8 UML for Software Safety and Certification

Model-Based Development of Safety-Critical
Software-Intensive Systems

Michaela Huhn'! and Hardi Hungar?

! Institute for Software Systems Engineering, Technische Universitdt Braunschweig,
Miihlenpfordtstr. 23, 38106 Braunschweig, Germany
m.huhn@tu-bs.de
http://www.cs.tu-bs.de/sse
2 QOFFIS eV, Escherweg 2, 26121 Oldenburg, Germany
hungar@offis.de
http://ses.informatik.uni-oldenburg.de

Abstract. With the proliferation of UML in the development of embed-
ded real-time systems, the interest in methods and techniques integra-
ting safety aspects into a UML-based software and system development
process has increased. This chapter provides a survey on relevant UML
profiles and dialects as well as on design and verification methods and
process issues supporting a safety assessment. These subjects are dis-
cussed in the light of norms and standards on software development for
safety-critical systems.

8.1 Introduction

Nowadays, software has become an integral part of safety-critical systems in
nearly all technical domains, from aeronautics or power generation, to traffic
control or medical devices. Due to advances in mechatronics and communication
the role which software plays is expected even to grow in future. In addition, the
complexity of control to be implemented increases permanently. The adaptation
of the well established model-based software engineering paradigm to the specific
needs of safety engineering is an obvious and frequently proposed approach to
systematically cope with the challenges of developing software components in
safety-critical systems.

As stated by N. Leveson [I] and others, safety is an issue to be solved on the
system and not the component level. Since software is immaterial, it differs from
physical entities: Software by itself will not harm persons, property or the envi-
ronment. But as an integral part controlling the behavior of physical components,
its correct functioning contributes to safe operation or hazardous situations [2],
as any other component of a safety-critical system. Software failures are mostly
considered as systematic, having their cause in the safety analysis or software
development process, whereas physical components may also fail at random.

It is the purpose of the discipline of software safety engineering to prevent
software failures to occur. According to [3], software safety engineering has three
major sub-processes: (1) Software safety analysis extends system safety analysis

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 2011237, 2010.
© Springer-Verlag Berlin Heidelberg 2010

http://www.cs.tu-bs.de/sse
http://ses.informatik.uni-oldenburg.de

202 M. Huhn and H. Hungar

to software components in that hazards particularly relevant for software and
software/hardware interaction are identified. The software safety analysis sub-
process results in software safety requirements and safety design strategies ai-
ming at elimination or mitigation of the identified hazards. (2) In software safety
design, the software is designed and implemented according to the requirements
and safety strategies. Safety design activities take the needs of safety assurance
for traceability, documentation and safety argumentation into account. (3) Soft-
ware safety assurance is concerned with all activities that provide evidence that
the software meets its safety objectives. Verification and validation (V&V) ac-
tivities are essential constituents of this sub-process. They are by themselves
not sufficient, but their results have to be incorporated into an overall safety
argumentation that integrates them into the system safety process.

In this paper, we focus on UML-based approaches to the sub-processes of
software safety design and assurance. These two are also considered together in
standards like the CENELEC standards for railway applications [4], the RTCA-
DO-178B for airworthy software [0], or the IEC 61508-3 [6] on software re-
quirements for the functional safety of electrical / electronic / programmable
electronic controlled systems. Model-based techniques for the preceding system
and software safety analysis like failure modes, effects and criticality analysis
(FMECA), hazard and operability analysis (HAZOP), or event tree analysis
(ETA) [7] are beyond the scope of this paper. They are partially addressed in
Chapter 10 “Model-based Analysis and Development of Dependable Systems”.
An approach to a further aspect not covered here, namely UML-based dependa-
bility analysis, can be found in [8] ©].

As a consequence, we assume the software safety requirements to be provided.
Another important input, coming from safety analysis, is the criticality level that
classifies the software’s contribution to system safety. The criticality level deter-
mines a so-called software integrity level (SIL) in the IEC 61508-3 [6], and the
CENELEC standard [4] Each SIL is equipped with requirements and recom-
mendations on processes, activities and roles, and on software engineering design
and V&V techniques. For the higher SILs, formal models are highly recommen-
ded for requirements analysis, design and verification. However, the relation of
formalisms, which are mentioned in present standards, to artifacts of the deve-
lopment process remains vague. Thus, model-based software development and in
particular the integration of model-based design and V&V techniques is a lively
research field and major challenge in safety-critical systems engineering [10].

We start our presentation in Section by briefly recapitulating the essen-
tials of software development for safety-critical systems conforming to existing
norms and standards, and deriving from that a categorization of usages of soft-
ware models in software safety processes. In Section we survey safety-related
extensions of UML and classify them according to their purposes and usages.
Section B4 sketches a seamless certification-oriented process based on UML. The
perspectives of model-based V&V techniques and tool support are discussed in
Section Section concludes.

! A similar concept in RTCA-DO-178B [5] are development assurance levels (DAL).

UML for Software Safety and Certification 203
8.2 Development of Certifiable Software

The standards [4, [5,[6] do not prescribe a specific process model, but they require
clearly distinguished development phases or activities with predefined input and
output documents. The classical V-model (see Fig.[BT]) is well-accepted for soft-
ware development for high assurance systems, in particular in the context of the
CENELEC standards [4] and IEC 61508 [6] that both refer to it. The standards
regulate key objectives to be addressed by the activities and in the documents.
The development has to assure quality criteria like conciseness, completeness,
traceability or testability. Safety-related requirements and constraints have to
be distinguished and traced throughout the development phases. They are the
major subject of the recommended verification and validation techniques. Moreo-
ver, for achieving safety, programming strategies and mechanisms like defensive
programming or cyclic self-tests [4] are to be applied.

As stated in the introduction, we concentrate on UML-based approaches em-
ployed in software safety design and assurance of critical systems. Safety analysis,
which we mention briefly in Sec.[83.4] is a mandatory preceding sub-process in a
safety-critical system’s life cycle. For the phases of safety design and assurance,
two results of the safety analysis are of major interest: (1) The product-specific
requirements for functional safety, i.e., goals to be achieved constructively in
order to eliminate or mitigate the identified hazards. (2) The association of a
SIL classifying the risk resulting from a failure of a software component. A SIL
@ classification means that the component is not related to system safety func-
tions, whereas a SIL 3 and SIL 4 classification is assigned if a component failure
may cause a severe or even catastrophic accident.

The standards associate with each SIL a set of process requirements or objec-
tives to be met, concepts to be employed and techniques to be applied in order to
achieve an acceptable level of confidence that systematic flaws in software deve-
lopment are eliminated. For software developed under SIL 3 or 4, specific formal
and semi-formal model-based techniques are highly recommended for software
specification, for software verification, and to complement software validation
(see table A.2, A5, and A.8 in [4]). However, today’s standards [4, [6], do not
state clearly which software engineering techniques should or may be used to
achieve the required software quality characteristics.

An advanced view is taken by the Committee Draft for Voting (CDV) of IEC
61508-3 [I1]: It suggests an explicit semi-quantitative quality model to relate
particular usages of software engineering techniques to detailed quality charac-
teristics of development artifacts. This relation is expressed in terms of a degree
of rigour by which a certain software engineering technique can achieve a quality
characteristic.

Another issue that hampers the proliferation of model-based development
methodologies in software safety design is the fact that traditional programming
is assumed for module design and implementation in the standards (see for

2 In RTCA-DO-178B, the corresponding classification ranges from A to E in reversed
order.

204 M. Huhn and H. Hungar

SW Development Plan i
SW Quality Assurance Plan SW Mainten. Records
SW Config. Managem. Plan SW Mainten. Protocol

SW Verification Plan
SW Integrat. Test Plan
SW/HW Integr. Test Plan Software
SW Validation Plan Maintenance
SW Maintenance Plan

System Requirements Specification SW Certificate

Systern Safety Requirements Specification z
System Architecture ;
System Safety Plan Software i

Assessment

Software Planning

Software

Requirements

Specification SW Validation Report
TG -

¥ &
SW Requirements ,
Software Requirements Req. Test Specification [-++ooe So_ﬂwa!m
Specification SW Req.Verification Report Validation

SW/HW Integr. Test Report

Software/Hardware
Integration

Software
Architecture &
Design

P i o &
SW Architecture Specification SW Architecture & Design Software -~
SW Design Specification ‘erification Report Integration
SW Design Test Specification

Software Module
Design

- - -

-

&~ SW Module Verif. Report

SW Module Specification
SW Module Test Spec.

Software Module
Test

Software Coding

e

e
Source Code & Documentation] [Source Code Verif. Report

Fig.8.1. V-Model according to EN 50128

instance the V-model according to EN 50128 [4] in Fig. B]). Restrictions to a
safe subset of programming languages and approved compilers according to the
SIL are highly recommended. How to establish a corresponding notion of safe
model-based programming and code generation is discussed in Sec. [8.4

All tools which are employed within the development process of safety-critical
software have to be qualified. In general, tools that facilitate design automation
— as in particular model-driven approaches incorporating code generation - are
requested to be qualified with the same rigour as the safety-critical software

UML for Software Safety and Certification 205

itself. Whereas tools that are intended for use in the safety assurance process —
i.e. that support testing, validation or verification - can be qualified by a more
light-weight assessment process. An example for a certified code generator is the
SCADE Software Factory [12].

We summarize this elaboration in the following observation: Any scientific ap-
proach to customize UML as a modeling notation for the use with safety-critical
systems has not only to fulfil the intentions but also the practical certification-
oriented requirements set by the standards. Only then, it will come into operation
in industrial safety-critical system development. Practical certification-oriented
requirements are in particular: (1) A conclusive argument for the usage of a
UML-based method for specific design or V&V activities has to be provided to
prove the method’s adequacy for the quality characteristics required for a certain
artifact. This part will benefit from progress in standards: E.g., the upcoming
CDV of IEC 61508-3 is less concrete with respect to the referenced modeling
formalisms than [4] and [6], and more explicit with respect to the quality cha-
racteristics to be achieved by a technique. (2) As explained in the previous pa-
ragraph, a tool supporting a UML-based method has to be qualified according
to its usage in the development process. Even if an approach does not strive for
design automation (see Sec. BHl), the standards’ requirements are satisfied only
by very few UML tools today.

In the view of our recapitulation of the standards, we identify the following
six categories where software models can be used in the development and certi-
fication of safety critical systems:

Usage 1 - Precise specification of safety and software requirements:
As a starting point for software safety design, the domain and safety
engineers identify a set of safety requirements and constraints that have to
hold on the system under development or evolution. Subsets of these are
allocated to software components in the architectural steps of decomposition
and partitioning. Requirements models are used to assist a common and
detailed understanding of all safety-related issues between the software
engineers and the safety and system experts. This usage scenario aims at
enhancing the communication processes on safety-related requirements at
the interface between system level and software component view.

Usage 2 - Software design and evolution: The next step after require-
ments specification is software design. In a model-based approach, the soft-
ware architects and engineers describe the design or evolution task in terms
of models representing various views. In case of embedded safety-critical
software, hardware-dependent runtime properties like real-time behaviour,
power consumption or resource utilization are an integral part of the func-
tional safety requirements, and thus these properties should be addressed
in the models. Additionally, a number of specific software safety strategies
and techniques (e.g., defensive programming or multiple version dissimilar
software, watchdogs or voters) are recommended for architectural design.
Hence, this usage scenario describes the process of designing and thereafter
implementing software components of safety-critical systems.

206 M. Huhn and H. Hungar

Usage 3 - (Partial) code generation: In a model-driven approach, automa-
ted model transformations and code generation are employed to obtain
target-specific, executable models from design models. This scenario extends
the model-based design scenario described before: Code generation moves ef-
forts from manual implementation and extensive testing from the code level
to model analysis. But a prerequisite is a qualified development environ-
ment that assures that the semantics of the models within the modeling
environment corresponds to that of the generated code as it is executed by
the runtime environment on a specific target. In addition, from the safety
engineering viewpoint this usage of models faces a number of difficulties as
discussed in Sec.

Usage 4 - Verification and testing: At all stages of software development,
the software engineers have to show that the outcomes meet the specifica-
tions and constraints induced by the previous stage. Verification and testing
are part of the safety assurance process. Formal modeling of the software
and system behaviour and its specification plays a prominent role here: The
standards, e.g. [4], recommend a number of formal modeling notations that
were considered potentially useful at the time the standards were publi-
shed. However, the standards remain unspecific in which technique should
be employed for which kind of safety requirement: Software safety require-
ments that are derived from well established safety analysis techniques like
SHARD (Software Hazard Analysis and Resolution in Design) [I3] cover a
broad spectrum of software failures like omitted or untimely reactions, or
unexpected or missing parameters. In difference to that, the referenced tech-
niques like HOL [14] or CCS [15] focus on subsets like functional correctness
and correct interaction behaviour. Moreover, questions of model validation,
i.e. showing evidence that the formal model truly represents the relevant
behaviours of the real system, are not addressed explicitly though they are
of course highly important.

In practice, this phase is dominated by testing applied either to code or to
executable models. In research, the usage of formal models for different veri-
fication techniques is considered at least as relevant as model-based testing.

Usage 5 - Software validation: Validation is the process of establishing
conclusive, documented evidence that a system satisfies its requirements.
In early phases, validation can be supported by animating, resp., simulating
executable models. In later phases, software models may be part of the infor-
mations available to the validator, in particular for systems developed under
SIL 3 or 4. For these, the standards require that the validation and design
tasks have to be performed by independent teams. To transfer this principle
to model-based approaches, independence between the models that are used
for design and those to derive tests from has to be guaranteed.

Model validation is again, as already mentioned in Usage 4, an inevitable
prerequisite for accepting results from model analyses as evidence for requi-
rements compliance of the software.

Usage 6 - Software certification: In the certification process, assessors from
a certification authority will examine whether the system will operate

UML for Software Safety and Certification 207

adequately safe. Therefore, the manufacturer delivers a so-called safety case.
In the safety case, the safety claims for the system in its operating environ-
ment are identified and linked by structured, sufficient and comprehensible
arguments. These address the documentation on the development process,
design artifacts, and verification and test results that provide evidence that
the claims are valid. Traceability of the requirements through the whole
process as they are realised step by step in the design, and an underlying
rationale are major prerequisites for certification.

In practice, maturity of processes, techniques and tools is also mandatory. In
addition, particular software engineering techniques that are well accepted
in safety engineering, like the restriction of programming constructs to a safe
subset in the implementation phase or Modified Condition Decision Coverage
(MC/DC) as a testing technique oriented towards code coverage, are an
integral part of the documented evidence of conformity to the standards.
Formal models may be part of the design documentation (usage 1 or 2) or
the basis of analyses that support the evidence of the safety arguments.

It has to be pointed out that UML does not belong to the notations explicitly
referenced in safety standards. Hence, employing UML models in the software
safety design and assurance process requires conclusive safety case arguments on
several aspects:

(1) The use of UML models in activities and through the development process
has to be clarified as for any other artifact. It has to be demonstrated how
and to which confidence level the requested safety objectives and quality
characteristics can be achieved by UML-based techniques.

(2) The standards recommend a rich portfolio of safety strategies ranging from
defensive programming, design diversity or restriction of programming lan-
guages to elements that are statically verifiable to formal V&V techniques
and testing. Those strategies are widely accepted in safety engineering and
they should be supported by a modeling approach.

8.3 Safety-Related Extensions of UML

In this section we survey UML profiles and dialects dedicated to safety-critical
software development. From the numerous works, we have selected a subset of
approaches aiming at a seamless and tool-supported model-based software safety
and assurance process. As the software safety process is complex and multi-
faceted, the approaches differ significantly in their aims and methodologies:

UML Profile for Developing Airworthiness-Compliant Safety-Criti-
cal Software [10] aims at a tight linkage of a UML-based software design
with the safety argumentation in the context of RTCA DO-178B (see Sec.

rtUML and the OMEGA-RT Profile [I7] focusses on seamless integration
of UML design models and a rich collection of formally founded, tool-
supported V&V techniques (see Sec. B3.2).

208 M. Huhn and H. Hungar

Safe-UML [I§] tailors UML for certifiable software safety design in the railway
domain. Besides a formal foundation, also best practices to achieve qua-
lity characteristics for the design and safety-directed issues in model-based
programming are considered. (see Sec. B33)).

UML Profile for Modeling and Analysis of Real-Time Embedded
Systems [19] explicitly addresses resource allocation and SW/HW integra-
tion. It supports the specification and analysis of real-time and performance
properties (see Sec. B3.4).

Railway Control System Domain Profile [20] targets seamless support for
formally founded design, code generation and verification of interlocking
functionality in the railway domain (see Sec. [R3.H).

A concise comparison of the particular strengths of these UML profiles is given
in Table Bl

SysML [21] is not discussed here, because it has a more general objective of
extending UML from software to system development and safety is not addressed
by particular modeling elements.

EAST-ADL [22] is an architecture description language for the automotive
domain defined upon UML 2.0. EAST-ADL offers notational elements for the
Goal Structuring Notation [23] to model arguments of a safety case in context
of the upcoming automotive standard ISO 26262 [24]. However, its support for
safety remains rudimentary compared to other UML profiles.

8.3.1 The UML Profile for Developing Airworthiness-Compliant
(RTCA DO-178B) Safety-Critical Software

In [16], Zoughbi, Briand, and Labiche address the explicit representation of safety
information within UML models that constitute the requirements, the design,
the deployment, or the finally installed configuration of a software system. The
authors aim at a better understanding of safety issues during development and
certification. They want to improve the communication between safety engineers,
software developers, and assessors from the certification authorities (usage 1, 2
and 6).

The authors identified 65 safety-related concepts in the airworthiness stan-
dard [5] that are relevant for software models. The concepts are grouped into
eight categories: safety, reliability, integrity, concurrency, performance, certifi-
cation, design, and configuration. However, all concepts contribute (at least in-
directly) to software safety. The relationship between the concepts is formalized
in a conceptual meta-model. The meta-model is the basis for the definition of
stereotypes, tagged values and constraints of the UML profile, and it reflects the
key idea of integrating the safety argument into the UML models for software
design.

A central concept is Safety Critical which is used to stereotype entities
with direct impact on system safety. By the tagged values Criticality Level
and Confidence Level the developer may declare the criticality level of a

UML for Software Safety and Certification 209

safety critical component determined in a safety analysi&E and his/her confi-
dence that the requested criticality level will be reached. Thus, a direct link is
established between the design elements in the UML model and the safety argu-
mentation according to a standard. The link between the safety terms from the
standard and the UML model is strengthened by two major groups of concepts
in the meta-model that are connected via the Safety Critical concept. The
first group supports argumentations on design by offering concepts like (safety)
Requirements, Rationale, Strategy, or Deviation. They describe design de-
cisions, architecture rationale and modifications of approved plans that the de-
velopers make when they transform the original requirements into a design. The
second group enables to explicitly represent technical safety engineering exper-
tise in the UML model. For instance, design elements to detect and handle any
kind of safety-related event are uniformly structured and classified by the ste-
reotypes Monitor, Handler, Event, or Reaction. In a similar way, a group of
concepts related to Replication Group allows to characterize the safety stra-
tegy of a replicated group of components whose elements are connected to a
voter. Among others, concepts like Style are provided to describe the kind of a
selected solution in common software safety terminology on the level of detailed
design and implementation.

Since the proposed UML extension is defined as a UML profile, integration
in existing UML modeling tools is possible. The authors propose an integration
into frameworks like Rhapsody by IBM [25] or the Eclipse Modeling Framework
(EMF)[26]. Thereby, the designer and certifier are supported in searching UML
designs for occurrences of specific stereotypes or tagged values either by using
a proprietary API or the Object Constraint Language (OCL). Thus, certain
information - like listings of all COTS components used or all hardware-software
interfaces - that are required for certification in the context of RTCA DO 178B [5]
can be generated automatically. Additionally, traceability can be achieved if the
model is fully elaborated according to the methodology suggested by the authors.
Therefore, not only the UML model must contain different views on the software
architecture and the design. The requirements linked to the design rationale
and safety considerations leading to that design have to be represented in the
model, too. Then the designer may traverse the model guided by the stereotypes
provided by airworthiness profile to comprehend the safety argumentation.

To summarize, the airworthiness profile by Zoughbi, Briand, and Labiche is
tailored for UML-based development and certification of safety-critical software
according to the RTCA DO-178B. Safety information supporting the commu-
nication, and reasoning for safety cases is integrated into UML design models.
With this focus on incorporating the safety argumentation into software design
models, the airworthiness profile can be understood as a standard-specific al-
ternative to approaches that provide the safety argumentations externally like
the Goal Structuring Notation by Kelly [23] or Assurance Based Development by
Knight et al. [27].

3 e.g. ”A” to ”E” if the component is developed according to RTCA DO-178B.

210 M. Huhn and H. Hungar

8.3.2 rtUML and the OMEGA-RT Profile

rtUML and the OMEGA-RT Profile were defined in the context of the EU funded
project Correct Development of Real-Time Embedded Systems OMEcAH as an
extension of UML 1.4. The OMEGA approach integrates functional views and
extra-functional properties, mainly timing, into functional views on specification,
architecture and detailed design. A main goal is a formal foundation enabling
tool-supported formal verification and validation techniques [I7] (usages 1,2, 4,
and 5).

rtUML comprises those functional concepts from UML that are considered
most relevant in the embedded domain: For a structural design view, object-
oriented concepts like polymorphism, inheritance, aggregation as well as various
kinds of associations can be used in class diagrams. Active, passive and reactive
objects are distinguished. To model the behaviour of a class or object resp.,
hierarchical state machines with a rich action language are included in rtUML.
Interaction between so-called activity groups can be modelled as synchronous
or asynchronous inter-object communication. rtUML can be pre-compiled to a
kernel language krtUML containing only basic concepts from class diagrams and
flat state machines. An operational, discrete time semantics in terms of Symbolic
Transition Systems (STS) for krtUML was defined by Damm, Josko, Pnueli and
Votintseva in [28§].

rtUML is extended for requirement specification, architectural descriptions
and in particular for the specification and verification of real-time aspects: Re-
quirements can be specified scenario-based as Live Sequence Charts (LSCs) [29]
or by temporal logic formulae. On the architectural level, a component-connector
view comprises required and provided interfaces, protocol state machines, and
OCL constraints. The OMEGA-RT Profile distinguishes different kinds of inter-
nal events like the send and accept of signals or state enter and exit events.
Additionally, matching clauses and filters can be used to specify constraints on
the duration between two event occurrences. The model can be extended by
classes stereotyped as observers to express more involved timing requirements.
Observers emulate timed automata in the UML modeling setting.

A rich portfolio of verification and validation techniques and tools supports
software development with rtUML and the OMEGA-RT Profile [I7]: Live Se-
quence Chart specifications can be animated with the Play Engine tool for re-
quirements validation. Formal verification on finite state design models can be
performed in two ways: Either a model checker specifically optimized for rt UML
models can be used to prove specifications in terms of LSCs or temporal lo-
gic formulae. Alternatively, a model transformation to the IF framework [30]
can be applied, enabling discrete and continuous time verification. Automated
time and data abstraction mechanisms are offered for state space reduction as
a preparatory step for model checking. To enable formal verification for infinite
state models, a model transformation from rtUML to PVS (Prototype Verifica-
tion System) [31] is provided. Using the interactive theorem prover PVS, infinite

4 www-omega.imag.fr

UML for Software Safety and Certification 211

value domains or unbounded message queues can be handled. As the transfor-
mation includes type information and OCL constraints on the model, these can
be checked in PVS as well.

8.3.3 Restricting UML for Specification and Programming in a
Certification Context

Motivated by the wish to be able to use UML in a way compatible with the
railway norms (mainly EN 50128), Safe-UML has been designed as a restriction
of (a part of) general UML. It is intended to address the functional viewpoint,
expressed in class diagrams and statecharts [I8]. To adequately cover an appli-
cation range from documentation over specification (artifacts in the early phases
of the design process) to actually UML-based programming, the definition has
been organized in two levels:

Safe-UML (S): (S for Superstructure) applies to the OMG standard [32] for
superstructures. It takes the definitions of state machines and class diagrams
of UML and eliminates all semantical ambiguities, sources of underspecifi-
cation, unclarity and unboundedness of system resources. In particular, it
considers the parallelism (and its potentially sequentialized implementation).

Safe-UML (P): (P for Programming) applies to IBM’s Rhapsody in Cpp as an
instance of a UML implementation which enables programming in UML via
the Cpp code generation. Safe-UML (P) gives directions on how to achieve
conformance of the generated code with coding guidelines. Together with the
rules from Safe-UML (S) it defines a set of restrictions which turn UML with
Cpp annotations into a programming language suitable for the development
of safety-critical systems.

Though originally designed for the rail domain — for instance, Part 42730 of the
Mii 8004 [33] was taken for the definition for an admissable subset of Cpp — it
is applicable also in other domains, particularly if the IEC 61508 is the source
for the standard to be adhered to.

Safe-UML (S) and the Principles Guiding its Definition

In the following, we will give a short overview of essential features of Safe-UML,
grouped as instances of four main principles which guided the definition of the
language. The cross-cutting issue of parallelism and communication is treated
separately.

Unambiguity: Every construct used must have a clearly (unambiguously) defi-
ned semantics. General UML, for instance, explicitly includes ”semantic varia-
tion points” such as the handling of incoming events. In such cases, Safe-UML
restricts to a particular interpretation, such as a bounded FIFO queue.

Determinacy: Usually, UML behavior specifications are nondeterministic. This
is, for instance, the case if there are conflicting transitions leaving the same state,

212 M. Huhn and H. Hungar

or if behavior is executed in orthogonal regions of a state machine. Safe-UML
(S) tackles these problems by adding constraints to (a) prevent these situations
to occur (e.g. guards of conflicting transitions must be exclusive, if they are
triggered by the same event), or, if this is not possible, (b) ensure that the
outcome is the same for each possible execution order, so that the internally
nondeterministic behavior cannot be observed externally.

Clarity: Clarity addresses the question of accessibility and understandability of a
specification or program. As an example, the state machines may be influenced
severely by the context in which they are used (e.g. a transition triggered by
an event may never fire, because the event is deferred in an enclosing state
machine). Such effects are targeted by adding constraints which try to reduce
context influence to a minimum (e.g. a constraint that events should not be
deferred).

Boundedness: Consumption of time and space are particularly important as-
pects of a safety-critical system. I.e., system reactions shall come in time, the
system must never deadlock nor run out of memory, etc. So, among other things,
unbounded multiplicities are forbidden in class diagrams, and transition loops
are ruled out in state machines.

Multiple Threads and Communication: To capture this major source of problems,
Safe-UML requires a conservative system structure which is closely related to the
one assumed by rtUML — in fact it also bases on [28] and its semantic definition.
A major feature is the requirement of a finite, static structure where all active
objects are organized in active groups, each featuring one active object with
a common set of queues for events, timers, calls and completion events (one
set for the active group). Problems related to sequentialization within queues,
potential queue overflow, deadlocks due to multiple calls are in general hard to
avoid. Safe-UML forbids some constructs and, for the rest, refers the developer to
proven patterns of communication and scheduling, resp., to methods establishing
correctness (like an abstraction to a decidable Petri-net property).

Safe-UML (P) — Safely Programming in UML

The objective in the definition of Safe-UML (P) is to turn state machines with
Cpp annotations and class diagrams into a graphical programming language
which by itself adheres to principles underlying the definition of coding guide-
lines ([33, B34]), and, taking the code generator from Rhapsody, translates into a
fragment of Cpp meeting these restrictions.

First, of course one must restrict the Cpp annotations to the UML constructs
accordingly. Part of the remaining answer is given by importing the Safe-UML
(S) restrictions, which essentially restrict the (mostly) graphical UML constructs
in a way one would restrict a programming language for safety — see the four prin-
ciples exemplified above. And last but not least, the implementation dependent
(Rhapsody-specific) code generation has to be considered.

UML for Software Safety and Certification 213

The generator translates the UML constructs to a Cpp program using a li-
brary, the so-called framework, which essentially provides all necessary objects
and methods to execute them, i.e., the equivalent of a runtime system. The code
generator, if parametrized properly [35], produces rather well-structured code, so
that only minor issues do arise. This analysis has been performed on a large set
of examples systematically covering the graphical constructs and annotations
The framework, which is part of the resulting Cpp, is itself not programmed
according to strict safety guidelines. It can freely be modified by the Rhapsody
user, so that one can remedy the defects identified in [36]. Framework modifi-
cations may also be employed to complement the restrictions on the graphical
UML level by adding safety features to, e.g., event communication. Such an ap-
proach has already be used successfully in a signaling application which has been
certified by the German Railway Authority.

Summarizing, Safe-UML defines a way to rigorously specify and safely program
using UML in the rail domain and similarly regulated contexts (usage 2,3 and
6). It is, however, not yet integrated into design environments, and its (P) level
is geared towards a particular implementation.

8.3.4 The UML Profile for Modeling and Analysis of Real-Time
Embedded Systems (MARTE)

In 2008, the OMG published the Beta Specification for a UML Profile for “Mo-
deling and Analysis of Real-Time Embedded Systems” (MARTE) [19] that shall
replace the existing UML Profile for “Schedulability, Performance and Time”
(SPT Profile) [37]. As stated in the title, the primary concern of the MARTE
profile is real-time in embedded (RTE) systems, and not safety. However, the
correct timing is part of functional correctness. With its modeling extensions,
the MARTE profile supports detailed design and verification of safety-critical
RTE systems (usages 2 and 4). Since MARTE is already realized as a plug-in of
Papyrus for UML [38], tool support is available.

The MARTE foundations offer elements for modeling logical and physical
time, resources and the spatial and temporal allocation of functional applica-
tion entities onto them. The MARTE design model contains a so-called “RTE
Model of Computation and Communication” to characterize the concurrency
and synchronization behavior. A generalized, UML-conformant description of
standardized APIs of real-time operating system like POSIX, QNX, or OSEK is
supported. The extensions of the MARTE analysis model aim at the integration
of state-of-the-art techniques for schedulability and performance analysis at the
level of detailed design. Techniques like SymTA /S [39] or Modular Performance
Analysis [40] offer tool supported analyses for various, common scheduling stra-
tegies and communication protocols. Their use is twofold - either predictive or
verifying: For predictive use, a design model is enriched with estimated values on
execution times and communication loads and with a specification of the planned
scheduling situation. The analysis result is predictive and can (only) increase the

5 This approach parallels a widely used practice of compiler validation.

214 M. Huhn and H. Hungar

confidence that the system design will fulfil its requirements on response times
(worst, average or best case) or path latencies. Moreover, the analysis can be
used to optimize the real-time dimensioning of a design [4I]. In the case that
values from the implementation are available, the analysis formally verifies whe-
ther real-time requirements are met in all possible situations. To pave the way
for this kind of real-time analysis in the MARTE context, the concepts from the
real-time analysis models are included in the MARTE profile. Thus, the defini-
tion of model transformations into the analysis framework is straightforward.

Additionally, the MARTE profile provides a package for the declaration of
non-functional properties and an associated value specification language. The-
reby the developer may annotate the model with further information relevant
for safety-critical systems. In particular, reliability and availability issues addres-
sed in the UML profile for “Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms” [42] can be integrated seamlessly by these
means [43].

The MARTE profile has been extended towards dependability [44] analysis by
several authors: Pataricza [45] introduced the concept of error propagationy to
the General Resource Model of the MARTE predecessor, the SPT profile [37], to
enable efficient system level diagnosis based on partial diagnostic information. He
used quality of service parameters to characterize errors and the error behavior
is modeled explicitly. Recently, Bernardi, Merseguer and Petriu [§] proposed a
more general extension of the MARTE profile for analyzing and modeling depen-
dability. Their “Dependability Analysis Model” addresses reliability, availability,
maintainability, and safety, so-called RAMS properties, as major attributes of
dependability. Among others, a “Threat Model” is introduced to describe ei-
ther errors and failures when reasoning on reliability and availability or hazards
that are relevant for safety. In that, the Dependability Analysis Model in [§]
mainly focuses on the analysis of RAMS properties which is a usage of UML
that precedes the software design and assurance process.

As shown by Thomas, Delatour, Terrier, and Gérard [46], the rich set of
concepts for resource allocation provided by MARTE permits to clearly separate
the model of the application from an explicit model of the real-time execution
platform. The explicit platform model is taken as input to govern the model
transformations to different target platforms in an MDA approach. In that, the
Software Resource Modeling sub-profile has the potential to support deployment
and code generation (usage 3) that goes beyond existing approaches that address
the RTE characteristics only implicitly.

An alternative approach was chosen in the OMEGA-RT profile by Graf, Ober,
and Ober [47] where a specific RTE platform model is explicitly addressed in
the formal semantics that fosters automatic, correct code generation.

5 According to [44], we call an event, at which a violation of the specified behavior
becomes observable at the system boundary, a failure. An error describes the occur-
rence of a deviation from the intended behavior that may be internally compensated.
If the error is propagated to the system’s interfaces, a failure occurs.

UML for Software Safety and Certification 215

8.3.5 The Railway Control System Domain Profile (RCSD)

Berkenkotter and Hannemann [20] conservatively extend UML 2.0 by a domain
specific profile for railway and tram control systems. The RCSD profile supports
the precise specification of railway networks with the aim to automatically gene-
rate code for a specific interlocking functionality. It shall foster the unambiguous
communication between railway experts and embedded software designers and
lay a foundation for the automated generation of verified controller software
(usages 2, 3 and 4 for a specific rail application).

The RCSD profile offers basic entities to model railway tracks, namely track
segments, points, and crossings. Additionally, there are elements for signals in-
dicating the driving instruction for the following track segment, specific sensors
for detecting whether a track element is occupied by a train, and automatic
train runnings, which enforce braking if a train does not obey the signaling.
The states of these elements are described by attributes for which specific da-
tatypes are introduced. The topology of a railway network is modeled through
the neighboring relation given by specific associations of sensors to track ele-
ments. Additionally, a set of top level constraints is included to ensure global
consistency and completeness.

A class diagram models a restricted pattern or sub-problem of the RCSD
domain, employing for instance further constraints on some entities. An object
diagram can then be used to describe the track layout of a concrete network
as an instance of the sub-problem of the corresponding class diagram. On both
modeling levels, the static semantics is precisely defined by an elaborated set
of OCL constraints that can be evaluated automatically on class and object
diagrams annotated according to the RCSD profile [48].

The dynamic semantics is defined as a Timed State Transition System. Timed
transitions are defined locally for the RCSD elements. The behavior of a network
is the parallel composition of its component behaviors. To ensure safe train
passage through the network, a controller realizing the interlocking functionality
has to be added to the network model. Haxthausen, Peleska et al. [49] have shown
how to generate the controller automatically from sets of generic transitions
patterns that are instantiated according to the concrete network and the set of
pre-defined routes when synthesizing the controller.

In addition, formal verification is supported on the level of the configured
network by employing bounded model checking and inductive reasoning. A set
of generic functional safety requirements is provided that covers the specific in-
terlocking problem addressed by RCSD. Thereby all those states of the network
are characterized - in terms of train locations, moving directions, and point po-
sitions - that are considered hazardous. The safety predicates on the configured
network to be enforced by the controller are derived automatically by instan-
tiation. The formal system description is transformed into SystemC that serves
for both, verification input and executable code. To validate software/hardware
integration the authors propose automated hardware-in-the-loop testing.

The RCSD profile provides proprietary prototype tool support for the deve-
lopment of a specific class of controllers in the railway domain on a non-standard

216 M. Huhn and H. Hungar

compliant, formal semantics. The profile’s application domain is clearly restric-
ted for the benefit of rigorous formalization of the specification and design and
an intertwined set of verification techniques covering several process phases.

8.4 Using UML in Certification-Oriented Processes

8.4.1 Questions to Be Addressed by a Certification-Oriented
Process

The central idea of model-based software development is to employ models as key
design elements, expressing design aspects in a tangible way. For safety criticality
or even certification, it is desirable to extend the role the models play: We want
to integrate them into the documentation of the development entering the safety
case. Thus, not only the detailed usage of UML models within each activity or
process phase has to be explained, but also quality characteristics requested for
artifacts have to be substantiated, and a way to achieve this quality has to be de-
lineated. Common quality characteristics are completeness and correctness wrt.
the requirement specification, traceability, simplicity and understandability, be-
havioral determinacy, testable and (statically) verifiable design, fault tolerance,
and last but not least, linkage to the safety analysis sub-process in both parts,
design and assurance. If UML models are employed in more than one activity,
their relation and consistency becomes an issue, too. Wrt. achieving the quality
of models, one may note that models which document the finished design usually
are not finalized in an early phase, but have to change over the course of the
development. This is an issue to be reflected in the process definition. In this
section, we sketch a process framework which emphasizes the aspect of itera-
tive model development in a way compatible with standard requirements. It is
a framework of a process in that it will have to be instantiated to the concrete
development context and to the project requirements.

8.4.2 Purpose and Scope of the Proposed Process

The process outlined here has been defined to be compliant with the EN 50128
for developing safety critical software for the railway domain. The sketch is based
on results of the OpRaiﬂ project [50], and we will call it the OpRail process in
the following. Its primary goal is to delineate a way to harmonize the use of
UML for expressing design artifacts and tools related to UML development with
the strict requirements of the EN 50128. As this norm has been derived from the
more widely applicable IEC 61508, the sketched process outline is useful beyond
the railway domain.

The main motivation for the definition of the process was to introduce expres-
sive modeling features from UML into the development, to enhance precision and

" This project has been funded by the German Ministry of Education and Research
(BMBF) under grant No. 01|SC26A. The process has been mostly developed by the
project partner Berner& Mattner.

217

UML for Software Safety and Certification

s[o0y ‘doxd
Jo Surdnoo

S[00} SISATeUR
‘papos

09 SeORJIDYUT
+ TINN

10§ snikdeq

SUOISUD)XO
‘doxd + H Ty
+ Aposdeyy
uoryeISo)uI
1009

SAd ‘owduy
Ae1g ‘x0q[00}

0'¢ Al

:3urpdnoo 1009

MOTADI
29 yoIeos
10§ g10ddns
‘doxd +
(s100% TINN
9[qePU9IXD)

jroddng
[00T,

8¢10¢ NH

01 9np TN

Jjo uoryeydepe
Cqrugep sseooxd
poseq-opowt

S[opowt
TN YySnoayy
s1doou0o

Keyes g8LT-0A
VoI

Jo %ﬁmﬂﬁwoﬁpu

LUIEEElHERCl)
9

ADU9)SISU0D

uo1onpap
Ay1odoad ‘sypeyo

ADU)SISU0D
‘noryewiue HST

Suryse)

TIH "wojne ‘Sut
-Toseal “jonpur
‘UIDaYD [opomt

sisAeue
soueurtojrod

% ANqempayds
(Oa/om)
RLIOJLID
28RI10A00

¢13erp ‘nbos
TUOIYeIOUST 1509
‘ursoeyp [opowt
UOTYROYLIOA

Id %

‘weuyger ‘-aoxd

WAI0d) 23
SuOOYO [opomt

Surysaf,

UOIJEPI[EA 73 UOIJedYLIoA

g

4

uoryerausasd
9p0d HUIISAG
29 SISOUJUAS
I9][0IJU0D

UOoIYRINIYUOD
[000301d

2y Wo)sAs
Buryerado

‘INSd < INId

sauryoRW 918IS
29 SOSSE[O WOIJ
UOTPeIdUSS 9POd
ddp pejorrysex

uoIjRISUDL)
apoD
€

S[PPOIN TINN JO d8es()

[013U00 Aemrel
23 A3o10doy
Joe1y 10§
[epow urewop
SUOISUD)XO
Aypiqepuadop
‘SIUTRIISUOD
I ‘uoryeosore
¢duroo

MHZBMS

Iotaeyeq
a[npowt
‘Io1ARYO(

29 2INJONIYS
juouodurod
Surury
‘I01ARYQ(
‘9InjonIls
:800RJIOYUT

29 syuouoduwod

So1399RI)S

29 surayyed
u3sop Ajoyes
MS ur-ymq

udise(q
14

sogesn 1oy} pue so[gord TN pPoje[eI-A1ofes *I°8 S[qel,

sorprodord
Ayoyes

018071 [e1odurey
OLI0U0S
‘SHuTRIISUOD

Surury
‘Surepow
90IN0SdI
‘sorprodoad
[RUOI}OUNJ-RIIXO

ae[nuLIoj 2130]
‘duroy ‘sorreusds
‘sosed asn

SIOAIDSCO
‘SHUTRIISUOD
‘SOLIRUADS
‘Sosed osn

sjuowraambarx
AKjores WS

(urewrop
-qns
Aemyrer)
asoy

HIIVIN

(Kemyrer)
TINN-9)BS

Iy
“VOHINO
7 TN

(9oedsoroe)
TINN

I0J SUOTYRIOUUR "UTYJIOMITY

uorjeoygadg
1

218 M. Huhn and H. Hungar

communicability of design artifacts, to explicitly represent the iterative nature of
development activities — for instance the way in which early prototyping is em-
ployed — and to profit from the wide offering of tool support available for UML.
It is mainly the intention to permit iterations and early prototyping which made
it necessary to deviate from the V shape as depicted in Fig. BRIl Despite the V
model being quasi mandatory (as we mentioned above), norm compliance can
be achieved by mapping the components of the V process to the new one.

The OpRail process covers the software development only, with interfaces
to other development activities, including the integration of legacy code. Also
sketched is the role tools could play and the requirements they would have to
satisfy. In this short presentation, we only hint at these latter aspects.

8.4.3 Terms and Definitions

Process. A process defines who is doing what, when and how. A sketch of a
process model like the one given in Fig. is an illustration with a focus on
the temporal aspect. A process may be composed of a set of sub-processes
and is divided into different phases.

Sub-Process. A sub-process is a part of a process with is either focused on a
particular aspect (like Safety Management) or the collection of actions to
perform a logical step like the components in Fig. BIl A sub-process may
span several phases of the process.

Phase. A phase is the period in a project begun and ended by major project
milestones. A phase may encompass several sub-phases that may be repeated
multiple times (iterations). Within a phase, a well-defined set of objectives
is to be met and certain artifacts are to be produced.

Step. Within a phase, a (sub-)process can be divided into a number of more
elementary steps.

Milestone. A milestone is an important event (completion of specified pro-
ducts) during the course of a project which can be scheduled and monitored
and may be used for evaluating the progress of the project. The decision to
move a project to the next phase is taken at a milestone. If the decision is
negative, the milestone must be rescheduled and repeated.

Artifact. An artifact is an outcome of a sub-process or phase. It may be a
required result of the process or some other piece of information that faci-
litates and supports the process. Artifacts may be grouped to artifact sets
that are assigned to different sub-processes. For example, an artifact set can
be composed of documentation, models, software modules etc. Artifacts shall
be clearly specified by a given version number.

Activity. An activity is the execution of a step of the process.

Iteration. An iteration is a repetition of an activity, with the purpose of im-
proving the end result, usually until a certain condition is met. Iterations are
introduced to capture explicitly that many activities are often performed in
this way, and to reflect agile development styles.

UML for Software Safety and Certification 219

8.4.4 Phases and Sub-processes

Since we do not consider maintenance activities in the definition of our process,
there are eleven sub-processes (of the twelve from Fig. Bl) to be mapped.

Software Planning, Software Requirements Specification, Software Architec-
ture & Design, Software Module Design, Software Coding, Software Module Test,
Software Integration, Software/Hardware Integration, Software Validation and
Software Assessment.

The OpRail process organizes these into (only) four phases, where these phases
are not executed sequentially but overlap each other. Accordingly, there are five
milestones, MO to M4: MO starts the first phase of the project, M1 to M3 mark
transitions between phases, and M4 ends the project.

The artifacts which are tied to the sub-processes are transferred to the phases.
If a sub-process starts within a phase, this phase produces versions of the ar-
tifacts which are defined as an outcome of the phase, continuing a sub-process
means revising the artifact, and finishing a sub-process finalizes the artifact. Ac-
cordingly, an artifact may be produced in stages draft, revised and final, where
of course the version final corresponds to the artifact as defined in the standard.
That is, the OpRail process produces a documentation of the development of
the system as if it was carried out according to the V process, thus presenting a
familiar view suitable for certification.

In short, the phases are defined as follows.

Concept Phase (MO to M1). Typically the concept phase consists of one to two
iterations. In practice, the first iteration can be interpreted as the offer phase.
Firstly, the main focus is to analyze and understand the problem. All input
documents shall be reviewed. All SW related requirements, architectures and
plans shall be proposed in draft.

Definition Phase (M1 to M2). In this phase the SW requirements, architecture
and detailed design shall be fixed and reviewed. The design shall be simulated
and tested early to figure out cost-intensive design flaws. This phase shall as-
certain that the proposed system can be realized as specified. Afterwards the
requirements set can be approved by e.g. the EBA (Eisenbahn-Bundesamt)
or assessed by an ISA (Independent Safety Assessor). After approval, it is
not allowed to change the requirements. Further changes have to be realized
as changes within the change management workflow.

Realization Phase (M2 to M3). The main focus of this phase is to realize the
solution and construct a product. First of all, this means implementation
of the functionality fixed in the System and SW Requirement Specifica-
tions. The implementation is accompanied by unit and SW integration and
SW/HW integration tests. This phase ends with approved SW and SW/HW
integration testing.

Qualification Phase (M3 to M4). This phase includes validation tests. Fur-
thermore it includes tasks for the assessment and certification of the system.
This phase should end with extensive field tests which include the approval
of the customer.

220 M. Huhn and H. Hungar

The full description (resp., a full instantiation) of the process contains a mapping
of the stages of all design artifacts to the phases. Fig. illustrates such a

mapping.

Sub-process\Phase Concept Definition Realization Qualification

Software Planning

SW Regquirements Specification

SW Architecture & Design |

SW Module Design

SW Coding

SW Integration

SW/HW Integration

SW Validation

|
|
| |
|

SW Module Test I
| |
I I
| I
1]

SW Assessment

v ol o " 3 ¥ o T

Fig.8.2. Subprocesses and Phases in the OpRail-Process

8.4.5 The Use of UML in the Process

In general, UML diagrams can be used as parts of design artifacts, or even
to replace some textual artifact completely. We indicate an elaboration which
employs the most common diagram types to the various purposes.

Requirements. For the formulation of requirements (System Requirements
Specification, SW requirements Specification etc.), the most suitable UML
diagrams are use case diagrams to provide an overview and sequence dia-
grams to visualize behaviors. These can complement textual use cases (see
e.g. [B1), as well as other, more traditional representation formats.

Architecture. An architecture may be visualized in a structure diagram, e.g.
as a component diagram in the SW Architecture Specification, or as a class
diagram on the level of module specifications. Depending on the nature of
the design object and the level of abstraction, sequence diagrams illustrating
the interaction of components may be useful.

Design/Module Specification. Detailed behavioral aspects can be specified
with state machines or activity diagrams, while class diagrams define the
software structure.

Test Specifications. Tests can be specified in sequence or timing diagrams.

The mapping above does not yet reflect the specific nature of a safety-critical
design process. To be in line with the requirements coming from the safety
criticality, one must observe that the diagrams are

— equipped with an unambiguous semantics, like for instance as given for Safe-
UML, see Sec.[83.3]

— embedded in a context completing the usually partial specification given by
the annotated graphics,

UML for Software Safety and Certification 221

— adequate in their level of detail to the development stage. For instance, it
is difficult to formulate a global requirement in a state machine without
referring already to a component of a particular implementation.

What makes the process specifically suitable for UML is its flexible phase struc-
ture which permits gradually refining models, switching between specification
and prototypically implementing components or aspects for explorative pur-
poses, and thus gaining a much clearer picture of characteristics of the remaining
design space than with most other development approaches. In short, it gives
a well-defined, norm-compliant elaboration for an agile software development
style, taking full advantage of the expressiveness of models for rich specifications
at different levels of abstraction, in particular in early stages.

8.4.6 Realization

There are several additional aspects to be taken into account when implementing
the OpRail employing UML and UML tools.

Models as Documents. Traceability of requirements and accessibility of ar-
tifacts require specific measures to be taken to integrate diagrams into the
development process. Often, model-based development environments come
equipped with model management mechanisms. But these are, usually, not
sufficient, so that integration with other tools (e.g., for requirement mana-
gement) and further measures become necessary which may go to the point
where all models used in the design are printed on paper.

Models as Specifications. While for ordinary development projects it makes
sense to have different views of one and the same object at the same or
at different stages of the development, which even need not be consistent,
this is not acceptable in a safety-critical process. All inconsistencies and
semantic ambiguities have to be ruled out. As already indicated, using a
restriction defined for such purposes like Safe-UML from Sec. is one
possible approach for functional and communication aspects, while, for ins-
tance, OMEGA-RT from Sec. is useful to address the real-time aspect.

Models and Code. If code is generated from models, this too has nontrivial
ramifications in the context of safety-criticality. As one aspect, the relation
between model and code has to be clarified. If the semantics of the model
itself is given by such a translation, all arguments relying on the model must
be rooted in the code it represents, which may be awkward. Otherwise, for-
mal relations between the model and the code semantics must be established.
One facet of this problem can be addressed by certifying the code generator
as it has been done for SCADE. Another facet comes with the execution en-
vironment, where the development environment (e.g., a Windows PC) and
the target system (e.g., a real-time operating system running on a small pro-
cessor in a simple architecture) may differ considerably. And if the generated
code is modified later, be it for reasons of efficiency or platform compatibi-
lity, this must be reflected in the model (e.g., via roundtrip engineering) or

222 M. Huhn and H. Hungar

addressed in the respective artifacts, the SW Module Verification Report, to
name an example.

Models and Formal Verification. Complete models with an operational se-
mantics permit the application of formal verification tools like theorem pro-
vers and model checkers. These, with their promise of assuring complete
coverage of the model behavior seem attractive for high SILs. Indeed formal
verification in the long run may further increase the usefulness of model-
based design. However, currently the tools and methods are rarely mature
enough for using them in industrial practice. Computational complexity and
tool qualification are common obstacles. Nevertheless, formal verification
techniques may already today help the designer in exploring models at abs-
tract design stages, or specific components with great scrutiny, without ma-
king use of the result in safety cases. A more complete treatment of these
issues and the following point can be found in Sec.

Models and Tests. Test generation from models or models as components in
test scenarios constitute another possible benefit of employing the model-
based design paradigm. Mature techniques are available which can be put to
use in the OpRail process. Generating tests covering models can partly auto-
mate the construction of the Requirement Test Specification or the Software
Module Test Specification.

Taking into account all these issues, we conclude that it is possible to move
from traditional design processes to one which profits from the use of models
at different steps and levels of abstraction. The scheme provided by the OpRail
process has been favorably evaluated by the TUV Siid Rail as being suitable for
an instantiation to a real-life process apt for the development of safety-critical
rail applications.

8.5 Verification and Validation Techniques

Almost all safety-related UML profiles come along with a number of formally
founded V&V techniques. It is far beyond the scope of this paper to present their
technical background to a satisfactory level of detail. Instead, we discuss issues on
the integration of formal verification techniques in the software safety assurance
process for certifiable systems. As it is the case for the use of models in design,
scope and objectives to be achieved by employing models in V&V activities have
to be made explicit for safety assessment in certification processes. A verifiable,
mathematical proof of a theorem on a formal model can serve as a piece of
evidence for a safety claim only, if conclusive arguments are provided how the
mathematical statement relates to the real-world system.

8.5.1 General Remarks on Verification and Validation Techniques
in Model-Based Development of Certifiable Software

In accordance with the standards, we perceive a technique as verification method
if it is adequate to evaluate whether or not the system or a component complies

UML for Software Safety and Certification 223

to a specification or constraints imposed at a preceding development phase. A
formal analysis technique is based on a mathematical model of the system and
the requirements and uses mathematical deduction for reasoning. In many cases
the reasoning can be mechanized. In case, the primary and immediate goal of the
technique is to prove that the (sub-)system satisfies the specification, we call it a
formal verification technique in the narrow sense; if it directly aims at disproving
the conformance of the system or component to the requirements it is called an
error detection technique. In this article, we use testing for V&V techniques that
execute the (sub-)system with selected inputs and compare its outcomes with the
expected ones. A wvalidation technique increases our confidence that the system
accomplishes its intended requirements.

Following the terminology of Dwyer [52], we call a technique sound if a positive
result of the evaluation constitutes conclusive evidence that the stated claim
holds. Thus, a sound method does not generate false positives@. In this sense,
exhaustive state exploration is a sound formal verification technique on finite
state system models and testing usually is sound for error detection, but not for
verification because exhaustive testing is impossible in most cases. Pure bounded
model checking is sound for error detection only, as the state space is explored
to a limited depth. But enhanced with inductive reasoning it may be extended
to a verification technique. In particular in the realm of safety-critical systems,
the limitations of a verification technique have to be clarified carefully as the
evidence provided by the reported analysis results can only have relevance in a
safety argumentation if the technique is applied in a sound manner.

Furthermore, software verification and validation — whether model-based or
not — do not prove that software will not contribute to serious hazards under
any circumstances. The best what can be achieved is to demonstrate that the
software accomplishes its functional and safety requirements that have been
derived from the aggregated knowledge on the system, its environment, and the
foreseen hazards.

With models as design artifacts new V&V techniques can be applied. If design
models are executable, simulation of the functionality provides additional vali-
dation facilities already in design phases. In case models are formally founded,
model checking, abstract interpretation and theorem proving offer a powerful
formal verification tool kit that can be further enhanced with various abstrac-
tion heuristics or compositional reasoning. If safety-related, extra-functional cha-
racteristics like reliability or the error behaviour, real-time or performance are
explicitly represented in the model, then these can be subject of the analysis,
too. However, reliable data for extra-functional runtime characteristics are most
often only available when software/hardware integration is finished. Hence, ana-
lyses performed at earlier design stages on the basis of estimated values have to
be repeated to approve the results.

Additional V&V techniques are not only a possibility, but are also a necessity
in a model-based development process for several reasons: First of all, manual

8 While false positives principally compromise the value of a verification technique,
false negatives may cause additional effort, but do not put the technique in question.

224 M. Huhn and H. Hungar

review and inspection as traditionally performed on text documents have to be
significantly adjusted for models. Without denying the well-known deficiencies
of textual documents like incompleteness, inconsistency, poor structure, and the
lack of traceability, these problems are at most disarranged but not solved wi-
thout effort in a model-based integrated development environment:
Comprehensibility of a model-based design can be negatively affected by as-
pects of the method, the modeling language and the tooling: The design is usually
scattered over several views and kinds of diagrams. Moreover, UML is a rich no-
tation that often offers a set of alternative modelings to express the same issue.
The developer may not oversee all semantic interdependencies between complex
issues like object creation or deletion, event handling, transition selection, or
run-to-completion-steps, even if the semantics is precisely defined. Tools often
hide the details in the top view on a diagram, like, e.g., attribute or method
declaration in class diagrams or inner hierarchy levels in statecharts. Moreover,
specific settings severely influencing the semantics are often accessible only via
nested preference lists or attribute tables within internal model browsers. Ano-
ther open issue is the accessibility of different versions of a model stemming from
earlier design phases or abstraction levels within one model repository.
”Collateral validation”, as the implicit team validation has been called by
Heimdahl [10], is lost, if model-based development comes along with large scale
automation: Traditional development processes of safety-critical systems involve
a plurality of experts whose expertise covers a broad field ranging from domain
knowledge and software architecture to detailed questions of process and com-
munication integration and hardware drivers. In the V&V phases, test experts
and validators have a good chance to identify the tender points in a design due
to their experience. Model design encompasses tasks from the whole field and is
performed by fewer developers who may not always distinguish all consequences.

Also from a more technical perspective, several issues have to be considered to
provide a conclusive safety argument for a model-based development approach.

Model paradigms: Software design and verification models are based on a
model of communication and computation (MoCC) defining an abstraction
from physical time, the granularity of steps, a concurrency paradigm etc.
These abstractions may be adequate on a certain level of abstraction and
in certain contexts. On the level of implementation, the safety-critical soft-
ware applications are going to be executed in an environment of real-time
operating systems (RTOS) and communication protocols like IMA [53] or
time-triggered protocols [54]. Only if these support safe abstractions to ana-
lyzable MoCCs — which is not always the case — one may develop the software
applications independently from the RTOS. For applications themselves, an
answer to the model abstraction problem is given by approaches that esta-
blish a direct correspondence between the formal model and the code like
Safe-UML(P) (see Sec. [18] or SystemC models in RCSD [49)]).

Model content: It has to be justified by thorough model-based validation that
the formalized description of the requirements in a model-based specification
and their implementation in a design model meet the informal, intended

UML for Software Safety and Certification 225

requirements. Only then a formal modeling framework can benefit from the
enormous pool of techniques on model-based verification. Supplementary
vacuity checks can assure the specification in fact covers the relevant behavior
of the model (see Heimdahl for an overview [I0]). Another caveat is the
impact of simplifications and omissions: For scalability reasons or due to an
early design stage, sub-systems or parts of the functionality are modelled
very coarsely or omitted at all. Obviously, verification results have to be
proven robust against such simplifications.

Backend questions: The more behavioral abstraction a modeling notation
provides, the more is added in a code generation step that can only roughly
be configured by the designer. In particular, extra-functional run-time pro-
perties like execution times and storage consumption may heavily depend
on a prudent choice and combination of modeling elements.
Software-intensive technical systems are mostly assembled with proprietary
hardware and operating systems for good reasons. But code generation of
commercial modeling tools is optimized and approved for usage on standard
processors. Thus, the code generator and linker have to be customized, which
is a delicate task for specialists with joint expertise on the tool and the target
system.

Tool qualification: The fundamental soundness requirements on tools offering
early simulation, code generation, or formal verification are the coincidence
of the simulation, the verification, and the execution semantics and sound
reasoning mechanisms. If the execution semantics diverges from any of the
other, or the deduction mechanism is corrupted, V&V results achieved on
the basis of the simulation or verification semantics become worthless.

In contrast to many papers advertising verification techniques, successful in-
dustrial applications of formal model-based techniques mainly address detailed
component design, not only for scalability reasons, but also for the validation
needs and the caveats mentioned above. To benefit from formal verification and
early simulation, a model must be precise and detailed with respect to all as-
pects that are the subject of verification. This can usually be carried out in the
detailed design phase at the earliest.

8.5.2 Testing

Testing is the predominant V&V method applied in practice. For safety-critical
systems, the standards explicitly recommend testing. Major test purposes are
(1) to explore the functional specification in appropriate detail, (2) to execute
the code to a sufficient degree of completeness, and (3) to ensure that the soft-
ware is running properly on the target hardware. Therefore, a number of testing
techniques are listed in the standards like testing based on equivalence partitio-
ning of inputs, boundary value analysis or structural coverage criteria referring
to data and control flow. Additionally, prototyping and animation for design
validation, stress testing and exploratory or risk based testing are advised.

226 M. Huhn and H. Hungar

Executable design models pave the way to integrate testing activities in design
phases: Well accepted test-selection criteria and the derived test-case specifica-
tions making such test criteria operational can be easily adapted to generate test
suites that are applicable on the level of executable models instead on the code
level. For instance, coverage criteria like statement, decision or MC/DC coverage
have been transferred to statechart models [55].

This way, development fully benefits from providing executable models early
in the process: Relevant shortcomings in the requirements specification can be
detected before detailed design and costly implementation efforts are started.

In the following, we shortly discuss three specific approaches to adapt testing to
model-based development:

(1) Design models from a previous development stage build the specification
from which test cases are constructed.

(2) Test models are built independently from the artifacts used in the develop-
ment and serve as basis for test case generation.

(3) Models are built by (automated) abstraction from code.

Test Cases Generated from Specifications

In the first approach, the current model or implementation is tested with respect
to its conformance to a specification from a previous phase. Generating test cases
from a previous design model can be applied iteratively at each stage to uncover
deviations of the behavior of the current model from that of preceding models
or artifacts. Detected deviations may have several causes:

— A preceding design step is flawed, but the specification is correct with respect
to the original requirements.

— The preceding model or requirements specification is ambiguous or incom-
plete. This may concern the function to be realized, the execution platform
and its limited resources or the assumptions on the environment. At some
point, such an aspect may come into focus because the latter, more detailed
model requires to settle it.

— The current model integrates different views or parts of the system that
have been developed separately so fafl. In such a step, testing conformance
to the preceding separated models may reveal inconsistencies and erroneous
assumptions that have been introduced into one of the preceding models.

However, as the test cases are derived from the same source as the current design
model, this approach may support verification, but no independent validation.
In other words, this approach uncovers inconsistencies that are inherent in the
requirements specification itself or introduced in functional refinement steps.
Mismatches between the functional specification, the execution platform and
the environment can be detected only if the integrated models address these
issues. But if for any reason the issue is not faithfully reflected in the design
models this approach will not reveal any hint to a problem [56].

9 Examples are functional composition or resource allocation and deployment in a
layered architecture.

UML for Software Safety and Certification 227

Independent Test Models

The second approach is to construct dedicated test models independently from
the line of design models. Independence of the test model from the design models
opens up new views [57] for the obvious price of additional effort:

— The test model may represent the system under development (SUT), mo-
deled from the testing perspective, but also the system operator or the en-
vironment. Between these positions, numerous combinations of SUT and
environmental models are possible that may apply various abstraction prin-
ciples. For instance, a SUT test model may be restricted to the most common
usage scenarios or a functional kernel, an environmental model may consists
of a stochastic profile on input values and loads and their admissible ranges.

— Modeling formalisms differ with respect to the handling of fundamental
concepts like time, causality, determinism, etc. Additionally, they provide
different views and follow different computation paradigms like functional,
operational, probabilistic or data-flow-oriented models.

The key issue of an additional test model is to complement the knowledge on
the SUT from an independent perspective. As the test model is not a step in the
design, it may be optimised for validation and verification purposes with respect
to the functional and extra-functional requirements addressed, but also in terms
of the concepts, paradigms and notational elements used for modeling. Heim-
dahl [T0] reported on experiences that complementing a specification by several
alternative models is considered a major factor towards achieving completeness.

Often, test models directly support derivation of test cases; alternatively, more
general test generation techniques via the definition of test selection criteria can
be adopted. Thus, building independent test models is adequate for all verifi-
cation purposes mentioned in the previous paragraph, and it adds a chance to
uncover defects that are outside the focus of the design artifacts, and extends
the scope towards validation.

Models as Code Abstractions
A third use of models for testing safety-critical systems is to deduce a formal
behavioral model as an abstraction from code and - if needed - a machine model.
An intermediate representation can be extracted from source code by standard
parsing techniques. The intermediate representation is symbolically interpreted
on an abstract machine model. Thereby, constraints on the variables are collected
and simplified by various techniques from abstract and concrete interpretation.
Solving the constraints enables the generation of input values for a test case that
covers a particular run through the model. The method supports the efficient
generation of test cases for structural coverage criteria and boundary value ana-
lysis, but also the precise construction of test cases for certain classes of runtime
errors. This way, testing the software/hardware integration can be transferred
partially to the model level when using a refined hardware model. An testing
technology based on this kind of models has been proposed by Peleska [58].

All three approaches to integrate testing in model-based development provide
new prospects of design verification at an earlier stage than code integration on

228 M. Huhn and H. Hungar

the target platform. They do not eliminate the need for final tests by executing
the implementation on the target system and showing that module, integration,
system, and acceptance tests are passed. But they can shorten these activities
and iterations in the design by uncovering errors earlier.

8.5.3 (Formal) Verification

In contrast to testing, the promise of formal verification is a hundred percent gua-
rantee for compliance of an artifact with a certain claim. Though this may sound
highly attractive, formal verification is still, even after forty years of thorough
research, only used very rarely in the development of safety-critical systems.
Some of the main obstacles can be summarized as follows.

(1) Incompatibility with the established design process.
(2) Limited scope and immaturity of the techniques and tools.
(3) Lack of skilled personnel.

We addressed the first and second point partly in Sec.[84l Here, we will elaborate
more on the fundamental weakness of formal verification in practice, namely, that
it firstly offers a proof in the mathematical sense and usually not in the juridical
sense. This means that mathematical proofs are in most cases not easily usable
in certification processes. This is due to several reasons.

(1) The proofs, if produced explicitly at all, are very large so that they cannot
be checked manually.

(2) Tools which produce the proofs need to be verified or at least qualified them-
selves, what they usually are not.

(3) The statements proved are accessible only to specialists, and they are often
difficult to interpret correctly.

We will exemplify these reasons by studying two proof techniques, model che-
cking and theorem proving, and suggest remedies to these obstacles.

Model checking: Model checking is the name for mostly automatic proof routines
which check whether the set of behaviors of a program (its runs) are a model for
a specification formula, i.e., whether the runs satisfy the specification. There is a
multitude of different model-checking algorithms and implementations. Ezplicit
model checkers enumerate systematically execution states of the program, sym-
bolic and SAT-based model checkers operate on logical representations of states.
Common to most model checkers is the requirement that the examined program
has only finitely many states (maybe after abstraction), and model checking
consists in cleverly covering all relevant cases. The problem with this approach
is that model checking is not intended to produce a proof — if the system is
correct, its output may simply be “yes”.

This is of course of not much help in convincing a certification authority
of the correctness of a particular statement. Since model checkers are complex
programs and efficiency is a major issue in their design, they are themselves hard
to verify. A very appealing way to overcome this hurdle is the following.

UML for Software Safety and Certification 229

(1) Extend the model checker to produce a proof. Such a proof might be rather
large, but will likely employ only simple constructs — codes for finite sets,
boolean representations and so on.

(2) Design a tool to check those proofs. It is easier to check proofs then to
construct them, and checking has only to be performed on the proofs relevant
to the safety case — namely on the final versions of design artifacts. Therefore,
such a tool need not be as efficient and elaborate as the prover itself, so it
can be much simpler and will be easier validated.

(3) Apply proof generation and proof checking for the program version to be
certified. Previous versions which have been produced during the develop-
ment need not be treated as thoroughly. Though formal verification may be
applied to them, the verification itself need not be checked.

Examples of how to extend different model checkers can be found in [59, [60],
though we are not aware of any realization used in practice. The reader may
consider the experiences with model checking Rhapsody in Sec. B354 to see
reasons for this state of affairs.

Theorem proving: Theorem proving offers a flexible way for machine assisted
proof of complex verification problems, see for instance the impressive achieve-
ments of the VeriSoft project [61} [62]. In principle, theorem provers construct
proofs, but there are two caveats: First, the proofs are constructed on the fly,
that means, they are not intended to be stored. Second, usually a theorem prover
for software verification employs automatic subroutines to increase efficiency. As
neither the theorem prover implementation nor its automatic subroutines (nor
the computer it runs on) are themselves verified, they face similar difficulties as
model checkers when certification is concerned. And approaches to overcome the
difficulties rely on similar means: Coq (http://coq.inria.fr/) has a small “certifi-
cation kernel” to check proofs, as does the Boyer-Moore theorem prover.

Summarizing, while the confidence in a system’s correctness may be greatly
improved through formal verification, its practical value today is still limited:
The effort involved is high, and the results, if achieved at all, are not readily
usable for system certification. Considering the remarkable progress made in this
field in the recent decade, we expect that these methods will gain importance in
the future.

8.5.4 Tool Support

In this section we give two examples of tools offering V&V support for UML, the
tool set ATG for automatic test generation [63] and the model checker RUVE
(Rhapsody UML Verification Environment) [64]. They both are extensions to
the “Rhapsody® in Cpp” design environment. Rhapsody in Cpp has an elabo-
rated Code Generator which produces Cpp code from models consisting of class
diagrams (for structure) and state machines or activity diagrams (for behavior)

10 Now IBM, formerly Telelogic, formerly i-Logix.

230 M. Huhn and H. Hungar

which carry conditions and statements formulated in Cpp. A Simulator permits
to execute the resulting code with user input for external stimuli. There is no
animation of models besides the one through Cpp, other for instance than in the
case of Statemate®. Therefore, one may view the Cpp code as the semantics of
a model.

We continue now with a presentation of the extensions and a discussion of
their suitability for a safety-critical development.

Test Generation

The architecture of the test-generation extension (ATG for Automatic Test Ge-
nemtion to Rhapsody is depicted in Fig. B3l A simplified view of the Rhap-
sody environment is on the left of the figure, with Model Constructor, Code
Generator and Simulator as its main components for our presentation. When
an executable model has been constructed, the user can select a part of the mo-
del as a System Under Test (SUT) and provide test goals. These latter can be
expressed on the level either of the Cpp code or of the model itself. The most
important code-level testing goal is MC/DC, in model terms one may ask for
covering all states and transitions of the state machines in the SUT. In our sim-
plified description, we ignore details like code instrumentation (e.g. to observe
coverage in terms of the model) and the issue of the environment of the SUT
which is very important in practice. The goals are fed into the Test Generator.
The generator outputs a set of test sequences driving the model according tothe
specified goals, together with expected reactions of the SUT. It also reportson
the degree of coverage achieved by the set, which is not always hundred percent.

EE Target Tester | [&===-
Maodel
Constructor Test

Model Test Stimulus
Conductor Sequences

Code
Generator
Test
Generation
Simulator
Sequence

Diagrams

Rhapsody

Fig. 8.3. Architecture of the Test-Generation Extension to Rhapsody

1 Developed and marketed by BTC-ES.

UML for Software Safety and Certification 231

The sequences may be exported in the form of sequence diagrams for visua-
lization through the simulator. They can be applied to the model itself, or a
different revision of the model, via the Test Conductor which, in the case of a
regression test, will report any deviation from the expected behavior. Or they
may be exported to other test-execution environments, e.g. for the purpose of
testing compliance of target code or target system to the model. If the coverage
is insufficient, the generated test suites may be completed by manual effort.

ATG can be applied in implementing the first two of the approaches to adapt
testing to model-based development: Test cases generated from a model may be
run on a model from a later stage, or even the target itself (first approach), or
one may generate the test cases from specifically constructed model for covering
certain aspects (second approach). With respect to standard requirements in
safety-critical design, the generated test cases can be used for functional and
black-box testing, or, with specific test models, also for non-functional aspects
like timing.

Qualification is of course an issue. The test generator is the most advanced
component of the ATG extension. It works by symbolically executing the Cpp
code. Fortunately, the test generator itself does not have to be validated. Ins-
tead, one may independently — using a much simpler tool — validate the coverage
achieved. The test-cases conductor is more critical. If one relies on automatic
execution, the environment performing the tests has to be validated. Alternati-
vely, one may add extensive reporting to provide evidence for correctness and
completeness of the test execution.

Summarizing, the ATG extension to Rhapsody provides tool support to au-
tomate part of the testing activities which consume a substantial percentage of
the development effort. Thus, it adds to the advantages of model-based design
over traditional methods. Taking adequate provisions, ATG may even be applied
when developing a safety-critical system.

Model Checking

The architecture of the model-checking extension is depicted in Fig. B4l Cpp
code generated from Rhapsody models is translated into an automaton format
and fed into a model-checking engine, whose other input may come from a num-
ber of different specification formats (graphical, pattern-based, temporal-logic
formulae). The model-check engine is based on VIS, i.e. it is a symbolic mo-
del checker employing BDDs (Binary Decision Diagrams)@. Its output is either
the message that the model satisfies the specified requirement (“true”) or an
error path which may be animated on the model or visualized as a graphical
specification.

Other than the ATG extension, RUVE is limited in the input it can process.
Some of the limitations are inherent, others are founded in the experimental,
not yet mature state of the tool set. Since semantically, the input to the model
checker must be a finite automaton, dynamic object creation must be limited by
static bounds. Also, the component and association structure cannot be changed

12° A SAT-based engine may be used as an alternative.

232 M. Huhn and H. Hungar

|
Back

Translator
Model ificati
. é SPECIfICaUOﬂ
Constructor Constructor

Model

Code
Generator Formal Model
Specification Checker

Simulator
/[G+ Code Extended
Automaton

Code Translator

Rhapsody

Fig. 8.4. Architecture of the Model-Checking Extension to Rhapsody

freely. Floating point numbers are not permitted for complexity reasons, and
pointer operations are restricted. What remains is still a large and practically
usable subset of the features of Rhapsody in Cpp.

The main usage of model checking is the verification of properties, which
are, despite the different input formats available to the user, in their essence
temporal-logic formulae. Model checking thus offers a way to verify properties
which are predicative in nature. It is less suited to show refinements, e.g. that
some model implements another, more abstract one. A second use case employs
the error-path feature for design animation. For the specification “Always Not
In(S)”, the model checker will output a path leading to the state S if S is
reachable. In that way, one may explore a model with automatic support. Further
usages employ instrumented models.

If one wants to use the model checker for direct verification, the qualification
question becomes important. There are two main issues.

First, the model checker does not work on the Cpp code (which, as already
discussed, can be seen as the true semantics of the UML model), but on an
automaton which has been generated by a nontrivial translation process. One
way to ensure the correctness of this step is to employ methods from compiler
validation. One could either validate the Code Translator, or independently
verify that it worked correctly on those models appearing in the safety case.

Second, one will have to verify the operation of the Model Checker com-
ponent. Since it seems impractical to certify this engine — the model checker
works on advanced data structures and is geared towards efficiency — the best
option is to verify that it worked correctly in the invocations relevant to the
safety case. In Sec. B.5.3we explained that a promising way is to equip the model

UML for Software Safety and Certification 233

checker with a feature that produces on request a proof for the answer “true”.
Though this has not been done for a BDD-based model checker as far as we
know, there is no fundamental difficulty involved. A proof will be a large object,
but a rather simple procedure would be able to check its correctness.

These obstacles prevent the practical application of RUVE in a safety-critical
development today. In addition, the resource consumption of RUVE is high
already for rather small UML models. One may say that UML state machines —
at least in this Rhapsody implementation — are a rather difficult object for formal
verification. As a result, RUVE can be applied successfully only in specific cases,
e.g. to aid the designer in analyzing a small model thoroughly. This may either
be an abstract model at an early design stage, or a model of a component like
one implementing a protocol for which model checking is particularly suited.
Other than test generation, model checking does not seem mature enough for
industrial application in UML-based design. Design for verification (i.e., language
restrictions), dedicated procedures and additions for certification seem to be
called for to enable profitable use of model checking on a larger scale.

8.6 Conclusion

UML and its extensions offer modeling elements for most aspects of interest in the
context of safety-critical software and system development. A major advantage of
UML is its wide dissemination for general purpose software development, while
e.g. domain-specific languages face communication barriers due to their limited
user basis. It is also clear that by introducing UML into the safety-critical systems
domain not any UML expert will automatically become a software safety engineer.
Model-based software development is not yet considered in the safety-critical
system standards. But statutory obligations and best practices recommend de-
sign qualities like structuredness, simplicity, and preciseness that are among the
key promises of model-based development. Considering the plurality and com-
plexity of UML, UML profiles and variants providing a well defined set of views
and a restricted set of notational elements with precise (formally defined) se-
mantics seem to be well suited for safety-critical systems. Upon the notational
basis, a consistent set of techniques supported by qualified tools has to be de-
fined that facilitates integration of UML models as key artifacts in a software
safety design process. Limited maturity of techniques and tools as well as lack of
elaborated methods supporting specific safety strategies are still severe hurdles
for the proliferation of UML in industrial safety-critical software design.
Verification and validation benefit a lot from executable models in early
design phases. Formal verification and testing contribute with a new quality of
rigour and completeness to verification efforts. Recent research in this field has
achieved substantial progress towards real-world size models and integration into
industrial design processes. By customizing verification techniques to particular
UML-based modeling frameworks, an equivalence between the verification mo-
del and the generated code executed on an abstract machine has been established

234 M. Huhn and H. Hungar

for several tool environments. Such approaches are pathbreaking with regard to
the rigour in establishing functional correctness. In addition, the adaptation of
static analysis techniques to UML models enables assurance of most statically
verifiable properties in principle. But in the whole, tool support is still fragmen-
ted, scalability is limited, and skilled personnel is rare.

Additionally, certification aspects have yet to be addressed adequately: A
number of formally founded approaches still lack an explicit and conclusive ar-
gument on how mathematically proven facts relate to the properties of the real
system, its software components, and the software design artifacts. Despite ad-
vances proposing solutions to particular aspects and sketches of integrating them
with the software safety analysis sub-process, this still need to be improved for
most UML-based techniques. This applies for design-centered methods as well
as for V&V-centered ones.

Therefore, we may conclude that a lot of useful progress has been made.
And while no mature, consistent methodology has been found yet, with prudent
choice of techniques and tools, employing UML can improve the development of
safety-critical systems in practice today.

References

[1] Leveson, N.: Safeware - System Safety and Computers. Addison-Wesley, Reading
(1995)

[2] Lutz, R.: Software engineering for safety: A roadmap. In: FOSE 2000: Future
of Software Engineering, Washington, DC, USA, pp. 137-152. IEEE Computer
Society, Los Alamitos (2000)

[3] McDermid, J.A., Pumfrey, D.J.: Software safety: Why is there no consensus? In:
19th International System Safety Conference, System Safety Society (2001)

[4] European Committee for Electrotechnical Standardization: EN 50128: Railway
applications - communications, signaling and processing systems - software for
railway control and protection systems (2001)

[5] Radio Technical Commission for Aeronautics (RTCA): Software Considerations
in Airborne Systems and Equipment Certification (December 1992)

[6] Intern. Electrotechnical Commission: IEC 61508: Functional safety of electrical /
electronic / programmableelectronic safety-related systems (1998)

[7] Federal Aviation Administration: System Safety Handbook (2008)

[8] Bernardi, S., Merseguer, J., Petriu, D.C.: Adding dependability analysis capabi-
lities to the MARTE profile. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A.,
Vélter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 736-750. Springer, Hei-
delberg (2008)

[9] Bernardi, S., Merseguer, J.: A UML profile for dependability analysis of real-time
embedded systems. In: Proceedings of the 6th International Workshop on Software
and Performance (WOSP), pp. 115-124 (2007)

[10] Heimdahl, M.P.E.: Safety and software intensive systems: Challenges old and new.
In: FOSE 2007: Future of Software Engineering, Washington, DC, USA, pp. 137-
152. IEEE Computer Society, Los Alamitos (2007)

[11] Intern. Electrotechnical Commission: 65A /524/CDV: IEC 61508-3: Functional sa-
fety of electrical/electronic/programmable electronic safety-related systems part
3: Software requirements, Committee Draft for Voting (2008)

[12]
[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[28]

[29]

[30]

UML for Software Safety and Certification 235

Esterel Technologies: Scade 6.0 (2008)

McDermid, J.A., Nicholson, M., Pumfrey, D.J., Fenelon, P.: Experience with the
application of HAZOP to computer-based systems. In: Haveraaen, M., Dahl, O.-J.,
Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130,
pp. 37-48. Springer, Heidelberg (1996)

Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, Cambridge (1993)
Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
Zoughbi, G., Briand, L., Labiche, Y.: A UML profile for developing airworthiness-
compliant (RTCA-DO-178B) safety-critical systems. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 574-588.
Springer, Heidelberg (2007)

Hooman, J., Kugler, H., Ober, 1., Votintseva, A., Yushtein, Y.: Supporting UML-
based development of embedded systems by formal techniques. Software and Sys-
tem Modeling 7(2), 131-155 (2008)

Hungar, H., Robbe, O., Wirtz, B.: Safe-UML - Restricting UML for the de-
velopment of safety-critical systems. In: Schnieder, E., Tarnai, G. (eds.) Proc.
FORMS/FORMAT 2007, pp. 467-475 (2007)

Object Management Group: UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE), Beta 2 (2008)

Berkenkdétter, K., Hannemann, U.: Modeling the railway control domain rigorously
with a UML 2.0 profile. In: Gérski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166,
pp. 398-411. Springer, Heidelberg (2006)

Object Management Group: SysML Specification Version 1.1 (2008-11-02) (No-
vember 2008), http://www.omg.org/spec/SysML/1.1/

ATESST2: EAST-ADL2 Profile Specification (January 2008)

Kelly, T.: Arguing Safety — A Systemic Approach to Managing Safety Cases. PhD
thesis, University of York (September 1998)

ISO TC22/SC3/WG16: Road Vehicles — Functional Safety. Committee Draft (Sep-
tember 2008)

Telelogic: Rhapsody (2008)

Eclipse Modeling Framework Project, EMF (2008),
http://www.eclipse.org/modeling/emf/

Graydon, P.J., Knight, J.C., Strunk, E.A.: Assurance based development of critical
systems. In: The 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 347-357. IEEE Computer Society, Los Alamitos
(2007)

Damm, W., Josko, B., Pnueli, A., Votintseva, A.: A discrete-time uml semantics
for concurrency and communication in safety-critical applications. Sci. Comput.
Program. 55(1-3), 81-115 (2005)

Harel, D., Marelly, R.: Come, Let’s Play - Scenario-Based Programming Using
LSCs and the Play-Engine. Springer, Heidelberg (2003)

Bozga, M., Graf, S., Mounier, L.: If-2.0: A validation environment for component-
based real-time systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 343-348. Springer, Heidelberg (2002)

Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 748-752. Springer,
Heidelberg (1992)

Object Management Group: UML2.0 superstructure specification (2005)
Eisenbahn-Bundesamt: Technische Grundéatze fiir die Zulassung von Sicherung-
sanlagen (1999)

http://www.omg.org/spec/SysML/1.1/
http://www.eclipse.org/modeling/emf/

236
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]
[48]

[49]

[50]

[51]
[52]

M. Huhn and H. Hungar

Guidelines for the use of the language C in critical systems (2004)

Sanders, R.: Rhapsody 6.0 properties, Technical report, OSC-ES, Oldenburg, Ger-
many (2006)

Robbe, O.: Analysis of the Rhapsody C++-code and framework according to
compliance with the EBA-guidelines 42720 and 42730. Technical report, OFFIS,
Oldenburg, Germany (2005)

Object Management Group: UML Profile for Schedulability, Performance, and
Time (SPT), Version 1.1 (2005)

Papyrus for UML (2009), http://www.papyrusuml.org

Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level
performance analysis - the SymTA/S approach. IEEE Proceedings Computers
and Digital Techniques 152(2), 148-166 (2005)

Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: International Symposium on Circuits and Systems (ISCAS),
vol. 4, pp. 101-104 (2000)

Hagner, M., Huhn, M., Zechner, A.: Timing analysis using the MARTE profile in
the design of rail automation systems. In: 4th European Congress on Embedded
Realtime Software, ERTS 2008 (2008)

Object Management Group: UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms Specification, Version 1.1 (2008)
Espinoza, H., Dubois, H., Gérard, S., Pasaje, J.L.M., Petriu, D.C., Woodside,
C.M.: Annotating UML models with non-functional properties for quantitative
analysis. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 79-90. Sprin-
ger, Heidelberg (2006)

Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of dependability.
Technical Report LAAS Report no. 01-145, UCLA, LAAS-CNRS, Univ. of New-
castle upon Tyne (2001)

Pataricza, A.: From the general ressource model to a general fault modeling para-
digm? In: Jirjens, J., Cengarle, M.V., Fernandez, E.B., Rumpe, B., Sandner, R.
(eds.) Critical Systems Development with UML — Proceedings of the UML 2002
workshop, TU Miinchen, Institut fiir Informatik, pp. 163-170 (2002)

Thomas, F., Delatour, J., Terrier, F., Gérard, S.: Towards a framework for expli-
cit platform-based transformations. In: 11th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC), pp. 211-218. IEEE
Computer Society, Los Alamitos (2008)

Graf, S., Ober, L., Ober, I.: A real-time profile for UML. International Journal on
Software Tools for Technology Transfer (STTT) 8(2), 113-127 (2006)
Berkenkotter, K.: OCL-based validation of a railway domain profile. In: Kiihne, T.
(ed.) MoDELS 2006. LNCS, vol. 4364, pp. 159-168. Springer, Heidelberg (2007)
Haxthausen, A., Peleska, J., Grofle, D., Drechsler, R.: Automated verification of
train control systems. In: Formal Methods for Automation and Safety in Railway
and Automotive Systems (FORMS/FORMAT), pp. 252-265 (2004)

Hungar, H., Bruhns, G., Plan, O., Lemke, O.: OPRAIL - Normenkonforme Ent-
wicklung sicherheitsrelevanter Software unter Einsatz der UML. Signal + Draht 7
(2007)

Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Reading (2000)
Dwyer, M.B., Hatcliff, J., Robby, P.C.S., Visser, W.: Formal software analysis
emerging trends in software model checking. In: Briand, L.C., Wolf, A.L. (eds.)
Workshop on the Future of Software Engineering (FOSE), pp. 120-136 (2007)

http://www.papyrusuml.org

[53]

[54]

[55]

[56]

[59]

[60]

[61]

[62]

[63]

UML for Software Safety and Certification 237

Lewis, J., Rierson, L.: Certification concerns with integrated modular avionics
(IMA) projects. In: Digital Avionics Systems Conference (DASC). IEEE, Los
Alamitos (2003)

Kopetz, H., Griinsteidl, G.: TTP - a protocol for fault-tolerant real-time systems.
IEEE Computer 27(1), 14-23 (1994)

Miicke, T., Huhn, M.: Minimizing test execution time during test generation.
In: IFIP Working Conference on Software Engineering Techniques (SET 2006).
Springer, Heidelberg (2006)

Pretschner, A., Philipps, J.: Methodological issues in model-based testing. In:
Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-
Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 281-291. Springer, Hei-
delberg (2005)

Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing.
Working Paper 04/2006, Department of Computer Science, The University of
Waikato (2006)

Peleska, J.: A unified approach to abstract interpretation, formal verification and
testing of C/C++ modules. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigiin, H.
(eds.) ICTAC 2008. LNCS, vol. 5160, pp. 3—22. Springer, Heidelberg (2008)
Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In: DATE, pp.
10880-10885. IEEE, Los Alamitos (2003)

Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2-13. Springer, Heidelberg (2001)
Alkassar, E., Hillebrand, M.A., Leinenbach, D., Schirmer, N.W., Starostin, A.:
The Verisoft approach to systems verification. In: Shankar, N., Woodcock, J. (eds.)
VSTTE 2008. LNCS, vol. 5295, pp. 209-224. Springer, Heidelberg (2008)

Beyer, S., Jacobi, C., Kroening, D., Leinenbach, D., Paul, W.: Putting it all toge-
ther: Formal verification of the VAMP. International Journal on Software Tools
for Technology Transfer 8(4-5), 411-430 (2006)

Lettrari, M.: Using abstractions for heuristic state space exploration of reactive
object-oriented systems. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 462-481. Springer, Heidelberg (2003)

Schinz, 1., Toben, T., Mrugalla, C., Westphal, B.: The Rhapsody UML Verifica-
tion Environment. In: Proceedings of the 2nd International Conference on Soft-
ware Engineering and Formal Methods (SEFM 2004), Bejing, China, pp. 174-183.
IEEE, Los Alamitos (September 2004)

	8 UML for Software Safety and Certification
	Introduction
	Development of Certifiable Software
	Safety-Related Extensions of UML
	The UML Profile for Developing Airworthiness-Compliant (RTCA DO-178B) Safety-Critical Software
	rtUML and the OMEGA-RT Profile
	Restricting UML for Specification and Programming in a Certification Context
	The UML Profile for Modeling and Analysis of Real-Time Embedded Systems (MARTE)
	The Railway Control System Domain Profile (RCSD)

	Using UML in Certification-Oriented Processes
	Questions to Be Addressed by a Certification-Oriented Process
	Purpose and Scope of the Proposed Process
	Terms and Definitions
	Phases and Sub-processes
	The Use of UML in the Process
	Realization

	Verification and Validation Techniques
	General Remarks on Verification and Validation Techniques in Model-Based Development of Certifiable Software
	Testing
	(Formal) Verification
	Tool Support

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

