROUP BY   ml xx ,..,  )  

WHERE )(' xP ; 

It can be seen that )(' xP applies to the result of the inner query, but the result of the 

nested query as a whole can include a projection on any attributes from )(xD . 

Going back to our example, if we want to check whether the business rule  

It is necessary that each student is registered for at most five courses 

expressed in the SBVR model given earlier in Figure 3 is satisfied, we need to restrict 
to groups (one for each student) who are associated with (registered for) more than 
five courses. We check for these cases since these are cases where the rule might be 
violated, and if this happens, the corresponding database operations will need to be 
executed as a transaction. Taking into account the associated database schema, this 
rule is expressed in terms of our extended predicate calculus as follows: 

|).(,.,.(:,.:{|

|)).(,.,.(:{

idcourseCOUNTnamestudentidstudentidstudent

idstudentCOUNTnamestudentidstudent

xx

x

 

∧=∧×× studentIDcirfsidstudentcourseDcirfsDstudentD .__.)()__()(|  

)}5).((}..__ >∧=∧ idcourseCOUNTidcoursecourseIDcirfs  

which is in turn mapped onto the following SQL DML statements: 

SELECT student.id, student.name, COUNT(course.id) 
FROM  student, s_irf_c, course 
WHERE student.id = s_irf_c.studentID  

AND s_irf_c.courseID = course.id 
GROUP BY student.id 
HAVING COUNT(course.id) > 5 ; 

It is in this way that we can take rules from an SBVR model and transform them into 
SQL DML so that we can then check whether they are satisfied on a relational 
database schema by executing a standard SQL query. In the next section we attempt 
to generalize this by taking a closer look at both ends, our predicate calculus -based 
formalisation and the SBVR-LF, and do so at the semantics level. 
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5   From SBVR-LF to SQL DML 

In this section we turn our attention to the SBVR Logic Formulation (SBVR-LF) as 
defined in the SBVR specification document [2], and describe a mapping onto the 
predicate calculus foundation for SQL DML which was given in the previous section. 
The objective is to obtain a generic mapping between rules expressed in SBVR and 
queries expressed in standard SQL DML, since this would make business rules 
amenable to immediate validation against a dataset. 

Before we embark on the mapping, we define the quantifiers within the predicate 
calculus semantics in our approach. There are two quantifiers in predicate logic that 
can be used in an expression (WFF) to find out how many elements of the 
corresponding set satisfy the expression.  

Let )(xP be a predicate (as before). Let )(xD denote the domain of x , i.e. the set of 

all possible values for the tuple x . To find out if for at least one tuple x from the 
domain )(xD the predicate )(xP is true, we write 

))()()(( xxx PD ∧∃  

which is read as “there is an x for which )(xD holds, and )(xP is true”. The result of 

this expression is either true or false. 
To find out if for all tuples in the domain )(xD the predicate )(xP is true, we write 

))()()(( xxx PD ⇒∀  

which is read as “for all x  for which )(xD holds, )(xP is true”. The result of this 

expression is true or false. 
With reference to the example predicates discussed in the start of Section 4.1, the 

expression ))()(( 3 xPxx ∧∈∃ N is false. The expression ))()(( 1 xPxx ⇒∈∀ N is true. 

Note the difference between ))()()(( xxx PD ∧∃  and  ))()()(( xxx PD ⇒∀ which 

can yield different results (true or false) for the same expression. To avoid such 
ambiguities the domain )(xD of an expression with a universal quantifier is always 

placed to the left of the implication logical operator ( ⇒ ). 

Table 4.  

))()(())()(( xxxx PP ¬∃¬≡∀  ))()(())()(( xxxx PP ¬∀¬≡∃  

)))()(2()(1)(())()(2)(1)(( xxxxxxxx PDDPDD ⇒⇒∀≡⇒×∀  

))())(2)(1)((())()(2)(1)(( xxxxxxxx PDDPDD ¬∧×∃¬≡⇒×∀  

Again, drawing upon first-order logic we have that if )(xP is a predicate and 

)(1 xD , )(2 xD  are domains (expressions that define relations from the database 

schema generated by the SBVR vocabulary, as discussed in Section 3, and hence 
restrict the set of all possible values for a tuple x ), then the following equations hold. 
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We have given these standard equations in terms of predicates that define sets of 
tuples. In their general form, they apply to an element x rather than a tuple x and we 
would also have ∧  instead of ×  in the last two. 

The specification document of SBVR includes the definition of the Formal Logic 
and Mathematics Vocabulary [2, pp. 109-118] which provides the logical foundations 
for SBVR in terms of first-order logic. However, the SBVR specification predefines 
some numeric quantifiers [2, pp.97-98] in addition to the standard universal and 
existential quantifiers found in first-order predicate logic. These allow the user to say 
things like ‘exactly one car’ or ‘exactly two cars’ or ‘at most 8 and at least 3 cars’ or 
‘at most two cars’ and so on. Due to space limitations we do not reproduce the SBVR 
predefined quantifiers here, and refer the interested reader to the SBVR specification. 

The predefined quantifiers can be defined in terms of the quantifiers in our 
formalization, which were defined earlier in standard predicate logic (Table 4). 
Drawing upon the definition schemas in [11], also outlined in [2], we may obtain a 
rewriting of the SBVR predefined quantifiers in our approach.  

The exactly one quantifier in SBVR-LF, denoted by x
1∃ , can be rewritten as: 

))()()(())()()(())()((1( xyyyxxxxxx =∧⇒∀∧∧∃≡∧∃ yPDPDPD)  

The at most n quantifier given in SBVR-LF, denoted by x
n..0∃ , can be rewritten 

in terms of our predicate calculus as: 

∨∧∃∨∧∃¬≡∧∃ ))
1

()
1

()(
1

())()()(())()(()..0( xxxxxxxxx PDPDPDn  

∨=¬∧∧∃∧∧∃∨ )
21

())
1

()
2

()(
2

()
1

()
1

()(
1

(( xxxxxxxx PDPD  

 

∧==¬∧∧∃∧∧∧∃∨ )
1

())()()(()
1

()
1

()(
1

((
nn

P
n

D
n

PD xxxxxxxx  

)))()
1

(()()()((
n

PD xyxyyyy =∨∨=∧⇒∀∧  

The first disjunction covers the case that there might not exist such a tuple x  (case of 
0), the second covers the case there is one such x , the third is for two such x , and so 
on. The last disjunction says that n such x  may exist, but then there cannot be any 
more (n+1) tuples  that satisfy the predicate.  

Similarly, the at least n quantifier, denoted by x..n∃ , can be rewritten as: 
 

∧=¬∧∧∃∧∧∃≡∧∃ ))()()()(())()()(())()((..( 2x1x2x2x2x1x1x1xxxx PDPDPDn )  

  ∧=¬∧∧=¬∧∧∃∧∧ ))()()()()(( 1-nxnx1xnxnxnxnx PD  

∨=+¬∧∧=+¬∧+∧++∃∧ ))()()()()((( nxknx1xknxknxknxknx PD

 ))))()(()()()(( nx1nx1x1nx1nx1nx1nx =+∨∨=+∧+⇒++∀∨ PD  



 Generating SQL Queries from SBVR Rules 141 

The first n-1 conjunctions refer to each of the n tuples x that must exist, must satisfy 
the predicate. The last conjunction captures the fact that there may be k additional 
such x  that satisfy the predicate or no other x (apart from the n we already have) may 
exist that satisfy the predicate. 

The at least n and at most m quantifier given in SBVR-LF, and denoted by 

xmn..∃ , can be obtained by combining the rewriting of the at least n and that of the 
at most n quantifiers given earlier.  

The intention behind SBVR-LF is to (be able to) capture business facts and 
business rules formally. Formal statements of business rules may then be transformed 
into logical formulations that can be read in software tools, or readily adopted in 
approaches like the one we describe in this paper. An example given in the 
specification [2, pp.90-91] is the formalisation of a static constraint that says ‘each 
person was born on some date’ as the logical formulation: 

yxDateypersonx on born   was,:,: ∃∀  

Going back to our example, the rule in our SBVR model can be written as: 

:x∀ student, :5..0
y∃ course, x is registered for y  

With reference to the tree representation of this rule given in Figure 3 earlier, it can be 
seen that the root is a universal quantification ( ∀ ), the 1st variable is student, the 2nd 

variable is course and the max cardinality is 5 ( 5..0∃ ) while the atomic formulation 
that completes the [at most n] quantification node is student is registered for course 
and this binds the 1st variable to x and the 2nd to y . 

In fact we are interested in disproving the rule, i.e. identifying students registered 
for 6 or more courses. This can be encoded by taking the negation of the logical 

formulation in which case the existential quantifier 5..0¬∃  gives ..6∃ . Thus, we have 

:x∃ student, :..6
y∃ course, x is registered for y  

Now student and course are relations in our database schema (Figure 4) and so is is 
registered for, thus all three appear in the domain )(xD (in a Cartesian product) and 

consequently in the FROM clause of the resulting SQL query. The primary key of 
student will have to match the foreign key of is registered for, similarly for course. 
These join conditions become the predicate )(xP and hence appear in the WHERE 

clause. The cardinality on the existential quantifier (6 or more) is the condition 
applied to the resulting tuples (per student), hence becomes the predicate )(xH and 

appears in the HAVING clause.  
It can be seen that the predicate calculus with identity we presented provides a 

bridge between SBVR-LF and SQL DML. This means that SBVR rules can be re-
written systematically as SQL queries, thus enabling their execution to maintain 
consistency of a database. The modality of the rule, which has not been addressed 
explicitly here, is taken into account only in enforcing consistency once a violation is 
observed. A violation of an alethic rule leads to a direct rejection of the update on the 
dataset while a violation of a deontic rule can be overridden if authorised by a user 
with sufficient privileges. 
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6   Conclusions and Future Work 

In this paper we have briefly described the concept of generative information systems, 
and how rule-based modeling is at their core. We have discussed how an SBVR 
model (terms, fact types) is transformed into a relational schema that can act as a data 
store for our information system. By showing how the user interacts with the system, 
we have demonstrated the need for a formal and rigorous approach to transforming 
SBVR rules to SQL queries. This transformation allows a rule to be validated against 
the dataset in much the same way as issuing a query on a database.  

The correctness of the transformation has been shown using a predicate calculus 
with identity, which extends standard relational theory to include provision for 
aggregate functions and arithmetic operations,  and also address SQL DML constructs 
such as grouping (GROUP BY clause) and grouping on condition (HAVING clause).  

The work in [12] is also concerned with generating SQL DML from business rules. 
However, the rules are expressed in the ORM-based language ConQuer and the 
transformation is not attempted at the semantic level (at least not through relational 
theory). The problem of operationalising SBVR business rules is challenging. There 
are transformations to UML class diagrams [13] and R2ML [14] within an MDA 
context, as well as the reverse transformation from OCL to SBVR [15]. Instead, we 
have described the operational rendering of SBVR rules into standard SQL queries, 
which can then be readily executed to maintain consistency of a database. 

To further the research discussed, the transformation needs to be implemented in a 
tool such that it can be applied to real-world problems. Another possible extension is 
to add model-checking capabilities to the model execution functionality, described 
here, such that models with inconsistent, redundant, or needlessly complex rules can 
be identified and refined accordingly.  
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Abstract. We discuss a translation of financial reports from the XBRL format
into the Semantic Web language OWL. Different from existing approaches that
do structural translation from XBRL’s XML schema into OWL, our approach can
faithfully preserve the implicit semantics in XBRL and enable the logic model of
financial reports. We show that such a translation reduces the risk of redundancy
and inconsistency, and enables the quick and useful inference on XBRL based
financial reports for better business decisions.

1 Introduction

XBRL (eXtensible Bussiness Reporting Language) is an XML-based standard for ex-
changing business information, e.g., public company financial reports. XBRL provides
considerable benefits in the preparation, analysis and communication of business infor-
mation. In recent years there has been rapid growth in international adoption of XBRL
(cf. a survey as of Apr 2010 [5]).

However, despite its broad acceptance, XBRL remains largely to be a structural
model of financial reports, without addressing the logic model of these reports. For ex-
ample, while we can declare the equivalency of two concepts in XBRL using arc roles,
there is no means in XBRL to infer new relations from the equivalency relation. Fur-
thermore, its inherited document-oriented nature makes it difficult to process, browse
and query data from a large set of XBRL files.

Recently Semantic Web has been argued as a natural choice for complementing
XBRL with a logic or semantic data model [6]. This is due to the fact that Semantic
Web languages, e.g., RDF and OWL, are inherently built with a graph-based open data
model and naturally support integration from different data sources and applications.
In addition, these languages are based on formal knowledge representation formalisms
thus enable the automatic processing and inference about data.

Garcia and Gil [6] have provided a mapping from XBRL to RDF and OWL. This
mapping is based on a structural transformation from XML Schema to OWL. Tthou-
sands of XBRL reports have been published as linked data using this approach. rd-
fabout.com1 provides the corporate ownership information derived from SEC filings.

1 http://rdfabout.com/demo/sec/

M. Dean et al. (Eds.): RuleML 2010, LNCS 6403, pp. 144–152, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://rdfabout.com/demo/sec/
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However, that data is only a partial mapping from financial report data covering in-
dividual ownership and subsidiary information for selective companies. Declerck and
Krieger [2] translated the XBRL base taxonomy into description logic which is the
logic foundation of OWL (2) DL. However, they did not specify how to translate the
linkbases in XBRL. None of the above work provides a logic model that faithfully cap-
tures the implicit semantics of financial reports in XBRL and enables the automatic
inference on XBRL data.

In this paper, we provide an improved semantic data model for XBRL by translating
it into OWL. This is done by making explicit the implicit semantic assumptions and
constraints in XBRL. Compared with previous work, our contributions include:

– Our model is based on the intended semantic model of XBRL which is currently
provided informally as human-readable description in the XBRL specification [3]
and is only partially captured in the current XML schema. By encoding these im-
plicit semantics using OWL, we have obtained a more accurate data model for
XBRL, that also incorporates domain knowledge.

– To correctly capture the semantics in XBRL, we need to model both ontological
constraints and rule constraints. To ensure desirable computational properties of
the result, we transform some rules into OWL 2 DL axioms which are known to be
decidable, i.e., being able to answer any query in finite time, and have mature tool
support. This further enables automatic processing and reasoning of financial data
represented using our model.

– Leveraged by the inference capability of OWL, the semantic data model is signif-
icantly simplified from the XBRL structural model (as given in the XML schema)
without losing information. This reduces both the redundancy in the data model
and the risk of data inconsistency.

It is noteworthy, while OWL 2 DL covers a fairly large subset of XBRL’s expressivity,
there are semantic constraints of XBRL that can only be modeled by other Semantic
Web languages, e.g., RIF (Rule Interchange Format) and integrity constraints [7]. These
are left as future work.

This paper is accompanied by a technical report [1] with more detailed motivating
examples and related work, and additional details of the translation from XBRL to
OWL.

2 Representing XBRL Data Model for the Semantic Web: General
Issues

In this section, we describe the general issues of the translation of the XBRL data
model into Semantic Web representations using OWL (Web Ontology Language). More
specifically, we use OWL 2 DL [4] to achieve both the semantic faithfulness of the
translation and desirable computation properties (e.g., inference and query complexity)
of the resulting knowledge bases (KB). For the sake of readability, we use the OWL 2
Functional-Style Syntax.
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The XBRL Specification2 offers a framework for the definitions of the semantics
in business reporting and the production and validation of data from entities that need
to communicate business performance. XBRL employs XML Schema and XLink tech-
nologies to describe different taxonomies for specific domains so that each XBRL docu-
ment is an instance of an specific XBRL taxonomy. A taxonomy consists of a taxonomy
schema and a set of linkbases. A taxonomy schema defines the reporting concepts as
XML elements. XBRL instances contain the facts as well as the descriptions of their
contexts (such as the reporting date of the fact and the currency unit used).

Correspondingly, the translation results in several different types of KBs:

– An XBRL ontology that captures some of the structural constraints defined in the
XRBL XML Schema specification, and implicit semantic requirements which are
only informally given by the specification or by default assumptions. This ontology
will be shared by all translated KBs and its components are identified by the � sign
in the paper. We assume its URL base name is xbrlo.

– Taxonomy ontologies that correspond to XBRL taxonomy documents.
– Instance ontologies that correspond to XBRL instance documents.

For the naming convention and the URL prefixes used here, please refer to the accom-
panying technical report [1].

Our translation is based on XBRL 2.0 [3]. The result can be easily extended to XBRL
2.1 as it is an extension to XBRL 2.0.

3 Representing XBRL Concepts

We first describe the translation of XBRL taxonomies into OWL.

Concepts. The <element> tag defines an XBRL concept which corresponds to an
OWL class. For example, the following is an XBRL element of monetaryItemType
and its OWL translation:

XBRL

<element id="currentAssets"
name="currentAssets"
type=xbrli:monetaryItemType
xbrli:balance="credit"
substitutionGroup = "xbrli:item"

</element>

OWL
Declaration( Class( ex:currentAssets))
SubClassOf(ex:currentAssets xbrlo:monetaryItemType)
SubClassOf(ex:currentAssets xbrlo:credit)

Note that the substitutionGroup attribute is not translated since it can only
have value xbrli:item or xbrli:tuple, which can already been inferred from
the type information. The optional id attribute is also not translated as it’s usually the
same as name.

Elements Types (�). The basic element types in XBRL form a class hierarchy (prefix
xbrlo: omitted); every class is disjoint with its siblings (except elementType and
balanceType):

2 http://www.xbrl.org

http://www.xbrl.org
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elementType balanceType
itemType credit

numericItemType debit
monetaryItemType
sharesItemType
decimalItemType

stringItemType
uriItemType
dateTimeItemType

tupleType

Each instance of an itemType has one and only one value of a particular datatype.
For example, an instance of stringItemType should have exactly one value of the
xsd:string type:

SubClassOf(xbrlo:itemType DataExactCardinality(1 xbrlo:value))
SubClassOf(xbrlo:stringItemType DataAllValuesFrom(xbrlo:value xsd:string

))

The type constraint of the item types is summarized in the table below:

monetaryItemType, sharesItemType, decimalItemType xsd:double
stringItemType xsd:string
uriItemType xsd:anyURI
dateTimeItemType xsd:dateTime

The tuple type will be discussed in the instance document section.

4 Representing XBRL Relations

XBRL relies on Xlink for relating entities defined in the schema, e.g., taxonomies and
formulae. The set of xlinkes (called arcs) in an XBRL taxonomy forms its linkbase.
There are five types of linkbases defined in the XBRL standard: definition linkbase,
calculation linkbase, presentation linkbase, label linkbase and reference linkbase.

Locators. XBRL uses locators to identify a concept (element) in a taxonomy doc-
ument, e.g., the following defines a locator to the concept "balanaceSheet.xsd
#currentAssets".

<loc xlink:type="locator" xlink:href="balanaceSheet.xsd#currentAssets"
xlink:label="loc_currentAssets">

Since in OWL we can directly identify a class using its IRI, it’s not necessary to
use locators. Therefore, the locator loc curentAssets can be replaced by the class
balancesheet.owl#currrentAssets. Given a locator “L”, we use C(L) to de-
note the class it points to (i.e., the class corresponds to its xlink:href property
value).

Arcs. Arc-type elements join the resources referenced in their from and to attributes,
for instance:

<definitionArc xlink:type="arc"
xlink:from="loc_assets" xlink:to ="loc_currentAssets"
xlink:show = "replace" xlink:acuate = "onRequest"
xlink:title = "From Assets to Current Assets"
xlink:arcrole = "http://www.xbrl.org/linkprops/arc/parent-child"/>
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For conciseness, let C(loc assets)=A and C(loc currentAssets) = C. An
arc is represented as a property in OWL. Since an arc has no name in XBRL, a new
property name is introduced for it.

A naive translation approach is to relate the two concepts (elements) using property
assertions, such as

ObjectPropertyAssertion(ex:arc1 A C )

Where ex:arc1 is a new property name for the arc. However, such an approach will
result in an OWL 2 Full ontology, hence violates inference termination requirement
in OWL 2, since classes A and C are also used as individuals. A better OWL 2 DL
translation is:

EquivalentClasses( A ObjectHasSelf( e x : p A ) )
EquivalentClasses( C ObjectHasSelf( e x : p C ) )
SubObjectPropertyOf( ObjectPropertyChain( e x : p A owl:topObjectProperty

ex:pC ) ex:arc1)
AnnotationAssertion(rdfs:label ex:arc1 "From Assets to Current Assets"ˆˆ

xsd:string))
SubObjectPropertyOf(ex:arc1 xbrlo:definitionArc)
SubObjectPropertyOf(ex:arc1 xbrlo:parent-child)

The first three axioms encode the rule ex:arc1(x,y)← A(x), C(y), where ex:pA and
ex:pC are two helper properties. This correctly captures the semantics that the instances
of A and C have the relation parent-child.

Attributes xlink:actuate which always has value “onRequest”, and
xlink:show which has value “embed” if the resources linked are in different files
and otherwise “replace”, are not translated as they can be trivially inferred.

Arc Types. There are 5 arc types which are all subclasses of xbrlo:arc:

– xbrlo:calculationArc3: it has an attribute “weight”. To obtain an OWL
2 DL translation, we may introduce a helper individual for the arc and associate the
weight to that individual so that an XBRL processor can find such information. For
example:

EquivalentClasses( ObjectOneOf(ex:i1) ObjectHasSelf( ex:arc1 ) )
DataPropertyAssertion (xbrl:weight ex:i1 "1"ˆˆxsd:decimal)

– xbrlo:presentationArc: it has an order attribute which can be modeled
similarly to calculationArc.

– xbrlo:definitionArc: discussed above.
– xbrlo:labelArc and xbrlo:referenceArc are non-semantic types and

their translations are given in [1].

Arc Roles (�). Arc roles have intended semantics. For example, if loc assets
has a child-parent relation to loc currentAssets, it is expected that
loc currentAssets has a parent-child relation to loc assets. However,

3 Note that while OWL itself does not provide numeric calculation, there are extensions of OWL
that are able to do so, cf. Manchester OWL Arithmetics
http://www.cs.man.ac.uk/˜iannonel/owlcalculations/syntax.html

http://www.cs.man.ac.uk/~iannonel/owlcalculations/syntax.html
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such semantics are left implicit in the XBRL specification, which leads to both the re-
dundancy and the risk of data inconsistency. Thus, for the example above, we have to
also add the following content to the XBRL taxonomy document:
<definitionArc xlink:type=arc xlink:from = "loc_currentAssets"

xlink:to ="loc_assets" xlink:show = "replace"
xlink:acuate = "onRequest"
xlink:title = "From Current Assets to Assets"
xlink:arcrole = "http://www.xbrl.org/linkprops/arc/child-parent"/>

Leveraging OWL’s inference ability, we can eliminate such redundancy by defining
the properties of the arc role. For example, the following OWL axioms declare that
parent-child and child-parent are inverse to each other, and that a definition
arc is symmetric:
InverseObjectProperties(xbrlo:parent-child xbrlo:child-parent)
SymmetricObjectProperty(xbrlo:definitionArc)

Fig. 1. Equivalency relations and
child-parent relations

Note that child-parent (and similarly
parent-child) relations in XBRL have differ-
ent semantic meanings from OWL subclass rela-
tions. In XBRL, a child-parent relation de-
scribes how the value of instances of the related
concepts are related, whereas in OWL a subclass
relation means subset relations between instance
sets of the related concepts.

Similar declarations are added for other arc
roles (e.g., xbrlo:dimension-element is
inverse of xbrlo:element-dimension) and
arc types. As xbrlo:dimension-element
indicates equivalency, we require it to be reflex-
ive, transitive and symmetric, i.e.,

ReflexiveObjectProperty(xbrlo:dimension-element)
TransitiveObjectProperty(xbrlo:dimension-element)
SymmetricObjectProperty(xbrlo:dimension-element)

Fig 1 shows an example of calculating assets using different dimensions4. In XBRL,
18 arcs are required whereas in the OWL translation only 9 arcs are needed; in addition,
we can infer that “Total Assets by Geography” and “Total Assets by Produce Line” must
have the same value without calculating the value of “Assets”.

5 Representing XBRL Instances

Items. Items are actual facts in the report thus are translated into OWL fact assertions.
Since they have no name in the XBRL document, they will be mapped to anonymous
individuals in OWL. For example, the XBRL fragment:
<assets numericContext="c1">300</assets>

4 The example is originally from
http://us.kpmg.com/microsite/xbrl/train/86/86.htm

http://us.kpmg.com/microsite/xbrl/train/86/86.htm
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is translated into OWL assertions

ClassAssertion(ex:assets _:x1)
ObjectPropertyAssertion(xbrlo:hasContext _:x1 ex:c1)
DataPropertyAssertion(xbrlo:value _:x1 "300"ˆˆxsd:double)

where :x1 is a newly introduced anonymous individual.

Tuples. Tuples are concepts that are used to contain other concepts. The struc-
tural relation of a tuple with its component concepts is represented using the
xbrlo:tupleValue property, e.g.,

<address>
<street>8th St</street> ...

</address>

is translated to

ClassAssertion(ex:address _:x1)
ClassAssertion(ex:street _:x2)
ObjectPropertyAssertion(xbrlo:tupleValue _:x1 _x2)
DataPropertyAssertion(xbrlo:value _:x2 "8th St"ˆˆxsd:string)

When the innermost block of a tuple has literal value, we can also use properties to
model. For instance, the above example may also be modeled as

DataPropertyAssertion(ex:hasAddress _:x1 "8th St"ˆˆxsd:string)

Contexts (�). Contexts are used to provide additional information related to the
items (facts). A context is an instance of the class xbrlo:numericContext or
xbrlo:nonNumericContext, which are both subclasses of xbrlo:context.
For example:

<numericContext id="c1" precision="12" cwa="true">
<period><instant>2001-12-31</instant></period> ...

<numericContext>

will be translated into OWL

ClassAssetion(xbrlo:numericContext ex:c1)
DataPropertyAssertion(xbrlo:precision ex:c1 "12"ˆˆxsd:integer)
DataPropertyAssertion(xbrlo:cwa ex:c1 "true"ˆˆxsd:boolean)
ObjectPropertyAssertion(xbrlo:period ex:c1 _:x)
ClassAssertion(time:Instant _:x)
DataPropertyAssertion(time:inXSDDateTime _:x "2001-12-31"ˆˆxsd:dateTime)

Here we reuse the OWL Time ontology5 to represent period data.
The xbrlo:context class contains optional components entity, period,

unit and scenario. The xbrlo:numericContext class has additional required
attributes precision and cwa (closed world assumption)6. This requirement can be
represented as cardinality constraints in OWL (only two such constraints are shown
here)7:

5 http://www.w3.org/TR/owl-time/
6 Note that CWA in XBRL is different from CWA in OWL which models integrity constraints.
7 All cardinality constraints in our translation should be understood as integrity constraints using

the semantics described in [?], i.e., they will be used for data validation but not inference of
new knowledge.

http://www.w3.org/TR/owl-time/
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SubClassOf(xbrlo:context ObjectMinCardinality("0"ˆˆxsd:integer
xbrlo:entity))

SubClassOf(xbrlo:numericContext ObjectMinCardinality("1"ˆˆxsd:integer
xbrlo:precision))

Only an instance of numericItemType (monetaryItemType,
sharesItemType, or decimalItemType) can have an instance of
numericContext as its context, therefore we have the constraint:

SubClassOf(xbrlo:numericContext ObjectAllValuesFrom(
ObjectInverseOf(xbrlo:hasContext) xbrlo:numericItemType)

We summarize the correspondence of key XBRL and OWL notions in Table 1. Trans-
lation of some non-semantic features of XBRL, e.g., annotations, are given in [1].

6 Conclusions
Table 1. Correspondence of Key XBRL and OWL Notions

XBRL OWL
Taxonomy Document Axioms
Instance Document Assertions (facts)
Element Named class
Datatype Datatype
Locator directly identified by the resource’s IRI
Arc Named property
Item Anonymous individual
Context Instance (of Context class)
“type” attribute “SubClassOf” axiom
“name” attribute local name of the IRI of the resource
“id” attribute not translated
“title” attribute rdfs:label annotation

In this paper we provide
a semantic data model of
XBRL-based financial data
by using OWL so as to
express the semantics cur-
rently described implicitly
in XBRL specifications. We
show that such a semantic
model is able to better cap-
ture the domain knowledge
related to financial reports,
and reduces the redundancy,
e.g. relation definition, in
the current XBRL models.
We also believe such a representation will enhance transparency in financial report fil-
ing, as well as the integration of financial reports and other domain knowledge bases.

Our ongoing work includes the modeling of the US GAAP (Generally Accepted Ac-
counting Principles) and the IFRS (International Financial Reporting Standards) tax-
onomies using Semantic Web languages. Another future work is to publish XRBL
data in the SEC EDGAR database as a part of the semantic government data cloud
(http://data-gov.tw.rpi.edu) and link it to other government data sets (e.g., bankruptcy
data and macroeconomic data).
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Abstract. The main source of changing requirements of the dynamic business 
environment is response to changes in regulations and contracts towards which 
businesses are obligated to comply. At the same time, many organizations have 
their business processes specified independently of their business obligations 
(which include adherence to contracts laws and regulations). Thus, the problem 
of mapping business changes into computational systems becomes much more 
complicated. In this paper we address the problem by providing an automated 
transformation of business rules into a formal language capable of directly 
mapping onto executable specifications. The model transformation is consistent 
with MDA/MOF/QVT concepts using ATL to perform the mapping. Business 
rules are compliant to SBVR metamodel, and are transformed into FCL, a logic 
based formalism, known to have a direct mapping onto executable 
specifications. Both, source and target rules are based on principles of deontic 
logic, the core of which are obligations, permissions and prohibitions.  

Keywords: Business Contract; Business Rule Transformation; SBVR; FCL; 
MDA. 

1   Introduction 

Due to the current dynamic and highly competitive business environment the 
organizations have to make changes in their computational systems in a much more 
accelerated rhythm than in past decades. Consequently, the computational solutions 
for the business problems cannot accompany the speed in which the change 
necessities appear. One of the main sources of change is response to changes in 
regulations and contracts towards which businesses are obligated to comply. 

Commonly, documents containing contracts, regulations, laws and procedures 
define the strategies, policies and relationships among organizations and consolidate 
the organization´s knowledge. From those documents arise the rules that define the 
behavior of the business processes in the organizations [1]. Hence, the computational 
systems must be compliant with these business documents. So, ensuring compliance 
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of business processes with business contracts means ensuring consistency of rules 
stated in business contracts and rules covering the execution of business processes.  

We propose an MDA (Model Driven Architecture) [2] based model to transform 
SBVR compliant business rules [3] extracted from business contract of services to 
compliant executable rules in FCL – Formal Contract Logic [4]. Both business rules 
and FCL rules are based on principles of deontic logic [5] for treating expressions in 
the form of normative policies, the core of which are obligations, permissions and 
prohibitions. Deontic constraints express what parties to the contract are required to 
perform (obligations), what they are allowed to do (permissions), or what they are not 
allowed to do (prohibitions). We also present a transformation exercise using ATL 
(Atlas Transformation Language) [6] to transform SBVR compliant rules to FCL 
rules. We do not go into details about the generation of the predicates of FCL. 

The next section provides an overview of the MDA modeling framework and 
Section 3 discusses aspects on business rules and business contracts formalization. 
Section 4 presents some requirements on the business contracts edition. Section 5 
presents the proposed model transformation and Section 6 discusses some related 
works and the final section provides a conclusion and discussion on future researches. 

2   Foundations on Model Transformation 

Model transformation is the process of transforming a model, say Ma, conforming to 
metamodel MMa into a model, say Mb, conforming to metamodel MMb. QVT 
(Query/View/Transformation) [7], is an OMG (Object Management Group) standard 
for performing model transformations in the context of MDA and it can be used to do 
syntactic or semantic transformation. 

The idea of Model Driven Engineering is that, through transformations accomplished 
on the conceptual model, new models are generated, with abstraction levels more and 
more specific and the final system is generated automatically. The built models are 
formals, avoiding ambiguity, so that they can be understood by software systems.  

 

Fig. 1. ATL transformation context 

ATL is a model transformation language developed by OBEO and INRIA to 
answer the QVT Request For Proposal. Considering the Figure 1, an ATL program 
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(MMa2MMb.atl) will take model Ma.xmi as input and will produce model Mb.xmi as 
output. Both models may be expressed in the OMG XMI [8] standard. The model Ma 
conforms to metamodel MMa.km3. Model Mb conforms to metamodel MMb.km3. 
The KM3 (Kernel MetaMetaModel) notation is a simple and neutral metamodel 
specification language. The ATL program itself (MMa2MMb.atl here) is also a 
model, so it conforms to a metamodel (the ATL metamodel) not presented here. An 
ATL program is composed of a header, of a set of side-effect free functions called 
helpers and of a set of rules. 

3   Formalization of Business Rules and Business Contracts 

This section presents some foundations on business rules and business contracts and 
discuss some aspects related to their formalization. 

3.1   Business Rules 

Although there are a lot of discussion around the definition of what “business rule” 
means [3], [9] in the context of this work, a business rule is "a rule that can be 
interpreted by computers, that defines or restricts some aspects of a business, 
introducing obligations or needs, according to the organization policies."[10]. 
Following are some business rules in the context of car rental:   

• A car must have a registration number.    
• A car should not be released to the customer if the credit card was not 

presented as the payment guarantee.    
• A driver of a rental car must be a qualified driver. 

The main objective of the SBVR metamodel [3] is to allow business people to define 
the policies and the rules that drive the organizations in the business people’s own 
language, in terms of the artifacts with which they perform the businesses. Besides, 
the other objective is to capture those rules in a clear way, without ambiguity, and 
quickly transformable in other representations, as the representations for business 
people, for software engineers, and for business rules execution tools.  

According to SBVR metamodel a business rule can be expressed formally in 
statements in a structured English language using a font style convention. There are 
four font styles with formal meaning: (i) term - the ‘term’ font is used for a 
designation for a noun concept (other than an individual concept); (ii) Name - the 
‘name’ font is used for a designation of an individual concept that tend to be proper 
nouns (e.g., Washington); (iii) verb - the ‘verb’ font is used for designations for fact 
types — usually a verb, preposition, or combination thereof; and (iv) keyword - the 
‘keyword’ font is used for linguistic symbols used to construct statements – the words 
that can be combined with other designations to form statements and definitions (e.g., 
‘each’ and ‘it is obligatory that’). For example, in the business rule, as shown in the 
Figure 2, includes three keywords or phrases, two designations for noun concepts and 
one for a fact type. 
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It is obligatory that  each rental car is owned by exactly one  branch 

Keywords 
for a modality 

Designation 
for an object type 

Quantifier Quantifier 

Designation 
for an object type 

Designation 
for a fact type 

 

Fig. 2. Business rule elements 

3.2   Business Contract of Services 

This Section provides some issues related to contract of services formalization based 
on Formal Contract Logic (FCL). FCL was introduced in [11] for the formal analysis 
of business contracts and it is based on previous work on formal representation of 
contracts [12], logic of violations [13], and normative positions based on Deontic 
Logic with Directed Obligations [14].  

A contract is structured in terms of a number of clause groups, each of which 
contains contract conditions. To save space, consider the following small part of the 
contract presented in [11] that will be analyzed and formalized in the subsequent 
sections. 

 
CONTRACT OF SERVICES 
 
This Deed of Agreement is entered into as of the Effective Data identified below. 
BETWEEN ABC Company (To be known as the Purchaser) 
AND ISP Plus (To be known as the Supplier) 
WHEREAS (Purchaser) desires to enter into an agreement to purchase from 

(Supplier) Application Server (To be known as (Service) in this Agreement). 
NOW IT IS HEREBY AGREED that (Supplier) and (Purchaser) shall enter into 

an agreement subject to the following terms and conditions: 
… 
5 Service Delivery 

5.1 The (Supplier) shall ensure that the (Services) are available to the 
(Purchaser) under Quality of Service Agreement 
(http://supplier/qos1.htm). (Services) that do not conform to the Quality of 
Service Agreement shall be replaced by the (Supplier) within 3 days from 
the notification by the (Purchaser), otherwise the (Supplier) shall refund 
the (Purchaser) and pay the (Purchaser) a penalty of $1000. 

5.2 The (Supplier) shall on receipt of a purchase order for (Services) make 
them available within 1 days. 

… 
Usually a contract comprises two types of clauses: definitional clauses giving the 

meaning of the terms used in the contract and clauses specifying the normative 
behaviors (i.e., giving the obligations, permissions, prohibitions the signing parties of 
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the contract are subject to). We will concentrate only on the normative specifications 
of a contract. Hence, we will ignore all the sections of the contract, except for the 
section 5. According to the normalization process in FCL [4] give us the following 
rules: 

r5:1 : Service  OSQualityOfService  OSReplace3days   OSRefund&Penalty  
 PPChargeSupplier 

r5:2 : PurchaseOrder  OSDeliver1day  PPChargeSupplier 

4   Contract of Services Editor Requirements 

As in any community, the users of the buyer and seller community use a common 
terminology, sharing the same understanding about the words, procedures and 
activities that are part of their daily business routine. To facilitate the task of business 
contract elaboration, Figure 3 gives an idea of how could be the external interface of 
an IDE – Integrated Development Environment. It should provide some editors and 
functionalities to define terms, facts, business rules, contracts and services using that 
community terminology.  

 

Fig. 3. Interface Prototype for the Business Contract and Business Rules IDE 

In this way, supplier, purchaser and service are terms designating concepts, which 
ultimately represent object types; “service is replaced within 3 days” and “service is 
under Quality of Service Agreement” are facts; and “It is obligatory that the 
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supplier ensure to the purchaser that the service is refunded and a penalty of $1000 
is paid if the service is not replaced within 3 days” is a business rule. All these 
elements are meaningful to that community and should be defined using the IDE. 

When the business analyst defines terms, verbs, facts and rules contained in a 
contract of service, they will be stored in the IDE infrastructure. 

5   Transformation of SBVR Compliant Rules to FCL Rules 

This Section presents the Contract of Services adherent to the SBVR metamodel  and 
provides an example to exercise the proposed model transformation using ATL 
infrastructure to transform SBVR compliant elements to the FCL elements.  

The prior Contract of Services could be represented by using the SBVR metamodel 
elements, i.e., in terms of terms (designation for object type), Names (designation for 
Name type), verbs (designation for fact type) and keywords. To save space, we will 
concentrate only on the normative specifications of the section 5.1 of the contract, 
which is divided into 3 business rules to easy understanding. 

 
CONTRACT OF SERVICES 

… 
5. Service Delivery 

5.1   – 

a. It is obligatory that the supplier must ensure to the purchaser that the 
service is under quality of service agreement (http://supplier/qos1.htm). 

b. It is obligatory that the supplier must ensure to the purchaser that the 
service is replaced within 3 days from the notification if the service is not 
under quality of service agreement. 

c. It is obligatory that the supplier ensure to the purchaser that the service is 
refunded and a penalty of $1000 is paid if the service is not replaced 
within 3 days.  

5.2   Model Transformation  

Considering just the previous business rules 5.1b and 5.1c they should be transformed 
to the following FCL rules: 

r5:1b : ┐ServiceIsUnderQoSAgreement OSServiceIsReplacedWithin3days 

r5:1c: ┐ReplaceServiceWithin3days  OSSupplierRefundsService,     
OSSupplierPaysPenaltyOf$100 

 
According to MDA’s perspective we have to define the models for these text 
fragments. Following is the corresponding model, expressed in XMI, for the SBVR 
business rules. This model will be the input of the transformation mechanism. 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns ="Rules"> 
 <Rule ruleId="r51b"> 
  <keyword keywordLabel="It is obligatory that"/> 
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<keyword kw=" the"/>  
<fact factType="service is replaced within 3 days"/> 

     <condition factType="service is not under quality of service agreement "/> 
 </Rule> 
 <Rule ruleId="r51c"> 
  <keyword keywordLabel="It is obligatory that"/> 

<keyword kw="the"/>  
<fact factType="service is refunded and penalty of $1000 is paid "/> 

     <condition factType="service is not replaced within 3 days"/> 
 </Rule> 
</ xmi:XMI > 
 

Following is the corresponding model, expressed in XMI, for the FCL rules. This 
model will be the output of the transformation mechanism.  

<?xml version="1.0" encoding="ISO-8859-1"?> 
<xmi:XMI xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI" xmlns ="FCL Rules"> 
 <Rule ruleId="r51b"> 
  <ant_premise> 

    <symbol negation="not" /> 
    <premise a_prem= "ServiceIsUnderQoSAgreement"/>  
  </ant_premise>      
  <conc_premise> 
    <premise c_prem= OSServiceIsReplacedWithin3days"/>  
  </conc_premise> 

 </Rule> 
 <Rule ruleId="r51c"> 
   <ant_premise> 

    <symbol negation="not" /> 
    <premise a_prem= "ServiceIsReplacedWithin3days"/>  
 </ant_premise>      
 <conc_premise> 
    <premise c_prem="OSServiceIsRefunded"/>  
    <premise c_prem="OSPenaltyOf$100IsPaid"/>  
 </conc_premise> 

 </Rule> 
</xmi:XMI > 

 
According to MDA and ATL phylosophy, these two models have to conform to the 

respective source and target metamodels. Thus, in order to achieve the transformation, 
it is necessary to provide: (i) a source metamodel in KM3 ("SBVR Rules"), (ii) a target 
metamodel in KM3 ("FCL Rules"), and (iii) a transformation model in ATL 
("SBVR2FCL"). When the ATL transformation is executed the source model (XMI 
model for SBVR rules) will be transformed into the target model (XMI model for the 
FCL rules). 

6   Related Works 

This section discusses some works related to the business contract execution. These 
works mention the absence of an appropriate treatment so that the business contract 
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clauses and rules can be mapped into executable rules in a collaborative and 
integrated way with business process mechanisms.  

Kabilan [15] proposes an approach to combine contract workflow models with 
Business Process Modeling Notation (BPMN) models. Business process modelers 
may model the contract obligation fulfillment process as Contract Workflow Models 
(CWM) using BPMN diagrams. The weakness of this proposal is that it is not 
complete in terms normative propositions based on Deontic Logic, for example, it 
cannot capture all informational aspects and related concepts, likeïprohibitions. 

SweetDeal [16] is a rule-based approach to representation of business contracts 
that enables software agents to create, evaluate, negotiate, and execute contracts with 
substantial automation and modularity. It builds upon the situated courteous logic 
programs knowledge representation in RuleML. It combines RuleML with ontologies 
(DAML+OIL) for a practical e-business application domain. Although it seems to be 
a good approach, SweetDeal did not show how to incorporate legal aspects of contracts 
into the approach. 

The Edee architecture [17] provides a mechanism for explicitly and uniformly 
capturing business occurrences, and provisions of contracts, policies, and law. Edee is 
able to reason about the interactions between organizations and execute business 
procedures informed by the combined legal effects of the corresponding diverse rules. 
It deals with both conflict detection and resolution. The weakness of Edee is that it 
does not show how effectively the business contract issues are translated to the 
dynamic context of executable business processes. 

7   Conclusions and Future Work 

The proposed MDA based model transformation makes innovative contributions 
compared to other initiatives in mapping business contracts to executable code. The 
model (i) helps business analysts in the definition of contracts and rules, using a 
language familiar to them, using the terms with which they accomplish their 
businesses; (ii) can define contracts and rules, using templates, and express them in 
computation independent models (CIM); (iii) both business rules and FCL rules are 
based on principles of deontic logic for treating expressions in the form of normative 
policies, the core of which are obligations, permissions and prohibitions. 

Besides, as a proof of concept for the proposed model transformation it is specified 
some requirements for the IDE to elaborate and edit business contracts, business 
rules, facts and terms. All these assets should be transformed to computational code, 
for rules and contract of services, adherent to FCL rules model.  

The results indicate that the concepts, ideas and proposed model transformation are 
promising. Besides business contracts and rules formalization technologies, services 
(SOA), repositories and ontologies, it seems that the complete solution for the 
mentioned problems includes the following list of topics that deserve future 
researches:     

• Inclusion of a mechanism in the IDE to contemplate process composition 
modeling using, for instance, languages such as BPMN and that could make 
transformation to executable languages like WS-BPEL.  
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• Proposition of a mechanism to help the business analyst to link business rule 
actions to Web services. May be considering Web 2.0 application facilities, such 
as recommendation system linked to trust, preference and rated content to create 
highly trusted environment for business analyst to decide which Web service is the 
most adequate in a specific rule action. 

• Development of a prototype implementing the IDE, including repository instances 
for ontologies, adherent to the MOF metamodel, with standardized query and 
manipulation language. 

References 

1. Hildreth, S.: Rounding Up Business Rules. ComputerWorld Software. ID (2005) 
2. OMG , MDA Guide Version 1.0.1 (2003),  

http://www.omg.org/cgi-bin/doc?omg/03-06-01 (access in March/2010)  
3. OMG Semantics of Business Vocabulary and Business Rules (SBVR), v1.0 OMG 

Available Specification (2008), http://www.omg.org/spec/SBVR/1.0/PDF/ 
(access in March/2010) 

4. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business 
processes and business contracts. In: Proc. The 10th International Enterprise Distributed 
Object Computing Conference - EDOC, Hong Kong, pp. 221–232 (2006) 

5. Beller, S.: Deontic norms, deontic reasoning, and deontic conditionals. Thinking & 
Reasoning 14(4), 305–341 (2008) 

6. ATLAS group, LINA, INRIA, ATL: Atlas Transformation Language ATL User Manual - 
version 0.7, Nantes (2006) 

7. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, version 
1.0 (2008) 

8. OMG, MOF 2.0/XMI Mapping Specification, v2.1.1 (2005), http://www.omg.org/ 
cgi-bin/doc?formal/2007-12-01/ (access in March/2010)  

9. Kamada, Service Execution based on Business Rules, PhD Thesis in Computing 
Engineering, Unicamp, Campinas, Brazil (2006) 

10. Kamada, A.F., Rodrigues, M.: Ontology based Business Rules and Services Integration 
Environment. In: Ajeeli, A.T.A., Al-bastaki, Y.A.L., Abu-tayeh, J. (eds.) Handbook of 
Research on E-services in the Public Sector: E-government Strategies and Advancements. 
Information Science Publishing, United Kingdom (March 2010) 

11. Governatori, G., Milosevic, Z.: A Formal Analysis of a Business Contract Language. 
International Journal of Cooperative Information Systems (IJCIS) 15(4), 659–685 (2006) 

12. Governatori, G.: Representing business contracts in RuleML. Int. J. of Cooperative Inf. 
Sys. 14(2-3), 181–216 (2005) 

13. Governatori, G., Rotolo, A.: Logic of violations: A Gentzen system for reasoning with 
contrary-to-duty obligations. Australasian Journal of Logic 4, 193–215 (2006) 

14. Kanger, S.: Law and logic. Theoria 38, 105–132 (1972) 
15. Kabilan, V.: Contract Workflow Model Patterns Using BPMN, FORUM 100, Kista, 

Sweden (2005) 
16. Grosof, B.N., Poon, T.C.: Representing Agent Contracts with Exceptions using XML 

Rules, Ontologies, and Process Descriptions. In: Proc. 12th International Conference on 
World Wide Web, Budapest, Hungary, pp. 340–349 (2003) 

17. Abrahams, D.E., Bacon, J.: An asynchronous rule-based approach for business process 
automation using obligations. In: Proc. ACM SIGPLAN Workshop on Rule-based 
Programming, Pittsburgh, USA, pp. 93–103 (2002) 



RuleML 1.0:
The Overarching Specification of Web Rules

Harold Boley1, Adrian Paschke2, and Omair Shafiq3

1 Institute for Information Technology, National Research Council Canada
Fredericton, NB, Canada
harold.boley@nrc.gc.ca

2 Freie Universitaet Berlin, Germany
paschke@mi.fu-berlin.de

3 University of Calgary, AB, Canada
moshafiq@ucalgary.ca

Abstract. RuleML is a family of languages, whose modular system of
XML schemas permits high-precision Web rule interchange. The fam-
ily’s top-level distinction is deliberation rules vs. reaction rules. Deliber-
ation rules include modal and derivation rules, which themselves include
facts, queries (incl. integrity constraints), and Horn rules (incl. Data-
log). Reaction rules include Complex Event Processing (CEP), Knowl-
edge Representation (KR), and Event-Condition-Action (ECA) rules, as
well as Production (CA) rules. RuleML rules can combine all parts of
both derivation and reaction rules. This allows uniform XML serializa-
tion across all kinds of rules. After its use in SWRL and SWSL, RuleML
has provided strong input to W3C RIF on several levels. This includes the
use of ‘striped’ XML as well as the structuring of rule classes into sublan-
guages with partial mappings between, e.g., Datalog RuleML and RIF-
Core, Hornlog RuleML and RIF-BLD, as well as Production RuleML
and RIF-PRD. We discuss the rationale and key features of RuleML
1.0 as the overarching specification of Web rules that encompasses RIF
RuleML as a subfamily, and takes into account corresponding OASIS,
OMG (e.g., PRR, SBVR), and ISO (e.g., Common Logic) specifications.

1 Introduction

Rules on the Web come in various formats and with diverse packaging. Often,
however, the semantics of Web-distributed rule content are compatible. In such
cases, rulebases can be reused with an interchange technology consisting of a
family of canonical rule languages and bi-directional translators between canon-
ical languages and the languages to be interchanged. The need for Web rule
interchange has been increasing with the amount of business rules (incl. policies,
regulations, laws, . . .) in many domains (e.g. finance, engineering, healthcare,
. . .) on the Web 1.0, 2.0 (Social), and 3.0 (Social Semantic).

RuleML has been designed for the interchange of the major kinds of Web rules
in an XML format that is uniform across various rule languages and platforms.
It has broad covergage and is defined as an extensible family of languages, whose

M. Dean et al. (Eds.): RuleML 2010, LNCS 6403, pp. 162–178, 2010.
c© Her Majesty the Queen in Right of Canada 2010
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modular system of XML schemas permits rule interchange with high precision,
as follows.

When a rulebase is prepared for interchange by a sender,

– it is translated to RuleML if the source document is not in the RuleML
format already,

– the Most Specific Schema (MSS) is determined against which the RuleML
document can be validated,

– the Internationalized Resource Identifier (IRI) of the MSS is pointed to from
the rulebase or is otherwise transmitted along with the rulebase.

When a rulebase is obtained by a receiver,

– it is validated against the same RuleML schema to exclude any too specific
MSS assignments and transmission errors,

– it is converted to the local format if the target document is not to be in
RuleML anyway.

The RuleML family constitutes a taxonomy of subfamilies, languages, and sub-
languages classified through the syntactic power of rules, as reflected by their
XML Schema Definitions (XSDs), and through their semantic power, as re-
flected by their model-theoretic, proof-theoretic, and operational semantics. Of-
ten, more syntactic power leads to more semantic power (e.g., the introduction
of Expression syntax pushes Datalog to Horn Logic (Hornlog) models in Sec-
tion 3.2). Syntactically neutral aspects of semantic power will be expressed by
semantic attributes (e.g., by a negation attribute for the semantics of Negation-
as-failure in Section 3.5).

Fig. 1, a simplified version of the RuleML taxonomy, shows the semantic
subfamilies of Deliberation rules for inference and Reaction rules for (re)action.
Deliberation rules, via Higher Order Logic (HOL) and First Order Logic (FOL),
subsume Derivation rules. Derivation rules subsume Hornlog and Datalog lan-
guages and (syntactically) specialize to the condition-less Fact and conclusion-
less Query languages (subsuming Integrity Constraint (IC) languages). Reaction
rules subsume Complex Event Processing (CEP) and Knowledge Representa-
tion (KR) rules, as well as Event-Condition-Action-Postcondition (ECAP) rules.
ECAP rules specialize to Event-Condition-Action (ECA) rules, which themselves
specialize to Condition-less Trigger (EA) rules and to the rule subfamily of
Event-less Production (CA) rules. The RuleML family also has ‘mix-ins’ for
Equality and (oriented) Rewriting, as well as for Naf. The Reaction subfamily
has mix-ins for Event Algebra, Action Algebra, etc.

While not shown in Fig. 1, RuleML languages make use of ‘pluggable’ libraries
of built-ins such as from the Semantic Web Rule Language (SWRL) [HPSB+04]
and the Rule Interchange Format (RIF) [PBK10]. There are also entire RuleML
languages we cannot further discuss in the confines of this paper, including for
uncertainty and fuzzy rules1 [DPSS08] and for defeasible rules2 [KBA08].
1 Fuzzy RuleML: http://www.image.ntua.gr/FuzzyRuleML
2 Defeasible RuleML: http://defeasible.org

http://www.image.ntua.gr/FuzzyRuleML
http://defeasible.org
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Fig. 1. Taxonomy of RuleML rules

The derivation rule languages have a Datalog language as their kernel. Datalog
RuleML is defined over both Data constants and Individual constants with an
optional iri attribute for webizing. Atomic formulas have n arguments, which
can be positional or slotted (key → term pairs). Object Oriented Datalog adds
optional types (sorts) and RDF-like oids via IRIs. Inheriting all of these Datalog
features, Hornlog RuleML adds positional and slotted Functional Expressions as
terms. In Hornlog – and other languages – with Equality, such uninterpreted
(constructor-like) functions are complemented by interpreted (equation-defined)
functions. This derivation rule branch is extended upward to FOL, including
disjunction (Or) in conclusions and strong Negation.

Reaction RuleML syntactically extends the condition (query) part of Deriva-
tion RuleML, whose condition-conclusion rules can be seen as ‘pure’ production
rules with conclusions as actions that just assert derived facts. For a discus-
sion of relationships between active and deductive rules see [Wid93]. Reaction
RuleML is based on ‘pluggable’ ontologies (e.g., algebras) of (complex) actions,
events, and – in the KR subfamily – situations. Production RuleML defines
condition-action rules. Complex Event Processing (CEP) RuleML defines (com-
plex) events and their efficient processing. Reaction RuleML extends production
rules with an event-triggering part, syntactically defining ECA rules, and with
further semantic extensions, e.g. for CEP rules.

RuleML rules can combine all parts of both derivation and reaction rules.
This allows uniform XML serialization across the rules from the taxonomy. A
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general <Rule> element specifies the kind of rule with a style attribute, where
shortcuts allow specialized elements such as <Implies> and <Reaction>.

After its use in SWRL and the Semantic Web Services Language (SWSL)
[BBB+05], RuleML has provided input to W3C RIF [BK10a] on several levels.
This includes the use of ‘striped’ XML and the structuring of rule classes into a
family of sublanguages with partial mappings between, e.g., Datalog RuleML and
RIF-Core [PBK10], Derivation RuleML and RIF Basic Logic Dialect (RIF-BLD),
as well as Production RuleML and RIF Production Rule Dialect (RIF-PRD),
where RuleML’s <if> . . . <do> was adopted as RIF’s <if> . . . <then><Do>.

The RIF WG – after having achieved W3C Recommendation status in June
2010 – is scheduled to terminate with the end of September 2010 until an un-
certain revival for a possible RIF 2. RIF’s standard logic Web rule dialects Core
and BLD come with a rigorous model-theoretic semantics, embodying the WG’s
cascaded design decisions. However, the W3C Core and BLD Recommendations
cover only a fraction of the Web rule space and their very rigor gives existing
Web rule languages little room for RIF conformance. The RuleML Initiative –
whose symposia have been a forum for RIF advances from its beginning – has
thus been co-hosting the development of further (“non-standard extensions”3 or)
RIF dialects such as the Core Answer Set Programming Dialect (RIF-CASPD)
[HK09] and Semantic Inferencing on Large Knowledge (SILK) [GDK09], using
the flexibility-enhancing Framework for Logic Dialects (RIF-FLD) [BK10b], as
well as RIF RuleML sublanguages such as Datalog with equality plus externals
(Dlex) [Bol09] and the envisioned Reaction Rule Dialect (RRD).

Even languages that will not become (“standard extensions”3 or) RIF 2 Rec-
ommendations themselves can help with Web rule interoperability by consolidat-
ing the terrain and acting as connectors to other standards bodies such as OMG
and OASIS as well as business rule organizations such as BRF4 and stakeholders
in the private and public sectors. Based on [WATB04] and Production RuleML,
members of the Reaction RuleML Technical Group have already contributed to
OMG’s Production Rule Representation (PRR). RuleML is founding member
of the Event Processing Technical Society (EPTS), where it contributes to, and
co-chairs, the EPTS Reference Architecture group (ETPS-RA).

This paper, building on our experience with RuleML as the de facto standard
for Web rules, discusses the design and definition of RuleML 1.0. As our run-
ning example, we will give variations on the discount rule5 Implies 1 from the
RuleML 1.0 exa directory.6

The rest of the paper is organized as follows. Section 2 discusses the design
rationale of the overarching RuleML family of languages. Section 3 expands
on RuleML 1.0 deliberation rules. Section 4 explains its reaction rules. Section
5 presents selected tools and applications of RuleML. Section 6 concludes the
paper. Appendix A gives hints on the RuleML 1.0 XSLTs and XSDs.

3 http://www.w3.org/2005/rules/wg/charter.html
4 http://www.businessrulesforum.com
5 http://ruleml.org/lib/discount-variations.ruleml
6 http://ruleml.org/1.0/exa/Datalog/discount.ruleml

http://www.w3.org/2005/rules/wg/charter.html
http://www.businessrulesforum.com
http://ruleml.org/lib/discount-variations.ruleml
http://ruleml.org/1.0/exa/Datalog/discount.ruleml
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2 Design Rationale for RuleML

The specification of an overarching rule markup family with the primary purpose
of rule interchange between platform-specific rule languages as well as between
other rule standards for, e.g., Semantic Web rules or production rules, requires
the balancing of many (interrelated) design choices with respect to semantics,
syntax, and pragmatics. For instance, for a rulebase with advanced constructs
such as Naf, a single predefined semantics would limit its use as it becomes
impossible for many rule languages to be compliant with this specific semantics.
Similarly, a rigorous syntax which does not support extensibility will necessarily
lead to problems if more and more major rule types will be included in this
overarching rule markup family. The design rationale for RuleML addresses these
requirements.

The RuleML syntax strives for the following widely accepted design principles
for good language design:

– Minimality: the language provides only the set of needed language features,
i.e., except for macro-like extensibility shortcuts and an order-insensitive
abstract role syntax, the same construct is not expressed by different syntax.

– Referential transparency: the same language construct always expresses the
same semantics regardless of the context in which it is used.

– Orthogonality: the language constructs are pairwise independent, thus per-
mitting their meaningful systematic combination.

RuleML is designed as an extensible family of languages. In each of these lan-
guages it provides a minimal set of needed language constructs which can be
applied in every meaningful combination in the respective expressiveness class
of the language. The language constructs are structured as modules in the XML
Schema definitions. This leads to a clear, compact, and precise design which is
easily adaptable, manageable, and extensible.

RuleML, as a general interchange format, can be customized for various se-
mantics of underlying (platform-specific) rule languages that should be repre-
sented and interchanged. Although a specific default semantics is always pre-
defined for each RuleML language, the intended semantics of a rulebase can
override it by using explicit values for corresponding semantic attributes. For
instance, a derivation rulebase represented in Datalog RuleML with Naf can be
explicitly declared to have Well-Founded (WF) or Answer Set (AS) semantics, with
AS as the default (cf. Section 3.5). Moreover, RuleML supports external domain
semantics such as ontologies, e.g. RDFS or OWL taxonomies, or class hierarchies,
e.g. object oriented models such as UML class models or Java class hierarchies.
These can be used as external order-sorted type systems for rule constructs,
e.g. variables and constants, giving them an interchangeable and machine inter-
pretable domain semantics. This flexible semantics approach of RuleML allows
refining the semantics of a syntactically represented rulebase.

From a pragmatic perspective, the layered RuleML design of Fig. 1 leads to a
compact syntax (in terms of language constructs) which is easier to learn, read,
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understand, and apply by end users, as well as easier to extend in a modular way
with new languages and semantics. The modular family of languages also makes
it easy for machines to process RuleML, e.g. by translators that map between
platform-specific rule languages and an equivalent RuleML language. Addition-
ally, the pluggable-semantics approach supports correct machine understanding
and interpretation.

In summary, these design principles allow the overarching RuleML specifica-
tion to evolve into a standard for rule interchange that provides full coverage
of all major rule languages and their underlying semantics while still being an
easily usable and further extensible interchange language. A more detailed dis-
cussion of the design principles of RuleML and how it compares to other rule
markup and Semantic Web languages can be found in [PB09a].

3 Deliberation Rules

This section describes deliberation rules with a focus on derivation rules, pro-
ceeding bottom-up from Datalog. The inference-style Rule element <Rule
style="inference"> can be equivalently shortcut to the <Implies> element.

3.1 Datalog RuleML

Datalog [CGT89] is at the core of many rule languages and is close to relational
databases with recursive views. Datalog RuleML is defined over both Data con-
stants and Individual constants with an optional attribute, iri, for webizing.
RuleML’s Relational Atoms have m + n arguments (m ≥ 0, n ≥ 0), where m
arguments are positional and n are slotted (key → term pairs). In Datalog
RuleML, terms (e.g. used as positional arguments and slot fillers) can only be
constants or Variables. Datalog RuleML also has optional RDF-like type (on
constants and variables) and oid attributes via IRIs. It allows for an Equality
extension, e.g. to call built-ins from ‘pluggable’ libraries.

To initialize our running example, let us consider Datalog rule Implies 1 for
deriving discounts, with the ternary Relation discount and the unary premium
and regular all being positional. Three versions are given in the columns, where
the order of role-tagged children does not matter, and for skipped <if>/<then>
role stripes the first child is understood as the <if> role, the second as <then>:

<!-- Implication Rule 1:
Backward notation of ’then’ and ’if’ roles, as in Logic Programming, and forward notation
using natural ’if’ ... ’then’ order, as in textbook logic, with exact same meaning

"The discount for a customer buying a product is 5.0 percent
if the customer is premium and the product is regular."

Notice that the ternary discount relation is applied via an Atom.
Furthermore, a Data constant can syntactically be an entire phrase
like "5.0 percent". It will unify only with variables and with Data
having exactly the same spelling (incl. spaces)
-->
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<Implies>
<then>

<Atom>
<Rel>discount</Rel>
<Var>cust</Var>
<Var>prod</Var>
<Data>5.0 percent</Data>

</Atom>
</then>
<if>

<And>
<Atom>
<Rel>premium</Rel>
<Var>cust</Var>

</Atom>
<Atom>
<Rel>regular</Rel>
<Var>prod</Var>

</Atom>
</And>

</if>
</Implies>

<Implies>
<if>

<And>
<Atom>

<Rel>premium</Rel>
<Var>cust</Var>

</Atom>
<Atom>

<Rel>regular</Rel>
<Var>prod</Var>

</Atom>
</And>

</if>
<then>

<Atom>
<Rel>discount</Rel>
<Var>cust</Var>
<Var>prod</Var>
<Data>5.0 percent</Data>

</Atom>
</then>

</Implies>

<Implies>

<And>
<Atom>

<Rel>premium</Rel>
<Var>cust</Var>

</Atom>
<Atom>

<Rel>regular</Rel>
<Var>prod</Var>

</Atom>
</And>

<Atom>
<Rel>discount</Rel>
<Var>cust</Var>
<Var>prod</Var>
<Data>5.0 percent</Data>

</Atom>

</Implies>

A slotted variant of our example uses pairs key → term in the conclusion’s
3-ary relation, and represents them as metaroles <slot>key term</slot> (we
will continue the <then> . . . <if> version, in the first column above, and elide
the unchanged condition, where slots would not add much to the readability of
unary relations):

<Implies>
<then>
<Atom>

<Rel>discount</Rel>
<slot><Data>buyer</Data><Var>cust</Var></slot>
<slot><Data>item</Data><Var>prod</Var></slot>
<slot><Data>rebate</Data><Data>5.0 percent</Data></slot>

</Atom>
</then>
<if> . . . </if>

</Implies>

A typed variant of our initial example can use Variables with the attribute
type, whose values are IRIs pointing to ontological class definitions on the Web
defined in RDFS and OWL:

<Implies>
<then>
<Atom>

<Rel>discount</Rel>
<Var type="http://xmlns.com/foaf/spec/#term_Person">cust</Var>
<Var type="http://daml.org/services/owl-s/1.0/ProfileHierarchy.owl#Product">prod</Var>
<Data>5.0 percent</Data>

</Atom>
</then>
<if> . . . </if>

</Implies>

3.2 Hornlog RuleML

Horn logic [Mak87] is the pure kernel of Prolog-like rule languages. In RuleML,
the corresponding Hornlog sublanguage is regarded as an extension of Datalog
RuleML, in particular of its Atoms: Besides constants and variables, Hornlog
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RuleML allows positional and slotted Functional Expressions as terms in Atoms
and, recursively, in other Exprs. Expressions can be uninterpreted, using an
attribute per with filler "copy" or interpreted, using it with filler "value".
Other per fillers are "effect", for (side-)effectful Expressions, and "modal", for
modal Exprs.

We refine the initial example by introducing an uninterpreted Expr represent-
ing the constructor term percent[5.0], thus proceeding from Datalog to Horn
logic, for XSDs and Herbrand models (we again elide the unchanged condition):

<Implies>
<then>
<Atom>

<Rel>discount</Rel>
<Var>cust</Var>
<Var>prod</Var>
<Expr><Fun per="copy">percent</Fun><Data>5.0</Data></Expr>

</Atom>
</then>
<if> . . . </if>

</Implies>

3.3 FOL RuleML

First Order Logic (FOL) [End01] has been widely used as a knowledge represen-
tation language. FOL RuleML is an extension of Hornlog RuleML mainly adding
classical negation and (explicit) quantifiers. An earlier version of FOL RuleML
is part of the W3C member submission SWRL FOL.7

We modify our initial example as follows:

<!--
"A customer receives either a discount of 5.0 percent for buying a product
or a bonus of 200.00 dollar if the customer is premium and the product is regular."

Notice that an ’eXclusive or’ is used to shortcut
And(Or(A,B),Not(And(A,B))) to Xor(A,B) in the conclusion.
-->

<Implies>
<then>
<Xor>

<Atom><Rel>discount</Rel><Var>cust</Var><Var>prod</Var><Data>5.0 percent</Data></Atom>
<Atom><Rel>bonus</Rel><Var>cust</Var><Data>200.00 dollar</Data></Atom>

</Xor>
</then>
<if> . . . </if>

</Implies>

3.4 RuleML with Equality

Logics with a distinguished equality predicate [Nie07] have been used for specifi-
cation languages, where equality has been kept symmetric (via paramodulation)
or become oriented (via term rewriting or narrowing). In RuleML, Equality
formulas act as an extension to sublanguages such as Datalog RuleML, Hornlog

7 http://www.w3.org/Submission/2005/01

http://www.w3.org/Submission/2005/01
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RuleML, and FOL RuleML. Equal has an oriented attribute whose "no" value
is assumed as the default.

We modify our initial example as follows:

<!-- Equational Rule 1’:
Conditional oriented equation returns rewritten value of first (left) Equal element
(’call-by-value’-interpreted binary discount function applied via Expr)
through second (right) Equal element (an alphanumeric Data value)

-->

<Implies>
<then>
<Equal oriented="yes">

<Expr><Fun per="value">discount</Fun><Var>cust</Var><Var>prod</Var></Expr>
<Data>5.0 percent</Data>

</Equal>
</then>
<if> . . . </if>

</Implies>

3.5 Naf RuleML

Besides strong Negation in FOL RuleML (cf. Section 3.3), Deliberation RuleML
also allows Negation-as-failure, as used in Logic Programming. This Naf RuleML
can be parameterized for Answer Set (AS) semantics (subsuming stable model
semantics) and for Well-Founded (WF) semantics, using a semantic attribute,
negation, on the enclosing Rulebase, whose default value is AS, accommodating
RIF-CASPD [HK09].

The following Rulebase example enforces Well-Founded semantics for Nafs in
the conditions of discount rules such as to exclude late-paying customers:

<Rulebase negation="WF">
<Implies>
<then>

<Atom><Rel>discount</Rel><Var>cust</Var><Var>prod</Var><Data>5.0 percent</Data></Atom>
</then>
<if>

<And>
<Naf>

<Atom><Rel>late-paying</Rel><Var>cust</Var></Atom>
<Naf>
. . .

</And>
</if>

</Implies>
. . .

</Rulebase>

4 Reaction Rules

Reaction rules are concerned with the invocation of actions in response to events
and actionable situations [PB09b]. They state the conditions under which actions
must be taken and describe the effects of action executions. In the last decades
various reaction rule languages and rule-based event processing approaches have
been developed, which for the most part have been advanced separately. The
Reaction RuleML subfamily addresses the four major reaction rule types:
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– Production Rules (Condition-Action rules) in the Production RuleML sub-
family

– Event-Condition-Action (ECA) rules in the ECA RuleML subfamily
– Rule-based Complex Event Processing (complex event processing reaction

rules, (distributed) event messaging reaction rules, query reaction rules etc.)
in the CEP RuleML subfamily

– Knowledge Representation Event/Action/Situation Transition/Process Log-
ics and Calculi in the KR Reaction RuleML subfamily

The syntax of reaction rules in Reaction RuleML is defined on top of Derivation
RuleML by a general rule format which can be specialized in the different Reac-
tion RuleML subfamilies to the four different reaction rule types (and variants
of these types).

<Rule style="active|messaging|reasoning">

<oid> <!-- object id of the rule --> </oid>
<label> <!- (semantic) metadata of the rule --> </label>
<scope> <!- scope of the rule e.g. a rule module --> </scope>
<evaluation> <!-- intended semantics --> </evaluation>
<qualification> <!- e.g. qualifying rule declarations, e.g.

priorities, validity, strategy --> </qualification>
<quantification> <!-- quantifying rule declarations,

e.g. variable bingings --> </quantification>
<on> <!- event part --> </on>
<if> <!- condition part --> </if>
<then> <!- (logical) conclusion part --> </then>
<do> <!-- action part --> </do>
<after> <!- postcondition part after action,

e.g. to check effects of execution --> </after>
<else> <!- (logical) else conclusion --> </else>
<elsedo> <!-- alternative/else action,

e.g. for default handling --> </elsedo>
</Rule>

The execution style of a reaction rule is defined by the optional attribute
style.

– active: ‘actively’ polls/detects occurred events in ECA and CEP rules or
changed conditions in production rules

– messaging: waits for incoming complex event message (inbound) and sends
messages (outbound) as actions

– reasoning: logical / inference reasoning as e.g., KR formalisms such as event
/ action / transition logics (as e.g. in Event Calculus, Situation Calculus,
temporal action languages formalizations)

The evaluation semantics (interpretation and/or execution) of reaction rules
is defined in the optional role subchild evaluation. This can be used to define
rule evaluation semantics such as weak or strong evaluation which defines the
“execution lifecycle” of the rule execution.

A rule instance can be uniquely identified by an object identifier <oid>. The
metadata <label> is used to annotate the rule with optional metadata. The
scope <scope> defines a (constructive) view on the rulebase, e.g. the rule only
applies to a module in the rulebase. The qualification <qualification> defines



172 H. Boley, A. Paschke, and O. Shafiq

an optional set of rule qualifications such as a validity value, fuzzy value or a
priority value. The quantification <quantification> is used to define quantifiers
such as the typical existential and unversal quantification; it can also be used
for extensions such as variable binding patterns to restrict pattern matching in
production rules or define other operator definitions.

4.1 Production RuleML

A production rule is a statement of rule programming logic that specifies the ex-
ecution of one or more actions in case its conditions are satisfied, i.e. production
rules react to states changes (not to explicit events). The essential syntax is if
Condition do Action. Accordingly, standard production rules in the Production
RuleML subfamily are written as follows (an active-style Rule can be shortcut
to Reaction, which can be stripe-skipped for if as first child and do as second):
<Rule style="active">

<if>...</if>
<do>---</do>

</Rule>

<Reaction>
<if>...</if>
<do>---</do>

</Reaction>

<Reaction>
...
---

</Reaction>

Actions are Assert (add knowledge); Retract (retract knowledge); Update
(update/modify knowledge); Equal (single-assign term to variable); Execute
(execute (external) function).

Let us modify our initial example to a production rule which instead of just
deriving discounts does an Assert of them (Retract/Update would be similar):

<!-- Reaction Rule 1a (Production Rule with "Condition" and "Action"):
If premium and regular derivable do assert discount for customer -->

<Reaction>
<if>
<And>

<Atom><Rel>premium</Rel><Var>cust</Var></Atom>
<Atom><Rel>regular</Rel><Var>prod</Var></Atom>

</And>
</if>
<do>
<Assert>

<Atom><Rel>discount</Rel><Var>cust</Var><Var>prod</Var><Data>5.0 percent</Data></Atom>
</Assert>

</do>
</Reaction>

Relationships between Production RuleML and RIF-PRD: Members
of the Reaction RuleML Technical Group have co-edited the W3C RIF Pro-
duction Rule Dialect (RIF-PRD). RIF-PRD with inflationary negation is a less
expressive subset of PR RuleML. Syntactically, production rules in RIF-PRD are
written in if-then syntax instead of PR RuleML’s if-do syntax, which allows
a clear semantic distinction of a conclusion (then part) and action (do part),
when both are allowed for the same rule. Do as a type tag is used in RIF-PRD
to syntactically denote a compound action which is a sequence of standard pro-
duction rule actions (Assert, Retract, and Modify), whereas Reaction RuleML
supports expressive complex action definitions using action algebra operators.
Quantifying variable binding declarations are supported by RIF-PRD (declare)
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and by Production RuleML (quantification), which in addition also supports rule
qualifications.

Relationships between Production RuleML and OMG PRR: Based on
[WATB04] and Production RuleML, members of the Reaction RuleML Tech-
nical Group have co-edited the OMG Production Rule Representation (PRR).
RuleML is one of the languages whose features are to be covered by PRR on
an abstract level. Since PRR is a meta-language, Production RuleML’s XML
syntax can be used as a concrete expression language instantiating PRR mod-
els. That is, OMG PRR provides a way to include rules into the (UML) model
of an application at design time and Production RuleML then provides a stan-
dard means of translating the model and feeding the executable rules into a PR
application at run time.

4.2 ECA RuleML

In contrast to production rules, Event-Condition-Action (ECA) rules define an
explicit event part which is separated from the conditions and actions of the
rule. Their essential syntax is on Event if Condition do Action. ECA RuleML
extends Production RuleML with an explicit <on> event part and rich (complex)
event and action constructs defined in event/action libraries (the active Rule
is again shortcut to Reaction, but the <on>/<if>/<do> role stripes are kept):
<Rule style="active">

<on>***</on>
<if>...</if>
<do>---</do>

</Rule>

<Reaction>
<on>***</on>
<if>...</if>
<do>---</do>

</Reaction>

We modify our example as follows:
<!-- Reaction Rule 1c (ECA Rule with "Event", "Condition", and "Action"):

On receiving premium notification from marketing and if regular derivable
do send discount to customer -->

<Reaction>
<on>
<Receive>

<from><Ind>marketing</Ind></from>
<content>

<Atom><Rel>premium</Rel><Var>cust</Var></Atom>
</content>

</Receive>
</on>
<if>
<Atom><Rel>regular</Rel><Var>prod</Var></Atom>

</if>
<do>
<Send>

<to><Var>cust</Var></to>
<content>

<Atom><Rel>discount</Rel><Var>cust</Var><Var>prod</Var><Data>5.0 percent</Data></Atom>
</content>

</Send>
</do>

</Reaction>

Variants of this standard ECA rule are, e.g., Event-Action triggers (EA rules)
and ECAP rules (ECA rules with Postconditions after the action part).
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With its typed logic, RuleML supports the (re)use of external event/action
ontologies and metamodels which can be applied in the definition of semantic
event/action types. For instance, the following standard library defines a set of
typical event and action algebra operators:

Event Algebras and Action Algebras

Event Algebra:
Sequence (Ordered), Or (Disjunction), Xor (Mutal Exclusion),
And (Conjunction), Concurrent, Not, Any, Aperiodic, Periodic

Action Algebra:
Succession (Ordered Succession of Actions), Choice
(Non-Determenistic Choice), Flow (Parallel Flow),
Loop (Iterative Loop)

Furthermore different selection, consumption, and (transactional) execution
policies for events and actions can be specified in the complex event/action de-
scriptions. This allows for a highly extensible and flexible Semantic CEP (SCEP)
approach which (re-)uses external semantic models.

4.3 CEP RuleML

Complex Event Processing (CEP) is about the detection of complex events and
reaction to complex events in near realtime. CEP rules might adopt the style
of ECA rules in CEP RuleML, where the <on> event part might be a complex
event type definition; or, they might adopt the style of CA producion rules where
the complex event patterns are defined as restrictions on the variable binding
definitions in the rule quantifications. However, it is also possible to represent
serial messaging CEP reaction rules which receive and send events in arbitrary
combinations. A serial (messaging) reaction rule starts either with a receiving
event on – the trigger of the global reaction rule – or with a rule conclusion
then – the head of the local inline reaction rule – followed by an arbitrary
combination of conditions if, events receive and actions send in the body of
the rule. This flexibility with support for modularization and aspect-oriented
weaving of reactive rule code is in particular useful in distributed systems where
event processing agents communicate and form a distributed event processing
network, as e.g. in the following example:

<Rule style="active">
<on><Receive> receive event from agent 1 </Receive></on>
<do><Send> query agent 2 for regular products in a new sub-conversation </Send></do>
<on><Receive> receive results from sub conversation with agent 2 </Receive></on>
<if> prove some conditions, e.g. make decisions on the received data </if>
<do><Send> reply to agent 1 by sending results received from agent 2 </Send></do>

</Rule>

For better modularization, the sub-conversation can be also written with an
inlined reaction rule as follows:

<Rule style="active">
<on><Receive> receive event from agent 1 </Receive></on>
<if> <!- this goal activates the inlined reaction rule -- see below -->
<Atom><Rel>regular</Rel><Var>prod</Var></Atom>

</if>
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<do><Send> reply to agent 1 by sending results received from agent 2 </Send></do>
</Rule>

<Rule style="active">
<then>
<Atom><Rel>regular</Rel><Var>prod</Var></Atom>

</then>
<do><Send> query agent 2 for regular products in a new sub-conversation </Send></do>
<on><Receive> receive results from sub conversation with agent 2 </Receive></on>

</Rule>

This messaging reaction rule can be translated e.g. into a serial messaging
Horn rule and executed in the Prova rule engine.8

Relationships between CEP RuleML and EPTS work: RuleML is a
founding member of the Event Processing Technical Society (EPTS). Members
of the Reaction RuleML Technical Group are contributing to the work on an
Event Processing glossary, use cases, reference architectures, and event process-
ing language models. With its flexible and extensible approach, CEP RuleML
is a highly expressive rule-based Event Processing Language (rule-based EPL)
which can make use of external event and action metamodels / ontologies such
as the many existing event ontologies or the planned OMG Event Model Pro-
file. Since CEP RuleML syntactically builds on top of Production RuleML and
ECA RuleML – besides flexible (messaging) reaction rules – both major rule
types can be used for representing (complex) event processing rules. Moreover,
CEP RuleML can adequately represent typical use cases and functionalities in
Event-Driven Architectures (EDAs) and (distributed) Event Processing Network
(EPN) architectures.

4.4 KR Reaction RuleML

Event/action logics, which have their origins in the area of knowledge rep-
resentation (KR), focus on the inferences that can be made from the hap-
pened or planned events/actions, i.e. they define the inferences of the effects of
events/actions on changeable properties of the world (situations, states). KR Re-
action RuleML defines syntax and semantics for KR event/action calculi such as
Situation Calculus, Event Calculus and Temporal Action Languages etc. Specif-
ically the notion of an explicit state (a.k.a. as state or fluent in Event Calculus)
is introduced in KR Reaction RuleML. An event/action initiates or terminates a
state. That is, a state explicitly represents the abstract effect of occurred events
and executed actions. Such states can be e.g. used for situation reasoning in the
condition part of reaction rules.

<Rule style="reasoning">
<on> <Message mode="inbound"> event message </Message> </on>
<if> <HoldsState> state individual </HoldsState> </if>
<do> <Message mode="outbound"> action message </Message> </do>

</Rule>

8 http://prova.ws

http://prova.ws
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5 RuleML Tools and Applications

Several tools have already been built around RuleML, including rule engines
(e.g., OO jDREW9, Prova10), rule editors (e.g., Acumen Business Rule Man-
ager11, Syntactic-Semantic RuleML Editor (S2REd)12), as well as translators
such as the Reaction RuleML translator (Web) service framework13. Most of
these tools contribute to interoperability by making use of translators between
presentation syntaxes such as Pure Prolog (or extensions such as POSL14 and
Prova) and RuleML/XML as well as between RuleML/XML and other XML-
based languages such as RIF/XML. RIF RuleML interoperation was started
with a common subset [Bol09].

RuleML-based multi-agent architectures for distributed rule inference services
include Rule Responder15 [PBKC07] and Emerald16. Rule Responder extends
the Semantic Web towards a Pragmatic Web infrastructure for collaborative
rule-based agent networks implemented as distributed rule inference services,
where agents engage in conversations by exchanging messages and cooperate to
achieve (collaborative) goals. Rule Responder utilizes messaging reaction rules
from Reaction RuleML for communication between the distributed agent infer-
ence services. The Rule Responder middleware is based on Enterprise Service
Bus (ESB) and Semantic Web technologies for implementing intelligent agent
services that access data and ontologies, receive and detect events (e.g. for com-
plex event processing in event processing agent networks), and make rule-based
inferences and autonomous pro-active decisions for reactions based on these rep-
resentations. Rule Responder has become the infrastructure for several Web 3.0
applications (e.g., PatientSupporter17).

6 Conclusion

RuleML 1.0 is the unifying family of languages spanning across all industrially rel-
evant kinds of Web rules. It accommodates and extends other languages including
W3C RIF. Yet, as shown by this paper, the major RuleML constructs are easy to
learn. FOL RuleML deliberation rules could be regarded as an instantiation of
the RIF Framework for Logic Dialects. However, for RIF-PRD and Production
RuleML no corresponding RIF Framework for Production Rule Dialects exists,
and for Reaction RuleML even a RIF instance dialect, RRD, is only envisioned
yet, although the ongoing RIF RuleML collaboration should sustain progress here.
On the other hand, Modal RuleML deliberation rules could be further developed
9 http://www.jdrew.org/oojdrew

10 http://www.prova.ws
11 http://www.acumenbusiness.com
12 http://sourceforge.net/projects/s2red
13 http://reaction.ruleml.org/translation.htm
14 http://ruleml.org/submission/ruleml-shortation.html
15 http://responder.ruleml.org
16 http://lpis.csd.auth.gr/systems/emerald/emerald.html
17 http://ruleml.org/PatientSupporter
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http://www.acumenbusiness.com
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http://reaction.ruleml.org/translation.htm
http://ruleml.org/submission/ruleml-shortation.html
http://responder.ruleml.org
http://lpis.csd.auth.gr/systems/emerald/emerald.html
http://ruleml.org/PatientSupporter
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in collaboration with corresponding Common Logic extensions, as also needed for
Semantics of Business Vocabulary and Business Rules (SBVR).

Object Oriented RuleML’s slotted facts and rules can be used to define cases
and associated solutions in Case Based Reasoning (CBR). With its optional use
of types, which also accommodate finite domains, RuleML is well-prepared for a
Constraint Logic Programming (CLP) extension. A related Constraint Handling
Rules (CHR) extension could follow next.

Translators between sublanguages of RuleML, RIF, PRR, SBVR, Jess, Prova
(ISO Prolog) have been written and further ones are under development. RuleML
1.0 as the overarching specification of Web rules will thus help to unify and drive
the development of Web-based rule interoperation.
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validate normal forms only. Normal forms provide an abstract-syntax level, where
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of their normal forms. They also simplify the XSDs, e.g., avoiding the permu-
tation of role children. For instance, the normal form for derivation rules uses
explicit role tags for <if> and <then> in that order, as shown by the middle-
column version of Implication Rule 1 in Section 3.1.

The XSDs of RuleML 1.0 change those of RuleML 0.91 as follows: Type tags
Hterm and Con are replaced with Uniterm and Const, respectively. Role tags
body and head are replaced with if and then, respectively. Role tags lhs and
rhs, with left and right, respectively. Attribute in="no|semi|yes|effect|
modal" and respective values are replaced with per="copy|open|value|effect|
modal". Attribute uri becomes iri. The online RuleML 1.0 specification is
based on normalidation, including XSLTs for normali zation and XSDs for sub-
sequent validation.18 The specification is illustrated by test cases grouped ac-
cording to sublanguages.19

18 http://ruleml.org/1.0 (http://ruleml.org/1.0/xslt and
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Abstract. The Business Entity method is a new approach for declarative 
Business Process Modeling. An important aspect of this method is access 
control rules that determine what users can access what data under what 
conditions. This paper describes an extension of Semantics of Business 
Vocabulary and Business Rules (SBVR) for defining these access control rules. 
A tool supports the creation of these data access control rules by a combination 
of a matrix format and conditions given in SBVR Structured English. The rules 
are stored according to the SBVR metamodel, and may be visualized either as 
individual rules or in a matrix. 

Keywords: rules and norms, access control, RBAC, SBVR, Structured English, 
Business Entity, BPEL4Data, Data4BPM. 

1   Introduction 

The Business Entity method [ 1,  2,  3] is an approach to Business Process Management 
(BPM) that integrates an information model and a lifecycle model of the key business 
objects ("Business Entities") required in a business system. The information model 
defines the attributes of the Business Entities. The lifecycle model describes the 
evolution of the Business Entities, from creation to archiving, through various states 
according to a finite state machine model. Customer experience [ 4,  5] suggests that 
business process models created using the Business Entity method are more abstract 
and easier to understand than the highly procedural, more detailed models created 
using other methods such as the Business Process Modeling Notation (BPMN) [ 6]. 

The Business Entity method also integrates business rules and user roles. Rules 
supply two kinds of constraints on Business Entities. One kind limits which state 
transitions can be made under what circumstances. This author described these rules 
in detail in [ 7] and [ 8]. The other kind of rules control direct access to the Business 
Entities themselves, meaning read or writes of the attributes of the Business Entities, 
independent of state transitions. The term "CRUDE policies" is sometimes used 
collectively to refer to both kinds of rules, where "E" stands for "Execution" rules (the 
guards on the state transitions), and "CRUD" abbreviates "Create, Read, Update, 
Delete rules" (data access policies). This paper is about the "CRUD" policies. 

CRUD policies are a variant of the well-known "Role Based Access Control" [ 9, 
 10] model that integrates consideration of Business Entity states into the access 
control policies. Data access is conditioned not just by user roles, but also by the state 
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of a Business Entity. Each access control rule can also have a "user condition" that 
provides more precise specification about when access is granted. 

The Business Entity method, as described in [ 1], is agnostic as to what rule 
language is used to specify access policies. This paper describes a prototype 
implementation in which the policies are modeled using an extension of the OMG's 
Semantics of Business Vocabulary and Business Rules (SBVR) [ 11] specification, 
supported by a tool that displays the rules in a combination of a matrix format and 
SBVR Structured English. Benefits of this approach include a simple conceptual 
model for business users, the ability to customize the access policies with conditions 
that test any Business Entity attributes, display of the conditions in Structured 
English, and the potential to map to various runtime execution schemes. 

The next section introduces an example as a basis for discussion throughout the 
paper. The following section describes the prototype tool used to create and edit 
access control policies, in order to illustrate how users will understand these policies. 
Section  4 discusses how the rules are modeled using SBVR concepts, and section  5 
reviews additional concepts defined in this work to integrate access rules with the 
Business Entity method. Section  6 discusses an extension of the SBVR meta-model 
that efficiently solves a scale-up problem that arises with the rules described herein. 
Section  7 describes the prototype runtime implementation. Section  8 reviews related 
work by other researchers, and the final section summarizes the paper. 

 

Fig. 1. The Courier Shipment Scenario (figure extracted from [ 1]) 
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2   Running Example 

This paper adopts and extends the "Courier Shipping" use case (Fig. 1) from [ 1] as a 
running example. 

The top-left quadrant of this shows the "CRUD matrix", which in this case grants 
the "Truck Driver" user role access to several attributes of the "Courier Shipment" 
Business Entity when that Entity is in the "Picked" or "Transit" states. The matrix 
columns are labeled "C" for "create", "R" for "read", "U" for "update", and "D" for 
"delete". The rows identify individual "Courier Shipment" attributes such as "Sender 
Info" and "Recipient Info". The "x" marks in the cells specify that the user role has 
the access type of the column to the attribute of the row when the Business Entity is in 
any of the specified states. In this example, the "Truck Driver" role can read and 
update all three attributes shown when the "Courier Shipment" is in the "Picked" or 
"Transit" states, but can create only the "Transit Info" attribute. 

The top-right quadrant of Fig. 1 shows the lifecycle of the "Courier Shipment" 
Entity. The named ovals identify the Entity states, such as "Picked" and "Transit". In 
this example, the "Courier Shipment" initially enters either the "Draft" or "Ready" 
state, and then proceeds through various transitions to the "Picked" and "Transit" 
states, eventually reaching "Delivered" and then "Done". Note that these are domain-
specific states name chosen to be meaningful to business users; they are not generic. 

The lower-left quadrant summarizes some of the attributes of the Business Entity. 
Typically in SBVR, these would be defined by a pair of glossary entries, one for the 
attribute as a concept, and one to relate the attribute to the "Courier Shipment" 
concept. For example:1 

 
Delivery Time 

Concept Type:  role 
Definition:  date time when the Courier Shipment is delivered to the 

recipient 
Courier Shipment has Delivery Time 

 
This is equivalent to defining a UML class for "Courier Shipment" with a property 

called "Delivery Time" of type "date time". 
The lower-right quadrant of Fig. 1 shows notifications that can be generated as the 

"Courier Shipment" Entity transitions among the lifecycle states shown in the upper-
right quadrant. 

3   Tool 

This paper describes a prototype tool (Fig. 2) for creating and editing access policies 
as in the top-left quadrant of Fig. 1. This prototype is targeted to business users, 
meaning business people who are interested in business needs rather than IT staff 
focused on implementation concerns. 
                                                           
1 Here and elsewhere in this paper, SBVR examples use the SBVR Structured English 

convention of showing nouns in underlined green, verbs in italic blue, and keywords in red. 
This paper uses bold font for the keywords to make them standout in black and white. 
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In this tool, access policies are grouped in named "Access Sets". The one shown in 
Fig. 2 is called "Truck Driver Access Policy", as shown in the upper left corner. The 
Business Entity name, "Courier Shipment" is displayed in the middle. The user roles 
and the Business Entity states addressed by this access set are shown below the access 
set name. This particular access set applies to the "Truck Driver" role and the 
"Picked" and "Transit" states. The edit button between the "User Roles" area and the 
"States" area opens a popup window in which one can add and delete role and state 
names. An access set can apply to one or multiple roles, or to all roles in an 
application. Similarly, an access set can apply to one or multiple states, or to all states 
of a Business Entity. 

 

Fig. 2. CRUD Matrix Tool 

The matrix below the user roles and states shows the structure of the Business 
Entity addressed by the access policy, in this case "Courier Shipment". The left 
column, showing the Business Entity attributes, can be expanded or collapsed to show 
child attributes to any level of detail. The figure shows the "Arrival Time", "Delivery 
Time", "Sender Info", and other attributes of "Courier Shipment", and also shows the 
expansion of "Sender Info". 

This prototype labels the other columns of the matrix "Read", "Write", "Add", and 
"Remove", rather than "CRUD" as show in Fig. 1, on the belief that these labels may 
be more understandable to business users. "Read" means that attributes may be 
viewed or queried. "Write" means that they may be set or changed. "Add" and 
"Remove" mean that attributes may be added or deleted from attribute collections, 
meaning attributes that have cardinality greater than 1. 

The symbols within the matrix show how the access policy applies to each 
combination of attribute and access type. A checked box indicates that the access type 
of the column is granted to the attribute of the row. Unchecked boxes show that 
access is denied. Tool users can check or uncheck these boxes as desired. 

Users may give access to all the attributes of a structure as a group. For example, 
the check mark in the "Read" column of the "Sender Info" attribute means that the 
entire "Sender Info" structure can be read. The tool automatically "blanks out" some 
matrix cells to prevent conflicting policies between parent structures and child 
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attributes. For example, the "Read" column is blank for the child attributes of "Sender 
Info" ("Name", etc.) because read access is already granted for the entire "Sender 
Info" structure. It would make no sense to permit users to grant or deny access to the 
child attributes when access is already given to the entire parent structure. Similarly, 
the "Read" column is blank for the "Courier Shipment" Entity itself because read 
access is individually given, or not, to specific child attributes of "Courier Shipment". 

The "Add" and "Remove" columns are blank for singleton attributes since adding 
and deleting only applies to those attributes that are collections. In this example, 
"Add" and "Remove" applies only to the "Transit Info" attribute. 

Access to the Business Entity as a whole can be granted if individual access to 
child attributes is not chosen. In Fig. 2, selecting the "Remove" entry for the "Courier 
Shipment" line at the top of the matrix would permit Truck Drivers to remove any 
"Courier Shipments" that are in "Picked" or "Transit" state. 

To the right of the access matrix are two boxes titled "Condition" and 
"Description". They give details associated with the currently-selected access matrix 
cell, which is indicated by a filled-in box. In Fig. 2, the cell at the intersection of the 
"Write" column and the "Delivery Time" row is currently selected. Neither a 
condition nor a description exists for that particular cell. 

An asterisk identifies each cell that has a condition, for example in the "Write" 
column for "Recipient Info". A condition specifies an additional constraint on the 
access given in the cell, beyond just the user role and Business Entity state. 

 

Fig. 3. Example of a condition and description 

Fig. 3 shows a user condition and a description for the write access to "Recipient 
Info". The description is simply unprocessed text. The condition is shown in SBVR 
Structured English to make it easy for business users to understand. 
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The effective access control is the conjunction of the access matrix entry and the 
user condition. In the figure, the user condition, in combination with the selected row 
in the matrix, means that write access to the "Recipient Info" by the "Truck Driver" 
role when the "Courier Shipment" is in "Picked" or "Transit" state is permitted only 
when the "Delivery Time" attribute is empty and there is at least one element of the 
"Transit Info" attribute collection. 

The "Add Condition" button at the bottom of the right-hand side of Fig. 3 initiates 
a multi-step popup wizard for creating conditions. This wizard is a minor variant of 
the rule creation wizard described in [ 8], and is not described again here. 

This tool supports access control policies across a wide range of sophistication. A 
simple policy design could use just two access sets that apply to all roles. One access 
set might give write, add, and delete access in some states, and another access set 
might give read access in other states. The access could be given to the Business 
Entity as a whole. A much more sophisticated policy design might use multiple access 
sets to give different access for different roles in different states. These access sets 
could grant access to individual attributes of the Business Entity. They could use 
conditions to restrict access by more than the Business Entity states and user roles. In 
summary, this single tool design smoothly support a range of sophistication in access 
policy management. 

One concern that arises with such a tool is the potential for conflicting access 
policies. Within a single access set, conflicts are prevented by the design of the tool. 
For example, the tool does not permit users to specify access for both a parent 
structure and child attributes of that structure. The tool avoids conflicts across access 
sets by disallowing multiple access sets that target the same combination of user roles 
and states. Given the access set show in Fig. 2, the tool would permit the creation of 
another access set for user "Truck Driver" and state "Draft", but it would not allow 
another access set for "Truck Driver" and either "Picked" or "Transit". This type of 
cross access-set validation also applies when access sets are defined for multiple 
roles, or for all roles or all states. 

The underlying philosophy of this tool is that Business Entity access is a business 
data governance issue of direct concern to business users. Who can do what to the 
data is a business policy issue, not just an IT security detail. In business domains 
ranging from health care to finance to government, access control decisions make a 
real difference to business operations and to customer confidence. This tool enables 
business users to directly view and evaluate their access policies at any level of detail, 
rather than depending upon IT staff to do it for them. 

4   Modeling the CRUD Access Matrix in SBVR 

The primary motivation for storing the access matrix as rules in the SBVR meta-
model is rich support for user conditions. SBVR provides for logical formulae that 
use standard predicate and propositional calculus, and enables the display of these 
formulae in an English-like format. This permits complex user conditions to be shown 
in English, as illustrated in Fig. 3. 

An access matrix is modeled in SBVR as follows: each column of the access 
matrix shown in Fig. 2 is converted by the tool to an SBVR rule according to the 
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SBVR meta model with extensions. Cells with conditions are generated separately. 
For example, the "Write" column of Fig. 2 (except for the "Recipient Info" cell) is 
generated as: 

 
Truck Driver Access Policy: It is permitted that each Truck Driver write the 
Recipient Info of each Courier Shipment, and the Delivery Time of the Courier 
Shipment, only if the Courier Shipment is Picked or the Courier Shipment is 
Transit. 

 
In SBVR terms, this is a "restricted permission" rule that permits the consequence 

that Truck Drivers may write the "Recipient Info" and "Delivery Time" attributes with 
the antecedent that the "Courier Shipment" is in state "Picked" or "Transit". Note that 
multiple Business Entity attributes are included in the antecedent by conjunction. 

Restricted permission rules are equivalent to conditional prohibition statements 
where the condition is negated. The rule given above could be stated as: 

 
Truck Driver Access Policy: It is prohibited that each Truck Driver write the 
Recipient Info of each Courier Shipment, and the Delivery Time of the Courier 
Shipment, if the Courier Shipment is not Picked or the Courier Shipment is not 
Transit. 

 
Each cell that contains a condition is handled as a separate rule that uses a 

conjunction to combine the user-specified condition with tests of the Business Entity 
state. For example, the condition for write access to "Recipient Info", as shown in Fig. 
3, is modeled as: 

 
Truck Driver Access Policy: It is permitted that each Truck Driver write the 
Recipient Info of each Courier Shipment, only if the Courier Shipment is Picked or 
the Courier Shipment is Transit and the Delivery Time of the Courier Shipment is 
empty and there exists a Transit Info of the Courier Shipment. 

 
Both rules are named to match the access set name, to facilitate associating the 

rules with each other and with the access set. 
The tool builds these access rules according to this template: 
 

It is permitted that each <role1> [and role2]* {read | write | add | remove} each 
<attribute1> of each <business entity> [and each <attribute2> of the <business 
entity>]* [, only if the <business entity> is <state1> [and the <business entity> 
is <state2>]* [and <condition>] ]. 

 
This pattern permits an individual rule to mention any number of roles, attributes, 

or Business Entity states. This helps avoid an explosion in the number of rules. In 
principle, there could be a rule for each cell of the access matrix. With this design, 
and ignoring user conditions, there are no more than four rules per access set. 

Users can define access sets that apply to all roles, all states, and/or all attributes of 
a business entity. For access sets that apply to all roles, the tool substitutes the general 
concept user role for the " Each <role1> [and role2]*" portion of the template given 
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above. This is motivated by the fact that domain-specific user roles, such as "Truck 
Driver" are modeled as subtypes of user role, as described below.  

The tool omits the "the <business entity> is <state1> [and the <business entity> 
is <state2>]*" part of the template for access sets that apply to all states. If an access 
matrix cell also has no condition, then the tool omits the antecedent completely. (In 
SBVR, such rules are technically called "advice" rather than "rules" since they 
constrain nothing.) Thus, the rules generated for access sets that apply both to all roles 
and all states, and have no user conditions, follow this pattern: 

 
It is permitted that each user role {read | write | add | remove} each 
<attribute1> of each <business entity> [and each <attribute2> of the <business 
entity>]*. 

 
If an access policy applies to all the attributes of a Business Entity, the tool omits 

the " each <attribute1> of" component of the rule template. For example, here is a 
policy that Recipients may read the entire "Courier Shipment" entity when it is in 
"Delivered" state: 

 
It is permitted that each Recipient read each Courier Shipment, only if the Courier 
Shipment is Delivered. 

 
Considering all the combinations of 0, 1, or multiple roles, 0, 1, or multiple states, 

0, 1, or multiple attributes, and 0 or 1 user condition, there are 54 patterns of access 
rules. The complexity of all these combinations is completely hidden by the tool, 
which offers a lot of power in a simple user paradigm. 

5   Business Entity Metamodel Vocabulary 

The rules are enabled by a Business Entity vocabulary that goes beyond the SBVR 
metamodel to address Business Entity concepts. This vocabulary formally defines the 
following concepts: 

 
Business Entity 

Definition: noun concept that has a lifecycle 
Example: Courier Shipment 

 
user role 

Definition: noun concept that is a category of users 
Example: Truck Driver 

 
attribute 

Definition: noun concept that is of a given business entity 
Example: Arrival Time of Courier Shipment 
 

user role reads attribute 
Definition: the user role reads or queries the attribute 
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user role writes attribute 
Definition: the user role sets or updates the attribute 
 

user role adds attribute 
Definition: the user role adds an element to the attribute 
 

user role deletes attribute 
Definition: the user role deletes an element from the attribute 
 

state 
Definition: characteristic type that is of a business entity 
Example: The extension of the state of 'Courier Shipment' includes 

the characteristics 'Courier Shipment is picked', 'Courier 
Shipment is ready', etc. 

 
business entity has state 

Definition: the state identifies which portion of its lifecycle a business 
entity has reached 

Necessity: Each business entity has exactly one state. 
 
The business entity and user role definitions are straightforward specifications of 

what would be "classes" in UML. They use a mixture of SBVR vocabulary concepts 
and unstyled text, such as the word "lifecycle", to define foundational or "ground" 
concepts for the Business Entity method. The four verb concepts are used in the 
consequents of the access rules to permit read, write, add, or delete access to Business 
Entity attributes. 'State' is defined as an SBVR characteristic type, which means that 
state holds one of a choice of values such as "is picked" or "is draft". Furthermore, a 
rule can test the state of a business entity via one of the values, such as "… only if the 
Courier Shipment is picked". 

These concepts provide the formal basis for defining domain-specific business 
concepts such as: 

 
Courier Shipment 

Definition business entity that tracks an actual courier shipment 
 

Truck Driver 
Definition user role that drives a truck 

 
Courier Shipment is picked 

Definition state that the Courier Shipment has been received by a 
Truck Driver 

 
The Business Entity method intends that these domain concepts, and the 

underlying Business Entity vocabulary defined above, should make intuitive sense to 
business users even though the underlying concepts are quite sophisticated. The 
expectation is that Structured English rules that incorporate ordinary business terms 
should be understandable to business users with everyday skills. Furthermore, those 
users who probe the definitions of the domain concepts should be able to understand 
how they relate to the Business Entity method. 
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6   "Quantification Collections" 

One issue with SBVR itself arose when designing the consequent part of the access 
rule template described above. When used with one role and one attribute, the 
consequent is generated according to a pattern that is equivalent to: 
 

∀ e: business entity, r:user role, ∀a:attribute that is of e, <verb>(r, a)… 
(where <verb> is one of "read", "write", "add", "remove") 

 

In this pattern, "∀ e: business entity" means universal quantification over business 
entities, using e as the quantification variable. Similar readings apply to the other two 
quantifiers. The quantification variable a takes the values of a specified child attribute 
of the business entity e. 

A problem arises when multiple roles or states are specified by an access set, 
because each use of <verb> can bind to just one role and one attribute using what 
SBVR calls an "atomic formulation". One solution would be to model multiple rules 
to represent each combination of user role and attribute. This solution has significant 
scale problems. In the example shown in Fig. 2, this solution would replace the single 
rule required for the read column with four rules, one each for reading "Delivery 
Time", "Sender Info", "Recipient Info", and "Transit Info". If the access set specified 
3 roles, then this solution would require 3*4=12 rules, one for the cross-product of 
each user role and business entity attribute. 

To solve this concern, this work designed an extension to the SBVR metamodel 
called a "Quantification Collection". The name suggests a universal or existential 
quantifier that can range over a collection of concepts, rather than over just one 
concept. In this paper, the underlined symbol ∀ represents a universal quantifier over 
multiple concepts, defined as follows: 
 

∀ q:{c1, c2, … cn} ≡ ∀ q1: c1 ∪ ∀ q2: c2 ∪ … ∪ ∀ qn: cn 
 

where "∀ q1: c1" means that quantification variable q1 ranges over (takes the values 
of) concept c1, and the symbol "∀ q:{c1, c2, … cn}" means that variable q collectively 
ranges over the values of the concepts c1, c2, … cn. A similar definition applies to 
existential quantification. Note that when q is bound to a verb in what SBVR calls an 
"atomic formulation", all the concepts c1, c2, … cn must be of the type expected by the 
verb. 

Using this scheme, the SBVR rule shown at the start of section  4, above, is 
formulated as: 
 

it is permitted that ∀e: Courier Shipment, ∀r: Truck Driver, ∀a: {Recipient Info 
of e, Delivery Time of e} write(r, a) ONLY IF (isPicked(e) ∨ isTransit(e)) 

 

As discussed in section  4, an SBVR restricted permission rule is equivalent to a rule 
given as "it is prohibited <consequent> if not <antecedent>". The implementation 
uses an abbreviated "ONLY IF" operator (shown above) to directly capture the 
restricted permission sense. Technically in SBVR, the above should be formulated as: 
 

it is prohibited that ∀e: Courier Shipment, ∀r: Truck Driver, ∀a: {Recipient Info 
of e, Delivery Time of e} ¬ (isPicked(e) ∨ isTransit(e)) → write(r, a) 
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The Quantification Collection idea permits the information contained in the tool's 
access matrix to be stored as a limited number of SBVR rules, proportional to the sum 
of the number of non-blank columns of the access matrix, plus the number of user 
conditions, rather than the cross-product of user roles and attributes. It enables 
efficient exploitation of the features of SBVR, such as its logic-based meta-model and 
the ability to show the user conditions in Structured English. 

7   Runtime Execution 

Fig. 4 summarizes how the access rule tool described above works with the runtime. 
The fundamental idea is that a user role can access a Business Entity only if a rule 
grants access. In the terminology of [ 14], the CRUD matrix specifies defeasible rules 
in the sense that they defeat an unstated rule that lays a foundation that access is 
denied if not permitted. As with [14], the matrix is translated to SBVR rules, each of 
which deny access if a condition is not met.  

Access Enforcement 
Runtime

Authentication & Role 
Assignment

access 
rule tool

SBVR 
access 
rules

optional rule 
format 
conversion

rules in 
another 
format

Business 
Entity Data

application 
UI

external 
application

service requests

user & role 
directory

business 
user

process 
performer

 

Fig. 4. Tool and Runtime Configuration 

The tool produces an XML file containing access rules in an SBVR-based format. 
Optionally, the rules can be converted to another format, such as XACML [ 12] or the 
Business Entity Definition Language (BEDL) of [ 1]. The runtime access enforcement 
function on the right-hand side of the diagram reads either the SBVR format or the 
alternate format and uses them to arbitrate runtime access requests. These requests 
come from either humans who are using an application user interface to perform 
business process tasks, or from external applications. In either case, these service 
requests are first processed by an authentication and role assignment function by 
reference to a user authentication and role assignment directory, or by rules that 
determine which requesters get which roles. Both human and external application 
requests are assigned roles to ensure consistent application of the access controls. 
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Typically, the authentication and role assignment function is provided by middleware 
or operating system software. 

Requests are of two basic types: directed to a specific business entity instance via 
an instance identifier, or queries for multiple instances of a particular entity type. To 
help optimize access enforcement, both request types specify the expected state of the 
business entities. For requests addressed to specific instances, the access enforcement 
runtime uses the expected state of the instance and the role of the requester to lookup 
the appropriate access rule, and rejects the request if no rule grants access. The 
runtime then compares the expected state against the actual state of the business entity 
instance. Since different access rules apply to different attributes of an instance, the 
runtime must check the rules individually for each attribute being read or written. 

The processing sequence for queries is somewhat different because the applicable 
instances are not identified in advance. The runtime first checks that there is a rule 
that gives access to the business entity type according to the role of the requester and 
the expected state. The runtime then looks up the business entity instances that have 
the expected state. Finally, for each queried attribute, the runtime checks that some 
rule permits read access to the attribute for the requesting user role and current user 
state. 

At the time this paper was written, the runtime supports the access matrix without 
the user conditions. The planned implementation of user conditions varies depending 
upon the request type. For reads, writes, and removes, the runtime will apply any 
condition against the business entity instance data prior to any update so that the 
request cannot bypass the condition. For queries, the runtime will apply any condition 
as a filter for the query results. Since each business entity attribute can have a 
different user condition, this filter must be applied attribute by attribute and instance 
by instance. Scaling this to work efficiently in the case of many query results is a 
known challenge. 

8   Related Work 

As mentioned previously, CRUD policies are a type of Role Based Access control [ 9, 
 10]. In terms of Barker's unifying meta-model of access control [ 14], CRUD policies 
define a category of user roles and a category of business entities or business entity 
attributes, and CRUD relationships between these two categories. The addition of a 
user condition to a CRUD policy effectively subsets the category of business entities 
or business entity attributes. 

This work is similar in some ways to that of Goedertier, et. al. [ 14,  16], which also 
describes the use of SBVR to model access rules for business process models. The 
Business Entity vocabulary reviewed in section  5, above, makes the rules described 
here process aware, in the sense of Goedertier. One key difference is that these rules 
explicitly build upon the concept of Business Entity states, which are not the same as 
the "business process state space" described in [ 16]. Business Entity states are the 
states of a finite state machine, whereas the "business process state space" is the 
totality of the information associated with a business process. 

Another difference arises in the underlying process models. The EM-BrA2CE 
business model of [ 16] defines twelve "generic state transitions", such as assignment 
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of a user to an activity, adding a fact, removing a fact, and so forth. In the Business 
Entity method, states and state transitions are specific to business domains and 
meaningful to business users. Fig. 1 shows an example. 

The policies described here are similar to what Goedertier calls "visibility 
constraints". The rule structure described here appears to be more general than those 
of [ 14] because they support multiple user roles, multiple states, and multiple 
attributes in one rule. 

The work described here models access rules as deontic or behavioral rules, 
whereas Goedertier uses alethic or structural rules. Alethic rules describe what is true 
by definition, while deontic rules define what is expected to be true but may in fact 
not be true. It seems to this author that access control describes expectations of 
behavior rather than definitions of structure. Hence, access control rules are deontic in 
the work described here. 

Vanthienen [ 17] describes the Prologa tool, which uses decision tables to visualize 
a complex set of related rules. This tool is employed in [ 14] to display access rules. 
The CRUD visualization described in this paper takes advantage of the Business 
Entity method semantics to display the access policies in a more compact form. In 
effect, the CRUD matrix is a specialized decision table that has two fixed conditions 
that test the user role and business entity state, and an optional third condition 
specified by the user. The optional user condition, and the ability to specify "all roles" 
or "all states", relieves the limitations of the two fixed conditions, thus providing 
flexibility to address any access control use case. Thus the CRUD matrix design 
addresses the simple cases simply while extending to reach complex cases as 
required. 

Both Prologa and this work convert between decision tables and textual rule sets. 
An optimization introduced in this paper reduces the number of rules generated in the 
common situation where the same rule applies to multiple user roles or multiple 
Business Entity attributes. 

9   Summary and Future Work 

This work describes an integration of SBVR rules with the Business Entity method of 
[ 1] to support data access control rules. It shows how an access rule tool can use a 
matrix format to display complex data access rules in an easily-understood format. 
The matrix compactly displays access constraints that would take dozens of lines of 
text if displayed in an if-then rule format. The matrix format and the use of 
"Structured English" for user conditions directly support access control management 
by business users. 

Flexibility is provided via fine-grained "user conditions" that may further constrain 
the access control rules. The rules are captured according to the SBVR meta-model, 
which enables the user conditions to exploit the richness of SBVR expressions while 
displaying the conditions in SBVR "Structured English". 

A template shows how the matrix form of the access rules is converted to the 
SBVR meta-model. The template supports 54 different access patterns, considering 
the possible numbers of user roles, business entity states, and business entity 
attributes, and the presence or absence of user conditions. 
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An extension of the SBVR meta-model addresses a scale-up problem that would 
otherwise result in an explosion in the number of rules. When one access control rule 
addresses multiple business entity attributes or multiple user roles, the number of 
equivalent SBVR rules is the product of the numbers of each. In the absence of user 
conditions, the "quantification collection" extension of the SBVR meta-model reduces 
the required number of SBVR rules to 1. 

The SBVR rules may be implemented directly in a runtime system, or may be 
converted to another format, such as XACML for execution by an XACML-
compliant Policy Enforcement Point. The latter approach combines the advantage of 
displaying the user conditions in SBVR "Structured English" with the exploitation of 
existing XACML engines. 

Future work is needed in two areas. As mentioned previously, the prototype 
runtime system needs further development to support user conditions. A particular 
implementation challenge is handling user conditions in the case of large query 
results. The second area is end-user testing to make sure the tool design is effective 
with the intended audience of business users. 
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Abstract. We investigate the concept of norm compliance in business process
modeling. In particular we propose an extension of Formal Contract Logic (FCL),
a combination of defeasible logic and a logic of violation, with a richer deontic
language capable of capture many different facets of normative requirements. The
resulting logic, called Process Compliance Logic (PCL), is able to capture both
semantic compliance and structural compliance. This paper focuses on structural
compliance, that is we show how PCL can capture obligations concerning the
structure of a business process.

1 Introduction

Recent works in business process modeling focus on the concept of norm compliance (see
the literature in Section 6). Norm compliance is aimed at ensuring that business processes
are in accordance with a prescribed set of norms. More specifically by norm compliance
we understand a relationship between two sets of specifications describing the alignment
of formal specifications for business processes and formal specifications relevant law
and regulations. In other terms compliance is the certification that a process is executed
correctly does not result in a breach of the rules governing it. Compliance requirements
may stem from legislation and regulatory bodies, standards and codes of practice, and
business partner contracts. However, some research issues are still underdeveloped. We
focus here on three of them, which are related to the three sources of complexities.

A first source of complexities resides in the fact that norms often regulate processes
by specifying obligatory actions to be taken in case of breaches of some of the norms,
actions which can vary from penalties to the termination of an interaction itself. Obli-
gations in force after some other obligations have been violated correspond to contrary-
to-duty obligations (CTDs) [1]. Among them, we have the reparative obligations, which
are meant to ‘repair’ or ‘compensate’ violations of primary obligations [2]. These con-
structions identify situations that are not ideal but still acceptable. The ability to deal
with violations is an essential requirement for processes where some failures can occur,
but they do not necessarily mean that the whole process has to fail. However, these con-
structions can give rise to very complex rule dependencies, because we can have that
the violation of a single rule can activate other (reparative) rules, which, in case of their
violation, refer to other rules, and so forth [3].

A second source of complexities depends on the fact that processes may be regulated
by different types of obligations (see Section 2). We may have obligations requiring (1)
to be always fulfilled during the execution of the entire process or of some subpaths of

M. Dean et al. (Eds.): RuleML 2010, LNCS 6403, pp. 194–209, 2010.
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it, (2) that a certain condition must occur at least once before the execution of a certain
task A of the process and such that the obligations may, or may not, persist after A if
they are not complied with, (3) that something is done in a single task [4]. These types
of obligation make things more complex when we deal with the compliance of a process
with respect to chains of reparative obligations. For example, if the primary obligation
is persistent and states to pay before task A, and the secondary (reparative) obligation
is to pay a fine in the task B successive to A, the process is compliant not only when
we pay before A, but also when we do not meet this deadline, pay later and pay the
fine at B. If the secondary obligation rather requires to be always fulfilled for all tasks
successive to A, compliance conditions will change.

The third source of complexities arises from different types of conditions we have
for business processes. We can have normative requirements about the artifacts of a
business process, over the activities (tasks) to be performed and over the order on which
they are executed, as well as their combinations.

Most of the approaches to business process compliance address only one of these
aspects. We propose an approach able to capture compliance requirements through a
generic requirements modeling framework, and subsequently facilitate the propagation
of these requirements into business process models and enterprise applications, thus
achieving compliance by design. To achieve this objective we show how to use the
language and the algorithm we have proposed in [5] to capture normative conditions on
the tasks of a process.

Ensuring automated detection and/or enforcement of compliance requires in this pa-
per to address the following related research tasks. First, we have to define in Section
3 a language to represent, and reason about, chains of reparative obligations of the
types discussed in Section 2. Second, we need a mechanism for normalising a system
of norms, namely, identify formal loopholes, deadlocks and inconsistencies in it, and
to make hidden conditions explicit; without this, we do not have any guarantee that a
given process is compliant, because we do not know if all relevant norms have been con-
sidered (Section 3). Third, we have to specify a suitable language for business process
modeling able to automate and optimise business procedures and to embed normative
constraints (Section 4).

2 Normative Constraints: Violations and Types of Obligation

We can distinguish achievement obligations from maintenance obligations [4]. For an
achievement obligation, a certain condition must occur at least once before a deadline:

Example 1. Customers must pay before the delivery of the good, after receiving the
invoice.

The deadline (before the delivery of the good)—which of course meaningfully applies
if the customer is informed about the the maximum timespan within which the good can
be delivered—refers to an obligation triggered by receipt of the invoice: such an obli-
gation is persistent. After that the customer is obliged to pay. The obligation terminates
only when it is complied with. Note that the obligation persists after the deadline, until
it is achieved. But we may have cases where achievement obligations do not persist
after the deadline:
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Example 2. Once the submissions to RuleML 2010 are made available to RuleML-
2010 PC members, the reviewers must send their reports before the notifications are
delivered to the authors

Indeed, the obligation to deliver a review does not persist after the deadline, since after
the review result has been notified to the authors, the paper has been accepted or rejected
on the basis of the other reports delivered in time.

For maintenance obligations, a certain condition must obtain during all instants be-
fore the deadline:

Example 3. After opening a bank account, customers must keep a positive balance until
bank charges are taken out.

By definition, maintenance obligations do not persist after the deadline. In Example 3,
the deadline only signals that the obligation is terminated. A violation occurs when the
obliged state does not obtain at some point before the deadline.

Finally, puctual obligations only apply to single tasks or instants:

Example 4. When banks proceed with any wire transfer, they must transmit a message,
via SWIFT, to the receiving bank requesting that the payment is made according to the
instructions given.

Punctual obligations apply only to single instants or tasks; mathematically they can be
thought as either maintenance obligations or achievement obligations in force in time
intervals where the endpoints are equal. Typically punctual obligations must occur at
the same time of their triggering conditions, as shown in the above example.

Many norms can be associated with an explicit sanction. Consider

Example 5. Customers must pay before the delivery of the good, after receiving the
invoice. Otherwise, an additional fine must be paid.

Example 6. After opening a bank account, customers must keep a positive balance until
bank charges are taken out. Otherwise, their account is blocked.

An explicit sanction is often implemented through a separate obligation, which is trig-
gered by a detected violation. Thus, further deadlines can be introduced to enforce the
sanctions, leading to a chain of obligations. For instance, the payment of a fine men-
tioned in Example 5 could be due before the execution of a subsequent task.

We can also distinguish preemptive obligations from non-preemptive obligations.
Suppose that, in Example 1, the price is 200$, and the customer, by mistake, transferred
an amount of 200$ to the bank account of the seller before the date of the invoice. In
this case, the early transfer may count as a payment and the customer could claim that
her obligation to pay the seller is already fulfilled. This is an example of preemptive
obligation. Non-preemptive obligations do not work as above. Consider this example:

Example 7. Executors and administrators of a decedent’s estate will be required to give
notice to each beneficiary named in the Will within 60 days after the date X of an order
admitting a will to probate has been signed.
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If an executor gives a notice to the beneficiaries before X , she will have to resend the
notification after that. Note that the distinction between preemptive and non-premptive
obligations applies only to achievement obligations, while it does not make sense with
the maintenance and punctual ones.

What happens if the above types of obligations are combined into chains of repar-
ative obligations? The expression of violation conditions and the reparations is an im-
portant requirement for designing subsequent processes to minimise or deal with such
violations and also to determine the compliance of a process with the relevant norms.
The violation expression consists of the primary obligation, its violation conditions, an
obligation generated upon the violation condition occurs, and this can recursively be
iterated, until the final condition is reached. We introduced in [3,6] the non-boolean
connective ⊗: a formula like OA⊗OB means that A is obligatory, but if the obligation
OA is not fulfilled (i.e., when ¬A is the case), then the obligation OB is activated and
becomes in force until it is satisfied or violated. However, the violation condition of an
obligation varies depending on the types of obligations used. In the next section, we
will extend the approach of [3,6] to cover these cases.

3 Process Compliance Language (PCL)

We now provide a formal account of the ideas presented above. Our formalism, called
Process Compliance Language (PCL), is a combination of Defeasible Logic (DL) [7]
and a deontic logic of violations [6]. PCL significantly extends the logic of [3] with
types of obligations discussed in Section 2 and preserves the linear complexity of DL.

PCL formal language consists of a numerable set of propositional letters p,q,r, . . . ,
intended to represent the state variables and the tasks of a process. Formulas are con-
structed using the negation ¬, the non-boolean connective ⊗ (for the reparative oper-
ator), and the deontic operators Ox

y, for obligation (where y can be empty). Based on
the discussion in Section 2 we have three main classes of deontic operators: punctual
obligations (Op), maintenance obligations (Om) and achievement obligations (Oa);
achievement obligations in turn can be classified based on two orthogonal distinctions:
persistent (Oa,π) vs non-persistent (Oa,τ ), and preemptive (Oa,x

pr ) vs non-preemptive
(Oa,x

n−pr).
The formulas of PCL are constructed in two steps according to the following forma-

tion rules: (i) every propositional letter is a literal; (ii) the negation of a literal is a literal;
(iii) if X is a deontic operator and l is a literal then Xl and ¬Xl are deontic literals.

After we have defined the notions of literal and deontic literal we can use the follow-
ing set of formation rules to introduce⊗-expressions, i.e., the formulas used to encode
chains of obligations and violations: (a) every deontic literal is an ⊗-expression; (b) if
Xl1, . . . ,Xln are deontic literals, then Xl1⊗ . . .⊗Xln is an ⊗-expression.

The connective⊗ permits combining primary and reparative obligations into unique
regulations. The meaning of an expression like Oa,π

pr A⊗OpB⊗OmC is that the primary
provision is an achievement, persistent, preemptive obligation to do A, but if A is not
done, then we have a punctual obligation to do B. If B fails to be realised, then we
obtain a maintenance obligation to do C. Thus B is the reparation of the violation of the
obligation Oa,π

pr A. Similarly C is the reparation of the obligation OpB, which is in force
when the violation of A occurs.
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Each norm is represented by a rule in PCL like r : A1, . . . ,An ⇒C, where r is the id
of the norm, A1, . . . ,An is the set of the premises of the rule, and C is the conclusion of
the rule. Each Ai is either a literal or a deontic literal and C is an ⊗-expression.

PCL is also equipped with another type of rules, called defeaters (marked with arrow
�) and a superiority relation (a binary relation) over the rule set.

In DL, the superiority relation (≺) determines the relative strength of two rules, and
it is used when rules have potentially conflicting conclusions. For example, given the
rules r1 : a⇒ Omb⊗Oa,π

n−prc and r2 : d ⇒ ¬Oa,π
pr c, r1 ≺ r2 means that rule r1 prevails

over rule r2 in situations where both fire and they are in conflict.
Defeaters play a peculiar role, as they cannot lead to any conclusion but are used to

defeat some rules by producing evidence to the contrary. Thus, defeaters are suitable to
model the termination of the persistence of obligations [8]. Consider Example 5:

invinit : invoice⇒Oa,π
pr pay⊗Oppay_fine invterm : pay � ¬Oa,π

pr pay

Here, compliance is the only condition that terminates the obligation to pay: if not
complied with, the obligation in fact persists beyond the deadline (we have still to pay),
so failing to meet the deadline is used to signal a violation and trigger a sanction.

Normal Forms. We introduce transformations of a PCL representation of a normative
system to produce a normal form of the same (NPCL). The purpose of a normal form
is to “clean up” the PCL representation of a normative system, to identify formal prop-
erties, e.g., loopholes, inconsistencies, . . . , and to make hidden conditions explicit. We
first describe a mechanism, based on [6], to derive new conditions by merging together
existing normative clauses. Then, we examine the problem of redundancies, and we
give a condition to identify and remove redundancies from the formal normative speci-
fication. Finally, we discuss how to solve possible conflicts between deontic provisions.

Merging Norms. One of the features of the logic of violations is to take two rules, or
norms, and merge them into a new clause.

Consider a norm like (Γ and Δ are sets of premises) Γ ⇒ OmA. If we have that the
violation of OmA is part of the premises of another norm, for example, Δ ,¬A⇒ OpC,
then the latter must be a good candidate as reparative obligation of the former:

Γ ⇒ OmA Δ ,¬A⇒ OpC
Γ ,Δ ⇒OmA⊗OpC

This reads as follows: given two policies such that one is a conditional obligation (Γ ⇒
OmA) and the antecedent of second contains the negation of the propositional content
of the consequent of the first (Δ ,¬A⇒OpC), then the latter is a reparative obligation of
the former. Their interplay makes them two related norms so that they cannot be viewed
anymore as independent. Therefore we can combine them to obtain an expression (i.e.,
Γ ,Δ ⇒OmA⊗OpC) that exhibits the explicit reparative obligation of the second norm
with respect to the first.

Let X ,Y,Z be deontic operators. The following is the general rule for merging norms
based on [6,2]:

Γ ⇒ Xa⊗ (
⊗n

i=1 Ybi)⊗Zc Δ ,¬b1, . . . ,¬bn ⇒ Zd
Γ ,Δ ⇒ Xa⊗ (

⊗n
i=1 Y bi)⊗Zd

(1)
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Removing Redundancies. It is possible to combine rules in slightly different ways,
and in some cases the meaning of the rules resulting from such operations is already
covered by other rules. In other cases the rules resulting from the merging operation are
generalisations of the rules used to produce them, consequently, the original rules are
no longer needed in the specifications. To deal with this issue we introduce the notion
of subsumption between rules. A rule subsumes a second rule when the behaviour of
the second rule is implied by the first rule. For example, let us consider the rules

r : Invoice⇒ Oa,π
pr Pay7Days⊗OpPayInterest r′ : Invoice,¬Pay7Days⇒ Oa,π

n−prPayInterest.

The first rule says that after the seller sends the invoice the buyer has the achievement,
persistent and preemptive obligation to pay within one week, otherwise immediately
after the violation the buyer has to pay the principal plus the interest. Thus we have the
primary obligation Oa,π

pr Pay7Days, whose violation is repaired by the secondary obliga-
tion OpPayInterest. According to the second rule, given the same set of circumstances
Invoice and ¬Pay7Days we have the achievement, persistent and non-preemptive obli-
gation Oa,π

n−prPayInterest. However, (a) the primary obligation of r′ obtains when we
have a violation of the primary obligation of r; (b) after the obligation Oa,π

pr Pay7Days is
violated, complying with the secondary obligation OpPayInterest of r entails comply-
ing with the primary obligation Oa,π

n−prPayInterest of r′ (but not vice versa); (c) hence, r
is more general than r′, and so the latter can be discarded.

In what follows, Definition 4 characterizes subsumption (which refers to Definitions
1, 2, and 3 to establish when the compliance conditions for an ⊗-expression cover the
compliance conditions of another⊗-expression).

Definition 1. Let X ,Y ∈ {Oa,π
pr ,Oa,π

n−pr,O
a,τ
pr ,Oa,τ

n−pr,O
m,Op}. Then, Y � X iff

(i) if Y = Oa,π
pr , then X ∈ {Oa,π

pr ,Oa,π
n−pr,O

a,τ
pr ,Oa,τ

n−pr,O
m,Op};

(ii) if Y = Oa,π
n−pr, then X ∈ {Oa,π

n−pr,O
a,τ
n−pr,O

m,Op};
(iii) if Y = Oa,τ

pr , then X ∈ {Oa,π
pr ,Oa,π

n−pr,O
a,τ
pr ,Oa,τ

n−pr,O
m,Op};

(iv) if Y = Oa,τ
n−pr, then X ∈ {Oa,π

n−pr,O
a,τ
n−pr,O

m,Op};
(v) if Y = Om, then X = Om;

(vi) if Y = Op, then X ∈ {Op,Om}.

Definition 2. Let Xa be a deontic literal and Y any deontic operator. If X = ¬Y , X is a
negative operator; if X = Y, it is a positive operator.

Definition 3. Let A =
⊗m

i=1 Xai and B =
⊗n

i=1 Ybi be two ⊗-expressions. Then, A de-
ontically includes B iff m = n, and for each Xai, Y bi (1) ai = bi, and (2) if X and Y are
positive operators, then Y � X.

Definition 4. Let r1 : Γ ⇒A⊗B⊗C and r2 : Δ ⇒D be two rules, where A =
⊗m

i=1 Xai,
B =

⊗n
i=1 Ybi and C =

⊗p
i=1 Zci. Then r1 subsumes r2 iff

1. Γ = Δ and A deontically includes D; or
2. Γ ∪{¬a1, . . . ,¬am}= Δ and B deontically includes D; or

3. Γ ∪{¬b1, . . . ,¬bn}= Δ and A⊗⊗k≤p
i=0 ci deontically includes D.
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Consider, e.g., the obligation B = Oa,τ
n−prb. If another obligation A is equal to B, com-

pliance conditions for both are trivially the same. If A is either Oa,π
n−prb, Omb, or Opb,

A deontically includes B, because, if both are in force, the compliance of A implies the
compliance of B. However, notice that if A is a preemptive achievement obligation, we
have no guarantee that its compliance supports the compliance of B: indeed, b could
have been obtained before A and B were in force, which is enough for fulfilling only A.

Solving Conflicts. Conflicts often arise in normative systems. However, we have to
determine whether we have genuine conflicts between ⊗-expressions or whether such
⊗-expressions admit states where all can be complied with. Suppose that A = Opa⊗
Omb and B = Oa,π

pr ¬a⊗Om¬b are in force. The secondary obligations of A and B are
in contradiction but their primary obligations do not necessarily lead to a joint non-
compliance: if it is now forbidden to pay, and it is obligatory to pay by tomorrow, I can
comply with both obligations by simply paying tomorrow.

Therefore, we have first to identify what⊗-expressions do conflict with one another.
First of all, let us define when two single obligations are in conflict:

Definition 5. Let l, Xl, and Y be a literal, a deontic literal, and a positive operator,
respectively. The complement∼ l is ¬p if l = p, and p if l = ¬p. The complement∼Xl
is defined as follows:

– If Xl = Yl, ∼Xl = {Zp|Z is positive, p =∼ l, either Z �Y or Y � Z}∪{¬Zq|Z =
Y, q = l};

– If Xl = ¬Y p, ∼Xl = {Zq|Z is positive, Z = Y, q = l}.
Definition 6 states under what conditions two ⊗-expressions are in conflict.

Definition 6. Let A =
⊗m

i=1 Xai be an ⊗-expression. Then, ∼A = {B =
⊗n

i=1 Y bi|m =
n, ∀Xai, Ybi : Xai =∼Y bi}.
Given a theory consisting of a set of rules R, a set S of facts (literals and deontic literals),
and a superiority relation, we can use the inference mechanism of Defeasible Logic to
compute, in time linear to the size of the theory, the set of its conclusions. This implies
to solve genuine conflicts by resorting to the superiority relation over the rules. Once
we have defined when two ⊗-expressions are in conflict (Definition 6), we can simply
use the same reasoning mechanism described in [2].

Normalisation Process. The PCL normal form of a normative system provides a repre-
sentation of normative specifications in a format that can be used to check the compli-
ance of a process. This consists of the following steps:

1. Starting from a formal representation of the explicit clauses of a set of normative
specifications we generate all the implicit conditions that can be derived from the
normative system by applying the merging mechanism of PCL.

2. We can clean the resulting representation by throwing away all redundant rules
according to the notion of subsumption.

3. Finally we detect and solve normative conflicts.
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In general the process at step 2 must be done several times in the appropriate order as
described above. The normal form of a set of rules in PCL is the fixed-point of the above
constructions. A normative system contains only finitely many rules and each rule has
finitely many elements. Notice that the operation on which the construction is defined
is monotonic [6], so by set theory results the fixed-point exists and is unique.

4 Process Modeling

A business process model (BPM) describes the tasks to be executed (and the order in
which they are executed) to fulfill some objectives of a business. A language for BPM
usually has two main elements: tasks and connectors. Tasks correspond to activities
to be performed by actors and connectors describe the relationships between tasks: a
minimal set of connectors consists of sequence (a task is performed after another task),
parallel –AND-split and AND-join– (tasks are to be executed in parallel), and choice –
(X)OR-split and (X)OR-join– (at least (most) one task in a set of task must be executed).

Execution Semantics. The execution semantics of the control flow aspect of a BPM
is defined using token-passing mechanisms, as in Petri Nets. The definitions used here
extend the execution semantics of [9] with semantic annotations in the form of effects
and their meaning.

A process model is seen as a graph with nodes of various types –a single start and end
node, task nodes, XOR split/join nodes, and parallel split/join nodes– and directed edges
(expressing sequentiality in execution). The number of incoming (outgoing) edges are
restricted as follows: start node 0 (1), end node 1 (0), task node 1 (1), split node 1 (>1),
and join node >1 (1). The location of all tokens, referred to as a marking, manifests
the state of a process execution. An execution of the process starts with a token on the
outgoing edge of the start node and no other tokens in the process, and ends with one
token on the incoming edge of the end node and no tokens elsewhere. Task nodes are
executed when a token on the incoming link is consumed and a token on the outgoing
link is produced. The execution of an XOR (Parallel) split node consumes the token
on its incoming edge and produces a token on one (all) of its outgoing edges, whereas
an XOR (Parallel) join node consumes a token on one (all) of its incoming edges and
produces a token on its outgoing edge.

Annotation of Processes. The starting point of [5] was the methodology proposed by
[10] where the task of a process are annotated with the (i) the artifacts or effects of
executing and (ii) the rules describing the obligations for the process, where the rules
are expressed in PCL. As for the semantic annotations, the vocabulary is presented as
a set of predicates P. There is a set of process variables (x and y in Fig. 1), over which
logical statements can be made, in the form of literals involving these variables. The
task nodes can be annotated using effects which are conjunctions of literals using the
process variables. If executed, a task changes the state of the world according to its
effect: every literal mentioned by the effect is true in the resulting world; if a literal l
was true before, and is not contradicted by the effect, then it is still true. We assume that
effects in parallel tasks do not contradict each other.
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A: Enter New 
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Information

B: Identity 
Check

J: Notify 
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Close Case
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F: Apply 
Account Policy

E: Open 
Account

D: Approve 
Account 
Opening

I: Initiate 
Account

C: Login for 
Existing 

Customer

H: Accept 
Empty Initial 

Balance 

Task Semantic Annotation
A newCustomer(x)
B checkIdentity(x)
C checkIdentity(x), recordIdentity(x)
D accountApproved(x)
E owner(x,y), account(y)
F accountType(y,type)
G positiveBalance(y)
H ¬positiveBalance(y)
I accountActive(y)
J notify(x,y)

Fig. 1. Example account opening process in private banking, and task annotations

An example of the rules for the process in Figure 1 is “All new customers must be
scanned against provided databases for identity checks” (this rule is taken from the
Australian Anti-Money Laundering and Counter-Terrorism Financing Act 2006)

r1 : newCustomer(x)⇒Oa,τ
pr checkIdentity(x)

The predicate newCustomer(x) is such that if x is a new customer, we have the obli-
gation to check the data against provided databases. The resulting obligation is non-
persistent, i.e., the identity check must be made immediately after we discover that x is
a new customer. In addition the obligation is preemptive: if for some reasons the check
was already previously performed there is no need to perform it again.

Compliance Checking. Our aim in the compliance checking is to figure out (a) which
obligations will definitely appear when executing the process, and (b) which of those
obligations may not be fulfilled. PCL constraint expressions for a normative system
define a behavioural and state space which can be used to analyse how well different
behaviour execution paths of a process comply with the PCL constraints. In [5] we have
shown how to adapt the algorithm to check compliance proposed in [3] to take into ac-
count the rich ontology of norm types we have discussed in the previous sections. The
introduction of the types of obligations allows us to model not only semantic compli-
ance (compliance of the effects of the tasks against a regulation) but also structural
compliance, that is, for example, to check the order in which the tasks in a process are
executed, and whether two tasks can be executed it the same process.

To check compliance we use the following procedure (for the details see [5]):

Step 1. We traverse the graph describing the process and we identify the sets of effects
(sets of literals) for all the tasks (nodes) in the process according to the execution
semantics outlined in Section 4.

Step 2. For each task we use the set of effects for that particular task to determine the
obligations triggered by the execution of the task. This means that effects of a task
are used as a set of facts, and we compute the conclusions of the defeasible theory
resulting from the effects and the PCL rules annotating the process. In the same
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way we accumulate effects, we also accumulate (undischarged) obligations from
one task in the process to the task following it in the process.

Step 3. For each task we compare the effects of the tasks and the obligations accumu-
lated up to the task. If an obligation is fulfilled by a task, we discharge the obliga-
tion, if it is violated we signal this violation. Finally if an obligation is not fulfilled
nor violated, we keep the obligation in the stack of obligations and propagate the
obligation to the successive tasks.

5 From Processes to Rules

The aim of this section is twofold. First we want to show that PCL can be used to
express conditions on order of the tasks, the structure of the process, including thus
common process control flow patterns, as well as other complex conditions about re-
lationships among tasks in a process. In this way, we can use the same language to
express the conditions about the effects or artifacts of a process as well as its tasks
and we can combine the two to obtain a more expressive formalism able to capture
complex compliance requirements. Second, resorting to the same language to express
control flows and compliance requirements allows one to use an appropriate rule en-
gine for multiple functions; in particular, we can check the compliance of a process at
design-time, and monitoring compliance at run-time. Actually, we can push this one
step forward, as the process can be executed directly by the rule engine, thus the moni-
toring of compliance coincides with the execution of the process. The advantage of this
approach is that a business analyst can continue to model a process in familiar standard
graphical languages (e.g., BPMN, EPC, Petri-Nets, YAWL, . . . ), and integrate it with
the compliance requirements, and then the combination of the two is executed directly
by one engine (the rule engine). This minimises risks of “lost in translation” issues
that occur when both the graphical model and the compliance model have to be trans-
lated into an execution language for the (common) execution of the two. The use of
executable specifications, as in PCL where the rules can be executed directly by a rule
engine like SPINdle [11], greatly reduces these risks. On the other hand the mapping
of control flow patterns and other complex constraints offers the opportunity for a fully
declarative language for business process modeling. In the remaining of this section we
illustrate this idea and we show how to capture the most common and basic control flow
patterns. Notice that the technique used does not relay on any specific business process
language.

To capture control flows and other complex relationships among the tasks in a pro-
cess we extend the language of PCL with a set of propositional letters to denote the
tasks; in what follows we will use t, t1, t2, . . . to refer to them, and these propositional
letters correspond to the names/ids of the tasks in a process. For the execution of the
process, these names can correspond to calls to the procedures that implement the tasks.
In addition, for the representation of OR-split, we need to introduce auxiliary proposi-
tional letters corresponding to structural nodes in a process model (i.e., connectors).

Sequence. A sequence means that tasks are executed one after the other. The standard
execution pattern for a sequence operator in process language is that one task is executed
immediately after another. Thus the sequence connection in Figure 2 between tasks t1
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t1 t2

Fig. 2. Sequence operator

and t2 is that task t2 is executed after task
t1. The relationship between the two task
can be modeled by the rule

t1 ⇒ Opt2

After task t1 has been executed, the literal t1 triggers the rule that puts the punctual
obligation Opt2 in the stack of obligations to be fulfilled at the next step. Thus, the
failure to perform task t2 in the step following the step in which t1 completed results in
a violation and thus we have a non-compliant execution trace.

After. The pattern after, modeled by the rule schema

t1 ⇒ Oa,π
n−prt2,

is a variant of sequence. The idea is that after task t1 we have the obligation to achieve
task t2, but not necessarily in the step immediately after the step in which t1 has been
executed. It is worth noting that in this case we have to use a non-preemptive obligation
to avoid that an execution of t2 before t1 fulfils this obligation. Compare this with the
co-occurrence condition below.

Parallel tasks: AND-split, AND-join. An AND-split starts several sub-processes to be
executed in parallel. The condition encoding this pattern is modeled by a set of rules,

t1

tn

t

...

t1

tn

t

...

Fig. 3. AND-split and AND-join

t ⇒ Opt1 . . . t ⇒ Optn

all of which have the same antecedent, the task t whose completed execution triggers
the split. The conclusions of such rules are punctual obligations for the tasks t1, . . . , tn
starting the sub-processes to be executed in parallel. This means that the tasks t1, . . . , tn
are inserted in the stack of obligations to be executed in the step after task t.

Similarly, an AND-join requires the synchronisation of a number of sub-processes
before proceeding to the next task. Accordingly, an AND-join is captured by the rule

t1, . . . , tn ⇒ Opt

This rule needs all the antecedents to hold to fire, and to conclude the punctual obliga-
tion Opt. Hence, all last tasks t1, . . . , tn of the sub-processes to be synchronised have to
be completed before we move to the task after the merge of the sub-processes.
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Fig. 4. (X)OR-split and OR-join

Choice: (X)OR split, OR join. An OR-split is intended to capture sub-processes where
one has a choice on how to continue a process. For the representation of an OR-split
pattern in PCL, we have to use the auxiliary propositional letter. For each OR-split
connector in a diagram we establish a one-to-one mapping between the connector and
the auxiliary propositional letter. Then the set of rules required to model this pattern is

t ⇒Op(ORsplitID) t1 ⇒ ORsplitID . . . tn ⇒ ORsplitID

The first rule on the left side tells us that the completion of task t trigger the obligation
to fulfill the obligation for ORsplitID, where ORsplitID is the propositional letter of
the corresponding OR-connector, and the obligation is in the stack of obligations to be
fulfilled in the step immediately after the step where we have t. The other rules do not
generate normative conclusion, but just factual conclusions. Thus, the meaning of the
first rule is that the completion of task t1 (which we assume to be the first task in one of
the outgoing sub-processes after the OR-split) fulfills the obligation, or in other terms
that ORsplitID holds.

For an XOR, in addition we need, the rules

ti ⇒¬t j i �= j,1 ≤ i, j ≤ n

which state that if ti holds then t j does not hold, thus it is not possible to have a sit-
uation where both ti and t j hold. As a consequence, only one of the alternative sub-
processes can be executed. This method requires to generate n2 additional rules for
each XOR-split. An alternative encoding of XOR-split, in particular when a default
choice is present, is to use a rule with reparative deontic conclusions, thus

t ⇒ Opt1⊗Opt2⊗·· ·⊗Optn

According to the rule above, the best option after t is t1, but if t1 is not performed, then
the second best option is t2 and so on. Thus, the above rule determines a total order on
the preferences of the alternative choices in an XOR-split. In addition it is possible to
combine the above two techniques, so we can have a rule like t ⇒Opti⊗OpORsplitID.
This gives a default choice over ti but no preferences over the others sub-processes:

t1 ⇒ Opt . . . tn ⇒ Opt
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Absence. The absence is the condition that establishes that one task cannot be anymore
scheduled in the process if another task already happened in the process. This condition
can be represented by the rule

t1 ⇒ Om¬t2

that uses a maintenance prohibition (i.e., O¬) stating that the task t2 cannot happen after
the execution of task t1.

Co-occurrence. This pattern is designed to check that two tasks, let us say ti and t j,
occur in the process. This can expressed as follows: if task ti happens in the process,
this should also include task t j. The idea is similar to the after pattern; the difference
is that in after the second task (for the sake of argument, t j) should occur in a step
successive to that including ti. For the co-occurrence pattern, this restriction is lifted so
task t j can appear anywhere in the process. To express this we use a non-preemptive
obligation. Accordingly, the pattern is modeled by

ti ⇒Oa,π
pr t j t j ⇒ Oa,π

pr ti

The first rule on the left says that t j must occur when ti occurs, and the second that ti
must occur when t j does. Thus, depending on the situation, one can use either one of the
two rules or both. In case we have only the first rule, an execution trace is non compliant
when we have ti but not t j, but non-compliance does not occur when we only have t j

(similarly, for the second rule). If both rules are in force, then a trace is compliant if
either both tasks are in the trace or none is.

Conditional Occurence. With the previous patters we have examined situations where
if one task is included in an execution trace so do other tasks. With this pattern we
consider a subtle difference: we consider the case where one task has to be included if
another one has to be included as well. This pattern is described by the rule

Oxt1 ⇒ Oxt2

The difference with the other patterns is that in the antecedent we have an obligation
instead of a factual premise. Most of the considerations regarding the co-occurrence
pattern apply to this patter as well; but there is one difference. Suppose that the rule
fires, thus we have the obligation of performing task t1. The obligation to perform task
t2 still exists even if for some reasons task t1 is not done (for example, let us say there
is a situation where it is possible not to execute t1 provided some compensatory actions
are taken).

In Between and Discharge. The aim of this pattern is to model the condition that one
task must be executed after another one but before a third one, for example, that task t j

is executed between tasks ti and t j. In PCL this can be expressed as

ti ⇒ Oa,π
n−trt j tk � ¬Oa,πt j tk ⇒¬t j

The first rule on the left side is just the rule for the after pattern. The second rule in
the middle terminates the obligation to achieve t j when tk is performed, in addition the
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performance of tk signals that t j has not been executed. Thus if task t j is not executed
in between the other two task, we have an unfulfilled obligation resulting in a non-
compliant situation. Please compare the idea of this pattern with the discussion about
deadlines and whether obligations persist after the deadlines.

Loops, Hooks and Loop Termination. Most BPM notations allow us to represent loops
(reoccurring sub-processes). PCL is able to represent loops as well, with rules like

ti ⇒ Oa,τ
n−prti

or more in general with rules such as

ti ⇒ Oxt j

where t j is in the dependence graph of ti.
To avoid infinite loops, a loop termination condition can be expressed by a rule

p � ¬Oxti

where ti is a task involved in a loop (we avoid the discussion about fairness conditions
for p and fairness conditions for loop termination for tasks inside OR-split blocks inside
loop blocks).

An interesting rule is
t1 ⇒ Omt2

This rule requires task t2 to be execute in every step following a step where task t1
successfully completed; the obligation generated by the rule is a maintenance condition.
The intuition is that t2 is a hook task, that is a task that must be executed every time the
business process activates another task.

6 Summary and Related Work

Given two tasks t1,t2 of a process we can use the types of obligations defined in
Section 2 to describe relationships between these two tasks (the types of obliga-
tions provide a comprehensive classification of the possible obligations). In particular

Table 1. Flow patterns

ti ⇒Opt j sequence
ti ⇒Oa,π

n−prt j after
ti ⇒Oa,π

pr t j co-occurrence
ti ⇒Omt j process hook

we have seen that some of them give rise to
natural and common control flow patterns in
business processes, in particular, even if we limit
ourselves to basic relationships, we can express
patterns like those in Table 1.

In addition we can represent many more
patterns including those that are difficult to ex-
press in standard BPM languages, for example,
conditions using tasks from different branches of a process (e.g., in an OR-block), and
we can mix information about tasks (task literals) and data conditions. Thus, it seems
to us that PCL offers a rich, compact and holistic framework for business process com-
pliance in such a way as we also can use a rule engine for PCL as a process engine. To
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understand the full extent of the proposed approach we plan a comprehensive comparison
with control flow patterns [12], data patterns [13], and the declarative patterns of [14].

A number of works have been devoted to compliance in control modelling. [15]
presents the logical language PENELOPE, that provides the ability to verify temporal
constraints arising from compliance requirements on effected business processes. [16]
develops a method to check compliance between object lifecycles that provide refer-
ence models for data artifacts e.g. insurance claims and business process models. [17]
provides temporal rule patterns for regulatory policies, although the objective of this
work is to facilitate event monitoring rather than the usage of the patterns for support
of design time activities. Furthermore, [18] presented an architecture for supporting
Sarbanes-Oxley Internal Controls, which include functions such as workflow model-
ing, active enforcement, workflow auditing, as well as anomaly detection. [19] studies
the performance of business contract based on their formal representation. [20] seeks to
provide support for assessing the correctness of business contracts represented formally
through a set of commitments. The reasoning is based on value of various states of com-
mitment as perceived by cooperative agents. Also, there have been recently some efforts
towards support for process modelling against compliance requirements. [10] proposes
an approach based on control tags to visualize internal controls on process models. [21]
takes a similar approach of annotating and checking process models against compliance
rules, although the visual rule language (BPSL) does not directly address the deontic
notions providing compliance requirements.

Many works proposed declarative languages to model business processes. [14,22]
used a language based on linear temporal logic to model processes to check confor-
mance by symbolic model checking, [23] show how to use Concurrent Transaction
Logic to represent the structure of of workflows, while [24] advance a prolog-like lan-
guage for the same scope. The use of logic and rule based languages to describe business
processes is not new. However, most works are restricted to limited patters of tasks, and
almost no work uses the same for data (artifact) requirements, nor it address deontic
concerns and is able to handle violations and possible compensations for violations.
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Abstract. We present an ontology-based and rules-based model of simple, but 
very typical, economic crimes, namely fraudulent disbursement in combination 
with money laundering. The extension of the previously proposed ontology 
model, called the “minimal model”, is used to capture the mechanism of the 
example cases. The conceptual minimal model consists of eight layers of 
concepts, structured in order to use available data on facts to uncover relations. 
In comparison to our previous work in which rules were restricted to criminal 
roles in only one company, where the crime originated, this work is able to 
capture roles and consequently criminal sanctions throughout the complete 
chain of conspiring companies. We are able to discover crime activity options 
(roles of particular type of owners, managers, directors and chairmen) using 
concepts, appropriate relations and rules. However, due to the varying size of 
incriminated companies the number of levels of responsibility ranges from one 
to three, that causes significant increase of necessary rules. These roles are 
phrased in the language of penal code sanctions. The roles of persons in the 
crime are mapped into a set of sanctions. We use the Semantic Data Library 
(SDL) with Jess engine as a reasoning tool to query and infer about crime 
scheme and sanctions. We present results achieved with our minimal model 
ontology. Prospects on future capabilities of our tools are presented. 

Keywords: Financial crime, money laundering, minimal model ontology, 
reasoning, penal code. 

1   Introduction 

Economic crimes are particularly difficult to model [1] and code into an expert 
system. For example, fraudsters use many types of schemes, techniques and 
transactions to achieve their goals, so it has seemed impossible to construct a simple 
conceptual model of any generality. Only recently has the integrated use of semantics 
expressed by means of ontologies and rules achieved the capability of analyzing large 
practical problems, such as applying reasoning over legal sanctions on the basis of 
investigation facts and rules appearing in penal codes.  
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In the previous work [2, 3, 4] we presented a model of fraudulent disbursement 
crime, a subset of asset misappropriation crime. In the 2009 survey [5], such a crime 
constituted two-thirds of all economic crimes. It is often accompanied by money 
laundering schemes. In this work we apply our approach to the money laundering 
thread and present further extensions of the fraudulent disbursement model. 

Money laundering is more difficult to model and requires more expressive power. 
Definition of money laundering differs between jurisdictions [6]. 

The Polish Penal code defines it in a way similar to the UK law as taking any 
action with property of any form which is either wholly or in part the proceeds of a 
crime that will disguise the fact that the property is the proceeds of a crime. Here we 
restrict the notion to engaging in financial transactions to conceal the identity, source, 
or destination of illegally gained money. 

The model is based on the suitable application of an ontology that forms a 
“minimal layer” - it contains only necessary concepts that follow the logical order of 
uncovering a crime [2], [3]. The previous model captured the crime mechanism 
correctly but was lacking some details. These details concerned rules for taking 
decisions in companies of various sizes and activities related to transactions and 
whether persons in these companies formally documented their activities. 

Significant extensions made in this work make the model much more realistic. The 
extended ontology makes it possible to differentiate roles of key people in the crime 
scheme, and map their crimes into a specific set of penal code articles in a more 
corrected differentiated ways. The paper is organized as follows. Section 2 presents 
the Semantic Web Technologies and types of rules which are used in our approach. 
Section 3 describes our money laundering minimal ontology model compatible with 
the Hydra case. In Section 4 we analyze law based on the Polish penal code, related to 
money laundering, and we derive rules that define logical activities appearing in the 
Penal Code based on physical activities. Conclusions and future work are presented in 
Section 5. 

2   Used Technologies 

2.1   Semantic Web Technologies 

In information technology, an ontology is the working model of objects (entities) and 
relations in some particular domain of knowledge. Ontology defines domain 
knowledge (objects and properties) and also should provide operational knowledge on 
use (how do we use the objects?, what answers can we get?, and how could we 
query?). In general, the model represents machine readable projection of a larger 
domain expressed in a formalized language. We follow less general but more practical 
bottom-up path. We are interested in legal case description we build hierarchy of 
objects possessing inheritance, along with their properties such as attributes, and 
restrictions that apply to the class. One may apply rules to support reasoning.  

There are various approaches that construct ontologies based of background 
knowledge (facts). Notable are approaches [7], [8], that from textual description of 
case facts select applicable factors. Wyner [8] introduced intermediate concepts that 
allow differentiating between cases. This approach is more general than ours used in 
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this work, as we mostly concentrate on most precise description of a single case. 
However, we do not limit ourselves with only facts of the case. We consider also 
possible variants of the case together with their legal implication. In [7] and [8] levels 
of intermediate concepts were used in a logical relation rather than lattice-theoretic 
structure. 

The minimal model ontology has been developed in language OWL-DL (Web 
Ontology Language Description Logic) [9] which supports maximum expressive 
power without loss of decidability and computational completeness. We define rules 
in SWRL (Semantic Web Rule Language) [10] language, which, introduces 
undecidability into our ontology but extends the expressivity of OWL supporting the 
use of ontology axioms in rules. We also use SWRLB language (SWRL Built-ins) 
[11] to extend SWRL with additional functions. Generally, we use SWRLB 
Comparisons to compare variables and to put some constraints on them.  

Such a model with ontology and rules needs an appropriate reasoner. There are 
several of them, for example: Pellet [12] and KAON2 [13]. Our data are stored in a 
relational database, so we have to use a reasoner which supports querying ‘on-the-fly’ 
according to defined semantics and with the use of rules. We decided to use Jess (Java 
Expert System Shell) [14, 15], a reasoner tool with SDL (Semantic Data Library) [16] 
which is much more efficient than KAON2 (it also enables ‘on-the-fly’ querying). 

We stress that some of the presented facts, for example ApprovalOfWorkNotDone(?d), 
will be put into the system by a prosecutor or other person connected with an 
investigation. We also want to mention that all variables appearing in rules which have 
different names are treated as having different values. To express that we need to use 
SWRLB constructions (for example: swrlb:equal (’=’), swrlb:notEqual (’!=’), 
swrlb:greaterThan (’>’) etc.). But for clarity in this paper we do not use them. Rules are 
written in SWRL-like notation. 

2.2   Types of Rules Used in Approach 

Rules play a very important role in the layered architecture of the Semantic Web. 
They are used for freely mixing of property and class expressions which is not 
allowed in OWL. Generally, rules in the Semantic Web are needed for: 

• inferencing about OWL properties and classes,  
• mapping ontologies in data integration, 
• transforming data from one to another format, 
• querying with the use of complex queries based on OWL, SWRL etc. axioms, 
• and many more. 

Usually, rules are distinguished into deduction rules, production rules, normative 
rules, reactive rules, defeasible rules, etc. In our approach we apply two kinds of 
rules: deduction and production rules. We use deduction rules to infer about facts in 
the knowledge base. They add new implicit statements about connections between 
persons, documents, money transfers and legal sanctions. According to them we can 
discover crime scheme and suggest legal sanctions for people involved in crime. 
These rules are defined in SWRL language with the use of SWRL Built-ins. 
Deduction rules are also used for querying Jess engine’s working memory. Query rule 
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contains only body part and after hybrid reasoning (executed by SDL with Jess) 
activations of this rule are obtained as query results [16]. 

Production rules are used for mapping between ontology axioms (properties and 
classes) and data stored in a relational database. These rules are defined in Jess 
language. Their creation is supported by the SDL-GUI module which is the part of the 
SDL tool. Mapping utilizes simple rule that every “essential” axiom (property or 
class) has defined appropriate SQL query for mapping. “Essential” means that the 
instance of this axiom can not be obtained from the taxonomy or rules. It can be 
obtained only in the direct way (as the result of the SQL query). For example, for the 
hierarchy of classes Institution->Company->Buyer, the Buyer class is an “essential” 
concept, because it is at the bottom of the hierarchy (and there is no rule which 
defines Buyer instance).  

We assume that the ontology which is used is properly constructed and defined 
(the taxonomy is computed and classified; without inconsistencies). The taxonomies 
of ontology classes and properties are classified by SDL-GUI with Pellet 2.1.1 and 
presented. User can define SQL query on calculated taxonomies (so the ontology has 
to be consistent). During reasoning, production rules generate SQL queries and then 
SDL query relational database. Results are added as RDF triples into Jess working 
memory. 

3   Fraudulent Disbursement and Money Laundering Minimal 
Ontology Model 

The discussion of state-of-the-art legal ontologies and details of our approach has 
been discussed in [4] and will not be repeated here. Our so-called minimal ontology 
comes from experience of detailed analysis of descriptions, indictments and sentences 
of around 10 criminal cases. The most clean case of fraudulent disbursement is so-
called Hydra Case. 

In this case the Chief executive officer (CEO) of company A (Hydra) subcontracted 
construction work. The work is then consecutively subcontracted through a chain of 
phony companies B, C, and D (Hermes, Dex, Mobex). Each company is getting a 
commission for money laundering and falsifies documents stating that the contracted 
work had been done. Actually, what was to be done as “subcontracted construction 
work” company A did itself. 

At the end of the chain, the owner of a single person company D attempts to 
withdraw cash, and there is a suspicion that this cash reaches the management of 
company A “under the table”. The crime scheme of the Hydra case is presented in 
Figure 1. 

In one of the previous work [3] we considered a simplified version of the Hydra 
case, such that only the single level of authorization existed. Basically, it meant that 
once an approval of the construction job was made, the payment for this work 
followed without further authorization. Consequently, only one person in company A, 
the CEO was responsible for the crime. 
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Fig. 1. A basic scheme for the Hydra case 

Our ontology is crafted to a task rather that attempting to describe the whole 
conceivable space of concepts and relations (top ontologies). The methodology 
consists of several steps: 

1. Design of a hierarchical data representation with minimal ontology, 
constructed in the sequence of uncovering a crime scheme. This means using 
only necessary concepts that follow in the logical order of uncovering a 
crime. In the first stage, goods/services transfer data is analyzed with relation 
to 3 basic flows: money, invoices, and documents (i.e., confirming that the 
service or goods have been delivered - particularly important for fuel mafia 
type of crimes). In addition, responsible or relevant people within companies 
are associated with particular illegal activities. 

2. Provision of a framework in which the graph building process and queries 
are executed. 

3. Relating answers to queries with crime qualifications. 

This approach is limited, but provides an essential model for evidence-building of a 
very important class of financial crimes: among them acting to do damage to a 
company and money laundering.  

The major features of the minimal ontology model are the following: 

• Only facts contributing to evidence or possible sanctions are kept. 
• We leave to a human the answer to difficult questions: for example, deciding 

that the work has not been done. This requires sending an expert to the field, 
inspection of construction, taking testimonies, finding that a company that 
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presumably did the job was a straw company, with no experience in 
construction, having no equipment, etc. In some cases finding out that the work 
was underpriced or overpriced is very difficult but a critical issue in a case. 

• Reduction of possible relations or attributes. Here we give some examples: 

o In the case of Hydra, in the first stage it is not necessary to deal with 
the place of construction. The scheme would be a crime no matter 
where the construction was taking place (for a given jurisdiction). 
However, this information has to appear in the indictment. 

o An invoice can be issued or received. We combine these two 
relations, the only relation for invoices possible in our model. 
Invoices may be lost or destroyed, and there will be some cases for 
which these facts will be of importance, and then possibly we would 
have to enhance the model. 

• The knowledge about the case appears explicit as presented by facts, and 
implicit – such as regular business procedures. Once the payment is 
approved, it is then executed and we are not interested who actually did it. 
Such an approach of complementing a scenario with “external knowledge” is 
similar to that taken in Abraxas project [7]. This spares us expressing a trade 
code in OWL. In some cases fraudulent disbursement could be perpetrated 
not by management people but by a lower level officers, For example, a 
payment authorization could by forged, or a payment could be made without 
an authorization. In this paper we do not consider such fraudulent 
mechanisms, but they will be included in a future model. 

The minimal ontology model design uses the following methodology: 

1. First for a given crime typology we ask questions that are parts of crime 
mechanism hypothesis. These are constructed with the help of legal experts. 

2. We then verify the initially assumed ontology against the appropriate cases. 
3. Next decision is taken on granularity (core ontology relevant to all financial 

crimes, domain typology ontology). It is unrealistic to aim at modeling the 
whole reality (and this precisely was the weakness of many previous approaches, 
which although general had to chance to achieve practical results). Some details 
(and corresponding concepts) are dropped at this stage. 

4. Since we do not have enough cases, rules are adopted following experts’ 
experience (such as certain money laundering rules, notably red flag thresholds). 

5. In future when more typologies are included hierarchy of concepts should be 
redesigned. 

The questions that lay the ground for our model are: 

• Between what entities (companies and people) are the transactions? 
• What is a record of business activities and bank accounts of these entities? 
• What is a record of tax statements of these entities? 
• What are subjects of transactions? 
• What was the ground for payments? 
• What are documents of transactions? 



216 J. Bak, C. Jedrzejek, and M. Falkowski 

• What is a hierarchy of management in involved companies? 
• What is the decision structure and who (meaning positions, not people) 

authorizes particular decisions (signs relevant documents) within the structure? 
• Which persons can be associated with relevant activities (for a given crime 

mechanism)? 
• Who knew about these activities? 
• Who could possibly benefit from a crime?  
• What are possibly legal sanctions related to a given crime typology? 
• Who are accomplices in wrong doing? 
• What were the roles of crime perpetrators (organizers, helping parties, straw 

companies and straw persons)? 

The minimal model consists of eight layers that are structured in order of uncovering 
the facts (Table 1). The above questions were related to top five levels of ontology. 
We could ask more detailed questions. For example, what is additional information 
relevant to sanctions (criminal records, relapse into crime after having served a 
sentence, coercion on some persons by other perpetrators)? In this work such 
information belongs to levels 7 and 8 of the ontology structure and was not dealt with 
in the present model.  

Table 1. Layers of concepts for analysis of economic crimes 

Type Concern details 

1. General entities as: Companies, Institutions, Single person companies, 
levels of authorization, documents having legal meaning. Money 
transfer between companies. 

2. Invoice flow between companies. Tax statements. 

3. Work/Services flow. 

4. Roles of decisive people in companies who accepted work in the chain 
of command. 

5. Mapping potential roles coming from positions in companies to 
particular activities resulting in a financial crime. 

6. People not related to companies but being a part of crimes. Other 
relations of people. 

7. Information about people, e.g., whether they were sentenced in the last 
10 years, their criminal connections; school or business etc., 
connections. 

8. Additional factors (e.g., learning about averted criminal plans). 

Previous model contained fraudulent disbursement crime only, so we need to 
extend the minimal model ontology presented in [2, 3, 4]. 

A definition of the minimal model in application to financial crimes, expressed in 
OWL language using the editor Protégé 4.0 is presented in [16]. 
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This ontology has a modular structure and contains the following modules: 

• Person.owl, describing persons as social entities and groups of persons, 
• Document.owl, specifying the legal meaning of documents and their content, 
• LegalProvision, defining legal acts and sanctions, 
• Action.owl specifying activities, 
• Object.owl describing other entities, i.e. goods (work or service) , 
• MinimalModel.owl defining general concepts and relations of the minimal 

model, it also contains rules, 
• Institution-Organization.owl describing legal entities (rather than dealing with 

intentions, it is more important to establish who knew about criminal activities, 
and whether a crime was perpetrated by a group). 

In relational database notation, the most important concepts that are currently 
functional are the following: 

Flow (Money Transfer, Invoice, Goods/Service).  
Money Transfer (From Entity, To Entity, Method of Transfer, Date, Value, Title of 
transfer, i.e. for Goods).  
Method of Transfer (Electronic transfer, Cash). 

As relates to sanctions there are specified by a certain number of rules that define 
what are conditions of a given crime, what constitutes evidence and how various 
activities have to combine to be subjected to a particular sanction. 

For example, as is stated in many legal theory texts, fraud must be proved by 
showing that the defendant's actions involved between five to nine [17] separate 
elements. 

It is important to correctly model a sequence of activities in the company structure 
that lead to decisions and transactions. We will illustrate this on the example of  
the three-level structure of authorization (this is easy to generalize to more levels, but 
the intent is to make it compatible with the Hydra case). The chain of activities is the 
following: in the Hydra case, acceptance of construction work done by B at a given 
site is first signed by a manager in A responsible for a work supervision at this site 
(MiddleLevelManager); this is followed by a signature of the higher level manager – 
a Director of the company responsible for supervision of all sites. A Director may be 
authorized to accept invoices and order a payment – technically this is and was done 
by a written authorization on the back of the invoice. The role if the Principal (the top 
level of authorization, which however, could have not been exercised) was analyzed 
in detail in [3], where we modeled all possible options of the Principal’s behavior.  

The Principal might not have known that the work has not been done. However, he 
was the one who signed the contract for subcontracting and thus could be implicated. 

Had the Principal of company A been a person who on the basis of the work 
acceptance document had ordered the payment of A to B, upon issuance of an invoice 
by B, he would be directly implicated. 

In order to represent elementary activities, we need to formalize: 

1. The concept of complex documents. 
2. The Hierarchical chain of responsibility in a company. 

Our path of extensions of the minimal model goes through models: I, II, III and IV. 
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Model I concerned only company A with one level of responsibility but already 
encompassed the mechanism of fraudulent disbursement [2]. Model II [4] handled  
a three-level (real) structure of authorization level of responsibility in company A. 
Model III (this work) deals with all companies in a chain with respective levels of 
responsibility (fraudulent disbursement and money laundering) and concerns 5 top 
levels of minimal ontology concepts. 
Model IV – full case – will contain model III and will encompass all 8 levels of 
minimal ontology. 

Compared to Model II we have to account for that fact that the varying size of 
incriminated companies, and consequently the number of levels of responsibility 
ranges from one to three. The size of companies is measured by number of levels of 
responsibility, and has nothing to do with revenue or the overall number of workers in 
companies. For the Hydra case, A is a large company (3 levels of responsibility), 
B and D are medium size companies (2 levels) and C is a small company. The 
managers appearing in these companies are the Principal (CEO or Owner) – the top 
level, a Director for Construction (the middle level) and The MiddleLevelManager 
responsible for a given construction (the bottom level). 

Rules related to consecutive concepts are numbered. These rules are extensions of 
the ones employed in the fraudulent disbursement only crime [4] and new rules 
related to money laundering.  

Several concepts and rules are defined to achieve ability to describe legal 
documents: 

a. ContractDocument – a document that is drawn up between two parties. This 
ContractDocument is between two companies, and is signed by principals of 
these companies. The signature on behalf of the company can be individual or 
joint, depending on the structure of the company.  
The following general rules for the ContractDocument are defined (6 rules); we 

present only 2 examples here: 
 

1. Rule on a contract between a large and a medium company. 
 

Document(?d), CompanysPrincipal(?p1), CompanysPrincipal(?p2),  
isSignedBy(?d, ?p1), isSignedBy(?d, ?p2)  
→  
ContractDocument(?d) 
 

2. Rule on a contract between two medium companies. 
 
Document(?d), MajorOwner(?p1), MajorOwner(?p2), isSignedBy(?d,?p1),   
isSignedBy(?d, ?p2), differentFrom(?p1, ?p2)  
->  
ContractDocument(?d) 

 

b. InternalLegalDocument – a document drawn up in the company that may be 
authorized in stages up to the highest level of authority. It is signed 
hierarchically by the persons with different levels of responsibility. 

 
c. ComplexInternalLegalDocument – a virtual hierarchical document which could 

consist of several physical documents, that together authorize a payment (here 
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ComplexInternalLegalDocument consists of a construction work acceptance 
document, and a payment authorization signature on the back of an invoice). The 
series of authorizations reflects the structure of the company from the lowest to 
the highest rank of management. ComplexInternalLegalDocument is defined 
with the following rules: 

 

3. Rule on a complex internal legal document. 
 

ApprovalOfWorkDone(?d), Work(?w), Invoice(?i), concerns(?i, ?w), 
concerns(?d, ?w), isSignedBy(?i, ?p2), isSignedBy(?i, ?p1), 
worksFor(?p1, ?c), worksFor(?p2, ?c), hasLevelOfResponsibility(?p1, 
?l1), hasLevelOfResponsibility(?p2, ?l2), lessThan(?l1, ?l2), 
differentFrom(?d, ?i)  
->  
ComplexInternalLegalDocument(?i) 

 

4. Rule on a complex internal legal document (it is signed on back of invoice). 
 
ApprovalOfWorkDone(?d), Work(?w), Invoice(?i), concerns(?i, ?w), 
concerns(?d, ?w), isSignedBy(?i, ?p2), worksFor(?p1, ?c), 
isSignedOnBackOfInvoiceBy(?i, ?p2), worksFor(?p2, ?c), 
hasLevelOfResponsibility(?p1, ?l1), hasLevelOfResponsibility(?p2, 
?l2), lessThan(?l1, ?l2), differentFrom(?d, ?i)  
->  
ComplexInternalLegalDocument(?i) 

 
d. FalsifiedComplexInternalLegalDocument – ComplexInternalLegalDocument 

with approval of work which was not done. 
FalisfiedComplexInternalLegalDocument is calculated with the following rule: 

 
5. The rule defining the falsified complex document consisting of work 

approving document and accepted invoice. This two documents authorize the 
payment.  

 
ComplexInternalLegalDocument(?d1), ApprovalOfWorkNotDone(?d2), 
Work(?w), concerns(?d1, ?w), concerns(?d2, ?w), differentFrom(?d1, 
?d2) 
→  
FalsifiedComplexInternalLegalDocument(?d1) 

 
6. This rule refers to the previous one but specifies who signed the two 

constituent documents. 
 

ComplexInternalLegalDocument(?d1), ApprovalOfWorkNotDone(?d2), 
Work(?w), concerns(?d1, ?w), concerns(?d2, ?w), isSignedBy(?d1, 
?p1), isSignedBy(?d2, ?p2), differentFrom(?d1, ?d2), 
differentFrom(?p1, ?p2) 
→ 
FalsifiedComplexInternalLegalDocument(?d1), isSignedBy(?d1, ?p2) 

 
e. Transaction – consists of a contract between two companies, the work, an 

invoice issued for work and payment. It is defined with the following rule: 
 

7. Rule on transaction between two companies. 
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ComplexInternalLegalDocument(?i), ContractDocument(?d), Invoice(?i), 
MoneyTransfer(?mt), Work(?w), Company(?c1), Company(?c2), 
concerns(?d, ?w), concerns(?i, ?w), flowsFrom(?mt, ?c2), 
flowsTo(?mt, ?c1), isIssuedBy(?i, ?c1), isReceivedBy(?i, ?c2)  
→ 
Transaction(?d), hasInvoice(?d, ?i), hasMoneyTransfer(?d, ?mt), 
transactionFrom(?d, ?c2), transactionTo(?d, ?c1) 

 

If a contract, work or invoice document turns out to be a FalsifiedDocument, 
then the Transaction will be classified as a FalsifiedTransaction. 

 
f. We can also define (in the description logic) the MoneyTransfer concept: 

  
MoneyTransfer ⊆  

                        FlowOfMoneyCPTask  ∧ 
                        ∃ flowsFrom.Company ∧  
                        ∃ flowsTo.Company ∧  
                        (= 1 occurs ∧∀occurs.TimeInstant)  ∧ 
                        (= 1 hasValue ∧ ∀ hasValue.float) ∧ 
                        ∃ isPaymentFor.Invoice 

 

This definition means that a money transfer has one distinctive value, it occurs at 
exactly one time instant between a pair of companies, and it is connected with 
paying for some invoice. Additionally, it is a specialization of a top level 
FlowOfMoneyCPTask concept coming from ontology developed for the PPBW, 
the Polish Platform for Homeland Security project [16]. 

 
It is essential to recognize that documents may require a legal signature by a subset 

of principals within a company according to a statute. In the Hydra case the board 
consisted of 5 members, and the chairman of the board was authorized to sign 
documents without the consent of the others. Since no involvement of the remaining 4 
members was found, here the Principal is the CEO. 

To model Fraudulent Disbursement in one company of the three-level structure we 
needed 14 rules [4]. Two of these rules are modified in this work. 

4   Rules that Define Logical Activities Appearing in the Penal 
Code Model 

The more detailed model presented here has to be able to define complicity – the 
knowledge of particular criminal activities. Contrary to many works in legal 
ontologies, we do not introduce plans and intensions because these are extremely 
difficult to describe. In further paragraphs in this Section we present money 
laundering rules. 

 
1. The rule defining complicity of persons working on behalf of the same company; 

one person – a construction manager – falsifies ApprovalOfWorkDone 
document, and the second one approves the payment of the Invoice by signing 
the back of this document. 
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Company(?c), NoWork(?w), ContractDocument(?d1), 
ComplexInternalLegalDocument(?d2), Person(?p1), Person(?p2), 
concerns(?d1, ?w), concerns(?d2, ?w), worksFor(?p1, ?c), 
worksFor(?p2, ?c), knowsAbout(?p1, ?w), knowsAbout(?p2, ?w), 
isSignedBy(?d1, ?p1), isSignedOnBackOfInvoiceBy(?d2, ?p2), 
differentFrom(?p1, ?p2), differentFrom(?d1, ?d2)  
→  
inComplicityWith(?p1, ?p2) 

 
2. The rule defining complicity of persons working on behalf of different companies 

executing a fraudulent transaction.  
 

Company(?c1), Company(?c2), NoWork(?w), Transaction(?t), 
worksFor(?p1, ?c1), worksFor(?p2, ?c2), knowsAbout(?p1, ?w), 
knowsAbout(?p2, ?w), transactionFrom(?t, ?c1),      
transactionTo(?t, ?c2), differentFrom(?p1, ?p2),  
differentFrom(?c1, ?c2) 
→  
inComplicityWith(?p1, ?p2) 

 
3. The rule defining the MoneyLaundering act committed by the first company in 

the money laundering chain (if A paid B, this refers to company B; the company 
A is not indicted). Here A is Hydra and B is Hermes. 

 
NoWork(?w), Invoice(?i), Transaction(?t), Company(?c1), 
Company(?c2), MoneyTransfer(?mt), hasInvoice(?t, ?i),  
concerns(?i, ?w), hasMoneyTransfer(?t, ?mt), flowsFrom(?mt, ?c1), 
flowsTo(?mt, ?c2), differentFrom(?c1, ?c2) 
→  
MoneyLaundering (?c2), relatedTo(?c2, ?t) 

 
4. The rule defining the money laundering act committed by next companies in the 

money laundering chain (e.g. companies C, and D, that is Dex and Mobex). 
 

NoWork(?w), Invoice(?i), Transaction(?t), Company(?c1), 
Company(?c2), MoneyTransfer(?mt), MoneyLaundering(?c1), 
hasInvoice(?t, ?i), concerns(?i, ?w), hasMoneyTransfer(?t, ?mt), 
flowsFrom(?mt, ?c1), flowsTo(?mt1, ?c2), 
differentFrom(?c1, ?c2)  
→  
MoneyLaundering (?c2), relatedTo(?c2, ?t) 

 
5. The rule defining the sanction PC art. 299 § 1 related to money transfer for work 

not done (pertains to managers of company B and C). 
 

Art_299_1(?a), NoWork(?w), MoneyLaundering(?m), Company(?m), 
ApprovalOfWorkNotDone(?d), Transaction(?t), Person(?p), 
relatedTo(?m, ?t), worksFor(?p, ?m), knowsAbout(?p, ?w), 
concerns(?t, ?w), concerns(?d, ?w), isSignedBy(?d, ?p) 
→  
fallsUnder(?p, ?a) 

 
6. The rule defining the sanction PC art. 299 § 1 when the ApprovalOfWorkDone 

document does not exist. It happens down the chain that companies do not bother 
even create documents. In this case there were no documents for fictitious work 
approval between C and D (Dex and Mobex). 
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Art_299_1(?a), NoWork(?w), MoneyLaundering(?m), Company(?m), 
FalsifiedComplexInternalLegalDocument(?d), Transaction(?t), 
Person(?p), relatedTo(?m, ?t), worksFor(?p, ?m), concerns(?d, ?w), 
concerns(?t, ?w), knowsAbout(?p, ?w), isSignedBy(?d, ?p) 
→  
fallsUnder(?p, ?a) 

 
7. The rule defining the sanction PC art. 299 § 1 when a company accepts laundered 

money (here Mobex). 
 

Art_299_1(?a), NoWork(?w), MoneyLaundering(?m), Company(?m), 
Transaction(?t), Person(?p), relatedTo(?m, ?t), transactionTo(?t, 
?m), worksFor(?p, ?m), concerns(?t, ?w), knowsAbout(?p, ?w) 
→  
fallsUnder(?p, ?a) 

 
8. The rule defining the sanction PC art. 299 § 5 (since he/she was aware what was 

the purpose of the scheme and collaborated with others involved – we know this 
from testimonies and signing relevant documents). This rule is related to persons 
in the same company. 
 
Art_299_5(?a1), Art_299_1(?a2), NoWork(?w), 
FalsifiedComplexInternalLegalDocument(?d), Person(?p1), Person(?p2), 
fallsUnder(?p1, ?a2), fallsUnder(?p2, ?a2), knowsAbout(?p1, ?d), 
knowsAbout(?p2, ?d), knowsAbout(?p1, ?w), knowsAbout(?p2, ?w), 
inComplicityWith(?p1, ?p2), differentFrom(?p1, ?p2) 
→  
fallsUnder(?p1, ?a1), fallsUnder(?p2, ?a1) 

  
9. As Rule 8 but related to persons in different companies.  
 

Art_299_5(?a1), Art_299_1(?a2), NoWork(?w), Company(?c1), 
Company(?c2), ContractDocument(?d), Person(?p1), Person(?p2), 
fallsUnder(?p1, ?a2), fallsUnder(?p2, ?a2), knowsAbout(?p1, ?d), 
knowsAbout(?p2, ?d), knowsAbout(?p1, ?w), knowsAbout(?p2, ?w), 
inComplicityWith(?p1, ?p2), worksFor(?p1, ?c1), worksFor(?p2,?c2), 
differentFrom(?p1, ?p2), differentFrom(?c1, ?c2) 
→ 
fallsUnder(?p1, ?a1), fallsUnder(?p2, ?a1) 

 
10. The rule defining the sanction PC art. 299 § 5 based on 

ApprovalOfWorkNotDone for workers in 2 different companies (who did not 
signed a contract document, as in rules 8 and 9) 
 
Art_299_5(?a1), Art_299_1(?a2), NoWork(?w), Company(?c1), 
Company(?c2), Person(?p1), Person(?p2), fallsUnder(?p1, ?a2), 
fallsUnder(?p2, ?a2), knowsAbout(?p1, ?w), knowsAbout(?p2, ?w), 
inComplicityWith(?p1, ?p2), worksFor(?p1, ?c1), worksFor(?p2,?c2), 
differentFrom(?p1, ?p2), differentFrom(?c1, ?c2) 
-> 
fallsUnder(?p1, ?a1), fallsUnder(?p2, ?a1) 

 
We have verified our ontology with the Pellet 2.1.1 reasoner, which found the 

ontology to be consistent. 
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5   Conclusions and Future Work 

To our knowledge, the work on mapping of crime activities into criminal law articles 
has been done [18] only for cyber crimes, which have a much narrower scope. In 
work [8] OWL ontology was used for only T-Box reasoning (although rules were 
discussed in a different aspect) , whereas our approach uses ontology and rules.  

The minimal model of the fraudulent disbursement combined with money 
laundering crime (model III), as presented in this work, can be expressed using OWL-
DL classes and properties, and a reasonable number of rules.  

Strictly, the model III as presented in this work possesses 134 classes, 82 relations, 
41 rules. The model II (only fraudulent disbursement and only one company included) 
130 classes, 74 relations and 14 rules. 

This means that if one restricts himself to only the 5-level concept ontology 
generalizations of our model to more complex crime one would expect increase of 
mostly rules. We estimate that we are able to describe around 95% of relevant 
information for the Hydra case. 

The most straightforward case to verify this hypothesis would be to model: 

• CausingAssetMisappropriation 
• CausingDamageToACompany 

based on existing CausingFraudulentDisbursement results. 
Preliminary verification of the model by selected Polish legal community members 

suggests two conclusions. First, for the case such as Hydra our system gives better 
sanction determination than achieved by a an average prosecutor. We hope that with 
more crime types description the above statement will become acceptable to a wide 
body of legal community. Second, the reaction of some judges, particularly of the 
highest level, involves a great deal of suspicion. Judges use statutory interpretation is 
the process of interpreting and applying legislation. Since statutes are deliberately left 
open, are often extremely broad, and in most cases, there is some ambiguity or 
vagueness in the words of the statute that must be resolved by the judge.  

It is true that we selected the most favorable crime to be analyzed with our model. 
Even in Hydra case we would face difficulty, whether in this case a criminal group is 
an organized criminal group. There is no definition of “an organized criminal group” 
in the Polish PC. Therefore, inferring the legal qualifications for this case (that is 
whether Article 258 § 1 applies) is subject to interpretation that has to be provided by 
legal communities to design appropriate rules. In any case the results of our model 
have to be verified by leading legal experts. 

Increased cooperation between legal community and knowledge engineers would 
possibly be of great use for society. 

First, we demonstrate here reasoning based on all facts for a given case of a 
selected typology. For practical applications the more interesting case is to uncover 
facts and choose between several possible typologies. Second, by analyzing many 
cases and proposed sanctions we could introduce some measure of objectivity into 
evaluation of prosecutors’ work, which could decrease political motivation and 
corruption in the area. The biggest weakness of our approach is that the population of 
ontology individuals from the natural language description is so far done manually. 
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Abstract. The Semantic Web aims at automating Web content understanding 
and user request satisfaction. Intelligent agents assist towards this by perform-
ing complex actions on behalf of their users into real-life applications, such  
as e-Contracts, which make transactions simple by modeling the processes in-
volved. This paper, presents a policy-based workflow methodology for efficient 
contract agreement among agents interacting in the Semantic Web. In addition, 
we present the integration of this methodology into a multi-agent knowledge-
based framework, providing flexibility, reusability and interoperability of be-
havior between agents. The main advantage of our approach is that it provides a 
safe, generic, and reusable framework for modeling and monitoring e-Contract 
agreements, which could be used for different types of on-line transactions 
among agents. Furthermore, our framework is based on Semantic Web and 
FIPA standards, to maximize interoperability and reusability. Finally, an  
e-Commerce contract negotiation scenario is presented that illustrates the us-
ability of the approach. 

Keywords: semantic web, intelligent agents, e-Contracts, defeasible reasoning. 

1   Introduction 

The Semantic Web (SW) [1] is a rapidly evolving extension of the WWW, where the 
semantics of information and services is well-defined, making it possible for people 
and machines to understand Web content. Its penetration has transformed the way 
people satisfy their requests, letting them save time and money. Moreover, SW tech-
nologies offer interoperability and, thus, favor Intelligent Agents (IAs) [2]. Hence, the 
integration of multi-agent systems (MAS) with SW technology affects the use of the 
Web; groups of intercommunicating agents are available to traverse the Web and 
perform complex actions on behalf of their users in real-life applications. One such 
application is Electronic Contracts (e-Contracts), which make transactions simple by 
effectively modelling and managing the processes involved.  

In essence, a contract is an agreement that creates and modifies legal relationshiops 
(obligations, permissions, prohibitions) between two or more parties and involves 
several stages, such as information exchange and negotiation. An e-Contract, on the 
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other hand, is a contract modelled, specified, executed and enacted (controlled and 
monitored) by a software system [3]. The main differentiation is that e-Contracts are 
simply carried out electronically, overcoming the delays and drawbacks of the manual 
process [4]. Thus, like ordinary contracts, e-Contracts define a set of clauses that must 
be satisfied by the parties involved.  

The execution of an e-Contract involves, as mentioned, several tasks, which can be 
represented as workflows [5]. More specifically, workflow information is extracted 
from a contract and then the various functions that realize assorted activities within 
the specified time-bounds are implemented [6]. A workflow is concerned with the 
automation of procedures, where information is passed between participants accord-
ing to an overall goal. Thus, the workflow of an e-Contract must be carefully speci-
fied and related to meet the contract requirements. 

This paper focuses on e-Contracts managed by IAs. Each agent has its own policy, 
a set of private rules representing its requirements, obligations and restrictions, de-
pending on its role in the e-Contract, as well as its personal data. The e-Contract, on 
the other hand, has a set of clauses that specify among others how it will be imple-
mented and outlines restrictions on the parties involved. Taking the above into ac-
count, a policy-based workflow methodology is proposed that specifies the overall 
negotiation stages of an e-Contract. The aim of the methodology is to propose a safe, 
reusable procedure for e-Contract agreements, which could be used for different types 
of on-line transactions among agents.  

Despite the usual issues a contract has to deal with, e-Contracts have to deal with 
additional issues regarding agents. As agents not necessarily share the same logic or 
rule representation formalism, this paper presents the integration of the above meth-
odology into a multi-agent knowledge-based framework, called EMERALD. This 
framework deals with the aforementioned issues proposing the use of trusted, third 
party reasoning services that can be used in safely exchanging policies with heteroge-
neous rule formalisms. The provided advantages are, among others, flexibility (each 
agent can use its own rule formalism; workflow rule sets can vary from empty clauses 
to large and complex rule programs, etc), reusability (workflow clause sets can be re-
used in different scenarios and can be shared among agents, since they are modular) 
and interoperability (agents can use different rule formalisms which can be safely 
interchanged through external trusted reasoning services) of behavior between agents. 
Finally, an e-Commerce contract negotiation scenario is presented that illustrates the 
usability of the approach. 

The rest of the paper is organized as follows. In Section 2, we present a policy-
based workflow methodology for efficient contract agreement among agents. Section 
3 presents the integration of this methodology into the multi-agent Knowledge-based 
framework. In Section 4, an e-Commerce contract negotiation scenario is presented 
that illustrates the usability of the approach. Section 5 discusses related work, and 
Section 6 concludes with final remarks and directions for future work. 

2   Policy-based Workflow Methodology 

After briefly presenting e-Contracts and the utility of agents in the setting, this section 
presents the proposed policy-based workflow methodology for contract agreement 
among agents. 
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2.1   E-Contracts 

E-Contracts, as already mentioned, are agreements between two or more parties to 
create legal obligations between them, which are modelled, specified and executed by 
a software system [3]. They consist of at least two parties, here agents, and a number 
of clauses. Typically, an e-Contract is described by the abstract specification: EC ≡ 
{P, C}, where P is the set of parties involved P ≡ {P1, P2, ..., Pn}, n ≥ 2 and C is the 
set of clauses C ≡ {C1, C2, ..., Cm}. Each party possesses a well-defined role, specified 
in the e-Contract. For example, in an on-line e-commerce transaction the parties in-
volved may be defined either as buyers or as sellers. In this study, we assume that 
there are two agents P ≡ {P1, P2} that want to make a contract agreement; agent P2 
sets out the agreement rules and agent P1 negotiates over these rules. 

Generally speaking, an agreement between parties is legally valid if it satisfies the 
requirements of the e-Contract. This intention is proven by their compliance with the 
clauses of the e-Contract, which, can actually be divided into stages of information 
exchange and negotiation. More specifically, an e-Contract can be divided into groups 
of tasks forming special categories; for example, each e-Contract has to contain a 
stage, in which the involved parties negotiate the terms of agreement, by means of an 
offer and acceptance that the e-Contract refers to. This natural categorization in stages 
is considered very useful for all parties involved, as they can better understand the e-
Contract steps and, thus, organize their policy accordingly.  

2.2   Intelligent Agents 

Agents involved in an e-Contract actually act on behalf of their users, thus, they have 
to contract an agreement efficiently and without human intervention. In order to 
achieve this, each agent possesses arguments that describe its requirements, prefer-
ences and restrictions. These arguments usually include data and rules that comprise 
the agent’s policy and characterize its behavior. A careful consideration would reveal 
that these policies can, like e-Contracts, be divided into groups of rules, such as per-
sonal data restriction rules. Thus, taking advantage of this analogy could lead to an 
automation of e-Contract procedures. 

However, the variety in representation and reasoning technologies is one of the 
main issues in agent interoperability. An IA (Intelligent Agent) does not necessarily 
have to oblige to other agents’ logic, nor is it essential for the agents to understand 
each other’s rule representation format. In fact, intercommunicating agents usually 
“understand” different (rule) languages. Thus, it will be essential not only to come up 
with an automation methodology for e-Contract procedures, but also to provide the 
suitable framework that will overcome the above issues in real-life applications. 

2.3   E-Contract Agreement Workflow Automation Methodology 

E-Contracts reduce costs, save time, speed up customer response and improve service 
quality by reducing paperwork, thus increasing automation. As mentioned, the im-
plementation of an e-Contract involves several groups of tasks, which can be repre-
sented as workflows. However, the workflow of an e-Contract must be carefully 
specified, in order to meet the contract requirements. Thus, taking into account that 
both e-Contract clauses and participants’ policies can be divided in stages, this paper 
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proposes a policy-based workflow methodology, which divides the overall process of 
an e-Contract agreement in stages.  

More specifically, we propose the specification of an e-Contract to be extended to 
an 8-tuple EC≡{P, C, NSTG, STG, NSTP, STP, CSTP, CONDSTP}, where NSTG is the num-
ber of stages of the policy workflow, which in our case is five, STG is the set of stages 
STG ≡ {stgl, 1≤l≤NSTG}, NSTP is the set of the number of steps for each stage NSTP ≡ 
{Nl

STP, 1≤l≤NSTG}, STP is the set of steps for each stage STP ≡ {stpk
l, 1≤k≤Nl

STP: 
stgl∈STG}, CSTP is the set of contract clauses for each step CSTP ≡ {Ck

l: stpk
l∈STP ∧ 

Ck
l⊆C ∧ (∀l,k,l’,k’ Ck

l∩Ck’
l’=∅ ∨ (k=k’ ∧ l=l’))}, and CONDSTP is the set of step 

transition conditions CONDSTP ≡ {cndk
l: stpk

l∈STP}, which decide if the transaction 
can proceed from one step to the next and it is part of the agent’s internal policy.  

Notice that the difference between contract clauses and transition conditions is that 
the former refer to conditions of the contract that are publicly known, whereas the 
latter refer to conditions of the state of the workflow that are private to the contracting 
agents. In general, transitions between stages and steps are sequential, but the parties 
involved can disagree at any step, terminating the negotiation without agreement. 
Thus, in order to end in a state of agreement and eventually execute the e-Contract, 
each stage and step has to be successful, i.e. the set of clauses and conditions of each 
step should be satisfied.  

Our methodology involves at each step: (a) the exchange of the agent’s Pi clauses 
iCk

l to the agent Pj, (b) the evaluation of the iCk
l clauses using agent’s Pj personal data 

jDk
l, and (c) the exchange of the results/conclusions jEk

l = I(iCk
l ∪ jDk

l) of step (b) 

from agent Pj back to agent Pi, in order to test if the clauses of the contract are satis-
fied so that the contract negotiation workflow can continue. The workflow transition 
decision is taken by the following algorithm: 

if jEk
l≠∅ and I(icndk

l ∪ jEk
l)≠∅ 

then (if k=Nl
STP then l←l+1; k←1 else k←k+1) 

else l←T (Termination) 

2.4   E-Contract Agreement Workflow Steps 

With the automation of e-Contract agreements, e-commerce is expected to improve 
productivity and competitiveness by providing unprecedented access to an on-line 
global market place with millions of customers and thousands of products and  
services. On the other hand, since the e-Contract proposal focuses on an automated 
environment and not on humans, who take decisions on specific transactions, it is 
extremely important to avoid any fraud and discrepancy in the contract.  

Thus, the first stage refers to trust (stg1). The aim of this stage is to assure that all 
involved parties are trusted. However, establishing trust is mainly pertained to a prob-
lem of authorization and access control [7] [8]. In order to deal with this issue, we 
propose a policy-based approach, based on a set of policies and credentials (digital 
certificates). Usually, credentials are sufficient when the agent is convinced either of 
the other agent’s identity or his membership in a sufficiently trusted group. Thus, in 
stg1, the agents involved should exchange the appropriate credentials that will enable 
them to trust each other. 
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As soon as a satisfying level of trust among agents is established, the procedure 
can advance to the next stage (stg2). This stage includes the set of steps that involve 
the primary data exchange that is required in an e-Contract, in order to specify its 
context. Thus, in this stage the agents involved could exchange, among others, defini-
tion and interpretation data, commencement and completion data or even personal and 
credit data, which are obligatory in each e-Contract.   

The next stage, (stg3), is assigned with the main body of an e-Contract, which is the 
negotiation of the e-Contract terms. These terms, mainly, refer to the terms of use and 
payment of the product or service under negotiation. Thus, after the negotiation and 
agreement of these terms, the procedure moves to the stg4 stage. In this stage, the e-
Contract is approved and all the extra necessary data are sent. These data may in-
clude, among others, technical details, access and credentials, depending on the scope 
of the e-Contract. 

 

Fig. 1. The overview of the workflow methodology 

Finally, the above agreed procedure reaches the stg5 stage, the contract monitoring 
stage, during which the e-Contract’s content is actually executed and monitored for 
situations which are out the negotiation phase and involve mechanisms for detecting 
contract violations, sanction enactment, etc. The overview of the proposed workflow 
methodology is illustrated in Fig. 1. 

3   Knowledge-Based Workflow Model 

In this section, we present the integration of the above workflow methodology into a 
multi-agent knowledge-based framework, called EMERALD [9] [10], providing 
among others flexibility, reusability and interoperability of behavior between agents. 
The main advantage of this approach is that it provides a safe, generic, and reusable 
framework for modeling and monitoring e-Contract agreements, which could be used 
for various types of on-line transactions among agents. Furthermore, our framework is 
based on Semantic Web and FIPA standards, to maximize interoperability and  
reusability.  
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3.1   The EMERALD Knowledge-Based Framework 

In order to model and monitor the parties involved in the e-Contract negotiation, a 
customizable, knowledge-based agent model, called KC-AGENTS, is deployed. 
Agents that comply with this model are equipped with a Jess rule engine [11] and a 
knowledge base (KB) that contains environment knowledge (in the form of facts), 
behavior patterns and strategies (in the form of Jess production rules). Actually, the 
Jess KB represents the agent’s internal policy and implements the workflow transition 
conditions of each negotiation step cndk

l to the next. Examples will be given in Sec-
tion 4. The use of the KC-AGENTS model offers certain advantages, like interopera-
bility of behavior between agents, as opposed to having behavior hard-wired into the 
agent’s code.   

A short description of the abstract specification of this model [9] is presented be-
low for better comprehension. The generic rule format is: result ← rule (precondi-

tions). The agent’s internal knowledge is a set of facts F ≡ Fu ∪ Fe, where Fu ≡ {fu1, 

fu2, …, fuk} are user-defined facts and Fe ≡ {fe1, fe2, …, fem} are environment-asserted 

facts. The agent’s behaviour is represented as a set of potential actions–rules P ≡ A ∪ 

S, where A ≡ {a | fe←a(fu1, fu2, …, fun) ∧ {fu1, fu2,..., fun}⊆Fu ∧ fe∈Fe} are the rules that 

derive new facts by inserting them into the KB and S ≡ C ∪ J are the rules that lead to 

the execution of a special action. Note that special actions can either refer to agent 

communication C ≡ {c | ACLMessage←c(f1, f2, …, fp) ∧ {f1, f2,..., fp}⊆F} or Java calls 

J ≡ {j | JavaMethod←j(f1, f2, …, fq) ∧ {f1, f2,..., fq}⊆F}.  

In order to provide a standard communication interface between the Jess KB and 
the agents, this framework provides a number of Java methods that can be invoked via 
Jess production rule actions. In addition, the framework provides one more facility, 
the AYPS, a customizable procedure for the yellow pages service, both for registered 
and required services. Its most important feature is that the proper providers are in-
serted into working memory as Jess facts with a designated format. 

Moreover, as agents do not necessarily share a common rule or logic formalism, it 
is vital for them to find a way to exchange their position arguments seamlessly. Thus, 
the framework proposes the use of Reasoners, which are actually agents that offer 
reasoning services to the rest of the agent community. This approach does not rely on 
translation between rule formalisms, but on exchanging the results of the reasoning 
process of the rule base over the input data. The receiving agent uses an external rea-
soning service to grasp the semantics of the rulebase, i.e. the set of conclusions of the 
rule base.  

One of these Reasoners (here called Reasoner) is the defeasible logic Reasoner, 
based on DR-DEVICE [12], which furthermore assumes an OO RDF data model that 
treats properties as encapsulated attributes of resource objects, providing more com-
pact representation and property indexing. DR-DEVICE supports two types of syntax 
for defeasible logic rules: a native CLIPS-like syntax and an OO RuleML [13]-
compatible one. The latter deals with extensions regarding rule types, superiority 
relations among rules and conflicting literals, as well as constraints on predicate  
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arguments and functions. Using the Reasoner, agents communicate with each other, 
overcoming the fact that they may not comprehend the logic of the other party.  

Defeasible reasoning [14] was selected because of its simple rule-based approach 
for efficient reasoning with incomplete and inconsistent information. Defeasible rea-
soning can represent facts, rules as well as priorities and conflicts among rules. Such 
reasoning with conflicts is useful in many applications, such as security policies [15], 
business rules [16], e-contracting [17], personalization, brokering [18], bargaining and 
agent negotiations [19], [20], [21]. When compared to mainstream non-monotonic 
reasoning, the main advantages of defeasible reasoning are enhanced representational 
capabilities and low computational complexity. 

Finally, EMERALD provides an independent agent (called Timer) that simulates a 
time service, in order to synchronize agent transactions, which is used in the follow-
ing use case paradigm (section 4). Real time could be used equally well. 

3.2   Implementing the Workflow Methodology on EMERALD 

Following EMERALD’s specifications we commit to SW and FIPA standards, thus, 
we use the RuleML language [22] for representing and exchanging agent policies and 
e-contract clauses iCk

l, since it has become a de facto standard and it is very close to 
the RIF [23] emerging standard for SW rules. In addition, we propose the use of the 
RDF model for data representation both for the private data jDk

l included in agent’s Pj 
internal knowledge and the results jEk

l generated during the negotiation steps. The 
overview of the above proposal is illustrated in Fig. 2. 

The agent Pj, in order to start an e-Contract negotiation process with Pi, asks the 
AYPS service for the latter’s default call-for-negotiation requested value (C0), re-
quired formalisms/languages, etc. Thus, Pj sends a call-for-negotiation message (ACL 
message with REQUEST communication-act) to Pi containing C0. Pi examines the 
new request and sends back a REQUEST message containing part of his clauses iCk

l 
(in RuleML format), waiting for Pj’s reply or a termination. Pj, on his behalf, evalu-
ates the receiving iCk

l clauses using his own private data jDk
l (in RDF format) and 

informs Pi with a new message (ACL message with INFORM communication-act) 
containing the results jEk

l (in RDF format).  

 

Fig. 2. The workflow implementation 
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Generally, the negotiation processes is a sequence of exchanged ACL messages; 
(both) parties use messages with REQUEST communication-act in order to ask for valid 
information and INFORM in order to reply. The process can either end successfully 
with an agreement between the parties or terminate at any step due to disagreement.  

4   Use Case: The Wine Club 

A Wine Club contract negotiation scenario is presented in order to illustrate the us-
ability of the approach that involves two parties: a) the Wine Club, represented by its 
agent, that offers a variety of wines, and b) a customer who wishes to become a mem-
ber of the above Wine Club. In addition, there are two extra agents involved: c) the 
Reasoner an independent third-party service that is responsible for conducting infer-
ence on defeasible logic rule bases and produces the results as an RDF file, d) the 
Timer an independent agent that simulates a time service, in order to synchronize 
agent transactions according to the contract’s time schedule. 

4.1   The Scenario Overview 

First of all, the customer wants to be a member of a wine club, hence, uses the AYPS 
service (via sending an ACL message with REQUEST communicate-act) in order to 
find the appropriate Wine Club, which is registered to the directory. The AYPS sends 
back (via ACL message with INFORM communicate-act) the available providers with 
their default requested value (C0). Hence, the customer finds the appropriate wine 
club service and sends a subscription request to it, namely a REQUEST message con-
taining C0 (call-for-negotiation). Since the Club has some terms in order to provide 
the service, provided by an e-Contract, at this point, a contract negotiation procedure 
between the Customer and the Wine Club, that follows the aforementioned methodol-
ogy, begins (Fig. 3).  

Following the context of the first stage (stg1), both the Wine Club’s agent, and the 
Customer have to provide sufficient evidence in order to certify that they can trust 
each other. Due to Customer’s preferences this Wine Club service has to be a member 
of a trusted third-party organization, such as the Best Business Bureau [24], which 
guarantees that the service satisfies the standard criteria. On the other hand, since it is 
forbidden to sell alcohol to people under the age of 18, the Customer has to provide 
credentials that certify his age. Thus, both reveal their credentials, successfully estab-
lishing trust among them and, thus, move to the next stage (stg2).  

At the first step of this stage, the Wine Club agent sends part of the e-Contract’s 
clauses (2C1

2), in defeasible logic, requesting the Customer’s personal data. This re-
quest includes among others, the Customer’s name and e-mail, the credit card number 
and its date of expiration. The Customer, on the other hand, is willing to reveal a part 
of his personal data, but internally uses a different type of logic and cannot directly 
process Wine Club’s defeasible logic requirements. Thus, an appropriate defeasible 
logic Reasoner, a trusted third-party reasoning service, is requested, which is re-
trieved from the directory service (AYPS). The Customer communicates with the 
Reasoner, providing both his personal data (1D2

2), in RDF, and the Club’s arguments  
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Fig. 3. The scenario overview 

(2C1
2), in defeasible logic and in a RuleML format, and waits for a reply. The Rea-

soner conducts inference on these arguments and data and produces the results as an 
RDF file. Thus, the Customer sends these results, namely his personal information 
that can be sent (1E3

2), to the Wine Club agent. 
Eventually, the current stage ends successfully and parties move to the next one 

(stg3). As soon as the Club’s agent receives the required data (1E3
2), it responds with 

another part of the e-Contract (2C2
3), a set of clauses represented in defeasible logic 

that contain the characteristics of the three available categories of subscription.  
The three categories are the “Gold Customer”, the “Silver Customer” and the 

“Bronze Customer”, given in Table 1. The Customer communicates again with the 
Reasoner, providing him with both the RuleML file containing these clauses (2C2

3) 
and the RDF file which contains his preferences (1D3

3), such as the minimum price of 
an order (e.g. 500€€ ) and order frequency (e.g. 1 per four months). Afterwards, the 
Reasoner sends the result (1E4

3), which suggests the Silver Customer category. Thus, 



234 K. Kravari et al. 

the Customer selects the most suitable category ending up the current stage. Eventu-
ally, acting in the context of the stg4 stage, the Wine Club agent saves all the data 
concerning this customer and approves the subscription by sending him the catalogue 
of the available Wines (2D2

4).  

Table 1. The characteristics of each customer category 

Bronze Customer 

Order amount ≥ 200€€  &  
Order frequency ≥ 1 /4 months (at least 1 order per 4 months) 
 & Suspension = 1(in a row) & Delivery_time = 7 days &  
Discount = 2% (in case of lack in order’s products)  
& Return_fee = 10% 

Silver Customer 

Order amount ≥ 400€€  & Order frequency ≥ 1 /4 months &  
Suspension = 1(in a row) & Delivery_time = 7 days & 
Discount = 4% (in case of lack in order’s products) &  
Return_fee = 8% 

Gold Customer 

Order amount ≥ 600€€  & Order frequency ≥ 1 /3 months &  
Suspension = 2(in a row) & Delivery_time = 5 days &  
Discount = 8% (in case of lack in order’s products) &  
Return_fee = 6% 

 
At this stage a temporal dimension exists, since the customer has to order once per 

month (Silver Customer); both the Wine Club and the customer have to comply with 
the environment’s common time representation scheme. Thus, the Club’s agent finds 
a suitable time-agent (Timer), via the AYPS service, makes a subscription to this 
service and proposes the service to the customer. The customer, on his behalf, accepts 
the proposal and subscribes to the Timer’s service. Finally, their interaction moves to 
the stg5 for the agreed time period, carried out the regular orders, or until a break off.  

4.2   Contract Terms and Information Specifications 

Both the customer and the Wine Club’s agent comply with the KC-Agents model 
(section 3), thus, they are equipped with a Jess rule engine and a Jess KB. Following 
this generic specification, the Wine Club agent’s description contains facts and rules.  

Fu
wc ≡ {categories}, Fe

wc ≡ {timer_name} 
Cwc ≡ {(ACLMessage (communicative-act REQUEST)  
 (sender Wine_Club)(receiver Customer)(content categories))  
 ← requestCustomerCategory (“COND”)} 
Jwc ≡ {“triples” ← (bind ((new java_class) getCustomerCategory“COND” ))} 

Fact categories represent part of his internal knowledge and stand for the catego-
ries characteristics; part of the associated RuleML file is presented in Fig. 4.  

Fig. 4 represents part of the Wine Club’s first clause (stg3) that implements the 
categories’ characteristics (Table 1). Based on these clauses, presented below (in 
defeasible logic), and his personal preferences (Fig. 5), the customer is able to select 
the most suitable category. All three rules derive a positive conclusion, only one of 
which must be true, according to the constraint of the last line (conflicting literals). 
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<rulebase ...> 
 <_rbaselab><ind type="defeasible">categories</ind></_rbaselab> 
 <imp> 
  <_rlab ruleID="r1" ruletype="defeasiblerule"/> 
  <_head> <atom> 
      <_opr><rel><ind>customer-type</ind></rel></_opr> 
      <_slot name="type"><ind>bronze</ind></_slot> 
     </atom></_head> 
  <_body> 
   <atom> 
    <_opr><rel><ind>order-pref</ind></rel></_opr> 
    <_slot name="amount"> 
     <_and> 
      <var>a</var> 
      <function_call name="&ge;"> 
       <var>a</var> 
       <ind>200</ind></function_call> 
     </_and></_slot> 
    <_slot name="frequency"> 
     <_and> 
      <var>f</var> 
      <function_call name="&ge;"> 
       <var>f</var> 
       <ind>0.25</ind></function_call> 
     </_and></_slot> 
    ... 
   </atom></_body></imp> 
... 
</rulebase> 

Fig. 4. Part of the Wine Club’s RuleML containing categories characteristics (stg3) 

r1: order-pref(Amount,Frequency,Suspension,Delivery_time,Discount,Return_fee), 
    Amount≥200, Frequency≥0.25, Suspension≤1, Delivery_time≥7,  
    Discount≤2,Return_fee≥10   
⇒   customer-type(type→bronze) 
r2: order-pref(Amount,Frequency,Suspension,Delivery_time,Discount,Return_fee), 
    Amount≥400, Frequency≥0.25, Suspension≤1, Delivery_time≥7,                
    Discount≤4, Return_fee≥8    
⇒   customer-type(type→silver)  
r3: order-pref(Amount,Frequency,Suspension,Delivery_time,Discount,Return_fee), 
    Amount≥600, Frequency≥0.33, Suspension≤2, Delivery_time≥5,  
    Discount≤8, Return_fee≥6    
⇒  customer-type(type→gold)  
r3>r2, r2>r1, r3>r1 

C(customer-type(X)) = {¬ customer-type(X)} ∪ { customer-type(Y) | Y ≠ X } 

Fact timer_name (the Timer’s name) is added by the AYPS. Rules “requestCus-
tomerCategory” and “getCustomerCategory” (stg3) comprise part of the agent’s be-
havior (2cndk

3); part of the associated Jess file is presented in Fig. 6. 
Fig. 6 presents three of the Wine Club agent’s behavior rules; the “requestCus-

tomerCategory” rule, as soon as stg2 is completed successfully, sends his clauses 
related to customer categories to the customer and waits; the getCustomerCategory” 
rule receives customer’s reply, checks the selected category (bronze, silver, gold) and  
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<rdf:RDF ...> 
 <order-pref rdf:about="..."> 
  <amount rdf:datatype="&xsd;integer">300</amount> 
  <frequency rdf:datatype="&xsd;float">0.3</frequency> 
  <suspension rdf:datatype="&xsd;integer">1</suspension> 
  <delivery_time rdf:datatype="&xsd;integer">10</delivery_time> 
  <discount rdf:datatype="&xsd;integer">2</discount> 
  <return_fee rdf:datatype="&xsd;integer">10</return_fee> 
 </order-pref> 
 . . .  
</rdf:RDF> 

Fig. 5. Part of customer’s personal data (RDF) 

.... 
(defrule requestCustomerCategory "request customer's category" 
 (personal_info received);stage 2 completed  
 (MyAgent (name ?n)) 
 (customer ?x) (categories ?cc) 
 => 
 (send (assert (ACLMessage (communicative-act INFORM) (sender ?n) (receiver ?x)   
                                                               (content ?cc))))) 
(defrule getCustomerCategory "get category" 
 (customer ?x) 
 (customer_personal_info ?x ?p) 
 ?z<-(ACLMessage(communicative-act INFORM)(sender ?x)(content ?c)) 
 (test (or (eq ?c bronze)(eq ?c silver)(eq ?c gold))) 
 => 
 (bind ?tt (new Basic)) (bind ?str (?tt extractTriples ?p)) 
 (batch ?str))) 
  
(defrule find_name 
 (triple (subject ?x) (predicate rdf:type) (object sendable)) 
 (triple (subject ?x) (predicate CustomersName) (object ?name)) 
 => 
 (assert(name ?name))) 
... 

Fig. 6. Part of the Wine Club’s behavior in Jess (2cndk
3) 

extracts the customer’s personal data in RDF triples. Finally, the “find_name” rule 
finds the customer’s name using the extracted triples in order to enter this customer in 
his register.  

Similarly, the customer agent’s description contains, among others, a fact per-
sonal_data which is part of his internal knowledge and represents his personal data. 
Moreover, due to the dynamic environment (AYPS is constantly updating the envi-
ronment), new facts with the Wine Club’s agent name (Wine_Club) are added to the 
working memory. Agent behavior is represented by rules that implement the work-
flow transition conditions of each negotiation step cndk

l to the next; two of these are 
the “request” and “read”; the former is used for communication and the latter for Java 
method calls.  

        Fu
cust ≡ {personal_data}, Fe

cust  ≡ {Wine_Club} 
        Ccust ≡ {(ACLMessage (communicative-act REQUEST) 

(sender Customer) (receiver Wine_Club) ←request (“Co”)} 
        Jcust ≡ { personal_data_string←(bind ((new java_class) read personal_data)} 
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5   Related Work 

A tightly related approach is the DR-CONTRACT [25] architecture for representing 
and reasoning on e-Contracts in defeasible logic. The architecture captures the notions 
relevant to monitoring the execution and performance of e-Contracts in defeasible 
logics. More specifically, the framework deploys the Defeasible Deontic Logic of 
Violation (DDLV) [17], expressed via a RuleML extension that combines deontic 
notions with defeasibility and violations. DR-CONTRACT takes as input a DDLV 
theory, downloads/queries input RDF documents, including their schemata, and trans-
lates the RDF descriptions into fact objects. Finally, the conclusions are exported as 
an RDF/XML document through an RDF extractor.   

SweetDeal [26] is another rule-based approach to representing business contracts 
that enables software agents to create, evaluate, negotiate and execute contracts with 
substantial automation and modularity. SweetDeal builds upon the Situated Courteous 
Logic Programs (SCLP) knowledge representation in RuleML that includes priori-
tized conflict handling and procedural attachments for actions and tests. Process 
knowledge descriptions are also incorporated, represented as ontologies expressed in 
DAML+OIL, thereby enabling more complex contracts with behavioral provisions, 
especially for handling exception conditions (e.g., late delivery or non-payment) that 
might arise during the execution of the contract. 

The EREC framework [27] is another example for designing, modeling, enacting 
and monitoring e -Contract processes. The framework centers on an underlying meta-
model that bridges the XML contract document with the Web Services-based imple-
mentation model of an e-Contract. The EREC meta-model applies certain constructs 
for modeling e-Contracts, like clauses, activities, parties, exceptions, contracts and 
subcontracts. The framework also offers potential for automatic generating and de-
ploying workflows for e-Contract enactment, as well as facilities for analyzing what-
if scenarios with respect to e-Contract clause violation. 

Another work that automates price negotiations in e-commerce transactions using a 
rule-based implementation based on JESS utilized in the JADE multi-agent is pre-
sented in [28]. However, the focus of our work is e-contract negotiation / argumenta-
tion, rather than price negotiation. 

Similarly, our approach considers e-Contracts in the Semantic Web, but it is, to the 
best of our knowledge, the only one that provides a workflow methodology, which 
models the procedure that can be followed for negotiating and sealing an e-Contract. 
This methodology divides the overall process of an e-Contract agreement in stages, 
providing a safe, reusable procedure for e-Contract agreements, which could be used 
for different types of on-line transactions among agents. Moreover, our approach 
takes into account trust issues (stg1 stage), an extremely important issue on on-line 
transactions. In addition, it is the only approach that is embodied in a multi-agent 
platform, letting agents easily follow the necessary steps for sealing an e-Contract. 

6   Conclusions and Future Work 

This paper presented a policy-based workflow methodology for modeling and moni-
toring e-contract agreements among agents interacting in the Semantic Web. The 
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proposed methodology consists of a sequence of steps, grouped to five stages, which 
could be used for different types of on-line transactions among agents. In addition, the 
integration of this methodology into a knowledge-based multi-agent framework is 
proposed, that provides among others flexibility and reusability. This paper also pro-
vides a use case that illustrates the technologies proposed. 

As for future directions, it would be interesting to verify our model’s capability to 
adapt to an even wider variety of scenarios. Furthermore, it would be interesting to 
integrate the representation formalisms of both the public and private agent policies, 
so that they can interoperate by sharing base and inferred predicates. 
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Abstract. Semantic Web services achieve effects in the world through
Web services, so the mechanism connecting the ontological representa-
tions of services with the on-the-wire messages—the grounding—is of
paramount importance. The conventional approach to grounding is to
use XML-based translations between ontologies and the SOAP message
formats of the services, but these mappings cannot address the growing
number of non-SOAP services, and step outside the ontological world to
describe the mapping. We present an approach which draws the service’s
interface into the ontology: we define ontology objects which represent
the whole HTTP message, and use backward-chaining rules to translate
between semantic service invocation instances and the HTTP messages
passed to and from the service. We show how this approach can be used
to access the Flickr photo-sharing service through both its RESTful and
XML-RPC interfaces.

1 Introduction

The field of semantic Web services uses ontologies to formally model the pur-
pose and operation of Web services such that they can be intelligently used by
machines. A crucial part of this is modelling how the Web service is invoked: the
message format, and application protocol usage. The major semantic services
frameworks—OWL-S [1], WSMO [2], and SA-WSDL [3]—assume services will be
implemented using SOAP, and implemented brokers use XML mapping languages
to translate between the XML serialisation of the ontology data and the on-the-
wire messages exchanged with the Web service. This approach solves only the
data grounding problem, and even then, solves it only for SOAP services.

Recent trends in Web services have shown that many developers, both on the
client and server side, prefer to use techniques other than SOAP or even XML. In
particular, XML-RPC is a popular lightweight alternative to SOAP which still uses
XML, while RESTful interfaces [4] often eschew XML formats altogether in favour
of JSON, or multimedia MIME types. An approach based on SOAP, and therefore
XML, does not translate easily to non-SOAP flavours of Web service (Section 2).

M. Dean et al. (Eds.): RuleML 2010, LNCS 6403, pp. 240–250, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Photorealistic Semantic Web Service Groundings 241

In a previous paper [5] we introduced a method where the grounding was
described entirely using an ontology language’s frames and rules, and demon-
strated how it could access Amazon’s Simple Storage Service through its RESTful
interface. In that paper we made but did not substantiate the claim that our
approach could be extended to support other message formats, in particular
XML-RPC and SOAP. In the current paper, we show how our technique can
be used for XML-RPC. After recapping our approach (Section 3), we develop
an ontological model for XML documents and XML-RPC messages (Section 4).
We proceed to demonstrate upon Flickr—a popular picture sharing service,
which happens to provide interfaces for REST, XML-RPC, and SOAP—presenting
descriptions for some of Flickr’s XML-RPC and RESTful services (Section 5).
We compare our method to the usual approaches (Section 6) and conclude
(Section 7).

2 Grounding Web Services

The objective of semantic Web services is to formally model the operation of
Web services, so that intelligent agents can reason about them. A key part of
the reasoning is concerned with the mechanism of service invocation. A semantic
service broker must be able to convert an abstract ‘invocation’ expressed in
terms of ontologies into the correct sequence of bytes sent to the correct network
address to cause the service to operate, and to interpret the service’s response.
The process of translating between the ontological world of domain theories and
the on-the-wire data formats and protocols is known as ‘grounding’ the service.
For semantic Web services to be practical, brokers must be able to ground a
comprehensive collection of real, actively used Web services.

For most of the lifetime of semantic Web services research, the de facto
flavour of Web service was defined by XML [6], SOAP [7], and WSDL [8], which
grew into the W3C’s Web Services stack, colloquially known as ‘WS-*’. As the
complexity of the WS-* stack has increased, its popularity has waned, with
many services now being offered using lighter weight alternatives. The gen-
uinely simple protocol which inspired SOAP has re-emerged in its own right
as XML-RPC [9]. More visibly, REST [4] has gained considerable mind-share:
according to Amazon’s Web services evangelist Jeff Barr, around 80% of invoca-
tions of Amazon’s services are made through the REST interface.1 Yahoo! does
not provide a SOAP interface, and has no intention of adding one.2 Flickr, a
popular photo-sharing website, offers its API in SOAP, XML-RPC, and RESTful
flavours. The SOAP interface does not have a WSDL description, and none of
the the third-party bindings3 for the most popular languages target the SOAP
variant:

1 http://www.jeff-barr.com/?p=96
2 http://developer.yahoo.com/faq/#soap
3 http://www.flickr.com/services/api/

http://www.jeff-barr.com/?p=96
http://developer.yahoo.com/faq/#soap
http://www.flickr.com/services/api/
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Flickr Binding Language API

Flickcurl C REST
flickrj Java REST
jickr Java REST
FlickrNet .NET REST
Flickr-API Perl REST

Flickr Binding Language API

Flickr-Upload Perl REST
phpFlickr PHP REST
flickr.py Python REST
flickr-ruby Ruby REST
rflickr Ruby XML-RPC

In most cases, the Flickr user is ultimately motivated by the prospect of obtaining
a picture. Flickr’s API provides only a RESTful means for retrieving the image,
requiring the construction of the image’s URL in one of several forms, the
following being the simplest and most restrictive:

http://farm{farm -id}. static.flickr.com/{server -id}/{id}_{secret }.jpg

The farm-id, server-id, id, and secret parameters are part of a photo’s identity,
and can be obtained by calling one of several other Flickr services. There is no
SOAP mechanism for retrieving images, and no way to couch the URL creation
as an XML transformation. Although WSDL 2 [8] and WADL [10] can form URLs
based on templates, many of the URLs used in RESTful interfaces are much too
complicated for this. For example, the Flickr URL shortening service (similar to
the TinyURL service) produces URLs of the form:

http://flic.kr/p/{base58 -photo -id}

where base58-photo-id is an algorithmically specified mapping from a photo’s
details to a base 58 encoded string. RESTful authentication mechanisms also
typically produce URLs which are impossible to define with a simple substitution
template. A general grounding mechanism must not only support the XML that
underlies SOAP, but also describe complex URL schemes, and at least handle, if
not manipulate, the multimedia data that constitutes much of the data in the
HTTP stream.

3 Ground Rules

We previously introduced our approach to grounding which we believe achieves
these objectives [5], and in this section we quickly review the technique. The
scheme has been implemented in the Internet Reasoning Service (IRS),4 a broker
based on the Web Services Modelling Ontology (WSMO) [11]. The IRS uses
OCML [12] as its knowledge representation language and reasoner. OCML is a
frame language with a Lisp syntax and procedural attachment, and is compa-
rable in expressiveness to the Ontolingua and Loom languages. Although we
implmented our approach in OCML, the technique is broadly applicable to KR
languages with backward-chaining rules.

Our method is to model in ontologies the actual HTTP messages sent and
received—including the URL, headers, and the content—and use rules in the on-
tology language to manage the mapping between those messages and the service
invocation objects that the broker deals with anyway in managing the invocation.
At a high level, the process of invoking a semantic Web service is:
4 http://technologies.kmi.open.ac.uk/irs/

http://technologies.kmi.open.ac.uk/irs/
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1. A user invokes a semantic service by calling the broker with a goal description
described ontologically.

2. After some processing by mediators, an ontological Web service invocation
instance is created. The invocation object holds the service name, input
parameters, and slots to hold the return values from the Web service.

3. A rule from the service’s semantic description is called to create an HTTP
message object based on the service invocation object, with its various slots’
values set to reflect the parameters from the the service invocation object.

4. The HTTP message is passed to the broker, which then turns the HTTP
object directly into a request on the network.

When the service replies, the same procedure is preformed in reverse. The novelty
of our scheme lies in step 3. We define two entry points, or generic rules, which
we call lower and lift. These respectively ‘lower’ the service request object to
an implementation level and ‘lift’ it back. Concretely, the two rule heads are

(lower ?serviceType ?serviceInvocation ?httpRequest)
(lift ?serviceType ?serviceInvocation ?httpResponse)

Each Web service description can define its own version of lift and lower,
which the broker distinguishes by unifying on the ?serviceType parameter that
names the service being invoked. The lower rule’s successful fulfilment leads
to the instantiation of ?httpRequest, which can then be directly interpreted
by the broker to call the Web service. When a response is received from the
server, the lift rule runs on the the newly returned ?httpResponse, modifying
the original ?serviceInvocation frame to record the return values. The HTTP
ontology defines the general form of the HTTP messages in a simple way:

(def -class HttpMessage ()
((hasHeader :type HttpHeader)
(hasContent :type String :max - cardinality 1)))

with HttpRequest and HttpResponse subclassed from HttpMessage. Our grounding
ontologies are relatively simple, being built solely for the purpose of supporting
groundings, but they could in principle be general purpose ontologies developed
for other uses in the respective domains.

As an example, consider the operation to retrieve an image (Section 2). Recall
that this consists of performing an HTTP GET operation on a URL of the form:

http://farm{farm -id}. static.flickr.com/{server -id}/{id}_{secret }.jpg

If an invocation of that service had a hasPhoto slot which held the identifying
features of the picture, the lower rule could be written thus:

(def -rule lowerGetFlickrImageService
((lower GetFlickrImageService ?invocation ?httpRequest) if
(hasPhoto ? invocation ?photo)
(hasFarmId ?photo ?farmId)
(hasServerId ?photo ?serverId )
(hasId ?photo ?id)
(hasSecret ?photo ?secret)
(= ?httpRequest (new HttpRequest))
(= ?url (concatenate "http://farm" ?farmId ".static.flickr.com/"

?serverId "/" ?id "_" ?secret ".jpg"))
(assert (hasUrl ? httpRequest ?url))
(assert (hasMethod ?httpRequest "GET"))))
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We use asserts here because it is OCML’s ‘house style’ as a mutation-oriented
frame language, but we believe the rules would be clearer still in an immutable
language. Once lowerGetFlickrImageService has succeeded, ?httpRequest is
bound to an instance of HTTPRequest whose method field is GET, and the URI
field is the correctly constructed location of the photo resource.

4 Working with XML and XML-RPC

In many cases, the content of the HTTP messages will be XML, in particular,
XML-RPC or SOAP messages. In our lift and lower rules, we could directly
manipulate the string representations of XML, but this becomes cumbersome,
prone to error, and fails to ‘model’ in any meaningful way the transformations.
Instead, we introduce simple ontologisations of XML and XML-RPC, and using
these we can then write simple lifting and lowering rules.

Our ontologies are straightforward. XML is modelled with a Document concept,
which has a rootElement of type Element. In turn, Elements have children which
are Elements or Text, and they also have lists of Attributes. Such structures
can be transformed into their corresponding strings, and back again, with the
relation serialiseXml. The essentials are shown in Figure 1.

(def -class Document ()
((rootElement :type Element )))

(def -class Element ()
((tag :type string )
(attributes :type Attributes)
(contents :type Contents )))

(def -class Attributes () ?attributes
:iff -def
(and (listp ? attributes)

(every ?attributes Attribute)))

(def-class Attribute ()
((name :type string)
(value :type string )))

(def-class Contents () ?contents
:iff-def
(and (listp ?contents )

(every ?contents
(or Element Text))))

(def-class Text ()
((value :type string )))

Fig. 1. XML ontologisation in OCML

An XML-RPC [9] message is a simple serialisation of a remote procedure call,
for example:

<?xml version ="1.0"?>
<methodCall >

<methodName >examples .getStateName </methodName >
<params >

<param ><value ><i4 >41</i4 ></value ></param >
</params >

</methodCall >

The content of an XML-RPC service invocation is a MethodCall, comprising a
MethodName and a list of parameters. Each parameter Param has a typed value,
which may be a simple scalar, an array, or a structure. These are represented by
matching concepts in the ontology, shown in Figure 2.
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(def -class MethodCall ()
((methodName :type MethodName

:cardinality 1)
(params :type ListOfParam)))

(def -class ListOfParam () ?list
:iff -def (and (listp ?list)

(every ?list Param )))

(def -class MethodName ()
((value :type string )))

(def -class Params ())

(def -class Param ()
((value :type Value)))

(def -class Value ())

(def-class scalarValue (Value))

(def-class I4 (scalarValue)
((value :type integer )))

(def-class Boolean (scalarValue)
((value :type boolean )))

(def-class String (scalarValue)
((value :type string )))

(def-class Struct (Param)
())

(def-class Member ()
((name :type string)
(value :type Param )))

Fig. 2. XML-RPC ontologisation in OCML (an illustrative subset only)

The relation xmlrpcToXml deals with mapping from the XML-RPC ontological
objects to XML ontological objects, which can then be serialised to a string of
XML with serialiseXml.

5 Flickr

We now illustrate the use of rules to create groundings for both RESTful and
XML-RPC interfaces to Flickr services. Flickr is a commerical website offering
‘freemium’ hosting of users’ photographs, combined with social-networking fa-
cilities for the structured sharing of those images. Flickr provides a sizable API
to examine the metadata around the images themselves. We have already seen
how an image can be retrieved from Flickr (Section 3), but to do that, we must
discover the details about an image required to construct the URL.

We will skip the intricacies of creating an account, setting up API keys and the
like, although we have create groundings for those services, too. For this paper,
our concern is with a) getting a list of recently changed photos in a user’s account
b) getting a list of sizes in which those are available . The relevant services
are flickr.photos.recentlyUpdated and flickr.photos.getSizes. The Flickr API
provides interfaces for SOAP, XML-RPC, and REST, but for all three, services
are defined in terms of a Flickr-specific abstraction for passing arguments. Each
method takes a set of name/value pairs, and this is then cryptographically signed
to ensure security. The flickr.photos.recentlyUpdated method takes three argu-
ments, api_key, auth_token, and min_date, while flickr.photos.getSizes takes
arguments api_key, auth_token, and photo_id. The api_key identifies the appli-
cation making the request, and the auth_token is obtained when a user grants
a particular application access to their account. Figure 3 shows the rule for
signing an argument set with an account key, which amounts to taking the
MD5 sum of a string which is the concatenation of the application’s ‘secret’
key, and the name/value pairs of the arguments (this ordering is arranged by
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(def-rule signArguments
(( signArguments ?flavour ?arguments ?account ) if
(hasSecret ?account ?secret )
(hasValue ?secret ?secret-string)
(canonicalArgumentsString ? flavour ?arguments ?canonical -args)
(= ?to-be-signed ( concatenate ?secret -string ?canonical -args))
(= ?signature (md5sum ?to-be -signed ))
(addArgument ?args "api_sig " ?signature)))

Fig. 3. Signing a call

(def-rule lower -for - photosRecentlyUpdatedRestService
((lower photosRecentlyUpdatedRestService ?invocation ?http -request ) if
(= ?account (wsmo -role -value ?invocation hasAccount))
(= ?token (wsmo -role -value ?invocation hasToken ))
(= ?min -date (wsmo -role -value ?invocation hasMinimumDate))
(hasKey ?account ?apikey)
(hasValue ?apikey ?apikey-string)
(hasValue ?token ?token -string)
(= ?args (new -instance Arguments))
(addArgument ?args "method" "flickr.photos. recentlyUpdated")
(addArgument ?args "api_key " ?apikey -string)
(addArgument ?args "auth_token" ?token -string)
(addArgument ?args "min_date " ?min -date)
(signArguments rest ?args ?account )
(argsToRestRequest ?args ?http -request )))

Fig. 4. Lowering rule for RESTful photos.recentlyUpdated

(def-rule argsToRestRequest
(( argsToRestRequest ?arguments ?http -request ) if
(= ?args (setofall ?pairs

(and (hasArgument ?arguments ? argument )
(hasName ?argument ?name)
(hasValue ?argument ?value)
(= ?pairs (?name ?value )))))

(listAsQuery ?args ?query)
(= ?url (concatenate "http://api.flickr.com/services /rest/?" ?query))
(rfc2616 :set -url ?http -request ?url)
(rfc2616 :set -method ?http -request "GET")))

Fig. 5. Translation from an argument set to a RESTful HTTP GET message

the canonicalArgumentsString relation, which for brevity is not shown). The
signArguments rule is used by lowering rules where required.

The lowering rule for the RESTful flickr.recentlyUpdated service is shown
in Figure 4. The rule is straightforward, with the first half concerned with
extracting from the ?invocation the necessary argument values, and the second
half constructing an Arguments instance using those values. The last two lines
ensure the arguments are signed, and then pack the arguments into an HTTP
request. The conversion from an argument set to an HTTP request is handled
by the argsToRestRequest rule, shown in Figure 5.
argsToRestRequest constructs a URL with the arguments in the form

param1 =value1&param2=value2 ...

and sets the ?http-request fields appropriately. The lifting rule is shown in
Figure 6.
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(def-rule lift -for -photosRecentlyUpdatedRestService
((lift photosRecentlyUpdatedRestService ?http -response ?invocation) if
(rfc2616 :get -content ?http -response ?http -content )
(xml:serialiseXml ?xml ?http -content )
(xml:rootElement ?xml ?root -element )
(xml:elementByName ?root -element ?photos -element "photos ")
(extractXmlPhotoList ?photos -element ? photolist)
(set-goal -slot -value ?invocation hasPhotoList ?photolist)))

Fig. 6. Lifting rule for RESTful photos.recentlyUpdated

In lifting the response, we extract the content from the ?http-response, con-
vert it into an ontological model of the XML, and use a rule extractXmlPhotoList

(not shown) to extract the appropriate fields and build an ontological list of the
contents. With this list of photographs, we are now ready to invoke the second
service, flickr.photos.getSizes. We will invoke this service in XML-RPC.

(def-rule lower -for - photosGetSizesXmlrpcService
((lower photosGetSizesXmlrpcService ?invocation ?http -request ) if
(argsForPhotosGetSizes ?invocation ?args)
(= ?account (wsmo -role -value ?invocation hasAccount))
(signArguments xmlrpc ?args ?account )
(argsToXmlrpcRequest ?args ?http -request )))

Fig. 7. Lowering rule for flickr.photos.getSizes

(def-rule argsToXmlrpcRequest
(( argsToXmlrpcRequest ?args ?http -request ) if
(getArgument ?args "method" ?method)
(= ?nonmethodargs

(setofall ?member
(and (hasArgument ?args ?arg)

(hasName ?arg ?name)
(not (= ?name "method "))
(hasValue ?arg ?value)
(= ?member (xmlrpc :Member ?name

(xmlrpc:String ?value ))))))
(= ?xmlrpc

(xmlrpc:MethodCall ? method
(xmlrpc:Param (xmlrpc:Struct ?nonmethodargs))))

(xmlrpc :mapToXml ?xmlrpc ?xmlmodel )
(xml:serialiseXml ? xmlmodel ?xmlstring)
(rfc2616 :set -content ?http -request ?xmlstring)
(rfc2616 :set -method ?http -request "POST")
(rfc2616 :set -url ?http -request

"http://api.flickr.com/services /xmlrpc /")))

Fig. 8. Translation from argument set to an XML-RPC message

Figure 7 shows the lowering rule for this XML-RPC service. This time, the con-
version from the invocation object to the argument pairs used by Flickr is done in
another rule argsForPhotosGetSizes (not shown). The use of a rule for this means
we could share the logic between the XML-RPC version shown here, and a REST
or SOAP version. The argument set is again signed using signArguments, and then
passed to a new rule argsToXmlrpcRequest, shown in Figure 8.



248 D. Lambert and J. Domingue

In argsToXmlrpcRequest we see similar machinary to that in argsToRestRequest

for converting the argument set, but this time we create an XML-RPC message
with a Struct to hold the pairs, rather than embedding them in a URL.

6 Related Work

WSDL [13] has been the de facto means of specifying Web service interfaces since
the birth of Web services. Both OWL-S [1] and WSMO [11] define their groundings
by pointing at the WSDL of their targets, but the mapping to the syntactic content
of the messages is something of a grey area. The OWL-S WSDL document [14] sug-
gests that OWL-S services should require Web services to use an OWL specific en-
coding in their implementation. The semantic annotation extensions for WSDL—
WSDL-S and then SA-WSDL (Semantic Annotations for Web Service Description
Language) [3]—provide a vocabulary to link the WSDL descriptions to mapping
schemas to handle the lifting and lowering, but the mechanism of the schemas
themselves is not specified, and is XML-centric. The IRS previously used XPath
expressions to generate OCML relations which performed the lifting and lowering.
Another WSMO based broker, the Web Services Execution Environment (WSMX)
uses service-specific ‘adaptors’, written in Java, to connect to services.

Although the principle of ‘lifting and lowering’ the XML serialisation is well es-
tablished, it does not address aspects of the HTTP protocol like the Authorization
header that many services require for authentication. Moreover, assuming XML
translation precludes the use of services that do not employ XML at all. Although
WSDL and SOAP are products of the W3C standards, there is significant disquiet
amongst developers about their complexity, interoperability, and the way they ig-
nore the Web’s architecture. Personal experience has made us skeptical of the qual-
ity of WSDL and XSD descriptions, even, or perhaps especially, machine generated
ones. Finally, using an XML mapping scheme like XSLT forces the ontology engi-
neer to leave the semantic realm to work on the groundings, and to consider the
domain objects in terms of their XML serialisation. In contrast, our groundings
unify the lifting and lowering with the management of the HTTP protocol, and are
declarative and wholly within the ontology language, modulo the small number of
operational primitives such as cryptography functions. Since there are relatively
few data encoding and cryptography schemes—many orders of magnitude fewer
than therewillbeWeb services—itmakes sense to embed them in semantic brokers,
andmake them available to rules at the ontology level. Such facilities will need tobe
present oneway or another: in our scheme, they are available as reusable primitives,
and the number of them therefore kept to a minimum. With these hooks in place,
we can encode groundings to a large number of important, real-world Web services
in a unified, ontology-based manner.

7 Conclusion

Semantic Web services are about Web services as well as semantics. In this paper,
we extended an approach to groundings rooted in ontologies and rules, adding
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support for XML content and XML-RPC Web services. As an illustration, we
described some of the services provided by Flickr, the popular photo sharing
site. We have implemented the ontologies discussed in the IRS broker.

We see this approach as a useful low-level implementation platform: it is
sufficiently powerful to connect to any kind of HTTP service, and yet is fully
accessible from the ontological level. It is general enough, for instance, that it
could support multi-part MIME messages. The resulting rules are simple from an
engineering perspective, allowing easy reuse of component rules, and declarative
description of the necessary operations. For the Flickr services described here, a
handful of rules capture the general invocation pattern, and lifting or lowering
rules for individual services are compact. Future work will involve a translation
to RDF, reusing vocabularies like the W3C’s RDF schema for HTTP.5 We also
intend to support SOAP messages directly at the ontological level, in a similar
fashion to the XML-RPC support developed here. We intend to create ontologies
to model WSDL descriptions, and from there to permit some level of automatic
lifting and lowering based on the available information from the WSDL. The same
could be done for WADL, and SA-WSDL. Since other semantic Web services work
has established XSLT as a means for performing these translations, we should
be able to reuse existing XSLT mappings within rules when available.
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Abstract. Competing visions have been jostling to define the long-term future 
of the Web: WS-* Web Services, the Semantic Web, and RESTful Web 
Services. This paper presents the initial steps towards a Rule-driven, REST-
based architecture for the Web that can enable use cases that the Semantic Web 
and WS-* communities require. The key enabling ingredient is the use of 
SBVR models as a media type for resource description that allows models to be 
exposed and consumed. With formal description of data, advanced scenarios 
such as inference, service composition, and transactions are feasible within an 
architecture that is backwards-compatible with today’s Web. 

Keywords: REST, SBVR, Distributed Systems, Web Engineering, Service 
Composition, Transactions. 

1   Introduction 

Since its inception, the Web has radically expanded its limits to include ever more 
people, and cover an ever increasing part of their everyday activities. While initially 
based on a very straightforward architecture, the aspirations of its users soon 
exceeded the limits of what was possible within it. So a number of parties started 
extending that architecture to enable their own use cases. The architecture was 
gradually revised to include more and more of the low-hanging fruit, and reached a 
stable point with the release of HTTP 1.1, URI (RFC 3305) and HTML 4. Recent 
efforts to revise that architecture tend to be practitioner-driven in their approach, 
intending to enable new uses and standardize widespread practices, without causing 
deep changes to the way the Web works. Examples of this are HTML 5 and the 
HTTPbis efforts. At the same time, at least three camps have been jostling to define 
the long-term vision for a Web where machines will be able to participate as users just 
as humans do on today’s Web. In this paper we examine the competing visions and 
propose criteria for a way forward. Based on these criteria, we propose an architecture 
built on RESTful Web Services, Semantics of Business Vocabulary and Rules 
(SBVR) [1] as a modelling language, and proceed to show how a number of advanced 
use cases can be built upon this minimal foundation. 
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2   Visions for the Future Web 

The competing approaches are Representational State Transfer (REST), the Semantic 
Web and Linked Data, and WS-* web services. Each one descending from a different 
tradition, using divergent vocabularies to emphasise different use cases and 
considerations. 

The WS-* web services efforts [2], also known as Big Web Services [3] are rooted 
in enterprise systems vendors and the history of that industry. Starting out as vendor-
specific Remote Procedure Call (RPC) technologies, many of these consolidated in the 
90’s leaving CORBA and DCOM as the only major competitors in this space. With  
the introduction of SOAP, the companies in both camps worked together in building up 
the WS-* standards. The focus of these efforts was in service description, discovery, 
composition and transactions, as well as governance and reliability. The work of Jim 
Waldo [4] already in 1994 however, stressed the problems with RPC-based approaches 
to distributed computing. In recent years most of the implementation of WS-* 
technologies has been limited to the interior of the corporate firewalls. 

The Semantic Web[6] and more recently the Linked Data[7] movement have been 
focusing on expressing or annotating data on the web with machine-readable 
semantics. With a strong Artificial Intelligence and Formal Methods background, the 
Semantic Web community has a focus on ontology and aims for novel inferences to 
arise from this Web of Data. Like the WS-* effort, they have produced a stack of 
standards such as RDF, RDFS, OWL, OWL-S which until recently have had 
relatively limited adoption. The effort by W3C to recast HTML into XHTML which 
would have allowed for more natural integration with the Semantic Web efforts has 
recently been abandoned in favour of HTML 5. Similarly, the early versions of RSS, 
based on the Resource Description Framework (RDF) have been rejected in favour of 
plain XML-based approaches. Controversial elements are the assumption that all RDF 
triples in a graph are equally trustworthy, as well as the use of HTTP as a read-only 
protocol, both very limiting in multipurpose distributed systems like the Web. 
Recently, Linked Data has achieved some success with owners of large data sets such 
as government organizations, and there are now vast collections of interlinked triplets, 
forming what is called the Web of Data.  

Representational State Transfer is an approach that focuses on the principles 
behind the architecture of the Web. As such, its ambition may appear limited at first, 
compared to the other two visionary approaches. Its focus is on scalability, loose 
coupling, linkability and ease of maintenance [3]. It is a direct result of the work of 
Roy Fielding in developing HTTP, as described in his doctoral dissertation [5]. What 
sets REST apart is that its focus is not on novel technologies as much as on a 
principled use of those already available, mainly HTTP, URI, and the various 
hypermedia formats. The principles are well defined as a set of architectural 
constraints that are reflected in the operation of these standards. These are: Naming of 
resources, the uniform interface, statelessness and self-descriptive messages, 
manipulation of resources through representations, and use of hypermedia as the 
engine of application state. Each of these can and has been used on today’s Web with 
great effect. The result has been a large recent shift in interest away from WS-* 
standards and towards RESTful Web Services on the part of web practitioners, 
especially when publishing services on the open Web. Perhaps the most well known 
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usage of REST as a machine-to-machine interaction paradigm is the increasing use of 
feeds (RSS, ATOM) not only for their native blog subscription scenarios, but also as a 
generic mechanism to communicate updates between services. Recent advances 
include podcasting and real-time feeds.  

An immediate comparison can be made between the granularities of the three 
approaches. WS-* web services are the most coarse grained with the fundamental 
element being a ‘service endpoint’. Knowing the historical background helps to 
explain this, but in the context of the Web, limitations such as not being able to use 
hyperlinks becomes a big drawback. REST focuses on the concept of a ‘resource’ as 
identifying a unit that the service deems important enough to name with a URI. A 
RESTful web service can and usually does break down to multitude of interconnected 
resources. Finally, the Linked Data approach is to focus on the RDF triple as its 
primitive element. While this is arguably more granular than a resource, there has been 
very little work on addressing individual triples. As a result, HTTP is used to read 
collections of triples, and SPARQL [8] and the newer SPARQL Update [9] being used 
as means to make queries and updates on collections of triples at SPARQL endpoints. 
The SPARQL concept of an ‘endpoint’ is reminiscent of the ‘service endpoint’ of the 
WS-* approach, and can even be described with WSDL as a web service. This brings 
us back to the service level of granularity in terms of linkable entities. 

Table 1. Comparing the Visions for the Future Web 

Approach Community 
Background 

Target 
Properties 

Primitive 
Object 

Use Cases Key 
Standards 

Semantic 
Web 

AI, Formal 
Logics 

Data 
accessibility, 
Semantic 
annotation 

Predicate 
(RDF 
Triple) 

Data analysis, 
Automated 
reasoning 

RDF, 
RDFS, 
OWL, 
SPARQL 

WS-* 
Web 
Services 

Enterprise 
Systems 

Governance, 
Reliability, 
Security 

Service / 
Procedure  

Service 
Composition, 
Transactions 

SOAP, 
WSDL, 
UDDI,  

RESTful 
Web 
Services 

Distributed 
Systems, 
Software 
Architecture, 
Web 
Development 

Scalability, 
Evolvability, 
Loose 
coupling, 
Linkability 

Resource  Web Sites, 
Feeds, Search 
Engines 

HTTP, 
HTML, 
URI, 
ATOM 

 
To judge any competing proposals for the future of the Web, a consistent set of 

criteria must be applied. Our specific agenda is in supporting openness and agility in 
the development and evolution of web services. A parsimonious set of criteria for 
assessing the viability of any approach in supporting this agenda is the following: 

 

• Compatibility: It must be backwards compatible with today’s Web to the 
greatest extent possible.  

• Simplicity: It must place the least amount of overhead to adoption for 
developers and users alike. 
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• Completeness: It must allow the different communities to implement as 
many of their critical use cases as possible. 

This short paper places the work of [11] in the broader context of enabling use cases 
that the Semantic Web and WS-* communities require. In many cases, concepts and 
even technologies from all three approaches can be used together under the 
architectural principles of REST to reach these goals. 

3   Media Types 

One area where the Semantic Web and WS-* approaches have put a lot more effort is 
that of service description. WSDL and OWL-S focus on exactly this task. Contrary to 
common perception, there is a place for descriptions in REST, and that is the media 
type. Roy Fielding in his seminal PhD dissertation writes: 
 

“The data format of a representation is known as a media type. A 
representation can be included in a message and processed by the recipient 
according to the control data of the message and the nature of the media type. 
Some media types are intended for automated processing, some are intended to 
be rendered for viewing by a user, and a few are capable of both.” [5] 

 
In the course of a sequence of RESTful interactions, media types should contain all 

the information that is not being communicated through HTTP. When there is a human 
driving the interaction, the semantics of the resource can be discerned from the content. 
When however machines need to act as clients, the semantics of a novel type of 
resource are not clear. This seems to be the canonical use case for the Semantic Web, 
and thus we can identify the media type as the appropriate place to communicate the 
semantics of the resource type. This is supported by modern uses of media types, such 
as ATOM, which use the media type designation to imply not only syntactic 
information but also semantic information by linking to the appropriate specification. 

We propose the introduction of a single new high-level media type 
(application/vnd.sbvr-described+xml) that enables resources that use it 
to describe themselves at run time. The +xml suffix should be replaceable with 
+json or other equivalents if necessary. This allows clients that implement it to react 
to unforeseen types of resources, in keeping with the general spirit of the Web. In 
fact, in the spirit of trying to eradicate out-of-band information, this approach would 
offer a drastic step forward, as it would offer an in-band way to communicate 
information that was not known to the designers of the client. In a previous 
publication [11] the potential of an SBVR-described media type was first discussed 
with the example of a student record resource. Here, we discuss how the media type 
application/vnd.sbvr-described+xml covers four types of information 
that a media type can convey: syntax; meta-model; schema; and, semantics. 

The syntax is covered by the specification of XML as a serialisation format. If one 
considers SBVR to be the semantic meta-model, then that is specified directly by the 
media type also. This leaves schema and semantics. Firstly, the vocabulary gives us 
the terms that are allowed to occur. Secondly, the fact types define which terms can 
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appear directly below or above which other terms. We can start to see the formation 
of a tree. Other, more structured pieces of information can be requested by following 
the hyperlinks provided. Finally, constraints allow the client to have specific 
expectation with regard to the cardinality of elements that it expects to find. 

Finally, SBVR models contain definitions for each term. This is a link to semantic 
information that can be used by the client. Some of these definitions resolve to other 
terms, some to natural language, and some to outside sources. Unfortunately exposing 
semantics for novel concepts in an automated fashion is an open problem, but this 
approach removes all other layers of complexity and exposes this problem directly, 
making it accessible to various lines of investigation. 

We have thus far shown how media type information can be communicated with 
the introduction a new SBVR-enabled media type, and how this media type can cover 
the possible requirements that a media type may have to cover. This is not to say this 
media type can cover all possible needs, but a large spectrum of previously hard use 
cases is indeed made much more accessible. 

Once we can have resources exposing models, or fragments of an overall model, as 
a description, the question of consuming the exposed models arises. We refer to our 
earlier paper [11] and the related paper at this conference [16] for more information 
on this. 

4   Model Propagation 

The previous section discussed ways of exposing and consuming rule-based 
descriptions of resources. Thus far we have not made assumptions about the internal 
operation of the nodes, but this architecture has been developed as an interaction 
paradigm for Generative Information Systems (GIS), which use SBVR as their 
internal modelling language as well as external resource description language. It is 
important to note that while GIS are the canonical example, in the spirit of backward 
compatibility, anything that can be done in a GIS can be done in a conventional 
information system. The internal architecture of a GIS simply allows it to do so more 
efficiently, utilising the full strength of the new paradigm.  

It is important to note that our concept of information system is as a two-tiered 
system, where both model and data are dynamic [11]. The model exposes itself to 
others that can incorporate it into their service models, and it can change when the 
models it itself depends on change. This is usual behaviour for data, but highly 
unusual for models which are supposed to be fixed at design time and need long and 
involved development cycles to be revised. 

5   Service Composition and Transactions 

Having covered resource description, model incorporation and model propagation, we 
have the building blocks to discuss the higher-level use cases that are common topics 
in the Semantic Web and WS-* communities. Having incorporated logic-based rules 
into our architecture it is relatively simple to see how an inference engine would 
operate over the information in this system. In fact, inference is fundamental to the 
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way the Generative Information Systems operate in determining whether an update is 
allowed and whether it will leave the node in a consistent state. Inference however, 
can be thought of as a special case of service composition.  

According to [13], service composition can be subdivided into three categories: 
Fulfilling Preconditions; Generating Multiple Effects; and, Dealing with Missing 
Knowledge. A typical example of service composition is the well-known travel 
scenario where flight and hotel can be booked independently but must be coordinated. 
Once the correct combination of services is found, the execution must be made in a 
transactional manner. 

In our case, we can describe an augmented travel scenario that allows us to explore 
the potential of model propagation and the meta-process described above. To begin 
with, we assume various service businesses (airlines, hotels, taxi agencies, sightseeing 
services) that offer their products as resources in a RESTful ecosystem, and expose 
them through SBVR descriptions. A Travel agent service can select quality providers, 
import their resources and expose them as resources available from its own API. Also, 
it can create higher-level ‘travel package’ resources which can act as a container for a 
number of provider resources (flight, taxi booking, hotel reservation) but also add 
extra business logic, concerning the consistency between the items in a travel 
package. So for instance all the items have to be related with the same destination, 
there is a single starting date for the trip, etc. Further, we can suppose that the travel 
agency services businesses that make the ‘travel package’ resource available to their 
employees. To do that they simply import the travel package resource description 
from the travel agency. However, each business has its own set of regulations about 
travel. Some may disallow certain locations, others may place limits on the total 
budget. These additional constraints can be added to the model such that an employee 
cannot book a non-compliant travel package through the API of the business. Through 
this example we can see three levels of business logic nesting which happens 
naturally. 

In order to see how such a scenario would work out in real life, it is necessary to 
examine the behaviour of the meta-process when operating recursively. Being in a 
distributed environment, model propagation is also in effect. So, if a number of 
resources are being written to as part of a travel package, once the business logic of 
the organization whose employee is making the booking is satisfied, the changes are 
propagated to the travel agency. It is important to note that the organisation’s API 
does not return success at that point but waits for the response of the travel agency’s 
API. Given that this is a RESTful environment, depending on the semantics of the 
operation applied, HTTP provides a number of options to deal with the case of no 
timely response, and these can be taken advantage of by our architecture. Also, HTTP 
responses such as 202 Accepted allow the server to acknowledge receipt of the 
data and defer producing the result.  

Once the request reaches the server of the travel agency, the meta-process gets 
executed again, this time at the travel agency’s node, with the organisation’s node as a 
client. The agency’s logic is checked for violations, and again the prospect of success 
or failure is opened. One possible failure mode is that the service has changed its 
internal logic so the client (the organizational client in this case) is operating on a 
stale cached copy. In this case, the violated rule is returned as an error, and the client 
can inform their users. At the same time the client knows that it needs to update the 
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description of the relevant resources it’s using. In every case, the updates can then be 
propagated further until all relevant nodes in this ‘web of models’ are aware of the 
new rules. The other alternative is that the request has violated a non-public rule. In 
that case a generic response is returned.  

The in the case where a request that is submitted to the travel agency succeeds, it 
will be broken down into parts and each provider will receive the sub-request that is 
relevant to them. But since the travel agency is interfacing with multiple providers, it 
needs to make sure that the requests either all succeed or all fail. To guarantee this, a 
transaction model is required, and since our architecture is RESTful the transaction 
model needs to operate within the Web Architecture’s constraints also. To this end, 
the authors of this paper have developed RETRO [14], A RESTful Transaction 
Model, capable of atomic transactions across distributed HTTP systems.  

This description of a service composition scenario is a smaller but updated version 
of previous work done by the authors on declarative service composition with SBVR 
[15]. 

6   Conclusions and Future Work 

In this paper we have brought together concepts and use cases from the three leading 
schools of thought regarding the future of the Web and constructed an outline of a 
novel step forward for Web Architecture paradigm. We have used the concept of 
resource orientation, hypermedia, and constrained distributed interaction from REST, 
the ideas of service description, transactions, and the use case of service composition 
from WS-* and the idea of using formal logic semantics and the use case of 
knowledge integration from the Semantic Web community. All these are brought 
together into a coherent whole that is backwards compatible with the REST-based 
architecture of today’s web. This short position paper should be read in conjunction 
with [16] which expands on the current technical work that is in progress to realise 
this vision. 

Overall, we feel that this unique combination of traits and use cases can genuinely 
contribute to the discussion about the future of the Web and highlight rule-based 
approaches in general and SBVR in particular as a powerful paradigm that can act as 
a unifying force and expose new avenues for exploration. 
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Abstract. Rule bases are common in many business rule applications, clinical 
decision support programs, and other types of intelligent systems. As the size of 
the rule bases grows and the interrelationships between rules become more 
complex, understanding dependencies among rules can be quite difficult. To 
address this challenge, we propose a novel approach for modeling logical 
dependencies among rules and for discovering patterns based on these 
dependencies. Our method uses rules bases written in the Semantic Web Rule 
Language (SWRL); we exploit SWRL’s logical relationship with OWL to 
incorporate these semantics in our analysis. We couple this analysis with 
visualization techniques that create a rule dependency graph.  We group nodes 
into layers based on their dependencies and cluster nodes within a layer if they 
have similar dependencies. We have evaluated our approach by applying it to 
two independently developed, publicly available ontologies containing SWRL 
rules.  We show how our analysis and visualization approach can allow users to 
quickly examine patterns of logical relationships in such rule bases. 

Keywords: Rule base management, Rule base visualization, Rule dependency, 
Ontology, SWRL, OWL. 

1   Introduction 

The Semantic Web Rule Language (SWRL; [1]) has become the de facto standard 
rule language for developing rule bases on the Semantic Web. SWRL is based on the 
Ontology Web Language (OWL; [2]) and shares its strong formal underpinnings yet 
is relatively easy to learn and use. However, in common with many rule languages, as 
the number of rules in a rule base increases the resulting rule bases can become 
difficult to comprehend and manage. Methods to assist users in dealing with this 
complexity can help users and developers to comprehend and manage large rule 
bases. In particular, methods to detect the underlying logical structure of rule bases 
and to visualize those structures can enable rapid user comprehension and assist 
developers in detecting patterns in their own rule bases. 

In earlier work [3], we used syntactic analysis to detect similar rules and then 
clustered them based on their similarity. While this approach performed well on some 
rule bases, it was limited. Since the semantics of the terms used in the rules was not 
considered, the method effectively performed a surface analysis only and as a result 
its cluster formation results were often quite coarse. The method was also relatively 
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brittle: A small structural change in a rule could cause it to be removed from its initial 
cluster. If we can consider the semantics of the terms used in a rule, we can exploit 
knowledge of these terms from the associated OWL ontology and have an opportunity 
to more robustly detect similarites between rules. In this paper, we outline a method 
that uses semantic analysis to detect dependencies between rules. This dependency 
analysis is based on more than a simple term analysis; it also considers the semantic 
relationships between the terms used in the rules and the strength of those 
relationships. We use the results of this dependency analysis to create a method that 
divides the rule base into logical layers and then detects fine grained clusters within 
those layers. A range of user-customizable display strategies are also provided to 
support visualization of the analysis results. 

2   Background 

SWRL has become the de facto standard OWL rule language. It has some attractive 
properties that have encouraged its adoption. In addition to being simple to learn and 
use, it provides formal mechanisms for performing reasoning with OWL ontologies. 
An OWL reasoner that supports SWRL can guarantee the logical consistency of a 
SWRL rule base. These reasoners can check SWRL rule bases for internal rule 
inconsistencies, inter-rule inconsistencies, and for inconsistencies between the rules 
and the underlying OWL ontology. Despite these strong formal underpinnings, rule 
base comprehension can be a challenge. Interactions between rules and their 
associated OWL ontology, and between the rules themselves, can be complex, and 
reasoners do not typically provide mechanisms for exploring these interactions.  

Consider, for example, the following five SWRL rules relating to drug 
recommendations for hypertensive and diabetic adult patients (a detailed description 
of individual SWRL constructs is provided in Section 4): 
 
Rule A: Person(?p) ^ hasSystolicBloodPressure(?p, ?sbp) ^ 
 hasDiastolicBloodPressure(?p, ?dbp) ^  
 swrlb:greaterThan(?sbp, 140) ^ swrlb:greaterThan(?dbp, 90)  
 → hasDiagnosis(?p, Hypertension)  
 

Rule B: Person(?p) ^ hasBloodSugarLevelBeforeMeal(?p, ?bsl) ^  
 swrlb:greaterThan(?bsl, 126) → hasDiagnosis(?p, Diabetes) 
 

Rule C: hasCondition(?p, Hypertension) ^ hasCondition(?p, Diabetes) ^  
 → prescribedDrug(?p, ACEInhibitor)  
 

Rule D: Person(?p) ^ hasAge(?p,?age) ^ swrlb:greaterThan(?age,17) ^  
 hasInsurance(?p, ?i) → InsuredAdult(?p) 
 

Rule E: InsuredPerson(?p) ^ prescribedDrug(?p, ?d) → CoPayEligible(?p) 
 

As can be seen, rules A and B independently produce diagnoses of hypertension 
and diabetes using the values of data property values associated with persons. Rule C 
does not initially seem to be dependent on either rule but if the underlying OWL 
ontology declares that hasCondition and hasDiagnosis are equivalent properties then there 
is a dependency. Similarly, Rule E is not obviously dependent on rule D because it 
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does not directly use any terms asserted by D. However, if InsuredAdult is declared to 
be a subclass of InsuredPerson then a dependency can be inferred. Rule E is clearly 
dependent on Rule C through the direct use of the prescribedDrug property. Furthermore, 
if the ontology also declares that the domain of the hasCondition and hasDiagnosis 
properties is of type Person then it can also be inferred that rule C is a rule concerning 
persons even though that is not directly stated in the rule. This knowledge can indicate 
its possible dependency on other rules that generate inferences about persons. 

As these examples show, even a simple rule set can produce a variety of inter-rule 
dependencies. Determining these dependencies requires a detailed manual inspection 
of the rules. This inspection must use knowledge about the underlying ontology and 
requires a methodical examination of the use of OWL classes and properties that may 
be indirectly related through their positions in class or property hierarchies. The 
domains and ranges of properties must also be considered in this analysis. As a rule 
base grows, these dependencies can become increasingly difficult to detect. 

Detailed examination of these dependencies can reveal the underlying logical 
layers usually present in rule bases. Such layers are typical and reflect a common 
design pattern of developing sets of rules at successively higher levels of abstraction, 
with upper layers using the inferences produced by layers below them. Methods that 
automatically detect and display these dependency layers, in addition to basic inter-
rule dependencies, can greatly facilitate rule base comprehension. 

3   Related Work 

Many rule management tools provide some sort of graphical support for editing and 
displaying rules. For example, SAMOS, an object-oriented database management 
system, provides a graphical rule editor and browser for managing Event-Condition-
Action-rules in databases [4]. The browser allows users to graphically navigate 
through rule bases and provides runtime tools for visualizing activities performed 
during rule execution. It presents a fairly simple view of a rule base, however, and 
provides no mechanisms for showing the relationships or dependencies between rules.  

In recent work, researchers use UML state diagrams to visually represent business 
rules and their interdependencies [5]. This approach can be used to visualize some 
types of dependencies between rules, but the overall approach does not provide a full 
rule representation language because of incompatibilities between rule modeling and 
the essentially object-oriented paradigm of UML. An extension of UML called UML-
Based Rule Modeling Language (URML) addresses some of these limitations [6]. It 
provides new visual metaphors that can be integrated with UML class diagrams. A 
rule is represented graphically as a circle with a rule identifier. Incoming arrows 
represent rule conditions or triggering events; outgoing arrows represent rule 
conclusions or produced actions. The approach supports the modeling of derivation 
rules, production rules and reaction rules. The overall approach is focused primarily 
on representing event triggering and event production rather than displaying the 
relationships between rules themselves. 

With the increasing use of rules in ontology-based systems, some recent work has 
concentrated on the development of rule dependency analysis techniques [7]. These 
dependencies can be used to detect anomalies in rule bases. The anomalies can be 
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caused by conflicts between the rules and their associated ontologies or inconsistencies 
in the rules themselves. For example, these techniques can be used to detect circular 
dependencies between rules or redundancies between rules and ontology assertions. 
Other work has investigated visualization techniques to provide explanations of 
defeasible theories and to display the structure and dependencies between rules in these 
theories [8, 9]. In general, however, these approaches have not concentrated on 
exploring these dependencies to produce visualizations of overall rule base structure. 

In recent work by the authors, a rule management tool called Axiomé was 
developed for managing rule bases developed using SWRL [3]. This work used a rule 
analysis technique to categorize, visualize, and paraphrase SWRL rules. The 
categorizations attempted to cluster rules into common groups based on their syntactic 
structure and their shared use of ontology terms. The associated visualizations 
allowed users to graphically display rules and the dependencies between them. 
Although this tool worked well in capturing coarse patterns in rule bases, the method 
was limited because it does not incorporate the semantics of the underlying 
relationships. Capturing the semantics of these relationships can allow significantly 
more granular analyses of the types of relationships between rules and thus support 
more robust methods for rule clustering and visualization. 

4   Methods 

SWRL’s formal OWL underpinning allows the relationship between a rule and the 
associated OWL ontology to be examined in a principled way. Unlike many rule 
languages, SWRL is not general purpose and is designed to be used only with OWL 
ontologies. All entities referred to in a SWRL rule must exist in the OWL ontology 
that the rules are developed in. SWRL provides six main types of SWRL atoms that 
govern the interaction between SWRL and OWL (see Table 1). The rules themselves 
have a simple Horn-like rule structure with a body and a head, each of which contain 
conjunctions of atoms. 

Table 1. The six main types of SWRL atoms defined by the SWRL Submission together with 
examples of each. All entity names, such as Person and hasSibling, refer to OWL classes or 
properties. 

SWRL Atom Type Example Atom 

Class atom Person(?x), Female(?y) 

Individual property atom 
hasSibling(?x, ?y) 

hasSister(?x, ?y) 

SameAs/DifferentFrom atom 
sameAs(?x, ?y) 

differentFrom(?x, ?y) 

Data valued property atom 
hasName(?x, “Joe”) 

hasAge(?x, ?g) 

Built-in atom 
swrlb:notEqual(?state, “CA”) 

swrlb:lessThan(?g, 18) 

Data range atom xsd:double(?x) 
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Of the six main SWRL atom types, class and object property atoms are the primary 
sources of potential inter-rule dependencies. These atoms refer to OWL classes, 
which capture classification information about individuals, and OWL object 
properties, which relate those individuals to each other. Atoms containing data 
properties can also cause dependencies by producing data value assertions in a rule 
that can be used by other rules. However, these dependencies are typically based on 
the value of data properties generated during the inference process and these actual 
values cannot typically be determined outside this process. Since our method does not 
perform a run-time analysis of rules, we do not consider such dependencies. For the 
same reason, we also do not consider built-in and data range atoms because they also 
deal with data properties whose values can only be determined during inference. 

4.1   Analyzing Dependencies among Rules 

The first step in our method involves analyzing the dependencies among rules in a 
SWRL rule base. This dependency analysis is based on two tasks: (1) an analysis of 
references to the same OWL classes and object properties in different rules; and (2) an 
analysis of the domain and range of object property atoms to determine if any resulting 
object property assertions about OWL individuals can produce dependencies. Both of 
these approaches are extended to incorporate the hierarchical and equivalence 
relationships between the matched OWL classes and properties that are specified in the 
underlying ontology.  

The co-occurrence of an OWL class or property in the head of one rule and in the 
body of another can indicate that one rule can potentially trigger another. For 
example, if the body of a rule references an OWL class that is also referenced in the 
head of another, a possible dependency between the rules can be assumed. The 
hierarchies of these OWL classes and properties can also be considered when 
computing this dependency. That is, statements about particular classes or properties 
can also be considered to be statements about their sub classes and properties. 
Similarly, OWL equivalent class and property assertions in an ontology can also be 
considered. Each class or property used in a rule can thus be expanded to include 
entities related to it in an ontology by considering sub type and equivalency 
relationships. In this way, the dependency method can consider not just the entity 
names but also knowledge about those entities that can be extracted from the OWL 
ontology that contains them. 

The next step involves examining the arguments to SWRL class and object 
property atoms to infer possible dependencies between rules. These atom arguments 
represent OWL individuals. Using the information from the associated OWL 
ontology, the possible types of these arguments can be automatically inferred. By 
using this type information it is possible to determine if assertions made by one atom 
can be used by atoms in other rules, which is a link that indicates a dependency. Our 
method attempts to enumerate the types of all individuals passed to class and object 
property atoms and to use this information to detect inter-rule dependencies. Again, 
the method considers only class and object property atoms since they are the only two 
atoms that deal with type information for OWL individuals. 

SWRL class atoms specify an OWL class and take a single argument representing 
an OWL individual. When used in the body of a rule, class atoms effectively indicate 
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a membership test for its argument individual. When used in the head of a rule, the 
atom effectively asserts that the argument individual is a member of the specified 
class. The intersection of these classes can be considered as the multiple types of each 
individual. This list can automatically be expanded to include the subclass and 
equivalent class relationships of these classes to produce an exhaustive list of the 
possible types of each argument individual. 

We use a similar approach with the arguments of object property atoms. SWRL 
object property atoms specify a named OWL object property and take subject and 
predicate arguments representing two OWL individuals. When used in the body of a 
rule, this atom acts as a test to determine if two individuals are related through the 
specified property; when used in the head of a rule, it asserts that they are. Using the 
domains and ranges of the specified properties of these atoms, the possible class 
membership of the argument individuals can automatically be inferred. For example, 
the domain of the object property specified in an object property atom can be used to 
construct the possible types of the subject argument individuals. The range can be 
used in a similar way for the object argument. Again, these types can be expanded 
using sub class and equivalent class axioms specified in the OWL ontology to 
produce a comprehensive list of all the possible types of the argument individuals. 

Our method thus scans the class and object property atoms of all rules in a rule 
base and builds a table to record the types of all argument individuals that can be 
inferred from their use in class and object property atoms. We then use this table to 
check on dependencies between rules by tracking the common use of these types. 

 

Fig. 1. A dependency graph showing the dependencies among five rules. This graph shows rule 
C depending on rule A and B, with rule E depending on rules C and D. 
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4.2   Generating a Rule Dependency Graph 

After these dependencies are identified, a dependency graph is constructed. In this 
graph, each rule is represented as a node and edges represent dependencies between 
them. A dependency between one rule and another indicates that the rule can be 
triggered by the other rule in the inference process. Figure 1 shows an example 
dependency graph for the rules presented earlier. We build an adjacency matrix to 
save the specification and structure of this dependency graph. In addition to rule 
connectivity, the types of the dependencies between rules are saved and are encoded 
as the type of each edge. The method can thus discriminate between connections that 
are based on classes or object properties. The dependency graph is also checked for 
potential cycles using Floyd’s cycle detection algorithm [10]. The presence of these 
cycles may indicate logical flaws in a rule base that can cause indefinite inference. If a 
cycle exists in the dependency graph, the method highlights it and returns the graph to 
the user for revision. The further dependency analysis in our method relies on the 
assumption that there are no cycles. 

4.3   Generating Rule Layers from the Dependency Graph 

Once a dependency graph is built, it can be used for further rule base analysis. As a 
first step, our method uses the dependency graph to group rules into layers based on 
the strength of their dependencies. This clustering process produces a multi-layered 
representation of a rule base and attempts to automatically detect the logical layers of 
the rules that it contains.  

To perform this analysis, the rules are first ordered into a sequence where each rule 
is before all of its dependent rules. In a directed acyclic graph there may be many 
possible orderings that satisfy this property. Since the graph has already been checked 
to ensure that it does not contains cycles, such a reordering is always possible. Our 
method uses a topological sort algorithm to produce such an ordering for rules. This 
algorithm [11] is as follows: 

 

L ← Empty list that will contain the sorted nodes 
S ← Set of all nodes 
function visit(node n)  
  if n has not been visited yet then 
    mark n as visited 
    for each node m with an edge from n to m do 
      visit(m)  
    add n to L  

for each node n in S do 
  visit(n) 

 

After sorting the rules topologically, the method then attempts to group the rules into 
layers based on their dependencies. To form these layers we use a greedy algorithm 
that guarantees the minimum number of layers. The algorithm is as follows:  
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L ← List of topologically sorted nodes 
Layers ← Empty list of nodes in each layer 
for each node n in L do  
  P is the list of n’s parents 
  if P is empty then 
    add n to Layers(0) 
  else 
    maxLayer ← The largest layer number of nodes in P 
    add n to Layers(maxLayer+1) 

 

This algorithm thus assigns each rule to a layer, producing an overall 
representation of the layers of rules in a rule base.  

4.4   Clustering Rules with Similar Dependencies  

As a final step after breaking the rules into dependency layers, the method further 
clusters the rules within each layer into subgroups of similar rules based on the 
strength of their dependencies. This clustering can give the user a better 
understanding of rule dependencies within each layer. This clustering is performed 
using the semantic distance between pairs of rules. This semantic distance is based on 
their strength of their dependencies. To compute the semantic distance between rules 
the methods first builds the sets of most closely related rules for each rule in a rule 
base. This set is termed the relevant rules and is defined as the union of parent rules, 
which directly depend on that rule, and the set of child rules, which are directly 
dependent on the rule. So in a dependency graph for a rule a, we have: 

 

Using the relevant sets for two rules a and b, the distance between them can be 
computed using the formula: 

 

This number can be used as a normalized representation of the distance between two 
rules in a single dependency layer and provides a distance measure to capture their 
similarity. It varies from zero for rules with identical dependencies to one for rules 
where their relevant rules do not have anything in common. Since rules in a single 
dependency layer do not depend on each other directly, this approach effectively 
provides an indirect approximation of their similarity based on their relationship to 
rules in other layers. 

Once the distance measure for rules in each layer is computed, the rules can then 
be clustered. We use a hierarchical clustering method for this task. Hierarchical 
clustering provides a simple and intuitive way to cluster the rules with similar 
dependencies. It involves building a hierarchical tree to represent varying levels of 
clustering of rules in a layer. In this work, we apply a single-linkage hierarchical 
clustering algorithm to cluster the rules [12]. The single-linkage algorithm starts with 
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an individual cluster for each rule in the layer and represents them as the leaves of a 
tree. It then iterates, and at each iteration merges the two closest clusters together. In 
our method, the distance between two clusters is calculated from the distance between 
the nearest neighbors from both clusters. If no stopping criteria are specified, 
hierarchical clustering continues merging clusters until a single cluster is formed 
(Figure 2).  

In order to obtain clusters that meaningfully represent clusters of related rules in a 
layer, a critical decision is to find a stopping criterion that represents a suitable point 
to stop merging. In general, there is no universal answer to this question. In many 
cases, users and experts test different options and choose the best option for their 
particular use case. In our approach, for example, users can control the cluster 
formation by setting an upper limit for the distance between two clusters that can be 
merged. 

 

Fig. 2. Illustration of how rules in a layer are hierarchically clustered using stopping criteria to 
vary the clustering level. Hierarchical clustering starts with each rule in a single cluster and 
builds a cluster hierarchy by merging the nearest neighbors. The x axis is the stopping criteria 
and represents a normalized range of the upper limits for the distance of two clusters that can be 
merged. The dashed line indicates an arbitrary point where the algorithm stops merging 
clusters. 

We provide two heuristic criteria to automatically decide when to terminate the 
clustering process. The first criterion, which is very common in hierarchical clustering 
analysis, attempts to find the most stable clustering. The most stable clustering is 
generally defined as the set of clusters that remains unchanged for the largest range of 
the stopping criteria. To find such a clustering, we range the maximum merging limit 
from zero, the smallest possible value, to one, the largest, and find the largest range 
over which there is no change in the set of associated clusters. We return this set as a 
candidate clustering for the rules in that layer. 
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The second stopping criteria attempts to ensure that rules clustered at a particular 
iteration of the clustering process are significantly related and that their similarity is 
more than that of two unrelated rules. To guarantee this property, the method 
computes the median distances for each pair of rules in a layer and uses this number 
as the maximum distance for which two clusters are to be merged. This process 
ensures that each two merged clusters are closer than at least half of the rules in the 
rule base. 

Both of these criteria are heuristic suggestions for the challenging problem of 
automatically finding the stopping criterion in hierarchical clustering. We believe that 
these criteria give users a sensible estimate of a reasonable clustering for rule base 
layers. For further analysis, the user can be specify the stopping criteria for merging 
rule clusters is each layer, so users can experiment and choose between different 
scenarios. 

4.5   Rule Base Visualization  

We use a variety of visualization strategies to present the results of these analyses to 
the user. A basic rule graph visualization is first provided, with each node in a graph 
representing a rule and dependencies between them indicated by edges. This graph 
can then be visually separated into the layers determined by the method. In addition to 
showing the inferred layers, the visualization approach also generates layouts that 
show rule clusters within layers. We used the JUNG visualization framework [13] to 
automatically generate a variety of layouts. Five automated layout generation 
algorithms are supported, each of which supports a particular style of layout strategy. 
Depending on the characteristics of the underlying rule base, a particular layout may 
be more appropriate. In addition, a search facility is provided to allow users to 
visually highlight particular rules matching user-supplied terms.  

5   Results 

To evaluate the usefulness and efficacy of our techniques, we applied our method to 
two publicly available OWL ontologies containing SWRL rules bases. Each of these 
ontologies was developed as part of a medical application and was designed by a 
knowledge engineer or a domain expert who was not one of the authors. 

The first rule base was created to specify medical treatment rules for patients with 
hypertension, or elevated blood pressure. These rules detected temporal patterns 
where patients were not treated according to recommended guideline plans for a 
particular institution. The automated identification of such patterns can lead to 
interventions to improve the quality of care. The rule base was defined using a patient 
management ontology that consisted of a disease management ontology, a patient data 
ontology, and a plan violation taxonomy [14]. Instances in the ontology were 
populated from an electronic medical record. The developers of the ontology-based 
application wrote nineteen SWRL rules to represent a set of auditing rules of clinical 
practice. The ontology and rule base are available online [15]. 

Figure 3 shows sixteen rules from this rule base. The isolated rules in the rule base, 
which were not connected to any other rules, are not considered in this figure. As is 
shown, two dependency layers were detected in this rule base. An examination of the 
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rule base revealed that the rules in the first layer generate basic standalone inferences 
about patients (e.g., a diagnosis of diabetes); rules in the second layer use these basic 
inferences to determine if patients meet more complex criteria. Furthermore, our 
hierarchical clustering method detected two clusters in the first layer and five clusters 
in the second layer by using the median stopping criteria. The five rules in the first 
cluster were examined and were discovered to relate to basic medical diagnosis; the 
two rules in the second cluster use more complex temporal criteria to determine if 
patients were prescribed anti-hypertensive drugs during particular intervals. One 
cluster of six rules was detected in the second layer, again using the median stopping 
criteria. The remaining four rules in this layer did not get assigned to a cluster. An 
examination of the six clustered rules revealed that four of the six concern blood 
pressure measurements; none of the non clustered rules does. 

 

Fig. 3. Screen shot of the Axiomé plug-in showing its visualization of the dependency layers 
for rules from a medical treatment rule base. In each layer, rules in the same clusters are 
indicated by gray lines surrounding them. 

The second rule base used in the evaluation is contained in an ontology that encodes 
family relationships [16]. This rule base is composed of 146 rules that define possible 
relations between people in a family. The ontology and rule base are available online at 
the National Center for Biomedical Ontology BioPortal [17]. Figure 4 shows a subset 
of 146 rules in the family history rule base. As is shown, our method organized 146  
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Fig. 4. Screen shot of the Axiomé plug-in showing part of its visualization of the dependency 
layers for rules from a family history rule base 
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rules in the rule base in three dependency layers. An examination of the rule base 
revealed that rules in the first layer define very simple relationships (e.g., has sister); 
the rules in the second layer use these basic relationships to infer more complex ones 
(e.g., maternal aunt); the final layer uses a combination of inferences from the second 
layer to generate even more complex deductions (e.g., paternal paternal grand uncle). 
An examination of rule name prefixes also revealed the different intentions of the 
authors, and are reflected in layer assignment: all definition rules in the first layer are 
prefixed by “def”, whereas nearly all rules in the second and third inference layers use 
the “infer” prefix exclusively. We also clustered the rules in each layer using our 
hierarchical clustering method with the stability stopping criteria. Very few clusters 
with multiple rules were detected. A detailed examination of the rule base revealed that 
each rule aims to model a fairly distinct individual definition and that few meaningful 
clusters could be detected manually. 

6   Discussion 

We have developed a novel method that performs a dependency analysis of a SWRL 
rule base and uses the results of this analysis to generate a summary of the various 
logical layers it contains. The method then uses clustering strategies to automatically 
group closely related rules within each layer to further partition the rule base into 
logical subcomponents. Using the results of these analyses we then use a variety of 
visualization strategies to conveniently display rule base structure. The primary goal 
is to help users to quickly explore large unfamiliar rule bases by summarizing their 
logical structure. Users can rapidly explore a rule base, summarize its structure, and 
analyze dependencies between rules and groups of rules, thus supporting rapid 
comprehension. 

This approach also supports rule base authors in developing rule bases. New rules 
can be automatically assigned to a logical layer and then clustered with related rules 
in that layer. The dependencies and interactions between this new rule and existing 
rules can thus be quickly identified. The method can also prove useful in detecting 
inconsistencies, unexpected dependencies, and redundancies in rule bases. It can also 
assist in identifying repeated logical patterns that may benefit from the development 
of more abstract high level rules.  

The method leverages the strong formal relationship between SWRL and the OWL 
ontology language to incorporate not just direct ontology term usage within SWRL 
rules when performing analysis but to also consider the underlying OWL semantics of 
those terms. This ontology-based analysis supports the detection of logical 
relationships between rules, far richer than a simple term-based analysis would allow. 
It also allows semantic similarities between rules to be identified with greater 
precision, thus allowing related rules to be automatically grouped. The method builds 
on our earlier work that used term usage and a syntactic analysis of rules to identify 
relatedness between rules.  

We are currently developing additional graphical techniques that will enhance the 
display of the logical dependencies between layers and clusters of rules.  We will be 
evaluating further the usefulness of our visualization method with domain experts 
who are developing a rule base or inspecting an unfamiliar one.  We believe that the 
dependency analysis we have undertaken can also help user to understand how results 
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were derived when the SWRL rules were executed.  In future work, we are planning 
to create methods to support explanation of results based on the visualization 
techniques we have presented here. 
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Abstract. This paper proposes the GUHA AR Model, an XML Schema-
based formalism for representing the setting and results of association
rule (AR) mining tasks. In contrast to the item-based representation of
the PMML 4.0 AssociationModel, the proposed expresses the association
rule as a couple of general boolean attributes related by condition on one
or more arbitrary interest measures. This makes the GUHA AR Model
suitable also for other than apriori-based AR mining algorithms, such as
those mining for disjunctive or negative ARs. In addition, there are prac-
tically important research results on special logical calculi formulas which
correspond to such association rules. The GUHA AR Model is intended
as a replacement of the PMML AssociationModel. It is tightly linked to
the Background Knowledge Exchange Format (BKEF), an XML schema
proposed for representation of data-mining related domain knowledge,
and to the AR Data Mining Ontology ARON.

1 Introduction

In recent years, the advent of service oriented data mining have been decreasing
the costs of advanced analysis for the end user, while semantic technologies
and stronger orientation towards the web have opened up new possibilities for
post-processing and sharing data mining results. At the same time, the pace of
innovations in data mining algorithms is increasing. In this situation, a strong
need arose for a generally accepted and maintained standard for exchange of
mining models, which was filled by the XML-based Predictive Model Markup
Language (PMML) from the DMG consortium. Its latest version 4.0 released in
June 2009 supports twelve types of mining models, including association rules.

Although PMML is a widely accepted standard, its AssociationModel (further
AR Model) as of its current version 4.0 lacks support for new types of association
rule mining algorithms stifling their deployment into industry. For example, the
PMML AR Model does not standardize representation of disjunctive association
rules (e.g. [13,14]), global constraints as needed e.g. in local mining of association
rules [15], new interest measures [23] and constraints involving multiple arbitrary
interest measures as e.g. used in [4].

In this paper, we suggest for discussion in the data mining community a new
format for representation of association models that covers features mentioned

M. Dean et al. (Eds.): RuleML 2010, LNCS 6403, pp. 273–288, 2010.
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above, among others. Our proposal is based on the GUHA ASSOC data mining
procedure, therefore we call it GUHA Association Rule (AR) Model.

This paper is organized as follows. Section 2 discusses the demands on model
representation format resulting from new AR mining algorithms. Section 3 in-
troduces the GUHA ASSOC procedure. The GUHA AR Schema is presented
in detail in Section 4. Section 5 discusses the compatibility and interoperability
issues. The conclusions give account of deployments of the GUHA AR Model.

2 Related Research

The term association rule was coined by R. Agrawal in connection with his
proposal of the apriori algorithm in the early 90s. The idea of association rules
was later generalized to any data in the tabular, field-value form. An association
rule is understood as the relation between conjunctions of attribute-value pairs
(categories) called antecedent and consequent. There are two basic characteristics
of an association rule – support and confidence.

We must emphasize that the concept of association rule in the form of a
relation between two conjunctions of predicates was introduced and studied al-
ready in 1960’ within the framework of the development of the GUHA method
of mechanized hypothesis formation. A milestone in the GUHA method develop-
ment was the monograph [6], which introduces the general theory of mechanized
hypothesis formation based on mathematical logic and statistics. Association
rules defined and studied in this book are relations between two general boolean
attributes derived from the columns of an analyzed data matrix. Various types
of relations of boolean attributes are used including relations corresponding to
statistical hypothesis tests. However, these relations between boolean attributes
are not called association rules even if the GUHA procedure for mining them is
called ASSOC. The concept of association rules has been used for patterns mined
by the GUHA ASSOC procedure since the term association rule was introduced
in the 90s.

Multiple association rule mining algorithms were proposed since the advent of
apriori. While many papers focus on performance enhancements (e.g. all cited in
survey [8]), the notion of association rule has undergone evolution, too. Accord-
ing to the on-line annotated bibliography on association rule mining1, the main
research efforts are a) mining association rules (using support and confidence),
b) alternative interest measures, c) mining without support, d) constraint-based
mining, e) mining sequential, generalized, quantitative or causal rules, f) concise
representations of frequent itemsets, g) using association rules to build classifiers,
h) evolution of association rules over time, i) theoretic considerations, j) sampling
and evaluation and k) efficient implementation of rule mining algorithms.

Out of these research efforts (b), (c), (d), (f), (h) affect the very notion of an
association rule and thus put new demands on formats for representation of AR
models. To the best of the authors knowledge, the GUHA ASSOC procedure is
1 http://michael.hahsler.net/research/bib/association_rules/, update 14 Oct

2009, accessed June 7, 2010

http://michael.hahsler.net/research/bib/association_rules/
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the only single association rule mining algorithm with significant contributions
in all of these research areas: paper [18] introduces classes of association rules by
studying the properties of the interest measure related to GUHA ASSOC (b),
support is treated as an interest measure and can be left out (c), GUHA ASSOC
offers very fine ways of constraining the generation of basic and derived boolean
attributes separately for antecedent, consequent and condition thus giving the
possibility to significantly limit the search space (d), there is a research into
induction of prime association rules [19], that is rules which do not immediately
follow from another rule (f), there are theoretical results relating to the general
GUHA framework [6] as well more recent results focused directly on theory of
association rules [16] (i).

Some of the algorithms that fall into research efforts (e) and (h) are only
inspired by association rules but cannot be considered as AR mining algorithms,
as either their input data or their output is fundamentally different, the most
marked example are sequential association rules. On the other hand, there are
disjunctive association rules [13,14] and negative association rules [1] that we
consider as association rules.

Representation of setting and results of GUHA ASSOC puts high require-
ments on the exchange format. In a brief survey of possible XML-based formats
[12], PMML in its version 2.0 was deemed inappropriate due to lack of expressiv-
ity. It was recommended to create either an extension of the RuleML language
or an RDF-based format. The semantic web (Topic Map, not RDF) represen-
tation was eventually proposed in [9]. There was no marked improvement in
the PMML’s AssociationModel from version 2.0 to the current version 4.0 apart
from the added support for transactional input (see Subsection 5.1).

The most closely related work to the GUHA AR PMML model is an attempt
to use first order logic to extend the PMML 1.1 AssociationModel [21]. While
this proposal solves some of the PMML shortcomings that persist in PMML
4.0, particularly the inability to include negated literals and items from multi-
ple fields, the proposal does not cover disjunctive association rules, alternative
interest measures and mining constraints. Additionally, the proposed syntax is
rather bulky. For example, to express item ”female” coming from field gender,
the approach [21] uses the following syntax:

<Term id=”3” type=” var i ab l e ” symbol=” sex”/>
<Term id=”4” type=” constant” symbol=” female ”/>
<L i t e r a l id=”1” pred i ca t e=” equal ” numberOfParams=”2”>

<TermRef termRef=”3” p os i t i o n=”0”/>
<TermRef termRef=”4” p os i t i o n=”1”/>

</ L i t e r a l>

In GUHA AR Model, this is expressed in a more concise form
<BBA id=”3”>

<Fie ldRef>gender</ Fie ldRef>
<CatRef>female</CatRef>

</BBA>

The formalism [21] is more general in the way that the Term can be also a func-
tion. This advantage is however mitigated by the fact that functions including
user-defined were introduced into PMML as of its version 3.0. PMML functions
are typically applied in the Transformation Dictionary, which is independent of
the mining model.
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3 GUHA Procedure ASSOC

GUHA procedure ASSOC mines for association rules ϕ ≈ ψ/χ and for con-
ditional association rules ϕ ≈ ψ/χ where ϕ, ψ and χ are boolean attributes
derived from columns of an input data matrix and symbol ≈ is a 4ft-quantifier.
The 4ft-quantifier corresponds to a condition concerning contingency table of ϕ
and ψ. The boolean attribute ϕ is called antecedent, ψ is called succedent and χ
is called condition.

An example of an input data matrix is data matrix M in the left part of
Figure 1. Informally speaking, columns of data matrix correspond to attributes

data matrix Boolean attributes
M A1 A2 . . . AK A1(1) A2(2, 9) A1(1) ∧ AK(2, 6)
o1 1 4 . . . 6 1 0 1
o2 3 9 . . . 7 0 1 0
...

...
...

. . .
...

...
...

...
on−1 4 2 . . . 2 0 1 0
on 1 6 . . . 1 1 0 0

M ψ ¬ψ

ϕ a b

¬ϕ c d

Data matrix and examples of boolean attributes 4ft(ϕ, ψ,M)

Fig. 1. Data matrix, Boolean attributes and 4ft-table 4ft(ϕ, ψ,M)

and rows correspond to observed objects, e.g. to patients. There are attributes
A1, A2, . . . , AK in data matrix M. The possible values of attributes are called
categories.

Basic boolean attributes are created first. The Basic Boolean Attribute is an
expression A(α) where α ⊂ {a1, . . . at} and {a1, . . . at} is the set of all categories
of the attribute A. The set α is called a coefficient of the basic boolean attribute
A(α). Basic boolean attribute A(α) is true in row o of M if it is A(o) ∈ α where
A(o) is the value of the attribute A in row o. Derived boolean attributes ϕ and
ψ are created from basic boolean attributes using connectives ∨, ∧ and ¬ in
the usual way. Sometimes, the term literal is used to refer to the basic boolean
attribute A(a) or its negation ¬A(a) [19].

Expression
A1(1) ∧A2(2, 9) ≈ AK(2, 6)

is an example of an association rule.
The association rule ϕ ≈ ψ can be true or false in given data matrix M. The

conditional association rule ϕ ≈ ψ/χ is verified against data matrixM/χ, which
consists of all rows of data matrix M satisfying χ.

The rule ϕ ≈ ψ is verified on the basis of the four-fold table 4ft(ϕ, ψ, M) of
ϕ and ψ in M, see Figure 1. Here a is the number of the objects (i.e. the rows
of M) satisfying both ϕ and ψ, b is the number of the objects satisfying ϕ and
not satisfying ψ, etc. We write 4ft(ϕ, ψ,M) = 〈a, b, c, d〉.
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The rule ϕ ≈ ψ is true in the data matrix M if the condition associated with
≈ is satisfied in the contingency table 4ft(ϕ, ψ, M), otherwise ϕ ≈ ψ is false in
the data matrix M(/χ). The 4ft-quantifier ≈ is defined by a list of partial 4ft-
quantifiers : 〈≈1,≈2, . . . ,≈E〉, where ≈1,≈2, . . . ,≈E are partial 4ft-quantifiers.
The rule is true if the conditions corresponding to all its partial 4ft-quantifiers
≈1 . . . ≈E are satisfied in the contingency table 〈a, b, c, d〉.

There are many partial 4ft-quantifiers defined and studied in relation to
GUHA ASSOC. Several examples are shown in Tab. 1, we sometimes use
r = a + b, k = a + c and n = a + b + c + d.

Table 1. Examples of partial 4ft-quantifiers

Partial 4ft quantifier
Name Symbol ≈ (a, b, c, d) = 1 iff
Founded implication ⇒p,B

a
a+b
≥ p ∧ a ≥ B

Lower critical implication ⇒!
p,α,B

∑r
i=a

(
r
i

)i(1− p)r−i ≤ α ∧ a ≥ B

Founded equivalence ≡p,B
a+d

a+b+c+d
≥ p ∧ a ≥ B

Fisher ≈α,B

∑min(r,k)
i=a

(k
i)(n−k

r−i)
(r

n) ≤ α ∧ a ≥ B

χ2 quantifier ∼2
α,B

(ad−bc)2

rkls
n ≥ χ2

α ∧ a ≥ B

Above average dependence ∼+
q,B

a
a+b
≥ (1 + q) a+c

a+b+c+d
∧ a ≥ B

Support ↑S a
a+b+c+d

GUHA ASSOC has several implementations [5,18,13], and many applications,
see e.g. [2].

4 GUHA AR Model

This section introduces the XML Schema used to formalize the GUHA Asso-
ciation Rule Model version 0.1 (GUHA AR Model). The GUHA AR Model is
designed as an alternative to the PMML AR Model. As such, for data input and
preprocessing it refers to the corresponding parts of the PMML specification.

The core focus of the GUHA AR Model is to describe the set of discovered
rules and the setting of the association rule mining algorithm that produced
them. The syntactical patterns used in these descriptions come out of GUHA
ASSOC procedure introduced in Section 3.

Coming out of the GUHA method brings with it not only a legacy of more than
forty years of research but also of terminology, which has in some cases diverged
from the mainstream. When a better known synonym to a GUHA ASSOC term
exists, the GUHA AR Model opts for it. Table 2 presents a dictionary of most
important differences between PMML 4.0, GUHA AR PMML 0.1 Model and
GUHA ASSOC. Comments on the changes placed throughout the rest of this
paper are typeset in italics.



278 T. Kliegr and J. Rauch

Table 2. Terminology dictionary

PMML AR Model GUHA ASSOC GUHA AR Model
item basic boolean attribute basic boolean attribute
item/@value category category
itemset derived boolean attribute derived boolean attribute
consequent succedent consequent
measure of interestingness partial 4ft quantifier interest measure
– 4ft quantifier –
data- derived-field attribute (*-)field

Table 3 presents an overview of differences in model-specific (only in the
PMML AR Model) and model-independent (shared between several PMML mod-
els) elements between the PMML AR Model and the GUHA AR Model.

Table 3. Model-level correspondence between PMML AR Model and GUHA AR Model

Model Specific Model Independent
PMML AR Model GUHA AR Model PMML AR Model GUHA AR Model
Model Attributes TaskSettings Output ← (change in semantics)
Items Basic BAs Mining Schema ← (no change)
Itemsets Derived BAs ModelStats ← (no change)
AssociationRules ← (redefined) LocalTransformations ← (no change)

The remainder of this section is organized as follows. Subsection 4.1 introduces
representation of boolean attributes. Subsection 4.2 shows how are boolean at-
tributes used to compose association rules. Subsection 4.3 describes the setting
of the AR mining task.

This section uses a running example to illustrate serialization of a concrete
association rule mining model according to the GUHA AR Model. The model
describes a mining task on a fictious dataset, where the target is to discover
rules predicting loan status based on loan duration, sex and district of bank
customers. The running example covers a complete GUHA AR Model, only the
fragments are listed in a different order, which is marked by line numbers. The
data and their preprocessing steps could be for the sake of brevity omitted as
their description would be done within standard PMML DataDictionary and
TransformationDictionary elements.

4.1 Boolean Attributes

Boolean Attribute (BA) in the GUHA AR Model is defined as a conjunction or
disjunction of one or more BAs or a negation of one BA or as a Basic Boolean
Attribute. Basic Boolean Attribute (BBA) has the form of A(c1, . . ., cn) or
shortly A(σ). The coefficient σ is a subset of possible categories of field A. A
BA, which is not a BBA, is Derived Boolean Attribute (DBA).
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The terms basic boolean attribute and derived boolean attribute substitute the
terms item and itemset from PMML. The definition of both BA, BBA and DBA
in the GUHA AR Model is identical to the GUHA ASSOC definition presented
in Section 3 apart from the fact that the term “attribute” was replaced with the
term “field” with category in the BBA definition.

Since both BBAs and DBAs can reoccur in multiple association rules, it is
useful to create a “dictionary” of BAs analogically to the “dictionary” of items
and itemsets in PMML 4.0. That is, the sequences of Item and Itemset elements
in PMML AR Model are replaced by sequences of BasicBooleanAttribute and
DerivedBooleanAttribute elements respectively.

In PMML association rules are composed of itemsets and items, in the GUHA
AR Model they are composed of boolean attributes.

Running Example 1: basic and derived boolean attributes used in discovered rules

<Assoc ia t i onRule s>
<BBA id=”1”>

<Text>durat ion (2 y+)</Text>
60 <Fie ldRef>durat ion</ Fie ldRef>

<CatRef>2y+</CatRef>
</BBA>
<BBA id=”2”>

<Text>s tatusAggregated ( good ,medium)
65 </Text>

<Fie ldRef>s tatusAgreggated</ Fie ldRef
>

<CatRef>good</CatRef>
<CatRef>medium</CatRef>

</BBA>
70 <BBA id=”3” l i t e r a l=” f a l s e ”>

<Text>d i s t r i c t ( Prague )</Text>
<Fie ldRef>d i s t r i c t</ Fie ldRef>
<CatRef>Prague</CatRef>

</BBA>

75 <BBA id=”4”>
<Text>sex ( female )</Text>
<Fie ldRef>sex</ Fie ldRef>
<CatRef>female</CatRef>

</BBA>
80 <BBA id=”5”>

<Text>durat ion (1y)</Text>
<Fie ldRef>durat ion</ Fie ldRef>
<CatRef>1y</CatRef>

</BBA>
85 <DBA id=”6” connec t ive=”Negation”

l i t e r a l=” true ”>
<BARef>3</BARef>

</DBA>
<DBA id=”7” connec t ive=”Conjunction”>

90 <BARef>1</BARef>
<BARef>6</BARef>

</DBA>

Both BBA and DBA share the optional element Text, which denotes a textual,
user-friendly representation of the boolean attribute, and id, a unique BA iden-
tifier. Element Text is used in several other elements. BBAs contain in FieldRef
the name of a field and in the source attribute optionally the dictionary it comes
from2. One or more of the CatRef elements refer by name to categories contained
in the coefficient of the BBA. The value of DBA’s Connective attribute is ei-
ther Conjunction (default), Disjunction or Negation. Boolean attributes are
referenced from a DBA by their id with the BARef element.

The literal attribute is used to distinguish if a boolean attribute is a literal
- a basic boolean attribute or its negation. Its value is assigned as follows:

1. true on BBA if it is not contained in a DBA that has negation as connective,
otherwise false.

2. true on DBA if it contains a BBA and has negation as connective, otherwise
false.

2 Although technically PMML asserts that names of DataFields and DerivedFields are
unique, this is not verified by the PMML schema. In addition, it is impractical since
data mining software does not usually force the user to name derived field differently
than its source data field.
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In the common case, when negations are not used, the default values of the literal
attribute do not have to be explicitly changed. BBAs are by default literals and
DBAs are nonliterals.

4.2 GUHA Association Rule

A (conditional) association rule is represented as ϕ 〈≈1 . . . ,≈E〉 ψ(/χ). Here,
rule antecedent ϕ, consequent ψ and the optional condition χ are boolean at-
tributes and 〈≈1, . . . ,≈E〉 are interest measure thresholds.

The term succedent used in GUHA ASSOC is replaced by the term consequent,
which is widely adopted in the association rule community.

In the GUHA XML Schema, this structure is encoded in the following way:

Running Example 2: two discovered association rules
<Assoc ia t i onRule antecedent=”7” consequent=”2” condi t i on=”4”>

<Text>durat ion (2 y+) ∧ ¬ d i s t r i c t ( Prague ) => s tatusAggregated ( good ,medium) / sex (
female )</Text>

95 <IMValue name=”Support ”>0.55282316777220514479</IMValue>
<IMValue name=”Average D i f f e r e nce ” imSettingRef=”2”>0.1414</IMValue>
<IMValue name=”Kulczynski ” imSettingRef=”3”>0.8138</IMValue>
<IMValue name=”Confidence ” imSettingRef=”1”>0.66</IMValue>
<FourFtTable a=”3586” b=”874” c=”768” d=”953”/>

100 </Assoc ia t i onRule>
<Assoc ia t i onRule antecedent=”5” consequent=”2”>

<Text>durat ion (1 y) => s tatusAggregated ( good , medium)</Text>
<IMValue name=”Support ”>0.1502993043</IMValue>
<IMValue name=”Average D i f f e r e nce ” imSettingRef=”2”>1.2978</IMValue>

105 <IMValue name=”Kulczynski ” imSettingRef=”3”>0.6128</IMValue>
<IMValue name=”Confidence ” imSettingRef=”1”>0.57</IMValue>
<FourFtTable a=”929” b=”252” c=”1187” d=”3813”/>

</Assoc ia t i onRule>
</Assoc ia t i onRules>

Here, antecedent, consequent and condition attributes contain ids of
boolean attributes that they refer to.The interest measures associated with the
rule are put into elements to foster addition of new interest measures. This is
in contrast to PMML AR Model that puts both pieces of information into at-
tributes, recognizing only support, confidence and lift interest measures.

The IMValue element has a name attribute with the name of the interest
measure, its value is stored as a value of the element.

When working with multiple interest measures, it is useful to make a distinc-
tion between interest measures that are associated with threshold constraints
(e.g. support related to the minimum support setting) and additional informa-
tive interest measures that do not act as a constraint. In the GUHA AR Model,
this distinction is made by including the optional IMSettingRef attribute, which
points to the setting of the corresponding threshold for the interest measure. Al-
though this explicit link is not theoretically necessary in cases when the name
of the interest measure value equals the name of the corresponding threshold, it
easies the processing of the resulting PMML. In the Running Example 5 Sup-
port is used as an informative interest measure, while the name of the setting
for Average Difference is Above Average Implication.

4.3 Task Setting

The TaskSetting element contains interest measure restrictions and syntac-
tical restrictions, which loosely correspond to the quantifier and syntactical
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restrictions of the GUHA method. Interest measure restrictions contained in
the InterestMeasureSetting element define a set of interest measures with
threshold values. Syntactical restrictions concern the length of the parts of the
association rule, occurrence of particular boolean attributes in them, the way
boolean attributes are derived from the input data and the connectives used
to link boolean attributes into derived boolean attributes. Syntactical restric-
tions are defined in BBA- and DBASettings and Antecedent-, Consequent-,
Condition- and GeneralSetting elements.

The structure of each of the parts of the association rule (AntecedentSetting,
ConsequentSetting and ConditionSetting) is defined through reference to one
of BBASettings or DBASettings listed in the beginning of the TaskSetting.

Running Example 3: definition of the set of relevant derived boolean attributes

<DBASettings>
<DBASetting type=” L i t e r a l ” id=”5”>

<BASettingRef>3</BASettingRef>
<L i t e r a l S i gn>Both</ L i t e r a l S i g n>

25 <Li tera lType>Basic</ Li tera lType>
<Equiva l enceClas s>NULL</

Equiva l enceClas s>
</DBASetting>
. . .

<DBASetting type=”Conjunction” id=”11
”>

30 <BASettingRef>7</BASettingRef>
<BASettingRef>5</BASettingRef>
<MinimalLength>2</MinimalLength>
<MaximalLength>2</MaximalLength>

</DBASetting>
35</DBASettings>

<AntecedentSett ing>9</
AntecedentSett ing>

<ConsequentSetting>8</
ConsequentSetting>

<Condi t i onSe tt ing>9</Condi t i onSe tt ing>

First consider the higher level DBASetting. The type=Conjunction, Disjunc-
tion, Negation, Literal attribute asserts that the boolean attribute created ac-
cording to this setting must be either a DBA created with a logical connective
or a literal. For the literal type, there are additional settings. The value of the
LiteralSign element is used to express whether the literal must be positive
(Positive), negative (Negative) or both types are permissible (Both). Note that
positive literals are represented as BBAs although they are generated according
to a DBA setting. The LiteralType has two values: value Basic expresses that
the DBA containing this literal should contain at least one literal marked as
Basic, literal with type Remaining does not have this priority. The optional
EquivalenceClass is used to assign an arbitrary name of the class of equiva-
lence to which the literal belongs. The data mining software should ensure that
in the discovered rule there is maximum one literal present from each class of
equivalence.

The MinimalLength ≤ MaximalLength ≥ 1 attributes specify lower and up-
per limit of the number of boolean attributes referred to by BASettingRef
that must be present in a boolean attribute matching the DBASetting. The
default MinimalLength= 1 means that at least one of the boolean attributes
must be present. If MaximalLength is omitted, the largest possible number is
assumed.The BASettingRef element has also the optional transactional at-
tribute (default value false) that is used to express that the referenced BA is a
BBA defined over transactional input as detailed in Subsection 5.3.
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The id attribute gives the DBA/BBASetting a unique id and the Name element
an optional name3. While the id is for internal use by the XML schema, the
name is important to enhance the readability of the XML file.

Running Example 4: definition of the set of relevant basic boolean attributes

<TaskSetting>
<BBASettings>

<BBASetting id=”3”>
<Name>d i s t r i c t ( Praha )</Name>

5 <Fie ldRef>d i s t r i c t</ Fie ldRef>
<Coe f f i c i e n t>

<Type>One Category</Type>
<Category>Praha</Category>

</ Co e f f i c i e n t>
10 </BBASetting>

<BBASetting id=”4”>
<Name>sex ( subset [1 −1])</Name>
<Fie ldRef>sex</ Fie ldRef>
<Coe f f i c i e n t>

15 <Type>Subset</Type>
<MinimalLength>1</MinimalLength>
<MaximalLength>1</MaximalLength>

</ Co e f f i c i e n t>
</BBASetting>

20</BBASettings>

The DBASetting ultimately decomposes to BBASettings, which sets a
pattern according to which BBAs are created. The FieldRef element
points at a field in PMML DataDictionary, TransformationDictionary or
LocalTransformations.

BBA coefficient uses the umbrella term “category” to refer to a piece of content
of a DataField (Value, Interval) or a DerivedField (DiscretizeBin or a mapped
value in MapValues). While the term “value” would be perhaps more intuitive,
it is not general enough as it is already reserved in PMML for a single value of
an input data field.

The Coefficient defines the type of the coefficient of the BBA. The possible
values for Type are Interval – at least min and at most max adjacent categories,
Cyclic Interval – same as Interval, but the lowest and highest categories are
considered adjacent, Subset – at least min at most max categories in any order,
Right Cut – at least min and at most max highest categories, Left Cut – at least
min and at most max lowest categories, One Category – one fixed category.

The GeneralSetting element contains constraints applying to a union of BAs
from multiple parts of the rule (Antecedent, Consequent or Condition). These
rule parts are identified with references to patterns according to which they are
created.

There are two types of constraints upon this union. The first type of a con-
straint is a limit on the count of boolean attributes contained in the union. The
second type of constraint is an assertion that a set of boolean attributes con-
forming to patterns set by Scope must appear among boolean attributes in the
union.

The length constraint of the General element ports the lengthLimit attribute
of the PMML AR Model to the GUHA AR model, while generalizing it to the
new nested rule structure and the optional presence of condition χ. The second
constraint has neither backing in GUHA ASSOC nor PMML, but is an essential
part of task setting for some algorithms such as [15]. The example does not
include any general constraint.

3 E.g. LISp-Miner data-mining system [20] lets the user to name DBA settings, while
Ferda [13] dataminer generates the names automatically.
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The InterestMeasureSetting element contains a sequence of
InterestMeasure Threshold elements that contain the name of the mea-
sure in the InterestMeasure child element and the threshold in the Threshold
child element. Whether this threshold is interpreted as a minimum or maxi-
mum depends on the value of the CompareType child element. The optional
SignificanceLevel child element is for statistical interest measures, such as
Chi Square of Fisher (refer to Table 1).

Running Example 5: definition of the interest measure thresholds
<In t e r es tMeasu reSe t t i ng>

40 <Interes tMeasureThresho ld id=”1”>
<Int ere s tMeasu re>Support</ Inte res tMeasure>
<Threshold>0 .1</Threshold>
<CompareType>Greater than</CompareType>

</ Interes tMeasureThreshold>
45 <Interes tMeasureThresho ld id=”2”>

<Int ere s tMeasu re>Above Average Imp l i ca t ion</ Inte re stMeasure>
<Threshold>0 .02</Threshold>
<CompareType>Greater than</CompareType>

</ Interes tMeasureThreshold>
50 <Interes tMeasureThresho ld id=”3”>

<Formula name=”Kulczynski ”>a/2 ∗ (1/( a+c ) + 1/( a+b) )</Formula>
<Threshold>0 .1</Threshold>
<CompareType>Greater than</CompareType>

</ Interes tMeasureThreshold>
55 </ In te re s tMeasureSe tt ing>

</TaskSetting>

If the interest measure is not listed in the GUHA AR XML Schema as is
the case with the Kulczynski [22] measure in the Running Example 5, it can
still be used provided that a formula used to compute its value, which is to be
compared with the threshold, is placed into the Formula element. The formula
must be expressed in terms of the frequencies a, b, c, d, r, k, n of the 4ft-table
(refer to Table 1). GUHA theory defines several classes of quantifiers, depending
on their properties [16]. If interest measures used in the task can be mapped to a
quantifier, theoretical results relating to the quantifier’s class, such as deduction
rules [16], can be applied. For example, confidence and support can be mapped
to the Founded Implication Quantifier in Table 1, which falls into a well-studied
class of implication quantifiers.

5 AR Model Compatibility and Interoperability

This section covers compatibility with PMML 4.0 and the interoperability of
systems with incomplete support of the GUHA AR PMML.

The GUHA AR PMML Model is designed as a new PMML 4.0 Model in-
tended to be used alongside the rest of the PMML 4.0 specification. Since
PMML 4.0 XML Schema does not allow to define new models, the PMML4.0
+ GUHAARPMML0.1 XML Schema is an extension of the PMML 4.0 XML Schema
with a reference to the GUHA AR model, which itself is placed in a separate file
and namespace4.

The GUHA AR Model is linked with the rest of PMML specification –
particularly with DataDictionary and TransformationDictionary through
4 Changes to PMML are permitted by under the principal condition that a copyright

notice is redistributed along with the modified code. The license is at
http://dmg.org/license.html

http://dmg.org/license.html
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boolean attributes as explained in Subsection 4.1. Differences between the
PMML AR model and the GUHA AR Model what concerns the integration
with MiningSchema and Output are covered in Subsections 5.2 and 5.1.

Since the GUHA AR PMML Model is a superset of PMML 4.0 Model and
both are XML-based specifications, Subsection 5.3 discusses the conditions under
which the PMML 4.0 Association Model can be transformed to GUHA AR
PMML 0.1 model. Subsection 5.4 briefly covers an XML Schema for description
of supported GUHA AR PMML features.

5.1 Mining Schema

In the PMML AR Model, MiningSchema contains usually only two fields, the
field containing the items and the field which is used to describe which items
belong to which transaction [3] – we call this transactional data input. The latter
field is distinguished with the value group of the attribute usageType, which was
introduced in PMML 2.1. This poses a severe limitation both on the input data
(all items need to come from one field5) and on the task setting as there is no
means of expressing items allowed in the antecedent and in the consequent.

Although PMML’s MiningSchema is reused unaltered in the GUHA AR
Model, it will typically refer to an arbitrary number of fields, although transac-
tional input can still be handled as shown in Subsection 5.3.

5.2 Output Fields

The PMML Output element defines the list of OutputField elements to be
computed by the model. In an AR model, its main purpose is to define when
a rule is selected given an input transaction (object in GUHA terminology).
There are three simple algorithms for selecting the rule given input transaction:
recommendation, exclusiveRecommendation and ruleAssociation. All are defined
through the algebra of sets [3].

The definitions of these algorithms need to be updated to consider the new
condition χ part of rule and the fact that GUHA AR Model rules are based on
formulas of predicate calculus, not the algebra of sets:

– input transaction can match a rule only if it satisfies its condition, if present,
– the correspondence of a rule part (boolean attribute) α with object o is

determined based on verification of formulas of propositional calculus.

Paper [16] defines how to create a propositional formula π(φ) associated with
boolean attribute φ6. With this propositionalization, we suggest to define the
output functions as follows:
5 Technically, the input data can consist of binarized fields - one field per item, the only

possibility in PMML 2.0 and older AssociationModels. However, this is impractical
due to sparsity of the input data dictionary.

6 Essentially, π(φ) is created from φ such that each BBA A(ω), ω = h1, . . . , hk is
replaced by propositional disjunction of π(A(ω)) = A(h1),∨ . . .∨, A(hk).
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– recommendation: rule is selected if the antecedent (and condition) logically
follow from the input object, i.e. π(o) ⇒ π(ϕ) ∧ π(χ) is a tautology.

– exclusiveRecommendation: rule is selected if π(o) ⇒ π(ϕ) ∧ π(χ) is a tau-
tology and π(o) ∧ ¬π(ψ) is a contradiction.7

– ruleAssociation: rule is selected if π(o) ⇒ π(ϕ)∧π(ψ)∧π(χ) is a tautology.

5.3 Transformation from PMML 4.0

PMML 4.0 input dataset typically contains multiple entries (rows) per objec-
t/transaction. GUHA ASSOC does not allow an object to have multiple values
in one field, but since this is an important compatibility issue, the GUHA AR
Model addresses it.

The following listing shows a fragment of an official DMG example PMML
3.0 Association model8 converted into the GUHA AR Model. The setting for
this task allows a DBA to connect multiple BBAs generated according to one
BBASetting by setting the transactional attribute on BASettingRef to true.

Comparison Example: a PMML 3.0 file represented in GUHA AR Model

<AssociationModel . . .>
<TaskSetting>
<BBASettings>

<BBASetting id=”1”>
<Fie ldRef>Product</ Fie ldRef>
<Coe f f i c i e n t>

<Type>Subset</Type>
<MinimalLength>1</MinimalLength>
<MaximalLength>1</MaximalLength>

</ Co e f f i c i e n t>
</BBASetting>
</BBASettings>
<DBASettings>

<DBASetting type=”Conjunction” id=”2”
>

<BASettingRef t r an s ac t i on a l=” true ”>1
</BASettingRef>

</DBASetting>
</DBASettings>
<AntecedentSett ing>2</

AntecedentSett ing>
<ConsequentSetting>1</

ConsequentSetting>
<In t e r es tMeasu reSe t t ing . . .>
</TaskSetting>
<MiningSchema>

<MiningField name=” card id ” usageType=
”group”/>

<MiningField name=”Product ” usageType
=” a c t i v e ”/>

</MiningSchema>
<Assoc iat i onRule s>
<BBA id=”1”>

<Fie ldRef>Product</ Fie ldRef>
<CatRef>beer</CatRef>

</BBA>
<BBA id=”2”>

<Fie ldRef>Product</ Fie ldRef>
<CatRef>cannedveg</CatRef>

</BBA>
<BBA id=”3” l i t e r a l=” f a l s e ”>

<Fie ldRef>Product</ Fie ldRef>
<CatRef>f rozenmeal</CatRef>

</BBA>
<DBA id=”4”>

<BARef>1</BARef>
<BARef>2</BARef>

</DBA>
<Assoc iat ionRule id=”1” antecedent=”4”

consequent=”3”>
<IMValue name=”Support ”>0.15</IMValue

>
<IMValue name=” L i f t ”>2.71</IMValue>
<IMValue name=”Confidence ”>0.87</

IMValue>
</Assoc iat ionRule> . . .
</ Assoc iat i onRule s></AssociationModel>

The advantage of this proposal is that it does not interfere with the syntax of
boolean attributes, and it is modular – parts of the rule can be enumerated in the
same way as PMML 4.0 items and then used to create DBAs (itemsets). The fact
that each value is listed along with its field name allows to prospectively combine
multiple fields and transactional input. Nevertheless, it is a matter of further work
to determine, whether transactional input can be fully reconciled with observa-
tional calculi and GUHA ASSOC method in particular. Additionally, it should be
noted that this representation increases the size of PMML files, for the example
above this was from 6.2 to 9.2 KB for a complete PMML model with 18 rules.
7 This is one of possible definitions, more detailed discussion is out of the scope of this

paper.
8 http://www.dmg.org/pmml_examples/SHOPPING_ASSOC.xml

http://www.dmg.org/pmml_examples/SHOPPING_ASSOC.xml
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Table 4. High-level example of GUHA AR feature documents for three systems

Feature PMML 4.0 LISp-Miner Ferda
Connective 〈 Conjunction 〉 All All
Coefficient 〈 Subset (minLen 1, maxLen 1) 〉 Yes Yes
Interest measures 〈 Lift, Confidence, Support 〉 〈. . .〉 〈. . .〉
Condition No Yes Yes
Transactional input Yes No No

5.4 Incomplete Support of GUHA AR PMML

Unlike the PMML AR model, which defines only the basic set of features that
all AR mining systems are expected to cover, the level of expressivity offered by
the GUHA AR Model is such that, to the best of the authors’ knowledge, no
existing single data mining software is able to exploit it fully.

At the time when the conservative feature policy of PMML was designed, the
typical scenario was such that the PMML model was produced by a desktop
data mining system and consumed by a scoring system. Since a scoring system
needs to be primarily able to read the set of discovered association rules, its
function is not dependent on its ability to reproduce the data mining task.

With the emerging shift of the execution of data mining algorithms to the
cloud [3] and the related separation of the user interface and the data mining
system, the data mining task can be e.g. set up in a universal web-based com-
ponent that generates PMML based on user input and then sent for execution
to a data mining web service.

In order to facilitate the separation of the setting generation component and
the data mining service (both PMML producers) while maintaining their interop-
erability, it is necessary to determine a common set of features that both systems
support. In order to facilitate this, the GUHA AR PMML is complemented by
the GUHA AR Feature XML Schema. This schema allows an application pro-
cessing GUHA AR PMML to express supported GUHA AR PMML features.
Table 4 presents a high-level example of feature documents for a PMML 4.0
producer, the LISp-Miner system [20] (lispminer.vse.cz) and Ferda dataminer
[13] (ferda.sourceforge.net).

If the GUHA AR document for both communicating applications is available,
it can be used to automatically deduce the set of common features supported
by both systems and consequently generate a custom PMML4.0+GUHAAR0.1XML
Schema.

6 Conclusion

The GUHA AR Model XML Schema has the ambition to stir the discussion
on updating the data mining standards, particularly PMML. This is vital to
allow interoperability between new association rule mining algorithms and Web
3.0 applications. On the running example we have shown how can the GUHA
AR Model be used to represent an AR mininig task involving a combination

lispminer.vse.cz
ferda.sourceforge.net
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of confidence with the Above Average interest measure and the experimental
Kulczynski interest measure, negative literals, disjunctions in coefficients and
condition. None of these features could be represented in a PMML 4.0 document
without proprietary extensions.

The proposed GUHA AR Model is meant to be interoperable with PMML 4.0.
However, it does not attempt to extend the item-based representation of PMML
4.0 Association Model, instead, this paper argues that a representation shared
by multiple mining algorithms should have as a basis some general knowledge
discovery theory. The GUHA AR Model comes out of such a framework, a sub-
field of observational calculi [7], which can be viewed as a logic of association
rules [16].

The GUHA AR Model is not a solicited effort. As part of the SEWEBAR
framework [10] for entailment of semantics into association rule mining, it is com-
plemented by the Association Rule Mining Ontology (ARON) [9], XSLT styles
for HTML presentation and ontology conversion and the Background Knowl-
edge Exchange Format (BKEF) XML Schema and Topic Map ontology [11].
Recent theoretical [17] and practical results [10] related to GUHA ASSOC open
possibilities to use domain knowledge in the association rule mining process for
automatic task setting generation, and in postprocessing for filtering out unin-
teresting association rules.

An older version of the GUHA AR model presented in this paper was sup-
ported since 2009 by academic data mining systems LISp-Miner [20] and Ferda
[13], which implement GUHA ASSOC. Over past two years, hundreds of stu-
dents have used these systems to mine cardiological dataset Adamek [2]. The
results are exported in GUHA AR PMML and send via a webservice to the
SEWEBAR-CMS, where it is displayed as HTML and accessed by domain ex-
perts. For more details visit the project website at sewebar.vse.cz, the student
work is presented at sewebar.vse.cz/cardio.
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Tereza Sulanská contributed to the design of XSL transformations and the XML
Schema for the GUHA AR Model.

References
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Abstract. Integrated Service Delivery (ISD) concerns the cooperation
among multiple service providers to make services available as an inte-
grated package. This cooperation requires that providers connect to each
other and understand each other. Yet, there is no support for describing
and communicating such a complex set of ISD rules. An ISD language is
proposed in this paper, founded in the Semantics of Business Vocabulary
and Business Rules (SBVR) specification. SBVR is a human-readable
language that has the full power of formal languages. ‘Basic expressions’
are introduced to verbalize ISD rules in SBVR. ‘Composed expressions’
have been developed to add logical, temporal, and geographical informa-
tion to business rules to realize ISD. This is necessary to understand how,
when, and where services need to be integrated and delivered. Service
providers can realize a shared understanding of how to jointly integrate
and deliver services by utilizing the foundations.

1 Introduction

Service providers collaborate more and more in networks to meet customer re-
quirements. Contemporary service providers are shifting from purely supplying
common, non-electronic services towards more demand-driven and personalized
electronic service delivery (see e.g. [3]). Initially, service providers focus on re-
curring rather than on irregular client needs. As such, assessing and reacting to
needs does not provide the flexibility to react to new needs or even changes in
the environment. Integrated Service Delivery (ISD) concerns a bundle of services
offered by more than one service provider, that matches variable client needs and
environmental changes [2]. With ISD, clients perceive a bundle of services pro-
vided by various service providers as a whole and do not have to deal with each
single provider.

Although there is technological support for creating ISD (see e.g. [6]), the
business rules to realize ISD are not well-defined. Business rules have been de-
fined as ‘declarations of policy or conditions that must be satisfied’ [4]. In this
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case, business rules are those conditions that have to be satisfied to realize ISD.
To allow service providers undergo a transition from delivering fragmented ser-
vices towards delivering integrated services, it should be specified first which
rules these organizations should meet to realize ISD. These insights are needed
because ISD requires service providers to work together. There is also a need
for a shared understanding, because service providers use a variety of terms and
definitions, denoting that there is a need for a shared vocabulary that is easy
to understand by the organizations involved. Because service providers may not
understand each other, there is a risk that they are unable to realize ISD.

A concrete real-life example of a company that will profit from our research
is Portbase. Portbase is a non-profit organization acting as a neutral hub for the
exchange of logistics information in the ports of Rotterdam and Amsterdam,
The Netherlands. Portbase was created by a merger between Rotterdam’s Port
Infolink (est. 2002) and Amsterdam’s PortNET (est. 2000). Portbase provides a
multitude of services for enabling the exchange of information between compa-
nies in the public and private sectors. Examples of services include notification
of arrival, veterinary cargo declaration, tracking and tracing of goods. Their aim
is to offer a ‘green lane’ in which to create no delays in the logistic handling due
to information exchange problems. The large number and variety of organiza-
tions involved demands for explicit business rules to realize ISD. The arrival of
vessels, but also of trucks or trains, triggers information exchange between Port-
base and those companies involved in the trade lane. For example: the request
for customs information, the reservation of stacks for transferring containers
from one modality to another modality, the request of trucks for transport, etc.
For each container different activities might be necessary to perform, which can
be determined by each individual organization when processing the exchanged
information. Each organization maintains its own business rules for processing
the information, whereas rules described and shared in an ISD language ensures
that all participating organizations will understand which business rules have to
be complied with in order to realize ISD.

The goal of this paper is to propose foundations for an ISD language to spec-
ify rules for enabling ISD. These foundations can be used to generate the rules
needed to achieve ISD and are introduced in sections 2, 3 and 4. They have been
formalized to offer precise syntax and semantics. The rules that can be formed
by using these foundations are verbalized by using the Semantics of Business
Vocabulary and Business Rules (SBVR) specification that has been published
by the Object Management Group (OMG) recently [5]. SBVR defines the meta
model for documenting the semantics of business vocabulary and business rules
such as ISD rules. SBVR was selected as it improves readability and prevents
ambiguous interpretations among service providers who need to interpret ISD
rules, and it is a human-readable language that at the same time has the full
power of formal languages. The foundations describe logical, temporal, and geo-
graphical information to understand how, when, and where services need to be
integrated and delivered. Finally, the conclusions are presented in section 5.
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2 Composed Expressions with Logical Operators

SBVR verbalizations can be divided into atomic formulations or basic expressions
and composed expressions. Basic expressions are simply those business rules or
verbalizations that consist of a single sentence. A description of such expressions
is not repeated here as they can be found in the SBVR specification [5]. Com-
posed expressions are more complex in the sense that basic expressions are com-
bined (and which can be formed recursively by combining composed expressions)
by construction operators. A construction operator is a mathematical operator
that can be used to assemble basic expressions [7]. Two basic expressions can be
assembled by means of a construction operator, resulting in a composed SBVR
expression. This can be realized by using the compose equation:

Compose : EX × EX → CE (1)

The set EX contains all possible expressions and the set CE contains composed
expressions. The compose equation can assemble basic expressions, but com-
posed expressions can also be assembled recursively. Because BE, CE ⊆ EX , it is
possible to assemble basic expressions and composed expressions, which always
results in a new composed expression. The set BE is the set of basic expressions.
There are four possibilities to create composed expressions:

1. ∃x,y∈BE∃z∈CE [Compose(x, y) = z]
2. ∃x∈BE∃y,z∈CE [Compose(x, y) = z]
3. ∃y∈BE∃x,z∈CE [Compose(x, y) = z]
4. ∃x,y,z∈CE [Compose(x, y) = z]

This implies that: (1) A composed expression can be formed by combining two
basic expressions. (2) A composed expression can be formed by combining a
basic expression with a composed expression. (3) A composed expression can
be formed by combining a composed expression with a basic expression. (4)
A composed expression can be formed by recursively combining two composed
expressions. The simplest construction operators to form composed expressions
can be the logical operators for conjunction (and), disjunction (or), and negation
(not). These operators are also part of the SBVR specification [5] to compose
statements. These operators can be used for Boolean composed expressions that
result in true or false. For instance, it can be true that actor Jane enacts role vet
cargo inspector and actor Jane performs process handle vet cargo declaration.
Subsequently, composed expressions may also be used in a set-theoretical con-
text. For example, the following verbalization produces all the roles that are
enacted by a certain actor Jane and all the processes that are performed by that
actor: Actor Jane enacts role and actor Jane performs process. The meaning
of the logical operators should be clarified in order to use them in composed
expressions. In fact, a logical operator combines two basic expressions to form
a composed expression. Using the above-mentioned definition of the set BE, the
formal signature of the logical operators can be provided as follows:

and , or , not ⊆ BE × BE (2)
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Thus, x and y means that two basic expressions x, y ∈ BE are both true. The
definitions of the and, or, and not construction operators are easy to provide
by using the common mathematical operators for logical expressions which are
trivial and not repeated here. Next, composed expressions can be formed to
verbalize time-related rules for ISD.

3 Composed Expressions with Temporal Operators

Construction operators from the temporal domain can be used to express an
instant of time, a duration, or a period with regard to a rule. Allen’s operators [1]
provide a point of departure for adding temporal expressiveness to our language
for ISD. Construction operators from the temporal domain are not included
in the current SBVR specification yet [5]. Therefore, we will introduce such
operators in this section to be able to generate SBVR statements that include
temporal operators. For instance, the composed expression actor Jane enacts
role vet cargo inspector after actor Jane belongs to organization FCPSA shows
that actor ‘Jane’ became a cargo inspector after becoming employed at the
Food and Consumer Product Safety Authority. Allen’s operators are 13 mutually
exclusive relationships between an ordered pair of closed, proper periods P1 and
P2, where P1, P2 ⊆ PE. The set PE contains possible proper periods. To use
Allen’s operators in composed SBVR expressions, we need to understand the
meaning of the operators. In our case, we need to understand when a situation
verbalized by a basic expression starts and when it ends. For example, it is
only possible to know the meaning of operators like ‘before’, ‘after’, or ‘equals’
if the start and end times of a situation verbalized by a basic expression are
known. This allows for clear differentiation between two time periods. The formal
signature of the start and end equations can be represented as follows:

Start, End : BE → PE (3)

For example, Start(b) = p implies that the start time of the occurred situation
expressed by b is p. Next, formal definitions of start and end times are modeled
to give meaning to these equations:

Start(b) � ∀b∈BE∀p∈PE [Start(b) < p ∧ p �= Start(b)] (4)

The definition of the start time shows that there are no time instants that can
be earlier than instant Start(b), i.e. the start time.

End(b) � ∀b∈BE∀p∈PE [End(b) > p ∧ p �= End(b)] (5)

The definition of the end time shows that there are no time instants that can
be later than instant End(b). Using the start and end time equations, notations
can be introduced for each of Allen’s operators [1]. The ‘before’ operator can be
formalized as follows:

before ⊆ BE × BE (6)



Realizing Integrated Service Delivery 293

Note that all temporal operators are proper subsets of the Cartesian product of
two sets of basic expressions. The notation above is, therefore, not repeated for
the remaining operators. The definition of ‘before’ can be represented as follows,
where x, y ∈ BE :

xbefore y � End(x) < Start(y) (7)

If xbefore y, then the end time of a situation expressed in x should always precede
the start time of another situation y. Using two basic expressions of the Portbase
example mentioned in section 1, a meaningful composed expression can now be
formed, such as: Event goods declaration sent is produced by actor John before
process handle goods declaration is performed by actor Jane. The definition of
the ‘after’ operator is comparable to that of the ‘before’ operator:

x after y � Start(x) > End(y) (8)

The meaning of the ‘equals’ operator is that the start time and end time instants
of two situations verbalized by basic expressions must be exactly equal:

x equals y � Start(x) = Start(y) ∧ End(x) = End(y) (9)

When combining two example basic expressions by means of this operator, a
meaningful composed expression can be formed: Role vet cargo inspector is en-
acted by actor Jane equals actor Jane belongs to organization FCPSA. This
composed expression is true if Jane has indeed started working and has also
ended working as a cargo inspector at the Food and Consumer Product Safety
Authority (without changing jobs at the same company in the meantime). Sub-
sequently, the ‘meets’ operator can be defined as follows:

xmeets y � End(x) = Start(y) ∧ Start(x) < Start(y) ∧ End(x) < End(y) (10)

The end time instant of a situation verbalized by a basic expression must be
equal to the start time instant of another situation if both situations ‘meet’ each
other. Moreover, the start time of a situation that meets another situation must
be earlier than the start time of the situation that is met. This also applies to
the end times. Two example basic expressions can be assembled by means of the
‘meets’ operator as follows: Actor John produces event goods declaration form
signed meets architecture EDSOA orchestrates event goods declaration form
signed. The definition of the ‘met by’ operator is now trivial:

xmet by y � Start(x) = End(y) ∧ Start(x) > Start(y) ∧ End(x) > End(y) (11)

The next operators are the ‘overlaps’ and ‘overlapped by’ operators. The start
time and the end time of a situation that overlaps another situation must be
earlier than those of the situation that is overlapped:

x overlapy � Start(y) > Start(x) ∧ End(y) > End(x) (12)

x overlapped by y � Start(x) > Start(y) ∧ End(x) > End(y) (13)
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An example related to Portbase as mentioned in section 1 can be verbalized
as follows: Actor John enacts role importer overlaps role vet cargo inspector
is enacted by actor Jane. The operators ‘during’ and ‘contains’ can be used to
indicate that a situation takes place within the time span of another situation.
This can be formalized by the following equations:

xduring y � Start(x) > Start(y) ∧ End(x) < End(y) (14)

x contains y � Start(y) > Start(x) ∧ End(y) < End(x) (15)

A meaningful expression related to Portbase is easy to find: Actor John uses
service declare vet goods during actor John enacts role importer. Then, the
‘starts’ and ‘started by’ operators can be modeled:

x starts y � Start(x) ⇒ Start(y) ∧ End(x) �= End(y) (16)

x started by y � Start(y)⇒ Start(x) ∧ End(y) �= End(x) (17)

The ‘starts’ operator can be used to assemble the following basic expressions, for
instance: Event goods declaration received occurs in organization Portbase starts
event goods declaration received is consumed by actor Jane. Finally, the last two
temporal construction operators are the ‘finishes’ and ‘finished by’ operators:

xfinishes y � End(x) ⇒ End(y) ∧ Start(x) �= Start(y) (18)

xfinished by y � End(y) ⇒ End(x) ∧ Start(y) �= Start(x) (19)

Subsequently, geographical rules can be formed by using geographical operators.
Like temporal operators, these kind of operators are not part of the SBVR
specification yet. Therefore, they are introduced in the next section such that
they can be used in SBVR verbalizations to specify ISD rules.

4 Composed Expressions with Geographical Operators

Geographical expressions can be used to form rules regarding the locations of
concepts that are related to ISD. For instance, the expression actor John pro-
duces event goods declaration form signed north of actor Jane performs process
handle goods declaration shows that John is signing a goods declaration form
north of Jane, who performs a process to handle a goods declaration. To work
with geographical operators, the coordinates of objects that are related to the
geographical operator need to be determined. It is possible to reason about the
spatial relationships between objects if such coordinates are known. The three-
dimensional coordinates of a main concept mentioned in a basic expression can
be found by means of the coordinates equation:

Coord : BE → �×�×� (20)
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The coordinates can be plotted on a three-dimensional Cartesian coordinate
system, with an origin and three axis lines X , Y , and Z. For example, Coord(b) =
(3, 1, 4) indicates what the coordinates are for a main concept as part of an
arbitrary basic expression b. Several geographical operators can be presented
and used to form composed expressions based on a spatial relationship between
two basic expressions. Some useful geographical operators are ‘above’, ‘under’,
‘ahead’, ‘behind’, ‘north of’, ‘south of’, ‘east of’, and ‘west of’. The signature of
these operators can also be formalized in the following way:

above ⊆ BE × BE (21)

The signatures of the other geographical operators discussed in this section are
identical. The ‘above’ and ‘under’ operators can be defined as follows:

b1 above b2 � ∃b1,b2∈BE∃x1,x2,y1,y2,z1,z2∈�[Coord(b1) =
(x1, y1, z1) ∧ Coord(b2) = (x2, y2, z2) ∧ z1 > z2] (22)

b1 under b2 � ∃b1,b2∈BE∃x1,x2,y1,y2,z1,z2∈�[Coord(b1) =
(x1, y1, z1) ∧ Coord(b2) = (x2, y2, z2) ∧ z1 < z2] (23)

A meaningful composed expression that is created by using the ‘above’ opera-
tor can be described as follows: Process handle goods declaration is performed
by actor Jane above process trace cargo with vet goods is performed by actor
George. Expressions such as these may be useful when, for instance, Jane is
searching for additional information on housing benefits while performing her
job as a cargo inspector. Knowing that her colleague George is working on a
task related to this topic in close proximity (above her in the same building
probably) can be helpful. The intention of the ‘ahead’ and ‘behind’ operators is
to express whether an object is exactly in front of (ahead) or to the rear of (be-
hind) another object. In terms of the three-dimensional coordinates, this implies
that the objects have equal coordinates on the Y and Z axes, but a different
coordinate on the X axis, or formally:

b1 ahead b2 � ∃b1,b2∈BE∃x1,x2,y1,y2,z1,z2∈�[Coord(b1) =
(x1, y1, z1) ∧ Coord(b2) = (x2, y2, z2) ∧ x1 > x2] (24)

b1 behind b2 � ∃b1,b2∈BE∃x1,x2,y1,y2,z1,z2∈�[Coord(b1) =
(x1, y1, z1) ∧ Coord(b2) = (x2, y2, z2) ∧ x1 < x2] (25)

When an object is said to be north of another object, it is not important what
the coordinates of the objects on the Z axis are, as long as the coordinates on
the Y axis are the same and the coordinates on the X axis differ to let one object
lie north of another object. This can be formalized as follows:

b1 north of b2 � ∃b1,b2∈BE∃x1,x2,y1,y2,z1,z2∈�[Coord(b1) =
(x1, y1, z1) ∧ Coord(b2) =

(x2, y2, z2) ∧ y1 = y2 ∧ x1 > x2] (26)
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Because the remaining operators related to the other quarters of the compass
can be formalized in similar ways, they are not repeated here. With logical,
temporal, and geographical expressions, service providers can understand how,
when, and where services need to be integrated and delivered.

5 Conclusions

The research presented here supports the realization of ISD by helping ser-
vice providers in making the shift from individually supplying common, non-
electronic services towards collaboratively supplying integrated, demand-driven
and personalized electronic services. Before service providers are able to deliver
integrated services they need to have an unambiguous and shared understand-
ing as to which rules should be met to achieve ISD. To meet these demands,
foundations for an ISD language have been proposed in this paper for the speci-
fication of business rules involved in enabling ISD. We have been able to specify
these foundations in SBVR, which consist of basic and composed expressions.
Two basic expressions can be assembled by means of a construction operator,
resulting in a composed expression. Three types of construction operators have
been introduced that allow for the logical composition of basic expressions, as
well as making it possible to assemble basic expressions that result in temporal
and geographical expressions. By adding this expressive power to the founda-
tions, service providers can understand how, when, and where services need to
be integrated and delivered. Relating this to the Portbase example, it can be
concluded that shared business rules described in an ISD language will ensure
that organizations understand which rules have to be complied with in order to
realize ISD.
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Abstract. This paper describes an approach in the double context of
business rules and techniques of the semantic web, the ontologies. This
approach consists of enabling the use of business rules to automate the
decisions on domains which semantic is formalized with an ontological
language. Our main objective is to enable business users to edit, manage
and execute business rules grounded in ontologies without resorting to an
expert. The implementation is based on the Business Rule Management
System (BRMS) IBM WebSphere ILOG JRules.

1 Introduction

In the context of information systems, ontologies are artifacts that encode a
description of a domain (concepts, roles) in formal language (e.g. Resource Des-
cription Framework (RDF) [2], Ontology Web Language (OWL) [1]), which is
understandable only by experts in the domain. On the other hand, in the context
of BRMS, business rules are a description of a business policy, encoded in an
pseudo natural “If-Then” format. They define or specify constraints of some
aspect of the business. Business rules are understandable by business users and
executable by a machine. The main idea of our work1 consists of managing
relations between Ontologies [10] and Business Rules2 especially in the processes
of authoring and execution of rules. Our objective is to develop a prototype that
can be used to edit and execute business rules grounded in ontologies. This will
allow business users to own and to manage their business knowledge resource,
formalized with an ontological language, without resorting to an expert.

There are languages, described in Section 5 that integrate ontologies and rules.
These languages mostly use formal rules, which are written in a formal syntax.
Hence, business users cannot edit their rules and, for the vast majority, they
cannot even read them.

To summarize: we develop a method that allows business users (doctors,
lawyers, scientists . . .), who do not have any knowledge of Logic Programming or
1 This work is partially supported by the European Commission under the project

ONTORULE (IST-2009-231875).
2 http://www.businessrulesgroup.org/

M. Dean et al. (Eds.): RuleML 2010, LNCS 6403, pp. 297–304, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Description Logic, to author, manage and execute their business rules, grounded
in ontologies of a domain formalized using OWL. We focus on importing OWL-
DL descriptions, within the IBM WebSphere ILOG JRules3, or JRules for short,
and the mapping of OWL concepts (TBox) into the JRules formalism, the Busi-
ness Object Model (BOM), which is used to represent the concepts of the domain.

This paper is organized as follows. Section 2 briefly introduces the BRMS
JRules. Section 3 describes the methodology used. Section 4 presents the results
obtained. Section 5 overviews related work. Section 6 discusses some perspectives
and concludes.

2 IBM WebSphere ILOG JRules

JRules is a BRMS; as such, it provides the means to edit, manage, test, and
deploy Business Rules.

JRules consists of a set of components allowing business users to author and
execute business rules. These components are the following:

eXecutable Object Model (XOM). This is the model enabling the execution
of rules. It references the application objects and data, and is the base imple-
mentation of the BOM. The XOM can be built from compiled Java classes (Java
execution object model) or XML Schema (dynamic execution object model).
Through the XOM, the rule engine can access application objects and methods,
which can be Java objects or XML data. At runtime, rules that were written via
the BOM are run against the XOM.

Business Object Model (BOM). This is an object-oriented model that defines
the concepts of a given business. It describes the classes representing the objects
of the application domain [5]. A BOM contains a set of classes and each class
contains a set of attributes and methods, which the rules act on. It is in turn
mapped into the XOM.

Business Rules. The business rules are expressed in a controlled natural lan-
guage that can be understood and managed by regular business users, for in-
stance:

IF the age of the client is between 18 and 25
THEN set the insurance ratio to 125

This controlled natural language is compiled into a lower-level technical lan-
guage. Two models supports the definition of the rules in the “business layer” .
The business objects of the domain (e.g., client, age), which are represented in
the BOM and the vocabulary model (VOC), which add a layer of terminology
on top of the BOM (e.g.“the client”, “the age of the client”). This vocabulary,
introduced with the VOC is in turn used to compose the text of the rules [5].
3 http://www-01.ibm.com/software/integration/business-rule-management/

jrules/

http://www-01.ibm.com/software/integration/business-rule-management/jrules/
http://www-01.ibm.com/software/integration/business-rule-management/jrules/
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Currently, input to JRules consists of compiled Java classes or an XML
Schema file. The method we developed is a means to import OWL ontologies
into JRules. Thus, business users can manage their business resource formalized
with OWL using the components provided by JRules, without any change.

3 Authoring and Executing Business Rules from
Ontologies

Though the BOM approach provides good results as far as applications are con-
cerned, we believe that using formal and normalized notations for the conceptual
domain model would bring a lot of value. We have thus started experiments with
OWL as it is the result of many years of experiences reaching the status of a
W3C recommendation.4 To integrate OWL ontologies as input in JRules, we
developed a plug-in that produces a mapping of an OWL Ontology into the
BOM of JRules. Once the OWL ontology has been imported, all of the regular
functionalities provided by JRules can be used without any change.

3.1 Authoring Business Rules from Ontologies: OWL to BOM
Mapping

As described in Section 2 the BOM is the main component for authoring rules in
JRules. There has been a lot of works related to the mapping of OWL ontologies
into the Java object-oriented model such as Kazuki,5 OntoJava,6 Owl2Java,7

and “Automatic Mapping of OWL Ontologies into Java” [8]. These methods
cannot be directly used to generate an effective BOM supporting the authoring
of rules. Nevertheless, we have adapted the method described in [8] to our needs.

Due to the differences in knowledge representation between the BOM and
OWL, there are some OWL constructs that cannot be mapped into the BOM
such as “disjointWith”, “complementOf”. However, a large part of the con-
structs can be mapped. Below is a description of the main transformations of
the mapping of OWL to BOM.

Concepts: An OWL concept is mapped into a BOM Class. The hierarchical
relations are mapped into the BOM using the subclass relation and, as the
BOM supports multiple inheritance, this information is also preserved.

Properties: An OWL property is mapped into an attribute of a BOM class.
Functional properties are mapped to single attributes and multi-valued prop-
erties are mapped to multiple cardinality attributes. The class of an attribute
corresponds to the domain of the corresponding property, and its type cor-
responds to the range of the property. Nevertheless, a property may have
a null or multiple domain (range, respectively). These cases are mapped as
follows:

4 http://www.w3.org/TR/2004/REC-owl-guide-20040210/
5 http://projects.semwebcentral.org/projects/kazuki/
6 http://www.aifb.uni-karlsruhe.de/WBS/aeb/ontojava/
7 http://www.incunabulum.de/projects/it/owl2java
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– Null domain: The attribute is added to all the root classes, i.e.which
inherit directly from owl:Thing.

– Multiple domain: The attribute is added to all the classes corresponding
to the set of the domains.

– Range null: The type of the attribute is inferred as described in the
following. If the property has an equivalent property then the type of
the attribute will be the range of the equivalent property. Else, if the
property has an inverse property then the type of the attribute will be
the domain of the inverse property. Otherwise, the attribute will be of
type Object.

Restrictions :
– cardinality and maxCardinality restrictions: when an attribute’s car-

dinality restrictions is equal to 1, it is mapped into a single-valued at-
tribute; otherwise, it is mapped into a multiple-valued attribute;

– allValuesFrom restriction: the type of the attribute is the class defined
on the restriction;

– oneOf restriction: Static values corresponding to the values defined on
the collection are attached to the class.

Table 1. OWL to BOM Mapping

OWL BOM

Class A Class A

B subClassOf A Class B extends A

C intersectionOf(A,B) Class C extends A,B

C unionOf(A,B) Class A extends C and Class B extends C

A oneOf {x, y, z} Class A {domain {’x’, ’y’, ’z’};}
A equivalentClass B Keep only A, and references to B are

reported to A

P(A,B) Class A {B[ ] P};
P subPropertyOf P’(A,C) Class A {B[ ] P; C[ ] P’;}
P’ equivalentProperty P Class A {B[ ] P; B[ ] p’;}
P’ inverseOf P Class B {A[ ] P;}
P functionalProperty Class A {B P;}
P.cardinality = 1 Class A {B P;}
P.maxCardinality = 1 on P Class A {B P;}
P allValuesFrom C Class A {C[ ] P;}

3.2 Executing Business Rules from Ontologies

The process of executing business rules in JRules consists of several steps. Busi-
ness rules, written in a controlled natural language, cannot be directly executed.
First, they are translated into executable rules, which are written in a formal
technical rule language. During this translation, the references to the BOM’s
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classes and properties are translated to references into the XOM. When the input
provided to JRules is a Java object model, the XOM is built from this model.
But in our case, the input provided to JRules is an OWL model.

To execute business rules authored from ontologies, we perform a second map-
ping of OWL-BOM entities to a XOM using Jena.8 Jena is a Java framework,
including an OWL API which allows generation of Java objects from the entities
of the ontology. These Java objects then constitute the XOM.

The use of Jena provides an execution layer for the OWL ontologies. This
execution layer provides inference mechanisms on this model and the mapping
of OWL concepts, properties, and individuals to a Java object model.

4 Experiments and Results

To validate our results, we used ontologies provided from our partners in the
ONTORULE project [6] and also ontologies from the web like pizza.owl,9

financialOntology.owl,10 and animal.owl.11 All these ontologies have been
successfully imported into the BOM without any change. This section illus-
trates the results obtained using the LoanValidation ontology, which is used
for demonstration purpose. It contains 5 concepts (Borrower,Loan, Bankruptcy,
Report), 3 object properties ( borrower (Report, Borrower), loan (Report, Loan),
spouse (Borrower, Borrower)) and 5 data type properties (age (Borrower, int),
yearlyIncome (Borrower, float), yearlyRepayment (Loan, float), message (Re-
port, string), validData(Report, boolean)) that describes entities used in the
process of validating of a loan request posted by a Borrower.

4.1 Examples of Business Rules

Below, we give examples of business rules edited from the BOM generated with
the LoanValidation ontology.

Rule 1:

IF the age of the borrower is more than 18 and the age of the borrower is less
than 25
THEN make it false that the report is valid data ; add messages : “The bor-
rower’s age is not valid.” to the report ;

Rule 2:

IF the yearly repayment of the loan is at least 0.37 * the yearly income of the
borrower
THEN make it false that the report is approved ; add messages : “Too big
Debt/Income ratio: ” + the yearly repayment of the loan /the yearly income
of the borrower to the report;

8 http://jena.sourceforge.net/
9 http://www.co-ode.org/ontologies/pizza/2007/02/12/

10 http://dip.semanticweb.org/documents/D10.3.pdf
11 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ontologies/animalsABMap.

owl

http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ontologies/animalsABMap.owl
http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ontologies/animalsABMap.owl
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4.2 Executing Rules

This section shows the results of executing the rules described in the previous
section. Let us define two instances of borrower, John, aged 20 years old who
has a yearly income equal to 100000 and Anna aged 17 with a yearly income
equal to 9000. These borrowers request a loan of an amount equal to 200000
and a yearly repayment equal to 10000. The result obtained for John will be
“Congratulations! Your loan has been approved” and for Anna “The borrower’s
age is not valid” (the execution is stopped when executing Rule 1)

Another important point in the process of executing rules is the interaction
between the classification engine and the rule engine. Here is an example of this
kind of interaction as achieved with the system presented in this work. Let us
define a subclasss of customer that defines the risky customers as customers who
have at least two known payment incidents. Such definition is well captured in
an ontology and can then be used in a rule for example:

definitions
set grayList to all risky customers ;

IF the customer of “the current rental agreement” is one of grayList
THEN set the discount of the offer of “the current rental agreement” to the
discount of the best offer of “the current rental agreement” - 20

In this example, the type risky customer is assigned by the classification en-
gine based on the individuals. Then, the rule engine uses this inferred knowledge
to trigger a computation that could not be easily represented in an ontology.
In other words, the rule engine asks the classification engine for the type of the
customer, then it executes the rule(s) matching with the returned type.

Enabling the coupling of both approaches gives the business user the best of
the two worlds. Definitions remain declarative whenever possible with all the
interesting properties of ontologies in term of checking and consistency; while
the operational definitions are here to cater for necessary business computations.

5 Related Work

Integration of rules and ontologies is a subject of active research especially in
the Semantic Web community. There seems to be a broad consensus that the
Semantic Web should include rules as well as ontologies. Integration of rules
and ontologies has required definition of new languages, their formal syntax
and semantics, and the development of reasoning algorithms for these new lan-
guages [3]. There are some proposals for integration of rule languages with on-
tology languages, like Answer Set Programming (ASP) [4], the Semantic Web
Rule Language (SWRL) [9], Description Logic Programs (DLP) [7], the Rule
Interchange Format (RIF)12 or the SPARQL RDF query language.13

12 http://www.w3.org/2005/rules/wiki/RIFWorkingGroup
13 http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
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These languages use formal rules, i.e.rules written with a technical syntax.
To assimilate such rules, users must have a clear understanding of Description
Logic and Logic Programming, because they are written in formal ontological
and/or rule-based languages. As a result, business users are not able to edit, nor
even read, their own rules—let alone rules authored by others—since they are
not trained as programmers.

Nevertheless, a special case must be made for SPARQL. We chose to bind the
BOM model to the Java API provided by Jena. The BOM must be mapped at
some points to Java classes for execution so this is a natural way for JRules to
deal with models. For example the XSD schemas are also mapped in JRules to
specific Java objects. Instead of using the Jena API directly, it is also possible
to bind BOM classes to the result of SPARQL queries. For the condition part
of the rules this would be equivalent. However, the Java API offers mutable
objects, so it is possible to modify the graph in the action part of the rules.
This is not possible using SPARQL. Only constructing new graphs would be
possible through the CONSTRUCT, but action rules in production rules engines
offer the possibility to modify the instances themselves which is outside the
scope of SPARQL. However, with the new SPARQL updates, SPARUL, this
could become possible.

6 Perspectives and Conclusion

In this paper we have presented a method for authoring and executing Business
Rules from ontologies. This enables business users to edit, manage and execute
Business Rules over OWL ontologies. The use of JRules and especially the BOM
has enabled us to develop successfully our method, which is now used by our
partners in the ONTORULE project.

JRules provides a layer allowing business users to manipulate a technical
language. It also provides an editor for Business Rules, which are written in
controlled natural language, decision tables and decision trees. Also, it is possible
to gather rules into rule sets and create a rule flow to orchestrate the execution
of rules.

Our approach has been tested using ontologies provided by our partners and
from the Web. Business Rules have been edited and executed successfully. Nev-
ertheless, due to the differences of knowledge representation between the onto-
logical model (OWL) and the BOM, there are some constructs in OWL that
we could not map into the BOM, like “someValueFrom,” “disjointWith,” and
“complementOf.” In our opinion, these restrictions should not have little an im-
pact on the quality of the mapping we made as it is possible to express the
negation in a closed world using rules.

As future work, we envisage studying the degree of dependency and of interac-
tion between the concepts of an ontology, the entities of rules and data to detect
the impact of modification of the data set with respect to the ontology and the
rule set. We focus especially on consistency problems that could be detected
either on the ontology layer or in the rule layer.
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