2 Model-Based Integration

Holger Giese!, Stefan Neumann®, Oliver Niggemann?, and Bernhard Schitz?

! Hasso Plattner Institute at the University of Potsdam, Germany
{holger.giese,stefan.neumann}@hpi.uni-potsdam.de
2 Fraunhofer IOSB - Competence Center Industrial Automation, Lemgo, Germany
oliver.niggemann@iitb.fraunhofer.de
3 fortiss GmbH, Miinchen, Germany
schaetz@fortiss.org

Abstract. The integration of different development activities and arti-
facts into a single coherent system is a major challenge for the develop-
ment of complex embedded real-time systems. For complex software the
functional integration alone is a major undertaking, in the case of embed-
ded real-time systems we in addition have to cope with all the affected
system characteristics such as real-time behavior, resource consumption,
and behavior in the case of failures.

In this chapter we will discuss the state-of-the-art of model-based
integration. Therefore, we will clarify the terminology concerning inte-
gration, provide a classification of the integration challenges for complex
embedded real-time systems, and outline the fundamental techniques em-
ployed to cope with the integration challenges. This framework is then
used to explain the current standard practice concerning integration of
hardware and software for functional development as well as function in-
tegration. Furthermore, a number of advanced proposal how to address
some of the remaining integration challenges such as AUTOSAR and
MECHATRONIC UML using model-based concepts are presented using
the framework.

2.1 Introduction

One of the major challenges for the development of complex embedded real-time
systems is the integration of different development artifacts into a single coherent
system. The integration problems we have to face are exacerbated even further as
today’s advanced embedded real-time systems tend to contain more functionality
than in former times, are often expected to exhibit adaptive behavior and take
advantage of wireless or local networking, or even have to be classified as system
of systems rather than systems alone

For complex software systems integrating the functional aspects alone is often
already a major challenge. However, in the case of embedded real-time systems
we usually cannot restrict our attention to an abstract view on the software
only. In addition we have to cope with real-time behavior, resource consump-
tion, and behavior in the case of failures. All these system characteristics have

! See [I] for a discussion of the resulting integration efforts.

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 17454,12010.
© Springer-Verlag Berlin Heidelberg 2010

18 H. Giese et al.

to be covered to ensure a proper integration. Therefore, the integration of com-
plex embedded real-time systems has not only to cover the integration of highly
complex functionality, but also to take care of additional relevant system cha-
racteristics such as hard real-time constraints, a proper use of resources, and
dependable operation with respect to severe reliability, availability and safety
requirements. Usually, it is not sufficient to only consider the software. Effects
of the hardware and the run-time environment as well as low-level design and
implementation decisions may be relevant.

When developing complex systems besides the technical aspects also process
issues as well as organization aspects become relevant (cf. [2]). However, we will
further restrict our discussion to the technical integration of development arti-
facts looking in particular at model-based development and ignore process and
organizational issues of integration. In [3] several approaches are characterized
which support the model-based development of embedded control systems and
cope with several integration problems. Selected domain-specific modeling lan-
guages (like AADL [4]) and tool sets (like Fujaba [5]) are characterized concer-
ning the integration problems which are solved by the particular approach. In [6]
several effects are discussed which result from the partitioning of a system in
subsystems or features, the separate development and the later combination and
integration. In this work different types of integration properties are discussed,
as well as what kinds of effects exist concerning these properties and how to
cope with them. In [6] the focus is set to shared resources, communication fea-
tures and interacting control concerning the partitioning and later composition
of the overall system. This chapter in contrast focuses on the underlying problem
and integration concepts and provides a characterization of existing integration
problems and fundamental integration techniques. It presents their role by dis-
cussing the standard approach to hardware integration and function integration
as well as several advanced model-based integration approaches.

In essence, the integration problem we have to face is related to the funda-
mental fact that we as humans somehow have to divide the problem into less
complex elements that can be handled independently or with limited dependen-
cies. While from a system engineering perspective [2] the technical integration
problem can be restricted to the problem of integrating complete components,
for software and embedded real-time systems the integration can also happen at
the level of abstract software components or even abstract software or hardware
models. Therefore, integration is usually related to some form of combining ar-
tifacts, which is often proceeded by some form of separation that divides the
development task into the later combined artifacts.

This need for integration also at the level of software and hardware com-
ponents rather than complete systems has several reasons. First the reuse of
already developed artifacts either as developed or including some adaption in
order to reduce costs is one major driver. In addition, the complexity of today’s
embedded real-time systems often makes it necessary to separate the develop-
ment of subsystems within a single organization or across a network of suppliers,
sub-suppliers and the manufacturer (in the case of the automotive domain called

Model-Based Integration 19

OEM). While the following discussed aspects and characteristics concerning the
integration are fundamental for several types of embedded systems the discus-
sed examples focus on the automotive domain. However, the assumptions and
conclusions made are also valid for the other domains. An example for the lat-
ter case is the automotive domain, where the traditional model of division of
labor is that the OEM integrates complete subsystems including software and
hardware developed by their suppliers. However, today this traditional model of
division of labor where only complete subsystems combining software and hard-
ware are integrated is no longer valid and therefore also integration scenarios
where different software has to be integrated on the same hardware are relevant.

In this chapter we will present a framework to discuss how model-based in-
tegration can in particular facilitate the outlined problem of the technical inte-
gration of development artifacts. Therefore, we will first clarify the terminology
concerning integration, provide a classification of the integration challenges for
complex embedded real-time systems, and review the main techniques employed
to cope with the integration challenge in Section Then, this framework will
be employed in Section 23] to explain the current standard practice concerning
integration of hardware and software for functional development as well as func-
tion integration. A number of advanced proposals for how to address some of the
remaining integration challenges such as AUTOSAR and MECHATRONIC UML
using model-based concepts are discussed also by means of the framework in
Section 2.4l In this section we also review other approaches and discuss which
integration problems of our classification are covered and which fundamental
techniques are employed. Finally, we discuss which challenges have been ad-
dressed and which open problems remain and provide our final conclusions and
outlook on expected further research in Section and close the chapter with
some final remarks.

2.2 Integration

No uniform definition for the term integration can be found in the literature
(cf. [2]). Therefore, we will at first outline the terminology employed in this
chapter, a classification for the integration challenges and the fundamental tech-
niques employed to support integration. These elements provide a conceptual
framework that is then used throughout the rest of the chapter to explain how
different approaches address integration.

2.2.1 Terminology

The counterpart of the integration is the division or decomposition of a system
into subsystems. At the more abstract level discussed here it relates to the di-
vision of development artifacts and not necessarily complete subsystems. Note
that the division can happen explicitly when a development artifact is used to
plan and document the decomposition or implicitly when either ad hoc or tra-
ditionally certain parts of a solution are developed separately. It is also worth

20 H. Giese et al.

mentioning that any such decomposition usually goes hand in hand with a break-
down and refinement of requirements.

The division used to derive development artifacts of reduced complexity conse-
quently leads to the need to integrate the results of the separate tasks to derive
the originally intended complete development artifact at the required level of de-
tail. The integration itself therefore consists of the activities required to achieve
a proper composition when combining development artifacts/

Therefore, consequently, integration activities can be found during the de-
composition of a system into subsystems as well as during its composition from
the subsystems, and when related subsystems are developed in parallel. This
can include preventive activities such as the definition of abstract interfaces or
analytic activities such as integration testing which check system requirements
that could not be addressed at the subsystem level. In addition, all activities
to solve problems during the composition are included; this includes problems
encountered during the system division or during the parallel development.

Integration essentially happens when in a development task multiple develop-
ment artifacts serve as input and the specific combination of versions and va-
riants of these development artifacts has not been considered beforehand. Many
of these development artifacts are in fact models that represent some abstract
view on specific aspects of the envisioned or already existing version and /or
variant of a system or subsystems. Therefore, also in the case of classical inte-
gration usually models are already of paramount importance. If these models
are furthermore not only paper-and-pencil models, but are employed to derive
other development artifacts or facilitate specific integration steps, we consider
this to be one form of model-based integration.

Given a development task and a fixed level of detail, the decomposition step
results in a number of components with reduced dependencies. At a coarse grain
level the resulting structure is referred to as architecture which decomposes the
problem into components connected via links. The overall architectures capture
the different components and their structure in the form of links between them.

For our discussion it is useful to further distinguish two cases of architectural
decomposition: In the first case of a hierarchical architecture the components
are modules at the same conceptual level (e.g., an architecture with separate
components for motor and steering control) while in a layered architecture the
decomposition provides layers where one layer is operating on top of the under-
lying one (e.g., application, operating system, hardware). When developing using
such layers sometimes the models abstract from the layer beneath by means of
modeling concepts and thus no explicit initial decomposition is visible.

Taking the many different facets of composition into account, we can define
integration as the development activities which are employed to ensure a pro-
per composition when multiple conceptually development aspects are combined
which usually results in new or changed development artifacts.

2 We do not consider the problem here that the different artifacts have been defined
using different models of communication, computation, or causality as discussed in
Chapter 1.

Model-Based Integration 21

The composition of different software modules into a larger module is an
example of combined conceptual development aspects being used as concrete de-
velopment artifacts. Here decomposition as well as composition is done
explicitly.

On the other hand, the combination of a software module with its underlying
hardware relies on an implicit decomposition from the underlying layer. Af-
terwards, aspects are composed implicitly when enriching the model to include
more information of that layer. This enrichment happens usually in several steps
where additional conceptual development aspects such as limited precision, exe-
cution times or memory consumption are integrated with development artifacts
that beforehand were not included in these aspects (by initially abstracting from
them).

2.2.2 Classification of Integration Problems

Several problems are encountered when integrating different development ar-
tifacts. However, most of the relevant kind of conflicts can be covered by the
classification of integration problems depicted in Figure 2.1

integration challanges
syntactic protocol ‘ dependebility‘ ‘ rmin'ainability‘ ‘ resource consumption ‘
semantic dataflow technological real-time security safety
[sementc] [caaton] | [reatime] [seciny]
[distributed \ [availability | [reliabilty |

Fig. 2.1. Classification of Integration Problems

The outlined classification includes technological aspects refering to the abi-
lity to integrate at all on the basis of some technology and the syntactical aspect
covering that the parts have to be integrated concerning the exchanged or sha-
red data as well as the offered or required operations. Furthermore, we have the
full semantic, which ensures that the encoding of data and side effects of the
offered operations are compatible, the protocol, which addresses issues such as
non-uniform service availability the synchronization and control flow between
different parts, and dataflow, which covers the specific needs for composing da-
taflow computations as required for most control algorithms, are included.

While technological and syntactical integration are often addressed upfront
during decomposition (e.g., AUTOSAR in Section 2.47]), more demanding in-
tegration problems such as semantic, protocol or dataflow are today often only
handled when it comes to composition.

The dependability resp. quality-of-service aspects include that the composi-
tion has to fulfill given reliability goals, availability requirements, exclude
unacceptable safety or security problems, and still ensures maintainability. The
real-time behavior may include the local behavior but also distributed real-time

22 H. Giese et al.

compatibility. For the resource consumption, either node limitations such as
CPU time, network limitations such as bandwidth or even system limitations
such as the overall power consumption may be relevant.

Embedded systems differ from standard software systems in particular when
it comes to integration problems related to real-time or resource requirements.
As real-time requirements, severe resource constraints, and more demanding de-
pendability requirements have to be fulfilled by an integrated system with often
rather limited hardware, a large fraction of the development efforts have to be
spent on addressing them explicitly. In standard software development, develo-
pers use resources rather excessively and remain at a higher level of abstraction,
and thus avoiding having to optimize their solution for a specific hardware. In
the embedded world in contrast this luxury is not possible and a sufficient be-
havior has to be achieved with rather constraint resources and thus all kinds of
hardware-related constraints such as execution times and resource consumption
have to be addressed explicitly.

2.2.3 Fundamental Integration Techniques

To exemplify the rather general considerations presented so far, we will now
look into a number of fundamental techniques for the proper integration. As the
steps undertaken to divide the labor and the effort for the final integration of
the independently achieved results can only be understood in combination, we
will introduce the basic principles for both aspects at once and then discuss their
interplay.

Explicit Horizontal Decomposition & Composition

The first fundamental concept operates at a constant level of abstraction and
looks into an explicit decomposition into subsystems at the same level (horizon-
tal decomposition). In order to achieve a suitable decoupling of the separately
considered parts some form of separation of concerns [7] as well as information hi-
ding [§] are usually employed, too. For example, architectural aspects (concerns)
covered by modules or components which provide interfaces. Using an interface
allows to decompose the architecture and hide implementation details (informa-
tion hiding) at the same horizontal abstraction level

This form of horizontal decomposition of the system usually permits the sub-
systems to be developed in parallel and work on disjoint sets of development
artifacts. In addition to the description of the system, this decomposition also
happens for the requirements which are broken down from the system into its
subsystems.

The explicit composition brings together subsystems which have been develo-
ped in parallel. In the ideal case all relevant system or subsystem characteristics
are captured during the decomposition and are guaranteed when doing the com-
position. However, often this is not the case. For example, when using separation

3 Some techniques (e.g., information hiding) also support vertical abstraction like des-
cribed later.

Model-Based Integration 23

of concerns several aspects are often not covered during decomposition but be-
come relevant when doing the composition (potentially in a later development
stage) or when the composition not only exhibits the characteristics of its com-
ponents but also characteristics which are determined by the composition (some-
times call emergent) itself. It is particularly relevant for the integration that all
system requirements that have not been broken down into subsystems require-
ments are checked for the composition result. This includes that characteristics
such as deadlocks which can often not be predicted when doing the decompo-
sition have to be addressed when doing the composition. Therefore, depending
on the question of which characteristics are compositional or not resp. which
requirements have been broken down to local properties of the subsystems more
or fewer characteristics of the composition have to be checked at composition
time to ensure a proper integration.

The standard case for composition is that the individual constituent parts
are simply combined by some generic form of composition (e.g., scheduling in
the case of processes on an operating system). More advanced cases employ
declarative constraints contained in the specification of the components to ensure
that the composition behaves properly (e.g., scheduling with guaranteed deadline
in case of processes on a real-time operating system).

decomposition abstraction

] /\ O '/:] de\?&%‘rﬂént

OF 0 = Oieid
=
O \/ O \ O \/ O
[D. . enrichment ED
composition (synthesis) consistency

(a) composition (b) abstraction (c) consistency

Fig. 2.2. Fundamental techniques employed to approach integration

The resulting interplay of decomposition and composition is depicted in Figure
22 (a). At a rather high level of abstract the system is decomposed into two
or more subsystems that are developed in parallel. These subsystems, which
are then further elaborated in parallel, are composed later on according to the
decomposition done upfront.

It has to be noted that in contrast to more restricted interpretations of the
term integration (cf. [9]) we do not limit integration to the case where checks at
composition time are employed, but also include the case where upfront activities
such as defining interfaces ensure a proper composition.

Module interfaces are the classical example for the decomposition / composi-
tion. If done proberly as in many programming languages, the definition of the

24 H. Giese et al.

Table 2.1. Coverage of integration aspects by modules with syntactical interfaces

Integration problems Technique Explanation

syntactical D/(S) Is checked already during decomposition guarantee pro-
per integration during composition. Synthesize syntac-
tical correct implementation of interfaces.

technological S try to solve problem using synthesis, e.g., generating
compatible C-Code for the implementation of interfaces.
semantically C Is checked only late during composition.

(legend: D = during decomposition — C = during composition — S = by synthesis).

syntactical interfaces at the time of the decomposition guarantees that during
the later composition no syntactical integration problem can result. In Table 2]
this result is depicted using a classification that focuses on the question when
the integration problem becomes visible. The case during decomposition (D) im-
plies that the integration is guaranteed upfront, while the during composition
case (C) results in a risk that an integration problem is detected rather late.
The case by synthesis (S) refers to automated techniques that can generate a
solution that solves the integration problem in principle. However, usually no
guarantee can be given that the synthesis will thus be able to find a solution as
there might be not resolvable conflicts.

Vertical Abstraction & Enrichment

Another fundamental concept to separate details during the development of
a system is vertical abstraction and enrichment. Compared to the previously
described horizontal decomposition and composition, where the abstraction level
is the same when doing the composition or decomposition, vertical abstraction
and enrichment change the abstraction level itself.

In the abstraction step we omit details of the envisioned system and focus
on the characteristics that are relevant for the current development step. The
abstraction can be seen as a form of implicit separation by omitting the details
for a certain time. These omitted details are then later added to the development
artifacts when enriching them.

The abstraction concept can be employed to ease development when there is
only a unidirectional dependency between the upfront-addressed details and the
omitted ones. Often architectural layers are employed to realize the abstraction
independent of the concrete omitted details (application, operating system, hard-
ware). The fact that the lower architectural layers do not depend on the higher
layers in combination with standardized interface for the lower-level layers allows
that the higher layers could be developed more or less independent, and omitted
details are either filled in by the lower levels or can be considered later on.

The design characteristics that are affected by the combination are then
usually considered later. E.g., first the end-to-end timing constraints are consi-
dered and the specific timing resulting from the integration with the operating
system and the hardware layer is considered later. As the real-time scheduling
can only be considered in combination with the concrete real-time operating sys-
tem, the analysis of the real-time characteristics are only addressed when both

Model-Based Integration 25

are integrated. When abstraction is used in this manner, dependencies between
the separated layers often seriously constrain the decoupling of the development
activities for the subsystems. The development artifacts of the different activi-
ties depend on each other such that the ordering of the development activities
reflects the usage of development artifacts of other activities. E.g., details are
stepwise added to the development artifacts during function development (see
Section 2.31]) where in each step the effects of other layers (runtime system,
hardware, ...) is added.

Vertical enrichment is the counterpart of abstraction where new characteris-
tics are added to a development artifact. We have to further distinguish two
fundamentally different forms of how enrichment can occur. Either the detail
adds new characteristics to the development artifact. In this case no constraint
between the abstract development artifact and the added detail exists (e.g., a
logical untimed model is enriched by timing information). On the other hand the
development artifact may already contain some abstract information about some
system characteristic which constraints the added details (e.g., an idealized mo-
del equal to some set of differential equations has to be developed into a model
equal to a set of difference equation scheme). Often the development starts with
such an abstract artifact and abstraction is used rather than explicitly applied.
In this case you either want to have refinement when the more detailed structure
and behavior is included in the more abstract one or approximation such that
the more detailed structure and behavior is similar to the idealized abstract one.

In the case of refinement the abstraction already includes the refined behavior
as one possibility and thus checking crucial properties for the abstraction can
guarantee these properties also for the refinement. In contrast, for an approxima-
tion it holds that the abstraction is an idealization and that the behavior which
could be observed for the enrichment should be somehow similar. Therefor, here
the opposite observation holds that only in the case a required property does not
hold for the approximation it can also not be expected to hold for any enrich-
ment (even though this is not necessarily always the case). Thus, refinement can
be used to guarantee the absence of failures upfront, while approximation can
be employed to detect possible integration failures upfront. A fully inconsistent
enrichment which is neither a refinement nor an approximation would mean to
redo all the construction work contained in the abstract development artifact
and thus is usually not intended. However, it must be mentioned that different
characteristics of a development artifact may be enriched differently and thus
some may be refined while others are approximated.

In both cases the enrichment is some form of implicit (vertical) composition
as a new or yet only insufficient covered development aspect is now considered.
The initially not considered development aspect is then brought back into the
picture and thus the related information about the related layer beneath is im-
plicitly composed with the model that beforehand used abstraction to omit that
information. An example for such a case is the usage of abstraction layers, e.g.,
hiding communication details or hardware properties like in case of the different
layers of the AUTOSAR architecture (see Section 2Z4.T]).

26 H. Giese et al.

Like in the case of (horizontal) composition again synthesis can be used to
automatically apply enrichment. Depending on the applied form of enrichment
respectively the previously applied abstraction, synthesis does not guarantee in
any case that all desired properties are fulfilled (e.g., no schedule for a set of
tasks can be synthesized). In many cases enrichment is automatically applied
using synthesis, e.g., in the case of automatic C-code-generation supported for
embedded systems.

As depicted in Figure (b), the initial abstraction allows to omit a deve-
lopment aspect and later consider it when enriching the model in that respect.

Table 2.2. Coverage of integration aspects by the different approaches

Integration problems Technique Explanation

syntactical A Abstraction guarantees that the composition is syntac-
tically correct.

technological A/E(S) Abstraction and enrichment (potentially by synthesis)
provides some technological compatibility.

real-time local E The initial abstraction does not provide any guarantees.

(legend: A = during abstraction — E = during enrichment — S = by synthesis).

The explicit consideration of real-time constraints for a software function in
a subsequent development step is an example for an abstraction and enrichment
step. Upfront, the developer abstracts from the timing issues and instead fo-
cuses on the functional aspect of the solution. Then, in a later step the derived
functional solution is enriched with timing information in the form of deadlines
etc. As outlined in Table the initial abstraction step does not provide any
guarantee for the later enrichment and thus the integration problem has to be
addressed late when the enrichment happens.

Often horizontal decomposition & composition, where parts of the system are
decomposed at a specific abstraction level and vertical abstraction & enrichment,
where the level of abstraction changes, are used in combination. An example for
such a situation is when different parts or subsystems are developed by different
stakeholders and one has only an abstract view on a subsystem provided by a
supplier while other parts are available on a more detailed level.

Consistency & Synchronization

A third fundamental concept to handle integration issues is to not only decom-
pose the problem initially and resolve integration problems later, but somehow
reflect the dependencies between the different artifacts throughout the parallel
development.

The first approach is to check the consistency of the models and resolve the
issue immediately or at least in the near future rather than waiting for the time
of integration. This case of consistency refers to horizontal consistency [10] and
takes care that no conflicts arise when the models developed in parallel are later
integrated.

Another option which provides a higher degree of automation is model syn-
chronization [11] where the equivalent parts of two models are automatically kept

Model-Based Integration 27

consistent. Like for consistency, the relevant case here is only horizontal synchro-
nization of parallel-developed models (analogous to horizontal model transfor-
mations [12]).

The main benefit of both approaches is that in contrast to the two former ones
the independently developed model can more freely evolve without resulting in
harm later on. In the case of decomposition and composition in contrast somehow
the basis for the separation is fixed after doing the upfront decomposition. Also
in the case of abstraction and enrichment the separation is somehow a-priori
fixed when doing the abstraction and it thus too only provides limited degrees
of freedom when enriching the model later on. However, this higher degree of
flexibility can only be preserved as long as the consistency rep. synchronization
is keeping track of the dependencies to prevent integration problems later on.

On the other hand, unless fully automated as in the case of model synchroni-
zation there is the permanent need to resolve inconsistencies during the parallel
development and therefore both parallel development activities might be slowed
down considerably. Therefore, the sketched benefit comes with the drawback
that no "fully” parallel and independent development is really possible.

If during the parallel development the consistency is checked as depicted in
Figure (¢), integration problems during the later composition can be pre-
vented. Co-simulation of different models, which are developed independently or
for analysis purposes (like in the case of plant-models), is one example where
different development activities are checked for their consistency (see Table 23)).
It is important to note that this also enables consistent changes of the interface
between the initially separated subsystems. Without consistency checks interface
changes would endanger the proper composition later on.

Table 2.3. Coverage of integration aspects by the different approaches

Integration problems Technique Explanation

semantic P The co-simulation helps to find inconsistent behaving
development artifacts.
(legend: P = during parallel development).

Combinations in Practice

It is important to note that in practice instead of these pure cases of parallel
and sequential processing you will encounter partially ordered activities that are
coupled by the production and use of different versions of development artifacts
depending on the employed decompositions and abstractions.

A frequently employed approach which combines horizontal decomposition
with vertical abstraction is interfaces. When planning the decomposition, e.g.,
when horizontally decomposing a system into subsystems, interfaces are used
to capture at a more abstract level the dependencies between the components.
Additionally such interfaces can be also defined between layers at different le-
vel of abstraction. If the dependencies are properly designed in the interfaces
this prevents that related integration problems will be encountered during com-
position. However, interfaces usually only cover a very restricted subset of the

28 H. Giese et al.

component characteristics and they only prevent integration problems for that
restricted set of characteristics. Examples where different sets of characteristics
are covered by interfaces presented later in the chapter in the case of AUTOSAR
and MECHATRONIC UML.

Using an abstract model of the environment or the other subsystems is another
technique used in engineering which combines decomposition and abstraction.
This is particularly useful when a simple interface will not capture all required
properties of the environment properly. Please note that such an environment
model together with the subsystem model can be checked during the parallel de-
velopment against requirements of the system which could not have been broken
down into subsystem requirements due to their non-compositional nature (like
the reactive interplay between the plant and implemented control functionality).
In the case of control engineering so-called plant models are employed to capture
that part of the environment which is relevant. Simulation runs check that the
given control requirements are met. The function development described in the
next section is a typical example where environment models play a prominent
role.

Another approach to derive a valid composition at a more detailed level is a
dedicated manual or automated synthesis step. The synthesis step generates a so-
lution which fulfills the constraints (e.g., fixed schedule for a dedicated hardware
and software stack) configuring an underlying layer or determining an additio-
nal glue component. To fulfill several resource constraints the synthesis can also
target to minimize the resulting resource consumption (e.g., synthesizing a mi-
nimal runtime kernel which only includes the necessary modules/functionality).
Alternatively, an online solution is often employed (e.g., real-time scheduling
in the case of processes on a real-time operating system). In this case usually
an additional check at integration time is required that evaluates whether the
constraints can be met (e.g., scheduability checks). Examples for synthesis ap-
proaches for the local real-time integration problem are MECHATRONIC UML
(see Section Z42) and TDL (see Chapter 5).

Depending on the specific domain and the severity of the encountered conflicts
quite different means for the resolution of the integration problems are appli-
cable. A technique can only be employed when the resulting solution adheres to
the specific constraints of the domain (e.g., in a domain with high cost pressure
such as the automotive domain using more powerful hardware and additional
abstraction layers are often not affordable). Also the development efforts as well
as the scalability of composition techniques are important factors that have to
be considered. E.g., in the automotive domain the high cost pressure does not
allow the intensive use of more powerful hardware and additional abstraction
layers. However, in domains where safety issues prevail, like in the case of avio-
nics systems, more advanced concepts such as IMA exist allowing the modular
verfication of decomposed system parts [I3]. Also the development efforts as well
as the scalability of composition techniques are important factors that have to
be considered.

Model-Based Integration 29

2.3 State-of-the-Art Approach

The construction of current complex embedded systems — as found, e.g., in the
avionics or automotive domain — is characterized by two sources of complexity:
First, these systems are composed of interacting distributed components. Second,
these components are developed in parallel by different suppliers. Thus, integra-
tion of these components becomes a core issue during development, especially
if individual components of different suppliers are combined by the equipment
manufacturer on a single electronic control unit.

To overcome the problem of late integration, often a model-based integration
approach is chosen, allowing the development process to be modularized. Here,
the techniques of decomposition and enrichment as described in Section 2223 are
used to obtain two orthogonal dimension of development: By using functional
decomposition, braking the system down into separate functions or components,
these functions can be constructed, validated, and verified independently. By
using incremental enrichment, going from functional via logical to technical mo-
dels, these components can then be safely integrated on a common platform.

To effectively support such a development process, two prerequisites are ne-
cessary: On the one hand, the approach must support the description of the
system at different levels of abstraction, to support a stepwise enrichment of the
models of an individual function. This ensures that the more detailed model
respects the limitations of the more abstract model. On the other hand, the ap-
proach most support the combination of the models of all functions at each level
of abstraction, to enable a safe integration of the overall system. This ensures
that the combined functionality implements the intended overall behavior.

To support the different levels of abstraction, increasingly model-based ap-
proaches are used, especially for control functionality. Typically, here the func-
tional, logical, and technical level are realized by function-oriented models (e.g.,
MATLAB/Simulink or ASCET-MD), by software-oriented models (e.g., Target-
Link or ASCET-SD), and prototyping or pre-production platforms.

Currently, parallel engineering is achieved by decomposing the system into
several components at the functional level. Thereafter, the different functiona-
lities are developed separately. Composition is achieved mainly at the platform
level by defining the realization of the joint interfaces (e.g., the exchanged bus
messages).

Obviously, due to increasing dependencies between formerly independent func-
tionalities such an approach requires to support a combination of the top-level
functions. Furthermore, since obviously the late integration can cause inconsis-
tencies (e.g., when fixing different discretizations of joint interface signals during
the construction of the software model), current approaches specifically provide
support for a safe integration at earlier levels (e.g., Intecrio or SystemDesk).
Additionally, platforms (e.g., IMAE, AUTOSARY) and a corresponding develop-
ment environment eliminate the need for the manual integration at the platform

4 Integrated Modular Avionics.
5 Automotive Open System Architecture.

30 H. Giese et al.

I Developed component-1 |

| Developed component-2 }

7

N N | Developed component-N l/
\ /
\ /

\ /

\ /

\ /

N/

Fig. 2.3. Parallel development within the V-model (according to [14])

level, lifting the integration to the software level. Besides the functional aspects,
such an approach requires to include system wide properties like real-time re-
quirements.

As mentioned above and illustrated, e.g., in [I4], the standard engineering pro-
cess combines parallel and incremental development, allowing to develop compo-
nents or functions in parallel while especially taking into account platform and
other restrictions (e.g., real-time and resource restrictions) in a stepwise man-
ner. The parallel development of multiple components is illustrated in Figure[2.3]
showing that parallel development is achieved by forking the development for
each component or function in the design phase, joining these components in
the integration phase. Each component or function, as described in the multiple
V-model shown in Figure 24l is iteratively developed with increasing level of
detail via a simulation, prototyping, and pre-production stage.

As indicated in Figure [Z3] the development of functions at different levels of
abstraction affects not only the design of the functions via the different models
used at these levels; it furthermore affects the different validation and verification
phases in the multiple V-model, e.g., concerning the used models of the envi-
ronment or test cases. However, it also requires providing an integration of the

post-development
stage

simulation stage

prototyping stage

pre-production stage

Fig. 2.4. Stages of the multiple V-model (according to [14])

Model-Based Integration 31

simulation
stage

MT =model test

MiL =model-in-the-loop
RP =rapid prototyping .
SiL =software-in-the-loop ST pre-prtgductJon
ST =system test stage

Fig. 2.5. Test and simulation activities within the different stages (according to [14])

functions at these different levels to support the early validation or verification
of the system under development.

In the following, in Subsection 23] the development of an individual function
at different levels of abstraction is described in more detail, while Subsection [Z.3.2]
illustrates the possibilities of integrating several functions at these different levels
of abstraction.

2.3.1 Function Development

During function development a complex functionality in the form of a control
algorithm or reactive behavior controlling a physical process is developed. This
functionality is incrementally developed by adding constraints imposed by the
plant (environment) as well as the platform in a stepwise fashion. This stepwise
integration is accompanied by validation and verification techniques at the dif-
ferent stages. Figure[2.5lshows an overview of these different levels of abstractions
as well as the corresponding techniques.

The simulation and prototyping stages use abstracting assumptions to elimi-
nate details both from the environment as well as from the platform. Examples
for such assumptions are unlimited HW resources, e.g., eliminating the need to
consider execution times or memory consumption, or simplified plant models,
e.g., eliminating the need to deal with failures of sensors and actors.

Simulation Stage

At this stage, purely functional models build the basis for development. Com-
monly, data flow models in form of block diagrams (e.g., ASCET, Simulink) or
control flow models in the form of state diagrams (e.g., Statecharts) are used.

32 H. Giese et al.

Functionality is developed independent from platform and its interfaces to the
environment (e.g., A/D and D/A converter). Therefore, these models ignore pro-
perties like WCET limitations, characteristics of the HW (e.g., register size), or
memory consumption. Typically, these models use values and signals of types
that differ from these used within the real system (e.g., floating-point data types
instead of fix-point, abstract messages instead of CAN messages). Due to the
focus on the logical execution order and the data flow, for verification and vali-
dation often simulation of the models is used, using either no plant or a plant
model as environment. The goal of this stage is a first proof of concept and the
verification and validation of the overall design and control law. Using a plant
model during the simulation stage in parallel supports the validation of the
developed functionality concerning semantically as well as dataflow integration
problems like described in Section

For validation and verification, at the simulation stage model tests (MT),
model-in-the-loop tests (MiL) and rapid control prototyping (RCP) are used.

For MT, one-way simulation of the models — also called one-shot simulation
— is used. Here, all input and output values are generated and analyzed for a
single execution of the system, abolishing the need for a dynamic interaction with
the environment. For MiL,, the model of the function is simulated back-to-back
with virtual models of the dynamics of the environment in the form of a plant
model. The plant model is an abstracted and simplified representation of the real
environment, allowing a validation of the functionality. Due to the abstraction of
the plant model, issues like the calibration of the functionality generally cannot
be treated at his level. For a more accurate validation of the models, RCP can
be used together with the models of the simulation stage. To that end, typically
high-performance RCP-HW is used, allowing platform restrictions to be ignored
(e.g., computations times, floating point vs. fix point). By replacing the plant
model by the actual plant (or a close equivalent), RCP allows the functionality
to be validated against the real plant including the real-time behavior of the
plant, access special-purpose HW, and use actual actuators and sensors.

Prototyping Stage

At this stage, many aspects like real-time properties and resource restrictions
removed by the platform abstraction in the simulation stage are taken into ac-
count. The focus of this stage is the implementation of the designed functionality
and its validation and verification. Depending on the level of abstraction, only
software aspects (e.g., modularization, used data types) or also hardware aspects
(e.g., computation times and storage restrictions) can be addressed.

On the software level, software models are executed on a host computer. Un-
like to MT and MiL, the software models additionally consider implementation
aspects like discretization of the functionality in the value and the time dimen-
sion, e.g., by using fix-point arithmetics and task schedules. In practices, software
models are often generated from the functional models via parameterized auto-
coders (e.g., ASCET-SD, TargetLink, or Embedded Coder) and in such a way
that at the technological level the integration is supported via synthesis. An es-
sential part of the prototyping stage consists in the verification that the models

Model-Based Integration 33

from this stage are an enrichment of those of the simulation stage and intended
semantics are fulfilled, as mentioned in Section Here, enrichments dealing
with refinement or approximation are often semi-automatically provided by a
target code generator during discretization. By using a specific host platform,
some aspects of the final platform are still ignored. Typically, resource restric-
tions are not examined or only in a simplistic fashion. Using such host platforms,
verification and validation via MiL. can be covered by corresponding techniques
via software in the loop (SiL) test.

To again include more platform restrictions, software models to be executed on
the target processor can also be used in this stage. Such an integration of software
and target hardware can be done on different levels. The target processor can
be used to run a processor in the loop (PiL) simulation, providing extended
debugging or calibration functionalities. Therefore, in Pili simulation often the
used platform is different to the final one, and often Evaluation Boards are
used providing additional interfaces for debugging and calibrating. Alternatively,
the real hardware (the ECU) can be used for HiL simulation, allowing reliable
results to be obtained, e.g., also w.r.t. execution times, which may be affected
by the additional debugging and calibration functionalities. In both cases, the
environment is simulated via the use of a simplified and abstract model of the real
plant. However, in the PiL. approach often simplified models are sufficient, while
HiL approaches in general use fine-grained models often requiring the use of real-
time systems for execution. Furthermore, within the HiL. simulation additional
system parts can be included, e.g., legacy ECUs or even mechanical parts (e.g.,
the throttle of an otherwise simulated engine). By using more detailed execution
platforms (e.g., in the case of PiLi simulation or in the case the real ECU is
used) additional properties like execution times and the resource consumption
can be evaluated at least for the local case by using the concept of enrichment
as introduced in Section

Pre-Production Stage

Within the pre-production test the system is tested against external influences
of the environment. This includes the effects on the system due to environmental
conditions (like temperature, shock or vibration). The system under test is built
of prototyping HW fulfilling the required specifications for the end product. The
goal of the tests is to identify and fix problems and to measure the robustness
of the system as early as possible.

2.3.2 Function Integration

The function integration happens at the latest when the functions are integra-
ted during the pre-production stage. However, in contrast to such a big bang
integration usually whole functional groups are integrated beforehand using re-
placements for the missing rest of the system in order to ease the integration
testing.

The current practice for integrating multiple software modules on one node is
characterized by the following stepwise partially manual process: (1) Specification:

34 H. Giese et al.

The interface and decomposition of the software into modules are specified on a
high abstraction level while mainly functional properties are targeted (if at all),
then (2) Partitioning: The software is partitioned into concurrent modules resp.
logical threads with appropriate periods to make it run on a real-time operating
system or kernel (usually without adequate analysis), (3) Implementation: The
software is implemented (often manually), (4) Integration: The threads are com-
bined using either static schedules or concurrent threads in a RTOS or kernel
and it is verified that the software fulfills all real-time constraints in its given en-
vironment. In the case the implemented software is combined with an RTOS, at
least at the functional level the technological aspect concerning the integration
is supported by composing the software with a standardized execution platform
(e.g., an OSEK RTOS). Additionally scheduling analysis of the used RTOS tasks
can be applied to analyze and validate the real-time behavior, at least for the
local case. If the real-time constraints do not hold, partitioning, implementation
and integration have to be repeated. Repeating this cycle a number of times is
usually very costly but often unavoidable.

Prototyping Stage

The outlined early integration of functional groups might be addressed already at
the prototyping stage when integrating the control algorithm with more appro-
priate substitutes for the final hardware. This could happen using the prototypes
of other functions as well as their final version depending on the availability.

Pre-Production Stage
In the last stage of the multiple v-model (pre-production stage) the real system
is build including the real plant.

The system is tested within the real-life environment to ensure that all re-
quirements are met, including conformance to relevant standards like industrial
or governmental ones. The build system is close to the later product and some
calibration and configuration can be done. Tests concerning functional and non-
functional properties are possible but fixing problems concerning properties of
one of the earlier stages could not or only with extensive effort be done. E.g., to
change the system architecture or the design of the control functions is rarely
possible at this stage.

Encountered Problems

When the system is initially decomposed several properties (e.g., real-time pro-
perties or needed resources) are not considered. When composing the developed
parts these properties can lead to crucial problems, potentially leading to exten-
sive changes related to the earlier development stages. Furthermore, the com-
position of the developed parts can result in characteristics which are caused
only by the composition and not by the characteristics of the components itself.
For example, if several independent developed components have to use the same
communication channel (e.g., a shared bus) problems can occur which could be
hardly detected when components are tested and simulated individually.

Model-Based Integration 35

Decomposition at the system level is almost done at the same architectural
level (while additionally layered architectures play an important role, e.g., in
case of the integration of operating system properties like scheduling).

2.3.3 Discussion

The outlined process of decomposition, functional development and system in-
tegration represents a nearly optimal solution for systems with more or less in-
dependent functions and functions which require only a usual control law. Table
24 and summarize the integration aspects concerning function development
and function integration, which are somehow supported by the described stan-
dard approach. Unfortunately today’s embedded real-time systems often include
much more sophisticated designs where an overwhelming number of functions
exist that have to interact in complex ways to achieve the envisioned overall
functionality. Therefore, this style of development and integration often result
in severe problems perhaps being detected rather later during system integration.
These can be true for

— interface compatibility problems,
— protocol compatibility problems,
— dependability issues,

— real-time behavior and

— resource consumption.

In all these cases, the rework required to fix such problems if encountered during
system integration can be quite costly.

Table 2.4. State-of-the-Art: coverage of integration aspects during FD

Integration problems FD Explanation
technological A/E(S) via code generation, standardized tools (e.g., MATLAB)
syntactical D/C define interface to sensors and actuators of the plant
semantic A/E(S)/P enrichment at each stage using (initial abstract) refined

SW (potentially synthesized) and HW models; simula-
tion of the SW models in combination with the model
of the plant

dataflow A/E(S)/P enrichment at each stage using (initial abstract) refined
SW (potentially synthesized) and HW models; simula-
tion of the SW models in combination with the model
of the plant

real-time compatibility

local E/P enrichment at each stage using refined SW and HW

models; consistency with HW checked during parallel
development by means of simulation techniques, e.g.,
PiL simulation

distributed
resource consumption
local E/P enrichment at each stage using refined SW and HW
models; consistency with HW checked during parallel
development by means of simulation techniques, e.g.,
prototyping stage
distributed

(legend: FD = function development — A = during abstraction — C = during composition — D = during

decomposition — E = during enrichment — P = during parallel development — S = by synthesis).

36 H. Giese et al.

Table 2.5. State-of-the-Art: coverage of integration aspects during FI

Integration problems Fl Explanation
technological A/C later integration on standard platforms such as OSEK
allow upfront abstraction
syntactical A/(D)/C upfront definition of components and their interfaces
(not standard)
semantic C/(P) checked during integration testing — potentially using

functional groups in parallel with replacement for the
rest of the system
protocol C checked during integration testing
dataflow C/(P) checked when programming and compiling the integra-
ted code, checked during integration testing — poten-
tially using functional groups in parallel with replace-
ment for the rest of the system
real-time compatibility
local C scheduling analysis of the integrated tasks
distributed C/(P) using simulation techniques (later in the development
lifecycle) — potentially using functional groups in parallel
with replacement for the rest of the system
resource consumption

local C resource analysis of the integrated tasks and their code
distributed C analysis of the bus allocation for the integration of mul-
tiple nodes

(legend: FI = function integration — A = during abstraction — C = during composition — D = during

decomposition — P = during parallel development —).

2.4 Advanced Model-Based Solutions

A number of model-based approaches for the development of complex embedded
real-time systems have been proposed to avoid some of the problems encountered
for the standard approach for system development as outlined in the preceding
section. We will first review an industrial approach developed in the automotive
domain. The approach deals with some integration problems present in complex
and highly heterogeneous systems. In addition, we will discuss a particular aca-
demic proposal and a number of related approaches that try to address other
challenging integration problems.

2.4.1 AUTOSAR

AUTOSAR has been founded 2003 as an industrial standardization body for
the automotive industry and is now supported by all major car manufacturers,
their suppliers, semiconductor producers, and tool suppliers (see also [I5, [16]).
AUTOSAR aims at the improvement of the software development and integra-
tion for Electronic Control Units (ECUs) by providing standards for software
architectures and software modeling techniques.

AUTOSAR responds to an increasing number of problems with the develop-
ment of ECUs, especially software development and software integration:

Traditionally manufacturers bought dedicated ECUs for dedicated functiona-
lities from ECU suppliers, e.g., an engine ECU or a left-door ECU. The increase
of functionalities has led therefore to an increase of the number of ECUs — rea-
ching numbers of up to 80 ECUs in some vehicles. A further increase of the
number of ECUs is hardly feasible: Function integration in such settings means

Model-Based Integration 37

integrating ECUs via communication busses; a feat which becomes more and
more difficult when the number of functionalities increases and functionalities
need to communicate intensively with each other.

This dilemma is solved by breaking with the tradition of equating functio-
nalities and hardware modules (i.e. ECUs). Instead software — not hardware —
becomes the means for implementing functionalities. This decouples the number
of ECUs from the increasing number of functionalities. But on the other hand
this entails changes in the development process: Manufacturers will not continue
to buy production-ready ECUs from suppliers. Instead they will buy software
modules, i.e. functionalities, and (generic) hardware platforms separately. So
function integration then means software integration.

In the automotive industry, software has so far not been a product; just finding
a pricing schema for software will therefore be a challenge in itself. Furthermore,
in the future several software functionalities must be integrated on one hardware
platform consisting of one or more interconnected ECUs. This will either be done
by traditional suppliers or by manufacturers which try to extend their fields of
competence — and try to become more independent from suppliers.

Another problem addressed by AUTOSAR is the testing and quality assurance
of the developed ECUs. Would it be just for the increasing number of ECUs,
the problem could be solved by also increasing the number of ECU tests. But
nowadays most functionalities communicate with other functionalities (which
may be on other ECUs) or high-level functionalities are even implemented by
combining already existing functionalities—being an example for the emerging
behavior described in Section

Testing such distributed functionalities is difficult since all possible commu-
nication combinations between the building functionalities must be covered —
causing in the worst-case an exponential increase of necessary test cases. Tradi-
tional engineering fields such as electrical engineering have faced this problem
for decades and have mainly come up with three main solutions: (i) Systems are
decomposed into separate components, in doing so dependencies inbetween are
minimized — corresponding to the ideas from Section (ii) Components are
tested separately. Tested and used components are then reused in later projects
— thus avoiding unnecessary and error-prone new implementations. (éii) Errors
are taken into consideration, e.g., by means of safety margins and diagnosis
functions.

AUTOSAR is trying to apply these ideas — to some extent — to automotive
software architectures. Generally speaking AUTOSAR comprises three main ac-
tivities:

(1) Introducing Software Component Models
(2) Standardizing Basic Software Modules
(3) Standardized Application Interfaces

Compared to the integration problems discussed in Section in the current
release version 3.1 of AUTOSAR primarily syntactical aspects are supported
in the form of standardized interfaces for components and modules. Other key
issues like semantics, protocol integration or real-time properties are not covered.

38 H. Giese et al.

How other aspects can be included into the AUTOSAR standard is discussed
for the case of real-time properties in [I7].

(1) Software Component Models

AUTOSAR introduces a software component model for automotive application
software. By this, AUTOSAR wants to facilitate () software reuse and (i) soft-
ware exchange between different parties. Software components can either be
atomic (i.e. components implemented as C Code) or compositions which are for-
med by interconnected software components. In AUTOSAR all applications of
a vehicle are part of one overall software composition — i.e. independent of their
distribution on several ECUs. This top-level composition forms the vehicle’s
software architecture. From a software developer’s point of view, AUTOSAR
software components mainly introduce standardized C-APIs to communicate
with other software components, either on the same ECU or via the communi-
cation bus. No direct calls to C code contained in other software components
or to C code of basic software modules such as drivers are allowed anymore.
This makes the software independent of other components, hardware and basic
software modules — and hence reusable. By using APIs in form of C-APIs not
only syntactical aspects but also technological ones are treated.

These standardized C-APIs are based on a classical port concept. Le. a soft-
ware component A will not send a signal directly to software component B
anymore; e.g., it will not directly call a method B receiveSignal(). Instead A
sends this signal to one of its own ports; ports being just proxies for other soft-
ware components. A software architect later on connects (normally in a modeling
tool) A’s port to the corresponding receiving port of B. The same concept is used
to connect software components to basic software modules such as I/O drivers,
the COM stack, or error management modules.

The usage of standardized C-APIs to communicate with a component’s en-
vironment has several advantages: Applications become reusable, hardware and
basic software dependencies are eliminated, communications become clearly vi-
sible. But on the other hand, standardized C-APIs also mean that (i) existing
C code must be wrapped or modified and (7) existing tool chains such as code
generators must be adapted. These changes to the development process may well
delay the introduction of new AUTOSAR concepts.

This leaves one key question unanswered. How are A and B connected on
the C code level? Who generates the gluing code to implement the signal trans-
fer from A’s sending port to B’s receiving port? In AUTOSAR this is done
by a middleware layer, the so-called Run-Time Environment (RTE). The RTE
comprises the C code for the definitions of the C-API commands used within
software components. Since resource consumption and process usage are impor-
tant for ECU software development, this RTE code is generated for each ECU
individually.

Here two key concepts of software integration can be seen implemented:
(i) Software components and compositions are an example for composition and
decomposition (see SectionZ23). (ii) The standardized C-API generated by the
RTE abstracts the underlying hardware platform and is therefore an example

Model-Based Integration 39

of abstraction (see Section 222.3)). Thus, the AUTOSAR framework supports
the composition and decomposition at the same conceptual level using software
components and compositions, while the RTE is an example where abstraction
is used in case of a layered architecture to allow the decomposition of the system
at different conceptual levels like discussed in Section Z211

From a process point of view, application software components and compo-
sitions are modeled first and then mapped onto ECUs — ECUs and their basic
software can also be described by AUTOSAR. The developer then connects the
application software components to basic software modules such as I/O drivers
or the operating system. These basic software modules also have to be configured
appropriately. E.g., tasks have to be defined for the operating system. Then the
RTE can be generated which connects software components to other software
components and to basic software modules.

(2) Standardized Basic Software
AUTOSAR also standardizes the C-API and the configuration files for ECU ba-
sic software modules such as I/O drivers, COM stack, operating system, error
manager, mode management, and network management. One goal was to make
basic software modules interchangable, i.e. a COM stack from provider 1 should
be used with an operating system from provider 2. Furthermore configuration
settings should become more reusable, i.e. the configuration files from an older
project (where provider 1 was used), should also be usable for a newer project
(where provider 2 is used). The introduction of standardized basic software mo-
dules also eases the implementation of the RTE because the to-be abstracted
basic software becomes more uniform.

The basic software modules are organized into several layers, making them
an example for the vertical abstraction described in Section supporting
syntactical as well as technological aspects.

(3) Standardized Application Interfaces

Another activity from AUTOSAR is the standardization of the APIs for ap-
plication software components. E.g. the interior light control software used by
different manufacturers should have the same API. By this, manufacturers and
suppliers hope for fewer redundant implementations of the same functionality
by different software providers and for easier integration processes. Of course,
only commodity modules are standardized—mno standardization is planned in
competitive areas.

As model-based integration is the key issue here, it is worth reviewing the AU-
TOSAR approach with regard to improvements of the ECU integration process.
First of all, several integration steps exist: basic software integration, ECU inte-
gration, and ECU system integration. In the following, AUTOSAR’s contribution
to these integration steps are assessed using the categories from Figure 211
Basic Software Integration: Basic software is composed of different software
modules: operating system, drivers, services, and communication stack — most
of these modules are further decomposed into different submodules. AUTOSAR
makes the integration of these modules into one basic software layer easier by

40 H. Giese et al.

means of syntactical, technological and data flow agreements: (i) The decompo-
sition is standardized including the C-APIs between modules and (7) configura-
tions are expressed using a standardized set of parameters — being an example
of the “Decomposition & Composition” principle of Section

AUTOSAR does not address the key issue of semantic and protocol integra-
tion: In the standard, the precise behavior of the modules is not defined in a
formal way, leading to integration problems such as incorrect emerging beha-
vior — especially since the basic software is implemented by different software
suppliers. This problem is worsened by the large number of interacting and
behavior-influencing parameters. Furthermore real-time issues are not modeled
in a satisfying manner, leading to problems with the temporal features of the
integrated software system.

All these drawbacks lead to situations where, e.g., one basic software layer

from software supplier A behaves differently to an equally configured basic soft-
ware layer of supplier B — a situation rendering the reuse of configurations and
the exchange of software modules almost useless. A solution could be a precise,
executable model of the basic software behavior including the effects of parame-
ter settings.
ECU Integration: In this step, the application software components on one
ECU are integrated with each other and with the basic software layer. Unlike
with the basic software, the decomposition and the C-API cannot be standardi-
zed in most cases — except for AUTOSAR’s limited ¢ Standardized Application
Interfaces” activity explained above. This make the application of the “Decompo-
sition & Composition” principle harder, in fact the interface (and port) principle
from Section 2223 must be used: modules (i.e. components) do not refer directly
to each other but refer indirectly to each other via ports and interfaces. The
data flow between modules is modeled by means of connections between ports;
at run-time these connections are implemented by the RTE middleware (see
above). So again, AUTOSAR solves to some extent the syntactic, technological
and data flow integration problem (see Figure 2T]).

The introduction of the component/interface software engineering pattern
causes the need for explicit software architectures; which in turn causes the need
for software architects, for a separate software design step in the development
process and for appropriate tools. This significant change to the development
process is one of the challenges when AUTOSAR is introduced: Software ar-
chitecture models must be synchronized with existing models (e.g., behavior
models), new tools must be tested, and new development teams must be esta-
blished.

Just like with the basic software integration, semantic, protocol, real-time,
and resource consumption integration problems are not addressed sufficiently.
L.e. predictions about the functional and real-time behavior of the integrated
ECU cannot be made. Since AUTOSAR does not cover algorithmic models, a
solution to the semantic and protocol problem cannot be expected.

Predicting the precise resource consumption of the ECU (i.e. processor and
memory usage) of the integrated software is another unsolved but highly relevant

Model-Based Integration 41

issue. Estimation techniques and simulation approaches might help in the future
to ease this problem.

ECU System Integration: In this final step, the ECUs are integrated into the
overall ECU network. The main agreement or contract between the ECUs is the
communication configuration, i.e. the messages and signals used to transport in-
formation on the communication network. In traditional development processes,
this configuration is defined first — and it is defined manually. In AUTOSAR,
this configuration is derived automatically from the mapping of the software
architecture on the hardware topology. This eases the integration since software
architecture and network configuration are therefore synchronized automatically
— an example of the synchronization principle of Section [Z2.3

Real-time problems such as too high message delays on the network are not
addressed. Neither are resource consumption problems such as too-high network
loads. Again, due the lack of behavior models in AUTOSAR, problems concer-
ning the dynamic interaction between ECUs (semantic and protocol problems)
cannot be expected to be solved by AUTOSAR. Dependability issues such as
redundancy are also relevant but are currently not solved satisfyingly by AU-
TOSAR.

AUTOSAR is continuing to extend the standard (see, e.g., [18]). Currently
AUTOSAR works on topics such as variant management, MultiCore support,
functional safety, and the modeling of timing information such as end-to-end ti-
ming on the application level — this may ease the real-time integration problems.

This short overview of AUTOSAR’s role in the automotive software inte-
gration process shows that AUTOSAR helps mainly with statical, functional
integration problems such as syntactic, data flow, or technology issues. Dyna-
mical problems such as semantic and protocol issues are not solved, neither are
non-functional issues such as the estimation of resource consumptions. So AU-
TOSAR is not the “golden bullet” for integration but only a first step towards
a software-aware development process in the automotive industry.

Several studies have shown that AUTOSAR requires significant changes of
the development processes and of current business models: Software becomes a
product, software models must be created, new roles — e.g., a software architect
— must be established, manufacturers try to become software integrators, and
new tools must be introduced.

This leads to a problem that goes beyond simple missing features of AU-
TOSAR such as insufficient support for dynamic, real-time or non-functional
integration aspects like in the case of needed resources: AUTOSAR’s approach
to software engineering has been, from the very beginning on, based on the
component-oriented software engineering paradigm — mainly influenced by the
EAST project (see [19]). This paradigm requires an explicit software architecture
defined as inter-communicating software components. And it requires therefore
an explicit software architect, an explicit tool chain for software architectures,
explicit verification and testing strategies for software architectures, and espe-
cially an explicit software architecture design step in the development process.

42 H. Giese et al.

Table 2.6. Coverage of integration aspects using AUTOSAR

Integration problems AUTOSAR Explanation

technological D/E/S C-APls; provides standardized platform and supports
code generation; code generation for the implementa-
tion of the RTE provided by tools

syntactical D/A/E AUTOSAR standardized APIs and means to define com-
ponents and ports; virtual function bus provides realiza-
tion; provides layered architecture with interfaces bet-
ween

semantic C checked during integration testing
protocol C checked during integration testing
dataflow C checked when programming and compiling the integra-

ted code, checked during integration testing
maintainability D/A decomposition the software architecture; abstraction via

standardized interfaces between different layer
real-time compatibility

local C scheduling analysis of the integrated AUTOSAR/OSEK
tasks

distributed C using simulation techniques later in the development
lifecycle

resource consumption

local C resource analysis of the integrated tasks and their code

distributed C analysis of the bus allocation for the integration of mul-
tiple nodes

(legend: A = during abstraction — C = during composition — D = during decomposition — E = during
enrichment —

S = by synthesis)

While these requirements can be met in classical computer science domains
such as business software or telecommunication, this must not be true for the
automotive software development. This domain possesses an established develop-
ment process based on ideas from control theory and signal processing — and it
possesses an adequate established tool chain and adequately trained developers.
So one might ask whether AUTOSAR should have chosen a software architec-
ture paradigm leveraging established procedures. And one might ask whether,
instead of choosing a software architecture approach from a technical (compu-
ter science) point of view, AUTOSAR should have chosen an approach which
would minimize changes to existing development processes and which would ex-
ploit strengths of automotive’s long-term and successful software development
history.

To give an example: Data-centric software engineering approaches (see [20], 21]
for details) couple software components via a signal repository. Components may
either write or read signals in the repository. Unlike with component-oriented
approaches, no explicit software architectures are required — and therefore no
separate tool chains and fewer changes to development processes are needed. And
such an approach also resembles the existing automotive development process
where ECUs communicate via communication buses, i.e. via a common pool of
bus signals. Of course, this does not mean that a data-centric approach would
solve all problems. But it may serve as an example that fundamentally different
alternatives would have existed and might have demanded fewer changes to the
established development process.

Model-Based Integration 43

2.4.2 MECHATRONIC UML

As outlined in Section 232 the current practice for model-based development
of software components with hard real-time constraints — whether AUTOSAR
is employed or not — is characterized by the following step-wise partially manual
process (1) Specification, (2) Partitioning, (3) Implementation, and (4) Integra-
tion which has to be repeated when the integration is not able to fulfill the
required real-time constraints.

Consequently, it would be attractive to extend the idea of model-driven archi-
tecture (MDA) [22] 23] to design software for embedded hard real-time systems.
When using MDA for such systems, the developer would have to specify the so-
called Platform-Independent Model (PIM) which describes the system behavior
including the real-time constraints which must be met. Ideally, a tool would then
automatically partition the specification and map it to the Platform-Specific
Model (PSM), based on a Platform Model (PM) that provides details about
the target platform. The PSM describes the active objects and their schedu-
ling parameters which are required to implement the system behavior, specified
by the PIM. In the next step, the PSM would be compiled automatically into
the platform-specific implementation which guarantees a correct implementa-
tion of the PIM’s semantics. The implementation would guarantee the real-time
constraints by construction and thus, no verification of the real-time constraints
is required. This would make the above mentioned manual steps (8) Implemen-
tation and (4) Integration unnecessary. However, the UML standard as well as
proposed extensions for embedded real-time systems [24] [25], [26] 27, 28], 29], 30, [31]
fail to provide a proper basis for this as the suggested models are not sufficient
to talk about platform-independent real-time behavior.

The MECHATRONIC UML approach (MUML) [32] in contrast provides the
missing platform-independent real-time models and also supports MDA for em-
bedded real-time systems [33]. Therefore, by applying MUML the sketched ite-
rative manual process often followed today in practice can be avoided by using
the automatic mapping of a PIM to a PSM that is appropriate for real-time sys-
tems. In addition to (1) MDA for embedded real-time systems, MUML provides
support for two particular problematic cases for integration embedded real-time
systems: (2) the real-time coordination of embedded real-time systems and (3)
their safety analysis. Tool support for (MUML) is provided in the form of the
Fujaba real-time tool suite, which offers a wide range of UML based diagrams,
the appropriate extension for the specification of real-time properties as well as
modelchecking and consistency analysis support [34].

(1) MDA for Embedded Real-Time Systems

The structure of embedded real-time systems consist of a complex architecture of
components. UML [35] despite it shortcomings can be considered as the standard
to model complex software systems even in the real-time domain [28, 29, [30,
31]. MUML therefore supports to specify the architecture and complex real-
time communication between the components by UML component diagrams
and patterns respectively [36].

44 H. Giese et al.

The semantics of the UML State Machines assumes the transitions to be fired
within zero-time cannot be realized in practice and the pragmatic interpretation
that zero-time means fast enough is only helpful in simple systems where a single
periodic deadline can characterize for the whole state machine and it states
what fast enough means. Therefore, in MUML Real-Time Statecharts (RTSC)
[32, 7] extend UML State Machines to allow the explicit specification of the
really required timing. Transitions are not assumed to fire infinitely fast, which
is unrealistic on real physical devices (especially when considering the execution
of the actions attached to the transitions), but it is possible to specify deadlines
for each transition which in turn determine what fast enough really is. Similar to
the notion in timed automata [38], [39] clocks and clock invariants are employed
to describe when transitions are enabled and what the minimum time and the
maximum time (do, tans) for finishing the execution of a transition has to be
(more details see [33]).

Generating a PSM, consisting of active objects and deadlines, that guarantee
the real-time constraints as specified in the model is of course only possible,
when the model does not contain any conflicts between the declarative elements
such as time guards and time invariants. A possible conflict is, for example,
when multiple real-time constraints are contradicting and thus no behavior exists
which fulfills them (time-stopping deadlock). To exclude such conflicts, the full
state space of a Real-Time Statechart model has to be checked in the general
case. As outlined in [33], model checking with UPPAAL and static analysis
techniques can be employed to exclude such conflicts.

In order to generate the PSM, WCETSs are required for all actions (side effects,
entry(), exit(), and do()- operations) and for the elementary instructions that
build the code fragments realizing the Real-Time Statechart behavior (e.g. che-
cking guards, raising events, etc.).

As the WCETs are platform-dependent, we first deploy our components (whose
behavior is each specified by a Real-Time Statechart) by a UML deployment dia-
gram. In such a deployment diagram, we assign the component instances of our
systems to dedicated nodes and the cross node links to available network connec-
tions in form of busses or direct communication links. Given such an assignment,
we can further look into the specific characteristics of the different nodes as des-
cribed in the platform model.

To analyze the resulting model with platform-specific annotations, we extend
our timed automata model for model checking as well as our static analysis
technique such that it also reflects the WCET behavior of the side effects of the
transitions (cf. [33]).

After modeling and analyzing the PIM with components and Real-Time Sta-
techarts and specifying the platform-specific WCET information in the PM and
the deployment, we have to map the components and links to active objects and
to network and communication links to come up with the final platform-specific
model. In our case the PSM can be described by the UML Profile for Schedu-
lability, Performance, and Time [29], as it allows the specification of priorities,
periods, and deadlines for active objects. We use it as a platform-specific model,

Model-Based Integration 45

as these values, which we derive automatically from the platform-independent
model, are different for different platforms. For such a PSM we can derive code
that guarantees the in the PIM and PSM specified timing constraints for Real-
Time Java and C++.

While MUML has been developed in the context of a research project different
case studies have been realized like described in [40)] using an evaluation platform
equipped with a 40 Mhz Power PC processor. For the derivation of WCET's the tool
Bound-T[has been employed within the evaluation example described in [41].

Table 2.7. Coverage of integration aspects using MUML

Integration problems MUML Explanation

technological D* platform-independent model and code generation for
map those the a specific platform (*but only realized
for one)

syntactical D/C models capture components and ports; mapping to
code provides realization

semantic (D) model checking of the models prevent some semantic
integration problems

protocol D model checking of the models exclude protocol-related
integration problems

dataflow D dataflow part of the interface and modular syntax

checks guarantee proper dataflow specification
dependability
safety D compositional hazard analysis of the models enable up-
front guarantees; requires HW reliability data
real-time compatibility

local S generated task periods and scheduling analysis guaran-
tee correct timing
distributed D generated local tasks plus model checking guarantee

correct distributed timing
resource consumption
local
distributed
(legend: A = during abstraction — C = during composition — D = during decomposition — S = by synthesis).

(2) Correct Real-Time Coordination

As MUML further provides a compositional verification approach for the real-
time coordination of systems of systems with reconfiguration [36], [42], 43|, 44]. It
further allow the model-based analysis of interoperability problems for the func-
tional and real-time behavior. By extending UML components the syntactical
compatibility (data, operations, ...) and semantic compatibility (data, opera-
tions, ...) is guaranteed while a run-time environment guarantees technological
compatibility. In [45] is outlined how MUML interfaces also take care of the
execution order of dataflow computations employed for evaluating control al-
gorithms. The extended port specifications by means of RTSC together with
the mentioned verification further ensure protocol compatibility (non uniform
service availability, synchronization) and real-time compatibility.

(3) Safe Real-Time Systems
In addition, an approach for a compositional safety analysis [46}, [47] permits to do
a model-based upfront analysis of the resulting system safety when decomposing

6 http://www.tidorum.fi/bound-t/

46 H. Giese et al.

the systems into components in the form of an architecture. Therefore, safety
issues have not to be addressed later when integrating the components into the
overall system.

To sum-up, Table [Z7] provides an overview of the integration problems more
or less covered by the MUML approach. Like mentioned before MUML has been
developed in the context of a research project. While several studies have shown
the applicability of the approach a coherent professional tool chain currently
does not exist.

2.4.3 Other Approaches

A number of other approaches using models that also address several of the
integration problems outlined in Figure2.1l We will provide only a sketch of their
benefits in the following text and refer to the referenced literature resp. chapters
for more information.

Infrastructure Abstraction

Several approaches address like MUML the problem that real-time issues can
in the traditional approach only be addressed rather late and that the resolu-
tion of related integration problems can become quite costly. The time-triggered
approach [48] addresses this problem at the hardware and network level and
provides a platform where the different real-time communication issues can be
clearly separated with respect to time and dependability. An approach which
similar to MUML address the timing problem at a single node is Giotto [49] as
well as its successor TDL (see Chapter 5). Here a virtual machine guarantees
that time constraints specified in the specification are guaranteed by the execu-
tion environment also allowing the higher level abstractions to be analyzed to
detect protocol compatibility problems.

Other approaches try to synthesize a proper task allocation from a given
software model [50] in order to meet the timing requirements. In addition, besides
avoiding the integration problem a model-based analysis of the composition of
distributed real-time embedded system may also be simply beneficial by enabling
an earlier analysis [51].

An approach targeting to an earlier analysis concerning the later used HW
infrastructure, including multiple nodes and the communication path between
them is described in [52]. Virtual execution platforms, which represent the la-
ter used HW infrastructure, are used to provide an execution environment for
simulation purpose, taking characteristics like the execution time into account.

An approach somehow in the middle is platform-based design [53] where no
full abstraction is provided but instead the stepwise realization of higher-level
abstractions by means of underlying platform components are the main design
step. This often allows to reduce the integration problems as designs are derived
by proper combinations of components with some degree of built-in compatibility
as they together represent a platform and not a ragtag group of components. In
some cases even correctness-by-construction can be achieved [54] by means of a
platform-based approach.

Model-Based Integration 47

The problem is also related to problem of heterogeneity (technology as well as
semantics) which is in particular problematic when the artifacts to be integrated
have not been decomposed upfront with the same model of computation (see
Chapter 1).

Interfaces and Component Models for Integration

Like advocated in AUTOSAR and the MUML approach, interfaces and com-
ponent models are a suitable concept to address integration issues upfront when
decomposing a system. Related approaches propose extended interface for com-
ponent-based design [59], [56] also covering stateless and stateful protocol beha-
vior as well as real-time behavior. In [57], like in [45] for MUML, interfaces that
take care of the execution order of dataflow as employed for computing control
algorithms are presented.

One more component-oriented approach is the rich component model [58] that
has been proposed mainly targeting reuse but also support early checking to
avoid integration problems. Another is the Behavior-Interaction-Priority (BIP)
component framework [59, [60] that can ensure the proper deadlock-free com-
position using a much simpler check of the resulting dependency graph rather
than the complete component synchronization and thus permits to do it upfront
when decomposing a system.

In [3] several approaches are discussed that provide specific DSLs for com-
ponent models (EAST-ADL and AADL): For example, AADL [4] is a DSL for
the development of embedded real-time systems which supports the description
and analysis of the system architecture addressing the integration of SW and HW
parts which can be developed by different stakeholders. EAST-ADL is a DSL
and architecture description language which is based on UML and SysML. One
key aspect of EAST-ADL is the usage of abstraction and an according system
model is structured with several abstraction layers. The EAST-ADL language
can be used within a tool, like it is done in the form of Papyrus for EAST-ADL.

Integrated Model-Based Development

Another thread of work focuses on a proper representation of all required sys-
tem characteristics by means of models and their consistent further elaboration.
In [3] several approaches are discussed that provide tool support (Fujaba [5],
GeneralStore [61], ToolNet [62] and IDM [63]) for the integrated model-based
development of embedded systems.

For keeping the different models, potentially used in different tools consistent,
model-transformation and model-synchronization techniques can be used. In [64]
the authors describe how modelsynchronization is used to keep AUTOSAR and
SysML models consistent.

In addition in [65] model-integrated computing (MIC) as a paradigm to ad-
dress the integration problems for embedded real-time systems. In [66] it is
advocated that the MIC approach employing a number of domain-specific lan-
guages (DSL), supporting the proper consistency of the different model, doing
frequent model analysis by mapping these models to available analysis tools, and
generating refined models as well as code (synthesis) can help to substantially

48 H. Giese et al.

reduce the later experienced integration problems. In [67] an implementation of
model-based integration for the development of avionics systems is evaluated.
Within this evaluation the benefits of the Model-Based Integration of Embed-
ded Software (MoBIES) development process] and a special DSL (ESML) for
the development of avionic systems are evaluated.

2.5 Summary

If we review the presented results, we can conclude that a number of promising
approaches for different problems exist, while no solution for the overall pro-
blem seems available. This impression is also confirmed by the coverage of the
integration problems summarized in Table 2.8

Table 2.8. Coverage of integration aspects by the different approaches

Integration problems FD Fl AU- || mUML Other approaches
TOSAR
technological A/E(S) A/C D/E/S (D)
syntactical D/C A/(D)/C D/A/E D(UML) D [55, 56, 59, 60]
semantic D/E(S)/P |C/P C D(UML) D [55, 56, 59, 60]
protocol C C D D [55, 56, 59, 60]
dataflow A/E(S)/P | C/(P) C D D [57]

dependability/ quality of
service

reliability (@)

availability (@)

safety (@] D D [58]

security Q)
maintainability D
real-time compatibility

local E/P C C S S [49], see TDL in

Chapter 6

distributed C/(P) C D D [56, 58], S [48, 50]
resource consumption

local E/P C C

distributed C C D [48]

(legend: FD = function development — FI = function integration A = during abstraction — C = during
composition — D = during decomposition — E = during enrichment — P = during parallel development — S = by

synthesis).

If we review the summary of the findings depicted in Table 2.8 we can make
the following specific observations:

— It seems that the need for support of the functional integration problem at
the technological and syntactical level has been identified also in industry and
AUTOSAR or related approaches start to address them in a standardized
manner.

" A project funded by the Defense Advanced Research Projects Agency (DARPA).

Model-Based Integration 49

— In contrast semantic, protocol or dataflow issues are at first addressed by
academic research projects but in practice they are addressed rather late if
at all (compare Section [Z3]). Here it seems beneficial if the existing research
results could be transferred into industrial strength solutions to minimize the
integration costs by addressing these issues earlier in the development life
cycle. However, as these issues related to some extent to formal modeling,
it is not clear whether such a transfer is really possible taking the existing
workforce and their educational background into account.

— The integration of non-functional dependability resp. quality-of-service as-
pects is besides safety not very well covered either by industrial nor research
approaches. This is probably due to the fact that these are often system
properties which could not be easily established using in a compositional
manner and indicates that these topics require much more attention from
the research community.

— Concerning real-time compatibility we can observe that several well-suited
research results have been achieved and some of them are in a transition
phase to industrial praxis (e.g., see TDL in Chapter 5). These solution pro-
mises to ease the integration efforts considerably as they permit to exclude
that the integration problems are detected rather late resulting in enormous
costs due to the required rework of the integrated solutions.

— Finally, the resource consumption is a currently rather superficially covered
aspect. However, the importance of hardware costs in fields like the auto-
motive domain as well as the increasing importance of energy efficient and
resource-aware solutions will make this aspect another highly relevant re-
search topic. Here also the problem seems to be that resource consumption
is a system property that is not easily addressed in a compositional manner.

If we take a look at the overall picture, we can see that handling an integration
problem at composition time (C) as advocated in the traditional functional de-
velopment and functional integration is in principle always possible. However,
there is a clear trend that model-based integration results in a front loading
where instead of costly efforts to handle integration problems after the fact
these problems are upfront addressed by decomposition/composition (D), abs-
traction/enrichment (A) or parallel development & consistency (P). The more
mature approaches are those ones where instead of checking integration pro-
blems late when combining the different system constituents, the seperation in
the form of decomposition or abstraction provides already the basis to exclude
or limit most of these problems upfront (see also [9] for a related observation
based on several industrial studies).

However, it also became apparent that besides MUML and rich components
[58] most approaches provide a rather isolated solution to one integration problem.
Therefore, the main challenge for integration seems to be establishing a compre-
hensive solution that covers not only the rather simple problems such as syntax and
technology compatibility but also most of the challenging aspects such as protocol
compatibility, dataflow compatibility and real-time behavior. As most proposals
for these advanced integration concepts have not yet been employed thoroughly in

50 H. Giese et al.

industrial practice and may have contradicting constraints, it is not clear whether
such an ”integration of advanced integration concepts” is really feasible.

Therefore, the current challenge is not only to develop better solutions of the
outlined separate integration problems (cf. Figure 21]) but also to combine the
existing solutions into overall integration approaches that provide a coherent
solution that covers all required integration problems. It can be expected that
suitable overall integration approaches have to be tailored for the specific domain
of embedded real-time systems such as AUTOSAR while its ingredients will often
be applicable in several domains.

Acknowledgements

We thank Ingolf Kriiger and Florence Maraninchi for their feedback on earlier
versions of the paper.

References

[1] Lane, J.A., Boehm, B.: System of systems lead system integrators: Where do they
spend their time and what makes them more or less efficient? Systems Enginee-
ring 11(1), 81-91 (2008)

[2] Sage, A.P., Lynch, C.L.: Systems integration and architecting: An overview of
principles, practices, and perspectives. Systems Engineering 1(3), 176-227 (1998)

[3] Chen, D., Torngren, M., Shi, J., Gerard, S., Lonn, H., Servat, D., Stromberg, M.,
Arzen, K.E.: Model integration in the development of embedded control systems
- a characterization of current research efforts. In: 2006 IEEE International Sym-
posium on Computer-Aided Control Systems Design, October 4-6, pp. 1187-1193
(2006)

[4] Feiler, P., Gluch, D., Hudak, J.: The architecture analysis & design language
(aadl): An introduction. Technical Report CMU/SEI-2006-TN-011, Software En-
gineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA (2006)

[5] Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J.P., Wagner, R., Wen-
dehals, L., Ziindorf, A.: Tool Integration at the Meta-Model Level within the FU-
JABA Tool Suite. International Journal on Software Tools for Technology Transfer
(STTT) 6(3), 203-218 (2004)

[6] Mosterman, P.J., Ghidella, J., Friedman, J.: Model-based design for system inte-
gration. In: Second CDEN International Conference on Design Education, Inno-
vation, and Practice, Kananaskis, Alberta, Canada, July 18-20 (2005)

[7] Dijkstra, E.W.: On the role of scientific thought, pp. 60-66. Springer, New York
(1982)

[8] Parnas, D.L.: On the Criteria To Be Used in Decomposing Systems Into Modules.
Communications of the ACM 15(12), 1053-1058 (1972)

[9] Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems
and Software 83(1), 67-76 (2010) (SI: Top Scholars)

[10] Kister, J.M., Engels, G.: Consistency management within model-based object-
oriented development of components. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 157-176. Springer,
Heidelberg (2004)

[11]

[12]

[13]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

Model-Based Integration 51

Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1) (March 2009) (online
first: 3/2008)

Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-
Driven Architecture. Addison-Wesley, Reading (2004)

Watkins, C.B.: Modular Verification: Testing a Subset of Integrated Modu-
lar Avionics in Isolation. In: 25th Digital Avionics Systems Conference, 2006
IEEE/AIAA, Portland, OR, IEEE Xplore (2006)

Broekman, B., Notenboom, E.: Testing Embedded Software. Addison-Wesley,
Reading (2003)

AUTOSAR: Web page, http://wuw.autosar.org/

Fennel, H., Bunzel, S., et al.: H.H.: Achievements and Exploitation of the AU-
TOSAR Development Partnership. In: Convergence, Detroit, USA (2006) (SAE
2006-21-0019)

Richter, K.: On the Complexity of Adding Real-Time Properties to the AUTO-
SAR Software Component Model. In: Proc. of the 4th Workshop on Object-
oriented Modeling of Embedded Real-Time Systems (OMER 4), Paderborn, Ger-
many (October 2007)

Fiirst, S.: AUTOSAR - A World Wide Standard is on the Road. In: 14th In-
ternational VDI Congress Electronic Systems for Motor Vehicles, Baden-Baden,
Germany (October 2009)

Lonn, H.: Far east: Modeling an automotive software architecture using the east
adl. In: ICSE 2004 workshop on Software Engineering for Automotive Systems,
SEAS (2004)

Oki, B., Pfluegl, M., Siegel, A., Skeen, D.: The information bus: an architecture
for extensible distributed systems. In: SOSP 1993: Proceedings of the fourteenth
ACM symposium on Operating systems principles, pp. 58-68. ACM, New York
(1993)

Pardo-Castellote, G.: OMG Data-Distribution Service: Architectural Overview.
In: International Conference on Distributed Computing Systems Workshops, p.
200 (2003)

Allen, P. (ed.): The OMG’s Model Driven Architecture. Component Development
Strategies, The Monthly Newsletter from the Cutter Information Corp. on Ma-
naging and Developing Component-Based Systems, vol. XII (January 2002)
Object Management Group: MDA Guide Version 1.0, Document omg/2003-05-01
(May 2003)

Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented Modeling. John
Wiley & Sons, Inc., Chichester (1994)

Awad, M., Kuusela, J., Ziegler, J.: Object-Oriented Technology for Real-Time
Systems: A Practical Approach Using OMT and Fusion. Prentice Hall, Englewood
Cliffs (1996)

Douglass, B.P.: Real-Time UML: Developing Efficient Objects for Embedded Sys-
tems, 2nd edn. The Addison-Wesley Object Technology Series. Addison-Wesley,
Reading (October 1999)

Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with
UML. Addison-Wesley, Reading (January 2000)

Bichler, L., Radermacher, A., Schiirr, A.: Evaluation uml extensions for mode-
ling realtime systems. In: Proc. on the 2002 IEEE Workshop on Object-oriented
Realtime-dependable Systems, WORDS 2002, San Diego, USA, pp. 271-278.
IEEE Computer Society Press, Los Alamitos (2002)

http://www.autosar.org/

52
[29]

[30]

31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

H. Giese et al.

Object Management Group: UML Profile for Schedulability, Performance, and
Time Specification. OMG Document ptc/02-03-02 (September 2002)

Gu, Z., Kodase, S., Wang, S., Shin, K.G.: A Model-Based Approach to System-
Level Dependency and Real-Time Analysis of Embedded Software. In: The 9th
IEEE Real-Time and Embedded Technology and Applications Symposium, To-
ronto, Canada (2003)

Masse, J., Kim, S., Hong, S.: Tool Set Implementation for Scenario-based Mul-
tithreading of UML-RT Models and Experimental Validation. In: The 9th IEEE
Real-Time and Embedded Technology and Applications Symposium, Toronto,
Canada (May 2003)

Burmester, S., Giese, H., Tichy, M.: Model-Driven Development of Reconfigurable
Mechatronic Systems with Mechatronic UML. In: Afimann, U., Aksit, M., Ren-
sink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 47-61. Springer, Heidelberg
(2005)

Burmester, S., Giese, H., Schéfer, W.: Model-driven architecture for hard real-time
systems: From platform independent models to code. In: Hartman, A., Kreische,
D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 25-40. Springer, Heidelberg
(2005)

Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The Fujaba Real-
Time Tool Suite: Model-Driven Development of Safety-Critical, Real-Time Sys-
tems. In: ICSE 2005: Proceedings of the 27th International Conference on Software
Engineering, pp. 670-671. ACM Press, New York (2005)

Object Management Group: UML 2.0 Superstructure Specification. Document:
ptc/04-10-02 (convenience document) (October 2004)

Giese, H., Tichy, M., Burmester, S., Schafer, W., Flake, S.: Towards the Composi-
tional Verification of Real-Time UML Designs. In: Proc. of the European Software
Engineering Conference (ESEC), Helsinki, Finland. ACM Press, New York (2003)
Giese, H., Burmester, S.: Real-Time Statechart Semantics. TechReport tr-ri-03-
239, University of Paderborn (2003)

Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Springer International
Journal of Software Tools for Technology 1(1) (1997)

Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for
Real-Time Systems. In: Proc. of IEEE Symposium on Logic in Computer Science
(1992)

Tichy, M., Giese, H., Seibel, A.: Story Diagrams in Real-Time Software. In: Giese,
H., Westfechtel, B. (eds.) Proc. of the 4th International Fujaba Days, Bayreuth,
Germany. Volume tr-ri-06-275 of Technical Report. University of Paderborn, pp.
15-22 (September 2006)

Henkler, S., Oberthur, S., Giese, H., Seibel, A.: Model-Driven Runtime Resource
Predictions for Advanced Mechatronic Systems with Dynamic Data Structures.
In: Proc. of 13th International Symposium on Object/component /service-oriented
Real-time distributed Computing (ISORC), May 5-6. IEEE Computer Society
Press, Los Alamitos (accepted 2010)

Burmester, S., Giese, H., Hirsch, M., Schilling, D.: Incremental Design and Formal
Verification with UML/RT in the FUJABA Real-Time Tool Suite. In: Proceedings
of the International Workshop on Specification and vaildation of UML models for
Real Time and embedded Systems, SVERTS 2004, Satellite Event of the 7th In-
ternational Conference on the Unified Modeling Language, UML 2004 (October
2004)

[43]

[44]

[45]

[46]

[47]

[48]
[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Model-Based Integration 53

Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic Invariant Verifi-
cation for Systems with Dynamic Structural Adaptation. In: Proc. of the 28th In-
ternational Conference on Software Engineering (ICSE), Shanghai, China. (2006)
Becker, B., Giese, H.: On Safe Service-Oriented Real-Time Coordination
for Autonomous Vehicles. In: Proc. of 11th International Symposium on
Object/component /service-oriented Real-time distributed Computing (ISORC),
May 5-7, pp. 203-210. IEEE Computer Society Press, Los Alamitos (2008)
Burmester, S., Giese, H., Gambuzza, A., Oberschelp, O.: Partitioning and Mo-
dular Code Synthesis for Reconfigurable Mechatronic Software Components. In:
Bobeanu, C. (ed.) Proc. of European Simulation and Modelling Conference (ESMc
2004), Paris, France, pp. 66-73. EOROSIS Publications (2004)

Giese, H., Tichy, M., Schilling, D.: Compositional Hazard Analysis of UML Com-
ponents and Deployment Models. In: Heisel, M., Liggesmeyer, P., Wittmann, S.
(eds.) SAFECOMP 2004. LNCS, vol. 3219, pp. 166-179. Springer, Heidelberg
(2004)

Giese, H., Tichy, M.: Component-Based Hazard Analysis: Optimal Designs, Pro-
duct Lines, and Online-Reconfiguration. In: Gérski, J. (ed.) SAFECOMP 2006.
LNCS, vol. 4166, pp. 156-169. Springer, Heidelberg (2006)

Kopetz, H., Bauer, G.: The time-triggered architecture. Proceedings of the
IEEE 91(1), 112-126 (2003)

Henzinger, T., Horowitz, B., Kirsch, C.: Giotto: a time-triggered language for
embedded programming. Proceedings of the IEEE 91(1) (January 2003)

Wang, S., Shin, K.G.: Task construction for model-based design of embedded
control software. IEEE Trans. Software Eng. 32(4), 254-264 (2006)

Madl, G., Abdelwahed, S.: Model-based analysis of distributed real-time embed-
ded system composition. In: EMSOFT 2005: Proceedings of the 5th ACM inter-
national conference on Embedded software, pp. 371-374. ACM, New York (2005)
Krause, M., Bringmann, O., Hergenhan, A., Tabanoglu, G., Rosentiel, W.: Timing
simulation of interconnected AUTOSAR software-components. In: DATE 2007:
Proceedings of the conference on Design, automation and test in Europe, San
Jose, CA, USA, EDA Consortium, pp. 474-479 (2007)

Sangiovanni-Vincentelli, A.: Defining platform-based design. EEDesign of EE-
Times (February 2002)

Horowitz, B., Liebman, J., Ma, C., Koo, T., Sangiovanni-Vincentelli, A., Sastry, S.:
Platform-based embedded software design and system integration for autonomous
vehicles. Proceedings of the IEEE 91(1), 198-211 (2003)

de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design.
In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp.
148-165. Springer, Heidelberg (2001)

Thiele, L., Wandeler, E., Stoimenov, N.: Real-time interfaces for composing real-
time systems. In: EMSOFT 2006: Proceedings of the 6th ACM & IEEE Interna-
tional conference on Embedded software, pp. 34-43. ACM, New York (2006)
Zhou, Y., Lee, E.A.: A causality interface for deadlock analysis in dataflow. In:
EMSOFT 2006: Proceedings of the 6th ACM & IEEE International conference
on Embedded software, pp. 44-52. ACM, New York (2006)

Damm, W., Votintseva, A., Metzner, A., Josko, B., Peikenkamp, T., Bode, E.:
Boosting re-use of embedded automotive applications through rich components.
In: Proc. of Foundations of Interface Technologies 2005, FIT 2005 (2005)
Gossler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput.
Program. 55(1-3), 161-183 (2005)

54

[60]

[61]

[62]

[63]

H. Giese et al.

Bliudze, S., Sifakis, J.: The algebra of connectors: structuring interaction in bip.
In: EMSOFT 2007: Proceedings of the 7th ACM & IEEE international conference
on Embedded software, pp. 11-20. ACM, New York (2007)

Reichmann, C., Markus, K., Graf, P., Miiller-Glaser, K.D.: Generalstore - a case-
tool integration platform enabling model level coupling of heterogeneous designs
for embedded electronic systems. In: ECBS 2004: Proceedings of the 11th IEEE
International Conference and Workshop on Engineering of Computer-Based Sys-
tems, Washington, DC, USA, p. 225. IEEE Computer Society, Los Alamitos (2004)
Altheide, F., Dorr, H., Schiirr, A.: Requirements to a Framework for sustainable
Integration of System Development Tools. In: Stoewer, H., Garnier, L. (eds.) Proc.
of the 3rd European Systems Engineering Conference (EuSEC 2002), Toulouse,
AFIS PC Chairs, pp. 53-57 (2002)

Karsai, G., Lang, A., Neema, S.: Design patterns for open tool integration. Soft-
ware and System Modeling 4(2), 157-170 (2005)

Giese, H., Hildebrandt, S., Neumann, S.: Towards Integrating SysML and AU-
TOSAR Modeling via Bidirectional Model Synchronization. In: 5th Workshop on
Model-Based Development of Embedded Systems, MBEES (2009)

Sztipanovits, J., Karsai, G.: Model-Integrated Computing. Computer 30(4), 110
111 (1997)

Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty: Model-integrated development of
embedded software. Proceedings of the IEEE 91, 145-164 (2003)

Schulte, M.: Model-based integration of reusable component-based avionics sys-
tems - a case study. In: ISORC 2005: Proceedings of the Eighth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, Washington,
DC, USA, pp. 62-71. IEEE Computer Society, Los Alamitos (2005)

	2 Model-Based Integration
	Introduction
	Integration
	Terminology
	Classification of Integration Problems
	Fundamental Integration Techniques

	State-of-the-Art Approach
	Function Development
	Function Integration
	Discussion

	Advanced Model-Based Solutions
	AUTOSAR
	MECHATRONIC UML
	Other Approaches

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

