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Abstract. In this paper, we study the soundness amplification by repetition of
cryptographic protocols. As a tool, we use the Chernoff Information. We spec-
ify the number of attempts or samples required to distinguish two distributions
efficiently in various protocols. This includes weakly verifiable puzzles such as
CAPTCHA-like challenge-response protocols, interactive arguments in sequen-
tial composition scenario and cryptanalysis of block ciphers. As our main contri-
bution, we revisit computational soundness amplification by sequential repetition
in the threshold case, i.e when completeness is not perfect. Moreover, we outline
applications to the Leftover Hash Lemma and iterative attacks on block ciphers.

Keywords: distinguishing distributions, Chernoff Information, proof systems,
block ciphers.

1 Introduction

In many occasions in cryptography we encounter the challenge of distinguishing dis-
tributions such as pseudorandom number generators, symmetric key cryptanalysis or
challenge-response puzzles. We consider protocols in which one distribution (null) is
usually associated with the probability distribution of an adversary winning a game.
The other distribution (alternate) corresponds to the probability of success of a legiti-
mate party. For instance, challenge-response puzzles are often deployed to distinguish
between a real and a fake solver. Differentiation is obtained by the probability of them
solving a randomly chosen challenge. What we focus on in this paper is the applica-
tion of such distinguishers in weakly verifiable puzzle protocols, sequential repetition
of arguments and the Leftover Hash lemma.

Initially, we concentrate on interactive protocols, where there always exist a number
of false negative and false positive responses by the verifier. They correspond to the
completeness and soundness probability of the protocol. One might think of a method to
reduce the error associated with the relevant distinguisher. One straightforward strategy
to decrease the probability of error in both cases is to provoke the protocol iteratively
and output “accept” if all instances accept (non-threshold case). Assuming the passing
probability of non-authentic (vs. authentic) parties is b (vs. a), one would like to obtain
error probability of bq after q iterations, but it makes the success probability of authentic
parties go down to aq. To solve this bottleneck, what we investigate in this paper is
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the general scenario of threshold repetition, i.e we accept if the number of accepting
repetitions is larger than a given threshold m. We can find an optimal m in which it
makes the error probabilities of the protocol arbitrary close to zero. This strategy can be
deployed in other similar interactive protocols like weakly verifiable puzzle protocols
in which a verifier sends a puzzle to the solver and depends on the solver’s response, he
outputs accept or reject. In one section, we principally study CAPTCHA-like protocols
as an example of such puzzles. We offer q puzzles to the solver and accept if she replies
correctly to at least a threshold m of instances.

The problem of soundness amplification and the previous results. In interactive
systems, the soundness probability of the protocol corresponds to upper bounding the
probability of success of a malicious party. We always assume that the verifier is com-
putationally bounded, but depending on computational capability of the prover we can
define argument or proof systems, where the former corresponds to polynomial time
provers and the latter to computationally unbounded provers (see section 3.1). We re-
fer to the soundness probability of proof systems as statistical soundness versus the
computational soundness in argument systems. To decrease the soundness error of such
protocols, making a problem harder by repetition can be performed using two distinct
approaches, namely sequential and parallel repetition. By sequential repetition we mean
repeating the protocol several times, beginning the next run after the previous one ter-
minates. Conversely, in the parallel case, all the instances are yielded to the prover at the
same time without waiting for any arbitrary instance to terminate. It is well-known that
sequential and parallel repetition of interactive proof systems reduce the error (statisti-
cal soundness) with an exponential rate (see [15]) in the non-threshold case (i.e, when
there are no false rejections). In fact, [13] has given the proof that sequential repetition
of computationally sound proof systems improves their security with an exponential
rate in the “non-uniform model” under non-threshold approach, but it seems there is no
explicit proof for the error reduction in the threshold case.

For a long period, it was assumed by the community that there is no distinction
between error reduction of interactive arguments (computational soundness) when the
protocol is iterated sequentially or in parallel. Finally, Bellare et al. [4] disproved this
argument by providing a 4-round protocol in which q iterations does not reduce the
computational soundness error probability of the protocol at all. In fact, they showed
that there is no “black box“ error reduction for such protocols when parallel repetition
is concerned. On the other hand, they proved the surprising result that error reduction in
parallel case depends fundamentally on the number rounds of the protocol. They proved
that error decreases exponentially fast with the increase in the number of iterations if the
number of rounds is less than 4. The computation complexity of each instance of their
counter-example grows linearly with the number of repetitions and for such protocols
the error does not even decrease for some types of interactive proofs. They constructed
an artificial oracle to solve this problem. To discard the effect of this oracle, using
universal arguments of Barak and Goldreich [3], Pietrzak et al. [27] provided an 8-round
protocol in which the q-fold parallel repetition does not decrease the error probability
below some constant for any polynomial q (where the communication complexity does
not depend on q). As an extension, multi-prover systems were examined in multiple
articles such as [14,28].
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Weakly verifiable puzzles. As another application, we study weakly verifiable puzzles.
These are interactive protocols in which the verifier sends a puzzle to the solver and out-
puts 0 or 1 depending the solver’s response. They are weakly verifiable in the sense that
only the puzzle generator can check the correctness of the responses, either because the
challenge may have multiple correct responses and the verifier seeks a particular one of
those or because the solver is computationally constrained, for instance in CAPTCHA
puzzles [1]. CAPTCHA is a fuzzy challenge response protocol for distinguishing hu-
mans from programs (bots) mostly based on a distorted text with extraneous lines [1].
The current vision protocols are not able to pass CAPTCHA efficiently and the proba-
bility that a human can pass is much higher than the programs. This is thankful of the
non-efficiency of the current image recognition systems not being able to identify dis-
torted texts efficiently, but their passing success rate is still non-negligible. Moreover,
many humans (including us) fail a non-negligible fraction of puzzles. This implies that
it might not be desirable to consider the non-threshold scenario for such protocols. Pre-
viously, Canetti et al. [8] proved that the parallel repetition of weakly verifiable puzzle
protocols decreases the error with an exponential rate. In fact, they found a tighter bound
than [4]. Their proof is restricted to the non-threshold case which might not be appropri-
ate for CAPTCHAs since their completeness are not perfect. This result can be extended
to parallel repetition of interactive arguments. As the pioneers in threshold parallel rep-
etition of such protocols, Impagliazzo et al. [17,18] have introduced two distinct bounds
on the maximum success probability of a malicious algorithm for the parallel repetition
of such protocols in the threshold case. The authors observed that the authentic party
is on average expect to solve a.q puzzles and if a Chernoff like bound holds, then the
probability of fake parties solving a.q puzzles may drop exponentially and they gave
an exponential bound. The complication in reducing a single puzzle instance to a direct
product puzzle instance originates from the fact that the given single puzzle instance
is required to be incorporated in all simulated direct product puzzle instances and thus
they are not independent. However, the bound they obtained has a weak constant in
the exponent and although their results apply to the parallel composition scenario, they
provided values which are irrelevant in practice, CAPTCHA for instance (see section
3.2). This was noticed by the authors themselves motivating to find better bounds as
an open problem. Jutla [21] deployed a uniformized parallel solver, who first permutes
his given first q-puzzles randomly, solves them as before and permutes the results back.
Deploying this strategy, he improved the aforementioned bound and then he plugged
it into ”trust reduction” strategy in [17] and considered a linearly weighted metric and
derived a more optimal bound. In fact, we show by a concrete example that his bound
is still not applicable in practice since it asks for solving a huge number of CAPTCHAs
in parallel.

Our contribution. The fundamental issue in this area is an approximation on the num-
ber of iterations required to effectively tune the probability of false acceptance or false
rejection optimally. In fact, we find the optimal threshold m for the best distinguisher in
section 3. We show that soundness amplification in the threshold case works as expected
for statistical soundness and works with a small gap for computational soundness when
the number of repetitions is logarithmic. We find a practical bound restricted to sequen-
tial repetition of such protocols. Notice that our bounds might not work in the parallel
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composition scenario but it provides figures which can be deployed in practice. It seems
more logical for practical applications like CAPTCHAs (see section 3.2).

We also consider the Leftover-Hash lemma. Let assume we have a secret key K that
has t uniform random bits. If � bits of the key are leaked, but it is not clear which one,
the Leftover-Hash Lemma [19] tells us that we can produce a key of almost m = t− �
bits that is ε-indistinguishable from uniform distribution over the key space. We define
a distinguisher given n samples in Luby-Rackoff model which distinguishes between
a universal hash function and a uniform distribution. We derive the same bound as in
[11] by deploying Chernoff Information which turns out to be optimal by introducing
the Multi-Session Leftover-Hash Lemma when more than one such key generations are
of interest.

In Appendix, we present iterative attacks on block ciphers with applications in lin-
ear and differential cryptanalysis and show that we can recover the number of plain-
text/ciphertext pairs required to obtain a significant advantage.

Structure of this paper. First, we mention some preliminaries regarding the facts and
previous results on hypothesis testing problem and statistical distinguishers. Then, we
model our distinguishing games as a challenge of distinguishing two random Boolean
sources in section 3. In section 3.1, we focus on sequential repetition of interactive ar-
guments in the threshold case and derive better bounds to strengthen them. In section
3.2, we investigate the sequential repetition of weakly verifiable puzzles and we com-
pare 7 distinct bounds. Furthermore, in section 5 we derive a useful bound which we
use to investigate the Leftover Hash Lemma. In Appendix, we revisit iterative attack on
block ciphers.

2 Preliminaries

Notations. In this paper, we let Z denote a finite set and P0,P1, . . . ,Pk be k + 1 proba-
bility distributions over Z. The support of a distribution P over Z is the set supp(P) =
{z∈Z : P[z] > 0}. The distribution P is of full-support when supp(P) = Z. When con-
sidering the two distributions P0, P1 we will usually denote Z ′ = supp(P0)∩ supp(P1)
and have Z = supp(P0)∪supp(P1). The natural and base 2 logarithms will respectively
be denoted by ln and log. The Kullback-Leibler divergence [22] and the Chernoff Infor-
mation [9] between P0 and P1 are respectively defined by

D(P0‖P1) = ∑
z∈supp(P0)

P0[z] log
P0[z]
P1[z]

C(P0,P1) =− inf
0<λ<1

log ∑
z∈Z′

P0[z]1−λP1[z]λ

When supp(P0) � supp(P1) then D(P0‖P1)= +∞. A sequence of q elements z1, . . . ,zq ∈
Z and a sequence of random variables Z1, . . . ,Zq ∈ Z are respectively denoted by zq

and Zq. Finally, we say that two functions f and g are asymptotically equivalent when
lim
q→∞

1
q ln f (q)

g(q) = 0 or equivalently when f (q) = g(q)eo(q). This is denoted by f (q)
�

= g(q).

Essential Definitions on Hypothesis Testing. Cryptographic problems we consider
can all be formalized as a hypothesis testing problem in which a distinguisher A dis-
tinguishes between the hypotheses H0 : P = P0 and H1 : P ∈ D = {P1, . . . ,Pk} on the
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basis of knowledge of the Pi’s and of q > 0 elements Z1, . . . ,Zq ∈ Z sampled according
to the distribution P. It is assumed that one of the hypotheses is true, the q samples are
independent and identically distributed (iid), the distinguisher A eventually outputs 0 or
1 to indicate its guess and that this distinguisher is computationally unbounded (so that
we can assume it is deterministic); for this last reason, A is referred to as a q-limited dis-
tinguisher. In fact, we are following Luby-Rackoff model of indistinguishability [24]
where the only adversarial limitation is the number of queries. In the particular case
where k = 1, we will refer to the previous problem as a simple hypothesis test, whereas
when k > 1 we call it a composite hypothesis test. A q-limited distinguisher A which is
given q samples Zq = Z1, . . . ,Zq is denoted as Aq(Zq). The effectiveness of A is math-
ematically formulated by its advantage.

Definition 1. The advantage of a q-limited distinguisher Aq between the hypotheses H0

and H1, based on the q samples Zq = Z1, . . . ,Zq, is defined by

AdvAq(H0,H1) = Pr[Aq(Zq) = 1|H0]−Pr[Aq(Zq) = 1|H1]

The hypotheses H0 and H1 are (q,ε)-indistinguishable if for any q-limited distinguisher
Aq we have |AdvAq(H0,H1)| ≤ ε.

Existence of an Optimal Distinguisher. Since the samples are assumed to be iid, their
particular order must be irrelevant. What really matters is the number of occurrences
of each symbol of Z in the string Zq = Z1, . . . ,Zq or equivalently the type (or empirical
probability distribution) of this sequence, defined by

PZq [z] =
#{i : Zi = z}

q

Consequently, a distinguisher can be thoroughly specified by the set Π of all types for
which it will output 1, i.e., Aq(Zq) = 1 ⇔ PZq ∈Π. The set Π is called the acceptance
region of A. Since q is fixed, the number of possible types is finite and thus we can
assume wlog that Π is finite. Consequently, there is also a finite number of potential
adversaries so that there must be at least one which maximizes the advantage. We call
them best distinguishers and denote by BestAdvq(H0,H1) (or simply by BestAdvq)
their advantage.

The Optimal Adversary in the Simple Hypothesis Testing Case. We consider the
simple case where A distinguish between H0 : P = P0 and H1 : P = P1. In that case, we
call A a distinguisher between P0 and P1 and denote its advantage by AdvAq(P0,P1).
The best advantage is obtained by likelihood ratio test, where the acceptance region of
the distinguisher is such that

Aq(Zq) = 1 ⇔ Pzq|P0

Pzq|P1

≤ 1 (1)

where Pzq|Pi
is the type of the sequence given the distribution Pi has happened. It can

be shown [2] that the distinguisher A� defined by the acceptance region
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Π� = {PZq : D(PZq‖P1)≤ D(PZq‖P0)} (2)

is a best distinguisher.
The following essential theorem allows to relate the advantage of the best distin-

guisher between P0 and P1 to the Chernoff Information1 [9].

Theorem 2. Let P0,P1 be two probability distributions. We have

1−BestAdvq(P0,P1)
�

= 2−qC(P0,P1) (3)

This result verifies asymptotically that having access to q ≈ 1
C(P0,P1) samples we can

distinguish P0 from P1 with a significant advantage.

3 Application to Boolean Cases

In this paper, we concentrate on applications of distinguishers in scenarios such as
soundness amplification and weakly verifiable puzzles. In all these relevant applica-
tions, we are trying to differentiate between a legitimate and a malicious party. One
strategy is to model this scenario as a distinguishing game between two Boolean ran-
dom sources. We consider the problem of distinguishing two Boolean random sources
with expected values a and b respectively. Suppose P0,P1 be two probability distribu-
tions over the set Z = {0,1}. Let

P0[X ] =
{

a X = 1
1−a X = 0

and P1[X ] =
{

b X = 1
1−b X = 0

We define a distinguisher which outputs 1 iff n1 ≤ m, where bq < m < aq and n1 is
the number of occurrences of 1 in the sample set. Intuitively, a refers to the probability
that a legitimate user or a program can pass a single challenge successfully and b refers
to which of a malicious user or program. As a matter of fact, we mostly investigate the
protocols which are distinguishing a legitimate and a malicious user or program offering
them q times to try and then if they can pass with a particular minimum threshold,
algorithm outputs accept otherwise it rejects.It can be shown using (2) that

m =
q

1− ln b
a

ln 1−b
1−a

(4)

defines the best distinguisher using q samples to distinguish P0 from P1 (Note that if
a ≈ b, we have m ≈ q a+b

2 which is a pretty intuitive threshold). Then, employing the

Chernoff Information, Theorem 2 gives 1−Advq
�

= 2−qC(P0,P1). More precisely, having
access to q samples and using the binomial distribution

1−Advq = ∑
i≤m

(
q
i

)
ai(1−a)q−i + ∑

i>m

(
q
i

)
bi(1−b)q−i

= 1−∑
i≤m

(
q
i

)(
bi(1−b)q−i−ai(1−a)q−i) (5)

1 A proof of this result can be found in [12] asymptotically, where it is implicitly assumed that
supp(P0) = supp(P1). The general case is treated in [2].
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which is expressed as the concrete expression for computing the advantage of the best
distinguisher. It might be assumed that this bound only works when the adversary’s
responses are independent, but we will show in Theorem 6 that it is true even if the
adversary’s responses are not independent, the only difference is an additive factor of
2qε. In fact, the adversary may decide to answer identically to all challenges or decide
to respond to the following challenge as a function of the previous response. The funda-
mental question is that whether she gains anything by following this approach. What we
prove is that she gains an additive factor of 2qε which can be made arbitrary small for
constant values of m and q (see 3.1). The effect of ε would be canceled out in the case
of statistical soundness when proof systems are of interest since the prover is supposed
to be computationally unbounded.

A theorem by Hoeffding [16] called Chernoff-Hoeffding theorem gives an upper
bound on the probability of the addition of q identically independent Boolean random
variables referred to as Chernoff-Hoeffding bound which can be used as a bound in our
distinguishing game.

Theorem 3. (Chernoff-Hoeffding Theorem) Let {X1, . . . ,Xq} ∈ {0,1}q be q identi-
cally independent random variables with E[Xi] = a, for (1 ≤ i ≤ q). Then, for ∀b > a,
we have

Pr

[
1
q

q

∑
i=1

Xi ≥ b

]
≤
((a

b

)b
(

1−a
1−b

)1−b
)q

= 2−qD(b‖a)

where D(b‖a) is the Kullback-Leibler divergence of Boolean random variables of ex-
pected values b and a.

As another representation, we can rewrite the Chernoff-Hoeffding bound as

q

∑
i=�bq�

(
q
i

)
ai(1−a)q−i ≤ 2−qD(b‖a)

Using the above representation of Chernoff-Hoeffding bound, we obtain

1−Advq ≤ 2
−qD

(
m
q ‖a

)
+ 2
−qD

(
m
q ‖b

)
(6)

We will compare these bounds in section 3.2.

3.1 Soundness Amplification

As an application to the distinguisher in section 3, we consider interactive argument
protocols. In fact, we analyze the sequential composition of interactive arguments where
the algorithm repeats q times sequentially and if the number of successes is more than
a specific threshold, the protocol outputs accept otherwise reject. First, we define the
notion of proof and argument systems.

Definition 4. Given a language L over an alphabet Z, an interactive proof system (resp.
a computationally proof system or an argument) for L is a pair (P ,V ) of interactive
machines, where P is computationally unbounded (resp. P is computationally bounded)
and V is polynomial-time such that there exist a polynomial P and a,b, where 0≤ b <
a≤ 1 and
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• Termination: for any x,ω,rP ,rV , the total complexity of V (until termination) in
P (ω;rP ) x↔ V (rV ) is bounded by P(|x|), where x is the security parameter.
• a-completeness: for any x ∈ L, there exists a string ω, such that

Pr
rP ,rV

(
OutV (P (ω;rP ) x↔ V (rV )) = accept

)
≥ a(|x|)

• b-statistical soundness (resp. b-computational soundness): for any x /∈ L and any
computationally unbounded (resp. polynomial-time) interactive machine P �

Pr
rP ,rV

(
OutV (P �(rP ) x↔ V (rV )) = accept

)
≤ b(|x|)

Given an interactive proof system (P ,V ) for L which is a-complete and b-sound, we
define a new proof system (P q,V q

m) with threshold m as follows

• P q (resp. V q
m) simulates P (resp. V ), but have no terminal message until q(|x|)

sequential iterations with the same input x are made.
• after an iteration completes, they restart the entire protocol with fresh random

coins.
• V q

m accepts if at least m(|x|) iterations of V are accepted out of q(|x|).
We use the following Lemma to prove our main theorem.

Lemma 5. Assume that (P ,V ) is a b-sound argument for L. Given q and ε such that
qε−1 is polynomially bounded in terms of |x|, we consider (P q,V q

m) and a polynomially
bounded malicious P �. For I ⊆ {1, . . . ,q} we let pI be the probability that P � succeeds
in every iteration i for i ∈ I. Given J ⊆ {1, . . . , i− 1} and I = J ∪{i}, we have pI ≤
max(bpJ,ε).

More precisely, if for some I this inequality is not satisfied, then there is a malicious
prover for (P ,V ) with complexity qε−1 times the one by P � to break b-soundness.

Proof. If pJ ≤ ε, the result is clear since pI ≤ pJ . Otherwise, we have pJ > ε. We
construct a malicious prover for (P ,V ) who simply simulates i− 1 iterations for the
verifier to P �. It repeats the simulation until every iteration j for j ∈ J succeeds. The
number of iterations is expected to be p−1

J which is dominated by ε−1. Then it runs
an extra simulation with the real verifier in the (P ,V ) protocol. The complexity of
this malicious prover is bounded by qε−1 which is a polynomial. So, it is polynomially
bounded and the probability that the last iteration succeeds is bounded by b. Clearly, this
is the conditional probability of success given that every iteration j for j ∈ J succeeds.
Hence, pI ≤ bpJ . ��
Using this lemma, we prove that soundness amplification in the threshold case behaves
as expected for statistical soundness in proof systems. Furthermore, there is only a small
gap between the expected value in statistical soundness and computational soundness
when the number of repetitions is logarithmic.

Theorem 6. For any computationally sound proof system (P ,V ) and for a language L
and any q,m and ε such that qε−1 is polynomially bounded in terms of |x|, we consider
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(P q,V q
m) with threshold m. If (P ,V ) is a-complete and b-sound, then (P q,V q

m) is a′-
complete and b′-sound where

a′ =
q

∑
i=m

(
q
i

)
ai(1−a)q−i and b′ =

q

∑
i=m

(
q
i

)
bi(1−b)q−i + 2qε

and the time reduction factor is of qε−1.

Note that if we know bq < m < aq and if we consider the optimal m by equation (4), the
above theorem shows that the completeness of the protocol increases and the soundness
probability of the protocol declines by q iterations. Since the reduction factor is qε−1,
for constants m and q, the value ε can be fixed to an arbitrary low constant, so we
achieve

b′ =
q

∑
i=m

(
q
i

)
bi(1−b)q−i

More generally, let ε = |x|−c, where c is a constant and set m to equation (4) and q be
logarithmic in terms of |x|, hence we obtain a′ = 1−O(|x|−α) and b′ = O

(|x|−β) with
polynomial reduction factor. We conclude that with a logarithmic number of repetitions
we can make a′,b′ tend toward 1 and 0 respectively at a polynomial speed.

Proof. The proof for the a′-completeness is trivial using binomial distribution and con-
sidering that repetitions are independent. For b′-soundness the prover may decide to
evaluate iterations dependently. In fact, we show that even if the prover does not con-
sider each iteration independently, he may not achieve anything better than responding
to each iteration independently except with a gap of 2qε. We define pI as in the Lemma
5. Let Xj be a 0 or 1 random variable associated with the success of a malicious protocol
P � in the jth iteration. We define px1...xi to be a pattern probability in i iterations as

px1...xi = Pr

[
i∧

j=1

Xj = x j

]

and T as a random variable enumerating the number of times P � passes the protocol
and P = Pr(T ≥ m). Note that px can be recursively defined from the set of pI’s, then
P can be computed. Due to Lemma 5, pI’s are subject to inequalities. We define an
arbitrary ε > 0 and we first show that P is lower than a new P called P′ defined by a
set of p′I’s, where the inequalities in the Lemma 5 are replaced by equalities. Next, we
show that for this new set of pI’s we have

P≤ ∑
i≥m

(
q
i

)
bi(1−b)q−i + 2qε

to obtain b′-soundness.
For the first step, we use a rewriting procedure on the set of pI’s. In the same time we

verify that the new set is still consistent with the law of probabilities, with the inequali-
ties from the Lemma 5, and that P only increases. By iterating the rewriting procedure
we eventually obtain a new set of pI’s satisfying pI = max(bpJ,ε) for all I = J ∪{i}
with i > maxJ. The rewriting procedure works as follows.
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Initially, we identify I = J ∪ {i} with i > maxJ, such that pI < max(bpJ,ε), then
for any K ⊆ {i + 1, . . . ,q}, we have p′I∪K = (1− λ)pI∪K + λpJ∪K with λ such that

p′I = max(bp′J,ε). Subsequently, we get λ = max(bpJ ,ε)−pI
pJ−pI

. All other pJ’s are left un-
changed. This is equivalent to rewriting p′x0y = (1−λ)px0y and p′x1y = px1y + λpx0y for

x ∈ {0,1}i−1 such that x j = 1 for all j ∈ I. It can be shown that p′ only updates a sub-
tree starting at position I such that p′I = max(bp′J,ε). Ultimately, all the equalities are
reached. To check

∑
x:x1+···+xq≥m

px ≤ ∑
x:x1+···+xq≥m

p′x

we split the sum depending on x:

• for the set of y in which y j = 0 for some j ∈ J, we observe p′y = py.
• for the set of y of the form y = xβz with the cumulated weight of x and z be at least m

and x j = 1 for all j ∈ J, we group by the same x and z, since p′x0z + p′x1z = px0z + px1z.
• for the set of y of the form y = x1z with the weight m and x j = 1 for all j ∈ J, we

observe that p′x1z ≥ px1z.

We now assume that the pI’s satisfy pI = max(bpJ,ε) for all I = J∪{i} with i > maxJ
and we want to upper bound P′. Clearly, we have p′I = max(b#I,ε). When turned into
p′x’s we have

p′x =

⎧⎨
⎩

bw(x)(1−b)q−w(x) if w(x) ≤ τ
ε(1−b)q−w(x) if w(x) > τ and xq−w(x)+τ+1 = · · ·= xq = 1
0 otherwise

for all I, where w(x) = x1 + · · ·+ xq and τ =
⌊

lnε
lnb

⌋
. We have

P′ = ∑
x:w(x)≥m

p′x

= ∑
x:m≤w(x)≤τ

p′x + ∑
x:w(x)>τ

p′x

≤ ∑
i≥m

(
q
i

)
bi(1−b)q−i + ε ∑

x:w(x)>τ
1xq−w(x)+τ+1=···=xq=1(1−b)q−w(x)

= ∑
i≥m

(
q
i

)
bi(1−b)q−i + ε ∑

x:w(x)>τ

(
q−w(x)+ τ

τ

)
(1−b)q−w(x)

≤ ∑
i≥m

(
q
i

)
bi(1−b)q−i + 2qε

�

3.2 Application to Weakly Verifiable Puzzles

A weakly verifiable puzzle protocol is a game P = (D,R) between a solver and a ver-
ifier consisting of a set of distributions D = {D1, ...,Dk} of cardinality k (the security
parameter) which are defined on pairs (pi,ci) [8]. In fact, pi is called a puzzle which is
associated with a challenge from the verifier being sent to the solver and we refer to ci

as the check string. The second component is a relation R[(p,c),r] where r is a string
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of a fixed length, which can be assumed as the solver’s response. The verifier is aware
of pi and ci and so he can inspect the response r of the solver. If R[(p,c),r] holds, we
say that the solver passes, otherwise we say that he fails. We define a direct product for
P. That is, since q and m ∈ [0,q], we define Pq

m = (D⊗q,Rq
m), where

Rq
m[((p1, . . . , pq),(c1, . . . ,cq)),r1, . . . ,rq]⇔ #{i ∈ [0,q];R[(pi,ci),ri]} ≥ m

CAPTCHA is an example of such protocols. The prominent issue is to find the best
method to distinguish a human from a program using q attempts2. This can be translated
to a hypothesis testing problem, involved is a random variable accept with an expected
value a (resp. b) associated with hypothesis H0 (resp. H1). We can use the results on
the previous distinguisher with an application to such puzzles. We use the theorem
by Impagliazzo et al. [17] to estimate the total probability of error the threshold-based
distinguisher attains which can be used for the parallel repetition of such protocols. This
was the first bound found on upper bounding the success probability of an adversary in
the parallel composition of weakly verifiable puzzles in the threshold case. They also
introduced a bound for the corresponding probability distribution in [18]. We consider
a pretty good CAPTCHA for which humans pass with probability a = 90% and such
that there exist attacks solving them with probability b = 33%. For instance, we can
consider Gimpy. (see [26,30]).

Theorem 7. (Impagliazzo-Jaiswal-Kabanets 2007,2009) If all malicious algorithms
can pass a challenge with probability at most b, then the probability that a malicious
algorithm passes the challenge at most m times out of q parallel instances is lower than

β = 2e−
(m−bq)2

64q (resp. β = 100q
m−bq e

− (m−bq)2
40q(1−b) ).

Equivalently, if “pass”, b and m are replaced by “fail”, 1−a and q−m respectively, it
leads to the expression that legitimate people succeed less than m times out of q with

probability lower than α = 2e−
(m−aq)2

64q (resp. 100q
aq−me−

(m−aq)2
40qa ). Hence, the advantage of a

distinguisher which distinguishes the legitimate users from malicious programs using
the threshold m can be computed as

1−Advq ≤ α+ β = 2e−
(m−bq)2

64q + 2e−
(m−aq)2

64q (7)

1−Advq ≤ α+ β =
100q

m−bq
e
− (m−bq)2

40q(1−b) +
100q

aq−m
e−

(m−aq)2
40qa (8)

Recently, Jutla in [21,20] improved the above bounds and derived tighter bounds
to the Chernoff bound, but as illustrated in the following table, the results are still
non-relevant in practice. It is because all four bounds still ask for a huge number of
CAPTCHAs which can not be used in real life. Using the same notations, he derived
the follwoing error probabilities in two seperate papers:

1−Advq ≤ 2(q−bq)3

(q−m)2(m−bq)
. e
−( q−m

2 )
(

m−bq
q−bq

)2

+
2(aq)3

m2(aq−m)
. e
−(m

2 )
(

aq−m
aq

)2

(9)

2 Intuitive solution is to ask for many independent challenges.
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1−Advq ≤ 4q2(1−b)2

(m−bq)(q−m)
. e
− (m−bq)2

2q(1−b) +
4a2q2

m((1−b)q−m)
. e−

((1−b)q−m)2
2aq (10)

where bq < min{m,q−1}.
We compare the seven distinct bounds already discussed with the concrete value

extracted in equation (5). As a summary, the table of advantage bounds we already
computed together with the concrete value for the advantage of the distinguisher in
section 3 is depicted in Table 1.

Table 1. [1−Advq] (total error) comparison for 7 distinct bounds with respect to q for a = 90%
and b = 33%, the exact advantage is given by (5)

Parallel Repetition Sequential Repetition
q m IJK07 (7) IJK09 (8) J10 (9) J102 (10) asymptotic (3) concrete (5) Chernoff (6)
1 0 > 1 > 1 N/A N/A 0.803 0.430 1.606
3 1 > 1 > 1 > 1 > 1 0.517 0.283 1.035
4 2 > 1 > 1 > 1 > 1 0.415 0.160 0.831
5 3 > 1 > 1 > 1 > 1 0.333 0.125 0.667
7 4 > 1 > 1 > 1 > 1 0.215 0.069 0.430

100 65 > 1 > 1 > 1 > 1 2−31.68 2−34.95 2−30.68

5000 3273 0.019 0.095 ≈ 0 > 1 ≈ 0 ≈ 0 ≈ 0

As the figures represent, for all the range of q the asymptotic value is the closest one
to the concrete value. Clearly, solving 4 CAPTCHAs in at most 7 sequential attempts
provides an error probability below 10% using parameters a = 90% and b = 33%. “(7),
(8) bounds are quite weak when applied to concrete problems such as actual CAPTCHA
protocol with reasonable numbers of repetitions” [17,18], which can be verified by the
result in the table above. Although we are comparing sequential with parallel composi-
tion, it makes more sense to ask for 7 CAPTCHAs attempts sequentially than requiring
to solve 5000 CAPTCHAs (as (7) bound recommends) at the same time. It still remains
an open problem to find a better bound which works for the case of parallel repetition.
Moreover, from the above table the value of the concrete error is always less than the
asymptotic value which is the implication of Theorem 8.

4 Useful Bounds

In this section, we derive two bounds which we use one in the ongoing section and
one which argues that the total error probability in the general case is bounded by its
asymptotic value and as was shown in the example in section 3.2, this provides a better
bound than (6).

Theorem 8. Let Z be a finite set and P0 and P1 be two distributions with support of
union Z and intersection Z ′. Let BestAdvq(P0,P1) be the best advantage for distin-
guishing P0 from P1 using q samples. We have

1−BestAdvq ≤ 2−qC(P0,P1)
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This result yields an upper bound on the probability of error of the best distinguisher.
In fact, this result can be verified by the comparison between the concrete value of the
error and asymptotic bound derived above.

Proof. Using (1), we have

1−BestAdvq(P0,P1) = ∑
zq

Pr[zq|P0]>Pr[zq|P1]

Pr[zq|P1]+ ∑
zq

Pr[zq|P0]<Pr[zq|P1]

Pr[zq|P0]

= ∑
zq∈Z′q

min(Pr[zq|P0],Pr[zq|P1])

Since for ∀a,b > 0 : min(a,b)≤ a1−λbλ and 0≤ λ≤ 1, we have

1−BestAdvq(P0,P1) ≤ inf
0<λ<1

∑
zq∈Z′q

Pr[zq|P0]1−λ Pr[zq|P1]λ

= inf
0<λ<1

∑
zq∈Z′q

q

∏
i=1

P0[zi]1−λP1[zi]λ

= inf
0<λ<1

(
∑

z∈Z′
P0

1−λ[z]P1
λ[z]

)q

= 2−qC(P0,P1)

�

Theorem 9. Let P0 and P1 be distributions of support Z, We have

1
8 ∑

x∈Z
P0[x]

(
P1[x]−P0[x]

max(P0[x],P1[x])

)2

≤ 1−2−C(P0,P1)≤ 1
8 ∑

x∈Z
P0[x]

(
P1[x]−P0[x]

min(P0[x],P1[x])

)2

As a result, for P0 be the uniform distribution over a domain of size N, since P0[x]−
‖P1−P0‖2 ≤ P1[x]≤ P0[x]+‖P1−P0‖2, we can rewrite the bound as

1
8

N ‖P1−P0‖2
2

(1 + N ‖P1−P0‖2)2 ≤ 1−2−C(P0,P1) ≤ 1
8

N ‖P1−P0‖2
2

(1−N ‖P1−P0‖2)2

where ‖P0−P1‖ states the Euclidean distance between distribution P0,P1.

Proof. Let λ be such that

F(λ) = ∑
x∈Z

P0[x]1−λP1[x]λ

and let P1[x] = P0[x](1 + εx) with εx ≤ Bx, where Bx = 1
P0[x] −1, We have

F(λ) = ∑
x∈Z

P0[x](1 + εx)λ

Thanks to the Taylor Theorem, for any ε there exists θ ∈ [0,1], such that

(1 + ε)λ− (1 + λε) =
λ(λ−1)

2
ε2(1 + θε)λ−2



Distinguishing Distributions Using Chernoff Information 157

Since ∑
x

P0[x](1 + λεx) = 1, we obtain

1−F(λ) = λ(1−λ)
2 ∑

x
P0[x]ε2

x(1 + θxεx)λ−2

= λ(1−λ)
2 ∑

x
P0[x]

(P1[x]−P0[x])2

P0[x]2
(1 + θxεx)λ−2

If εx≥ 0, then (1+θxεx)λ−2≤ 1 and P0[x]≤P1[x]. Otherwise, (1+θxεx)λ−2≤
(

P0[x]
P1[x]

)2

and P1[x]≤ P0[x]. Ultimately,

1− inf
0<λ<1

F(λ)≤ 1
8 ∑

x∈Z
P0[x]

(
P1[x]−P0[x]

min(P0[x],P1[x])

)2

The other inequality can be shown similarly. ��

5 Multi-session Leftover-Hash Lemma

Let X be a random variable over a finite set Z, the minimum entropy of X is defined as

H∞[X ] =− log(max
x

Pr[X = z])

The Rényi entropy [29] of order α, where α≥ 0, is defined as

Hα[X ] =
1

1−α
log(∑

x
Pr[X = z]α)

Notice that 2−H2[X ] is the collision probability and 2−H2[X ] ≤ 2−H∞[X ] .
If X is a random variable over a set Z of order N, the square of Euclidean dis-

tance between the distribution of X called P1[X ] and the uniform distribution P0[X ]
can be expressed as ‖P1[X ]−P0[X ]‖2

2 = 2−H2[X ]− 1
N . Let d(P1,P0) be the statistical

distance between the distribution P1 and the uniform distribution P0, the expression
d(P1[X ],P0[X ])≤√N‖P1[X ],P0[X ]‖2 shows the link between statistical and Euclidean
distance of distributions.

Definition 10. Let H = {HN} : D→ {0,1}m be a family of functions, where N ∈ N .
HN is a universal hash function if for any x,y ∈ {0,1}m such that x �= y, we have

Pr(HN [x] = HN [y]) = 2−m

where N is uniformly distributed.

Lemma 11. (Leftover Hash Lemma [19]: Impagliazzo-Levin-Luby 1989) If h is a
universal hash function with a range of size 2m and X ,N,U are independent random
variables where N,U are uniformly distributed and m ≤ H∞[X ]−2log 1

ε , then the dis-
tributions of (hN [X ],N) and (U,N) are ε-indistinguishable.
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Proof. We define P0 and P1 as two distributions and compute the Euclidean distance

‖P1−P2‖2 = ∑
k,n

(
Pr

X ,N
[hn[X ] = k,N = n]− 1

2m#N

)2

= 1
(#N )2 ∑

k,n

Pr
X ,X ′

[hn[X ]

= hn[X ′] = k]− 1
2m#N

= 1
#N ∑

x,x′
Pr[X = x,X ′ = x′,hN [x] = hN [x′]]− 1

2m#N

= 1−2−m

#N ∑
x

Pr[X = x]2

≤ 1−2−m

#N 2−H∞[X ] ≤ 1
2m#N ε2

Applying the link between the statistical distance and Euclidean distance, we obtain
d(P1,P2)≤ ε. ��
We recall an application of the above Lemma in ElGamal encryption from Boneh [7].
Let 〈g〉 be a subgroup generated by some g of prime order q in Z∗p. Consider a scenario
in which party A encrypts a message m using the party B’s public key e. A picks a
random value r ∈Z∗q and computes the pair Enc[e,m;r] = (gr,mer) = (c1,c2) and sends
it to B. At the other end based on the fact that er = cd

1 where d is B’s private key (secret
key), B decrypts the message by computing Dec[d,(c1,c2)] = m = c2/(c1)d .

Key recovery in ElGamal encryption is equivalent to the discrete logarithm prob-
lem, likewise, the decryption is equivalent to Diffie-Hellman problem [7]. On the other
hand, ElGamal is not a semantically secure cryptosystem, because q| (p−1)

2 and so

g
p−1

2 = 1. Let ( a
b ) be the Legendre symbol for integers a and b, then ( g

p) = 1. We deduce

that (mer

p ) = (m
p ). So, if for b = {0,1} : (mb

p ) = (−1)b, a distinguisher can distinguish
Enc[e,m0;r] and Enc[e,m1;r] with advantage 1.

We define a scheme based on ElGamal encryption which is argued to be (εDDH + ε)-
IND-CPA secure. Let 〈g〉 be a group generated by some g of prime order q. Following
a similar approach as ElGamal, define the triple Enc[e,m;N,r] = (gr,m⊕hN [er],N) =
(c′1,c

′
2,N) where r ∈ Z∗q and N is uniformly distributed. Similarly, A sends this triple to

B and B decrypts it using Dec[d,(c′1,c
′
2,N)] = c′2⊕hN [c′d1 ].

Due to the Decisional Diffie-Hellman assumption [7], we have (g,gr,m⊕hN [er],N)
is εDDH-indistinguishable from (g,gr,m⊕hN [gr′ ],N). According to Lemma 11, we have
(g,gr,m⊕hN [gr′ ],N) is ε-indistinguishable from (g,gr,m⊕U,N), where U is the uni-
form distribution. Furthermore, (g,gr,m⊕U,N) is perfectly indistinguishable from
(g,gr,U,N). Consequently, (g,gr,m⊕ hN [er],N) is (εDDH + ε)-indistinguishable from
something independent from m which leads the scheme to be (εDDH + ε)-IND-CPA
secure.

As another application to the Lemma 11, consider the Diffie-Hellman key exchange
protocol. Let 〈g〉 be a group generated by some g of prime order q. In a key exchange
between two parties A and B, the party A picks a random x ∈ Z∗q and computes X ← gx

and sends it to B. The party B aborts if X /∈ 〈g〉\{1}, otherwise he picks a random value
y ∈ Z∗q and computes Y ← gy and sends it to A. The party A aborts if Y /∈ 〈g〉\{1},
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otherwise Kses = gxy is computed and is shared between two parties as their session
key. Since Z∗q is cyclic, Kses is a uniformly distributed non-neutral element of 〈g〉 (even
locally under active attacks). Assume a non-ambiguous representation format for values
which may be in 〈g〉 or not

Pr(Kses = x) =

⎧⎨
⎩

1
q−1 x ∈ 〈g〉\{1}

0 otherwise

Thus, H∞[Kses] = log(q−1). Now, consider the protocol that exchanges a random
number N and derives the key K = hN [Kses]. Let ε =

√
2m/(q−1) by Leftover Hash

Lemma, K is indistinguishable from a random key. Moreover, a protocol using n such
key generations is nε-indistinguishable from the same protocol where K is truly random
(thanks to the hybrid arguments) implying that it is safe to generate the key n times using
the same protocol until n is of order

√
q.2−m. This result is originating from the trivial

bound, which can be improved employing a Multi-Sample Leftover Hash Lemma.

Lemma 12. (Multi-Sample Leftover Hash Lemma) Assume h is a universal hash func-
tion with a range of size 2m and key space N . Let N ∈U N and U ∈U {0,1}m and X be
independent random variables. If ε =

√
(2m−1)2−H2[X ] and ε′ = ε

√
2m#N , the best

advantage for distinguishing (hN [X ],N) from (U,N) using n samples is such that

1−BestAdvn
�

= 2−nC

where C is bounded by − log
(

1− ε2

8(1+ε′)2

)
≤ C≤− log

(
1− ε2

8(1−ε′)2

)
.

Although this result is not so precise, it already suggests that we can find a better
bound. In the above example, we have H2(X) = log(q− 1). Therefore, if we take
ε =

√
(2m−1)/(q−1) and #N � q.2−2m, we obtain that the minimal n for distin-

guishing is at least within the order of magnitude of ε−2 which is q.2−m.

Proof. Let P0,P1 be two distributions, we proved in Lemma 11 that ‖P1−P0‖2
2 =

2−H2[X ](1−2−m)/#N , where the domain size is 2m#N . Deploying Theorem 9, we get

1−2−C(P0,P1) ≤ (2m−1)2−H2[X ]

8
(

1−
√

(2m−1)2m−H2[X ]#N
)2

= ε2

8(1−ε′)2

Similar procedure can be shown for the lower bound. ��
It has been shown that the min-entropy H∞(X) = m+ 2log( 1

ε )+ 2logn suffices for the
joint distribution to be ε-close to the uniform distribution (see [10,19,31]). Furthermore,
recently Chung et al. [11] improved the previous bound by reducing 2 logn to logn and
they proved that it is optimal for 2-universal hashing by using Hellinger distance to
evaluate the error accumulation over each hashed instance. In fact they showed that

ε =
√

n
q.2−m

Therefore, the minimal n for distinguishing efficiently is of magnitude q.2−m which
is the same bound we found by another approach, that is Chernoff Information and
asymptotic q-limited distinguisher.
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6 Conclusion

We mentioned various applications of distinguishers in cryptography. We evaluated
their efficiency using the Chernoff Information. We revisited the interactive argument
systems and relying on sequential repetition, we derived new bounds for the soundness
property of such protocols (computational soundness) even in the case of dependent re-
sponses. Moreover, we compared seven distinct bounds for the error probability of the
best distinguisher in weakly verifiable puzzle protocols when q samples are given. We
introduced an application to the Leftover Hash Lemma and by introducing the Multi-
Sample Leftover Hash Lemma we derived the same optimal bound as [11] with another
approach (Chernoff Information) when the number of iterations is more than unity.
We specified the number of samples to obtain a significant advantage in block ciphers
cryptanalysis using Chernoff Information approach.
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A Iterative Attacks on Block Ciphers

We now apply the results regarding simple hypothesis testing to block cipher analysis.
We consider a statistical distinguisher who has access to an oracle implementing either
an instance c of a block cipher C or an instance c of C�, a theoretical ideal scheme
(sometimes called the perfect cipher) which corresponds to the set of all possible per-
mutations over the same text space as C. Viewing both C and C� as sets of permutations,
the objective of the distinguisher is to choose between the hypotheses3 H0 : c ∈ C� and
H1 : c ∈ C.

3 Note that the fact that the hypotheses are not disjoint is not a problem here, since all our
previous results hold in that case too.
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Oracle: a permutation c
1: for i from 1 to q do
2: pick (X1, . . . ,Xd) according to the distribution D
3: for all 1≤ j ≤ d, query the oracle for Yj = c(Xj)
4: set Zi = h(X1, . . . ,Xd ,Y1, . . . ,Yd)
5: end for
6: return A�(Z1, . . .Zq)

Fig. 1. A q-limited iterative h-distinguisher of order d

Most statistical distinguishers against block ciphers can be seen as q-limited itera-
tive h-distinguishers of order d given some parameters q,h,d. These distinguishers are
formalized in Figure 1. At each of the q iterations, the d-tuple (X1, . . . ,Xd) is chosen
according to a certain distribution D. The function h returns at each iteration a value in
a finite set Z. Under a hypothesis similar to that of the hypothesis of stochastic equiv-
alence [23], we can assume that the Zi’s follow a distribution P0 under hypothesis H0

(when c is an instance of the perfect cipher) or a distribution P1 under hypothesis H1

(when c is an instance of the block cipher considered). The two hypotheses can be refor-
mulated as H0 : P = P0 and H1 : P = P1, where P is the distribution according to which
the Zi’s are sampled. Letting A� be the best distinguisher between P0 and P1, the iter-
ated distinguisher finally outputs A�(Zq). From Theorem 2 we know that its advantage
Advq to distinguish H0 from H1 (i.e., the block cipher C from the perfect cipher C�)
verifies 1−Advq(H0,H1) = 1−BestAdvq(P0,P1)

�

= 2−qC(P0,P1). This result verifies
asymptotically that having access to

q≈ 1
C(P0,P1)

(11)

samples derived from the plaintext/ciphertext pairs allows to distinguish C from C� with
a significant advantage. As an illustration, we propose to revisit various classical iter-
ated distinguishers, compute their complexity based on (11) and derive their strategy
from that of A�. We focus on the case of differential distinguishers, impossible differ-
entials and linear distinguishers. We attain estimate on q which are similar as in [6].
(see equations (15), (16) and (17)).

In the current application, the two distributions P0 and P1 are very close. In that
case, it is possible to derive an approximation of the Chernoff Information that is easier
to deal with. More formally, considering the case where both distributions are of full
support and letting εz = (P1[z]−P0[z])/P0[z] be such that εz = o(1) for all z ∈ Z, then
it can be shown (see [2, p.50]) that C(P0,P1) = 1

8 ln2 ∑
z

P0[z]ε2
z + o(‖ε‖2

2), where ε =

(εz)z∈Z . Approximating the Chernoff Information by the right-hand side of the previous
equation leads to

C(P0,P1)≈ 1
8ln2 ∑

z∈Z

(P1[z]−P0[z])2

P0[z]
. (12)

A.1 Differential Distinguishers

Differential distinguishers [5] are iterated h-distinguishers of order d = 2 in which
h(x1,x2,y1,y2) = y1⊕ y2 and for which the distribution D is such that X1 is chosen
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uniformly at random and X2 = X1⊕a for some fixed a. Typically, we expect the func-
tion h(X1,X2,Y1,Y2) = Y1⊕Y2 to be biased under H1 and uniformly distributed under
H0. Under H1, we expect in practice for a well chosen b to have Y1⊕Y2 = b with proba-
bility p and Y1⊕Y2 = b′ �= b with probability 1−p

n−1 , where n is the cardinality of the text

space, such that4 1
n = o(p) and p = o(1). Accordingly, we have that P0 is the uniform

distribution and that

P1[z] =

{
p when z = b,
1−p
n−1 = β when z �= b

(13)

Under these notations, we now evaluate C(P0,P1) to approximate the number of plain-
text/ciphertext pairs required by a differential distinguisher to choose between C and C�

with a significant advantage. Letting

C(P0,P1) =− inf
0<λ<1

logF(λ)

where F(λ) = ∑
z

P0[z]1−λP1[z]λ, we have

F(λ) =
p

(np)λ +
1− p

(nβ)λ

We also have F(0) = F(1) = 1 and F ′(0)≤ 0, so that we know that F is minimum for
a λ0 such that F ′(λ0) = 0. We get

λ0 =
ln

(
p ln(np)

(1−p) ln 1−1/n
1−p

)

ln
(

np 1−1/n
1−p

) ∼ ln ln(np)
ln(np)

(14)

Consequently, (np)λ0 ∼ ln(np) and (nβ)λ0 = 1 + o(p) and thus F(λ0) = 1− p + o(p).
The Chernoff Information verifies C(P0,P1) = − logF(λ0) ∼ p

ln2 . We conclude from
(11) that a differential distinguisher approximately needs

q≈ ln2
p

(15)

samples to achieve a significant advantage.
It is also possible to find the practical (and optimal) strategy of a differential dis-

tinguisher. We know that the best distinguisher A� should yield 1 iff D(PZq‖P1) ≤
D(PZq‖P0) (see (2)). Since this is equivalent to yielding 1 when

2q(D(PZq‖P1)−D(PZq‖P0)) ≤ 1

and also

D(PZq‖P1)−D(PZq‖P0) = ∑
z

PZq [z] log
P0[z]
P1[z]

=
1
q

log
(β/p)nb

(nβ)q

4 These assumptions simply express the fact that we expect p to be small (otherwise the cipher
would be trivial to break), but much larger than 1

n (otherwise the cipher would be impossible
to break for the chosen a and b).
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nb denotes the number of times, where Y1⊕Y2 = b. The optimal strategy is to output 1
when nb

q ≥ ln(nβ)
ln(β/p) ∼ p

ln(np) . Since we take q≈ ln2
p , this condition is equivalent to nb > 0.

Subsequently, we can formalize a differential distinguisher as in Figure 2.

Oracle: a permutation c
for i from 1 to q do

pick a uniformly distributed random X
query the oracle for c(X) and c(X⊕a)
if c(X ⊕a)⊕c(X) = b, output 1 and stop

end for
output 0

Fig. 2. A differential distinguisher based on the input difference a and output difference b

A.2 Impossible Differential

The scenario is similar to that considered in the case of differential distinguishers, ex-
cept that the particular difference b in the ciphertexts can never occur under H1, i.e., we
have p = 0. Using the same notations as in Section A.1, we now have F(λ) = (1−1/n)λ

and so C(P0,P1) =− log(1−1/n)∼ 1
n ln2 . Using (11) we conclude that an iterative dis-

tinguisher based on an impossible differential requires

q≈ n ln2 (16)

samples to reach a significant advantage. It is easy to see that this distinguisher should
output 1 iff nb = 0.

A.3 Linear Distinguisher

Linear distinguishers [25] are iterated h-distinguishers of order d = 1 where h(x,y) =
a · x⊕ b · y ∈ {0,1} (where · denotes the bit-wise xor) for some fixed input mask a
and output mask b and for which the distribution D is the uniform distribution. We
expect h(x,y) to be biased under H1 and uniformly distributed under H0, so that P0 is
assumed to be uniform and P±1 is such that P±1 [0] = 1

2(1∓ ε) and P±1 [1] = 1
2 (1± ε) for

some positive real value ε. In this case, we have a composite hypothesis testing problem
H0 : P = P0 and H1 : P∈ {P+

1 ,P−1 }. In such a case (see [2]), we have a best distinguisher
which its acceptance region and advantage can be specified by

Π� = {P : min
1≤i≤k

D(P‖Pi)≤ D(P‖P0)} 1−BestAdvq(P0,D) .= max
1≤i≤k

2−qC(P0,Pi)

Assuming that ε = o(1), we have from (12) that C(P0,P
±
1 ) ≈ ε2

8 ln2 from which we
conclude (using (11)) that a linear distinguisher requires



Distinguishing Distributions Using Chernoff Information 165

q≈ 8ln2
ε2 (17)

samples to reach a non-negligible advantage. It is easy to see that this linear distin-

guisher should output 1 iff
∣∣∣2 n0

q −1
∣∣∣≥ |ε|2 (where n0 denotes the number of 0’s in the

Zi’s), so that we can formalize a linear distinguisher as in Figure 3.

Oracle: a permutation c
initialize a counter m to 0
for i from 1 to q do

pick a uniformly distributed random X
query the oracle for c(X)
if a ·X = b ·c(X), increment the counter m

end for
output 1 if

∣∣∣2 m
q −1

∣∣∣≥ |ε|2 , otherwise output 0.

Fig. 3. A linear distinguisher based on the input mask a and output mask b


	Distinguishing Distributions Using Chernoff Information
	Introduction
	Preliminaries
	Application to Boolean Cases
	Soundness Amplification
	Application to Weakly Verifiable Puzzles

	Useful Bounds
	Multi-session Leftover-Hash Lemma
	Conclusion
	Iterative Attacks on Block Ciphers
	Differential Distinguishers
	Impossible Differential
	Linear Distinguisher




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




