
7 Requirements Modeling for

Embedded Realtime Systems

Ingolf Krüger, Claudiu Farcas, Emilia Farcas, and Massimiliano Menarini

University of California, San Diego, USA
{ikrueger,cfarcas,efarcas,mmenarini}@ucsd.edu

Abstract. Requirements engineering is the process of defining the goals
and constraints of the system and specifying the system’s domain of
operation. Requirements activities may span the entire life cycle of the
system development, refining the system specification and ultimately lea-
ding to an implementation. This chapter presents methodologies for the
entire process from identifying requirements, modeling the domain, and
mapping requirements to architectures.

We detail multiple activities, approaches, and aspects of the require-
ments gathering process, with the ultimate goal of guiding the reader
in selecting and handling the most appropriate process for the entire li-
fecycle of a project. Special focus is placed on the challenges posed by
the embedded systems. We present several modeling approaches for re-
quirements engineering and ways of integrating real-time extensions and
quality properties into the models. From requirements models we guide
the reader in deriving architectures as realizations of core requirements
and present an example alongside with a formal verification approach
based on the SPIN model checker.

7.1 Introduction and Overview

Requirements engineering is arguably one of the most important and least-well-
understood [1] development activities. It can have a positive effect on the overall
development process – systems that actually provide value to their stakeholders,
i.e. systems for which there exists a good understanding of what the requirements
are, as well as a match between the system’s requirements and the implemen-
tation, are generally considered a success if implemented within the available
resources. At the same time, it is well-known that errors made during the acti-
vities that pertain to requirements analysis and management are hard to detect
and costly to fix as time progresses through the development process.

In this chapter, we discuss the challenges and opportunities of the require-
ments engineering process for complex embedded real-time systems (ERS) as
they arise in domains such as automotive, avionics, medical, communications
and entertainment systems to name but a few examples. This system class is of
high economic relevance and significant technical complexity – more than 98% of
processors are “embedded” [2]. In automotive systems, for instance, up to 90% of
all innovations are influenced by software-enabled electronics. In some high-end

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 155–199, 2010.
� Springer-Verlag Berlin Heidelberg 2010

156 I. Krüger et al.

vehicles more than 60 different electronic control units (ECUs), interconnected
using multiple communication bus technologies and hundreds of signals, toge-
ther provide thousands of externally observable functions. Heterogeneity and
distribution lead to high numbers of different configurations and variants. A
wide functional variety from hard real-time safety critical engine control to com-
fort electronics and infotainment systems, long product life cycles, demanding
time-to-market, and a strong need for competitive per-piece costs compound the
technical challenges. All of these aspects are directly or indirectly related to the
discovery, articulation, quality assurance and continued management of a highly
diverse and interdisciplinary requirements set.

In the following paragraphs we elaborate further on the challenges of require-
ments engineering for ERS. This account draws heavily on our experiences with
automotive systems [3, 4, 5, 6, 7]; furthermore, we provide an overview of the
remainder of this chapter.

7.1.1 What’s in a Requirement?

Before we can gain an understanding of why requirements engineering for ERS is
challenging, we first have to identify what we mean by the term “requirement”.
We view a requirement as a documented need of what a product or service should
be or do. A requirement also identifies the necessary attributes, capabilities,
characteristics, or qualities that have value or utility to a stakeholder. While
sufficiently intuitive at first glance, this definition leaves open what terms such
as “attribute”, “quality” and “value” mean concretely. Unless these terms are
precisely defined, of course, it is difficult – if not impossible – to identify whether
a given requirement is well articulated, let alone whether a given system correctly
implements this requirement.

Nevertheless, this definition brings forward a number of important concerns
for capturing and managing requirements. First, it is important to observe
that requirements are connected to stakeholders [8]. For each requirement there
should be an identified party with a vested interest in seeing the requirement
implemented. This implies also that the requirements, collectively, need to arti-
culate values of the stakeholders of the system under consideration. Stakeholders
include (and are not limited to) the customer who commissions and accepts the
system, regulatory bodies, marketing and productization entities, suppliers, in-
tegrators, developers, architects and maintainers, and end-users. Consequently,
models, techniques and tools for documenting and managing requirements ne-
cessarily need to be able to reflect the various different views [9] that each sta-
keholder group brings to the table. For instance, marketing representatives may
articulate requirements aspects that relate functionality with cost, end-users
may articulate usability requirements aspects [10, 11, 12, 13], and maintainers
may articulate requirements at readability of the source code from which the
software sub-system is compiled.

To address different stakeholder views, the literature distinguishes various
classifications for requirements. At the highest level, there is a distinction bet-
ween business, product, and process requirements. Here, business requirements

Requirements Modeling for Embedded Realtime Systems 157

refer to specifications of what the business wants to achieve with a specific pro-
ject. An example for a business requirement is “Offer the safest car on the
road today”. Requirements such as this are typically directly linked to an enter-
prise objective, such as “Being the world leader in safe vehicles” and associated
business and marketing accounts. Product requirements often encompass the
functionality and operational infrastructure that is required to implement the
business requirements. This includes a specification of the functions as well as
the hardware/software context in which they are to be implemented. Process
requirements typically refer to how the development of the system under consi-
deration is to come about, whether and how it needs to be certified, and what
methods are to be applied during development for documentation, implementa-
tion and quality assurance.

Another traditional classification distinguishes functional from non-functional
requirements. Here, functional requirements include those that determine what
the system is supposed to do – this amounts to a specification of the opera-
tional capabilities provided by the system. Non-functional requirements [14, 15]
(some authors also refer to them as quality requirements) then are defined as
constraints at the implementation level of the functional requirements. Such
constraints include product requirements1 (usability [13], performance and effi-
ciency [16, 17, 18], reliability [19, 20] and portability [21]), organizational requi-
rements (delivery, implementation, adherence to standards and regulations) [15],
and external requirements (interoperability [14, 22], ethics, and legislation).
Functional requirements address the operational capabilities of the system, non-
functional requirements define the context in which these capabilities come
about.

Characteristics of ERS often blur the line between the functional and non-
functional requirements. Consider, as an example, the air bag controller for a
modern car. The requirement “Within 10 milliseconds after impact, the airbag is
to be fully inflated” identifies an operational aspect (“after impact, the airbag is
to be fully inflated”), and a performance constraint (“within 10 milliseconds after
impact”). Clearly, the stakeholder group “driver and passengers” would rightly
argue that an airbag that misses its deadline is not a functioning product. Hence,
this requirement will likely be perceived as a functional requirement, despite its
performance aspect.

As we shall see below, time plays a critical role in specifying requirements
for ERS. Therefore, it often becomes part of the underlying system model in
relation to which requirements are expressed. In other words, timing constraints
become part of the operational capabilities of the system under consideration.
Then, requirements with timing constraints naturally fall into the category of
functional requirements. In general, however, it often makes sense to distinguish
functional and non-functional requirements aspects, and to allow specification
of both aspects in a singular requirement.

1 Note that this refers to a subset of what we called product requirements in the
preceding paragraph.

158 I. Krüger et al.

Independently from the chosen requirements classification scheme, the way
in which we are able to articulate requirements has a significant impact on
how useful requirements engineering is for all other development activities. We
need to be able to determine effectively and efficiently, (a) whether stakeholder
values and associated constraints at the system under consideration are captured
accurately in the requirements, and (b) whether the implementation is faithful
to the requirements as captured. (a) and (b) are commonly referred to as the
requirements validation and verification problems, respectively.

For a comprehensive approach to requirements engineering for ERS, we need
to be able to address all relevant requirements aspects of the system under consi-
deration such that they can be effectively and efficiently validated and verified.
This is a hard challenge in general and specifically so for ERS, as we will elabo-
rate in the following paragraphs.

7.1.2 Why Requirements Engineering for ERS Is Hard

We now discuss key forces that influence the difficulty of eliciting and managing
requirements for ERS; many of these forces interrelate. We have already pointed
out that precisely defining what a requirement is, is a challenge in and by itself.
A common solution for model-based engineering approaches is to create a system
model, which is a mathematical representation of the central phenomena exhibi-
ted by the system class into which the concrete system under development falls.
We can then formally define requirements as constraints at the system model.
These constraints reduce the set of all possible instances of the model to those
that fulfill the requirement.

We are interested in system models that are close to the problem domain.
For this purpose, system models built on top of process algebras, timed and
untimed, finite and infinite automata, temporal logics, partial orders, or streams
and stream, relations, and games have been devised to address a broad spectrum
of properties while placing bounds on the computational complexity of validation
and verification. Hence, in requirements engineering, a key challenge is to identify
system models and associated specification languages that allow representation
of the key domain concepts [23] within the formal model such that validation
and verification are effective and efficient. In the following paragraphs we discuss
the key forces that drive the selection of an appropriate system model for ERS.

Requirements do change over the lifecycle of a product [24, 25, 26] [27]. The
romantic idea that requirements can be captured completely at product incep-
tion, frozen, and then implemented to satisfaction is an illusion for all but the
most trivial systems. Consequently, requirements need to be managed actively
throughout the product lifecycle [28, 29], from inception to retirement.

Embedding – ERS are embedded into a context by definition. This context is
typically another product, such as a car, an airplane, or a medical device. The
ERS often plays the role of a controller of physical processes in which the overall
product engages. This means that the ERS needs to interface with the context
into which it is embedded, and thus needs to have a model of its environment
to appropriately react to changes in this environment.

Requirements Modeling for Embedded Realtime Systems 159

Furthermore, each ERS has a unit cost associated with it. There is a natu-
ral incentive to reduce the unit cost to reduce the overall product’s cost (or to
increase profit margins). Consequently, ERS are equipped with just enough com-
putational and storage resources (as in hardware) to fulfill their desired function.
Especially in mass markets, such as in automotive or entertainment electronics,
where comparatively tiny unit cost savings have an enormous impact on overall
profitability, cost reduction at the unit level is a critical and driving business
requirement. Of course, if the overall product consists of multiple ERS, this can
result in many local optimizations at the expense of realizing global cost sa-
vings across ERS. As we shall see, below, this is compounded by the distributed
development model for ERS, and by the absence of integrated system models
that would allow articulation and optimization of cost and functionality across
component ERS.

Multi-Disciplinary Stakeholder Communities. Clearly, describing the interface
between the ERS and its physical environment necessitates that requirements
can express the properties and constraints of the requirements that are relevant
for this interface. This alone already necessitates a multi-disciplinary approach
to requirements engineering for ERS. A car, for instance, provides a physical
context in which mechanical engineers are key domain experts. Add to this
electrical engineers for the hardware context of the ERS, as well as Human-
Machine-Interface (HMI) experts for the usability aspects, to obtain an initial
set of disciplines involved in ERS development besides the requirements engi-
neers and software developers, testers and maintainers with computer science
background. Each of these stakeholder groups has a different view [30] on the
system under consideration, and has its own domain concepts and associated
ways of articulating them. This necessitates that the chosen system model al-
lows expression of requirements from all relevant stakeholder groups.

Two techniques allow dealing with the resulting complexity: (1) introducing
mechanisms for expressing different views onto, or abstraction levels of the same
system model – in the language of the respective stakeholder group, and (2)
enabling the co-existence of multiple different system models, each of which is
tailored to a particular stakeholder group, or view; then the challenge is how
to mediate between requirements specified in the respective system models to
arrive at a consistent [31, 32, 33, 34], integrated requirements specification for
the overall product. This mediation can take on various forms; typically it will
consist of an elaboration of the domain entities (or abstractions thereof) shared
by multiple source models and the key relationships between these entities, as
well as projection relations between the source models and the mediation model.

Consistency and Realizability – If there is more than one requirement needed
to specify a system of interest (and for all but the most trivial ones, there is), we
have to address consistency between requirements. The underlying question is
whether the requirements as specified allow any system to be constructed such
that all requirements are fulfilled.

For instance, if we represent requirements as predicates on the underlying
system model, then we can express relationships between requirements using

160 I. Krüger et al.

logical conjunction and disjunction: conjunction expresses that of two require-
ments both must be satisfied together; disjunction indicates alternatives among
requirements. If we add negation as a logical construct, we can also express
“anti-requirements”, i.e. requirements that must not be fulfilled [35]. This then
allows us to express conditional requirements of the form “if requirement A is
fulfilled, then requirement B must be fulfilled also”. The overall requirements
specification can then be interpreted as a logical formula involving predicates
and the mentioned logical connectives. The question then arises whether the set
of tape valuations constrained by this logical formula has any elements in it.

As we have described in the preceding paragraph, we have to be able to re-
present different views on the set of requirements to different stakeholder groups.
Consequently, we have to concern ourselves with the consistency of the resulting
composite views. We have to add requirements that further restrict the set of
possible models to those that are realizable.

Outsourcing and Distributed Development – ERS are, in general, developed
in the interplay between an Original Equipment Manufacturer (OEM) and a
supplier. The OEM is responsible for the product into which the ERS integrates.
The supplier is responsible for the ERS. This necessitates precise and expressive
requirements specifications [36] that elucidate the interplay between the ERS
and its environment. In practice, requirements are seldom expressed precisely
enough, successful projects resort to cooperative and joint development between
the OEM and the supplier to ensure short feedback cycles to iteratively refine
the requirements. The precision to which we are able to articulate requirements
between OEM and supplier has a direct impact on the number of iteration cycles
needed, and the ability for both parties to verify and validate the requirements
they were able to specify.

Furthermore, the distribution of responsibility [37] between the OEM as the
system integrator, and the supplier has lead to two distinguishable levels of
abstraction in requirements specification, called user and system requirements,
respectively. User requirements are gathered by the OEM and articulate the
OEM’s expectations at the outcome of the supplier’s development efforts. The
supplier responds to a user requirements specification with a system require-
ments specification that details the user requirements, and incorporates further
business, product and process requirements from the supplier’s point of view.

Multi-Functionality [7] means that an ERS provides not one singular, but
multiple distinguishable, individually valuable functions (also called features) to
their environment. For instance, cell phones provide calendaring, email and a
wide variety of productivity and entertainment functions in addition to the all
but mundane functions of placing and receiving calls.

This necessitates that requirements for ERS explicitly address the partiality
of individual functions and precise specifications of how the individual functions
integrate into the whole. In particular, the requirements need be be explicit about
desirable and undesirable feature interaction. A desirable feature interactions
emerges from the interplay between two features to the (sometimes unforeseen)
benefit of a stakeholder. Undesirable feature interactions, on the other hand,

Requirements Modeling for Embedded Realtime Systems 161

reduce the value of the integrated system to a stakeholder. Again, this calls for
explicit means to determine consistency among requirements for the ERS and
the environment into which it is embedded.

Heterogeneity – Requirements for ERS that control physical processes often
are most succinctly represented in terms of the mathematical models that are
used to describe the physical processes. For instance, requirements for automo-
tive systems need to capture the vehicle’s continuous movement through space
and time. The adequate mathematical model for this movement will involve diffe-
rential equations. Specifically, the field of control theory was developed precisely
to study the phenomena that arise in the interactions between the physical world
and controllers that seek to influence the environment to effect a desirable condi-
tion. Any comprehensive requirements specification technique that attempts to
be successful in the automotive domain, therefore, needs to be able to capture
continuous behaviors (in the underlying mathematical models) to facilitate in-
teraction with control engineers. At the same time, a car is a good example for
the need to also express mixed discrete-continuous and purely discrete ERS [7].

Distribution and Integration – As mentioned above, the OEM typically acts
as the integrator of a set of independently developed ERS. Consequently, the
desired behavior for the integrated product emerges from the interplay of the
functionality provided by the sub-systems. For the system models underlying
requirements specifications this means that they need to be able to express
phenomena of concurrency and synchronization. Depending on the product and
the OEM, these ERS are developed by a variety of different, competing suppliers.
As a consequence, the functionality valuable to the end-user is scattered across
a wide variety of subsystems. This places a tremendous integration challenge
on the OEM – this finds its expression today in intense and costly integration,
calibration and testing activities in which the OEM engages when all subsystems
finally are available.

Often, there is no overarching requirements specification addressing the inte-
gration challenge – the user requirements suppliers see are then underspecified
in terms of these integration requirements, and the OEM has to work around the
resulting implicit assumptions the suppliers make. Furthermore, as mentioned
before, the absence of an overarching understanding of the integration requi-
rements results in poor resource optimization across the ERS of an integrated
system. Consequently, the requirements models for ERS should explicitly ad-
dress the scattering of functionality and the resulting integration requirements,
as well as the concerns that cut across the individual system components (see
below).

Safety-Criticality – ERS in safety-critical products [38, 39, 40] such as cars,
airplanes, trains, space ships, power-plant and factory control systems, heart-
pacers and other medical devices are safety-critical by association. Much research
has been invested into developing system models that allow the specification and
verification of safety properties [41, 42, 43, 44] [45, 46, 39, 47].

A remaining research challenge is to provide domain-specific system models
that allow articulation, validation and verification of safety requirements at the

162 I. Krüger et al.

scale of thousands of integrated functions while resolving the dependencies and
interactions between the requirements forces described in this section.

As a case in point we note that failure management is a critical concern for
many ERS [19, 48] and specifically so in the automotive domain. Yet, none of
the widely-used requirements specification techniques for automotive systems
even recognizes the notion of failure as a first-class modeling entity. Of course,
there are techniques such as Failure Mode and Effect Analysis (FMEA) [49] and
Fault Tree Analysis (FTA) [50] – however, these techniques are rarely applied
at the inception and requirements modeling phase, but rather reserved for an
after-the-fact analysis, when the subsystems have already been developed. We
will pick up this topic below, when we discuss cross-cutting concerns, as well as
in Section 7.4, in our case study.

Multi-scale Timing, Asynchronous vs. Synchronous Communication – Time
plays a critical role in ERS. Many models of physical phenomena depend on
time as a variable; for instance, velocity is the derivative of position in time.
ERS control properties are consequently frequently specified in the language of
differential equations. However, this is typically already at the level of a solution
(in the sense of specifying a particular controller) rather than at the level of a
requirement. This is facilitated by the available tool support for control system
development (see below), which favors the graphical specification of particular
solutions rather than requirements.

In general, most system models favor a particular model of time (conti-
nuous vs. discrete), which results in awkward requirements specifications for
systems with mixed discrete-continuous timing properties. Similarly, most sys-
tem models favor a specific communication model (message/time-synchronous
vs. message/time-asynchronous), which again can result in awkward expressions
of requirements for integrated systems with mixed types of communication requi-
rements. Of course, in concrete examples, such as cars, we find a broad range of
timing constraints on scales of milliseconds (motor control) to tenths of seconds
(comfort functions) to seconds (navigation). Similarly, we find a wide variety of
communication mechanisms ranging from time- and message-synchronous com-
munication within an ERS to time- and message-asynchronous communication
beyond vehicle boundaries for remote operation of vehicle functions.

It is one of the key research challenges in ERS to reconcile multiple time and
communication models within such that the corresponding requirements can be
expressed lucidly. In practice, the timing requirements are often only informally
stated on a per-component basis, following some intuitive, or implicit unders-
tanding of overall end-to-end response-time requirements, or implementation-
technology-dependent constraints (processor cycle times, cache hit-rates,
communication bus throughput and latencies). Using simulation and testing as
the main tools, the system is then instrumented to determine worst-case exe-
cution times. The results are then matched against the per-component timing
requirements.

Long Product Life Cycles – Products containing ERS typically have long
product life cycles from inception to retirement. This means that over this

Requirements Modeling for Embedded Realtime Systems 163

lifecycle, many changes in the environment of any particular ERS may occur:
other components may be exchanged, or the product may be placed into pre-
viously unanticipated environments. This, in turn, means that requirements spe-
cifications (and thus the system models supporting them) need to be durable and
accessible throughout the product lifecycle.

Time-to-Market While product life cycles are long, especially in consumer
mass-products, time-to-market is constantly under scrutiny for reduction to react
more rapidly to changes in consumer, environmental or regulatory needs. A case
in point is the rapidly increasing demand for hybrid vehicles on the backdrop of
rapidly rising fuel prices.

This impacts requirements engineering for ERS in the sense that it needs to
be able to respond to rapidly changing requirements to facilitate the agility and
flexibility needs of its container. In particular, the degree to which requirements
can be specified in a modular fashion will have significant impact on how rapidly
the parts of an integrated system of ERS can be adapted to support changes to
the product as a whole. Note that here, we are referring to the structuring of
the requirements, rather than the structuring of the resulting architecture; the
latter is also an important, albeit separate, topic.

Product Lines and Re-Configuration – Similarly, to amortize costs and re-
spond to market needs, OEMs often develop platform strategies and product
lines so as to be able to reuse significant parts of an integrated system, while
adapting others. This leads to the challenge of managing multiple different ver-
sions of requirements sets, which correspond to multiple different configurations
of the integrated system. In the automotive example, some product families have
variation points amounting to hundreds of thousands of different configurations
customers can order. Some of these configuration options are necessitated by
regional laws and regulations, others stem from different options for feature sets
of the vehicle.

Again, the major impact for requirements engineering is on the management
capabilities of the associated requirements documents, so as to avoid costly re-
work; also, there is impact on the ability to verify consistency of the requirements
configurations.

Influence of Hardware Architectures – Sometimes, products containing ERS
evolve from limited feature sets to thousands of software-enabled features; again,
the automotive domain is a telling example. From the beginnings of the use of
electronically controlled fuel injection to today the amount and impact of soft-
ware deployed in the car has grown exponentially. Now automotive engineers are
faced with the challenge of integrating, and supplying power for, 30 to 80 Elec-
tronic Control Units (ECUs) per car, depending on the target market (budget
vs luxury). This challenge includes calibrating the timing between the various
ECUs in their attempt to communicate with other ECUs in the vehicle – largely
due to the scattering of functionality across the various ECUs. To some degree,
this challenge is an artifact of dominant legacy architectures that were adopted
initially, and never reconsidered as more and more functions entered the vehicle
– often due to long-time licensing agreements and cost savings of reuse.

164 I. Krüger et al.

The impact on requirements engineering for ERS is that such legacy architec-
tures often become requirements constraints that also need to be articulated in
the requirements model. At the same time there is a tradeoff between articulating
legacy architecture requirements and writing requirements that describe more
of the “what”, rather than a particular “how”. This tradeoff must be resolved
at the level of the overall engineering process.

Deployment, Update, Diagnostics, and Maintenance – Because of their em-
bedding, ERS are less accessible for deployment, update and maintenance tasks
than desktop or laptop computers. Nevertheless, long product life cycles ulti-
mately necessitate updates to the software or hardware components of an ERS.
Especially in distributed, integrated ERS such as in cars and airplanes, howe-
ver, updates are (as of this writing) difficult to deploy. As mentioned above,
in such systems many ERS originate from different competing suppliers, each
applying their own strategies, technologies and methods for deployment, update
and maintenance (if any). This again points to the specification of dedicated
requirements for these important development tasks at the integration level.

Therein lies significant research potential – today’s formal requirements spe-
cification techniques have yet to broaden the range of requirements types they
address. Most system models (as we shall see in Section 7.2) assume static system
structures and mappings from behaviors to these system structures. This ren-
ders precise specification of deployment, update and maintenance requirements
all but impossible.

The drive towards service-oriented architectures (SOAs) that has gained signi-
ficant momentum in the world of business information systems is slowly gaining
ground in the ERS domain as well. One of the fundamental premises of SOAs
is that the location of a function is secondary to its interface due to static and
dynamic advertisements, registration and binding techniques. This dynamicity
today still clashes with the imperative of unit cost savings, and thus scarce re-
sources per ERS. As attention shifts from per-unit development to integrated
networks of ERS, we expect this reservation to give way to an understanding of
global reuse, dependability potentials and cost-savings.

As technical solutions for these concerns are on the doorstep so should be the
models for specifying the corresponding requirements – yet, there is very little
support in contemporary, widely accepted requirements modeling and enginee-
ring approaches.

Quality and Cross-Cutting Concerns – Deployment, update and maintenance
are good examples of cross-cutting ERS concerns that have little to no support in
today’s system models and corresponding systematic requirements engineering
techniques. Of course, the list of cross-cutting concerns does not stop there. Other
important ones are availability, fail-safety (across units in a set of networked
ERS), security [51, 15], and policy/governance. Availability and fail-safety are
addressed in this and other chapters explicitly, hence we focus on the other two
requirements aspects here.

Security has been regarded as a secondary concern for a long time in ERS
development. After all, most ERS were assumed to be inaccessible from outside of

Requirements Modeling for Embedded Realtime Systems 165

the product they were embedded into. This, of course, has changed radically with
the increased networking among and beyond ERS [52] – suddenly, for instance,
we find that the CLS functionality of a car is accessible via the Internet (to
support remote unlocking to recover locked-in keys). Signals in car networks
today are rarely encrypted, and can thus be reengineered, and reproduced in
malevolent ways (for instance to gain unauthorized entry into the vehicle).

Policy and governance also come into play in networked ERS – together they
address the question under which circumstances a party can (or must) perform a
particular action in the system. In our automotive example this becomes impor-
tant in identifying who has the authority to unlock the vehicle; another scenario
is the prevention of unauthorized after-market components to participate in the
exchange between the authorized ERS.

Similarly, the challenge of diagnostics – what and how much data to collect
at what locations and time points, to identify the root cause of a failure du-
ring system operation – is an area of active research with little explicit system
modeling support, and consequently no broadly accepted formal requirements
specification techniques.

Furthermore, all ERS undergo a set of distinct operational modes, such as
initializing, idling, operating, resetting and suspending, to name a few examples.
From a modeling point of view this can be addressed with regular state-based
modeling techniques such as state machines or activity diagrams. However, there
is a need to explicitly provide access to all or some of these modes at the ERS-
environment interface, especially in a networked ERS consisting of multiple sub-
systems. This need arises both for monitoring purposes and to ensure that sets
of components can be steered into defined operational modes together (say, for
start-up, shut-down, and testing).

Traceability – Because the requirements spectrum of ERS is vast and highly
heterogeneous, traceability becomes a particularly daunting task. Success is
again bound to our ability to articulate requirements at increasingly high le-
vels of detail, and to validate and verify requirements at different levels of abs-
traction against each other. Furthermore, methods are needed that establish a
trace between architecture specifications and implementations at various levels
of abstraction and the requirements that are implemented at these levels. This
challenge is again compounded by the distributed nature of the OEM-supplier re-
lationship, and the desire to support product lines with vast numbers of possible
system configurations, as well as by the tight coupling between requirements
specifications and the target hardware/system platform onto which the ERS
functionality is to be deployed.

At the level of system architecture specification, Model-Driven Architecture
(MDA) [53] has taken a step into a more tractable direction – here, we distinguish
between a Platform Independent Model (PIM) and a Platform Specific Model
(PSM). The PIM can largely be regarded as a highly detailed requirements model
that captures the core system entities and their interactions without specifying
how these are implemented. The PSM, on the other hand, captures all aspects
of the deployment architecture. Then a mapping between a PIM and multiple

166 I. Krüger et al.

PSMs can be be established to capture multiple different deployments for the
same functionality set. However, further research is needed to lift the degree of
abstraction from PIMs to genuine user and system requirements specifications.

Tool Landscape – A wide range of commercial and academic tools for require-
ments engineering and management have been developed. Few, however, cover
even a small subset of the concerns we have brought forward in the preceding
paragraphs to any degree of satisfaction. We attribute this largely to the absence
of comprehensive system models and associated requirements specification tech-
niques and standardized architectures that adequately capture and reduce the
complexities of ERS specific to particular domains.

Of course, tools such as DOORS [54], Rational RequisitePro [55], and Cradle
[56] have displayed their utility in the management [57] (as in organization
and version control) of requirements once they are elicited. Tools such as Mat-
lab/Simulink/Stateflow allow detailed architecture design of and even generation
of efficient code for controllers for which requirements are well understood. Ho-
wever, the challenge of finding adequate system models and requirements specifi-
cation techniques for systematic requirements discovery and refinement remain.
Yes, DOORS integrates with other UML-based tools for requirements elabo-
ration. However, for UML and its derivatives a wide variety of the challenges
posed above are unsolved as of yet; we name just a few examples: consistency
of description techniques and resulting requirements specifications, efficient and
effective validation and verification at the model level, notations and models for
system (re-)configuration, support for cross-cutting concerns in the requirements
models, including failure, safety, security, and policy/governance

7.1.3 Summary and Outline

In the preceding paragraphs we have identified a broad range of challenges
that render precise requirements specifications of ERS particularly difficult. We
have started by identifying requirements as the expression of stakeholder va-
lues, and have established a connection between mathematical system models
and requirements formalized as predicates (or constraints) over these system
models. Then we have called out a number of requirements aspects that a com-
prehensive requirements engineering approach needs to be able to articulate
and manage throughout the development process. Key challenges arise from the
multi-disciplinary and heterogeneous nature of ERS requirements, their distri-
bution, domain-specifics such as a broad range of timing specification needs,
deployment, update and maintenance requirements and the associated quality,
validation and verification concerns.

No currently available tool or integrated tool set addresses all of these concerns
comprehensively. We conclude that this necessitates further research and deve-
lopment in both academia and industry – this volume is evidence of the signifi-
cant research progress to date.

The remainder of this chapter is structured as follows: In Section 7.2 we
review a broad range of requirements engineering techniques proposed in the li-
terature – this provides an overview to what degree the mentioned concerns are

Requirements Modeling for Embedded Realtime Systems 167

addressed in today’s models and techniques. In the absence of a formal, compre-
hensive requirements engineering technique, we briefly recall key best-practices
of requirements engineering and how they relate to model-based development
(Section 7.2) for ERS. We discuss the relationship between requirements and
their traceability to architecture, and from there to implementation, in Section
7.3. In Section 7.4 we give an example for capturing safety requirements of an
automotive Central Locking System using structural and behavioral modeling
techniques so that these requirements can be formally verified.

7.2 Requirements Specifications and Modeling for ERS

Modeling plays an important role in all requirement engineering activities, ser-
ving as a common interface to domain analysis, requirements elicitation, specifi-
cation, assessment, documentation, and evolution. Initially, domain models are
created to describe the existing system for which the software should be built,
covering stakeholders, human actors that interact with the system, hardware
devices, and the environment in which the system will operate. In addition to
behavior, domain models define ”the language” of the system by capturing do-
main entities in a structural way [58]. Then, deficiencies in the existing system
and objectives for the target system are more clearly identified. During requi-
rements elicitation, alternative models for the target system are created, which
may define different boundaries between the target system and its environment.
Models can help in defining the questions for stakeholders and surfacing hidden
requirements. Ultimately, the requirements have to be mapped to the precise
specification of the system and the mapping should be kept up to date during
the evolution of requirements or the architecture.

After requirements are specified (more or less formally), the specifications
are checked for errors such as incompleteness, contradictions, ambiguities, in-
adequacies in respect to the real needs – which all can have disastrous effects
on the system development costs and the quality of the resulted product. The
choice of modeling notations is often a tradeoff between readability and powerful
reasoning techniques: natural language is very flexible, useful for communicating
requirements, but can not capture relationships and is often an expression of sub-
jective reasoning [59, 60]; applied/semi-formal models (e.g., entity-relationship
diagrams, UML diagrams, structured analysis) typically have a graphical re-
presentation which is very useful when communicating with stakeholders and
often offers simulation and animation capabilities; and formal notations (e.g.,
KAOS [61, 62], RML, Telos, SCR [63, 28], process algebra, Promela/SPIN [64])
capture precise semantics, which supports rich verification techniques.

7.2.1 Requirements Models

Many challenges of requirements engineering span multiple application domains.
For instance, business concerns such as conflicts from multiple viewpoints over re-
quirements of different stakeholders are present in domains as diverse as business

168 I. Krüger et al.

information systems, financial applications, avionics, car OEMs and suppliers,
etc. Hence, in this subsection we first briefly present general techniques for re-
quirements modeling that have a broader scope and can be applied on a variety
of domains. As embedded systems may require dedicated techniques for some
aspects such as timing, determinism, and formal verification of safety properties,
we then describe particular techniques for ERS.

Business modeling Goal-based approaches such as KAOS [61, 62] and i* [65,
66] focus on modeling goal hierarchies to capture the objectives of the system,
the associated tasks, and resources. The explicit modeling of goals helps in che-
cking the requirements completeness – the requirements are complete if they
are sufficient to meet the goal they are refining [67]. In KAOS [61, 62], the set
of high-level goals are iteratively refined using AND/OR decomposition, obtai-
ning a graph structure. KAOS allows to define agents and the actions they are
capable of, and the goals can be operationalized into constraints assigned to
individual agents. Each term is formally defined in temporal logic; therefore, a
main contribution of KAOS is to prove that goal refinement is correct and com-
plete [68], which implies proving that requirements correspond to system goals.
Furthermore, [69] shows how conflicts between goals can be formally detected.
The i* [65, 66] framework focuses on two models: the strategic rationale model
describes the goals of the actors and the interactions between goals and tasks
within each actor, whereas the strategic dependency model focuses on the re-
lationships between actors such as dependencies on the goals or resources from
other actors, or dependencies on tasks that other actors should perform. With
such models, properties such as viability of an agent’s plan or the fulfillment of
a commitment between agents can be verified.

Another approach is to focus on business processes (workflows), business rules,
and the services the system provides [70]. For this purpose, UML activity and
collaboration diagrams can be used to show how actors collaborate to perform
tasks. Moreover, UML class diagrams can show the roles of actors within the
domain and can be used to capture business rules, although often in an implicit
way through the class composition and multiplicity constraints. In UML, bu-
siness rules, as well as pre- and post- conditions, can be explicitly specified in
Object Constraint Language (OCL) [71].

Modeling information and behavior is an important part of the requirements
specification process dealing with the structure of the system in terms of entities
and their relationships; the behavior in terms of states and events that deter-
mine state transitions; and interactions in terms of communication patterns,
dataflows between system components, parallelism, concurrency coordination,
and dependencies – especially temporal dependencies in the case of ERS.

One way for specifying the structure of the systems is to use entity relation-
ship (E-R) diagrams to capture domain concepts and data models. Although
E-R diagrams are just notations, the concepts of objects, classes, attributes,
and instances map well to domain entities and enable an easy transition to
object-oriented system design. This ease of transition from requirements to de-
sign is sometimes a drawback as it becomes difficult to distinguish the real user

Requirements Modeling for Embedded Realtime Systems 169

requirements and their rationale from design decisions inferred from underspe-
cified requirements. Also, focusing on single use cases may prevent the deve-
lopment of the system vision or the ”big-picture”. In such cases, the solution
resides in operating with partial system specifications through an agile develop-
ment process that iteratively refines the requirements and constructs the vision
of the final system. Standards such as UML can be used to achieve consistency
between models developed in different iterations.

Modeling the system behavior is generally accomplished using variants of fi-
nite state machines (FSM) [72, 73] and notations such as Dataflow Diagrams
(DFD) [74]. The Structured Analysis is a data oriented approach for concep-
tual modeling initially intended for information systems and later adapted to
ERS. It presents a development/transition path from an indicative model of the
current system to an optative model of the new system. This methodology fa-
cilitates communication between stakeholders and system builder as it does not
require software development expertise and can be easily used in domain terms.
Abstractions and partitioning of the system into subsystems with clear bounda-
ries make it easier to handle larger projects. However, a major drawback comes
from the confusion between modeling the problem that the system is intended
to solve and modeling the actual solution. Also in particular for ERS, the timing
aspects are mostly invisible in the system model, making later tracing between
the system behavior and its requirements a difficult task [75, 76].

Several variants of this approach exist, Structured Analysis and Design Tech-
nique (SADT) [77], Structured Analysis and System Specification (SASS) [74],
Structured System Analysis (SSA) [78], Structured Requirements Definition
(SRD) [79]. SASS is the closest relative of the classic structured analysis tech-
nique. SADT is a semi-formal technique supports the formalization of the de-
clarative part of the system, but uses natural language for the requirements
themselves. It provides a data model linked through consistency rules with a
model for operations. It also uses activity diagrams instead of dataflow dia-
grams and distinguishes control data from process data. SSA uses a notation
similar with [74], but adds data access diagrams to describe contents of data
stores. SRD introduces the idea of building separate models for each perspective
and then merging them.

Specific Requirements Models for Embedded Systems A wide range of real-time
systems encountered in industrial environments, power plants, cars, airplanes,
can be modeled and reasoned about as “embedded systems”, because of the role
of the computing system in controlling a physical process and the integration of
the two aspects of “controlling” and “controlled” into a common system [80].

Modeling the requirements for embedded systems is crucial to be able to verify
their behavior. Correcting requirements errors, under-/over- specifications, or si-
milar imprecisions later in the development cycle can be extremely expensive [81,
82]. “The importance of determinism cannot be overestimated; deterministic sys-
tems are one order of magnitude simpler to specify, debug, and analyze than non-
deterministic ones.” [83]. Hence, formal models for specifying the requirements of
ERS try to prevent costly errors [43] or that may ultimately lead to accidents.

170 I. Krüger et al.

SCR Tabular notations [84] have been used for decades to specify require-
ments for readability reasons. The Software Cost Reduction (SCR) requirements
methodology [63, 28] was introduced for engineers working on the software for
embedded systems. It was later refined for complete systems to incorporate both
functional and nonfunctional requirements [85, 86, 87]. The method promotes a
tabular notation for specifying requirements, a finite state machine model, and
special constructs for expressing constraints such as modes, terms, conditions,
events, inputs and outputs [63]. The method associates a table for each output,
term, or mode class of the specification and enables system decomposition into
smaller, more manageable parts.

Faulk’s [88] initial formal foundations of this method use various classes of
tables as total functions and mode classes as finite-state machines defined over
events. There are monitored and controlled variables and input and output
data items (provided by external devices such as sensors and actuators), where
a monitored variable reflects the effect of the environment on the system behavior
and a controlled variable reflects the control of the system on some environmental
aspect. Events denote changes of value in the entities forming the system, where
input events are trigged by the environment, whereas conditional events may
also be triggered by internal system computations.

The Four-Variable Model [85] extends this method to systems by including
critical aspects of timing and accuracy as mathematical relations on monitored
and controlled variables. For complex systems several mode classes may operate
in parallel. [86] introduces another similar abstract model. A specialized form [89,
90] of the Four Variables model is used as formal foundation for a tool suite [91,
92] consisting of a specification editor to create and maintain specifications,
simulator for symbolically executing the specified system, automated consistency
checker [93], and verifier for critical properties such as timing [90, 94]. These tools
enable the developer to ensure proper syntax, type correctness, completeness of
variable and mode class definitions, mode reachability and proper setting of
initial values in all modes, disjointness (i.e., unique defined entities), coverage
and acyclic dependencies.

The CoRE methodology [95] tries to address the shortcomings of its SCR an-
cestor, namely the lack of structuring mechanisms for variables (e.g., aggregation
or generalization), models (e.g., and/or decomposition), and tables (e.g., refine-
ment relationships). [96] proves the scalability of the approach in the context of
large-scale avionics systems. [97] provides a practical comparison between SCR
and CoRE within the context of a flight guidance system.

Requirements State Machine Language (RSML) [98, 99, 100] is a formal state-
machine based hybrid approach using both tabular and graphical notations bor-
rowed from Statecharts [101]. It introduces boolean tables and guards to describe
state transitions in one or more high-level state machines that can communicate
directly with each other. RSML tables describe transition conditions based on
input events and may generate as result output events. Modes are defined expli-
citly as functions of input variables. The approach employs a state-based black-
box model for all system components and their interfaces, which separates the

Requirements Modeling for Embedded Realtime Systems 171

specification of requirements from design aspects and enables formal analysis of
the entire system its correctness and robustness [98].

[102] has a similar approach with tables and state machines but uses trace se-
mantics for system analysis. Other specification languages such as Statemate [103],
Hatley [104], Ward [105], include various models, yet not all of them are formally
defined to enable automatic analysis and behavior verification. ProCos [106] pro-
vides a similar language but uses process algebra for the system model.

UML for Embedded Systems – UML can be used at different levels of the
development process, especially for requirements modeling and functional de-
sign [107]. The high-level models of the system specify the requirements for
behavior, domain structure, and QoS properties. The advantage of UML is its
capability of modeling both system structure and behavior, specifically the struc-
ture of the problem domain and the interaction and collaboration between dif-
ferent agents in the system.

The profile mechanism in UML allows to define families of languages targe-
ted to specific domains and levels of abstractions. For example, [108] presents a
UML profile for a platform-based approach to embedded software development
using stereotypes to represent platform services and resources that can be as-
sembled together. Standardization activities under OMG include SysML [109]
and MARTE [110], a new UML profile for modeling and analysis of Embedded
Real-time Systems, in addition to the existing UML profile for Schedulability,
Performance and Time [111]. UML currently supports the specification of timing
and performance requirements, and could be extended to support also other QoS
requirements such as for power consumption and cost.

Several embedded systems require more than one model of computation to
reflect the nature of the application domain, whereas UML supports only event-
based models. Therefore, several proposals have been made to extend UML: [112]
introduces support for continuous-time by using stereotypes to represent conti-
nuous variables, time, and derivatives; [113] extends UML with a programming
language for hybrid systems; and D-UML [114] introduces a dataflow mechanism
(distinguishing between signal ports and data ports) coupled with mathematical
equations in UML/Realtime.

SysML [109] customizes and re-uses a sub-set of UML concepts for systems
engineering applications. It tries to be a cross-domain solution for modeling
entire systems, without making domain-specific description languages obsolete.
The SysML “block”, which abstracts the software details in UML classes, is a
significant extension in the direction of modeling complex ERS, where software
is just one aspect besides electronics, mechanics, etc. Blocks can be used to de-
compose the system into individual parts, with dedicated ports for accessing
their internals. SysML also adds requirements modeling as a key aspect of the
system development process. It provides requirements diagrams, tree structures,
or tables, which not only support the documenting requirements process, but
also provide traceability to requirements throughout the design flow, ensuring
that requirements are satisfied. SysML groups behavior, structure, analysis, and
requirements in a single, integrated system model. It also supports extensions for

172 I. Krüger et al.

guarding the information flow and the entities of the system. SysML is an impro-
vement over UML in that it allows to articulate requirements concerns relevant
at the system engineering level, including function networks, and requirements
allocation to subsystems. However, both UML and SysML lack the binding to
a concrete system model that enables formal analysis of requirements and their
associated models. Also, there is still too little support for a seamless transition
between requirements development and other development activities.

7.2.2 Programming Models

The observable behavior of the ERS is greatly influenced by the underlying pro-
gramming model used for their construction, which plays a significant role in en-
gineering the system requirements. High-level requirements are decomposed into
requirements for individual software components according to the constraints
supported by the programming model. For example, the requirement that a ve-
hicle must stop within a given time frame since the driver pressed the brakes may
translate into deadline requirements for several tasks and messages. Hence, the
interaction between the ERS and its environment is governed by two different
views over the notion of time: the stakeholders provide requirements in terms of
environment time, whereas the system is implemented in terms of software time.
The environment time represents the continuous time flow observable from the
external environment of the ERS (i.e., wall-clock time). On the other hand, the
software time is a discrete time flow of the ERS itself measured by the number of
occurrences of some events such as the pulses of the CPU clock. [115] identifies
three real-time programming models: synchronous, scheduled, and timed model.

The Synchronous model assumes that the ERS performs all computation and
communication instantaneously [83, 116], and can always keep pace with the
environment. This assumption imposes great constraints on the system require-
ments as an infinitely fast computer is not achievable in practice. Hence, verifying
the ERS model through simulation may fail to show that, in practice, the res-
ponse time of the implemented ERS may still be far from “atomic” and present
output jitter.

Depending on the functional requirements of the ERS, existing synchronous
languages can be classified under two categories: control-flow and data-flow orien-
ted. The control-flow oriented languages are also imperative languages and are
adequate for control-intensive applications such as communication controllers,
real-time process control. Esterel [83, 116] has high-level, modular constructs
that lead to a real structure of reactive programs based on the semantics of the
finite-state Mealy machine. Statecharts [101] has a graphical formalism and it
is not fully synchronous. Argos [117] simplifies the formalism of Statecharts and
provides full synchrony. The data-flow oriented languages (also known as decla-
rative languages) are appropriate for data-intensive applications such as digital
signal processing and steady stream process-control applications. Lustre [118]
is a declarative language that supports only the data-flow systems that can be
implemented as bounded automata-like programs.

Requirements Modeling for Embedded Realtime Systems 173

The synchronous approach is used in modeling tools such as Scade [119, 120],
which supports the development of real-time controllers on non-distributed plat-
forms or distributed platforms like the Timed-Triggered Architecture [121]. The
Scade suite supports the design of continuous dataflows (based on Lustre) with
discrete parts realized by a state-machine editor (based on Esterel). The com-
putational models are compatible by transforming values and signals [119]. The
Scade Suite is used by Airbus for the development of the critical software em-
bedded in several aircrafts.

The Scheduled model relies on the classical scheduling theory for real-time
programming. Functional requirements can be easily accommodated as the ERS
may be implemented using sequential languages (e.g., C/C++), or a parallel pro-
gramming language (e.g., Ada, Occam, CSP, RT-Java). Sequential languages lack
concurrency and require a real-time operating system (RTOS) for inter-program
communication and synchronization. Parallel languages support concurrency and
communication as first-class concepts and typically have specialized run-time
support systems. In this model, the software time is no longer an abstract no-
tion equal to zero, but an unpredictable run-time variable influenced by the CPU
speed, scheduler, utilization level, etc. Hence, schedulability analysis is necessary
to guarantee that all computations complete in the allocated time.

There exist several UML compliant modeling tools that support code gene-
ration to C/C++, Java, Ada, different RTOS, and CORBA. UML provides a
modeling framework for architecture description and behavior descriptions, but
it is still work in progress to properly include real-time aspects in UML 2.0. The
first step was made with the UML Profile for Schedulability, Performance, and
Time [111]. Predictability analyses include the control flow analysis for sequence
diagrams.

The Timed Model abstracts from ERS platform and the software time is
always equal with the environment time, such that all computations and com-
munication activities take a fixed logical amount of time, assuming that there
is enough soft time to perform the computation under the real-time constraints
imposed by the environment. The compiler of the specification language has to
verify the time-safety of the computation and guarantee that there is enough
software time to complete the computation before its deadline.

There are just a few examples of languages supporting this model, most of
them based on the Logical Execution Time abstraction introduced by Giotto
[122] – a task has a release time when it reads the inputs, and a terminate time
when it provides the outputs to the environment. Within this time-span, the
way the task executes on the target platform is irrelevant for the environment.
Giotto is a high-level time-triggered language, which decouples the timing and
functionality aspects, and abstracts from the execution platform. As a meta-
language, it describes the intended temporal behavior of a system and expects its
functionality as being externally implemented in a general-purpose programming
language such as C, Oberon, or Java. XGiotto [123] extends Giotto to support
event-driven programming, while preserving the benefits of the timed-model with
fixed response-time.

174 I. Krüger et al.

The Timing Definition Language (TDL) [124, 125] adds component support
and abstracts from the distributed platforms. It provides a complete tool-chain
fully integrated in the Matlab/Simulink suite. The developer can model the
functional aspects of the ERS in Simulink and the timing aspects in the in-
tegrated TDL visual editor. The ERS can then be verified through simula-
tion, which based on the timed model provides an accurate representation of
the ERS behavior. The TDL compiler is extensible through plug-ins such as
the bus schedule generator that enables automatic scheduling [126, 127] of the
communication in a distributed system. Hence, components can be developed
independently regardless of their distribution – this is the so-called transparent
distribution [128] feature of the language that preserves the time and value de-
terminism of the application regardless of how its components are deployed in a
distributed solution.

7.3 Requirements Engineering Approaches: Processes
and Practices

In the preceding two sections we have established why requirements engineering
for ERS is inherently difficult, and have surveyed some of the techniques and
tools available in the literature to address this difficulty from various angles.
From this overview it becomes clear that much progress has been made and
many research challenges remain in this important field. In particular, there is
“no silver bullet” in sight, nor is there one to be expected. Requirements enginee-
ring demands a holistic view on the problem at hand to address the challenges
we have brought forward in Section 7.1. In this section, we recall a few of the
practices that have emerged in collecting requirements for ERS, with an eye on
opportunities for building precise models that can be used throughout the deve-
lopment process. We do not attempt to give complete account of requirements
engineering; we refer the reader to [129] for a comprehensive review. Instead, our
aim is to draw attention to a few practices that, based on our experience, are
particularly valuable for ERS projects.

7.3.1 Requirements Development and Management

It is important to recall that ERS are embedded into a container product; conse-
quently, the requirements engineering process for ERS is embedded into and has
to interact with the overall systems engineering process for the container pro-
duct. This places constraints at the timelines in which requirements engineering
for the ERS can occur, determines when requirements artifacts must be delive-
red into the overall process, and often provides a significant amount of context
requirements for the interaction between the ERS and the rest of the system.

Even when not articulated explicitly, requirements play a central role throu-
ghout the development process of ERS. Following [129] we distinguish between
requirements development and requirements management. Requirements deve-
lopment refers to all activities that lead to establishing a requirements baseline

Requirements Modeling for Embedded Realtime Systems 175

agreed-upon by the project’s stakeholders. The baseline describes, as tightly as
possible, the original understanding of all project participants about what the
system to be built is. The requirements management process then starts from
the baseline, and includes all activities required to respond to changes to that
baseline. Its major activities include [129]:

– Define a change control process, including a Change Control Board (CCB)
– Maintain change request history
– Assess impact of change requests, and requirements volatility analysis
– Update of requirements baseline per CCB-decisions
– Establish versioning and change management tools

Explicit requirements management has the advantage that phenomena such as
requirements creep (more or less sublime addition of requirements without allo-
cation of new resources for their analysis and implementation) and requirements
thrashing (a constant barrage of more or less meaningful change requests) be-
come more transparent to all stakeholders, and can thus be addressed at the
management level.

The distinction between development and management is important, because
it draws explicit attention to the fact that requirements change needs to be
explicitly managed throughout the development process.

Note that the core activities involved in requirements development are inde-
pendent of the type of development process chosen. Any development process,
be it plan-driven or agile [130], needs to find out what the system to be built
is. The only difference is the value the respective process types place on formal
documentation of the requirements, and how frequently the change process is
triggered and executed.

A vast set of techniques has been developed and promoted to develop the
requirements baseline. [129] identifies elicitation, analysis, specification, and va-
lidation as the core requirements development activities. Elicitation refers to
activities that produce requirements from domain analysis and stakeholder in-
teractions. Analysis refers to the elaboration, refinement and structuring of the
requirements previously elicited with an eye towards building high-level design
models that establish context for the requirements; this, again, occurs with stake-
holder involvement. Specification refers to the prioritization and documentation
of the analyzed requirements for transition to establish the requirements base-
line. Validation refers to the inspection and testing of the specified requirements
before they enter the baseline.

In practice, of course, requirements development is a highly interactive, itera-
tive process, in which elicitation, analysis, specification and validation interleave.
Depending on the overall systems engineering process of the product into which
the ERS is embedded, these activities also interleave with and are informed by
the activities of the overall systems engineering process.

In Section 7.1 we have seen that many requirements aspects for ERS are
cross-cutting in the sense that they affect not only one component of the resul-
ting system, but relate to an entire network of components. Note that this is
not primarily a result of unnecessarily distributed architecture design (although

176 I. Krüger et al.

this can be a cause as well.) Instead, this phenomenon arises from the inherent
complexity of multi-functional systems, where hundreds to multiple thousands
of software functions need to be offered and harnessed into a system of systems.
Any decomposition of these functions into components will lead to some form
of cross-cutting. Failure management is a prime example: no matter how the
set of functions is sliced into logical or physical components, failures cannot be
effectively managed from within these individual components – communication
across components needs to occur to communicate failures, or to take remedying
actions.

It is our belief that requirements engineering for ERS necessarily focuses on
the interplay of the entities that make up the system, and the associated cross-
cutting concerns. The rationale behind this is simple: because of the embedded
nature of an ERS there is interaction between the ERS and its environment.
Therefore, these interactions need to be understood to the maximum extent
possible. Furthermore, for all but the most trivial systems, the ERS will itself
decompose into a set of interacting components, each of which can be understood
as an embedded component as well. Consequently the same rationale applies for
the development of the ERS as a unit. In a networked system of ERS all quality
properties of the system emerge from the interplay of all constituent ERS. Hence,
the cross-cutting concerns that are crucial to defining the overall system’s quality
are naturally associated with the interplay of the constituent ERS.

Furthermore, we believe that to properly address the requirements aspects
enumerated in Section 7.1, explicit domain models that speak to these concerns
need to be constructed. As we will see in the case study of Section 7.4, creating
such explicit domain models enables formal end-to-end analysis at the system of
systems integration level – as opposed to the component-by-component level.

Therefore, we see the key activities in the requirements development process
to bring out a sufficiently detailed domain model for ERS as follows:

(1) Identify the stakeholder group for the ERS under consideration.
(2) Identify pertinent business and process constraints for the ERS per stake-

holder class.
(3) Identify the set of functions expected of the ERS by the stakeholder group.
(4) Identify the internal and external actors and data entities involved in these

functions.
(5) Identify the interactions (event-, message-, control-, and data-flows) among

the identified actors.
(6) Iterate over the identified functions to identify the actors and data entities

needed to address the relevant cross-cutting concerns. Associate these with
the interaction model built in activity 5.

(7) Identify operational infrastructure constraints, including mandated deploy-
ment contexts.

(8) Document requirements relative to the resulting models of structure and
behavior.

(9) Validate requirements based on the resulting models.

Requirements Modeling for Embedded Realtime Systems 177

Clearly, each of these activities breaks down into a variety of sub-activities and
associated techniques; here, we focus on a high-level overview of these activities.

Activity 1 is critically important as per the definition of the term requirement
we have given in Section 7.1. Recall that requirements are intimately linked to
stakeholder values and, therefore, the set of stakeholders whose values the system
is to address needs to be fully understood and modeled explicitly, sometimes via
proxy elements, such as sensors.

Activity 2 serves to bring forward requirements aspects that are often neglec-
ted initially, and later turn out to be major success factors. This includes an
articulation of the cost model that underlies the development process for the
ERS and its container system. This is particularly important, at the integration
level if the ERS is part of a system of systems. Similarly, this is the place to
identify process requirements and laws or other regulations that govern the de-
velopment of the ERS and its container system. This can influence the resulting
domain models by creating data entities, actors or cross-cutting concerns that
need to be further analyzed for functional and quality requirements.

Activity 3 is facilitated by a wide variety of techniques, such as use case [131]
or user story analysis, stakeholder focus groups, flow analysis (event-, message-,
control-, or workflow). For ERS we find it particularly useful to hold focused
stakeholder workshops, within and across stakeholder groups to bring out not
only per-component, but also across-component requirements. This is particu-
larly critical for end-to-end and cross-cutting requirements aspects such as ti-
ming (specifically deadlines or time-budgets), failure modes and management,
security, policy/governance, and deployment, update, and maintenance require-
ments. In these workshops we typically execute steps 4 through 9 together with
the workshop participants to create initial domain model candidates on the spot.

Activities 4 through 7 amount to developing an ontology [132] and behavio-
ral model of the core concepts that make up the domain model for the system
under consideration. For an ERS this necessarily includes a model of the envi-
ronment into which the ERS is placed. For the structural aspects of this domain
model we favor class diagrams capturing the actor and data classes and their
structural relationships. For the associated interaction model, we favor Message
Sequence Charts (MSCs) and related interaction specification dialects such as
Life Sequence Charts (LSC) [133], which can be augmented with constraints that
reflect the cross-cutting concerns (see examples in Section 7.4).

A key observation is that the domain model should provide explicit hooks to
associate the cross-cutting concerns with the interactions identified for the do-
main entities. This ensures (a) that the cross-cutting concerns are in the purview
of the project team from the earliest stages as end-to-end aspects, rather than
becoming an integration-afterthought, and (b) makes the cross-cutting concerns
available for explicit validation and verification, rather than being an implicit,
inaccessible aspect of the requirements model.

All entities mentioned in a textual description of a requirement should occur
in the resulting model, and for each modeling entity there should be at least one
requirement to which they are related.

178 I. Krüger et al.

The domain model is of such paramount importance, because we can derive
a variety of other models from it, and use all models together for validation and
verification. Derivative models include, for instance, a context-diagram, which
shows the system entities outside the ERS under development, and what the
structural and behavioral relationships between the two are. Furthermore, a use-
ful domain model will capture the operational modes (high-level state transition
view), major exceptions and failure modes, and the input/ouput protocols requi-
red at the interface of the ERS and its environment. It is central to the success
of this exercise that it results in a model that captures the entities and rela-
tionships relevant to the problem domain and its associated stakeholder groups.
This greatly facilitates validation and verification, as well as the derivation of
design and implementation.

Of course, this modeling effort depends on a deep (and deepening) understan-
ding of the problem domain. In recent years, there have been important attempts
to help in building this understanding by providing catalogs of requirements pat-
terns both ERS-specific, and domain-neutral. For instance, [134] have identified
a catalog of ten requirements patterns that address the following concerns:

– Controller Decompose Pattern: decomposition of an ERS into subsystems
according to responsibilities

– Actuator-Sensor Pattern: relationships among sensors, actuators, computa-
tional components and associated (environment) models

– Examiner Pattern: device monitoring and error logging
– Fault Handler Pattern: core entities and models for handling faults in ERS
– Mask Pattern: resource mediation for devices with many sensors and actua-

tors
– Moderator Pattern: decoupling
– User Interface Pattern: reusability and flexibility for user interfaces associa-

ted with ERS
– Channel Pattern: communication facilitation among components
– Monitor-Actuator Pattern: fault management for actuators

Each of these patterns, among others, comes equipped with an explanation of
the intent, motivations, constraints, applicability, entities and their structural
and behavioral relationships.

Similarly, [135] presents a set of performance-related requirements patterns
that are relevant for ERS. This includes patterns for response time, throughput,
static and dynamic capacity (memory, computational power), and availability.

Besides these ERS-relevant requirements patterns, [135] also brings forward
a rich set of more generic templates. These cover technology choices, standards
compliance, inter-system interfaces, data typing and archiving, reporting, flexi-
bility, and access control.

We call out activity 6 explicitly, because it is key to obtaining comprehen-
sive requirements models for ERS. For each identified function of the ERS, the
requirements pertaining to all quality properties [129] (availability, efficiency,
flexibility, integrity, interoperability, reliability, robustness, usability, maintaina-
bility, portability, reusability, testability, security, safety, deployment, update,

Requirements Modeling for Embedded Realtime Systems 179

maintenance) should be iterated over to derive specific requirements that per-
tain to these qualities. Again, all of these qualities are cross-cutting in nature,
and intimately linked to interactions among the identified system entities, or to
the container system. Many of these qualities can thus be addressed at the
integration- rather than the per-component-level. Automotive manufacturers
and suppliers, for instance, have recognized this and are working together to
provide a car-wide “middleware” that addresses some of these qualities across
the components of the vehicular ERS networks.

Activity 7 serves to identify requirements that derive from the technical
context of the ERS. Often, the technical infrastructure into which an ERS has
to integrate is fixed long before the ERS proper is conceived. Then, this tech-
nical infrastructure injects deployment constraints into the ERS requirements
set. In a clean-slate development, of course, one would seek to avoid this, or at
least design the technical infrastructure after the integration requirements are
sufficiently understood. In reality, however, legacy technical infrastructures exist
and have to be considered. This interrelates with activity 6, of course, because
some of the cross-cutting concerns may be discharged by the technical infra-
structure if the latter is functionally rich enough. In any case, the capabilities
of this infrastructure need to be carefully examined so as to know which of the
cross-cutting concerns need to be lifted explicitly into the requirements model,
and which ones are readily dealt with in the infrastructure.

Activity 8 refers to articulating the gathered requirements and their associated
domain models in the form chosen by the project or mandated by a process
requirement. For ERS this typically involves writing a requirements document
that defines the scope, stakeholders, context, and all business, product, and
process requirements elicited as part of the previous process activities. Discussion
of an elaborate requirements document outline is beyond the scope of this text;
we refer the reader to [129] for an example. However, we note that the material
gathered in the previous activities typically provides a rich and authoritative
source for this documentation activity.

Activity 9 can build on the models created in the preceding activities. The
typical methods practiced for validation today are inspection, prototyping and
simulation, automated consistency checking and verification. Each of these is fa-
cilitated greatly by detailed requirements models, as well as by broad stakeholder
participation.

In reality, of course, all these activities will occur in an iterative, often inter-
leaved fashion, rather than being executed in a prescribed sequence. The product
of executing these activities, however, is a comprehensive requirements model for
the ERS under development.

7.4 Example: Failure Management in Automotive
Software

In the automotive domain, software has become the enabling technology for
almost all safety-critical and comfort functions offered to the customer. The

180 I. Krüger et al.

features supported by automotive software and electronics are increasingly
dependent on the interactions of distinct components designed by different sup-
pliers. Because of the increasing level of interaction between different compo-
nents, industry standards, including OSGi [136] and AMI-C [137], introduce
service based software-architectures and corresponding middleware layers as mo-
deling and deployment abstractions. This marks a significant shift from
component- to service-oriented software development in the automotive domain.

A major technological advantage of a service-based vehicle-electronics soft-
ware architecture over a traditional component-based one is the ability to move
the hardware-module-oriented partitioning of the vehicle system to a later point
in the design cycle, allowing greater flexibility in integrating functions into hard-
ware and potential elimination of redundant hardware across the vehicle. To
exploit this advantage it is desirable to be able to model the vehicular soft-
ware architecture on multiple levels, from static models of software structure to
executable, time-accurate models of the actual system. This, in turn requires
specifications for services that are sufficiently formal to allow tools to be built
that check the integrated architecture for consistency and completeness, and to
allow modeling tools to use the service-oriented specifications directly.

In the following, we illustrate the applicability of a service-oriented approach
to model parts of the Central Locking System (CLS) found in typical modern
cars. The CLS in the described form acts as a representative for similar problems
in automotive control electronics and distributed, reactive systems in other ap-
plication domains. We present aspects of requirements modeling, deriving a cor-
responding architecture, and performing safety-checking on the system model.

7.4.1 Central Locking System (CLS)

In modern cars, even a simple function such as locking the vehicle, i.e. central
locking system (CLS), interacts with a significant number of other functions.
There are not only interactions with the obvious modules, such as those control-
ling the individual door locks, but with less obvious systems as well, such as
the vehicle speed sensor (to implement lock on drive away), the exterior lights
(for remote lock acknowledgment) and the radio tuner and seat controllers (for
setting driver preferences on unlock). The various interacting features in such a
system are distributed across a number of different component modules, which
are typically produced by different suppliers. As interactions between different
subsystems increase, the features themselves become distributed across a num-
ber of components. This leads to increasing integration issues as features come
to be implemented by software produced independently by a number of different
suppliers.

Although we are considering a simplified version of the CLS for our study, it is
evident that, given the size and distributed nature of the system, it is practically
impossible to describe all the behaviors of all components involved completely.
Instead, we only have a partial view on the requirements of the overall system.

Requirements Modeling for Embedded Realtime Systems 181

7.4.2 Modeling the CLS Requirements

In the previous sections of this chapter, we have suggested a process for eli-
citing and managing requirements in 9 points. In this section, we present this
approach using the CLS example. We demonstrate the use of a Service ADL to
capture both the CLS system architecture and a set of dependability require-
ments along with formal verification techniques to verify the implementation of
the dependability requirements.

1. Stakeholders Identification represents the first step of our requirement ma-
nagement process and prescribes the identification of the stakeholders for the
system under consideration. In our case, the groups interested in the systems
are obviously “the driver and passengers” of the car that will use the given
CLS. Other groups come from the car development team, for example, the “en-
gineering team” that designs the electro mechanical actuators for locking and
unlocking the car. Each supplier is also a stakeholder that will have to agree
on the final integrated design and can impose constraints to other parts of the
system. In addition, marketing, cost, safety and legal considerations have great
influence in establishing requirements for the vehicle.

2. Business and process constraints per stakeholder is the second step, which
mandates to identify for each stakeholder the pertinent class of business or pro-
cess constraints. In this case, we can analyze the concerns of the “safety and
regulations” stakeholder and identify some critical requirements. One of such
requirements is that “all the doors of a car shall be unlocked after an accident”.

This type of regulation is not detailed enough to be a requirement directly.
We first need to have a proper model of the car system and of the CLS to be
able to articulate it further.

3. Identify functions expected by stakeholder – to support the previously stated
rule, the “safety and regulations” stakeholder assumes that there exists in the
system a function to detect an accident and a function to unlock all doors. It
is important to notice that there will also be a timing constraint on the time
interval between the accident and the unlocking of the car. For example, we can
assume that requirement (1) is “the system shall unlock all doors of the car
within half a second from the detection of an accident”. The problem with such
definition is that we need to define how an accident is detected and how reliably.
Moreover, during an accident there could be failures in the system, which limit
the functionality of the unlocking mechanism. This requirement could then be
complemented by requirement (2) stating that “even if one electronic control
unit of the car completely fails in an accident requirement 1 must be fulfilled”.

4. Identify actors and data for the functions is the fourth step, where we ana-
lyze the requirements and functions identified so far, which leads to a number
of use cases and actors. We identify the actors that participate in the services
of the system under development, abstract from the concrete system elements
and identify the communication roles. These roles will likely map to a variety
of different component configurations depending on the concrete make and mo-
del under consideration. For instance, in a concrete implementation, the central
controller (Control) and the lock management (LM) might end up on the same

182 I. Krüger et al.

Fig. 7.1. Components and relationships in the CLS example

ECU, whereas the database (DB) and the lighting system (LS) might reside on
others. Figure 7.1 depicts a simple configuration with each role being implemen-
ted by a system component. We indicate components using labeled boxes, and
directed communication channels between them using labeled arrows. In a real
car, most of these entities would be implemented on different ECUs (KF being
a likely exception).

5. Identify interactions among actors – the starting point for this step is
analyzing the set of relevant “use cases”. In our case, we use message sequence
charts to capture the identified use cases. Some of the use cases for the CLS are:
locking, unlocking, lock doors, unlock doors, transfer key ID, and handle crash.
For reasons of brevity, we consider only a subset of these services here; we refer
the reader to [138] for details.

transfer key ID is part of the unlocking process and associates seat and mirror
positions, as well as tuner settings with the driver’s key. handle crash is a cross-
cutting service that can interrupt all others, it captures the functionality that
whenever a crash signal occurs the CLS has to unlock all doors.

While both the unlocking of the car and the transfer of a key ID are triggered
by the user pressing a key on the key fob, we consider these two use cases
separately because there exist keys that can unlock the car (mechanically, for
instance) but do not transmit key identifiers. Therefore, separating use cases and
corresponding requirements enable more modularity and reuse across different
models of cars.

To capture the interaction patterns defining services we use an extended ver-
sion of Message Sequence Charts (MSC) [139, 140]. MSCs have proved useful
as a graphical representation of key interaction protocols, originally in the tele-
communications domain. They also form the basis for interaction models in the
most recent rendition of the UML [141]. In our extended MSC notation, each
MSC consists of a set of axes, each labeled with the name of a role (instead of a
class or component name). Roles map to components in a later design step of the
development process. An axis represents a certain segment of the behavior dis-
played by the component implementing the corresponding role. Arrows in MSCs
denote communication. An arrow starts at the axis of the sender; the axis at
which the head of the arrow ends designates the recipient. Intuitively, the order
in which the arrows occur (from top to bottom) within an MSC defines possible
sequences of interactions among the depicted roles. We also use labeled boxes in

Requirements Modeling for Embedded Realtime Systems 183

Fig. 7.2. MSC for “unlocking”

our MSCs to indicate alternatives and unbounded repetitions. High-level MSCs
(HMSCs) indicate sequences of, alternatives between and repetitions of services
in two-dimensional graphs - the nodes of the graph are references to MSCs,
to be substituted by their respective interaction specifications. HMSCs can be
translated into basic MSCs without loss of information [140].

Figure 7.2 shows an example; here we depict the interactions defining the
“unlocking” service. It consists of a triggering message “unlck” from the key fob
to the central controller. The latter forwards the “unlck” message to the lock
management (LM). By introducing the LM role we abstract from the concrete
number of locks present in the vehicle (doors front/back, trunk, moonroof, win-
dows, security system, etc.). When the locks have been operated, LM returns
an “ok” message to the control role. Upon its receipt, the control role issues a
“door unlckd sig” message to the lighting system role, which handles the signa-
ling of the locks’ states to the driver. Clearly, this is just one course of actions
that may happen during the execution of the unlocking service. The extended
MSC dialect we use enables succinct specification of such alternatives [140, 142].

The next use case we turn into a service is “transfer key ID”. Upon receipt
of an unlck message the control role sends a getID message to the key fob; KF
sends the id to Control, which relays it to the DB (see Figure 7.3). Again, Control
switches from state LCKD to UNLD in the course of executing the service. The
preceding two services are overlapping in the sense that both share references to
the unlck message and states LCKD/UNLD. To compose these services into an
overall service specification we have to identify the overlapping messages, and
“synchronize” the execution of the services on these joint messages.

6. Identify elements to address cross-cutting concerns – along the main func-
tional requirements for CLS we have also identified a cross-cutting requirement.
In case of an accident, all doors need to be unlocked immediately. This concern
comes from safety regulations that cars need to fulfill. Even if this concern is
not part of the normal functions performed by CLS, it imposes a new behavior
that interacts with the normal locking and unlocking behavior previously defi-
ned. Therefore, we need to identify structural elements and messages that are
affected by this behavior. Moreover, we need to identify when the new behavior
appears.

The handle crash service has a particularly simple interaction pattern (see Fi-
gure 7.4): whenever the control role receives an “impact” message it responds by
sending “unlck” to the lock management role, resulting in the unlocking of the

184 I. Krüger et al.

Fig. 7.3. MSC for “transfer key id” Fig. 7.4. MSC for “handle crash”

vehicle. Methodologically this can also be handled by introducing a “preemp-
tion” concept that treats the response of the control role as the handling of a
preemption triggered by the “impact” message.

7. Identify operational constraints – the ERS domain is characterized by tight
timing constraints that can originate from several requirements. In our case
study, we can consider, for example, the time constraints implied by the emer-
gency unlocking requirement. We can capture such information in our service
models using a modified MSC syntax.

Figure 7.5 shows the unlock function. The graphical syntax we use is derived
from MSCs as described in [140, 142]. Upon receipt of the unlck message from
KF, Control issues an unlck message to LM. Once LM acknowledges this with
an ok message, Control requests signaling of the unlocking from LM by means
of a door unld sig message, then returns ok to the keyfob.

The MSCs of Figure 7.5 is augmented with interaction deadlines, indicated
by means of a labeled dashed line. The unlock function has a deadline of 150 ms.
This means that the vehicle must be unlocked and the signaling must have
occurred within 150 ms according to the interaction specification.

The deadlines we introduced in the MSC represent additional constraint that
enable capturing QoS requirements directly in the service models.

8. Document requirements relative to the models – in our requirement elicita-
tion process we also develop deployment models with at least a partial view of

Fig. 7.5. A version of the unlock MSC with a QoS requirement added

Requirements Modeling for Embedded Realtime Systems 185

the deployment environment. In our case study, such model is useful to identify
possible failing components and ensure that the critical requirement of emer-
gency unlocking all doors is fulfilled even when some component fails.

In our case study, we create a component model defining the ECUs that
will run the CLS and the communication networks used to deliver messages to
them. The behavior of each component is defined by assigning it one or more
of the roles identified in our service models. This step of mapping the logical
services to a concrete deployment model, makes the outcome highly specialized
to the vehicle under design. On the other hand, the same functionality is often
needed across vehicle platforms; this is certainly true for the CLS, which today
is a standard feature across manufacturers and product lines. Therefore, the
mapping process has to be repeated again to yield another specialized solution
for each target platform. Because the requirements are clearly separated and we
distinguish between one logical model and a deployment model, only the part
of the work that deals directly with the deployment model has to be repeated
while developing different car models.

The outcome of a traditional process would be eight separate component
specifications; each individual component specification is complete in the sense
that it has to address all the different functions the component in question might
be involved in. In particular, the crosscutting nature of the functionality is lost
when we look at each individual component; this results in the mentioned labor-
and cost-intensive integration effort in late development stages.

We can obtain a trivial deployment domain model from the role domain mo-
del by removing the distinction between components and roles; then, each com-
ponent implements precisely one role. In this state of affairs, the role domain
model and the deployment domain model coincide. Another extreme case is to
map all roles to a single component; this again is a trivial affair, because we
simply need to treat the role domain model as a specification for the “internals”
(the substructure) of one encompassing component. The most interesting and
methodologically challenging case arises when we map multiple roles onto the
same deployment component. All other cases (such as mapping a single role onto
multiple components) can be dealt with by refactoring / refining the role do-
main model first, and then establishing the mapping to the deployment domain
model.

In our case study, we choose to have six ECUs where we map the roles iden-
tified in our process. Figure 7.6 shows the corresponding deployment domain
model. Our ADL enable us to specify communication busses (the big CAN BUS
block in the middle of the figure), and electronic control unit connected to com-
munication media (the six ECU blocks). An ECU can perform more than one
role. For example in Figure 7.6 ECU1 plays the role of Control and DB, and
ECU2 plays the role of UI and Tuner. On the other hand, the same role can be
played by more than on ECU. This is the case of the CS role played both by
ECU5 and ECU6. The reasons to replicate a role can be multiple. In the case of
CS (the crash sensor role), the replication enables the detection of a crash even
if one of the sensors fails.

186 I. Krüger et al.

Fig. 7.6. CLS Deployment Architecture

If we work with strictly hierarchical component models such as the ones of
UML2, UML-RT, or AutoFocus [143], one way to establish the mapping of mul-
tiple roles onto a single component is to take the role domain model as a staring
point, and to replace the roles in question by a single component having the
same input and output channels as the replaced roles taken together. Then,
the entire network of replaced roles with their supporting channels becomes the
hierarchical “child” of the freshly introduced component. This process can be
repeated recursively into all hierarchically decomposed composites, until all role
labels have been turned into component labels.

9. Validate requirements – failure management is particularly effective if it
is performed throughout the development process[144] – rather than, as often
happens, as an afterthought. For this reason, we raise awareness of failures al-
ready from the very early phases of the software and systems engineering pro-
cess, during the requirements gathering phase. To this end, we have created a
comprehensive taxonomy for failures and failure management entities. Failure
taxonomy is a domain specific concept [144]. Our model-based failure manage-
ment approach [145], leverages the interaction descriptions captured by services
to identify, at run time, deviations from the specified behavior.

We enrich our standard service-oriented methodology with special services to
manage failures. Hence, a key mechanism for dealing with failures is to define
and decouple Unmanaged and Managed Services (see Figure 7.7). The Unma-
naged Services are responsible for providing the required functionalities without
considering failures, whereas the Managed Services enable the detection of fai-
lures and the implementation of mitigation strategies that avoid, or recover from,
failures.

We also employ two special types of Services: Detectors and Mitigators (si-
milar to the detector/corrector approach [146]). A Detector can detect the oc-
currence of a Failure based on its Effect (see Figure 7.9. This relation binds the
Detector to the observable results of failures. Therefore, it is important to define
what type of Effects a failure can have, and then to create appropriate Detectors.

The Detector detects the possible occurrence of a failure based on a Detec-
tion Strategy. One possible Detection Strategy is based on Interactions. In this
case, a Detector compares the communication patterns captured in the service

Requirements Modeling for Embedded Realtime Systems 187

Fig. 7.7. Models of services

specification with the ones of the running system; then, it applies a mitiga-
tion strategy when behaviors don’t match the specification. Mitigators are ser-
vices that modify the interaction pattern of the system to recover from failure
conditions.

Managed Services are a type of Services and, therefore, they can also be a
component of a Composite Service. In particular, it is possible to have Managed
Services that are composed of other Managed Services. Each one of them will
have a Detector and a Mitigator that will address failures at its level. Using
this schema, by hierarchically composing simpler services in more complex ones,
and by adding Detectors and Mitigators to the various component services, it is
possible to achieve a fine level of granularity in managing failures.

Each Detector is associated with a corresponding Mitigator. Upon detection
of a failure, the Detector activates the corresponding Mitigator responsible for
managing that specific failure. A Mitigator is another specific Service that is
responsible for resolving the faulty state in order to maintain the safety of the
system. A Mitigator applies its corresponding Mitigation Strategy to resolve
the faulty state. Following the strategy pattern, decoupling the definition of the
mitigation strategy from the entity that applies it provides flexibility to the
model by allowing future changes to the strategy that is applicable to a specific
failure without the need to make any additional modifications to other elements
in the system.

This model allows us to compose a predefined Unmanaged Service with a
Detector and its associated Mitigator in order to add failure management to it,
thus, creating a Composite Managed Service. If multiple failures are supported
for one Service, it will be wrapped in multiple layers of Detectors and Mitigators.
This capability provides a seamless means to manage the failures that are found
in further iterations of the design/development process, without redefining the
existing Services. Figure 7.8 shows an example of a managed service for our case

188 I. Krüger et al.

Fig. 7.8. Managed impact service

study. In the ADL fragment depicted in this figure, the detector identified if
the impact service takes more than 500ms to acknowledge the unlocking of the
doors after an impact, and in this case, it executes a mitigation service where
an additional mitigation role (role M) repeats the unlck command.

An ontology guides the identification of failures and the activation of addi-
tional services that mitigate the effects of failures. We enrich the logical and
deployment models typical of any MDA with a failure hypothesis that captures
what physical and logical entities can fail in a system. It also provides a for-
mal basis to reason about system correctness in presence of failures. Figure 7.9
shows the extended failure taxonomy using UML2 class diagram notation[147].
It captures the relationships between failures and our means for detecting and
managing them. The central entity of this taxonomy is a Failure. A Failure has
one or more Causes and one or more Effects. A failure Cause is very dependent
on the application domain and could be due to either a software problem, i.e.,
Software Failure, or a hardware problem, i.e., Hardware Failure.

When a failure is detected, the system needs to mitigate it. This is done by
following certain Mitigation Strategies. The Mitigation Strategy we must apply
to deal with failures depends both on the associated Effects and their Causes.
We identify two main strategies: Runtime Strategy and Architectural Strategy.
Depending on the application domain, when a duplicated message is detected at
runtime, Ignore Message can be a feasible Runtime Mitigation Strategy. Simi-
larly, when a message loss is detected, Resend Message is a candidate Runtime
Mitigation Strategy if properly supported by the interaction protocol between
the exchanging parties. Replicate Component and Failsafe Mode are typical Ar-
chitectural Strategies.

Following the outlined approach, we have lifted the management of failures
to the logical architecture and started dealing with them from the early stages

Requirements Modeling for Embedded Realtime Systems 189

Fig. 7.9. Failure ontology

of the development process within the requirement elicitation phase. Once we
have formal models of the services and a deployment architecture, along with
a failure hypothesis, we can use a set of tools we developed to verify that the
proposed software architecture indeed fulfills the given requirements.

The first step is to obtain an executable model form the services captured by
our ADL – in [140] an algorithm to obtain state machines from MSC models
is discussed. We have developed a tool [148] that can parse the service ADL
and leverage the state machine synthesis algorithm to create a Promela [64]
model that can be used to verify the property of a system using the SPIN model
checker [149].

Each service is interpreted as a partial input/output function which defines
the contributions of all participating roles to a communication pattern. The tool
we have implemented uses all MSCs that define the system model to obtain a
total representation of the global behavior of the system. Then it projects all
messages sent or received by one role on a state machine that defines only the
contribution of that role to the interactions of the system. Moreover, to cater
for possible failures, the tool adds a sink state with guarded transitions from
all other states. As result of this process we have one state machine for each
role.

Once the tool has created all state machines for all roles, it can generate the
Promela code. For each ECU in the deployment model and for each role mapped
to them, the Promela code contains a concurrent process. Appropriate channel
variable are used to map the communication channels of the service models to the
proper ECUs. Additionally, a failure injector function, implementing the failure
hypothesis is created in the Promela code. Failures are injected by killing roles

190 I. Krüger et al.

(enabling the transition to the sink state) or disrupting communication channels
(removing messages from channels).

Using our Service ADL for managing failures and our Promela code generator
we have been able to verify the architecture of our CLS case study and ensure
that the chosen architecture supports the safety requirement of unlocking all
doors during an accident.

7.4.3 Discussion

In this example, we have seen that services require composition operators not
generally available in component-oriented development: the concept of overlap-
ping components is not very common. Roles, on the other hand, by definition
capture a partial view on all components playing that role – to be composed
with other partial views to produce the overall behavior of the component un-
der consideration. The composition of the services as elicited above translates
into a service specification. The mapping from a service specification to a set
of components implementing the services in the next phase of the development
process is a design step. This step entails fixing a component architecture, and
an association between the components and the roles they play to support the
given set of services.

In the CLS example, we could decide, for instance, to have just one component
to implement the Control and LM (lock management) roles. This gives rise
to a component-oriented “deployment” architecture. If the target architecture
supports the definition and deployment of individual services, however, we can
encapsulate the interaction protocols contained in each of the extended MSCs
we have presented, and publish those as individually accessible services within
service-oriented software architectures as outlined above.

We can also apply a bottom-up scheme for interaction composition. Dead-
lines can be applied to basic interactions. For instance, we define a deadline for
a single message or a message sequence. For each composition operation, we ap-
ply defined rules that constrain the deadlines of the composite interactions. In
this case, sequential composition leads to the addition of the operands’ deadlines,
loops to a multiplication, parallel, and join composition to the selection of the
minimum deadline. All deadlines can be tightened manually. A less restrictive
composition alternative (in comparison with applying the minimum constraint
for join composition) would be to only consider a newly defined deadline for the
composite. Doing so would allow the modeler to provide a different interpreta-
tion for the more complex composite function – it can be more than the sum of
its parts. However, this may not yield a true refinement of the specification in
the bottom-up sense, because the composite may not fulfill all QoS properties
of the composed interactions anymore. Practical considerations would determine
the concrete composition scheme used. We chose the composition variant that
maintains all properties of basic interactions and allows for methodological refi-
nement. We are aware that this is more restrictive to the modeler and requires
more frequent modifications or refactorings of the specification.

Requirements Modeling for Embedded Realtime Systems 191

In terms of methodology, we can also apply top-down refinement of deadlines,
while still fulfilling all properties of bottom-up composition as described above.
Starting from deadlines for entire functions, we allow the modeler to provide
specific deadlines to parts of the interaction, as long as the overall deadlines are
still satisfiable.

7.5 Summary and Outlook

Requirements engineering for Embedded Real-time Systems (ERS) is a tremen-
dous challenge. In this chapter we (a) have highlighted the key aspects that
render ERS requirements engineering difficult, (b) have discussed prominent ap-
proaches in the literature that tackle portions of these aspects, (c) have presented
key activities that can help in model engineering for ERS across development
processes, and (d) have shown how these activities play together to model and
validate central failure management requirements in an automotive case study.

Clearly, there is no single technique that addresses the entire spectrum of re-
quirements aspects from timing to distribution to failure management to local
and cost drivers. Specifically, because many relevant ERS are, in fact, network-
integrated systems of systems, most quality requirements are, in fact, concerns
that cut across all components of the integrated system. This necessitates a mo-
deling approach with due emphasis on the interactions among the parts to define
the function of the whole system. Such an approach needs to provide models for
interactions, but also for augmenting these interactions with constraints that
address the cross-cutting requirements.

We have sketched the beginnings of such an approach by identifying key re-
quirements elicitation activities for ERS, and how they can be used to produce
structural and behavioral aspects of a corresponding domain model. In speci-
fying the cross-cutting concerns we have identified interaction diagrams, such
as extended UML sequence diagrams or Message Sequence Charts as a useful
tool. The subsequent case study showed how to exploit this extensive domain
modeling approach for the elicitation of domain-specific failure models ranging
from logical to deployment architectures. The failure models capture a broad
range of failures and associated detection and mitigation strategies. For a subset
of these we have shown how to automatically generate [140, 148] verification
models targeting Promela/SPIN to establish (or refute) fail-safety of a given
architecture model. This technique can be utilized in validating requirements
(does the architecture model properly reflect our understanding of fail-safety for
the system under consideration?), or even the verification of proposed candidate
architectures (do they fulfill the fail-safety requirement?)

This case study shows a pathway to modeling and model exploitation for ERS
and can be expanded further to cover an increasingly rich set of requirements
aspects. Generalizing from this example to obtain requirements engineering pro-
cesses techniques and tools for a wide range of specific application domains is
one promising area for future research. Another one is the seamless transition

192 I. Krüger et al.

from gathered functional and (cross-cutting) quality aspects to re-configurable
deployment architectures.

Acknowledgments. Much of the overview of requirements challenges is influenced
by our long-time collaborations with automotive partners, as well as academic
collaborators. We would like to acknowledge the influences of Manfred Broy,
Alexander Pretschner, Bernhard Rumpe, Bran Selic, Wolfgang Pree, KV Pra-
sad, Ed Nelson, Chris Salzmann, and Thomas Stauner. The authors are grateful
for discussions with participants of the MBEERTS Dagstuhl Seminar, as well
as for the insightful comments of the reviewers of this paper. Our work was
partially supported by NSF grant CCF-0702791. Financial support came also
from the California Institute for Telecommunications and Information Techno-
logy (Calit2).

References

[1] Shaw, M.: Prospects for an engineering discipline of software. IEEE Soft-
ware 7(6), 15–24 (1990)

[2] Halfhill, R.T.: Embedded market breaks new ground, Embedded Processor
Watch, vol. 82 (2000)

[3] Broy, M., Krüger, I.H., Meisinger, M. (eds.): ASWSD 2004. LNCS, vol. 4147.
Springer, Heidelberg (2006)

[4] Broy, M., Krüger, I.H., Meisinger, M. (eds.): ASWSD 2006. LNCS, vol. 4922.
Springer, Heidelberg (2008)

[5] Ahluwalia, J., Krüger, I., Meisinger, M., Phillips, W.: Model-Based Run-Time
monitoring of End-to-End deadlines. In: Proc. of the Conference on Embedded
Systems Software, EMSOFT (2005)

[6] Krüger, I., Nelson, E.C., Prasad, V.: Service-based software development for
automotive applications. In: CONVERGENCE 2004 (2004)

[7] Pretschner, A., Broy, M., Kruger, I.H., Stauner, T.: Software engineering for
automotive systems: A roadmap. In: 2007 Future of Software Engineering, pp.
55–71. IEEE Computer Society, Los Alamitos (2007)

[8] Sharp, H., Finkelstein, A., Galal, G.: Stakeholder identification in the requi-
rements engineering process. In: Proc. Tenth Intl. Workshop on Database and
Expert Systems Applications, pp. 387–391 (1999)

[9] Easterbrook, S.M., School of Cognitive, Computing Sciences, University of Sus-
sex: Domain Modelling with Hierarchies of Alternative Viewpoints. University
of Sussex, School of Cognitive and Computing Sciences (1992)

[10] Anderson, J., Fleak, F., Garrity, K., Drake, F.: Integrating usability techniques
into software development. IEEE Software 18, 46–53 (2001)

[11] Bevan, N.: Usability is quality of use. Advances in Human Factors Ergonomics 20,
349 (1995)

[12] Mayhew, D.J.: The usability engineering lifecycle. In: Conference on Human
Factors in Computing Systems, pp. 147–148. ACM, New York (1999)

[13] Bennett, J.L.: Managing to meet usability requirements: Establishing and mee-
ting software development goals. Visual Display Terminals: Usability Issues and
Health Concerns, 161–184 (1984)

Requirements Modeling for Embedded Realtime Systems 193

[14] Chung, L.: Non-Functional Requirements in Software Engineering. Springer, Hei-
delberg (2000)

[15] Robertson, S., Robertson, J.: Mastering the requirements process. ACM
Press/Addison-Wesley Publishing Co. (1999)

[16] Nixon, B.A.: Representing and using performance requirements during the de-
velopment of information systems. LNCS, p. 187. Springer, Heidelberg (1994)

[17] Guinan, P.J., Cooprider, J.G., Faraj, S.: Enabling software development team
performance during requirements definition: a behavioral versus technical ap-
proach. Information Systems Research 9(2), 101–125 (1998)

[18] Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-Based performance
prediction in software development: A survey. IEEE Transactions on Software
Engineering, 295–310 (2004)

[19] Gobbo, D.D., Napolitano, M., Callahan, J., Cukic, B.: Experience in developing
system requirements specification for a sensor failure detection and identification
scheme. In: High-Assurance Systems Engineering Symposium, Proc. Third IEEE
Intl., pp. 209–212 (1998)

[20] Smidts, C., Stutzke, M., Stoddard, R.W.: Software reliability modeling: an ap-
proach to early reliability prediction. IEEE Transactions on Reliability 47(3),
268–278 (1998)

[21] Mooney, J.D.: Issues in the specification and measurement of software portability.
In: Poster Session at the 15th Intl. Conference on Software Engineering (May
1993)

[22] Lauesen, S.: Software Requirements: Styles and Techniques. Forlaget Samfund-
slitteratur (1999)

[23] Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Reading (2004)

[24] Barker, S.D.P., Eason, K.D., Dobson, J.E.: The change and evolution of require-
ments as a challenge to the practice of software engineering. In: Proc. of the IEEE
Intl. Symposium on Requirements Engineering, San Diego, California, January
4-6. IEEE Computer Society Press, Los Alamitos (1993)

[25] Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society Press,
Los Alamitos (1996)

[26] Strens, M.R., Sugden, R.C.: Change analysis: A step towards meeting the chal-
lenge of changing requirements. In: Proc. of the IEEE Symposium and Workshop
on Engineering of Computer Based Systems, p. 278. IEEE Computer Society,
Washington (1996)

[27] Bohner, S.A., Arnold, R.S.: Software Change Impact Analysis. Wiley-IEEE Com-
puter Society Pr (1996)

[28] Heninger, K.: Specifying software requirements for complex systems: New tech-
niques and their application. IEEE Transactions on Software Engineering 6(1),
2–13 (1980)

[29] Carlshamre, P., Regnell, B.: Requirements lifecycle management and release
planning inmarket-driven requirements engineering processes. In: Proc. 11th Intl.
Workshop on Database and Expert Systems Applications, pp. 961–965 (2000)

[30] Al-Rawas, A., Easterbrook, S.M., National Aeronautics, Space Administration,
United States: Communication Problems in Requirements Engineering: A Field
Study. National Aeronautics and Space Administration; National Technical In-
formation Service, distributor (1996)

[31] Easterbrook, S.M.: Handling Conflict Between Domain Descriptions with
Computer-Supported Negotiation. University of Sussex, School of Cognitive and
Computing Sciences (1991)

194 I. Krüger et al.

[32] Easterbrook, S.: Resolving requirements conflicts with Computer-Supported ne-
gotiation. In: Requirements Engineering: Social and Technical Issues, pp. 41–65
(1994)

[33] Boehm, B., Bose, P., Horowitz, E., Lee, M.J.: Software requirements negotia-
tion and renegotiation aids. In: Proc. of the 17th Intl. Conference on Software
Engineering, pp. 243–253. ACM, New York (1995)

[34] Crowston, K., Kammerer, E.E.: Coordination and collective mind in software
requirements development. IBM Systems Journal 37(2), 227–246 (1998)

[35] van Lamsweerde, A.: Elaborating security requirements by construction of inten-
tional Anti-Models. In: Intl. Conference on Software Engineering: Proc. of the
26 th Intl. Conference on Software Engineering, vol. 23, pp. 148–157 (2004)

[36] Potts, C.: Requirements models in context. In: 3rd Intl. Symposium on Requi-
rements Engineering (RE 1997), pp. 6–10 (1997)

[37] Heeks, R., Krishna, S., Nicholson, B., Sahay, S.: Synching or sinking: Global
software outsourcing relationships. IEEE Software, 54–60 (2001)

[38] Lala, J.H., Harper, R.E.: Architectural principles for safety-critical real-time
applications. Proc. of the IEEE 82(1), 25–40 (1994)

[39] Lutz, R.R., Helmer, G.G., Moseman, M.M., Statezni, D.E., Tockey, S.R.: Sa-
fety analysis of requirements for a product family. In: Proc. 1998 Third Intl.
Conference on Requirements Engineering, pp. 24–31 (1998)

[40] Xu, J., Randell, B., Romanovsky, R.J., Stroud, R.J., Zorzo, A.F., Canver, E., von
Henke, F.: Rigorous development of a safety-critical system based on-coordinated
atomic actions. In: Twenty-Ninth Annual Intl. Symposium on Fault-Tolerant
Computing, Digest of Papers, pp. 68–75 (1999)

[41] Leveson, N.G., Stolzy, J.L.: Safety analysis using petri nets. In: The Fifteenth
Intl. Symposium on Fault-Tolerant Computing. IEEE, Los Alamitos (1985)

[42] Leveson, N.G.: Software safety in embedded computer systems. Communications
of the ACM 34(2), 34–46 (1991)

[43] Lutz, R.R.: Targeting safety-related errors during software requirements analysis.
ACM SIGSOFT Software Engineering Notes 18(5), 99–106 (1993)

[44] de Lemos, R., Saeed, A., Anderson, T.: Analyzing safety requirements for
process-control systems. IEEE Software 12(3), 42–53 (1995)

[45] Modugno, F., Leveson, N.G., Reese, J.D., Partridge, K., Sandys, S.D.: Integrated
safety analysis of requirements specifications. Requirements Engineering 2(2),
65–78 (1997)

[46] Bishop, P., Bloomfield, R.: A methodology for safety case development. In:
Safety-Critical Systems Symposium, Birmingham, UK (February 1998)

[47] Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software re-
quirements. IEEE Tran. on Software Engineering 24(7), 573–584 (1998)

[48] Napolitano, M.R., An, Y., Seanor, B.A.: A fault tolerant flight control system for
sensor and actuator failures using neural networks. Aircraft Design 3(2), 103–128
(2000)

[49] United States Military Procedure: Procedure for performing a failure mode effect
and criticality analysis, MIL-P-1629 (November 1949)

[50] Barlow, R.E., Chatterjee, P.: Introduction to Fault Tree Analysis (December
1973)

[51] Chung, L.: Dealing with security requirements during the development of infor-
mation systems. In: Rolland, C., Bodart, F., Cauvet, C. (eds.) Proc. 5th Int.
Conf. Advanced Information Systems Engineering, CAiSE, pp. 234–251. Sprin-
ger, Heidelberg (1993)

Requirements Modeling for Embedded Realtime Systems 195

[52] Landwehr, C., Heitmeyer, C., McLean, J.: A security model for military message
systems: retrospective. In: Proc. 17th Annual Computer Security Applications
Conference, ACSAC 2001, pp. 174–190 (2001)

[53] Frankel, D.S.: Model Driven Architecture. Wiley, New York (2003)
[54] IBM Rational DOORS (formerly Telelogic): DOORS (2009),

http://www.telelogic.com/

[55] IBM: Rational RequisitePro. (2009)
[56] 3SL Cumbria, England: Cradle Requirements Management v6.0 (July 2009),

http://www.threesl.com/

[57] Wiegers, K.E.: Automating requirements management. Software Develop-
ment 7(7), 1–5 (1999)

[58] Jackson, M., Zave, P.: Domain descriptions. In: Proc. of IEEE Intl. Symposium
on Requirements Engineering, pp. 56–64 (1993)

[59] Zave, P.: Classification of research efforts in requirements engineering. In: Proc.
of the Second IEEE Intl. Symposium on Requirements Engineering, pp. 214–216
(1995)

[60] Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM
Trans. Softw. Eng. Methodol. 6(1), 1–30 (1997)

[61] Dardenne, A., Fickas, S., van Lamsweerde, A.: Goal-directed concept acquisi-
tion in requirements elicitation. In: Intl. Workshop on Software Specifications &
Design: Proc. of the 6 th Intl. workshop on Software specification and design,
vol. 25, pp. 14–21 (1991)

[62] Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. In: Selected Papers of the Sixth Intl. Workshop on Software Specification
and Design, pp. 3–50. Elsevier Science Publishers B.V., Amsterdam (1993)

[63] Heninger, K.L., Kallander, J.W., Parnas, D.L., Shore, J.: Software requirements
for the a-7 e aircraft. Memorandum Report 3876, Naval Research Lab., Washing-
ton D.C. (November 1978)

[64] Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software En-
gineering 23(5), 279–295 (1997)

[65] Yu, E.S.: Modelling strategic relationships for process reengineering. PhD thesis,
University of Toronto (1995)

[66] Yu, E.S.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proc. of the Third IEEE Intl. Symposium on Requirements En-
gineering, pp. 226–235 (1997)

[67] Yue, K.: What does it mean to say that a specification is complete? In: Proc.
IWSSD-4, Fourth Intl. Workshop on Software Specification and Design, Monte-
rey (1987)

[68] Darimont, R., van Lamsweerde, A.: Formal refinement patterns for goal-driven
requirements elaboration. In: Proc. of the 4th ACM SIGSOFT symposium on
Foundations of software engineering, San Francisco, California, United States,
pp. 179–190. ACM, New York (1996)

[69] van Lamsweerde, A., Darimont, R., Letier, E.: Managing conflicts in goal-driven
requirements engineering. IEEE Transactions on Software Engineering 24(11),
908–926 (1998)

[70] Greenspan, S., Feblowitz, M.: Requirements engineering using the SOS para-
digm. In: Proc. of IEEE Intl. Symposium on Requirements Engineering, pp.
260–263 (1993)

[71] Warmer, J., Kleppe, A.: The object constraint language: precise modeling with
UML. Addison-Wesley Longman Publishing Co., Inc., Boston (1998)

http://www.telelogic.com/
http://www.threesl.com/

196 I. Krüger et al.

[72] Gill, A.: Introduction to the Theory of Finite-state Machines. McGraw-Hill, New
York (1962)

[73] Hennie, F.C.: Finite-state Models for Logical Machines. Wiley, Chichester (1968)
[74] DeMarco, T.: Structured analysis and system specification, pp. 409–424. Yourdon

Press, New York (1979)
[75] Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability

problem. In: Proc. of the First Intl. Conference on Requirements Engineering,
pp. 94–101 (1994)

[76] Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.
In: IEEE Transactions on Software Engineering, 58–93 (2001)

[77] Ross, D.T., Schoman, J.K.E.: Structured analysis for requirements definition,
pp. 363–386. Yourdon Press, New York (1979)

[78] Gane, C.P., Sarson, T.: Structured Systems Analysis: Tools and Techniques.
Prentice Hall Professional Technical Reference (1979)

[79] Orr, K.: Structured requirements definition. K. Orr, Topeka, Kan. (1981)
[80] Burns, A., Wellings, A.: Real-time Systems and Programming Languages, 3rd

edn. Addison Wesley, London (2001)
[81] Boehm, B.W.: Software Engineering Economics. Prentice Hall PTR, Englewood

Cliffs (1981)
[82] Fairley, R.: Software engineering concepts. McGraw-Hill, Inc., New York (1985)
[83] Berry, G., Gonthier, G.: The Esterel Synchronous Programming Language: De-

sign, Semantics, Implementation. Institut National de Recherche en, Informa-
tique et en Automatique (1992)

[84] Barnes, B.H.: Decision Table Languages and Systems. In: Metzner, J.R. (ed.)
Academic Press, Inc., London (1977)

[85] Parnas, D.L., Madey, J.: Functional Documentation for Computer Systems En-
gineering. Queen’s University at Kingston, Dept. of Computing & Information
Science (1990)

[86] Schouwen, J.V.: The A-7 requirements model: re-examination for real-time sys-
tems and an application to monitoring systems. National Library of Canada
(1991)

[87] van Schouwen, A., Parnas, D., Madey, J.: Documentation of requirements for
computer systems. In: Proc. of IEEE Intl. Symposium on Requirements Engi-
neering, pp. 198–207 (1993)

[88] Faulk, S.R.: State determination in hard-embedded systems. PhD thesis, The
University of North Carolina at Chapel Hill (1989)

[89] Heitmeyer, C., Labaw, B., Kiskis, D.: Consistency checking of SCR-style re-
quirements specifications. In: Proc. of the Second IEEE Intl. Symposium on
Requirements Engineering, pp. 56–63 (1995)

[90] Heitmeyer, C., Mandrioli, D.: Formal Methods for Real-Time Computing. John
Wiley & Son Ltd., Chichester (1996)

[91] Heitmeyer, C., Bull, A., Gasarch, C., Labaw, B.: SCR*: a toolset for specifying
and analyzing requirements. In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.)
Abstract Data Types 1994 and COMPASS 1994. LNCS, vol. 906, pp. 109–122.
Springer, Heidelberg (1995)

[92] Heitmeyer, C., Kirby, J., Labaw, B.: The SCR method for formally specifying,
verifying, and validating requirements: Tool support. In: Proc. of the 1997 (19th)
Intl. Conference on Software Engineering, pp. 610–611 (1997)

[93] Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking
of requirements specifications. ACM Trans. Softw. Eng. Methodol. 5(3), 231–261
(1996)

Requirements Modeling for Embedded Realtime Systems 197

[94] Landwehr, C.E., Heitmeyer, C.L., McLean, J.: A security model for military
message systems. ACM Trans. Comput. Syst. 2(3), 198–222 (1984)

[95] Faulk, S., Brackett, J., Ward, P., Kirby, J.: The core method for real-time requi-
rements. IEEE Software 9(5), 22–33 (1992)

[96] Faulk, S., Finneran, L., Kirby, J., Shah, S., Sutton, J.: Experience applying the
CoRE method to the lockheed C-130J software requirements. In: Reggio, G.,
Astesiano, E., Tarlecki, A. (eds.) Abstract Data Types 1994 and COMPASS
1994. LNCS, vol. 906, pp. 3–8. Springer, Heidelberg (1995)

[97] Miller, S.P.: Specifying the mode logic of a flight guidance system in CoRE and
SCR. In: Proc. of the second workshop on Formal methods in software practice,
Clearwater Beach, Florida, United States, pp. 44–53. ACM, New York (1998)

[98] Jaffe, M.S., Leveson, N.G., Heimdahl, M.P.E., Melhart, B.E.: Software requi-
rements analysis for real-time process-control systems. IEEE Transactions on
Software Engineering 17(3), 241–258 (1991)

[99] Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., Reese, J.D.: Requirements spe-
cification for process-control systems. IEEE Transactions on Software Enginee-
ring 20(9), 684–707 (1994)

[100] Heimdahl, M., Leveson, N.: Completeness and consistency in hierarchical state-
based requirements. IEEE Transactions on Software Engineering 22(6), 363–377
(1996)

[101] Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

[102] Parnas, D.L., Wang, Y.: The trace assertion method of module interface speci-
fication. Queen’s University, Dept. of Computing & Information Science, King-
ston, Ont., Canada (1989)

[103] Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-
Trauring, A., Trakhtenbrot, M.: STATEMATE: a working environment for the
development of complex reactive systems. IEEE Transactions on Software Engi-
neering 16(4), 403–414 (1990)

[104] Hatley, D.J., Pirbhai, I.A.: Strategies for real-time system specification. Dorset
House Publishing Co., Inc., New York (1987)

[105] Ward, P.T., Mellor, S.J.: Structured Development for Real-Time Systems. Pren-
tice Hall Professional Technical Reference (1991)

[106] Ravn, A.P., Rischel, H.: Requirements capture for embedded real-time systems.
Proc. of IMACS-MCTS 91, 1147–1152 (1991)

[107] Douglass, B.P.: Doing hard time: developing real-time systems with UML, ob-
jects, frameworks, and patterns. Addison-Wesley Longman Publishing Co., Inc.,
Amsterdam (1999)

[108] Chen, R., Sgroi, M., Lavagno, L., Martin, G., Sangiovanni-Vincentelli, A., Ra-
baey, J.: UML and platform-based design, pp. 107–126. Kluwer Academic Pu-
blishers, Dordrecht (2003)

[109] Object Management Group: SysML Specification Version 1.0 (2006-05-03) (Au-
gust 2006), http://www.omg.org/docs/ptc/06-05-04.pdf

[110] Rioux, L., Saunier, T., Gerard, S., Radermacher, A., de Simone, R., Gautier, T.,
Sorel, Y., Forget, J., Dekeyser, J.L., Cuccuru, A.: MARTE: a new profile RFP
for the modeling and analysis of real-time embedded systems. In: UML for SoC
Design Workshop at DAC 2005, UML-SoC 2005 (2005)

[111] Object Management Group: UML profile for schedulability, performance, and
time (September 2003)

[112] Axelsson, J.: Real-world modeling in UML. In: Proc. 13th Intl. Conference on
Software and Systems Engineering and their Applications (2000)

http://www.omg.org/docs/ptc/06-05-04.pdf

198 I. Krüger et al.

[113] Berkenkötter, K., Bisanz, S., Hannemann, U., Peleska, J.: The HybridUML
profile for UML 2.0. Intl. Journal on Software Tools for Technology Transfer
(STTT) 8(2), 167–176 (2006)

[114] Bichler, L., Radermacher, A., Schürr, A.: Integrating data flow equations with
UML/Realtime. Real-Time Syst. 26(1), 107–125 (2004)

[115] Kirsch, C.: Principles of real-time programming. In: Sangiovanni-Vincentelli,
A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 61–75. Springer,
Heidelberg (2002)

[116] Berry, G.: The foundations of Esterel. In: Stirling, C., Plotkin, G., Tofte, M.
(eds.) Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT
Press, Cambridge (2000)

[117] Maraninchi, F.: The Argos language: Graphical representation of automata and
description of reactive systems. In: IEEE Workshop on Visual Languages, Kobe,
Japan (October 1991)

[118] Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow
programming language Lustre. Proc. of the IEEE 79(9), 1305–1320 (1991)

[119] Camus, J.L., Dion, B.: Efficient Development of Airborne Software with Scade
Suite. Esterel Technologies (2003)

[120] Caspi, P., Raymond, P.: From control system design to embedded code: the
synchronous data-flow approach. In: 40th IEEE Conference on Decision and
Control, CDC 2001 (December 2001)

[121] Kopetz, H., Bauer, G.: The Time Triggered Architecture. In: Proc. of the IEEE
Special Issue on Modeling and Design of Embedded Software (2002)

[122] Henzinger, T., Horowitz, B., Kirsch, C.: Giotto: A time-triggered language for
embedded programming. Proc. of the IEEE 91(1), 84–99 (2003)

[123] Ghosal, A., Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A.: Event-driven pro-
gramming with logical execution times. In: Alur, R., Pappas, G.J. (eds.) HSCC
2004. LNCS, vol. 2993, pp. 357–371. Springer, Heidelberg (2004)

[124] Templ, J.: TDL Specification and Report. Technical report, Department of Com-
puter Science, University of Salzburg, Austria (March 2004)

[125] Farcas, C.: Towards Portable Real-Time Software Components. PhD thesis, Uni-
versity of Salzburg (2006)

[126] Farcas, E.: Scheduling Multi-Mode Real-Time Distributed Components. PhD
thesis, University of Salzburg (2006)

[127] Farcas, E., Pree, W., Templ, J.: Bus scheduling for TDL components. In: Reuss-
ner, R., Stafford, J.A., Szyperski, C. (eds.) Architecting Systems with Trustwor-
thy Components. LNCS, vol. 3938, pp. 71–83. Springer, Heidelberg (2006)

[128] Farcas, E., Farcas, C., Pree, W., Templ, J.: Transparent distribution of real-time
components based on logical execution time. ACM Press, Chicago (2005)

[129] Wiegers, K.E.: Software Requirements: Practical Techniques for Gathering and
Managing Requirements Throughout the Product Development Cycle. Microsoft
Press, Redmond (2003)

[130] Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Per-
plexed. Addison-Wesley Professional, Reading (August 2003)

[131] Holbrook, I.H.: A scenario-based methodology for conducting requirements eli-
citation. SIGSOFT Software Engineering Notes 15(1), 95–104 (1990)

[132] Gruber, T.: A translation approach to portable ontology specifications. Know-
ledge Acquisition 5, 199 (1993)

[133] Damm, W., Harel, D.: Lscs: Breathing life into message sequence charts. In:
Formal Methods in System Design, pp. 293–312. Kluwer Academic Publishers,
Dordrecht (1998)

Requirements Modeling for Embedded Realtime Systems 199

[134] Konrad, S., Cheng, B.: Requirements patterns for embedded systems. In: Proc.
IEEE Joint Intl. Conference on Requirements Engineering, pp. 127–136 (2002)

[135] Withall, S.: Software Requirement Patterns. Microsoft Press, Redmond (2007)
[136] OSGi: OSGi Alliance Specifications (2007), http://www.osgi.org/
[137] Automotive Multimedia Interface Collaboration: AMI-C Software API Specifi-

cations – Core API (2003), http://www.ami-c.org/
[138] Krüger, I.H., Ahluwalia, J., Gupta, D., Mathew, R., Moorthy, P., Phillips, W.,

Rittmann, S.: Towards a process and Tool-Chain for Service-Oriented automo-
tive software engineering. In: Proc. of the ICSE 2004 Workshop on Software
Engineering for Automotive Systems, SEAS (2004)

[139] ITU-T Geneva: ITU-T Recommendation Z.120 – Message Sequence Chart (MSC
1996) (1996)

[140] Krüger, I.H.: Distributed System Design with Message Sequence Charts. PhD
thesis, Technische Universität München (2000)

[141] Object Management Group (UML 2.0), http://www.omg.org/uml/
[142] Krüger, I.H.: Capturing overlapping, triggered, and preemptive collaborations

using MSCs. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 387–402.
Springer, Heidelberg (2003)

[143] Munich University of Technology: AutoFocus (1996-2002),
http://autofocus.informatik.tu-muenchen.de/index-e.html

[144] Leveson, N.G.: Safeware: system safety and computers. ACM Press, New York
(1995)

[145] Ermagan, V., Krüger, I., Menarini, M., Mizutani, J.I., Oguchi, K., Weir, D.:
Towards Model-Based Failure-Management for Automotive Software. In: Proc.
of the ICSE 2007 Workshop on Software Engineering for Automotive Systems,
SEAS (2007)

[146] Arora, A., Kulkarni, S.S.: Component based design of multitolerant systems.
IEEE Transactions on Software Engineering 24, 63–78 (1998)

[147] Object Management Group: UML 2.1.1 Superstructure Specification (2007)
[148] Ermagan, V., Farcas, C., Farcas, E., Krüger, I.H., Menarini, M.: A service-

oriented approach to failure management. In: Proc. of the Dagstuhl Workshop
on Model-Based Development of Embedded Systems, MBEES (April 2008)

[149] Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Ad-
dison Wesley, Reading (2003)

http://www.osgi.org/
http://www.ami-c.org/
http://www.omg.org/uml/
http://autofocus.informatik.tu-muenchen.de/index-e.html

	7 Requirements Modeling for Embedded Realtime Systems
	Introduction and Overview
	What's in a Requirement?
	Why Requirements Engineering for ERS Is Hard
	Summary and Outline

	Requirements Specifications and Modeling for ERS
	Requirements Models
	Programming Models

	Requirements Engineering Approaches: Processes and Practices
	Requirements Development and Management

	Example: Failure Management in Automotive Software
	Central Locking System (CLS)
	Modeling the CLS Requirements
	Discussion

	Summary and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

