
5 Modeling and Simulation of TDL

Applications

Stefan Resmerita, Patricia Derler, Wolfgang Pree, and Andreas Naderlinger

University of Salzburg, Austria
{stefan.resmerita,patricia.derler,wolfgang.pree,

andreas.naderlinger}@cs.uni-salzburg.at

Abstract. Most of the existing modeling tools and frameworks for em-
bedded applications use levels of abstraction where execution and com-
munication times of computational tasks are not captured. Thus,
properties such as time and value determinism can be lost when refi-
ning the model closer to a target platform. The Logical Execution Time
(LET) paradigm has been proposed to deal with this issue, by enabling
specification of platform-independent execution times of periodic time-
triggered computational tasks at higher levels of abstraction.

This chapter deals with modeling and simulation of embedded applica-
tions where LET requirements are specified by using the Timing
Definition Language (TDL). TDL provides a programming model for time-
and event-triggered components suitable for large distributed systems. We
present specific TDL extensions that increase the expressiveness of the
language, accommodating the needs of control applications such as mini-
mum sensor-actuator delays. We describe simulation of TDL programs in
dataflow models (using Simulink) and discrete event (DE) models (using
Ptolemy II). We show how the Ptolemy II based simulation can be used
to validate preservation of timing and value behaviors when mapping a
DE model of an application with concurrent components into a sequential
implementation platform with fixed priority preemptive scheduling.

5.1 Introduction

In complex embedded systems, execution and communication times related to
computational tasks of an application can have a substantial influence on the
application behavior that is unaccounted for in high level models. Consequently,
the implementation of a model on a certain execution platform may violate
requirements that are proved to be satisfied in the model. Explicitly considering
execution times at higher levels of abstractions has been proposed as a way to
achieve satisfaction of real-time properties [1]. One promising direction in this
respect is the Logical Execution Time (LET) [2], which forms the foundation of
several real-time programming languages [2] [3] [4]. Among these, the Timing
Definition Language [4] is under active development, with commercially available
support tools.

TDL is inspired from the Giotto programming model [2], which was targe-
ted for control applications. Giotto proposed trading end-to-end latency (which

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 107–128, 2010.
� Springer-Verlag Berlin Heidelberg 2010

108 S. Resmerita et al.

must be minimal in control systems) for determinism and robustness, which have
become more and more important due to increased complexity of both applica-
tions and platforms. TDL has been extended to address both requirements, in
the commonly encountered case where a control task can be split into a fast step,
used to compute controller outputs (i.e. actuator values) and a slow step, used to
determine new state information. Another TDL extension, called slot selection,
allows designation of LET values that are smaller than the invocation period
for a task, providing a separation of concerns between choosing the controller
sampling period, which is the job of the control engineer, and minimizing com-
putation latency, which is the job of the software engineer. By slot selection,
the designer specifies the beginning and end of a task’s LET within the task’s
invocation period. This also enables specification of executions with fixed time
offsets.

An important principle in embedded systems design is the separation between
the functionality of an application and the platform where the application is im-
plemented. This principle is adopted by modern design methodologies such as
Model Driven Architecture (MDA) [5] and Platform Based Design (PBD) [6].
An MDA application consists of a platform-independent model (PIM), speci-
fying the functionality, one or more platform-specific models(PSMs), and sets
of interfaces describing the coupling between PIM and each of the PSMs. PBD
proposes an iterative model-based development process where at each iteration
a functionality model is mapped to a platform model. The mapped functionality
becomes the functionality model for the next iteration, where it is mapped to a
(usually refined) platform model. This is repeated until the final implementation
is obtained for all components.

One of the main issues in the above approaches is the mapping between the
functionality model and the platform model, which should be done such that
the behaviors of the resultant model are in the intersection of the behavioral
sets of the individual models. A commonly encountered situation is mapping
a concurrent functional model into a sequential implementation platform. For
a real-time application, this may lead to violation of real-time properties such
as maximum sensor-actuator delays. Even if a suitable scheduling guarantees
latency bounds, it may not guarantee the same value behavior as in the func-
tionality model (a simple example of this situation will be further discussed in
this paper). Using LET ensures preservation of timing and value behaviors over
model refinement, by requiring that the platform model has the means to carry
out the LET semantics, which refers not only to task execution (resolved by
scheduling), but most importantly to data transfer (resolved by buffering). In
the final implementation, LET specifications are executed by a dedicated run-
time system, provided that the software components can be suitably scheduled
for execution. Scheduling can be done statically for the time-triggered, periodic
task executions.

Static schedulability analysis for LET-based software becomes hard to achieve,
or overly conservative, in embedded control systems containing also concur-
rent computations triggered by environment conditions (dynamic events), where

Modeling and Simulation of TDL Applications 109

event-triggered tasks share the same execution platform as the time-triggered
part, and may preempt or delay the execution of time-triggered components.
Thus, a simulation platform is needed for early verification and validation of such
heterogeneous systems. Existent simulation frameworks for LET-based models
operate at a functional (platform independent) level, where the most influential
LET benefits cannot be shown. For example, a DE model of a time-triggered
application with LET-based constraints has the same behavior as a model where
the LET constraints are replaced by delays. However, when mapping the func-
tional model into a platform model, the mapped delay-based model may exhibit
new behaviors, while the behaviors of the mapped LET-based model will always
be included in the behavioral set of the functional LET-based model.

In the embedded systems industry, simulation is widely used for testing and
validation of complex systems. It is also used for effectively demonstrating the
impact of new technologies. It is therefore important to be able to simulate a
model with LET specifications in order to demonstrate the benefits of the LET
approach. In this paper, we consider a platform abstraction consisting of execu-
tion times and fixed priority preemptive scheduling. Thus, the mapping means
assigning to each task in the functional model an execution time and a priority.
We present a Ptolemy II framework which allows simulating the behavior of a
LET-based application mapped to the platform. TDL is employed to specify the
timing structure based on LET. We use the simulator to run an example which
shows how TDL can ensure preservation of behavior over model refinement.

This paper is structured as follows. Section 5.2 describes the Timing Definition
Language, including the control-specific extensions. In Section 5.3 we present the
two main simulation frameworks for TDL. The relations with existing work are
shown in Section 5.4, which is followed by concluding remarks in Section 5.5.

5.2 The Timing Definition Language

We describe in this section the main constructs of the core TDL, followed by
extensions of the language that specifically address control applications. The
ensuing presentation of TDL components is necessarily brief. The complete TDL
specification can be found in [4].

5.2.1 TDL Description

The Timing Definition Language allows the specification of timing properties
of hard real-time applications by employing the LET concept and the principle
of separation between timing and functionality introduced in Giotto [2]. While
TDL is conceptually based on Giotto, it provides extended features, a more
convenient syntax, and an improved set of programming tools.

The Logical Execution Time associated with a computational unit, or task, re-
presents a fixed logical duration between the time instant when the task becomes
ready for execution and the instant when the execution finishes. A task’s LET
is specified at the model level, independently of the task’s functionality. When

110 S. Resmerita et al.

deploying the model on a platform, the LET specification is satisfied if the total
physical execution time of the task is included in the LET interval for every
task invocation, and an appropriate runtime system ensures that task inputs are
read at the beginning of the LET interval (the release time) and task outputs
are made available at the end of the LET interval (the termination time). This
is illustrated in Figure 5.1. Between release and termination points, the output
values are those established in the previous execution; default or specified initial
values are used during the first execution.

Fig. 5.1. Logical Execution Time

TDL is targeted for applications consisting of periodic software tasks designed
to control a physical environment. Thus, some tasks receive information from the
environment via sensors and some tasks act on the environment via actuators.
A task has input ports, output ports, and state ports. State ports are employed
for maintaining state information between different executions of the same task.
The main structure of a task declaration in TDL is given in Figure 5.2.

task <task_name> {

input <type> <list_of_input_ports>;

... //other input port declarations

output <type> <list_of_output_ports>;

... //other output port declarations

state <type> <list_of_state_ports>;

... //other state port declarations

uses <external_function_call>;

}

Fig. 5.2. Structure of TDL task declaration

Any of the lists of ports can be empty, while exactly one external function
name (possibly with arguments) must be specified after the ”uses” keyword.
This represents the implementation of the task functionality.

Tasks that are executed concurrently are grouped in modes. In TDL, a mode
is a set of periodically executed activities: task invocations, actuator updates,
and mode switches. A mode activity has a specified execution rate and may be
carried out conditionally. A mode declaration is schematically shown in Figure
5.3. The frequency attribute specifies the rate of execution of the corresponding

Modeling and Simulation of TDL Applications 111

mode <mode_name> [period=<time_duration>]{

task

[freq=<exec_rate>] <task_name>(<argument_list>);

... //other task invocations

actuator

[freq=<exec_rate>] <act_name>:=<task_name>.<output_port>;

... //other actuator updates

mode

[freq=<exec_rate>] if <condition> <name_of_target_mode>;

... //other mode switches

}

Fig. 5.3. Structure of TDL mode declaration

activity within one mode period. Thus, the LET of a task is expressed as the
mode period divided by the frequency of task invocation. Note that the time steps
of all activities in a mode period can be statically determined. Mode activities
are carried out by a runtime system which performs the following operations at
every time step:

(1) Update output ports of tasks whose LETs end at the current time step. At
time 0, the ports are initialized rather than updated.

(2) Update actuators.
(3) Test for mode switches. If a mode switch is enabled, switch to the target

mode.
(4) Update input ports of the tasks whose LETs start at the current time step.
(5) Trigger the execution of the tasks whose LETs start at the current time step.

TDL provides a top level structuring unit called a module, which is a logically
coherent group of sensors, actuators and modes. The module concept serves
multiple purposes: (1) a module provides a name space and an export/import
mechanism and thereby supports decomposition of large systems, (2) modules
provide parallel composition of real-time applications, (3) modules serve as units
of loading, i.e. a runtime system may support dynamic loading and unloading of
modules, and (4) modules are the natural choice as unit of distribution because
dataflow within a module (cohesion) will most probably be much larger than
dataflow across module boundaries (adhesion).

A schematic example of a TDL program is shown in Figure 5.4. Notice that a
module contains declarations of sensor and actuator variables, tasks and modes.
In the above example, module Sender contains a sensor variable s1, and an
actuator variable a1. The value of s1 is updated by executing the (platform-
specific) driver getS1 and the value of a1 is send to the physical actuator by using
the platform specific driver setA1. Each module has exactly one start mode,
indicated by preceding the mode declaration with the reserved word ”start”.
The declaration of the output port of task inc specifies also an initial value (10).
The task is invoked in mode main of the Sender module, where its input port is
connected to the sensor s1. In the same mode, actuator a1 is updated with the

112 S. Resmerita et al.

value of the task’s output port. The second module called Receiver imports the
Sender module in order to connect the input of the local task clientTask with the
output of the external task inc. These TDL components and their connectivity
are depicted in Figure 5.5.

Let us illustrate the operations carried out by the TDL runtime system for
the task inc during one mode period. At time 0, output ports are initialized and
connected actuators are updated. Sensor s1 is read and the value is provided
as input for the task, which is then released for execution. At time 5 (the end
of the LET), the task’s output port is updated, then actuator a1 is updated.
Next, the mode switch condition in the guard function exitMain is evaluated. If
it evaluates to true, a mode switch to the empty mode freeze is performed and
no further actions are processed. Otherwise the mode main remains active and
the above operations are repeated in the next mode period.

TDL enables so-called transparent distribution of hard real-time applications,
which can be described with respect to two points of view. Firstly, at run-
time a TDL application behaves exactly the same, no matter if all modules

module Sender {

sensor int s1 uses getS1;

actuator int a1 uses setA1;

public task inc {

input int i;

output int o := 10;

uses incImpl(i,o);

}

start mode main [period=5ms] {

task [freq=1] inc(s1); //LET = 5ms (=period/freq)

actuator [freq=1] a1 := inc.o;

mode [freq=1] if exitMain(s1) then freeze;

}

mode freeze [period=1000ms] {}

}

module Receiver {

import Sender;

. . .

task clientTask {

input int i1;

. . .

}

start mode main [period=10ms] {

task [freq=1] clientTask(Sender.inc.o); //LET = 10ms

. . .

}

. . .

}

Fig. 5.4. Example of TDL code

Modeling and Simulation of TDL Applications 113

s1

a1 inc [f = 1]

Sender

Receiver main [p = 5ms]

exitMain(s1)

[f = 1]

freeze [p = 1000ms]

main [p = 10ms]

clientTask [f = 1]

[f = 1]

Fig. 5.5. TDL constructs defined by the code in Figure 5.4

(i.e. components) are executed on a single node or if they are distributed across
multiple nodes. The logical timing is always preserved, only the physical timing,
which is not observable from the outside, may be changed. Secondly, for the
developer of a TDL module, it does not matter where the module itself and
any imported modules are executed. The TDL tool chain and runtime system
frees the developer from the burden of explicitly specifying the communication
requirements of modules. It should be noted that in both aspects transparency
applies not only to the functional but also to the temporal behavior of an ap-
plication. The advantage of transparent distribution for a developer is that the
TDL modules can be specified without having the execution on a potentially
distributed platform in mind. The functional and temporal behavior of the sys-
tem is independent of the mapping of modules to computation nodes, which is
defined separately.

A compiler transforms TDL programs into virtual instructions called E-Code
[7]. E-Code describes the application’s reactivity, i.e. time instants to release
or terminate tasks or to interact with the environment. A virtual machine, the
E-Machine [7], interprets the instructions at runtime and ensures the correct
timing behavior. According to the E-Code, the E-Machine timely hands tasks to
a dispatcher and executes drivers. A driver performs communication activities,
such as reading sensor values, providing input values for tasks at their release
time or copy output values at their termination time.

A commercially available tool suite deals with modeling and deployment of
TDL components [8]. TDL components can be written directly in textual form
(TDL source code) or designed graphically by using the TDL:VisualCreator tool.
The TDL:Compiler targets the TDL:E-Machine. The TDL:E-Machine exists
for several different platforms, including OSEK, INtime, RTLinux, etc. The
TDL:VisualDistributor can be used to assign TDL modules to a single specified
computational node or a distributed system of nodes. Also, the TDL:Scheduler
is employed to generate the necessary node and communication schedules. The

114 S. Resmerita et al.

tools also check for the schedulability of the system, based on provided worst
case execution times for the tasks, under the assumption that the periodically
time-triggered TDL tasks are the only significant computations competing for
the platform resources.

5.2.2 TDL Extensions for Control Applications

Reducing Latency for Control Applications
The main application field for the time-triggered programming model introduced
by Giotto is implementation of control systems. A control application reads en-
vironment data through sensors, and exercises control over the physical environ-
ment through actuators. In sampled data control systems, the controller is execu-
ted periodically, polling sensors and determining control actions in every period.
Usually, control actions depend on the latest sensor values and on the current state
of the controller, which is also updated at every period. The time delay between
reading sensors and updating actuators in the same period should be as small as
possible. Thus, the controller functions are organized in two steps: update outputs
and update state, with the first step to be executed as soon as possible after sensor
reading. To enable advance calculation of control outputs, in TDL a task’s func-
tionality code can be split in a fast step (corresponding to update outputs) and
a regular step (corresponding to update state), where the fast step is executed in
logical zero time at the release time of the TDL task, and the regular step is exe-
cuted within the task’s LET. To this end, the task declaration is modified to allow
specification of two external function calls, the fast one being indicated by a dedi-
cated driver annotation called ”[release]”, which means that the fast function has
to be executed immediately when the task is released for execution (i.e. at the be-
ginning of the task’s LET). A two-step task can now be declared according to the
structure shown in Figure 5.6. Syntactically, the only addition to the single-step
task declaration (shown in Figure 5.2) is another uses line containing the release
annotation, which is reserved for the fast step declaration. If an output port ap-
pears in the argument lists of both functions, then it acts as output of the fast
function (i.e. it must be updated by the fast function) and as input to the slow
function. An example is presented in Figure 5.7.

task <task_name> {

input <type> <list_of_input_ports>;

... //other input port declarations

output <type> <list_of_output_ports>;

... //other output port declarations

state <type> <list_of_state_ports>;

... //other state port declarations

uses [release] <fast_function_name>(<arg_list>);

uses <slow_function_name>(<arg_list>);

}

Fig. 5.6. Structure of TDL declaration for a two-step task

Modeling and Simulation of TDL Applications 115

task digiCon {

input int i1,i2;

output int o:=0;

state double s:=0;

uses [release] controllerOutput(i1,i2,s,o);

//o must be calculated here

uses controllerUpdate(i1,i2,s,o);

//o is an input argument here

}

Fig. 5.7. Declaration example of a two-step task

The explicit declaration of a task’s fast and slow steps is accompanied by
the introduction of a specific mode activity, called task sequence, to indicate
actuator updates that must take place upon execution of the task’s fast step.
A task sequence combines a task invocation and subsequent actuator updates.
These are performed at the release time of the invoked task, if the task contains
a fast step that provides the required output ports. Output ports updated in the
fast step are available immediately for actuator updates if the two-step task is
included in a task sequence. Figure 5.8 presents the layout of a mode declaration
including task sequences. An example where the task in Figure 5.7 appears in a
task sequence is shown in Figure 5.9. The effect of this code is that at every 10ms,
sensors s2 and s3 are read, the function controllerOutput is executed and the
actuator act1 is updated. Since these operations are considered as taking logical
zero time, their execution times must be much smaller than the execution times
of regular TDL tasks. Then the function controllerUpdate is executed, which
may take up to 10ms. Task t0 is a regular TDL task with a LET of 50ms. Thus,
at every 50ms tick, sensor s1 is read and task t0 is released for execution. The
output of t0 is provided to actuator act2 at the end of the 50ms period.

mode <mode_name> [period = <time_duration>]{

task

[freq=<exec_rate>] <task_name>(<arg_list>);

[freq=<exec_rate>] {<task_name>(<arg_list>);

<act_name>:=<task_name>.<output_port>;}

... //other task invocations

actuator

[freq=<exec_rate>] <act_name>:=<task_name>.<output_port>;

... //other actuator updates

mode

[freq=<exec_rate>] if <condition> <name_of_target_mode>;

... //other mode switches

}

Fig. 5.8. Structure of TDL mode declaration with task sequence

116 S. Resmerita et al.

start mode main [period=100ms] {

task [freq=2] t0(s1);

task [freq=10] {digiCon(s2, s3); act_1:=digiCon.o;} //sequence

actuator [freq=2] act_2 := t0.o;

}

Fig. 5.9. Example of task sequence

Task sequences entail a specific operational semantics. The operational steps
performed by the runtime system are now as follows:

(1) Update output ports of tasks whose LETs end at the current time step.
At time 0, the ports are initialized rather than updated. Exception: output
ports of two-step tasks that are arguments of both functions (fast and slow)
are not updated.

(2) Update actuators.
(3) Execute fast tasks. For every task sequence that occurs at the current step,

update the inputs of the task, then execute the fast function, then update
output ports and connected actuators as specified in the sequence.

(4) Test for mode switches. If a mode switch is enabled, switch to the target
mode.

(5) Update input ports of the tasks whose LETs start at the current time step,
except for those inputs already updated at step 3.

(6) Trigger the execution of the regular tasks whose LETs start at the current
time step. Also, for every task sequence that occurs at the current step,
trigger the execution of the slow function.

Increasing Control of Time-Triggered Activities
In TDL, the user can specify the endpoints of a task’s LET within the task’s
invocation period. Thus, as opposed to Giotto, a task’s LET may be different
(i.e. smaller) than the task’s period. TDL can express time-triggered executions
such as the one in Figure 5.10b, which shows two tasks with the same invocation
period of 8ms and a fixed offset of 3ms. TDL employs Giotto’s syntax to specify
a task’s invocation period, by using a mode period p and a frequency f of task
invocation within p. Thus, if the LET of a task equals its period of invocation,
then the task’s LET is p/f . TDL uses the additional feature of slot selection to
allow the LET of any individual task invocation to be defined more explicitly as
an interval that starts and ends at integer multiples of p/f . Thus, a task’s LET
corresponds to a slot group. The slots are numbered from 1 to p/f . TDL offers
a compact syntax for specifying a task’s slot groups within a mode period, as
follows. A repeating pattern of slot groups is specified by using the character
”*” after the pattern. A slot group can be optional, which means that the cor-
responding task execution may be skipped at runtime, if this helps in finding a
feasible schedule. Some examples are:

Modeling and Simulation of TDL Applications 117

slots=1* : all slots are mandatory and LET=p/f; this is the default.
slots=∼1|2* : LET=p/f, the first slot is optional and the remaining slots

are mandatory.
slots=1-3* : mandatory slot groups with LET=3*p/f each.

Figure 5.10a shows the specification of the execution pattern depicted in Figure
5.10b.

start mode main [period=8ms] {

task [freq=4,slots=2] t1();

task [freq=8,slots=6-8] t2();

}

(a) TDL code with slot selection

0 10 4 8 5 122 13

t1

16

t2 t1 t2

time

(b) Execution pattern with offsets

Fig. 5.10. Slot selection example

5.3 Simulation of TDL Models

Simulating TDL models means executing the operations described above on an
executable model in a simulation platform rather than a physical execution plat-
form. TDL is currently supported in two modeling and simulation frameworks:
Simulink and Ptolemy II.

5.3.1 TDL Simulation in Simulink

The MATLAB extension Simulink from The MathWorks [9] is a widely used
environment for modeling, simulating and analyzing dynamic and embedded
systems. Simulink is based on the data flow programming paradigm and provides
an interactive graphical interface. Together with automatic code generators such
as the Real-Time Workshop (Embedded Coder), it has become the de-facto
standard, particularly in the automotive domain.

Overview
Modeling TDL components manually with standard Simulink blocks is not fea-
sible [10]. Typically, control systems involve multiple modes [11]. Depending on
the current mode, the application executes individual tasks with different timing
constraints or even changes the set of executed tasks. At the latest when mode
switching logic and multiple execution rates come into play, it is all but impos-
sible to understand or maintain the model. Instead, we use an automatic model
generation approach to ensure TDL semantics in Simulink. Therefore, the TDL
tool chain was extended and integrated in MATLAB/Simulink to model and
simulate TDL applications and to support the code generation for particular,
potentially distributed, hardware platforms.

118 S. Resmerita et al.

Fig. 5.11. The TDL:VisualCreator tool in Simulink

Modeling TDL in Simulink
The plant and the task respectively guard functionality is modeled with regular
Simulink blocks, whereas the timing behavior, i.e. the TDL description, is speci-
fied by means of the TDL:VisualCreator tool. This graphical modeling tool is a
syntax driven editor that is integrated via the TDL Module Block as part of the
TDL Simulink library. Figure 5.11 shows the TDL:VisualCreator and a module
M that corresponds to the mode declaration in Figure 5.7.

The activities in mode main are shown on the right, where the task sequence is
indicated with the gray container that groups task digiCon and actuator act 1.
Individual TDL constructs are created and managed using the tree view on the
left. For each sensor (s1, s2, s3) and actuator (act 1, act 2) a corresponding
Simulink Inport respectively Outport is automatically created for the module
block. For each task (t0, digiCon), the tool generates a Simulink subsystem that
may then be implemented by the control engineer. Again, Inport and Outport
blocks are used to represent the task ports.

Simulating TDL in Simulink
For the simulation, we apply a model transformation with an E-Machine im-
plementation for Simulink at its core. Drivers are automatically generated as
function-call subsystems and are connected via Simulink signals. We implemen-
ted an E-Machine using the S-Function mechanism provided by Simulink to
timely trigger their execution and thus to ensure TDL semantics. Therefore,
the TDL:Compiler generates E-Code from the TDL description which is then
interpreted by the E-Machine during the simulation.

Figure 5.12 shows the generated Simulink model for module M. The gray blocks
for tasks (a) and sensors respectively actuators (b) were already generated by
the TDL:VisualCreator during the modeling process. They now get linked with
the rest of the newly generated model using Simulink’s Goto and From blocks.

Modeling and Simulation of TDL Applications 119

terminate M.digiCon

terminate M.t0

actuator M.act_2:=M.t0.o

get M.s1

get M.s2

get M.s3

release M.t0

release M.digiCon

actuator M.act_1:=M.digiCon.o.phy

(b)

(a)

(c)

(d)

(e) (f)

execute M.digiCon

execute M.t0

2
act_2

1
act_1

1/z

1/z

1/z

1/z

Trigger()

Trigger()

Trigger()

Trigger()

Trigger()

Trigger()

Trigger()

Trigger()

Trigger()

Trigger()

t0Impl

{M_digiCon_o_phy}

{M_digiCon_o_phy_M_task_0}

{M_digiCon_o}

{M_digiCon_i2}

{M_digiCon_i1}

trig_M_drv_5

{M_s3}

{M_s2}

trig_M_task_1

{M_s1}

{M_act_2}

{M_act_1}

[M_digiCon_o_M_drv_0]

[M_act_1_M_drv_10]

trig_M_drv_4

[M_digiCon_i2_M_drv_9]

trig_M_drv_0

[M_digiCon_i1_M_drv_9]

[future_pc]

[M_t0_i_M_drv_8]

[guards2]

[M_s3_M_drv_7]

[guards1]

[M_s2_M_drv_6]

trig_M_drv_10

[M_t0_o_M_drv_1]

trig_M_drv_9

trig_M_drv_8

trig_M_drv_7

trig_M_drv_6

[M_s1_M_drv_5]

{M_sensor_4}

[M_act_2_M_drv_4]

trig_M_task_0

[future_time]

{M_t0_o_phy_M_task_1}

{M_t0_o_phy}

{M_t0_o}

{M_t0_i}

trig_M_drv_1

{M_sensor_3}

{M_sensor_2}

M_digiCon_o_phy_M_task_0]

[trig_M_drv_1]

[M_digiCon_o_M_drv_0]

[M_digiCon_i2_M_drv_9]

[M_digiCon_i1_M_drv_9]

{M_digiCon_o_phy}

[M_s3_M_drv_7]

[M_s2_M_drv_6]

{M_digiCon_i2}

[M_s1_M_drv_5]

[M_act_2_M_drv_4]

[M_act_1_M_drv_10]

{M_digiCon_i1}

[M_digiCon_o_phy]

[trig_M_drv_10]

[M_s3]

[M_s2]

trig_M_task_0

[trig_M_drv_9]

[M_s1]

[future_pc]

{M_act_2}

[guards1]

[trig_M_drv_8]

[M_sensor_4]

[trig_M_drv_7]

[M_sensor_3]

{M_act_1}

[trig_M_drv_6]

[M_sensor_2]

[trig_M_drv_5]

[M_digiCon_o_phy]

[M_t0_o]

[future_time]

[trig_M_drv_4]

[guards2]

{M_t0_o_phy}

{M_t0_i}

[M_t0_o_phy_M_task_1]

[M_t0_o_M_drv_1]

[M_t0_i_M_drv_8]

trig_M_task_1
[M_t0_o_phy]

[trig_M_drv_0]

EMachine EMachine

Trigger()

digiConImpl

emem

12:34 12:34

3
s3

2
s2

1
s1

Fig. 5.12. An automatically generated TDL simulation model in Simulink

Section (c) contains the drivers (e.g. for reading sensor values or writing to ac-
tuators). The input ports of a driver are directly connected to the output ports,
which corresponds with assignments in an imperative programming paradigm
as soon as the system is triggered. Section (d) merges signals from drivers of
different modes that write to the same port (static single assignment). As mo-
dule M has only one mode, signals are simply forwarded in this example. Section
(e) and (f) together implement a 2-step E-Machine architecture [12], which trig-
gers the execution of drivers, tasks, and guards. To avoid restrictions on the set
of supported blocks (e.g. for the plant) caused by Simulink’s block execution
strategy, we split duties of the E-Machine among two collaborating S-Functions.
This allows Simulink to execute the plant or other blocks after actuators are
updated and before sensors are read. Delay blocks between the release and the
termination driver of a task and between the two E-Machines do not affect the
timing behavior. They are, however, required to enable Simulink to resolve alge-
braic (feedback) loops that typically arise when simulating plants without delay

120 S. Resmerita et al.

or when combining LET-based with conventional controllers that are modeled
as atomic (nonvirtual) subsystems [12].

Code generation
Once the simulation exhibits satisfactory behavior, one can go about generating
code. Therefore, the TDL:VisualDistributor tool, which is also integrated in
Simulink, may be used to define a hardware topology and to map the TDL
modules to their target nodes. This also requires to specify worst-case execution
times and hardware devices for sensors respectively actuators. A flexible plugin-
based code generation framework generates the required C code and, in case of
a distributed system, the required communication schedule. The TDL tool chain
employs MathWork’s Real-Time Workshop Embedded Coder [9] to generate C
code for the control task functionality. For supporting the fast step extension,
we make use of the possibility to split a Simulink task function implementation
into an Output (fast step) and an Update (slow step) function. The generated
code can then be compiled and linked with the platform specific E-Machine.

The main advantage of the E-Machine implementation for Simulink is that
both the simulation environment and the target platform execute the same E-
Code. This is a strong indicator (albeit no proof) that the simulation and the
execution of TDL modules exhibit exactly the same behavior.

5.3.2 Using Ptolemy II

Ptolemy II is the software infrastructure of the Ptolemy project at the University
of California at Berkeley [13]. The project studies modeling, simulation, and
design of concurrent, real-time, embedded systems. Ptolemy II is an open source
tool written in Java which allows modeling and simulation of systems adhering
to various models of computation (MoC). Conceptually, a MoC represents a set
of rules which govern the execution and interaction of model components.

Overview of Ptolemy II
The implementation of a MoC is called a domain in Ptolemy. Some examples of
existing domains are: Discrete Event (DE), Continuous Time (CT), Finite State
Machines (FSM), and Synchronous Data Flow (SDF).

Ptolemy is extensible in that it allows the implementation of new MoCs. Most
MoCs in Ptolemy support actor-oriented modeling and design, where models are
built from actors that can be executed and which can communicate with other
actors through ports. An actor is represented by a Java class that implements
the actor interface. The nature of communication between actors is defined by
the enclosing domain, which is itself represented by a special actor, called the
domain director. A model may define an external interface that enables it to be
regarded as an actor with input and output ports. Figure 5.13 shows a sample
Ptolemy model. The green block represents the local director which enforces
the model of computation used in the model. The model also contains actors
with input ports and output ports. Actors communicate if they are connected.

Modeling and Simulation of TDL Applications 121

Fig. 5.13. Example of a Ptolemy model

A model can have external input and output ports and can be embedded as a
composite actor in another model where it appears as an actor with local input
and output ports.

Simulating a model means executing actors as defined by the top level model
director. During the simulation, an actor experiences a number of iterations,
where an iteration generally consists of three successive actions: prefire, fire and
postfire. Each action is represented by a method in the actor interface. The main
functionality of the actor is encoded in the fire method. In prefire, possible pre-
conditions for execution are tested. Thus, the actor can indicate to the enclosing
director that it does not wish to be fired. By convention, if the prefire method
returns false, then the director will not call the fire method in the current ite-
ration. An actor reads inputs and produces outputs in the fire method, which
may be called multiple times in the same iteration. In postfire, the actor updates
its persistent state and indicates to the director if the execution is complete.
If postfire returns false, the director should perform no further iteration on the
actor in the current simulation.

The TDL Domain in Ptolemy II
The implementation of TDL’s modal structure is based on the modal model
variant of the Finite State Machine (FSM) domain in Ptolemy, and the imple-
mentation of the LET-based semantics employs essentially a DE approach. Like
modal models, TDL modules consist of modes with different behaviors, where
only one mode can be active at a time. Mode switches in modal models have the
same semantics as mode switches in TDL and TDL activities are conceptually
regarded as discrete events that are processed in increasing time stamp order.

The TDL domain consists mainly of three specialized actors: TDLModule,
TDLMode, and TDLTask. The TDLModule actor (with the associated TDL-
ModuleDirector) restricts the basic modal model according to the TDL modal
semantics. In a modal model actor, mode transitions are checked every time the

122 S. Resmerita et al.

actor is fired. TDL restricts the times when mode switches can be made (mode
switches are not allowed during a task’s LET). A similar restriction applies to
port update operations. A TDL module can have guards also on task invocations
and port updates, not only on mode transitions, as in the modal model. TDL
requires a deterministic choice of simultaneously enabled transitions, which is
not provided by the FSM domain. In this respect, we employ a convention simi-
lar to the one used in Stateflow(R), where the outgoing transitions of the active
mode are tested based on the graphical layout, in clockwise order starting from
the upper left corner of the graphical representation of the mode.

We consider applications with time-triggered and event-triggered components
modeled in the DE domain. The functional application model is mapped to a
platform model by assigning to each task a priority and a worst case execution
time. The mapped model is then simulated with the help of a specialized domain
controller, which is a modified DE controller. This uses an event queue and works
by processing the events in the queue in increasing timestamp order. While TDL
operations can be statically scheduled (they are periodic and have the highest
priority), the actual moments of task executions are represented by dynamic
events, as are the executions of the other event-triggered tasks.

The main difference between the implementation of the TDL-Simulink inte-
gration and the TDL domain in Ptolemy II refers to the fact that, while the for-
mer employs a Simulink implementation of the TDL:E-Machine, the latter uses
no virtual machine. TDL specifications are expressed as properties of Ptolemy
actors and the TDL domain uses these properties to generate an appropriate
schedule of events. TDL actions are naturally represented by discrete events,
and we leverage the event handling mechanism of the DE domain to achieve a
correct execution of the model. In particular, this implies that any future change
in the TDL semantics can be much more easily handled in the TDL Ptolemy
domain, where one has to change only the event scheduling part. In contrast,
in the Simulink case, changes may need to be done in the TDL compiler, in
the e-code instruction set and in the TDL:E-Machine implementation. An ad-
ditional advantage of the TDL-Ptolemy integration is related to the fact that
mapping of a functional model to a platform model can be done much easier in
Ptolemy II than in Simulink. This is due to the versatility of Ptolemy II and the
availability of different models of computation. Thus, a mapped model can be
obtained from the functional model by a combination of two actions: (1) Adding
properties to functional actors, and (2) Choosing or defining a suitable model of
computation. This enables one to simulate the (runtime) TDL operations at the
platform level.

Example
In the sequel, we show how the TDL domain in Ptolemy II can be employed
to demonstrate the benefits of using TDL. In the following example, a simple
application with timing constraints is developed from a high-level discrete event
model to an implementation on a given platform. We outline a case where, if
timing constraints are expressed without TDL, the behavior of the final imple-
mentation is different than the behavior of the original model. By using TDL,

Modeling and Simulation of TDL Applications 123

the behavior of the original model remains unchanged and it is preserved in the
final implementation.

Figure 5.14 shows an application modeled in Ptolemy II as a discrete event
system, with one time-triggered and two event-triggered tasks. The actor TTTask
is triggered by the clock signal with a period of 8 time units and it produces
output with a delay of 4 units of time after being triggered. Consider a simulation
of the model with two events from sensor1 at times 5 and 9, and one event
from sensor2 at time 7. The execution of the task actors is shown in Figure
5.15. Notice that the time-triggered actor TTTask reads (at time 8) the value
computed by the event-triggered actor ETTask1 at time 5.

This application is to be deployed on a computational platform with a fixed
priority preemptive scheduling policy. Thus, code is generated from the task
actors and priorities are assigned to the computational tasks. Assume that the
priority of ETTask1 is higher than the priorities of both ETTask2 and TTTask,
which are equal. Consider an execution of the application on the platform with
the same input as in the simulation of the functional model, where the execution

Fig. 5.14. A discrete event model

Fig. 5.15. An execution of the above model

124 S. Resmerita et al.

Fig. 5.16. A TDL model

Fig. 5.17. Simulation of the TDL model

times of ETTask1, ETTask2 and TTTask are respectively 1ms, 3ms and 1ms. In
this case, TTTask cannot be executed at time 8, when ETTask2 is still in execu-
tion. Also, ETTask1 preempts ETTask2 at time 9, further delaying the starting of
execution of TTTask until time 11. Notice that the order of execution of TTTask
and ETTask1 is changed in the implementation versus the original model. In
particular, this implies that TTTask may have a different input value, hence the
output behavior of the system may be changed.

Consider now a TDL model of the above application where the delay in the
original time-triggered task is replaced by a logical execution time equal to 4. Let
us map the TDL model into a platform model (see Figure 5.16). A specialized
director (a variant of the DE director) is employed to simulate the mapped mo-
del. Figure 5.17 shows the execution of tasks under the input described above.
Notice that the TDL module actor samples its input at time 8, then uses this
value as input for the TDL task corresponding to the original TTTask. Thus, the

Modeling and Simulation of TDL Applications 125

mapped TDL model has the same output behavior as the TDL functional model
(which has the same behavior as the functional DE model).

5.4 Related Work

TDL belongs to the family of time-triggered modeling languages and tools with
roots in Giotto, such as xGiotto [14], HTL [3], and FTOS [15]. TDL stands out
in this landscape due to its focus on control applications. It is, for example,
the only language with a fast step feature that matches the ”update outputs”
part of a controller, which accommodates the need for short response times. In
contrast, the Giotto software model maximizes the delay between sensor read
and actuator update (placing them one LET apart), while minimizing the delay
between actuator update and the next sensor read for the same task (placing
them in sequence at the same time step). One important aspect in which TDL
differs from Giotto is the treatment of mode switches. While Giotto allows mode
switches during the LET of a task, this is not supported in TDL because it
would imply a significantly more complex communication schedule generator
algorithm for distributed TDL modules. Also, Giotto ensures determinism of
mode switching by restricting the number of mode switch conditions that may
evaluate to true to at most one. In TDL, mode switch guards are evaluated in
the textual order from top to bottom and a mode switch is performed for the
first condition that evaluates to true.

Among the above mentioned languages, only HTL allows flexible placement
of the LET in as task’s invocation period. There is also a Simulink integration of
HTL [16]. In contrast to our approach, the simulation results do not match the
HTL description exactly. For breaking algebraic loops, additional delay blocks
are introduced which influence the observable timing. Additionally, the HTL
integration in Simulink trades off accuracy for performance since it requires the
sample rate of some blocks to be at least one decimal order of magnitude higher
than actually required by the HTL description.

The TDL domain in Ptolemy II is related to the experimental Giotto domain
in Ptolemy II[17]. The main differences between the TDL domain and the Giotto
domain are as follows:

– In addition to functional models, TDL operations can be simulated also in
mapped models, which contain platform specific attributes.

– The TDL domain leverages the existing DE domain while the Giotto domain
is designed based on basic Ptolemy II software components.

– The implementation of the TDL domain reflects the distinction between
the fundamental concepts (LET, modes) and the way these concepts are
used (the operational semantics). The implementation is two-layered: the
basic layer deals with scheduling LET-based tasks grouped in modes, and
the operational layer corresponds to a specific time-triggered programming
model. The latter extends the basic layer by specifying additional operations,
as well as the order of data transfer and mode-change operations according
to the programming model semantics. In principle, this enables achieving

126 S. Resmerita et al.

domain controllers for other time-triggered programming models (including
Giotto) by extending the basic layer.

Achieving determinism of time-triggered software is the main goal of several
commercially available tools such as TTTech [18], DaVinci [19] and dSPACE
[20]. A detailed comparison between TDL and each of these tools is provided in
[21].

5.5 Conclusions

Timing requirements of real-time applications can be effectively achieved by
using the LET approach through an established set of methodologies and tools
such as the ones provided by TDL. The ability to deal with control applications
was further increased by adding two extensions: (1) The fast step, which allows
actuator update immediately upon sensor reading, and (2) The slot selection for
flexible LET placement, which allows specification of offsets between tasks in
the system.

Simulation is a powerful tool, widely used in the embedded systems industry
to validate properties of complex systems. This chapter presented TDL-specific
extensions of two major simulation platforms: Simulink and Ptolemy II. The
TDL-Simulink integration significantly increased the accessibility of the LET-
based programming model to control application developers and system integra-
tors. The TDL tools available in Simulink make it possible to easily go through
the development stages of modeling, simulation/testing, code generation and
deployment to (possibly distributed) execution platforms.

The TDL domain in Ptolemy II enables, among other things, visualization of
an important LET benefit: preservation of time and value determinism from high
level models to lower level, platform specific, implementations. The main moti-
vation behind its development was the observation that the influence of using
LET on a system’s behavior can be captured by simulation of a mapped mo-
del, even when only few platform-specific properties are considered. This could
not be easily achieved by using Simulink. Ptolemy II enables experimentation
and investigation of heterogeneous models of computations, where LET-based
systems using Giotto and TDL can be mixed with more general, event-based
systems. This can help in exploring the concept of ”open” TDL models, where
event-based computations can be accommodated while still guaranteeing sche-
dulability of the system.

Acknowledgements

We thank the anonymous reviewers whose comments have been helpful in im-
proving the presentation of this chapter.

Modeling and Simulation of TDL Applications 127

References

[1] Stankovic, J.A.: Misconceptions about real-time computing: a serious problem for
next-generation systems. Computer 21(10) (1988)

[2] Henzinger, T.A., Kirsch, C.M., Sanvido, M., Pree, W.: From control models to
real-time code using giotto. IEEE Control Systems Magazine 23(1) (February
2003)

[3] Ghosal, A., Henzinger, T.A., Iercan, D., Kirsch, C.M., Sangiovanni-Vincentelli,
A.: A hierarchical coordination language for interacting real-time tasks. In: Pro-
ceedings of the 6th ACM International Conference on Embedded software, Seoul,
Korea. ACM, New York (October 2006)

[4] Templ, J.: TDL - Timing Definition Language 1.5 Specification. Technical report,
preeTEC GmbH (2008), http://www.preetec.com

[5] Object Management Group: Model driven architecture. Technical report (2008),
http://www.gigascale.org/pubs/141.html,
http://www.gigascale.org/pubs/141.html

[6] Sangiovanni-Vincentelli A.: Defining platform-based design. EEDesign of EE-
Times (February 2002)

[7] Henzinger, T.A., Kirsch, C.M.: The embedded machine: predictable, portable real-
time code. In: PLDI 2002: Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation, pp. 315–326. ACM, New
York (2002)

[8] preeTEC: The TDL tool chain. Technical report, GmbH (2008),
http://www.preetec.com

[9] The MathWorks (2008), http://www.mathworks.com
[10] Stieglbauer, G., Pree, W.: Visual and Interactive Development of Hard Real Time

Code. In: Automotive Software Workshop San Diego, ASWSD (January 2004)
[11] Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language

for embedded programming. Proceedings of the IEEE 91, 84–99 (2003)
[12] Naderlinger, A., Templ, J., Pree, W.: Simulating Real-Time Software Components

based on Logical Execution Time. In: SCSC 2009: Proceedings of the 2009 Summer
Computer Simulation Conference (2009)

[13] Brooks C., Lee E.A., Liu X., Neuendorffer S., Zhao Y., Zheng H. (eds.): Heteroge-
neous concurrent modeling and design in java (volume 1: Introduction to ptolemy
ii). EECS Department, University of California, Berkeley UCB/EECS-2007-7 (Ja-
nuary 2007)

[14] Ghosal, A., Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.: Event-driven program-
ming with logical execution times. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004.
LNCS, vol. 2993, pp. 357–371. Springer, Heidelberg (2004)

[15] Buckl, C., Regensburger, M., Knoll, A., Schrott, G.: Models for automatic gene-
ration of safety-critical real-time systems. In: Proceedings of the Second Interna-
tional Conference on Availability, Reliability and Security (ARES), pp. 580–587
(2007)

[16] Iercan, D., Circiu, E.: Modeling In Simulink Temporal Behavior of a Real-Time
Control Application Specified in HTL. Journal of Control Engineering and Applied
Informatics (CEAI) 10(4), 55–62 (2008)

http://www.preetec.com
http://www.gigascale.org/pubs/141.html
http://www.gigascale.org/pubs/141.html
http://www.preetec.com
http://www.mathworks.com

128 S. Resmerita et al.

[17] Brooks C., Lee E.A., Liu X., Neuendorffer S., Zhao Y., Zheng H. (eds.): Hetero-
geneous concurrent modeling and design in java (volume 3: Ptolemy ii domains).
EECS Department, University of California, Berkeley UCB/EECS-2007-9 (Ja-
nuary 2007)

[18] TTTech Computertechnik AG: TTP tools (2009),
http://www.tttech.com/products/ttp/design-development-software

[19] Vector Informatik GmbH: DaVinci Network Designer 2.0 (2009),
http://www.vector.com/vi_davinci_networkdesigner_en.html

[20] dSPACE GmbH: Real-time interface (RTI and RTI-MP) implementation guide
(2009), http://www.dspace.de

[21] Farcas C., Holzmann M., Pletzer H.: The TDL advantage. Technical report, Stie-
glbauer G. (2004), http://cs.uni-salzburg.at/pubs/reports/T002.pdf

http://www.tttech.com/products/ttp/design-development-software
http://www.vector.com/vi_davinci_networkdesigner_en.html
http://www.dspace.de
http://cs.uni-salzburg.at/pubs/reports/T002.pdf

	5 Modeling and Simulation of TDL Applications
	Introduction
	The Timing Definition Language
	TDL Description
	TDL Extensions for Control Applications

	Simulation of TDL Models
	TDL Simulation in Simulink
	Using Ptolemy II

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

