
9 Model Evolution and Management

Tihamer Levendovszky1, Bernhard Rumpe2,
Bernhard Schätz3, and Jonathan Sprinkle4

1 Vanderbilt University, Nashville, TN, USA
tihamer@isis.vanderbilt.edu

2 RWTH Aachen University, Germany
http://www.se-rwth.de

3 fortiss GmbH, München, Germany
schaetz@fortiss.org

4 University of Arizona, Tucson, AZ, USA
sprinkle@ECE.Arizona.Edu

Abstract. As complex software and systems development projects need
models as an important planning, structuring and development tech-
nique, models now face issues resolved for software earlier: models need
to be versioned, differences captured, syntactic and semantic correctness
checked as early as possible, documented, presented in easily accessible
forms, etc. Quality management needs to be established for models as
well as their relationship to other models, to code and to requirement
documents precisely clarified and tracked. Business and product requi-
rements, product technologies as well as development tools evolve. This
also means we need evolutionary technologies both for models within a
language and if the language evolves also for an upgrade of the models.

This chapter discusses the state of the art in model management and
evolution and sketches what is still necessary for models to become as
usable and used as software.

9.1 Why Models Evolve and Need to Be Managed?

9.1.1 Introduction

Any complex set of artifacts needs to be managed, and models are certainly no
exception—especially given that models are used to help manage complexity, and
are therefore used in complex projects. Even though models do reduce the pro-
ject’s complexity, projects often have a complexity that even clever abstractions
cannot transcend; thus, the models used in such a development project either
become complex themselves or there are very many (perhaps, heterogeneous)
models—or both.

This complexity also means that we cannot just create and forget models,
but we must continuously evolve a model when adding new information, after
quality reviews, redesigns against flaws and (in particular) according to changing
requirements.

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 241–270, 2010.
� Springer-Verlag Berlin Heidelberg 2010

242 T. Levendovszky et al.

9.1.2 Model Management

Model management is the coordination between model-driven engineering (MDE)
artifacts and resources, such as models, metamodels, transformations, correspon-
dence, versioning, etc. [1]. Thinking in terms of these global (and entirely model-
based) solutions has also been referred to as “megamodelling” [2].

Model management helps us to understand the status of models during the
development and the maintenance process as well as how models relate to each
other and to other artifacts of a development project. Proper model management
is therefore a basic necessity to run a model-based development process (of a
certain complexity). Most of the model management techniques are primarily for
the developers themselves to simplify their life, increase efficiency when assessing
or evolving models and ensure that less tedious work has to be done or even re-
done when requirements or technical components evolve. Other techniques in
particular high-level reports are for the project management— to understand
and measure progress and project status.

Among model management techniques, we distinguish the following main ca-
tegories:

– Checking for structural qualities of models, such as consistency and comple-
teness on the one hand, but also guideline checking for additional quality
attributes like readability or evolvability

– Transforming of models, including constructive and declarative descriptions
of structural relations between models

– Versioning and version control of models, including the reporting of diffe-
rences between model versions and merging of independently changed models
with a common ancestor (so called “three way merge”)

While we consider code generation, analysis and simulation tools the part of
model management, we will not concentrate on these issues, but rather on the
issues that treat the models as artifacts. Code generation, model-based analysis
and simulation, etc., are undergoing heavy discussion and development right
now, and there is a tremendous variety of approaches, from interactive one-
shot generation of code-frames to repeatable fully automatic generation and
customization/configuration of complete and deployable software components.

Model management for embedded systems includes additional twists on ma-
naging models for non-software artifacts. For example in product lines or other
kinds of evolvable systems it is necessary to keep track of the connections between
software and the mechanical, hydraulic or electric parts of an engine and their
controlling software. This needs integrated models and thus integrated model
management.

Model management for embedded systems includes additional twists on ma-
naging models for non-software artifacts. For example in product lines or other
kinds of evolvable systems it is necessary to keep track of the connections between
software and the mechanical, hydraulic or electric parts of an engine and their
controlling software. This needs integrated models and thus integrated model
management.

Model Evolution and Management 243

9.1.3 Model Evolution

According to our taxonomy, model evolution is one part of the more general
model management issue. However, model evolution has many variations, and
it is an important piece of model management. That is why we concentrate on
model evolution, both from methodical as well as from a technical viewpoint in
Section 9.3, because many of its concepts can be generalized to reflect versioning,
interchange, tracking, consistency, etc.

In this paper, we use the term model evolution to refer to techniques to adapt
existing models, as well as their related context, according to evolving needs.
This context includes other models, code, tests, informal descriptions etc. that
all might be affected when a model’s content is changed. Evolution occurs when
requirements or technology change as well as when improvements are made.

Model evolution may be necessary because of quality deficiencies according to
two categories: if the model does not fit its context anymore; or if the represen-
tation of a model is bad and needs to be enhanced (e.g., to increase readability).
As an important new problem, we also see the need of models to evolve together
with the underlying language in which the model is expressed. As domain-specific
languages (DSLs) [3] increase in popularity, and are often developed within or
in parallel to the project, the evolution of a language quite often enforces the
evolution of the models as well.

In this paper, we use language evolution to refer to techniques to evolve a
modelling language according to domain or technology change, including the
parallel evolution of that language’s models and tools.

9.1.4 Chapter Outline

The rest of this chapter is organized as follows. Section 9.2 discusses the above
mentioned techniques of model management. Section 9.3 deals with management
of models, both from methodical as well as from a technical viewpoint, and in
Section 9.4, we examine a particular instance of evolution driven by evolution of
a domain-specific language. Furthermore, we examine in detail the case in which
the evolution happens in small steps rather than abrupt changes.

9.2 Model Management

With a more widespread use of industrial-scale models throughout the develop-
ment process, ‘classical’ problems found in code-oriented development start to
impact a model-based development in a similar manner: The legacy of long-living
models requires to address issues such as modeling standards and the quality of
models, or model-versioning and -merging.

While for a code-based development many solutions have already been put
in place to counteract these problems, in mode-based development these solu-
tions are increasingly becoming available. For many issues, e.g., conformance
or consistency analysis, the use of concept-rich, domain-specific models with a

244 T. Levendovszky et al.

precise interpretation even allow to improve existing solutions for a code-based
approach with its weaker-structured, more generic form of representation. For
other issues, e.g., the merging or versioning, the additional complexity introdu-
ced by the rich structure of models leads to new challenges.

9.2.1 Model Quality and Modeling Standards

The application of quality constraints on the construction of software products –
generally in the form of standards providing rules and guidelines for the construc-
tion of code – has repeatedly shown its merits in the development process concer-
ning the quality of the product, both with respect to reliability as well as the
maintainability. While the use of models in a development process provides an
important constructive form of quality assurance, the rich and rigid structure
and the domain-specific nature of the models used in the development allow to
add new forms of quality constraints to the development process.

Therefore, quality constraints have increasingly gained attentions. Modeling
tools provide mechanisms to ensure that the model under development respect
modeling guidelines (e.g., the MAAB [4] guidelines for the Matlab/Simulink
tool such [5]). Depending on the extent of these guidelines, they provide some
constraints on the presentation (e.g., start state in top left area), the structure
(e.g., number of interface elements), or even their interpretation (e.g., no lacking
transitions). These constraints help to improve quality aspects like understan-
dability, maintainability or even correctness.

Since obviously, not every syntactically correct model is a good model, there
are many additional constraints that need to hold for a model to make it rea-
dable, changeable, or usable, etc. Depending on the nature of the constraints –
and subsequently their implementation in a corresponding modeling framework
– different kinds of conditions can be classified:

Syntactic constraints are immutable constraints enforced by construction on
the structure of the model, ensuring that a model conforms to its meta-
model and thus can be processed, stored and loaded, etc. Such a constraint
e.g. ensures that a transition always is connected to a start and an end state.

Well-formedness constraints are constraints on the structure of the model
enforced at specific steps in the development process, to ensure that the
model is structurally sound. Such a constraint, e.g., ensures that used va-
riables are actually defined and have the appropriate type. Such conditions
are generally mechanically checked, e.g., upon processing or editing models.

Semantic constraints are constraints on the interpretation of a model, to en-
sure that a model is semantically correct. Such constraint, e.g., ensures that
a state-transition model is not non-deterministic or incomplete. These condi-
tions cannot always be effectively checked mechanically, facing the typical
problems of model-checking approaches.

Note that shifting constraints between the first and the second class influences
the rigidness of the development process.

Model Evolution and Management 245

Since model-based development increasingly deals with ’mega-modeling’ is-
sues [6] like large-scale, distributed models including linking models from hetero-
geneous domains – or meta-models – a second taxonomy builds around relations
within and between models and domain-languages:

Intra-model conditions are defined over a single given model and thus can
be formalized within the same domain-language and checked on a single
model directly. A typical example is the type-correctness of a single data-
flow model.

Inter-model conditions are conditions define for a set of models from the
same domain, which still can be formalized within the same language but
are checked on a set of models. A typical example is the interface consistency
between models describing the environment of a system and its internal
structure.

Inter-language conditions are conditions defined on a set of model of dif-
ferent modeling domains or languages. These conditions do not only require
to check several models, but also can only be expressed in a super-language
for these different languages. A typical examples is the consistency between
different abstractions or viewpoints of a system, e.g., in case of the UML
with its various sub-languages the consistency between a sequence diagram
of a component, its state machine, as well as its interface view.

As both taxonomies are independent of each other, each combination has its
relevance in the practical application.

For the practical application of conformance constraints in the development
process, support for the definition of constraints on the models of the product un-
der development as well the automated enforcement of these constraints proves
to be an important asset, improving and front-loading this form of quality assu-
rance in a model-based approach.

By adding a mechanism to automatically check for the validity of these
constraints with respect to a product model and report violations on the le-
vel of the product model, conformance analysis can be supported by translating
constraints of the guidelines to conformance conditions and using this mechanism
for their validation.

Since analyzing the conformance of a model of a product to a certain modeling
guideline is becoming increasingly relevant for the model-based development
process, corresponding functionalities are added to tools supporting this kind
of process. For widely used tools such as MatLab [5], additional mechanisms
– integrated into the tool itself or provided as a stand-alone checker – ensure
that the model under development respect conformance constraints. However,
since often those mechanisms use the API of the tools (e.g., M-Script for MINT
or Model Advisor [5]; Java for MATE [7]; MDL for ConQAT [8]), conformance
constraints are rather defined on the level of the concepts of implementation
language than at level of the concepts of the application domain.

Here the fact can be exploited that the conceptual domain model allows to
define a conceptual product model and furthermore provides a vocabulary capable

246 T. Levendovszky et al.

Fig. 9.1. Defining a Conformance Condition

of defining properties of such a product model. In order to enforce conformance
constraints on products of a specific domain of application, this vocabulary must
allow to express these constraints as logical conditions over the classes and as-
sociations of the concept model characterizing the domain of application. Ob-
viously, this formalism should reflect the concept model as closely as possible, to
abstract from the actual technical representation of the model of the product.

In [9], an approach is used for formalization of conformance constraints based
on the OCL formalism [10]. [11] uses a simular formalism, based on predicate
logic with the classes and associations of the concept model as first-class-citizens.
Constraint checking can be performed by

– providing a checker separate from the tool for the construction of the product
itself, generating a report as mentioned for the further improvement of the
model; this technique is chosen in the former approach;

– integrating the checker into the construction tool, allowing direct navigation
or direct application of improvement operations; this technique is chosen in
the latter approach.

Independently of the degree of integration, this form of constraint analysis is
performed in three steps:

(1) Definition of constraints, often combined with a grouping of similar constraints
(2) Checking of the validity of the constraints
(3) Inspection of the counterexamples for violated constraints.

In the following, these steps are demonstrated for the approach described in [11].
Although conformance analysis can be understood as checking the validity

of conceptual conditions, for practical application, issues besides the evaluation
have to be considered. Therefore, as shown in Figure 9.1, the definition of a
consistency condition consists of a constraint name for selecting the the condition
using the process interface, an informal constraint description, generally for the

Model Evolution and Management 247

Fig. 9.2. Checked Conditions of a Phase

purpose of the condition and possible remedies in case the condition does not
hold for the model, and an expression formalizing the condition definition.

Besides the validity of the consistency condition, the collection of all model
elements not satisfying the condition are an important result in case the condi-
tion is not satisfied. Accordingly, the user is rather interested in in all model
elements satisfying the complement of the consistency conditions. To check the
validity of the formalized constraints in the next step, the constraints are eva-
luated. If all conditions are satisfied, the validity is stated. Otherwise – as shown
in Figure 9.2 – violated entry conditions like ‘Unique Port Names’ are reported,
and can be inspected as described below.

When evaluating a constraint, besides returning its validity, the checker re-
turns the set of all unsatisfying assignments of the quantified variables. This
collection of model elements not satisfying the consistency condition is the set
of all counterexamples throughout the product model violating the consistency
constraint imposed on the model

As shown in Figure 9.3, this result is returned as a list of assignments; additio-
nally, the informal description of the consistency check is presented to support
the user in correcting the inconsistency. To simplify correcting a violated consis-
tency condition, a simple navigation mechanism from such an assignment to the
graphical representation of the model is provided: by activating an assignment
from the list of inconsistencies, the corresponding editors containing the violating
element is presented.

248 T. Levendovszky et al.

Fig. 9.3. Counterexamples of a Constraint Evaluation

Like the checking of modeling standards corresponding to the checking of
coding standards, also other techniques found in a code-centric development are
applicable for a model-based development process, e.g., the detection of model
clones. In general, clones are description fragments that are similar w.r.t. to some
definition of similarity. The employed notions of similarity are heavily influenced
by the program representation on which clone detection is performed and the
task for which it is used.

The central observation motivating clone detection research is that code clones
normally implement a common concept. A change to this concept hence typi-
cally requires modification of all fragments that implement it, and therefore
modifications of all clones, thus potentially increasing the maintenance effort.
Additionally, clones increase description sizes and thus further increase main-
tenance efforts, since several maintenance-related activities are influenced by
description size. Furthermore, bugs can be introduced, if not all impacted clones
are changed consistently.

Here, detection of model clones like in [12] can improve the maintainability
of evolving models, helping to identify redundant model fragments. Figure 9.4
shows the application of clone detection to dataflow languages as used in Simu-
link.

Model Evolution and Management 249

Fig. 9.4. Example for Clones in Dataflow Models

9.2.2 Model Transformation

Especially in a model-based approach with structure-rich system descriptions,
automated development steps, – using mechanized transformations – have the
potential to provide an important technique to improve the efficiency of the
development process. Besides increasing efficiency, these structural transforma-
tions can offer consistency ensuring modification of models. There is a range of
different applications for model transformation:

– Refactoring of models, e.g, to improve the architecture of a system, operating
on a single model

– Merging of models, e.g., to consistently weave in standard behavior, opera-
ting on a set of model of the same language

– Translation of models, e.g., to generate a platform-specific model from a
platform-independent model, operating on a set of models of different lan-
guages

However, for their effective application, frameworks providing these transforma-
tions should use formalisms to enable sufficiently abstract yet executable des-
criptions, support their modular definition by simple composition, and supply
mechanisms for parameterization. Generally, these transformations are executed

250 T. Levendovszky et al.

on the internal representation, called abstract syntax, of the models, but often
defined on the representation of the model, called the concrete syntax.

Similarly to the case of the structural analysis of conceptual product models,
the principle of transformation on the internal model representation makes use of
the fact that, in a model-based approach, a product model comes with an explicit
representation of the abstract syntax composed of domain-specific concepts and
their associations; therefore, transforming this structure corresponds to trans-
forming the product model.

By providing a language capable of relating properties of those structures of
concepts and associations, a transformation can be understood as a relation
between a product before and after the transformation. Then, by applying one
argument of this relation to the model of the product under development and by
providing a mechanism to constructively compute the other argument, the rela-
tion creates the transformed product. Thus, by formalizing standard operations
of a development process as transformation relations, the process can be suppor-
ted by mechanized operations. Examples for these operations are architectural
refactorings of systems consisting of hierarchical components and connected via
ports linked by channels; e.g., the pushing down of a component into a contai-
ner component, making it a subcomponent of that container and requiring to
split or merge channels crossing the boundary of the container component via
the introduction or elimination of intermediate ports. Transformations like this
structural refactoring or the semantically equivalent refactorings of state ma-
chines found in [13] are especially important since they leave the behavior of the
modeled system unchanged.

Due to their generality, model transformations form the basis for many model-
driven approaches ([14, 6, 15, 16]). In contrast to other development environment
such as the Eclipse Refactoring plug-in, providing a fixed set of refactoring rules, a
generic transformation mechanism allows the tool-user or tool-adaptor to enhance
the functionality of the tool by defining domain-specific operations such as safe re-
factoring rules. Since models can be interpreted as graphs, transformation frame-
works generally define operations as graph transformations, providing constructs
to manipulate nodes (elements) and edges (relations) of a product model.

This generic approach is used in graph-based frameworks such as MOFLON/
TGG [17], VIATZRA [18], FuJaBa [19], DiaGen [20], AToM3 [21], or GME
[22]. These approaches are based on graph-grammars or graphical, rule-based
descriptions [23]. Basically, for the declaration of basic transformations the trans-
formations are described in a pre-model/post-model style using graph-patterns.
In triple-graph-grammar approaches [24] additionally a correspondence graph
[25] is added to explicitly model mappings between (parts of) the pre- and post-
model during transformation. Furthermore, those approaches often use exten-
sions to enhance the patterns as well as to describe their compositions, such as
OCL expressions, and state machines. Figure 9.5 shows the formalization of a
rule for the merging of a channel in the push-down refactoring in the FuJaBa ap-
proach, using an extended object diagram notation with annotations to specify
the creation or destruction of objects and links in a product model.

Model Evolution and Management 251

«destroy»
chanCompoc

«destroy»
srcPort

chanCompoc

dstPort

portComp

portComp

subComponen

«create» srcPort

«destroy» dstPort«destroy»srcPort

Component:comp

Port:src

Component:contr

Component:subComp

Port:dst

«destroy»

Channel:left

Channel:right

«destroy»

Port:mid

«destroy» portCompComponent:context

// Merge input channel

Fig. 9.5. Pattern-Based Specification of the Merge Rule of the Push-Down Refactoring

Since transformations basically correspond to relations between graphs, be-
sides using these object pattern diagrams operations can be described directly
in relational formalisms similar to the QVT approach [26] and its respective
implementations such as ATLAS [27], F-Logics based transformation [28], or
TefKat [29]. Furthermore, these rule-based relational approaches allow to use
more declarative as well as more imperative forms of specification, e.g., provi-
ding a description of a specification in a purely declarative fashion, and an alter-
native, more imperative and efficient form. Strictly declarative, relational, and
rule-based approaches as in [30] even allow to use a single homogenous forma-
lism to describe the basic transformation rules and their composition. Complex
analysis or transformation steps can be easily modularized since there are no
side-effects or incremental changes during the transformation. Additionally, de-
clarative approaches allow to use loose characterizations of the resulting model,
supporting the exploration of a set of possible solutions to automatically search
for an optimized solution, e.g., balanced component hierarchies, using guiding
metrics; the set of possibile solutions can also be incrementally generated to
allow the user to interactively identify and select the appropriate solution.

Technically, often a distinction between exogenous and endogenous transfor-
mations is used, depending on the characteristics of the metamodels, the source
and the target of the transformation conforms to ([31], [32]). While in endoge-
nous transformations, the source and target models are instances of the same
metamodel, in the exogenous case they are instances of different metamodels.
Besides the endogenous model refactorings and the exogenous model transla-
tions, model transformations are particularly helpful in the in between case of
metamodel evolution. Large overlaps between source and the target domain lead
to similar but differing metamodels. Here, model transformations can support
the migration of models during the evolution of the metamodel, as discussed in
Section 9.4.

Besides these fundamental issues of model transformation – see [31] for an
overview – for the practical application also further aspects are of importance.
Specifically, aspects like debugging support to trace the application of rules,
analysis support to ensure syntactic and semantic correctness of transformation

252 T. Levendovszky et al.

rules, the understandability of rules and their changeability with respect to size,
complexity and degree of modularization,or the efficiency of transformations
both with respect to the framework to import and export models as well as the
execution of the transformation rules are gaining increasing attention.

9.2.3 Model Versioning and Model Merging

Model-based software engineering improves the development process by lifting
the level of description from the solution domain – i.e., the domain of the imple-
mentation – to the problem domain – i.e., the domain of application – raising the
level of abstraction to reduce the accidental complexity of the engineering task
to focus on the essential complexity. Model analysis, e.g., conformance checking,
and model synthesis, e.g., model transformation increase the degree of automa-
tion. However, raising the level of abstraction also introduces new problems.

A core aspect in the development of complex and long-lasting systems, as,
e.g., generally found in embedded software systems, is the construction of those
systems in incremental and often parallel steps. In traditional, code-based ap-
proaches, techniques like versioning and merging support the step-wise and dis-
tributed implementation. In a model-based development process, corresponding
techniques must be supplied on model-level. While the linear structure of pro-
gram code simplifies the task of comparing different fragments or merging them,
the same problem of comparing or merging models is more complex due to their
more general, graph-like structure.

To compute the difference between two models or to obtain a merge version
of two models, the commonalities between those two models are identified via
matching. To construct this matching, two different approaches are possible. If
a model is described via its edit-history, consisting of the basic operations – like
introducing or deleting elements or relations, changing their attributes, etc – to
obtain this model, the matching essentially corresponds to identify the common
operations.

However, in many cases models do not include those edit histories. Here,
the matching has to be constructed by directly comparing these models; since
elements of these models generally also do not maintain unique identifiers under
modification – especially during deletion and re-insertion – matching has to be
based on some notion of correspondence over model elements, generally based
on similarities of attribute values. The most general approach to construct a
matching for that case is based on a fixed-point iteration, starting with a pair-
wise correspondance between the elements of two models, and extending this
correspondance through the relations of each model. Since this general approach
is rather complex, generally heuristics are used to improve the efficiency of the
matching.

The latter matching approach is, e.g., implemented in the SiDiff algorithm
[33]. For the construction of differences on the model level, SiDiff has, e.g.,
been integrated in the MatLab environment MATE [7], or the UML-like FuJaBa
framework [19].

Model Evolution and Management 253

9.3 Evolution

Model management generally handles the operations necessary to deal with mo-
dels on a large scale in large projects. Equal in importance, though perhaps not
equal in scale, is the need to manage models as incremental evolution is required.
We discuss these issues in this section.

We use the term evolution here in the same sense that it is commonly used
in discussions of science: incremental changes brought about as external factors
change. As we discuss in this section, these external factors can include changes
to the system requirements, the language used to describe requirements and
models, as well as changes of style. In each of these cases, the technology used
to evolve the models is largely the same. However, the techniques to evolve the
models may vary.

The problem of evolution is not new to software engineering. Various ap-
proaches have been suggested to address the evolution problem in various soft-
ware domains, the most prominent being schema evolution in object oriented
databases. While there have been some attempts to extend these techniques to
other areas such as model based software [34] [35], the nature of DSMLs and
their evolution suggest that there is a need for a dedicated solution.

9.3.1 Evolutionary Model Development

When categorizing development processes that we use today, we find two basi-
cally different approaches with respects to models: The document / waterfall like
approaches use chains of models from early requirements down to running code.
When changes appear they are usually applied on the current level only (i.e.,
the code level) and models of earlier phases are not touched anymore. These
approaches need tracking of decisions between their artifacts that then allow
co-evolution of models and code with respects to new requirements etc.

The other type of software development approaches, namely the agile ones,
do not use models at all. They rely on code from the beginning, and this has
several advantages: Code is executable and thus provides a form of immediate
feedback that non-executable models couldn’t. Furthermore, tests can be written
in code to and automatically rerun every single adaptation of the code. Regres-
sion tests such as these give confidence that changes to the code do not violate
the requirements that are encoded in such tests.

Many users of modelling technologies desire to raise the level of abstraction at
which they are programming. This requires code generators to produce software
based on the semantics of the models. Assuming that such code generators pro-
vide us with the ability to “program” on the higher level using models, we can use
these models to create tests as well as our system specifications. Such models can
be considered “executable” (i.e., not used simply for analysis or documentation),
and are therefore the principal artifacts of our construction phase.

254 T. Levendovszky et al.

Metamodel/Language

Model(s)

Requirements

Metamodel/Language

Model(s)

Requirements

Language
Evolution

Requirements
Evolution

Model
Evolution

Fig. 9.6. There are two major preconditions for the need to evolve models. The evolu-
tion of the modelling language may invalidate structures, types, or constraints that are
used and assumed by the original models. The evolution of requirements may invalidate
design choices made by the original modeler. Either, or both, of these evolution types
may trigger the need for model evolution.

Elements of Model Evolution
When discussing model evolution there are a few terms that we use with a
specific meaning. We discuss mainly the evolution of models that conform to a
metamodel. This metamodel describes the language used to specify the models.

Models are frequently transformed in order to be used as an artifact later
in the design chain. We use the term model transformation to describe rules for
rewriting models. Model transformation is one technique for model interpretation
which is a generic term that describes how meaning is given to some model.

In model transformation, we talk about transforming some source model (SM)
into a destination model (DM). Rules that describe how these transformations
are specified are discussed later. Destination models may conform to a different
metamodel than the source models.

Now, any of these elements may change, and thus require evolutionary changes
to the models. If the destination metamodel changes, then existing rules to trans-
form source models may need to be updated. If changes are made to the source
metamodel, these transformation rules may also be invalid. Similar changes may
need to be made if new constraints on the structure of either the source or
destination languages is anticipated.

Actors in Model Evolution
There are several actors specific to model evolution:

– Model Designer (a.k.a., Original Modeler): This actor utilizes a modelling
language to develop a model. This model is the original or source model in
the discussions of this section, and represents an authoritative version of the
intent of the model designer.

– Model Evolver: This actor takes the original model and evolves it as neces-
sary. Reasons for this evolution may include bug fixes, changes in require-
ments, changes in the language, etc.

– Language Designer: This actor created the modelling language used by the
original modeler (the original modelling language).

Model Evolution and Management 255

– Language Evolver: This actor modified the original modelling language.
– Requirements Specifier: This actor created the original requirements against

which the original model was designed or tested.
– Requirements Evolver: This actor modified the original requirements.

These roles may be played by the same person for small projects, but for many
large projects there will be several persons playing the various roles, or in fact
several persons playing the same role. As such, the issue of maintaining intent
throughout the design and construction phases, as well as subject to various
evolutionary paths, is of great importance. However, not all evolutionary trans-
formations need human intervention, as we discuss next.

9.3.2 Automating Evolutionary Transformations

Although there are many motivators for transformations, we examine here a few
of the most common reasons for transforming models, namely changes in requi-
rements, and changes in style that fall under the category of “refactoring.” As
discussed earlier, the changes in requirements may result in changes of seman-
tics, while refactoring changes are (by definition) limited to behavior-preserving
transformations. We also will discuss how transformations of a domain-specific
modeling environment can be further automated, based on the strong typing in
their metamodel. Another major reason for model transformations is changes in
the domain itself, but the complexity of this issue deserves additional explana-
tion, and it is covered in Section 9.4.

How can we automate the transformation of models, or automate the creation
of transformation specifications, to aid model evolution? In fact, the former
is achievable if the burden of creating the patterns and other assorted rules
is placed on a model transformation expert. The automatic creation of these
specifications (rules) is computationally feasible, though it brings into question
whether semantics are maintained, constraints are satisfied, etc.

Evolution through Refactoring
In an agile development process (where only executable artifacts are created) we
must accept that the executable artifacts—in our case, the models—need to be
capable of modifications similar to those of software refactoring [36].

Model refactoring is a form of model evolution, where the semantics of the
model remain the same, but the structure changes. We note that this defini-
tion is not always used for refactoring (specifically the clause that semantics
are preserved), but we use this definition to avoid confusion with other kinds
of model evolution where semantic preservation is not the goal. It may also be
useful for the reader to consider the notion of software refactoring, where auto-
matic changes are made to a software project based on renaming a variable, or
changing a class name (i.e., all dependencies and uses are appropriately renamed
throughout the software project). A comprehensive listing of refactoring types
for software is presented by Fowler et al. in [36].

256 T. Levendovszky et al.

Similar changes in the domain of model refactoring are possible. For example,
in [37] a tool is discussed that shows how to specify model transformations
that will extract a superclass from a set of selected classes on the metamodel
level. This application towards domain-specific modelling languages provides an
avenue to maintain the types of a modelling language, while streamlining the
metamodel definition.

There are also many applications to model refactoring for domain-independent
models created using UML modelling tools. In [38], the authors show how the
development of new metamodels (representing the “source” patterns to be mat-
ched, and “destination” patterns to be the resultant models) can work with
existing UML models.

Evolution for Requirements Changes
The application of agile techniques in a model-driven sense means that models
are used in the beginning of development, and continued to be used throughout
the project lifecycle. Since the definition of agile development is to discover
requirements along the way, or refine them as they are clarified by some customer,
a model-driven approach must be robust to changes in the requirements during
the development phase [39].

This means that some models, though correct when they were built, may
be subject to new requirements now, or in the future. Automating these trans-
formations based on updated specifications changes is not feasible, and many
specifications languages such as Z [40] are somewhat infamous for an inability to
synthesize the system for which they describe requirements. This is not as much
a limitation of those requirements languages, but rather a reminder that up-
dates from changes in formal requirements should be made by a knowledgeable
actor—namely the model evolver, consulting with the requirements evolver.

Consider a model-based design of a controller for an unmanned aerial vehicle
[41]. The controller is designed to satisfy a certain requirement for rise-time and
overshoot of the vehicle state. However, if that requirement changes, the control-
ler design must also change. This may be simply a change in values (changing
the rise time, for example), but if the change in requirements is significant, or
disruptive, the design may also need to change.

In any case, one major benefit of model-based engineering is that the control-
ler is synthesized from the model (either in software, configuration for a runtime
tool, etc.). However, there is the question of are any existing requirements unmet,
after the evolution performed for requirements changes? In order to answer these
questions, the model must be subjected to regression tests that verify require-
ments satisfaction for the model. Previous work in regression tests for models
[42] concentrates on the differences between two models, thus reducing the num-
ber of regression tests that need to be run. If models are appropriately tracked,
then work such as this can dramatically reduce the time to confirm that the
models still conform to the requirements.

It is important to point out, though, that without existing tests for mee-
ting requirements, that there can be no certainty that the models as built even
conform to the specified requirements.

Model Evolution and Management 257

Domain-Specific Model Evolutions
A domain-specific modeling language provides special advantages to evolving
models within the same language. This is because the specific goal of domain-
specific modeling is to provide a programming environment (language) that re-
presents the domain concepts as programming primitives. This is true both for
domain-specific models that are in a metaconfigurable environment such as GME
[43] or AToM3 [21], but also for sophisticated user environments such as LabView
and MATLAB/Simulink, who present domain-specific toolboxes for creating
models.

9.3.3 Semantics of Evolution

A conflict of intentions comes to the forefront when evolving models. Specifically,
the following question must be answered: as these models evolve, should the
original intent of the modeler be preserved, or does this evolution overrule any
original intent? Answering this question can be difficult, and in many cases
requires judgement to be made by the model evolver.

There are many changes to the language, and some in the requirements, that
can be automated such that no model evolver need be “in the loop” to confirm
semantic interaction. However, there are many other evolutionary transforma-
tions that can be automated, but certainly need intervention by a modeler to
confirm intent of evolution.

Consider the example of port specialization, where an object of kind Port,
specialized into two types, InPort and OutPort, should be rewritten as either
one of these types. The metamodel is shown in Figure 9.7a, and explicitly shows
that a Component can contain zero or more Port objects. These Port objects
can be associated through a BufferedConnection. As the metamodel shows,
this connection can either be made to any to Port objects (who would then play
the role of src or dst in that association), or explicitly between an OutPort
(playing the role of src) and an InPort (playing the role of dst).

In order to rewrite models to (essentially) make Port an abstract type, some
context is needed to determine whether existing Port objects are likely to be
playing the role of src or dst. Certainly a patten could be written such that all
models playing the role of src become OutPort models. However, this gives rise
to two obvious problems: (1) what if there exists a Port that is not playing any
role in an association, and (2) what if there exists a Port object that is playing
both the src and dst role in two separate associations? These possibilities are
shown in Figure 9.7b.

Port p12 of C1 exemplifies the issue of determining the type of a Port that
plays no role in any association. A casual human observer may infer that the
placement near another InPort, or its proximity to the left of C1 would imply
an InPort, but at this point, some human must enter the decision loop to help
determine this, or a policy of “all unmatched ports become InPort models” must
be adopted.

258 T. Levendovszky et al.

type : {int, float, byte}
bufferSize : int

PortComponent

InPort OutPort

0..*
Buffered
Connection

dst

src0..*

0..*

(a) The metamodel allows objects of kind Port, which is specialized as InPort

and OutPort.

Component1
p1

p2p3
Component2

pa

pb pc

C1 p1

p2p3

p11

p12
p13

C2
p21

p22
p23

Component1

(b) A model built using the metamodel in (a). The contents of Component1
are shown to display the additional associations in which its Port objects
play a role. The “arrow” end of the connections represent the dst role.

Fig. 9.7. (a) A metamodel allowing port interconnection between components. (b) A
model built using the metamodel in (a). The “arrow” end of the connections represent
the dst role. If all ports in the various components are of type Port, then how to
automatically convert them into InPort or OutPort while maintaining the original
modeler’s intent?

Port p3 of Component1 plays the role of dst in its connection with port pc
of Component21, and plays the role of src in its connection with ports p11 of
C1, and p22 of C2. It is clear to a casual human observer that p3 is an InPort,
but making this determination based on context requires careful specification of
many partially ordered matches.

In [44] the issue of additional context is solved, where the containment rela-
tionships of various Port objects, the Component to which they belong, and the
Component to which the BufferedConnectionbelongs all play a role in matching
the pattern. However, as that work also states, the first problem (Port objects
that play no role at all) still requires some actor, namely the model evolver, to
make a decision on which type the Port should assume upon transformation.

Although there are a significant number of corner cases such as these, where
the difficulty of creating an evolution strategy that preserves the original intent

1 As a shorthand, we use directed connections to show src and dst roles, where the
arrow resides on the dst role.

Model Evolution and Management 259

is called into question, there are a significant number of evolutions that can be
created computationally. We will discuss the techniques useful for automating
such transformations in Section 9.3.2, but now we turn to the mechanics most
commonly used in performing the transformations.

9.4 Modelling Language Evolution

Development environments evolve as tool vendors constantly improve their tools.
Although programming languages have become quite stable, we cannot claim the
same about modelling languages: OMG languages are still the subjects of major
upgrades and the UML models created so far need to be upgraded as well. If
models are used to program against libraries or components, we have another
source of model upgrades, although they do not change the structure of the
models, but their vocabulary. With domain-specific languages, [3], we will need
even more profound evolution techniques, as DSLs are usually made for single
domains/companies or even projects and thus have the tendency to strongly
evolve over time.

Model evolution is the transformation of domain models that were created
under a language, L, to be well-formed and conform in the successor language,
L’. Of particular importance is the question of the semantics of the models under
each language. Existing work in the area of domain model evolution focuses on
the techniques and methods for synthesizing transformations based on changes
in the metamodel. Sprinkle’s thesis [44] provides an academic perspective (for
the mechanics of synthesizing such transformations, see [45]). Techniques for the
graphical specification of the semantics of a modeling language (i.e., the code
generator associated with a metamodel) can be found in [46]. A proposal by Bell
[47] advocates the creation of a catalog of grammar transformations that are
capable of automating the evolution of DSL programs.

We divide these kinds of model evolution tasks into two categories: syntactic
model evolution and semantic model evolution.

9.4.1 Syntactic Model Evolution

Syntactic model evolution is a transformation or set of transformations that
rewrites a model to conform to its new metamodel. It is useful for this set of
transformations to be partially ordered, to permit deterministic results of the
application. We do not require syntactic model evolution to be an atomic trans-
lation, but we instead depend upon the definition of a deterministic syntactic
transform set to produce a logically atomic translation (though perhaps in seve-
ral phases which produce intermediate or temporary artifacts).

Syntactic model evolution only guarantees that the model as transformed will
be syntactically valid (i.e., conform to the new metamodel). As such, a trivial
solution is to delete all models in the repository, but such a solution is clearly not
acceptable. However, it does present the difficulty of using syntactically driven
transformations to a model evolver after the language has evolved. Consider the

260 T. Levendovszky et al.

frustration of loading a model into a modeling environment, only to realize that
one single model is causing an exception. If deleting that model allows the model
evolver to load the models, they may decide that they have completed evolution,
but may have violated a large set of requirements in deleting that model.

There is a concrete example, which we can draw from our previous discussion
of Figure 9.7. If we interpret this issue as removing the type Port from the mode-
ling language, and replacing it with two types, InPort and OutPort, we are now
dealing with a model that does not conform to its evolved metamodel. Namely,
the existence of objects of type Port violates the abstract syntax requirements.

There are two trivial solutions which satisfy the requirements for syntactic
model evolution; (1) transform all models of type Port to InPort, and delete
all BufferedConnections; (2) transform all models of type Port to OutPort,
and delete all BufferedConnections. Of course, nontrivial solutions will yield
a “correct” result, which we discuss in the next subsection.

Nonetheless, syntactic model evolution is a powerful tool for an advanced
model evolver. With expert knowledge of the metamodel, and of the state of
the model, syntactic model evolution can provide a rapid way to reload exis-
ting models, regardless of their semantics. One reason for this might be that
changes to the language were to remove types that were no longer relevant: so,
deleting those types is appropriate. Another reason might be that the models
were developed in the very early stages of the project, and they will all have to
be examined anyway, so any models preserved will be used, but deleting models
that violate new language conditions is not disastrous, as they will be recreated
with new types.

Of course, much of this depends on the size of the database of models as well.
For model databases of size 10-20, a careful, complete, model evolution may
take weeks to create, but the models can be rebuilt in a few hours. All of these
considerations are relevant to the decision of the model evolver.

9.4.2 Semantic Model Evolution

Semantic model evolution is a transformation or set of transformations that re-
writes a model to have the same semantics in its new language that it had in
its original language. The observant reader will note that syntactic model evolu-
tion is guaranteed in a semantic model evolution process, because for preserved
semantics, the evolved model must conform to the evolved language.

It is undoubtedly true that syntactic model evolution can result in a semantic
model evolution, if properly applied by the model evolver. This allows standard
model transformation techniques to be applied to evolving models, if the trans-
formation patterns are appropriately designed. Such is the work by Sprinkle in
[45], and by Karsai et al. in [46].

The semantic model evolution problem is also similar to the tool integration
problem. In [48], Tratt motivates the benefits that model transformation offers
for tool integration. The two issues of syntactic and semantic interoperability
of tools is discussed in [49], which also advocates model transformation as the
conversion mechanism between tool models.

Model Evolution and Management 261

Questions of Semantics
What happens when more than one semantic domain exists for a particular
language? If multiple semantic interpretations exist, then each member of the set
of semantics must be satisfied in order to claim that a semantic model evolution
has taken place. This issue can be extremely difficult, as changes in the language
may negate the ability to attach a models semantics to a particular semantic
domain.

Consider the domain of hybrid systems, where transitions between states re-
present discrete switches in the continuous dynamics of a system. If two parti-
cular semantic domains, simulation using one tool, and analysis using another,
depend on portions of the modeling space not used by the other tool, than any
removal of those portions of the modeling space may affect one tool, but not the
other. A concrete example is to remove the invariant set from the modeling lan-
guage: analysis tools require this set in order to verify whether the system state
travels outside this set, while simulation tools can still operate without that set.
It is possible, therefore, to still utilize one semantic domain, but not the other,
with existing models by just deleting the invariant set from all objects.

The lesson here is that the more semantic domains to which a modeling lan-
guage attaches, the more difficult it is to evolve that modeling language. For
domain-specific languages, the issue is both more complex, and simpler, in that
by constraining the language to a particular domain, the risk of that domain
changing is reduced: however, if changes do propagate to that domain, the lan-
guage must be evolved in order to maintain its intuitive relationship with the
domain types.

There are additional difficulties introduced when changes in the constraints
of a language (only) may in fact cause certain models to no longer satisfy those
constraints. However, this problem can easily be checked by loading the models
and running the constraint checker to determine any violations. It is still an
open problem to understand what changes of constraints can be directly used
to transform models where violations occur, or to predict that no violations will
occur.

9.4.3 Techniques for Automated Model Evolution

Automating model evolution in the face of language evolution is tricky, if the
goal is semantic model evolution. Nonetheless, there exist techniques for helping
to determine how models should evolve in order to maintain semantics across
evolution.

Differences between the original and evolved metamodel can help identify
elements that have changed. This does require, however, some fairly advanced
algorithms for detecting changes [50], unless such changes are recorded as they
are made. In this sense, the correspondence models of a triple-graph grammar
may provide sufficient indication of change, but may not provide a sufficient
indication of what transformations are required for a semantic model evolution.

Examining the semantic domains to which the modeling language attaches,
and how that semantic domain has changed between the original and evolved

262 T. Levendovszky et al.

Event
Guard
Action

State

Event
Guard
Action

Transition

0..*

0..*

(a) A metamodel for a hierarchical
finite state machine.

Event
Guard
Action

State

Event
Guard
Action

Transition

(b) A metamodel for a “flat-
tened” finite state machine.

Fig. 9.8. (a) This metamodel allows containment of states by other states.(b) This
evolved metamodel removes the ability to contain states hierarchically. Looking at the
code generator, which removes checking for State containment, may imply that such
semantics are no longer important, rather than implying that such semantics should
be reapplied without hierarchy.

metamodel, is another aid. For example, if the algorithm to generate code or
models has simply renamed Type1 to Type2, then this may be sufficient to evolve
the models (change all models of type Type1 to be of type Type2).

However, there may be subtle issues even with this approach, as we show with
the metamodel and evolved metamodel shown in Figure 9.8. If the algorithm to
generate code removes the check for State objects contained within a State,
and the metamodel indicates that containment of States within each other is
no longer allowed, then a naive approach could simply remove all State objects
contained within another State. Unfortunately, this can also be interpreted as a
requirement that an existing hierarchical state machine must be flattened. Algo-
rithms exist that can refactor state machines [13] to be semantically equivalent,
but the model evolver must realize that this is the requirement.

9.4.4 Step-By-Step Model Evolution

In the previous sections, we discussed modeling language evolution methods that
are able to handle arbitrarily large gap between the original and the evolved
language. However, in most of the practical cases, modeling language evolution
does not happen as an abrupt change in a modeling language, but in small steps
instead. This also holds for UML: apart from adding completely new languages
to the standard, the language has been changing in rather small steps since its
first release.

This assumption facilitates further automation of the model evolution by tools
for metamodeled visual languages [51] [52]. The main concepts of a step-by-step
evolution method is depicted in Figure 9.9.

Model Evolution and Management 263

MMdst

DM1,DM2 ,…, DMn

Model interpreter

MMsrc

SM1,SM2, …, SMn

Model interpreter

MM’src

SM’1,SM’2, …, SM’n

MMdst

DM1,DM2 ,…, DMn

Migration

Fig. 9.9. Step-By-Step Evolution Concepts

The backbone of the diagram is a well-known DSL scenario depicted in the up-
per half of the figure. When a domain-specific environment is created, it consists
of a metamodel (MMsrc), which may have arbitrary number of instance models
(SM1, SM2, ...,SMn. The models need to be processed or transformed (”in-
terpreted”), therefore, an interpreter is built. The interpreter expects that its
input models are compliant with MMsrc. In parallel, the output models of the
interpreter must be compliant with the target metamodel MMdst. The inputs
of the interpreter are MMsrc, MMdst, and an input model SMi, and produces
an output model DMi.

The objective is to migrate the the existing models and interpreters to the
evolved language. For the sake of simplicity, we assume that only the input mo-
deling language evolves, de output model remains the same. The evolved coun-
terparts are denoted by adding a prime to the original notation. In the evolution
process, we create the new (evolved) metamodel (MM ′

src). We assume that the
changes are minor enough both in size and nature, such that they are worth
being modeled and processed by a tool, rather than writing a transformation
from scratch to convert the models in the old language to models in the evolved
language. This is a key point in the approach.

Having created the new language by the evolved metamodel, we describe the
changes in a separate migration DSL (Model Change Language, MCL). This is
denoted by Δ, and it represents the differences between MMsrc and MM ′

src.
Besides the changes, this model contains the actual mappings from the old mo-
dels to the evolved ones, providing more information how to evolve the models
of the old language to models of the new language. Given (MMsrc), (MM ′

src),
and MCL, a tool can automatically migrate the models of the old language to
models of the evolved language.

Furthermore, also based on the (MMsrc), (MM ′
src), and MCL, it is possible

to migrate the model interpreter. Since it cannot be expected that the way of
processing the new concepts added by the evolution can be invented without
human interaction, the tool can produce an initial version of the evolved in-
terpreter only. A usual implicit assumption here is that the language elements
appearing in both the old an the evolved model should be processed in the same
way. Moreover, using this assumption and the MCL model, the interpreter for

264 T. Levendovszky et al.

the parts of the old language that have been unambiguously changed by the
evolution can also be generated.

In the following two sections, we present a possible realization for both the
change description and the interpreter evolution.

Describing the Changes
Recall that our approach uses a DSL to describe the changes between the original
and the evolved metamodels. This raises a a natural question: what sort of
changes should be described and how? The second part of the question is partly
answered: one can use a DSL to describe these changes. However, there is another
criterion: the change description must hold enough information to facilitate the
automated evolution of the already existing models (SMn).

The first part of the question can only be answered by the practice. Below we
show the construct we distilled by the experience gained in one of our research
project and described in detail in [51].

Figure 9.10 outlines the structure of an MCL rule. For the sake of simplicity,
we use the convention that elements on the left-hand-side of the MapsTo re-
lationship belong to the original metamodel (MMsrc), and the right-hand-side
elements are taken from the evolved metamodel (MM ′

src). The most important
concept in MCL is the MapsTo connection. This connection originates from a
class in the original metamodel, and points to a class in the evolved metamo-
del. One can assign conditions and commands written in imperative code to a
mapping.

The basic operations provided by MCL are as follows:
(i) Adding elements, such as class, associations, and attributes. In Figure

9.11, we add a new element called Thread within a Component, along with a
constraint that every Component must contain at least one Thread. The old
models can then be migrated by creating a new Thread within each Component.

(ii) Deleting elements: classes, attributes, or associations. It is important that
deleting elements means that we do not need that information anymore, we can
lose it. If the information contained by an element is used in the evolved model,
the element should not be deleted. The operation needed in this case falls into
the next category. As Figure 9.12 shows, deletion is modeled with mapping a
class to the null class.

(iii) Modifying elements, such as attributes and class names. The conditional
mapping to new or other model elements also falls into this category. Figure 9.13
depicts a migration rule for a prevalent model refactoring case: a class becomes
abstract base, and the existing instances are migrated as the instances of the
new subclasses, based on certain conditions, typically, the attribute values of
the instances. The conditions assigned to the MapsTo connections specify which
mapping must be performed. The attribute calculations and other projections
from the old class to the new ones are described by the commands assigned to
the connection MapsTo.

(iv) Local structural modifications. If the operations detailed above need to
be performed in a certain context, it can be defined by the WasMappedTo

Model Evolution and Management 265

oldElement newElement

mapping conditions

additional commands

MapsTo

Fig. 9.10. Schematic description of an MCL rule

Fig. 9.11. Addition rule

Fig. 9.12. Deletion rule

connection. Figure 9.14 shows an example, where we short-circuit the contain-
ment hierarchy. The intent of the migration is to move all instances of Class up
in the containment hierarchy: the instances should be contained by ParentParent
instead of Parent. WasMappedTo does not specify an operation, it ensures that
that ParentParent originally containing the Parent should be the parent of the
Parent ’s children. Recall that the left-hand-side of the figure references classes
from the source metamodel, whereas the other side references classes in the
evolved metamodel, thus, the name conflict does not matter in this case.

Given a the old metamodel, the evolved metamodel and the MCL description,
a code generator is able to create executable code that migrated the (SMn)
models to the new DSL defined by the evolved metamodel.

Evolving the Model Transformations
As it is shown in Figure 9.10, not only the models, but the model interpre-
ter must also evolve. The Universal Model Migrator Interpreter Evolver (UM-
MIE) package is a tool to semi-automate the interpreter migration process.
The tool takes the old metamodel (MMsrc), the evolved metamodel (MM ′

src),
the Δ model in MCL, the destination metamodel (MMdst) and the old model

266 T. Levendovszky et al.

Fig. 9.13. Modification rule

Fig. 9.14. Rule with context

transformation rules under the assumption that the destination model does not
evolve (MMdst is identical to MM ′

dst).
We assume that the rule nodes in the transformation reference the input

and output metamodel classes. The tool traverses the transformation rules, and
takes each rule node to process the referenced metamodel classes. If these classes
are in the destination model (MMdst), or they were not changed by the MCL
model, they remain intact. If a class has been deleted, the reference in the rule
is set to null reference. Moreover, a warning is emitted that the null reference
in the rule must be resolved manually. If a class has changed unambiguously by
modification, such as renaming attributes, the tool automatically updates the
rules. If there are multiple mappings such as in Figure 9.13, the tool emits a
warning that the mapping should be done manually. Since the tool traverses
the old transformation rules, the additions are not handled by the tool, their
evolution must be performed by hand.

Model Evolution and Management 267

The UMMIE tool performs all the changes that must always be made. There
are cases, in which there are several options, it depends on the intentions of the
transformation developer. The main future direction of the tool is to provide
“design patterns” for these cases, exposing the options to the developer, and
after the selection, the evolution step is completed automatically.

Acknowledgements

The work presented is partially sponsored by DARPA, under its Disruptive Ma-
nufacturing Program. The views and conclusions presented are those of the au-
thors and should not be interpreted as representing official policies or endorse-
ments of DARPA or the US government.

References

[1] Bézivin, J., Favre, J.M., Rumpe, B.: Introduction to gamma 2006 first inter-
national workshop on global integrated model management. In: GaMMa 2006:
Proceedings of the 2006 International Workshop on Global Integrated Model Ma-
nagement, pp. 1–3. ACM, New York (2006)

[2] Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A
manifesto for model merging. In: GaMMa 2006: Proceedings of the 2006 Interna-
tional Workshop on Global Integrated Model Management, pp. 5–12. ACM, New
York (2006)

[3] Tolvanen, J.P., Gray, J., Sprinkle, J. (eds.): 6th OOPSLA Workshop on Domain-
Specific Modeling (DSM 2006). University of Jyväskylä, Jyväskylä, Finland,
OOPSLA (October 2006), ISBN: 951-39-2631-1

[4] MathWorks Automotive Advisory Board: Control Algorithm Modeling Guidelines
Using MATLAB Simulink, Simulink, and Stateflow (2007)

[5] The MathWorks: Using MATLAB (2002)
[6] Bézivin, J.: On the unification power of models. Software and Systems Mode-

ling 4(2), 171–188 (2005)
[7] Stürmer, I., Dziobek, C., Pohlheim, H.: Modeling Guidelines and Model Analysis

Tools in Embedded Automotive Software Development. In: Rumpe, B., Giese, H.,
Klein, T., Schätz, B. (eds.) Modellbasierte Entwicklung eingebetteter Systeme
(2008)

[8] Deissenboeck, F., Juergens, E., Hummel, B., Wagner, S., Parareda, B.M., Pizka,
M.: Tool Support for Continuous Quality Control. IEEE Software 25(5) (2008)

[9] Farkas, T., Röbig, H.: Automatisierte, werkzeugübergreifende Richtlinienprüfung
zur Unterstützung des Automotive-Entwicklungsprozesses. In: Rumpe, B., Giese,
H., Klein, T., Schätz, B. (eds.) Modellbasierte Entwicklung eingebetteter Systeme
(2006)

[10] OMG: Object Constraint Language Specification. Technical Report 1.1, ad/97-
08-08, Object Management Group, OMG (1997), http://www.omg.org

[11] Schätz, B.: Mastering the Complexity of Embedded Systems - The AutoFocus
Approach. In: Kordon, F., Lemoine, M. (eds.) Formal Techniques for Embedded
Distributed Systems: From Requirements to Detailed Design. Kluwer, Dordrecht
(2004)

http://www.omg.org

268 T. Levendovszky et al.

[12] Deissenboeck, F., Hummel, B., Jürgens, E., Schätz, B., Wagner, S., Girard, J.F.,
Teuchert, S.: Clone detection in automotive model-based development. In: Schäfer,
W., Dwyer, M.B., Gruhn, V. (eds.) 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, May 10-18, pp. 603–612. ACM, New
York (2008)

[13] Pretschner, A., Prenninger, W.: Computing refactorings of state machines. Soft-
ware and Systems Modeling 6(4), 381–399 (2007)

[14] Fabro, M.D., Valduriez, P.: Semi-automatic model integration using matching
transformations and weaving models. In: MT 2007 - Model Transformation Track,
The 22nd Annual ACM SAC, pp. 963–970 (2007)

[15] Porres, I.: Rule-based update transformations and their application to model re-
factorings. Software and Systems Modeling 4(5), 368–385 (2005)

[16] Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using
graph transformation. Software and Systems Modeling 6(3), 269–285 (2007)

[17] Klar, F., Königs, A., Schürr, A.: Model transformation in the large. In: ESEC/FSE
2007. ACM Press, New York (2007)

[18] Varro, D., Pataricza, A.: Generic and meta-transformations for model transfor-
mation engineering. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.)
UML 2004. LNCS, vol. 3273, pp. 290–304. Springer, Heidelberg (2004)

[19] Grunske, L., Geiger, L., Lawley, M.: A graphical specification of model transforma-
tions with triple graph grammars. In: Hartman, A., Kreische, D. (eds.) ECMDA-
FA 2005. LNCS, vol. 3748, pp. 284–298. Springer, Heidelberg (2005)

[20] Minas, M.: Spezifikation und Generierung graphischer Diagrammeditoren. Habi-
litation, Universität Erlangen-Nürnberg (2001)

[21] de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph grammars
for multi-paradigm modelling in AToM3. Software and Systems Modeling 3(3),
194–209 (2004)

[22] Sprinkle, J., Agrawal, A., Levendovszky, T.: Domain Model Translation Using
Graph Transformations. In: ECBS 2003 - Engineering of Computer-Based Systems
(2003)

[23] Rozenberg, G. (ed.): Handbook on Graph Grammars and Computing by Graph
Transformation: Foundations. World Scientific, Singapore (1997)

[24] Klar, F., Königs, A., Schürr, A.: Model Transformation in the Large. In: Procee-
dings of the 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering.
ACM Digital Library Proceedings, pp. 285–294. ACM Press, New York (2007)

[25] Schürr, A.: Specification of graph translators with triple graph grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903. Springer,
Heidelberg (1995)

[26] OMG: Initial submisison to the MOF 2.0 Q/V/T RFP. Technical Report ad/03-
03-27, Object Management Group (OMG) (2003), http://www.omg.org

[27] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: ATL: a QVT-like
transformation language. In: OOPSLA 2006, pp. 719–720. ACM Press, New York
(2006)

[28] Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The
Missing Link of MDA. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 90–105. Springer, Heidelberg (2002)

[29] Lawley, M., Steel, J.: Practical declarative model transformation with tefkat. In:
Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 139–150. Springer, Hei-
delberg (2006)

http://www.omg.org

Model Evolution and Management 269

[30] Schätz, B.: Formalization and Rule-Based Transformation of EMF Ecore-Based
Models. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS,
vol. 5452, pp. 227–244. Springer, Heidelberg (2009)

[31] Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

[32] Mens, T., Czarnecki, K., Gorp, P.V.: A taxonomy of model transformations. In:
Dasgstuhl Proceedings of the Seminar on Language Engineering for Model-Driven
Software Development, vol. 04101 (March 2004)

[33] Schmidt, M.: Generische, auf Ähnlichkeiten basierende Berechnung von Modell-
differenzen. SiDiff 27(2) (2007)

[34] Bernstein, P.A., Melnik, S.: Model Management 2.0: Manipulating Richer Map-
pings. In: SIGMOD 2007 (2007)

[35] Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and Implementation of
Schema Evolution in Object-Oriented Databases. In: Proceedings of the Associa-
tion for Computing Machinery Special Interest Group on Management of Data,
pp. 311–322 (1987)

[36] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley Object Technology. Addison-Wesley
Professional, Reading (1999), ISBN: 978-0201485677

[37] Zhang, J., Lin, Y., Gray, J.: Generic and domain-specific model refactoring using
a model transformation engine. Research and Practice in Software Engineering,
vol. II, pp. 199–218. Springer, Heidelberg (2005)

[38] France, R., Ghosh, S., Song, E., Kim, D.K.: A metamodeling approach to pattern-
based model refactoring. IEEE Softw. 20(5), 52–58 (2003)

[39] Ambler, S.W.: Agile Modeling: Effective Practices for Extreme Programming and
the Unified Process. Wiley, Chichester (2002), ISBN: 978-0471202820

[40] Woodcock, J., Davies, J.: Using Z: Specification, Refinment and Proof. Prentice-
Hall, Englewood Cliffs (1996), ISBN: 0-13-948472-8

[41] Hoffmann, G.M., Huang, H., Wasl, S.L., Tomlin, C.J.: Quadrotor helicopter flight
dynamics and control: Theory and experiment. In: Proc. AIAA Guidance, Navi-
gation, and Control Conf. (2007)

[42] Korel, B., Tahat, L., Vaysburg, B.: Model based regression test reduction using de-
pendence analysis. In: Proceedings of International Conference on Software Main-
tenance, pp. 214–223 (2002)

[43] Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J.,
Karsai, G.: Composing domain-specific design environments. Computer 34(11),
44–51 (2001)

[44] Sprinkle, J.: Metamodel Driven Model Migration. PhD thesis, Vanderbilt Univer-
sity, Nashville, TN 37203 (August 2003)

[45] Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evo-
lution. Journal of Visual Languages and Computing 15(3-4), 291–307 (2004); Spe-
cial Issue: Domain-Specific Modeling with Visual Languages

[46] Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the use of graph transformation
in the formal specification of model interpreters. Journal of Universal Computer
Science 9(11), 1296–1321 (2003)

[47] Bell, P.: Automated transformation of statements within in evolving domain-
specific languages. In: Sprinkle, J., Gray, J., Rossi, M., Tolvanen, J.P. (eds.) 7th
OOPSLA Workshop on Domain-Specific Modeling (DSM 2007), Montreal, pp.
172–177 (October 2007)

[48] Tratt, L.: Model transformations and tool integration. Software and Systems Mo-
deling 4(2), 112–122 (2005)

270 T. Levendovszky et al.

[49] Bézivin, J., Brunelière, H., Jouault, F., Kurtev, I.: Model engineering support
for tool interoperability. In: MODELS Workshop in Software Model Engineering
(WiSME), Montego Bay, Jamaica (September 2005)

[50] Mens, T.: A state-of-the-art survey on software merging. IEEE Transactions on
Software Engineering 28(5), 449–462 (2002)

[51] Balasubramanian, D., van Buskirk, C., Karsai, G., Narayanan, A., Ness, S.N.B.,
Shi, F.: Evolving paradigms and models in multi-paradigm modeling. Technical
Report ISIS-08-912-2008, Institute for Software Integrated Systems (December
2008)

[52] Narayanan, A., Levendovszky, T., Balasubramanian, D., Karsai, G.: Automatic
domain model migration to manage meta-model evolution. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 706–711. Springer, Heidelberg (2009)

	9 Model Evolution and Management
	Why Models Evolve and Need to Be Managed?
	Introduction
	Model Management
	Model Evolution
	Chapter Outline

	Model Management
	Model Quality and Modeling Standards
	Model Transformation
	Model Versioning and Model Merging

	Evolution
	Evolutionary Model Development
	Automating Evolutionary Transformations
	Semantics of Evolution

	Modelling Language Evolution
	Syntactic Model Evolution
	Semantic Model Evolution
	Techniques for Automated Model Evolution
	Step-By-Step Model Evolution

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

