
Improved Zero-Knowledge Identification with

Lattices

Pierre-Louis Cayrel1, Richard Lindner2, Markus Rückert2,
and Rosemberg Silva3,�

1 CASED – Center for Advanced Security Research Darmstadt,
Mornewegstrasse, 32, 64293 Darmstadt, Germany

pierre-louis.cayrel@cased.de
2 Technische Universität Darmstadt, Fachbereich Informatik,

Kryptographie und Computeralgebra, Hochschulstraße 10,
64289 Darmstadt, Germany

{rlindner,rueckert}@cdc.informatik.tu-darmstadt.de
3 State University of Campinas (UNICAMP), Institute of Computing,

P.O. Box 6176, 13084-971 Campinas, Brazil
rasilva@ic.unicamp.br

Abstract. Zero-knowledge identification schemes solve the problem of
authenticating one party to another via an insecure channel without
disclosing any additional information that might be used by an imper-
sonator. In this paper we propose a scheme whose security relies on the
existence of a commitment scheme and on the hardness of worst-case lat-
tice problems. We adapt a code-based identification scheme devised by
Cayrel and Véron, which constitutes an improvement of Stern’s construc-
tion. Our solution sports analogous improvements over the lattice adap-
tion of Stern’s scheme which Kawachi et al. presented at ASIACRYPT
2008. Specifically, due to a smaller cheating probability close to 1/2 and a
similar communication cost, any desired level of security will be achieved
in fewer rounds. Compared to Lyubashevsky’s scheme presented at ASI-
ACRYPT 2009, our proposal, like Kawachi’s, offers a much milder secu-
rity assumption: namely, the hardness of SIS for trinary solutions. The
same assumption was used for the SWIFFT hash function, which is se-
cure for much smaller parameters than those proposed by Lyubashevsky.

Keywords: Lattice-based cryptography, identification scheme, hash
function, SIS problem, zero-knowledge.

1 Introduction

One of the main objectives in cryptography is to provide means of access control,
and identification (ID) schemes are typically applied in order to reach this goal.
These schemes describe interactive protocols between a designated prover and

� Supported by The State of São Paulo Research Foundation under grant 2008/
07949-8.

S.-H. Heng and K. Kurosawa (Eds.): ProvSec 2010, LNCS 6402, pp. 1–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 P.-L. Cayrel et al.

verifier with the purpose of demonstrating that the prover knows a secret that
is associated with his identity. In zero-knowledge schemes, no information about
this secret is revealed, except the fact that the prover knows it. Besides, using
hard lattice problems as security basis allows for very mild assumptions in the
sense that they are worst-case instead of average-case and provide resistance
against quantum adversaries.

There is an efficient generic construction due to Fiat and Shamir that trans-
forms any ID scheme into a signature scheme, in the random oracle model [7].
Therefore, having an efficient ID solution from lattices gives rise to a similarly
efficient signature construction, keeping the same hardness assumption. One of
the main hardness assumption for ID schemes based on lattices is the short in-
teger solution (SIS) problem. One is given an average case instance A ∈ Z

n×m
q ,

m = Ω(n log(n)), and a norm bound b. Then, the task is to find a non-zero vector
v ∈ Z

m such that Av ≡ 0 (mod q) and ‖v‖∞ ≤ b. This is hard to accomplish
as long as there is at least one single n-dimensional lattice, where solving the ap-
proximate shortest vector problem is hard for approximation factors γ ≥ b ·Õ(1).
Hence, it is desirable to build an ID scheme based on SIS with the least possible
norm bound b, which is b = 1.

The most relevant ID schemes based on number theoretic problems, e.g., [7]
and [5], do not resist quantum attacks that use Shor’s algorithm [22]. One of the
first schemes to resist such kind of attack was proposed by Stern [23]. It relies
on the syndrome decoding problem and uses of a 3-pass zero-knowledge proof of
knowledge (ZK-PoK) with a soundness error of 2/3 and perfect completeness.
Recently, Kawachi, Tanaka, and Xagawa [11] were able to change the security as-
sumption of Stern’s scheme to SIS with norm bound 1. With their work, Kawachi
et al. provide a more efficient alternative to Lyubashevsky’s ID scheme [13,16],
which uses a stronger assumption, SIS with norm bound O(n2 log(n)). In con-
trast to typical zero-knowledge schemes, Lyubashevsky’s construction is based
on a witness-indistinguishable (not zero-knowledge) proof of knowledge. Fur-
thermore, it has no soundness error. However, it a completeness error of 1−1/e,
which leads to increased communication costs and the undesirable scenario of
having an honest prover being rejected by the verifier.

In code-based cryptography, there is also the scheme proposed by Cayrel and
Véron [4] that improves the Stern’s scheme by reducing the soundness error to
q/(2(q − 1)) ≈ 1/2. This improvement leads to lower the communication cost,
when comparing both schemes for a given security level. Currently, in terms of
efficiency, there is no practical lattice-based construction that is comparable to
that put forward by Cayrel and Véron.

We propose such a scheme with a soundness error of (q + 1)/2q ≈ 1/2 and
perfect completeness1. It is based on the same efficient version of the SIS prob-
lem that is used by Kawachi et al. or by the SWIFFT compression function [17].
Both the small soundness error and the mild assumption make our scheme more
efficient than previous lattice-based ones. Moreover, by transferring code-based

1 We conjecture that Cayrel and Véron’s scheme has the same soundness error by the
arguments given in Section 3.2.

Improved Zero-Knowledge Identification with Lattices 3

Table 1. Comparison of lattice-based identification schemes

Scheme Secret key Public key Rounds Total communication SIS norm bound
[Kbyte] [Kbyte] [Kbyte]

Lyubashevsky [16] 0,25 2,00 11 110,00 Õ(n2)
Kawachi et al. [11] 0,25 0,06 27 58,67 1

Section 3 0,25 0,06 17 37,50 1

constructions to lattices, we can exploit efficiency improvements using ideal lat-
tices without losing provable security. As a result, our scheme has smaller public
keys and more efficient operations than those associated with the current code-
based ID schemes.

For a comparison with the most recent lattice-based ID schemes, see Table
1, which assumes that the parameters listed in Table 2 are used, and that a
soundness error of 2−16 (one of the values recommended in the norm ISO/IEC
9798) is specified. We computed that Lyubashevky’s scheme takes 11 rounds
to reach a completeness error below 1%, when it is using the most efficient
parameters listed in [14].

The content of this paper is organized as follows. We present the concepts
that are used in the construction of the identification scheme in Section 2, as
well as the original schemes by Stern, Cayrel and Véron, whose key aspects
were combined in the current work. Later, we give a detailed description of the
algorithms that comprise the new scheme, and discuss the decisions that were
made from a performance and security point of view in Section 3. Then, we
analyze potential attacks and show how they affect the choice of parameters in
Section 4.

2 Preliminaries

Notation. We write vectors and matrices in boldface, while one-dimensional
variables such as integers and reals will be regular. All vectors are columnvectors
unless otherwise stated. We use || to signify that multiple inputs of a function
are concatenated. For example, let h : {0, 1}∗ → {0, 1}m be a hash function, and
a,b be vectors, then we write h(a||b) to denote the evaluation of h on some
implicit binary encoding of a concatenated with an implicit encoding of b. For
the scope of this work, the actual encoding used is assumed to be efficient, and
generally not discussed since it has no relevance for the results.

Security Model. We apply in the current work a string commitment scheme in
the trusted setup model, according to which a trusted party honestly sets up the
system parameters for the sender and the receiver.

For security model, we use impersonation under concurrent attacks. This im-
plies that we allow the adversary to play the role of a cheating verifier prior to
impersonation, possibly interacting with many different prover clones concur-
rently. Such clones share the same secret key, but have independent coins and

4 P.-L. Cayrel et al.

keep their own state. As stated in [3], security against this kind of attack implies
security against impersonation under active attack.

In the security proofs along this text we use the concept of zero-knowledge
interactive proof of knowledge system. In such context, an entity called prover P
has as goal to convince a probabilistic polynomial-time (PPT) verifier V that a
given string x belongs to a language L, without revealing any other information.

This kind of proof satisfies three properties:

– Completeness: any true theorem can be proven. That is, ∀x ∈
L Prob [(P, V) [x] = YES] ≥ 1−negligible(k). Where, (P, V) denotes the pro-
tocol describing the interaction between prover and verifier, and negligible(k)
is a negligible function on some security parameter k.

– Soundness: no false theorem can be proven. That is, ∀x /∈
L ∀P ′ Prob [(P ′, V) [x] = YES] ≤ 1/2

– Zero-Knowledge: anything one could learn by listening to P, one
could also have simulated by oneself. That is, ∀V ′

PPT ∃SPPT ∀x ∈
L VIEWP,V ′(x) close to S(x). Where, VIEW represents the distribution
of the transcript of the communication between prover and verifier, and S(x)
represents the distribution of the simulation of such interaction. Depending
on the proximity of VIEWP,V ′(x) and S(x), as defined in [10], one can have:
• Perfect Zero-knowledge: if the distributions produced by the simulator

and the proof protocol are exactly the same.
• Statistical Zero-knowledge: if the statistical difference between the distri-

butions produced by the simulator and the proof protocol is a negligible
function.
• Computational Zero-knowledge: if the distributions produced by the sim-

ulator and the proof protocol are indistinguishable to any efficient algo-
rithm.

Lattices. Lattices are regular pointsets in a finite real vector space. They are
formally defined as discrete additive subgroups of R

m. They are typically rep-
resented by a basis B comprised of n ≤ m linear independent vectors in R

m.
In this case the lattice is the set of all combinations of vectors in B with inte-
gral coefficients, i.e. L = BZ

n. In cryptography, we usually consider exclusively
integral lattices, i.e. subgroups of Z

m.
There are some lattice-based computational problems whose hardness can be

used as security assumption when building cryptographic applications. We will
give definitions of all the problems relevant for this article now. We will use an
unspecified norm in these definition, but for the scope of our article this will
always be the max-norm.

Definition 1 (SVP). Given a lattice basis B ∈ Z
m×n, the shortest vec-

tor problem (SVP) consists in finding a non-zero lattice vector Bx such that
‖Bx‖ ≤ ‖By‖ for any other y ∈ Z

n \ {0}.
SVP admits formulations as approximation, as well as promise (or gap) prob-

lems. For these versions, the hardness can be proved under suitable approxima-
tion factors, such as constants, as seen for example in [19].

Improved Zero-Knowledge Identification with Lattices 5

Definition 2 (SIS). Given a matrix A ∈ Z
n×m
q , the short integer solution

(SIS) problem consists in finding a non-zero vector x ∈ Z
m that satisfies the

equation Ax = 0 (mod q) and that has length ‖x‖ ≤ b.

There are lattice-based cryptographic hash function families for which it can be
shown that breaking a randomly chosen instance is at least as hard as finding
solutions for worst-case instances of lattice problems. In [1] and [2], Ajtai first
showed how to use computationally intractable worst-case lattice problems as
building blocks for cryptosystems. The parameter sizes involved, however, are
not small enough to enable practical implementations.

Using cyclic lattices, Micciancio showed that it is possible to represent a basis,
and thus public keys, with space that grows quasilinearly in the lattice dimen-
sion [18]. Together with Lyubashevsky, he improved this initial result, achieving
compression functions that are both efficient and provably secure assuming the
hardness of worst-case lattice problems for a special type of lattices, namely ideal
lattices [15]. We will talk in more detail about ideal lattices later on.

A variety of hard problems associated with lattices has been used as secu-
rity basis in a number of cryptographic schemes. For example, Lyubashevsky’s
identification scheme is secure under active attacks, assuming the hardness of
approximating SVP in all lattices of dimension n to within a factor of Õ(n2).
By weakening the security assumption, on the other hand, one can achieve pa-
rameters small enough to make a practical implementation feasible, as seen in
the identification scheme proposed by Kawachi et al. in [11]. In this later work,
the authors suggest to use approximate Gap-SVP or SVP within factors Õ(n).

Ideal Lattices. Lattices are additive groups. However, there is a particular class
of lattices that are also closed under (properly defined) ring multiplications.
They correspond to the ideals of some polynomial quotient ring and are defined
below. In the definition, we implicitly identify polynomials with their vector of
coefficients.

Definition 3 (Ideal lattices). Let f be some monic polynomial of degree n.
Then, L is an ideal lattice if it corresponds to an ideal I in the ring Z[x] /〈f〉.
The concept of ideal lattices is very general. So, often lattice classes resulting
from specific choices of f have their own names. For example, f(x) = xn − 1
corresponds to cyclic lattices, and f(x) = xn + 1 to anticyclic lattices. We also
have the class of cyclotomic lattices resulting from all cyclotomic polynomials f .
The later class is the only one relevant for practical applications at the moment.

Whereas, for general lattices of full rank n and entries of bitsize q, one needs
n2 log(q) bits to represent a basis, for ideal lattices only n log(q) bits suffice. This
property addresses one of the major drawbacks usually associated with lattice-
based cryptosystems: the large key sizes. Another good characteristic of the
subclass of cyclotomic lattices is that associated matrix/vector multiplications
can be performed in time O(n log(n)) using discrete FFTs.

Lyubashevsky and Micciancio found that it is possible to restrict both SIS
and SVP to the class of ideal lattices and keep the worst-case to average-case

6 P.-L. Cayrel et al.

connection (for a fixed polynomial f that is irreducible over the integers) discov-
ered by Ajtai. The corresponding problems are denoted with the prefix “Ideal-”.
As is customary, we again identify polynomials with their vectors of coefficients.

Definition 4 (Ideal-SIS). Let f be some monic polynomial of degree n, and
Rf be the ring Z[x]/〈f〉. Given m elements a1, . . . , am ∈ Rf/qRf , the Ideal-SIS
problem consists in finding x1, . . . , xm ∈ Rf such that

∑m
i=1 aixi = 0 (mod q)

and 0 < ‖(x1, . . . , xm)‖ ≤ b.

Switching between the ideal and general lattice setting for schemes based on SIS
happens by replacing the randomly chosen matrix A for the general SIS setting
with

A′ = [a1, a1x, . . . , a1x
n−1|a2, a2x, . . . , a2x

n−1| · · · |am, amx, . . . , amxn−1],

where a1, . . . , am ∈ Rf/qRf is chosen uniformly at random.

Identification Scheme. An identification scheme is a collection of algorithms
(Setup, Key Generation, Prover, Verifier) meant to provide a proof of identity
for a given part. The Setup algorithm takes as input a security parameter and
generates structures (such as lattice or code basis) to be used by the other algo-
rithms. The Key Generation algorithm takes as input the parameters generated
by the Setup algorithm and derives key pairs (private, public) to be associated
with a set of users. The Prover and Verifier algorithms correspond to a protocol
that is executed by entities A and B, respectively, such that the first convinces
the latter about its identity authenticity, by proving to have knowledge of a so-
lution to a hard problem, which establishes the relation between the components
of A’s key pair (private, public).

Stern’s Identification Scheme. The first practical code-based identification
scheme was proposed by Stern [23]. Its basic algorithm uses a hash function
h, a pair of keys (i, s) related by i = HT s, where H is a public parity check
matrix of a given code, s is a private binary vector of Hamming weight p, and i
is its public syndrome. In a given round, y is chosen uniformly at random from
the same space as s, a permutation σ of the integers {1, . . . , dim(y)} is similarly
chosen, and the commitments are calculated by the prover as follows

c1 = h(σ‖HTy)
c2 = h(σ(y))
c3 = h(σ(y ⊕ s)).

Upon receipt of a challenge b chosen uniformly at random from {0, 1, 2}, the
prover reveals the information that enables the verifier to check the correctness
of the commitments as below:

b = 0 : Reveal y and σ. Check c1 and c2.
b = 1 : Reveal y ⊕ s and σ. Check c1 and c3.
b = 2 : Reveal σ(y) and σ(s). Check c2, c3, and wt(σ(s)) = p

Improved Zero-Knowledge Identification with Lattices 7

This scheme has a soundness error of 2/3. In order to reach a confidence level L
on the authenticity of the prover, it has to be repeated a number r of times, so
that 1− (2/3)r ≥ L.

In the same work Stern also proposed a few variants of the basic scheme
focusing on specific goals, such as: minimize computing load, minimize number
of rounds, apply identity-based construction, and employ an analogy of modular
knapsacks. For the minimization of number of rounds, he suggested the following
solution:

1. The private key s is replaced by the generators {s1, . . . , sm} of a simplex
code.

2. Only two commitments c1 = h(σ‖HTy) and c2 = h(σ(y)‖σ(s1)‖ . . . ‖σ(sn))
are used.

3. The prover computes z = σ(y⊕⊕m
j=1 bjsj) using a binary vector {b1, . . . , bm}

received from the verifier.
4. Upon challenge 0, the prover reveals σ, and the verifier checks c1.
5. Upon challenge 1, the prover discloses {σ(s1), . . . , σ(sm)}, and the verifier

checks that c2 is correct and that the code generated by {s1, . . . , sm} is
simplex with the required weight.

This solution replaces the 3-pass approach by a 5-pass one, but it is not effective
as far as communication costs are regarded. A more efficient solution is shown
in the following paragraph. It also corresponds to the underlying approach for
our lattice-based solution.

Cayrel and Véron’s Identification Scheme. The identification scheme proposed
by Stern [23] was based on the hardness of the syndrome decoding problem.
An improvement over this scheme, using the dual construction, was proposed
by Véron [24], achieving lower communication costs and better efficiency. Like
the basic Stern construct, however, a dishonest prover can have success with
probability up to 2/3 in any given round.

By modifying the way the commitments are calculated, incorporating a value
chosen at random by the verifier, Cayrel and Véron [4] were able to bound the
cheating probability within a given round close to 1/2, with similar communi-
cation costs. The approach followed will be outlined later for the case of our
scheme in Algorithm 2, where the syndrome decoding problem is replaced by
the shortest vector problem as hardness assumption. It involves a 5-pass solu-
tion, similar to Stern’s construction. It avoids the heavy payload associated with
transmitting the whole basis of a simplex code (or of a lattice), though.

Another scheme suggested by Gaborit requires smaller storage for public data
[8]. Given that the schemes we have seen are dealing with codes, this usually
implies that a generator matrix or a parity check matrix is needed to fully
characterize them. The idea applied by Gaborit was to use double-circulant
matrices for a compact representation.

In our work, we point out that a combination of these two approaches can
be used in the lattice context, namely ideal lattices (which allow a very com-
pact representation, as efficient as double-circulant matrices) for an identification

8 P.-L. Cayrel et al.

scheme structure with soundness error of 1/2. With this, we manage to have the
lowest communication costs and lowest public data storage needs.

3 Identification Scheme

Taking Cayrel and Véron’s scheme [4] as basis and changing the main security
assumption from the syndrome decoding problem (code-based) to the short in-
teger solution problem (lattice-based), we obtain a new identification scheme.
The transformation is non-trivial since low-weight codewords that are required
in one setting are not necessarily short vectors as required in the other and vice
versa.

We begin by describing the new identification scheme and then give argu-
ments regarding all major properties such as completeness, soundness, and zero-
knowledge as well as performance.

3.1 Description

The scheme consists of two main parts: a key generation algorithm (Figure 1)
and an interactive identification protocol (Figure 2).

KeyGen:

x
$←− {0, 1}m, s.t. wt(x) = m/2

A
$←− Z

n×m
q

y←− Ax mod q

Com
$←− F , suitable family of commitment functions

Output (sk, pk) = (x, (y,A,Com))

Fig. 1. Key generation algorithm, parameters n, m, q are public

The key generation algorithm receives as input a set of parameters (n, m, q),
e.g., (64, 2048, 257) (see Section 4.1 for a discussion on why this is a sensible
choice). It chooses a matrix A ∈ Z

n×m
q uniformly at random and selects as

private key a binary vector x ∈ {0, 1}m of Hamming weight m/2. The public
key consists of an n-dimensional vector y = Ax mod q, the random matrix
A, and a commitment function Com. To instantiate the algorithm, we need to
select a family of statistically hiding and computationally binding commitment
functions F .

For the time being we recommend the commitment functions used by Kawachi
et al. since they merely require a lattice-based collision resistant, regular hash
function, in our case SWIFFT, which allows us to have a single security assump-
tion. The commitment functions Com that we use are deterministic algorithms,

Improved Zero-Knowledge Identification with Lattices 9

Prover P(sk, pk) Verifier V(pk)
(sk, pk) = (x, (y,A,Com))←− KeyGen

u
$←− Z

m
q , σ

$←− Sm, z←− Pσx

r0
$←− {0, 1}n, r1

$←− {0, 1}n
c0 ←− Com(σ ‖Au; r0)

c1 ←− Com(z ‖Pσu; r1)
c0, c1−−−−−−−−−−−−−−→

α←−−−−−−−−−−−−−− α
$←− Zq

β ←− Pσ(u + αx)
β−−−−−−−−−−−−−−→

Challenge b←−−−−−−−−−−−−−− b
$←− {0, 1}

If b = 0:
σ, r0−−−−−−−−−−−−−−→ Check c0

?
= Com(σ ‖AP−1

σ β − αy; r0)

σ
?∈ Sm

Else:
z, r1−−−−−−−−−−−−−−→ Check c1

?
= Com(z ‖ β − αz; r1)

z
?∈ {0, 1}m, wt(z)

?
= m/2

Fig. 2. Identification protocol

which get as second input a nonce r that is assumed to be chosen uniformly at ran-
dom from a set big enough to guarantee the hiding property of the commitment.

The identification protocol in Figure 2 describes the interaction between
prover and verifier in order to convince the second party about the identity
of the first. All computation in the protocol is performed modulo q, and we use
the following notations. The set of all permutations on m elements is Sm. Any
permutation σ ∈ Sm is a linear operation and the associated m × m binary
matrix is Pσ.

The protocol is an adaption of the code-based identification scheme [4] which
represents a major improvement to Véron’s [24] and Stern’s [23] schemes. In the
same way our protocol represents an improvement over the lattice adaptions of
Stern’s scheme by Kawachi et al. [11]. Like Kawachi’s, our adaptation to the
lattice setting is non-trivial, since we need to ensure that a binary secret key is
used (regardless of the Hamming weight). This needs to be guaranteed through-
out the protocol which entails some change in the β that is used. Similarly to
the coding-based scheme, a cheating prover, not knowing the secret key, can lead
a verifier to believe that he actually knows that secret value with a probability
up to 1/2 in an individual round of execution. Therefore, in order to diminish
the success rate of such an impersonation, the protocol has to be repeated a
number of times, which is a function of the degree of confidence requested by
the application that is using the scheme. This will be discussed further in Section
3.2, where we argue the soundness.

In the commitment phase, the prover commits to two values c0, c1, where
c0 is comprised of the random choices he made and c1 contains information
about his secret key. An adversary that can also correctly compute them with
overwhelming probability either is able to break the commitment or to solve

10 P.-L. Cayrel et al.

the hard problem that makes it possible to obtain a private key from its public
counterpart. Those commitments are sent to the verifier, who responds in the
second phase with value α taken uniformly at random from Zq. Upon receipt of
the this value, the prover is supposed to multiply it by the private key, add to
a permuted masking value u (uniformly chosen at random from Z

m
q) and make

a permutation over the sum. Since u was random, β can be seen as a random
variable with uniform distribution over Z

m
q , leaking no information about the

private key x.
Upon receipt of this value, the verifier makes a challenge to the prover, picking

a value uniformly at random from the set {0, 1}. The prover responds to it by
revealing some piece of information that allows the verifier to compute and
check the commitments. An honest prover will always be able to respond either
challenge. Besides checking the correctness of the commitments, the verifier must
also check that the values disclosed by the prover are well-formed, although in
practice this would be solved by defining a suitable encoding for the data.

We will see in Section 3.3 how an impersonator can always cheat with a success
probability of 1/2, and that no better strategy is possible under our hardness
assumptions. So in order to reach a prescribed level of security the interaction
proposed here must be repeated an appropriate number of times.

Ideal lattices. The present construction makes no assumptions about the struc-
ture of the SIS matrix A. Therefore, the space necessary for storing this matrix
is Õ(n2), which is too big for practical purposes. Using ideal lattices, one can re-
duce such space requirements to Õ(n) and simultaneously increase computation
speed of matrix vector products in the form Ax to Õ(n) operations. This has
been proposed and performed many times, perhaps most elegantly in the case
of the SWIFFT compression function [17].

3.2 Security

In this section we show that the protocol in Figure 2 corresponds to a zero-
knowledge interactive proof of knowledge of the predicate defined below. Let
I = {A,y, m, q} be public data shared by the parties A and B. Consider the
predicate P (I,x) as “x is a binary vector of Hamming weight m/2 satisfying the
equation Ax = y mod q”.

We provide below proofs for the completeness, soundness and zero-knowledge
properties of the identification scheme described in Figure 2. In particular, sound-
ness holds even against concurrent attacks, i.e., an adversary may try to im-
personate a given identity after having access to polynomially many verifier
instances in parallel. Each of the verifier instances has the same secret key but is
run with a different random tape. The challenge is to simulate the environment
of the attacker during these interactions and still being able to extract “useful”
information from the adversary during the impersonation phase. The required
assumptions are that Com is a statistically hiding and computationally binding
commitment scheme, e.g., based on SIS (cf. [11]), and the hardness of the SIS
problem.

Improved Zero-Knowledge Identification with Lattices 11

Completeness. Given that an honest prover has knowledge of the private key
x, the blending mask u and the permutations Pσσσ, he will always be able to derive
the commitments c0 and c1, and reveal to the verifier the information necessary
to verify that they are correct. He can also show that the private key in his
possession has the appropriate Hamming weight. So, the verifier will always
accept the honest prover’s identity in any given round. This implies perfect
completeness.

Zero-Knowledge. We give a demonstration of the zero-knowledge property for
the identification protocol shown in Figure 2. Here, we require the commitment
function Com to be statistically hiding, i.e., Com(x; r) is indistinguishable from
uniform for a uniform r ∈ {0, 1}n.

Theorem 1. Let q be prime. The described protocol is a statistically zero-
knowledge proof of knowledge if the employed commitment scheme is statistically-
hiding.

Proof. To prove the zero-knowledge property of our protocol, we construct a sim-
ulator S that output a protocol view V = (c0, c1, α, β, b, (σ, r0), (z, r1)) without
knowing the secret x, such that V is indistinguishable from an the interaction of
an honest prover with an honest verifier. It has access to a cheating verifier V ∗,
which contributes α and b. Therefore, S generates r1, r2 according to protocol
and it gets (A,y,Com) as input. The simulator has to guess b before talking to
V ∗. For the moment, let us assume the guess is correct.

If b = 0, the simulator selects u and σ as per protocol and solves the equation
Ax ≡ y (mod q) for x, which does not need to be short. With this pseudo
secret key, the simulator computes c0 and c1 according to the protocol. The
deviation in c1 is not recognized because Com is statistically hiding. Then, S
computes β ←− Pσ(u + αx) after obtaining α from V ∗(c1, c2). The result is
uniform because u is chosen uniformly at random. As a result, S can reveal
(σ, r0), which passes the verification for b = 0.

If b = 1, the simulator needs to play against the second verification branch.
It selects a binary x with Hamming weight m/2 and selects σ as per protocol. It
computes c1, c2 and obtains α←− V ∗(c1, c2). Then, it computes β ←− Pσ(u +
αx). As a result, S can reveal Pσx that passes verification.

In consequence, the simulator outputs a correct view with probability 1/2.
Since the simulator has access to V ∗, it can restart the verifier whenever the
guess b was incorrect. The result is a statistically close simulation if Com is
statistically hiding. ��

Soundness. We now show that a dishonest prover is able to cheat a verifier to
accept his identity with a probability limited by (q + 1)/2q ≈ 1/2. The number
of possible queries sent by the verifier to a prover is given by all combinations
of challenge bits b ∈ {0, 1} and α ∈ {0, . . . , q − 1} Hence, there are 2q possible
queries. Say, the dishonest prover wants to answer all challenges where b = 0,
then he computes an alternate secret key x′ with large entries such that Ax′ = y.

12 P.-L. Cayrel et al.

This is can be done with Gaussian elimination, for example. At the same time,
when α = 0 he can also answer in the case b = 1 by sending a random z. Since
α = 0 this is not checked in the commitment.

Note that the α = 0 query issue cannot be resolved by removing 0 from the
set that α is drawn from, because the dishonest verifier can effectively shift the
values of α by changing his protocol. Say he wants some fix α0 to take the place
of 0 in the unmodified scheme, then he changes both the computations of the
commitments and β to:

c0 ←− Com(σ ‖Au− α0y; r0), β ←− Pσ(u + (α− α0)x),
c1 ←− Com(z ‖Pσu− α0z; r1).

In effect, he can answer both challenges bits b = 0, 1 for α = α0 now.
Thus, in total, the adversary can answer correctly for q + 1 out of 2q queries.

In the proof, we show that if an adversary is able to answer more queries, it is
also able to break one of the underlying assumptions, i.e. solve SIS or break the
commitment.

Theorem 2. If an honest verifier accepts a dishonest prover with probability
Pr ≥ (q + 1)/2q + ε(n), with ε(n) non-negligible, then there exists a polynomial
time probabilistic machine M which breaks the binding property of the commit-
ment Com or solves the SIS problem with non-negligible probability.

Proof. On input (n, m, q,A) (the SIS problem instance) and a challenge com-
mitment function Com, we need to simulate the adversary’s environment in two
phases: a verification phase and an impersonation phase. In order to correctly
prove knowledge of a valid secret key x during the verification phase, we choose
x and y as in the key generation protocol and run the adversary A on public
parameters (as per protocol).

Therefore, in the verification phase, we can perfectly simulate the prover.
Since the protocol is statistically zero-knowledge, the adversary does not learn
any information about x and the output distribution is the same as for all
alternative secret keys x′ �= x.

After the first phase, we let A play the role of the cheating prover. First, we
receive the commitments c0, c1. Then, because q is polynomial in n, we challenge
the adversary with all 2q challenge pairs (α, b) and record successes as “1” and
failures as “0” in a table with column labels “b = 0”, “b = 1” and row labels
“α = 0”, . . ., “α = q−1”. This is done by rewinding the adversary appropriately.

For the moment, let us assume that there exist two rows, for α and α′, such
that both columns contain “1”. Let (β, σ, r0) and (β′, σ′, r′0) be the outcomes for
challenge (α, 0) and (α′, 0), respectively. Furthermore, let (β, z, r1) and (β′, z′, r′1)
be the outcomes for challenges (α, 1) respectively (α′, 1).

Since the commitment Com is binding, we infer that r0 = r′0, r1 = r′1, and

σ ‖AP−1
σ β − αy = σ′ ‖AP−1

σ′ β′ − α′y , (1)
z ‖ β − αz = z′ ‖ β′ − α′z′ . (2)

Improved Zero-Knowledge Identification with Lattices 13

Equation (1) implies σ = σ′. Similarly, (2) shows that the binary vectors z, z′ of
weight m/2 are equal. Now, we turn to extracting A’s secret key by rearranging
parts of (1) and (2), we get

AP−1
σ (β − β′)(α− α′)−1 ≡ y (mod q) , (3)

(β − β′)(α− α′)−1 ≡ z (mod q) . (4)

This proves that x′ := P−1
σ z is a valid secret key and the reduction outputs

the short lattice vector v = x − x′. Notice that β �= β′ because we have (1),
α �= α′, and σ = σ′. The extracted secret key is also different from the one of
the simulator because the function Ax mod q compresses the set of valid secret
keys and statistically hides them in the sense that the protocol is also witness
indistinguishable. Hence, the adversary cannot learn the simulator’s key but with
probability ≤ 1/2 + n−ω(1)

What is left to show is that such a pair (α, α′) exists. To see this, we apply a
simple counting argument [21]. We know that A can answer correctly for > q+1
challenges. W.l.o.g., assume that it succeeds ≥ c times for b = 0 and > q + 1− c
times for b = 1. Thus, there are ≥ c “1” entries in column “b = 0” and > q+1−c
“1” entries in column “b = 1”.

Towards contradiction, assume that there is no such pair (α, α′) for which
A succeeds for the challenges (α, 0), (α, 1), (α′, 0), and (α′, 1). In other words,
assume that the above extraction procedure breaks down. Then, there must be
at least c − 1 zeros in column “b = 0”. In consequence, the total number of
entries in the second column is > c− 1 + q + 1 − c. Since this is > q, we arrive
at the desired contradiction and conclude that the knowledge extractor succeeds
with non-negligible probability if ε(n) is non-negligible. ��
Given that the scheme is a zero-knowledge proof of knowledge, it is also
witness indistinguishable with respect to the secret x. Fortunately, witness-
indistinguishability is preserved under parallel composition. Thus, our scheme
can be run many, i.e., ω(log(n)), times in parallel to achieve a negligible sound-
ness error but without increasing the number of rounds.

3.3 Security Considerations

The code-based identification scheme proposed by Cayrel and Véron and that
serves as starting point for this work has very good performance characteristics.
Its security is based on the assumption that selecting a a random generator or
parity check matrix will result in hard instances of the q-ary syndrome decoding
problem, though. When adapting this scheme to use lattices, on the other hand,
one achieves a construct based on the hardness of the SIS problem, and that has
an worst-case/average-case reduction.

As pointed out in the description of the algorithms, ideal lattices can also be
used in the scheme to improve performance and reduce the amount of public
data. The precautions regarding the (a) irreducibility of the polynomial that
characterizes the ring upon which the lattice is defined and (b) its expansion

14 P.-L. Cayrel et al.

factor must be observed, as recommended in [15]. This ensures that finding
short vectors in such lattice is still hard to perform.

The present scheme is also secure against active attacks. Thus, an attacker is
allowed to interact with a prover prior to attempting to impersonate him to a
verifier. As consequence of the zero-knowledge property, however, no adversary
that interacts with a real prover is able to obtain any knowledge that can be
used later on to impersonate the prover.

We now prove that our scheme is secure against concurrent attacks, by show-
ing that a public key corresponds to multiple secret keys and that the protocol
is witness indistinguishable. It is a standard procedure, as seen in [6].

First, the existence of multiple secret keys associated with a given public key is
assured by the parameter choice (See inequation 5). Second, given that our proto-
col is a zero-knowledge interactive proof, it is also witness indistinguishable [12].

4 Attacks

The most efficient way to attack this scheme, but probably the most difficult
one, consists in solving the inhomogeneous short integer solution (ISIS) problem
that is defined by the public key y and the public matrix A, expressed as Ax =
y mod q, where x is expected to be binary, with dimension m and Hamming
weight m/2. This equation can be re-written as A′x′ = 0 mod q, with A′ = [A|y]
and x′ = [x|−1]T . Lattice basis calculation and reduction can then be applied in
this second lattice to try to find a solution. The approximation factor, however,
is Õ(n), making the task hard.

4.1 Parameters

In order to guarantee with overwhelming probability that there are other solu-
tions to Ax = y mod q, besides the private key possessed by the prover (which
is pivotal in the demonstration of security against concurrent attacks), one can
make q and m satisfy the relation below

qn � card{x ∈ Z
m
2 : weight(x) = m/2}. (5)

Besides, q is bounded by the following theorem, which Micciancio and Regev
proved in [20].

Theorem 3. For any polynomially bounded functions β(n), m(n), q(n) = nO(1),
with q(n) ≥ 4

√
m(n)n1.5β(n) and γ(n) = 14π

√
nβ(n), there is a probabilistic

polynomial time reduction from solving GapCV Pγ in the worst-case to solving
SISq,m,γ on the average with non-negligible probability. In particular, for any
m = Θ(n log n), there exists q(n) = O(n2.5 log n) and γ = O(n

√
log n), such that

solving SISq,m on the average is at least as hard as solving GapSV Pγ in the
worst case.

Taking as reference the state-of-the-art lattice reduction algorithms studied in
[9], the length of the shortest vector that can currently be found by the reduction
algorithms is given by (δ ≈ 1.011):

Improved Zero-Knowledge Identification with Lattices 15

length = min{q, qn/mδm} (6)
We propose the set of parameters below, in Table 2, which are comparable to

those used by the SWIFFT hash function. The best combinatorial attack for find-
ing short lattice vectors [25] has a computational complexity above 2100 (gener-
alized birthday attack, dividing in 16 groups at each turn). This means that our
security level is 100 bits. In addition to that, the best lattice reduction algorithms
return vectors with euclidean norm above 42, taking into account our set of param-
eters. Given that the private keys resulting from our parameters have euclidean
norm 32, the choice made is safe. Besides, we can also see that the selected param-
eters satisfy both Theorem 3 and the restriction given by equation 5.

Table 2. Concrete Parameter

Bit-security n m q Commitment Length (bits)

100 64 2048 257 256

5 Conclusion and Further Work

In this work we derived a lattice-based identification scheme from a code-based
one. By shifting from one domain area to the other, we were able to provide
stronger security evidences, given that the security arguments are now based on
worst-case hardness instead of average-case. By using ideal lattices and suitable
approximation factors, we were also able to obtain parameters that allow prac-
tical implementations for reasonable levels of security. We have also shown that
it has better performance than all other lattice-based identification schemes.

A natural extension of the approach followed in the present work consists in
adapting the structure of other cryptographic schemes and changing the hard
problem upon which their security relies. By shifting between code and lattice
domains and assessing which kind of gains such change provides, stronger secu-
rity properties or more efficient implementations can be obtained.

Another extension consists in deriving a signature scheme from the current
work. As we pointed out in Section 5.1, the present identification scheme has
some characteristics that can result in efficient signature constructs, when its
parameters are conveniently selected. In this context, it may be worthwhile to
construct a “dual” ID scheme in the sense that it has a completeness error of
1/2 and no soundness error as using the Fiat-Shamir transform on this “dual”
scheme would result in very short signatures.

5.1 Signature via Fiat-Shamir Heuristics

If the verifier is replaced by a random oracle, one can derive signature schemes
from identification counterparts. As pointed out by Lyubashevsky when com-
paring his lattice-based identification scheme [14] with Kawachi’s solution [11],
the latter does not result in an efficient signature scheme due to the fact that

16 P.-L. Cayrel et al.

every bit of the challenge (thus, each bit of a message digest when we consider a
signature application) results in a reasonable amount of data sent by the prover.
For a 240-bit message digest, for example, Kawachi’s scheme would result in a
signature of over two million bits, when applying Fiat-Shamir heuristics.

Our identification scheme, however, has some characteristics of Lyuba-
shevsky’s, in the sense that we can relate a message digest with the variable
α that the verifier sends to the prover in “pass 2” of Algorithm 2, instead of
doing it with the challenge bits. Thus, we can make the field from which such a
variable is defined to have a width that better suits the signature scheme needs,
circumventing the drawback pointed out above. At the same time, we need to
ensure that the total number of rounds we run the scheme is bigger than the de-
sired bit-security level of the resulting signature. This is because an attacker who
can correctly guess the challenge bits for each round can generate a signature.

Acknowledgments

We are grateful to Daniele Micciancio for his advice on the soundness proof
and signature discussion, and we thank the anonymous referees for their useful
suggestions. This work was supported by CASED (www.cased.de).

References

1. Ajtai, M.: Generating hard instances of lattice problems. Electronic Colloquium
on Computational Complexity (ECCC) 3(7) (1996)

2. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. Electronic Colloquium on Computational Complexity (ECCC) 3(65)
(1996)

3. Bellare, M., Palacio, A.: GQ and Schnorr identification schemes: Proofs of security
against impersonation under active and concurrent attacks. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 162–162. Springer, Heidelberg (2002)

4. Cayrel, P.-L., Véron, P.: Improved code-based identification scheme (2010),
http://arxiv.org/abs/1001.3017v1

5. Feige, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: STOC 1987,
pp. 210–217. ACM, New York (1987)

6. Feige, U., Shamir, A.: Witness indistinguishable and witness hiding protocols. In:
STOC 1990, pp. 416–426. ACM, New York (1990)

7. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987)

8. Gaborit, P., Girault, M.: Lightweight code-based identification and signature. IEEE
Transactions on Information Theory (ISIT), 186–194 (2007)

9. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EU-
ROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

10. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing, p. 304. ACM, New York (1985)

http://arxiv.org/abs/1001.3017v1

Improved Zero-Knowledge Identification with Lattices 17

11. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASI-
ACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

12. Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in polyloalgo-
rithm rounds. In: STOC 2001: Proceedings of the Thirty-Third Annual ACM Sym-
posium on Theory of Computing, pp. 560–569. ACM, New York (2001)

13. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008)

14. Lyubashevsky, V.: Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009)

15. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

16. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital sig-
natures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer,
Heidelberg (2008)

17. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: Swifft: A modest proposal
for fft hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer,
Heidelberg (2008)

18. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-
way functions. In: Computational Complexity. Springer, Heidelberg (2007)

19. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic
perspective. The Kluwer International Series in Engineering and Computer Science,
vol. 671. Kluwer Academic Publishers, Boston (March 2002)

20. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. SIAM J. Comput. 37(1), 267–302 (2007)

21. Ohta, K., Okamoto, T.: On concrete security treatment of signatures derived from
identification. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 354–
369. Springer, Heidelberg (1998)

22. Shor, P.W.: Polynominal time algorithms for discrete logarithms and factoring on a
quantum computer. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS,
vol. 877, p. 289. Springer, Heidelberg (1994)

23. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

24. Véron, P.: Improved identification schemes based on error-correcting codes. Appl.
Algebra Eng. Commun. Comput. 8(1), 57–69 (1996)

25. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

	Improved Zero-Knowledge Identification with Lattices
	Introduction
	Preliminaries
	Identification Scheme
	Description
	Security
	Security Considerations

	Attacks
	Parameters

	Conclusion and Further Work
	Signature via Fiat-Shamir Heuristics

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

