6 Modeling Languages for Real-Time and
Embedded Systems

Requirements and Standards-Based Solutions”

Sébastien Gérard!, Huascar Espinoza?, Francois Terrier!, and Bran Selic?
! CEA LIST, Laboratory of Model Driven Engineering for Embedded Systems
(LISE), Boite courrier 65, Gif sur Yvette Cedex, F-91191 France
{Sebastien.Gerard,Huascar.Espinoza,Francois.Terrier}@cea.fr
2 Malina Software Corp., Nepean, Ontario, Canada
selic@acm.org

Abstract. Development of increasingly more sophisticated dependable
real-time and embedded systems requires new paradigms since contem-
porary code-centric approaches are reaching their limits. Experience has
shown that model-based engineering using domain-specific modeling lan-
guages is an approach that can overcome many of these limitations. This
chapter first identifies the requirements for a modeling language to be
used in the real-time and embedded systems domain. Second, it des-
cribes how the MARTE profile of the industry-standard UML language
meets these requirements. MARTE enables precise modeling of pheno-
mena such as time, concurrency, software and hardware platforms, as
well as their quantitative characteristics.

6.1 Introduction

It is helpful to start with a clear definition of what is meant here by real-time
and embedded systems (RTES). To that end we provide below a taxonomy of
the different kinds of real-time and embedded systems that are of interest in this
chapter. There is no generally agreed on classification of systems in the real-time
and embedded domain. For our purposes, we shall use the following taxonomy
(NB: this categories are not mutually exclusive) [I]:

— The embedded domain — This covers systems composed of both hardware
and software components.

— The reactive domain — This sub-category covers systems thatrespond to dis-
crete stimuli generated by their environment.

— The command and control domain — These systems are usually built to
manage the running of a physical process or other systems.

— The intensive data flow computation domain — These systems generally deal
with large amounts of physical data for applications such as signal processing,
image processing, or various mobile device functions.

— The best-effort service domain — These are real-time systems which do not gua-
rantee meeting all their timing and safety constraints for every individual input.

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 129-]154.]2010.
© Springer-Verlag Berlin Heidelberg 2010

130 S. Gérard et al.

The use of abstraction as a means for coping with complexity when designing
large technological systems has always been a common and effective strategy
in engineering. It has proven particularly effective in the design and realization
of software-intensive systems through the use of computer languages of increa-
sing levels of abstraction, starting with assembly languages, followed by third-
generation languages such as C, and on to object-oriented languages like C++
and Java. However, faced with unrelenting demands for ever more sophisticated
and more dependable systems as well as for shorter time to market intervals, we
seem to be approaching the limits of effectiveness achievable by using traditional
code-based approaches.

Model-based design is considered by many as a suitable approach to over-
coming these limits, particularly in the embedded systems domain. One of the
expected advantages of this approach is the ability to exploit correct-by-con-
struction incremental design processes, which rely on extensive use of automated
transformations and synthesis, as well as formalized computer-based analyses of
correcteness.

Undoubtedly, much effort is required to develop the tools and methods ne-
cessary to bridge the gap between the very optimistic vision of Jacobson, who
advocated that ”software development is model building” [2], and the views held
by more conservative software programmers, who often feel that ”they don't
have time to waste on modeling”. In the past decade significant progress has
been made in this direction, most notably the emergence of meta-modeling and
practical model transformation techniques. These and related innovations are at
the core of a new approach to system and software design and development of-
ten referred to as model-based engineering (MBE) or model-driven development
(MDD).

The incremental nature of model-based engineering approaches is based on
progressive refinement of an abstract design or system model through the gra-
dual inclusion of more and more detail. Supported by automation-based verifi-
cation and validation, this refinement is performed until the model is either (a)
sufficiently detailed for relatively straightforward trouble-free implementation
or (b), in case of software systems, it actually becomes the system that it was
modeling. The latter in particular relies on appropriate tools that can automa-
tically transform a model expressed using an abstract modeling language into a
corresponding concrete technology-specific implementation. Thus, there are two
key aspects to model-based engineering: one is the issue of selecting the right
abstractions for a modeling language and the other is the matter of tool design.
In this chapter, we will focus exclusively on the first aspect: the requirements for
and design of modeling languages suitable for real-time and embedded systems.

For the real-time and embedded system domain, a major source of design com-
plexity comes from the intrinsic heterogeneity of these systems. Indeed, design
of modern real-time and embedded systems depends more and more on effective
interplay of multiple disciplines, such as mechanical, control, electronics, and
software engineering. These systems are compositions of different inter-related
parts (also called components), some of which may have already been designed

Modeling Languages for Real-Time and Embedded Systems 131

while others need to be designed. Given their heterogeneous nature, the parts are
typically designed by different design teams, possessing different expertise, and
using different tools. This is often done through vertical design chains such as,
for example, in the avionics and automotive industries. A complete development
chain typically involves a multitude of tools and data that are today still poorly
integrated. In particular, the lack of a common modeling language to specify the
overall system architecture hampers reasoning about solution trade-offs during
early development phases. This results in high development costs due to long
feedback cycles for issues uncovered during the integration phase.

Examples of integration needs in this area include: bridging the gap between
both software and hardware models, or between software models expressed in a
systems language and their implementation in terms of a target programming
language. Other examples include coordinating modeling and design tools with
specific engineering analysis tools (e.g., for safety or performance analysis), or
connecting control engineering tools (such as Matlab/Simulink [3] or tools sup-
porting the Modelica [4] language) with architectural design tools. Such integra-
tions are usually complex, inefficient, and error-prone resulting in the infamous
“islands of automation”.

Given the importance that sharing knowledge has in embedded system de-
velopment, we subscribe to the view that both system design and integration
will be reduced significantly by the use of a common modeling formalism. In
particular, we believe that the widespread acceptance of UML (Unified Mode-
ling Language) [5] by both the industrial and academic communities, along with
the use of UML pmﬁle for domain-specific purposes will considerably ease
integration difficulties.

In the following section, we summarize some key requirements for modeling
embedded systems. In section [6.3] we describe a standard modeling language
that meets these requirements. The profile mechanism is explained first, since it
is used to derive the domain-specific modeling language (DSML) out of standard
UML. This is followed by an introduction to the language itself, the UML pro-
file for modeling and analyzing real-time and embedded systems, MARTE. This
profile has been adopted by the OMG as a standard technology recommendation
that deals with modeling of time- and resource-constrained characteristics of sys-
tems, and includes a detailed taxonomy of relevant hardware and software pat-
terns along with their non-functional attributes. Among other things, MARTE
enables state-of-the-art quantitative analyses (e.g., performance or schedulabi-
lity analysis). Section concludes with a description of some typical scenarios
that illustrate the value of MARTE in specifying real-time and embedded sys-
tems. Section discusses contributions and shortcomings of other modeling
languages for the same domain, and section summarizes the conclusions of
this chapter.

1 A profile is the mechanism standardized by the OMG for creating domain-specific
modeling languages by refining the concepts of an existing standard language such
as UML.

132 S. Gérard et al.

6.2 Two Main Architectural Styles for Dealing with
Abstraction

To cope with the complex nature of the real-time and embedded systems and
their ever increasing sophistication and more stringent requirements, it is helpful
to use higher levels of abstraction when specifying them. Since abstraction is one
of the most powerful benefits of using models and modeling languages, we concur
with the view described in [6], section 3.1.8 on page 3-13, that, when modeling
a system, abstraction can be applied both vertically and horizontally.

Vertical Abstraction (Layering)

This is one of the most popular architectural patterns. It provides a graduated
form of abstraction across multiple discrete levels. Two primary forms of this
pattern can be identified:

Refinement layering is needed to support the iterative refinement process
flows which occur during development; each layer focuses on a different level of
detail. From the language point of view, what is needed is the ability to trace
between corresponding model elements at two different levels of abstraction (ver-
tical layers). From the modeling language point of view as well as from a formal
perspective, it should be feasible to relate these different layer models in order
to (1) enable conformance verification between them and (2) ease derivation of
model elements from one level to the next. From the tooling point of view, the
goal is to define and automate the process of deriving one specialized model from
another (code generation is a typical example of this).

Concrete layering is used to deal with horizontal separation-of-concerns. It
comes from the recurrent need in system development to model relationships
between applications and their underlying software platforms (e.g., real-time
operating systems or dedicated middleware) and hardware implementation plat-
forms (e.g., SystemC and VHDL). They identify dependencies between applica-
tion models and implementation choices/constraints.

Horizontal Abstraction (Slicing)

When considering abstraction from a horizontal point of view, we will use the
term “slicing”. Indeed, in vertical abstraction the system is divided into layers,
whereas in horizontal abstraction, the system is represented as comprising dif-
ferent slices (i.e., partitions), with potential relationships between them. In [6],
this aspect was referred to as the peer-interpretation of the client-server rela-
tionship, in contrast with its layered-interpretation that matches the layering
introduced above. Again, as we did for layering, we can classify slicing into abs-
tract slicing and concrete slicing. Slicing is intended to be used for grouping the
components of a system into different sets, called slices. The rationale for grou-
ping entities into a particular slice may vary. For example, it may be for some
project-related organizational reasons or based on the need to separate distinct
functional concerns. Whatever the rationale, it is important to remember that
all components, regardless of which slice they belong to, share a common feature:
they all coexist at the same level of abstraction!

Modeling Languages for Real-Time and Embedded Systems 133

In addition, slicing can sometimes be associated with an abstraction operation
at a higher level. For example, this is typically required when it is desired to view
a system from a specific perspective. Consequently, abstract slices are sometimes
called views or projections. Such abstract slicing may contain slices that are quite
different from and unrelated to the concrete slices of a system. Examples of such
abstraction include task models for a schedulability analysis, or architectural
models centering on system functions and scenarios models for system testing.

In contrast to a slice, a layer is a view of a complete system, but at a specific
level of abstraction that is different from other layers. For example, one layer
(which RM-ODP would call the ”computational” layer) might show a system
as a network of concurrent logical components, whereas a lower layer would
represent the very same system as a set of operating system tasks (the RM-
ODP “technology” layer). In that sense, layers represent different viewpoints.

6.3 Modeling Needs for Real-Time and Embedded
Systems Design

In this section, we identify a set of requirements that a modelingE language must
fulfill to support the design of real-time and embedded systems. These needs are
grouped into two categories following the dichotomy introduced in the previous
section.

6.3.1 Layering and Needs for RTES

First, we focus on the implications that different forms of layering have for a
real-time and embedded modeling language.

Refinement
Clearly, a modeling language must support the refinement relationships bet-
ween two model layers. In particular, in the real-time and embedded domain, it
is necessary to be able to attach non-functional properties to such refinement
relationships.

Resource

Real-time and embedded systems are computer-based systems that interact with
the physical world. This means that they are not only coupled to the physical
world but that they are also constrained by the physical capacities of their un-
derlying hardware and/or software platforms. Hence, these systems are typically
resource limited. It is therefore crucial that the modeling language provide fa-
cilities for a precise modeling of such resources. Specifically, this facilitates two
very important capabilities.

2 In this paper, the term modeling refers to the process of describing a system archi-
tecture and its features. Design refers to the activities involved in making solution-
oriented decisions that satisfy given requirements and constraints for the intended
product. Analysis is the process of verifying how well the resulting system satisfies
these requirements (usually before the actual systems is fully implemented).

134 S. Gérard et al.

First, since the application software will be embedded in a specific software
and/or hardware platform, the code that is generated from a model of the appli-
cation must be easily interfaced with a variety of potential computing platforms,
such as a real time operating systems (RTOS), middleware, micro-controllers, or
specific hardware (e.g., ASIC and FPGA).

Second, achieving a balance between the need to optimize the utilization of
resources for cost reasons while meeting an application's functional and non-
functional (e.g., quality of service) requirements can be a very challenging design
task. Consequently, real-time and embedded design generally requires facilities
to perform resource optimizations.

Both of these point to a need for a modeling language that can accurately
model computing platforms and other kinds of resources commonly encountered
in the real-time and embedded domain.

Allocation

The design of real-time and embedded systems often follows the well-known Y-
Chart scheme [7]. This approach specifies how both the application model and
the resource platform model are combined to provide the full system model.
This is then achieved by means of a third model, often called the mapping
model, allocation model, or deployment model. This kind of model specifies how
the elements of an application model are allocated to elements of the platform.
Since an application is simply a software specification, it is the platform elements
that are ultimately responsible for its physical realization. In other words, the
allocation model identifies which elements of the platform are used to execute a
given part of the application specification. Moreover, for our specific domain, it is
very important to be able to specify the associated non-functional characteristics
of the allocation. For example, when deploying the execution of a behavior on a
given processor, one may need to specify its worst-case execution time.

Refinement Modeling

As explained in the section describing abstract layering, model-based develop-
ment process must support abstraction refinement. This also introduces the need
to trace and propagate changes up and down the layer hierarchy. Hence, a mo-
deling language must support explicit modeling of the refinement relationships
between models at different abstraction layers, and should also allow attaching
non-functional properties to such relationships.

6.3.2 Slicing and Needs for RTES

As might be expected, a real-time and embedded modeling language must also
support different kinds of domain-specific phenomena in a suitable manner. In
particular, it needs modeling concepts dedicated to specifying quantitative cha-
racteristics such as deadlines, periods, bandwidths, processing capacities, etc.
as well as qualitative features that are related to behavior, such as communica-
tion methods and concurrency. This results in a number of concrete language
requirements described below.

Modeling Languages for Real-Time and Embedded Systems 135

Time
The temporal (behavioral) models of real-time and embedded systems can be
grouped into three main categories as follows [I]:

(a) Asynchronous/Causal models are merely concerned with the proper orde-
ring of activities (instructions, actions, so on), due to some control or data flow
prescription. Some amount of scheduling may be needed if the specified flow is
partial. Therefore, in such cases, time is viewed in terms of causal dependencies
rather than specific quantities or durations. This model is used widely at the
algorithmic software level (and in software models of hardware at the transac-
tion level). In the presence of concurrency, the varying speeds of asynchronous
components (with synchronous or asynchronous communications) generally lead
to non-deterministic behavior.

(b) Synchronous/Clocked models add the notion of simultaneity of events and
activities. Time is modeled as a discrete set of instants, and need not be connec-
ted to any physical reality, in the sense that the corresponding clock need not
be regular. Henceforth we shall call this time “logical”. This type of time mo-
del is used in (discrete step) simulation formalisms such as Simulink/Stateflow,
in synchronous languages and Statecharts, as well as in hardware description
languages at the register transaction level (e.g., VHDL, Verilog, SystemC, etc.).

(1) Real/Continuous time models take physical durations into account. These
are important for doing various time-related analyses (e.g., deadline matches)
and, in particular, for real-time scheduling as in RMA approaches [§]. They
are also used for modeling the temporal characteristics of the physical envi-
ronment or system with which the embedded system is interacting (usually
before discretization).

A real-time and embedded modeling language needs concepts for dealing with
different models of time, an, in particular, the three models of time described
above, since they represent most of the common cases.

Quantitative Aspects
This concerns the use of mathematical techniques to identify or predict certain
quality attributes of a system. They include, for example stress, thermal, or fluid
analyses in mechanical engineering, as well as performance or reliability analyses
in software engineering. One challenging problem in model-based engineering is
to integrate models that are commonly used for system production or software
code generation with the information that is relevant to perform these kinds of
analyses. An important goal is to reduce the time required to prepare a design
model for performing analysis and ensuring that the analysis model accurately
represents the system. A related challenge is to hide, as much as possible, the
underlying complexity of the formal mathematical model underlying the analysis
methods. Both goals may be achieved by deriving the analysis model more or
less directly from a suitably annotated system model using automated or semi-
automated support.

To this end, it is critical to be able to capture the non-functional charac-
teristics (e.g., performance, reliability, power consumption) in system models.

136 S. Gérard et al.

Furthermore, it should be possible to do this with precision and with maximum
flexibility [9]. Thus, rather than fix in advance the set of non-functional pro-
perties that can be expressed with the language, modelers should be allowed to
define the desired information in the form that is the most suitable for their spe-
cific analysis technique.. Such annotations should be interpretable by different
editing or analysis tools and should not be dependent on any specific tool confi-
guration. However, it would be impractical if modelers would have to specify
all this semantic information in every design. Hence, a special requirement is
a trade-off between usability and flexibility. Usability concerns favor declaring
a set of fully interpretable non-functional properties for a given modeling sub-
domain, which are easily referred to and preserve the same meaning for every
usage, whereas flexibility requires a capability for users to define their own types
of non-functional properties, provided, of course, that they are semantically well-
formed.

Qualitative Concerns

By qualitative concerns we refer firstly to aspects related to parallelism and
related communication issues. By their very essence, real-time and embedded
systems are indeed closely coupled to the real world which is inherently concur-
rent. Consequently, the modeling language must firstly provide the ability to
specify concurrent entities capable of interacting and communicating with each
other.

Underlying this preliminary concern is the more complex need to support
various specific models of communication and computation. Behind this basic
need is a more complex need to deal with heterogeneity of different models of
communication and computation. Indeed, because of the growing complexity of
systems, their development is more and more based on the possibility to consider
a system as being made of a set of smaller parts. These latter can be developed
using different approaches, and then different technologies, involving different
models of computation and communication.. A useful modeling language must,
therefore, provide a means for composing sub-systems relying on various he-
terogeneous models of computation and communication. This requirement may
be met, for example, either by providing a means of composing different models
of communication and computation, or by providing a generic model of com-
putation and communication that can be specialized for different categories of
real-time and embedded systems. In the latter case, since the model of compu-
tation and communication of the different sub-components of an application are
based on the same generic model, it may be easier to compose them.

6.4 MARTE, a Standard Real-Time and Embedded
Modeling Language

The Object Management Group (OMG, www.omg.org) is one of the princi-
pal international organizations promoting standards supporting the usage of
model-based software and systems development. The Unified Modeling Language

Modeling Languages for Real-Time and Embedded Systems 137

standard (UML, [B]) is probably the most representative of these and has had si-
gnificant success in the software industry as well as in other domains such as IT
and financial systems. UML is now the most widespread language used for mo-
deling in both industry and academia. It was designed as a general-purpose mo-
deling language as well as a foundation for generating different domain-specific
languages, mainly through its profile mechanism. The latter capability allows the
general concepts of UML to be specialized for a specific domain or application.

In this section, we first introduce the UML profile concept, which is a very po-
werful means for defining domain-specific modeling languages (DSMLs). Next,
we present MARTE, which is a UML profile for modeling real-time and em-
bedded systems and is, in effect, a domain-specific modeling language for the
real-time and embedded domain.

6.4.1 UML Profiling Capabilities

Because of the diverse nature of the disciplines needed for designing real-time and
embedded system, it is clear that a single modeling language will not be enough
to cover all the various concerns involved in this specific area. Consequently,
there has been much discussion about the suitability of UML for such domains
relative to custom domain-specific modeling language designed from scratch
[10]. A custom language has the obvious advantage that it can be defined in
a way that is optimally suited to a specific problem. At first glance, this may
seem the ideal approach, but closer examination reveals that there it can have
serious drawbacks. If each individual sub-domain of a complex system uses a
different modeling language, the problem will be how to interface the various
sub-models into a consistent integrated whole that can be verified, tested, or
simply unambiguously understood. Furthermore, there is also the problem of
designing, implementing, and maintaining suitable industrial-strength tools and
training for a each custom language, which can result in significant and recurring
expenses.

Conversely, although UML was designed to eliminate the accidental com-
plexity stemming from gratuitous diversity [I1], it still provides a built-in me-
chanism, the profile concept, for creating domain-specific modeling languages
that can take advantage of existing UML tools and widely available UML ex-
pertise. Note that we are not saying that UML profiles completely avoid DSML
integration problems. However, many of the fragmentation issuedd [12] stemming
from diversity can be mitigated because all domain-specific modeling languages
derived from UML share a common semantic and syntactic foundation. There
is typically a lot of commonality between the various disciplines in real-time

3 This is used to refer to the situation that occurs when different domain-specific
languages are used to describe different aspects of a complex system. For example,
one language might be used to describe the user interface function while a different
one for the database management and access functions. The individual languages
involved could have very different models of computation, which raises the question
of how to meld the different specifications into a coherent and consistent whole.

138 S. Gérard et al.

and embedded system design. For instance, the concepts of package, composi-
tion, property and connector, which are provided by UML, are common to many
disciplines, as are the basic notions of object, class, and interface.

The basic premise of profiles is that all domain-specific concepts are derived as
extensions or refinements of existing UML concepts. These extensions are called
stereotypes. A stereotype definition must be consistent with the abstract syntax
and semantics of standard UML, which means that a profile-based model can be
created and manipulated by any tool that supports standard UML. Moreover,
because of the underlying UML foundations of a profile, it is more easily learned
by anyone with a knowledge of UML.

A stereotype may have attributes and be associated with other stereotypes
or existing UML concepts. From a notational viewpoint, stereotypes can also be
used to adapt the concrete syntax of UML in order to provide a more domain
oriented concrete syntax if needed. For instance, a class model element stereo-
typed as <clocks> might use a picture of a clock symbol instead of the generic
UML class symbol.

We can distinguish two main categories of UML profiles [13]: specification
and annotation profile. Specification profiles are fully-fledged domain-specific
modeling languages and are used to model systems from the viewpoint of a
particular domain. SysML [I4] is an example of this kind of profile. Annotation
profiles are used to add supplementary information to various kinds of UML
elements that can then be interpreted by specialized tools or domain experts
for different purposes, such as model analyzers or code generators. Note that
annotation profiles are particularly useful for defining domain-specific modeling
languages that support abstract layering and slicing. As we shall describe later,
some parts of the MARTE profile, namely the sub-profiles that support various
analyses, are examples of this latter category.

While specification profiles is generally well understood, some explanation
may be necessary to understand the second category, annotation profiles. Speci-
fically, in case of MARTE’s analysis sub-profiles, a given analysis concept may
be manifested in a number of different ways in a particular model. For example,
a real-time clock may be manifested as a lifeline in a UML sequence diagram
or as a role in a UML collaboration diagram. From the analysis viewpoint, all
of these different manifestations represent the same thing. This means that it
is necessary to be able to apply the same analysis stereotype to different kinds
of UML concepts, and conversely, different stereotypes (possibly from different
analysis viewpoints) may be applied in the same model element.

Concepts defined in the MARTE annotation profiles that support quantita-
tive analysis can be applied to make a standard UML model look like an analysis
model (e.g., a performance model). This is achieved by tagging appropriate ele-
ments of the original UML model to represent concepts from the analysis view-
point. These can then be used by an automated performance analysis tool to
determine the fundamental performance properties of a software design. At the
same time (and independently of the performance modeler) a reliability engineer
might overlay a reliability-specific view on the same UML model to determine its

Modeling Languages for Real-Time and Embedded Systems 139

overall reliability characteristics, and so on. Annotation profiles allow the same
model to be viewed from different viewpoints (e.g., schedulability, performance,
security, availability or timing). Finally, it should be noted that UML profiles
have the very useful feature to be dynamically applied to a user model (e.g., to
produce a domain-specific viewpoint) without changing the underlying model in
any way. Subsequently, the profile can be removed to reveal the original model
unchanged. As described in section [6.4.3] this feature is crucial to this type of
profile usage.

6.4.2 MARTE Basics

As noted previously, UML is a general-purpose modeling language that can be
specialized or extended for dealing with specific domains or concerns. The field
of real-time and embedded software systems is one such domain for which exten-
sions to UML are required to provide more precise expression of domain-specific
phenomena (e.g., mutual exclusion mechanisms, concurrency, deadline specifica-
tions, and the like). The OMG had already adopted a UML profile for this pur-
pose, called the “UML Profile for Schedulability, Performance and Time” (SPT,
[6]). It provided concepts for dealing with model-based schedulability analysis,
focused primarily on rate monotonic analysis, and also concepts for model-based
performance analysis based on queuing theory. In addition, SPT also provided a
framework for representing time and time-related mechanisms. However, prac-
tical experience with SPT revealed shortcomings within the profile in terms of
its expressive power and flexibility. For example, it was necessary to support
the design of both hardware and software aspects of embedded systems and
more extensive support for schedulability and performance analysis, encompas-
sing additional techniques such as hierarchical scheduling. Furthermore, when
the new significantly revised version of UML, UML2, was adopted by the OMG,
it became necessary to upgrade the SPT profile. Consequently, a new Request
For Proposals (RFP) was issued by the OMG seeking a new UML profile for
real-time and embedded systems. This profile was named MARTE (an abbre-
viated form of “Modeling and Analysis of Real-Time and Embedded systems,”
[1). The intent was to address the above issues as well as to provide alignment
with another standard OMG profile, the UML profile for Quality of Service and
Fault Tolerance (QoS & FT, [15]). The latter enables specification of not only
real-time constraints but also other embedded systems characteristics, such as
memory capacity and power consumption. MARTE was also required to support
modeling and analysis of component-based architectures, as well as a variety of
different computational paradigms (asynchronous, synchronous, and timed).

In response to this request for proposal, a number of OMG member organiza-
tions collaborated on a single joint submission. This group, called the ProMARTE
consortium, consisted of the following enterprises: Alcatel, ARTiSAN Software
Tools, Carleton University, CEA LIST, ESEO, ENSIETA, France Telecom,
International Business Machines, INRIA, INSA from Lyon, Lockheed Martin, Ma-
thWorks, Mentor Graphics Corporation, NoMagic, the Software Engineering Ins-
titute (Carnegie-Mellon University), Softeam, Telelogic AB, Thales, Tri-Pacific

140 S. Gérard et al.

Software, and Universidad de Cantabria. The resulting submission was voted on
and accepted by the OMG in June 2007 [16] as a “Beta Specification”.

As prescribed by the OMG's Policies and Procedures manual (P&P, [17]),
following adoption, a Finalization Task Force (FTF) was instituted to prepare
the new specification for its formal adoption as an official OMG technology
recommendation. The working period of a finalization task force is about 18
months and its first phase (around 6 months) comprises a comments-gathering
phase during which feedback from the broader user and vendor communities
is collected. Of particular significance is input from commercial and other tool
vendors intending to support the new specifications in their products. The second
phase is then dedicated to solving the key issues identified in the initial phase
resulting in a Beta 2 version of the specification. This version is first screened
by the OMG's Architecture Board and, if deemed acceptable, is submitted to
the OMG's Board of Directors for final approval. At that point, the resulting
specification becomes formally available as version 1.0. In the case of MARTE,
it is expected that this will be available by the first quarter of 2009.

6.4.3 Architecture and Some Details of MARTE

As noted, MARTE is a UML profile intended for model-based engineering of
real-time and embedded systems. It consists of a set of extensions (i.e., speciali-
zations) of appropriate general UML concepts providing real-time and embedded
designers and developers with first-class language constructs from their domain.
Many of these extensions pertain to so-called non-functional aspects of real-time
and embedded applications. Non-functional concerns of an application can be
classified into two categories, quantitative and qualitative aspects. Furthermore,
these extensions may be available at different levels of abstraction and, finally,
they have been defined to support modeling, analysis, or both. In order to satisfy
all these requirements, MARTE is structured as a hierarchy of (sub-)profiles, as
depicted in the UML package diagram in figure It has four main parts.

The topmost package, which is the foundation on which the rest of MARTE
is based, consists of four basics sets of UML extensions, also called MARTE
sub-profiles:

— Non-Functional Properties Modeling (NFP) This sub-profile provides
modeling constructs for declaring, qualifying, and applying semantically well-
formed non-functional aspects of UML models. The non-functional pro-
perties sub-profile supports the declaration of non-functional properties as
UML data types, whereas the value specification language is used to specify
the values of those types and any potential functional relationships bet-
ween them. It is complemented by the Value Specification Language (VSL),
which is a textual language for specifying algebraic expressions. The Value-
Specification Language sub-profile is separated out in the annexes package
because it was intended to be reused in other OMG profiles.

— Time Modeling This consists of concepts for defining time in applications,
and also for manipulating the underlying time representation. The Time

Modeling Languages for Real-Time and Embedded Systems 141
MARTE foundations
1 1 1 1
« profile » « profile » « profile » « profile »
NFP Time GRM Alloc
R)
: :
MARTE design model MARTE analysis model
—1 1 1
« profile » « profile » « profile »
GCM HLAM GQAM
1 1 1 1
« profile » « profile » « profile » « profile »
SRM HRM SAM PAM
MARTE annexes
1 1 1
« profile » « profile » « modelLibrary »
VSL RSM MARTE_Library

Fig.6.1. MARTE's Architecture View

extension defined in MARTE provides support for three qualitatively dif-
ferent models of time: chronometric, logical, and synchronous.

— Resource Modeling (GRM) One important requirement with regards to real-
time and embedded system modeling is to represent the set of resources
underlying an application and also how the system uses them. The Generic
Resource Modeling (GRM) sub-profile consists of an ontology of resources
enabling modeling of common computing platforms (i.e., a set of resources
on top of which an application may be allocated to be computed), and high-
level concepts for specifying resource usage. The level of abstraction used
here is at a general system level.

— Allocation Modeling This sub-profile of the foundational layer provides a
set of general concepts pertaining to allocation of functionality to entities
responsible for its realization. It may be either time-related allocation (i.e.,
scheduling) or space allocation. It also tackles the more abstract issue of
refinement between models at different levels of abstraction. Note that non-
functional characteristics may be attached to an allocation description (e.g.,
when specifying the allocation of a function to a given execution engine, it
is possible to specify its worst case execution time).

Starting from these foundational concepts, MARTE is then split into two dif-
ferent categories of extensions: One (denoted in figure[6.1las the “MARTE design

142 S. Gérard et al.

model”) is dedicated to supporting model-based design, that is to say modelin
activities related to the left branch of the classical “V” development cycldl,
whereas the other, denoted by the “MARTE analysis model” package, provides
support for model-based analyses of real-time and embedded applications (i.e.,
more devoted to validation and optimization).

Model-based design of real-time and embedded systems with MARTE pro-
ceeds mostly in a declarative way. Hence, MARTE users may annotate their
models with real-time or embedded concerns using the extensions defined wi-
thin the High-Level Application Modeling sub-profile (refer to the following
section that illustrates this using extracts of the MARTE specification and an
example). For instance, concurrent computing units with real-time features may
be denoted using an extension called <rtUnit> and, by giving specific values
to its properties, they can also indicate what is the model of computation for
the concurrent unit. Note also that MARTE enables component-based system
engineering (either software or hardware) through its specific sub-profile cal-
led the Generic Component Model (GCM). This component model supports
both message- and data-based communication schemes between components.
In addition, MARTE also defines very refined concepts that enable users to
describe its computing platforms, either software or hardware, in a very de-
tailed and precise manner [I8, [19, [20]. These features are supported by two
sub-profiles, Software Resource Modeling (SRM) and Hardware Resource Mode-
ling (HRM). In addition, based on its Software Resource Modeling sub-profile,
MARTE includes in its annexes facilities for modeling OSEK-, ARINC-, or
POSIX-compliant software computing platforms. Finally, to deal effectively with
the increasing degrees of parallelism available on chips, one of the MARTE an-
nexes includes the Repetitive Structure Modeling sub-profile, which enables com-
pact representations of multidimensional regular structures encountered in chip
design.

Model-based analysis using MARTE is enabled primarily through the ex-
tensions defined either in the Generic Quantitative Analysis Modeling profile
(GQAM), or using one of its two refinements, which are dedicated to schedu-
lability analysis [21] and performance analysis [22] respectively. The annotation
mechanism used in MARTE to support model-based analyses uses UML stereo-
types. These typically map the UML elements of the application or platform
into corresponding analysis domain concepts, including specifications of values
for properties which are needed to carry out the analyses. One of the typical use
cases of MARTE described in the following section provides more detail.

In summary, MARTE was designed to cover all five categories of real-time
and embedded systems listed earlier. The table below summarizes how MARTE
covers the requirements identified in section of this chapter. The left-most
column denotes the different parts of MARTE: a part being either a sub-profile
or a specific model library.

4 Note that we are not advocating the “V”development cycle as the reference process
model for MARTE. We are simply using it to help orient the reader.

Modeling Languages for Real-Time and Embedded Systems 143

6.4.4 An Extract of the MARTE Specification

In this section we illustrate in practical terms some of the ideas described in
preceding sections. However, due to space limitations it is not possible to provide
examples covering the full specification. Therefore, we will focus on the MARTE
part dedicated to high-level modeling of real-time and embedded systems design.
In particular, the fragment of the MARTE profile focusing on the definition of
a real-time unit and a protected passive unit.

« enumeration »
PoolMgtPolicyKind CallConcurrencyKind
infiniteWait .
timedWait « metaclass » sequential
dynamic CommonBehavior: guarded
exception BasicBehaviors:: concurrent
other BehavioredClassifier
«stereotype» «stereotype» MARTE G;g?;%z:/}mg;sicTypes--
RtUnit PpUnit SchedPolicyKind
isDynamic: Boolean [1] = true concPolicy : CallConcurrencyKind EarliestDeadlineFirst
isMain: Boolean memorySize: NFP_DataSize LIFO
srPoolSize: Integer FixedPriority
srPoolPolicy : PoolMgtPolicyKind LeastLaxityFirst
srPoolWaitingTime: NFP_Duration RoundRobin
queueSchedPolicy: SchedPolicyKind TimeTableDriven
queueSize: Integer Undef
msgMaxSize: NFP_DataSize Other
operationalMode: Behavior
main: Operation
memorySize: NFP_DataSize

Fig. 6.2. Extract from the MARTE specification: the real-time unit and the passive
protected unitmetamodels

Figure illustrates the graphical definition of two main concepts of the
MARTE specification: RtUnit and PpUnit. An RtUnit (Real-time Unit) is a
unit of concurency that encapsulates in a single concept both the object and the
process paradigms. This allows concurrency control to be encapsulated within
a single unit. Any real-time unit can invoke services of other real-time units,
or send and receive data flows to and from those units. It owns one or more
schedulable resources (i.e., threads or tasks in operating system terminology).
A PpUnit (Protected passive Unit), on the other hand, is used to represent
data containers that can be shared between real-time units but with some form
of concurrent access protection. Therefore, a PpUnit specifies its concurrency
policy, via its concPolicy attribute. It does not own any schedulable resource.

The next figure describes a UML class diagram of a very simple automotive
cruise control system annotated with the two of the aforementioned stereotypes.
Both classes, CruiseController and ObstacleDetector, are stereotyped as real-
time units. The first of these creates dynamically schedulable resources (e.g.,
threads) to handle the execution of its services, while the second has a pool of
ten (10) schedulable resources. Both real-time units are sharing data handled by

144 S. Gérard et al.

Table 6.1. MARTE's coverages summary in terms of RTE-specific modeling language
(a box with the symbol C [23] means the MARTE part provides some support for the
requirement, else it is marked as &)

Slicing Layering

Quantitative Qualitative ~ Time Allocation Resource Refinement
Concerns Concerns

NFP - - %) C o -
Time C - - %] %) 1)
GRM o} o] 2] o] C 15}
Alloc o %] %) C o C
GCM o} C o] o] 15} 15}
HLAM C C C o] o} 15}
SRM o} o] 2] o] C 15}
HRM o} 2] o] o] C 15}
GQAM - %] %] %] C (%}
SAM C o o o - &
PAM C %] %] %] C 1%}
VSL - C 12/ o & 1%/
CCSL 15} %] C %] 15} 1%}
RSM 15} %] %] %] C 1%}
MARTE (@ - (@ %] C 1%)

Library

Modeling Languages for Real-Time and Embedded Systems 145

CruiseControlSystem A |

isDynamic = false
«rtUnit » «rtUnit » isMain = false
Ishain = "U‘—‘Lro: CruiseControler ObstacleDetector 1 ooisize = 10
in = start S
frain = =t 1gSpeed: Speed startDetection() poolPolicy = create
" N stopDetection()
wrtServicer {exeKind=deferred} start()
wrtServicer {exeKind=deferred} stop()

| spm « ppUnit » spm
{concPolicy=guarded}

]
Speedometer

« dataType »
getSpeed(): Speed Speed

Fig. 6.3. An example of MARTE model using both stereotypes, <rtUnit> and <ppU-
nit>

the class Speedometer. Because real-time units execute concurrently, the access
to the data encapsulated within the class Speedometer needs to be protected.
To do that, the class Speedometer is tagged with the <ppUnit> stereotype. Its
concPolicy property is set to guarded, meaning that only one real-time unit at
a time can access a feature of Speedometer, while subsequent ones arriving later
are suspended until the first user releases it.

6.4.5 Typical MARTE Usage Scenarios

The modeling capabilities of MARTE are rich enough for a wide range of design
approaches. This yields the flexibility to support and integrate multiple design
perspectives, but also to deal with the problem of understanding and choosing
among a variety of language alternatives. In both cases, there is no standard pres-
criptive way of using the language constructs across the development cycle. This
means that individual projects or enterprises can define their own specific mode-
ling framework and methodology that suits their needs best. We identify below a

Application Platform
P P
Mod:ﬂ Applic. Constraints Model SW/HW Resources
— —— o, ————

*Environment Params. - *RTOS Library/HW Comp.
g T *+— -Quality Recjuirements 2 e 2L H +*QoS (capacity, speed,
= =i *Design Constraints - Tl == reliability)
Allocation

P
Alloc. Information = E
e —— — I = o Input Files for

*Applic. to Platform = Analysis

mapping 23
i S <:]
@ Analysis Results

properties
Generated Code

Analysis Tools

Fig. 6.4. Some typical scenarios of MARTE usage

146 S. Gérard et al.

set of representative scenarios in which using MARTE provides significant bene-
fits. Although these scenarios certainly do not cover all possibilities, they allow us
to illustrate the application of MARTE in a more focused and concrete manner.

Figure[6. 4l illustrates some of example scenarios following the Y-Chart scheme
[7]. For the sake of simplicity, we limit the discussion of MARTE usage here to
just three simple use cases: (1) an application-oriented use case that illustrates
the modeling of non-functional features of a system, (2) a platform-oriented use
case that corresponds to the definition of the hardware and software resources of
the system, and (3) an allocation-oriented use case that denotes how to model
the deployment of an application to a platform.

Application-Oriented Use Case

The first MARTE usage scenario, depicted in the upper left-hand corner of Figure
[6.4], deals with the application side and describing non-functional requirements.
UML has traditionally been used to document user requirements by means of use
case diagrams. Use cases follow a graphical, scenario-based approach. Although
use cases may be formalized to certain degree, for example by using sequence dia-
grams in order to detail such usage histories, they are often criticized for a number
of limitations. For instance, they are applied mainly to model functional require-
ments, but are not very helpful for modeling non-functional ones. One possible way
of using MARTE is to add annotations that characterize non-functional constraints
in use case diagrams and their corresponding sequence diagrams. This provides two
important capabilities leading toward more formal requirements specification.

First, note that these non-functional requirements are specified jointly with their
corresponding functional requirements. While specifying non-functional aspects is
possible with UML comments, this would make their semantic relationship to the
concrete functional elements hard to capture. In particular, the verification of re-
quirements satisfaction in real-time systems is strongly dependent on the coupling
between system function and timing. In MARTE, timing annotations provide se-
mantic definitions closely related to the system behavior. For instance, one may de-
fine a jitter constraint in the arrival of an event and specify whether such an event
relates either to a send, receive, or consume occurrence within a sequence diagram.
Second, non-functional annotations follow a well-defined textual syntax, which is
supported by the Value Specification Language of MARTE. The main advantages
of this level of formalization are the ability to support automated validation, veri-
fication, and traceability, while being easily understood by stakeholders.

To model the application structure and behavior, MARTE adds key semantics
to UML model elements. In particular, a common model of computation provides
semantic support for the real-time object paradigm (the MARTE's High-Level
Application Modeling sub-profile). This paradigm allows specifying applications
at a high level of abstraction, by delegating concurrency, communication, and
time-constraint aspects to a modular unit called RtUnit (see Section [6:44]). Such
units can be encapsulated in structural units (structured components) specifying
interfaces and interactions with other structural elements. MARTE adopted the
notions of port and flow from SysML [I4] and extended them with the notion of
message-based communications.

Modeling Languages for Real-Time and Embedded Systems 147

Platform-Oriented Use Case

MARTE can also be used to explicitly model resource patterns such as proces-
sing resources, communication buses, or power supply devices along with a set
of predefined quality attributes (illustrated in the upper right-hand corner of
Figure[6.4)). Furthermore, the operating system (e.g., RTOS) and other software
library layers can be modeled and reused for multiple application models. In
this chapter we want to particularly focus on the usage of the software resource
modeling capabilities of MARTE (the MARTE's Software Resource Modeling
sub-profile), which deal with one of the more important open issues in Model-
based Engineering: making platform models explicit.

Historically, model-driven approaches for real-time and embedded systems
have focused on improving dedicated real-time and embedded platform mo-
dels [6] [7] (i.e., platform models used as meta-models). At the same time, the
Model-based Engineering community has proposed generic transformation lan-
guages (e.g., ATL [4] or SmartQVT [24]) which facilitate the description of de-
dicated bridges or transformations between meta-models. Current model-driven
approaches for real-time and embedded therefore entail specific model transfor-
mations from a set of source platforms to a set of target platforms. In many
case, however, the platforms are not described as explicit input models to be
used in the transformation. This is a serious limitation as software platforms
(e.g., RTOS, programming languages) are continuously evolving and the resul-
ting dearth of customizable transformations hampers description of reusable
generative processes.

In [25], the authors propose a model-based framework enabling explicit
platform description considering the latter as an input parameter to the model
transformation. The proposed approach uses the MARTE's Software Resource
Modeling sub-profile for describing the specific platforms. Its principal innova-
tion is that it avoids hard-coding the platform model in the model transforma-
tion. The main benefit is a cleaner separation of concerns within the design flow
enabling easy porting to different platforms without requiring a new transforma-
tion for each case. Real-time and embedded decisions are made explicitly in the
input models and not implicitly in the transformation description itself. This also
improves the maintainability of the transformations. In this way, the generation
process becomes more flexible, more adaptable, and more reusable for a variety of
different real-time and embedded platforms. In [25], the authors also focused on
the transformations dedicated to porting multitasking applications to heteroge-
neous computing platforms (e.g., multitasking operating systems).

Allocation-Oriented Use Case
An allocation view represents the system as a hierarchy of an application (at the
top) and the software/hardware platform layers (at the bottom), as shown in the
bottom of Figure A set of MARTE stereotypes allow representing such hie-
rarchies either using allocation/deployment or using composition relationships.
In order to generate code for a given software platform, the system model
built on the real-time concepts (e.g., <rtUnit>) must be allocated to a specific
software platform model, as described in the preceding use case. In [26], the

148 S. Gérard et al.

authors implement a real-time framework that gives meaning to the features
defined in the MARTE's High-Level Application Modeling sub-profile. This is
achieved by providing execution support for realizing the behavior, communi-
cations, and message management associated with this kind of objects. The
code generation facility provided by this execution framework, called ACCORD,
consists of a set of transformations used to apply implementation patterns on
real-time concepts, and a standard C++ code generator. A methodology (AC-
CORDI|UML) constraints the usage of MARTE concepts and parameters to a
subset that are semantically meaningful in the ACCORD execution framework.

An allocation view should incorporate the non-functional annotations that
results from the running of the application on a particular hardware/software
platform. Some of these annotations are directly mapped to platform properties,
while others require special techniques to determine their values through either
computation or simulation. For instance, fine-grained timing analyzers can help
to determine the worst case execution times of relevant pieces of code, which are
then used in scheduling analysis to predict end-to-end response times.

In [27], MARTE is used in practical system integration scenarios (modeled
as “analysis contexts”), where multiple candidate configurations are analyzed
from a timing perspective, potentially by multiple techniques. In this paper, the
authors use the Value-Specification Language to specify non-functional variables
that are further evaluated to make efficient design decisions. One of the benefits
is that multi-objective analyses can be performed and trade-off decisions can
be taken on the basis of a smart binding of exposed parameters, which are
used in different analysis contexts. Each analysis technique may involve specific
parameters to be evaluated. Furthermore, sensitivity analysis can be used at the
system design level to understand the degree to which the overall results are
sensitive to a given parameter.

Analysis file
- {Analyser -
} input format)
1 2
UML Model Editor P UML Madel P P —
(including MARTE) g Convertor g 4

Analysis
results

4

Analysis Results
Convertor

Fig.6.5. Schema of the MARTE model-processing framework

Modeling Languages for Real-Time and Embedded Systems 149

Finally, MARTE fosters model processing in the way that it enables adding
semantics to a given UML model (e.g., for code production or quantitative ana-
lysis purposes). In this context, one generic usage of MARTE enables the model-
processing schema described in Figure Note that this process can be highly
automated, which, in some cases, can even eliminate the need for analysis domain
experts which are often difficult to find.

6.5 Related Work

Both academia and industry have already proposed languages to support model-
based development of embedded systems.

SysML [14] is an OMG standard language “for specifying, analyzing, desi-
gning, and verifying complex systems that may include hardware, software, in-
formation, personnel, procedures, and facilities”. The so-called Block concept of
SysML is the common conceptual entity that can represent many different kinds
of system elements such as electronic or software components, mechanical parts,
information units, and almost any other type of structural entity in the system
under interest. Blocks articulate a set of modeling perspectives enabling separa-
tion of concerns during systems design. Among these perspectives, requirement
diagrams provide constructs for specifying text-based requirements and their
relationships, including requirements hierarchies, as well as derivation, satis-
faction, verification, and refinement relationships between requirements. Block
description diagrams and internal block diagrams enable the specification of
more generic interactions and phenomena than those existing just in software
systems. This includes physical flows such as liquids, energy, or electrical flows.
The dimension and measurement units of the flowing physical quantities can be
explicitly defined. Although most behavior constructs in SysML are similar to
those of UML (interactions, state machines, activities, and use cases), SysML
refines some of them for modeling continuous systems and probabilities in acti-
vity diagrams. A perspective called parametric diagram allows SysML users to
describe, in a graphical manner, analytical relationships and constraints, such
as those described by mathematical equations. Formally, SysML is defined as a
UML profile.

MARTE and SysML are complementary in many ways [28]. The MARTE
component model shares the same notions of ports and flows, and additionally
extends them with the concept of client/server port. This is intended to support
the request-reply and publish-consume communication paradigms. In addition,
there are some actions under way at the OMG to align the semantics of data
and event flows, to define a common framework to specify quantities, units,
dimensions and values, and to improve some aspects such as allocation and
timing modelling. This will be reflected in future versions of MARTE and SysML.

AADL (Architecture Analysis and Design Language) [29] is an architecture
description language standardized by SAE (Society of Automotive Engineers).
AADL has been designed for the specification, analysis, and automated inte-
gration of real-time performance-critical (timing, safety, schedulability, fault

150 S. Gérard et al.

tolerant, security) distributed systems. A system modeled in AADL consists
of application software components bound to execution platform components.
AADL application software components are made of data, threads, and process
components. AADL thread components model units of concurrent execution. A
scheduler manages the execution of a thread. AADL execution platform com-
ponents include processors, memory, buses and devices. Although AADL was
defined as a domain-specific language from scratch, there is a MARTE rende-
ring of AADL, as stated in Annex F of the AADL specification. This has been
formalized as a subset of MARTE with some specific guidelines defined in Annex
A of the MARTE specification.

In the automotive domain, AUTOSAR [30)] is unquestionably the standard to
specify component-based software infrastructure and it includes a standardized
API. AUTOSAR’s goal is to support the exchange of parts of embedded sys-
tem implementation artifacts that have already been pre-designed or designed
independently by different teams (e.g., by OEM’s, software suppliers), without
the time-consuming and costly need to re-configure, port, and re-build their
code. In AUTOSAR, application models are organized in units called software
components. Such components hide the implementation of the functionality and
behavior they provide and simply expose well-defined connection points called
ports. In particular, atomic software components are entities that support an
implementation and hold behavioral entities called runnables. A runnable is an
entity that can be executed and scheduled independently from other runnable
entities. There is an action project funded by the European Union’s Seventh Fra-
mework Program called ADAMS [31] especially dedicated to promote and show
the complementarity of MARTE with other automotive and avionics standards,
among which AUTOSAR is of main interest.

In addition to AUTOSAR, some of the European automotive actors have de-
fined an architecture description language, EAST-ADL [32]. This complements
AUTOSAR to cover the system level that lies outside the scope of AUTOSAR.
This includes requirements modeling, feature content at the level of a vehicle
description, architecture variability, functional structure of applications, midd-
leware, plant (environment), abstract hardware architecture, and preliminary
functional allocation. The ADAMS project provided some important results on
the alignment of MARTE and EAST-ADL [33]. This was reflected as a set of
guidelines to describe EAST-ADL-like models with a subset of MARTE concepts
oriented to the design of automotive applications. Finally, note that these gui-
delines are part of the MARTE standard specification.

In addition to the aforementioned standards, two other non-standard ap-
proaches provide similar facilities as MARTE: MIC and Ptolemy.

Vanderbilt University's Model Integrated Computing (MIC, [34]) tool suite
consists of meta-programmable model-builder (GME), model-transformation en-
gine (UDM/GReAT), tool-integration framework (OTIF), and design space ex-
ploration tool (DESERT). This tool suite is based on specific languages for meta-
modeling and provides the ability to build domain-specific modeling languages.
This framework is described in depth in a separate chapter of this book.

Modeling Languages for Real-Time and Embedded Systems 151

Ptolemy is a model-based tool dedicated to real-time and embedded systems
[35]. This project provides support for heterogeneous modeling, simulation, and
design of concurrent system. The modeling principle fostered in Ptolemy is cal-
led actor-oriented design. This relies on the concepts of models, actors, ports,
parameters and channels. Actors (the core Ptolemy concept for supporting com-
ponent based development) communicate with other concurrent computing ac-
tors only via their ports. Ports of two communicating actors needs to be linked
via a channel. A set of communicating actors belong to a given model which
may have parameters. Each model specifies a director that define its model of
computation and each of the actors owned by the model will conform to the
model of communication defined by the director. The key concept of actor as
defined in Ptolemy was inspired by the work introduced first in 1970's by Carl
Hewitt of MIT, and later formalized by Agha in [36]. The MARTE, concept of
a real-time unit used for modeling real-time and embedded systems shares the
same origins. More specifically, the MARTE concept was inspired by the active
object concept of UML in one hand, as well as ACCORD concept of real-time
object [37].

6.6 Conclusions and Perspectives

The complexity of modern real-time and embedded systems is starting to ex-
ceed the capabilities of traditional code-centered technologies. Fortunately, new
model-based engineering methods have proven themselves capable of overco-
ming many of these limitations. These modern methods rely on intensive use
of computer-based automation and take advantage of computer languages with
higher-level constructs that abstract away much of the underlying implemen-
tation technology as compared to programming languages. The benefits gained
from using this approach increase the closer the language is to the problem do-
main, which is why there is much interest in defining so-called domain-specific
modeling languages (DSML). One such language is MARTE, which was specifi-
cally designed for modeling systems and phenomena in the real-time and embed-
ded domain. It allows direct expression of domain phenomena such as time and
timing mechanisms, concurrency control mechanisms, software and hardware
platforms and resources, as well as precise specification of their quantitative
characteristics (e.g., latency, capacity, speed and execution times).

MARTE is a profile-based language, which means that it was derived by refi-
nement and extension of the industry-standard UML language. This allows it to
reuse many existing UML tools as well as widely available UML expertise, while
still retaining the expressive power and other advantages of a specialized com-
puter language. Furthermore, MARTE itself is an industry standard, adopted
and endorsed by the OMG as one of its official technology recommendations.

The domain-specific nature of MARTE enables not only more straightfor-
ward specification of real-time and embedded applications but also automated

152 S. Gérard et al.

and semi-automated engineering analyses of MARTE-based models. This im-
portant capability allows candidate designs to be objectively evaluated for key
performance and quality indicators early in the development cycle, before com-
mitting full development resources. Consequently, potentially expensive design
flaws and shortcomings can be detected and eliminated earlier and at far less
cost compared to traditional code-based methods.

At the time of this writing, MARTE is available in its version 1.0 on the OMG
web site (www.omg.org). In June 2009, a revision task force was launched by
the OMG. This task force is scheduled to complete its work within one year
leading to a minor revision that will incorporate minor fixes for specification
issues received by the OMG in the meantime.

MARTE has already been applied extensively in practice by industry and is
supported by numerous tool vendors as indicated by the list of ongoing pro-
jects that identify MARTE as central to their concerns (cf. the OMG web site
dedicate to MARTE, www.omgmarte.org). But MARTE, is also an interesting
research subject being explored by academia and other research institutions.
The expectation is that all of these research activities will lead to new proposals
for using MARTE for designing and validating real-time and embedded systems
based on standards. And, of course, it will also lead to proposed enhancements
and extensions to the standard itself.

References

[1] Object Management Group: UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) RFP (2005-02-06) (February 2005)

[2] Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Ap-
proach. Addison-Wesley, Reading (1990)

[3] The Mathworks, http://www.mathworks.fr/

[4] Eclipse-atl, http://www.eclipse.org/m2m/atl/

[5] Object Management Group: UML Version v2.1.2 (2007-02-05) (February 2007),
http://www.omg.org/spec/UML/2.1.2/

[6] Object Management Group: UML Profile for Schedulability, Performance, and
Time, v1.1 (2005-01-02) (January 2005),
http://www.omg.org/technology/documents/formal/schedulability.htm

[7] Chen, R., Sgroi, M., Martin, G., Lavagno, L., Sangiovanni-Vincentelli, A.L., Ra-
baey, J.: UML for Real: Design of Embedded Real-Time Systems. In: Selic, B.,
Lavagno, L., Martin, G. (eds.), pp. 189-270. Kluwer Academic Publishers, Dor-
drecht (2003)

[8] Klein, M., Ralya, T., Pollak, B., Obenza, R.: A Practitioner’s Handbook for Real-
Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems. LNCS.
Kluwer Academic Publishers, Dordrecht (1993)

[9] Espinoza, H.: An Integrated Model-Driven Framework for Specifying and Ana-
lyzing Non-Functional Properties of Real-Time Systems. Information Processing
Letters (2007)

[10] Gray, J., Tolvanen, J.P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-
Specific Modeling (in CRC Handbook of Dynamic System Modeling). CRC Press,
Boca Raton (2007)

http://www.mathworks.fr/
http://www.eclipse.org/m2m/atl/
http://www.omg.org/spec/UML/2.1.2/
http://www.omg.org/technology/documents/formal/schedulability.htm

[11]

[12]

[13]
[14]

[15]

[16]
[17]

[18]

[21]

Modeling Languages for Real-Time and Embedded Systems 153

Selic, B.: On the semantic foundations of standard UML 2.0. In: Bernardo, M.,
Corradini, F. (eds.) SEM-RT 2004. LNCS, vol. 3185, pp. 181-199. Springer, Hei-
delberg (2004)

Shonle, M., Lieberherr, K., Shah, A.: XAspects: An Extensible System for
Domain-Specific Aspect Languages. In: Object-Oriented Programming. LNCS.
Springer, Heidelberg (2003)

Selic, B.: A Systematic Approach to Domain-Specific Language Design Using
UML. In: ISORC (2007)

Object Management Group: Systems Modeling Language, Version 1.1(2008-11-01)
(November 2008), http://www.omg.org/cgi-bin/doc?formal

Object Management Group: UML Profile for Modeling QoS and FT Characteris-
tics and Mechanisms, v1.1 (2006-05-02) (Mai 2006),
http://www.omg.org/spec/QFTP/1.1/

Object Management Group: UML Profile for MARTE, Beta 2 (2008-06-09) (Juni
2008), http://www.omg.org/cgi-bin/doc?ptc/

Object Management Group: Policies and Procedures, Version 2.7 (2008-06-01)
(Juni 2008), http://www.omg.org/cgi-bin/doc?pp

Thomas, F., Gérard, S., Delatour, J., Terrier, F.: Software Real-Time Resource
Modeling. In: Proceedings of the International Conference Forum on Specification
and Design Languages (FDL). Information Processing Letters (2007)

Taha, S., Radermacher, A., Gerard, S., Dekeyzer, J.L.: An Open Framework for
Hardware Detailed Modeling. In: IEEE Proceedings of SIES. Information Proces-
sing Letters (2007)

Taha, S., Radermacher, A., Gerard, S., Dekeyzer, J.L.: Marte: Uml-based hard-
ware design from modeling to simulation. In: Proceedings of the international
conference forum on specification and design languages (fdl). Information Proces-
sing Letters (2007)

Tawhid, R., Petriu, D.C.: Integrating Performance Analysis in the Model Driven
Development of Software Product Lines. In: Czarnecki, K., Ober, 1., Bruel, J.-M.,
Uhl, A., Vélter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 490-504. Springer,
Heidelberg (2008)

Espinoza, H., Medina, H.J., Dubois, H., Gerard, S., Terrier, F.: Towards a UML-
based, Modeling Standard for Schedulability Analysis of Real-time Systems. In:
International Workshop MARTES, MoDELS/UML 2006 (2006)

Selic, B.: From Model-Driven Development to Model-Driven Engineering. LNCS.
Springer, Heidelberg (2007)

(Smartqvt), http://smartqvt.elibel.tm.fr/

Thomas, F., Delatour, J., Gérard, S., Terrier, F.: Toward a Framework for Expli-
cit Platform Based Transformations. In: 11th IEEE International Symposium on
Object-oriented Real-time distributed Computing. LNCS. Springer, Heidelberg
(2008)

Mraidha, C., Tanguy, Y., Jouvray, C., Terrier, F.: Gerard: Presented in Workshop
UML&AADL 2008 and Published in Proceeding of the 13th IEEE International
Conference on Engineering of Complex Computer Systems. LNCS. Springer, Hei-
delberg (2008)

Espinoza, H., Servat, D., Gérard, S.: Leveraging Analysis-Aided Design Decision
Knowledge in UML-Based Development of Embedded Systems. LNCS. Springer,
Heidelberg (2008)

http://www.omg.org/cgi-bin/doc?formal
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/cgi-bin/doc?ptc/
http://www.omg.org/cgi-bin/doc?pp
http://smartqvt.elibel.tm.fr/

154

[28]

[29]

S. Gérard et al.

Espinoza, H., Selic, B., Cancila, D., Gérard, S.: Challenges in Combining SysML
and MARTE for Model-Based Design of Embedded Systems. In: ECMDA 2009,
Published in Proceeding of the Conference (Model Driven Architecture- Founda-
tions and Applications). LNCS, pp. 98-113. Springer, Heidelberg (2009)

SAE: Architecture Analysis and Design Language (AADL) Annex Volume 1: An-
nex A: Graphical AADL Notation, Annex C: AADL Meta-Model and Interchange
Formats, Annex D: Language Compliance and Application Program Interface An-
nex E. LNCS. Springer, Heidelberg (2006)

Autosar, http://www.autosar.org/

Adams-Project, http://www.adams-project.org/

East-Adl, http://www.east-adl.org/

Espinoza, H., Gérard, S., Lénn, H., Kolagari, R.T.: Harmonizing MARTE, EAST-
ADL2, and AUTOSAR to Improve the Modelling of Automotive Systems. In:
Presented in the Workshop STANDRT, Autosar (2009)

(ISIS,MIC Tool Distribution), http://www.isis.vanderbilt.edu/Projects/gme/
Lee, E.A.: Overview of the Ptolemy Project, Technical Memorandum No.
UCB/ERL MO03/25 (2003)

Agha, G.: Actors: a model of concurrent computation in distributed system. MIT
Press, Cambridge (1986)

Terrier, F., Fouquier, G., Bras, D., Rioux, L., Vanuxeem, P., Lanusse, A.: A real
time object model. In: TOOLS Europe 1996 (1996)

http://www.autosar.org/
http://www.adams-project.org/
http://www.east-adl.org/
http://www.isis.vanderbilt.edu/Projects/gme/

	6 Modeling Languages for Real-Time and Embedded Systems
	Introduction
	Two Main Architectural Styles for Dealing with Abstraction
	Modeling Needs for Real-Time and Embedded Systems Design
	Layering and Needs for RTES
	Slicing and Needs for RTES

	MARTE, a Standard Real-Time and Embedded Modeling Language
	UML Profiling Capabilities
	MARTE Basics
	Architecture and Some Details of MARTE
	An Extract of the MARTE Specification
	Typical MARTE Usage Scenarios

	Related Work
	Conclusions and Perspectives
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

