


Lecture Notes in Computer Science 6402
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Swee-Huay Heng Kaoru Kurosawa (Eds.)

Provable Security

4th International Conference, ProvSec 2010
Malacca, Malaysia, October 13-15, 2010
Proceedings

13



Volume Editors

Swee-Huay Heng
Multimedia University
Faculty of Information Science and Technology
Jalan Ayer Keroh Lama, 75450 Malacca, Malaysia
E-mail: shheng@mmu.edu.my

Kaoru Kurosawa
Ibaraki University
Department of Computer and Information Sciences
4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan
E-mail: kurosawa@mx.ibaraki.ac.jp

Library of Congress Control Number: 2010935665

CR Subject Classification (1998): E.3, C.2, K.6.5, D.4.6, J.1, E.4

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-642-16279-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16279-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

ProvSec 2010 was held in Malacca, Malaysia, October 13–15, 2010. This was the
4th Provable Security conference in the series aimed at stimulating the exchange
of ideas in the emerging areas of provable security. This conference was organized
by the Faculty of Information Science and Technology, Multimedia University,
Malaysia, and co-organized by the Malaysian Society for Cryptology Research
(MSCR).

The conference received a total of 47 submissions. Each submission was re-
viewed by at least three members of the Program Committee, and submissions
co-authored by members of the Program Committee were reviewed by at least
five members. The review process was a challenging task, 17 papers were ac-
cepted for presentation at the conference (with 1 conditionally accepted) after
almost two months of review process, and some good submissions had to be
rejected. This proceedings contains the revised versions of the accepted papers,
which were not subject to editorial review, and the authors bear full responsi-
bility for their contents. The conference also featured an invited lecture by Eike
Kiltz entitled “Cryptographic Protocols from Lattices.”

There were many parties who contributed in one way or another to the success
of ProvSec 2010. We would like to thank all of the authors from many different
countries for submitting their work. We are deeply grateful to the Program Com-
mittee for their hard work and effort in ensuring that each submission received
a fair and thorough review. We also gratefully acknowledge the effort and exper-
tise of the external reviewers. Lastly, we would like to record our appreciation to
the General Chair, Bok-Min Goi, and the local Organizing Committee, for their
dedication and commitment in organizing the conference, and to Shai Halevi, for
granting us the permission to use the user-friendly Web-Submission-and-Review
system.

October 2010 Swee-Huay Heng
Kaoru Kurosawa
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Improved Zero-Knowledge Identification with
Lattices

Pierre-Louis Cayrel1, Richard Lindner2, Markus Rückert2,
and Rosemberg Silva3,�

1 CASED – Center for Advanced Security Research Darmstadt,

Mornewegstrasse, 32, 64293 Darmstadt, Germany

pierre-louis.cayrel@cased.de
2 Technische Universität Darmstadt, Fachbereich Informatik,

Kryptographie und Computeralgebra, Hochschulstraße 10,

64289 Darmstadt, Germany

{rlindner,rueckert}@cdc.informatik.tu-darmstadt.de
3 State University of Campinas (UNICAMP), Institute of Computing,

P.O. Box 6176, 13084-971 Campinas, Brazil

rasilva@ic.unicamp.br

Abstract. Zero-knowledge identification schemes solve the problem of

authenticating one party to another via an insecure channel without

disclosing any additional information that might be used by an imper-

sonator. In this paper we propose a scheme whose security relies on the

existence of a commitment scheme and on the hardness of worst-case lat-

tice problems. We adapt a code-based identification scheme devised by

Cayrel and Véron, which constitutes an improvement of Stern’s construc-

tion. Our solution sports analogous improvements over the lattice adap-

tion of Stern’s scheme which Kawachi et al. presented at ASIACRYPT

2008. Specifically, due to a smaller cheating probability close to 1/2 and a

similar communication cost, any desired level of security will be achieved

in fewer rounds. Compared to Lyubashevsky’s scheme presented at ASI-

ACRYPT 2009, our proposal, like Kawachi’s, offers a much milder secu-

rity assumption: namely, the hardness of SIS for trinary solutions. The

same assumption was used for the SWIFFT hash function, which is se-

cure for much smaller parameters than those proposed by Lyubashevsky.

Keywords: Lattice-based cryptography, identification scheme, hash

function, SIS problem, zero-knowledge.

1 Introduction

One of the main objectives in cryptography is to provide means of access control,
and identification (ID) schemes are typically applied in order to reach this goal.
These schemes describe interactive protocols between a designated prover and

� Supported by The State of São Paulo Research Foundation under grant 2008/

07949-8.

S.-H. Heng and K. Kurosawa (Eds.): ProvSec 2010, LNCS 6402, pp. 1–17, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



2 P.-L. Cayrel et al.

verifier with the purpose of demonstrating that the prover knows a secret that
is associated with his identity. In zero-knowledge schemes, no information about
this secret is revealed, except the fact that the prover knows it. Besides, using
hard lattice problems as security basis allows for very mild assumptions in the
sense that they are worst-case instead of average-case and provide resistance
against quantum adversaries.

There is an efficient generic construction due to Fiat and Shamir that trans-
forms any ID scheme into a signature scheme, in the random oracle model [7].
Therefore, having an efficient ID solution from lattices gives rise to a similarly
efficient signature construction, keeping the same hardness assumption. One of
the main hardness assumption for ID schemes based on lattices is the short in-
teger solution (SIS) problem. One is given an average case instance A ∈ Zn×m

q ,
m = Ω(n log(n)), and a norm bound b. Then, the task is to find a non-zero vector
v ∈ Zm such that Av ≡ 0 (mod q) and ‖v‖∞ ≤ b. This is hard to accomplish
as long as there is at least one single n-dimensional lattice, where solving the ap-
proximate shortest vector problem is hard for approximation factors γ ≥ b ·Õ(1).
Hence, it is desirable to build an ID scheme based on SIS with the least possible
norm bound b, which is b = 1.

The most relevant ID schemes based on number theoretic problems, e.g., [7]
and [5], do not resist quantum attacks that use Shor’s algorithm [22]. One of the
first schemes to resist such kind of attack was proposed by Stern [23]. It relies
on the syndrome decoding problem and uses of a 3-pass zero-knowledge proof of
knowledge (ZK-PoK) with a soundness error of 2/3 and perfect completeness.
Recently, Kawachi, Tanaka, and Xagawa [11] were able to change the security as-
sumption of Stern’s scheme to SIS with norm bound 1. With their work, Kawachi
et al. provide a more efficient alternative to Lyubashevsky’s ID scheme [13,16],
which uses a stronger assumption, SIS with norm bound O(n2 log(n)). In con-
trast to typical zero-knowledge schemes, Lyubashevsky’s construction is based
on a witness-indistinguishable (not zero-knowledge) proof of knowledge. Fur-
thermore, it has no soundness error. However, it a completeness error of 1−1/e,
which leads to increased communication costs and the undesirable scenario of
having an honest prover being rejected by the verifier.

In code-based cryptography, there is also the scheme proposed by Cayrel and
Véron [4] that improves the Stern’s scheme by reducing the soundness error to
q/(2(q − 1)) ≈ 1/2. This improvement leads to lower the communication cost,
when comparing both schemes for a given security level. Currently, in terms of
efficiency, there is no practical lattice-based construction that is comparable to
that put forward by Cayrel and Véron.

We propose such a scheme with a soundness error of (q + 1)/2q ≈ 1/2 and
perfect completeness1. It is based on the same efficient version of the SIS prob-
lem that is used by Kawachi et al. or by the SWIFFT compression function [17].
Both the small soundness error and the mild assumption make our scheme more
efficient than previous lattice-based ones. Moreover, by transferring code-based

1 We conjecture that Cayrel and Véron’s scheme has the same soundness error by the

arguments given in Section 3.2.
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Table 1. Comparison of lattice-based identification schemes

Scheme Secret key Public key Rounds Total communication SIS norm bound

[Kbyte] [Kbyte] [Kbyte]

Lyubashevsky [16] 0,25 2,00 11 110,00 Õ(n2)

Kawachi et al. [11] 0,25 0,06 27 58,67 1

Section 3 0,25 0,06 17 37,50 1

constructions to lattices, we can exploit efficiency improvements using ideal lat-
tices without losing provable security. As a result, our scheme has smaller public
keys and more efficient operations than those associated with the current code-
based ID schemes.

For a comparison with the most recent lattice-based ID schemes, see Table
1, which assumes that the parameters listed in Table 2 are used, and that a
soundness error of 2−16 (one of the values recommended in the norm ISO/IEC
9798) is specified. We computed that Lyubashevky’s scheme takes 11 rounds
to reach a completeness error below 1%, when it is using the most efficient
parameters listed in [14].

The content of this paper is organized as follows. We present the concepts
that are used in the construction of the identification scheme in Section 2, as
well as the original schemes by Stern, Cayrel and Véron, whose key aspects
were combined in the current work. Later, we give a detailed description of the
algorithms that comprise the new scheme, and discuss the decisions that were
made from a performance and security point of view in Section 3. Then, we
analyze potential attacks and show how they affect the choice of parameters in
Section 4.

2 Preliminaries

Notation. We write vectors and matrices in boldface, while one-dimensional
variables such as integers and reals will be regular. All vectors are columnvectors
unless otherwise stated. We use || to signify that multiple inputs of a function
are concatenated. For example, let h : {0, 1}∗ → {0, 1}m be a hash function, and
a,b be vectors, then we write h(a||b) to denote the evaluation of h on some
implicit binary encoding of a concatenated with an implicit encoding of b. For
the scope of this work, the actual encoding used is assumed to be efficient, and
generally not discussed since it has no relevance for the results.

Security Model. We apply in the current work a string commitment scheme in
the trusted setup model, according to which a trusted party honestly sets up the
system parameters for the sender and the receiver.

For security model, we use impersonation under concurrent attacks. This im-
plies that we allow the adversary to play the role of a cheating verifier prior to
impersonation, possibly interacting with many different prover clones concur-
rently. Such clones share the same secret key, but have independent coins and
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keep their own state. As stated in [3], security against this kind of attack implies
security against impersonation under active attack.

In the security proofs along this text we use the concept of zero-knowledge
interactive proof of knowledge system. In such context, an entity called prover P
has as goal to convince a probabilistic polynomial-time (PPT) verifier V that a
given string x belongs to a language L, without revealing any other information.

This kind of proof satisfies three properties:

– Completeness: any true theorem can be proven. That is, ∀x ∈
L Prob [(P, V ) [x] = YES] ≥ 1−negligible(k). Where, (P, V ) denotes the pro-
tocol describing the interaction between prover and verifier, and negligible(k)
is a negligible function on some security parameter k.

– Soundness: no false theorem can be proven. That is, ∀x /∈
L ∀P ′ Prob [(P ′, V ) [x] = YES] ≤ 1/2

– Zero-Knowledge: anything one could learn by listening to P, one
could also have simulated by oneself. That is, ∀V ′

PPT ∃SPPT ∀x ∈
L VIEWP,V ′(x) close to S(x). Where, VIEW represents the distribution
of the transcript of the communication between prover and verifier, and S(x)
represents the distribution of the simulation of such interaction. Depending
on the proximity of VIEWP,V ′(x) and S(x), as defined in [10], one can have:
• Perfect Zero-knowledge: if the distributions produced by the simulator

and the proof protocol are exactly the same.
• Statistical Zero-knowledge: if the statistical difference between the distri-

butions produced by the simulator and the proof protocol is a negligible
function.

• Computational Zero-knowledge: if the distributions produced by the sim-
ulator and the proof protocol are indistinguishable to any efficient algo-
rithm.

Lattices. Lattices are regular pointsets in a finite real vector space. They are
formally defined as discrete additive subgroups of Rm. They are typically rep-
resented by a basis B comprised of n ≤ m linear independent vectors in Rm.
In this case the lattice is the set of all combinations of vectors in B with inte-
gral coefficients, i.e. L = BZn. In cryptography, we usually consider exclusively
integral lattices, i.e. subgroups of Zm.

There are some lattice-based computational problems whose hardness can be
used as security assumption when building cryptographic applications. We will
give definitions of all the problems relevant for this article now. We will use an
unspecified norm in these definition, but for the scope of our article this will
always be the max-norm.

Definition 1 (SVP). Given a lattice basis B ∈ Zm×n, the shortest vec-
tor problem (SVP) consists in finding a non-zero lattice vector Bx such that
‖Bx‖ ≤ ‖By‖ for any other y ∈ Zn \ {0}.

SVP admits formulations as approximation, as well as promise (or gap) prob-
lems. For these versions, the hardness can be proved under suitable approxima-
tion factors, such as constants, as seen for example in [19].
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Definition 2 (SIS). Given a matrix A ∈ Zn×m
q , the short integer solution

(SIS) problem consists in finding a non-zero vector x ∈ Zm that satisfies the
equation Ax = 0 (mod q) and that has length ‖x‖ ≤ b.

There are lattice-based cryptographic hash function families for which it can be
shown that breaking a randomly chosen instance is at least as hard as finding
solutions for worst-case instances of lattice problems. In [1] and [2], Ajtai first
showed how to use computationally intractable worst-case lattice problems as
building blocks for cryptosystems. The parameter sizes involved, however, are
not small enough to enable practical implementations.

Using cyclic lattices, Micciancio showed that it is possible to represent a basis,
and thus public keys, with space that grows quasilinearly in the lattice dimen-
sion [18]. Together with Lyubashevsky, he improved this initial result, achieving
compression functions that are both efficient and provably secure assuming the
hardness of worst-case lattice problems for a special type of lattices, namely ideal
lattices [15]. We will talk in more detail about ideal lattices later on.

A variety of hard problems associated with lattices has been used as secu-
rity basis in a number of cryptographic schemes. For example, Lyubashevsky’s
identification scheme is secure under active attacks, assuming the hardness of
approximating SVP in all lattices of dimension n to within a factor of Õ(n2).
By weakening the security assumption, on the other hand, one can achieve pa-
rameters small enough to make a practical implementation feasible, as seen in
the identification scheme proposed by Kawachi et al. in [11]. In this later work,
the authors suggest to use approximate Gap-SVP or SVP within factors Õ(n).

Ideal Lattices. Lattices are additive groups. However, there is a particular class
of lattices that are also closed under (properly defined) ring multiplications.
They correspond to the ideals of some polynomial quotient ring and are defined
below. In the definition, we implicitly identify polynomials with their vector of
coefficients.

Definition 3 (Ideal lattices). Let f be some monic polynomial of degree n.
Then, L is an ideal lattice if it corresponds to an ideal I in the ring Z[x] /〈f〉.

The concept of ideal lattices is very general. So, often lattice classes resulting
from specific choices of f have their own names. For example, f(x) = xn − 1
corresponds to cyclic lattices, and f(x) = xn + 1 to anticyclic lattices. We also
have the class of cyclotomic lattices resulting from all cyclotomic polynomials f .
The later class is the only one relevant for practical applications at the moment.

Whereas, for general lattices of full rank n and entries of bitsize q, one needs
n2 log(q) bits to represent a basis, for ideal lattices only n log(q) bits suffice. This
property addresses one of the major drawbacks usually associated with lattice-
based cryptosystems: the large key sizes. Another good characteristic of the
subclass of cyclotomic lattices is that associated matrix/vector multiplications
can be performed in time O(n log(n)) using discrete FFTs.

Lyubashevsky and Micciancio found that it is possible to restrict both SIS
and SVP to the class of ideal lattices and keep the worst-case to average-case
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connection (for a fixed polynomial f that is irreducible over the integers) discov-
ered by Ajtai. The corresponding problems are denoted with the prefix “Ideal-”.
As is customary, we again identify polynomials with their vectors of coefficients.

Definition 4 (Ideal-SIS). Let f be some monic polynomial of degree n, and
Rf be the ring Z[x]/〈f〉. Given m elements a1, . . . , am ∈ Rf/qRf , the Ideal-SIS
problem consists in finding x1, . . . , xm ∈ Rf such that

∑m
i=1 aixi = 0 (mod q)

and 0 < ‖(x1, . . . , xm)‖ ≤ b.

Switching between the ideal and general lattice setting for schemes based on SIS
happens by replacing the randomly chosen matrix A for the general SIS setting
with

A′ = [a1, a1x, . . . , a1x
n−1|a2, a2x, . . . , a2x

n−1| · · · |am, amx, . . . , amxn−1],

where a1, . . . , am ∈ Rf/qRf is chosen uniformly at random.

Identification Scheme. An identification scheme is a collection of algorithms
(Setup, Key Generation, Prover, Verifier) meant to provide a proof of identity
for a given part. The Setup algorithm takes as input a security parameter and
generates structures (such as lattice or code basis) to be used by the other algo-
rithms. The Key Generation algorithm takes as input the parameters generated
by the Setup algorithm and derives key pairs (private, public) to be associated
with a set of users. The Prover and Verifier algorithms correspond to a protocol
that is executed by entities A and B, respectively, such that the first convinces
the latter about its identity authenticity, by proving to have knowledge of a so-
lution to a hard problem, which establishes the relation between the components
of A’s key pair (private, public).

Stern’s Identification Scheme. The first practical code-based identification
scheme was proposed by Stern [23]. Its basic algorithm uses a hash function
h, a pair of keys (i, s) related by i = HT s, where H is a public parity check
matrix of a given code, s is a private binary vector of Hamming weight p, and i
is its public syndrome. In a given round, y is chosen uniformly at random from
the same space as s, a permutation σ of the integers {1, . . . ,dim(y)} is similarly
chosen, and the commitments are calculated by the prover as follows

c1 = h(σ‖HTy)
c2 = h(σ(y))
c3 = h(σ(y ⊕ s)).

Upon receipt of a challenge b chosen uniformly at random from {0, 1, 2}, the
prover reveals the information that enables the verifier to check the correctness
of the commitments as below:

b = 0 : Reveal y and σ. Check c1 and c2.
b = 1 : Reveal y ⊕ s and σ. Check c1 and c3.
b = 2 : Reveal σ(y) and σ(s). Check c2, c3, and wt(σ(s)) = p
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This scheme has a soundness error of 2/3. In order to reach a confidence level L
on the authenticity of the prover, it has to be repeated a number r of times, so
that 1− (2/3)r ≥ L.

In the same work Stern also proposed a few variants of the basic scheme
focusing on specific goals, such as: minimize computing load, minimize number
of rounds, apply identity-based construction, and employ an analogy of modular
knapsacks. For the minimization of number of rounds, he suggested the following
solution:

1. The private key s is replaced by the generators {s1, . . . , sm} of a simplex
code.

2. Only two commitments c1 = h(σ‖HTy) and c2 = h(σ(y)‖σ(s1)‖ . . . ‖σ(sn))
are used.

3. The prover computes z = σ(y⊕
⊕m

j=1 bjsj) using a binary vector {b1, . . . , bm}
received from the verifier.

4. Upon challenge 0, the prover reveals σ, and the verifier checks c1.
5. Upon challenge 1, the prover discloses {σ(s1), . . . , σ(sm)}, and the verifier

checks that c2 is correct and that the code generated by {s1, . . . , sm} is
simplex with the required weight.

This solution replaces the 3-pass approach by a 5-pass one, but it is not effective
as far as communication costs are regarded. A more efficient solution is shown
in the following paragraph. It also corresponds to the underlying approach for
our lattice-based solution.

Cayrel and Véron’s Identification Scheme. The identification scheme proposed
by Stern [23] was based on the hardness of the syndrome decoding problem.
An improvement over this scheme, using the dual construction, was proposed
by Véron [24], achieving lower communication costs and better efficiency. Like
the basic Stern construct, however, a dishonest prover can have success with
probability up to 2/3 in any given round.

By modifying the way the commitments are calculated, incorporating a value
chosen at random by the verifier, Cayrel and Véron [4] were able to bound the
cheating probability within a given round close to 1/2, with similar communi-
cation costs. The approach followed will be outlined later for the case of our
scheme in Algorithm 2, where the syndrome decoding problem is replaced by
the shortest vector problem as hardness assumption. It involves a 5-pass solu-
tion, similar to Stern’s construction. It avoids the heavy payload associated with
transmitting the whole basis of a simplex code (or of a lattice), though.

Another scheme suggested by Gaborit requires smaller storage for public data
[8]. Given that the schemes we have seen are dealing with codes, this usually
implies that a generator matrix or a parity check matrix is needed to fully
characterize them. The idea applied by Gaborit was to use double-circulant
matrices for a compact representation.

In our work, we point out that a combination of these two approaches can
be used in the lattice context, namely ideal lattices (which allow a very com-
pact representation, as efficient as double-circulant matrices) for an identification
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scheme structure with soundness error of 1/2. With this, we manage to have the
lowest communication costs and lowest public data storage needs.

3 Identification Scheme

Taking Cayrel and Véron’s scheme [4] as basis and changing the main security
assumption from the syndrome decoding problem (code-based) to the short in-
teger solution problem (lattice-based), we obtain a new identification scheme.
The transformation is non-trivial since low-weight codewords that are required
in one setting are not necessarily short vectors as required in the other and vice
versa.

We begin by describing the new identification scheme and then give argu-
ments regarding all major properties such as completeness, soundness, and zero-
knowledge as well as performance.

3.1 Description

The scheme consists of two main parts: a key generation algorithm (Figure 1)
and an interactive identification protocol (Figure 2).

KeyGen:

x
$←− {0, 1}m, s.t. wt(x) = m/2

A
$←− Zn×m

q

y←− Ax mod q

Com
$←− F , suitable family of commitment functions

Output (sk, pk) = (x, (y,A,Com))

Fig. 1. Key generation algorithm, parameters n, m, q are public

The key generation algorithm receives as input a set of parameters (n,m, q),
e.g., (64, 2048, 257) (see Section 4.1 for a discussion on why this is a sensible
choice). It chooses a matrix A ∈ Zn×m

q uniformly at random and selects as
private key a binary vector x ∈ {0, 1}m of Hamming weight m/2. The public
key consists of an n-dimensional vector y = Ax mod q, the random matrix
A, and a commitment function Com. To instantiate the algorithm, we need to
select a family of statistically hiding and computationally binding commitment
functions F .

For the time being we recommend the commitment functions used by Kawachi
et al. since they merely require a lattice-based collision resistant, regular hash
function, in our case SWIFFT, which allows us to have a single security assump-
tion. The commitment functions Com that we use are deterministic algorithms,
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Prover P(sk, pk) Verifier V(pk)

(sk, pk) = (x, (y,A,Com))←− KeyGen

u
$←− Zm

q , σ
$←− Sm, z←− Pσx

r0
$←− {0, 1}n, r1

$←− {0, 1}n
c0 ←− Com(σ ‖Au; r0)

c1 ←− Com(z ‖Pσu; r1)
c0, c1−−−−−−−−−−−−−−→

α←−−−−−−−−−−−−−− α
$←− Zq

β ←− Pσ(u + αx)
β−−−−−−−−−−−−−−→

Challenge b←−−−−−−−−−−−−−− b
$←− {0, 1}

If b = 0:
σ, r0−−−−−−−−−−−−−−→ Check c0

?
= Com(σ ‖AP−1

σ β − αy; r0)

σ
?∈ Sm

Else:
z, r1−−−−−−−−−−−−−−→ Check c1

?
= Com(z ‖ β − αz; r1)

z
?∈ {0, 1}m, wt(z)

?
= m/2

Fig. 2. Identification protocol

which get as second input a nonce r that is assumed to be chosen uniformly at ran-
dom from a set big enough to guarantee the hiding property of the commitment.

The identification protocol in Figure 2 describes the interaction between
prover and verifier in order to convince the second party about the identity
of the first. All computation in the protocol is performed modulo q, and we use
the following notations. The set of all permutations on m elements is Sm. Any
permutation σ ∈ Sm is a linear operation and the associated m × m binary
matrix is Pσ.

The protocol is an adaption of the code-based identification scheme [4] which
represents a major improvement to Véron’s [24] and Stern’s [23] schemes. In the
same way our protocol represents an improvement over the lattice adaptions of
Stern’s scheme by Kawachi et al. [11]. Like Kawachi’s, our adaptation to the
lattice setting is non-trivial, since we need to ensure that a binary secret key is
used (regardless of the Hamming weight). This needs to be guaranteed through-
out the protocol which entails some change in the β that is used. Similarly to
the coding-based scheme, a cheating prover, not knowing the secret key, can lead
a verifier to believe that he actually knows that secret value with a probability
up to 1/2 in an individual round of execution. Therefore, in order to diminish
the success rate of such an impersonation, the protocol has to be repeated a
number of times, which is a function of the degree of confidence requested by
the application that is using the scheme. This will be discussed further in Section
3.2, where we argue the soundness.

In the commitment phase, the prover commits to two values c0, c1, where
c0 is comprised of the random choices he made and c1 contains information
about his secret key. An adversary that can also correctly compute them with
overwhelming probability either is able to break the commitment or to solve
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the hard problem that makes it possible to obtain a private key from its public
counterpart. Those commitments are sent to the verifier, who responds in the
second phase with value α taken uniformly at random from Zq. Upon receipt of
the this value, the prover is supposed to multiply it by the private key, add to
a permuted masking value u (uniformly chosen at random from Zm

q ) and make
a permutation over the sum. Since u was random, β can be seen as a random
variable with uniform distribution over Zm

q , leaking no information about the
private key x.

Upon receipt of this value, the verifier makes a challenge to the prover, picking
a value uniformly at random from the set {0, 1}. The prover responds to it by
revealing some piece of information that allows the verifier to compute and
check the commitments. An honest prover will always be able to respond either
challenge. Besides checking the correctness of the commitments, the verifier must
also check that the values disclosed by the prover are well-formed, although in
practice this would be solved by defining a suitable encoding for the data.

We will see in Section 3.3 how an impersonator can always cheat with a success
probability of 1/2, and that no better strategy is possible under our hardness
assumptions. So in order to reach a prescribed level of security the interaction
proposed here must be repeated an appropriate number of times.

Ideal lattices. The present construction makes no assumptions about the struc-
ture of the SIS matrix A. Therefore, the space necessary for storing this matrix
is Õ(n2), which is too big for practical purposes. Using ideal lattices, one can re-
duce such space requirements to Õ(n) and simultaneously increase computation
speed of matrix vector products in the form Ax to Õ(n) operations. This has
been proposed and performed many times, perhaps most elegantly in the case
of the SWIFFT compression function [17].

3.2 Security

In this section we show that the protocol in Figure 2 corresponds to a zero-
knowledge interactive proof of knowledge of the predicate defined below. Let
I = {A,y,m, q} be public data shared by the parties A and B. Consider the
predicate P (I,x) as “x is a binary vector of Hamming weight m/2 satisfying the
equation Ax = y mod q”.

We provide below proofs for the completeness, soundness and zero-knowledge
properties of the identification scheme described in Figure 2. In particular, sound-
ness holds even against concurrent attacks, i.e., an adversary may try to im-
personate a given identity after having access to polynomially many verifier
instances in parallel. Each of the verifier instances has the same secret key but is
run with a different random tape. The challenge is to simulate the environment
of the attacker during these interactions and still being able to extract “useful”
information from the adversary during the impersonation phase. The required
assumptions are that Com is a statistically hiding and computationally binding
commitment scheme, e.g., based on SIS (cf. [11]), and the hardness of the SIS
problem.
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Completeness. Given that an honest prover has knowledge of the private key
x, the blending mask u and the permutations Pσσσ, he will always be able to derive
the commitments c0 and c1, and reveal to the verifier the information necessary
to verify that they are correct. He can also show that the private key in his
possession has the appropriate Hamming weight. So, the verifier will always
accept the honest prover’s identity in any given round. This implies perfect
completeness.

Zero-Knowledge. We give a demonstration of the zero-knowledge property for
the identification protocol shown in Figure 2. Here, we require the commitment
function Com to be statistically hiding, i.e., Com(x; r) is indistinguishable from
uniform for a uniform r ∈ {0, 1}n.

Theorem 1. Let q be prime. The described protocol is a statistically zero-
knowledge proof of knowledge if the employed commitment scheme is statistically-
hiding.

Proof. To prove the zero-knowledge property of our protocol, we construct a sim-
ulator S that output a protocol view V = (c0, c1, α, β, b, (σ, r0), (z, r1)) without
knowing the secret x, such that V is indistinguishable from an the interaction of
an honest prover with an honest verifier. It has access to a cheating verifier V ∗,
which contributes α and b. Therefore, S generates r1, r2 according to protocol
and it gets (A,y,Com) as input. The simulator has to guess b before talking to
V ∗. For the moment, let us assume the guess is correct.

If b = 0, the simulator selects u and σ as per protocol and solves the equation
Ax ≡ y (mod q) for x, which does not need to be short. With this pseudo
secret key, the simulator computes c0 and c1 according to the protocol. The
deviation in c1 is not recognized because Com is statistically hiding. Then, S
computes β ←− Pσ(u + αx) after obtaining α from V ∗(c1, c2). The result is
uniform because u is chosen uniformly at random. As a result, S can reveal
(σ, r0), which passes the verification for b = 0.

If b = 1, the simulator needs to play against the second verification branch.
It selects a binary x with Hamming weight m/2 and selects σ as per protocol. It
computes c1, c2 and obtains α ←− V ∗(c1, c2). Then, it computes β ←− Pσ(u +
αx). As a result, S can reveal Pσx that passes verification.

In consequence, the simulator outputs a correct view with probability 1/2.
Since the simulator has access to V ∗, it can restart the verifier whenever the
guess b was incorrect. The result is a statistically close simulation if Com is
statistically hiding. ��

Soundness. We now show that a dishonest prover is able to cheat a verifier to
accept his identity with a probability limited by (q + 1)/2q ≈ 1/2. The number
of possible queries sent by the verifier to a prover is given by all combinations
of challenge bits b ∈ {0, 1} and α ∈ {0, . . . , q − 1} Hence, there are 2q possible
queries. Say, the dishonest prover wants to answer all challenges where b = 0,
then he computes an alternate secret key x′ with large entries such that Ax′ = y.
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This is can be done with Gaussian elimination, for example. At the same time,
when α = 0 he can also answer in the case b = 1 by sending a random z. Since
α = 0 this is not checked in the commitment.

Note that the α = 0 query issue cannot be resolved by removing 0 from the
set that α is drawn from, because the dishonest verifier can effectively shift the
values of α by changing his protocol. Say he wants some fix α0 to take the place
of 0 in the unmodified scheme, then he changes both the computations of the
commitments and β to:

c0 ←− Com(σ ‖Au− α0y; r0), β ←− Pσ(u + (α− α0)x),
c1 ←− Com(z ‖Pσu− α0z; r1).

In effect, he can answer both challenges bits b = 0, 1 for α = α0 now.
Thus, in total, the adversary can answer correctly for q + 1 out of 2q queries.

In the proof, we show that if an adversary is able to answer more queries, it is
also able to break one of the underlying assumptions, i.e. solve SIS or break the
commitment.

Theorem 2. If an honest verifier accepts a dishonest prover with probability
Pr ≥ (q + 1)/2q + ε(n), with ε(n) non-negligible, then there exists a polynomial
time probabilistic machine M which breaks the binding property of the commit-
ment Com or solves the SIS problem with non-negligible probability.

Proof. On input (n,m, q,A) (the SIS problem instance) and a challenge com-
mitment function Com, we need to simulate the adversary’s environment in two
phases: a verification phase and an impersonation phase. In order to correctly
prove knowledge of a valid secret key x during the verification phase, we choose
x and y as in the key generation protocol and run the adversary A on public
parameters (as per protocol).

Therefore, in the verification phase, we can perfectly simulate the prover.
Since the protocol is statistically zero-knowledge, the adversary does not learn
any information about x and the output distribution is the same as for all
alternative secret keys x′ �= x.

After the first phase, we let A play the role of the cheating prover. First, we
receive the commitments c0, c1. Then, because q is polynomial in n, we challenge
the adversary with all 2q challenge pairs (α, b) and record successes as “1” and
failures as “0” in a table with column labels “b = 0”, “b = 1” and row labels
“α = 0”, . . ., “α = q−1”. This is done by rewinding the adversary appropriately.

For the moment, let us assume that there exist two rows, for α and α′, such
that both columns contain “1”. Let (β, σ, r0) and (β′, σ′, r′0) be the outcomes for
challenge (α, 0) and (α′, 0), respectively. Furthermore, let (β, z, r1) and (β′, z′, r′1)
be the outcomes for challenges (α, 1) respectively (α′, 1).

Since the commitment Com is binding, we infer that r0 = r′0, r1 = r′1, and

σ ‖AP−1
σ β − αy = σ′ ‖AP−1

σ′ β′ − α′y , (1)
z ‖ β − αz = z′ ‖ β′ − α′z′ . (2)
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Equation (1) implies σ = σ′. Similarly, (2) shows that the binary vectors z, z′ of
weight m/2 are equal. Now, we turn to extracting A’s secret key by rearranging
parts of (1) and (2), we get

AP−1
σ (β − β′)(α− α′)−1 ≡ y (mod q) , (3)

(β − β′)(α− α′)−1 ≡ z (mod q) . (4)

This proves that x′ := P−1
σ z is a valid secret key and the reduction outputs

the short lattice vector v = x − x′. Notice that β �= β′ because we have (1),
α �= α′, and σ = σ′. The extracted secret key is also different from the one of
the simulator because the function Ax mod q compresses the set of valid secret
keys and statistically hides them in the sense that the protocol is also witness
indistinguishable. Hence, the adversary cannot learn the simulator’s key but with
probability ≤ 1/2 + n−ω(1)

What is left to show is that such a pair (α, α′) exists. To see this, we apply a
simple counting argument [21]. We know that A can answer correctly for > q+1
challenges. W.l.o.g., assume that it succeeds ≥ c times for b = 0 and > q + 1− c
times for b = 1. Thus, there are ≥ c “1” entries in column “b = 0” and > q+1−c
“1” entries in column “b = 1”.

Towards contradiction, assume that there is no such pair (α, α′) for which
A succeeds for the challenges (α, 0), (α, 1), (α′, 0), and (α′, 1). In other words,
assume that the above extraction procedure breaks down. Then, there must be
at least c − 1 zeros in column “b = 0”. In consequence, the total number of
entries in the second column is > c− 1 + q + 1 − c. Since this is > q, we arrive
at the desired contradiction and conclude that the knowledge extractor succeeds
with non-negligible probability if ε(n) is non-negligible. ��

Given that the scheme is a zero-knowledge proof of knowledge, it is also
witness indistinguishable with respect to the secret x. Fortunately, witness-
indistinguishability is preserved under parallel composition. Thus, our scheme
can be run many, i.e., ω(log(n)), times in parallel to achieve a negligible sound-
ness error but without increasing the number of rounds.

3.3 Security Considerations

The code-based identification scheme proposed by Cayrel and Véron and that
serves as starting point for this work has very good performance characteristics.
Its security is based on the assumption that selecting a a random generator or
parity check matrix will result in hard instances of the q-ary syndrome decoding
problem, though. When adapting this scheme to use lattices, on the other hand,
one achieves a construct based on the hardness of the SIS problem, and that has
an worst-case/average-case reduction.

As pointed out in the description of the algorithms, ideal lattices can also be
used in the scheme to improve performance and reduce the amount of public
data. The precautions regarding the (a) irreducibility of the polynomial that
characterizes the ring upon which the lattice is defined and (b) its expansion
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factor must be observed, as recommended in [15]. This ensures that finding
short vectors in such lattice is still hard to perform.

The present scheme is also secure against active attacks. Thus, an attacker is
allowed to interact with a prover prior to attempting to impersonate him to a
verifier. As consequence of the zero-knowledge property, however, no adversary
that interacts with a real prover is able to obtain any knowledge that can be
used later on to impersonate the prover.

We now prove that our scheme is secure against concurrent attacks, by show-
ing that a public key corresponds to multiple secret keys and that the protocol
is witness indistinguishable. It is a standard procedure, as seen in [6].

First, the existence of multiple secret keys associated with a given public key is
assured by the parameter choice (See inequation 5). Second, given that our proto-
col is a zero-knowledge interactive proof, it is also witness indistinguishable [12].

4 Attacks

The most efficient way to attack this scheme, but probably the most difficult
one, consists in solving the inhomogeneous short integer solution (ISIS) problem
that is defined by the public key y and the public matrix A, expressed as Ax =
y mod q, where x is expected to be binary, with dimension m and Hamming
weight m/2. This equation can be re-written as A′x′ = 0 mod q, with A′ = [A|y]
and x′ = [x|−1]T . Lattice basis calculation and reduction can then be applied in
this second lattice to try to find a solution. The approximation factor, however,
is Õ(n), making the task hard.

4.1 Parameters

In order to guarantee with overwhelming probability that there are other solu-
tions to Ax = y mod q, besides the private key possessed by the prover (which
is pivotal in the demonstration of security against concurrent attacks), one can
make q and m satisfy the relation below

qn � card{x ∈ Zm
2 : weight(x) = m/2}. (5)

Besides, q is bounded by the following theorem, which Micciancio and Regev
proved in [20].

Theorem 3. For any polynomially bounded functions β(n),m(n), q(n) = nO(1),
with q(n) ≥ 4

√
m(n)n1.5β(n) and γ(n) = 14π

√
nβ(n), there is a probabilistic

polynomial time reduction from solving GapCV Pγ in the worst-case to solving
SISq,m,γ on the average with non-negligible probability. In particular, for any
m = Θ(n log n), there exists q(n) = O(n2.5 logn) and γ = O(n

√
logn), such that

solving SISq,m on the average is at least as hard as solving GapSV Pγ in the
worst case.

Taking as reference the state-of-the-art lattice reduction algorithms studied in
[9], the length of the shortest vector that can currently be found by the reduction
algorithms is given by (δ ≈ 1.011):
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length = min{q, qn/mδm} (6)
We propose the set of parameters below, in Table 2, which are comparable to

those used by the SWIFFT hash function. The best combinatorial attack for find-
ing short lattice vectors [25] has a computational complexity above 2100 (gener-
alized birthday attack, dividing in 16 groups at each turn). This means that our
security level is 100 bits. In addition to that, the best lattice reduction algorithms
return vectors with euclidean norm above 42, taking into account our set of param-
eters. Given that the private keys resulting from our parameters have euclidean
norm 32, the choice made is safe. Besides, we can also see that the selected param-
eters satisfy both Theorem 3 and the restriction given by equation 5.

Table 2. Concrete Parameter

Bit-security n m q Commitment Length (bits)

100 64 2048 257 256

5 Conclusion and Further Work

In this work we derived a lattice-based identification scheme from a code-based
one. By shifting from one domain area to the other, we were able to provide
stronger security evidences, given that the security arguments are now based on
worst-case hardness instead of average-case. By using ideal lattices and suitable
approximation factors, we were also able to obtain parameters that allow prac-
tical implementations for reasonable levels of security. We have also shown that
it has better performance than all other lattice-based identification schemes.

A natural extension of the approach followed in the present work consists in
adapting the structure of other cryptographic schemes and changing the hard
problem upon which their security relies. By shifting between code and lattice
domains and assessing which kind of gains such change provides, stronger secu-
rity properties or more efficient implementations can be obtained.

Another extension consists in deriving a signature scheme from the current
work. As we pointed out in Section 5.1, the present identification scheme has
some characteristics that can result in efficient signature constructs, when its
parameters are conveniently selected. In this context, it may be worthwhile to
construct a “dual” ID scheme in the sense that it has a completeness error of
1/2 and no soundness error as using the Fiat-Shamir transform on this “dual”
scheme would result in very short signatures.

5.1 Signature via Fiat-Shamir Heuristics

If the verifier is replaced by a random oracle, one can derive signature schemes
from identification counterparts. As pointed out by Lyubashevsky when com-
paring his lattice-based identification scheme [14] with Kawachi’s solution [11],
the latter does not result in an efficient signature scheme due to the fact that
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every bit of the challenge (thus, each bit of a message digest when we consider a
signature application) results in a reasonable amount of data sent by the prover.
For a 240-bit message digest, for example, Kawachi’s scheme would result in a
signature of over two million bits, when applying Fiat-Shamir heuristics.

Our identification scheme, however, has some characteristics of Lyuba-
shevsky’s, in the sense that we can relate a message digest with the variable
α that the verifier sends to the prover in “pass 2” of Algorithm 2, instead of
doing it with the challenge bits. Thus, we can make the field from which such a
variable is defined to have a width that better suits the signature scheme needs,
circumventing the drawback pointed out above. At the same time, we need to
ensure that the total number of rounds we run the scheme is bigger than the de-
sired bit-security level of the resulting signature. This is because an attacker who
can correctly guess the challenge bits for each round can generate a signature.
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Abstract. We give a series of three identification schemes. All of them

are basically 2-round interactive proofs of ability to complete Diffie-

Hellman tuples. Despite their simple protocols, the second and the third

schemes are proven secure against concurrent man-in-the-middle attacks

based on tight reduction to the Gap Computational Diffie-Hellman As-

sumption without the random oracle. In addition, they are more efficient

than challenge-and-response 2-round identification schemes from previ-

ously known EUF-CMA signature schemes in the standard model.

Our first scheme is similar to half the operation of Diffie-Hellman

Key-Exchange. The first scheme is secure only against two-phase attacks

based on strong assumptions. Applying the tag framework, and employ-

ing a strong one-time signature for the third scheme, we get the preferable

schemes above.

Keywords: Identification Scheme, Concurrent Man-in-the-Middle Attack,

the Gap Computational Diffie-Hellman Assumption, Tight Reduction.

1 Introduction

An identification (ID) scheme enables a prover to convince a verifier that the
prover is certainly itself by proving possession of some secret identifying infor-
mation. In public key framework the prover holds a secret key and the verifier
refers to a matching public key. They interact for some rounds doing necessary
computations until the verifier feels certain.

Most of ID schemes, such as the Guillou-Quisquater scheme [14] and the
Schnorr scheme [21], are proofs of knowledge which belong to a class called
Σ-protocols [8]. A Σ-protocol consists of 3-round interaction and satisfies the
special soundness property. By the property it is possible to extract witness of
the prover via its adversary (the Reset Lemma [5]). But when we depend on the
property we must give up tight reduction to computational hardness assumptions
in its security proofs.

As for attacks on ID schemes, if someone malicious can impersonate a prover
then the ID scheme collapses. So the prime requirement for ID schemes is ro-
bustness against impersonation by adversaries who attack various cheating ways.
Among attacks a concurrent man-in-the-middle attack is one of the strongest

S.-H. Heng and K. Kurosawa (Eds.): ProvSec 2010, LNCS 6402, pp. 18–34, 2010.
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threat. In concurrent man-in-the-middle composition, while trying to imper-
sonate a prover, an adversary may interacts with prover clones in arbitrarily
interleaved order of messages.

1.1 Our Contribution

This paper addresses to the problem to construct ID schemes secure against
concurrent man-in-the-middle attacks. Unlike the known schemes, our principle
is neither Σ-protocols nor proofs of knowledge, but are proofs of ability ([13])
to complete Diffie-Hellman tuples.

The first scheme is like half the operation of Diffie-Hellman Key-Exchange and
consists of 2-round interaction. Three exponentiations and one multiplication are
build into the first scheme along the idea for the tag-based encryption scheme of
Kiltz [17]. A string “tag” is assumed to be given to a prover and a verifier by the
first round. To leave the tag framework, the CHK transformation [9] is applied
to the second scheme; a strong one-time signature is build in to get the third
scheme. The second and the third schemes are proven secure against concurrent
man-in-the-middle attacks based on tight reduction to the Gap Computational
Diffie-Hellman (Gap-CDH) Assumption in the standard model.

As for efficiency, our schemes need less computational amount than that of
EUF-CMA signature schemes in the standard model. More precisely, using EUF-
CMA signature schemes or IND-CCA encryption schemes, we can construct
challenge-and-response 2-round ID schemes secure against concurrent man-in-
the-middle attacks ([3]). However, note that known efficient such schemes are
proven secure only in the random oracle model, or, in the standard model, they
need heavy exponentiations or pairing computations under some artificial num-
ber theoretic assumptions, such as the Strong Diffie-Hellman (SDH) Assumption
([2,24,18]).

Though each technique is already known, the second and the third schemes
are so secure and efficient that we establish them in this paper.

1.2 Related Works

Our first, prototype scheme is similar to the scheme of Stinson and Wu [22,23].
They proved it secure in the random oracle model under the CDH and the
Knowledge-of-Exponent Assumption (KEA) [11]. Unlike theirs, we provide a
security proof in the standard model. Although the assumptions utilized, the
KEA and the Gap Discrete Logarithm (Gap-DL) Assumption, are fairly strong,
we stress that the first scheme is a steppingstone towards the second and the
third schemes.

Concerning man-in-the-middle attacks, Katz [15] constructed a non-malleable
proof of knowledge. It is basically a Σ protocol. It utilizes the so-called OR-Proof
technique and is rather complicated.

Gennaro [12] constructed a concurrently non-malleable proof of knowledge. It
is also a Σ protocol. The security proof is based on “strong-type” assumption
(the SDH or the Strong RSA).
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Concerning tight reduction to computational hardness assumptions, Arita and
Kawashima [1] proposed an ID scheme whose security proof is based on tight
reduction to the One More Discrete Log (OMDL) [5] type assumption and the
KEA. Here the KEA is considered a strong assumption and our first scheme also
depends on the KEA. But our second and third schemes succeed in leaving the
KEA.

1.3 Organization of This Paper

In the next section we fix some notations. We briefly review the model of attacks
on ID schemes, then we describe computational hardness assumptions. In Section
3 we discuss the first, prototype ID scheme. Our main results, the second and the
third schemes and their security, are presented in Section 4 and 5, respectively.
In Section 6 we conclude our work.

2 Preliminaries

The empty string is denoted φ. The security parameter is denoted k. On input
1k a group parameter generator Grp runs and outputs (q, g), where q is a prime
of bit length k and g is a base element of order q in a multiplicative cyclic group
Gq. Gq is a general cyclic group of order q throughout this paper. The ring of
exponent domain of Gq, which consists of integers from 0 to q − 1 with modulo
q operation, is denoted Zq.

When an algorithm A on input a outputs z we denote it as z ← A(a). When
A on input a and B on input b interact and B outputs z we denote it as
〈A(a), B(b)〉 = z. When A does oracle-access to an oracle O we denote it as
AO. When A does concurrent oracle-access to n oracles O1, . . . ,On we denote
it as AO1|···|On . Here concurrent means that A accesses to oracles in arbitrarily
interleaved order of messages.

A probability of an event X is denoted Pr[X]. A probability of an event X on
conditions Y1, . . . ,Ym is denoted Pr[Y1; · · · ; Ym : X].

2.1 ID Schemes

An ID scheme ID is a triple of probabilistic polynomial time (PPT) algorithms
(K, P, V). K is a key generator which outputs a pair of a public key and a matching
secret key (pk, sk) on input 1k. P and V implement a prover and a verifier,
recpectively. We require ID to satisfy the completeness condition that boolean
decision output by V(pk) after interaction with P(sk) is one with probability one.
We say that V(pk) accepts if its boolean decision is one.

2.2 Attacks on ID Schemes

The aim of an adversary A on an ID scheme ID is impersonation. We say that
A wins when A(pk) succeeds in making V(pk) accept.
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Attacks on ID schemes are divided into two kinds. One is passive and the other
is active. We are concentrating on active attacks. Active attacks are divided into
four patterns according to whether they are serial or concurrent and whether
they are two-phase or man-in-the-middle.

Firstly a concurrent attack ([3,5]) means that an adversary A(pk) interacts
with polynomially many clones Pi(sk)s of the prover P(sk) in arbitrarily inter-
leaved order of messages. Here all prover clones Pi(sk)s are given independent
random tapes and independent inner states. A serial attack is a special case that
an adversary A(pk) interacts with the prover clone P(sk) arbitrary times, but
with only one clone at a time. So concurrent attacks are stronger than serial
attacks.

Secondly a two-phase attack ([3,5]) means that an adversary A consists of two
algorithms (A1,A2). In the first phase, the learning phase, A1 starts with input
pk, interacts with prover clones Pi(sk)s and outputs its inner state. In the second
phase, the impersonation phase, A2 starts with input the state, interacts with
the verifier V(pk) and tries to make V(pk) accept. On the other hand, a man-
in-the-middle attack means that an adversary A starts with input pk, interacts
with both Pi(sk)s and V(pk) simultaneously in arbitrarily interleaved order of
messages. So man-in-the-middle attacks are stronger than two-phase attacks.

Note that man-in-the-middle adversary A is prohibited from relaying a tran-
script of a whole interaction. This is the standard and natural rule when we con-
sider a man-in-the-middle attack. Denote the set of transcripts between Pi(sk)s
and A(pk) as Π and a transcript between A(pk) and V(pk) as π, then the rule
is described as π �∈ Π .

We define imp-2pc (impersonation by two-phase concurrent attack) advantage
of A = (A1,A2) over ID as;

Advimp-2pc
ID,A (k) def=Pr[(pk, sk) ← K(1k); st ← AP1(sk)|···|Pn(sk)

1 (pk)

: 〈A2(st), V(pk)〉 = 1].

We say that ID is secure against two-phase concurrent attacks if, for any PPT
algorithm A, Advimp-2pc

ID,A (k) is negligible in k.
In an analogous way, we define imp-cmim (impersonation by concurrent man-

in-the-middle (cmim) attack) advantage of A over ID as;

Advimp-cmim
ID,A (k) def=Pr[(pk, sk) ← K(1k)

: 〈AP1(sk)|···|Pn(sk)(pk), V(pk)〉 = 1 ∧ π �∈ Π ].

We say that an ID is secure against concurrent man-in-the-middle attacks if, for
any PPT algorithm A, Advimp-cmim

ID,A (k) is negligible in k.

2.3 Tag-Based ID Schemes

A tag-based ID scheme TagID works in the same way as an ordinary scheme ID
except that a string tag t is a priori given to P and V by the first round. An
interaction depends on the given tag t.
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As for attacks, the selective-tag attack is considered in this paper, referring to
the line of Kiltz [17]. That is, an attack on TagID by an adversary A is modeled
in the same way as on ID except that, an adversary A designates a target tag t∗

firstly, and then A gets a public key pk. A gives a tag ti(�= t∗) to each Pi(sk)
and t∗ to V(pk)

We define selective-tag imp-cmim advantage of A over TagID as;

Advstag-imp-cmim
TagID,A (k) def= Pr[(pk, sk) ← K(1k); t∗ ← A(1k)

: 〈AP1(t1,sk)|···|Pn(tn,sk)(pk), V(t∗, pk)〉 = 1 ∧ (ti �= t∗, ∀i)].

We say that TagID is secure against selective-tag concurrent man-in-the-middle
attacks if, for any PPT algorithm A, Advstag-imp-cmim

TagID,A (k) is negligible in k.

2.4 Computational Hardness Assumptions

We say a solver S, an algorithm, wins when S succeeds in solving a computational
problem instance.

The Gap-CDH Assumption. A quadruple (g,X, Y, Z) of elements in Gq is
called a Diffie-Hellman (DH) tuple if (g,X, Y, Z) is written as (g, gx, gy, gxy) for
some elements x and y ∈ Zq. A CDH problem instance consists of (q, g,X =
gx, Y = gy), where the exponents x and y are hidden. The CDH oracle CDH
is an oracle which, queried about a CDH problem instance (q, g,X, Y ), answers
Z = gxy. A DDH problem instance consists of (q, g,X, Y, Z). The DDH oracle
DDH is an oracle which, queried about a DDH problem instance (q, g,X, Y, Z),
answers a boolean decision whether (g,X, Y, Z) is a DH-tuple or not. A CDH
problem solver is a PPT algorithm which, given a random CDH problem instance
(q, g,X, Y ) as input, tries to return Z = gxy. A CDH problem solver S that is
allowed to access DDH arbitrary times is called a Gap-CDH problem solver. We
consider the following experiment.

Experimentgap-cdh
Grp,S (1k)

(q, g) ← Grp(1k), x, y ← Zq, X := gx, Y := gy

If SDDH(q, g,X, Y ) outputs Z = gxy then return WIN else LOSE.

Then we define Gap-CDH advantage of S over Grp as;

Advgap-cdh
Grp,S (k) def= Pr[Experimentgap-cdh

Grp,S (1k) returns WIN].

We say that the Gap-CDH assumption [20] holds when, for any PPT algorithm
S, Advgap-cdh

Grp,S (k) is negligible in k.

The Gap-DL Assumption. A discrete log (DL) problem instance consists of
(q, g,X = gx), where the exponent x is hidden. A DL problem solver is a PPT
algorithm which, given a random DL problem instance (q, g,X) as input, tries
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to return x. A DL problem solver S that is allowed to access CDH arbitrary
times is called a Gap-DL problem solver. We consider the following experiment.

Experimentgap-dl
Grp,S (1k)

(q, g) ← Grp(1k), x← Zq, X := gx

If SCDH(q, g,X) outputs x∗ and gx∗
= X then return WIN else LOSE.

Then we define Gap-DL advantage of S over Grp as;

Advgap-dl
Grp,S (k) def= Pr[Experimentgap-dl

Grp,S (1k) returns WIN].

We say that the Gap-DL assumption holds when, for any PPT algorithm S,
Advgap-dl

Grp,S (k) is negligible in k.
Though the Gap-DL assumption is considered fairly strong, it is believed to

hold for a certain class of cyclic groups [19].

The Knowledge-of-Exponent Assumption. Bellare and Palacio [6] and
Canetti and Dakdouk [7,10] discussed the Knowledge-of-Exponent Assumption
(KEA) [11]. Informally, the KEA says that, given a randomly chosen h ∈ Gq

as input, a PPT algorithm H can extend (g, h) as a DH-tuple (g, h,X,D) only
when H knows the exponent x of X = gx. The formal definition is as follows.

Let H and H′ be any PPT algorithms and W be any distribution. H and H′

take input of the form (g, h, w). Here g is any fixed base and h is a randomly
chosen element in Gq. w is a string in {0, 1}∗ output by W called an auxiliary
input [7,10]. We consider the following experiment.

Experimentkea-indaux
Grp,H,H′ (1k)

(q, g) ← Grp(1k), w ← W,a ← Zq, h := ga

(X,D) ← H(g, h, w), x′ ← H′(g, h, w)

If(Xa = D and gx′
�= X) then return WIN else LOSE.

Note that w is independent auxiliary input with respect to h in our experiment
above. This independency is crucial ([7,10]).

Then we define KEA advantage of H over Grp and H′ as;

Advkea-indaux
Grp,H,H′ (k) def= Pr[Experimentkea-indaux

Grp,H,H′ (1k) returns WIN].

Here an algorithm H′ is called the KEA extractor. We say that the KEA holds
when, for any PPT algorithm H, there exists a PPT algorithm H′ such that for
any distribution W Advkea-indaux

Grp,H,H′ (k) is negligible in k.

3 A Prototype ID Scheme Secure against Two-Phase
Concurrent Attacks

In this section we construct and discuss a prototype ID scheme IDproto.
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3.1 IDproto and Its Security

IDproto consists of a triple (K, P, V) as shown in the Fig.1. On input 1k, a key
generator K runs as follows. A group parameter generator Grp outputs (q, g) on
input 1k. Then K chooses x ∈ Zq, puts X = gx and sets pk = (q, g,X) and
sk = (q, g, x). Then K returns (pk, sk).

P and V interact as follows. In the first round, V is given pk as input, chooses
a ∈ Zq randomly and computes h = ga. Then V sends h to P. In the second round,
P is given sk as input and receives h as input message, computes D = hx. Then
P sends D to V. Receiving D as input message, V verifies whether (g,X, h,D) is
a DH-tuple. For this sake, V checks whether D = Xa holds. If so, then V returns
1 and if not, then 0.

Key Generation
– K: given 1k as input;

• (q, g)← Grp(1k), x← Zq, X := gx

• pk := (q, g, X), sk := (q, g, x), return (pk, sk)
Interaction
– V: given pk as input;

• a← Zq , h := ga, send h to P

– P: given sk as input and receiving h as input message;

• D := hx, send D to V

– V: receiving D as input message;

• If D = Xa then return 1 else return 0

Fig. 1. A Prototype ID Scheme IDproto

Theorem 1. IDproto is secure against two-phase concurrent attacks under the
Gap-DL assumption and the KEA; for any PPT two-phase concurrent adversary
A = (A1,A2), there exists a PPT Gap-DL problem solver S which satisfies the
following tight reduction;

Advimp-2pc
IDproto,A(k) � Advgap-dl

Grp,S (k) + Advkea-indaux
Grp,H,H′ (k).

3.2 Proof of Theorem 1

Let A = (A1,A2) be as in Theorem 1. Using A as subroutine, we construct a
Gap-DL problem solver S. The construction is illustrated in Fig.2.
S is given q, g,X = gx as a DL problem instance, where x is random and

hidden. S initializes inner state, sets pk = (q, g,X) and invokes A1 on pk.
In the first phase S replies in answer to A1’s queries as follows. In case that

A1 sends hi to the i-th prover clone Pi(sk), S queries its CDH oracle CDH for
the answer of a CDH problem instance (q, g,X, hi) and gets Di. Then S sends
Di to A. In case that A1 outputs its inner state st, S stops A1 and invokes A2

on st.
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In the second phase S replies in answer to A2’s query as follows. In case that
A2 queries V(pk) for the first message by an empty string φ, S chooses a∗ ∈ Zq

randomly and computes h∗ = ga∗
. Then S sends h∗ to A2. In case that A2 sends

D∗ to V(pk), S verifies whether (g,X, h∗, D∗) is a DH-tuple. For this sake, S
checks whether D∗ = Xa∗

holds. If it does not hold then S returns a random
element z ∈ Zq. If it holds then S invokes the KEA extractor H′ on (g, h∗, st).
Here H′ is the one associated with the H below;

H(g, h∗, st){D∗ ← A2(st, h∗), return(X,D∗)}.

Note that (g, h∗, X,D∗) is a DH-tuple because (g,X, h∗, D∗) is a DH-tuple.
Note also that a distribution W is A1 here. An auxiliary input st output by A1

satisfies independency with respect to h∗.
When H′ outputs x∗ S checks whether x∗ is the discrete log of X on base g.

If so, S outputs z = x∗ and if not, a random element z ∈ Zq.
It is obvious that S simulates both concurrent Pi(sk)s and V(pk) perfectly.

Now we evaluate Gap-DL advantage of S. A wins iff Xa∗
= D∗. If Xa∗

= D∗

then x∗ is output by H′. If gx∗
= X then S wins. Therefore;

Pr[S wins] � Pr[A wins ∧ gx∗
= X ]

= Pr[A wins]− Pr[A wins ∧ gx∗ �= X ].

So Pr[S wins] � Pr[A wins]− Pr[Xa∗
= D∗ ∧ gx∗ �= X ].

That is; Advgap-dl
Grp,S (k) � Advimp-2pc

IDproto,A(k)−Advkea-indaux
Grp,H,H′ (k). (Q.E.D.)

Given (q, g, X) as input;

Initial Setting
– Initialize inner state, pk := (q, g,X), invoke A1 on pk

The First phase : Answering A1’s Queries
– In case that A1 sends hi to Pi(sk);

• Di ← CDH(g,X, hi), send Di to A1

– In case that A1 outputs its inner state st ;
• Stop A1, invoke A2 on st

The Second phase : Answering A2’s Query
– In case that A2 queries V(pk) for the first message;

• a∗ ← Zq , h
∗ := ga∗

, send h∗ to A2

– In case that A2 sends D∗ to V(pk);

• If Xa∗ �= D∗ then return random element z ∈ Zq

• else invoke H′ on (g, h∗, st) and get x∗ from H′

If gx∗
= X then return z := x∗

else return random element z ∈ Zq

Fig. 2. A Gap-DL Problem Solver S for the Proof of Theorem 1



26 H. Anada and S. Arita

3.3 Discussion

Though the Gap-DL and the KEA are fairly strong assumptions, the fact that
IDproto is proven secure against two-phase concurrent attacks is rather surpris-
ing, because it is obvious that IDproto is insecure under man-in-the-middle at-
tacks. To see it just recall the typical man-in-the-middle attack on Diffie-Hellman
Key-Exchange.

Analogous phenomenon also occurs, for example, for the Schnorr ID scheme
[5]. It seems that the security against two-phase concurrent attacks is somewhat
artificial. In Section 4 and Section 5 we modify IDproto to strengthen its security
up to (concurrent) man-in-the-middle level.

4 A Tag-Based ID Scheme Secure against CMIM Attacks

In this section we construct an ID scheme TagIDcmim. Referring to the idea of
the tag-based encryption scheme of Kiltz [17], we apply the tag framework to
IDproto to get TagIDcmim.

4.1 TagIDcmim and Its Security

TagIDcmim consists of a triple (K, P, V). The construction is as shown in the Fig.3.
A string tag t is a priori given to P and V by the first round. In our composition
we set t in Zq.

On input 1k, a key generator K runs as follows. A group parameter generator
Grp outputs (q, g) on input 1k. Then K chooses x, y ∈ Zq, puts X = gx and
Y = gy, and sets pk = (q, g,X, Y ) and sk = (q, g, x, y). Then K returns (pk, sk).

P and V interact as follows. In the first round, V is given pk as input. V chooses
a ∈ Zq randomly and computes h = ga and d = (XtY )a. Then V sends (h, d) to
P. In the second round, P is given sk as input and receives (h, d) as input message.
P verifies whether (g,XtY, h, d) is a DH-tuple. For this sake, P checks whether

Tag-Receiving
– P and V receive a tag t ∈ Zq by the first round

Key Generation
– K: given 1k as input;

• (q, g)← Grp(1k), x, y ← Zq , X := gx, Y := gy

• pk := (q, g, X, Y ), sk := (q, g, x, y), return (pk, sk)
Interaction
– V: given pk as input;

• a← Zq , h := ga, d := (XtY )a, send (h, d) to P

– P: given sk as input and receiving (h, d) as input message;

• If htx+y �= d then D :=⊥ else D := hx, send D to V

– V: receiving D as input message;

• If Xa = D then return 1 else return 0

Fig. 3. A Tag-Based ID Scheme TagIDcmim
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htx+y = d holds. If it does not hold then P puts D =⊥. Otherwise P computes
D = hx. Then P sends D to V. Receiving D as input message, V verifies whether
(g,X, h,D) is a DH-tuple. For this sake, V checks whether Xa = D holds. If so,
then V returns 1 and if not, then 0.
Theorem 2. TagIDcmim is secure against selectiev-tag concurrent man-in-the-
middle attacks under the Gap-CDH assumption; for any PPT selectiev-tag con-
current man-in-the-middle adversary A there exists a PPT Gap-CDH problem
solver S which satisfies the following tight reduction;

Advstag-imp-cmim
TagIDcmim,A (k) � Advgap-cdh

Grp,S (k).

4.2 Proof of Theorem 2

Let A be as in Theorem 2. Using A as subroutine, we construct a Gap-CDH
problem solver S. The construction is illustrated in Fig.4.
S is given q, g,X1 = gx1 , X2 = gx2 as a CDH problem instance, where x1 and

x2 are random and hidden. S initializes inner state. S invokes A on input 1k and
gets the target tag t∗ from A. S chooses r ∈ Zq randomly. S puts Y = X−t∗

1 gr,
sets pk = (q, g,X1, Y ) and inputs pk into A. Note that S knows neither x1 nor
y, where y is the discrete log of Y ;

y = logg(Y ) = −t∗x1 + r.

S replies in answer to A’s queries as follows.
In case that A queries V(pk) for the first message by φ, S chooses a∗ ∈ Zq

randomly and S puts h∗ = X2g
a∗

and d∗ = (h∗)r. Then S sends (h∗, d∗) to A
(Call this case SIM-V).

In case that A gives a tag ti and sends (hi, di) to the i-th prover clone Pi(sk),
S verifies whether (g,Xti

1 Y, hi, di) is a DH-tuple. For this sake, S queries its
DDH oracle DDH for the answer. If it is not satisfied then S puts Di =⊥.
Otherwise S puts Di = (di/h

r
i )

1/(ti−t∗) (Call this case SIM-P). S sends Di to
A. Note that, in the selective-tag framework, A is prohibited from using t∗ as
ti (i.e. t∗ �= ti for any i).

In case that A outputs D∗ to V(pk), S verifies whether (g,X1, h
∗, D∗) is a

DH-tuple. For this sake, S queries DDH for the answer. If so, then S returns
Z = D∗/Xa∗

1 and if not, S returns random element Z ∈ Gq.
In the case SIM-V, S simulates V(pk) perfectly. This is because the distribution

of (h∗, d∗) is equal to that of (h, d). To see it, note that (h∗, d∗) corresponds to
(h, d) when x2 + a∗ is substituted for a;

h∗ = gx2+a∗
, d∗ = (gx2+a∗

)r = (gr)x2+a∗
= (Xt∗

1 Y )x2+a∗
.

In the case SIM-P, S simulates concurrent Pi(sk)s perfectly. This is because
Di is equal to hx1

i by the following equalities;

di/h
r
i = htix1+y−r

i = h
(ti−t∗)x1+(t∗x1+y−r)
i = h

(ti−t∗)x1
i .
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As a whole S simulates both V(pk) and Pi(sk)s perfectly. Now we evaluate
Gap-CDH advantage of S. When A wins (g,X1, h

∗, D∗) is a DH-tuple and the
followings hold;

D∗ = (gx1)x2+a∗
= gx1x2Xa∗

1 .

So S wins because its output Z is gx1x2 . Therefore the probability that S wins
is lower bounded by the probability that A wins;

Pr[S wins] � Pr[A wins].

That is; Advgap-cdh
Grp,S (k) � Advstag-imp-cmim

TagIDcmim,A (k). (Q.E.D.)

Given (q, g,X1, X2) as input;

Initial Setting
– Initialize inner state, invoke A on input 1k, get the target tag t∗ from A
– r ← Zq, Y := X−t∗

1 gr, pk := (q, g, X1, Y ), input pk into A
Answering A’s Queries
– In case that A queries V(pk) for the first message (the case SIM-V);

• a∗ ← Zq, h
∗ := X2g

a∗
, d∗ := (h∗)r, send (h∗, d∗) to A

– In case that A gives ti and sends (hi, di) to Pi(sk);

• If DDH(g,Xti
1 Y, hi, di) �= 1 then Di :=⊥

• else Di := (di/hr
i )

1/(ti−t∗) (the case SIM-P)

• Send Di to A
– In case that A sends D∗ to V(pk);

• If DDH(g,X1, h
∗, D∗) = 1 then return Z := D∗/Xa∗

1

• else return random element Z ∈ Gq

Fig. 4. A Gap-CDH Problem Solver S for the Proof of Theorem 2

4.3 Discussion

By virtue of the tag framework, the solver S can simulate concurrent prover
clones (Pi(sk)s) perfectly in the interaction with a selective-tag adversary A.
Moreover, S embeds a portion of CDH problem instance (X2) simulating a ver-
ifier (V(pk)) perfectly, and succeeds in extracting the answer (Xa∗

1 times gx1x2).

5 An ID Scheme Secure against CMIM Attacks

In this section we construct an ID scheme IDcmim. We apply the CHK transfor-
mation [9] to TagIDcmim. That is, to leave the tag framework, we add a one-time
signature OTS to TagIDcmim and replace the tag t by a verification key vk.

5.1 IDcmim and Its Security

IDcmim consists of a triple (K, P, V). IDcmim employs a strong one-time signature
OTS = (SGK, Sign, Vrfy) such that the verification key vk is in Zq. The definition
and security of strong one-time signatures is noted in Appendix A.
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The construction is as shown in the Fig.5. On input 1k a key generator K runs
as follows. A group parameter generator Grp outputs (q, g) on input 1k. Then
K chooses x, y ∈ Zq, puts X = gx and Y = gy, and sets pk = (q, g,X, Y ) and
sk = (q, g, x, y). Then K returns (pk, sk).

P and V interact as follows. In the first round, V is given pk as input. V runs
signing key generator SGK on input 1k to get (vk, sgk). V chooses a ∈ Zq randomly
and computes h = ga and d = (XvkY )a. V runs Signsgk on message (h, d) to get a
signature σ. Then V sends vk, (h, d), σ to P. In the second round, P is given sk as
input and receives vk, (h, d), σ as input message. P verifies whether the signature
σ for the message (h, d) is valid under vk and whether (g,XvkY, h, d) is a DH-
tuple. For the latter sake, P checks whether h(vk)x+y = d holds. If at least one of
them does not hold then P puts D =⊥. Otherwise P computes D = hx. Then P
sends D to V. Receiving D as input message, V verifies whether (g,X, h,D) is a
DH-tuple. For this sake, V checks whether Xa = D holds. If so, then V returns 1
and if not, then 0.

Key Generation
– K: given 1k as input;

• (q, g)← Grp(1k), x, y ← Zq , X := gx, Y := gy

• pk := (q, g, X, Y ), sk := (q, g, x, y), return (pk, sk)
Interaction
– V: given pk as input;

• (vk, sgk)← SGK(1k), a← Zq , h := ga, d := (XvkY )a, σ ← Signsgk((h, d))

• Send vk, (h, d), σ to P

– P: given sk as input and receiving vk, (h, d), σ as input message;

• If Vrfyvk((h, d), σ) �= 1 or h(vk)x+y �= d then D :=⊥ else D := hx

• Send D to V

– V: receiving D as input message;

• If Xa = D then return 1 else return 0

Fig. 5. An ID Scheme IDcmim

Theorem 3. IDcmim is secure against concurrent man-in-the-middle attacks
under the Gap-CDH assumption and the one-time security in the strong sence
of OTS; for any PPT concurrent man-in-the-middle adversary A there exist a
PPT Gap-CDH problem solver S and a PPT forger F on OTS which satisfies the
following tight reduction;

Advimp-cmim
IDcmim,A (k) � Advgap-cdh

Grp,S (k) + Advef-cma
OTS,F (k).

The detailed proof of Theorem 3 is provided in Appendix B.

6 Conclusion

We have presented three ID schemes which are basically proofs of ability to com-
plete Diffie-Hellman tuples. By virtue of the tag framework, simulation went well
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in the security reduction for Theorem 2. At the same time, embed-and-extract
technique worked for CDH problem instance. As a result, the second scheme
got security against selective-tag concurrent man-in-the-middle attacks based
on tight reduction to the Gap-CDH Assumption. Applying the CHK transfor-
mation to the second scheme, We left the tag-framework to get the third scheme.
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A One-Time Signatures

A one-time signature OTS is a triple of PPT algorithms (SGK, Sign, Vrfy). SGK is
a signing key generator which outputs a pair of a verification key and a matching
signing key (vk, sgk) on input 1k. Sign and Vrfy are a signing algorithm and a
verification algorithm, respectively. We say that (m,σ) is valid if Vrfyvk(m,σ)
outputs one. We require OTS to satisfy the standard completeness condition. We
also require OTS to be existentially unforgeable against chosen message attack
(EUF-CMA) by any PPT forger F . The following experiment is the strong one.

Experimentef-cma
OTS,F (1k)

(vk, sgk) ← SGK(1k),m ← F(vk), σ ← Signsgk(m), (m′, σ′) ← F(vk, (m,σ))

If Vrfyvk(m
′, σ′) = 1 ∧ (m′, σ′) �= (m,σ) then return WIN else LOSE.

http://eprint.iacr.org/
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Then we define advantage of existential forgery by chosen message attack of F
over OTS as;

Advef-cma
OTS,F (k) def= Pr[Experimentef-cma

OTS,F (1k) returns WIN].

We say that a OTS is EUF-CMA (or, has one-time security) in the strong sence
when, for any PPT algorithm F , Advef-cma

OTS,F (k) is negligible in k (and then we
say that OTS is a strong one-time signature).

B Proof of Theorem 3

Let A be as in Theorem 3. Using A as subroutine, we construct a Gap-CDH
problem solver S. The construction is illustrated in Fig.6.
S is given q, g,X1 = gx1, X2 = gx2 as a CDH problem instance, where x1

and x2 are random and hidden. S initializes inner state. S gets (vk∗, sgk∗)
from SGK(1k) and chooses r ∈ Zq randomly. S puts Y = X−vk∗

1 gr, sets pk =
(q, g,X1, Y ) and invokes A on input pk. Note that S knows neither x1 nor y,
where y is the discrete log of Y ;

y = logg(Y ) = −vk∗x1 + r.

S replies in answer to A’s queries as follows.
In case that A queries V(pk) for the first message by φ, S chooses a∗ ∈ Zq

randomly and S puts h∗ = X2g
a∗

and d∗ = (h∗)r. S gets a signature σ∗ from
Signsgk∗((h

∗, d∗)). Then S sends vk∗, (h∗, d∗), σ∗ to A (Call this case SIM-V).

Given (q, g,X1, X2) as input;
Initial Setting
– Initialize inner state, (vk∗, sgk∗) ← SGK(1k)

– r ← Zq, Y := X−vk∗
1 gr, pk := (q, g,X1, Y ), invoke A on pk

Answering A’s Queries
– In case that A queries V(pk) for the first message (the case SIM-V);

• a∗ ← Zq, h
∗ := X2g

a∗
, d∗ := (h∗)r, σ∗ ← Signsgk∗((h

∗, d∗))
• Send vk∗, (h∗, d∗), σ∗ to A

– In case that A sends vki, (hi, di), σi to Pi(sk);
• If Vrfyvki((hi, di), σi) �= 1 or DDH(g,Xvki

1 Y, hi, di) �= 1 then Di :=⊥
• else

If vki �= vk∗ then Di := (di/h
r
i )

1/(vki−vk∗) (the case SIM-P)
else abort (the case ABORT)

• Send Di to A
– In case that A sends D∗ to V(pk);

• If DDH(g,X1, h
∗, D∗) = 1 then return Z := D∗/Xa∗

1

• else return random element Z ∈ Gq

Fig. 6. A Gap-CDH Problem Solver S for the Proof of Theorem 3
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In case that A sends vki, (hi, di), σi to the i-th prover clone Pi(sk), S verifies
whether ((hi, di), σi) is valid under vki and whether (g,Xvki

1 Y, hi, di) is a DH-
tuple. For the latter sake, S queries its DDH oracle DDH for the answer. If at
least one of them is not satisfied then S puts Di =⊥. Otherwise, if vki �= vk∗

then S puts Di = (di/h
r
i )

1/(vki−vk∗) (Call this case SIM-P). If vki = vk∗, S
aborts (Call this case ABORT). S sends Di to A except the case ABORT.

In case that A outputs D∗ to V(pk), S verifies whether (g,X1, h
∗, D∗) is a DH-

tuple. For the latter sake, S queries DDH. If so, then S returns Z = D∗/Xa∗
1

and if not, S returns random element Z ∈ Gq.
In the case SIM-V, S simulates V(pk) perfectly. This is because the distribution

of (h∗, d∗) is equal to that of (h, d). To see it, note that (h∗, d∗) corresponds to
(h, d) when x2 + a∗ is substituted for a;

h∗ = gx2+a∗
, d∗ = (gx2+a∗

)r = (gr)x2+a∗
= (Xvk∗

1 Y )x2+a∗
.

In the case SIM-P, S simulates concurrent Pi(sk)s perfectly. This is because Di

is equal to hx1
i by the following equalities;

di/h
r
i = hvkix1+y−r

i = h
(vki−vk∗)x1+(vk∗x1+y−r)
i = h

(vki−vk∗)x1
i .

As a whole S simulates both V(pk) and Pi(sk)s perfectly except the case ABORT.
Now we evaluate Gap-CDH advantage of S. When A wins (g,X1, h

∗, D∗) is a
DH-tuple and the followings hold;

D∗ = (gx1)x2+a∗
= gx1x2Xa∗

1 .

So S wins because its output Z is gx1x2 . Therefore the probability that S wins
is lower bounded by the probability that A wins and the case ABORT does not
happen;

Pr[S wins] � Pr[A wins ∧ ¬ABORT]
� Pr[A wins]− Pr[ABORT].

That is; Advgap-cdh
Grp,S (k) � Advimp-cmim

IDcmim,A (k)− Pr[ABORT].

Claim. The probability that the case ABORT occurs is negligible in k.

Proof of the Claim. Using A as subroutine, we construct a signature forger F
on OTS as follows. Given vk∗ as input, F initializes inner state, chooses x1, x2 ∈
Zq randomly and puts X1 = gx1 , X2 = gx2 . Similarly to S, F generates r, Y, pk
and invokes A on pk.

In case that A queries V(pk) for the first message, F generates a∗, h∗, d∗ and
sends vk∗, (h∗, d∗), σ∗ to A in a similar way to S except querying its signing
oracle SIGN sgk∗ for a signature σ∗ on (h∗, d∗).

In case that A sends vki, (hi, di), σi to the i-th prover clone Pi(sk), F verifies
whether the signature is valid and whether (g,Xvki

1 Y, hi, di) is a DH-tuple. For
the latter sake, F checks whether the following holds;

h
(vki−vk∗)x1+r
i = di.
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Then, if vki �= vk∗ then F sends Di to A in a similar way to S. If vki = vk∗

then S returns ((hi, di), σi) and stops (Call this case FORGE).
Note that the view of A in F is the same as the view of A in S. So;

Pr[FORGE] = Pr[ABORT].

Now in the case FORGE the followings hold;

vki = vk∗, ((hi, di), σi) �= ((h∗, d∗), σ∗).

This is because if ((hi, di), σi) were equal to ((h∗, d∗), σ∗) then the transcript of
a whole interaction would be relayed by A. This is ruled out.

So in the case FORGE, F succeeds in making up an existential forgery and
we have Advef-cma

OTS,F (k) = Pr[FORGE](= Pr[ABORT]). But the advantage is
negligible in k by the assumption in Theorem 3. (Q.E.D.)
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Abstract. The game-based approach to security proofs in cryptogra-

phy is a widely-used methodology for writing proofs rigorously. However

a unifying language for writing games is still missing. In this paper we

show how CSLR, a probabilistic lambda-calculus with a type system that

guarantees that computations are probabilistic polynomial time, can be

equipped with a notion of game indistinguishability. This allows us to de-

fine cryptographic constructions, effective adversaries, security notions,

computational assumptions, game transformations, and game-based se-

curity proofs in the unified framework provided by CSLR. Our code

for cryptographic constructions is close to implementation in the sense

that we do not assume arbitrary uniform distributions but use a realistic

algorithm to approximate them. We illustrate our calculus on crypto-

graphic constructions for public-key encryption and pseudorandom bit

generation.
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1 Introduction

Cryptographic constructions are fundamental components for information secu-
rity. A cryptographic construction must come with a security proof. But those
proofs can be subtle and tedious, and thus not easy to check. Bellare and Rog-
away even claim in [9] that:

“Many proofs in cryptography have become essentially unverifiable. Our
field may be approaching a crisis of rigor.”

With Shoup [27], they advocate game-based proofs as a remedy. This is a
methodology for writing security proofs that makes them easier to read and
check. In this approach, a security property is modeled as a probabilistic pro-
gram implementing a game to be solved by the adversary. The adversary itself is
modeled as an external probabilistic procedure interfaced with the game. Prov-
ing security amounts to proving that any adversary has at most a negligible
advantage over a random player. An adversary is assumed to be efficient i.e., it
is modeled as a probabilistic polynomial-time (for short, PPT) function.

However a unifying language for writing games is still missing. In this paper
we show how Computational SLR [29] (for short, CSLR), a probabilistic lambda-
calculus with a type system that guarantees that computations are probabilistic
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polynomial time, can be equipped with a notion of game indistinguishability.
This allows us to define cryptographic constructions, effective adversaries, secu-
rity notions, computational assumptions, game transformations, and game-based
security proofs in the unified framework provided by CSLR.
Related work. Nowak has given a formal account of the game-based approach,
and formalized it in the proof assistant Coq [24,25]. He follows Shoup by
modeling games directly as probability distributions, without going through a pro-
gramming language. With this approach, he can machine-check game transfor-
mations, but not the complexity bound on the adversary. Previously, Corin and
den Hartog had proposed a probabilistic Hoare logic in [10] to formalize game-
based proofs but they suffer from the same limitation. This issue is addressed in
[3] where the authors mention that their implementation includes tactics that can
help establishing that a program is PPT. Their approach is direct in the sense that
polynomial-time computation is characterized by explicitly counting the number
of computation steps. Backes et al. [2] are also working on a similar approach with
the addition of higher-order aimed at reasoning about oracles.

The above approaches are limited to the verification of cryptographic algo-
rithms, and cannot deal with their implementations. This issue has been tackled
by Affeldt et al. in [1] where, by adding a new kind of game transformation
(so-called implementation steps), game-based security proofs can be conducted
directly on implementations in assembly language. They have applied their ap-
proach to the verification of an implementation in assembly language of a pseudo-
random bit generator (PRBG). However they do not address the issue of uniform
distributions. Indeed, because computers are based on binary digits, the cardi-
nal of the support of a uniform distribution has to be a power of 2. Even at
a theoretical level, probabilistic Turing machines used in the definition of PPT
choose random numbers only among sets of cardinal a power of 2 [14]. In the case
of another cardinal, the uniform distribution can only either be approximated
or rely on code that is not guaranteed to terminate, although it will terminate
with a probability arbitrarily close to 1 [18]. With arbitrary random choices, one
can define more distributions than those allowed by the definition of PPT. This
raises a fundamental concern that is usually overlooked by cryptographers.

Mitchell et al. have proposed a process calculus with bounded replications
and messages to guarantee that those processes are computable in polynomial
time [22]. Messages can be terms of OSLR — SLR with a random oracle [21].
Their calculus aim at being general enough to deal with cryptographic pro-
tocols, whereas we aim at a simpler calculus able to deal with cryptographic
constructions. Blanchet and Pointcheval have implemented CryptoVerif, a semi-
automatic tool for making game-based security proofs, also based on a process
calculus. Courant et al. have proposed a specialized Hoare logic for analyzing
generic asymmetric encryption schemes in the random oracle model [11]. In our
work, we do not want to restrict ourselves to generic schemes. Impagliazzo and
Kapron have proposed two logics for reasoning about cryptographic construc-
tions [19]. The first one is based on a non-standard arithmetic model, which,
they prove, captures probabilistic polynomial-time computations. The second
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one is built on top of the first one, with rules justifying computational indis-
tinguishability. More recently Zhang has developed a logic for computational
indistinguishability on top of Hofmann’s SLR [29].
Contributions. We propose to use CSLR [29] to conduct game-based security
proofs. Because the only basic type in CSLR is the type for bits, our code for
cryptographic constructions is closer to implementation than the code in related
work: in particular, we address the issue of uniform distributions by using an
algorithm that approximates them.

CSLR does not allow superpolynomial-time computations (i.e., computations
that are not bounded above by any polynomial) nor arbitrary uniform choices.
Although this restriction makes sense for the cryptographic constructions and
the adversary, the game-based approach to cryptographic proofs does not pre-
clude the possibility of introducing games that perform superpolynomial-time
computations or that use arbitrary uniform distributions. They are just ideal-
ized constructions that are used to define security notions but are not meant to
make their way into implementations. We thus extend CSLR into CSLR+ that
allows for superpolynomial-time computations and arbitrary uniform choices.
However the cryptographic constructions and the adversary will be constrained
to be terms of CSLR.

We propose a notion of game indistinguishability. Although, it is not stronger
than the notion of computational indistinguishability of [29], it is simpler to
prove and well-suited for formalizing game-based security proofs. We indeed show
that this notion allows to easily model security definitions and computational
assumptions. Moreover we show that computational indistinguishability implies
game indistinguishability, so that we can reuse as it is the equational proof
system of [29]. We illustrate the usability of our approach by: proving formally
in our proof system for CSLR that an implementation in CSLR of the public-
key encryption scheme ElGamal is semantically secure; and by formalizing the
pseudorandom bit generator of Blum, Blum and Shub with the related security
definition and computational assumption.

Compared with [2] and [3], our approach has the advantage that it can auto-
matically prove (by type inference [16]) that a program is PPT [17].

2 Computational SLR

Bellantoni and Cook have proposed to replace the model of Turing machines by
their safe recursion scheme which defines exactly functions that are computable
in polynomial time on a Turing-machine [4]. This is an intrinsic, purely syntactic
mechanism: variables are divided into safe variables and normal variables, and
safe variables must be instantiated by values that are computed using only safe
variables; recursion must take place on normal variables and intermediate recur-
sion results are never sent to normal variables. When higher-order recursors are
concerned, it is also required that step functions must be linear, i.e., intermediate
recursive results can be used only once in each step. Thanks to those syntac-
tic restrictions, exponential-time computations are avoided. This is an elegant
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approach in the sense that polynomial-time computation is characterized with-
out explicitly counting the number of computation steps.

Hofmann later developed a functional language called SLR to implement safe
recursion [16,17]. It provides a complete characterization through typing of the
complexity class of probabilistic polynomial-time computations. He introduces a
type system with modality to distinguish between normal variables and safe vari-
ables, and linearity to distinguish between normal functions and linear functions.
He proves that well-typed functions of a proper type are exactly polynomial-
time computable functions. Moreover there is a type-inference algorithm that
can automatically determine the type of any expression [16]. Mitchell et al. have
extended SLR by adding a random bit oracle to simulate the oracle tape in
probabilistic Turing-machines [21].

More recently, Zhang has introduced CSLR, a non-polymorphic version of
SLR extended with probabilistic computations and a primitive notion of bit-
strings [29]. His use of monadic types [23], allows for an explicit distinction in
CSLR between probabilistic and purely deterministic functions. It was not pos-
sible with the extension by Mitchell et al. [21]. We recall below the definition of
CSLR and its main property.
Types. Types are defined by:

τ, τ ′, . . . ::= Bits | τ × τ ′ | �τ → τ ′ | τ → τ ′ | τ � τ ′ | Tτ

Bits is the base type for bitstrings. The monadic types Tτ capture probabilistic
computations that produce a result of type τ . All other types are from Hofmann’s
SLR [17]. τ × τ ′ are cartesian product types. There are three kinds of functions:
�τ → τ ′ are types for modal functions with no restriction on the use of their
argument; τ → τ ′ are types for non-modal functions where the argument must
be a safe value; τ � τ ′ are types for linear functions where the argument can
only be used once. Note that linear types are not necessary when we do not have
higher-order recursors, which are themselves not necessary for characterizing
PTIME computations but can ease and simplify the programming of certain
functions (such as defining the Blum-Blum-Shub pseudorandom bit generator in
Section 3).

SLR also has a sub-typing relation <: between types. In particular, the sub-
typing relation between the three kinds of functions is: τ � τ ′ <: τ → τ ′ <:
�τ → τ ′. We also have Bits → τ <: Bits � τ , stating that bitstrings can
be duplicated without violating linearity. The subtyping relation is inherited
from CSLR, with an additional rule saying that the constructor T preserves
sub-typing [29].
Expressions. Expressions of CSLR are defined by the following grammar:

e1, e2, . . . ::= x | nil | B0 | B1 | caseτ | recτ | λx.e | e1e2

| 〈e1, e2〉 | proj1e | proj2e | rand | return(e) | bind x← e1 in e2

B0 and B1 are two constants for constructing bitstrings: if u is a bitstring, B0u
(respectively, B1u) is the new bitstring with a bit 0 (respectively, 1) added at
the left end of u. caseτ is the constant for case distinction: caseτ (n, 〈e, f0, f1〉)
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tests the bitstring n and returns e if n is an empty bitstring, f0(n) if the first bit
of n is 0 and f1(n) if the first bit of n is 1. recτ is the constant for recursion on
bitstrings: recτ (e, f, n) returns e if n is empty, and f(n, recτ (e, f, n′)) otherwise,
where n′ is the part of the bitstring n with its first bit cut off. rand returns a
random bit 0 or 1, each with the probability 1

2 . return(e) is the trivial (deter-
ministic) computation which returns e with probability 1. bind x← e1 in e2 is
the sequential computation which first computes the probabilistic computation
e1, binds its result to the variable x, then computes e2. All other expressions are
from Hoffman’s SLR [17].

To ease the reading of CSLR terms, we shall use some syntactic sugar and
abbreviations in the rest of the paper:

– λ . e represents λx . e when x does not occur as a free variable in e;
– x

$← e1; e2 represents the probabilistic sequential computation
bind x ← e1 in e2;

– x ← e1; e2 represents the deterministic sequential (call-by-value) computa-
tion (λx . e2)e1;

– if e then e1 else e2 represents a simple case distinction
case(e, 〈e2, λ .e2, λ .e1〉), which tests the first bit of e: if it is 1 then e1 is
executed, otherwise e2 is executed;

– when a program F is defined recursively by λn . recτ (e1, e2, n), we often
write the definition as:

F
def= λn . if n

?= nil then e1 else e2(n, F (tailtailtail (n))),

where ?= and tailtailtail are respectively the equality test between two bitstrings and
the function that remove the left-most bit from a bitstring. These functions
can be defined in CSLR [29].

Type system and semantics for CSLR are given in [29]. The main property of
CSLR [21,29] is:

Theorem 1. The set-theoretic interpretations of closed terms of type �Bits →
TBits in CSLR are exactly the functions that can be computed by a probabilistic
Turing machine in polynomial time.

This theorem implies that CSLR is expressive enough to model an adversary
and to implement cryptographic constructions, as they both are probabilistic
polynomial-time functions. We remark that adversaries can return values of types
other than Bits (e.g., tuples of bitstrings), but we can always define adversaries
as a PPT function of type �Bits → TBits by adopting some encoding of different
types of values into bitstrings, so the theorem still applies. The same is true in
case of functions with multiple arguments: we can uncurrify them and then adopt
some encoding so that the theorem still applies.
An example of PPT function. The random bitstring generation is defined
as follows:

rsrsrs def= λn . if (n ?= nil) then return(nil)
else b

$← rand; u
$← rsrsrs(tailtailtail (n)); return(b•u)
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where • denotes the concatenation operation of bitstrings, which can be pro-
grammed and typed in CSLR [29]. rsrsrs receives a bitstring and returns a uniformly
random bitstring of the same length. It can be checked that � rsrsrs : �Bits → TBits.

3 Cryptographic Constructions in CSLR

Uniform distributions are ubiquitous in cryptography. However modern comput-
ers are based on binary digits, and thus in implementations the cardinal of the
support of a uniform distribution has to be a power of 2. In case of a different
cardinal, such a distribution can be approximated by repeatedly selecting a ran-
dom value in a larger distribution whose cardinal is a power of 2, until one obtain
a value in the desired range or reach the maximal number of allowed attempts
(timeout, which determines the precision of the approximation). In the latter
case a default value is returned. We implement this pseudo-uniform sampling in
CSLR as follows:

zrandzrandzrand def= λn . λt . if t
?= nil then return(0|n|)

else v
$← rsrsrs(n); if v ≥ n then zrandzrandzrand(n, tailtailtail(t))

else return(v)

The program takes two arguments: the sampling range (represented by the value
n̂) and the timeout (represented by |t|). The test ≥ can be programmed in
CSLR. The timeout is represented by the length of the bitstring t for the sake
of simplicity and readability of the program, but an alternative representation
of using t̂ as the timeout is certainly acceptable.

The program zrandzrandzrand uses u = 2�log2 n̂� as the cardinal of the larger distribution
and makes samplings in this distribution. The probability that one sampling falls
outside the desired range is u−n̂

u , thus probability that |t| consecutive attempts

fail is
(

u−n̂
u

)|t|
. zrandzrandzrand will return 0|n| as the default value after |t| consecutive

failures, so the probability that a value smaller than n̂ but other than 0|n| is re-

turned is
1−(u−n̂

u )|t|
n̂ , and the probability that 0|n| is returned is

1+(n̂−1)·(u−n̂
u )|t|

n̂ .
Similarly, a finite group can be encoded in CSLR and multiplication and group

exponentiation can be programmed (as implied by Theorem 1). In the sequel,
we shall write Zq (q a bitstring) for the set of bitstrings (of the same length than
q) of {0, 1, . . . , q̂ − 1}, and Z$

q for the truly uniform distribution from Zq.
The public-key encryption scheme ElGamal. Let G be a finite cyclic group
of order q (depending on the security parameter η) and γ ∈ G be a generator. The
ElGamal encryption scheme [13] can be implemented in CSLR by the following
programs:

– Key generation:

KGKGKG def= λη . x
$← zrandzrandzrand(q, η); return(γx, x)

KGKGKG is of type �Bits → T(Bits× Bits).
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– Encryption:

EncEncEnc def= λη . λpk . λm . y
$← zrandzrandzrand(q, η); return(γy, pky ∗m)

EncEncEnc is of type �Bits → Bits → Bits → T(Bits× Bits).
– Decryption:

DecDecDec def= λη . λsk . λc . proj2(c) ∗ (proj1(c)
sk)−1

DecDecDec is of type �Bits → Bits → Bits → Bits, which does not involve monadic
type because decryption is deterministic.

Note that when encoding cryptographic constructions in CSLR, we put the se-
curity parameter η explicitly as the argument of the programs. However, as we
work on bitstrings in CSLR, the security parameter in traditional cryptographic
contexts actually corresponds to |η| here. In the case of ElGamal encryption, the
group order q will be determined by η. Particularly, for the encryption scheme
to be semantically secure, we must choose a suitable group such that the DDH
assumption holds, and its order will be necessarily exponential in |η|. There are
efficient algorithms which computes a suitable DDH group given η, hence can
be programmed in CSLR [8].

In the implementation of KGKGKG and EncEncEnc, the security parameter η is used di-
rectly as the timeout of zrandzrandzrand . A more general implementation would instantiate
the timeout by a polynomial of |η|, i.e., zrandzrandzrand(q, p(η)) where p is a well-typed
SLR function of type �Bits → Bits. The choice of p will affect the final distribu-
tion of the program and consequently the advantage of adversaries in security
games or experiments, but that remains negligible. It is possible to use CSLR to
deal with exact security and the exact timeout with p is necessary in that case.
In this paper, we use the specific timeout for the sake of clarity.
The Blum-Blum-Shub pseudorandom bit generator. The BBS generator
defined in [7] is a deterministic function and can be programmed in CSLR as
follows:

BBSBBSBBS def= λη . λl . λs .bbsrecbbsrecbbsrec(η, l, s2mod n)

where bbsrecbbsrecbbsrec is defined recursively as

bbsrecbbsrecbbsrec def=
λη . λl . λx . if l

?= nil then nil else parityparityparity(x)•bbsrecbbsrecbbsrec(η, tailtailtail(l), x2mod n)

where n is determined by the security parameter η. BBSBBSBBS is a well typed SLR-
function of type �Bits → Bits → Bits → Bits, with the second argument being
the length of the resulted pseudo-random bitstring and the third argument being
the seed.

4 Game Indistinguishability

In game-based proofs, an adversary involved in a game can be an arbitrary prob-
abilistic polynomial-time program, hence it can be encoded as a CSLR program
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of type �Bits → Tτ , where the security parameter will bound its running time,
and τ is the type of messages returned by the adversary. A game is encoded as a
closed higher-order CSLR function of type �Bits → (�Bits → Tτ) → TBits that
takes the security parameter and the adversary as arguments and returns one
bit denoting whether the adversary wins the game. We say two games are in-
distinguishable if no adversary can win one of the game with significantly larger
probability than in the other.

Definition 1 (Game indistinguishability). Two CSLR games g1 and g2 are
game indistinguishable (written as g1 ≈ g2) if for every term A such that � A :
�Bits → Tτ , and every positive polynomial P , there exists some N ∈ N such
that for all bitstring η with |η| ≥ N ,

|Pr[�g1(η,A)� � 1]−Pr[�g2(η,A)� � 1]| < 1
P (|η|)

The above definition formalizes the idea that the change between the two
games g1 and g2 cannot be noticed by an adversary. A more general notion
of computational indistinguishability in cryptography has been defined in the
original CSLR system [29].

Definition 2 (Computational indistinguishability [29]). Two CSLR terms
f1 and f2, both of type �Bits → τ , are computationally indistinguishable (writ-
ten as f1 � f2) if for every closed CSLR term A of type �Bits → τ → TBits and
every positive polynomial P , there exists some N ∈ N such that for all bitstring
η with |η| ≥ N

|Pr[�A(η, f1(η))� � 1]−Pr[�A(η, f2(η))� � 1]| < 1
P (|η|)

This definition is a reformulation of Definition 3.2.2 of [14] in CSLR. In particu-
lar, a CSLR term of type �Bits → Tτ defines a so-called probabilistic ensemble.

Intuitively, the difference between the two notions of indistinguishability is
that, computational indistinguishability allows for any arbitrary use of the com-
pared terms by the adversary, while the game indistinguishability provides more
control over the adversary as it is usual in game-based security definitions. Hence,
game indistinguishability is no stronger than computational indistinguishability
as proved in the following proposition. This is why we can sometimes use the
CSLR proof system, which is designed for proving computational indistinguisha-
bility, for proving game indistinguishability.

Proposition 1. Computational indistinguishability implies game indistinguisha-
bility.

Proof. Let g1 and g2 be two arbitrary games of type �Bits → (�Bits → Tτ) →
TBits. For every adversary A of type �Bits → Tτ , construct the following ad-
versary A′:

λη . λg . b
$← g(A);

if b
?= 1 then return(nil) else return(0).
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Clearly, Pr[�A′(η, gi(η))� = nil] = Pr[�gi(η,A)� = 1], and because g1 and g2 are
computationally indistinguishable, Pr[�A′(η, g1(η))� = nil]−Pr[�A′(η, g2(η))�
= nil] is negligible. ��

We will also use the program equivalence defined in [29]. Roughly speaking,
two terms e1 and e2 are equivalent (written e1 ≡ e2) if they have the same
denotational semantics in any environment.

Our further development in CSLR also relies on the following lemma about
zrandzrandzrand :

Lemma 1. Let q be a CSLR bitstring. The probabilistic ensemble
�λη .zrandzrandzrand(q, η)� and the ensemble of truly uniform distributions Z$

q are
computationally indistinguishable, i.e., for every closed CSLR term A of type
�Bits → τ → TBits and every positive polynomial P , there exists some N ∈ N
such that for all bitstring η with |η| ≥ N

∣∣Pr[�A(η,zrandzrandzrand(q, η))� � 1]−Pr[�A(η)�(Z$
q) � 1]

∣∣ < 1
P (|η|) .

Proof. We show that the two ensembles are statistically close:

1
2
·Σv∈Zq

∣∣∣Pr[�zrandzrandzrand(q, η)� � v]−Pr[Z$
q � v]

∣∣∣
=

1
2
·
(∣∣∣∣1 + (q̂ − 1) · ε

q̂
− 1

q̂

∣∣∣∣+ (q̂ − 1) ·
∣∣∣∣1− ε

q̂
− 1

q̂

∣∣∣∣)
=

q̂ − 1
q̂

· ε

is negligible with respect to |η|, where ε =
(

u−q̂
u

)|η|
and u = 2�log2 n̂�. We can

then conclude because statistical closeness implies computational indistinguisha-
bility (cf. Section 3.2.2 of [14]). ��

4.1 Security Notions

Security notions can be defined in term of game indistinguishability. We show
how to use it to define some common security notions in cryptography.

Semantic security. An public-key encryption scheme (KGKGKG ,EncEncEnc,DecDecDec) is said
to be semantically secure [15] if:

λη . λA . (pk, sk) $← KGKGKG(η);
(m0,m1,A′) $← A(η, pk);
b

$← rand;
c

$← EncEncEnc(η,mb, pk);
b′ $← A′(c);
return(b′ ?= b)

≈ λη . λA . rand
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where A and A′ are functions of respective types �Bits → τk → T(τm × τm ×
(τe → TBits)) and τe → TBits. Note that τk, τe and τm are the respective types
of public keys, cipher-texts and plain-texts, which can be tuples of bitstrings that
are distinguished in the language. Roughly speaking, it means that any adversary
A playing the semantic security game (left-side game) cannot do significantly
better than a random player (right-side game). The semantic security game is
to be read as follows: A pair (pk, sk) of public and secret keys is generated; the
public key pk is passed to the adversary A which returns two messages m1,m2

and a function A′, which can be seen as the continuation of the adversary A and
contains necessary information that A has already obtained; one of the messages
mb, is selected at random and encrypted with the public key pk; the obtained
cipher-text c is then passed to the function A′, which returns its guess b′ for the
selected message; the result of the game is whether the adversary is right or not.

Left-bit unpredictability. An SLR-function F is left-bit unpredictable if:

λη . λA . s
$← zrandzrandzrand(q, η); u ← F (η, s);

b
$← A(η, tailtailtail (u)); return(b ?= headheadhead(u))

≈ λη . λA . rand (1)

where A is of type �Bits → Bits → Bits. Roughly speaking, it means that
any adversary A playing the unpredictability game (left-side game) cannot do
significantly better than a random player (right-side game). The left-bit unpre-
dictability game is to be read as follows: a seed s is selected at random in a set
of cardinal q; the function F is then used to compute a pseudorandom sequence
of bits u of size l(|q|) > |q| where l is a polynomial; the sequence u minus its first
bit is passed to the adversary A which returns its guess b for the first bit; the
result of the game is whether the adversary is right or not. It was proved by Yao
in [28] that left-bit unpredictability is equivalent to passing all polynomial-time
statistical tests.

4.2 Game Transformations

Game transformation will consist in rewriting modulo the game indistinguisha-
bility relation or the computational indistinguishability. In particular, we will
reuse as it is the equational proof system of [29] for game transformations.

We will also need some intermediate lemmas. Those lemmas state basic game
transformations used in almost all game-based proofs. The first one states that an
expression e which does not depend on a random bit b cannot guess this bit b.

Lemma 2. If Γ � e : TBits and, for all definable ρ ∈ �Γ �, the domain of the
distribution �e�ρ is {0, 1}, then

b
$← rand; x

$← e; return(x ?= b) ≡ rand

where x, b �∈ dom(Γ ).
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Proof. We denote by e′ the program on the left-hand side. For every definable
ρ ∈ Γ , �e′�ρ = {(0, p0), (1, p1)}, where

p0 = Pr[�rand�ρ �= �e�ρ] =
1
2
·Pr[�e�ρ �= 0] +

1
2
·Pr[�e�ρ �= 1] =

1
2

p1 = Pr[�rand�ρ = �e�ρ] =
1
2
·Pr[�e�ρ = 0] +

1
2
·Pr[�e�ρ = 1] =

1
2

hence e′ ≡ rand. ��

The second lemma allows for a simplification when the semantics of a subex-
pression is a permutation.

Lemma 3. Let f, f ′ be two closed CSLR terms of type �Bits → Bits such that
�f� is a permutation over B, and, for every bitstring q, �f ′� is a permutation
over {�f�(v) | v ∈ Zq}. It holds that

λη . x
$← zrandzrandzrand(q, η); return(fx) � λη . x

$← zrandzrandzrand(q, η); return(f ′(fx))

Proof. Let e1, e2 denote the two programs on the left-hand and right-hand side
respectively. Then for a given bitstring η, �ei�(η) are two distributions over
bitstrings, and dom(�e2�(η)) = {�f�(v) | v ∈ Zq} = dom(�e1�(η)) since �f ′� is a
permutation over dom(�e1�(η)). For every CSLR adversary A of type �Bits →
TBits → TBits, define two new adversaries

A1
def= λη . λw .A(η, x $← w; return(fx))

A2
def= λη . λw .A(η, x $← w; return(f ′(fx))).

Clearly, both A1 and A2 are well-typed CSLR adversaries, and �A(η, ei(η))� =
�Ai(η,zrandzrandzrand(q, η))� (i = 1, 2). According to Lemma 1,

εi = |Pr[�Ai(η,zrandzrandzrand(q, η))� � 1]−Pr[�Ai(η)�(Z$
q) � 1]|

(i = 1, 2) are negligible. Also, by Lemma 3.1 of [25], �A1(η)�(Z$
q) = �A2(η)�(Z$

q)
as �f ′� is a permutation. Hence,

|Pr[�A(η, e1η)� � 1]−Pr[�A(η, e2η)� � 1]|
= |Pr[�A1(η,zrandzrandzrand(q, η))� � 1]−Pr[�A1(η)�(Z$

q) � 1]
−(Pr[�A2(η,zrandzrandzrand(q, η))� � 1]−Pr[�A2(η)�(Z$

q) � 1])|
≤ε1 + ε2

is still negligible. ��

5 Applications

5.1 Computational Assumptions

Computational assumptions can be defined in CSLR too. As in the case of defin-
ing El-Gamal encryption scheme in CSLR, we have to replace all occurrences of
uniform distributions by calls to the function zrandzrandzrand .
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Decisional Diffie-Hellman assumption. Let q be a bitstring depending on
the security parameter η, G be a finite cyclic group of order q̂ and γ ∈ G be
a generator. The Decisional Diffie-Hellman (DDH) assumption [12] states that,
roughly speaking, no efficient algorithm can distinguish between triples of the
form (γx, γy, γxy) and (γx, γy, γz) where x, y and z are random number such that
0 ≤ x, y, z < q̂1. DDH cannot be written directly in CSLR because it involves
arbitrary uniform distributions. Instead we write the following assumption that
we call DDH-Bits:

DDHBLDDHBLDDHBL � DDHBRDDHBRDDHBR

where

DDHBLDDHBLDDHBL def= λη . x
$← zrandzrandzrand(q, η); y

$← zrandzrandzrand(q, η);
return(γx, γy, γxy)

DDHBRDDHBRDDHBR def= λη . x
$← zrandzrandzrand(q, η); y

$← zrandzrandzrand(q, η); z
$← zrandzrandzrand(q, η);

return(γx, γy, γz)

Proposition 2. DDH-bits holds when the DDH assumption holds.

Proof. Let e1, e2 denote the two programs on the left-hand and right-hand side
respectively. Then for a given bitstring η, �ei�(η) are two distributions over
bitstrings, and dom(�e2�(η)) = {�f�(v) | v ∈ Zq} = dom(�e1�(η)) since �f ′� is a
permutation over dom(�e1�(η)). For every CSLR adversary A of type �Bits →
TBits → TBits, define two new adversaries

A1
def= λη . λw .A(η, x $← w; return(fx))

A2
def= λη . λw .A(η, x $← w; return(f ′(fx))).

Clearly, both A1 and A2 are well-typed CSLR adversaries, and �A(η, ei(η))� =
�Ai(η,zrandzrandzrand(q, η))� (i = 1, 2). According to Lemma 1,

εi = |Pr[�Ai(η,zrandzrandzrand(q, η))� � 1]−Pr[�Ai(η)�(Z$
q) � 1]|

(i = 1, 2) are negligible. Also, by Lemma 3.1 of [25], �A1(η)�(Z$
q) = �A2(η)�(Z$

q)
as �f ′� is a permutation. Hence,

|Pr[�A(η, e1η)� � 1]−Pr[�A(η, e2η)� � 1]|
= |Pr[�A1(η,zrandzrandzrand(q, η))� � 1]−Pr[�A1(η)�(Z$

q) � 1]
−(Pr[�A2(η,zrandzrandzrand(q, η))� � 1]−Pr[�A2(η)�(Z$

q) � 1])|
≤ε1 + ε2

is still negligible. ��

1 We do not assume that q̂ is prime. However most groups in which DDH is believed

to be true have prime order [8].
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5.2 Semantic Security of El-Gamal Encryption Scheme

In this section, we illustrate our proof system by proving the semantic security of
El-Gamal encryption scheme in Fig. 1. The proof follows the same structure as
the one in [24], but here the type system of CSLR guarantees that the adversary
is probabilistic polynomial-time. This was not dealt with in [24]. Moreover here
all transformations are purely syntactic (thus allowing the immediate prospect
of being implemented in a tool), while in [24] they were done at the semantics
level.

Note that by using Lemma 3, we assume that the adversary A will not send
any junk messages, i.e., bitstrings that are not elements of the group Gη. This
is considered as a trivial case in cryptography proofs because the El-Gamal en-
cryption procedure will automatically reject the junk messages. But in practice,
in more complex crypto-systems, this may not be trivial at all. In our proof sys-
tem, we can also consider the case where adversaries may send junk messages.
It suffices to provide the corresponding code in the program EncEncEnc which tests the
validity of incoming messages, and we can still prove semantic security in the
CSLR proof system. Another possibility would be to use a richer type system to
reject adversaries returning junk.

6 Extending CSLR

The discussion in the previous sections was limited to the setting of CSLR
with bitstrings. In particular, it does not allow superpolynomial-time compu-
tations nor arbitrary uniform sampling. Although these restrictions make sense
for the cryptographic constructions and the adversary, the game-based approach
to cryptographic proofs does not preclude the possibility of introducing games
that perform superpolynomial-time computations or that use arbitrary uniform
distributions. They are just idealized constructions that are used to define secu-
rity notions but are not meant to make their way into implementations.

In this section, we extend CSLR into CSLR+ so that we can manipulate
games with superpolynomial-time computations and arbitrary uniform choices.

6.1 CSLR+

CSLR+ extends CSLR with a uniform sampling primitive sample of type
Bits � TBits and constants for primitive (and possibly superpolynomial-time)
computations. sample receives a bitstring as argument and returns uniformly a
random bitstring of the same length whose integer value is strictly smaller than
that of the argument. For instance, the distribution produced by sample(101) is
�sample(101)� = {(000, 1

5 ), . . . , (100, 1
5 )}. We can program a sampling from an

arbitrary finite set (of CSLR definable elements, usually just bitstrings in cryp-
tography) using sample, assuming that there is an index function over the set,
but we shall omit the implementation details and write x

$← A; for assigning
to x a uniformly sampled value from set A.
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λη � λA �〈pk↪ sk〉 $← KGKGKG(η); 〈m0↪ m1↪A′〉 $← A(η↪ pk);

b
$← rand; c

$← EncEncEnc(η↪ pk↪ mb); b′ $← A′(c);

return(b
?
= b′)

≡ λη � λA �〈pk↪ sk〉 $←
 

x
$← zrandzrandzrand(q↪ η);

return(γx↪ x)

!

; 〈m0↪ m1↪A′〉 $← A(η↪ pk);

b
$← rand; c

$←
 

y
$← zrandzrandzrand(q↪ η);

return(γy↪ pky ∗ mb)

!

; b′ $← A′(c);

return(b
?
= b′)

(Inline of definition of KGKGKG and EncEncEnc)

≡ λη � λA � x
$← zrandzrandzrand(q↪ η); y

$← zrandzrandzrand(q↪ η); b
$← rand;

〈m0↪ m1↪A′〉 $← A(η↪ γx); b′ $← A′(γy↪ (γx)y ∗ mb);

return(b
?
= b′)

(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [29])

≡ λη � λA � v
$← DDHBLDDHBLDDHBL(η); b

$← rand; 〈m0↪ m1↪A′〉 $← A(η↪ proj1(v));

b′ $← A′(proj2(v)↪ proj3(v) ∗ mb);

return(b
?
= b′)

(Inline of DDHBLDDHBLDDHBL)

≈ λη � λA � v
$← DDHBRDDHBRDDHBR(η); b

$← rand; 〈m0↪ m1↪A′〉 $← A(η↪ proj1(v));

b′ $← A′(proj2(v)↪ proj3(v) ∗ mb);

return(b
?
= b′)

(By DDH-Bits assumption and SUB)

≡ λη � λA � x
$← zrandzrandzrand(q↪ η); y

$← zrandzrandzrand(q↪ η); z
$← zrandzrandzrand(q↪ η); b

$← rand;

〈m0↪ m1↪A′〉 $← A(η↪ γx); b′ $← A′(γy↪ γz ∗ mb);

return(b
?
= b′)

(Inline of DDHBRDDHBRDDHBR)

≡ λη � λA � x
$← zrandzrandzrand(q↪ η); y

$← zrandzrandzrand(q↪ η); b
$← rand; 〈m0↪ m1↪A′〉 $← A(η↪ γx);

v′ $←
 

z
$← zrandzrandzrand(q↪ η);

return(γz ∗ mb)

!

; b′ $← A′(γy↪ v′);

return(b
?
= b′)

(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [29])

≈ λη � λA � x
$← zrandzrandzrand(q↪ η); y

$← zrandzrandzrand(q↪ η); b
$← rand; 〈m0↪ m1↪A′〉 $← A(η↪ γx);

v′ $←
 

z
$← zrandzrandzrand(q↪ η);

return(γz)

!

; b′ $← A′(γy↪ v′);

return(b
?
= b′)

(By Lemma 3 as ( ∗ mb) is a permutation over the group when mb is also from the group)

≡ λη � λA � b
$← rand; x

$← zrandzrandzrand(q↪ η); y
$← zrandzrandzrand(q↪ η); z

$← zrandzrandzrand(q↪ η);

〈m0↪ m1↪A′〉 $← A(η↪ γx); b′ $← A′(γy↪ γz);

return(b
?
= b′)

(By the equivalence rules AX-BIND-3 and AX-BIND-1 in [29])

≡ λη � λA �rand
(By Lemma 2)

Fig. 1. Proof of semantic security of ElGamal
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The type system of CSLR+ is extended with only the proper rules for sample
and constants. Note that the type of sample is Bits � TBits so that it can accept
arguments that are defined using linear resources. In fact, in CSLR+ we do not
care any more about the complexity class that can be characterized using the
type system2 — CSLR+ is the language for describing games, not adversaries.

The definitions of computational indistinguishability and game indistinguisha-
bility are almost the same as before, except that we are now considering distri-
butions that are produced by CSLR+ programs:

Definition 3 (Game indistinguishability in CSLR+). Two closed CSLR+
programs g1 and g2, both of type �Bits → (�Bits → Tτ) → TBits, are game
indistinguishable (written as g1 ≈+ g2) if for every closed CSLR term A of type
�Bits → Tτ , and every positive polynomial P , there exists some N ∈ N such
that for all bitstring η with |η| ≥ N ,

|Pr[�g1(η,A)� = 1]−Pr[�g2(η,A)� = 1]| < 1
P (|η|)

Definition 4 (Comput. indistinguishability in CSLR+). Two CSLR+
terms f1 and f2, both of type �Bits → τ , are computationally indistinguish-
able (written as f1 �+ f2) if for every closed CSLR term A of type �Bits →
τ → TBits and every positive polynomial P , there exists some N ∈ N such that
for all bitstring η with |η| ≥ N

|Pr[�A(η, f1(η))� = 1]−Pr[�A(η, f2(η))� = 1]| < 1
P (|η|)

CSLR+ inherits most of the equational proof system of CSLR. All the rules for
program equivalence in CSLR can be used directly in CSLR+. No extra rules are
needed for the primitive sample, but we can add rules for constants if necessary.
The four rules for proving computational indistinguishability remain the same
as in CSLR (Figure 2) except that in the rule SUB, a new premise enforces
that the substitution context (the term e) must be definable in CSLR, i.e., a
program that does not contain sample or any CSLR+ constant. The soundness
of the system still holds and the proof just goes as for CSLR [29]. In particular,
the proof for the rule SUB contains a construction of a new adversary with the
context, which remains a CSLR term (i.e., a PPT adversary) thanks to the new
premise enforcing that the context must be definable in CSLR.

Note that the rule H-IND is not used throughout this paper, but it is an
important rule representing the hybrid proof technique that is frequently used
in cryptography. Interested readers can find more detailed explanation and ex-
amples in [29].

2 One might expect that the complexity class characterized by CSLR+ is PPT X,

where X is the smallest complexity class in which additional constants can be de-

fined, but the exact relation between CSLR+ and the complexity classes remains to

be clarified — the addition of the primitive sample alone allows for defining more

distributions than in PPT.
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� ei : �Bits → τ (i = 1↪ 2) e1 ≡+ e2

EQUIV
e1 
+ e2

� ei : �Bits → τ (i = 1↪ 2↪ 3) e1 
+ e2 e2 
+ e3

TRANS-INDIST
e1 
+ e3

x :
n Bits↪ y :

n
τ � e : τ

′
e is definable in CSLR � ei : �Bits → τ (i = 1↪ 2) e1 
+ e2

SUB
λx � e[e1(x)�y] 
+ λx � e[e2(x)�y]

x :n Bits↪ n :n Bits � e : τ λn�e[u�x] is numerical for all bitstring u
λx � e[i(x)�n] 
+ λx � e[B1i(x)�n] for all canonical polynomial i such that ♣i♣< ♣p♣

H-IND
λx � e[nil�n] 
+ λx � e[p(x)�n]

Fig. 2. Rules for computational indistinguishability in CSLR+

6.2 Applications

This extension of CSLR+ allows us to express directly DDH in the formalism
and thus does not require to go through the non-standard computational as-
sumption introduced in Section 5. We can reproduce almost as such the proof
of semantic security for ElGamal given in [24]. The difference is that now we
can check automatically that the adversary built in the proof is PPT, and all
transformations are purely syntactic.

We can also reproduce the proof of unpredictability for the pseudorandom
bit generator of Blum, Blum and Shub given in [25]. The proof requires a test
for quadratic residuosity which is a superpolynomial-time computation — it can
be introduced into CSLR+ as a constant. Moreover this proof is based on the
Quadratic Residuosity Assumption that uses arbitrary uniform choices.

Quadratic Residuosity Assumption. Let n be a positive number and Zn

be the set of integers modulo n. The multiplicative group of Zn is written Z∗
n

and consists of the subset of integers modulo n which are coprime with n. An
integer x ∈ Z∗

n is a quadratic residue modulo n iff there exists a y ∈ Z∗
n such that

y2 = x (mod n). Such a y is called a square root of x modulo n. We write Z∗
n(+1)

for the subset of integers in Z∗
n with Jacobi symbol equal to 1. The quadratic

residuosity problem is the following: given an odd composite integer n, decide
whether or not an x ∈ Z∗

n(+1) is a quadratic residue modulo n. The quadratic
residuosity assumption (QRA) states that the above problem is intractable when
n is the product of two distinct odd primes [20]. We reformulate the assumption
in CSLR+:

λη . λA . x
$← Z∗

n(+1); b
$← A(η, n, x); return(b ?= qrqrqr(x)) ≈+ λη . λA . rand

where A must be definable in CSLR of type �Bits → Bits → Bits → TBits, qrqrqr(x)
is the quadratic residuosity test of the element x of Z∗

n in our encoding, and n
is an expression that depends on the security parameter η.
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Blum-Blum-Shub. CSLR+ is expressive enough to encode the proof of [25]
that BBS is left-bit unpredictable: for every positive integer l,

λη . λA . s
$← Z∗

q ; u← BBSBBSBBS (η, l + 1, s);
b

$← A(η, q, tailtailtail (u)); return(b ?= headheadhead(u))
≈+ λη . λA . rand

where A is must be definable in CSLR of type �Bits → Bits → Bits → TBits.
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Abstract. We present an approach to automating computationally

sound proofs of key exchange protocols based on public-key encryption.

We show that satisfying the property called occultness in the Dolev–Yao

model guarantees the security of a related key exchange protocol in a

simple computational model. Security in this simpler model has been

shown to imply security in a Bellare–Rogaway-like model. Furthermore,

the occultness in the Dolev–Yao model can be searched automatically

by a mechanisable procedure. Thus automated proofs for key exchange

protocols in the computational model can be achieved. We illustrate the

method using the well-known Lowe–Needham–Schroeder protocol.

1 Introduction

Proving security of cryptographic protocols and verifying those proofs is a hard,
time-consuming and error-prone task when done by hand. Many flaws in security
proofs were found after the proofs have been accepted and published [11,10]. As
a consequence, automated proofs have been considered a promising solution.

Research on automated proofs in Dolev–Yao models [16] has a long history
thanks to the model’s simplicity. Although this simplicity means sacrificing the
faithfulness of the model, such automated tools have brought many significant
successes in finding flaws. A well-known example is the Needham–Schroeder
public-key protocol that was believed to be secure for many years until an attack
was found by Lowe [19]. On the other hand, such tools cannot guarantee security
in a computational sense, since Dolev–Yao models do not capture computational
attacks defined in the usual cryptographic models.

Some automatic approaches for more realistic computational models have
been proposed recently, shedding some light on this problem. However, the num-
ber of approaches and the types of protocol they can be applied on is still limited.

Contribution. This paper shows how we can automate the verification of security
of key exchange protocols based on public key encryption. The security proofs
achieved are computationally sound. The basic idea is as follows.
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– Kudla and Paterson proposed a modular way to prove security of key agree-
ment protocols [18]. According to their approach, a security proof in the
BR2000 model [2] is reduced to the hardness of a gap problem if we can
show that the security of a simpler protocol in a simpler (computational)
model is reduced to hardness of the related computational problem.

– Cortier et al. showed that we can automate secrecy proofs of public-key-
based protocols [12]. Their idea results in a mechanisable search procedure
for a property called occultness. However, their work is based on Dolev-Yao
model.

– Our contribution provides a link between these two results. We show that
security of a public-key-based protocol which has been checked to be occult
in the simpler computational model is reduced to the hardness of a computa-
tional problem, which we construct using an IND-CCA encryption scheme.
Therefore, to check the security proof in the BR2000 model, we can use the
automatic tool by Cortier et al. [12] to check occultness.

Related work. Research on computationally sound automated proofs for crypto-
graphic systems falls into two broad directions: direct proofs on computational
models and indirect proofs via Dolev–Yao models.

Direct approaches. Direct approaches reason on protocol specifications often
written in a programming language that has a computational semantics.
Courant et al. [14] designed a Hoare-style logic to verify computational in-
variants, e.g. indistinguishability. However, this work can verify IND-CCA
security only of an encryption scheme that is constructed from a trapdoor
permutation. Later, Gagné et al. [17] extended this work to symmetric block
ciphers. Blanchet [5] designed a variant of π-calculus to formalise games,
and developed CryptoVerif, a tool that can automatically transform games
using game-hopping techniques, thereby freeing the human from the mun-
dane parts of the proof. CryptoVerif can be potentially extended to cover
many types of protocols, but it is hard to make it fully automated, i.e. man-
ual guidance is required in non-trivial situations. Datta et al. [15] tuned
the Computational Protocol Composition Logic for verifying key exchange
protocols, resulting in security proofs in the Bellare-Rogaway model [3]. How-
ever, their work is limited to Diffie–Hellman-based protocols and although
they claimed the work is mechanisable, they have not shown how to do it in
details or provided an actual tool.

Indirect approaches. In contrast, indirect approaches exploit automated tools
designed for verifying properties in Dolev–Yao models by showing in which
cases symbolic properties imply computational ones. Cortier and Warinschi
[13] proved the computational soundness of a Dolev–Yao model, by showing
how to map between symbolic and computational traces. They also tested
their idea by using Casrul [9], a Dolev–Yao-based tool to make a Dolev–
Yao security proof. That work differs from ours in the models used. The
Dolev-Yao model they used is the model for Carsul, a protocol verifier for a
fixed number of sessions, while the Dolev–Yao model we use is the model for
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Securify [12], a tool that gives proofs for an unbounded number of sessions
and adversarial operations. In the other side, the computational model they
designed is a more general and simpler, e.g. no session corruption, but the
one we use, the BR2000 model [2], which is designed specifically for key
exchanges.
Canetti and Herzog [6] used ProVerif [4] to automatically verify some sym-
bolic criteria and showed that a protocol satisfying such criteria realises an
ideal functionality for key exchange protocols. This work focuses on public-
key-based key exchange protocols like our work, but the two results are
not strictly comparable. Canetti and Herzog use the universal composabil-
ity (UC) model with a UC-secure public-key encryption scheme which is a
stronger security than we use since it allows security under composability.
At the same time their model is weaker than ours because they do not model
adaptive corruptions and session key reveals. We also note that Canetti and
Krawczyk [8] have shown that universal composability can be obtained for
‘free’ for a slightly weaker functionality. Canetti and Herzog [6] proved that
strong secrecy (an equivalence property), or observational equivalence be-
tween processes that have different values for a secret variable, implies UC-
security. We prove that occultness, which means standard secrecy (a trace
property and a less strong notion), implies security in the Bellare–Rogaway
model.
Later, Canetti and Gajek extended the work [7] to deal with key exchange
based on key encapsulation and signature schemes. With this type of pro-
tocols, they consider adaptive corruptions, session key reveals, and forward
secrecy in the model. The authors also showed that the plain Diffie-Hellman
protocol realizes their key encapsulation functionality, thus the result is widely
applicable on a number of Diffie-Hellman based key exchange protocols.

2 Preliminaries

2.1 Gap Problem

Gap problems were first mentioned by Okamoto and Pointcheval [22]. We sum-
marize the idea here. Let f : X × Y → {0, 1} be any relation on sets X and Y .

– The computational problem of f is: given x ∈ X , find any y ∈ Y such that
f(x, y) = 1 if such a y exists, otherwise return Fail.

– The decisional problem of f is: given (x, y) ∈ X×Y , to decide if f(x, y) = 1
or not.

Definition 1. The gap problem of f is: given the decisional oracle of f, to solve
the computational problem.

2.2 A Modular Proof for Key Agreement

Kudla and Paterson proposed a modular way to prove security of key exchange
protocols in a modified Bellare-Rogaway (mBR) model [18]. We use their idea in
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this work with a little simplification, in that we do not consider any corrupted
oracle to be a fresh one because we do not model key compromise imperson-
ation attacks. We call our mode mBR′ model to differentiate it from Kudla and
Paterson’s.

The mBR′ Game. Denote the set of participants IDs as U and assume each
participant U ∈ U has a public key PU and a private key SU . We use Πi

U to
denote the oracle of the ith instance of U . An oracle Πi

U may accept once at
any time. After that it holds a role role ∈ {initiator, responder}, a partner ID
pid, a session ID sid and a session key seskey. Each oracle follows the protocol
rules and responds to input messages from the adversary. Each oracle Πi

U also
stores a public transcript TΠi

U
that records all messages sent and received by

that oracle.
The game is played between a challenger C and an adversary E. C runs a

Setup algorithm on security parameter k, generating public parameters, a set
of participants U and oracles {Πi

U}, distributing long-term keys to participants,
and selecting a bit b. E is also given all public keys and access to all oracles,
including random oracles.

Adversarial Queries. The adversary can make the following queries.

– Send(U, i,M): E gives the oracle Πi
U a message M . If this oracle’s pid = U ′,

then Πi
U assumes that M is from U ′ and acts according to the protocol. For

initiating oracles, E can make a special Send query λ, which tells Πi
U to set

roleU = initiator. If Πi
U did not receive a message λ as the first message,

roleU will be responder.
– Reveal(U, i): E uses this query to obtain the session key of Πi

U (if any).
– Corrupt(U): This allows E to learn U ’s long-term key.

Oracle States. An oracle Πi
U can be in the following states.

– Accepted: An oracle is in this state if it has received a properly constructed
messages to make a session key and the oracle accepts the key.

– Rejected: An oracle is in this state if it decides not to establish a session
key and abort the protocol.

– Revealed: An oracle is in this state if it has answered a Reveal query.
– Corrupted: An oracle is in this state if U has answered a Corrupt query.

Partnership. Two oracles Πi
U , holding (seskey, sid, pid) and Πj

U ′ , holding
(seskey′, sid′, pid′) are said to be partners if they have accepted and:

1. sid = sid′, seskey = seskey′, pid = U ′, pid′ = U ;
2. roleU = initiator and roleU ′ = responder or vice versa;
3. no other oracle has accepted with session ID equals sid.

Freshness. An oracle Πi
U is fresh if it and its partner Πj

U ′ (if any) are not
revealed and neither U nor U ′ is corrupted.



Automating Computational Proofs for Public-Key-Based Key Exchange 57

Test Query. After E has made a polynomial number of queries in k, E can make
a Test query to an oracle Πi

U , which must be accepted and fresh. If b = 0 then
Πi

U outputs a randomly chosen session key seskeyrandom, otherwise it outputs
its real session key seskeyΠi

U
.

After that, E can continue querying, but not reveal or corrupt the test oracle
or its partner. Finally, E outputs his guess b′ for b. E’s advantage, denoted
AdvantageE(k), is |1/2− Pr[b′ = b]|.

Definition of Security. A benign adversary is one who just relays messages
between parties without any modification. Then the security definition for au-
thenticated key exchange (AKE) is defined as follows.

Definition 2. A protocol is an mBR′-secure AKE protocol if:

1. in the presence of a benign adversary, two oracles running the protocol ac-
cept and hold the same session key and session ID, and the session key is
distributed uniformly at random on {0, 1}k; and

2. for any adversary E, AdvantageE(k) is negligible.

The cNR-mBR′ Model. The cNR-mBR′ model is the same as mBR′, except:

– the adversary cannot make any Reveal query;
– instead of a normal Test query, the adversary selects an accepted and fresh

oracle Πi
U and outputs a guess seskey for the oracle’s session key seskeyΠi

U
.

Then AdvantageE(k) = Pr[seskey = seskeyΠi
U
].

Following the technique of Kudla and Paterson [18], a protocol Π defined in
the mBR′ model can be first proven secure in the cNR-mBR′ model, which is
simpler. We will define a compiler to promote such a protocol to one secure in the
mBR′ model as long as the protocol Π produces a session string ssΠ and uses a
hash function, which is modelled as a random oracle, to finally compute a hashed
session key. We also use Kudla and Paterson’s notion of strong partnering.

If a protocol has strong partnering, the adversary cannot trivially win the
game by making two oracles, which are not partners, have the same session key
and then using the Reveal query. Strong partnering can always be achieved by
including partnering information in the session string; specifically we add the
session identifier and the identity of the initiator and responder to the session
string.

Definition 3 ([18]). If Π is a key exchange protocol and there exists an adver-
sary E, who plays the mBR′ game with Π, and with non-negligible probability
(in security parameter k) can make any two oracles Πi

U and Πj
U ′ accept and hold

the same session key when they are not partners, then we say that Π has weak
partnering. Otherwise Π has strong partnering.

Definition 4. Suppose Π is a key exchange protocol. The session string deci-
sional problem for protocol Π is: given an oracle Πi

U and its transcript T i
U in

the mBR′ model, public keys PU and PU ′ (where pidi
U = U ′) and s, to decide

whether s is the session string of Πi
U or not.
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In order to use the cNR-mBR′ model, given a protocol Π , we define a protocol π
to be the same as Π , except that the session key of π is the session string of Π .

Theorem 1. Suppose that a key exchange protocol Π uses a hash function H
to compute a hashed session key on completion of the protocol and Π has strong
partnering. If the cNR-mBR′ security of the related protocol π is probabilistic
polynomial time reducible to the hardness of the computational problem of some
relation f , and the session string decisional problem for Π is polynomial time re-
ducible to the decisional problem of f , then the mBR′ security of Π is probabilis-
tic polynomial time reducible to the hardness of the gap problem of f , assuming
that H is a random oracle.

Proof. The proof for the original mBR model is given by Kudla and Paterson
[18]. The proof for mBR′ is essentially the same. The idea of the proof is simple.
Assume that there is an adversary A, given an algorithm E that can win cNR-
mBR game, can solve the computational problem. Now we have to show that
we can construct an algorithm B, given the decisional problem oracle and an
adversary D that can win mBR game, can solve the computational problem.
Thus, the heart of the idea is to use D and the decisional problem oracle to
simulate E, and make A solve the computational problem for B.

Notice that in our model mBR′ (hence in cNR-mBR′ also) we do not consider
a corrupted oracle to be a fresh one. However, while simulating E, B passes all
Corrupt queries from D to A blindly, therefore this difference does not matter.

2.3 Chosen Ciphertext Security in the Multi-user Setting

For the simulation in our proof (see Section 3.3), we need an encryption scheme
that is secure even if the adversary can ask for more than one challenging ci-
phertext encrypted by more than one public key. This is call indistinguishability
under chosen ciphertext attack in the multi-user setting (IND-CCA-M) [1]. For-
tunately, adaptive CCA security also implies such kind of security.

Definition 5 (IND-CCA-M).
For all equal-length strings m0, m1 and any b ∈ {0, 1}, the left or right selector

LR is defined as

LR(m0,m1, b) = mb.

For a bit b that is unknown to the adversary, a LR encryption oracle EpkLR
(·, ·, b), given query (m0,m1) where m0,m1 are two equal-length plaintexts, first
sets mb ← LR(m0,m1, b), then outputs the encryption of mb using the public key
pk.

A decryption oracle Dsk(·), given a valid ciphertext c, outputs the correspond-
ing decryption of c using the secret key sk.

We have the following experiment. Let PE = (K, E ,D) be a public-key en-
cryption scheme. The adversary, Acca, has access to n LR encryption oracles
EpkiLR(·, ·, b) and n corresponding decryption oracles Dski(·), where Acca is not
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allowed to query Dski(·) on an output of EpkiLR(·, ·, b). Let I be some initial
information string. For b ∈ {0, 1}, we have

Expn−cca
PE,I (Acca, b)
For i= 1, . . . , n do (pki, ski) ← K(I) EndFor

d← A
Epk1LR(·,·,b),...,EpknLR(·,·,b),Dsk1(·),...,Dskn(·)
cca (I, pk1, . . . , pkn)

Return d
The advantage of Acca is defined as

Advn−cca
PE,I (Acca) = Pr[Expn−cca

PE,I (Acca, 0) = 0]− Pr[Expn−cca
PE,I (Acca, 1) = 0]

We say that PE is secure against chosen ciphertext attack in the multi-user
setting if for all Acca and polynomial n, {Advn−cca

PE,I (Acca)} is negligible.

Lemma 1 ([1]). If an encryption scheme is IND-CCA secure then it is IND-
CCA-M secure.

2.4 An Automatic Search Procedure in Dolev Yao Model

Cortier et al. [12] proposed an automatic procedure that checks whether or not a
protocol has the property called occult, which has been proved to imply secrecy
in the Dolev–Yao model. We will briefly introduce the idea here.

Message Fields. Fields is the set of messages, which can be either primitive or
compound fields. A primitive field’s type can be one of Agent , Key , Nonce. Key
and Nonce make the set Basic, the only set in which a field can be designated
as secret. As a notational convention, variables A,B and variants denote agents;
K and variants denotes keys.

Each agent A has a public key pub(A) and the related private-key prv(A). Each
key K has an inverse key K−1, i.e. pub(A)−1 = prv(A) and prv(A)−1 = pub(A).

Events and Global States. The system state is represented by a set of ordered
events. There are three kinds of events: messages, spells and states.

– A message event is just a field that is the content of a sent message.
– A spell event C = (S,L) ∈ Spells where the book Book (C) = S, is a set of

basic secrets shared among a set of agents Cabal (C) = L.
– A state event is of the form An(X) where A is a role, n is the protocol step

of role A and X is the concatenated field in memory held by the state. The
set of basic secrets of a spell is made up by its book and long-term (private)
keys of its cabal.

Sec(C) = Book(C) ∪ ltk(Cabal(C))

A global state is a set of events. The content of a global state H is its set of
messages

Cont(H) def= H ∩ Fields
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A basic field is unused in H if it is neither a part of any field in Cont(H) nor
Sec(H).

unused(H) def= {X ∈ Basic|X /∈ parts(Cont(H)), X /∈ (Sec(H))}

where parts(.) is defined in the following paragraph.

Inductive Relations.

– parts(S) is the set of all sub-fields of fields in S (not including keys of en-
cryptions).

– analz(S) is the subset of parts(S) having only subfields that are accessible to
adversary.

– synth(S) is the set of all fields constructible from S by concatenation and
encryption using fields and keys in S.

– fake(S) def= synth(analz(S)).

Ideals and Coideals.

– An ideal I is the set of fields that must be protected in order to protect
secrets in S. It is the smallest superset of S such that the concatenation
[X,Y ] ∈ I(S) if X ∈ I(S) and Y ∈ I(S), and {X}K ∈ I(S) if X ∈ I(S)
and K−1 /∈ I(S).

– The coideal C(S) is the complement of I(S).

Protocols. A protocol specification is made up by a set of transitions. A transition

is of the form Pre(t)
New(t)−→ Post(t), where Pre(t) and Post(t) are sets of events

and New(t) is a new set of nonces.
Except for the initialisation transition, a transition t shows a state change of

one role. A message or post spell (but not both) may be introduced in Post(t).
One restriction is that secrets in a post spell must be in New(t). One condi-

tion for protocol security is regularity, implying that there is no long-term key
introduced into a post message.

Global State Transitions. Given a protocol P and a set of initial knowledge I of
the adversary, the global succession relation defines how a state H is transformed
to a new state H ′ as follows.

– H ′ is an honest successor of H , if there is an applicable transition t in P
such that H ′ = (H\(Pre(t) ∩ States))∪Post(t). A transition t is applicable
in H if Pre(t) ⊆ H and New(t) ⊆ unused(H)

– H ′ is a fake successor of H , if there exists a field X ∈ fake(Cont(H) ∪ I)
such that H ′ = H ∪ {X}.

The set of reachable states from P and I is denoted by reachable(P, I).
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Requirement for Secrecy. A spell is compatible with initial knowledge I if I does
not have any of its basic secrets.

compatible(I) def= {C|Sec(C) ∩ parts(I) = ∅}

Given adversarial initial knowledge I, a global state H is called I-discreet if
Cont(H) ⊆ C(Sec(C)) for any I-compatible spell C ∈ H .

Definition 6. A P -configuration is a tuple (I,H,C) in which H ∈ reachable
(P, I), H is I-discreet, C ∈ compatible(I), and C ∈ H. A protocol P is occult
if for all P -configuration(I,H,C) and for every transition t ∈ P ,

Cont(Post(t)) ⊆ C(Sec(C)).

Millen et al. [21] give a secrecy theorem saying that if a protocol is occult then it
provides secrecy (in a Dolev–Yao style model). More importantly, Cortier et al.
[12] proposed an automatic search procedure to check if a protocol has occultness.
This result is very important for our work, because later we will show that if
a protocol has occultness and passes some simple checks, that protocol is also
secure in the cNR-mBR′ model.

3 Security in the cNR-mBR′ Model

In this section, we show that the property occultness also implies security in the
cNR-mBR model under a condition that both initiator and responder provide
nonces for building the session key. We consider only protocols that are based on
public-key encryption, i.e. every message includes only fields that can be nonces,
party IDs, concatenation or encryption of other fields.

Definition 7. A two-party protocol is said to be based on public-key encryption
if every message m is constructed by the following syntax:

m ::= nonce | partyID | Encpk(m) | concat(m,m),

where nonce is a random number, partyID is a party ID number, Enck(.) is en-
cryption under the public key pk and concat(., .) is concatenation of two fields.

3.1 Occultness Property in cNR-mBR′ Model

In this section we link Dolev-Yao occultness property with some property in
our computational models. Those computational properties will be useful for
establishing security proofs in the cNR-mBR′ model later.

Lemma 2. If a protocol π has the occult property, then any secret nonce sent
between parties is always encrypted.
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Proof. Informally, occultness implies secrecy (in Dolev-Yao models), therefore it
must also imply that no secret nonce is sent in the plain form (otherwise the
adversary can learn it easily).

Assume that there is transition t, where Post(t) contains a message event
whose fields include a nonce r (in the plain form). Because r must be kept secret,
there must be a spell event C where r ∈ Sec(C). This means r ∈ I(Sec(C)), i.e.
r /∈ C(Sec(C)). Therefore, Post(t) /∈ C(Sec(C)), i.e. Cont(Post(t)) /∈ C(Sec(C)).
But this means the protocol is not occult.

Lemma 3. Suppose a protocol π has the occult property in the Dolev-Yao model,
and the underlying public key encryption scheme is IND-CCA secure. Consider
any oracle Πi

Z in the cNR-mBR′ model, whose pid is V , where Z and V have not
been corrupted. Then with a negligible probability a ciphertext of a nonce created
by Πi

Z appears (in a transcript), where that ciphertext is not made either by an
oracle of Z whose pid is V or by an oracle of V whose pid is Z.

Proof (Sketch). Because of the scope of this paper, we will explain the outline of
the proof. This lemma is only for a specific case of linking two trace properties,
which are enough for our work, between Dolev-Yao and computational models.
The idea of proof is based on the trace mapping technique, which has been fully
demonstrated by Micciancio and Warinschi [20] for the general case (the models
they used are very similar our models here). The intuitive idea behind the proof
is: if the adversary is the first to make such a ciphertext, then we can break
IND-CCA security; on the other hand, if any party oracle is the first to make
such a ciphertext, then the protocol is not occult.

Assume the Lemma is false, then let c be the first such ciphertext. There are
two cases: c is created by the adversary or c is created by a party oracle.

First we examine the former case, i.e. there is an adversary A who plays the
cNR-mBR′ can make c with a non-negligible probability. Now we show that we
can construct an algorithm G that can have non-negligible advantage in the
experiment Exp2−cca

PE,I (Acca, b) (see Section 2.3) as follows.

– G creates a cNR-mBR′ game, and choose two parties Z and V to replace their
public keys with the public keys from the experiment Exp2−cca

PE,I (Acca, b).
– Because G has public keys and decryption oracles of Z and V and all of

public and secret keys of other parties, the cNR-mBR′ game can be simulated
perfectly except for either an oracle of Z, whose pid is V or an oracle of V ,
whose pid is Z.

– For such an oracle, G prepares two sets of nonces. While simulating it, G
always uses the corresponding encryption oracle EpkiLR(·, ·, b) whenever G
needs encrypting. Notice that G never has to encrypt any of those nonces
under a public key not of Z and V , because we are assuming the adversary
is the first one to do it. In addition, G never has to use a plain nonce, but
its encryption, according to Lemma 2. Therefore, even G does not know
which set of nonce is actually used, but the simulation is still perfect, until
c appears.

– A can still corrupt any party but not Z and V .
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– When c appears, G submits it to the decryption oracle of Z, then G can
guess the bit b correctly.

Second, lets examine the latter case, i.e. a party oracle Πj
Y , whose pid is X , is

the first to break the property by creating c under the public key of X , where
{Y,X} is not {Z, V } or {V, Z}. Notice that Y must be either Z or V , because
before Πj

Y makes c, Πj
Y must have received another encryption from Z or V 1.

We show that it is possible to construct a situation in the Dolev-Yao model, in
which the protocol is not occult. First, for every bitstring value, including nonces
and party IDs, we map it to a symbolic value. Now, in the Dolev-Yao model,
we start with a situation when all parties are corrupted but Z, V . The Dolev-
Yao adversary has to make the same transcripts as he did in the computational
model, but now with symbolic values. We have to make sure that he is able to do
that. Obviously, there is no problem for creating transcripts between Z or V with
another party, because that party is corrupted. For any thing in any transcript
between Z and V , if that is related to any nonce created by Z and V , then the
Dolev-Yao adversary must be able to make the symbolic version, because he has
corrupted all other parties except Z and V . In the other case, if that thing is
related to a nonce created by an oracle of Z, whose pid is V and vice versa, we
argue that the Dolev-Yao adversary is also able to create the symbolic version.
Assume the contrary, then there is a bitstring that the Dolev-Yao adversary
can not make the symbolic version. Then, in the experiment Exp2−cca

PE,I (Acca, b)
above, given that bistring we can always use the decryption oracles to recursively
decrypt ciphertexts. For any ciphertext that is not allowed to be decrypted by the
decryption oracles, we skip it. There must be a ciphertext, that can be decrypted
by the decryption oracles, giving us the hidden nonce in Exp2−cca

PE,I (Acca, b) (if
there is no such a ciphertext, there would not be any problem for the Dolev-Yao
adversary to make symbolic versions of transcript).

Now we have a situation in the Dolev-Yao model, where we have an instance
of party Y sends out a ciphertext of a nonce, which has been created by Z,
under the public key of X (where X is not Z). But this means the protocol is
not occult.

3.2 Hard Problems Used for Security Proofs

According to the modular approach [18] that we are following, we need a set of
computational, decisional and gap problems, which must be hard. Now we define
the following problems and show that IND-CCA implies the hardness of them.

Informally, the computational problem we are going to define is based on the
encryption property one-wayness under adaptively chosen ciphertext attack in
the multi-user setting (OW-CCA-M). In this attack, we ask the adversary to find
the plaintext of a random ciphertext, while allowing him to get the ciphertext of
any message related to the hidden message, in a two-user setting. And, because

1 Otherwise Πj
Y has no information about nonces in c, because the adversary has not

faked any such an encryption



64 L. Ngo, C. Boyd, and J.G. Nieto

IND-CCA implies IND-CCA-M, we just have to show that IND-CCA-M implies
OW-CCA-M. Then the decisional and gap problems are defined accordingly.

Definition 8. Given a public-key encryption scheme PE with plaintext and ci-
phertext spaces MPE and CPE , and a pair of public and secret keys (pkz , skz),
we define the following relation f :

f : (MPE × CPE) → {0, 1},

where f(m, c) =

{
1 if Dskz (c) = m

0 otherwise

Now we can define our problems.
Let Epkz I(·, ·, ·) be an “inserting” encryption oracle of pkz, which on input

(m1, Epkz (m2),m3), outputs Epkz (m1,m2,m3); and Epkv

pkz
C(·) be a “converting”

encryption oracle from pkz to pkv, which on input Epkv (m), outputs Epkz (m).
The adversary is given the public key pkz, an additional public key pkv and all

corresponding decryption, inserting and converting oracles of pkz and pkv, where
the decryption oracles never answer if input is from the inserting or converting
oracles. We have the following problems of PE.

– Computational problem: The adversary is given c to compute m such that
f(m, c) = 1.

– Decisional problem: The adversary is given c and m to determine if
f(m, c) = 1 or not.

– Gap problem: Given an oracle that can solve the decisional problem above
and c, to compute m such that f(m, c) = 1.

Here the decryption oracle Dskz (·) never decrypts c or any ciphertext from any
oracles.

Lemma 4. If the underlying encryption scheme is IND-CCA, the problems in
Definition 8 are hard.

Proof. We have shown that IND-CCA implies IND-CCA-M (see Section 2.3).
Therefore, what we have to show is that solving any of the problems above is at
least as hard as winning the IND-CCA-M game.

Given an algorithm E that can solve one of the problems above, we con-
struct an algorithm F that can have non-negligible advantage in the experiment
Exp2−cca

PE,I (Acca, b) (see Section 2.3).
The construction is as follows. F picks a pair of messages (m0,m1) randomly,

then submits them to Epk1LR(·, ·, b) and then forwards the output c as the chal-
lenge ciphertext to E. Now, F has to simulate all necessary oracles that E needs.
For any decryption request, F just forwards it to the decryption oracle in the ex-
periment. For requests to inserting and converting oracles, because F can submit
any message to oracles Epkz LR and EpkvLR, F can also simulate those oracles.
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We examine each case as follows.

– If E can solve the computational problem, i.e. output mb, F can see mb to
guess b correctly.

– If E can solve the decisional problem, F just asks E if m0 or m1 is actually
encrypted. Therefore F can guess b correctly.

– If E can solve the gap problem, F must simulate the decisional oracle. Given
a request to the decisional oracle including a ciphertext c and a plaintext m,
if c is not an output of any oracle Epkz LR, F can use Dskz (·) to check the
plaintext. Otherwise, if m is one of the two possible plaintexts of c (F must
know them), F just outputs Yes. In this latter case, the probability that F
simulates the decisional oracle wrongly is negligible, i.e. m is m1−b, because
c contains no information of m1−b.
Finally, F can see the output of E to guess b correctly.

3.3 Our Main Theorem

Theorem 2. Suppose a protocol π is occult and based on an IND-CCA public-
key encryption scheme, each side sends out at least one nonce, and the session
key includes all exchanged nonces. Then the security of π in the cNR-mBR′ model
is probabilistic polynomial time reducible to the hardness of the corresponding
computational problem (according to Definition 8).

Proof. Assume that there is an adversary A that participates in π in the cNR-
mBR′ model and outputs the session key with a non-negligible probability εA in
a time τA, where k is the security parameter. We will show that we can build
an adversary B who solves the computational problem, i.e. given a ciphertext c,
output the plaintext m of c using some oracles, with some probability g(εA) and
in time h(τA) where g and h are polynomial functions.

The idea behind the reduction is as follows. B will try to make a session key of
an oracle of Z, whose pid is V , to contain m. Without knowing m and the secret
key used to decrypt c, B can still do that by using inserting and converting oracles
to simulate the transcript of that oracle, as long as the oracle and its partner have
not been corrupted. Fortunately, according to Lemma 3, B never has to simulate
a ciphertext of m under another key except PZ and PV (otherwise the simulation
fails because B does not know m). Finally, if A chooses that oracle to test, then
the guess of the session key from A will help B to output m.

Now we formally describe how B works. As we have defined the computational
problem of f , B is given the public key pkz, which has been used to make c,
an additional public key pkv and all corresponding decryption, inserting and
converting oracles. B makes the cNR-mBR′ game as follows.

– Setting up: B runs a Setup(k) algorithm to set up a set of participants {U},
their oracles and long-term keys for each participant as defined in Section 2.2.
Then B chooses randomly two parties Z and V , replaces their public keys
with pkz and pkv respectively. After that, B picks randomly a party oracle
Πj

Z , whose pid is V .
Finally B gives all public keys to A.
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– Answering queries:
• Send(U, i, M):

∗ If this is the query for Πj
Z , i.e. U = Z and i = j, where after that Πj

Z

has to reply the first message containing a nonce (in an encrypted
form, see Lemma 8), then Πj

Z considers the hidden m as his first
nonce and starts using corresponding inserting and converting oracles
to make valid replies.
Notice that if Πj

Z has not been required to use any nonce, then the
inserting and converting oracles have not been used any time.

∗ If no ciphertext inside M is from any inserting or converting ora-
cles that B has been given (to solve the computational problem),
then B can parse all the content M by using relevant secret keys or
decryption oracles.
Now there are two cases:
· When B is parsing M , if there is a nonce that is supposed to

be the hidden m, then B puts the party oracle Πi
U in the state

Rejected, because according to Lemma 3, M is an invalid mes-
sage with an overwhelming probability.

· Otherwise, B keeps simulating according to the protocol specifi-
cation.

∗ If there is at least one ciphertext inside M that is from any inserting
or converting oracles that B has been given, then certainly B knows
what is the next state of Πi

U (B knows m is inside, B just does
not know what m is). But it maybe a problem if Πi

U has to reply
something containing m.
Now, according to Lemma 3, B never have to make a ciphertext of
m under a key different from PZ or PV . And to make a ciphertext of
m under PZ or PV , B uses relevant inserting and converting oracles.

• Corrupt(U):
∗ If U = Z or U = V , then B stops using A and output randomly one

bit b′.
∗ Otherwise B just gives A the corresponding private key.

– Finally, A must choose an accepted and fresh oracle and output his guess
for the session key.
Suppose the number of participants is npar and each party may have nses

sessions, where npar and nses are polynomial functions of k.
With a non-negligible probability 1

npar .nses
, Πj

Z is the oracle chosen by A.
In this case, B just extracts all nonces from the session key outputted by
A and outputs the nonce which is supposed to be m (Since the session key
is made of nonces from both sides, it must contains m). Therefore, if Πj

Z is
chosen, the probability that B wins is η1 = εA.
Otherwise, B just stops using A and outputs a random guess. Therefore, if
Πj

Z is not chosen, the probability that B wins is η2 and negligible.
Therefore, the probability that B wins is η = 1

npar.nses
.η1+(1− 1

npar .nses
).η2 ≥

εA. 1
npar.nses

, in a time h(τA) where h(.) is a polynomial function.
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4 Automated Proofs in the mBR′ Model

4.1 The Session String Decisional Problem

In order to establish security in the mBR′ model from security in the cNR-mBR′

model, we need to show that while we are making a reduction from the gap
problem to mBR′-security, we must be able to solve the session string decisional
problem [18]. The following lemma shows that we can do it with any public-key-
based protocol.

Lemma 5. Given all the public and private keys used in an mBR′ game, except
the private key of an arbitrary party Z, and the oracle for the decisional prob-
lem of f based on public and private key of Z, there exists a polynomial time
algorithm S to solve the session string decisional problem in the mBR′ game.

Proof. Since S has all public and private keys except the secret key of Z, S can
open all ciphertexts with the exception of any ciphertext made under the public
key of Z. However, for such a ciphertext, S can always use the decisional problem
of f to check if a nonce is the plaintext or not. Therefore, S can always solve
the session string decisional problem in the mBR′ game in polynomial time.

4.2 How to Automate Proofs

According to the Theorem 1, in order to show the mBR′ security of a key ex-
change protocol Π that is based on an IND-CCA public-key encryption scheme
and computes a session key by hashing, we have to do the following.

– Show that in the case of a benign adversary the protocol completes correctly
with a random key (see Section 2.2).

– Show that Π has strong partnering. We can always have this property if we
add partnering information into the session string (see Section 2.2).

– Show that the cNR-mBR′ security of the related “no-hashing” protocol π is
probabilistic polynomial time reducible to the hardness of the computational
problem. First we check if both sides contribute nonces (very easily checked)
and then we use the automatic tool by Cortier et al [12] to check occultness.

We do not have to show that given the decisional problem oracle of f , we can
solve the session string decisional problem, because it is done by Lemma 5. Al-
though there a number of steps, they can be done quickly or automatically.
Checking the occultness property is the only difficult step but it can be auto-
mated.

Example 1. Suppose we want to prove the following key exchange protocol Π ,
which is based on Needham-Schroeder-Lowe protocol. There are parties A and
B communicating as follows.

1. A → B: EncPB (concat(NA, A))
2. B → A: EncPA(concat(NA, NB, B))
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3. A → B: EncPB (concat(NB))

After that, A and B compute sid = {NA, A}PB , {NA, NB, B}PA , {NB}PB

and the session key seskeyΠ = hash(NA, NB, sid, A,B), where hash(·) is a hash
function.

Π has mBR′ security because of the following.

– It is trivial to see that the protocol is functional. And because the session key
is computed by hashing the concatenation of some uniformly chosen nonces,
the session key is distributed uniformly.

– Π has strong partnering because we add (sid,A,B) into the session string
according to the technique mentioned in Section 2.2.

– In the related protocol π, both parties contribute nonces. Furthermore, there
is a mechanised proof of occultness for π by Cortier et al. [12].

5 Conclusion and Future Work

We have shown an approach of using an automatic technique designed originally
for Dolev–Yao models to verify security of public-key-based key exchange pro-
tocols in a computational model. The full computational model is reduced to a
simpler one first, before we apply a mechanisable technique to establish a secu-
rity proof. Although the technique was first designed for checking a property in
the Dolev–Yao model, we have shown that property also implies security in our
simpler computational model. Therefore, the automatic technique proposed by
Cortier et al. [12] can be used here to achieve a computationally sound security
proof.

This work can be extended in some directions. Firstly, we want to know how
the computational model can be extended, for example to modelling symmetric
key encryption, while our approach remains applicable. Secondly, it may be
possible to design an automatic technique to establish a security proof directly
in the cNR-mBR′ model, e.g. using Hoare logic. This may allow us to treat
more types of protocols than using the indirect method in this paper. Thirdly,
because it is always hard to apply automatic techniques on full computational
models, it would be interesting to find more modular approaches, e.g. reducing
the complexity of models, and then designing automated proofs in the simpler
models.

References

1. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user set-

ting: Security proofs and improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.

LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

2. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure

against dictionary attacks. LNCS, pp. 139–155. Springer, Heidelberg (2000)

3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,

D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg

(1994)



Automating Computational Proofs for Public-Key-Based Key Exchange 69

4. Blanchet, B.: Automatic proof of strong secrecy for security protocols. In: Proceed-

ings of IEEE Symposium on Security and Privacy, 86–100 (2004)

5. Blanchet, B.: A computationally sound mechanized prover for security protocols.

IEEE Transactions on Dependable and Secure Computing 5(4), 193–207 (2008)

6. Canetti, R., Herzog, J.: Universally composable symbolic analysis of mutual au-

thentication and key-exchange protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006.

LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)

7. Canetti, R., Gajek, S.: Universally composable symbolic analysis of Diffie–

Hellman based key exchange. Cryptology ePrint Archive, Report 2010/303 (2010),

http://eprint.iacr.org/

8. Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and

secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.

337–351. Springer, Heidelberg (2002)

9. Chevalier, Y., Vigneron, L.: A tool for lazy verification of security protocols. In:

Proceedings of ASE, vol. 1, pp. 373–376 (2001)

10. Choo, K.K., Boyd, C., Hitchcock, Y.: Errors in computational complexity proofs

for protocols. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 624–643.

Springer, Heidelberg (2005)

11. Choo, K.K.R., Boyd, C., Hitchcock, Y., Maitland, G.: On session identifiers in

provably secure protocols. Security in Communication Networks, 351–366 (2004)

12. Cortier, V., Millen, J., Rueß, H.: Proving secrecy is easy enough. In: Proceed-

ings of the 14th IEEE workshop on Computer Security Foundations, p. 97. IEEE

Computer Society, Los Alamitos (2001)

13. Cortier, V., Warinschi, B.: Computationally sound, automated proofs for security

protocols. In: Programming Languages and Systems, pp. 157–171

14. Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lakhnech, Y.: Towards au-

tomated proofs for asymmetric encryption schemes in the random oracle model.

In: Proceedings of the 15th ACM Conference on Computer and Communications

Security, pp. 371–380. ACM, New York (2008)

15. Datta, A., Derek, A., Mitchell, J.C., Warinschi, B.: Computationally sound compo-

sitional logic for key exchange protocols. In: 19th IEEE Computer Security Foun-

dations Workshop, p. 14 (2006)

16. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on

Information Theory 29(2), 198–208 (1983)
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Abstract. In this paper, we propose a framework for constructing con-

vertible undeniable signatures from weakly-secure standard signatures.

We then present a concrete instantiation employing a standard signa-

ture scheme recently proposed at Eurocrypt ’09. The instantiation is

the first (convertible) undeniable signature scheme whose unforgeability

relies on the well-known RSA assumption.

Keywords: Convertible undeniable signatures, RSA assumption.

1 Introduction

1.1 Background

The concept of undeniable signatures (US) was introduced by Chaum and Antwer-
pen [7]. Certainly, signatures aim at preserving undeniability, so the term
“undeniable signatures” may deserve some more explanation. Namely, while or-
dinary signatures definitely ensure undeniability, undeniable signatures still has
the property even when the signer takes control of the verifiability. In undeniable
signature schemes, a verifier cannot verify the validity of a message-signature pair
by himself. Only if the signer agrees to have the pair verified, the verifier is able to
be convinced whether the signature is valid or invalid, through executing an inter-
active protocol with the signer. Main applications of undeniable signatures are in
licensing software [6], electronic cash [3,8,30], confidential business agreement [4],
and generally, in cases where verification of signatures leads to some benefit for the
verifier. Departing from the work of Chaum and Antwerpen [7], there is a consid-
erable effort in the community to construct better undeniable signature schemes,
among which are [5, 6, 17, 18,23,24,28] to list just a few.

A subsequent line of research is to add more properties to undeniable signa-
ture schemes to enhance its usefulness. Along the line, convertible undeniable
signature schemes were introduced by Boyar et al. [4]. In such schemes, unde-
niable signatures can be converted into ordinary self-verifiable ones by having
the signer publishing additional pieces of information called converters. There
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are two types of converters. The signer can issue either a “selective converter”
which converts a single undeniable signature, or “all converter” which converts
all signatures the signer has produced so far.

Many convertible undeniable signature schemes (CUSs) were proposed in the
literature, and yet many were broken as well. Boyar et al. [4] originally prove
that CUSs exist if one-way functions exist, but the result is purely theoretical.
Realizing the fact, Boyar et al. in the same paper proposed another scheme with
practical efficiency, but unfortunately was later broken [27]. After that, Damgard
and Pedersen [10] suggested some efficient schemes, but they could not prove
the security formally; and yet it was recently found by El Aimani [14] that one
of the schemes [10] did not satisfy invisibility as conjectured. El Aimani [14]
also showed how to fix the scheme in the random oracle model. Using pairings,
Yuen et al. [34] showed a CUS scheme in the standard model, but the scheme
turned out insecure as showed in [31]. Also with pairings, Huang and Wong [22]
suggested a scheme in the standard model, but was showed flawed in [33]. The
short history just mentioned shows that constructing CUSs (and US in general)
is a highly delicate task, in which a rough intuition seems not enough, and one
should works with concrete details.

In this paper, we will work in the RSA group, so let us focus on some CUS
schemes in the setting. In ROM, one can even rely on the factoring assumption
for unforgeability, as in the work of Galbraith and Mao [17]. However, in the
standard model, what we currently have are schemes based on relatively strong
assumptions such as the strong RSA assumption for unforgeability, as in [32], or
even stronger assumptions as in [26].

1.2 Our Contribution

In this paper, we first show a general construction of CUS, composing from
a weakly-secure ordinary signature scheme, a chameleon hash function, and a
public key encryption (PKE) scheme with some additional properties but fulfilled
by well-known schemes in the literature.

We then show a concrete instantiation derived from our proposed construc-
tion. The concrete scheme utilizes the RSA-based ordinal signature/chameleon
hash/PKE. Its unforgeability relies on the RSA assumption, which is the weakest
assumption used in factoring-based CUS schemes so far in the standard model.

2 Convertible Undeniable Signatures

Throughout this paper, λ denotes the security parameter and PPT algorithm
denotes a probabilistic polynomial-time algorithm. For probabilistic algorithm
A, y $←A(x) means that A with input x takes randomness uniformly at random

and outputs y. For finite set B, y
$
∈ B denotes picking y from B uniformly at

random.
A convertible undeniable signature scheme CUS consists of a tuple (CUS.KGen,

CUS.USign, CUS.sConvert, CUS.aConvert, CUS.Vrf, CUS.UVrf, CUS.Confirmation,
CUS.Disavowal) as follows.
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– CUS.KGen: On input 1λ, this algorithm outputs a pair of public and secret
keys, (pk, sk).

– CUS.USign: On input secret key sk and message m, the signing algorithm
outputs an element σ, which is the undeniable signature on m.

– CUS.sConvert: On input secret key sk, message m, and signature σ, this
algorithm outputs a (selective) converter, cvt, if (m,σ) is a valid pair, that
is, σ ∈ {x | x← CUS.USign(sk,m)}. Otherwise, outputs ⊥.1

– CUS.aConvert: On input secret key sk, this algorithm outputs Acvt, which
is the all converter.

– CUS.Vrf: On input public key pk, message m, signature σ, and converter cvt,
this algorithm outputs 1 if (m,σ) is a valid pair for pk and cvt is a converter
of σ. Otherwise, outputs 0.

– CUS.UVrf: On input public key pk, message m, signature σ, and all converter
Acvt, this algorithm outputs 1 if (m,σ) is a valid pair for pk. Otherwise,
outputs 0.

– CUS.Confirmation: A protocol between a signer and a verifier such that, given
a message m, signature σ, and public key pk, it allows the signer to convince
the verifier that σ is indeed a valid signature on m for pk, with the knowledge
of the secret key. If (m,σ) is invalid, then no signer can prove the pair as
valid with non-negligible probability.

– CUS.Disavowal: A protocol between a signer and a verifier such that, given a
message m, a signature σ and a public key pk, it allows the signer to convince
the verifier that σ is an invalid signature on m for pk, with the knowledge
of the secret key sk. If (m,σ) is valid, then no signer can prove the pair as
invalid with non-negligible probability.

Note that “(m,σ) is valid for pk” means σ ∈ {x | x← CUS.USign(sk,m)} for sk
which corresponds to pk.

The following definitions describe securities that a convertible undeniable sig-
nature scheme should meet.

2.1 Unforgeability

The unforgeability against chosen message attack (UF-CMA) is defined by using
UF-CMA game executed by a forger, F , described as follows.

1. F is given public key pk.
2. F is permitted to issue a series of queries to some oracles. (F is allowed

to make adaptive queries here – subsequent queries are made based on the
answers of previous queries.)
– Signing queries: F submits message m and receives a signature, σ, on

m.
– Convert queries: F submits message-signature pair (m,σ), and receives

a converter, cvt, or ⊥.
1 We note that converting only valid signatures are sufficient for applications like [3].

However, our construction can even convert invalid signatures, as seen later.
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– Confirmation/disavowal queries: F submits message-signature pair
(m,σ) to the oracle. We will consider active attack, where the oracle
first checks whether (m,σ) is valid. If (m,σ) is valid, the oracle returns
1 and executes the confirmation protocol with F . Otherwise, the oracle
returns 0 and executes the disavowal protocol with F .

3. At the end of this game, F outputs message-signature pair (m∗, σ∗) such
that F has never queried m∗ to the signing oracle.

F wins UF-CMA game if σ∗ is a valid signature on m∗, and its advantage in
this game is defined by AdvUF−CMA

CUS (F) = Pr[F wins UF-CMA game].

Definition 1. A convertible undeniable signature scheme is UF-CMA secure if
no PPT forger F has non-negligible advantage AdvUF−CMA

CUS (F).

A more strong notion, the strong unforgeability against chosen message attack
(sUF-CMA), is defined by using sUF-CMA game. The game is the same as UF-
CMA game except that at the end of the game, F must output (m∗, σ∗) such that
it has never received (m∗, σ∗) from the signing oracle. Again, F wins the game
if σ∗ is a valid signature on m∗ and define the advantage AdvsUF−CMA

CUS (F) =
Pr[F wins sUF-CMA game].

Definition 2. A convertible undeniable signature scheme is sUF-CMA secure
if no PPT forger F has non-negligible advantage AdvsUF−CMA

CUS (F).

2.2 Invisibility

The invisibility against chosen message attack (IV-CMA) is defined by the fol-
lowing IV-CMA game executed by a distinguisher, D.

1. D is given public key pk.
2. D is permitted to issue a series of queries: signing queries, convert queries,

confirmation/disavowal queries, as in UF-CMA game.
3. At some point, D outputs message m∗ which has never been queried to

the signing oracle, and receives a challenge signature, σ∗, which depends on
hidden bit b. If b = 0, σ∗ is generated from m∗ using the signing algorithm.
Otherwise, σ∗ is chosen randomly from the signature space of the scheme.

4. D is permitted to issue a series of queries similarly except the restriction
that no convert and confirmation/disavowal query (m∗, σ∗) is allowed.

5. At the end of this game, D outputs a bit, b′, as a guess for b.

We say that D wins IV-CMA game if b′ = b. The advantage of D is defined by
AdvIV−CMA

CUS (D) = |Pr[D wins IV-CMA game]− 1/2|.
Definition 3. A convertible undeniable signature scheme is IV-CMA secure if
no PPT distinguisher D has non-negligible advantage AdvIV−CMA

CUS (D).

3 Primitives and Security Notions

In this section, we review some building blocks and slightly extend conventional
definitions.
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3.1 Standard Signature Scheme

A (standard) signature scheme SIG is a tuple (SIG.KGen, SIG.Sign, SIG.Vrf) as
follows. On input 1λ, key generation algorithm SIG.KGen produces a pair of
public and secret keys (pk, sk). On input sk and message m, signing algorithm
SIG.Sign produces a signature, σ, which is publicly verifiable using verification
algorithm SIG.Vrf on input pk and (m,σ).

Definition 4. A standard signature scheme is said to be sUF-CMA secure if
no PPT forger has a non-negligible advantage in the game which is the same as
sUF-CMA game for convertible undeniable signature schemes, except a forger
issues only signing queries.

Definition 5. A standard signature scheme is said to be sUF-wCMA secure if
no PPT forger has a non-negligible advantage in the game which is the same as
the game for sUF-CMA security, except a forger issues signing queries at the
beginning of the game only, i.e., a forger submits all messages (m1,m2, . . . ,mq)
at first, then she gets pk and corresponded signatures (σ1, σ2, . . . , σq).

3.2 Chameleon Hash

Chameleon hash H, introduced in [25], is a family of (H, τ), where H : {0, 1}∗×
RH → GH is a two-input hash function and τ is a trapdoor for H . The family
H has several properties defined as follows.

– Collision resistance2: No PPT adversary A has the non-negligible
advantage:

AdvCR
H (A)=Pr

[
(H, τ) $←H; (m, s,m′, s′)←A(H) : H(m, s) = H(m′, s′),

(m, s) �= (m′, s′)

]
.

– Trapdoor collisions: There is an efficient algorithm which takes τ,m, s,m′,
and outputs s′ such that H(m, s) = H(m′, s′).

– Uniformity: All messages m induce the same probability distribution on
H(m, s) for randomly chosen s.

3.3 Enhanced Public Key Encryption Scheme

A public key encryption scheme is a tuple of algorithms as follows. On input 1λ,
key generation algorithm PKE.KGen produces a pair of public and secret keys
(pk, sk). On input pk and message m, encryption algorithm PKE.Enc produces
ciphertext c, and it can be decrypted by decryption algorithm PKE.Dec on input
sk and c. For semantic security, the encryption algorithm is probabilistic, that
is, a random number r is used to encrypt.

We consider some additional algorithms and functions.
2 Strictly speaking, the definition of collision resistance is not the same as in [25]

(which did not care about the randomness), but it is usually used in later works.

In particular, the concrete RSA-based chameleon hash function used in this paper

fulfills the definition.
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– (f, F ): Function f , on input (pk, r), encapsulates the random number r used
in encryption, and the value f(pk, r) can be extracted from the value c =
PKE.Enc(pk,m; r) by computing F (pk, c). That is, f(pk, r) = F (pk, c) holds.
f(pk, ·) must have collision resistance property. i.e., it is intractable to find
(r0, r1) such that f(pk, r0) = f(pk, r1).

– PKE.Ext: On input secret key sk and ciphertext c, the extraction algorithm
outputs random number(s) r which had been used in encryption.

– PKE.Dec2: On input pk, r, and c, the alternative decryption algorithm out-
puts plaintext m such that c = PKE.Enc(pk,m; r).

We say that a public key encryption scheme (PKE.KGen,PKE.Enc,PKE.Dec) is an
enhanced public key encryption scheme if there exist additional (polytime com-
putable) algorithms and functions (PKE.Ext,PKE.Dec2, (f, F )) with the above
properties.

We define new security notion of public key encryption as IV-CPA. It is
same to well-known notion IND-CPA except the challenge query. The invisi-
bility against chosen plaintext attack (IV-CPA) is defined by using the following
IV-CPA game executed by a distinguisher, D.

1. D is given public key pk.
2. D outputs message m∗ and receives a challenge ciphertext, c∗, which depends

on hidden bit b as follows. If b = 0, c∗ is a ciphertext of m∗. Otherwise, c∗ is
chosen uniformly at random from the ciphertext space defined by the public
key.

3. At the end of this game, D outputs bit b′ as a guess for b.

D wins the game if b′ = b, and its advantage is defined as AdvIV−CPA
PKE (D) =

|Pr[D wins]− 1/2|.

Definition 6. A (enhanced) public key encryption scheme is IV-CPA secure if
no PPT distinguisher D has non-negligible advantage AdvIV−CPA

PKE (D).

It is clear that IV-CPA implies IND-CPA, but the other way does not. Intuitively,
it is because IND-CPA does not guarantee that a ciphertext is uniformly distri-
buted over the ciphertext space even if a random number is chosen randomly. Still,
we believe this the gap is quite small, because most IND-CPA secure schemes, e.g.
ElGamal, Paillier, satisfy IV-CPA under reasonable assumptions. (ElGamal is IV-
CPA as a normal PKE, while Paillier is IV-CPA as an enhanced PKE.)

4 Convertible Undeniable Signatures from Weakly-Secure
Signatures

In this section, we will show a general and efficient construction of CUS scheme.
The scheme is constructed from a weak-secure signature scheme wSIG, combined
with a chameleon hash H, an enhanced public key encryption PKE, and some
zero-knowledge protocols.
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Our approach intuitively follows the sign-then-encrypt paradigm [10], in which
a standard signature is encrypted by an IND-CPA-secure PKE scheme. There-
fore, the decryption has the role of converting undeniable signatures to ordinary
ones. To efficiently realize selective conversion, we require the extraction prop-
erty of the PKE scheme.

To ensure (strong) unforgeablity, we encrypt both the standard signature and
the randomness used in encryption. To see why this is necessary, imagine an
adversary generating a valid signature-message pair (m,σ′) from (m,σ) honestly
produced by the signer, which is expectedly an easy task since the PKE is just
IND-CPA-secure (and hence malleable). Now the adversary can learn the validity
of (m,σ) by simply executing confirmation/disavowal protocol with (m,σ′).

However the above method induces a problem: the encrypted message now de-
pends on the randomness used in encryption. Usually, IND-CPA security notion
is guaranteed only if the encrypted message and the randomness are chosen in-
dependently. Fortunately, the chameleon hash function comes to rescue us from
this situation, making the encrypted message independent of the randomness.

It is interesting to ask why IND-CCA-secure PKE schemes are not used to
ensure unforgeability. Certainly, with an IND-CCA-secure scheme, it is hard for
the adversary to create σ′ from σ with a relation as above. However, IND-CCA
schemes are quite complex, and it seems hard to construct efficient confirmation
and disavowal protocols with such ingredients.

It is worth noting that El Aimani in [12], also with the sign-then-encrypt
approach, gives a general construction of designated confirmer signatures. El
Aimani makes no use of chameleon hash functions and weakly-secure signature
schemes, but instead uses key encapsulation mechanisms and data encapsulation
mechanisms (as in [11]). In turn, the conditions required for the ingredients are
different, and so are the designs of the confirmation and disavowal protocols. No
scheme whose unforgeability relies on the RSA assumption is presented in [12].
Besides the sign-then-encrypt paradigm, another interesting general approach
can be found in [13].

4.1 Construction

Let RPKE be a set of random numbers used in PKE.Enc. Our proposed scheme
is described as follows.

– CUS.KGen(1λ): Run (pk1, sk1)
$← PKE.KGen(1λ), (pk2, sk2)

$← wSIG.KGen

(1λ), and pick (H, τ)
$
∈H. Output (pk, sk) =

(
(pk1, pk2, H), (sk1, sk2, H)

)
.

– CUS.USign(sk,m): Pick r
$
∈ RPKE and s

$
∈RH . Compute the weakly-secure

signature ρ ← wSIG.Sign
(
sk2, H(m‖f(pk1, r), s)

)
, and c ← PKE.Enc

(pk1, ρ; r). Output σ = (s, c).
– CUS.sConvert

(
sk,m, σ = (s, c)

)
: Compute r = PKE.Ext(sk1, c) and ρ =

PKE.Dec2(pk1, c, r). Return cvt = r if wSIG.Vrf
(
pk2, H(m‖F (pk1, c), s), ρ

)
=

1. Otherwise return ⊥.
– CUS.aConvert(sk): Output Acvt = sk1.



A Framework for Constructing Convertible Undeniable Signatures 77

– CUS.Vrf
(
pk,m, σ = (s, c), cvt

)
: Compute

h = H(m‖F (pk1, c), s), ρ = PKE.Dec2(pk1, c, cvt),

and return 1 if wSIG.Vrf
(
pk2, h, ρ

)
= 1.

– CUS.UVrf
(
pk,m, σ = (s, c), Acvt

)
: Compute h = H(m‖F (pk1, c), s), ρ =

PKE.Dec(Acvt, c). Return 1 if wSIG.Vrf
(
pk2, h, ρ

)
= 1.

– CUS.Confirmation: Given common input (pk,m, σ = (s, c)), the signer com-
putes r = PKE.Ext(sk1, c) and ρ = PKE.Dec(sk1, c), and executes the zero-
knowledge proof of knowledge (PoK) protocol

PoK
{

(ρ, r) :
c = PKE.Enc(pk1, ρ; r)
∧ wSIG.Vrf

(
pk2, H(m‖F (pk1, c), s), ρ

)
= 1

}
.

– CUS.Disavowal: Similarly to confirmation protocol, the signer executes the
zero-knowledge proof of knowledge protocol

PoK
{

(ρ, r) :
c = PKE.Enc(pk1, ρ; r)
∧ wSIG.Vrf

(
pk2, H(m‖F (pk1, c), s), ρ

)
�= 1

}
.

We can replace the above PoK with the following, if the standard signature
scheme is deterministic.

PoK
{

(ρ1, ρ2, r) :
ρ1 �= ρ2 ∧ c = PKE.Enc(pk1, ρ1; r)
∧ wSIG.Vrf

(
pk2, H(m‖F (pk1, c), s), ρ2

)
= 1

}
.

Remark. In selective conversion, we mainly deal with valid signatures, which is
sufficient for applications such as [3]. The reasoning behind is that in such appli-
cations, the confirmation protocol is always run before the selective conversion
step. The above treatment is usually used in most papers in the literature.

However, with our construction, we can even convert invalid signatures.
Namely, in CUS.sConvert, the value r = PKE.Ext(sk1, c) is simply published.
When verifying, one first checks F (pk1, c) = f(pk1, r), and announces that the
converter is incorrect if the equation does not hold; otherwise return the bit
wSIG.Vrf

(
pk2, H(m‖F (pk1, c), s), ρ

)
indicating valid or invalid (m,σ).

4.2 Properties of Our Construction

On-line/Off-line. The proposed framework has the on-line/off-line property
which is very useful when the signer can use only poor computational power
(e.g., smart-card). In our scheme, the signer generates the value c for random
message m′ (off-line), and when a real message m is given, she generates the
value s only with the computation of the trapdoor collision algorithm (on-line),
which executes just simple arithmetic operations.
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Convertible Undeniable Signatures with Delegation. In a convertible undeniable
signature scheme with delegation, recently highlighted by [33], signers can dele-
gate the confirmation and disavowal protocol to a third party.

In our proposed scheme, the signer (prover) in the confirmation/disavowal
protocol needs only the secret key of the underlying PKE scheme, and the key
is useless in the signing algorithm. Therefore, the signer may give it to the third
party who performs, say, the confirmation protocol as in [3].

Convertible Undeniable Proxy Signatures. Our proposed scheme also can be
treated as a convertible undeniable proxy signature scheme [35], in which a proxy
can convert standard signatures (even previously-generated ones) to undeniable
signatures. In our proposed scheme, the signer gives the secret key of the PKE
scheme to the proxy, allowing him to convert standard signatures to undeniable
ones. Readers may refer to [35] for details of such scheme.

4.3 Security

Theorem 1. Suppose the underlying standard signature scheme, wSIG, is sUF-
wCMA secure. Then our proposed scheme CUS is sUF-CMA secure.

Proof. Assume that there exists forger F against sUF-CMA security of CUS.
Let

(
mi, (si, ci)

)
be the i-th signing query and its answer,

(
m∗, (s∗, c∗)

)
be the

forgery output by F . Define hi = H(mi‖F (pk1, ci), si), ρi = PKE.Dec(sk1, ci),
ri = PKE.Ext(sk1, ci). Similarly, define h∗, ρ∗, r∗ from (m∗, s∗, c∗). When F wins
sUF-CMA game, then wSIG.Vrf(pk2, h

∗, ρ∗) = 1 and (m∗, s∗, c∗) is different from
any (mi, si, ci). There are four cases in which F wins.

[Case 1]: h∗ �= hi holds for all i.
[Case 2]: h∗ = hi holds for some i, and (m∗‖F (pk1, c

∗), s∗) �= (mi‖F (pk1, ci), si)
holds for such i.
[Case 3]: h∗ = hi, m∗‖F (pk1, c

∗) = mi‖F (pk1, ci), and s∗ = si hold for some i.
In this case c∗ �= ci also holds, because (m∗, s∗) = (mi, si).
[Case 3-1]: For such i, r∗ = ri holds. In this case, we have ρ∗ �= ρi. (If ρ∗ = ρi,
then c∗ = PKE.Enc(pk1, ρ

∗, r∗) = PKE.Enc(pk1, ρi, ri) = ci.)
[Case 3-2]: For such i, r∗ �= ri holds.
If the probability of Case 2 is non-negligible, we can construct an adversary
which efficiently finds a collision of H (without the trapdoor). If the probability
of Case 3-2 is non-negligible, we can construct an adversary which efficiently finds
a collision of f . (Note that f(pk1, r

∗) = F (pk1, c
∗) = F (pk1, ci) = f(pk1, ri).)

Below, we show that we can construct a forger A against sUF-wCMA security
of wSIG, if the probability of Case 1 or Case 3-1 is non-negligible. Let q be the
number of signing queries F issues. On input 1λ, A runs as follows.

Setup: A chooses (H, τ)
$
∈H and s′i

$
∈ RH , and computes hi = H(1, s′i) for all

i ∈ {1, . . . , q}. It then submits (h1, . . . , hq) and receives (pk2, ρ1, . . . , ρq). A
runs (pk1, sk1)

$← PKE.KGen(1λ) and gives (pk1, pk2, H) to F .
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Signing queries: Suppose F issues mi as the i-th query. A chooses ri

$
∈ RPKE

and computes si such that H
(
mi‖f(pk1, ri), si

)
= H(1, s′i)(= hi) holds by

using a trapdoor collision algorithm with trapdoor τ . Then A computes
ci = PKE.Enc(pk1, ρi; ri) and returns σi = (si, ci) to F .

Convert queries: F issues
(
m,σ = (s, c)

)
. If

wSIG.Vrf
(
pk2, H(m‖F (pk1, c), s),PKE.Dec(sk1, c)

)
= 1,

then A returns r = PKE.Ext(sk1, c) to F . Otherwise, returns ⊥.
Confirmation/disavowal queries: When F issues

(
m,σ = (s, c)

)
, A com-

putes values h = H(m‖F (pk1, c), s) and ρ = PKE.Dec(sk1, c). If the equation
wSIG.Vrf(pk2, h, ρ) = 1 holds, then returns 1 and executes the confirmation
protocol with F . Otherwise, returns 0 and executes the disavowal protocol
with F . The confirmation/disavowal protocol is simulatable using rewinding
technique [19], since it is zero-knowledge.

Output: Finally, F outputs
(
m∗, (s∗, c∗)

)
. A outputs (h∗, ρ∗) as a forged pair,

where h∗ = H(m∗‖F (pk1, c
∗), s∗) and ρ∗ = PKE.Dec(sk1, c

∗).

These simulations are done well because chameleon hash H has uniformity.
If F wins in Case 1, A wins since h∗ is a new message. If F wins in Case 3-1,

A wins since ρ∗ is a new signature for message h∗ = hi. ��
Theorem 2. Suppose the underlying enhanced public key encryption scheme,
PKE, is IV-CPA secure and our proposed scheme CUS is sUF-CMA secure. Then
CUS is IV-CMA secure.

The proof will be shown in Appendix A.

5 RSA-Based Convertible Undeniable Signatures

For a concrete example of the proposed construction, we show an RSA-based con-
vertible undeniable signature scheme, named RSA-CUS. It uses the RSA-based
signature [21], the RSA-based chameleon hash [20], and the Paillier encryp-
tion [30] (as an enhanced public key encryption) and some efficient established
zero-knowledge protocols [2, 9, 15, 16]. To our knowledge, it is the first (con-
vertible) undeniable signature scheme whose unforgeability relies on the RSA
assumption.

Let us first recap the building blocks.

RSA-based signature [21]:

– wSIG.KGen(1λ): Setup the RSA-modulus N2 = pq such that 2
 < φ(N2) <

2
+2 (� is the another parameter derived from λ) and choose h
$← Z∗

N2
. Next,

choose a key K of pseudo-random function P : {0, 1}∗ → {0, 1}
, k
$
∈ {0, 1}


and define the function G as follows.

GK,k(z) = PK(i, z)⊕ k,

where i is the minimum number such that PK(i, z)⊕ k is an odd prime. Set
pk = (N2, h, k,K) and sk = (pk, p, q) then return (pk, sk).
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– wSIG.Sign(sk,m): Let m be n-bit message, and m(i) be the first i bits of m.
Compute

ei = GK,k(m(i)) (1)

for i = 1 to n. Return the signature ρ computed by

ρ = h
∏n

i=1 e−1
i mod N2.

– wSIG.Vrf(pk,m, ρ): Compute ei = GK,k(m(i)) for i = 1 to n. Return 1 if the
following equation holds.

h = ρ
∏n

i=1 ei mod N2

Proposition 1. [21] Suppose P is a secure pseudo-random function and the RSA
assumption holds. Then the above standard signature scheme is sUF-wCMA.

RSA-based chameleon hash [20]: Let N2 be the RSA modulus defined above.
Let e be a � bits number which is relatively prime to φ(N2), J be J

$← ZN2 . The
hashing algorithm H , parametrized by (J, e,N2), is described as follows.

H(m, s) = JH′(m)se mod N2,

where H ′ is a regular collision-resistant hash function whose range is {0, 1} 2�
3 ,

and s is chosen from ZN2 . As a trapdoor τ , uses a factor of N2 and d such that
ed = 1 mod φ(N2) holds.

Proposition 2. [20] Suppose the RSA assumption holds. Then the above
chameleon hash signature scheme satisfies properties noted in Section 3.2.

The DNR assumption and Paillier encryption scheme: Let Kdnr(1λ) be
the DNR key generator which outputs (N1, p1, q1) where |N1| = λ,N1 = p1 × q1

and p1, q1 are distinct primes of same length.
The Paillier encryption scheme consists of following algorithms. PKE.KGen(1λ)

runs Kdnr(1λ) and outputs (pk1 = N1, sk1 = (p1, p2)). PKE.Enc(pk,m ∈ ZN1)

chooses r
$
∈ Z∗

N1
and encrypts as

PKE.Enc(pk,m; r) = rN1(1 + mN1) mod N2
1 .

PKE.Dec(sk1, c) first solves c = rN1 mod N1 for r ∈ Z∗
N1

and then computes m

as
(
(c(r−1)N1 mod N2

1 )− 1
)
/N1 over the integers.

In addition to above algorithms, we offer some functions and algorithms
for an enhanced public key encryption. The functions (f, F ) are defined as
f(N1, r) = rN1 mod N1, F (N1, c) = c mod N1, respectively. Extraction algo-
rithm PKE.Ext(sk, c) outputs r where c mod N1 = rN1 mod N1. Alternative de-
cryption algorithm PKE.Dec2(pk, c, r) computes m as

(
(r−1)N1c− 1 mod N1

2
)
/

N1 = m mod N1 in the same way of the decryption algorithm. We remark
that the function f(pk1, ·) has the collision resistance property since it is
bijective.
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We now describe the DNR assumption. For distinguisher D against Kdnr, the
advantage is defined as follows.

AdvDNR(D) =

∣∣∣∣∣∣∣Pr

⎡⎢⎣ (N1, p1, q1) ← Kdnr(1λ); r∗ $← Z∗
N1

;
Y0 ← (r∗)N1 mod N2

1 ;Y1
$← Z∗

N2
1
;

b
$←{0, 1}; b′ ← D(1λ, N1, Yb)

: b′ = b

⎤⎥⎦− 1
2

∣∣∣∣∣∣∣ .
Definition 7. The DNR assumption asserts that the above advantage is negli-
gible in λ for every PPT distinguisher D.

Since PKE.Enc(pk1, ·; ·) is bijective, c is uniformly at random in its space where c is

the encryption of m
$
∈ ZN1 and r

$
∈ Z∗

N1
. Therefore, we can show the next theorem.

Theorem 3. The above enhanced public key encryption scheme is IV-CPA se-
cure under the DNR assumption.

Implementation of confirmation/disavowal protocol: The confirmation
and disavowal protocol make use of the following ingredients. (See Appendix B
for detail.)

– Fujisaki-Okamoto commitment scheme [9, 15]. We denote a commitment of
x by Com(x).

– Proof of modular polynomial relation [15], which allows the signer to convince
the verifier that committed x1, . . . , xt satisfy poly(x1, . . . , xt) mod n = 0.

– Proof of interval [2], which ensures that committed x is in a certain interval
[a, b].

Confirmation protocol.
The common input is (pk,m, σ = (s, c)), and the (signer’s) witness is (r, ρ). The
signer first commits the witness by sending E0 = Com(r) and E1 = Com(ρ).
Then the signer executes following proofs of knowledge protocols.

1. PoK{(r) : E0 = Com(r) ∧ r ∈ [1, N1 − 1]}
2. PoK{(ρ) : E1 = Com(ρ) ∧ ρ ∈ [1, N2 − 1]}
3. PoK{(r, ρ) : E0 = Com(r) ∧ E1 = Com(ρ) ∧ c = rN1(1 + ρN1) mod N2

1 }
4. PoK{(ρ) : E1 = Com(ρ)∧ h = ρ

∏n
i=1 ei mod N2} (for primes ei computed by

wSIG.Sign as used in CUS.USign)

Disavowal protocol.
The common input is (pk,m, σ = (s, c)). The witness is (r, ρ1, ρ2, ρ̂), where
ρ1 is decryption of c, ρ2 is a signature of m, and ρ̂ = ρ1 − ρ2. The signer sends
commitments of the witness similar to the confirmation protocol. Then the signer
executes following proofs of knowledge protocols (employing the second way of
disavowal since we are using a deterministic standard signature scheme).

1. PoK{(r) : E0 = Com(r) ∧ r ∈ [1, N1 − 1]}
2. PoK{(ρ1) : E1 = Com(ρ1) ∧ ρ1 ∈ [1, N2 − 1]}
3. PoK{(ρ2) : E2 = Com(ρ2) ∧ ρ2 ∈ [1, N2 − 1]}
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4. PoK{(ρ̂) : E3 = Com(ρ̂) ∧ ρ̂ ∈ [1, N2 − 1]}
5. PoK{(r, ρ1) : E0 = Com(r) ∧ E1 = Com(ρ1) ∧ c = rN1(1 + ρ1N1) mod N2

1 }
6. PoK{(ρ2) : E2 = Com(ρ2) ∧ h = ρ

∏n
i=1 ei

2 mod N2}
7. PoK{(ρ1, ρ2, ρ̂) : E1 = Com(ρ1) ∧ E2 = Com(ρ2) ∧ E3 = Com(ρ̂) ∧ ρ̂ =

ρ1 − ρ2 mod N2}

Using the ingredients described above, the costs of the protocols are at most
O(λ3) with respect to both computation (in term of modular multiplications)
and communication (in term of bits).

Combining the above building blocks with the proposed framework, we obtain a
concrete scheme, RSA-CUS. From Theorems 1 and 2, we have the following result.

Theorem 4. If the RSA assumption holds, then RSA-CUS is sUF-CMA secure.
If the DNR assumption holds, then RSA-CUS is IV-CMA secure.
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A Proof of Theorem 2

Assume that there exists distinguisher D against the IV-CMA security of CUS.
In IV-CMA game, we define Forge as the event that D issues a valid pair to the
confirmation/disavowal or convert oracle, and it is not a query-answer pair of
the signing oracle. Then

Pr[D wins IV-CMA game]− 1/2
= Pr[D wins ∧ Forge occurs] + Pr[D wins ∧ Forge does not occur]− 1/2
≤ Pr[Forge occurs] + Pr[D wins | Forge does not occur]− 1/2.

We will show that

(1) if ε1 = Pr[Forge occurs] is not negligible, we can construct a forger, F , which
breaks the sUF-CMA security of CUS with probability ε1 by using D as a
subroutine,

(2) if ε2 = |Pr[D wins | Forge does not occur] − 1/2| is not negligible, we can
construct a distinguisher, A, whose advantage is AdvIV−CPA

PKE (A) = ε2.

(1) We constructF as follows. At firstF obtains pk, which is inputted toD. When
D makes an oracle query, F passes the query to own oracle, obtains the answer,
and returns it to D. When Forge occurs, i.e., D issues (m,σ) to the convert or
confirmation/disavowal oracle and F ’s oracle tells that it is a valid pair, then F
outputs (m,σ) as a forged pair. If F issues challenge query m∗ before F outputs

http://eprint.iacr.org/
http://eprint.iacr.org/
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a forged pair, then F flips a coin b. If b = 0, F makes a signing query m∗, and
returns its answer σ∗ to F . If b = 1, returns a random signature to F .

Until Forge occurs, this simulation is perfect. Further, F wins sUF-CMA game
if Forge occurs before D halts. Therefore,

Pr[F wins sUF-CMA game] = Pr[Forge occurs].

(2) Next, we construct A against the IV-CPA security of PKE. A’s input is pk1.

Setup: A runs (pk2, sk2)
$← wSIG.KGen(1λ), chooses (H, τ)

$
∈H and gives

(pk1, pk2, H) to D. Furthermore, A initializes a list Q = φ.
Signing queries: When D issues message m, A computes a signature, σ, by

using the signing algorithm. Returns σ to D, and sets Q = Q∪{(m,σ, r, ρ)},
where r and ρ are the values it obtained in the signing algorithm.

Convert queries: When D issues (m,σ), A returns r to D if there exists (r, ρ)
such that (m,σ, r, ρ) ∈ Q. Otherwise, returns ⊥.

Confirmation/disavowal queries: D issues (m,σ). If there exists (r, ρ) such
that (m,σ, r, ρ) ∈ Q, A returns 1 and executes the confirmation protocol
with D, by using (r, ρ). Otherwise, returns 0 and executes the disavowal
protocol by using rewinding technique.

Challenge queries: If D issues challenge message m∗, A chooses s′
$
∈ RH , com-

putes ρ∗ $← wSIG.Sign
(
sk2, H(0, s′)

)
, submits ρ∗ to its challenge oracle and

obtains a corresponding challenge ciphertext c∗. Next, A computes s∗ such
that H(0, s′) = H(m∗‖F (pk1, c

∗), s∗) holds by using the trapdoor τ . At last,
A returns σ∗ = (s∗, c∗) to D.

Output: Finally, D outputs b′ as a guess. A directly outputs b′

If Forge does not occur, D’s environment is the same as in IV-CMA game.
Further, A wins IV-CPA game iff D wins under the condition that Forge does
not occur. Therefore,

ε2 = |Pr[D wins | Forge does not occur]− 1/2|
= |Pr[A wins IV-CPA game]− 1/2| = AdvIV−CPA

PKE (A).

B Building Blocks for Confirmation/Disavowal Protocol

Fujisaki-Okamoto commitment scheme [9, 15] : The commitment of x ∈ [0, N −
1] for |N | = λ is defined as Com(x; r) = bx

0b
r
1 mod N where b0, b1 ∈ Z∗

N and
r

$← [0, 2λN). The parameters, (N, b0, b1), are set up by the verifier or trusted
third party so that the committer does not know the factor of N . Please refer to
the papers [9, 15] for precise description of setup. This commitment scheme has
statistically hiding and computationally binding under factoring assumption. We
will omit r to describe the commitment, and just write Com(x).
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Proof of modular polynomial relation [15] : Fujisaki and Okamoto showed how
to efficiently implement

PoK
{

(x1, . . . , xt) :
E1 = Com(x1) ∧ · · · ∧ Et = Com(xt),
poly(x1, x2, . . . , xt) = 0 mod n

}
,

where poly is a polynomial function with degree d. Briefly speaking, the com-
mitter and the verifier first agree parameter N,n and function poly. Second
the committer commits x1, . . . , xt ∈ [0, N − 1] and sends the commitments
E1 = Com(x1), . . . , Et = Com(xt) to the verifier. After that, the committer
proves to the verifier that the committed values satisfy the following modular
polynomial relation poly(x1, . . . , xt) = 0 mod n. Remark that n only have to
satisfy |n| = O(λ), so may differ from N . The costs of both computation and
communication are O

(
λ · log2 d

)
in term of modular multiplications and bits

respectively.

Proof of interval [2] : Boudot showed how to efficiently implement PoK{(x) :
E = Com(x) ∧ x ∈ [a, b]} [2]. The computation and communication costs are
estimated as O(λ).
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Abstract. Generic constructions of designated confirmer signatures fol-

low one of the following two strategies; either produce a digital signature

on the message to be signed, then encrypt the resulting signature, or pro-

duce a commitment on the message, encrypt the string used to generate

the commitment and finally sign the latter. We study the second strat-

egy by determining the exact security property needed in the encryption

to achieve secure constructions. This study infers the exclusion of a use-

ful type of encryption from the design due to an intrinsic weakness in

the paradigm. Next, we propose a simple method to remediate to this

weakness and we get efficient constructions which can be used with any
digital signature.
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Knowledge.

1 Introduction

Digital signatures were introduced in [12] as an analogous to signatures in the
paper world to seize most properties needed in a signature, for instance, the
universal verification. However, in some applications, the signer might want to
restrain the holder of a signature from convincing other parties of the validity
of the signature in question. A typical example is a software vendor willing to
embed signatures in his products such that only paying customers are entitled to
check the authenticity of these products. Undeniable signatures, introduced in
[9], provide a solution to this problem as they are: 1. only verified with the help
of the signer, 2. non-transferable, 3. binding in the sense that a signer cannot
deny a signature he has actually issued. The only drawback of these signatures
is that unavailability of the signer obstructs the entire process. To overcome
this problem, designated confirmer signatures were introduced in [7], where the
confirmation/denial of a signature is delegated to a designated confirmer. With
this solution, the signer can confirm only signatures he has just generated, whilst
the confirmer can confirm/deny any signature. Actually, in the literature, there
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is a clear separation between confirmer signatures and directed signatures [21],
which share the same concept as confirmer signatures with the exception of
allowing both the signer and the confirmer to confirm/deny signatures. Finally,
a desirable property in designated confirmer signatures is the convertibility of
the signatures to ordinary ones. Indeed, such a property turned out to play a
central role in fair payment protocols or in contract signing [4,16].

1.1 Related Work

Most proposals of confirmer signatures from basic primitives fall into one of the
following categories:

“Encryption of a signature” approach. This approach consists in first pro-
ducing a digital signature on the message to be signed, then encrypting the
produced signature using a suitable cryptosystem. The construction was first
formally described in [5], and required the components to meet the highest secu-
rity notions (EUF-CMA signatures and IND-CCA encryption). The main weak-
ness of the construction lies in the resort to concurrent zero knowledge (ZK)
protocols of general NP statements in the confirmation/denial protocol. Later,
the construction in [16] managed to circumvent the problem by encrypting the
digital signature during the confirmation protocol. With this trick, the authors
managed to get rid of concurrent ZK proofs of general NP statements in the con-
firmation protocol (the denial protocol still suffers the recourse to such proofs),
but at the expense of the security and the length of the resulting signatures.
Another construction implementing this principle is given in [10]; the construc-
tion uses cryptosystems with labels and is analyzed in a more elaborate security
model. However, it is supplied with only one efficient instantiation as the con-
firmation/denial protocols still resort to concurrent ZK protocols of general NP
statements. Finally, the last proposal in this category is given in [20], where the
author proposes a construction using certain cryptosystems that are required
to be only IND-CPA secure. As a consequence, the confirmation/denial proto-
cols are rendered efficient in case the construction is instantiated from a specific
class of signature schemes (similar to the one considered in [16]). Moreover, the
resulting confirmer signatures are very efficient and they enjoy strong security
properties. However, although the considered class of signatures includes most
proposals that appeared in the literature, there exist some schemes which do not
seem to belong to it, e.g., the PSS signature scheme [2].

“Signature of a commitment” approach. This technique consists in gen-
erating a commitment on the message to be signed, then signing the produced
commitment using a digital signature scheme. The confirmer signature is com-
prised of both the commitment and the signature. The first proposal that re-
alizes this principle is [22] where a construction of confirmer signatures from
digital signatures obtained from the Fiat-Shamir paradigm is presented. Thus,
the resulting confirmer signatures can be only proven secure in the random or-
acle model (ROM), inheriting this property from the use of the Fiat-Shamir
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paradigm, which constitutes their major shortcoming. Moreover, the construc-
tion does not support conversion. In [15] and [24], a construction which supports
the conversion of the signatures and applies to any digital signature scheme was
proposed. The key idea resides in augmenting the confirmer signature (comprised
of the commitment and a signature on it) by the encryption of the random string
used to generate the commitment. Although the confirmation/denial protocols
involve general ZK proofs since the confirmer has to prove in concurrent ZK
the knowledge of the decryption of an IND-CCA encryption and of a string
used for commitment, the construction accepts an efficient instantiation using
Camenisch-Shoup’s verifiable encryption scheme [6] and Pedersen’s commitment
scheme. It is worth mentioning that the idea underlying the constructions in
[15] and [24] already existed under the name “Commit then Encrypt then Sign
Paradigm”, and was used in the context of signcryption in [1].

In this paper, we revisit the second approach. In fact, efficient as the first
approach is, it still applies only to a restricted class of signatures. This is clearly
manifested in the constructions in [16] or [20] which do not seem to be plausible
with the signature PSS [2]. Our goal is to further improve the “commit then
sign” method in terms of efficiency and security by allowing more efficient in-
stantiations of the encryption and commitment schemes used as building blocks.

1.2 Contributions

We make three contributions. First, we revisit the constructions implementing
the “signature of a commitment” paradigm, i.e., [15,24]. We prove that indistin-
guishability under a plaintext checking attack is a minimal and sufficient require-
ment on the cryptosystem underlying the construction in order to achieve secure
confirmer signatures. We conclude that, although we manage to weaken the as-
sumption on the encryption from IND-CCA (needed in [1,15,24]) to IND-PCA,
the construction still cannot allow homomorphic encryption in the design which
is unfortunate since such an encryption proved to possess efficient ZK protocols
for proving the knowledge of the plaintext underlying a given ciphertext, and
such a property is profoundly needed in the confirmation/denial protocols.

Second, we show that using a small trick that consists in producing the digi-
tal signature on the commitment concatenated with the encryption of the string
used in the commitment suffices to make the security needed in the encryption
drop drastically to being only IND-CPA secure. The key idea is to remark that
the original construction is not strongly unforgeable, i.e., one can produce a
valid confirmer signature without the help of the signer, which explains the need
for PCA security to handle such signatures. With the small trick, we are able
to annihilate this weakness and allow a weak encryption in the design with-
out compromising the overall security. As a result, we achieve better perfor-
mances and more efficient instantiations of the construction (instead of using
only Camenisch-Shoup’s encryption and Pedersen’s commitment) by allowing
homomorphic encryption.

Finally, our last contribution sheds light on a particular sub-case of the “signa-
ture of a commitment” paradigm, which consists in using IND-CPA encryption
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instead of the commitment scheme. In fact, it is well known that IND-CPA en-
cryption yields secure commitment schemes, which makes such an instantiation
plausible. However, the bright side of this technique consists in not requiring
the encryption of the random string anymore. This method clearly improves
the original paradigm, however it necessitates efficient non-interactive proofs of
knowledge. This is no longer a problem nowadays due to the progress made
recently in this area, e.g., [11,18].

We stress that all our constructions of confirmer signatures in the present
paper investigate the invisibility (the hardness of distinguishing signatures based
on the underlying messages) of the resulting signatures in the outsider security
model. I.e., we disallow the adversary to know the private key of the signer,
oppositely to the insider security model considered in [1,15,24]. However, our
constructions contrarily to those in [1,15,24] allow the signer to sign the same
message many times without loss of invisibility. This property is deeply needed
in liscencing software for instance.

2 Convertible Designated Confirmer Signatures (CDCS)

In this section, we present the model of CDCS we adhere to in our constructions.
We refer to the full version [19] for the necessary cryptographic primitives that
will come into use, that are, digital signatures, public key encryption schemes,
commitment schemes, and finally Σ protocols.

2.1 Syntax

A CDCS scheme consists of the following procedures:

Key generation. Generates probabilistically key pairs (skS , pkS) and (skC , pkC)
for the signer and for the confirmer respectively, consisting of the private
and of the public key.

ConfirmedSign. On input skS , pkS , pkC and a message m, the signer outputs
a confirmer signature μ, then he (the signer) interacts with the signature
recipient to convince him of the validity of μ.

Confirmation/Denial protocol. These are interactive protocols between the con-
firmer and a verifier. Their common input consists of, in addition to pkS and
pkC , the alleged signature μ, and the message m in question. The confirmer
uses his private key skC to convince the verifier of the validity (invalidity) of
the signature μ on m. At the end, the verifier either accepts or rejects the
proof.

Selective conversion. This is an algorithm run by the confirmer using skC , in
addition to pkC and pkS . The result is either ⊥ or a string which allows the
signature to be universally verified as a valid digital signature.

Remark 1. Sometimes, we require the confirmer to prove (interactively) the cor-
rectness of the conversion. The constructions in the present work extend readily
to this model as such a proof consists of a protocol that proves a certain cipher-
text to decrypt to a given message.
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2.2 Security Model

The above algorithms and protocols must be correct and complete resp. More-
over, a CDCS scheme should meet the following properties:

Security for the verifier. This property informally means that an adversary
who compromises the private keys of both the signer and the confirmer
cannot convince the verifier of the validity (invalidity) of an invalid (a valid)
confirmer signature. That is, the protocols confirmedSign, confirmation and
denial are sound. We refer to [15,24] for the formal definition of such a
requirement.

Non-transferability of the ConfirmedSign/confirmation/denial protocols. This
property requires that the transcript resulting from the interaction of the
verifier with the signer/confirmer during these protocols is indistinguishable
from the transcript resulting from the interaction of the verifier with a sim-
ulator (which can be rewound) which does not have the private inputs of
the signer/confirmer but is allowed to do one oracle call to learn the va-
lidity/invalidity of the alleged signature w.r.t. the message in question. We
refer to [5] for the formal definition (after considering the fix proposed by
[10], namely, the possibility of rewinding the simulator).

Security for the signer (unforgeability). It is defined through the following game:
the adversary A is given the public parameters of the CDCS scheme, namely
pkS and pkC , the public key of the signer and of the confirmer resp., in
addition to the private key skC of the confirmer. A is further allowed to
query the signer on polynomially many messages, say qs. At the end, A
outputs a pair consisting of a message m, that has not been queried yet, and
a string μ. A wins the game if μ is a valid confirmer signature on m. We say
that a CDCS scheme is (t, ε, qs)-EUF-CMA secure if there is no adversary,
operating in time t, that wins the above game with probability greater than
ε, where the probability is taken over the random choices of both A and his
challenger.

Security for the confirmer (invisibility). Invisibility against a chosen message
attack (INV-CMA) is defined through the following game between an at-
tacker A and his challenger R: after A gets the public parameters of the
scheme from R, he starts Phase 1 where he queries the confirmedSign, con-
firmation/denial, and selective conversion oracles in an adaptive way. OnceA
decides that Phase 1 is over, he outputs two messages m0,m1 and requests
a challenge signature μ�. R picks uniformly at random a bit b ∈ {0, 1}.
Then μ� is generated using the confirmedSign oracle on the message mb.
Next, A starts adaptively querying the previous oracles (Phase 2), with the
exception of not querying (mi, μ

�), i = 0, 1, to the confirmation/denial and
selective conversion oracles. At the end, A outputs a bit b′. He wins the game
if b = b′. We define A’s advantage as adv(A) = |Pr[b = b′] − 1

2 |, where the
probability is taken over the random coins of both A and his challenger. We
say that a CDCS scheme is (t, ε, qs, qv, qsc)-INV-CMA secure if no adversary
operating in time t, issuing qs queries to the confirmedSign oracle, qv queries
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to the confirmation/denial oracles and qsc queries to the selective conversion
oracle wins the above game with advantage greater that ε.

Remark 2. – Our definition of security for the verifier and non-transferability
of the confirmedSign, confirmation and denial protocols is the same provided
in [5,15,24].

– We consider the insider security model in our definition for unforgeability.
I.e., the unforgeability adversary has the private key of the confirmer at
his disposal. This is justified by the need of preventing the confirmer from
impersonating the signer by issuing valid signatures on his behalf.

– Our definition of invisibility, oppositely to the definitions in [5,15,24], is
considered in the outsider security model. I.e., the adversary does not know
the private key of the signer. We justify this by considering the CDCS scheme
broken if the signer is corrupted or coerced. Actually, insider security might
be needed in situations where we want to protect the invisibility of signatures
issued by the genuine signer from an adversary who has stolen this signer’s
private key. However “outsider security might be all one needs” for invisibility
as phrased by the authors in [1].

– Our definition of invisibility, oppositely to the definitions in [15,24], allows
the signer to sign the same message many times without loss of invisibility,
which is needed in liscencing software.

– In our definition of invisibility (like [5,15,24] and unlike [14]), the confirmer
signature might convince the recipient that the signer was involved in the
signature of some message. We refer to [15] (Section 3) for techniques that
can be used by the signer to camouflage the presence of valid signatures,
e.g., the signer can for instance publish a few “dummy” signatures during
each time period.

3 The Plain “Signature of a Commitment” Paradigm

This paradigm was first considered in [22], then upgraded in [1] to the “Encrypt
then Commit then Sign” method, which consists in first generating a random
string, say r and encrypting it in e, then using r to generate a commitment c on
the message to be signed, and finally producing a digital signature on the com-
mitment c. This approach was used in the context of signcryption in [1]. Later
in [15], the authors used it to build confirmer signatures and provided an effi-
cient instantiation using Camenisch-Shoup [6]’s encryption and and Pedersen’s
commitment. The resulting construction was shown to be invisible in the insider
security model if the underlying commitment is hiding and the underlying en-
cryption is IND-CCA secure. However, the authors in [24] disproved this claim
by exhibiting an attack against the invisibility of the construction and proposed
a fix using cryptosystems with labels.

In the rest of this section, we describe the construction of [24] and we analyze
its invisibility in the outsider security model.
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3.1 The Construction in [24]

Setup. Consider a digital signature scheme Σ, an encryption scheme Γ with
labels and a commitment scheme Ω.

Key generation. The signer key pair consists of (Σ.pk, Σ.sk), corresponding
to the key pair of the signature scheme Σ, whereas the confirmer key pair
consists of (Γ.pk, Γ.sk) which corresponds to the key pair related to Γ .

ConfirmedSign. To sign a message m, the signer first computes a commitment
c on the message, then encrypts in e, under the label m‖Σ.pk, the random
string used for the commitment, say r, and finally, signs the commitment c
using Σ.sk. The confirmer signature consists of the triple (e, c,Σ.signΣ.sk(c)).
Next, the signer interacts with the verifier in a protocol where he (the signer)
proves in ZK the knowledge of r such that e = Γ.encryptΓ.pk,m‖Σ.pk(r) and
c = Ω.commit(m, r). Such a proof is plausible to issue using the randomness
used to encrypt r in e. In fact, the encryption and commitment algorithms
in a cryptosystem and a commitment scheme resp. define an NP language
that accepts a zero knowledge proof system.

Confirmation/Denial protocol. To confirm/deny a signature μ = (μ1, μ2, μ3) on
a given message m, the confirmer first checks whether μ3 is a valid digital
signature on μ2 w.r.t. Σ.pk, if so, he provides a concurrent ZK proof (using
his private key Γ.sk) of the equality/inequality of the decryption of μ1 and
the opening value of the commitment μ2 w.r.t. m. Again this proof is pos-
sible since every NP (co-NP in case of inequality) language accepts a zero
knowledge proof system

Selective conversion. Selective conversion of a signature μ = (μ1, μ2, μ3) is
achieved by releasing the decryption of μ1, in case μ is valid, or the symbol
⊥ otherwise.

This construction was shown, in [24], to provide security for the verifiers, non-
transferability of the involved protocols, security for the signer if it uses an EUF-
CMA secure digital signature and a binding commitment scheme, and finally it
provides security for the confirmer, in the insider model, if it uses IND-CCA
secure encryption with labels and a hiding commitment.

In the rest of this section, we prove that IND-PCA cryptosystems with labels
are a minimal and sufficient requirement to obtain outsider security for the
confirmer if the underlying commitment scheme is both binding and hiding, and
the underlying signature is SEUF-CMA secure.

3.2 The Exact Invisibility of the Construction

In this subsection, we prove that IND-PCA cryptosystems with labels are a
minimal and sufficient ingredient to achieve invisible signatures. Our study is
similar to the one provided in [20] which analyzes the plain “encryption of a sig-
nature” paradigm. Thus, we will first exclude OW-CCA secure cryptosystems
with labels from use, which will rule out automatically OW-CPA and OW-PCA
cryptosystems. We do this using an efficient algorithm (a meta-reduction) which
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transforms an algorithm (reduction), reducing the invisibility of the confirmer
signatures to the OW-CCA security of the underlying cryptosystem, to an algo-
rithm breaking the OW-CCA security of the same cryptosystem. Hence, such a
result suggests that under the assumption of the underlying cryptosystem being
OW-CCA secure, there exists no such a reduction, or if it (the cryptosystem)
is not OW-CCA secure, such a reduction will be useless. Next, we exclude sim-
ilarly NM-CPA cryptosystems from the design, which will rule out IND-CPA
encryption. The next security notion that has to be considered is IND-PCA,
which turns out to be sufficient to achieve invisibility. Likewise, our impossibil-
ity results are in a first stage partial in the sense that they apply only to key
preserving reductions, i.e., reductions which, trying to attack a property of a
cryptosystem given by the public key pk, feed the invisibility adversary with
the confirmer public key pk. Next, we extend the result to arbitrary reductions
under some complexity assumptions on the cryptosystem in question.

Lemma 1. Assume there exists a key-preserving reduction R that converts an
INV-CMA adversary A against the above construction into a OW-CCA adver-
sary against the underlying cryptosystem. Then, there exists a meta-reduction
M that OW-CCA breaks the cryptosystem in question.

As mentioned in the discussion above, the lemma claims that under the as-
sumption of the underlying cryptosystem being OW-CCA secure, there exists
no key-preserving reduction R that reduces OW-CCA breaking the cryptosys-
tem in question to INV-CMA breaking the construction, or if there exists such an
algorithm, the underlying cryptosystem is not OW-CCA secure, thus rendering
such a reduction useless.

Proof. Let R be the key-preserving reduction that reduces the invisibility of
the construction to the OW-CCA security of the underlying cryptosystem. We
construct an algorithmM that usesR to OW-CCA break the same cryptosystem
by simulating the INV-CMA adversary A against the construction.

Let Γ be the cryptosystem M is trying to attack w.r.t. a public key Γ.pk.
M launches R over Γ with the same public key Γ.pk. After M gets the label L
on which R wishes to be challenged, he (M) forwards it to his own challenger.
Finally, M gets a challenge ciphertext c, that he forwards to R. Note that M is
allowed to query the decryption oracle on any pair (ciphertext,label) except on
the pair (c, L). Thus, all decryption queries made by R, which are by definition
different from the challenge (c, L), can be forwarded to M’s own challenger. At
some point, M, acting as an INV-CMA attacker against the construction, will
output two messages m0,m1 such that L /∈ {m0‖Σ.pk,m1‖Σ.pk}, where Σ.pk
is the public key of the digital signature underlying the construction. M gets
as response a challenge signature μ� = (μ�

1, μ
�
2, μ

�
3) which he is required to tell

to which message it corresponds. Since the messages m0 and m1 were chosen
such that the label under which is created the encryption μ�

1 (either m0‖Σ.pk or
m1‖Σ.pk) is different from the challenge label L, M can query his decryption
oracle on both pairs (μ�

1,m0‖Σ.pk) or (μ�
1,m1‖Σ.pk). Results of such queries

will enable M to open the commitment μ�
2, and thus check the validity of the
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signature μ� w.r.t. to one of the messages m0 or m1. Finally, when R outputs
his answer, M will simply forward this result to his challenger. ��
Lemma 2. Assume there exists a key-preserving reduction R that converts an
INV-CMA adversary A against the above construction to an NM-CPA adversary
against the underlying cryptosystem. Then, there exists a meta-reduction M that
NM-CPA breaks the cryptosystem in question.

We provide the proof in [19].
Thus, when the considered notions are obtained from pairing a security goal

GOAL ∈ {OW, IND,NM} and an attack model ATK ∈ {CPA,PCA,CCA}, we
have
Theorem 1. The cryptosystem underlying the above construction must be at
least IND-PCA secure, in case the considered reduction is key-preserving, in
order to achieve INV-CMA secure signatures.
Similarly to the study in [20], we generalize the above theorem to arbitrary
reductions if the cryptosystem underlying the construction has a non malleable
key generator (See the full version [19])

Remark 3. Note that the above impossibility result holds true only when the con-
sidered notions are those obtained by pairing a security goal GOAL ∈
{OW, IND,NM} and an attack model ATK ∈ {CPA,PCA,CCA}. Presence of
other notions requires an additional analysis, however Lemmas 1 and 2 will still
serve when there is a relation between the new notion and the notions NM-CPA
and OW-CCA.

Interpretation. One way to explain the above result is to remark that the above
construction is not strongly unforgeable. In fact, an adversary A, given a valid
signature μ = (μ1, μ2, μ3) on a message m, can create another valid signature μ′

on m without the help of the signer as follows; A will first request the selective
conversion of μ to obtain the decryption of μ1, say r, which he will re-encrypt in
μ′

1 under the same label m‖Σ.pk (Σ.pk is the public key of the digital signature
underlying the construction). Obviously μ′ = (μ′

1, μ2, μ3) is also a valid confirmer
signature on m that the signer did not produce, and thus cannot confirm/deny or
convert without having access to a decryption oracle of the cryptosystem under-
lying the construction. This explains the insufficiency of notions like IND-CPA.
However, we observe that an IND-CCA secure encryption is more than needed
in this framework since a query of the type μ′ is not completely uncontrolled
by the signer. In fact, its first component μ′

1 is an encryption of some data al-
ready disclosed by the signer, namely r, and thus a plaintext checking oracle is
sufficient to deal with such a query if the used digital signature is SEUF-CMA
secure.

Theorem 2. The above construction is (t, ε, qs, qv, qsc)-INV-CMA secure if it
uses a (t, ε′, qs)-SEUF-CMA secure digital signature, a statistically-binding and
(t, εc)-hiding commitment, and a (t+(qs +qsc)(qsc +qv), 1

2 (ε+εc)·(1−ε′)(qsc+qv),
qsc(qsc + qv))-IND-PCA secure cryptosystem with labels.

We provide the proof in [19].
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4 An Efficient Construction from the “Signature of a
Commitment” Paradigm

One simple way to eliminate the strong forgeability in signatures from the plain
“signature of a commitment” technique consists in producing a digital signature
on both the commitment and the encryption of the random string used in it.
In this way, the attack discussed before Theorem 2 no longer applies, since an
adversary will need to produce a digital signature on the commitment and the re-
encryption of the random string used in it. Note that such a fix already appears
in the construction of [15]. However it was not exploitable as the invisibility was
considered in the insider model.

4.1 Construction

Let Σ be a signature scheme given by Σ.keygen that generates (Σ.pk, Σ.sk),
Σ.sign and Σ.verify. Let further Γ denote a cryptosystem given by Γ.keygen
that generates (Γ.pk, Γ.sk), Γ.encrypt and Γ.decrypt. We note that Γ does not
need to support labels in our construction. Finally let Ω denote a commitment
scheme given by Ω.commit and Ω.open. We assume that Γ produces ciphertexts
of length exactly some n. As a result, the first bit of c will always be at the
(n + 1)-st position in e‖c, where e is a ciphertext produced by Γ .

The construction of confirmer signatures from Σ, Γ and Ω is given as follows.

Key generation. The signer key pair is (Σ.pk, Σ.sk) and the confirmer key pair
is (Γ.pk, Γ.sk).

ConfirmedSign. On input message m, produce a commitment c on m using a
random string r, encrypt this string in e and then produce a digital signature
σ = Σ.signΣ.sk(e‖c). Output μ = (e, c, σ) as a confirmer signature on m, and
prove in ZK the equality of the decryption of e and the string used for the
commitment c. This proof is possible using the randomness used to encrypt
r in e.

Confirmation/Denial protocol. On a message m and an alleged signature μ =
(μ1, μ2, μ3), check the validity of μ3 on μ1‖μ2. In case it is not valid, produce
⊥. Otherwise, compute the decryption r of μ1 and check whether μ2

?=
Ω.commit(m, r), according to the result give a ZK of the equality/inequality
of the decryption of c and the string used to create μ2.

Selective conversion. Proceed as in the confirmation/denial protocol with the
exception of issuing the decryption of μ1 in case the signature is valid and
the symbol ⊥ otherwise.

4.2 Security Analysis

First we note that the security for the verifier and the non-transferability of
the confirmedSign, confirmation and denial protocols are ensured by using ZK
proofs of knowledge. Furthermore, the construction is EUF-CMA secure and
INV-CMA secure if the underlying components are secure.
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Theorem 3. The construction depicted above is (t, ε, qs)-EUF-CMA secure if it
uses a statistically binding commitment scheme and a (t, ε, qs)-EUF-CMA secure
digital signature scheme.

Theorem 4. The construction depicted above is (t, ε, qs, qv, qsc)-INV-CMA se-
cure if it uses a (t, ε′, qs)-SEUF-CMA secure digital signature, a statistically bind-
ing and (t, εc)-hiding commitment and a (t+qs(qv +qsc), 1

2 (ε+ εc)(1− ε′)qv+qsc)-
IND-CPA secure cryptosystem.

We provide the proofs of both theorems in [19].

4.3 Efficiency Analysis

We show in this paragraph that requesting the cryptosystem to be only IND-
CPA secure improves the efficiency of constructions from the plain “signature of
a commitment” paradigm from many sides. First, it enhances the signature gen-
eration, verification and conversion cost as encryption and decryption is usually
faster in IND-CPA secure encryption than in IND-CCA secure encryption (e.g.,
ElGamal vs Cramer-Shoup or Paillier vs Camenisch-Shoup). Next, we achieve
also a shorter signature since ciphertexts produced using IND-CPA schemes are
standardly shorter than their similars produced using IND-CCA secure cryp-
tosystems. Finally, we allow homomorphic encryption in the design, which will
render the confirmedSign/confirmation/denial protocols more efficient. In fact,
in [15,24], the signer/confirmer has to prove in ZK the equality/inequality of
the decryption of an IND-CCA encryption and an opening value of a commit-
ment scheme. Thus, the only efficient instantiation, that was provided, used
Camenisch-Shoup encryption and Pedersen commitment. In the rest of this sub-
section, we enlarge the category of encryption/commitment schemes that yield
efficient instantiations thanks to the allowance of homomorphic encryption in
the design.

Definition 1. (The class C of commitments) C is the set of all commitment
schemes for which there exists an algorithm Compute that on the input: the
commitment public key pk, the message m and the commitment c on m, computes
a description of a one-way function f : (G, ∗) → (H, ◦s):

– where (G, ∗) is a group and H is a set equipped with the binary operation ◦s

,
– ∀r, r′ ∈ G: f(r ∗ r′) = f(r) ◦s f(r′).

and an I ∈ H, such that f(r) = I, where r is the opening value of c w.r.t. m.

It is easy to check that Pedersen’s commitment scheme is in this class. Actually,
most commitment schemes have this built-in property because it is often the case
that the committer wants to prove efficiently that a commitment is produced
on some message. This is possible if the function f is homomorphic as shows
Figure 1.
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1. The prover chooses r′ R←− G, computes and sends t1 = I ◦s f(r′) to the verifier.

2. The verifier chooses b
R←− {0, 1} and sends it to the prover.

3. If b = 0, the prover sends r′.
Otherwise, he sends r ∗ r′.

4. If b = 0, the verifier checks that t1 is computed as in Step 1.

Otherwise, he accepts if f(r ∗ r′) = t1.

Fig. 1. Proof system for membership to the language {r : f(r) = I} Common input: I
and Private input : r

Theorem 5. The protocol depicted in Figure 1 is a Σ protocol.

The proof is straightforward and is given in [19].
For encryption, we use the same class E that was defined in [20], with the

exception of not requiring the cryptosystems to be derived from the hybrid
encryption paradigm.

Definition 2. (The class E of cryptosystems) E is the set of encryption
schemes Γ that have the following properties:

1. The message space is a group M = (G, ∗) and the ciphertext space C is a set
equipped with a binary operation ◦e.

2. Let m ∈ M be a message and c its encryption with respect to a key pk. On
the common input m and c, there exists an efficient zero knowledge proof
of m being the decryption of c with respect to pk. The private input of the
prover is either the private key sk, corresponding to pk or the randomness
used to encrypt m in c.

3. ∀m,m′ ∈ M, ∀pk : Γ.encryptpk(m ∗m′) = Γ.encryptpk(m) ◦e Γ.encryptpk(m′).
Moreover, given the randomness used to encrypt m in Γ.encryptpk(m) and
m′ in Γ.encryptpk(m′), one can deduce (using only the public parameters)
the randomness used to encrypt m∗m′ in Γ.encryptpk(m)◦e Γ.encryptpk(m′).

Examples of cryptosystems in the above class are ElGamal’s encryption [13],
the cryptosystem defined in [3] which uses the linear Diffie-Hellman KEM or
Paillier’s [23] cryptosystem. In fact, these cryptosystems are homomorphic and
possess an efficient protocol for proving that a ciphertext decrypts to a given
plaintext: the proof of equality of two discrete logarithms [8], in case of ElGamal
or the cryptosystem in [3], or the proof of knowledge on an N -th root in case of
Paillier’s encryption.

Theorem 6. The protocol depicted in Figure 2 is a Σ protocol.

The proof is similar to the one given in [20]. ��

The confirmation/denial protocol. The confirmedSign, confirmation and
denial protocols of the construction in Subsection 4.1 are depicted below.

Theorem 7. The confirmation protocol described in Figure 3 is a Σ protocol.
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1. The prover chooses r′
R
←− G, computes and sends t2 = Γ.encrypt(r′) ◦e e to the verifier

2. The verifier chooses b
R
←− {0, 1} and sends it to the signer.

3. If b = 0, the prover sends r′ and the randomness used to encrypt it in Γ.encrypt(r′).
Otherwise, he sends r′ ∗ r and proves that t2 is an encryption of r′ ∗ r.

4. If b = 0, the verifier checks that t2 is computed as in Step 1.

Otherwise, he checks the proof of decryption of t2:

It it fails, he rejects the proof.

Fig. 2. Proof system for membership to the language {e : ∃m : m = Γ.decrypt(e)}
Common input: (e, Γ.pk) and Private input: Γ.sk or randomness encrypting m in e

Theorem 8. The denial protocol described in Figure 3 is a Σ protocol if the
underlying cryptosystem is IND-CPA-secure.

The proofs of both theorems are given in [19].

1. The prover and verifier, given the public input, compute I as defined in Definition 1.

2. The prover chooses r′
R
←− G, computes and sends t1 = f(r′) ◦s I and

t2 = Γ.encrypt(r′) ◦e e to the verifier.

3. The verifier chooses b
R
←− {0, 1} and sends it to the prover.

4. If b = 0, the prover sends r′ and the randomness used to encrypt it in Γ.encrypt(r′).
Otherwise, he sends r′ ∗ r and proves that t2 is an encryption of r′ ∗ r.

5. If b = 0, the verifier checks that t1 and t2 are computed as in Step 1.
Otherwise, he checks the proof of decryption of t2:

It it fails, he rejects the proof.
Otherwise:

If the prover is confirming the signature, the verifier accepts if f(r′ ∗ r) = t1.
If the prover is denying the given signature, the verifier accepts the proof if f(r′ ∗ r) �= t1.

Fig. 3. Proof system for membership (non membership) to the language {(e, c) : ∃r :

r = Γ.decrypt(e) ∧ r = ( �=)Ω.open(c, m)} Common input: (e, c, m, Γ.pk, Ω.pk) and

Private input: Γ.sk or randomness encrypting r in e

5 The “Signature of an Encryption” Paradigm

We have seen that confirmer signatures realizing the “signature of a commit-
ment” paradigm are comprised of a commitment on the message to be signed,
an encryption of the random string used to produce the commitment, and a dig-
ital signature on the commitment. Since IND-CPA encryption can be easily used
to get secure commitments, one can use instead of the commitment in the previ-
ous constructions an IND-CPA secure cryptosystem. With this choice, there will
be no need of encrypting the string used to produce the encryption of the mes-
sage, since the private key of the cryptosystem is sufficient to check the validity
of a ciphertext w.r.t. to a given message. Note that this construction already
appeared in [1] in the context of signcryption. The encrypt-then-sign method
achieves better performances than all previously cited constructions in terms of
signature length, generation/verification and conversion cost. Besides, the proofs
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underlying the confirmedSign/confirmation/denial protocols are reduced in case
of Discrete-Logarithm-based cryptosystems to proofs of equality/inequality of
discrete logarithms for which there exist efficient protocols [8,6]. The only prob-
lem with this technique is the resort to non-interactive ZK (NIZK) proofs of
knowledge. In fact, we know how to produce such proofs from their interac-
tive variants using the Fiat-Shamir paradigm, which is known to provide secu-
rity only in the ROM. However, the recent results in [11,18,17] exhibit efficient
NIZK proofs of knowledge in some settings. We refer to [19] for the efficiency
and security analyses of this construction.
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Abstract. We give collision resistance bounds for blockcipher based,

double-call, double-length hash functions using (k, n)-bit blockciphers

with k > n. Özen and Stam recently proposed a framework[21] for such

hash functions that use 3n-to-2n-bit compression functions and two par-

allel calls to two independent blockciphers with 2n-bit key and n-bit

block size.

We take their analysis one step further. We first relax the require-

ment of two distinct and independent blockciphers. We then extend this

framework and also allow to use the ciphertext of the first call to the

blockcipher as an input to the second call of the blockcipher.

As far as we know, our extended framework currently covers any

double-length, double-call blockcipher based hash function known in lit-

erature using a (2n, n)-bit blockcipher as, e.g., Abreast-DM, Tandem-
DM [15], Cyclic-DM [9] and Hirose’s FSE’06 proposal [13].

Our generic analysis gives a simpler proof as in the FSE’09 analysis of

Tandem-DM by also tightening the security bound. The collision resis-

tance bound for Cyclic-DM given in [9] diminishes with an increasing

cycle length c. We improve this bound for cycle lengths larger than 26.

Keywords: Cryptographic hash function, blockcipher based, proof of

security, double block length, double length, ideal cipher model.

1 Introduction

A cryptographic hash function is a function which maps an input of arbitrary
length to an output of fixed length. It should satisfy at least collision-, preimage-
and second-preimage resistance and is one of the most important primitives in
cryptography [17]. In recent years, the widely used MD4-family hash functions
(e.g., MD4 [24], MD5 [25], RIPEMD [11], SHA-1 [19], SHA-2 [20]) have been suc-
cessfully attacked in several ways [4, 10, 29, 30] which has stimulated researchers
to look for alternatives. blockcipher based constructions seem promising since
they are very well known – they in fact predate the MD4-approach [16]. One
can easily create a hash function using5, e.g., the Davies-Meyer [31] mode of
operation and the Merkle-Damg̊ard transform [3, 18]. Also, many of the SHA-3
designs use blockcipher based instantiations. Another reason for the resurgence
of interest in blockcipher based hash functions is due to the rise of resource re-
stricted devices such as RFID tags or smart cards. A hardware designer only

S.-H. Heng and K. Kurosawa (Eds.): ProvSec 2010, LNCS 6402, pp. 102–118, 2010.
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needs to implement a blockcipher in order to obtain an encryption function as
well as a hash function. But due to the short output length of most practical
blockciphers, one is mainly interested in sound design principles for double length
hash functions. Such double length hash functions use a blockcipher with n-bit
output as the building block by which it maps possibly long strings to 2n-bit
ones.

In this article we focus on double length constructions using two calls to a
blockcipher with 2n-bit key and n-bit plaintext and ciphertext. For an overview
of other variants please refer to the discussion of related work in Appendix A.

Our starting point is the recent framework of double length blockcipher based
compression functions given by Özen and Stam [21]. It is a generalization of Stam’s
framework for single-length blockcipher based compression functions [26]. Stam’s
framework for these single-length compression function works as follows. Given
a message M and a chaining value R and two functions, for preprocessing and
postprocessing, CPRE and CPOST , the new chaining value V is computed by:

1. Prepare key and plaintext: (K,X) ← CPRE(M,R).
2. Set Y ← E(K,X).
3. Output V ← CPOST (M,R, Y ).

For example, choosing |X | = |K| = |M | = |R| = |V | = |Y | = n and a blockcipher
E with n-bit key and plaintext and ciphertext the PGV-schemes [1] can be
derived for appropriate choices of CPRE and CPOST . In fact, Stam’s analysis
also covers more general choices by allowing values larger than the block size n.

Naturally, given its key, a blockcipher is easy to invert. For such inverse queries,
a modified postprocessing, CAUX(K,X, Y ) = CPOST (C−PRE(K,X), Y ), is also
used. Black et al. [1] and Stam [26] categorized these function into three groups:

Type-I: the compression function is collision- and preimage resistant,
Type-II: the compression function is ’secure’ only in the iteration and
Insecure: the compression function is not secure, i.e., there are attacks known.

In order to get a Type-I compression function, Stam proved that it is sufficient
to show that CPRE and CPOST (M,R, ·) are both bijective.

Our Contribution. In Section 2, we generalize the double length framework
of Özen and Stam [21] to be able to handle constructions similar to Tandem-
DM that reuse the ciphertext inside the compression function. We also discuss
the connection of our framework to the class of Cyclic-DM [9]. We give two spe-
cial cases of our generic framework,Parallel-DL and Serial-DL, that virtually
cover any double-length, double-call blockcipher based hash function known in lit-
erature employing a (2n, n)-bit blockcipher. Instantiations of Parallel-DL are,
e.g., Cyclic-DM or Abreast-DM, an example for Serial-DL is Tandem-DM.

In Section 3, we give a collision resistance bound for compression functions in
our framework. Using this result, we can, e.g., easily tighten the FSE’09 collision
resistance result of Tandem-DM [8]. Furthermore, we are able to derive a lower
bound of collision resistance for Cyclic-DM compression functions with a cycle
lengths larger than 26.
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Section 4 discusses some more generic cases. An example is Mix-Tandem-DM
in Figure 3 on page 116. We are not aware of well-known examples in literature.
The interesting fact is that Mix-Tandem-DM has a considerably lower security
guarantee in terms of collision resistance as Tandem-DM.

In Section 5 we discuss our results and conclude the paper. An overview of
our results and some comparisons is given in Table 1.

Table 1. Comparison of relevant results for double-length, double-call compression

functions. *The threshold value δ is the minimum amount of queries that an adversary

must place to the blockcipher in order to find a collision with probability greater than

1/2. The notion of a cycle is defined in Section 2.5.

Cycle length Threshold δ* Instances Reference

2k (k ≥ 2) 2127−k Cyclic-DM (e.g. Add/k-DM) [21]

2k (k ≥ 2) 2127−k Parallel-DL Section 2.5

k (k ≥ 2) 2120.66 Parallel-DL Section 3

− 2120.4 Tandem-DM [8]

− 2120.66 Tandem-DM (via Serial-DL) Section 3

− 2120.66 Parallel-DL, Serial-DL Section 3

− 282.8 Mix-Tandem-DM (via Generic-DL) Section 4

2 Preliminaries

2.1 General Notations

A (k, n)-blockcipher is a keyed family of permutations consisting of two paired
algorithms E : {0, 1}k×{0, 1}n → {0, 1}n and E−1 : {0, 1}k ×{0, 1}n → {0, 1}n

both accepting a key of size k bits and an input block of size n bits for some n > 0,
k > n. For positive n, Block(k, n) is the set of all (k, n)-blockciphers. For any
E ∈ Block(k, n) and any fixed key K ∈ {0, 1}k, decryption E−1

K := E−1(K, ·)
is the inverse function of encryption EK := E(K, ·), so that E−1

K (EK(X)) = X
holds for any input X ∈ {0, 1}n. In the ideal cipher model [1, 6, 14] E is modeled
as a family of random permutations {EK} whereas the random permutations are
chosen independently for each key K, i.e., formally E is selected randomly from
Block(k, n). The number of extra key-bits is defined as k′ = k − n. We use the
convention to write oracles, that are provided to an algorithm, as superscripts.
For example AE is a algorithm A with oracle access to E to which A can
request forward- and backward queries. For ease of presentation, we identify the
sets {0, 1}a+b and {0, 1}a × {0, 1}b. Similarly for A ∈ {0, 1}a and B ∈ {0, 1}b,
the concatenation of these bit strings is denoted by A||B ∈ {0, 1}a+b = {0, 1}a×
{0, 1}b.
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2.2 Blockcipher Based Compression Functions

A compression function is a mapping H : {0, 1}m × {0, 1}r → {0, 1}r for some
m, r > 0. A blockcipher based compression function is a mapping HE : {0, 1}m×
{0, 1}r → {0, 1}r that, given an r-bit state R and a m-bit message M , computes
HE(M,R||S) using oracle access to some oracle E ∈ Block(k, n).

A blockcipher based compression function H is called double-length, double-
call (DL) if m = k′ = k − n, r = 2n, |M | = m, |R| = |S| = n and the 2n-bit
digest (V,W ) is computed using two calls to E as shown in Figure 1. Formally,
(V,W ) := HE(M,R||S) for a given message M and a chaining value R||S is
computed using pre- and postprocessing functions CPRE

T ,CPRE
B : {0, 1}k+n →

{0, 1}k+n and CPOST
T ,CPOST

B : {0, 1}k+2n → {0, 1}n as well as a linking function
CLNK : {0, 1}k+2n → {0, 1}k+n by:

1. Compute (KT , XT ) = CPRE
T (M,R||S).

2. Set YT = E(KT , XT ).
3. Compute L = CLNK(M,R||S, YT ).
4. Compute (KB, XB) = CPRE

B (L).
5. Set YB = E(KB, XB).
6. Output (V,W ) = (CPOST

T (M,R||S, YT ),CPOST
B (L, YB)).

The inverse of CPRE
T is denoted by C−PRE

T and C−PRE
B , C−POST

T and C−POST
B are

defined likewise. Informally, a query is used in the top-row if its plaintext, ci-
phertext and key are (KT , XT , YT ), otherwise (i.e., if the query is (KB, XB, YB))
we say that it is used in the bottom-row.

CPRE

T
CPOST

T

CPRE

B CPOST

B

CLNK

V

W
n

n

nn

n

n

k + n

k + n

k + n

k

k

(M,R||S)
KT

KB

XT

XB

YT

YBE

E

Fig. 1. The double-length compression function HE where E is a (k, n)-blockcipher.

The gray rectangle inside the cipher indicates the key input.

2.3 Classification of Double-Length Compression Functions

Generic-DL. The smallest common denominator any double-length compres-
sion function shares in our analysis is that, if a top-row query is given, QT =
(XT ,KT , YT ), one can compute the input to the bottom-row forward query
(KB, XB). We do not require the converse, i.e., we do not require that a bottom-
row query uniquely determines the top-row query. We call DL compression
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functions satisfying this generic requirement Generic-DL. As an example set
KB = KT and XB = XT ⊕ YT . It follows, that for any given top-row query
QT = (KT , XT , YT ), the bottom row input to a forward query is uniquely deter-
mined. Another example is Mix-Tandem-DM.

Parallel-DL. This is a special case of Generic-DL where one can compute
(KT , XT ) uniquely given (KB, XB) and vice versa. It is called parallel since
the query in the bottom-row does not depend on the ciphertext output of the
top row and therefore both can be called in parallel given the input (M,R||S)
to the compression function. For ease of presentation, we define a helper func-
tion PAR such that (KB, XB) = PAR(KT , XT ) and (KT , XT ) = PAR−1(KB, XB).
Examples are Abreast-DM [15] or Hirose’s FSE’06 proposal [13].

Serial-DL. This is also a special case of Generic-DL where one can compute
(KT , YT ) uniquely given (KB, XB). Given (M,R||S), we must call the queries of
the top- and bottom row one after another since the bottom-row query depends
on the ciphertext-output of the top-row. We again define a helper function SER
such that (KB, XB) = SER(KT , YT ) and (KT , YT ) = SER−1(KB, XB). A promi-
nent example of a Serial-DL compression function is Tandem-DM [15]. It is
easy to see that Parallel-DL and Serial-DL are mutually exclusive.

For our analysis, we assume that the top-row ’is’ a Type-I single length (SL)
compression function (CPRE

T , CPOST
T ). Likewise, we assume that the bottom-

row (CPRE
B , CPOST

B ) is Type-I. Therefore, the following three hold [26]:

1. The preprocessings CPRE
T and CPRE

B are both bijective.
2. For allM,R, S, thepostprocessingsCPOST

T (M,R||S, ·)andCPOST
B (M,R||S, ·)

are both bijective.
3. For all K,Y , the modified postprocessings CAUX

T (K, ·, Y ) and CAUX
B (K, ·, Y )

are both bijective.

In order to give concrete security bounds, we have to make sure, that it is
not ’too easy’ to use one and the same query in the top row and the bottom
row simultaneously. This might essentially render the double-length compression
function into a single length compression function. For an adversary this could
imply that if she had found a collision in one row, there could automatically be a
collision in the other row (depending on the pre- and postprocessing functions).
A simple example of such a scenario for a Parallel-DL compression function is
ignoring the input coming from YT and setting CLNK to the identity mapping.
Definition 1 (Independence of top- and bottom row). LetQf = (K,X,Y)
be a forward query with Y = E(K,X). Now let ζ1 ∈ R be such that

Pr
K,X,E

[(K,X) = (CPRE
B ◦CLNK)(C−PRE

T (K,X),Y)] ≤ ζ1.

The probability is taken over all K, X, and blockciphers E. Let Qb = (K,X , Y )
be a backward query with X = E−1(K,Y ). Let ζ2 ∈ R be such that

Pr
K,Y,E

[(K,X ) = (CPRE
B ◦CLNK)(C−PRE

T (K,X ), Y )] ≤ ζ2.
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Here, the probability is taken over all K, Y , and blockciphers E. The inde-
pendence ζ of a double-length compression function is now defined as ζ :=
max(ζ1, ζ2).

2.4 Security Notions

Insecurity is quantified by the success probability of an optimal resource-bounded
adversary. The resource is the number of backward and forward queries to the
blockcipher E. For a set S, let z

R← S represent random sampling from S under
the uniform distribution. For a probabilistic algorithm M, let z

R←M mean that
z is an output of M and its distribution is based on the random choices of M.

An adversary is a computationally unbounded but always-halting collision-
finding algorithm A with access to E ∈ Block(k, n). We assume that A is
deterministic. The adversary may make a forward query (K,X)f to discover
the corresponding value Y = E(K,X), or the adversary may make a backward
query (K,Y )b, so as to learn the corresponding value X = E−1(K,Y ) such
that E(K,X) = Y . Either way, the result of the query is stored in a triple
(Ki, Xi, Yi) := (K,X, Y ) and the query history Q is the tuple (Q1, . . . , Qq)
where Qi = (Ki, Xi, Yi) and q is the total number of queries made by the
adversary. The value CPOST (C−PRE(Ki, Xi), Yi) is called the post-output of
query i. The terms post-output of a query in the top-row and post-output of a
query in the bottom row are defined similarly as CPOST

T (C−PRE
T (Ki, Xi), Yi) and

CPOST
B (C−PRE

B (Ki, Xi), Yi).
Without loss of generality, we assume that A asks at most once on a triplet

of a key Ki, a plaintext Xi and a ciphertext Yi obtained by a query and the
corresponding reply.

The goal of the adversary is to output two different triplets, (M,R, S) and
(M ′, R′, S′), such that H(M,R||S) = H(M ′, R′||S′). We impose the reasonable
condition that the adversary must have made all queries necessary to compute
H(M,R||S) and H(M ′, R′||S′). We in fact dispense the adversary from having
to output these two triplets, and simply determine whether the adversary has
been successful or not by examining the query history Q. Formally, we say that
Coll(Q) holds if there is such a collision andQ contains all the queries necessary
to compute it.

Definition 2. (Collision resistance of a DL blockcipher based compres-
sion function) Let H : {0, 1}k+2n → {0, 1}2n be a blockcipher based compres-
sion function. Fix an adversary A. Then the advantage of A in finding collisions
in H is the real number

AdvColl
H (A) = Pr[E R← Block(k, n); ((M,R, S), (M ′, R′, S′)) R← AE,E−1

:
((M,R, S) �= (M ′, R′, S′)) ∧H(M,R, S) = H(M ′, R′, S′)].

For q ≥ 1 we write

AdvColl
H (q) = max

A
{AdvColl

H (A)},
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where the maximum is taken over all adversaries that ask at most q oracle
queries, i.e., forward and backward queries to E.

2.5 Parallel-DL and Cyclic-DM

Fleischmann et al. [9] introduced the concept of cyclic double-length blockcipher
based compression functions using the Davies-Meyer [31] mode. In short, the idea
of cyclic compression functions is that there is a permutation σ such that the input
to one row, e.g. the top row, determines the input to the bottom row. By applying
σ several times again on this new bottom-row input one results again at the initial
top-row input. The cycle length c of an input Z is defined as the minimal number
such that σc(Z) = Z. The cycle length of a compression function is defined as the
maximum cycle length taken over all possible inputs Z.

This idea can also be applied in the more generic setting of Parallel-DL.
The cycle length of an input Z = (M,R||S) can now be defined as the minimal
number c such that PARc(Z) = Z. Therefore we define the cycle length of a
Parallel-DL compression function as the maximum cycle length measured
over all possible inputs Z.

This is a generalization of the Cyclic-DM analysis in [9]. It is easy to see,
that the proofs for Cyclic-DM can be easily applied to our more general case.
So we can state bounds for collision resistance of Parallel-DL based on the
Cyclic-DM bounds as follows.

Theorem 1. (Collision Resistance for c = 2) Let H be a Parallel-DL com-
pression function with cycle length c = 2 and let N = 2n. If CPRE

T = CPRE
B and

CPOST
T = CPOST

B , then a = 1, else a = 2. Then, for any q > 1 and 2q < N ,

AdvColl
HE (q) ≤ 2aq2

(N − 2q)2
+

2q
N − 2q

.

Theorem 2. (Collision Resistance for c > 2) Let H be a Parallel-DL com-
pression function with cycle length c > 2 and let N = 2n. Then, for any q > 1
and cq < N ,

AdvColl
HE (q) ≤ c2

2

(
q

N − cq

)2

.

Proof. The proofs are essentially identical to the proofs of Theorems 4 and 5 in
[9] and is omitted here. ��

The security bound of Theorem 2 vanishes with an increasing cycle length. E.g.
for c = 2t and n = 128, no adversary asking less than 2127−t queries can find a
collision with probability greater than 1/2.

2.6 Related Work

An overview of related work can be found in Appendix A.
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3 Collision Resistance of Parallel-DL and Serial-DL
Compression Functions

3.1 Results Overview

In our analysis, we exclude c = 1 for immanent reasons.

Theorem 3. Let H be a Parallel-DL or Serial-DL compression function
as given in Section 2.3. Let α, β, κ, n be constants such that α, κ > e and let
τ = N ′α/q, N = 2n, N ′ = N − q. Then

Advcoll
HE (q) ≤ q ·

(
2α/N ′ + 2β/(N ′)2 + qζ/N ′ + 1/N ′)+ L, (1)

where

L = 2q2neτq(1−ln τ)/N ′
+ 2q2/(βN ′) + 2qeκ(1+ln q

N′ −lnκ).

Since similar bounds, e.g., [8, 27, 28], are in their general from rather untrans-
parent, we discuss this bound for n = 128. Let ζ = 0, and evaluate expression
(1) such that the advantage is equal to 1/2, thereby maximizing the value of q
and numerically optimizing the values of α, β and κ. For α = 24, β = 2120 and
κ = 14 we find that no adversary asking no more than q = 2120.66 queries can
find a collision with probability greater than 1/2.

In the full version of the paper [7], we show that Theorem 3 implies the
following asymptotic bound.

Theorem 4. Let q = 20.93n−ε where ε ≥ 0 and H a Parallel-DL or Serial-
DL compression function with ζ < 1/N ′. Then Advcoll

HE (q) → 0 as n →∞.

3.2 Proof Preliminaries

Overview. We analyze whether the queries to the oracle E made by the adversary
can be used for constructing a collision of the compression function HE . We
look to see whether there exist four not necessarily distinct queries that form a
collision (cf. Figure 2).

To upper bound the probability of the adversary obtaining queries than can
be used for a collision, we upper bound the probability of the adversary making
a query that can be used as the final query to complete such a collision. Let
Qi denote the set of the first i queries made by the adversary. We examine the
queries of the adversary one at a time (either forward or backward) as they are
placed. We denote by the term last query the latest query made by the adversary.
This query is always given the index i. Therefore, for each i, 1 ≤ i ≤ q, we upper
bound the probability that the answer to the adversary’s i-th query (Ki, Xi)f

or (Ki, Yi)b allows the adversary to use this i-th query to complete the collision.
In the latter case, the last query is called successful and the attack is given to
the adversary. As the probability depends on the first i− 1 queries, we need to
make sure that the adversary hasn’t already been too lucky with these. Being
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Fig. 2. The double-length compression function HE using a (k, n)-blockcipher E, the

gray rectangle inside the cipher indicates the input used as a key. The four possible

positions a query can be used in are denoted by TL, BL, TR, BR.

lucky is explicitly defined in (2), e.g. it means – among others – that there exists
a large subset of the first i− 1 queries that have equal post-output. Our upper
bound thus breaks down into two pieces: an upper bound for the probability of
the adversary getting lucky and the probability of the adversary ever making
a successful i-th query, conditioned on the fact that the adversary has not yet
become lucky by its (i− 1)-th query.

Details. Fix numbers n, q and an adversary A asking q queries in total to its
oracle. We say Coll(Q) if the adversary wins. Note that winning does not neces-
sarily imply that a collision has been found as is explained now. We upper bound
Pr[Coll(Q)] by exhibiting the predicates Lucky(Q), WinTL(Q), WinBL(Q),
WinTL+BL(Q) and WinTL+BR(Q) such that

Coll(Q) ⇒ Lucky(Q)∨WinTL(Q) ∨WinBL(Q)∨
WinTL+BL(Q) ∨WinTL+BR(Q).

and then by upper bounding separately the probabilities Lucky(Q), WinTL(Q),
WinBL(Q), WinTL+BL(Q) and WinTL+BR(Q). The union bound finally gives

Pr[Coll(Q)] ≤ Pr[Lucky(Q)] + Pr[WinTL(Q)] + Pr[WinBL(Q)] +
Pr[WinTL+BL(Q)] + Pr[WinTL+BR(Q)].

To formally state these predicates, some additional definitions are helpful. Let
NumEqualT(Q), NumEqualB(Q) be functions defined on query sequences Q of
length q as follows:

NumEqualT(Q) = max
Z∈{0,1}n

|{i : CPOST
T (C−PRE

T (Ki, Xi), Yi) = Z}|,

NumEqualB(Q) = max
Z∈{0,1}n

|{i : CPOST
B (C−PRE

B (Ki, Xi), Yi) = Z}|.

They give the maximum size of a set of queries in Q whose post outputs are
all the same (for the top- and bottom row respectively). Let NumCollT(Q),
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NumCollB(Q) be also defined on query sequences Q of length q as

NumCollT(Q) = |{(i, j) ∈ {1, . . . , q}2 : i �= j,

CPOST
T (C−PRE

T (Ki, Xi), Yi) = CPOST
T (C−PRE

T (Kj , Xj), Yj)}|,
NumCollB(Q) = |{(i, j) ∈ {1, . . . , q}2 : i �= j,

CPOST
B (C−PRE

B (Ki, Xi), Yi) = CPOST
B (C−PRE

B (Kj , Xj), Yj)}|.

They give the number of ordered pairs of distinct queries in Q which have the
same post-outputs. For our analysis we also need to upper bound the number
of ’triangle collisions’ in the top and bottom row, NumTriangleCollT(Q) and
NumTriangleCollB(Q). We say a pair of queries (Qi, Qj), i �= j, forms a triangle
collision in the top-row iff:

1. Qi is used in TL and BR,
2. Qj is used in TR and,
3. the post-output of Qi in TL is equal to the post-output of Qj in TR.

Similarly, a triangle collision in the bottom-row is defined, only Qj is then used
in BL.
We now define the event Lucky(Q) as

Lucky(Q) =(NumEqualT(Q) > α) ∨ (NumEqualB(Q) > α) ∨
(NumCollT(Q) > β) ∨ (NumCollB(Q) > β) ∨ (2)
(NumTriangleCollT(Q) > κ) ∨ (NumTriangleCollB(Q) > κ),

where α, β and κ are the constants from Theorem 3. These constants are chosen
depending on n and q by a numerical optimization process. If α, β and κ are
chosen larger, Pr[Lucky(Q)] diminishes. The other events consider mutually
exclusive configurations on how to find a collision for the compression function.
These configurations are formalized by the following four predicates.

FitTL: The last query is used only once in position TL. This is equivalent to
the case where the last query is used in position TR.

FitBL: The last query is used only once in position BL or (equivalent) BR.
FitTL/BL: The last query is used twice in a collision, either TL and BL or

(equivalent) TR and BR.
FitTL/BR: The last query is used twice in a collision, either TL and BR or

(equivalent) TR and BL.

We show in Proposition 1 that these configurations cover all possible cases of
a collision. For practical purposes we now define some additional predicates as
follows:

WinTL(Q) = ¬Lucky(Q) ∧ FitTL(Q),
WinBL(Q) = ¬(Lucky(Q) ∨FitTL(Q)) ∧ FitBL(Q),

WinTL+BL(Q) = ¬(Lucky(Q) ∨FitTL(Q) ∨ FitBL(Q)) ∧ FitTL+BL(Q),
WinTL+BR(Q) = ¬(Lucky(Q) ∨FitTL(Q) ∨ FitBL(Q) ∨ FitTL+BL(Q))

∧FitTL+BR(Q).
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Proposition 1.

Coll(Q) ⇒ WinTL(Q) ∨WinBL(Q) ∨WinTL+BL(Q) ∨WinTL+BR(Q)

Proof. We can assume that the adversary has not been lucky, i.e., ¬Lucky(Q).
Then it is easy to see that

FitTL(Q) ∨ FitBL(Q) ∨ FitTL+BL(Q) ∨ FitTL+BR(Q) ⇒ WinTL(Q)∨
WinBL(Q) ∨WinTL+BL(Q) ∨WinTL+BR(Q).

So it is sufficient to show that

Coll(Q) ⇒ FitTL(Q) ∨ FitBL(Q) ∨FitTL+BL(Q) ∨ FitTL+BR(Q).

Now, say Coll(Q) in the adversary’s i-th query (meaning that the adversary
was not able to find a query prior to its i-th query). Then a collision has been
found using queries Qi, Qj, Qk, Ql from our query history Q, |Q| = i for some
1 ≤ j, k, l ≤ i.

First assume that the last query, i.e., the i-th query, is used once in the
collision. If it is used in TL (or TR), then FitTL(Q). If it is used in BL (or
BR), then FitBL(Q). Now assume that the query is used twice in the collision.
If it is used in TL and BL (or TR and BR), then FitTL+BL(Q). If it is used in
TL and BR (or BL and TR), then FitTL+BR(Q). We note that a query cannot
be used twice in one row (top- or bottom) then no collision occurs since these
queries both uniquely determine the bottom-row query and therefore the inputs
to the compression function are equal in both cases. The same argument also
holds true in the case that the last query is used more than twice. This concludes
our analysis as no cases are left. ��

The next step is to upper bound Pr[Lucky(Q)], Pr[WinTL(Q)], Pr[WinBL(Q)],
Pr[WinTL+BL(Q)], and Pr[WinTL+BR(Q)].

Proposition 2. Let α, β, κ be as in Theorem 3 and let α > e and τ = N ′α/q.
Then

Pr[Lucky(Q)] ≤ 2 · (q2neτq(1−ln τ)/N ′
+ q2/(βN ′) + eκ(1+ln q

N′ −ln κ)).

The proof is given in the full version of the paper [7]. We note that the multi-
plying factor ’2’ can be omitted if the post processing functions of the top and
bottom-row are equal, i.e., CPOST

T = CPOST
B .

There are two arguments that are used several times in the proof so we state
them here in a generic form and reference them later. If the last query is used
only once in the configurations we denote the row that the query is used in
(i.e., either the top- or the bottom-row) as the query-row (QR); the row the last
query is not used in is called other row (OR). The function taking the output of
the last query and the key and generating the input to the other row is called
CHLP (this is either PAR, PAR−1, SER or SER−1).
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Argument A. The input to the last query ( i.e., key and plaintext for a forward
query or key and ciphertext for a backward query) uniquely determines the
input to the query of the other row. Assume WLOG that the last query is
used in position QL. Now, the query in the other row, OL, is now uniquely
determined by the input of QL via CHLP , we give the query OL to the
adversary for free and denote it by Q = (XO

i ,KO
i , Y O

i ). The post-output of
OL is therefore also uniquely determined via CAUX or CPRE . We denote
the post output of OL by V O

i . There are at most α queries that can be used
for OR (i.e., that have an equal post-output as OL). For any such matching
query in OR, there is at most one query in QR (computed either via CHLP ).
In total, there are no more than α queries that can possibly be used to find
a collision in the query-row. The last query has a chance of succeeding of
≤ α/N ′. In total, for q queries, the chance of ever making a successful query
of this type can be upper bounded by q · α/N ′.

Argument B. The (randomly determined) result of the last query (either as
a forward- or backward query) – and the key input – uniquely determines
the input of the query in the other row. Assume WLOG that the last query
is used in position QL. Note that in this case, the random output not only
determines the post output of the query row, but also is (in conjunction with
the query key) responsible for determining the unique query in OL.
Sucbase OL = QR. There are at most κ triplets of queries that can be

used for OL,OR and QR such that the queries used in OL and QR are
the same. So for any single query, the chance of success (only measured
in the query row) is ≤ κ/N ′.

Sucbase OL �= QR. Say OL �= QR. There are at most β pairs of queries
that form a collision in the other row, i.e., OL and OR have equal post
output. Since the query in OR uniquely determines the query QR, we
have in total β triplets of queries (OL,OR,QR) such that the other
row collides. The random output of the last query is relevant for two
different places, i.e., in order to use the query QL as a last query for a
collision of the compression function. It has to fit with the query in OL
and its post output has to be equal to the post output of QR. Since the
queries OL, i.e., the key, plaintext and ciphertext and the post output
of QR are independent, we can upper bound the success probability of
an adversary by ≤ β/(N ′)2.

Using the union bound, the chance of ever making a successful query in an
attack can be upper bounded by ≤ q · (α/N ′ + β/(N ′)2).

3.3 Analyzing the Upper Bounds of Success

Proposition 3. Pr[WinTL(Q)] ≤ q · (α/N ′ + β/(N ′)2).

Proof. The query-row QR is the top-row and the other-row OR is the bottom-
row. ��

Parallel-DL. Assume that the last query is a forward query. In this case Ar-
gument A holds. The probability of success is upper bounded by q · α/N ′.
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Now, assume that the last query is a backward query. In this case argu-
ment B holds. The total probability of success in this case is therefore upper
bounded by q · (α + β)/N ′.

Serial-DL Assume that the last query is a forward query. In this case Argument
B holds. Now, we assume that the last query is a backward query. In this case
Argument A holds. The total probability of success in this case is therefore
upper bounded by q · (α + β)/N ′. ��

Proposition 4. Pr[WinBL(Q)] ≤ q · (α/N ′ + β/(N ′)2).

Proof. The query-row QR is the bottom-row and the other-row OR is the top-
row. Since the proof is the same as for Proposition 3 we omit it here. ��

Proposition 5. Pr[WinTL+BL(Q)] ≤ q2 · ζ/N ′.

Proof. The analysis is the same for forward- and backward queries. The proba-
bility that the last query can be used concurrently in the top- and bottom-row
(i.e., TL and BL) can be upper bounded by ζ (cf. Definition 1). Trivially, there
are at most q queries that can be used for TR and we can upper bound the
adversary’s success by ≤ q ·ζ/N ′. For a total of q queries, this bound is q2 ·ζ/N ′.
We note that for Parallel-DL, assuming a cycle length c > 1, ζ = 0 always.

��
Proposition 6. Pr[WinTL+BR(Q)] ≤ q/N ′.

Proof. Parallel-DL. Assume that the last query is a forward query and we use
it in TL and BR (TL = BR). The queries in BL and TR are uniquely
determined by the input to the last query. We assume that the adversary
has access to these queries. So the chance of being successful in the top-row
is upper-bounded by 1/N ′ and for q queries by q/N ′.
Remark: This relatively loose bound takes the possibility of BL = TR into
account. In this case (Ki, Xi) = (CPRE

B ◦ (CLNK)2)(C−PRE
T (Ki, Xi), Yi)

which would imply a cycle length of two. By assuming a cycle length greater
than two, we can tighten this bound to q/(N ′)2 but we chose not to so since
the better bound only has insignificant influence on the final bound.
Now, assume that the last query is a backward query. The randomly de-
termined output of the query in TL, together with the input, i.e., the key,
uniquely determines BL. We assume that the adversary has access to a query
Qj ∈ Q that can be used in BL. Formally, the following discussion is con-
ditioned on the fact that the adversary has access to a matching Qj with
probability one. Note that this gives the adversary more power than she is
likely to have. It follows that the post-output of BL is also uniquely deter-
mined. The probability that the post-output of BL matches the randomly
determined post-output of BR can therefore be upper bounded by 1/N ′ and
for q queries by q/N ′.
So, whether we have a forward- or backward query, the total chance of success
is ≤ q/N ′.
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Serial-DL. Assume that the last query is a forward query and we use it in TL
and BR (TL = BR). It follows that the query in TR is uniquely determined
by the input of the last query. So the chance of success in the top row for q
queries is upper bounded by q/N ′.
Now assume that the last query is a backward query used again in TL and
BR. Since the query in BL is uniquely determined by the input of the last
query used in TL, the total chance of success for q queries in the bottom-row
is again upper bounded by q/N ′. So whether the adversary mounts a forward
or backward query, the success probability is bounded by ≤ q/N ′. ��

4 Collision Resistance of Generic-DL Compression
Functions

Theorem 3 can not be applied to derive a bound for more generic constructions
such as Mix-Tandem-DM since for Parallel-DL or Serial-DL compression
functions, a query in the bottom-row uniquely determines the query in the top-
row.

Theorem 5. Let H be a Generic-DL compression function as given in Section
2.3. Let α, β, κ, n and γ be constants such that α, κ > e and τ = N ′α/q, N = 2n,
N ′ = N − q. Let Γ (q, γ) be a function. Then

Advcoll
HE (q) ≤ qβ(γ + 1)/N ′ + q2ζ/N ′ + qγ/N ′ + L,

where

L = 2q2neτq(1−ln τ)/N ′
+ 2q2/(βN ′) + 2qeκ(1+ln q

N′ −ln κ) + Γ (q, γ).

Proof. The details of the proof can be found in the full version of the paper [7].
The proof of Theorem 5 closely follows the proof of Theorem 3 generalized by a

further parameter γ. This parameter gives an upper bound on how many queries
can be used in the top-row for a given bottom-row query. Informally, the function
Γ (q, γ) is defined as the probability that a concrete parameter γ is for a specific
value of q in fact such an upper bound. We note that the bound for Generic-DL
is nonetheless considerably worse than for Serial-DL or Parallel-DL. The
main reason for this is that the subtle argumentation of Arguments A and B do
not work in this setting and a more generic Argument C has to be used.

Application to Mix-Tandem-DM. In the full version of the paper [7], we
show that in this case ζ = 1/N ′, Γ (q, γ) = 0 and γ = α. Using a numerical
optimization process, it is easy to compute that for n = 128 no adversary asking
less than q = 282.8 queries can find a collision with probability greater than 1/2.
In this case, the parameters are α = 5, β = 239 and κ = 15.

5 Discussion and Conclusion

In this paper we have investigated the security of a very generic form of
double-length compression functions. Our security bound tightens the bound of
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Fig. 3. Examples of double-length compression functions with a (2n, n)-bit

blockcipher E

Tandem-DM given at FSE’09 and also tightens the bound for any Cyclic-DM
compression function with cycle length larger than 26. We have also stretched the
meaning of Davies-Meyer based cyclic compression function to Parallel-DL.

Our proofs not only give better bounds in some important cases, but we
also give a better understanding of what ticks inside, for double-length hash
functions. This might help finding some security results for , e.g., MDC-4 where
similar techniques might be applicable.

We have also discussed the security implication of constructions like Mix-
Tandem-DM. The analysis for this type of compression functions is simpler
than for Parallel-DL or Serial-DL, but the security bound is also much
weaker.

Despite the research that has lately been done in the field of blockcipher based
hash functions, there are still a lot of problems that deserve attention. We have
not found attacks that show that our bounds are tight. Another open problem
is to find good – meaning efficient – double length compression functions that
use (n, n)-bit blockciphers. Also, there are other security properties where much
less in known, e.g., for preimage resistance or preimage awareness.
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A Related Work

Preneel et al. [23] discussed the security of SL hash functions against several
generic attacks. They concluded that 12 out of 64 hash functions are secure
against the attacks. However, formal proofs were first given by Black et al. [1]
about 10 years later. Their most important result is that 20 hash functions –
including the 12 mentioned above – are optimally collision resistant. A deeper
understanding of these results has been provided by Stam [26].

DL Schemes with non-optimal or unknown collision resistance. These
are discussed in the full version of the paper

DL Schemes with Birthday-Type Collision Resistance. Merkle [18] pre-
sented three DL hash functions composed of DES with rates of at most 0.276.
They are optimally collision resistant in the ideal cipher model. Hirose [12] pre-
sented a class of DL hash functions with rate 1/2 which are composed of two
different and independent (n, 2n)-blockciphers that have birthday-type collision
resistance. Hirose [13] presented a rate 1/2 and (n, 2n)-blockcipher based DL
hash function that has birthday-type collision resistance. He essentially stated
that for his compression function, no adversary can find a collision with prob-
ability greater than 1/2 if no more than 2124.55 queries are asked (see [8, App.
B] for details on this). Fleischmann et. al. [8] gave a near-birthday collision
resistance bound for Tandem-DM. They also gave at IMACC’09 [9] a bound
for Abreast-DM and a generalization called Cyclic-DM. Abreast-DM was
shown to have near-birthday collision resistance, Cyclic-DM has this property
only for small cycle lengths.



Interpreting Hash Function Security Proofs

Juraj Šarinay�

EPFL IC LACAL, Station 14, CH-1015 Lausanne, Switzerland

juraj.sarinay@epfl.ch

Abstract. We provide a concrete security treatment of several “prov-

ably secure” hash functions. Interpreting arguments behind MQ-HASH,

FSB, SWIFFTX and VSH we identify similar lines of reasoning. We aim

to formulate the main security claims in a language closer to that of

attacks. We evaluate designers’ claims of provable security and quantify

them more precisely, deriving “second order” bounds on bounds. While

the authors of FSB, MQ-HASH and SWIFFT(X) prove existence of non-

trivial lower bounds on security, we show that the quantification of the

bounds limits the practical significance of the proofs.

Keywords: hash functions, security bounds, provable reducibility.

1 Introduction

A hash function is a mapping that on input a string of arbitrary length outputs
a digest of fixed size. Such functions are among the most basic building blocks
used in cryptographic schemes. Several traditional hash functions are now con-
sidered broken [44, 43, 39] and for a few years there has been an urgent need
for new ideas. The NIST search for a new standard attracted over sixty sub-
missions [29]. As the competition entered Round 2 in July 2009, the number
of participants was reduced to fifteen.

Confidence in the security of hash functions relies traditionally on cryptanal-
ysis. As an alternative, one may try to prove security properties. With a valid
security proof at our disposal, we would not need to consider attacks any more.

Several “provably secure” hash functions appeared recently [8, 12, 31, 11, 26,
1, 16, 15]. The language of the proofs is often incompatible with the view of
a practitioner. Cryptanalysts normally speak of rather precise time estimates
for programs running on real-world hardware. Security proofs should use similar
language to provide lower bounds on the effort needed to break a function. We
choose to speak of proofs in “real life” and require security to be quantified. We
do not view security as a property, but rather as a measure.

A security proof is a conditional statement relying on a hardness assumption.
Confidence is “transferred” from the (hopefully more basic) hard problem to
the hash function. There needs to be some level of confidence to begin with,
such assumptions need to be selected very carefully. Examples of “provably se-
cure” functions based on false assumptions include the Zémor-Tillich, LPS and
� Supported by a grant of the Swiss National Science Foundation, 200021-116712.

S.-H. Heng and K. Kurosawa (Eds.): ProvSec 2010, LNCS 6402, pp. 119–132, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Morgenstern hash functions proposed in [40,11,31,33] and broken in [41,32,20].
This paper only deals with functions believed not to be completely broken. In
addition we treat assumptions literally as assumptions, i.e. we look at what is
implied by them without considering their validity in detail. We concentrate on
the structure of proofs and their use in security assessment.

We interpret “provable security” arguments behind MQ-HASH [8], FSB [15],
SWIFFTX [1] and VSH [12]. Where possible, we take a concrete viewpoint and
carefully follow any comparisons between provable bounds and cost of attacks
done by the designers. It turns out that the security is sometimes bounded in
a rather complex way, failing to provide a proof.

In case of MQ-HASH and FSB we point out gaps in reasoning. No inconsis-
tencies are discovered in the arguments supporting SWIFFT. We observe that
although the improved design of SWIFFTX prevents known attacks, the prede-
cessor is as good in terms of proofs.1 Very Smooth Hash does provide a concrete
lower bound on collision resistance. This is only true of some variants.

Related Work. The general limitations of security proofs in cryptology were
discussed by Koblitz and Menezes [22, 21]. A concrete analysis of “provable”
claims about a particular stream cipher appeared in [45]. This paper also ques-
tions security proofs, looking at hash functions that have not been considered
from this perspective.

Block cipher based hash functions enjoy well established provable security
properties [34,9,38]. Such constructions assume access to an ideal cryptographic
primitive, e.g. an ideal cipher. The hardness assumptions and security claims
are thus of a different nature compared to the cases considered in this paper. In
addition, the framework normally considers adversaries with oracle access to the
idealized building block, hence a straightforward comparison to practical attacks
is not possible.

All functions considered in this paper were previously cryptanalyzed. This
includes work on FSB [13,7], MQ-HASH [4], SWIFFT [10] and VSH [36]. Inter-
estingly, the papers do not relate attacks to the original security proofs.

2 Preliminaries

The functions considered in this paper follow the Merkle-Damg̊ard construction,
or a variant thereof [14]. We limit ourselves to pre-images and collisions. In our
analysiswe can therefore stick to fixed-length compression functions. Let {Hk}k∈K

be a finite family of compression functions Hk : {0, 1}m → {0, 1}n. Most basic se-
curity properties are tied to the hardness of the following two tasks:

Find a pre-image. Given a random k ∈ K and an element y in the range of
Hk compute x such that Hk(x) = y.

Find a collision. Given a random k ∈ K compute x �= x′ such that Hk(x) =
Hk(x′).

1 This observation was implicit in [1].
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Instead of a single fixed function we work with a family of functions parametrized
by k, following the designers of all four functions analyzed in Section 3. This is a
standard way towards arguments on collision resistance.2 Prove the security for
random members of the function family, then pick a single member at random.
Such proofs are believed to provide some confidence in security, although efficient
algorithms breaking the fixed function do exist.

“Classical” definitions prescribe ideal measures of hardness for the two prob-
lems. Due to a generic attack, a pre-image can be found after approximately 2n

evaluations of Hk. By the birthday paradox, collisions can be found after about
2n/2 evaluations of Hk. Hence the usual requirement is “n bit” pre-image resis-
tance and “n/2 bit” collision resistance. Rather than following this ambitious
goal, let us look for any measure of hardness.

Cost of Attacks. Fix a hash function family {Hk}k∈K . Let elements of a set S
represent computational cost. The precise nature of S will vary between families
of functions. There are several ways to measure cost of attacks on a cryptographic
primitive. Practical examples include hardware cost, processor cycle count, mem-
ory. On the more theoretical side, one can measure advantage as a function of run-
time, expected runtime, circuit size, etc. For the functions we examine, choices of
S are implicit in the statements of theorems on security. In order to allow different
approaches to cost, we only require S to be a partially ordered set, i.e. equipped
with a reflexive, antisymmetric and transitive relation ’≤’. This captures the min-
imal assumption that complexities can be compared and allows a lot of freedom
in formalization of cost. While it might appear natural to require the ordering on
S to be linear as well, it is not necessary for our purposes.3 Let S contain a least
element and a greatest element. The former corresponds to zero cost, the latter
to cost that is considered too high to be relevant. In most cases, the elements of S
will turn out to be numbers counting some basic operation, such as a bit operation
or evaluation of Hk.

Let APr be the set of all probabilistic algorithms that take as input a random
k ∈ K, random n-bit y and with non-zero probability output an m-bit string x,
such that Hk(x) = y.

Similarly, let ACol be the set of all probabilistic algorithms that take as input
a random k ∈ K and with non-zero probability output two different m-bit strings
x, x′, such that Hk(x) = Hk(x′). For A ∈ APr ∪ ACol define c(A) ∈ S to be the
expected cost of A solving the respective challenge.

The sets APr and ACol contain all the possible attacks on the security of
{Hk}k∈K , in particular the respective generic attacks.

Bounding Security. LetA represent either ofAPr orACol. Define the following
two main types of bounds on security:

2 For comments and a different approach to the “foundations-of-hashing” dilemma

see [35].
3 This extra freedom can even be desirable.
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– p ∈ S is a bound of type L if for all A ∈ A the cost c(A) is at least p.
– q ∈ S is a bound of type U if for every p ∈ S of type L it holds that p ≤ q.

This captures the fact that every attack leads to an upper bound on security. If
p is of type L and q of type U, then p ≤ q. Note that we chose to define type U
bounds with respect to L bounds, rather than relating them to attacks directly.
It is immediate that c(A) is of type U for any A ∈ A. Yet our definitions allow
q ∈ S to be a U bound even if there is no A ∈ A such that q = c(A). Similarly,
it is possible that p ∈ S is of type L and there is no A ∈ A such that p = c(A).

We say {Hk}k∈K is provably secure if we possess a proof that p ∈ S is of type
L. The p is a lower bound on security against A. A U type bound q is an upper
bound on provable security.

While type U bounds are quite common, as will be shown in Section 3, de-
signers do not often establish bounds of type L. To interpret certain results, we
shall need the two following auxiliary bound types:

– r ∈ S is a bound of type lU, if r ≤ t for t of type U. This means r is a lower
bound on some upper bound on security.

– s ∈ S is a bound of type uL, if s ≥ t for t of type L, i. e. s is an upper bound
on some lower bound on security.

Every L bound is an lU bound and every U bound is an uL bound. Such
implications are trivial, as any element of S is of type lU and uL simultaneously.
The “weak” types uL and lU hence provide no direct useful information on
provable security. Both are related to a bound t of one of the “useful” types U
and L. Still the types uL and lU can carry partial information about the bound
t if it is not quantified otherwise. For example, an uL bound tied to a particular
reduction limits how good the reduction is and an lU bound tied to a particular
attack algorithm limits how much damage the attack causes.

3 Results on Some Hash Functions

In this section we examine security proofs for hash functions and classify the
bounds derived by their designers. To illustrate the proofs we follow a single
concrete parameter choice from the original proposals. We follow original cost
estimates and comparisons, i.e. adopt the implicit S and c(·).

The hardness assumption necessarily has the form of a lower bound. Ideally,
security proofs would transform any attack on the function to an attack on the
underlying hard problem, thereby establishing an L bound on security.

Criteria on Proofs. We evaluate security proofs using two simple conditions:

– Is an L bound on security established and quantified?
– Does the security level claimed by designers match the proved L bound?

3.1 MQ-HASH

The MQ-HASH is a hash function built on the hardness of solving systems of
multivariate quadratic equations over Z/2Z. It was introduced in [8].
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Definition. The compression function maps m + n bit input to n bits. Let
r ≥ m+n, and f be an r-tuple of quadratic polynomials in m+n variables over
Z/2Z. Let g be an n-tuple of quadratic polynomials in r variables over the same
field. The precise values proposed are m = 32, n = 160 and r = 464. This means
f maps 192 bits to 464 bits and g maps 464 bits to 160 bits. Both f and g are
to be selected uniformly at random. The compression function of MQ-HASH is
the composition of f and g mapping 192 bits to 160 bits.

Hardness Assumption. The designers assume that inverting random systems
(of the type of) f and g is hard. For f , the hardness is quantified at lf = 2103.88

binary operations. By assumption, lf is of type L. Because it is a complexity
of an actual attack, it has type U as well. The implicitly present type L bound
tied to g is not quantified. Denote it by lg.

Security Claims. The designers claim the function pre-image resistant proving
the following:

Theorem 1. Let Tf and Tg denote the time required to evaluate f , resp. g. Let
A be an algorithm inverting (a random) g ◦ f in time T with probability ε. Then
A can be either converted to an algorithm inverting g in time T + Tf + Tg with
probability ε or to an algorithm that can invert randomly chosen tuples of 464
quadratic polynomials in 192 variables that runs in time

T ′ =
128× 1922

ε2

(
T + Tf + 3Tg + log

(
128× 192

ε2

)
+ 464× 192 + 2

)
and succeeds with probability ε/2.

The theorem coupled with the hardness assumption(s) does indeed establish
a lower bound on cost of any algorithm inverting g ◦ f . If A inverts g, then
T + Tf + Tg ≥ lg. This implies a lower bound l1 = lg − Tf − Tg on T . If A leads
to an algorithm inverting f , then T ′ ≥ lf and T ≥ l2 for some l2. This leads
to a provable L bound l = min{l1, l2} on T . Because lg is not known, conclude
l ≤ l2 and examine l2. Clearly T ′ ≥ 128 × 1922 × T , hence the lower bound l2
implied by lf is at most

lf
128× 1922

.

Because the value of lf is known, we obtain l2 ≤ 282. The theorem thus estab-
lishes that 282 is a bound of type uL. The authors aim at “80-bit security” and
claim the level is consistent with what the theorem implies. While 280 ≤ 282, the
latter quantity is merely an upper bound on l2. The original proof does not lead
to a lower bound on l2. More information on lg would have to be known and the
connection of T and T ′ would need to be cleaned up.

The quantity 282 counts bit operations. If we want to translate this to the
equivalent of hash function computations, divide by the cost of such an evalua-
tion, estimated to be 224 bit operations.4 The uL bound on pre-image resistance
4 The authors do not comment on how the compression function is to be computed,

but their 3 MB memory requirement per evaluation is consistent with our estimate.
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then becomes 258 evaluations of the compression function. Existence of a pre-
image finding attack with such cost would not contradict the theorem.

Collision resistance. There is no proof of collision resistance in [8]. The authors
do however sketch an argument in favor of it. Because f is an injection, collisions
can only occur in g. Collisions in g are actually easy to find,5 but in order to lead
to collisions in the complete construction, the colliding inputs would have to be
in the range of f and that is unlikely. Even if they were, the f is hard to invert.
The argument only considers one particular attack on collision resistance, hence
would only lead to an U type bound. Cost of inverting f is equivalent to around
280 evaluations of the compression function, close to the cost of generic collision
search, hence the attack is not a serious threat to collision resistance. A proof,
however, would require considering all attacks, not only a single one.

Because collisions are no harder than pre-images, we might want to make use
of the uL bound 258 derived there. A U bound tied to pre-images would translate
to a U bound on the cost of collisions. Type L bounds need not be preserved. The
uL bound 258 on pre-images does transfer to the cost of collisions, but carries
little useful information. Such a bound needs to be interpreted in the context of
the corresponding security proof. In this case it means that Theorem 1 cannot
imply a L bound on collision resistance that would exceed 258.

Conclusion. The lower bound implied by Theorem 1 is not quantified due to
unspecified lg and looseness of the reduction. The “80-bit” security claimed by
the designers is not supported by an L bound. We have derived an uL bound
tied to the proof at 258 evaluations of the function. Improved proofs may be
possible.

3.2 FSB

The hash function based on problems in coding theory has a rather long history of
provably secure variants (several of them broken) [2, 3, 16, 17]. The most recent
variant of FSB was submitted to the NIST SHA-3 competition, but did not
advance to Round 2 [15].

Definition. The FSB consists of an iterated compression function and a final
transformation, that compresses the output further. The compression function
is defined as follows: Let H be a r × n binary matrix, let s = w × lg n

w be the
input length. Encode the input in a word of length n and weight w, denoted
by e. Output the r bits HeT . Denote the compression function by f .

Out of the five FSB variants in [15] we pick FSB256 as an example with
n = 221, w = 128, r = 1024 and s = 1792. Analogous arguments are possible for
the other four variants as well.

Hardness Assumption. Security of the compression function is related to two
problems from coding theory:
5 This is why a cascade of two systems is used.
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Computational Syndrome Decoding (CSD). Given an r×n matrix H , an
r-bit s and integer w ≤ n, find x ∈ {0, 1}n such that x has Hamming weight
at most w and HxT = s.

Codeword Finding (CF). Given an r × n matrix H and integer w ≤ n/2,
find x ∈ {0, 1}n such that x has Hamming weight at most 2w and HxT = 0.

Security Claims. The function is proved pre-image resistant reducing to CSD
and collision resistant reducing to CF. Both proofs are immediate. There are no
explicit lower bounds tied to the assumptions, hence no lower bounds on security
are derived. Security is further assessed looking at attacks only. For FSB256, the
instances of CSD can be solved in 2261.6 operations and instances of CF in 2153

operations.6 Both these bounds are due to attacks. Yet the algorithms are not
shown to break the actual function, but the more general underlying problems.
The reduction goes only one way. A solution to CF or CSD does not imply
a collision or a pre-image, respectively. The bounds are therefore of type uL.

A more detailed analysis of attacks is performed in [18], estimating cost of
two specific algorithms from below, leading to bounds 2245.6 on CSD and 2153

on CF. Again, the problem considered is more general. Extending our notation,
their type would be luL (i.e. lower bound on a particular uL bound). It is
suggested these be adopted as L bounds [18].

Security is evaluated making use of the uL bounds 2261.6 and 2153. Output
of f is 1024 bits long and the security is deep below the trivial bounds, being
21024 and 2512. A final compression is introduced to “fix” this. The 1024 bits are
compressed to yield a 256-bit result using another hash function g, instantiated
by Whirlpool [5]. The authors remark that ”the complexities of the attacks on
the FSB compression function . . . can thus be transposed directly to the whole
hash function and are all above the complexities of generic attacks on the whole
FSB . . . ” Collisions in g ◦ f are no harder to find than collisions in f . The uL
bound 2261.6 thus transfers to g ◦ f . This is above the trivial U bound due to
a generic attack. Hence we are left with an U bound 2256 (that is trivially also
an uL bound). Such a bound is independent of the hardness assumption.

It might seem that the problem is that the g compresses too much. What if
the cost of generic attacks on g ◦ f is above the cost of attacks on f? Can the
1024 bits be compressed a little less to maintain some of the provable security?
With an output of 320 bits, attacking f might be faster. Still this would only
yield an U bound, because a collision in g ◦ f does not imply a collision in f .

Could lower bounds be preserved? Consider collision resistance. A collision in
g ◦ f implies a collision in one of the two components. If there were L bounds
lf and lg tied to f and g respectively, the smaller of the two would then be
a lower bound on security of the composition. Such proof would be possible if
g could be assumed collision resistant in the first place.7 Although composing
the FSB compression function with a provably collision resistant final transfor-
mation can preserve the lower bound(s), it would resemble a circular argument

6 Counting evaluations of f .
7 If g is fixed, the assumption is trivially false.
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where a provably collision resistant function is designed given a provably colli-
sion resistant function. This trivial observation only appears in [17] and is left
out of the submission to NIST [15].

The authors of FSB consider collision resistance of Whirlpool too strong an
assumption [15]. For eventual collisions in Whirlpool to extend to the complete
FSB256 one needs to invert the FSB primitive. However, saying that collisions
for Whirlpool do not easily extend to the complete FSB is an argument from
the attack perspective and not a proof. Just as in the case of MQ-HASH earlier,
this looks at particular attacks and thus does not establish L bounds.

Conclusion. One claim of the designers in [15] reads as follows:

The most decisive advantage of FSB is that it comes with a proof of
reduction to hard algorithmic problems. An algorithm able to find colli-
sions on FSB or to invert FSB is also able to solve hard problems from
coding theory.

No such statement is proved in any of the proposals. The security level claimed by
designers is not supported by an L bound. This is due to the final compression
using Whirlpool. If the step were omitted, L bounds on the coding problems
would transfer to the compression function. Such bounds were not explicitly
provided.

3.3 SWIFFT(X)

SWIFFTX is a SHA-3 proposal based on the simpler primitive SWIFFT [24,26],
not making it to Round 2. It is an example of a generalized knapsack function [27]
with security based on hardness of lattice problems.

Definition8. The SWIFFT compression function takes as input r 64-bit words
x1, . . . , xr and outputs 64 elements z′0, . . . , z

′
63 ∈ Z257. The function is indexed by

64r fixed elements a1,0, . . . , ar,63 ∈ Z257 taken to be uniformly random integers
modulo 257. Let

rev : {0, . . . , 63} → {0, . . . , 63}

be the “bit-reversal” function on 6-bit binary numbers. Output of SWIFFT can
be expressed as follows:

z′i =
r∑

j=1

aj,i

63∑
k=0

xj,rev(k) · ω(2i+1)k

where ω = 42, xj,i is the i-th bit of xj and arithmetic is performed modulo 257.
Within SWIFFTX, r equals either 32 or 25.
8 Copied almost verbatim from [1].
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Hardness Assumption. Finding short vectors in lattices isomorphic to ideals
of Z[α]/

(
αd + 1

)
is hard in the worst case as d increases.9 The assumption is

asymptotic and the L bound unquantified. In the light of the results in [19] it
was pointed out that for the choice d = 64 used in SWIFFT variants as above,
the lattice problems are actually easy and the lower bound “insignificant” [10].

Security Claims. The SWIFFT function family is proved collision and pre-
image resistant [30, 25, 27]. The proof establishes the security properties as the
output length increases to infinity.10 Although asymptotic, the proof does link
security of the function for any particular value of d to hardness of a precise
lattice problem. We will therefore consider SWIFFT equipped with an L bound,
yet unknown.

According to the designers in [1]:

To quantify the exact security of our functions, it is still crucially im-
portant to cryptanalyze our specific parameter choices and particular
instances of the function.

Instead of finding an L bound tied to a proof, the approach chosen is to con-
centrate on upper bounds due to attacks. While such analysis only establishes
bounds of type U or lU, it does reveal limits of the security proofs provided by
the designers of SWIFFT.

The proposal mentions actual attacks on SWIFFT applying the generalized
birthday algorithm by Wagner [42]. For r = 32, collisions can be found in 2106

operations and pre-images in 2128 operations. Although the complexities are
described as lU bounds and estimate the cost of attacks from below, they can
be considered good approximations to the actual cost,11 i.e. bounds of type U.
Both the bounds are used as such in the proposal to quantify security of the
function. Furthermore, the bounds were derived for SWIFFT with r = 16 [26].
With r = 32 the actual complexities would be lower. While the provable lower
bound is not quantified, the two attacks provide uL bounds limiting what can
be drawn from the proofs available.

For r = 25 the authors mention a pre-image finding attack that requires 2100

operations. This is an U bound, hence also an uL bound. Because collisions can
be found in at most the same time as pre-images, the same uL bound applies to
provable collision resistance.

SWIFFTX. Existence of the attacks motivated design of the compression func-
tion SWIFFTX. It maps 2048 bits to 520 bits combining four calls to SWIFFT
with some extra operations in a way that is believed to make the known attacks
inefficient. The precise details of the construction can be found in [1]. Care is
taken to preserve the provable collision and pre-image resistance. First the input
is compressed using three “parallel” instances of SWIFFT with r = 32 to yield
9 Precise statements in [30,27].

10 Such arguments have become commonplace in provable security.
11 Our analysis of the runtime leads to the complexities 2106.4 and 2131.



128 J. Šarinay

1560 bits. A fixed (easily invertible) injection extends this to 1600 bits. Then
a single SWIFFT instance with r = 25 is applied and 520 bits are output.

The known attacks do not easily extend to SWIFFTX. More precisely, the
extended attacks are shown to be more expensive than generic attacks. The
construction thus “wipes out” the non-trivial U bounds. According to an argu-
ment sketched in [1], the construction maintains provable security. A collision
in SWIFFTX implies a collision in (at least) one of the four SWIFFT com-
ponents.12 Effectively, the least of the lower bounds that applied to SWIFFT
building blocks is valid for SWIFFTX. We obtain an uL bound 2100 on provable
security for both security properties.

Conclusion. The authors of SWIFFTX rely on attacks and claim pre-image
resistance 2512 and collision resistance 2256. These are not justified by L bounds.
While the security proofs would lead to L bounds, they are not quantified.
The improved function SWIFFTX is no more secure than the original SWIFFT
primitive in terms of proofs. The L bounds implied by the proof provided cannot
exceed 2100. As this is an uL bound, improved proofs may be possible.

3.4 VSH

The function VSH was introduced in [12] along with a few variants. Some more
appeared in [23]. Security of the hash function is linked to hardness of factoring
or discrete logarithms.

Definition. Let M be an n-bit hard to factor modulus,13 denote the i-th prime
number by pi. Let k be the largest integer such that

∏k
i=1 pi < M . Let m be

a l-bit message to be hashed, consisting of bits m1, . . . ,ml and assume l < 2k.
The algorithm runs as follows:

1. Let x0 = 1.
2. Let L = ! l

k". Let mi = 0 for l < i ≤ Lk.

3. Let l =
∑k

i=1 li2i−1 with li ∈ {0, 1} be the binary representation of l and
define mLk+i = li for 1 ≤ i ≤ k.

4. For j = 0, 1, . . . ,L in succession compute

xj+1 = x2
j ×

k∏
i=1

p
mj·k+i

i mod M

5. Return xL.

The function iteratively processes blocks of k bits and outputs an n-bit hash. Ef-
fectively, it computes a modular k-fold multiexponentiation. The function oper-
ates in a variant of the Merkle-Damg̊ard mode processing k bits per iteration. The
compression function is not collision resistant, yet the iterated construction is.14

12 An analogous argument is possible for pre-image resistance.
13 Typically a product of two large primes.
14 Details in [12].
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Hardness Assumption. Given a random M it is hard to find x ∈ Z∗
M such

that x2 ≡
∏k

i=1 pi
ei mod M with at least one ei is odd. The problem is assumed

to be k-times easier than the problem of factoring M .

Security Claims. The only security property claimed by the designers is colli-
sion resistance. Define the function L′[M ] to approximate heuristic running time
of the Number Field Sieve algorithm factoring the integer M . Assuming this is
an L bound on hardness of factoring, finding a collision in VSH takes time at
least

L′[M ]
k

This L bound is used as the basis for security assessment. As an example, colli-
sions in VSH with n = 1234 and k = 152 are at least as hard to find as it is to
factor a 1024 bit (hard to factor) number [12].

No attack is known that would achieve the lower bound. There is an attack
and a (non-trivial) U bound on security, though. With the knowledge of ϕ(M),
collisions can be created easily. Computing ϕ(M) from M is as hard as factoring
the modulus. Factorization of M is essentially a trapdoor in the function.

There is an algorithm that finds collisions in VSH factoring the modulus in
time approximately L′[M ]. This is the least U bound known. The security of
VSH is somewhere between the L bound and the U bound. So far, no result has
appeared that would get the (provable) lower bound closer to the complexity of
factoring the modulus M .

Discrete Logarithm Variant of VSH. If the modulus chosen to be a prime
number of the form 2p+1 for p a large prime and length of input is limited below
k(n− 2) bits a VSH-DL compression function is obtained. It is computed in the
same way as the basic VSH described above. The function is proved collision
resistant under a new assumption related to hardness of discrete logarithms in
Z∗

M . The assumption is not quantified, hence no lower bound on security of VSH-
DL is obtained. Yet an U bound is easy to derive, because finding collisions in
VSH-DL is no harder than computing discrete logarithms.

Conclusion. Collision resistance of basic VSH is supported by an L bound and
the designers claim precisely the security that is proved. While the DL variant
admits a proof, no measure is associated with its hardness assumption. A proof
that does not exceed the known U bound may be possible.

4 Summary

While several hash function designs claim provable security, only a few actually
link security to the complexity associated with the proof.

We gave examples of uL bounds that provide partial information on un-
known lower bounds. In this way we limit provable security of MQ-HASH and
SWIFFT(X) from above. Such arguments are not due to attacks that would
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actually break the functions. We can view them as partial attacks on proofs.
We have demonstrated that such incomplete attacks can provide very concrete
and useful information on security levels one can prove. Our bounds speak of
particular proofs, therefore proofs with higher security levels remain possible.

Three of the functions had the structure of compositions. MQ-HASH com-
posed two functions equipped with L bounds on pre-image resistance in a way
that leads to an unknown L bound on security of the composition. FSB com-
posed a function admitting an L bound15 and a function without such a bound.
As a result, the proof disappears, while the complexity of attacks is preserved.
Finally, the composition within SWIFFTX preserves the proofs and invalidates
(some) attacks. While the approaches appear similar, the outcomes differ sig-
nificantly. Although some general conclusions could be made, bounds in any
provable design need to be carefully examined.

We do advocate the use of proofs (i.e. L bounds) in design & analysis of hash
functions. We hope to have clarified some very basic features of attacks and
proofs in hash function security assessment. If there is both an L bound and
an U bound, the former should be pronounced the security level. We believe
the function cannot be considered provably secure otherwise. If more security
is claimed, this is based on attacks rather than on proofs, rendering the proofs
somewhat useless. If it is believed that security is greater than what the proofs
suggest, attempts should be made to raise the L bound.

Our results should not be viewed as recommendations against or in favor of
any of the functions but rather as suggestions where to look for improvements.
A tighter reduction within MQ-HASH and quantified hardness of g might well
lead to an L bound that exceeds 258. The FSB may as well have a decent L
bound if the final transformation is omitted. More conditions on the last step g
might even allow an L bound to be established for the complete construction.
Quantified hardness assumptions behind SWIFFT and VSH-DL would also lead
to precise L bounds.

Acknowledgements. The author would like to thank Arjen Lenstra, Martijn
Stam, Kenny Paterson and the anonymous reviewers for useful comments on the
text.

References

1. Arbitman, Y., Dogon, G., Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen,

A.: SWIFFTX: A Proposal for the SHA-3 Standard. Submission to NIST (2008)

2. Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure crypto-

graphic hash function. Cryptology ePrint Archive, Report 2003/230 (2003),

http://eprint.iacr.org/

3. Augot, D., Finiasz, M., Sendrier, N.: A family of fast syndrome based cryptographic

hash functions. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715,

pp. 64–83. Springer, Heidelberg (2005)

15 The assumption is not explicitly stated in the proposals.

http://eprint.iacr.org/


Interpreting Hash Function Security Proofs 131

4. Aumasson, J.-P., Meier, W.: Analysis of multivariate hash functions. In: Nam, K.-

H., Rhee, G. (eds.) ICISC 2007. LNCS, vol. 4817, pp. 309–323. Springer, Heidelberg

(2007)

5. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool hashing func-

tion. Submitted to NESSIE (September 2000) (revised May 2003),

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

6. Barua, R., Lange, T. (eds.): INDOCRYPT 2006. LNCS, vol. 4329. Springer, Hei-

delberg (2006)

7. Bernstein, D.J., Lange, T., Niederhagen, R., Peters, C., Schwabe, P.: Implementing

Wagner’s generalized birthday attack against the SHA-3 round-1 candidate FSB.

Cryptology ePrint Archive, Report 2009/292 (2009), http://eprint.iacr.org/

8. Billet, O., Robshaw, M.J.B., Peyrin, T.: On building hash functions from multivari-

ate quadratic equations. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP

2007. LNCS, vol. 4586, pp. 82–95. Springer, Heidelberg (2007)

9. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based

hash-function constructions from PGV. In: Yung [46], pp. 320–335

10. Buchmann, J., Lindner, R.: Secure parameters for SWIFFT. In: Roy, B. K.,

Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 1–17. Springer, Hei-

delberg (2009)

11. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from ex-

pander graphs. J. Cryptology 22(1), 93–113 (2009)

12. Contini, S., Lenstra, A.K., Steinfeld, R.: VSH, an efficient and provable collision-

resistant hash function. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,

vol. 4004, pp. 165–182. Springer, Heidelberg (2006)

13. Coron, J.-S., Joux, A.: Cryptanalysis of a provably secure cryptographic hash func-

tion. Cryptology ePrint Archive, Report 2004/013 (2004)

14. Damg̊ard, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO

1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

15. Augot, D., Finiasz, M., Gaborit, P., Manuel, S., Sendrier, N.: SHA-3 proposal:

FSB. Submission to NIST (2008)

16. Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic

hash functions. In: ECRYPT Hash Function Workshop 2007 (2007)

17. Finiasz, M.: Syndrome based collision resistant hashing. In: Buchmann, J., Ding, J.

(eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 137–147. Springer, Heidelberg (2008)

18. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryp-

tosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105.

Springer, Heidelberg (2009)

19. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart [37], pp. 31–51
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Abstract. Some of the most efficient shuffling schemes employ the

same main idea to prove validity of shuffling. However, the principle

behind the idea has not been explained in a completely formal and

precise way. So formal guarantee of soundness of the shuffling schemes is

not complete. Especially, it is unknown exactly how large the probability

of failure of soundness is and exactly how strong soundness is. In this

paper, why the proof mechanism guarantees validity of shuffling is

formally proved to provide a formal guarantee of soundness of those

shuffling schemes. Especially, the exact upper bound of the probability

of failure of soundness is given to convincingly ensure soundness.

Although we do not doubt soundness of most of the shuffling schemes,

a formal and precise proof of their soundness is still valuable as it

strengthens security guarantee of the schemes and removes a potential

obstacle for their application to critical environments requiring formally

guaranteed and measurable soundness. Moreover, the formal and precise

proof shows that some shuffling scheme has serious problem in soundness.

Keywords: shuffling, soundness, formal proof, precise guarantee.

1 Introduction

Anonymous channel is used to transmit anonymous messages and needed in a
wide range of anonymous communication applications like anonymous email [3],
anonymous browsing [7] and electronic voting [13,10]. An anonymous channel is
publicly verifiable if it can be publicly verified that no message is lost or tam-
pered with in the channel. In applications like e-voting, public verifiability is
necessary. Of course, any verification mechanism cannot compromise anonymity
of the messages. Shuffling [1,2,6,13,14,10,20,19,12,9,8,17,18] is a very important
cryptographic tool to implement publicly verifiable anonymous channels. In shuf-
fling, a shuffling node receives multiple ciphertexts and must shuffle them such
that after the shuffling none of the ciphertext can be traced back to its origin.
The shuffling node re-encrypts and reorders the ciphertexts before outputting
them, such that the messages encrypted in the output ciphertexts is a permu-
tation of the messages encrypted in the input ciphertexts. Repeated shuffling
operations by different nodes form a publicly verifiable anonymous channel. If
at least one shuffling node conceals the permutation it uses in its shuffling, the
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messages transmitted in the channel are anonymous. The following properties
must be satisfied in shuffling.

– Correctness: if the shuffling node follows the shuffling protocol, the plaintexts
encrypted in the output ciphertexts are a permutation of the plaintexts en-
crypted in the input ciphertexts.

– Public verifiability: the shuffling node can publicly prove that he does not
deviate from the shuffling protocol.

– Soundness: a successfully verified proof by a shuffling node guarantees that
the plaintexts encrypted in the output ciphertexts are a permutation of the
plaintexts encrypted in the input ciphertexts.

– Privacy: the permutation used by the shuffling node is not revealed.

In this paper we focus on soundness of shuffling, which is formally and precisely
defined as follows.

Definition 1. In this paper, a proof of soundness is called a formal proof if a
complete mathematic deduction from the shuffling operation to the conclusion
that the messages encrypted in the output ciphertexts is a permutation of the
messages encrypted in the input ciphertexts is provided. A soundness proof is
called a precise proof if the concrete probability that soundness fails is found
out and clearly demonstrated to be negligible in terms of some concrete security
parameters. Intuitive guess that the probability is negligible or the probability that
soundness is achieved is overwhelmingly large without a convincing proof based
on concrete security parameters is not acceptable.

A few shuffling schemes [1,2,6,13,14,10,20,19,12,21,9,8,17,18] have been pub-
lished in recent years. The most difficult and inefficient operation in those
schemes is proof and verification of validity of shuffling, while re-encryption is
much simpler and efficient. Some of them including the existing most efficient
shuffling schemes [10,19,21,9,17,8] employ the same idea to prove validity of shuf-
fling. Suppose input ciphertexts c1, c2, . . . , cn are shuffled to output ciphertexts
c′1, c′2, . . . , c′n. Those shuffling schemes [10,19,21,9,17,8] claim that if

RE(
∏n

i=1 cti

i ) =
∏n

i=1 c′t
′
i

i (1)

and ti for i = 1, 2, . . . , n are random integers and t′1, t
′
2, . . . , t

′
n is a per-

mutation of t1, t2, . . . , tn then D(c′1), D(c′2), . . . , D(c′n) is a permutation of
D(c1), D(c2), . . . , D(cn) with an overwhelmingly large probability where RE()
denotes re-encryption function1 of the employed encryption algorithm. Their
claim seems reasonable. However, they do not give a formal proof for this claim.
Especially, they do not provide the exact upper bound of the probability of fail-
ure of soundness in terms of concrete parameters. Obviously, a precise proof

1 Re-encryption is a probabilistic operation on a ciphertext and output another ci-

phertext containing the same message. It is supported by various probabilistic en-

cryption algorithms like ElGamal encryption and Paillier encryption. More details

can be found in detailed descriptions of those encryption algorithms.
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giving an exact upper bound of the probability of failure like 0.0000001 or 2−L

where L is a large security parameter is much more convincing in illustrating
soundness than an abstract claim that “the probability of failure is negligible” or
“soundness is achieved with an overwhelmingly large probability” without giv-
ing the exact probability. According to our definition of soundness, their proof
of soundness is not formal or precise enough. It is inappropriate to claim that
the probability of soundness is overwhelmingly large while no concrete prob-
ability of either achievement of soundness or failure of soundness is available.
This drawback in provable soundness of the shuffling schemes causes concerns
about soundness and reliability of them and limits their application to critical
environments requiring formally guaranteed and measurable soundness.

In this paper, it is formally proved why satisfaction of (1) guarantees
D(c′1), D(c′2), . . . , D(c′n) is a permutation of D(c1), D(c2), . . . , D(cn) and exactly
how strong the guarantee is. The probability of failure of soundness while (1)
is satisfied is given in terms of concrete parameters. Two formal mathematical
theorems are proposed to specify the formal proof respectively with additive
homomorphic encryption algorithm and multiplicative homomorphic encryption
algorithm (to be defined later). It is clearly shown that with both kinds of en-
cryption algorithms (1) guarantees that the messages encrypted in the output
ciphertexts is a permutation of the messages encrypted in the input ciphertexts,
the probability of whose failure is definitely demonstrated to be negligible in re-
gard to some concrete security parameters. Instantiating parameters and precise
analysis bring another merit: as the probability of soundness is a simple func-
tion of the security parameters which also decide the efficiency of the protocols,
the parameters can be appropriately chosen to achieve a better trade-off between
strength of soundness and efficiency. Thus efficiency of the shuffling protocols can
be improved in practical applications. Moreover, it helps to determine what kind
of parameter setting and operational cost are necessary to satisfy the concrete
soundness requirement of a certain application. In addition, our analysis shows
that the shuffling scheme by Wikstrom [21] has a serious problem in soundness
as it fails to guarantee that t′1, t

′
2, . . . , t

′
n is a permutation of t1, t2, . . . , tn in 1,

whose importance and necessity have been formally proved in this paper.

2 Formal and Precise Proof of Achievement of Soundness
in Shuffling

In the shuffling schemes depending on (1) [10,19,21,9,17,8], several encryption
algorithms may be employed. They can be classified into two types: additive
homomorphic encryption algorithms and multiplicative homomorphic encryp-
tion algorithms. An additive homomorphic encryption algorithm with decryption
function D() requires that D(c1c2) = D(c1) + D(c2) for any ciphertexts c1 and
c2. A typical example of additive homomorphic encryption algorithm is Paillier
encryption [16]. A multiplicative homomorphic encryption algorithm with de-
cryption function D() requires that D(c1c2) = D(c1)D(c2) for any ciphertexts c1
and c2. A typical example of multiplicative homomorphic encryption algorithm
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is ElGamal encryption. All the shuffling schemes depending on (1) support both
ElGamal encryption and Paillier encryption. Proof of soundness based on (1) is
given in two theorems respectively handling shuffling with ElGamal encryption
and shuffling with Paillier encryption. Our analysis demonstrates that complete
formal and precise proof of soundness of shuffling needs instantiated parameter
setting. In description of the new proof technique, Pr [ μ1, μ2, . . . , μn ∈ S | F ]
denotes the probability that condition F is satisfied with variables μ1, μ2, . . . , μn

uniformly distributed over S.

2.1 Shuffling Employing Multiplicative Homomorphic Encryption
Algorithm

Let’s recall the parameter setting of shuffling schemes employing ElGamal
encryption.

– G1 is a cyclic group with order q and multiplication modulus p where p−1 =
2q and p, q are large primes. More generally, p − 1 is a multiple of q and
(p− 1)/q may be larger than 2. For simplicity and without losing generality,
the most usual setting in shuffling with ElGamal encryption is adopted:
p− 1 = 2q.

– Let g1 be a generator of G1. Private key x is chosen (usually generated and
shared by multiple parties) from Zq and public key y = gx

1 is published.
– The message space is G1. A message m is encrypted into E(m) = (gr

1,myr)
where r is randomly chosen from Zq.

– A ciphertext c = (a, b) can be re-encrypted into RE(c) = (agr
1 , by

r) where r
is randomly chosen from Zq.

– A ciphertext c = (a, b) is decrypted into b/ax.
– Product of two ciphertexts c1 = (a1, b1) and c2 = (a2, b2) is c1c2 =

(a1a2, b1b2)

Suppose the input ciphertexts are ci = (ai, bi) for i = 1, 2, . . . , n and they are
shuffled to c′i = RE(cπ(i)) = (a′i, b

′
i) for i = 1, 2, . . . , n where π() is a random

permutation of {1, 2, . . . , n}. Random L-bit integers ti for i = 1, 2, . . . , n are
chosen (e.g. by a verifier or multiple verifiers) where L is a security parameter
and 2L < q. The shuffling node proves satisfaction of (1).

Note that the setting requiring that p is prime, p− 1 = 2q, message space is
G1 and 2L < q is a little more strict than in some shuffling schemes. Theorem 1
and a special check-and-adjustment mechanism2 in Figure 1 demonstrate that
such a setting helps to guarantee soundness of shuffling. So it is suggested to
be adopted by the shuffling schemes depending on (1). If message G1 is not
suitable for an application (e.g. requiring a message space in the form of Zρ), it
is suggested to employ an additive homomorphic encryption algorithm and use
the technique in Section 2.2.

2 This check-and-adjustment mechanism is necessary for soundness of shuffling al-

though it is sometimes ignored (e.g. in [10]).
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Theorem 1. When a′1, b1, a
′
2, b

′
2, . . . , a

′
n, b

′
n are in G1, the probability that (1) is

successfully proved and verified but D(c′1), D(c′2), . . . , D(c′n) is not a permutation
of D(c1), D(c2), . . . , D(cn) is a negligible concrete probability.

To prove Theorem 1, a lemma is proved first.

Lemma 1. Suppose yi, zi ∈ G1 for i = 1, 2, . . . , n. Let ti for i = 1, 2, . . . , n
be random integers such that ti < 2L. If Pr [ t1, t2, . . . , tn ∈ {0, 1, . . . , 2L −
1} | logg1

∏n
i=1 yti

i = logy

∏n
i=1 zti

i ] > 2−L, then logg1
yi = logy zi for i =

1, 2, . . . , n.

Proof: Pr [ t1, t2, . . . , tn ∈ {0, 1, . . . , 2L − 1} | logg1

∏n
i=1 yti

i = logy

∏n
i=1 zti

i ] >
2−L implies that for any given integer v in {1, 2, . . . , n} there must exist integers
t1, t2, . . . , tn and t′v in {0, 1, . . . , 2L − 1} such that

logg1

∏n
i=1 yti

i = logy

∏n
i=1 zti

i (2)

logg1
((
∏v−1

i=1 yti

i )yt′v
v
∏n

i=v+1 yti

i ) = logy((
∏v−1

i=1 zti

i )zt′v
v
∏n

i=v+1 zti

i ) (3)

Otherwise, for any (t1, t2, . . . , tv−1, tv+1, . . . , tn), there is at most one tv to
satisfy logg1

∏n
i=1 yti

i = logy

∏n
i=1 zti

i . This implies that among the 2nL pos-
sible choices for (t1, t2, . . . , tn) (combination of 2(n−1)L possible choices for
(t1, t2, . . . , tv−1, tv+1, . . . , tn) and 2L possible choices for tv) there is at most
2(n−1)L choices to satisfy logg1

∏n
i=1 yti

i = logy

∏n
i=1 zti

i , which is a contradiction
to the assumption that Pr [ t1, t2, . . . , tn ∈ {0, 1, . . . , 2L − 1} | logg1

∏n
i=1 yti

i =
logy

∏n
i=1 zti

i ] > 2−L.
(2) divided by (3) yields

logg1y
tv−t′v
v = logyz

tv−t′v
v

Namely

(tv − t′v)logg1yv = (tv − t′v)logyzv mod q

Note that tv �= t′v and tv, t
′
v < 2L < q. So tv − t′v �= 0 mod q and

logg1yv = logyzv

Therefore, logg1
yi = logy zi for i = 1, 2, . . . , n as v can be any integer in

{1, 2, . . . , n}. �

Proof of Theorem 1: Let A1 be the event that D(c′1), D(c′2), . . . , D(c′n) is a per-
mutation of D(c1), D(c2), . . . , D(cn); A2 be the event that (1) is correct; A3

be the event that the shuffling passes the verification of (1); P (A) denote the
probability of event A.

P (A3/Ā1) = P ((A3 ∧A2)/Ā1) + P ((A3 ∧ Ā2)/Ā1)
= P (A3 ∧A2 ∧ Ā1)/P (Ā1) + P (A3 ∧ Ā2 ∧ Ā1)/P (Ā1)

= P (Ā1 ∧A2)P (A3/Ā1 ∧A2)/P (Ā1) +
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P (A3 ∧ Ā2 ∧ Ā1)P (Ā2 ∧ Ā1)/(P (Ā1)P (Ā2 ∧ Ā1))
= P (A2/Ā1)P (A3/Ā1 ∧A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/P (Ā2 ∧ Ā1)
= P (A2/Ā1)P (A3/Ā1 ∧A2) +

P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/(P (Ā2)P (Ā1/Ā2))

P (Ā1/Ā2) = 1 as P (A2/A1) = 1. So

P (A3/Ā1) = P (A2/Ā1)P (A3/Ā1 ∧A2) +
P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/P (Ā2)

≤ P (A2/Ā1)P (A3/Ā1 ∧A2) + P (Ā2/Ā1)P (A3 ∧ Ā2)/P (Ā2)
≤ P (A2/Ā1)P (A3/Ā1 ∧A2) + P (Ā2/Ā1)P (A3/Ā2)

≤ P (A2/Ā1)P (A3/Ā1 ∧A2) + P (A3/Ā2)

If P (A2/Ā1) > 2−L, then when Ā1 happens the probability that (1) is correct
is larger than 2−L. Namely, when Ā1 happens,

RE(
∏n

i=1 cti

i ) =
∏n

i=1 c′tπ(i)
i

with a probability larger than 2−L where π() is a permutation of {1, 2, . . . , n}.
Namely, when Ā1 happens,

RE(
∏n

i=1 cti

i ) =
∏n

i=1 c′ti

π−1(i)

with a probability larger than 2−L .
According to multiplicative homomorphism of the employed encryption algo-

rithm, when Ā1 happens, ∏n
i=1(ci/c

′
π−1(i))ti = E(1)

with a probability larger than 2−L. Namely, when Ā1 happens

logg1

∏n
i=1(ai/a

′
π−1(i))ti = logy

∏n
i=1(bi/b

′
π−1(i))ti

with a probability larger than 2−L.
So, according to Lemma 1, when Ā1 happens,

logg1
(ai/a

′
π−1(i)) = logy(bi/b

′
π−1(i)) for i = 1, 2, . . . , n

and thus D(c′1), D(c′2), . . . , D(c′n) is a permutation of D(c1), D(c2), . . . , D(cn),
which is a contradiction. So P (A2/Ā1) ≤ 2−L must be true to avoid the
contradiction.

As with multiplicative homomorphic encryption algorithm (1) is proved us-
ing a standard Chaum-Pedersen proof of equality of discrete logarithms [4],
P (A3/Ā1 ∧ A2) = 1 and P (A3/Ā2) < 2−L′

where L′ is the bit length of the
challenge in the Chaum-Pedersen proof of equality of logarithms. Therefore,

P (A3/Ā1) ≤ P (A2/Ā1) + P (A3/Ā2) = 2−L + 2−L′
�
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1. Any one can publicly calculate Legendre symbols of a′
1, b1, a

′
2, b

′
2, . . . , a

′
n, b′n to

check validity of the output ciphertexts.

2. c′i is valid iff both a′
i and b′i have Legendre symbols 1 as they are only valid when

they are quadratic residues.

3. Any invalid ciphertext c′i is adjusted to −c′i.

Fig. 1. Checking and adjusting the output ciphertexts

2.2 Shuffling Employing Additive Homomorphic Encryption
Algorithm

Let’s recall the parameter setting of shuffling schemes employing Paillier encryp-
tion. Other factorization based homomorphic encryption algorithms like [15] can
be employed in the same way. Suppose Paillier encryption [16] or Paillier encryp-
tion with distributed decryption [5] is employed. The latter may be more suitable
as in shuffling applications like e-voting it is usually desired that the private key
is shared by multiple parties.

– The multiplication modulus is N2 where N = p′q′ and p′, q′ are large primes.
– A message m is encrypted into c = gmrN where g is a public integer gen-

erated by the key generation algorithm (see [5] for more details) and r is
randomly chosen from Z∗

N .
– A ciphertext c is re-encrypted into c′ = RE(c) = crN where r is randomly

chosen from Z∗
N .

Suppose the input ciphertexts are ci for i = 1, 2, . . . , n and they are shuffled
to c′i = RE(cπ(i)) for i = 1, 2, . . . , n where π() is a random permutation of
{1, 2, . . . , n}. Random L-bit integers ti for i = 1, 2, . . . , n are chosen (e.g. by a ver-
ifier or multiple verifiers) where L is a security parameter and 2L < min(p′, q′).
The shuffling node proves satisfaction of (1). Theorem 2 formally and precisely
guarantees soundness of shuffling with Paillier encryption.

Theorem 2. With Paillier encryption, the probability that (1) is success-
fully proved and verified but D(c′1), D(c′2), . . . , D(c′n) is not a permutation of
D(c1), D(c2), . . . , D(cn) is a negligible concrete probability.

To prove Theorem 2, a lemma is proved first.

Lemma 2. If
∏n

i=1 yti

i is an N th residue with a probability larger than
2−L where t1, t2, . . . , tn are randomly chosen from {0, 1, . . . , 2L − 1}, then
y1, y2, . . . , yn are N th residues.

Proof:
∏n

i=1 yti

i is an N th residue with a probability larger than 2−L implies that
for any given integer v in {1, 2, . . . , n} there must exist integers t1, t2, . . . , tn and
t′v in {0, 1, . . . , 2L − 1}, x and x′ such that∏n

i=1 yti

i = xN (4)

(
∏v−1

i=1 yti

i )yt′v
v
∏n

i=v+1 yti

i = x′N (5)
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Otherwise, for any (t1, t2, . . . , tv−1, tv+1, . . . , tn) in {0, 1, . . . , 2L−1}n−1, there is
at most one tv in {1, 2, . . . , 2L − 1} such that

∏n
i=1 yti

i is an N th residue. This
implies that among the 2nL possible choices for (t1, t2, . . . , tn) (combination of
2(n−1)L possible choices for (t1, t2, . . . , tv−1, tv+1, . . . , tn) and 2L possible choices
for tv) there is at most 2(n−1)L choices to construct N th residue

∏n
i=1 yti

i , which
is a contradiction to the assumption that

∏n
i=1 yti

i is an N th residue with a
probability larger than 2−L.

(4) and (5) implies ytv−t̂v
v is an N th residue. According to Euclidean algorithm

there exist integers α and β to satisfy β(tv − t̂v) = αN + GCD(N, tv − t̂v).
GCD(N, tv − t̂v) = 1 as tv, t̂v < 2L < min(p′, q′). So y

β(tv−t̂v)
v = yαN

v yv. Thus,

yv = yβ(tv−t̂v)
v /yαN

v = (y(tv−t̂v)
v )β/yαN

v = (x/x′)Nβ/(yα
v )N = ((x/x′)β/yα

v )N

So yv is an N th residue. Therefore, y1, y2, . . . , yn are N th residues as v can be
any integer in {1, 2, . . . , n}. �

Proof of Theorem 2: Let A1 be the event that D(c′1), D(c′2), . . . , D(c′n) is a per-
mutation of D(c1), D(c2), . . . , D(cn); A2 be the event that (1) is correct; A3

be the event that the shuffling node successfully proves (1); P (A) denote the
probability of event A.

P (A3/Ā1) = P ((A3 ∧A2)/Ā1) + P ((A3 ∧ Ā2)/Ā1)
= P (A3 ∧A2 ∧ Ā1)/P (Ā1) + P (A3 ∧ Ā2 ∧ Ā1)/P (Ā1)

= P (Ā1 ∧A2)P (A3/Ā1 ∧A2)/P (Ā1) +
P (A3 ∧ Ā2 ∧ Ā1)P (Ā2 ∧ Ā1)/(P (Ā1)P (Ā2 ∧ Ā1))

= P (A2/Ā1)P (A3/Ā1 ∧A2) +
P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/P (Ā2 ∧ Ā1)

= P (A2/Ā1)P (A3/Ā1 ∧A2) +
P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/(P (Ā2)P (Ā1/Ā2))

P (Ā1/Ā2) = 1 as P (A2/A1) = 1. So

P (A3/Ā1) = P (A2/Ā1)P (A3/Ā1 ∧A2) +
P (Ā2/Ā1)P (A3 ∧ Ā2 ∧ Ā1)/P (Ā2)
≤ P (A2/Ā1)P (A3/Ā1 ∧A2) +
P (Ā2/Ā1)P (A3 ∧ Ā2)/P (Ā2)

≤ P (A2/Ā1)P (A3/Ā1 ∧A2) + P (Ā2/Ā1)P (A3/Ā2)
≤ P (A2/Ā1)P (A3/Ā1 ∧A2) + P (A3/Ā2)

If P (A2/Ā1) > 2−L, then when Ā1 happens the probability that (1) is correct
is larger than 2−L. Namely, when Ā1 happens,

RE(
∏n

i=1 cti

i ) =
∏n

i=1 c′
tπ(i)
i
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with a probability larger than 2−L where π() is a permutation of {1, 2, . . . , n}.
Namely, when Ā1 happens,

RE(
∏n

i=1 cti

i ) =
∏n

i=1 c′ti

π−1(i)

with a probability larger than 2−L.
According to additive homomorphism of the employed encryption algorithm,

when Ā1 happens, ∏n
i=1(ci/c

′
π−1(i))ti = E(0)

with a probability larger than 2−L. Namely, when Ā1 happens,∏n
i=1(ci/c

′
π−1(i))ti is an N th residue with a probability larger than 2−L.

So, according to Lemma 2, when Ā1 happens ci/c
′
π−1(i) is an N th residue

for i = 1, 2, . . . , n, and thus D(c′1), D(c′2), . . . , D(c′n) is a permutation of
D(c1), D(c2), . . . , D(cn), which is a contradiction. So P (A2/Ā1) ≤ 2−L must
be true to avoid the contradiction.

As with Paillier encryption (1) is proved using a standard proof of knowledge
of root [11], P (A3/Ā1∧A2) = 1 and P (A3/Ā2) < 2−L′

where L′ is the bit length
of the challenge in the proof of knowledge of root. Therefore,

P (A3/Ā1) ≤ P (A2/Ā1) + P (A3/Ā2) = 2−L + 2−L′
�

3 Failure of Soundness in [21]

The analysis in this paper has formally illustrated that it is important and
necessary to satisfy (1) where t′1, t

′
2, . . . , t

′
n must be a permutation of t1, t2, . . . , tn.

It is proved in [21] ∏n
i=1 ti =

∏n
i=1 t′i (6)∑n

i=1 ti =
∑n

i=1 t′i (7)

Obviously, only (6) and (7) are not enough to guarantee that t′1, t
′
2, . . . , t

′
n is a

permutation of t1, t2, . . . , tn. A simple counter example is n = 10, t1 = t2 = . . . =
t10 = 2 while t′1 = t′2 = t′3 = t′4 = 4, t′5 = t′6 = 2, t′7 = t′8 = 1 and t′9 = t′10 = −1.
Although ti and t′i must be in certain ranges to guatantee that t′1, t

′
2, . . . , t

′
n is a

permutation of t1, t2, . . . , tn, no range proof is specified in protocol description
nor included in cost estimation in [21]. So it has a serious problem in soundness.

4 Conclusion

Lack of formal and precise proof for soundness in some shuffling schemes is noticed.
Formal proof techniques are proposed to guarantee soundness of the schemes with
a precise analysis of the probability of failure of soundness, which is demonstrated
to be a negligible concrete probability. As our soundness analysis is precise, ap-
propriate trade-off can be made between soundness and efficiency to improve ef-
ficiency of the shuffling schemes. Moreover, an existing shuffling scheme is shown
to fail in soundness.



142 K. Peng and F. Bao

References

1. Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E.,

Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258–273. Springer,

Heidelberg (1999)

2. Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks.

In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317–324. Springer, Heidelberg

(2001)

3. Chaum, D.: Untraceable electronic mail, return address and digital pseudonym.

Communications of the ACM 24(2), 84–88 (1981)

4. Chaum, D., Pedersen, T.: Wallet databases with observers. In: Brickell, E.F. (ed.)

CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

5. Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting

or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer,

Heidelberg (2001)

6. Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.)

CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)

7. Gabber, E., Gibbons, P.B., Matias, Y., Mayer, A.: How to make personalized web

browsing simple, secure, and anonymous. In: Luby, M., Rolim, J.D.P., Serna, M.

(eds.) FC 1997. LNCS, vol. 1318, pp. 17–31. Springer, Heidelberg (1997)

8. Groth, J., Ishai, Y.: Sub-linear zero-knowledge argument for correctness of a shuffle.

In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 379–396. Springer,

Heidelberg (2008)

9. Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T.,

Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg

(2007)

10. Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt,

Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145–160. Springer, Heidelberg

(2002)

11. Guillou, L.C., Quisquater, J.J.: A “paradoxical” identity-based signature scheme

resulting from zero-knowledge. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS,

vol. 403, pp. 216–231. Springer, Heidelberg (1990)

12. Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans-

actions 88-A(1), 172–188 (2005)

13. Andrew Neff, C.: A verifiable secret shuffle and its application to e-voting. In: ACM

Conference on Computer and Communications Security 2001, pp. 116–125 (2001)

14. Andrew Neff, C.: Verifiable mixing (shuffling) of elgamal pairs (2004),

http://theory.lcs.mit.edu/~rivest/voting/papers/

Neff-2004-04-21-ElGamalShuffles.pdf

15. Okamoto, T., Uchiyama, S.: A new public-key encyptosystem as secure as factoring.

In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer,

Heidelberg (1998)

16. Paillier, P.: Public key cryptosystem based on composite degree residuosity classes.

In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer,

Heidelberg (1999)

17. Peng, K.: A secure and efficient batched shuffling scheme. In: Qing, S., Imai, H.,

Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, Springer, Heidelberg (2007)

http://theory.lcs.mit.edu/~rivest/voting/papers/Neff-2004-04-21-ElGamalShuffles.pdf
http://theory.lcs.mit.edu/~rivest/voting/papers/Neff-2004-04-21-ElGamalShuffles.pdf


Formal and Precise Analysis of Soundness of Several Shuffling Schemes 143

18. Peng, K., Bao, F.: An shuffling scheme with strict and strong security. To Appear

at SecureWare 2010 (2010)

19. Peng, K., Boyd, C., Dawson, E.: Simple and efficient shuffling with provable cor-

rectness and ZK privacy. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.

188–204. Springer, Heidelberg (2005)

20. Peng, K., Boyd, C., Dawson, E., Viswanathan, K.: A correct, private and efficient

mix network. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,

pp. 439–454. Springer, Heidelberg (2004)

21. Wikstrom, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy,

B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273–292. Springer, Heidelberg

(2005)



Distinguishing Distributions Using
Chernoff Information

Thomas Baignères1, Pouyan Sepehrdad2, and Serge Vaudenay2

1 CryptoExperts, Paris, France
2 EPFL, Switzerland

thomas.baigneres@cryptoexperts.com,
{pouyan.sepehrdad,serge.vaudenay}@epfl.ch

Abstract. In this paper, we study the soundness amplification by repetition of
cryptographic protocols. As a tool, we use the Chernoff Information. We spec-
ify the number of attempts or samples required to distinguish two distributions
efficiently in various protocols. This includes weakly verifiable puzzles such as
CAPTCHA-like challenge-response protocols, interactive arguments in sequen-
tial composition scenario and cryptanalysis of block ciphers. As our main contri-
bution, we revisit computational soundness amplification by sequential repetition
in the threshold case, i.e when completeness is not perfect. Moreover, we outline
applications to the Leftover Hash Lemma and iterative attacks on block ciphers.

Keywords: distinguishing distributions, Chernoff Information, proof systems,
block ciphers.

1 Introduction

In many occasions in cryptography we encounter the challenge of distinguishing dis-
tributions such as pseudorandom number generators, symmetric key cryptanalysis or
challenge-response puzzles. We consider protocols in which one distribution (null) is
usually associated with the probability distribution of an adversary winning a game.
The other distribution (alternate) corresponds to the probability of success of a legiti-
mate party. For instance, challenge-response puzzles are often deployed to distinguish
between a real and a fake solver. Differentiation is obtained by the probability of them
solving a randomly chosen challenge. What we focus on in this paper is the applica-
tion of such distinguishers in weakly verifiable puzzle protocols, sequential repetition
of arguments and the Leftover Hash lemma.

Initially, we concentrate on interactive protocols, where there always exist a number
of false negative and false positive responses by the verifier. They correspond to the
completeness and soundness probability of the protocol. One might think of a method to
reduce the error associated with the relevant distinguisher. One straightforward strategy
to decrease the probability of error in both cases is to provoke the protocol iteratively
and output “accept” if all instances accept (non-threshold case). Assuming the passing
probability of non-authentic (vs. authentic) parties is b (vs. a), one would like to obtain
error probability of bq after q iterations, but it makes the success probability of authentic
parties go down to aq. To solve this bottleneck, what we investigate in this paper is
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the general scenario of threshold repetition, i.e we accept if the number of accepting
repetitions is larger than a given threshold m. We can find an optimal m in which it
makes the error probabilities of the protocol arbitrary close to zero. This strategy can be
deployed in other similar interactive protocols like weakly verifiable puzzle protocols
in which a verifier sends a puzzle to the solver and depends on the solver’s response, he
outputs accept or reject. In one section, we principally study CAPTCHA-like protocols
as an example of such puzzles. We offer q puzzles to the solver and accept if she replies
correctly to at least a threshold m of instances.

The problem of soundness amplification and the previous results. In interactive
systems, the soundness probability of the protocol corresponds to upper bounding the
probability of success of a malicious party. We always assume that the verifier is com-
putationally bounded, but depending on computational capability of the prover we can
define argument or proof systems, where the former corresponds to polynomial time
provers and the latter to computationally unbounded provers (see section 3.1). We re-
fer to the soundness probability of proof systems as statistical soundness versus the
computational soundness in argument systems. To decrease the soundness error of such
protocols, making a problem harder by repetition can be performed using two distinct
approaches, namely sequential and parallel repetition. By sequential repetition we mean
repeating the protocol several times, beginning the next run after the previous one ter-
minates. Conversely, in the parallel case, all the instances are yielded to the prover at the
same time without waiting for any arbitrary instance to terminate. It is well-known that
sequential and parallel repetition of interactive proof systems reduce the error (statisti-
cal soundness) with an exponential rate (see [15]) in the non-threshold case (i.e, when
there are no false rejections). In fact, [13] has given the proof that sequential repetition
of computationally sound proof systems improves their security with an exponential
rate in the “non-uniform model” under non-threshold approach, but it seems there is no
explicit proof for the error reduction in the threshold case.

For a long period, it was assumed by the community that there is no distinction
between error reduction of interactive arguments (computational soundness) when the
protocol is iterated sequentially or in parallel. Finally, Bellare et al. [4] disproved this
argument by providing a 4-round protocol in which q iterations does not reduce the
computational soundness error probability of the protocol at all. In fact, they showed
that there is no “black box“ error reduction for such protocols when parallel repetition
is concerned. On the other hand, they proved the surprising result that error reduction in
parallel case depends fundamentally on the number rounds of the protocol. They proved
that error decreases exponentially fast with the increase in the number of iterations if the
number of rounds is less than 4. The computation complexity of each instance of their
counter-example grows linearly with the number of repetitions and for such protocols
the error does not even decrease for some types of interactive proofs. They constructed
an artificial oracle to solve this problem. To discard the effect of this oracle, using
universal arguments of Barak and Goldreich [3], Pietrzak et al. [27] provided an 8-round
protocol in which the q-fold parallel repetition does not decrease the error probability
below some constant for any polynomial q (where the communication complexity does
not depend on q). As an extension, multi-prover systems were examined in multiple
articles such as [14,28].
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Weakly verifiable puzzles. As another application, we study weakly verifiable puzzles.
These are interactive protocols in which the verifier sends a puzzle to the solver and out-
puts 0 or 1 depending the solver’s response. They are weakly verifiable in the sense that
only the puzzle generator can check the correctness of the responses, either because the
challenge may have multiple correct responses and the verifier seeks a particular one of
those or because the solver is computationally constrained, for instance in CAPTCHA
puzzles [1]. CAPTCHA is a fuzzy challenge response protocol for distinguishing hu-
mans from programs (bots) mostly based on a distorted text with extraneous lines [1].
The current vision protocols are not able to pass CAPTCHA efficiently and the proba-
bility that a human can pass is much higher than the programs. This is thankful of the
non-efficiency of the current image recognition systems not being able to identify dis-
torted texts efficiently, but their passing success rate is still non-negligible. Moreover,
many humans (including us) fail a non-negligible fraction of puzzles. This implies that
it might not be desirable to consider the non-threshold scenario for such protocols. Pre-
viously, Canetti et al. [8] proved that the parallel repetition of weakly verifiable puzzle
protocols decreases the error with an exponential rate. In fact, they found a tighter bound
than [4]. Their proof is restricted to the non-threshold case which might not be appropri-
ate for CAPTCHAs since their completeness are not perfect. This result can be extended
to parallel repetition of interactive arguments. As the pioneers in threshold parallel rep-
etition of such protocols, Impagliazzo et al. [17,18] have introduced two distinct bounds
on the maximum success probability of a malicious algorithm for the parallel repetition
of such protocols in the threshold case. The authors observed that the authentic party
is on average expect to solve a.q puzzles and if a Chernoff like bound holds, then the
probability of fake parties solving a.q puzzles may drop exponentially and they gave
an exponential bound. The complication in reducing a single puzzle instance to a direct
product puzzle instance originates from the fact that the given single puzzle instance
is required to be incorporated in all simulated direct product puzzle instances and thus
they are not independent. However, the bound they obtained has a weak constant in
the exponent and although their results apply to the parallel composition scenario, they
provided values which are irrelevant in practice, CAPTCHA for instance (see section
3.2). This was noticed by the authors themselves motivating to find better bounds as
an open problem. Jutla [21] deployed a uniformized parallel solver, who first permutes
his given first q-puzzles randomly, solves them as before and permutes the results back.
Deploying this strategy, he improved the aforementioned bound and then he plugged
it into ”trust reduction” strategy in [17] and considered a linearly weighted metric and
derived a more optimal bound. In fact, we show by a concrete example that his bound
is still not applicable in practice since it asks for solving a huge number of CAPTCHAs
in parallel.

Our contribution. The fundamental issue in this area is an approximation on the num-
ber of iterations required to effectively tune the probability of false acceptance or false
rejection optimally. In fact, we find the optimal threshold m for the best distinguisher in
section 3. We show that soundness amplification in the threshold case works as expected
for statistical soundness and works with a small gap for computational soundness when
the number of repetitions is logarithmic. We find a practical bound restricted to sequen-
tial repetition of such protocols. Notice that our bounds might not work in the parallel
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composition scenario but it provides figures which can be deployed in practice. It seems
more logical for practical applications like CAPTCHAs (see section 3.2).

We also consider the Leftover-Hash lemma. Let assume we have a secret key K that
has t uniform random bits. If � bits of the key are leaked, but it is not clear which one,
the Leftover-Hash Lemma [19] tells us that we can produce a key of almost m = t− �
bits that is ε-indistinguishable from uniform distribution over the key space. We define
a distinguisher given n samples in Luby-Rackoff model which distinguishes between
a universal hash function and a uniform distribution. We derive the same bound as in
[11] by deploying Chernoff Information which turns out to be optimal by introducing
the Multi-Session Leftover-Hash Lemma when more than one such key generations are
of interest.

In Appendix, we present iterative attacks on block ciphers with applications in lin-
ear and differential cryptanalysis and show that we can recover the number of plain-
text/ciphertext pairs required to obtain a significant advantage.

Structure of this paper. First, we mention some preliminaries regarding the facts and
previous results on hypothesis testing problem and statistical distinguishers. Then, we
model our distinguishing games as a challenge of distinguishing two random Boolean
sources in section 3. In section 3.1, we focus on sequential repetition of interactive ar-
guments in the threshold case and derive better bounds to strengthen them. In section
3.2, we investigate the sequential repetition of weakly verifiable puzzles and we com-
pare 7 distinct bounds. Furthermore, in section 5 we derive a useful bound which we
use to investigate the Leftover Hash Lemma. In Appendix, we revisit iterative attack on
block ciphers.

2 Preliminaries

Notations. In this paper, we let Z denote a finite set and P0,P1, . . . ,Pk be k + 1 proba-
bility distributions over Z. The support of a distribution P over Z is the set supp(P) =
{z∈Z : P[z]> 0}. The distribution P is of full-support when supp(P) = Z. When con-
sidering the two distributions P0, P1 we will usually denote Z ′ = supp(P0)∩ supp(P1)
and have Z = supp(P0)∪supp(P1). The natural and base 2 logarithms will respectively
be denoted by ln and log. The Kullback-Leibler divergence [22] and the Chernoff Infor-
mation [9] between P0 and P1 are respectively defined by

D(P0‖P1) = ∑
z∈supp(P0)

P0[z] log
P0[z]
P1[z]

C(P0,P1) =− inf
0<λ<1

log ∑
z∈Z′

P0[z]1−λP1[z]λ

When supp(P0) � supp(P1) then D(P0‖P1)= +∞. A sequence of q elements z1, . . . ,zq ∈
Z and a sequence of random variables Z1, . . . ,Zq ∈ Z are respectively denoted by zq

and Zq. Finally, we say that two functions f and g are asymptotically equivalent when
lim
q→∞

1
q ln f (q)

g(q) = 0 or equivalently when f (q) = g(q)eo(q). This is denoted by f (q)
�

= g(q).

Essential Definitions on Hypothesis Testing. Cryptographic problems we consider
can all be formalized as a hypothesis testing problem in which a distinguisher A dis-
tinguishes between the hypotheses H0 : P = P0 and H1 : P ∈ D = {P1, . . . ,Pk} on the
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basis of knowledge of the Pi’s and of q > 0 elements Z1, . . . ,Zq ∈ Z sampled according
to the distribution P. It is assumed that one of the hypotheses is true, the q samples are
independent and identically distributed (iid), the distinguisher A eventually outputs 0 or
1 to indicate its guess and that this distinguisher is computationally unbounded (so that
we can assume it is deterministic); for this last reason, A is referred to as a q-limited dis-
tinguisher. In fact, we are following Luby-Rackoff model of indistinguishability [24]
where the only adversarial limitation is the number of queries. In the particular case
where k = 1, we will refer to the previous problem as a simple hypothesis test, whereas
when k > 1 we call it a composite hypothesis test. A q-limited distinguisher A which is
given q samples Zq = Z1, . . . ,Zq is denoted as Aq(Zq). The effectiveness of A is math-
ematically formulated by its advantage.

Definition 1. The advantage of a q-limited distinguisher Aq between the hypotheses H0

and H1, based on the q samples Zq = Z1, . . . ,Zq, is defined by

AdvAq(H0,H1) = Pr[Aq(Zq) = 1|H0]−Pr[Aq(Zq) = 1|H1]

The hypotheses H0 and H1 are (q,ε)-indistinguishable if for any q-limited distinguisher
Aq we have |AdvAq(H0,H1)| ≤ ε.

Existence of an Optimal Distinguisher. Since the samples are assumed to be iid, their
particular order must be irrelevant. What really matters is the number of occurrences
of each symbol of Z in the string Zq = Z1, . . . ,Zq or equivalently the type (or empirical
probability distribution) of this sequence, defined by

PZq [z] =
#{i : Zi = z}

q

Consequently, a distinguisher can be thoroughly specified by the set Π of all types for
which it will output 1, i.e., Aq(Zq) = 1 ⇔ PZq ∈Π. The set Π is called the acceptance
region of A. Since q is fixed, the number of possible types is finite and thus we can
assume wlog that Π is finite. Consequently, there is also a finite number of potential
adversaries so that there must be at least one which maximizes the advantage. We call
them best distinguishers and denote by BestAdvq(H0,H1) (or simply by BestAdvq)
their advantage.

The Optimal Adversary in the Simple Hypothesis Testing Case. We consider the
simple case where A distinguish between H0 : P = P0 and H1 : P = P1. In that case, we
call A a distinguisher between P0 and P1 and denote its advantage by AdvAq(P0,P1).
The best advantage is obtained by likelihood ratio test, where the acceptance region of
the distinguisher is such that

Aq(Zq) = 1 ⇔
Pzq|P0

Pzq|P1

≤ 1 (1)

where Pzq|Pi
is the type of the sequence given the distribution Pi has happened. It can

be shown [2] that the distinguisher A� defined by the acceptance region
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Π� = {PZq : D(PZq‖P1)≤ D(PZq‖P0)} (2)

is a best distinguisher.
The following essential theorem allows to relate the advantage of the best distin-

guisher between P0 and P1 to the Chernoff Information1 [9].

Theorem 2. Let P0,P1 be two probability distributions. We have

1−BestAdvq(P0,P1)
�

= 2−qC(P0,P1) (3)

This result verifies asymptotically that having access to q ≈ 1
C(P0,P1) samples we can

distinguish P0 from P1 with a significant advantage.

3 Application to Boolean Cases

In this paper, we concentrate on applications of distinguishers in scenarios such as
soundness amplification and weakly verifiable puzzles. In all these relevant applica-
tions, we are trying to differentiate between a legitimate and a malicious party. One
strategy is to model this scenario as a distinguishing game between two Boolean ran-
dom sources. We consider the problem of distinguishing two Boolean random sources
with expected values a and b respectively. Suppose P0,P1 be two probability distribu-
tions over the set Z = {0,1}. Let

P0[X ] =
{

a X = 1
1−a X = 0

and P1[X ] =
{

b X = 1
1−b X = 0

We define a distinguisher which outputs 1 iff n1 ≤ m, where bq < m < aq and n1 is
the number of occurrences of 1 in the sample set. Intuitively, a refers to the probability
that a legitimate user or a program can pass a single challenge successfully and b refers
to which of a malicious user or program. As a matter of fact, we mostly investigate the
protocols which are distinguishing a legitimate and a malicious user or program offering
them q times to try and then if they can pass with a particular minimum threshold,
algorithm outputs accept otherwise it rejects.It can be shown using (2) that

m =
q

1− ln b
a

ln 1−b
1−a

(4)

defines the best distinguisher using q samples to distinguish P0 from P1 (Note that if
a ≈ b, we have m ≈ q a+b

2 which is a pretty intuitive threshold). Then, employing the

Chernoff Information, Theorem 2 gives 1−Advq
�

= 2−qC(P0,P1). More precisely, having
access to q samples and using the binomial distribution

1−Advq = ∑
i≤m

(
q
i

)
ai(1−a)q−i + ∑

i>m

(
q
i

)
bi(1−b)q−i

= 1− ∑
i≤m

(
q
i

)(
bi(1−b)q−i−ai(1−a)q−i) (5)

1 A proof of this result can be found in [12] asymptotically, where it is implicitly assumed that
supp(P0) = supp(P1). The general case is treated in [2].
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which is expressed as the concrete expression for computing the advantage of the best
distinguisher. It might be assumed that this bound only works when the adversary’s
responses are independent, but we will show in Theorem 6 that it is true even if the
adversary’s responses are not independent, the only difference is an additive factor of
2qε. In fact, the adversary may decide to answer identically to all challenges or decide
to respond to the following challenge as a function of the previous response. The funda-
mental question is that whether she gains anything by following this approach. What we
prove is that she gains an additive factor of 2qε which can be made arbitrary small for
constant values of m and q (see 3.1). The effect of ε would be canceled out in the case
of statistical soundness when proof systems are of interest since the prover is supposed
to be computationally unbounded.

A theorem by Hoeffding [16] called Chernoff-Hoeffding theorem gives an upper
bound on the probability of the addition of q identically independent Boolean random
variables referred to as Chernoff-Hoeffding bound which can be used as a bound in our
distinguishing game.

Theorem 3. (Chernoff-Hoeffding Theorem) Let {X1, . . . ,Xq} ∈ {0,1}q be q identi-
cally independent random variables with E[Xi] = a, for (1 ≤ i ≤ q). Then, for ∀b > a,
we have

Pr

[
1
q

q

∑
i=1

Xi ≥ b

]
≤
((a

b

)b
(

1−a
1−b

)1−b
)q

= 2−qD(b‖a)

where D(b‖a) is the Kullback-Leibler divergence of Boolean random variables of ex-
pected values b and a.

As another representation, we can rewrite the Chernoff-Hoeffding bound as

q

∑
i=!bq"

(
q
i

)
ai(1−a)q−i ≤ 2−qD(b‖a)

Using the above representation of Chernoff-Hoeffding bound, we obtain

1−Advq ≤ 2
−qD

(
m
q ‖a
)
+ 2

−qD
(

m
q ‖b
)

(6)

We will compare these bounds in section 3.2.

3.1 Soundness Amplification

As an application to the distinguisher in section 3, we consider interactive argument
protocols. In fact, we analyze the sequential composition of interactive arguments where
the algorithm repeats q times sequentially and if the number of successes is more than
a specific threshold, the protocol outputs accept otherwise reject. First, we define the
notion of proof and argument systems.

Definition 4. Given a language L over an alphabet Z, an interactive proof system (resp.
a computationally proof system or an argument) for L is a pair (P ,V ) of interactive
machines, where P is computationally unbounded (resp. P is computationally bounded)
and V is polynomial-time such that there exist a polynomial P and a,b, where 0≤ b <
a≤ 1 and
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• Termination: for any x,ω,rP ,rV , the total complexity of V (until termination) in
P (ω;rP ) x↔ V (rV ) is bounded by P(|x|), where x is the security parameter.

• a-completeness: for any x ∈ L, there exists a string ω, such that

Pr
rP ,rV

(
OutV (P (ω;rP ) x↔ V (rV )) = accept

)
≥ a(|x|)

• b-statistical soundness (resp. b-computational soundness): for any x /∈ L and any
computationally unbounded (resp. polynomial-time) interactive machine P �

Pr
rP ,rV

(
OutV (P �(rP ) x↔ V (rV )) = accept

)
≤ b(|x|)

Given an interactive proof system (P ,V ) for L which is a-complete and b-sound, we
define a new proof system (P q,V q

m) with threshold m as follows

• P q (resp. V q
m) simulates P (resp. V ), but have no terminal message until q(|x|)

sequential iterations with the same input x are made.
• after an iteration completes, they restart the entire protocol with fresh random

coins.
• V q

m accepts if at least m(|x|) iterations of V are accepted out of q(|x|).

We use the following Lemma to prove our main theorem.

Lemma 5. Assume that (P ,V ) is a b-sound argument for L. Given q and ε such that
qε−1 is polynomially bounded in terms of |x|, we consider (P q,V q

m) and a polynomially
bounded malicious P �. For I ⊆ {1, . . . ,q} we let pI be the probability that P � succeeds
in every iteration i for i ∈ I. Given J ⊆ {1, . . . , i− 1} and I = J ∪{i}, we have pI ≤
max(bpJ,ε).

More precisely, if for some I this inequality is not satisfied, then there is a malicious
prover for (P ,V ) with complexity qε−1 times the one by P � to break b-soundness.

Proof. If pJ ≤ ε, the result is clear since pI ≤ pJ . Otherwise, we have pJ > ε. We
construct a malicious prover for (P ,V ) who simply simulates i− 1 iterations for the
verifier to P �. It repeats the simulation until every iteration j for j ∈ J succeeds. The
number of iterations is expected to be p−1

J which is dominated by ε−1. Then it runs
an extra simulation with the real verifier in the (P ,V ) protocol. The complexity of
this malicious prover is bounded by qε−1 which is a polynomial. So, it is polynomially
bounded and the probability that the last iteration succeeds is bounded by b. Clearly, this
is the conditional probability of success given that every iteration j for j ∈ J succeeds.
Hence, pI ≤ bpJ . ��

Using this lemma, we prove that soundness amplification in the threshold case behaves
as expected for statistical soundness in proof systems. Furthermore, there is only a small
gap between the expected value in statistical soundness and computational soundness
when the number of repetitions is logarithmic.

Theorem 6. For any computationally sound proof system (P ,V ) and for a language L
and any q,m and ε such that qε−1 is polynomially bounded in terms of |x|, we consider
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(P q,V q
m) with threshold m. If (P ,V ) is a-complete and b-sound, then (P q,V q

m) is a′-
complete and b′-sound where

a′ =
q

∑
i=m

(
q
i

)
ai(1−a)q−i and b′ =

q

∑
i=m

(
q
i

)
bi(1−b)q−i + 2qε

and the time reduction factor is of qε−1.

Note that if we know bq < m < aq and if we consider the optimal m by equation (4), the
above theorem shows that the completeness of the protocol increases and the soundness
probability of the protocol declines by q iterations. Since the reduction factor is qε−1,
for constants m and q, the value ε can be fixed to an arbitrary low constant, so we
achieve

b′ =
q

∑
i=m

(
q
i

)
bi(1−b)q−i

More generally, let ε = |x|−c, where c is a constant and set m to equation (4) and q be
logarithmic in terms of |x|, hence we obtain a′ = 1−O(|x|−α) and b′ = O

(
|x|−β) with

polynomial reduction factor. We conclude that with a logarithmic number of repetitions
we can make a′,b′ tend toward 1 and 0 respectively at a polynomial speed.

Proof. The proof for the a′-completeness is trivial using binomial distribution and con-
sidering that repetitions are independent. For b′-soundness the prover may decide to
evaluate iterations dependently. In fact, we show that even if the prover does not con-
sider each iteration independently, he may not achieve anything better than responding
to each iteration independently except with a gap of 2qε. We define pI as in the Lemma
5. Let Xj be a 0 or 1 random variable associated with the success of a malicious protocol
P � in the jth iteration. We define px1...xi to be a pattern probability in i iterations as

px1...xi = Pr

[
i∧

j=1

Xj = x j

]

and T as a random variable enumerating the number of times P � passes the protocol
and P = Pr(T ≥ m). Note that px can be recursively defined from the set of pI’s, then
P can be computed. Due to Lemma 5, pI’s are subject to inequalities. We define an
arbitrary ε > 0 and we first show that P is lower than a new P called P′ defined by a
set of p′I’s, where the inequalities in the Lemma 5 are replaced by equalities. Next, we
show that for this new set of pI’s we have

P≤ ∑
i≥m

(
q
i

)
bi(1−b)q−i + 2qε

to obtain b′-soundness.
For the first step, we use a rewriting procedure on the set of pI’s. In the same time we

verify that the new set is still consistent with the law of probabilities, with the inequali-
ties from the Lemma 5, and that P only increases. By iterating the rewriting procedure
we eventually obtain a new set of pI’s satisfying pI = max(bpJ,ε) for all I = J ∪{i}
with i > maxJ. The rewriting procedure works as follows.
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Initially, we identify I = J ∪ {i} with i > maxJ, such that pI < max(bpJ,ε), then
for any K ⊆ {i + 1, . . . ,q}, we have p′I∪K = (1− λ)pI∪K + λpJ∪K with λ such that

p′I = max(bp′J,ε). Subsequently, we get λ = max(bpJ ,ε)−pI
pJ−pI

. All other pJ’s are left un-
changed. This is equivalent to rewriting p′x0y = (1−λ)px0y and p′x1y = px1y + λpx0y for

x ∈ {0,1}i−1 such that x j = 1 for all j ∈ I. It can be shown that p′ only updates a sub-
tree starting at position I such that p′I = max(bp′J,ε). Ultimately, all the equalities are
reached. To check

∑
x:x1+···+xq≥m

px ≤ ∑
x:x1+···+xq≥m

p′x

we split the sum depending on x:

• for the set of y in which y j = 0 for some j ∈ J, we observe p′y = py.
• for the set of y of the form y = xβz with the cumulated weight of x and z be at least m

and x j = 1 for all j ∈ J, we group by the same x and z, since p′x0z + p′x1z = px0z + px1z.
• for the set of y of the form y = x1z with the weight m and x j = 1 for all j ∈ J, we

observe that p′x1z ≥ px1z.

We now assume that the pI’s satisfy pI = max(bpJ,ε) for all I = J∪{i} with i > maxJ
and we want to upper bound P′. Clearly, we have p′I = max(b#I,ε). When turned into
p′x’s we have

p′x =

⎧⎨⎩
bw(x)(1−b)q−w(x) if w(x) ≤ τ
ε(1−b)q−w(x) if w(x) > τ and xq−w(x)+τ+1 = · · ·= xq = 1
0 otherwise

for all I, where w(x) = x1 + · · ·+ xq and τ =
⌊

lnε
lnb

⌋
. We have

P′ = ∑
x:w(x)≥m

p′x

= ∑
x:m≤w(x)≤τ

p′x + ∑
x:w(x)>τ

p′x

≤ ∑
i≥m

(
q
i

)
bi(1−b)q−i + ε ∑

x:w(x)>τ
1xq−w(x)+τ+1=···=xq=1(1−b)q−w(x)

= ∑
i≥m

(
q
i

)
bi(1−b)q−i + ε ∑

x:w(x)>τ

(
q−w(x)+ τ

τ

)
(1−b)q−w(x)

≤ ∑
i≥m

(
q
i

)
bi(1−b)q−i + 2qε

�

3.2 Application to Weakly Verifiable Puzzles

A weakly verifiable puzzle protocol is a game P = (D,R) between a solver and a ver-
ifier consisting of a set of distributions D = {D1, ...,Dk} of cardinality k (the security
parameter) which are defined on pairs (pi,ci) [8]. In fact, pi is called a puzzle which is
associated with a challenge from the verifier being sent to the solver and we refer to ci

as the check string. The second component is a relation R[(p,c),r] where r is a string
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of a fixed length, which can be assumed as the solver’s response. The verifier is aware
of pi and ci and so he can inspect the response r of the solver. If R[(p,c),r] holds, we
say that the solver passes, otherwise we say that he fails. We define a direct product for
P. That is, since q and m ∈ [0,q], we define Pq

m = (D⊗q,Rq
m), where

Rq
m[((p1, . . . , pq),(c1, . . . ,cq)),r1, . . . ,rq]⇔ #{i ∈ [0,q];R[(pi,ci),ri]} ≥ m

CAPTCHA is an example of such protocols. The prominent issue is to find the best
method to distinguish a human from a program using q attempts2. This can be translated
to a hypothesis testing problem, involved is a random variable accept with an expected
value a (resp. b) associated with hypothesis H0 (resp. H1). We can use the results on
the previous distinguisher with an application to such puzzles. We use the theorem
by Impagliazzo et al. [17] to estimate the total probability of error the threshold-based
distinguisher attains which can be used for the parallel repetition of such protocols. This
was the first bound found on upper bounding the success probability of an adversary in
the parallel composition of weakly verifiable puzzles in the threshold case. They also
introduced a bound for the corresponding probability distribution in [18]. We consider
a pretty good CAPTCHA for which humans pass with probability a = 90% and such
that there exist attacks solving them with probability b = 33%. For instance, we can
consider Gimpy. (see [26,30]).

Theorem 7. (Impagliazzo-Jaiswal-Kabanets 2007,2009) If all malicious algorithms
can pass a challenge with probability at most b, then the probability that a malicious
algorithm passes the challenge at most m times out of q parallel instances is lower than

β = 2e−
(m−bq)2

64q (resp. β = 100q
m−bq e

− (m−bq)2
40q(1−b) ).

Equivalently, if “pass”, b and m are replaced by “fail”, 1−a and q−m respectively, it
leads to the expression that legitimate people succeed less than m times out of q with

probability lower than α = 2e−
(m−aq)2

64q (resp. 100q
aq−me−

(m−aq)2
40qa ). Hence, the advantage of a

distinguisher which distinguishes the legitimate users from malicious programs using
the threshold m can be computed as

1−Advq ≤ α+ β = 2e−
(m−bq)2

64q + 2e−
(m−aq)2

64q (7)

1−Advq ≤ α+ β =
100q

m−bq
e
− (m−bq)2

40q(1−b) +
100q

aq−m
e−

(m−aq)2
40qa (8)

Recently, Jutla in [21,20] improved the above bounds and derived tighter bounds
to the Chernoff bound, but as illustrated in the following table, the results are still
non-relevant in practice. It is because all four bounds still ask for a huge number of
CAPTCHAs which can not be used in real life. Using the same notations, he derived
the follwoing error probabilities in two seperate papers:

1−Advq ≤
2(q−bq)3

(q−m)2(m−bq)
. e
−( q−m

2 )
(

m−bq
q−bq

)2

+
2(aq)3

m2(aq−m)
. e
−(m

2 )
(

aq−m
aq

)2

(9)

2 Intuitive solution is to ask for many independent challenges.
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1−Advq ≤
4q2(1−b)2

(m−bq)(q−m)
. e
− (m−bq)2

2q(1−b) +
4a2q2

m((1−b)q−m)
. e−

((1−b)q−m)2
2aq (10)

where bq < min{m,q−1}.
We compare the seven distinct bounds already discussed with the concrete value

extracted in equation (5). As a summary, the table of advantage bounds we already
computed together with the concrete value for the advantage of the distinguisher in
section 3 is depicted in Table 1.

Table 1. [1−Advq] (total error) comparison for 7 distinct bounds with respect to q for a = 90%
and b = 33%, the exact advantage is given by (5)

Parallel Repetition Sequential Repetition
q m IJK07 (7) IJK09 (8) J10 (9) J102 (10) asymptotic (3) concrete (5) Chernoff (6)
1 0 > 1 > 1 N/A N/A 0.803 0.430 1.606
3 1 > 1 > 1 > 1 > 1 0.517 0.283 1.035
4 2 > 1 > 1 > 1 > 1 0.415 0.160 0.831
5 3 > 1 > 1 > 1 > 1 0.333 0.125 0.667
7 4 > 1 > 1 > 1 > 1 0.215 0.069 0.430

100 65 > 1 > 1 > 1 > 1 2−31.68 2−34.95 2−30.68

5000 3273 0.019 0.095 ≈ 0 > 1 ≈ 0 ≈ 0 ≈ 0

As the figures represent, for all the range of q the asymptotic value is the closest one
to the concrete value. Clearly, solving 4 CAPTCHAs in at most 7 sequential attempts
provides an error probability below 10% using parameters a = 90% and b = 33%. “(7),
(8) bounds are quite weak when applied to concrete problems such as actual CAPTCHA
protocol with reasonable numbers of repetitions” [17,18], which can be verified by the
result in the table above. Although we are comparing sequential with parallel composi-
tion, it makes more sense to ask for 7 CAPTCHAs attempts sequentially than requiring
to solve 5000 CAPTCHAs (as (7) bound recommends) at the same time. It still remains
an open problem to find a better bound which works for the case of parallel repetition.
Moreover, from the above table the value of the concrete error is always less than the
asymptotic value which is the implication of Theorem 8.

4 Useful Bounds

In this section, we derive two bounds which we use one in the ongoing section and
one which argues that the total error probability in the general case is bounded by its
asymptotic value and as was shown in the example in section 3.2, this provides a better
bound than (6).

Theorem 8. Let Z be a finite set and P0 and P1 be two distributions with support of
union Z and intersection Z ′. Let BestAdvq(P0,P1) be the best advantage for distin-
guishing P0 from P1 using q samples. We have

1−BestAdvq ≤ 2−qC(P0,P1)



156 T. Baignères, P. Sepehrdad, and S. Vaudenay

This result yields an upper bound on the probability of error of the best distinguisher.
In fact, this result can be verified by the comparison between the concrete value of the
error and asymptotic bound derived above.

Proof. Using (1), we have

1−BestAdvq(P0,P1) = ∑
zq

Pr[zq|P0]>Pr[zq|P1]

Pr[zq|P1]+ ∑
zq

Pr[zq|P0]<Pr[zq|P1]

Pr[zq|P0]

= ∑
zq∈Z′q

min(Pr[zq|P0],Pr[zq|P1])

Since for ∀a,b > 0 : min(a,b)≤ a1−λbλ and 0≤ λ≤ 1, we have

1−BestAdvq(P0,P1) ≤ inf
0<λ<1

∑
zq∈Z′q

Pr[zq|P0]1−λ Pr[zq|P1]λ

= inf
0<λ<1

∑
zq∈Z′q

q

∏
i=1

P0[zi]1−λP1[zi]λ

= inf
0<λ<1

(
∑

z∈Z′
P0

1−λ[z]P1
λ[z]

)q

= 2−qC(P0,P1)

�

Theorem 9. Let P0 and P1 be distributions of support Z, We have

1
8 ∑

x∈Z
P0[x]

(
P1[x]−P0[x]

max(P0[x],P1[x])

)2

≤ 1−2−C(P0,P1)≤ 1
8 ∑

x∈Z
P0[x]

(
P1[x]−P0[x]

min(P0[x],P1[x])

)2

As a result, for P0 be the uniform distribution over a domain of size N, since P0[x]−
‖P1−P0‖2 ≤ P1[x]≤ P0[x]+‖P1−P0‖2, we can rewrite the bound as

1
8

N ‖P1−P0‖2
2

(1 + N ‖P1−P0‖2)2 ≤ 1−2−C(P0,P1) ≤ 1
8

N ‖P1−P0‖2
2

(1−N ‖P1−P0‖2)2

where ‖P0−P1‖ states the Euclidean distance between distribution P0,P1.

Proof. Let λ be such that

F(λ) = ∑
x∈Z

P0[x]1−λP1[x]λ

and let P1[x] = P0[x](1 + εx) with εx ≤ Bx, where Bx = 1
P0[x] −1, We have

F(λ) = ∑
x∈Z

P0[x](1 + εx)λ

Thanks to the Taylor Theorem, for any ε there exists θ ∈ [0,1], such that

(1 + ε)λ− (1 + λε) =
λ(λ−1)

2
ε2(1 + θε)λ−2
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Since ∑
x

P0[x](1 + λεx) = 1, we obtain

1−F(λ) = λ(1−λ)
2 ∑

x
P0[x]ε2

x(1 + θxεx)λ−2

= λ(1−λ)
2 ∑

x
P0[x]

(P1[x]−P0[x])2

P0[x]2
(1 + θxεx)λ−2

If εx ≥ 0, then (1+θxεx)λ−2 ≤ 1 and P0[x]≤P1[x]. Otherwise, (1+θxεx)λ−2 ≤
(

P0[x]
P1[x]

)2

and P1[x]≤ P0[x]. Ultimately,

1− inf
0<λ<1

F(λ)≤ 1
8 ∑

x∈Z
P0[x]

(
P1[x]−P0[x]

min(P0[x],P1[x])

)2

The other inequality can be shown similarly. ��

5 Multi-session Leftover-Hash Lemma

Let X be a random variable over a finite set Z, the minimum entropy of X is defined as

H∞[X ] =− log(max
x

Pr[X = z])

The Rényi entropy [29] of order α, where α≥ 0, is defined as

Hα[X ] =
1

1−α
log(∑

x
Pr[X = z]α)

Notice that 2−H2[X ] is the collision probability and 2−H2[X ] ≤ 2−H∞[X ] .
If X is a random variable over a set Z of order N, the square of Euclidean dis-

tance between the distribution of X called P1[X ] and the uniform distribution P0[X ]
can be expressed as ‖P1[X ]−P0[X ]‖2

2 = 2−H2[X ] − 1
N . Let d(P1,P0) be the statistical

distance between the distribution P1 and the uniform distribution P0, the expression
d(P1[X ],P0[X ])≤

√
N‖P1[X ],P0[X ]‖2 shows the link between statistical and Euclidean

distance of distributions.

Definition 10. Let H = {HN} : D → {0,1}m be a family of functions, where N ∈ N .
HN is a universal hash function if for any x,y ∈ {0,1}m such that x �= y, we have

Pr(HN [x] = HN [y]) = 2−m

where N is uniformly distributed.

Lemma 11. (Leftover Hash Lemma [19]: Impagliazzo-Levin-Luby 1989) If h is a
universal hash function with a range of size 2m and X ,N,U are independent random
variables where N,U are uniformly distributed and m ≤ H∞[X ]−2log 1

ε , then the dis-
tributions of (hN [X ],N) and (U,N) are ε-indistinguishable.
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Proof. We define P0 and P1 as two distributions and compute the Euclidean distance

‖P1−P2‖2 = ∑
k,n

(
Pr

X ,N
[hn[X ] = k,N = n]− 1

2m#N

)2

= 1
(#N )2 ∑

k,n

Pr
X ,X ′

[hn[X ]

= hn[X ′] = k]− 1
2m#N

= 1
#N ∑

x,x′
Pr[X = x,X ′ = x′,hN [x] = hN [x′]]− 1

2m#N

= 1−2−m

#N ∑
x

Pr[X = x]2

≤ 1−2−m

#N 2−H∞[X ] ≤ 1
2m#N ε2

Applying the link between the statistical distance and Euclidean distance, we obtain
d(P1,P2)≤ ε. ��

We recall an application of the above Lemma in ElGamal encryption from Boneh [7].
Let 〈g〉 be a subgroup generated by some g of prime order q in Z∗p. Consider a scenario
in which party A encrypts a message m using the party B’s public key e. A picks a
random value r ∈Z∗q and computes the pair Enc[e,m;r] = (gr,mer) = (c1,c2) and sends
it to B. At the other end based on the fact that er = cd

1 where d is B’s private key (secret
key), B decrypts the message by computing Dec[d,(c1,c2)] = m = c2/(c1)d .

Key recovery in ElGamal encryption is equivalent to the discrete logarithm prob-
lem, likewise, the decryption is equivalent to Diffie-Hellman problem [7]. On the other
hand, ElGamal is not a semantically secure cryptosystem, because q| (p−1)

2 and so

g
p−1

2 = 1. Let ( a
b ) be the Legendre symbol for integers a and b, then ( g

p) = 1. We deduce

that (mer

p ) = (m
p ). So, if for b = {0,1} : (mb

p ) = (−1)b, a distinguisher can distinguish
Enc[e,m0;r] and Enc[e,m1;r] with advantage 1.

We define a scheme based on ElGamal encryption which is argued to be (εDDH + ε)-
IND-CPA secure. Let 〈g〉 be a group generated by some g of prime order q. Following
a similar approach as ElGamal, define the triple Enc[e,m;N,r] = (gr,m⊕hN [er],N) =
(c′1,c

′
2,N) where r ∈ Z∗q and N is uniformly distributed. Similarly, A sends this triple to

B and B decrypts it using Dec[d,(c′1,c
′
2,N)] = c′2⊕hN [c′d1 ].

Due to the Decisional Diffie-Hellman assumption [7], we have (g,gr,m⊕hN [er],N)
is εDDH-indistinguishable from (g,gr,m⊕hN [gr′ ],N). According to Lemma 11, we have
(g,gr,m⊕hN [gr′ ],N) is ε-indistinguishable from (g,gr,m⊕U,N), where U is the uni-
form distribution. Furthermore, (g,gr,m⊕U,N) is perfectly indistinguishable from
(g,gr,U,N). Consequently, (g,gr,m⊕ hN [er],N) is (εDDH + ε)-indistinguishable from
something independent from m which leads the scheme to be (εDDH + ε)-IND-CPA
secure.

As another application to the Lemma 11, consider the Diffie-Hellman key exchange
protocol. Let 〈g〉 be a group generated by some g of prime order q. In a key exchange
between two parties A and B, the party A picks a random x ∈ Z∗q and computes X ← gx

and sends it to B. The party B aborts if X /∈ 〈g〉\{1}, otherwise he picks a random value
y ∈ Z∗q and computes Y ← gy and sends it to A. The party A aborts if Y /∈ 〈g〉\{1},



Distinguishing Distributions Using Chernoff Information 159

otherwise Kses = gxy is computed and is shared between two parties as their session
key. Since Z∗q is cyclic, Kses is a uniformly distributed non-neutral element of 〈g〉 (even
locally under active attacks). Assume a non-ambiguous representation format for values
which may be in 〈g〉 or not

Pr(Kses = x) =

⎧⎨⎩
1

q−1 x ∈ 〈g〉\{1}

0 otherwise

Thus, H∞[Kses] = log(q−1). Now, consider the protocol that exchanges a random
number N and derives the key K = hN [Kses]. Let ε =

√
2m/(q−1) by Leftover Hash

Lemma, K is indistinguishable from a random key. Moreover, a protocol using n such
key generations is nε-indistinguishable from the same protocol where K is truly random
(thanks to the hybrid arguments) implying that it is safe to generate the key n times using
the same protocol until n is of order

√
q.2−m. This result is originating from the trivial

bound, which can be improved employing a Multi-Sample Leftover Hash Lemma.

Lemma 12. (Multi-Sample Leftover Hash Lemma) Assume h is a universal hash func-
tion with a range of size 2m and key space N . Let N ∈U N and U ∈U {0,1}m and X be
independent random variables. If ε =

√
(2m−1)2−H2[X ] and ε′ = ε

√
2m#N , the best

advantage for distinguishing (hN [X ],N) from (U,N) using n samples is such that

1−BestAdvn
�

= 2−nC

where C is bounded by − log
(

1− ε2

8(1+ε′)2

)
≤ C≤− log

(
1− ε2

8(1−ε′)2

)
.

Although this result is not so precise, it already suggests that we can find a better
bound. In the above example, we have H2(X) = log(q− 1). Therefore, if we take
ε =

√
(2m−1)/(q−1) and #N � q.2−2m, we obtain that the minimal n for distin-

guishing is at least within the order of magnitude of ε−2 which is q.2−m.

Proof. Let P0,P1 be two distributions, we proved in Lemma 11 that ‖P1−P0‖2
2 =

2−H2[X ](1−2−m)/#N , where the domain size is 2m#N . Deploying Theorem 9, we get

1−2−C(P0,P1) ≤ (2m−1)2−H2[X ]

8
(

1−
√

(2m−1)2m−H2[X ]#N
)2

= ε2

8(1−ε′)2

Similar procedure can be shown for the lower bound. ��
It has been shown that the min-entropy H∞(X) = m+ 2log( 1

ε )+ 2logn suffices for the
joint distribution to be ε-close to the uniform distribution (see [10,19,31]). Furthermore,
recently Chung et al. [11] improved the previous bound by reducing 2 logn to logn and
they proved that it is optimal for 2-universal hashing by using Hellinger distance to
evaluate the error accumulation over each hashed instance. In fact they showed that

ε =
√

n
q.2−m

Therefore, the minimal n for distinguishing efficiently is of magnitude q.2−m which
is the same bound we found by another approach, that is Chernoff Information and
asymptotic q-limited distinguisher.
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6 Conclusion

We mentioned various applications of distinguishers in cryptography. We evaluated
their efficiency using the Chernoff Information. We revisited the interactive argument
systems and relying on sequential repetition, we derived new bounds for the soundness
property of such protocols (computational soundness) even in the case of dependent re-
sponses. Moreover, we compared seven distinct bounds for the error probability of the
best distinguisher in weakly verifiable puzzle protocols when q samples are given. We
introduced an application to the Leftover Hash Lemma and by introducing the Multi-
Sample Leftover Hash Lemma we derived the same optimal bound as [11] with another
approach (Chernoff Information) when the number of iterations is more than unity.
We specified the number of samples to obtain a significant advantage in block ciphers
cryptanalysis using Chernoff Information approach.
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A Iterative Attacks on Block Ciphers

We now apply the results regarding simple hypothesis testing to block cipher analysis.
We consider a statistical distinguisher who has access to an oracle implementing either
an instance c of a block cipher C or an instance c of C�, a theoretical ideal scheme
(sometimes called the perfect cipher) which corresponds to the set of all possible per-
mutations over the same text space as C. Viewing both C and C� as sets of permutations,
the objective of the distinguisher is to choose between the hypotheses3 H0 : c ∈ C� and
H1 : c ∈ C.

3 Note that the fact that the hypotheses are not disjoint is not a problem here, since all our
previous results hold in that case too.



162 T. Baignères, P. Sepehrdad, and S. Vaudenay

Oracle: a permutation c
1: for i from 1 to q do
2: pick (X1, . . . ,Xd) according to the distribution D
3: for all 1≤ j ≤ d, query the oracle for Yj = c(Xj)
4: set Zi = h(X1, . . . ,Xd ,Y1, . . . ,Yd)
5: end for
6: return A�(Z1, . . .Zq)

Fig. 1. A q-limited iterative h-distinguisher of order d

Most statistical distinguishers against block ciphers can be seen as q-limited itera-
tive h-distinguishers of order d given some parameters q,h,d. These distinguishers are
formalized in Figure 1. At each of the q iterations, the d-tuple (X1, . . . ,Xd) is chosen
according to a certain distribution D. The function h returns at each iteration a value in
a finite set Z. Under a hypothesis similar to that of the hypothesis of stochastic equiv-
alence [23], we can assume that the Zi’s follow a distribution P0 under hypothesis H0

(when c is an instance of the perfect cipher) or a distribution P1 under hypothesis H1

(when c is an instance of the block cipher considered). The two hypotheses can be refor-
mulated as H0 : P = P0 and H1 : P = P1, where P is the distribution according to which
the Zi’s are sampled. Letting A� be the best distinguisher between P0 and P1, the iter-
ated distinguisher finally outputs A�(Zq). From Theorem 2 we know that its advantage
Advq to distinguish H0 from H1 (i.e., the block cipher C from the perfect cipher C�)
verifies 1−Advq(H0,H1) = 1−BestAdvq(P0,P1)

�

= 2−qC(P0,P1). This result verifies
asymptotically that having access to

q≈ 1
C(P0,P1)

(11)

samples derived from the plaintext/ciphertext pairs allows to distinguish C from C� with
a significant advantage. As an illustration, we propose to revisit various classical iter-
ated distinguishers, compute their complexity based on (11) and derive their strategy
from that of A�. We focus on the case of differential distinguishers, impossible differ-
entials and linear distinguishers. We attain estimate on q which are similar as in [6].
(see equations (15), (16) and (17)).

In the current application, the two distributions P0 and P1 are very close. In that
case, it is possible to derive an approximation of the Chernoff Information that is easier
to deal with. More formally, considering the case where both distributions are of full
support and letting εz = (P1[z]−P0[z])/P0[z] be such that εz = o(1) for all z ∈ Z, then
it can be shown (see [2, p.50]) that C(P0,P1) = 1

8 ln2 ∑
z

P0[z]ε2
z + o(‖ε‖2

2), where ε =

(εz)z∈Z . Approximating the Chernoff Information by the right-hand side of the previous
equation leads to

C(P0,P1)≈
1

8ln2 ∑
z∈Z

(P1[z]−P0[z])2

P0[z]
. (12)

A.1 Differential Distinguishers

Differential distinguishers [5] are iterated h-distinguishers of order d = 2 in which
h(x1,x2,y1,y2) = y1 ⊕ y2 and for which the distribution D is such that X1 is chosen
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uniformly at random and X2 = X1⊕a for some fixed a. Typically, we expect the func-
tion h(X1,X2,Y1,Y2) = Y1⊕Y2 to be biased under H1 and uniformly distributed under
H0. Under H1, we expect in practice for a well chosen b to have Y1⊕Y2 = b with proba-
bility p and Y1⊕Y2 = b′ �= b with probability 1−p

n−1 , where n is the cardinality of the text

space, such that4 1
n = o(p) and p = o(1). Accordingly, we have that P0 is the uniform

distribution and that

P1[z] =

{
p when z = b,
1−p
n−1 = β when z �= b

(13)

Under these notations, we now evaluate C(P0,P1) to approximate the number of plain-
text/ciphertext pairs required by a differential distinguisher to choose between C and C�

with a significant advantage. Letting

C(P0,P1) =− inf
0<λ<1

logF(λ)

where F(λ) = ∑
z

P0[z]1−λP1[z]λ, we have

F(λ) =
p

(np)λ +
1− p

(nβ)λ

We also have F(0) = F(1) = 1 and F ′(0)≤ 0, so that we know that F is minimum for
a λ0 such that F ′(λ0) = 0. We get

λ0 =
ln

(
p ln(np)

(1−p) ln 1−1/n
1−p

)
ln
(

np 1−1/n
1−p

) ∼ ln ln(np)
ln(np)

(14)

Consequently, (np)λ0 ∼ ln(np) and (nβ)λ0 = 1 + o(p) and thus F(λ0) = 1− p + o(p).
The Chernoff Information verifies C(P0,P1) = − logF(λ0) ∼ p

ln2 . We conclude from
(11) that a differential distinguisher approximately needs

q≈ ln2
p

(15)

samples to achieve a significant advantage.
It is also possible to find the practical (and optimal) strategy of a differential dis-

tinguisher. We know that the best distinguisher A� should yield 1 iff D(PZq‖P1) ≤
D(PZq‖P0) (see (2)). Since this is equivalent to yielding 1 when

2q(D(PZq‖P1)−D(PZq‖P0)) ≤ 1

and also

D(PZq‖P1)−D(PZq‖P0) = ∑
z

PZq [z] log
P0[z]
P1[z]

=
1
q

log
(β/p)nb

(nβ)q

4 These assumptions simply express the fact that we expect p to be small (otherwise the cipher
would be trivial to break), but much larger than 1

n (otherwise the cipher would be impossible
to break for the chosen a and b).
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nb denotes the number of times, where Y1⊕Y2 = b. The optimal strategy is to output 1
when nb

q ≥
ln(nβ)

ln(β/p) ∼
p

ln(np) . Since we take q≈ ln2
p , this condition is equivalent to nb > 0.

Subsequently, we can formalize a differential distinguisher as in Figure 2.

Oracle: a permutation c
for i from 1 to q do

pick a uniformly distributed random X
query the oracle for c(X) and c(X ⊕a)
if c(X ⊕a)⊕c(X) = b, output 1 and stop

end for
output 0

Fig. 2. A differential distinguisher based on the input difference a and output difference b

A.2 Impossible Differential

The scenario is similar to that considered in the case of differential distinguishers, ex-
cept that the particular difference b in the ciphertexts can never occur under H1, i.e., we
have p = 0. Using the same notations as in Section A.1, we now have F(λ) = (1−1/n)λ

and so C(P0,P1) =− log(1−1/n)∼ 1
n ln2 . Using (11) we conclude that an iterative dis-

tinguisher based on an impossible differential requires

q≈ n ln2 (16)

samples to reach a significant advantage. It is easy to see that this distinguisher should
output 1 iff nb = 0.

A.3 Linear Distinguisher

Linear distinguishers [25] are iterated h-distinguishers of order d = 1 where h(x,y) =
a · x⊕ b · y ∈ {0,1} (where · denotes the bit-wise xor) for some fixed input mask a
and output mask b and for which the distribution D is the uniform distribution. We
expect h(x,y) to be biased under H1 and uniformly distributed under H0, so that P0 is
assumed to be uniform and P±1 is such that P±1 [0] = 1

2(1∓ ε) and P±1 [1] = 1
2 (1± ε) for

some positive real value ε. In this case, we have a composite hypothesis testing problem
H0 : P = P0 and H1 : P∈ {P+

1 ,P−1 }. In such a case (see [2]), we have a best distinguisher
which its acceptance region and advantage can be specified by

Π� = {P : min
1≤i≤k

D(P‖Pi)≤ D(P‖P0)} 1−BestAdvq(P0,D) .= max
1≤i≤k

2−qC(P0,Pi)

Assuming that ε = o(1), we have from (12) that C(P0,P
±
1 ) ≈ ε2

8 ln2 from which we
conclude (using (11)) that a linear distinguisher requires
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q≈ 8ln2
ε2 (17)

samples to reach a non-negligible advantage. It is easy to see that this linear distin-

guisher should output 1 iff
∣∣∣2 n0

q −1
∣∣∣≥ |ε|

2 (where n0 denotes the number of 0’s in the

Zi’s), so that we can formalize a linear distinguisher as in Figure 3.

Oracle: a permutation c
initialize a counter m to 0
for i from 1 to q do

pick a uniformly distributed random X
query the oracle for c(X)
if a ·X = b ·c(X), increment the counter m

end for
output 1 if

∣∣∣2 m
q −1

∣∣∣≥ |ε|
2 , otherwise output 0.

Fig. 3. A linear distinguisher based on the input mask a and output mask b
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Abstract. Since the introduction of Identity-based (ID-based) cryptog-

raphy by Shamir in 1984, numerous ID-based signature schemes have

been proposed. In 2001, Rivest et al. introduced ring signature that pro-

vides irrevocable signer anonymity and spontaneous group formation.

In recent years, ID-based ring signature schemes have been proposed

and almost all of them are based on bilinear pairings. In this paper, we

propose the first ID-based threshold ring signature scheme that is not

based on bilinear pairings. We also propose the first ID-based threshold

‘linkable’ ring signature scheme. We emphasize that the anonymity of

the actual signers is maintained even against the private key generator

(PKG) of the ID-based system. Finally we show how to add identity es-

crow to the two schemes. Due to the different levels of signer anonymity

they support, the schemes proposed in this paper actually form a suite of

ID-based threshold ring signature schemes which is applicable to many

real-world applications with varied anonymity requirements.

1 Introduction

As the number of applications on the Internet continues to grow, more and more
traditional human interactions have been converted to their electronic counter-
parts: messaging, voting, payments, commerce, etc. The increase in reliance on
� A full version of the paper can be found at [55].
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the Internet potentially erodes personal privacy, the right of the individual to
be let alone [58], or the right to determine the amount of personal information
which should be available to others [59]. Privacy is important for many reasons,
such as impersonation and fraud. As more identity information is collected, cor-
related, and sold, it becomes easier for criminals to commit fraud. But privacy is
more than that, it also concerns about the secrecy of which websites we visited,
the candidates we voted for, etc.

Anonymity is one important form of privacy protection. In practice, anonymity
diversifies into various forms with different levels of anonymity. For example, look
at how anonymous remailers [35] have evolved over time – from type 0 to type
I to type II, every successor provides a higher level of anonymity, at the cost of
lower efficiency and higher resource consumption. On the other side, for some
applications, too high a level of anonymity can do more harm than good. For
example, while unconditional anonymity provides maximum protection to users
which can be useful for scenarios such as secret leaking [52]. However, uncondi-
tional anonymity may not be desirable for some other applications. For instance,
in some scenarios one would like to have a trusted third party to have the ca-
pability to trace users after the fact that the users have misbehaved, such as
tracing double-spenders in an e-cash system.

Designing secure cryptographic schemes with unconditional anonymity is un-
doubtedly challenging. However, designing schemes with a carefully adjusted
level of anonymity is sometimes even more challenging. It is also very reward-
ing due to the fact that these schemes find many applications in practice. For
example, a ring signature scheme [52] allows a signer to generate a signature on
behalf of a group of signers such that everyone can be sure that the signature is
generated by one of the group members yet no one can tell who the real signer
is. Different from group signature, there is no group manager, no member revo-
cation, and it is spontaneous (setup-free). While a linkable ring signature [46]
allows anyone to tell whether two signatures are generated by the same signer
while still maintaining the anonymity of the real signer as a conventional ring
signature scheme in the way that no one can revoke the real signer’s anonymity.

1.1 Background and Related Work

Identity-based Cryptography. In 1984, Shamir [54] introduced the notion of
Identity-based (ID-based) cryptography to simplify certificate management. The
unique feature of ID-based cryptography is that a user’s public key can be any
arbitrary string. Since then, many other ID-based signature schemes have been
proposed, despite the fact that the first practical ID-based encryption appeared
only until 2001 [13]. In 2004, Bellare et al. [10] developed a framework to analyze
the security of ID-based signature schemes and they proved the security (or
insecurity) of 14 schemes found in the literature. As in the case of standard
signature, there are also blind signature [63], proxy signature [61], proxy blind
signature [32], proxy ring signature [6,63], and proxy signcryption [44] in the
paradigm of ID-based cryptography.
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Group-oriented Cryptography. This type of schemes has a group of users
involved, e.g. secret sharing schemes, group signature schemes, etc. In some of
them, group members participate equally well in all the processes and therefore,
there is no concern of anonymity. In some other schemes, however, the participa-
tion of only one or a proper subset of members is required to complete a process,
while the remaining members are not involved in (and are possibly unaware of)
the process. Such a distinction between participants and non-participants gives
anonymity a meaning. Specifically, a participant may prefer to be indistinguish-
able from the whole group of members, thus maintaining his privacy in par-
ticipating the process. According to the level of anonymity the group-oriented
cryptographic schemes provide, they can be categorized as follows.

No Anonymity means the identities of the participating users are known to
everyone. Privacy is simply not a concern here. For example, in a multi-signature
scheme [41,48], everyone can identify who has contributed in the signing process.

Anonymity means not everyone should be able to identify participating users.
A good example is ring signature [52], in which besides the actual signer, no one
can identify the actual signer of a signature among a group of possible signers.
There have been many different schemes proposed [1,31,53,21] since the first
appearance of ring signature in 1994 [30] and the formal introduction of it in
2001 [52]. The first ID-based ring signature was proposed in 2002 [62]. Two
constructions in the standard model were proposed [5]. Their first construction
was discovered to be flawed [33], while the second construction is only proven
secure in a weaker model, namely, selective-ID model. The first scheme claimed
to be secure in the standard model is [39] under the trusted setup assumption.
However, their proof is wrong and it is unknown whether their scheme is secure
or not.1 Other existing ID-based ring signatures includes [23,7,64,28,26,50,40].
Threshold variant of ID-based ring signatures includes [24,29,39]. To the best
of the authors’ knowledge, all the existing ID-based ring signature schemes are
pairing-based except the one in [40] which is RSA-based.

Revocable Anonymity can be summarized as “no anonymity to an authority,
but anonymity to anybody else”. In schemes with revocable anonymity, there is
always an authority who is capable of revoking the anonymity, e.g., under dis-
pute or court order. The authority is often assumed to be trusted not to abuse
power. Users are anonymous to everybody other than this authority. Group sig-
nature schemes [22,9,12] provide revocable anonymity. Many credential systems
[16,17,18] also provide revocable anonymity.

Linkable Anonymity is “anonymity with a condition”. Schemes with linkable
anonymity give maximal anonymity to users who succeeded in satisfying the
condition and take away a certain degree of anonymity from users who failed as
a punishment. Let us illustrate the idea using a linkable ring signature scheme.
In this scheme, users are assumed to sign only once, in which case they enjoy
anonymity in full. However, if a user signs twice (or k times, in general), anyone
can tell if two signatures are produced by the same user or not, thus resulting

1 We explicitly point out the flaw in Appendix A.
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in a reduced level of anonymity. Linkable ring signature was introduced in [46].
[57] gave a separable construction that supports threshold. The first constant-
size linkable ring signature was proposed in [56]. Linkable group signature first
appeared in [49]. Escrowed linkable ring signature was proposed in [27]. The first
constant-size linkable ring signature (and revocable if and only if linked variant)
was proposed in [4]. The construction, however, was flawed as shown in [42]. A
practical application of linkable ring signature is e-voting [25].

A technical difficulty in constructing an ID-based linkable ring signature is
that there exists a Private Key Generator (PKG) in the system responsible for
issuing users’ secret keys yet linkable anonymity should be maintained, even
against the PKG. Our construction solves this by modifying the key extraction
algorithm such that user’s secret key is co-generated by the PKG and the user.
This idea is reminiscent to the idea of self-certified keys [37]. It also allows the
users in our ID-based linkable signature scheme to refute any framing attacks
launched by the PKG through generating another signature which is unlinked
to the forged signature.

1.2 Our Contributions and Motivations

– We propose the first ID-based threshold ring signature scheme that is not
based on bilinear pairings. We show its security under the Strong RSA and
DDH Assumption, in the random oracle model [11]. In particular, anonymity
of the ring signers is maintained even against the PKG.

– By extending on our basic construction, we propose the first ID-based link-
able threshold ring signature scheme. All previously proposed linkable ring
signature schemes except [27] are not ID-based.2

– We show the method of adding identity escrow in both of our schemes. With
identity escrow, some trusted authority can revoke the anonymity of a ring
signature when it becomes necessary. The ability of revoking the real signer
can help prevent the signature scheme from being abused by misbehaving
users. The schemes, plus their identity-escrowed counterparts, form a suite
of ID-based signature schemes applicable to a wide variety of scenarios with
different anonymity requirements. Note that even with identity escrow, the
scheme is not the same as a group signature scheme due to the spontaneity
property of the ring signature scheme.

Our Motivations. As we have seen many constructions of threshold ring signa-
ture schemes [30,14,60,45,47,57,24,29,39] proposed recently, there are only few
of them [24,29,39] under the setting of ID-based cryptography. ID-based ring
signature schemes have similar applications to that of conventional public key
setting, but with the key escrow property. Applications include whistle-blowing
[52] and ad hoc group authentication [14]. All ID-based threshold ring signature
schemes proposed are pairing based. Also it is obvious to further extend them

2 We note that although the linkable ring signature scheme in [4] is ID-based, it is

later proven insecure in [42].
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to a linkable variant, especially it needs to be secure under the security models
we define in this paper. Therefore, the work presented in this paper is mainly
motivated by the following two aspects.

1. As of theoretical interest, we target to propose an identity-based scheme
which does not rely on security assumptions related to pairings, for example,
Gap Diffie-Hellman Problem.

2. All current ID-based threshold ring signature schemes do not allow us to
extend it to an ID-based linkable threshold ring signature scheme. We target
to construct a scheme which can be extended so that we can construct a
linkable variant.

1.3 Comparison

We compare our scheme with other ID-based threshold ring signature schemes
[24,29,39] in Table 1.

Table 1. Comparison of different ID-based threshold ring signature schemes

Signature size Number of pairing Mathematical Security Extend to
(group elements) in verification Assumption model linkable

[24] O(n) O(n) GDH ROM No

[29] O(n2) O(n2) ECDL, BPI ROM No
[39] O(n) O(n) SGH, CDH Unknown No
Our schemes O(n) 0 Strong RSA, DDH ROM Yes

In the table, n is the number of users included in the ring. The assumptions
mentioned include:

– GDH: Gap Diffie-Hellman problem
– ECDL: Elliptic Curve Discrete Logarithm problem
– BPI: Bilinear Pairings Identity problem
– SGH: Subgroup Decision problem
– DDH: Decisional Diffie-Hellman problem

Note that each group element of our scheme is about 1024 bits, while a group
element of other pairing-based schemes is about 160 bits.

We also note that although the authors of the scheme in [39] claimed that
their scheme is secure in the standard model, we find out a flaw in the proof.
It is unknown whether their scheme is secure or not, at least in the standard
model. We present the flaw in Appendix A.

Paper Organization. We give some preliminaries in Sec. 2 and define a se-
curity model in Sec. 3. We then propose an ID-based threshold ring signature
scheme in Sec. 4 and an ID-based linkable variant in Sec. 5. In Sec. 6, we show
how to add identity escrow to our schemes.
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2 Preliminaries

A safe prime p is a prime such that (p− 1)/2 is also prime3. Denote by QR(N)
the group of quadratic residues modulo the safe prime product N . For positive
real numbers a ≤ b, *a+ denotes the greatest integer less than or equal to a; [a, b]
denotes the set {x ∈ Z|*a+ ≤ x ≤ *b+} and S(a, b) denotes [*a+ − *b++ 1, *a++
*b+ − 1]. If S is a set, ℘(S) denotes the power set of S and ℘t(S) denotes the
set of elements in ℘(S) of size t, i.e. ℘t(S) .= {s ∈ ℘(S)| |s| = t}. A negligible
function ν(λ) is a function such that for all polynomial poly and sufficiently large
λ, ν(λ) < 1/poly(λ). When G is a finite cyclic group, define G(G) to be the set
of generators of G, i.e. {g ∈ G|〈g〉 = G}.

2.1 Mathematical Assumptions

Definition 1 (Strong RSA [8,36]). Let n = pq be an RSA modulus. Let G
be a cyclic subgroup of Z∗

n of order u. Given n and z ∈R G, the Strong RSA
Problem is to find x ∈ G and e ∈ Z>1 such that z = xe mod n. The Strong
RSA Assumption says that there exists no PPT algorithm that can solve the
Strong RSA Problem, in time polynomial in the size of |u|.

In our schemes, we need to make restriction to safe primes for p and q in the
Strong RSA assumption. However, it is easy to see that the Strong RSA as-
sumption without this restriction implies the Strong RSA assumption with this
restriction, assuming that safe primes are sufficiently dense.

Definition 2 (Decisional Diffie-Hellman (DDH) [11]). Let G be a cyclic
group generated by g of order u. The DDH Problem is to distinguish between
the distributions (g, ga, gb, gc) and (g, ga, gb, gab), with a, b, c ∈R Zu. The DDH
Assumption says there exists no PPT algorithm solve the DDH Problem, in time
polynomial in the size of |u|.

2.2 Signature of Knowledge

A Σ-protocol for an NP-relation R is a 3-round two-party protocol, such that
for every input (x, y) ∈ R to a prover P and y to a verifier V , the first P-round
yields a commitment t, the subsequent V-round replies with a challenge c, and
the last P-round concludes by sending a response s. At the end of a run, V
outputs a 0/1 value, functionally dependent on y and the transcript π

.= (t, c, s)
only. A transcript is valid if the output of the honest verifier is 1. Additionally,
we require a Σ-protocol to satisfy:

– (Special Soundness.) There exists a computable function K (Knowledge Ex-
tractor) that on input y in the domain of the second component of R and
a pair of valid transcripts (t, c, s) and (t, c′, s′), with the same commitment,
outputs x such that (x, y) ∈ R.

3 Although it has never been proven, it is widely conjectured and amply supported by

empirical evidence, that safe primes are sufficiently dense.
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– (Special Honest-Verifier Zero-Knowledge (Special HVZK).) There exists an
efficient algorithm S (Simulator) that on input y in the domain of the second
component of R and a challenge c, outputs a pair of commitment/response
messages t, s, such that the transcript π

.= (t, c, s) is valid, and it is dis-
tributed according to the distribution (P(x, y) ↔ V(y)).

A signature of knowledge allows a signer to prove the knowledge of a secret with
respect to some public information non-interactively. Following [20], we call this
type of signatures “a signature based on proofs of knowledge”, SPK for short.
A HVZK Σ-protocol can be turned into a SPK by setting the challenge to the
hash value of the commitment together with the message to be signed [34]. Such
schemes can be proven secure against existential forgery under chosen-message
attack [38] in the random oracle model using the proofing technique introduced
in [51].

3 Definitions and Security Models

3.1 ID-TRS (ID-based Threshold Ring Signature)

An ID-Based Threshold Ring Signature (ID-TRS) scheme is defined as a tuple
of four probabilistic polynomial-time (PPT) algorithms:

– ID-TRS.Setup. On input 1λ where λ ∈ N is a security parameter, it outputs
a master secret key s and a system parameter set param = (1λ,S,M, Ψ),
where S is the user secret key space, M the message space, and Ψ the
signature space.

– ID-TRS.Extract. On input param, an identity IDi ∈ {0, 1}∗ for a user and
the master secret key s, it outputs a user secret key si ∈ S for the user.

– ID-TRS.Sign. On input param, an integer n as the ring size, a threshold
t ∈ [1, n], an identity set {IDi ∈ {0, 1}∗ | i ∈ [1, n]}, a message m ∈ M, and
a t-element user secret key set {sj ∈ S | j ∈ Π} where Π ∈ ℘t([1, n]), it
outputs an ID-based (t, n)-threshold ring signature σ ∈ Ψ .

– ID-TRS.Verify. On input param, ring size n, threshold t, identity set {IDi ∈
{0, 1}∗ | i ∈ [1, n]}, message m ∈ M and signature σ ∈ Ψ , it outputs either
valid or invalid.

Correctness. An ID-TRS scheme defined above satisfies verification correct-
ness if for any (s, param) ← ID-TRS.Setup(1λ), n ∈ N, t ∈ [1, n], L = {IDi ∈
{0, 1}∗ | i ∈ [1, n]}, Π ∈ ℘t([1, n]), {si ← ID-TRS.Extract(param, IDi, s) | i ∈
[1, n]} and m ∈ M, if σ ← ID-TRS.Sign(param, n, t, L,m, {sj | j ∈ Π}), then
valid ← ID-TRS.Verify(param, n, t, L,m, σ).

A secure ID-TRS scheme should be unforgeable and anonymous. Specific
to ID-based setting, our security model captures the adaptive chosen ID attacks.
Due to page limitation, please refer to the full version of the paper for formal
definitions.
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3.2 ID-LTRS (ID-based Linkable Threshold Ring Signature)

As introduced at the beginning of this paper, ID-LTRS (ID-based Linkable
Threshold Ring Signature) scheme is a variant of ID-TRS. In the following, we
give the formal definition and specify the security requirements.

– ID-LTRS.Setup. Same as ID-TRS.Setup, except: (1) it has an additional
input k ∈ N which represents the maximum number of events that the
system supports, and (2) param additionally includes an event-ID space E .
We have |E| = k.

– ID-LTRS.Extract Protocol. User with identity IDi engage with PKG in the
protocol with common input param. After the protocol, the user is obtained
a user secret key si ∈ S.

– ID-LTRS.Sign,Verify. Same as ID-TRS.Sign,Verify, except they both
additionally have an input event-ID e ∈ E .

– ID-LTRS.Link. On input param, e ∈ E , two ring sizes n1, n2, two thresholds
t1 ∈ [1, n1] and t2 ∈ [1, n2], two identity sets Yj = {ID(j)

i | i ∈ [1, nj]} for
j = 1, 2, two messages m1,m2 ∈ M, and two signatures σ1, σ2 ∈ Ψ such
that valid ← ID-LTRS.Verify(param, e, nj, tj ,Yj ,mj , σj) for j = 1, 2, the
algorithm returns either linked or unlinked.

Note that we require an interactive extract protocol (between the PKG and user)
instead of the normal extract algorithm here. The purpose is to prevent the PKG
from learning the identity of the actual signer from the additional linking tag.

Correctness. Besides verification correctness (which is defined similarly
to that for ID-TRS), an ID-LTRS scheme also satisfies linking correctness if

linked ← ID-LTRS.Link(param, e, n1, n2, t1, t2,Y1,Y2,m1,m2, σ1, σ2)

for any (s, param) ← ID-LTRS.Setup(1λ, k), n1, n2 ∈ N, tj ∈ [1, nj], Yj = {ID(j)
i |

i ∈ [1, nj]}, Πj ∈ ℘tj ([1, nj]), {s(j)
i ← ID-LTRS.Extract Protocol | i ∈ [1, nj]},

m1,m2 ∈ M such that σj ← ID-LTRS.Sign(param, nj , tj ,Yj ,mj , {s(j)
i | i ∈

Πj}), for j = 1, 2 and Π1 ∩Π2 �= ∅.

Remark : According to [56], linkability for threshold ring signatures is diversi-
fied into individual-linkability and coalition-linkability, our definition belongs to
the former type. That is, two signatures are linked if they share at least one
common signer even though the two identity sets are different. The definition of
linkability affects directly the level of anonymity due to the additional access to
ID-LTRS.Link by the adversary.

The security requirements of ID-LTRS schemes include Unforgeability ,
Anonymity , Linkability and Non-slanderability , whose formal definitions
can be found in the full version of the paper. Note that we do not model the case
of a malicious PKG [3] where the adversary acts as a malicious PKG who
generates all public parameters instead of just given the secret key.
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4 Our ID-TRS Scheme

We first give an overview of our construction. For an identity ID, the correspond-
ing secret key is (a, x), with x > 1, such that ax ≡ Hid(ID) (mod N), where
Hid : {0, 1}∗ → QR(N) is some hash function. The modulus N is a product of
two equal-length safe primes with factorization only known to the PKG.

A user proves the knowledge of his secret key by running the Σ-protocol given
by:

PK{(a, x) : y ≡ ax ∧ x ∈ Γ}
for y = Hid(ID) and some suitable range Γ . An ID-based signature scheme is
readily available after carrying out the Fiat-Shamir transformation on the Σ-
protocol:

SPK1{(a, x) : y ≡ ax ∧ x ∈ Γ}(m). (1)

Now, to extend the IBS scheme construction above into a threshold ring setting,
we implement the following signature of knowledge (SPK):

SPK2

⎧⎨⎩(αi, χi)n
i=1 :

∨
J∈℘t([1,n])

∧
i∈J

yi ≡ αχi

i ∧ χi ∈ Γ

⎫⎬⎭ (m) (2)

with yi = Hid(IDi) for all i ∈ [1, n]. This SPK proves that there exists d identities
in {ID1, · · · , IDn} such that the prover knows the secret keys corresponding to
these identities. To implement SPK2, we incorporate the polynomial interpola-
tion technique [30] into SPK1.

We now describe the details of our ID-based (t, n)-threshold ring signature
scheme.

– ID-TRS.Setup. On input a security parameter λ, the algorithm randomly
generates a safe prime product N = pq = (2p′ + 1)(2q′ + 1), where |p′| =
|q′| = λ. It then selects two cryptographic hash functions Hid : {0, 1}∗ →
QR(N) and Hsig : {0, 1}∗ → Z2κ . For security analysis, we consider them
to behave as random oracles. It also randomly picks g1, g2, g3 ∈ QR(N) that
are generators of QR(N).
To implement Hid using a conventional string-based hash function, we need
to randomly choose another generator g of QR(N) and define Hid as ID →
gh(ID) mod N , where h : {0, 1}∗ → {0, 1}2λ+θ is a hash function. The param-
eter θ > 0 defines the quality of the hash output of Hid. A good construction
of Hid should have the hash value distributed uniformly on QR(N). It can
be seen that the construction above can yield a good distribution when θ is
large enough. In practice, we may consider setting θ to 8.
Let κ, γ1, γ2 ∈ N and 1 < ε ∈ R be further security parameters such that
γ1 − 2 > ε(γ2 + κ) > 2λ. Define Γ ′ .= S(2γ1 , 2γ2), and Γ

.= S(2γ1 , 2ε(γ2+κ)).
The master secret key is set to msk := (p, q). The list of system parameters
is param := (λ, κ, ε,N,Hid, Hsig , g1, g2, g3, Γ

′, Γ ).
To achieve security comparable to the standard 1024-bit RSA signature,
λ = 512, κ = 160, ε = 1.1, γ1 = 1080, γ2 = 800 can be used as the security
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parameters. For security analysis, we require that all these security parame-
ters to be sufficiently large. It is also important for the generators g, g1, g2, g3

are generated independently, that is, their relative discrete logarithm should
not be known to anyone. This is to prevent the secret keys of users from
being known from the auxiliary commitments which is defined below and
make sure that the proper implementation of Hid described above.

– ID-TRS.Extract. On input a new user ID IDi, the algorithm computes yi :=
Hid(IDi), picks a prime xi ∈R Γ ′, and then solves axi

i ≡ yi (mod N) for
ai using the master secret key msk. It finally returns the user’s secret key
ski := (ai, xi). An entry 〈IDi, yi, ai, xi〉 is recorded. On input an old user ID,
the algorithm retrieve the corresponding entry to maintain consistency.

– ID-TRS.Sign. On input the list of system parameters param, a group size
n ∈ N of size polynomial in λ, a threshold t ∈ [1, n], a set of n IDs Y =
{ID1, · · · , IDn}, a list of t secret keys X = {skπ1 , · · · , skπt} such that the
corresponding public key IDπi of each skπi = (aπi , xπi) is contained in Y,
a message m ∈ {0, 1}∗, the algorithm first sets Π := {π1, · · · , πt} ⊆ [1, n],
computes yi := Hid(IDi) for all i ∈ [1, n] and then does the following:
1. (Auxiliary commitment.) For all i ∈ Π , pick ui ∈R ±{0, 1}2λ and com-

pute wi := uixi. Compute in modulo N :

Ai,1 := gui
1 , Ai,2 := aig

ui
2 , Ai,3 := gxi

1 gui
3 .

For all i ∈ [1, n]\Π , pick Ai,1, Ai,2, Ai,3 ∈R QR(N).
2. (Commitment.) For all i ∈ Π , pick ri,x ∈R ±{0, 1}ε(γ2+κ), ri,u ∈R

±{0, 1}ε(2λ+κ), ri,w ∈R ±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
ri,u

1 , Ti,2 := g
ri,x

1 g
ri,u

3 , Ti,3 := A
ri,x

i,1 g
−ri,w

1 , Ti,4 := A
ri,x

i,2 g
−ri,w

2 .

For all i ∈ [1, n]\Π , pick ci ∈R Z2κ , si,u ∈R ±{0, 1}ε(2λ+κ), si,x ∈R

±{0, 1}ε(γ2+κ), si,w ∈R ±{0, 1}ε(γ1+2λ+κ+1). Compute in modulo N :

Ti,1 := g
si,u

1 Aci

i,1, Ti,2 := g
si,x−ci2

γ1

1 g
si,u

3 Aci

i,3,

Ti,3 := A
si,x−ci2

γ1

i,1 g
−si,w

1 , Ti,4 := A
si,x−ci2

γ1

i,2 g
−si,w

2 yci

i .

3. (Challenge.) Compute

c0 := Hsig(param, n, d, (yi, Ai,1, Ai,2, Ai,3)n
i=1, (Ti,1, · · · , Ti,4)n

i=1,m).

4. (Response.) Generate a polynomial f over GF (2κ) of degree at most
(n − t) such that c0 = f(0) and ci = f(i) for all i ∈ [1, n]\Π . For all
i ∈ Π , compute ci := f(i), and compute in Z:

si,u := ri,u − ciui, si,x := ri,x − ci(xi − 2γ1), si,w := ri,w − ciwi.

5. (Signature.) Set σ′ := (f, (si,u, si,x, si,w)n
i=1).
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6. (Output.) Return the signature as: σ := ((Ai,1, Ai,2, Ai,3)n
i=1, σ

′).
Remark : step 2 to 4 together contribute to the signing algorithm of:

SPK3

⎧⎨⎩
⎛⎝ui,

xi,
wi

⎞⎠n

i=1

:
∨

J∈℘t([1,n])

∧
i∈J

Ai,1 ≡ gui
1 ∧Ai,3 ≡ gxi

1 gui
3 ∧

Axi

i,1 ≡ gwi
1 ∧Axi

i,2 ≡ gwi
2 yi∧

xi ∈ Γ

⎫⎬⎭ (m),

(3)
which is an instantiation of SPK2. The signature of SPK3 is σ′ in step
5.

– ID-TRS.Verify. On input param, a group size n of length polynomial in λ,
a threshold t ∈ [1, n], a set {IDi ∈ {0, 1}∗|i ∈ [1, n]} of n user identities, a
message m ∈ M, a signature σ ∈ Ψ , the algorithm computes yi := Hid(IDi)
for all i ∈ [1, n] and then does the following.
1. Check if f is a polynomial over GF (2κ) of degree at most (n− t).
2. For all i ∈ [1, n], compute ci := f(i) and compute in modulo N :

T ′
i,1 := g

si,u

1 Aci

i,1, T ′
i,2 := g

si,x−ci2
γ1

1 g
si,u

3 Aci

i,3,

T ′
i,3 := A

si,x−ci2
γ1

i,1 g
−si,w

1 , T ′
i,4 := A

si,x−ci2
γ1

i,2 g
−si,w

2 yci

i .

3. Check if the following statements hold: si,u

?
∈ {0, 1}ε(2λ+κ)+1, si,x

?
∈

{0, 1}ε(γ2+κ)+1, si,w

?
∈ {0, 1}ε(γ1+2λ+κ+1)+1, for all i ∈ [1, n], and

f(0) ?= Hsig(param, n, t, (yi, Ai,1, Ai,2, Ai,3)n
i=1, (T

′
i,1, · · · , T ′

i,4)
n
i=1,m).

4. Accept if all checks pass and reject otherwise.
Remark : The above verification actually verifies SPK3.

The proof for correctness is straightforward. We show its security in the full
version of the paper.

5 ID-Based Linkable Threshold Ring Signature

In this section, we propose the first ID-based linkable threshold ring signature
(ID-LTRS) and present its security analysis.

5.1 Our Proposed Construction

The key idea is to include a tag to the original ID-TRS signature for the purpose
of linking. Such a tag is a one-way and unique image of the signer’s secret signing
key. To prevent PKG from learning the signer identity from the tag, we modify
the extract protocol so that the secret signing key is co-generated by signer and
PKG. The signature, besides proving the knowledge of a secret signing key, now
also proves that the tag is formed correctly. To test whether two signatures are
linked, one simply checks if the two signatures contain the same tag. Below is
our construction.
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– ID-LTRS.Setup. Same as ID-TRS.Setup, except it additionally picks ei ∈R

G(QR(N)) for all i ∈ [1, k] and sets E := {ei|i ∈ [1, k]}. It also picks one more
generator h ∈R G(QR(N)). Define λ1, λ2 such that γ2 > λ1+2, λ1 > ε(λ2+κ)
and λ2 > 2λ. Define Λ̃′ =]0, 2λ2[, Λ′ = S(2λ1 , 2λ2) and Λ = S(2λ1 , 2ε(λ2+κ))

– ID-LTRS.Extract Protocol. User i with ID IDi engage with PKG in the
following protocol.
1. User randomly generates d̃i ∈R Λ̃′, a random r̃ ∈R ±{0, 1}2λ and sends

C1 = gd̃i
1 gr̃

2, together with knowledge of representation of C1 with respect
to g1 and g2 to PKG. It also sends IDi together.

2. PKG checks that the proof is valid and randomly selects α, β ∈R Λ̃′ and
sends α, β to user.

3. User computes di = 2λ1 +(αd̃i+β mod 2λ2) and sends C2 = hdi together
with the proof of validity to PKG. This can be done by SPK{(u, v, w) :
Cα

1 gβ
1 = gu

1 g
2λ2v
1 gw

2 ∧ C2 = hu ∧ u ∈ Λ′}(m)
4. PKG checks if the proof is valid, and picks a prime xi ∈R Γ ′, and then

solves axi

i ≡ yiC2 (mod N) for ai using the master secret key msk, where
yi = H(IDi). Return (ai, xi) to user and record the entry 〈IDi, yi, ai, xi〉.

5. User checks if axi

i = yih
di (mod N)

We remark that this structure is used by the ACJT group signature [2].
– ID-LTRS.Sign. For an event with event-ID e ∈ E , compute τi := edi mod N

for all i ∈ Π and τi := eti mod N with ti ∈R Λ′ for all i ∈ [1, n]\Π . The
algorithm is subsequently modified from ID-TRS.Sign to also prove that the
τi’s are correctly formed. Specifically, the algorithm now implements:

SPK4

⎧⎨⎩(ai, xi, di)
n
i=1 :

∨
J∈℘t([1,n])

∧
i∈J

yih
di ≡ axi

i ∧ τi ≡ edi ∧ di ∈ Λ, xi ∈ Γ

⎫⎬⎭ (m)

(4)

which is instantiated as:

SPK5

⎧⎨⎩(ui, xi, wi)
n
i=1 :

∨
J∈℘t([1,n])

∧
i∈J

Ai,1 ≡ gui
1 ∧ Ai,3 ≡ gxi

1 gui
3 ∧

Axi
i,1 ≡ gwi

1 ∧ Axi
i,2 ≡ gwi

2 yih
di ∧

τi ≡ edi ∧ xi ∈ Γ ∧di ∈ Λ

⎫⎬⎭ (m).

(5)

The actual steps implementing the SPK5 above follow closely those im-
plementing SPK3 in ID-TRS.Sign and are thus not verbosely enumerated .
Denote by σ5 the signature output of SPK5. Note that it includes τ1, · · · , τn.
In addition, generate a signature σ6 for the following SPK using the knowl-
edge of xi’s for i ∈ Π and ti’s for i ∈ [1, n]\Π :

SPK6

{
(αi)n

i=1 :
n∧

i=1

τi ≡ eαi

}
(m). (6)

The detailed implementation of the above SPK is given in the full version
of the paper.
Finally the signature is output as σ := (σ5, σ6).
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– ID-LTRS.Verify. Given a signature σ = (σ5, σ6), verify the validity of σ5
with respect to SPK5 and that of σ6 with respect to SPK6. Again we omit
the verification algorithm for SPK5 as it can be adapted in a straightforward
manner from ID-TRS.Verify. Verification for SPK6 is given in the full
version of the paper.

– ID-LTRS.Link. On input the list of system parameters param, an event-ID
e ∈ E , two group sizes n1, n2 ∈ N of length polynomial in the security
parameter λ, two thresholds t1 ∈ [1, n1] and t2 ∈ [1, n2], two identity sets
Yj = {ID(j)

i ∈ {0, 1}∗|i ∈ [1, nj]} for j = 1, 2, two messages m1,m2 ∈ M,
and two signatures σ1, σ2 ∈ Ψ such that valid ← Verify(param, e, nj, tj ,
Yj , mj , σj) for j = 1, 2, the algorithm parses σ1 for the tags (τ (1)

1 , · · · , τ (1)
n1 )

and σ2 for the tags (τ (2)
1 , · · · , τ

(2)
n2 ). If there exists a tag from the first set

and a tag from the second set such that the two tags are equal in value, the
algorithm outputs linked. Otherwise it returns unlinked.

Correctness of our scheme is straightforward and we show its security in the full
version of the paper.

6 Identity Escrow

As mentioned earlier, the anonymity provided by ring signatures can be unde-
sirably strong in some situations. Authorities prefer providing only revocable
anonymity to their users. Their ability of revocation serves as a mechanism that
prevents them from being suffered from the presence of misbehaving users. In-
troducing a trusted authority who can reveal the true identity of the user under
certain circumstances is formally known as identity escrow [43].

To add identity escrow to ring signature schemes, one could variably encrypt
any information sufficient for identifying the signer, and then include in the sig-
nature the resulting ciphertext plus a proof that it is correctly formed. In fact,
verifiable encryption [15,19] has been frequently used (though sometimes implic-
itly) to achieve revocable anonymity. For instance, the generic constructions of
group signatures [9,12]. As a concrete example, in [2], part of the user’s secret
key4 is ElGamal encrypted under the public key of an authority. The unforge-
ability of the signature scheme implies that valid signatures are actually proofs
of the fact that encryption was done according to specification.

Our Construction. We use the same technique as in [2] to add identity escrow
to the two schemes proposed above. The resulting schemes are virtually the
same as their respective original schemes without identity escrow, except that in
Setup, g2 is not generated randomly. Instead it is generated in a way such that
the revocation manager knows the discrete logarithm of g2 in base g1, i.e. he
knows an integer s such that g2 ≡ gs

1 (mod N). Assume the revocation manager
is trusted not to abuse his knowledge of s in the sense that he does not collude
with any adversary and only uses s when trying to revoke the anonymity of a
4 Also known as the user’s signing certificate in the context of group signatures.
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signature with eligible reasons, e.g. under court orders. Then the two schemes
with identity escrow still enjoy all the security notions we proved for original
schemes.

To see how the anonymity can be revoked, the revocation manager can com-
pute from a signature a part of the secret key (ai, xi), namely ai, of all partici-
pating users by computing Ai,2/A

s
i,1 mod N for all i ∈ [1, n]. The unforgeability

of the signature scheme forces at least d pairs of Ai,1 and Ai,2 to be formed cor-
rectly. These pairs are exactly those belonging to the participating users. The
remaining ai could just be some random numbers. All n ai’s are passed to the
key issuing manager, whom can then look up in his database the identity of
the user possessing ai as a part of his secret key, for each i ∈ [1, n]. In this way,
the d actual signers can be identified.

The revocation manager cannot frame a user if he is required to prove (in zero-
knowledge of s) the statement g2 ≡ gs

1 ∧Ai,2 ≡ aiA
s
i,1. The key issuing manager

cannot frame a user as well if he is required to prove (in zero-knowledge of xi)
the statement axi

i ≡ yi, where yi = Hid(IDi).

7 Performance and Conclusion

The computation complexity and the signature size of our construction are both
linear to the ring size. This is the major tradeoff of our schemes as they achieve
different levels of anonymity. To improve their efficiency, especially on construct-
ing an efficient ID-based linkable threshold ring signature scheme, will be our
next research work.

In this paper, we proposed the first ID-based threshold ring signature con-
struction that is not based on bilinear pairings. We formally proved the secu-
rity of the construction under well-known mathematical assumptions in the RO
model. Based on the construction, we then proposed the first ID-based linkable
(threshold) ring signature scheme. We argued the security of all the construc-
tions. Finally we showed how to add identity escrow to the two schemes. All the
ID-based threshold ring signature schemes proposed in this paper form a suite
of schemes applicable to many real world applications with varied anonymity
requirements.

Memorial

This paper is dedicated to the first author, Patrick P. Tsang, who was a PhD
student in the Computer Science program at Dartmouth College, has passed
away on October 27, 2009 as a victim to cancer. He was 28 years old.

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys.

In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer,

Heidelberg (2002)



180 P.P. Tsang et al.

2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure

coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.

LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)

3. Au, M., Chen, J., Liu, J., Mu, Y., Wong, D., Yang, G.: Malicious KGC attacks

in certificateless cryptography. In: ASIACCS 2007, pp. 302–311. ACM Press, New

York (2007)

4. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Constant-size id-based linkable and

revocable-iff-linked ring signature. In: Barua, R., Lange, T. (eds.) INDOCRYPT

2006. LNCS, vol. 4329, pp. 364–378. Springer, Heidelberg (2006)

5. Au, M.H., Liu, J.K., Yuen, T.H., Wong, D.S.: Id-based ring signature scheme secure

in the standard model. In: Yoshiura, H., Sakurai, K., Rannenberg, K., Murayama,

Y., Kawamura, S.-i. (eds.) IWSEC 2006. LNCS, vol. 4266, pp. 1–16. Springer,

Heidelberg (2006)

6. Awasthi, A.K., Lal, S.: Id-based ring signature and proxy ring signature schemes

from bilinear pairings. Cryptology ePrint Archive, Report 2004/184 (2004),

http://eprint.iacr.org/

7. Awasthi, A.K., Lal, S.: Id-based ring signature and proxy ring signature schemes

from bilinear pairings. CoRR, abs/cs/0504097 (2005)
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A Analysis of the Proof of [39]

We point out a flaw in the security proof of [39]. While in the security model,
the attacker is allowed to query secret key of any identity of his choice (private
key query), However, in the security proof of anonymity and unforgeability, no
description is given on how this query is handled.

Indeed, this flaw in the security proof leads to the following theoretical error.
Recalled that the secret key of an identity ID is H(ID)a, where H is some
collision-resistant hash function and a is the master secret key of the PKG.
This is in fact a very common key structure in identity-based encryption or
signature [13], and is well-known to be secure under the CDH assumption in the
random oracle model.

However, in the standard model where the hash function is only required to
be collision-resistant, it is entirely possible for an attacker to obtain the secret
key of identity ID1 by issuing private key queries on a set of identities {ID2,
. . ., IDk} such that H(ID1) =

∏
H(IDi).

Thus, it is very doubtful, to say the least, that [39] can be proven secure in
the standard model when H is only modelled as collision-resistant hash function.
The claim that the scheme in [39] is secure in the standard model is not accurate.
One could, however, possibly simulates the ID query in the random oracle model.
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Abstract. There are many cryptographic schemes with anonymity, such

as group signatures. As one important property, anonymity revocation

has been introduced. In such schemes, the fact of whether a signer’s
rights have been revoked or not is important additional information. For

example, if a third party knows that there are many revoked members

in a company, then the company’s reputation may be damaged in many

ways. People may think that there might be many problematic employees
(who have bad behavior-s) in this company, there might be many people
who have quit, i.e., the labor environment may not be good, and so on.

To avoid such harmful rumors, in this paper, we propose an Anonymous

Designated Verifier Signature (ADVS) scheme with revocation. In ADVS,

a designated verifier can only verify a signature anonymously, and a third

party cannot identify whether the rights of the signer have been revoked

or not. We show two security-enhanced schemes as applications of our

scheme: a biometric-based remote authentication scheme, and an identity

management scheme.

1 Introduction

Back Ground: There are many cryptographic schemes with anonymity, such
as group signatures [6]. Anonymous schemes are useful to protect a signer’s pri-
vacy, and therefore many applications of group signature have been proposed
such as the BCPZ (Bringer, Chabanne, Pointcheval, and Zimmer) biometric-
based authentication scheme [5], the IMSTY (Isshiki, Mori, Sako, Teranishi,
and Yonezawa) identity management scheme [11], and so on. As one important
property, anonymity revocation has been introduced [3,4,15,17,18]. In these revo-
cable group signature schemes, revocation check can be executed by any entity.
Actually, the fact of whether a signer’s rights have been revoked or not is impor-
tant additional information. Let a signatory group of a group signature scheme
be a company. If a third party knows that there are many revoked members in
this company, then the company’s reputation may be damaged in many ways.
For example, someone may think that:
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– There might be many problematic employees (who have bad behavior) in
this company.

– There might be many people who have quit, i.e., the labor environment may
not be good.

In addition, there are possibilities of user privacy exposure, for example:

– If the third party knows an employee who left the company three days ago,
and also knows a signer was revoked three days ago, then the signer may be
this employee.

Actually, the third party can detect whether a signer was revoked or not by
checking whether a value was added to a revocation list RL or not. In this
example, the third party can link signatures made by this employee who has
left by executing the revocation check, even if a group signature scheme with
backward unlinkability (such as [15,18]) is used1. This scenario can occur, since
(revocable) group signatures are applied in many applications. As a solution for
protecting against damage caused by rumors, we consider to apply a crypto-
graphic primitive with a property that a third party cannot check whether a
signer’s rights have already been revoked or not. Someone may think that group
signature schemes with Verifier-Local Revocation (VLR) [4,15,18] can be applied
for this purpose. By hiding a revocation list RL from the third party2, the third
party can be prevented from executing the revocation check. However, there
is a problem in this scenario: a revoked user can make a valid group signature
which is verified by the third party, since the third party can verify the valid-
ity of this signature by using a group public key gpk only (RL is used for the
revocation check only). Therefore, VLR group signature schemes are not useful
in protecting the company’s reputation. This suggests that it is not enough to
restrict the revocation check. As another solution for protecting against damage
caused by rumors, we need to apply a cryptographic primitive with properties
that not only the third party cannot check whether a signer’s rights have already
been revoked or not, but also the third party cannot check whether a signature
is valid or not. As a candidate for this purpose, Designated Verifier Signature
(DVS) [7,10,13,14,16,20,21,22] is nominated, since a signer can indicate a desig-
nated verifier. Especially, strong DVS has been proposed [13,14] which enables
protection of the signer’s anonymity from a third party. However, in the verifica-
tion phase of strong DVS, a designated verifier verifies a signature with the public
key of a signer and the secret key of the designated verifier. This means that
these schemes do not provide the signer anonymity from the designated verifier,
and this is a difference between DVS and group signatures. In addition, DVS
does not have the revocation property. To sum up, no previous group signature
and DVS schemes can be applied to protect the company’s reputation.
1 Note that backward unlinkability means that even after a signer’s rights are revoked,

signatures made by the signer before the revocation remain anonymous.
2 In VLR schemes, a verifier verifies a group signature by using a group public key

gpk, and checks whether the rights of the signer have been revoked or not by using

RL. A signer does not have to obtain RL to sign.
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Our Contribution: In this paper, by applying the designated verification prop-
erty of DVS, we propose a way to protect the company’s reputation. By indi-
cating a designated verifier, (1) a third party cannot check whether a signature
is valid or not, and (2) the third party cannot check whether a signer’s rights
have already been revoked or not, and (3) no entity (except the opening man-
ager OM, which is defined later) can determine who a signer is. We call this
signature primitive Anonymous Designated Verifier Signature (ADVS) scheme
with revocation. We compare these functions with other primitives in Table 1.

Table 1. Function Comparisons

Signer Designated Designated

Anonymity Verification Revocation Check

DVS [12] no yes no

Strong DVS [13, 14] yes∗ yes no

Revocable Group Signature [3, 4, 15, 17, 18] yes no no

Our ADVS yes yes yes

∗ From a third party only.

The property (1) is the same concept as in DVS schemes. The property (2) is a
difference between revocable group signatures and our scheme. As a difference be-
tween strong DVS and our signer-anonymous DVS scheme, our scheme protects
the signer anonymity from the designated verifier (property (3)). We provide for-
mal definitions of ADVS, and prove our scheme along with these definitions. Our
ADVS scheme can be applied to protecting company’s reputation scenario.

Related works: The concept of designated verifier proof was introduced in
Jakobsson, Sako, and Impagliazzo [12] (called JSI scheme), where a specific des-
ignated verifier can only verify the validity of proofs made by a prover’s secret
key and a verifier’s public key. In the JSI scheme, although any entity can ver-
ify the validity of a proof, this entity cannot distinguish whether the proof was
made by a prover or not. The designated verifier can make the same proof, and
only the prover and the designated verifier know who is the actual prover. The
JSI scheme uses the or proof technique [8], namely, the actual signer knows the
secret key of the signer or the secret key of the designated verifier. A DVS sig-
nature can be achieved [7] by using the ring signature scheme with a two-person
group (namely, members are the signer and the designated verifier only). From
the viewpoint of a third party, nobody knows who the actual signer is, although
the third party can verify the signature. There are DVS schemes such that the
validity of a signature can only be verified by a designated verifier by using
his/her secret key (e.g., [10,13,22]). In these schemes, a third party cannot verify
the validity of a signature. Designated revocation check property has been con-
sidered in [9]. However, that paper did not define formal security requirements,
and there is a flaw whereby a designated verifier can link two signatures by
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using his/her secret key. A designated group signature scheme, which enables
both signer anonymity and designated verifier property3, has not been proposed
yet.

Organization : The paper is organized as follows: Security definitions of ADVS
are presented in Section 3. Our proposed ADVS scheme is described in Section
4. The security proofs are presented in Section 5. Applications of our ADVS
scheme to the BCPZ biometric-based authentication scheme [5] and the IMSTY
identity management scheme [11] are presented in Section 6.

2 Preliminary

In this section, we show definitions of bilinear groups and complexity assump-
tions. Note that x ∈R S means x is randomly chosen for a set S.

2.1 Bilinear Groups

Definition 1. (Bilinear Groups) Bilinear groups and a bilinear map are de-
fined as follows:
1. G and GT are cyclic groups of prime order p.
2. g is a generator of G.
3. e is an efficiently computable bilinear map e : G×G → GT with the following

properties.
– Bilinearity : for all u, u′, v, v′ ∈ G, e(uu′, v) = e(u, v)e(u′, v) and

e(u, vv′) = e(u, v)e(u, v′).
– Non-degeneracy : e(g, g) �= 1GT (1GT is the GT ’s unit).

2.2 Complexity Assumptions

Definition 2. (DLIN assumption) [3] The Decision Linear (DLIN) prob-
lem in G is a problem, for input of a tuple (u, v, h, uα, vβ , Z) ∈ G6 where
α, β ∈ Zp are random values, to decide whether Z = hα+β or not. An algo-
rithm A has advantage ε in solving DLIN problem in G if AdvDLIN (A) :=
|Pr[A(u, v, h, uα, vβ , hα+β) = 0] − Pr[A(u, v, h, uα, vβ , hz) = 0]| ≥ ε(κ), where
hz ∈ G \ {hα+β}. We say that the DLIN assumption holds in G if no PPT
algorithm has an advantage of at least ε in solving the DLIN problem in G.

Definition 3. (q-SDH assumption) [2,3] The q-Strong Diffie-Hellman (q-
SDH) problem in G is a problem, for input of a (q + 1) tuple (g, gγ, · · · , gγq

) ∈
Gq+1 where γ ∈ Zp is a random value, to compute a tuple (x, g1/(γ+x)) ∈ Zp×G.
An algorithm A has an advantage ε in solving the q-SDH problem in G if
Pr[A(g, gγ , · · · , gγq

) = (x, g1/(γ+x))] ≥ ε. We say that the q-SDH assumption
holds in G if no PPT algorithm has an advantage of at least ε in solving the
q-SDH problem in G.
3 Note that the concept of designated group signature (called ML scheme) proposed

in [16] is different from this concept: the ML scheme enables the verifier anonymity,

where designated verifiers are indicated.
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3 Definitions of ADVS

In this section, we define ADVS and its security requirements. The ADVS scheme
consists of six algorithms, Setup, KeyGenS, KeyGenV, Sign, Verify, and Revoke.
The group public key gpk and the group secret key gsk are obtained by execut-
ing Setup(1κ), where κ is the security parameter. A signer public key spk and a
signer secret key (which is also called a membership certificate) ssk are obtained
by executing KeyGenS(gpk, gsk). A verifier public key vpk and a verifier secret
key vsk are obtained by executing KeyGenV(1κ). For a message M , a designated
signature σ is obtained by executing Sign(gpk, ssk, vpk,M). σ is verified by ex-
ecuting Verify(gpk, vsk,M, σ). If both (1) σ is a valid signature, and (2) σ was
made by using vpk (corresponding to vsk), then 1 is output, and 0, otherwise. A
designated signature is valid means that (1) a signer has a membership certificate
ssk issued by GM , and (2) the rights of the signer have not been revoked. Mem-
bership revocation is done by executing Revoke(gpk, gsk, ssk,RL), where RL is
the revocation list. The Revoke algorithm outputs the updated RL. We assume
three entities, the group manager GM , a signer, and a designated verifier, which
runs (Setup, KeyGenS, Revoke), Sign, and (KeyGenV, Verify), respectively.

Next, we define the security requirements: Unforgeability, Non-transferability,
and Signer anonymity. The DVS scheme is said to be unforgeable if the advan-
tage is negligible for any probabilistic polynomial time (PPT) adversary A in
the following experiment. In this experiment, A can access the signing oracle
OSign(ssk∗,vpk), where for an input message M , the signing oracle returns a sig-
nature σ made by ssk∗ and designated to vpk, and appends (M,σ) to the set
of signatures SigSet. In addition, A can access the verification oracle OVerify(vsk).
For the input of the message/signature pair (M,σ), OVerify(vsk) returns the result
of Verify(gpk, vsk,M, σ). In addition, A can access the corruption oracle Ocorr.
For the input of the identity of signer i, Ocorr returns sski, and appends i to the
set of corrupted users CU. Note that A cannot query i∗ to the corruption oracle,
where i∗ is the target signer (who manages ssk∗). In addition, A can access the
revocation oracle Orevoke. For the input of the identity of signer i, Orevoke runs
Revoke(gpk, gsk, sski, RL). Note that A cannot query i∗ to the revocation ora-
cle. Finally, A outputs (M∗, σ∗) �∈ SigSet. To guarantee that no sski (i ∈ CU)
were used to compute (M∗, σ∗), Revoke(gpk, gsk, sski, RL) is executed for all
corrupted users i.

Definition 4. Unforgeability

AdvUF
A (κ) = Pr

[
(gpk, gsk) ← Setup(1κ); CU → ∅; SigSet → ∅; (vpk, vsk) ← KeyGenV(1κ);

(i∗, State) ← AOVerify(vsk)(·),Ocorr(·),Orevoke(·)(gpk, vpk);

(spk∗, ssk∗) ← KeyGenS(gpk, gsk);

(M∗, σ∗) ← AOSign(ssk∗,vpk)(·),OVerify(vsk)(·),Ocorr(·),Orevoke(·)(gpk, spk∗, vpk, State);

∀i ∈ CU, Revoke(gpk, gsk, sski, RL); (M
∗
, σ

∗
) �∈ SigSet;

Verify(gpk, vsk, M∗, σ∗) = 1
]

Next, we define Non-transferability. Non-transferability means that a designated
verifier cannot produce evidence which convinces a third party that a signature
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was actually computed by the signer. The ADVS scheme is said to be non-
transferable if the advantage is negligible for any PPT adversary A in the fol-
lowing experiment. Intuitively, there exists a simulated signing algorithm Sign′

for which the distribution of (M, Sign(gpk, ssk, vpk,M)) and the distribution of
(M, Sign′(gpk, spk, vsk,M)) are indistinguishable.

Definition 5. Non-transferability

AdvNon-Trans
A (κ) =

∣∣Pr
[
(gpk, gsk)← Setup(1κ

); (spk, ssk)← KeyGenS(gpk, gsk);

(vpk, vsk)← KeyGenV(1
κ
);

(M∗, State)← A(gpk, spk, ssk, vpk, vsk); μ ∈R {0, 1};
σ0 ← Sign(gpk, ssk, vpk, M∗

); σ1 ← Sign′
(gpk, spk, vsk, M∗

);

μ′ ← A(σμ, State);μ = μ′]− 1/2
∣∣

Next, we define Signer anonymity. The ADVS scheme is said to be signer-
anonymous if the advantage is negligible for any PPT adversary A in the fol-
lowing experiment. Intuitively, Signer anonymity means that A with vsk cannot
determine who the actual signer is. This suggests that even if a malicious desig-
nated verifier opens its own secret key vsk, Signer anonymity is still effective.

Definition 6. Signer anonymity

AdvSign-Anon
A (κ) =

∣∣Pr
[
(gpk, gsk)← Setup(1

κ
); (spk0, ssk0)← KeyGenS(gpk, gsk);

(spk1, ssk1)← KeyGenS(gpk, gsk); (vpk, vsk)← KeyGenV(1
κ
);

(M∗, State)← A(gpk, spk0, ssk0, spk1, ssk1, vpk, vsk)

μ ∈R {0, 1}; σμ ← Sign(gpk, sskμ, vpk, M∗
);

μ′ ← A(σμ, State);μ = μ′]− 1/2
∣∣

4 The Proposed Scheme

In this section, we propose an Anonymous Designated Verifier Signature (ADVS)
scheme with revocation. Let SPK be a Signature based on a Proof of Knowledge
and DSig(sigkey,M) be a digital signature of a message M under a signing key
sigkey. DSig(sigkey,M) is verified by using a verification key, verkey. We use
DSig(sigkey,M) to guarantee that GM updates RL. Intuitively, our construc-
tion is as follows: A signer computes an “or proof”, namely, SPK with knowledge
of either part-1: an actual signer knows the secret key of the signer (this is the
short group signature proposed by Boneh et al. [3]), or part-2: the actual signer
knows the secret key of a designated verifier. This construction is needed to
achieve Non-transferability. In addition, the signer encrypts a part of the part-1
SPK using the public key of the designated verifier. We improve the revocation
algorithm of the Nakanishi-Funabiki group signature [18] to satisfy the property
that a third party cannot check whether a signer has already been revoked or
not.
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Protocol 1. Our ADVS scheme

Setup(1κ): Choose a prime number p, a bilinear group (G,GT ) with order p,
generators g, h, u, v, f ∈R G, and γ ∈R Zp, and compute ω = gγ. Output
gpk = (e, (G,GT ), g, h, u, v, f, ω,H, verkey) and gsk = (γ, sigkey), where H
is a cryptographic hash function from {0, 1}∗ to Zp.

KeyGenS(gpk, gsk) Choose x ∈R Zp, and compute A = g
1

x+γ . Output spk = ∅
and ssk = (A, x).

KeyGenV(1κ): Choose xv, yv, zv, rv ∈R Zp, and compute hd = gxvyvrv , ud =
gyvrv , vd = gxvrv , and td = vzv . Output vpk = (hd, ud, vd, td) and vsk =
(xv, yv, zv).

Sign(gpk, ssk, vpk,M): Choose a, b, α, β, δ ∈R Zp, and compute T1 = A · hα+β,
T2 = uα, T3 = vβ, D1 = T1 · ha+b

d , D2 = ua
d, D3 = vb

d, S1 = fxi+δ, and
S2 = tδd. Let τ = αx and λ = βx. Compute SPK as follows:

– Choose rx, rα, rβ , rδ, rτ , rλ, szv , cv ∈R Zp.

– Compute Rv = vszv t−cv

d , Rs,1 = urα , Rs,2 = vrβ , Rs,3 = e(T1, g)rx ·
e(h, ω)−rα−rβ ·e(h, g)−rτ−rλ , Rs,4 = T rx

2 ·u−rτ , Rs,5 = T rx
3 ·v−rλ , Rs,6 =

f rx+rδ , and Rs,7 = trδ

d . Compute c = H(T1, T2, T3, D1, D2, D3, S1, S2,
Rv, Rs,1, . . ., Rs,7, M), cs = c−cv mod p, sx = rx +csx, sα = rα +csα,
sβ = rβ + csβ, sδ = rδ + csδ, sτ = rτ + csτ , and sλ = rλ + csλ.

– Output σ = (T2, T3, D1, D2, D3, S1, S2, cs, cv, sx, sα, sβ, sδ, sτ , sλ,
szv ).

Revoke(gpk, gsk, ssk,RL): Let ssk = (A, x). Compute vx and CertA,x =
DSig(sigkey, vx). Output the updated list RL ∪ (vx, CertA,x).

Verify(gpk, vsk,M, σ,RL): Output 1 if both the following verification check and
revocation check algorithms output 1, and output 0, otherwise.

Verification check: Compute T ′
1 = D1/(Dxv

2 Dyv

3 ), R′
v = vszv t−cv

d ,
R′

s,1 = usαT−cs
2 , R′

s,2 = vsβT−cs
3 , R′

s,3 = e(T ′
1, g)sx · e(h, ω)−sα−sβ ·

e(h, g)−sτ−sλ( e(T ′
1,ω)

e(g,g) )cs , R′
s,4 = T sx

2 · u−sτ , R′
s,5 = T sx

3 · v−sλ , R′
s,6 =

gsx+sδS−cs
1 , and R′

s,7 = tsδ

d S−cs
2 . Output 1, if cs + cv = H(T ′

1, T2, T3,
D1, D2, D3, S1, S2, R′

v, R′
s,1, . . ., R′

s,7, M) holds, and output 0, other-
wise.

Revocation check: For all (vx, CertA,x) ∈ RL, verify CertA,x by us-

ing verkey, and check e(S1, td)
?= e((vx)zvS2, f). If there exists a pair

(vx, CertA,x) ∈ RL, where CertA,x is a valid certificate and the above
condition holds, then output 1. Otherwise, output 0.

Note that e(S1, td) = e(fx+δ, vzv) = e(f, v)zv(x+δ) and e((vx)zvS2, f) =
e(vzvxvzvδ, f) = e(v, f)zv(x+δ) hold, and e((vx)zvS2, f) can only be computed
by the designated verifier (who has zv).
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Next, we describe the simulated signing algorithm as follows:

Protocol 2. The simulated signing algorithm
Sign′(gpk, spk, vsk,M): Choose T2, T3, D1, D2, D3, S1, S2 ∈R G. Compute SPK

as follows:

– Choose sx, sα, sβ , sδ, sτ , sλ, rzv , cs ∈R Zp.
– Compute Rv = vrzv , Rs,1 = usαT−cs

2 , Rs,2 = vsβT−cs
3 , Rs,3 = e(T1, g)sx ·

e(h, ω)−sα−sβ · e(h, g)−sτ−sλ( e(T1,ω)
e(g,g) )cs , Rs,4 = T sx

2 · u−sτ , Rs,5 = T sx
3 ·

v−sλ , Rs,6 = gsx+sδS−cs
1 , and Rs,7 = tsδ

d S−cs
2 . Compute c = H(T1, T2,

T3, D1, D2, D3, S1, S2, Rv, Rs,1, . . ., Rs,7, M), cv = c− cs mod p, and
szv = rzv + cvzv.

– Output σ = (T2, T3, D1, D2, D3, S1, S2, cs, cv, sx, sα, sβ , sδ, sτ , sλ, szv).

Obviously, a signature generated by the Sign′ algorithm is a valid signature.
Therefore, our ADVS scheme satisfies Non-transferability.

Can RL be publicly opened?: In our scheme, RL is used to execute the
Verify algorithm. Therefore, RL is given to verifiers only. Even if RL is given
to a third party, the third party cannot execute the revocation check. However,
a different problem occurs. If RL is publicly opened, then the third party can
obtain the number of revoked signers. To prevent this, in a natural way, dummy
certificates can be used as follows: Let N be the number of group members. Then
GM chooses v′i ∈R G, where i = 1, 2, . . . , N − |RL|. Note that this procedure
can deal with a dynamic update of RL, namely, dummy certificates are chosen
for each revocation. Although the cost of revocation check and updating the list
are increased, RL can be opened. However, as with VLR schemes, a signer does
not need RL to make a signature. Therefore, practically, we can assume that
RL is given to verifiers only. In this setting, we can prevent a revoked user from
making a valid signature that is verified by the third party, since the third party
cannot verify the validity of a signature by using only gpk. However, in VLR
schemes, the third party can verify the validity of a signature by using gpk only,
since RL is used for the revocation check only. Therefore, VLR group signature
schemes are not used (under the assumption that RL is given to verifiers only),
since a revoked user could make a valid group signature which could be verified
by the third party. This is a superior point of our scheme compared with VLR
schemes.

The Open algorithm: The Open algorithm is described as follows: A ←
Open(gpk, gsk, (M,σ)), where A is a signer secret key. Let ξ1 := logu h and
ξ2 := logv h. By adding (ξ1, ξ2) to gsk, GM can compute T1/(T

ξ1
2 T ξ2

3 ) if T1 is
given. Therefore, the designated verifier needs to send (T ′

1, T2, T3) to GM to re-
quest the Open procedure. If the opening and issuing roles need to be separated,
then only the opening key osk = (ξ1, ξ2) is given to the Opening Manager OM .
A designated verifier sends (T ′

1, T2, T3) to OM . If (T ′
1, T2, T3) is included in a

signature computed by the simulated signing algorithm Sign′, then the Open al-
gorithm does not work, since (T ′

1, T2, T3) is not a valid ciphertext of a membership
certificate A (T2 and T3 are randomly chosen). Therefore, Non-transferability is
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not satisfied from the viewpoint of OM . This suggests OM can reveal not only
the identity of a signer, but also information about who the actual signer is.

5 Security Analysis

In this section, we prove that our scheme satisfies security requirements defined
in Section 3.

Theorem 1. Our scheme satisfies Unforgeability under the q-SDH assumption.

Proof. Let A be an adversary to break Unforgeability of our scheme. We con-
struct an algorithm B to break the q-SDH problem: Let (g1, g

γ
1 , · · · , g

γq

1 ) be an
instance of q-SDH problem. Let qn be the number of signers (qn ≤ q). W.l.o.g.,
we assume that qn = q. B chooses distinct x1, . . . , xq−1 ∈R Zp, and sets f(X) :=∏q−1

i=1 (X +xi) :=
∑q−1

i=0 αiX
i, where α0, . . . , αq−1 ∈ Zp are the coefficients of the

polynomial f . B chooses θ ∈R Zp, and computes g′ :=
∏q−1

i=0 (gγi

1 )αiθ = g
θf(γ)
1

and g′′ :=
∏q

i=1(g
γi

1 )αi−1θ = g
θγf(γ)
1 = (g′)γ . Let fi(X) := f(X)/(γ + xi) =∏q−1

j=1,j �=i(X + xj) :=
∑q−2

j=0 βiX
j , where β0, . . . , βq−2 ∈ Zp are the coefficients

of the polynomial fi. Then Ai =
∏q−2

j=0(gγj

1 )βjθ = g
θfi(γ)
1 = (g′)1/(γ+xi) is a

signer public key. B sets g := g′ and ω := g′′ = gγ . B chooses h, u, v, f ∈R G,
xv, yv, zv, rv ∈R Zp, and computes hd = gxvyvrv , ud = gyvrv , vd = gxvrv , and
td = vzv . B gives gpk = (e, (G,GT ), g, h, u, v, f, ω,H) and vpk = (hd, ud, vd, td)
to A, where H : {0, 1}∗ → Zp is a random oracle. In addition, B selects a sign-
ing key of DSig sigkey, and opens a corresponding verification key verkey. For
verification queries and signing queries issued by A, B can answer these queries
perfectly, since B has vsk = (xv, yv, zv), and can execute the simulated signing
algorithm Sign′. For a corruption query i, B returns (Ai, xi) to A. For a revo-
cation query i, B computes vxi and CertAi,xi = DSig(sigkey, vxi), and outputs
updated list RL∪(vxi , CertAi,xi). A outputs (M∗, σ∗). Let σ∗ = (T2, T3, D1, D2,
D3, S1, S2, cs, cv, sx, sα, sβ, sδ, sτ , sλ, szv ). B computes T1 = D1/(Dxv

2 Dyv

3 ),
and can obtain (T1, T2, T3, cs, sα, sβ, sτ , sλ). By using the Forking Lemma [19], B
can obtain (T1, T2, T3, c

′
s, s

′
α, s

′
β , s

′
τ , s

′
λ), where cs �= c′s, with non-negligible prob-

ability. By using Lemma 4.4 of [3], we can extract a new SDH tuple (Ã, x̃) as
follows: Let Δcs := cs − c′s, Δsα := sα − s′α, Δsβ := sβ − s′β , Δsx := sx − s′x,
Δsτ := s−s′τ , Δsλ := sλ − s′λ, α̃ := Δsα/Δcs, β̃ := Δsβ/Δcs, x̃ := Δsx/Δcs,
and Ã := T1 · h−α̃−β̃ . Therefore, B can solve q-SDH problem. ��

Theorem 2. Our scheme satisfies Signer anonymity under the DLIN assump-
tion in the random oracle model.

To prove Theorem 2, we apply the BBS short group signature scheme and
CPA-full anonymity experiment. For the sake of clarity, we introduce the BBS
scheme and the definition of CPA-full anonymity in Appendices A.1 and A.2,
respectively.
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Proof. Let A be an adversary to break Signer anonymity of our scheme.
We construct an algorithm B to break CPA-full-anonymity of the BBS short
group signature scheme with 2-person group as follows: First, the challenger C
sends (e, (G,GT ), g, ω, H), ssk0, and ssk1 to B. B chooses h, u, v, f ∈R G,
xv, yv, zv, rv ∈R Zp, and computes hd = gxvyvrv , ud = gyvrv , vd = gxvrv , and
td = vzv . B gives gpk = (e, (G,GT ), g, h, u, v, f, ω,H), vpk = (hd, ud, vd, td),
vsk = (xv, yv, zv), ssk0, and ssk1, where H : {0, 1}∗ → Zp is a hash func-
tion. In addition, B selects a signing key of DSig sigkey, and opens a corre-
sponding verification key verkey. A sends M∗ to B. B forwards M∗ to C, and
obtains σ∗ = (T1, T2, T3, cs, sx, sα, sβ, sτ , sλ). B chooses sδ, rzv , cv ∈R Zp and
S1, S2 ∈R G. B computes Rv = vrzv t−cv

d , Rs,1 = usαT−cs
2 , Rs,2 = vsβT−cs

3 ,
Rs,3 = e(T1, g)sx · e(h, ω)−sα−sβ · e(h, g)−sτ−sλ( e(T1,ω)

e(g,g) )cs , Rs,4 = T sx
2 · u−sτ ,

Rs,5 = T sx
3 · v−sλ , Rs,6 = gsx+sδS−cs

1 , and Rs,7 = tsδ

d S−cs
2 . B also computes

szv = rzv + cvzv, and sets c := H(T1, T2, T3, D1, D2, D3, S1, S2, Rv, Rs,1,
. . ., Rs,7, M∗), where c = cv + cs mod p . B sends the challenge signature (T2,
T3, D1, D2, D3, S1, S2, cs, cv, sx, sα, sβ, sδ, sτ , sλ, szv) to A. A outputs μ′.
Finally, B outputs μ′ as the answer to the anonymity game of the BBS group
signature scheme. Therefore, our scheme satisfies Signer anonymity under the
DLIN assumption, since the BBS group signature scheme satisfies anonymity
under the DLIN assumption in the random oracle model. ��

The following theorem clearly holds, since there exists the simulated signing
algorithm Sign′, and OM with a linear encryption secret key (ξ1, ξ2) can reveal
information about who the actual signer is.

Theorem 3. Our scheme satisfies Non-transferability under the DLIN
assumption.

6 Applications of Our ADVS Scheme

In this section, we show the applications of our scheme to a biometric-based re-
mote authentication scheme (the BCPZ scheme [5]) and an identity management
scheme (the IMSTY scheme [11]).

6.1 Biometric Authentication

The BCPZ scheme [5] is based on the Boneh and Shacham VLR group sig-
nature [4]. H is a human user (who authenticates himself/herself to a service
provider P by using his/her biometric data b preserved on a plastic card). A
sensor client S extracts human user’s biometric trait (e.g., iris is used in the
BCPZ scheme), and communicates with P , so that the user will be authenti-
cated by P . P executes KeyGenV , and obtains vpk and vsk. A card issuer I
(with a group secret key γ) issues a card to a human user, and (A = g

1
x+γ , b) is

preserved in the card, where b is biometric data of the user and x = Hash(b).
In addition, I generates RL if malicious behavior occurs or a user loses his/her
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cards. First, P sends the challenge M to S. S gets (A, b) and the fresh biometric
trait b′ from a human user (with a card), confirms b′ ∼ b (which indicates that b′

and b are acquired from the same biometric source), and computes x = Hash(b)
and a group signature σ by using a secret x and vpk. P verifies (M , σ), and
checks whether the user is a malicious user or not, by using RL. In the (original)
BCPZ scheme, a third party (with RL) may think that:

– There might be many malicious behaviors in this company.
– There might be many lost cards, i.e., goods management may deteriorate in

this company.

and so on. This is where our ADVS scheme comes into effect. We illustrate a
modified BCPZ scheme in Fig.1.

A Human User H
�

�

�

�
(A, b)

A Card Issuer I

A Sensor S A Service Provider P
(vpk, vsk)

RL

(A, b) (From Card)

b′ ?∼ b, x = Hash(b)

Challenge M

σ = Sign(gpk, (A, x), vpk,M)

(gpk, gsk)

σ

Verify(gpk, vsk,M, σ,RL) ?= 1

b′ (Scanning)

Issue

Fig. 1. Modified BCPZ scheme

We assume that RL is given to P only, or that RL is opened with dummy
certificates. The service provider P does not have to manage the identity of each
user. Users do not have to manage any extra values (e.g., passwords), since they
only use their own biometric traits and their cards.

6.2 Identity Management

An outsourcing business using group signature has been proposed in [11] (called
the IMSTY scheme). In existing systems (which do not apply group signature),
authentication servers store the list of identities of users. In group signature set-
tings, authentication servers only have to verify users by using the group public
key gpk, and do not have to manage the list of identities of users ID-list. There-
fore, the risk of leaking user information (i.e., the list of identities of users) can
be minimized, and this is the merit of using group signature in identity manage-
ment. In the IMSTY scheme, the role of Group Manager GM is separated into
three roles: Issuing Manager IM , User-Revocation Manager RM , and Opening
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Manager OM . IM issues membership certificates for users. When a user requests
the service, the user makes a group signature σ, and sends it to Outsourcee who
is in charge of providing the service to legitimate users. Outsourcee verifies σ,
provides the service if this signature is valid, and stores σ into the usage log
ULog. After a certain interval, Outsourcee sends ULog to OM who can open
group signatures. OM charges the users who have already used the service. If a
user does not pay a fee, then OM announces the identity of this user to RM .
RM updates the revocation list RL when a user wants to leave the group, or
when a user does not pay a fee. ID-list is managed by IM , and it is updated
when a new user joins. IM sends ID-list = {(A, x), UserID} to OM , namely
Outsourcee does not have to manage ID-list. In the (original) IMSTY scheme,
a third party may think that:

– There might be many seceders, i.e., this service may not be interesting.
– Signer’s rights have been revoked, maybe, he/she did not pay the service fee.

That is to say, the service fee may be expensive.

and so on. This is where our ADVS scheme comes into effect. GM of our ADVS
scheme also can be separated into three roles, since γ (which is used to issue
membership certificates) is not used for executing the Revoke algorithm, and
the Open algorithm is independent of other procedures. We illustrate a modified
IMSTY scheme in Fig.2.

Issuing Manager IM

(A, x)

γ

User
Request σ

Service
Outsourcee

vpk, vsk, RL
σ = Sign(gpk, (A, x), vpk,M)

Revocation Manager RM

Opening Manager OM

Verify(gpk, vsk,M, σ,RL) ?= 1

ULog = {(T ′
1, T2, T3)}, (ξ1, ξ2)Charge the service fee

sigkey, verkey, x

Open(gpk, (T ′
1, T2, T3), (ξ1, ξ2))

Revoke(gpk, gsk, x,RL)

ID-list = {(A, x), UserID}

Notify x

Fig. 2. Modified IMSTY scheme

We assume that RL is given to Outsourcee only, or that RL is opened with
dummy certificates, and all entities know the group public key gpk. In the modi-
fied IMSTY scheme, (T ′

1, T2, T3) is stored into ULog, since the signature validity
has already been checked by Outsourcee, and OM needs (T ′

1, T2, T3) only to ex-
ecute the Open procedure. After a certain interval, Outsourcee sends ULog to
OM , and OM charges the users who have already used the service. If a user does
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not pay a fee, then OM notifies x of this user to RM . RM updates the revoca-
tion list RL, and sends it to Outsourcee, or opens RL with dummy certificates
v′i ∈ G (i = 1, 2, . . . , N − |RL|), where N is the number of group members.

7 Conclusion

In this paper, we propose an ADVS scheme with revocation. Our ADVS scheme
satisfies not only designated verification and Signer anonymity, but also desig-
nated revocation check. To the best of our knowledge, our scheme is the first
provably secure scheme with designated revocation check. Our scheme can be
applied to the protecting company’s reputation scenario. Neither strong DVS
nor revocable group signature schemes can be used in this situation. Our ADVS
scheme can be directly and easily applied to the BCPZ scheme and the IMSTY
scheme. From this fact, our ADVS scheme can be directly and easily applied
to many cryptographic schemes based on (revocable) group signatures, when
designated property is required.
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Appendix

A.1 BBS Short Group Signature

In this appendix, we introduce the BBS short group signature [3]. Let (G,GT )
be a bilinear group with pairing e : G × G → GT , and P = {U1, . . . , Un} be a
set of participants.

Protocol 3. BBS Short Group Signature [3]

KeyGen(1κ): Choose g, h ∈ G and γ, ξ1, ξ2 ∈ Zp, and set u = hξ1 , v = hξ2 , and
ω = gγ. For a user Ui ∈ P, choose xi ∈R Zp, and compute Ai = g

1
xi+γ .

Output the group public key gpk = (e, (G,GT ), g, ω,H), the group secret
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key gsk = γ, and user secret keys {sski = (xi, Ai)}Ui∈P , where H is a
cryptographic hash function from {0, 1}∗ to Zp.

GSig(gpk, sski,M): Choose α, β, rx, rα, rβ , rτ , rλ ∈R Zp, and compute T1 =
Ai · hα+β, T2 = uα, T3 = vβ, R1 = urα , R2 = vrβ , R3 = e(T1, g)rx ·
e(h, ω)−rα−rβ · e(h, g)−rτ−rλ , R4 = T rx

2 u−rτ , R5 = T rx
3 v−rλ , c = H(M ,

T1, T2, T3, R1, . . ., R5), sx = rx + csx, sα = rα + csα, sβ = rβ + csβ,
sτ = rτ + csτ , and sλ = rλ + csλ. Output σ = (T1, T2, T3, sx, sα, sβ , sτ , sλ).

GVer(gpk, σ,M): Compute R′
1 = usαT−c

2 , R′
2 = vsβT−c

3 , R′
3 = e(T1, g)sx ·

e(h, ω)−sα−sβ · e(h, g)−sτ−sλ
( e(T1,ω)

e(g,g)

)c, R′
4 = T sx

2 u−sτ , and R5 = T sx
3 v−sλ ,

and check c
?= H(M , T1, T2, T3, R′

1, . . ., R′
5). If checking condition holds,

then output 1, and 0, otherwise.

Open(gpk, gsk, σ,M): Verify that σ is a valid signature on M to execute
Verify(gpk, σ,M). Next, compute Ai = T1/(T

ξ1
2 T ξ2

3 ), and return the signer’s
identity i.

A.2 CPA-Anonymity

In this appendix, we introduce the definition of full-anonymity [1]. Note that
the BBS short group signature is proven under CPA-full-anonymity, where an
adversary cannot issue the Open oracle. Therefore, we introduce this weaker
security notion as follows:

Definition 7. CPA-Anonymity

AdvAnon
A (κ) =

∣∣Pr
[
(gpk, gsk, {sski}Ui∈P) ← KeyGen(1κ);
(M∗, i0, i1, State) ← A(gpk, {sski}Ui∈P)
μ ∈R {0, 1};σμ ← GSig(gpk, sskiμ ,M

∗);

μ′ ← A(σμ, State);μ = μ′]− 1
2

∣∣
The BBS short signature satisfies CPA-full-anonymity under the DLIN assump-
tion in the random oracle model (Theorem 5.2 of [3]).
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Abstract. Timed-Release Encryption (TRE) (proposed by May in 1993)

prevents even a legitimate recipient decrypting a ciphertext before a semi-

trusted Time Server (TS) sends trapdoor sT assigned with a release time

T of the encryptor’s choice. Cathalo et al. (ICICS2005) and Chalkias et al.

(ESORICS2007) have already considered encrypting a message intended

to multiple recipients with the same release time. These schemes are ef-

ficient compared with previous TRE schemes with recipient-to-recipient

encryption, since the most costly part (especially pairing computation)

has only to be computed once, and this element is used commonly. One

drawback of these schemes is the ciphertext size and computational com-

plexity, which depend on the number of recipients N . In this paper, for

the first time we propose Timed-Release Proxy Re-Encryption (TR-PRE)

scheme. As in PRE, a semi-trusted proxy transforms a ciphertext under

a particular public key (this can be regarded as a mailing list) into re-

encrypted ciphertexts under each recipient (who can be regarded as mail-

ing list members). Even if the proxy transformation is applied to a TRE
ciphertext, the release time is still effective. An encryptor can transfer N-

dependent computation parts to the proxy. This function can be applied

to multicast communication with a release time indication. For example,

in an on-line examination, an examiner sends encrypted e-mails to each

examinee, and each examination can be fairly opened at the same time.

Our TR-PRE scheme is provably secure under both chosen-time period

chosen-ciphertext attack (IND-CTCA) and replayable chosen-ciphertext

attack (IND-RCCA) without random oracles.

1 Introduction

Timed-Release Encryption (TRE) was proposed by May [26], where even a legiti-
mate recipient cannot decrypt a ciphertext before a semi-trusted Time Server (TS)
sends (or broadcasts) trapdoor sT assigned with release time T of the encryptor’s
choice. Several kinds of TRE schemes have been proposed, e.g., TRE with Pre-
open Capability (TRE-PC) [15,16,21], some generic constrictions [12,13,14,28],

S.-H. Heng and K. Kurosawa (Eds.): ProvSec 2010, LNCS 6402, pp. 200–213, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and so on. Points worthy of special mention are Cathalo et al. [10] and Chalkias
et al. [11]1, who have already considered encrypting a message intended to several
recipients with the same release time. As in Cathalo et al. [10], we do not consider
encrypting with distinct release times, since colluding receivers could decrypt the
message without having the appropriate trapdoor. Schemes by Cathalo et al. and
Chalkias et al. are efficient compared with previous TRE schemes with recipient-
to-recipient encryption, since the most costly part (especially pairing computation
e(·, ·)) has only to be computed once, and this element is used commonly. Infor-
mally, for a common release time T and number of recipients N , the form of a
ciphertext in the Cathalo et al. scheme is: (C1, C2, . . . , CN , (M ||random nonce)⊕
K), RecipientList, T ), where K = Hash(e(·, ·)) is a commonly used ephemeral
key computed by both Ci and a user Ui’s secret key. One drawback of this scheme
is the ciphertext size, namely, the length of the ciphertext depends on the num-
ber of recipients N (See Fig.1). If each ciphertext (for a user Ui) is represented as
(Ci, (M ||random nonce) ⊕ K,T ), then actual transferred ciphertext size is con-
stant. Nevertheless, there is still a remaining problem, where computational com-
plexity also depends on N . This can be a serious problem when N becomes large.

Encryptor

Recipient 1

Recipient 2

Recipient N

...

C = (C1, C2, . . . , CN )

(C, T )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

They can decrypt
their own ciphertext
after obtaining sT

Time Server

Release Time T
sT

Fig. 1. Previous TRE for Multiple Recipients

Proxy Re-Encryption (PRE) was proposed in [4] by Blaze, Bleumer, and
Stauss, where a semi-trusted proxy transforms a ciphertext encrypted by a del-
egator Alice’s public key into a re-encrypted ciphertext that can be decrypted
using a delegatee Bob’s secret key. As application of PRE schemes, e-mail sys-
tems based on PRE have been proposed, such as [5,22,23,24].

In cloud computing environments [30], users do not have to consider the actual
data storage of some services, and therefore data management becomes more
and more difficult. Usually, access control of data and encryption of data are
different technologies. Therefore, TRE (attribute-based encryption [3,20,27] is

1 Note that Chow et al. [15] showed that the Chalkias et al. scheme is vulnerable under

the CCA attack.
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also another example) is suitable in cloud computing environments, since the
access control function is included in the encrypted data itself. In PRE, access
control (namely, who has decryption rights) may be complicated and difficult to
manage, when the number of users becomes large.

Our contribution: In this paper, for the first time we propose a Timed-Release
Proxy Re-Encryption (TR-PRE) scheme. An encryptor computes a TRE cipher-
text under a particular public key (this can be regarded as a mailing list), and a
proxy translates this ciphertext into re-encrypted ciphertexts under each recipi-
ent (who can be regarded as mailing list members). Even if the proxy transfor-
mation is applied to a TRE ciphertext, the release time is still effective. To the
best of our knowledge, no TR-PRE have considered this release time property,
although there are several research papers on TRE and PRE. We illustrate our
TR-PRE in Fig.2. In this situation, from the viewpoint of an encryptor, the
number of ciphertexts (and computational complexity also) does not depend on
the number of recipients N . In other words, the encryptor can transfer these N -
dependent parts to the proxy. As in PRE, the proxy cannot decrypt ciphertexts.

P
R
O
X

Y

Encryptor
Recipient 1

Recipient 2

C → CRecipient1 , C → CRecipient2 ,. . ., C → CRecipientN

Re-encryption

(C, T,RecipientList) (CRecipient2 , T )
...

Recipient N
(CRecipientN

, T )

(CRecipient1 , T )

Time Server

Release Time T
sT

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
They can decrypt
their own ciphertext
after obtaining sT

...

(T still effective)

Fig. 2. Our TR-PRE with Multiple Recipients

Our TR-PRE can be applied to multicast communication with a release time
indication. For example, in an on-line examination, an examiner sends encrypted
e-mails to each examinee, and each examination can be opened at the same
time. As another application, by using our scheme as a building tool for e-mail
systems based on PRE [5,22,23,24], we can achieve e-mail systems with release
time indication. Our work is valuable in adding an access control function into
encrypted (and re-encrypted) data itself.

The difficulty: The construction of TR-PRE is not trivial, even if a generic
construction of TRE is given. For example, in Nakai et al.’s construction [28]2

2 This construction also handles pre-open capability. A recipient can decrypt a cipher-

text by using a pre-open key before the release time has not been passed. We omit

the explanation of this property.
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(based on Identity-Based Encryption (IBE), Public Key Encryption (PKE), and
Strongly Existential Unforgeable (SEU) one-time signature), a ciphertext is rep-
resented as (Kv, T, c1, c2, σ), where Kv is a signature verification key (paired
with a signing key Ks), T is a release time, c1 = PKE.Enc(upk, (Kv||r)), r is
a random number chosen from the message space, upk is a user’s public key,
c2 = IBE.Enc(T, (Kv||(M ⊕ r))), and σ = Sign(Ks, (T ||c1||c2)). In this construc-
tion, T is regarded as the “identity” of IBE scheme. When simply exchanging un-
derlying PKE scheme to a CCA-secure proxy re-encryption scheme (such as [25]),
σ cannot work after the proxy translates c1 into c′1 (which can be decrypted by
another user), since a “signed-message” c1 has already been changed. Other
generic constructions [12,13] require random oracles, since these constructions
apply the Fujisaki-Okamoto transformation [18]. In [14], a general construction
of TRE based on Security-Mediated Certificateless Encryption (SMCLE) was
proposed. However, SMCLE is not a primitive tool (such as PKE, IBE, digital
signatures, hash functions, and so on), and therefore “TRE combines PRE” is
similar to “SMCLE combines PRE”. From the above considerations, we need
another structure to combine TRE and PRE schemes without random oracles.
Organization: The paper is organized as follows: Security definitions of TR-
PRE are presented in Section 3. Our scheme is described in Section 4. The
security analyses are presented in Section 5.

2 Preliminaries

Note that x
$← S means that x is chosen uniformly from a set S. y←A(x) means

that y is an output of an algorithm A under an input x.

2.1 Bilinear Groups and Complexity Assumption

Definition 1. (Bilinear Groups) Bilinear groups and a bilinear map are de-
fined as follows:

1. G1 and G2 are cyclic groups of prime order p.
2. g is a generator of G1.
3. e is an efficiently computable bilinear map e : G1 × G1 → G2 with the

following properties.
– Bilinearity : for all u, u′, v, v′ ∈ G1, e(uu′, v) = e(u, v)e(u′, v) and

e(u, vv′) = e(u, v)e(u, v′).
– Non-degeneracy : e(g, g) �= 1G2 (1G2 is the G2 unit).

Definition 2. (3-QDBDH assumption) [25] The 3-Quotient Decision Bi-
linear Diffie-Hellman (3-QDBDH) problem is a problem, for input of a tu-
ple (g, ga, ga2

, ga3
, gb, Z) ∈ G5

1 × G2 to decide whether Z = e(g, g)b/a or
not. An algorithm A has advantage ε in solving 3-QDBDH problem in G1

if Adv3-QDBDH(A) := |Pr[A(g, ga, ga2
, ga3

, gb, e(g, g)b/a) = 0] − Pr[A(g, ga,

ga2
, ga3

, gb, e(g, g)z) = 0]| ≥ ε(k), where e(g, g)z ∈ G2 \ {e(g, g)b/a}. We say
that the 3-QDBDH assumption holds in G1 if no PPT algorithm has an advan-
tage of at least ε in solving the 3-QDBDH problem.
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The hardness of the 3-QDBDH problem was discussed in [25], where the 3-
QDBDH problem is not easier than the q–Decisional Bilinear Diffie-Hellman
Inversion (q-DBDHI) problem [6]. The difficulty of q-DBDHI problem in generic
groups was shown in [17], and this result implies the difficulty of the 3-
QDBDH problem in generic groups. As in [25], we use the modified version
of the 3-QDBDH (modified 3-QDBDH) problem, where for input of a tuple
(g, g1/a, ga, ga2

, gb, Z) ∈ G5
1 ×G2 to decide whether Z = e(g, g)b/a2

or not. This
modified 3-QDBDH problem is equivalent to the 3-QDBDH problem (See [25]
Lemma 1).

Definition 3. (Truncated decisional q-ABDHE assumption) [19] The
truncated decisional q-Augmented Bilinear Diffie-Hellman (q-ABDHE) prob-
lem is a problem, for input of a tuple (g′, g′(α

q+2)
, g, gα, gα2

, . . . , gαq

, Z) ∈
Gq+3

1 × G2 to decide whether Z = e(g, g′)αq+1
or not. An algorithm A

has advantage ε in solving truncated decisional q-ABDHE problem in G1 if
Advq-ABDHE(A) := |Pr[A(g′, g′(α

q+2)
, g, gα, gα2

, . . . , gαq

, e(g, g′)αq+1
) = 0] −

Pr[A(g′, g′(α
q+2)

, g, gα, gα2
, . . . , gαq

, e(g, g′)z) = 0]| ≥ ε(k), where e(g, g′)z ∈
G2 \ {e(g, g′)αq+1}. We say that the truncated decisional q-ABDHE assumption
holds in G1 if no PPT algorithm has an advantage of at least ε in solving the
truncated decisional q-ABDHE problem.

2.2 Strongly Existential Unforgeable One-Time Signatures

We apply the Libert-Vergnaud PRE [25], which applies the CHK transforma-
tion [8] to satisfy CCA security. Therefore, we also use an SEU one-time sig-
nature [2,7,29]. An SEU one-time signature Π consists of three algorithms,
Sig.KeyGen, Sign and Verify. Sig.KeyGen is a probabilistic algorithm which out-
puts a signing/verification key pair (Ks,Kv). Sign is a probabilistic algorithm
which outputs a signature σ from Ks, and a message M ∈ MSig, where MSig

is the message space of a signature scheme. Verify is a deterministic algorithm
which outputs a bit from σ, Kv and M . “Verify outputs 1” indicates that σ is
a valid signature of M , and 0, otherwise. The security experiment of SEU one-
time signature under an adaptive Chosen Message Attack (one-time CMA-SEU)
is defined as follows:

Definition 4. one-time CMA-SEU

Advone-time CMA-SEU
Π,A (k) =

∣∣ Pr
[
(Ks, Kv) ← Sig.KeyGen(1k);

(M, State) ← A(Kv); σ ← Sign(Ks, M); (M
∗
, σ

∗
) ← A(Kv , σ, State);

(M
∗
, σ

∗
) �= (M, σ); Verify(Kv , σ

∗
, M

∗
) = 1

∣∣
We say that a signature scheme is one-time CMA-SEU secure if the advantage
Advone-time CMA-SEU

Π,A (k) is negligible for any polynomial-time adversary A. Intu-
itively, an SEU one-time signature scheme is secure when an adversaryA cannot
issue a pair (M∗, σ∗) even if A has already obtained a signature of M∗.
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3 Definitions of TR-PRE

3.1 System Operations of TR-PRE

First, we define encryption levels (refer to [1]) as follows: A “first-level” cipher-
text is a ciphertext which cannot be re-encrypted for another user. A “second-
level” ciphertext is a ciphertext which can be re-encrypted into a first-level
ciphertext using an appropriate re-encryption key. In this paper, we consider
a single-hop scheme (such as [25]). A TR-PRE scheme Π consists of seven algo-
rithms (Setup, KeyGen, Encrypt, TS-Release, RKGen, Re-Encrypt, Decrypt):

Setup(1k) : This algorithm takes as input the security parameter k, and returns
the master public parameters params, the time server’s public key TSpub,
and the time server’s secret key tspriv. We assume that params includes
TSpub.

KeyGen(params) : This algorithm takes as input params, and returns a pub-
lic/secret key pair (upk, usk).

TS-Release(params, tspriv, T ) : This algorithm takes as input params, tspriv, and
a release time T , and returns a trapdoor sT .

Encrypt(params, upk,M, T ) : This algorithm takes as input params, a user’s
public key upk, a plaintext M , and T , and returns a second-level ciphertext
C which can be transformed into a first-level ciphertext using an appropriate
re-encryption key.

RKGen(params, uski, upkj) : This algorithm takes as input params, a user Ui’s
secret key uski, and a user Uj ’s public key upkj, and returns a re-encryption
key Rij .

Re-Encrypt(params,Rij , upki, C) : This algorithm takes as input params, Rij ,
and upki, and a second-level ciphertext C encrypted by upki, and returns a
first-level re-encrypted ciphertext C which can be decrypted by uskj .

Decrypt(params, usk, sT , C, T ) : This algorithm takes as input params, usk, sT

and C, and returns M or ⊥.

3.2 Security Requirements

We define the chosen-ciphertext security of TR-PRE. This is naturally defined
from the security definitions of TRE [10] and PRE [25]. Let (upk∗, usk∗) be
the challenge public/secret key. For other honest parties, keys are subscripted
by h or h′. For corrupted parties, keys are subscripted by c or c′. As in [25],
an adversary is given all re-encryption keys, except from the target user to a
corrupted user.
Oracles: A can issue re-encryption queries to the re-encryption oracleORE-ENC ,
where for an input (upki, upkj , C), if either “C is a first-level ciphertext” or “upkj

is a corrupted user and C = C∗”, thenORE-ENC returns⊥. Otherwise,ORE-ENC

returns a re-encrypted ciphertextC′.A can issue decryption queries to the decryp-
tion oracleODEC , where for an input (upk, C, T ), if either “upk was not produced
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by KeyGen” or “(upk, C, T ) = (upk∗, C∗, T ∗)”, then ODEC returns ⊥. In addi-
tion, if C is a first-level ciphertext derived from C∗, and upk ∈ {upkh, upkh′},
then ODEC returns ⊥. Otherwise, ODEC returns a decryption result M . We as-
sume that C is a first-level ciphertext, since a second-level decryption oracle is
useless. More precisely, A with Rhc and R∗h (these are defined in the following
experiment) can re-encrypt second-level ciphertexts.

We say that a (single-hop) TR-PRE scheme is replayable chosen-ciphertext
(IND-RCCA) secure if the advantage is negligible for any polynomial-time ad-
versary A in the following experiment.

Definition 5. IND-RCCA

AdvIND-RCCA
Π,A (k) =

∣∣Pr
[
(params, tspriv)← Setup(1k); (upk∗, usk∗)← KeyGen(params);

(upkh, uskh)← KeyGen(params); (upkh′ , uskh′)← KeyGen(params);

(upkc, uskc)← KeyGen(params); (upkc′ , uskc′)← KeyGen(params);

Set Keys := {upk∗, upkh, upkh′ , (upkc, uskc), (upkc′ , uskc′)};
Rc∗ ← RKGen(params, uskc, upk∗); Rh∗ ← RKGen(params, uskh, upk∗);
R∗h ← RKGen(params, usk∗, upkh); Rhc ← RKGen(params, uskh, upkc);

Rch ← RKGen(params, uskc, upkh); Rcc′ ← RKGen(params, uskc, upkc′);

Rhh′ ← RKGen(params, uskh, upkh′);

Set ReKeys := {Rc∗, Rh∗, R∗h, Rhc, Rch, Rcc′ , Rhh′};
(M∗

0 , M∗
1 , T ∗, State)← AORE-ENC,ODEC (params, Keys,ReKeys, tspriv);

µ
$← {0, 1}; C∗ ← Encrypt(params, upk∗, M∗

μ, T ∗);

µ′ ← AORE-ENC ,ODEC (C∗, State); µ = µ′] − 1/2
∣∣

In this experiment, A does not have to access the timed-release trapdoor extrac-
tion oracle OTS-Release (defined in the IND-CTCA experiment), since A is given
tspriv. IND-RCCA security guarantees that even if the appropriate trapdoor is
given, non-legitimate users (who do not have an appropriate secret key) cannot
decrypt a ciphertext. This suggests A is an “honest but curious” time server. As
in [9,25], we assume a static corruption model, which does not capture a scenario
in which an adversary generates public/secret keys for all parties.

Next, we define chosen-time period chosen-ciphertext (IND-CTCA) security.
A can issue key generation queries to the key generation oracle OKeyGen,
where OKeyGen returns (upk, usk). A can issue re-encryption queries to the
re-encryption key generation oracle ORKGen, where for an input (uski, upkj),
ORKGen returns Rij . A can issue trapdoor extraction queries OTS-Release, where
for an input time T , OTS-Release returns a trapdoor sT . Note that A cannot
query T ∗ to OTS-Release, where T ∗ is the challenge time. A can issue decryp-
tion queries to the decryption oracle ODEC , where for an input (upk, C, T ), if
either “upk was not produced by KeyGen” or “(upk, C, T ) = (upk∗, C∗, T ∗)”,
then ODEC returns ⊥. Note that if C is a first-level ciphertext derived from
C∗, then the decryption oracle ODEC returns ⊥. In our scheme, we can de-
tect whether a first-level ciphertext C is derived from C∗ or not, since a part
of the ciphertext (C∗

1 , C
∗
3 , C

∗
4 , C

∗
5 , σ

∗, T ∗) is also included in C. We say that a
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(single-hop) TR-PRE scheme is IND-CTCA-secure if the advantage is negligible
for any polynomial-time adversary A in the following experiment.

Definition 6. IND-CTCA

AdvIND-CTCA
Π,A (k) =

∣∣Pr
[
(params, tspriv)← Setup(1

k
);

Set O := {OKeyGen,ORE-ENC ,ORKGen,ODEC,OTS-Release}
(M∗

0 , M∗
1 , T ∗, upk∗, State)← AO

(params);

μ
$← {0, 1}; C∗ ← Encrypt(params, upk∗, M∗

μ , T ∗
);

μ′ ← AO
(C∗, State);μ = μ′]− 1/2

∣∣
IND-CTCA security guarantees that even if the appropriate secret key is given,
A cannot decrypt a ciphertext before the appropriate trapdoor is released. This
suggests A is a malicious user in this experiment.

The above two definitions are secure for a second-level ciphertext, since the
challenge ciphertext is a second-level one. We can define experiments for a first-
level ciphertext in an orthogonal manner. We omit the details of definitions,
since they are similar to the Libert-Vergnaud definitions [25].

4 Proposed Scheme

In this section, we propose our TR-PRE scheme. Our TR-PRE is based on the
Libert-Vergnaud PRE [25], and the Gentry IBE [19].

Protocol 1. The proposed TR-PRE scheme

Setup(1k) : Let n and m be polynomials in the security parameter k. Let (G1,G2)
be a bilinear group with prime order p, e : G1 × G1 → G2 a bilinear map,
g, u, v, h1, h2, h3 ∈ G1 generators, M = {0, 1}n a message space, and T =

{0, 1}m a release time space. Select s
$← Z∗

p, compute TSpub = gs, and
output tspriv = s and params = (g, u, v, h1, h2, h3, TSpub, H1, H2), where
H1 : {0, 1}m → Zp and H2 : {0, 1}∗ → Zp are cryptographic hash functions.

KeyGen(params) : For a user Ui, choose xi
$← Zp, compute Xi = gxi, and

output (upki, uski) = (Xi, xi).
TS-Release(params, tspriv, T ) : For a release time T ∈ T , choose

rT,1, rT,2, rT,3
$← Z∗

p, compute sT =
(
(rT,1, (h1 · g−rT,1)

1
s−H1(T ) ), (rT,2, (h2 ·

g−rT,2)
1

s−H1(T ) ), (rT,3, (h3 · g−rT,3)
1

s−H1(T ) )
)
, and output sT .

Encrypt(params, upki,M, T ) : Let upki = Xi. For M ∈ M and T ∈ T , choose

r1, r2
$← Zp and a one-time signature key pair (Ks,Kv) ← Sig.KeyGen(1k),

set C1 := Kv, compute C2 = Xr1
i , C3 = M · e(g, g)r1 · e(g, h1)r2 , C4 = (uKv ·

v)r1 , C5 = (g−H1(T ) · TSpub)r2 , C6 = e(g, g)r2 , C7 = (e(g, h2) · e(g, h3)β)r2 ,
where β = H2(C3, C5, C6), and σ = Sign(Ks, (C3, C4, C5, C6, C7, T )), and
output a second-level ciphertext C = (C1, C2, C3, C4, C5, C6, C7, σ, T ).
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RKGen(params, uski, upkj) : Let uski = xi and upkj = Xj. Compute Rij =

X
1

xi

j = g
xj
xi , and output Rij .

Re-Encrypt(params,Rij , upki, C) : Let upki = Xi. From a second-level ci-
phertext C, a first-level ciphertext C′ is computed as follows: Let C =
(C1, C2, C3, C4, C5, C6, C7, σ, T ). Check e(C2, u

C1 · v) ?= e(Xi, C4) and

Verify(C1, (C3, C4, C5, C6, C7, T )) ?= 1. If well-formed, choose t
$← Zp, com-

pute C′
2 = Xt

i , C′′
2 = R

1
t
ij, and C′′′

2 = Ct
2, and output a first-level ciphertext

C′ = (C1, C
′
2, C

′′
2 , C

′′′
2 , C3, C4, C5, C6, C7, σ, T ).

Decrypt(params, usk, C, sT ) :

In the case of first-level ciphertext : Let (C1, C
′
2, C

′′
2 , C

′′′
2 , C3, C4, C5,

C6, C7, σ, T ) be a first-level ciphertext, and sT =
(
(rT,1, hT,1),

(rT,2, hT,2), (rT,3, hT,3)
)

be the trapdoor of T . Check e(C′
2, C

′′
2 ) ?=

e(Xj , g), e(C′′′
2 , uC1 · v) ?= e(C′

2, C4), C7
?= e(C5, hT,2h

β
T,3) · C

rT,2+rT,3β
6 ,

where β = H2(C3, C5, C6), and Verify(C1, (C3, C4, C5, C6, C7, T )) ?= 1.
If well-formed, compute

e(C′′
2 , C′′′

2 )
1

xj = e(g

xj
txi , gtxir1)

1
xj = e(g, g)r1 ,

e(C5, hT,1) · C
rT,1
6 = e((g−H1(T ) · TSpub)

r2 , (h1 · g−rT,1 )
1

s−H1(T ) ) · e(g, g)rT,1r2

= e(g, h1)r2 , and

C3/{e(g, g)
r1 · e(g, h1)

r2} = M, and output M.

In the case of second-level ciphertext : Let (C1, C2, C3, C4, C5, C6,
C7, σ, T ) be a second-level ciphertext, and sT =

(
(rT,1, hT,1), (rT,2, hT,2),

(rT,3, hT,3)
)

be the trapdoor of T . Check e(C2, u
C1 · v) ?= e(Xi, C4),

C7
?= e(C5, hT,2h

β
T,3) · C

rT,2+rT,3β
6 , where β = H2(C3, C5, C6), and

Verify(C1, (C3, C4, C5, C6, C7, T )) ?= 1. If well-formed, compute

e(C2, g)
1

xi = e(X
r1
i , g)

1
xi = e(g, g)r1 ,

e(C5, hT,1) · C
rT,1
6 = e((g−H1(T ) · TSpub)

r2 , (h1 · g−rT,1 )
1

s−H1(T ) ) · e(g, g)rT,1r2

= e(g, h1)r2 , and

C3/{e(g, g)r1 · e(g, h1)
r2} = M, and output M.

A first-level ciphertext can be computed directly: for an input (param, upkj =

Xj ,M, T ), choose t, r1, r2
$← Z∗

p, and a one-time signature key pair (Ks,Kv) ←
Sig.KeyGen(1k), set C1 := Kv, and compute C2 = Xt

j , C′′
2 = g1/t,

C′′′
2 = Xr1t

j , C3 = M · e(g, g)r1 · e(g, h1)r2 , C4 = (uKv · v)r1 , C5 =
(g−H1(T ) · TSpub)r2 , C6 = e(g, g)r2 , C7 = (e(g, h2) · e(g, h3)β)r2 , where
β = H2(C3, C5, C6), and σ = Sign(Ks, (C3, C4, C5, C6, C7, T )). Then C′ =
(C1, C

′
2, C

′′
2 , C

′′′
2 , C3, C4, C5, C6, C7, σ, T ) is a valid second-level ciphertext under
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Uj . We call this encryption “direct encryption method” (we use this in the proof
of Theorem 1).

Intuitively, e(g, g)r1 is computed from a PRE section, and e(g, h1)r2 is com-
puted from a TRE section constructed by the Gentry IBE. Together with these
elements, the cancel element e(g, g)r1 ·e(g, g)r2 can be computed. (C3, C5, C6, C7)
is a ciphertext for a message M ′ of the Gentry IBE scheme, where M ′ :=
M · e(g, g)r1 , and (C1, C2, C3, C4) is a (part of) ciphertext for a message M ′′

of the Libert-Vergnaud PRE scheme [25], where M ′′ := M · e(g, h1)r2 .

5 Security Analysis

Theorem 1. Our TR-PRE scheme is IND-RCCA-secure if the modified 3-
QDBDH assumption holds, and the underlying one-time signature scheme is
SEU.

Proof. This proof is similar to that of the Libert-Vergnaud PRE scheme. How-
ever, we cannot directly use the challenger of the Libert-Vergnaud PRE scheme
in a black-box manner, since the signature part of our scheme is different from
that of the Libert-Vergnaud PRE scheme. Therefore, we have to write down the
detailed proof: Let (g,A−1 = g1/a, A1 = ga, A2 = ga2

, B = gb, Z) be a modi-
fied 3-QDBDH instance. We construct an algorithm B that can decide whether
Z = e(g, g)b/a2

or not, by using an adversary A to break our TR-PRE scheme.
Before constructing B, we explain two cases, in which we can break

SEU of underlying one-time signature scheme: Let C∗ = (C∗
1 =

K∗
v , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 , C

∗
6 , C

∗
7 , σ

∗, T ∗) be the challenge ciphertext. Let event1 be the
event that A issues a decryption query (K∗

v , C
′
2, C

′′
2 , C

′′′
2 , C3, C4, C5, C6, C7, T ),

where Verify(K∗
v , (C3, C4, C5, C6, C7, T )) = 1. Let event2 be the event that A is-

sues a re-encryption query (K∗
v , C2, C3, C4, C5, C6, C7, T ), where Verify(K∗

v , (C3,
C4, C5, C6, C7, T )) = 1. If either event1 or event2 occurs, then we can construct
an algorithm that breaks SEU of the underlying one-time signature scheme.

From now, we construct an algorithm B that outputs a random bit and aborts
when either event1 or event2 occurs. B computes (K∗

s ,K
∗
v ) ← Sig.KeyGen(1k),

chooses α1, α2
$← Z∗

p, and computes u := Aα1
1 = gaα1 and v := A

−α1·K∗
v

1 · Aα2
2 =

g−aα1K∗
v+a2α2 . uKv · v = A

α1(Kv−K∗
v )

1 ·Aα2
2 will appear in a part of a ciphertext.

B chooses s
$← Zp as tspriv, and h1, h2, h3

$← Zp, and computes TSpub = gs.

Public/Secret Key Generation: For the target user, B chooses x∗ $← Zp,
and computes upk∗ = X∗ := Ax∗

2 . For an honest user Uh (also in the case of

Uh′), B chooses xh
$← Zp, and computes upkh = Xh := Axh

1 . For a corrupted

user Uc (also in the case of Uc′), B chooses xc
$← Zp as uskc, and computes

upkc = Xc := gxc .
Re-encryption Key Generation: For Rc∗, B can compute Rc∗ = (X∗)1/xc ,
since B knows uskc = xc. For Rh∗, B can compute Rh∗ = A

x∗/xh

1 = gx∗a2/(xha).
For R∗h, B can compute R∗h = A

xh/x∗

−1 = gxha/(x∗a2). Note that Rh∗ and R∗h
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are valid re-encryption keys, since usk∗ = x∗a2 and uskh = xha. For Rhc, B can
compute Rhc = A

xc/xh

−1 = gxc/(xha). For Rch, B can compute Rch = A
xh/xc

1 =
gxha/xc . For Rcc′ , B can compute Rcc′ = gxc/xc′ , since B knows uskc = xc and
uskc′ = xc′ . For Rhh′ , B can compute Rhh′ = gxh′/xh = gxh′a/(xha).
From the above considerations, B can send params =
(g, u, v, h1, h2, h3, TSpub, H1, H2), Keys, ReKeys, and tspriv to A,
where Keys := {upk∗, upkh, upkh′ , (upkc, uskc), (upkc′ , uskc′)} and
ReKeys := {Rc∗, Rh∗, R∗h, Rhc, Rch, Rcc′ , Rhh′}.

– If A issues ORE-ENC with an input (upki, upkj , C), where C = (C1, C2,
C3, C4, C5, C6, C7, σ, T ) is a second-level ciphertext, we consider the following
three cases:
- i is the target user and j is an honest user : B simply re-encrypts

C by using R∗h.
- i is not the target user and j is an honest user : B simply re-

encrypts C by using Rhh′ or Rch.
- i is the target user and j is a corrupted user : If C1 = K∗

v (event2),
then B outputs a random bit, and aborts. Otherwise, B computes
C

1/x∗

2 = ((X∗)r1)1/x∗
= Ar1

2 . Now C4 = (uKv · v)r1 = (Aα1(Kv−K∗
v )

1 ·
Aα2

2 )r1 . Therefore, Ar1
1 = gar1 =

(
C4/(C

1/x∗
2 )α2

)1/(α1(Kv−K∗
v )) holds.

B chooses t, r2
$← Zp, sets t̃ := at/xc, and computes C′

2 = At
1 =

gat = gxc·at/xc = gxct̃ = X t̃
c, C′′

2 = A
xc/t
−1 = gxc/at = g1/t̃, and

C′′′
2 = {

(
C4/(C

1/x∗
2 )α2

)1/(α1(Kv−K∗
v ))}t = gar1t = gr1xc t̃ = (Xr1

c )t. Note
that we use the direct encryption method.

– When A issues ODEC with an input (upkj , C, T ), where C is a first-level
ciphertext under upkj, then if C is ill-formed, B returns ⊥. If upkj = upkc,
then B can decrypt C, since B knows uskc. We consider the remaining two
cases as follows:
- j is an honest user : Since Xj = gaxj , e(C′′

2 , C
′′′
2 ) = e(Xj , g)r1 =

e(g, g)ar1xj hold. In addition, C4 = (uKv ·v)r1 = (Aα1(Kv−K∗
v )

1 ·Aα2
2 )r1 =

gaα1r1(Kv−K∗
v ) · ga2α2r1 holds. Therefore

(
e(C4,A−1)

e(C′′
2 ,C′′′

2 )α2/xj

) 1
α1(Kv−K∗

v )
=

e(g, g)r1 holds. By using xj , B can compute e(g, g)r1. In addition, B
can compute sT , and e(g, h1)r2 from (C5, C6, C7). B returns M =
C3/{e(g, g)r1 · e(g, h1)r2} to A.

- j is the target user : If C1 = K∗
v (event1), then B outputs a ran-

dom bit, and aborts. Now Xj = gx∗a2
. Therefore, e(C′′

2 , C
′′′
2 ) =

(e,Xj , g)r1 = e(g, g)a2r1x∗
hold. Since C4 = gaα1r1(Kv−K∗

v ) ·
ga2α2r1 holds, e(C4, g) = e(g, g)aα1r1(Kv−K∗

v ) · e(g, g)a2α2r1 holds.

Therefore
(

e(C4,g)

e(C′′,C′′′
2 )α2/xj

) 1
α1(Kv−K∗

v )
= e(g, g)ar1 holds. In addi-

tion, e(C4, A−1) = e(g, g)α1r1(Kv−K∗
v ) · e(g, g)aα2r1 holds. B com-

putes
(

e(g,g)α1r1(Kv−K∗
v )·e(g,g)aα2r1

(e(g,g)ar1 )α2

) 1
α1(Kv−K∗

v )
= e(g, g)r1 . In addition,
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B can compute sT , and e(g, h1)r2 from (C5, C6, C7). B returns M =
C3/{e(g, g)r1 · e(g, h1)r2} to A.

Challenge: A sends (M∗
0 ,M

∗
1 , T

∗) to B. B chooses r∗2
$← Zp, sets C∗

1 = K∗
v ,

and computes C∗
2 = Bx∗

, C3 = M∗
μ · Z · e(g, h1)r∗

2 , C∗
4 = Bα2 , C∗

5 =
(g−H1(T

∗) · TSpub)r∗
2 , C6 = e(g, g)r∗

2 , and C7 = e(g, h2)r∗
2 · e(g, h3)r∗

2β, where
β = H2(C∗

3 , C
∗
5 , C

∗
6 ), and σ∗ = Sign(K∗

s , (C∗
3 , C

∗
4 , C

∗
5 , C

∗
6 , C

∗
7 , T

∗)). When Z =
e(g, g)b/a2

, C∗ = (C∗
1 , C

∗
2 , C

∗
3 , C

∗
4 , C

∗
5 , C

∗
6 , C

∗
7 , σ

∗, T ∗) is a valid ciphertext of M∗
μ

with r∗1 := b/a2. Otherwise, if Z is a random value, M∗
μ is perfectly hidden by

Z. Therefore, B decides Z = e(g, g)b/a2
when μ′ = μ, and Z is a random value,

otherwise. ��

Theorem 2. Our TR-PRE scheme is IND-CTCA-secure if the truncated deci-
sional q-ABDHE assumption holds.

Proof. This proof clearly holds, since we can use the challenger of the Gentry
IBE scheme C in a black-box manner, and the Gentry IBE scheme is secure under
the truncated decisional q-ABDHE assumption. More precisely, the simulator B
chooses all PRE-related parameters (incl. all user’s secret keys), and can use C
when OTS-Release and ODEC are issued by A. Note that B can decrypt (C, T ) if
an element (canceled by the TRE section) e(g, h1)r2 is computed by C, since B
knows all user’s secret keys. For the challenge phase, B can set ((M ′

0)
∗, (M ′

1)
∗) :=

(M∗
0 · e(g, g)r∗

1 ,M∗
1 · e(g, g)r∗

1 ) as the challenge message, and sends this to C.
B can compute the challenge ciphertext C∗ to add the PRE section into the
challenge ciphertext of the IBE scheme given by C. Note that B cannot decrypt
the challenge ciphertext C∗, since the TRE part of the C∗ is the challenge
ciphertext of the Gentry IBE scheme. B outputs μ′ to C as the guessing bit,
where μ′ is the output result of the IND-CTCA adversary A. ��

Note that the above proofs only cover a second-level ciphertext, since the chal-
lenge ciphertext is a second-level one. As in [25], we can prove the security of
the first-level ciphertext in the IND-RCCA (resp. IND-CTCA) experiment in
the same manner as the proof of Theorem 1 (resp. Theorem 2).

6 Conclusion

In this paper, for the first time we propose a TR-PRE scheme. Even if the
proxy transformation is applied to a TRE ciphertext, the release time is still
effective. Our construction is based on the Libert-Vergnaud PRE [25] and the
Gentry IBE [19]. We modified Nakai et al.’s construction [28] (which is a generic
construction of TRE) to combine PRE and TRE. Our work is valuable in adding
an access control function into encrypted (and re-encrypted) data itself. This
feature is suitable for data management in cloud computing environments.
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Abstract. Broadcasters transmit not only encrypted content but also

encrypted personalized messages to individual users. The current broad-

casting services employ an inefficient encryption scheme based on a sym-

metric key. On the other hand, several broadcast encryption schemes

using a public key have been proposed in which the broadcaster en-

crypts a message for some subset S of users with a public key and any

user in S can decrypt the broadcast with his/her private key. However,

it is difficult to encrypt a personalized message and transmit it to every

user efficiently. In this paper, we propose a broadcast encryption scheme

that has a personalized message encryption function. We show that our

scheme is efficient in terms of the ciphertext size.

Keywords: digital broadcasting, copyright protection, Conditional Ac-

cess System (CAS), broadcast encryption.

1 Introduction

1.1 Background

Broadcasters transmit not only broadcast content but also personalized messages
such as contract information to individual users. The broadcast content should
be encrypted for copyright protection and the personalized messages should be
encrypted to ensure the user’s privacy. Moreover, a broadcaster would naturally
want to minimize the key management cost. Therefore, the encryption scheme
of a broadcasting service should be such that (i) the broadcaster can encrypt
both common messages and personalized messages, (ii) it can transmit them
to every user efficiently, and (iii) it must bear only a low key management cost.
Unfortunately, as yet, there is no encryption scheme satisfying such requirements.

Japanese digital broadcasting employs a Conditional Access System (CAS) [1]
that uses only symmetric key encryption. The broadcaster can transmit two
kinds of encrypted messages to each user: an Entitlement Control Message
(ECM), which is common information to all users, and an Entitlement Man-
agement Message (EMM), which includes contract information for a particular
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user. The user’s receiver decrypts content by using these messages. Note that the
user’s secret key is used for encrypting EMM and the broadcaster must manage
all of the users’ secret keys. Hence, the key management cost is huge.

On the other hand, several broadcast encryption schemes [4,5,6,8,9] have been
proposed in which a broadcaster encrypts a message for some subset S of users
and any user in S can use his/her private key to decrypt the broadcast. Such
a scheme provides one-to-many secure communication; the broadcaster can en-
crypt content by using only one public key, which does not have to be managed
securely, and therefore, its key management cost is very small. However, such a
scheme cannot be used by the broadcaster to transmit personalized messages to
individual users.

The multi-recipient public key encryption scheme [10] can be used to encrypt
all of the personalized messages and transmit them to users efficiently. However,
if only this scheme is used, the broadcaster must transmit a common message
to each user individually, so it is not efficient.

1.2 Our Contributions

We propose a broadcast encryption scheme with personalized messages (BEPM),
whereby a broadcaster can encrypt not only the content but also a personalized
message and transmit them to each user efficiently. To construct this BEPM,
we extend the broadcast encryption scheme proposed by Boneh, Gentry, and
Waters [4] and make use of the idea of the multi-recipient public key encryption
scheme proposed by Kurosawa [10]. In particular, in our scheme, the broadcaster
transmits only one random element gr as part of the ciphertext to each user,
whereas in a trivial scheme, the broadcaster transmits all of the random elements
gr1 , gr2 , ..., grn as part of the ciphertext to each user. We show that our scheme
is IND-CPA secure under the decision BDHE assumption and that it is efficient
in terms of the ciphertext size.

1.3 Related Work

Fiat and Naor [7] were the first to advocate a broadcast encryption scheme. Their
scheme is secure against a collusion of t users, and its ciphertext size is dependent
on the threshold t and the number of users. Several other broadcast encryption
schemes have been proposed [5,6,8,9,12] since then, but the ciphertext of each
typically grows linearly with either the number of privileged users or the number
of revoked users on the condition that the schemes are fully collusion resistant.
Boneh, Gentry, and Waters [4] proposed a fully collusion resistant broadcast
encryption scheme with a short ciphertext (only two group elements).

Naor and Reingold [14] proposed the construction of pseudorandom synthe-
sizers to get a parallel construction of a pseudorandom function. Using this idea,
Kurosawa [10] proposed the multi-recipient public key encryption scheme that
reuses randomness for efficiency. In the trivial n-recipient public key encryp-
tion scheme, a ciphertext is a concatenation of independently encrypted mes-
sages for n recipients. Kurosawa scheme has a “shortened ciphertext” property,
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wherein the length of the ciphertext is half (or less) that of the trivial scheme and
the security is almost the same as the underlying single-recipient scheme. Bel-
lare, Boldyreva, and Staddon [3] proposed the multi-recipient encryption scheme
which is extended Kurosawa construction to fit a stronger adversarial model.
Peikert and Waters [15] proposed the construction of lossy trapdoor function
which are technically similar to the ElGamal-like cryptosystems of Bellare et
al. [3] and to constructions of pseudorandom synthesizers by Naor et al. [14].

2 Requirements

The broadcaster may transmit not only content but also personalized messages.
In Japanese digital broadcasting, the broadcaster transmits contract informa-
tion for distinguishing subscribers from others. Moreover, certain user terminals
cannot connect to a communications network so the broadcaster needs to trans-
mit both the content and personalized messages simultaneously via radio wave.
Furthermore, the broadcast content should be encrypted for copyright protec-
tion and the personalized message should be encrypted for the sake of the user’s
privacy. These considerations lead us to the following requirements for the en-
cryption scheme:

(1) A broadcaster should be able to encrypt a common message containing
broadcast content and efficiently transmit it to all users.

(2) A broadcaster should be able to encrypt personalized messages and effi-
ciently transmit them to individual user.

(3) The key management cost borne by the broadcaster should be low.

Unfortunately, there is no encryption scheme satisfying all of the above require-
ments. Several public key encryption schemes, for example, a broadcast encryption
scheme and a multi-recipient public key encryption scheme, have been proposed
for one-to-many secure communication, and we shall describe them briefly below.
However, each of these schemes fails to meet the requirements in some way.

Broadcast encryption scheme [4]. The broadcaster encrypts a content decryption
key by using one public key and transmits it to users. Only the users specified by
the broadcaster can decrypt and play the content. Boneh, Gentry, and Waters
proposed an efficient broadcast encryption scheme [4]. The header for transmit-
ting the content decryption key is as follows:

Hdr =

⎛⎝gt, (gγ ·
∏
j∈S

gn+1−j)t

⎞⎠
where t, γ, and α are random numbers, g is a generator of a bilinear group G,
gi = g(αi), n denotes the total number of users, and S denotes a set of users who
the broadcaster specified. The header has only two elements in G, and its size
is independent of the number of users. Let M be a message to be broadcast to
S, and let CM be the encryption of M under a message encryption key K. The
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broadcast message to users in S consists of (S, Hdr, CM ). Only users in S can
decrypt Hdr by using his/her private key and obtain K, which in turn can be
used to decrypt CM and obtain the message M .

This scheme is a public key encryption scheme, and the broadcaster does not
have to manage the users’ secret keys. Hence, requirement (3) is satisfied. In
addition, the broadcast message (S, Hdr, CM ) is a common message to all users,
and hence, requirement (1) is satisfied. However, this scheme does not have a
function for transmitting a personalized message for each user. Thus, its does
not satisfy requirement (2).

Multi-recipient public key encryption [10]. The broadcaster encrypts messages
M1, M2, ..., Mn, where Mi is a message for user i, and transmits them to users:
The most trivial scheme is that the broadcaster encrypts Mi by using the public
key pki for user i, concatenates all encrypted messages, and transmits them to
the users.

C = (Encpk1(M1)||Encpk2(M2)|| · · · ||Encpkn(Mn))

where Encpki(Mi) denotes encrypting the message Mi with the public key pki.
For example, the ciphertext is as follows when using the ElGamal encryption
scheme:

C = ((gr1 ,M1X
r1
1 )||(gr2 ,M2X

r2
2 )|| · · · ||(grn ,MnX

rn
n ))

where ri (i = 1, ..., n) is a random number that the broadcaster selects, g is a
generator of a group G, Xi = gxi is the public key for user i, and xi is his/her
private key.

Kurosawa proposed multi-recipient public-key encryption [10] in which the
ciphertext size can be reduced by using a same random number for encryption.
The ciphertext is as follows when using the ElGamal encryption scheme:

C = (gr,M1X
r
1 ,M2X

r
2 , ...,MnX

r
n)

Note that the ciphertext has n + 1 elements in G.
The above is a public key encryption scheme, and the broadcaster does not

have to manage the users’ secret keys. Thus, requirement (3) is satisfied. The
ciphertext has a personalized message for each user, and the ciphertext size of
the scheme is about half that of the above trivial scheme. Hence, requirement
(2) is satisfied. However, the broadcaster must transmit the common message to
each user individually, and thus, requirement (1) is not satisfied.

3 Preliminaries

3.1 Bilinear Maps

Let G, G1 be multiplicative cyclic groups of prime order p and g be a generator
of G. A bilinear map is a map e : G×G → G1 with the following properties:

– Bilinear: e(ga, gb) = e(g, g)ab ∀a, b ∈ Zp

– Non-degenerate: e(g, g) �= 1
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We say that G is a bilinear group if the group action in G can be computed
efficiently and there exists a group G1 and an efficiently computable bilinear
map e : G × G → G1, as above. Note that e(·, ·) is symmetric since e(ga, gb) =
e(g, g)ab = e(gb, ga).

3.2 Decision BDHE Assumption [2]

Let G be a bilinear group of prime order p. The �-BDHE problem in G can be
stated as follows: given a vector of 2� + 1 elements(

h, g, gα, g(α2), ..., g(α�), g(α�+2), ..., g(α2�)
)
∈ G2
+1

as input, output e(g, h)(α
�+1) ∈ G1.

Let gi = g(αi) ∈ G1 and yg,α,
 = (g1, ..., g
, g
+2, ..., g2
). An algorithm A
which outputs b ∈ {0, 1} has advantage ε in solving the decision �-BDHE problem
in G if

|Pr[A(g, h,yg,α,
, e(g
+1, h)) = 0]− Pr[A(g, h,yg,α,
, T )) = 0]| ≥ ε

where the probability is over a random selection of generators g, h in G, a random
selection of α in Zp, a random selection of T ∈ G1, and random bits consumed
by A.

Definition 1. We say that the decision (τ , ε, �)-BDHE assumption holds in G
if no τ-time algorithm has advantage of at least ε in solving the decision �-BDHE
problem in G.

4 Proposed Scheme

4.1 Model

The broadcast encryption scheme with personalized messages (BEPM) consists
of three polynomial time algorithms: (Setup, Encrypt, Decrypt).

Setup(n): This is a probabilistic algorithm that takes as input the number of
users n. It returns a public key PK and n private keys {ski}1≤i≤n.

Encrypt(S, PK): This is a probabilistic algorithm that takes as inputs a subset
S ⊆ {1, ..., n} and a public key PK. It returns a pair (Hdr, K, {K ′

i}i∈S),
where Hdr is called the header, K ∈ K is a common message encryption key,
and {K ′

i}i∈S ∈ K′ is a personalized message encryption key.
Let M be a common message to be broadcast to the set S, and let C(M)
be the encryption of M under the symmetric key K. Let Mi be a person-
alized message for user i, and let C(Mi) be the encryption of Mi under the
symmetric key K ′

i. The broadcast message to users in S consists of (S, Hdr,
C(M), {C(Mi)}i∈S).
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Decrypt(S, i, ski, Hdr, PK): This is a deterministic algorithm that takes as
inputs a subset S, a user ID i ∈ {1, ..., n}, the private key ski for user i,
a header Hdr, and the public key PK. If i ∈ S, the algorithm returns the
common message encryption key K and the personalized message encryption
key K ′

i. The key K can be used to decrypt C(M) and obtain the common
message M . The key K ′

i can be used to decrypt C(Mi) and obtain the
personalized message Mi for user i.

4.2 Security Definition

We shall now define the chosen plaintext security of a broadcast encryption
scheme against a static adversary by using the following game between an ad-
versary A and a challenger C. Both C and A are given n, the total number of
users, as input.

Init. A outputs a set S∗ ⊆ {1, ..., n} of users that it wants to attack.
Setup. C runs Setup(n) to obtain a public key PK and private keys {ski}1≤i≤n.

It gives A the public key PK and all private keys skj for which j /∈ S∗.
Challenge. C runs algorithm Encrypt(S∗, PK) to obtain (Hdr∗, K, {K ′

i}i∈S∗)
where K ∈ K and {K ′

i}i∈S ∈ K′. C then picks a random bit b0 ∈ {0, 1}. If
b0 = 0, it sets K∗ = K. Otherwise, it sets K∗ ←R K. C then picks a random
bit bi ∈ {0, 1} for all i ∈ S∗. If bi = 0, it sets K∗

i = K ′
i. Otherwise, it sets

K∗
i ←R K′. C gives (Hdr∗,K∗, {K∗

i }i∈S∗) to A.
Guess. A outputs its guess b′0 and {b′i}i∈S∗ for b0 and {bi}i∈S∗ . It wins the

game if b0 = b′0 and bi = b′i for all i ∈ S∗

The security of a BEPM is defined as follows:

Definition 2. We say that a BEPM is (τ , ε, n) IND-CPA secure if∣∣∣∣Pr[(b′0 = b0) ∧ (b′i = bi)∀i∈S∗ ]− 1
2|S∗|+1

∣∣∣∣ < ε

is satisfied for all τ-time adversaries A in the above game.

4.3 Our Construction

To construct BEPM, we extend the broadcast encryption scheme proposed by
Boneh-Gentry-Waters [4] and borrow the idea of multi-recipient public key en-
cryption proposed by Kurosawa [10].

Setup(n): Let n be the number of users and G be a bilinear map of prime
order p. The algorithm first picks a random generator g ∈ G and a random
α, β1, ..., βn ∈ Zp. It computes gi = g(αi) ∈ G for i = 1, 2, ..., n, n + 2, ..., 2n.
Next, it picks a random γ1, γ2 ∈ Zp and sets v1 = gγ1 and v2 = gγ2 ∈ G.
The public key is:

PK = (g, g1, ..., gn, gn+2, ..., g2n, g
β1 , ..., gβn , v1, v2) ∈ G3n+2
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The private key for user i ∈ {1, ..., n} is set as:

ski = (ski[1], ski[2]) = (gγ1
i , (gβi)γ2) ∈ G2

Note that ski = (v(αi)
1 , vβi

2 ). The algorithm outputs the public key PK and
n private keys sk1, ..., skn.

Encrypt(S, PK): Pick a random t ∈ Zp and set a common message encryption
key K = e(gn+1, g)t = e(gn, g1)t ∈ G. Next, set a personalized message
encryption key K ′

i = e(gβi , v2)t for all i ∈ S. Then, set

Hdr =

⎛⎝gt, (v1 ·
∏
j∈S

gn+1−j)t

⎞⎠ ∈ G2

and output the pair (Hdr, K, {K ′
i}i∈S).

Decrypt(S, i, ski, Hdr, PK): Let Hdr = (C0, C1). If i ∈ S, output the common
message encryption key:

K = e(gi, C1) / e(ski[1] ·
∏

j∈S,j �=i

gn+1−j+i, C0)

and the personalized message encryption key:

K ′
i = e(gt, ski[2]) = e(gt, vβi

2 ) = e(gβi, v2)t

for all i ∈ S.

Remark 1. Our scheme exploits the idea of multi-recipient public key encryp-
tion [10]. That is, gt, part of the header Hdr, is used to make a personalized
message encryption key K ′

i = e(gt, ski[2]) in the algorithm of Decrypt. Accord-
ingly, a new random number does not have to be added to Hdr, and it makes our
scheme efficient in terms of the ciphertext size.

The broadcaster in BEPM needs to generate only one header when it simultane-
ously transmits a common message encryption key and |S| personalized message
encryption keys. That is, it requires two elements in G. In contrast, the broad-
caster in a broadcast encryption scheme has to generate |S|+ 1 headers: one for
a common message encryption key and |S| headers for |S| personalized message
encryption keys. That is, 2·|S|+ 2 elements are required in total. Moreover, the
broadcaster in a multi-recipient public key encryption scheme has to generate
two ciphertexts: one for a common message encryption key and the other for |S|
personalized message encryption keys. That is, 2 · |S|+ 2 elements are required
in total. Our scheme is thus the most efficient among these schemes.

Remark 2. BEPM is constructed by extending the “special case” of the broad-
cast encryption scheme in [4], where the ciphertext size and the private key size
are fixed and the public key size depends on the number of users. It is also possi-
ble to construct BEPM by extending the “general construction” of the broadcast
encryption scheme in [4]; this enables us to trade off the public key size for the
ciphertext size.
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4.4 Security Proof

Theorem 1. Let G be a bilinear group of prime order p. For any positive inte-
gers n, our scheme is (τ , ε, n) IND-CPA secure under the assumption that the
decision (τ + 4(n + 1)τM + |S∗|τP , ε

2 , n)-BDHE assumption holds in G, where
τM denotes the processing time for modulo exponentiation, τP denotes the pro-
cessing time for the pairing computation, and |S∗| denotes the number of users
who the adversary wants to attack.

Proof. Suppose there exists a τ -time adversary A that has advantage ε in break-
ing our scheme. We build an algorithm B that solves the decision n-BDHE
problem in G by using A. B takes as inputs (g, h,yg,α,n, Z), where yg,α,n =
(g1, ..., gn, gn+2, ..., g2n) and Z is either e(gn+1, h) or T , a random element of G1.
B proceeds as follows:

Init. B runs A and receives the set S∗ of users that A wishes to be challenged
on.
Setup. B chooses random u1, u2, β

′
1, ..., β

′
n, γ1, ..., γn ∈ Zp and sets

gβi =

{
g

β′
i

1 gγi (i ∈ S∗)
gβ′

i (i �∈ S∗)

v1 = gu1(
∏

j∈S∗
gn+1−j)−1, v2 = gu2

n

It gives A the public key
PK = (g, g1, ..., gn, gn+2, ..., g2n, g

β1, ..., gβn , v1, v2) ∈ G3n+2

Note that since g, α, u1, u2, β′
1, ..., β′

n, γ1, ...,γn are chosen uniformly at random,
this public key has an identical distribution to that of the actual construction.
Next, B computes all private keys that are not in the target set S.

ski = (ski[1], ski[2]) = (gu1
i

∏
j∈S∗

(gn+1−j+i)−1, g
u2β′

i
n )

Note that ski[1] = (gu1
∏

j∈S∗(gn+1−j)−1)(α
i) = v

(αi)
1 , ski[2] = g

u2β′
i

n = vβi

2 . B
gives A all private keys ski (i �∈ S∗).
Challenge. B computes Hdr∗ = (h, hu1). It then randomly chooses a bit b0 ∈
{0, 1}. If b0 = 0, it sets K∗ = Z. Otherwise, it picks a random K∗ in G1.
Moreover, B randomly chooses bi ∈ {0, 1} for all i ∈ S∗. If bi = 0, it sets
K∗

i = Zβ′
iu2 · e(h, v2)γi . Otherwise, it picks a random K∗

i in G1. B gives (Hdr∗,
K∗, {K∗

i }i∈S∗) as the challenge to A.
We claim that when Z = e(gn+1, h) (i.e. the input to B is a n-BDHE tuple),

then (Hdr∗, K∗, {K∗
i }i∈S∗) is a valid challenge to A, as in a real attack. To see

this, write h = gt for some t ∈ Zp. Then, we have

hu1 = (gu1)t = (gu1(
∏

j∈S∗
gn+1−j)−1(

∏
j∈S∗

gn+1−j))t = (v1

∏
j∈S∗

gn+1−j)t
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Therefore, Hdr∗ = (h, hu1) is a valid encryption of the common message encryp-
tion key K = e(gn+1, g)t. Furthermore,

K∗ = Z = e(gn+1, h) = e(gn+1, g)t

K∗
i = Zβ′

iu2 · e(h, v2)γi = e(gn+1, h)β′
iu2 · e(h, v2)γi

= e(gn+1, g
t)β′

iu2 · e(gt, v2)γi = e(gn, g1)β′
iu2t · e(gγi, v2)t

= e(gβ′
i

1 , v2)t · e(gγi, v2)t = e(gβi , v2)t

and hence, (Hdr∗, K∗, {K∗
i }i∈S∗) is a valid challenge to A.

Guess. A outputs a guess b′0 of b0 and {b′i}i∈S∗ of {bi}i∈S∗ . If b0 = b′0 and
(b′i = bi)∀i∈S∗ , B outputs 0 (indicating that Z = e(gn+1, h)). Otherwise, it
outputs 1 (indicating that Z = T is random in G1).

We refer to the case of Z = e(gn+1, h) as Zreal and the case of Z = T as
Zrand. Furthermore, we refer to the event that b0 = b′0 and (b′i = bi)∀i∈S∗ as
Awin and the event that B outputs 0 (indicating Z = e(gn+1, h)) as Breal. Then,
we have

Pr[Awin|Zreal] =
1

2|S∗|+1
+ ε

Pr[Āwin|Zreal] = 1−
(

1
2|S∗|+1

+ ε

)
Therefore,

Pr[Breal|Zreal] = Pr[Breal|Awin, Zreal] · Pr[Awin|Zreal]
+ Pr[Breal|Āwin, Zreal] · Pr[Āwin|Zreal]

= 1 ·
(

1
2|S∗|+1

+ ε

)
+

1
2
·
{

1−
(

1
2|S∗|+1

+ ε

)}
=

1
2|S∗|+2

+
1
2

+
ε

2

In the case of Z = T , the random number γi, which is used for constructing
K∗

i = Zβ′
iu2 · e(h, v2)γi , is independent of Z. γi is also used for constructing gβi

for i ∈ S∗, one of the elements of PK. However, even if the adversary A can
get gβi and g1 = gα and then it can solve their discrete logarithm problems
and obtain βi and α, it cannot obtain β′

i. gβi = g
β′

i
1 gγi = gαβ′

i+γi results in
γi = βi − αβ′

i. Therefore, there exist p candidates for the value of γi, and they
are uniformly distributed. Hence, from A’s view, K∗

i , which is constructed from
the random element Z = T of G1, is uniformly distributed. That is, A can get no
information about bi from K∗ and K∗

i , and it outputs b′i randomly. Therefore,

Pr[Awin|Zrand] =
1

2|S∗|+1

Pr[Āwin|Zrand] = 1− 1
2|S∗|+1
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Hence,

Pr[Breal|Zrand] = Pr[Breal|Awin, Zrand] · Pr[Awin|Zrand]
+ Pr[Breal|Āwin, Zrand] · Pr[Āwin|Zrand]

= 1 · 1
2|S∗|+1

+
1
2
·
(

1− 1
2|S∗|+1

)
=

1
2

+
1

2|S∗|+2

The advantage of B is:

|Pr[Breal|Zreal]− Pr[Breal|Zrand]| =
1

2|S∗|+2
+

1
2

+
ε

2
−
(

1
2

+
1

2|S∗|+2

)
=

ε

2

Since the construction of B needs 4(n + 1) modulo exponentiations and |S∗|
pairing computations, B’s total processing time for solving the decision BDHE
problem is τ + 4(n + 1)τM + |S∗|τP . ��

4.5 Performance Evaluation

We show that our scheme satisfies all the requirements of Section 2. First, our
scheme is a public key encryption scheme, and the broadcaster does not have to
manage the users’ secret keys. Hence, requirement (3) is satisfied. The broad-
cast message (S, Hdr, C(M), {C(Mi)}i∈S) includes both a common message
for all users and a personalized message for each user. Using our scheme, the
broadcaster can transmit those messages to each user efficiently. Therefore, re-
quirements (1) and (2) are satisfied.

In the Boneh-Gentry-Waters broadcast encryption scheme [4], it is difficult to
encrypt personalized messages and transmit them to each user efficiently since
a broadcaster must transmit the following header to each user.

Hdr =

⎛⎝gt, {gtj}j∈S , (v1 ·
∏
j∈S

gn+1−j)t

⎞⎠ ∈ G|S|+2

In contrast, in our scheme, a broadcaster transmits the following header to each
user.

Hdr =

⎛⎝gt, (v1 ·
∏
j∈S

gn+1−j)t

⎞⎠ ∈ G2

The most trivial scheme using Kurosawa multi-recipient public key encryption
scheme [10] is as follows: let K be a common message encryption key, and let K ′

i

be a personalized message encryption key. The header for transmitting K and
K ′

i using ElGamal encryption is:

Hdr = (gr,KXr
1 ,K

′
1X

r
1 ,KXr

2 ,K
′
2X

r
2 , ...,KXr

s ,K
′
sX

r
s )

Table 1 lists the comparison of header sizes, public key sizes, and private key sizes
of the Boneh-Gentry-Waters scheme, Kurosawa scheme, and our scheme. Each
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Table 1. Comparison of header sizes, public key sizes, and private key sizes of Boneh-

Gentry-Waters broadcast encryption [4] (BGW05), Kurosawa multi-recipient public

key encryption [10] (Kur02), and our scheme. Each size denotes the number of elements

in G.

BGW05 Kur02 Our scheme

Header size |S|+ 2 2 · |S|+ 1 2

Public key size 2n + 1 n 3n + 2

Private key size 1 1 2

size denotes the number of elements in G. The header sizes of Boneh-Gentry-
Waters scheme, Kurosawa scheme, and our scheme number |S|+2, 2·|S|+1, and
2, respectively. The public key sizes of Boneh-Gentry-Waters scheme, Kurosawa
scheme, and our scheme number 2n+ 1, n, and 3n+ 2, respectively. The private
key sizes of Boneh-Gentry-Waters scheme, Kurosawa scheme, and our scheme
number 1, 1, and 2, respectively. Our scheme is more efficient than the others in
terms of the ciphertext size, although the public key size of our scheme is larger
than that of the others.

5 Application

As described in Section 4.3, BEPM has the following features: (i) the broadcaster
can encrypt common messages and a personalized messages, and (ii) the broad-
caster can efficiently transmit a common message and a personalized message to
each user. Here, we shall describe a conditional access system for a broadcasting
service as an application of our scheme.

5.1 Conventional Conditional Access System

Japanese digital broadcasting uses the Conditional Access System (CAS) [1] for
access control and copyright protection. CAS prevents broadcast content from
being illegally used, and only the subscribers can receive the content that it
protects.

Figure 1 shows a block diagram of CAS. Content is scrambled (encrypted using
a symmetric encryption, MULTI-2 [1,11]). A scramble key (Ks), which is used
for encrypting content, is updated every few seconds, and content information
such as program type, date/time, recording control, MAC, etc., is transmitted
to each user’s terminal. A broadcaster encrypts Ks and the information by us-
ing a work key Kw. The encrypted information is called an Entitlement Control
Message (ECM) and is common to all users. The broadcaster encrypts Kw and
the contract information about each user, including subscribed channel, expire
date, etc., by using the user’s master key Km, which differs from those of other
users. The encrypted information is called an Entitlement Management Message
(EMM), and it includes all of the personalized messages for each user. The scram-
bled content, ECM, and EMM are transmitted to all user terminals. The user
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Fig. 1. Conditional Access System (CAS)

terminal receives them and picks up its EMM. Kw and the contract information
are obtained by decrypting EMM using Km. Ks and the content information
are obtained by decrypting ECM using Kw. The decision upon descrambling the
content is made by checking the content information and contract information.
That is, the content can be descrambled (decrypted) by using Ks only if the
user subscribes to the content.

As mentioned above, CAS has a function for transmitting the common mes-
sage to all users as well as a function for transmitting personalized messages to
each user. However, CAS is based on symmetric key encryption, and the broad-
caster must securely manage all of the user’s master key Km. Hence, CAS entails
a huge key management costD

5.2 Proposed Conditional Access System

Figure 2 shows a conditional access system based on our scheme. The broadcaster
first runs Encrypt(S, PK) using a set S of subscriber’s ID and a public key
PK, and it obtains a header Hdr, a common message encryption key K, and
personalized message encryption keys {K ′

i}i∈S . Next, it encrypts the content M
using K after which it encrypts a personalized message Mi using K ′

i for i ∈ S. It
transmits the encrypted content C(M), the pair (S, Hdr), which corresponds to
ECM in CAS, and the encrypted personalized message C(Mi), which corresponds
to EMM in CAS. User i runs Decrypt(S, i, ski,Hdr, PK) by using his/her private
key ski, a public key PK, and (S, Hdr). If i ∈ S, he/she can obtain K and K ′

i.
User i then decrypts C(Mi) by using K ′

i and obtains personalized message Mi.
Moreover, he/she decrypts C(M) by using K and obtains content M .

The conditional access system based on our scheme (Figure 2) has the follow-
ing strong points:

(1) Low-cost key management
The broadcaster can encrypt messages by using a public key PK. Therefore,
it does not have to manage all the users’ secret keys, and its key management
cost is very low. A symmetric key encryption scheme is used for encrypting
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Fig. 2. Conditional access system using our scheme

the content and the personalized messages. However, a broadcaster does not
have to manage a common message encryption key K and a personalized
message encryption key {K ′

i}i∈S , since K and {K ′
i}i∈S can be altered when-

ever it wants.
(2) Easy access control

The broadcaster can specify a set S of users who can decrypt its content. For
example, a pay-TV service can be realized by specifying S to be subscribers.
When the broadcaster wants to revoke a user or to register a new user with
its service, the broadcaster simply reconstructs S; hence, access control is
easy.

(3) Transmission of personalized messages
The broadcaster can encrypt personalized messages and transmit them to
each user efficiently.

The system using a conventional broadcast encryption scheme has strong points
(1) and (2), whereas the system using our scheme has all three strong points. In
addition, the personalized message can include any information in our scheme. For
example, a broadcaster can analyze preferences according to the individual con-
tracts and create personalized content recommendation messages for each user.

Table 2 compares our scheme with the conventional schemes. “CAS” de-
notes the conditional access system (CAS) of Japanese digital broadcasting,
“BGW” denotes the conditional access system using the Boneh-Gentry-Waters
scheme [4], and “Ours” denotes a conditional access system using our scheme.
The table shows that our system is the most effective one since it has three
strong points.

In CAS, the broadcaster must manage all of the master keys Km securely.
The key management cost is accordingly huge. The broadcaster transmits con-
tent information and contract information to each user. The decision upon de-
scrambling the content is made by checking the content information and contract
information. Therefore, the access control scheme is somewhat complicated.

In CAS, the bandwidth required to transmit contract information for all users
is about 300 kbps. The bandwidth required to transmit a scramble key Ks is
32 bps, assuming that Ks is updated every two seconds and |Ks| = 64 bits.
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Table 2. Comparison of our scheme and conventional schemes: the conditional access

system of Japanese digital broadcasting (CAS), a conditional access system using the

Boneh-Gentry-Waters scheme [4] (BGW), and a conditional access system using BEPM

(Ours). (�: bad, ��: good, � � �: excellent)

CAS BGW Ours

Low-cost key management � � � � � � �

Easy access control �� � � � � � �

Transmission of personalized messages � � � � � � �

Therefore, the total bandwidth for access control is about 300 kbps. Our scheme
also uses symmetric key encryption on the personalized information. Thus, the
bandwidth required to transmit personalized information for all users is about
300 kbps, the same as in CAS. Moreover, in our scheme, the bandwidth required
to transmit a header is 160 bps, assuming that K is updated every two seconds,
and the size of element of G is 160 bits. Hence, the total bandwidth for access
control in our system is about 300 kbps. More precisely, the difference between
total bandwidths of CAS and our system is only 128(= 160− 32) bps, which is
negligibly small.

As described in Section 4.5, our scheme is more efficient than the conventional
ones in terms of the ciphertext size. Assuming that the representation of G is
160 bits and 10,000 users can decrypt a piece of content (|S| = 10, 000), the
header sizes in BGW and our system are 1.6 Mbits and 320 bits, respectively.
As this calculation illustrates, our system is much more efficient than BGW in
terms of the ciphertext size.

5.3 Discussion for CCA Security

As described in Section 4.4, our scheme of BEPM is IND-CPA secure under the
decision BDHE assumption. Japanese digital broadcasting uses the CAS, where
a security module (smart card) is distributed to each user and inserted into a
user’s terminal. A broadcaster encrypts user’s contract information and transmit
it to each user. However, this personalized message can be decrypted only in a
security module since it is used for decision upon descrambling the content. That
is, no one can get a personalized message as a plaintext in CAS, which means
that there exists no decryption oracle. Therefore, we do not need to consider
CCA security of our scheme.
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Abstract. In this paper, we present a new public key encryption scheme

which is proven chosen-ciphertext (CCA) secure under the decisional

Diffie-Hellman (DDH) assumption. The main motivation behind this

scheme is to clarify the essential mechanism for yielding CCA-security

from the DDH assumption. The structure and security proof of our

scheme is simple, and it is likely that even non-experts can immedi-

ately understand them with ease. We consider that our scheme is helpful

for convincing a wide range of users (including developers and students

who are just starting to study CCA-secure encryption) how the Cramer-

Shoup cryptosystem and its variants work.

Keywords: public key encryption, CCA security, the decisional Diffie-

Hellman assumption.

1 Introduction

1.1 Background

For practical communication systems, chosen-ciphertext (CCA) security [20,8]
is considered as the de facto standard security notion for public key encryption
(PKE) schemes, and there is no doubt about its importance. However, in contrast
to its importance, we also notice that the essential mechanisms of CCA-secure
PKE schemes are not generally easy to understand except for experts, and thus,
for example, this often makes developers pause to implement newly-invented
useful schemes. Especially, the Cramer-Shoup scheme [7] is recognized as one of
the most basic CCA-secure PKE schemes, but its mechanism for yielding prov-
able CCA-security under the decisional Diffie-Hellman (DDH) assumption seems
not very intuitive. Therefore, for further activating research and development of
CCA-secure PKE schemes, it is important to present the essential mechanism
for handling CCA-security in a more easy-to-understand manner.

S.-H. Heng and K. Kurosawa (Eds.): ProvSec 2010, LNCS 6402, pp. 229–243, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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1.2 Our Contribution

In this paper, we propose a novel PKE scheme which is designed by pursu-
ing a more easy-to-understand structure for handling CCA-security under the
DDH assumption. Our proposed scheme is constructed based on Hanaoka et
al.’s scheme [10] which was also designed for providing an easy-to-understand
security proof for CCA-security. Since Hanaoka et al.’s scheme requires the gap
Diffie-Hellman assumption, we modify it to be provably secure under the DDH
assumption. This modification yields clearer intuition how CCA-security is han-
dled under the DDH assumption, and would be helpful for understanding the es-
sential mechanism of the existing DDH-based PKE schemes. We further slightly
modify our proposed scheme with enhanced efficiency and less intuitive security
proof. Interestingly, the resulting scheme becomes very similar to the hash free
variant of the Cramer-Shoup scheme (which is mentioned in Sec. 5.3 in [7]). This
implies that our proposed scheme well explains the essential mechanism of the
existing DDH-based schemes.

1.3 Related Works

In the beginning of nineties, the first CCA-secure PKE scheme was proposed
by Dolev, Dwork, and Naor [8] by extending the Naor-Yung paradigm [17].
However, it took seven years until the first practical CCA-secure scheme was
proposed by Cramer and Shoup [7] under the DDH assumption. Moreover, it
further took another six years until its significantly improved (but very simple)
variant was discovered by Kurosawa and Desmedt [13]. This fact implies that
the mechanism for handling CCA-security is not generally easy. Later, Cash,
Kiltz, and Shoup [5] introduced the notion of twin Diffie-Hellman problem and
proposed a variant of the Cramer-Shoup scheme with a much simpler security
proof. Hanaoka and Kurosawa [11] also proposed another scheme and explained
its CCA-security via the Lagrange interpolation. Security of these schemes can
be proven under even weaker assumption, i.e. the computational Diffie-Hellman
assumption, and descriptions of their security proofs are fairly short. However,
both schemes still require non-intuitive calculations (e.g. the Boneh-Boyen tech-
nique [2]) in the security proofs, and therefore, these are not considered very
easy-to-understand for starters to grasp the essential mechanism. Of course, for
those who naturally understand those techniques, schemes in [5] and [11] are
already easy-to-understand.

In [10], Hanaoka, Imai, Ogawa, and Watanabe presented a PKE scheme whose
security proof is very short without using any non-intuitive calculation. How-
ever, their scheme requires the gap Diffie-Hellman assumption. Later, Cramer,
Hofheinz, and Kiltz [6] showed a generic method for constructing CCA-secure
PKE schemes from a class of computational assumptions, and [10] (and thus our
proposed scheme) can be regarded as a special case of their framework.

Recently, Peikert and Waters [19] advocated another methodology for con-
structing CCA-secure PKE schemes from a special kind of trapdoor functions
called lossy trapdoor functions. Rosen and Segev [21] relaxed its requirement,



Toward an Easy-to-Understand Structure for Achieving CCA Security 231

and showed that correlation secure trapdoor functions are sufficient. Kiltz, Mo-
hassel, and O’Neill [14] further showed that adaptive trapdoor functions, which
are weaker than correlation secure trapdoor functions are also sufficient.

2 Definitions

Here, we give definitions for CCA-security of Key Encapsulation Mechanism
and the Decisional Diffie-Hellman assumption which is the number theoretic
assumption that we use. For other number theoretic assumptions, see Appendix
A. See also Appendix B.2 for data encapsulation mechanisms (DEMs).

2.1 Key Encapsulation Mechanism (KEM)

For simplicity, we define PKE schemes as key encapsulation mechanisms (KEM).
It is well-known that by combining a CCA-secure KEM and a CCA-secure data
encryption mechanism (DEM), a CCA-secure PKE scheme is generically ob-
tained [22], and furthermore, there exist some other flexible methods for hybrid
encryption as well [1,12]. It is also known that a CCA-secure DEM can be gener-
ically constructed from any pseudorandom functions without redundancy [15].
Therefore, we concentrate on constructions of CCA-secure KEMs.

The Model. Let K denote the key space of the key encapsulation mechanism
(KEM). A KEM scheme consists of the following three algorithms:

Setup(1k). Takes as input the security parameter 1k and outputs a decryption
key dk and a public key PK.

Encapsulate(PK). Takes as input a public key PK, and outputs a ciphertext
ψ and corresponding session key K ∈ K.

Decapsulate(dk, ψ, PK). Takes as input the decryption key dk, a ciphertext
ψ, and the public key PK, and outputs the session key K ∈ K or a special
symbol “⊥”.

We require that if (dk, PK) R← Setup(1k) and (ψ,K) R← Encapsulate(PK)
then Decapsulate(dk, ψ, PK) = K.

Chosen-Ciphertext Security. CCA-security of a KEM scheme is defined us-
ing the following game (which we call IND-CCA game) between an attack algo-
rithm A and a challenger. Both the challenger and A are given 1k as input.

Setup. The challenger runs Setup(1k) to obtain a decryption key dk and a
public key PK, and gives PK to A.

Challenge. The challenger runs algorithm Encapsulate to obtain the chal-
lenge ciphertext and its session key as (ψ�,K�) R← Encapsulate(PK) and
sets K0 = K�. Next, the challenger obtain random key K1

R← K. Then the
challenger picks a random b ∈ {0, 1} and give (ψ�,Kb) to A.
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Query. Algorithm A adaptively issues decryption queries ψ1, . . . , ψqD . For query
ψi, the challenger responds with Decapsulate(dk, ψi, PK). A is not allowed
to submit ψ�.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if
b = b′.

Let AdvKEMA denote the probability that A wins the game.

Definition 1. We say that a KEM scheme is (τ, ε, qD) CCA-secure if for all
τ -time algorithms A who make a total of qD decryption queries, we have that
|AdvKEMA − 1/2| < ε.

2.2 The Decisional Diffie-Hellman Assumption

Let G be a multiplicative group with prime order p. Then, the Decisional Diffie-
Hellman (DDH) problem in G is stated as follows. Let A be an algorithm, and
we say that A has advantage ε in solving the DDH problem in G if

1
2
· |Pr[A(g, Z, gr�

, Zr�

) = 0]− Pr[A(g, Z, gr�

, T ) = 0]| ≥ ε,

where the probability is over the random choice of random elements g, Z, and
T in G, the random choice of r� in Zp, and the random bits consumed by A.

Definition 2. We say that the (τ, ε)-DDH assumption holds in G if no τ-time
algorithm has advantage at least ε in solving the DDH problem in G.

Occasionally we drop the τ and ε and refer to the DDH in G.

3 The Proposed Scheme

3.1 High Level Overview

Our proposed scheme is almost the same as the Hanaoka-Imai-Ogawa-Watanabe
scheme [10] except that in our scheme we add more redundant components in a
ciphertext. This redundancy removes necessity of the DDH oracle in the security
proof of the Hanaoka-Imai-Ogawa-Watanabe scheme, and consequently, security
of the resulting scheme can be proven under the standard DDH assumption. This
technique is similar to the twinning technique in [5].

3.2 The Construction

Let G be a multiplicative group with prime order p, and g ∈ G be a generator.
We assume that a group element of G is k-bit long where 1k is the security
parameter. Then, the construction of our proposed KEM scheme is as follows:

Setup(1k): Pick dk = ((xi, x̄i, yi, ȳi)1≤i≤k, z) ∈ Z4k+1
p randomly, and compute

(Xi, X̄i, Yi, Ȳi) = (gxi , gx̄i , gyi , gȳi), and Z = gz for i = 1, . . . , k. The decryp-
tion key is dk, and the public key is PK = (G, g, (Xi, X̄i, Yi, Ȳi)1≤i≤k, Z).
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Fig. 1. The structure of a ciphertext

Encapsulate(PK): Pick a random r
R← Zp, and compute

ψ = (gr, (U r
i , Ūi

r)1≤i≤k),
K = Zr,

where (Ui, Ūi) = (Xi, X̄i) if vi = 0, or (Ui, Ūi) = (Yi, Ȳi) if vi = 1, vi is i-th
bit of (gr)2, and (W )2 denotes the binary representation of W ∈ G. The
ciphertext is ψ. The corresponding session key is K. Fig. 1 illustrates the
structure of the ciphertext.

Decapsulate(dk, ψ, PK): For a ciphertext ψ = (C0, (Ci, C̄i)1≤i≤k), check

whether for all i = 1, . . . , k, (Cui
0 , Cūi

0 ) ?= (Ci, C̄i) where (ui, ūi) = (xi, x̄i)
if vi = 0, or (ui, ūi) = (yi, ȳi) if vi = 1 where vi is i-th bit of (C0)2. If not,
output ⊥. Otherwise, output K = Cz

0 .

The required operation for encryption in the proposed scheme is only exponen-
tiations with a common exponent r under fixed bases (which are contained in
PK).

3.3 Security

Theorem 1. Let G be a multiplicative group with prime order p. Then, the
above scheme is (τ − o(τ), εddh + qD/p, qD) CCA-secure assuming the (τ, εddh)
DDH assumption holds in G.

Overview of the Security Proof. Before going into the formal proof, we
explain its strategy briefly. For proving the above theorem, we construct an
algorithm B which for a given DDH instance (g, Z, gr�

, R), distinguishes whether
R is Zr�

or random group element T of G. B may interact with A which breaks
the CCA-security of our proposed scheme. By setting public key and challenge
ciphertext as PK = (· · · , Z) and ψ� = (gr�

, · · · ), respectively, B can enforce
A to solve the given DDH problem since the corresponding session key of ψ�
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is Zr�

. However, this idea does not immediately work since B has to respond
to A’s decryption queries without knowing z = logg Z. To solve this problem,
B also sets redundant component Xi (or Yi) as Xi = Zc (or Yi = Zc) in PK
where c is a random blind factor. Then, A’s decryption query always forms as
ψ = (gr, · · · , U r

i , · · · ) if it is valid, and therefore, B can compute the correct
answer Zr = (U r

i )
1
c and respond it to A. Furthermore, by introducing the test

function (which will be explained later), B can distinguish invalid decryption
queries from valid ones.

Proof. Assume we are given an adversary A which breaks the CCA-security of the
above scheme with running time τ , advantage ε, and qD decryption queries. We
use A to construct another adversary B distinguishes Zr�

from random element
in G. Define adversary B as follows:

1. For a given DDH instance (g, Z, gr�

, R), B picks random (ai, bi, ci, di, ei)1≤i≤k

∈ Z5k
p and sets a test function testi such that testi(x, y) = xdiyei . Let v�

i be
i-th bit of (gr�

)2 for 1 ≤ i ≤ k.
2. B sets Ti = testi(Zci , g) and (Xi, X̄i, Yi, Ȳi) = (gai , gbi , Zci , Ti) if v�

i = 0,
or (Xi, X̄i, Yi, Ȳi) = (Zci , Ti, g

ai , gbi) if v�
i = 1, for i = 1, . . . , k. B inputs

public key PK = (G, g, (Xi, X̄i, Yi, Ȳi)1≤i≤k, Z), challenge ciphertext ψ� =
(gr�

, ((gr�

)ai , (gr�

)bi)1≤i≤k), and real/random key R to A. Fig. 2 illustrates
the structure of PK and ψ�.

Functionality of testi. We note that the test function testi has the fol-
lowing property: Let Ū be Ū = testi(U, g) where U is randomly chosen from
G. For given U and Ū (and nothing else), it is hard to evaluate the value
of testi(U r, gr+r′

) for any r and r′ ∈ Zp unless r′ = 0. Namely, if r′ = 0,
testi(U r, gr+r′

) = Ū r, and otherwise, testi(U r, gr+r′
) = Ū r · (gr′

)ei which
cannot be computed without knowing ei. We also note that U and Ū do
not leak any information on ei. By using this property, B can detect invalid
ciphertexts with overwhelming probability (as shown in Step 3). This is due
to the fact that a valid ciphertext forms as ψ = (gr, (U r

i , Ū
r
i )1≤i≤k) for a

common exponent r.
3. When A makes decryption query ψ = (C0, (Ci, C̄i)1≤i≤k) ∈ G2k+1 (if a query

is not in this form, then B simply rejects it), B determines a binary string
(C0)2 = (vi)1≤i≤k and proceeds as follows:
(a) For all i such that vi = v�

i , B checks whether (Ci, C̄i)
?= (Cai

0 , Cbi
0 ). If

not so, B rejects ψ. Notice that if vi = v�
i , then (Ui, Ūi) = (gai , gbi), and

thus a valid ciphertext always satisfies the above equality.
(b) For all i such that vi �= v�

i , B checks whether

C̄i
?= testi(Ci, C0). (1)

If not so, B rejects ψ. If ψ is valid, then Eq. (1) always holds since
(Ui, Ūi) = (Zci , Ti).

(c) If ψ is not rejected, then B picks (one of) i such that vi �= v�
i . We note

that there always exists at least one such i if ψ �= ψ�. B also calculates
K ′ = C

1/ci

i , and responds it to A.
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Fig. 2. The structure of PK and ψ� in the simulation

4. Finally, when A outputs his guess b′, B also outputs b′ as his guess.

Let Win denote the event that A succeeds to guess b in IND-CCA game, Invalid
denote the event that A submits an invalid ciphertext which satisfies equality of
Eq. (1). B’s simulation is perfect if the event Invalid does not occur. B’s advantage
is estimated as follows.

1
2
|Pr[B(g, Z, gr�

, Zr�

) = 0]− Pr[B(g, Z, gr�

, T ) = 0]|

≥ |Pr[Win ∧ Invalid]− 1
2
|

≥ |Pr[Win]− Pr[Invalid]− 1
2
|

≥ |Pr[Win]− 1
2
| − Pr[Invalid]

The proof completes by proving the following lemma.

Lemma 1. Pr[Invalid] ≤ qD/p.

Proof. Since there are at most qD decryption queries, it is sufficient to prove
that for one query, the probability that B fails to reject an invalid ciphertext is
at most 1/p.

Without loss of generality, for an invalid decryption query ψ =
(C0, (Ci, C̄i)1≤i≤k), we can assume that for some r and r′(�= 0) there exists index
j such that C0 = gr+r′

and Cj = U r
j . Note that testj(Cj , C0) = Ūj

r ·(gr′
)ej . How-

ever, since ej is information theoretically hidden from A’s view, and Ūj
r · (gr′

)ej

takes p different values according to p different values of ej, A can predict the
value of Ūj

r · (gr′
)ej with at most probability 1/p. This implies that A cannot
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submit an invalid ciphertext which satisfies equality of Eq. (1) with probability
more than 1/p.

3.4 HDH-Based and CDH-Based Variants

We can obtain another PKE scheme by changing session key from K to h(K),
and adding h to public key, where h : G → K is hash function. This scheme is
CCA-secure under the HDH assumption (see Appendix A.2), which is a weaker
assumption than the DDH assumption. Especially, if h is hardcore bit function
of Diffie-Hellman key [3,4,9], then this scheme is CCA-secure under the CDH
assumption (see Appendix A.1). Regarding the CDH-based scheme, we directly
construct PKE without the KEM/DEM framework [22] by using a technique in
[10]. This scheme yields only one-bit plaintext space, but it can be extended to
be many-bit plaintext space by the result of Myers and Shelat [16].

3.5 Compressing Keys

It is possible to compress the size of keys by using target collision resistant hash
functions (see Appendix B.1). Specifically, by replacing the vector (vi)1≤i≤k =
((C0)2) with another vector (v′i)1≤i≤
 = TCR(C0) where TCR : G → {0, 1}
 is a
target collision resistant hash function, sizes for both decryption and public key
are reduced by approximately �/k � 1/2.1

4 A Comparison

In this section, we discuss “easiness-to-understand” of our proposed scheme by
comparing it with the Cramer-Shoup scheme [7] and the Hanaoka-Imai-Ogawa-
Watanabe scheme [10] by focusing on their techniques for responding to decryp-
tion queries.

In the proof of our scheme, the simulator has to check the validity of a queried
ciphertext by the simulator itself, whereas in the proof of the Hanaoka-Imai-
Ogawa-Watanabe scheme, validity of a queried ciphertext is very easy to check
by using the DDH oracle. Cost of this easiness is necessity of a rather unnatural
assumption, i.e. the gap Diffie-Hellman assumption [18]. Although the Hanaoka-
Imai-Ogawa-Watanabe scheme is very good introduction to starters who want
to know how to respond to decryption queries without knowing a decryption
key, but the security proof of their scheme does not well explain the technique
for rejecting invalid ciphertexts.

In contrast to the Hanaoka-Imai-Ogawa-Watanabe scheme, our scheme well
explains how to check the validity of a ciphertext without any complicated com-
putation while in the security proof of the Cramer-Shoup scheme, a determinant
of a matrix with rank four has to be computed. By introducing the twin Diffie-
Hellman assumption, it can be significantly simplified [5]. The reduction from
1 For 	-bit security, the size of a group element is required to be at least 2	-bit long,

while the size of an output of TCR is required to be at least 	-bit long.
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the DDH problem to the twin Diffie-Hellman problem needs the Boneh-Boyen
technique [2], and if one can naturally understand this technique, the scheme
in [5] is already easy-to-understand. However, it is not generally intuitive for
starters and non-experts.

Hence, we consider that our scheme and its security proof are good help for
understanding the essential mechanism of existing DDH-based schemes.

5 Bridging to the Cramer-Shoup Scheme

In this section, we show the relationship between the Cramer-Shoup scheme and
our proposed scheme. Specifically, we demonstrate that it is possible to signifi-
cantly shorten the ciphertext length of our scheme in a straightforward manner.
Though the security proof becomes less intuitive, its essential mechanism is still
the same as of the original one. Interestingly, the resulting scheme is very similar
to the hash free variant of the Cramer-Shoup scheme which is mentioned in Sec.
5.3 in [7]. This implies that our scheme is a redundant version of the Cramer-
Shoup scheme, and thus, the mechanisms for handling CCA-security under the
DDH assumption are essentially common in these two schemes.

5.1 The Modified Scheme with Compressed Ciphertext

Here, we give a concrete construction of the modified version of our proposed
scheme. Let G be a multiplicative group with prime order p, and g ∈ G be a
generator. We assume that a group element of G is k-bit long where 1k is the
security parameter. Then, the construction is as follows:

Setup(1k): The same as our scheme in Sec. 3.2.
Encapsulate(PK): Compute (gr, (U r

i , Ūi
r)1≤i≤k) as our scheme in Sec. 3.2,

and calculate

ψ = (gr,

(
k∏

i=1

Ui

)r

,

(
k∏

i=1

Ūi

)r

),

K = Zr.

The ciphertext is ψ. The corresponding session key is K.
Decapsulate(dk, ψ, PK): For a ciphertext ψ = (C0, C1, C2), choose

(ui, ūi)1≤i≤k as the same as our scheme in Sec. 3.2, and check whether

(C
∑k

i=1 ui

0 , C
∑k

i=1 ūi

0 ) ?= (C1, C2). If not, output ⊥. Otherwise, output K =
Cz

0 .

Theorem 2. Let G be a multiplicative group with prime order p. Then, the above
PKE scheme is (τ − o(τ), εddh + 2qD/p, qD) CCA-secure assuming the (τ, εddh)
DDH assumption holds in G.
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Proof. Assume we are given an adversary A which breaks CCA-security of the
above scheme with running time τ , advantage ε, and qD decryption queries.
We use A to construct another adversary B which for a given DDH instance
(g, Z, gr�

, R), distinguishes whether R is Zr�

or random group element T of G.
Define adversary B as follows:

1. For a given DDH instance (g, Z, gr�

, R), B picks random
(d, (αi, ai, bi, ci, ei)1≤i≤k) ∈ Z4k+1

p . Let v�
i be i-th bit of (gr�

)2 for
1 ≤ i ≤ k.

2. B sets (Xi, X̄i, Yi, Ȳi) = (gai , gbi , gαiZci, (gαiZci)dgei) if v�
i = 0, or

(Xi, X̄i, Yi, Ȳi) = (gαiZci , (gαiZci)dgei , gai , gbi) if v�
i = 1, for i = 1, . . . , k. B

inputs public key PK = (G, g, (Xi, X̄i, Yi, Ȳi)1≤i≤k, Z), challenge ciphertext

ψ� = (gr�

, (gr�

)
∑k

i=1 ai , (gr�

)
∑ k

i=1 bi),

and real or random key R to A.
3. When A makes decryption query ψ = (C0, C1, C2) ∈ G3 (if a query is not in

this form, then B simply rejects it), B determines a binary string (C0)2 =
(vi)1≤i≤k and proceeds as follows:

(a) B checks whether⎛⎝ C1

C

∑
v�

i
=vi

ai

0

⎞⎠d

· C
∑

v�
i
�=vi

ei+
∑

v�
i
=vi

bi

0
?= C2. (2)

If Eq. (2) does not hold, then B responds ⊥.
(b) If Eq. (2) holds, then B computes

∑
v�

i �=vi
ci, if it is 0, then B aborts.

Otherwise, B computes

K ′ =

⎛⎝ C1

C

∑
v�

i
=vi

ai+
∑

v�
i
�=vi

αi

0

⎞⎠
1∑

v�
i
�=vi

ci

,

and responds K ′ to A.

4. Finally, A outputs his guess b′, and B outputs the same bit b′ as his guess
on R.

Let Win denote the event that A succeeds to guess b in IND-CCA game, Invalid
denote the event that B fails to reject an invalid ciphertext, and Abort denote
the event that A queries a ciphertext that

∑
v�

i �=vi
ci = 0 and B aborts. Then,

B’s advantage in solving the DDH problem is estimated as follows:

1
2
|Pr[B(g, Z, gr�

, Zr�

) = 0]− Pr[B(g, Z, gr�

, T ) = 0]|

≥ |Pr[Win ∧ Invalid ∧ Abort]− 1
2
|
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≥ |Pr[Win]− Pr[Invalid]− Pr[Abort]− 1
2
|

≥ |Pr[Win]− 1
2
| − Pr[Invalid]− Pr[Abort]

We can complete the proof by showing the lemmas below.

Lemma 2. Pr[Invalid] ≤ qD/p.

Proof. Since there are at most qD decryption queries, it is sufficient to prove
that for one query, the probability that B fails to reject an invalid ciphertext is
at most 1/p.

Without loss of generality, for an invalid decryption query ψ = (C0, C1, C2),

we can assume that for some r and r′(�= 0), C0 = gr and C1 =
(∏k

i=1 Ui

)r

· gr′
.

Note that the left side of Eq. (2) is
(∏k

i=1 Ūi

)r

· (gr′
)d. However, since d is

information theoretically hidden from A’s view, and
(∏k

i=1 Ūi

)r

· (gr′
)d takes

p different values according to p different values of d, A can predict the value
of
(∏k

i=1 Ūi

)r

· (gr′
)d with at most probability 1/p. This implies that A cannot

submit an invalid ciphertext which satisfies equality of Eq. (2) with probability
more than 1/p.

Lemma 3. Pr[Abort] ≤ qD/p.

Proof. Since there are at most qD decryption queries, it is sufficient to prove
that for one query, the probability that

∑
v�

i �=vi
ci = 0 occurs is at most 1/p.

Since each ci is information theoretically hidden, so
∑

v�
i �=vi

ci is uniformly
distributed over Zp for any (C0)2 �= (gr�

)2 from the view of A. So A cannot
submit a ciphertext such that

∑
v�

i �=vi
ci = 0 holds with probability more than

1/p.

5.2 Relation to the Cramer-Shoup Scheme

Here we discuss similarity between the Cramer-Shoup scheme and our proposed
scheme. More specifically, we compare the structure of the hash free variant of
the Cramer-Shoup (HF-CS) scheme (Sec. 5.3 in [7]) with the modified version
of our scheme (Sec. 5.1 in this paper). We first review the HF-CS scheme2: Let
G be a multiplicative group with prime order p, and g and h be generator of
G. We assume that a group element of G is k-bit long where 1k is the security
parameter. Then, the construction of the hash free variant of the Cramer-Shoup
KEM is as follows:

Setup(1k): Pick dk = ((xi, x̄i, yi, ȳi)1≤i≤2k, z) ∈ Z8k+1
p , and compute (Xi, Yi) =

(gxihx̄i , gyihȳi) and Z = gz for i = 1, . . . , 2k. The decryption key is dk, and
the public key is PK = (G, g, h, (Xi, Yi)1≤i≤2k, Z).

2 The description of this scheme in this paper is different from that in [7]. However,

they are essentially identical.
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Encapsulate(PK): Pick a random r
R← Zp, and compute

ψ = (gr, hr,

(
2k∏
i=1

Ui

)r

),

K = Zr,

where Ui = Xi if vi = 0, or Ui = Yi if vi = 1, vi is i-th bit of ((gr)2||(hr)2).
The ciphertext is ψ, the corresponding session key is K.

Decapsulate(dk, ψ, PK): For a ciphertext ψ = (C0, C1, C2), check whether

C
∑ 2k

i=1 ui

0 · C
∑ 2k

i=1 ūi

1
?= C2,

where (ui, ūi) = (xi, x̄i) if vi = 0, or (ui, ūi) = (yi, ȳi) if vi = 1. If not, output
⊥. Otherwise, output K = Cz

0 .

As seen above, a ciphertext in the HF-CS scheme forms as ψ =
(gr, hr,

(∏2k
i=1 Ui

)r

) while that in our scheme in Sec. 5.1 forms as ψ =

(gr,
(∏k

i=1 Ui

)r

,
(∏k

i=1 Ūi

)r

). Furthermore, in the HF-CS scheme, the formula

for checking validity of a ciphertext is C
∑ 2k

i=1 ui

0 ·C
∑ 2k

i=1 ūi

1
?= C2, and on the other

hand, that in our scheme in Sec. 5.1 is (C
∑ k

i=1 ui

0 , C
∑k

i=1 ūi

0 ) ?= (C1, C2). There-
fore, we see that these two schemes are very similar to each other with only slight
difference. This fact implies that the essential mechanism of the Cramer-Shoup
scheme and our proposed scheme is considered common, and hence, our scheme
would be helpful for understanding the existing DDH-based schemes.
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A Number Theoretic Assumptions

A.1 The Computational Diffie-Hellman Assumption

Let G be a multiplicative group with prime order p. Then, the Computational
Diffie-Hellman (CDH) problem in G is stated as follows. Let A be an algorithm,
and we say that A has advantage ε in solving the CDH problem in G if

Pr[A(g, Z, gr�

) = Zr�

] ≥ ε,

where the probability is over the random choice of generators g, Z in G, the
random choice of r� in Zp, and the random bits consumed by A.

Definition 3. If for all PPT A, A’s advantage is negligible in security parameter
1k, then we call the CDH assumption holds on G.

Occasionally we drop the τ and ε and refer to the CDH in G.

A.2 The Hashed Diffie-Hellman Assumption

The hashed Diffie-Hellman (HDH) problem in G and function h : G → K is
stated as follows. Let A be an algorithm, and we say that A has advantage ε in
solving the HDH problem in G and h if

1
2
· |Pr[A(g, Z, gr�

, h(Zr�

)) = 0]− Pr[A(g, Z, gr�

, T ) = 0]| ≥ ε,

where the probability is over the random choice of generators g and Z in G, the
random choice of r� in Zp, the random choice of T ∈ K, and the random bits
consumed by A.

Definition 4. If for all PPT A, A’s advantage is negligible in security parameter
1k, then we call the HDH assumption holds on G and h.

B Cryptographic Tools

B.1 Target Collision Resistant Hash Functions

Let TCR : X → Y be a hash function, A be an algorithm, and A’s advantage
AdvTCRA be

AdvTCRA = Pr[TCR(x′) = TCR(x) ∈ Y ∧ x′ �= x| x R← X ; x′ R← A(x)].
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Definition 5. We say that TCR is a (τ, ε) target collision resistant hash function
if for all τ -time algorithm A, we have that AdvTCRA < ε.

It is obvious that any injective mapping can be used as a perfectly secure target
collision resistant hash function.

B.2 Data Encapsulation Mechanism

The Model. Let K denote the key space and M denote the plaintext space.
A data encapsulation mechanism (DEM) scheme consists of the following two
algorithms:

E(K,M) Takes as input a data encryption key K ∈ K and a plaintext M ∈M,
and outputs a ciphertext ψ.

D(K,ψ) Takes as input a data encryption key K ∈ K and a ciphertext ψ, and
outputs the plaintext M ∈M.

We require that if ψ ← E(K,M) then D(K,ψ) = M .

Chosen-Ciphertext Security. CCA-security of a DEM is defined using the
following game between an attack algorithm A and a challenger. Both the chal-
lenger and A are given 1k as input.

Setup. The challenger chooses a data encryption key K ∈ {0, 1}k.
Query I. Algorithm A adaptively issues decryption queries ψ1, . . . , ψm. For

query ψi, the challenger responds with D(K,ψi).
Challenge. At some point, A submits a pair of plaintexts (M0,M1) ∈ M2.

Then, the challenger picks a random b ∈ {0, 1}, runs algorithm E to obtain
the challenge ciphertext ψ�←E(K,Mb), and give ψ� to A.

Query II. Algorithm A continues to adaptively issue decryption queries
ψm+1, . . . , ψqD . For query ψi(�= ψ�), the challenger responds as Query I.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game if
b = b′.

Let AdvDEMA denote the probability that A wins the game.

Definition 6. We say that a DEM is CCA-secure if for all PPT A who make
a polynomial time of decryption queries, we have that |AdvDEMA − 1/2| is
negligible.



Identity Based Public Verifiable Signcryption
Scheme

S. Sharmila Deva Selvi, S. Sree Vivek�, and C. Pandu Rangan�

Theoretical Computer Science Lab,

Department of Computer Science and Engineering,

Indian Institute of Technology Madras, India

{sharmila,svivek,prangan}@cse.iitm.ac.in

Abstract. Signcryption as a cryptographic primitive that offers both

confidentiality and authentication simultaneously. Generally, in signcryp-

tion schemes, the message is hidden and thus the validity of the sign-

cryption can be verified only after the unsigncryption process. Thus, a

third party will not be able to verify whether the signcryption is valid

or not. Signcryption schemes that allow any one to verify the validity of

signcryption without the knowledge of the message are called public ver-

ifiable signcryption schemes. Third party verifiable signcryption schemes

allow the receiver of a signcryption, to convince a third party that the

signcryption is valid, by providing some additional information along

with the signcryption. This information can be anything other than the

receiver’s private key and the verification may or may not require the

exposure of the corresponding message.

This paper shows the security weaknesses in two such existing schemes

namely [14] and [4]. The scheme in [14] is Public Key Infrastructure

(PKI) based scheme and the scheme in [4] is an identity based scheme.

More specifically, [14] is based on elliptic curve digital signature algo-

rithm (ECDSA). We also, provide a new identity based signcryption

scheme that provides both public verifiability and third party verifica-

tion. We formally prove the security of the newly proposed scheme in

the random oracle model.

Keywords: Signcryption, Public verifiable Signcryption, Cryptanalysis,

Identity Based, Bilinear Pairing, Random Oracle Model.

1 Introduction

Secure communication through an insecure channel requires both confidentiality
and authenticity as security goals. Encryption schemes are used to achieve confi-
dentiality and digital signature schemes offer unforgeability. Signcryption scheme
is a cryptographic primitive that provides both these properties together in an
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efficient way. Zheng, in [17] proposed the first digital signcryption scheme that
offers both confidentiality and authentication in a single logical step with lower
computational cost and communication overhead than sign then encrypt (StE)
or encrypt then sign (EtS) approach. Since then, many signcryption schemes
were proposed. Baek et al. [1] gave the formal security model for digital sign-
cryption schemes and provided the security proof for Zheng’s scheme [17] in the
random oracle model.

Adi Shamir [11] introduced the concept of identity based cryptography and
proposed the first identity based signature scheme. The idea of identity based
cryptography is to enable a user to use any arbitrary string, that uniquely iden-
tifies him, as his public key. Identity based cryptography serves as an efficient
alternative to Public Key Infrastructure (PKI) based systems. Digital signcryp-
tion in the identity based setting was first studied by Malone-Lee et al. [8].
Later, Libert et al. [7] pointed out that the scheme proposed by Malone-Lee [8]
is not semantically secure, since the signature of the message is visible in the
signcryption and thus cannot achieve CCA2 security. Following that many sign-
cryption schemes were proposed in both PKI as well as identity based settings
[10,2,9,13,15,3,4,6].

Normally, in a signcryption scheme, the message is hidden and thus the va-
lidity of the signcryption can be verified only after the unsigncryption process.
Thus, a third party (who is unaware of the receiver’s private key) will not be able
to verify whether a signcryption is valid or not. Public verifiable signcryption
scheme is well motivated in the following scenarios.
Secure e-mail: One of the main applications of signcryption scheme is secure
e-mail systems. Public verifiable signcryption schemes are applicable in filter-
ing out the spams in secure e-mail systems. The spam filter should be able to
verify the authenticity of the signcrypted e-mail without knowing the message
(i.e., check whether the signcryption is generated from the claimed sender or
not). Here, if the signcryption does not satisfy the public verifiability, it can be
considered as spam and can be filtered out.
Private Contract Signing: Moreover, in applications such as private contract
signing, made between two parties, the receiver of the signcryption should be able
to convince the third party that indeed the sender has signed the corresponding
message hidden in the signcryption. In this case, the receiver should not reveal
his secret key in order to convince the third party, instead he reveals the message
and some information computable with his private key required for the signature
verification.
In literature, signcryption schemes in which a third party can verify the validity
of the signcryption without the knowledge of the hidden message, or without
knowing the receiver private key are called third party verifiable signcryption
schemes.
Related Work: To the best of out knowledge, Bao et al. [2] proposed the
first public verifiable signcryption scheme in the PKI based setting. Following
that, a number of schemes [14,16,12,5] were proposed in the PKI based setting.
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However, the scheme in [2] did not withstand CCA2 attacks and it was shown
in [12]. Chow et al. [4] proposed an identity based signcryption scheme that
provides both public verifiability and forward security and to the best of our
knowledge the scheme in [4] is the only identity based scheme providing public
verifiability and third party verification.
Our Contribution: In this paper, we have upgraded the security model for
public verifiable and third party verifiable identity based signcryption scheme by
providing additional power to the adversary. The additional power the adversary
gains is due to the access given to the third party verify oracle, which provides
the information necessary for the third party verification. Next, we show that
the scheme in [4] is not secure by demonstrating a CCA2 attack and a forgery
on it. We show a CCA2 attack on the forward security of [14] in the next section
and finally, we propose a new identity based signcryption scheme that offers both
public verifiability and third party verification. We formally prove the security
of the new scheme in the newly proposed improved security model. Our scheme
offers forward secrecy in addition to confidentiality and authenticity.

2 Formal Model for Identity Based Signcryption Schemes
with Public Verifiability

In this section, we give the generic framework for identity based signcryption
scheme which supports both public verifiability and third party verification. We
also give the formal security model for this scheme.

2.1 Generic Scheme

An identity based signcryption scheme consists of the following algorithms.
Setup(1κ): Given the security parameter κ, the Private Key Generator (PKG)
generates the master private key msk and public parameters Params. Params
is made public while msk is kept secret by the PKG.
Extract(IDi): Given an identity IDi as input, the PKG executes this algorithm
to generate the private key Di corresponding to IDi and sends Di to the user
with identity IDi through a secure channel.
Signcrypt(m, IDA, DA, IDB): A sender with identity IDA and private key DA

in order to signcrypt a message m to a receiver whose identity is IDB, runs this
algorithm to generate the corresponding signcryption σ.
Unsigncrypt(σ, IDA, IDB, DB): On receiving the signcryption σ from sender
with identity IDA, receiver with identity IDB and the private key DB of the
receiver, the receiver executes this algorithm to obtain the message m, if σ is
a valid signcryption of m from IDA to IDB or “Invalid′′ indicating that the
signcryption is not valid.
Public-Verify(σ, IDA, IDB): This algorithm allows any third party to verify
the authenticity of the signcryption σ without knowing the message used for the
generation of the signcryption σ. It takes the signcryption σ, the sender identity



Identity Based Public Verifiable Signcryption Scheme 247

IDA and the receiver identity IDB as input and outputs “V alid”, if σ is a valid
signcryption or “Invalid”, otherwise.
TP-Verify(φ, IDA, IDB): This algorithm allows the receiver IDB to prove the
authenticity of the signcryption σ to third party by providing additional infor-
mation needed (other than the private key DB). This algorithm run by the third
party takes as input φ (σ and additional information provided by IDB), the
sender identity IDA and receiver identity IDB, and outputs “V alid”, if σ is a
valid signcryption from IDA to IDB or “Invalid”, otherwise. Here, it should
be noted that TP − V erify has two types. First type, is to prove the validity
without exposing the message (similar to Public-Verify but receiver concern is
involved) and the second type, is to prove that the signcryption is indeed a valid
signcryption of the message (done by exposing the message being signcrypted).

2.2 Security Notions

Definition 1: An ID-Based signcryption scheme is said to be indistinguishable
against adaptive chosen ciphertext attacks (IND-IBSC-CCA2) if no polynomially
bounded adversary has non-negligible advantage in the following game:
Setup: The challenger C runs the Setup algorithm with a security parameter κ
and obtains public parameters Params and the master private key msk. C sends
Params to the adversary A and keeps msk secret.
Phase I: The adversary A performs a polynomially bounded number of queries
to C. The queries made by A may be adaptive, i.e. current query may depend on
the answers to the previous queries. The various oracles and the queries made
to these oracles are defined below:

– Key extraction queries(Oracle OExtract(IDi)): A produces an identity IDi

and receives the private key Di.
– Signcryption queries(Oracle OSigncrypt(m, IDA, IDB)): A produces two

identities IDA, IDB and a plaintext m. C computes DA = OExtract(IDA)
and generates the signcryption σ of the message m using DA following the
signcryption protocol and sends σ to A.

– Unsigncryption queries(Oracle OUnsigncrypt(σ, IDA, IDB)): A produces the
sender identity IDA, the receiver identity IDB and the signcryption σ as
input to this algorithm and requests the unsigncryption of σ. C generates
the private key DB and performs the unsigncryption of σ using DB and
sends the result to A. The result of unsigncryption will be “Invalid′′ if σ is
not a valid signcryption. It returns the message m if σ is a valid signcryption.

– TP-Verify queries(Oracle OTP−V erify(σ, IDA, IDB)): A submits the infor-
mation φ, the sender identity IDA and the receiver identity IDB. C generates
the private key DB corresponding to IDB, unsigncrypts σ using DB and re-
turns the information required for TP-verify corresponding to σ, if σ is a
valid signcryption returns “V alid” if σ is a proper and correct signcryption
and “Invalid” otherwise.

Challenge: A chooses two plaintexts, m0 and m1 of equal length, the sender
identity IDS, the receiver identity IDR and submits them to C. However, A



248 S.S.D. Selvi, S. Sree Vivek, and C. Pandu Rangan

should not have queried the private key corresponding to IDR in Phase I. C now
chooses δ ∈R {0, 1} and computes σ∗ = OSigncrypt(mδ, IDS, IDR) and sends σ∗

to A. (It is to be noted that the private key DS corresponding to the sender IDS

can be queried by A.)
Phase II: A is allowed to interact with C as in Phase-I with the following
restrictions.

– A should not query the extract oracle for the private key corresponding to
the receiver identity IDR.

– A should not query the unsigncrypt oracle with (σ∗, IDS, IDR) as input, i.e.
a query of the form OUnsigncrypt(σ∗, IDS, IDR) is not allowed.

Guess: Finally, A produces a bit δ
′
and wins the game if δ

′
= δ.

The advantage of A in the above game is defined by

Adv(A) = 2
∣∣∣Pr
[
δ
′
= δ
]
− 1
∣∣∣ wherePr

[
δ
′
= δ
]

denotes the probability that δ
′
= δ.

The confidentiality game described above deals with insider security since
the adversary is given access to the private key of the sender IDS used for the
challenge phase.
Definition 2: An ID-Based signcryption scheme is said to be existentially un-
forgeable against adaptive chosen message attacks (EUF-IBSC-CMA) if no poly-
nomially bounded adversary has a non-negligible advantage in the following game.
Setup: The challenger C runs the Setup algorithm with security parameter κ
and obtains public parameters Params and the master private key msk. C sends
Params to the adversary A and keeps msk secret.
Training Phase: The adversary A performs a polynomially bounded number
of queries adaptively as in Phase I of confidentiality game (IND-IDSC-CCA).
Forgery: After a sufficient amount of training, A produces a signcryption (σ,
IDS, IDR) to C. Here, A should not have queried the private key of IDS during
the training phase and σ is not the output of signcrypt oracle with (m, IDS, IDR)
as input (m=OUnsigncrypt(σ, IDS, IDR) ). A wins the game, if
Unsigncrypt(σ, IDS, IDR, DR) is valid. (It is to be noted that the private key
DR corresponding to the receiver IDR can be queried by A.)
The security model discussed above captures the notion of insider security since
the adversary is provided access to the private key of receiver with identity IDR,
used for generating the signcryption σ during the forgery phase.

3 Review and Attacks of the Signcryption Scheme in [4]

Chow et al. [4] have proposed the first identity based signcryption scheme which
offers public verifiability. [4] claims to be insider secure during both confiden-
tiality and unforgeability proof, which is the strongest notion of security for
signcryption schemes. In this section, we review the identity based signcryption
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scheme proposed in [4] and demonstrate attacks on both CCA2 security as well
as the existential unforgeability of the scheme. As the scheme was claimed to be
insider secure we demonstrate the attack on confidentiality in the security model
that captures insider security for signcryption schemes. However, the attack on
unforgeability does not require the private key corresponding to the receiver
associated with the forgery generated.

3.1 Review of Scheme in [4]

Let G1,G2 be two cyclic groups of prime order q and ê : G1 ×G1 → G2 be the
bilinear pairing. Let H1 : {0, 1}n̄ → G1,H2 : G2 → {0, 1}n̄ and H3 : {0, 1}n̄ ×
G2 → F∗

q be three cryptographic hash functions. Let (E ,D) be the encryption
and decryption algorithms of a secure symmetric cipher which takes a plaintext
/ ciphertext of length n respectively, and also a key of length n̄.

Setup(1κ):

� P ∈R G1

� s ∈R F∗
q

� PPub = sP
� Params = 〈G1,G2, q, n, P, Ppub,
ê(., .),H1,H2, H3, (E ,D)〉

Extract(IDA)

� QA = H1(IDA)
� SA = s−1QA

� DA = sQA

Signcrypt(m, IDA, SA, IDB)

� x ∈R F∗
q

� XA ← xQA

� k1 = ê(XA, P )
� k2 = H2(ê(XA, QB))
� c = Ek2(m)
� r = H3(c, k1)
� S = (x − r)SA

� Signcryption σ = 〈c, r, S〉

Unsigncrypt(σ, IDA, IDB, DB)

� X ′
A = rQA

� k′
1 = ê(S, Ppub)ê(X ′

A, P )
� k′

2 = H2(ê(S,DB)ê(X ′
A, QB))

� m′ = Dk′
2
(c)

� r′ = H3(c, k′
1)

� Output σ′ = 〈k′
2,m, σ〉 if and only

if r = r′ else, return “Invalid”

TP-Verify(σ′, IDA, IDB)

� k′
1 = ê(S, Ppub)ê(X ′

A, P )
� r′ = H3(c, k′

1)
� Accept σ if and only if r = r′

� Accept authenticity of m if and
only if m = Dk′

2
(c)

� Return “V alid” if and only if the
above two test holds, else return
“Invalid”

3.2 Attack on Scheme in [4]

We show the attacks on [4] with respect to the confidentiality and unforgeability
in this section.

Attack on Confidentiality: This scheme does not provide insider security
during the confidentiality game due to the following fact, stated informally: Dur-
ing the confidentiality game, the attacker knows the private key corresponding
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to the sender identity used for generating the challenge signcryption. The at-
tacker can make use of this information, alter the challenge signcryption in a
meaningful manner and get the unsigncryption of the altered signcryption dur-
ing the second phase (Phase-II) of interaction with the challenger during the
confidentiality game. This reveals the message used for generation of challenge
signcryption. The details of the attack follows:

– During the challenge phase the attacker A chooses two message (m0,m1)
of equal length, the sender identity IDS and the receiver identity IDR, and
submits them to the challenger C.

– C chooses a random bit δ ∈ {0, 1} and generates the signcryption σ∗ =
〈c∗, r∗, S∗〉 = OSigncrypt(mδ, IDS, IDR)

– C issues σ∗ as the challenge signcryption to A.
– On receiving σ∗, A generates the signcryption σ̂ �= σ∗ by performing the

following computations :
• Let IDA �= IDS be any user identity for which A knows the signcryption

key SA.
• According to the definition of confidentiality with insider security, A also

knows the signcryption key SS of IDS

• Set ĉ = c∗, r̂ = r∗
• Ŝ = S∗ + r∗SS − r∗SA = x∗SS − r∗SA. Here r∗ ∈ σ∗ and S∗ ∈ σ∗
• σ̂ is the signcryption of mδ from IDA to IDR

– Now, A queries the unsigncryption oracle for the unsigncryption of σ̂ i.e.
OUnsigncrypt(σ̂, IDA, IDR)

The unsigncryption of σ∗ (the signcryption of mδ from IDS to IDR) and the
unsigncryption of σ̂ (the signcryption from IDA to IDR derived from σ∗) yields
the same output mδ. This can be shown by the following :

k̂1 = ê(Ŝ, Ppub)ê(r̂QA, P )

= ê(x∗SS − r∗SA, Ppub)ê(r̂QA, P )

= ê(s−1(x∗QS − r∗QA), sP )ê(r̂QA, P )

= ê(x∗QS − r∗QA, P )ê(r̂QA, P )

= ê(x∗QS, P )ê(r∗QA, P )−1ê(r̂QA, P )

= ê(x∗QS, P )

= k∗
1 .

This clearly shows that, the key k∗
2

of σ∗ and k̂2 of σ̂ are the same.

k̂2 = H2(ê(Ŝ, DR)ê(r̂QA, QR))

= H2(ê(s
−1(x∗QS − r∗QA), sQR)

ê(r̂QA, QR))(Since Ŝ = x∗SS − r∗SA)

= H2(ê(x
∗QS − r∗QA, QR)ê(r̂QA, QR))

= H2(ê(x
∗QS, QR)ê(r∗QA, QR)−1

ê(r̂QA, QR))

= H2(ê(x
∗QS, QR)) = k∗

2

From this, it is clear that the value
k∗
1 of σ∗ and k̂1 of σ̂ are the same.

According to the computations done by A it is clear that c∗ = ĉ. When c∗ =
ĉ, k∗

1 = k̂1 and k∗
2 = k̂2, we see that r∗ = r̂. This clearly shows that irrespective

of the modifications done to σ̂ with few components unaltered (sender IDS of σ∗

changed to sender IDA of σ̂ and S∗ �= Ŝ), the unsigncryption of σ∗ and σ̂ will
output the same message. This allows A to know the message mδ by making use
of the unsigncrypt oracle during Phase-II of the confidentiality game by querying
the unsigncryption of σ̂. Hence C will not be able to gain any advantage, if A
responds with the correct δ′ = δ.
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Attack on Unforgeability: During the training phase of unforgeability game,
A queries the signcrypt oracle for the signcryption of message m̂ from sender IDS

to receiver IDB. Here, it should be noted that A does not know the private key
(both signcryption key and unsigncryption key) of IDS. Let this signcryption be
σ = 〈c, r, S〉. Now, A submits σ∗ = σ(i.e. c∗ = c, r∗ = r and S∗ = S) as forgery
with IDS as sender and IDR as receiver to C. σ∗ is a valid signcryption of some
message m∗. It should be noted that, even A is not aware of the message m∗.
The correctness and validity of σ∗ = 〈c∗, r∗, S∗〉(signcryption of m∗ from sender
IDS to receiver IDR) is shown below:

k∗
1 = ê(S∗, Ppub)ê(r∗QS, P )

= ê(S, Ppub)ê(rQS, P )
(since S∗ = S)

= ê((x − r)SS, sP )ê(rQS, P )
= ê((x − r)s−1QS, sP )ê(rQS, P )
= ê((x − r)QS, P )ê(rQS, P )
= ê(xQS, P )ê(rQS, P )−1ê(rQS, P )
= ê(xQS, P )
= k1

(Therefore, k∗
1 of σ∗ = k1 of σ).

k∗
2 = H2(ê(S

∗, DR)ê(r∗QS, QR))

= H2(ê(S,DR)ê(rQS, QR))

(Since S∗ = S)

= H2(ê((x− r)SS, sQR)ê(rQS, QR))

= H2(ê((x− r)s−1QS, sQR)ê(rQS, QR))

= H2(ê((x− r)QS, QR)ê(rQS, QR))

= H2(ê(xQS, QR)ê(rQS, QR)−1ê(rQS, QR))

= H2(ê(xQS, QR)

�= k2 (since k2 = H2(ê(xQS, QB)))

(Therefore, k∗
2 of σ∗ �= k2 of σ).

From the above computation it is clear that k∗
1 = k1 and c∗ = c (from the

definition of σ∗). Hence the check r∗ = r holds. Since k2 �= k∗
2 , c∗ will get

decrypted to some message m∗ and not to message m (used for the generation
of σ). Now, this clearly shows that the C will accept σ∗ as a valid signcryption
of m∗ from sender IDS to receiver IDR. Also, it does not violate the definition
of unforgeability game that the forgery generated by A (σ∗) is not the output of
signcrypt oracle for message m∗ with IDS as sender and IDR as receiver. Thus,
A can successfully forge the signcryption on some message m∗ (not known to
A) without doing any computation or breaking any hard problem assumption.

4 Review and Attack of Signcryption Scheme in [14]

Tso et al. in [14] proposed a PKI based signcryption scheme that offers forward
security and public verifiability. The scheme offers public verifiability, in the sense
that, a receiver can prove the authenticity of the signcryption from a sender
by providing some additional information other than his private key and the
message being signcrypted. They have formally proved the confidentiality and
unforgeability, and informally argued that their schemes offers forward secrecy,
even if the additional information required for third party verification and private
key of the sender are known to the adversary. We have reviewed the scheme in [14]
and showed that the scheme does not provide confidentiality when the private
key of sender and the information required for third party verification are known
to the adversary.
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4.1 Review of the Scheme[14]

Public Parameters(κ):

� q: a large prime > 2160.
� Fq: finite field.
� E(Fq): Elliptic curve defined over

Fq.
� P : a point on E(Fq), |P | = n.
� H: a cryptographic one-way hash

function.
� T : a secure hash function.
� bindA,B: concatenation of identi-

ties of A and B.
� PointComp(): point compress

function.
� PointDecomp(): point decompress

function.
� (E ,D): the encryption and decryp-

tion algorithms of a symmetric key
cryptosystem (CPA secure).

� params = 〈q, P, n, (E ,D),H, T 〉

User Key:

� A: Sender.
� B: receiver.
� xA: private key of sender A.
� xB : private key of receiver B.
� YA: public key of sender A (YA =
xAP ).

� YB: public key receiver B. (YB =
xBP ).

Signcrypt(m,YA, xA, YB)

� k ∈R {1, . . . , (n− 1)}.
� R = kP = (x̂1, ŷ1).
� (x̂1, α1) = PointComp(E(Fq), R).

� r = x̂1 modn. If r = 0 goto the
first step.

� K = kYB = (x̂2, ŷ2).
� α2 = H(x̂2).
� (αe, u) = T (α2), where u ∈
{1, . . . , (n− 1)}.

� U = uR.
� ĉ = Eαe(m) and c = ĉ‖α1.
� h = H(c‖bindA,B, x̂1‖U).
� v = (ku)−1(h + rxA) modn.
� Output σ = 〈c, x̂1, v〉

Unsigncrypt(σ, YA, YB, xB)

� R′ = PointDecomp(E(Fq), x̂1, α1).
� K ′ = xBR = (x̂′

2, ŷ
′
2) and α′

2 =
H(x̂′

2).
� (α′

e, u
′) = T (α′

2).
� U ′ = u′R and h′ =
H(c‖bindA,B‖x̂1‖U ′).

� r′ = x̂1 modn.
� e′1 = h′/vmodn and e1 = e′1(u

′)−1.
� e′2 = r′/vmodn and e1 = e′2(u

′)−1.
� R̂ = e1P + e2YA = (x̂′

1, ŷ
′
1).

� Accept σ iff x̂1 = x̂′
1, otherwise,

output “Invalid”
� Output m′ = Dα′

e
(ĉ).

Public-Verify(σ, h, YA, YB)

� r̄ = x̂1 modn.
� ē1 = h/vmodn and ē2 =
r̄/v modn.

� Ū = ē1P + ē2YA.
– Accept and output “V alid iff h

= H(c‖bindA,B‖x̂1‖Ū). Otherwise,
output “Invalid”

4.2 Attack on the Scheme [14]

In [14], Tso et al. have proposed a signcryption scheme which offers non-
repudiation, public verifiability and forward security in addition to the security
properties provided by the signcryption primitive. The forward secrecy property
of the scheme is not formally proved in [14]. Instead, it was informally stated
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that the signcryption generated between sender S with public key YS and re-
ceiver R with public key YR is confidential even if the private key (xS) of S is
compromised (known to the adversary). This is equivalent to the insider security
notion of confidentiality game in signcryption. We show that, the scheme in [14]
does not provide confidentiality when sender private key is compromised.

– Let (m0,m1) be the two messages chosen by the adversary A and, S be the
sender and R be the receiver chosen by adversary during the challenge phase.

– Let σ∗ be the challenge signcryption generated by the challenger C on mes-
sage mδ (where δ ∈ {0, 1}) from sender S to receiver R.

– Now, A cooks up a signcryption σ̃ from σ∗ on message mb (chosen by C for
generation of σ∗) from sender C to receiver R as follows :
• Obtain h∗ from C by requesting third party signature verification (as

mentioned in their discussion).
• Computes (k∗u∗) = (v∗−1(r∗ + h∗xS)).
• Computes Ũ = k∗u∗P .
• Computes h̃ = H(c‖bindC,S‖x̂∗

1‖Ũ)
• Computes ṽ = (k∗u∗)−1(r∗ + h̃xC)
• Sets c̃ = c∗ and x̂′

1 = x̂∗
1

– A now submits σ̃ = 〈c̃, x̂′
1, ṽ〉 to the unsigncrypt oracle as if σ̃ is a signcryp-

tion from sender C to receiver R during Phase-II. It should be noted that
unsigncryption of σ̃ will output the message mδ(used for generation of σ∗)
and it will pass the signature verification.

5 Identity Based Signcryption Scheme with Public
Verifiability(IDPVS)

In this section, we propose a new identity based signcryption that offers pub-
lic verifiability, third party verification (proving the binding of message to the
signcryption with the help of additional information provided by the receiver)
and forward security. We have formally proved the security of our scheme in the
newly proposed security model. Our security model captures insider notion for
the security of signcryption schemes.

Let G1, G2 be two cyclic groups of prime order q and ê : G1 ×G1 → G2 be a
bilinear map. Let M be the message space and , be the ciphertext space and
Hi (i=1 to 4) be four cryptographic hash functions.

5.1 IDPVS Scheme

Setup(1κ):

� P ∈R G1

� s ∈R Z∗
q

� Ppub = sP

� (E ,D)〉 be the CPA secure symmet-
ric key cipher.

� H1 : {0, 1}∗ → G1.
� H2 : G2 → {0, 1}|�|.
� H3 : {0, 1}|�| ×G3

1 → G1.
� H4 : {0, 1}|M| ×G1 ×G2 ×G2

1 →
{0, 1}n̂.

� Params = 〈G1,G2, q, n, P,
Ppub, ê(., .), (E ,D) ,H1,H2,H3,H4〉
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Extract(IDA)

� QA = H1(IDA)
� DA = sQA

Signcrypt(m, IDA, DA, IDB)

� x ∈R Z∗
q

� U = xP
� α̂ = ê(Ppub, QB)x

� α2 = H2(α̂)
� r = H4(m, α̂, U,QA, QB)
� c = Eα2(m‖r)
� R = H3(c, U,QA, QB)
� V = xR + DA

� Signcryption σ = 〈U, V, c〉

Public-Verify(σ, IDA, IDB)

� R̄ = H3(c, U,QA, QB)
� If ê(V, P ) = ê(U, R̄) ê(QA, Ppub),

then return “V alid”. Otherwise,
return “Invalid”

Unsigncrypt(σ, IDA, IDB, DB)

� If Public-Verify(σ, IDA, IDB) �=
“V alid”, output “Invalid”

� α̂′ = ê(U,DB)
� α′

2 = H2(α̂′)
� m′‖r′ = Dα′

2
(c)

� Output φ = 〈m′, r′, α̂′, σ〉 iff r′ =
H4(m′, α̂′, U,QA, QB) else, return
“Invalid”

TP-Verify(φ, IDA, IDB)

� If Public-Verify(σ, IDA, IDB) �=
“V alid”, output “Invalid”

� ᾱ2 = H2(α̂′)
� m̄‖r̄ = Dᾱ2(c)
� Accept σ and output “V alid” iff
r̄ = H4(m̄, α̂′, U,QA, QB) and r̄ =
r′. Otherwise, output “Invalid”

Proof of Correctness of IDPVS: The correctness of signature verification
and the consistency of signcrypt and unsigncrypt algorithm are shown below:

Correctness of signature verification:
LHS = ê(V, P ) = ê(xR + DA, P )

= ê(xR, P )ê(DA, P )
= ê(R,P )xê(sQA, P )
= ê(R̄, U) ˆQA, Ppub

= RHS

Correctness of α̂′:
α̂′ = ê(U,DB) = ê(xP, sQB)

= ê(Ppub, QB)x = α̂

(Therefore, α̂′ of Unsigncrypt is
same as α̂ of Signcrypt ).

5.2 Security Analysis of IDPVS

Proof for Unforgeability of IDPVS Scheme

Theorem 1. If there exists an adversary A who can break the EUF-CMAIDPV S

security of IDPVS scheme with advantage ε then there exists another algorithm
which can break the CDHP with advantage ε′ ≥ ε.

Proof: The interaction between A and C can be viewed as a game given in
section 2. Assume that the challenger C is provided with the CDHP instance
P, ãP, b̃P from G1 and is supposed to generate the solution ãb̃P . Let A be an
adversary who is capable of breaking the EUF − CMA security of IDPV S
scheme in polynomial time with advantage ε. C makes use of A to break the
CDHP instance with a non-negligible advantage ε′.

Setup: For having the game with A, C cooks up the system parameters as
follows :
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– Sets G1, G2 as the underlying group, P as the generator of G1

– Sets Ppub = ãP .
– Publishes 〈G1,G2, q, P, Ppub〉.
C also maintains lists L1,L2,L3,L4,LSign consistency in giving the responses
to the queries made by A to various oracles. The format of various lists
maintained by C are :
– L1 = 〈i, qi, Qi〉 = 〈Ind,Z∗

q ,G1〉. Here Ind = {1, . . . , qH1} and qH1 is the
maximum number of queries allowed to OH1 oracle.

– L2 = 〈α̂, α2〉 = 〈Z∗
q ,Z

∗
q〉.

– L3 = 〈c, U,QA, QB, r̂, R〉 = 〈{0, 1}|c|,G1,G1,Z∗
qG1〉.

– L4 = 〈m,U, α̂,QA, QB〉 = 〈{0, 1}|m|,G1,G2,G1,G1〉.
Training Phase: During training phase, the adversary A is allowed to access

the various oracles provided by C. A can get sufficient training before gen-
erating the forgery. The various oracles provided by C to A during training
are as follows:
– Hash Oracle Queries:

• H1 Oracle Queries (OH1(IDi)): When this oracle is queried with
IDi as input by A, C responds as follows:
� If i = γ, Sets Qi = b̃P , stores 〈i,′−′, Qi〉 in list L1.
� If i �= γ, Picks a new qi ∈R Z∗

q , stores 〈i, qi, Qi〉 in list L1

Now, returns Qi to A.
• H2 Oracle Queries(OH2(α̂)): When A makes a query with input

(α̂), C performs the following:
� If 〈α̂, α2〉 is available in list L2, then C retrieves α2 from L2.
� Else, picks a new random α2 ∈ Z∗

q , stores the tuple 〈α̂, α2〉 in list
L2.

Then, C returns α2 to A
• H3 Oracle Queries(OH3(c, U,QA, QB)): When A queries the OH3

oracle with input of the form (c, U,QA, QB), C responds as follows :
� If 〈c, U,QA, QB, R〉 is available in list L3, then C retrieves R

corresponding to the input from list L3.
� Else,

� If B �= γ, C picks a new random r̂ ∈ Z∗
q and sets R = r̂P .

� Otherwise, If B = γ, C randomly picks a new r̂ ∈R Z∗
q and

sets R = r̂QB.
� C stores the tuple 〈c, U,QA, QB, r̂, R〉 in list L3.

Challenger C returns R to A.
• H4 Oracle Queries(OH4(m,U, α̂,QA, QB)): When A queries the
OH4 oracle with input of the form (m,U, α̂,QA, QB), C responds as
follows :
� If the tuple 〈m,U, α̂,QA, QB, r〉 corresponding to input is avail-

able in list L4, C retrieves r from L4.
� Otherwise, C picks a new random r ∈R Z∗

q and stores the tuple
〈m,U, α̂,QA, QB, r〉 in L4.

C outputs r to A.
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– Signcrypt Oracle Queries(OSigncrypt(m, IDA, IDB)): When a query
is made by A with message m, sender IDA, receiver IDB as input to
this oracle, C will generate the response as follows :
• If A �= γ, C knows the private key DA of sender A and hence generates

the signcryption σ by using the signcrypt protocol.
• If A = γ, C generate the signcryption σ by doing the following com-

putations:
� Picks r̂, x ∈R Z∗

q .
� Sets U = (xP − r̂−1QA)
� Sets α2= OH2(α̂ = ê(U,DB)) and r=OH4(m,U, α̂,QA, QB).
� Computes c = Eα2(m‖r).
� Sets R = r̂Ppub and V = r̂xPpub and stores 〈c, U,QA, QB, r̂, R〉

to list L3. Here it should be noted that if a similar entry exists
in L3, repeat the procedure by choosing different r̂.

� correctness of V can be shown by :

RHS = ê(R,U)ê(QA, Ppub)
= ê(r̂Ppub, (xP − r̂−1QA))ê(QA, Ppub)
= ê(r̂Ppub, xP )ê(r̂Ppub, r̂

−1QA))−1ê(QA, Ppub)
= ê(r̂xPpub, P )ê(Ppub, QA))−1ê(QA, Ppub)
= ê(r̂xPpub, P )
= ê(V, P ) = LHS

From this it is clear that the signcryption σ = 〈c, U, V 〉
will pass the verification test of V .

– Unsigncrypt Oracle Queries(OUnsigncrypt(σ, IDA, IDB)): For an un-
signcrypt query made to this oracle by A, C does the following compu-
tations :
• If B �= γ, C knows the private key DB of IDB and can unsigncrypt

σ using the computations in Unsigncrypt algorithm and returns the
corresponding output.

• Otherwise, C does the following :
� Here, C knows the private key DA corresponding to IDA (sender).
� If Public−V erify(σ, IDA, IDB) = “Invalid” return “Invalid”,

Else, Proceed with the next step.
� Performs R = OH3(c, U,QA, QB) and retrieves the correspond-

ing r̂ from list L3.
� Checks ê(U,QB) ?= ê(r̂−1R,P ). If not, returns “Invalid”. Else,

proceeds with the next step.
� Computes α̂′ = ê(r̂−1R,Ppub) and α′

2 = OH2(α̂′).
� Retrieves (m′‖r′) = Dα′

2
(c).

� If r′ = OH4(m
′, U, α̂′, QA, QB), then returns m′.

� Otherwise, returns “Invalid”
– TP-Verify Oracle Queries(OTP−V erify(σ, IDA, IDB)): When C re-

ceives a query from A with σ as input, C performs the following :
• If B �= γ, knows the private key DB of IDB and can unsigncrypt σ

using the computations in Unsigncrypt algorithm and returns φ if
σ is valid, else, returns “Invalid”



Identity Based Public Verifiable Signcryption Scheme 257

• if B = γ, C does the computations as given inOUnsigncrypt oracle and
returns φ = 〈σ,m′, α̂′, QA, QB〉 if σ is valid, else, returns “Invalid”

Forgery Phase: After getting sufficient training, A submits the signcryption
〈σ∗, IDS, IDR〉. If S = γ and σ∗ is valid, C does the following:
– Retrieves r̂ corresponding to (c, U,QS, QR) from list L3.
– Computes DS = V − r̂U .
– The computation V − r̂U gives the private key DS corresponding to IDS.

This can be shown as follows:

V − r̂U = xR + DS − r̂U
= xr̂P + DS − r̂U
= r̂U + DS − r̂U
= DS

– Since S = γ, DS = Dγ = ãQγ = ãb̃P
Thus, C obtains the solution to the CDHP instance. �

Probability Analysis: The probability of success of C can be measured by
analyzing the various events that happen during the simulation :
Assume, qH1 , qH2 , qH3 , qH4 , qe are the maximum polynomial number of queries
allowed to the oraclesOH1 ,OH2 ,OH3 ,OH4 ,OExtract oracles respectively. The
events in which C aborts the EUF − IBSC − CMA game are,
1. E1 - when A queries the private key of the target identity IDγ and

Pr[E1] = qe

qH1
.

2. E2 - when A does not choose the target identity IDγ as the receiver dur-
ing the challenge and Pr[E2] = 1 - 1

qH1−qe
.

The probability that C does not abort in the EUF-IBSC-CMA game is given
by,

Pr[¬E1 ∧ ¬E2] =
(

1− qe

qH1

)(
1

qH1 − qe

)
=

1
qH1

.

The probability of C solving the CDHP is given by,

Pr[A(P, ãP, b̃P |ã, b̃ ∈ G2) = ê(P, P )ãb̃c̃] = ε

(
1

qH1

)
Here, ε is non-negligible and hence the probability of C solving CDHP is also
non-negligible.

Proof for Confidentiality of IDPVS Scheme

Theorem 2. If there exists an adversary A who can break the IND-IBSC-CCA2
security of IDPVS scheme with advantage ε then there exists another algorithm
which can break the CBDHP with advantage ε′ ≥ ε.

Proof: For proving the confidentiality of IDPVS, A is allowed to interact with
C, as given in section 2. Assume that the challenger C is provided with the
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CBDHP instance P, ãP, b̃P, c̃P from G1 and is supposed to generate the solution
ê(P, P )ãb̃c̃ ∈ G2. Assume there exists an algorithm A(adversary), capable of
breaking the IND − IBSC − CCA2 security of IDPV S scheme in polynomial
time with advantage ε. C can makes use of A to find the solution for the CBDHP
instance.

Setup: In order to provide the system parameters to A, C uses the CBDHP
instance to cook up the system parameters as given below :
– Sets G1, G2 as the underlying group, P as the generator of G1

– Sets Ppub = ãP .
– Publishes 〈G1,G2, q, P, Ppub〉.
C also maintains lists L1,L2,L3,L4,LSign consistency in giving the responses
to the queries made by A to various oracles. The format of various lists
maintained by C are :
– L1 = 〈i, qi, Qi〉 = Ind,Z∗

q ,G1. Here Ind = {1, . . . , qH1} and qH1 is the
maximum number of queries allowed to OH1 oracle.

– L2 = 〈α̂, α2〉 = 〈Z∗
q ,Z

∗
q〉.

– L3 = 〈c, U,QA, QB, r̂, R〉 = 〈{0, 1}|c|,G1,G1,G1〉.
– L4 = 〈m,U, α̂,QA, QB〉 = 〈{0, 1}|m|,G1,G2,G1,G1〉.

Phase-I: During Phase-I of training, the adversary A is allowed to access the
various oracles provided by C. A can get sufficient training before taking up
the challenge. The various oracles provided by C to A during Phase-I are
similar to the oracles described in training phase of the unforgeability proof.

Challenge Phase: At the end of Phase-I interaction, A picks two messages
(m0,m1) of equal length, the sender identity IDS and the receiver identity
IDR, and submits to C. On getting this, C checks whether R = γ. If R �= γ,
then C aborts. Otherwise, C chooses a random bit δ ∈ {0, 1} and generates
the signcryption of mδ as follows:
– Chooses a random r̂ ∈R Z∗

q .
– Sets U∗ = c̃P and R∗ = r̂P .
– Picks a random c∗ ∈R {0, 1}|�|.
– Stores the tuple 〈c∗, U∗, QS, QR, R

∗〉
– Computes V ∗ = r̂c̃P + DS. This is equal to V ∗ = c̃R∗ + DS. (Also, DS

is known to C).
– Sets σ∗ = 〈c∗, U∗, V ∗〉
C provides σ∗ as the challenge signcryption to A.

Phase-II: Now, A interacts with C as in Phase-I, but with the following
restrictions :
– A should not query the private key corresponding to IDR to the extract

oracle i.e. OExtract(IDR).
– A should not query the unsigncryption of σ∗ with IDS as sender and

IDR as receiver i.e. OUnsigncrypt (σ∗, IDS, IDR)
– A should not query for the third party verification of σ∗ with IDS as

sender and IDR as receiver i.e.OTP−V erify(σ∗, IDS, IDR).
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Here, it should be noted that for getting the message mδ from σ∗, A should
have queried OH2 or OH4 oracle. If A has queried OH2 or OH4 oracle, then
it leaves an entry 〈α̂∗, α2〉 in list L2, where α̂∗ = ê(U,DR) = ê(c̃P, ãb̃P ) =
ê(P, P )ãb̃c̃. If A has queried the OH4 oracle, then A should have computed
α̂∗ = ê(P, P )ãb̃c̃. This leaves an entry 〈m,U, α̂∗, QA, QB, r〉 in the list L4.
Therefore, on receiving A’s response, C ignores the result and picks an α̂
from the list OH2 or OH4and returns it as the solution to the CBDHP
instance. With probability 1/(qH2 + qH4) this will be valid solution to the
CBDHP instance provided to C. �

Probability Analysis: The probability of success of C can be measured by
analyzing the various events that happen during the simulation :
Assume qH1 , qH2 , qH3 , qH4 , qe are the maximum polynomial number of queries
allowed to the oracles OH1 ,OH2 ,OH3 ,OH4 ,OExtract respectively. The events
in which C aborts the IND-IBSC-CCA2 game are,
1. E1 - when A queries the private key of the target identity IDγ and

Pr[E1] = qe

qH1
.

2. E2 - when A does not choose the target identity IDγ as the receiver dur-
ing the challenge and Pr[E2] = 1 - 1

qH1−qe
.

The probability that C does not abort in the IND-IBSC-CCA2 game is given
by,

Pr[¬E1 ∧ ¬E2] =
(

1− qe

qH1

)(
1

qH1 − qe

)
=

1
qH1

.

The probability that the random entry chosen by C from the list L2 or L4

being the solution to the CBDHP is
(

1
qH2 + qH4

)
. Therefore the probability

of C solving the CBDHP is given by,

Pr[A(P, ãP, b̃P, c̃P |ã, b̃, c̃ ∈ G2) = ê(P, P )ãb̃c̃] = ε

(
1

qH1(qH2 + qH4)

)
As ε is non-negligible, the probability of C solving CBDHP is also non-
negligible.

Note: Security proofs will be available soon.

6 Conclusion

In this paper, we showed the security weaknesses in two existing public verifiable
signcryption schemes that appear in [14] and [4]. The scheme in [14] is Public Key
Infrastructure (PKI) based and the scheme in [4] is an identity based scheme.
We have also provided a new identity based signcryption scheme that provides
public verifiability and third party verification. We have formally proved the
security of the newly proposed scheme in the random oracle model.



260 S.S.D. Selvi, S. Sree Vivek, and C. Pandu Rangan

References

1. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. In:

Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer,

Heidelberg (2002)

2. Bao, F., Deng, R.H.: A signcryption scheme with signature directly verifiable by

public key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59.

Springer, Heidelberg (1998)

3. Boyen, X.: Multipurpose identity-based signcryption (a swiss army knife for

identity-based cryptography). In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,

pp. 383–399. Springer, Heidelberg (2003)

4. Chow, S.S.M., Yiu, S.-M., Hui, L.C.K., Chow, K.P.: Efficient forward and provably

secure id-based signcryption scheme with public verifiability and public ciphertext

authenticity. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp.

352–369. Springer, Heidelberg (2004)

5. Gamage, C., Leiwo, J., Zheng, Y.: Encrypted message authentication by firewalls.

In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 69–81. Springer,

Heidelberg (1999)

6. Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from gap diffie-

hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,

pp. 187–200. Springer, Heidelberg (2004)

7. Libert, B., Quisquater, J.-J.: A new identity based signcryption scheme from pair-

ings. In: IEEE Information Theory Workshop, pp. 155–158 (2003)

8. Malone-Lee, J.: Identity-based signcryption. Cryptology ePrint Archive, Report

2002/098 (2002)

9. Mu, Y., Varadharajan, V.: Distributed signcryption. In: Roy, B., Okamoto, E. (eds.)

INDOCRYPT 2000. LNCS, vol. 1977, pp. 155–164. Springer, Heidelberg (2000)

10. Pieprzyk, J., Pointcheval, D.: Parallel authentication and public-key encryption.

In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 387–401.

Springer, Heidelberg (2003)

11. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,

Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg

(1985)

12. Shin, J.-B., Lee, K., Shim, K.: New dsa-verifiable signcryption schemes. In: Lee,

P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 35–47. Springer, Heidelberg

(2003)

13. Steinfeld, R., Zheng, Y.: A signcryption scheme based on integer factorization. In:

Okamoto, E., Pieprzyk, J.P., Seberry, J. (eds.) ISW 2000. LNCS, vol. 1975, pp.

308–322. Springer, Heidelberg (2000)

14. Tso, R., Okamoto, T., Okamoto, E.: Ecdsa-verifiable signcryption scheme with

signature verification on the signcrypted message. In: Pei, D., Yung, M., Lin, D.,

Wu, C. (eds.) Inscrypt 2007. LNCS, vol. 4990, pp. 11–24. Springer, Heidelberg

(2008)

15. Yang, G., Wong, D.S., Deng, X.: Analysis and improvement of a signcryption

scheme with key privacy. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC
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Abstract. Signcryption is a very studied primitive in cryptography,

which simultaneously performs the functionalities of encryption and sig-

nature, in a more efficient way than encrypting and signing separately.

The variant of signcryption where the unsigncryption power is distributed

among a group of users, through a (t, n) threshold process, has received

very few attention (maybe surprisingly).

In this work we consider this task of threshold unsigncryption. First we

describe the (strong) security requirements that such a protocol should

satisfy: existential unforgeability and indistinguishability, under insider

chosen message/ciphertext attacks, in a multi-user setting. We then show

that the existing threshold unsigncryption protocols in the literature (in-

cluding generic constructions obtained by composing a signature scheme

and a threshold decryption scheme) do not achieve this strong level of

full security. Finally, we propose a new protocol for threshold unsign-

cryption, which we prove to be fully secure -as described above- in the

random oracle model.

1 Introduction

Threshold cryptography deals with situations where the power to do a secret cryp-
tographic task (typically signing or decrypting) is shared among a group of n users.
The cooperation of at least t of them is necessary to successfully finish the task.
This kind of situations are very common in real-life applications, where giving too
much power to a single user may be delicate, both for security (because corrup-
tion of this user can compromise the whole system) and for reliability (because a
technical problem at this user can lead to important delays in the life of the sys-
tem) reasons. A typical example is key escrow: a trusted entity stores encrypted
versions of the secret key material of all the users in a system or community. If a
user loses his secret key, he can ask it to the entity. Also if a judge decides that the
secret communications involving a malicious user must be revealed, he can ask the
secret key of that user to the key escrow entity. A good solution is to distribute the
power of this trusted entity among a set of n entities, through a threshold process.

Regarding either threshold signatures or threshold decryption, a lot of papers
have been published in the last 15-20 years, dealing with (strong) security prop-
erties, proposing new protocols, proving security under different computational
assumptions (RSA, factoring, discrete logarithm, Diffie-Hellman, quadratic resid-
uosity, etc.). In particular, designing secure threshold decryption schemes has
been proved to be a quite hard problem.

S.-H. Heng and K. Kurosawa (Eds.): ProvSec 2010, LNCS 6402, pp. 261–278, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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When a digital communication system requires all the properties that encryp-
tion and signature offer (confidentiality, authentication, non-repudiation), then
there are more efficient solutions than signing and encrypting each message sepa-
rately. Protocols that provide the same properties than encryption and signature
together receive the name of signcryption protocols [24] (or also authenticated en-
cryption protocols [4]). Since the invention of this concept in 1997, many papers
discussing different security properties and proposing new signcryption schemes
have appeared.

What happens if we put the two concepts we have talked about (threshold
cryptography and signcryption) together? This question makes perfect sense,
because for example many of the real uses of threshold decryption (key escrow,
e-voting systems, etc.) may require the encrypted information to be authenti-
cated, as well. For example, in a digital auction system, bidders may send their
authenticated private bids, encrypted with the public key of a set of servers. In
this way, even if some dishonest servers collude, they will not be able to obtain
information about the bids. At the end of the auction, a large enough number
of servers will cooperate to decrypt the bids and determine the winner of the
auction and the price to pay.

Since signcryption involves two secret tasks, signcryption and unsigncryption,
two possible combinations with the concept of threshold cryptography can be
considered. The first one leads to the concept of threshold signcryption [15]:
the sender entity A is now a group of n users, and t or more of them must
cooperate to correctly signcrypt a message to an entity B. The second one leads
to the concept of threshold unsigncryption [10]: the receiver entity B is a group
of n users, and t or more of them must cooperate to correctly unsigncrypt a
ciphertext sent by an entity A. Of course, the two concepts can be combined,
which results in a fully distributed signcryption protocol where the tasks of both
signcryption and unsigncryption require the cooperation of a number of members
in the corresponding groups.

These concepts have not received a lot of attention from the cryptographic
community. For the concept of threshold signcryption, this may be due to the
intuition that designing a threshold signcryption variant of an ordinary sign-
cryption scheme may be reasonably easy, for example if the signcryption scheme
works in the Discrete Logarithm framework. This is something similar to what
happens with the transition from a standard signature scheme to a threshold
signature scheme.

For the concept of threshold unsigncryption, however, the reason of the lack
of activity must be a different one, because distributing a decryption task in
a secure way has been proved to be a hard problem, and for example very
few fully secure threshold decryption schemes exist. In this case, due to the
hardness of designing threshold decryption protocols, maybe people just believe
that the most efficient and fully secure threshold unsigncryption schemes are
those which combine in some way a standard signature scheme with a secure
threshold decryption scheme. One of the conclusions that the reader will draw
from this paper is that, contrary to that popular belief, such combinations do
not lead to fully secure threshold unsigncryption schemes.
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Our contribution. We focus on the task of threshold unsigncryption, because it
seems harder to realize than that of threshold signcryption. First of all, we will
describe in detail the sub-protocols that take part in a threshold unsigncryption
scheme, and the two strong security properties that should be required from such
a scheme. The first one is unforgeability of new and valid signcryptions, even
against attackers who have adaptive access to a signcryption oracle, in a multi-
user setting where the attacker knows all the secret keys but that of the target
sender. The second one is indistinguishability of plaintexts, against attackers
who know the secret information of at most t − 1 members of a target set B
and the secret information of all users out of B, and have adaptive access to a
threshold unsigncryption oracle for the set B.

After formalizing this security model, we discuss why the (few) threshold
unsigncryption protocols that exist in the literature fail to achieve these strong
levels of security. This includes generic constructions of threshold unsigncryption
schemes that are obtained by combining a fully secure standard signature scheme
and a fully secure threshold decryption scheme.

The previous negative result motivates the necessity to design a threshold
unsigncryption scheme with full security. We do this by modifying the secure
threshold decryption scheme by Shoup and Gennaro [20], so that a ciphertext
contains also some (unforgeable) authentication information. Both unforgeability
and confidentiality are formally proved in the random oracle model; the proofs
follow quite standard techniques [16,20]. In terms of efficiency, the new scheme is
equivalent to a combination of using Schnorr signature scheme [17] and Shoup-
Gennaro threshold decryption scheme. However, as we have already mentioned,
generic combinations of these two schemes do not lead to fully secure threshold
unsigncryption, whereas our new tailor-made scheme achieves full security.

Organization of the paper. The rest of the paper is organized as follows. In Sec-
tion 2 we give the syntactic definition of a protocol for threshold unsigncryption
and of the two basic security properties (unforgeability and indistinguishability)
that such a protocol must satisfy. We argue in Section 3 that all the previously
proposed (explicitly or implicitly) threshold unsigncryption schemes do not sat-
isfy the maximum level of security (specifically, the indistinguishability property
does not hold). As a more detailed example, we include in Appendix A the
description of an attack against the indistinguishability of the scheme in [12].
Then we describe our new threshold unsigncryption scheme in Section 4, where
we also prove that this scheme enjoys the required level of security. The work is
concluded with some remarks and possible lines of future work in Section 5.

2 Signcryption with Threshold Unsigncryption

In a signcryption scheme, a user A sends a message to an intended receiver B,
in a confidential and authenticated way: only B can obtain the original message,
and B is convinced that the message comes from A. In a scenario where the
role of B is distributed among a set of users, the cooperation of some authorized
subset of these users will be necessary to perform the unsigncryption phase. Each
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user in the set B will have a share of the secret information of B, and will use
it to perform his part of the unsigncryption process. In this paper we will focus
on threshold families of authorized subsets: the cooperation of at least t users
in B will be necessary to successfully run the unsigncryption protocol. Both our
formal definitions and our concrete scheme can be extended to more general
families of authorized subsets, by replacing threshold secret sharing techniques
(i.e. Shamir’s scheme [18]) with more general secret sharing schemes.

2.1 Syntactic Definition

A signcryption scheme with threshold unsigncryption Σ = (Σ.St, Σ.KG, Σ.Sign,
Σ.Uns) consists of four probabilistic polynomial-time algorithms:

– The randomized setup algorithm Σ.St takes a security parameter λ and
outputs some public parameters params that will be common to all the users
in the system: the mathematical groups, generators, hash functions, etc. We
write params ← Σ.St(1λ) to denote an execution of this algorithm.

– The key generation algorithm Σ.KG is different for an individual sender A
than for a collective B of receivers. A single user A will get a pair (skA, pkA)
of secret and public keys. In contrast, for a collective B = {B1, . . . , Bn}
of n users, the output will be a single public key pkB for the group, and
then a threshold secret share skB,j for each user Bj , for j = 1, . . . , n, and
for some threshold t such that 1 ≤ t ≤ n. The key generation process for
the collective B can be either run by a trusted third party, or by the users
in B themselves. We will write (skA, pkA) ← Σ.KG(params, A, ‘single’) and
({skB,j}1≤j≤n, pkB) ← Σ.KG(params, B, n, t, ‘collective’) to refer to these
two key generation protocols.

– The signcryption algorithm Σ.Sign takes as input params, a message m, the
public key pkB of the intended receiver group B, and the secret key skA of
the sender. The output is a ciphertext C. We denote an execution of this
algorithm as C ← Σ.Sign(params,m, pkB, skA).

– The threshold unsigncryption algorithm Σ.Uns is an interactive protocol run
by some subset of users B′ ⊂ B. The common inputs are a ciphertext C and
the public key pkA of the sender, whereas each user Bj ∈ B′ has as secret
input his secret share skB,j. The output is a message m̃, which can eventually
be the special symbol ⊥, meaning that the ciphertext C is invalid. We write
m̃ ← Σ.Uns(params, C, pkA, B′, {skB,j}Bj∈B′) to refer to an execution of this
protocol.

For correctness, Σ.Uns(params, Σ.Sign(params,m, pkB, skA), pkA, B′, {skB,j}
Bj∈B′) = m is required, whenever B′ contains at least t honest users and the
values params, skA, pkA, {skB,j}1≤j≤n, pkB have been obtained by properly exe-
cuting the protocols Σ.St and Σ.KG.

A different property that can be required is that of robustness, which in-
formally means that dishonest receivers in B who do not follow the threshold
unsigncryption protocol correctly can be detected and discarded.
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2.2 Security Model

A correct signcryption scheme must satisfy the security properties that are re-
quired for both encryption and signatures: confidentiality and unforgeability. In
the threshold setting for unsigncryption, confidentiality must hold even if an
attacker corrupts t − 1 members of a collective of receivers. Different models
for the unforgeability and confidentiality of signcryption have been proposed
[5,2,13], but our goal is to consider here the strongest security notions. For this,
we consider a multi-user setting where an adversary is allowed to corrupt the
maximum possible number of users (all except the target one), and where he
can make queries to signcryption and unsigncryption queries for different users,
messages and ciphertexts. In particular, unforgeability must hold even if the
adversary knows the secret keys of all the possible collectives of receivers, and
confidentiality must hold even if the adversary knows the secret keys of all the
possible senders (insider security).

Unforgeability. Unforgeability under chosen message attacks is the standard
security notion for signature schemes and in general for any cryptographic prim-
itive which pretends to provide some kind of authentication or non-repudiation.
The idea is that an attacker who does not know the secret key of a user A
and who can ask A for some valid signatures (or, in our case, signcryptions) for
messages of his choice must not be able to produce a different valid signature
(signcryption) on behalf of A. For a security parameter λ ∈ N, this notion is
formalized by describing the following game that an attacker AUNF plays against
a challenger:

1. The challenger runs params ← Σ.St(1λ) and gives params to AUNF.
2. AUNF chooses a target user A�. The challenger runs (skA� , pkA�) ←

Σ.KG(params, A�, ‘single’), keeps skA� private and gives pkA� to AUNF.
3. [Queries]AUNF can make adaptive queries to a signcryption oracle for sender

A�: AUNF sends a tuple (m, pkB) for some collective B of his choice, and
obtains as answer C ← Σ.Sign(params,m, pkB , skA�).
Note that other kinds of queries (such as unsigncryption queries or signcryp-
tion queries for senders different from A�) make no sense because AUNF can
reply such queries by himself.

4. [Forgery] Eventually, the attacker AUNF outputs a tuple (pkA� , pkB� ,
{skB�,j}Bj∈B� , C�).

We say that AUNF wins the game if:

– the protocol Σ.Uns(params, C�, pkA� , B�, {skB�,j}Bj∈B�) outputs a message
m� �=⊥,

– the tuple (pkA� ,m�, pkB� , C�) has not been obtained by AUNF through a
signcryption query,

The advantage of such an adversary AUNF in breaking the unforgeability of the
signcryption scheme is defined as

AdvAUNF (λ) = Pr[AUNF wins].
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A signcryption scheme Σ (with threshold unsigncryption) is said to be un-
forgeable if, for any polynomial time adversary AUNF, the value AdvAUNF(λ) is
negligible with respect to the security parameter λ, meaning that it decreases
(when λ increases, asymptotically) faster than the inverse of any polynomial.

Indistinguishability. The confidentiality requirement for a signcryption scheme
Σ with (t, n)-threshold unsigncryption (i.e. the fact that a signcryption on the
message m addressed to B leaks no information on m to an attacker who only
knows t − 1 secret shares of skB) is ensured if the scheme enjoys the property of
indistinguishability under chosen ciphertext attacks (IND-CCAsecurity, for short).
For a security parameter λ ∈ N, this property is defined by considering the fol-
lowing game that an attacker AIND-CCA plays against a challenger:

1. The challenger runs params ← Σ.St(1λ) and gives params to AIND-CCA.
2. AIND-CCA chooses a target set B� of n users and a subset B̃ ⊂ B� of

t − 1 users, to be corrupted. The challenger runs ({skB�,j}1≤j≤n, pkB�) ←
Σ.KG(params, B�, n, t, ‘collective’) and gives to AIND-CCA the values pkB� and
{skB�,j}Bj∈B̃. Without loss of generality, we can assume B� = {B1, . . . , Bn}
and B̃ = {B1, . . . , Bt−1}.
Note that we are considering only static adversaries who choose the subset
B̃ of corrupted users at the beginning of the attack. Considering security
against adaptive adversaries is an interesting problem for future research.

3. [Queries] AIND-CCA can make adaptive queries to a threshold unsigncryption
oracle for the target set B�: AIND-CCA sends a tuple (pkA, C) for some public
key pkA of his choice. The challenger runs m̃ ← Σ.Uns(params, C, pkA, B�,
{skB�,j}Bj∈B�). The attacker AIND-CCA must be given all the information
that is broadcast during the execution of this protocol Σ.Uns.
Note that other kinds of queries (such as unsigncryption queries for other
collectives B �= B� or signcryption queries) make no sense because AUNF can
reply such queries by himself.

4. AIND-CCA chooses two messages m0,m1 of the same length, and a sender A�

along with (skA� , pkA�).
5. [Challenge] The challenger picks a random bit b ∈ {0, 1}, runs C� ←

Σ.Sign(params,mb, pkB� , skA�) and gives C� to AIND-CCA.
6. Step 3 is repeated, with the restriction that the tuple (pkA� , C�, B�) cannot

be queried to the threshold unsigncryption oracle.
7. Finally, AIND-CCA outputs a bit b′.

The advantage of such a (static) adversary AIND-CCA in breaking the
IND-CCAsecurity of the signcryption scheme is defined as

AdvAIND-CCA(λ) = |2 Pr[b′ = b]− 1| .

A signcryption scheme Σ with threshold unsigncryption is said to be IND-CCA
secure if AdvAIND-CCA(λ) is negligible with respect to the security parameter λ, for
any polynomial time (static) adversary AIND-CCA.
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3 Existing Threshold Unsigncryption Schemes Are Not
Fully Secure

There are very few papers proposing explicit signcryption schemes with threshold
unsigncryption. We are only aware of two proposals [10,23] in the traditional PKI
setting, and three proposals [11,12,22] in the identity-based setting.

It turns out that none of these schemes achieves the full level of security
described in the previous section. The security weakness is always related to
the indistinguishability property. For the two schemes in the PKI setting (which
do not contain any formal security definitions or analysis), simple IND-CCA
attacks can be mounted without assuming multiple users or insider attackers.
The schemes proposed for the identity-based scenario are analyzed more formally,
but IND-CCA attacks against them exist anyway. Specifically, the scheme in [22]
has the same security problems than the two schemes in the PKI setting: the
verification step is performed at the end of the protocol, once all the receivers
have broadcast their partial decryption shares. This means that an attacker can
take the challenge ciphertext C� and modify only the “signature” part of it,
obtaining an invalid ciphertext C �= C� that will be queried to the threshold
unsigncryption oracle. As answer, the attacker will obtain the final value ⊥, but
also the partial decryption values broadcast by all the receivers, which will allow
the attacker to decrypt the (valid) challenge ciphertext.

The scheme in [11] does not resist insider attacks: knowing the secret key
of the sender A�, one can immediately obtain the plaintext from the challenge
ciphertext. Finally, the scheme in [12] is also insecure against insider attacks.
We describe this scheme and such an attack in Appendix A as an illustrative
example.

3.1 What about Generic Constructions?

Since the existing threshold unsigncryption schemes are not fully secure, one
could wonder if such fully secure schemes actually exist. The first attempt could
/ should be to think of possible generic constructions like the threshold versions
of the well-known approaches Sign then Encrypt and Encrypt then Sign, that
have been deeply analyzed in [1] for the case of ordinary signcryption. There, it
is proved that both generic constructions achieve full security (against insider
attackers in a multi-user setting) if the underlying signature and encryption
schemes have full security. Thus, one could expect that the same happens in the
scenario with threshold unsigncryption. But unfortunately this is not the case,
as we argue below.

Let Ω = (Ω.KG, Ω.Sign, Ω.Vfy) be a signature scheme, and Π =
(Π.KG, Π.Enc, Π.ThrDec) be a public encryption scheme with threshold decryp-
tion. For the keys of the generic signcryption schemes with threshold unsign-
cryption, an individual sender will run (skA, pkA) ← Ω.KG and a collective of
receivers B will run ({skB,j}1≤j≤n, pkB) ← Π.KG.

Let us consider for example the ThresholdEncrypt then Sign approach.
To signcrypt a message m for the collective B, a sender A first computes
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c ← Π.Enc(pkB,m||pkA) and then signs c||pkB to obtain ω ←
Ω.Sign(skA, c||pkB). The final ciphertext is C = (c, ω). To unsigncrypt such
a ciphertext, members of B first verify the correctness of signature ω by
running Ω.Vfy(pkA, c||pkB, ω). If the signature is not correct, the symbol ⊥
is output. Otherwise, a subset B̃ ⊂ B of at least t members of B run
Π.ThrDec({skB,j}Bj∈B̃, c) to recover the message m||pkA. If the public key pkA

corresponds with that of the sender A, then m is the output of the protocol. If
not, the output is ⊥.

The IND-CCA security of this generic construction can be broken by an in-
sider attacker AIND-CCA in a multi-user scenario. AIND-CCA receives a challenge
ciphertext C� = (c�, ω�) for a challenge sender A� and a challenge collective
B� of receivers. After that, AIND-CCA can generate keys (skA, pkA) for another
user A �= A�, compute a valid signature ω for c�||pkB� using skA, and send
C = (c�, ω) as a threshold unsigncryption query for sender A and collective B�

of receivers. As answer to this query, since the signature ω is valid, AIND-CCA

must receive all the information that the members of B� would broadcast in the
execution of the threshold decryption of c�. Even if the final output of this query
is ⊥, because the public key pkA does not match the public key pkA� which is
encrypted in c�, the attacker AIND-CCA has obtained enough information to re-
cover the whole plaintext encrypted in c�, and therefore succeeds in breaking
the indistinguishability of the scheme. We stress that this same attack is valid
against relaxed IND-CCA (see [7]), because the decryption of C (which is ⊥) is
different from the decryption of C�.

Regarding the Sign then ThresholdEncrypt approach, the attack is even sim-
pler. Once AIND-CCA gets a challenge ciphertext C� = c� for A� and B�, where
c� is an encryption under Π of (m,ω�, pkA�) and ω� is a signature on m||pkB� ,
all that AIND-CCA has to do is to make an unsigncryption query for the tuple
(C�, pkA, pkB�), where A �= A�. Even if the output of the protocol is again ⊥,
the attacker AIND-CCA gets all the partial information broadcast by the members
of B� in the execution of the threshold decryption of c�, which allows AIND-CCA

to directly obtain the plaintext m.

4 New Threshold Unsigncryption with Full Security

This section is dedicated to the description and analysis of a new signcryption
scheme with (t, n)-threshold unsigncryption, achieving full security. Attempts to
design such a scheme starting from an existing (individual) signcryption scheme
do not seem to work, either because many signcryption schemes are not secure
against insider attacks [24,4,3] or because the verification process is placed at the
very end, after the decryption process has been done [14,21,5,13], which makes
it impossible to extend them securely to threshold unsigncryption scenarios.

Our approach has been to take a secure public key encryption scheme with
threshold decryption and modify it in order to accommodate also the authen-
tication process. In particular, we have considered the scheme TDH1 of Shoup
and Gennaro [20]. The idea of that scheme, to encrypt a message m for a col-
lective B with public key pkB, is to first compute a hashed ElGamal encryption
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(R, c) of m. That is, assuming that we have fixed a cyclic group G = 〈g〉 of
prime order q, along with a hash function H0, the sender computes R = gr

and c = m ⊕ H0((pkB)r). After that, he adds to the ciphertext another ele-
ment ḡ ∈ G and the value R̄ = ḡr, and finally a zero-knowledge proof that
DiscLogg(R) = DiscLogḡ(R̄). Members of B will start the real decryption pro-
cess only if the proof of knowledge is valid.

Our signcryption scheme follows the same principle, but the sender A will
compute a zero-knowledge proof that DiscLogg(R) = DiscLogḡ(R̄) holds and
that he knows skA such that pkA = gskA . We will prove that the resulting
signcryption scheme (with threshold unsigncryption) enjoys the strong notions
of unforgeability and indistinguishability. We consider for simplicity a scenario
where the receivers follow the threshold unsigncryption protocol correctly. A
simple modification of our scheme, by including appropriate non-interactive zero-
knowledge proofs of the equality of two discrete logarithms, allows to provide
robustness to the scheme against the action of malicious receivers. We do not
detail the efficiency of the scheme; this is usually done when a cryptographic
scheme is designed to improve the efficiency of previous equivalent proposals.
But this is not the case here: previous proposals of threshold unsigncryption
protocols do not achieve the level of security achieved by this new scheme, so it
would not be fair to compare, for instance, the efficiency of this scheme with the
efficiency of some generic construction such as ThresholdEncrypt then Sign.

The protocols of the scheme are described below.

Setup: Σ.St(1λ).
Given a security parameter λ, a cyclic group G = 〈g〉 of prime order q, such that
q is λ bits long, is chosen. A length �, which must be polynomial in λ, is defined
for the maximum number of bits of the messages to be sent by the system. Three
hash functions H0 : {0, 1}∗ → {0, 1}
, H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Zq

are chosen. The output of the protocol is params = (q,G, g,H0, �,H1, H2).

Key Generation: Σ.KG(params, A, ‘single’) and Σ.KG(params, B, n, t,
‘collective’).
For an individual user A, the secret key skA is a random element in Z∗

q , whereas
the corresponding public key is pkA = gskA . The public output of this protocol
is pkA, and the secret output that is privately stored by A is skA.

For a collective B = {B1, . . . , Bn} of n users, the common public key is
computed as pkB = gskB for some random value skB ∈ Z∗

q that will remain
unknown to the members of B. Each user Bj ∈ B will receive a (t, n)-threshold
share skB,j of skB, computed by using Shamir’s secret sharing scheme [18]. This
means that, for every subset B′ ⊂ B containing exactly t users, there exist values
λB′

j ∈ Z∗
q such that skB =

∑
Bj∈B′

λB′
j skB,j . The public output of this protocol is

pkB, whereas each user Bj ∈ B receives a secret output skB,j .
The key generation process for a collective B can be performed by a trusted

dealer, or by the members of B themselves, by using some well-known techniques
[9]. Both solutions permit that the values DB,j = gskB,j are made public, for
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j = 1, . . . , n. These values would be necessary to provide robustness to the
threshold unsigncryption process.

We assume that both pkA and pkB include descriptions of the identities of A
and members of B.

Signcryption: Σ.Sign(params,m, pkB, skA).

1. Choose at random r ∈ Z∗
q and compute R = gr.

2. Compute k = H0(R, pkB, (pkB)r, pkA) and c = m⊕ k.
3. Choose at random α1, α2 ∈ Z∗

q and compute Y1 = gα1 and Y2 = gα2 .
4. Compute ḡ = H1(c, R, Y1, Y2, pkA, pkB) ∈ G, and then R̄ = ḡr and Ȳ1 = ḡα1 .
5. Compute h = H2(c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB).
6. Compute s1 = α1 − h · r mod q.
7. Compute s2 = α2 − h · skA mod q.
8. Return the signcryption C = (c, R, R̄, h, s1, s2).

Threshold Unsigncryption: Σ.Uns(params, C, pkA, B′, {skB,j}Bj∈B′).
Let B′ ⊂ B be a subset of users in B that want to cooperate to unsigncrypt a
signcryption C = (c, R, R̄, h, s1, s2). They proceed as follows.

1. Each Bj ∈ B′ computes ḡ = H1(c, R, gs1 · Rh, gs2 · (pkA)h, pkA, pkB) and
then checks if the following equality holds:

h = H2(c, R, ḡ, R̄, gs1 · Rh, gs2 · (pkA)h, ḡs1 · R̄h, pkA, pkB)

2. If the equality does not hold, Bj broadcasts (j,⊥).
3. Otherwise, Bj ∈ B′ broadcasts the value Tj = RskB,j .

[If robustness was required, then Bj should also provide a non-interactive
zero-knowledge proof that DiscLogg(DB,j) = DiscLogR(Tj).]

4. From t valid values Tj, different from (j,⊥), recover the value RskB by in-

terpolation in the exponent: RskB =
∏

Bj∈B′
T

λB′
j

j , where λB′
j ∈ Zq are the

Lagrange interpolation coefficients. If there are not t valid shares, then stop
and output ⊥.

5. Compute k = H0(R, pkB, RskB , pkA).
6. Return the value m = c⊕ k.

4.1 Security Analysis

Necessary Computational Assumptions. Given a security parameter λ, let
G = 〈g〉 be a cyclic group of prime order q, such that q is λ bits long.

The Diffie-Hellman (DH, for short) problem consists of computing the value
gab from the values g, ga, gb, for random elements a, b ∈ Z∗

q . The Diffie-Hellman
Assumption states that the DH problem is hard to solve. A bit more formally,
for any polynomial-time algorithm ADH that receives as input G, ga, gb, for
random elements a, b ∈ Z∗

q , we can define as AdvADH (λ) the probability that A
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outputs the value gab. The Diffie-Hellman Assumption states that AdvADH (λ) is
negligible in λ.

The Diffie-Hellman problem is easier to solve than the Discrete Logarithm
(DL, for short) problem: the input is (G, y), where y ∈ G, and the goal for
a solver ADL is to find the integer x ∈ Z∗

q such that y = gx. We can define
AdvADL(λ) and the Discrete Logarithm Assumption analogously to the Diffie-
Hellman case. The unforgeability of our signcryption scheme will be reduced to
the hardness of the DL problem, whereas its indistinguishability will be reduced
to the hardness of the DH problem.

Unforgeability. We are going to prove that our scheme enjoys unforgeability
as long as the Discrete Logarithm problem is hard to solve. The proof is in the
random oracle model for the hash function H2.

Theorem 1. Let λ be an integer. For any polynomial-time attacker AUNF

against the unforgeability of the new signcryption scheme, in the random or-
acle model, there exists a solver ADL of the Discrete Logarithm problem such
that

AdvADL(λ) ≥ O
(
AdvAUNF

(λ)2
)
.

Proof. Assuming the existence of an adversary AUNF that has advantage
AdvAUNF (λ) in breaking the unforgeability of our scheme, and assuming that
the hash function H2 behaves as a random oracle, we are going to construct an
algorithm ADL that solves the Discrete Logarithm problem in G.

Let (G, y) be the instance of the Discrete Logarithm problem in G = 〈g〉
that ADL receives. The goal of ADL is to find the integer x ∈ Zq such that
y = gx. The algorithm ADL initializes the attacker AUNF by giving params =
(q,G, g,H0, �,H1, H2) to him. Here the hash functions H0 : {0, 1}∗ → {0, 1}


and H1 : {0, 1}∗ → G are arbitrarily chosen by ADL. However, H2 is modeled
as a random oracle and so ADL will maintain a table TAB2 to answer the hash
queries from AUNF.

Key generation. AUNF chooses a target sender A� and requests the execution of
the key generation protocol for this user. ADL defines the public key of A� as
pkA� = y and sends it to AUNF. Note that the corresponding secret key skA� ,
which is unknown to ADL, is precisely the solution to the given instance of the
DL problem.

Hash queries. Since H2 is assumed to behave as a random function, AUNF

can make queries (c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB) to the random oracle model
for H2. ADL maintains a table TAB2 to reply to these queries. TAB2 contains
two columns, one for the inputs and one for the corresponding outputs h of H2.
To reply the query (c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB), the algorithm ADL checks
if this input is already in TAB2. If so, the matching output h is answered. If
not, a random value h ∈ Zq is chosen and answered to AUNF, and the entry
H2(c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA, pkB) = h is added to TAB2.
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Signcryption queries. AUNF can make signcryption queries for the sender A�,
for pairs (m, pkB) of his choice, where m is a message and B is a collective of
receivers with public key pkB. To reply to such queries, ADL chooses at random a
value r ∈ Z∗

q and computes R = gr, k = H0(R, pkB, (pkB)r, pkA�) and c = m⊕k.
Then, ADL must simulate a valid proof of knowledge to complete the rest of the
ciphertext. To do this, ADL acts as follows:

1. Choose at random h, s1, s2 ∈ Zq and compute the values Y1 = gs1 · Rh and
Y2 = gs2 · (pkA�)h.

2. Compute ḡ = H1(c, R, Y1, Y2, pkA� , pkB), and then the values R̄ = ḡr and
Ȳ1 = ḡs1 · R̄h.

3. If the input (c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA� , pkB) is already in TAB2 (which hap-
pens with negligible probability), go back to Step 1.

4. Otherwise, ‘falsely’ add the relation h = H2(c, R, ḡ, R̄, Y1, Y2, Ȳ1, pkA� , pkB)
to TAB2.

The final signcryption that ADL sends to AUNF is C = (c, R, R̄, h, s1, s2).

Forgery. At some point, AUNF outputs a successful forgery; that is, a public key
pkB� and a signcryption C� = (c�, R�, R̄�, h�, s�

1, s
�
2) such that:

– the protocol Σ.Uns(params, C�, pkA� , B�, {skB�,j}Bj∈B�) outputs m� �=⊥,
– (pkA� ,m�, pkB� , C�) has not been obtained by AUNF during a signcryption

query.

Since the forgery is valid, we must have h� =
H2(c�, R�, ḡ�, R̄�, Y �

1 , Y �
2 , Ȳ �

1 , pkA� , pkB�), where Y �
1 = gs�

1 · (R�)h�

,
Y �

2 = gs�
2 · (pkA�)h�

and Ȳ �
1 = (ḡ�)s�

1 · (R̄�)h�

.
Furthermore, since the forgery is different from the ciphertexts obtained

during the signcryption queries, we can be sure that the input query� =
(c�, R�, ḡ�, R̄�, Y �

1 , Y �
2 , Ȳ �

1 , pkA� , pkB�) for H2 has not been ‘falsely’ added by
ADL to TAB2.

Replying the attack. Now the idea is to use the reply techniques introduced by
Pointcheval and Stern in [16]. Without going into the details, ADL will repeat
the execution of the attacker AUNF, with the same randomness but changing the
values output by the random oracle H2 from the query query� on.

With non-negligible probability (quadratic on the probability AdvAUNF (λ)
of the first successful forgery), the whole process run by ADL would lead
to two different successful forgeries C� and C′�, for the same values of
c�, R�, ḡ�, R̄�, Y �

1 , Y �
2 , Ȳ �

1 , pkA� , pkB� (the input values for H2), but with different
H2 outputs h� �= h′�, and therefore (possibly different) values s�

1, s
�
2, s

′�
1 , s′�2 .

We thus have

gs�
2 · (pkA�)h�

= Y �
2 = gs′�

2 · (pkA�)h′�
,

which leads to the relation y = pkA� =
(
gs�

2−s′�
2

)1/(h′�−h�)

.

Summing up, ADL can output the value x = s�
2−s′�

2
h′�−h� mod q as the solution to

the given instance of the DL problem. ��
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Indistinguishability. We reduce the IND-CCA security of the scheme to the
hardness of solving the DH problem. The proof is in the random oracle model
for the three hash functions H0, H1, H2. The conclusion is that, under the Diffie
Hellman Assumption for our group G = 〈g〉, the new signcryption scheme has
IND-CCA security.

Theorem 2. Let λ be an integer. For any polynomial-time attacker AIND-CCA

against the IND-CCA security of the new signcryption scheme, in the random
oracle model, there exists a solver ADH of the Diffie-Hellman problem such that

AdvADH (λ) ≥ AdvAIND-CCA
(λ)/2.

Proof. Assuming the existence of an adversary AIND-CCA that has advantage
AdvAIND-CCA(λ) in breaking the IND-CCA security of our scheme, and assuming
that hash functions H0, H1, H2 behave as random oracles, we are going to con-
struct an algorithm ADH that solves the Diffie-Hellman problem.
ADH receives as input G, ga, gb, where G = 〈g〉 is a cyclic group of prime order

q. The goal of ADH is to compute gab. ADH initializes the attacker AIND-CCA by
giving params = (q,G, g,H0, �,H1, H2) to him. Here the hash functions H0, H1

and H2 will be modeled as random oracles; therefore, ADH will maintain three
tables TAB0, TAB1 and TAB2 to answer the hash queries from AIND-CCA.

Let B� = {B1, . . . , Bn} be the target collective, and B̃ = {B1, . . . , Bt−1} ⊂
B� be the subset of corrupted members of B�. The algorithm ADH defines the
public key of B� as pkB� = gb. This means that skB� is implicitly defined as b.
For the corrupted members of B�, the shares {skB�,j}Bj∈B̃ are chosen randomly
and independently in Zq. Using interpolation in the exponent, all the values
DB�,j = gskB�,j can be computed, for all the members Bj ∈ B�, corrupted or
not.

Hash queries. ADH creates and maintains three tables TAB0, TAB1 and TAB2 to
reply the hash queries from AIND-CCA. All the hash queries are processed by ADH

in the same way: given the input for a hash query, the algorithm ADH checks if
there already exists an entry in the corresponding table for that input. If this is
the case, the existing output is answered. If this is not the case, a new output
is chosen at random and answered to AIND-CCA, and the new relation between
input and output is added to the corresponding table.

For the particular case of H1 queries, the corresponding outputs ḡ are chosen
as random powers of gb. That is, ADH chooses at random a fresh value β ∈ Z∗

q

and computes the new output of H1 as ḡ = (gb)β . The value β is stored as an
additional value of the new entry in table TAB1.

Whenever ADH receives a H0 query whose two first elements are ga and gb,
the third element of the query is added to a different output table TAB�, which
will be the final output of ADH .

Unsigncryption queries. For an unsigncryption query (pkA, C) sent for the tar-
get collective B�, where C = (c, R, R̄, h, s1, s2), the first thing to do is to
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check the validity of the zero-knowledge proof (h, s1, s2); that is, to check if
h = H2(c, R, ḡ, R̄, gs1 ·Rh, gs2 ·(pkA)h, ḡs1 ·R̄h, pkA, pkB�), where ḡ = H1(c, R, gs1 ·
Rh, gs2 · (pkA)h, pkA, pkB�) = (gb)β , for some value β known by ADH . If this
equation does not hold, then the answer to the query is ⊥.

Otherwise,ADH has to give toAIND-CCA the values RskB�,j , for all Bj ∈ B�. For
the corrupted members Bj , j = 1, . . . , t−1, such values can be easily computed by
ADH , because it knows skB�,j . Note now that the value RskB� can be computed
by ADH as R̄1/β . In effect, since the zero-knowledge proof is valid, this means
that DiscLogg(R) = DiscLogḡ(R̄), where ḡ = gbβ , and so Rbβ = R̄. Now, knowing
RskB� and RskB�,j for j = 1, . . . , t− 1, the algorithm ADH can compute the rest
of values RskB�,j , for j = t, t + 1, . . . , n, by interpolation in the exponent. Once
this is done, the rest of the unsigncryption process can be easily completed by
ADH , who obtains a message m and sends all this information to AIND-CCA.

Challenge. At some point, AIND-CCA outputs two messages m0,m1 of the same
length, along with a key pair (skA� , pkA�) for a sender A�. To produce the chal-
lenge ciphertext C�, the algorithm ADH defines R� = ga and then chooses at
random the values c� ∈ {0, 1}
, h�, s�

1, s
�
2 ∈ Zq and β� ∈ Z∗

q . After that, ADH

defines ḡ� = gβ�

, R̄� = (ga)β�

, Y �
1 = gs�

1 · (R�)h�

, Y �
2 = gs�

2 · (pkA�)h�

and
Ȳ �

1 = ḡs�
1 · (R̄�)h�

.
If either the input (c�, R�, Y �

1 , Y �
2 , pkA� , pkB�) already exists in TAB1, or the

input (c�, R�, ḡ�, R̄�, Y �
1 , Y �

2 , Ȳ �
1 , pkA� , pkB�) already exists in TAB2, the algo-

rithm ADH goes back to choose at random other values for c�, h�, etc. Finally,
the relation ḡ� = H1(c�, R�, Y �

1 , Y �
2 , pkA� , pkB�) is added to TAB1 and the rela-

tion h� = H2(c�, R�, ḡ�, R̄�, Y �
1 , Y �

2 , Ȳ �
1 , pkA� , pkB�) is added to TAB2.

The challenge ciphertext that ADH sends to AIND-CCA is C� =
(c�, R�, R̄�, h�, s�

1, s
�
2).

More unsigncryption queries. AIND-CCA can make more hash and unsigncryption
queries, which are answered exactly in the same way as described before the
challenge phase. The only delicate point is that ADH could not answer to a
valid unsigncryption query C = (c, R, R̄, h, s1, s2) for which the value of ḡ =
H1(c, R, gs1 ·Rh, gs2 · (pkA)h, pkA, pkB�) = ḡ�, because this value does not have
the necessary form (gb)β . But this happens only if the two inputs of H1, in both
the challenge ciphertext and in this queried ciphertext, are the same. Since both
zero-knowledge proofs are valid, we would also have that the value of R̄ is equal
in both cases, and therefore the values of h, s1, s2, pkA would also be equal. The
conclusion is that the unsigncryption query C would be exactly the challenge
ciphertext, and this query is prohibited to AIND-CCA.

Final analysis. Finally, AIND-CCA outputs a guess bit b′. We are assuming that
AIND-CCA succeeds with probability significantly greater than 1/2 (random guess).
Since H0 is assumed to behave as a random function, this can happen only if
AIND-CCA has asked to the random oracle H0 the input corresponding to the chal-
lenge C�. This input is (ga, gb, gab, pkA�). Therefore, with non-negligible proba-
bility AdvAIND-CCA(λ)/2, the value gab is in the table TAB� constructed by ADH ,
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and therefore the output of ADH contains the correct answer for the given in-
stance of the DH problem. As the authors of [20] indicate, we could use the
Diffie-Hellman self-corrector described in [19] to transform this algorithm ADH

into an algorithm that only outputs the single and correct solution to the DH
problem. ��

5 Conclusion

We have considered in this paper the strong security properties that one could
(or should) require for a signcryption scheme with threshold unsigncryption:
existential unforgeability and indistinguishability under insider chosen message
/ ciphertext attacks, in a multi-user setting. We have shown that none of the
(few) existing threshold unsigncryption protocols, either in the traditional PKI
or in the identity-based scenario, achieves this level of security. This includes
generic constructions obtained by composing a fully secure signature scheme
and a fully secure threshold decryption scheme.

After that, we have constructed a threshold unsigncryption scheme which
achieves those strong security properties. It is a modification of the threshold
decryption scheme by Shoup and Gennaro [20]. Its security is proved in the ran-
dom oracle model. As future work, one could investigate if other secure threshold
decryption schemes can be modified to obtain more fully secure threshold un-
signcryption schemes, maybe without random oracles (see for example [6]).
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5. Bjørstad, T.E., Dent, A.W.: Building better signcryption schemes with Tag-KEMs.

In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS,

vol. 3958, pp. 491–507. Springer, Heidelberg (2006)

6. Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold

encryption without random oracles. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS,

vol. 3860, pp. 226–243. Springer, Heidelberg (2006)

7. Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In:

Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg

(2003)

8. Chow, S.M., Yiu, S.M., Hui, L.K., Chow, K.P.: Efficient forward and provably

secure ID-based signcryption scheme with public verifiability and public ciphertext

authenticity. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 352–

369. Springer, Heidelberg (2004)

9. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key gener-

ation for Discrete-Log based cryptosystems. Journal of Cryptology 20(1), 51–83

(2007)

10. Koo, J.H., Kim, H.J., Jeong, I.R., Lee, D.H., Lim, J.I.: Jointly unsigncryptable

signcryption schemes. In: Proceedings of WISA 2001, vol. 2, pp. 397–407 (2001)

11. Li, F., Gao, J., Hu, Y.: ID-based threshold unsigncryption scheme from pairings.

In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 242–253.

Springer, Heidelberg (2005)

12. Li, F., Xin, X., Hu, Y.: ID-based signcryption scheme with (t, n) shared unsign-

cryption. International Journal of Network Security 3(2), 155–159 (2006)

13. Li, C.K., Yang, G., Wong, D.S., Deng, X., Chow, S.M.: An efficient signcryption

scheme with key privacy. In: López, J., Samarati, P., Ferrer, J.L. (eds.) EuroPKI

2007. LNCS, vol. 4582, pp. 78–93. Springer, Heidelberg (2007)

14. Libert, B., Quisquater, J.J.: Efficient signcryption with key privacy from Gap Diffie-

Hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,

pp. 187–200. Springer, Heidelberg (2004)

15. Ma, C., Chen, K., Zheng, D., Liu, S.: Efficient and proactive threshold signcryption.
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A Analysis of an ID-Based Threshold Unsigncryption
Scheme

The identity-based threshold unsigncryption scheme proposed in [12] works for
groups G1 = 〈P 〉 (additive) and G2 (multiplicative), both with prime order q,
which admit a bilinear pairing e : G1×G1 → G2. The main property of e is that
e(aP, bP ) = e(P, P )ab for any pair of values a, b ∈ Zq.

A.1 Description of the Scheme

We describe for simplicity the variant of the scheme in [12] which does not
provide robustness to the threshold unsigncryption process. The attack that we
describe later applies also to the robust variant.

The Setup of the scheme is run by a master entity, who chooses hash functions
H1 : {0, 1}∗ → G1, H2 : G2 → {0, 1}
 and H3 : {0, 1}∗ × G2 → Z∗

q . The master
entity chooses her secret key at random as α ∈ Z∗

q , and computes Ppub = αP .
The public parameters are (q,G1, P,G2, e,H1, H2, H3, �, Ppub).

Let us define for each identity ID the value QID = H1(ID) ∈ G1. The secret
key for a sender with identity IDA is SKA = α−1QIDA ∈ G1. For a collective of
receivers IDB, the master entity computes the secret key SKB = αQIDB ∈ G1

and then computes a (t, n) sharing of SKB. That is, each member Bj ∈ B will
receive a share SKB,j ∈ G1 such that t or more shares allow to recover, by
interpolation, the value SKB.

To signcrypt a message m ∈ {0, 1}
 for the collective of receivers B, a sender
A acts as follows.

1. Choose x ∈ Z∗
q at random.

2. Compute R = e(P,QIDA)x.
3. Compute k = H2( e(QIDA , QIDB )x ).
4. Compute c = m⊕ k.
5. Compute h = H3(c, R).
6. Compute S = (x− h)SKA.
7. Return the ciphertext C = (c, h, S).

To jointly unsigncrypt a ciphertext C = (c, h, s) coming from a sender A, each
member of B first computes R = e(S, Ppub) · e(QIDA , P )h and then checks if
h = H3(c, R). If this is not the case, the symbol ⊥ is the output of the unsign-
cryption process. Otherwise, each Bj ∈ B broadcasts the partial information
Tj = e(S, SKB,j). From t or more values Tj , the value T = e(S, SKB) can be
interpolated, which is then multiplied with e(QIDA , QIDB )h, to result in

e(S, SKB) · e(QIDA
, H2(IDB))

h
= e(QIDA

, QIDB
)
x−h · e(QIDA

, QIDB
)
h

= e(QIDA
, QIDB

)
x
.

This value is injected into H2, and the resulting output k is combined with c
to obtain the plaintext m = c⊕ k.
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A.2 Description of the Attack

Actually, this threshold unsigncryption protocol [12] is a distributed variant of
the ordinary signcryption scheme of [8], which is proved to achieve IND-CCA se-
curity even against insider attacks. The authors of [12] claim that the security of
their scheme infers from the security of that in [8]. However, as we have seen for
example for the generic constructions in Section 3.1, security of threshold unsign-
cryption protocols is much more subtle than security of ordinary signcryption
schemes.

This is another example of that fact. An insider attacker AIND-CCA against
the indistinguishability property of this threshold unsigncryption scheme can be
designed as follows.

1. AIND-CCA receives a challenge ciphertext C� = (c�, h�, S�) for sender A� and
collective of receivers B�. We assume that AIND-CCA knows the secret key
SKA� = α−1H1(IDA�).
[The idea is that, if the randomness employed in the challenge ciphertext
C� is x�, then AIND-CCA will produce a valid ciphertext C �= C� whose
randomness is 2x�.]

2. AIND-CCA first computes R� = e(S�, Ppub) · e(H1(IDA�), P )h�

.
3. AIND-CCA defines R = (R�)2 and computes h = H3(c�, R) �= h�.
4. AIND-CCA computes S = 2S� + 2h�SKA� − hSKA� .
5. AIND-CCA sends (IDA� , IDB� , C) to the threshold unsigncryption oracle,

where C = (c�, h, S).
6. Since the ciphertext C is consistent, the attacker AIND-CCA will obtain the

values Tj = e(S, SKB�,j) broadcast by the members of B�.
7. From these values, AIND-CCA can interpolate these values Tj to obtain

e(S, SKB� ) = e(2S�, SKB� ) · e(SKA� , SKB� )2h�−h = e(2S�, SKB� ) · e(QIDA� , QIDB� )2h�−h.

8. From the previous value, AIND-CCA can easily recover the value T � =
e(S�, SKB�) and complete the decryption of the challenge C� by himself,
breaking in this way the IND-CCA security of the scheme.
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Sáez, Germán 261
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