

Lecture Notes in Computer Science 6100
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Holger Giese Gabor Karsai Edward Lee
Bernhard Rumpe Bernhard Schätz (Eds.)

Model-Based Engineering
of Embedded Real-Time
Systems

International Dagstuhl Workshop
Dagstuhl Castle, Germany, November 4-9, 2007
Revised Selected Papers

13

Volume Editors

Holger Giese
Hasso-Plattner-Institute
for Software Systems Engineering
Potsdam, Germany
E-mail: holger.giese@hpi.uni-potsdam.de

Gabor Karsai
Vanderbilt University
Nashville, TN, USA
E-mail: gabor.karsai@vanderbilt.edu

Edward Lee
University of California at Berkeley
Berkeley, USA
E-mail: eal@eecs.berkeley.edu

Bernhard Rumpe
RWTH Aachen University
Aachen, Germany
E-mail: rumpe@se-rwth.de

Bernhard Schätz
fortiss GmbH
Garching, Germany
E-mail: schaetz@fortiss.org

Library of Congress Control Number: 2010935675

CR Subject Classification (1998): D.2.9, D.2, D.3.3, C.3-4, F.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-16276-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16276-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The topic of “Model-Based Engineering of Real-Time Embedded Systems” brings
together a challenging problem domain (real-time embedded systems) and a so-
lution domain (model-based engineering). It is also at the forefront of integrated
software and systems engineering, as software in this problem domain is an
essential tool for system implementation and integration. Today, real-time em-
bedded software plays a crucial role in most advanced technical systems such
as airplanes, mobile phones, and cars, and has become the main driver and fa-
cilitator for innovation. Development, evolution, verification, configuration, and
maintenance of embedded and distributed software nowadays are often serious
challenges as drastic increases in complexity can be observed in practice.

Model-based engineering in general, and model-based software development
in particular, advocates the notion of using models throughout the development
and life-cycle of an engineered system. Model-based software engineering rein-
forces this notion by promoting models not only as the tool of abstraction, but
also as the tool for verification, implementation, testing, and maintenance. The
application of such model-based engineering techniques to embedded real-time
systems appears to be a good candidate to tackle some of the problems arising
in the problem domain.

Model-based development strategies and model-driven automatic code gen-
eration are becoming established technologies on the functional level. However,
they are mainly applied within a limited scope only. The use of analogous
modeling strategies on the system, technical, and configuration levels remains
challenging, especially with the increasing shift to networks of systems, tight
coupling between the control-engineering oriented and reactive parts of a sys-
tem, and the growing number of variants introduced by product lines. Specific
domain constraints such as real-time requirements, resource limitations, and
hardware-specific dependencies often impede the acceptance of standard high-
level modeling techniques and their application. Much effort in industry and
academia therefore goes into the adaptation and improvement of object-oriented
and component-based methods and model-based engineering that promise to
facilitate the development, deployment, and reuse of software components em-
bedded in real-time environments. The model-based development approach for
embedded systems and their software proposes application-specific modeling
techniques using domain specific concepts (e.g., time-triggered execution or syn-
chronous data flow) to abstract “away” the details of the implementation, such
as interrupts or method calls. Furthermore, analytical techniques (e.g., the veri-
fication of the completeness of function deployment and consistency of dynamic
interface descriptions) and generative techniques (e.g., automatic schedule gen-
eration, default behavior generation) can then be applied to the resulting more
abstract models to enable the efficient development of high-quality software.

VI Preface

Our Dagstuhl seminar brought together researchers and practitioners from
the field of model-based engineering of embedded real-time systems. The top-
ics covered included: frameworks and methods, validation, model-based integra-
tion technology, formal modeling of semantics, fault management, concurrency
models and models of computation, requirements modeling, formal derivation
of designs from requirements, test modeling and model-based test generation,
quality assurance, design management, abstractions and extensions, and devel-
opment techniques and problems of application domains. The broad spectrum of
presentations clearly illustrate the prevalence of model-based techniques in the
embedded systems area, as well as progress in the field.

This volume is a collection of long and short papers that survey the state
of the art in model-based development of real-time embedded systems. It is
composed of longer chapters that cover broad areas and short papers that discuss
specific tools. The chapters are organized into sections as follows:

– Foundations: The chapters in this section survey general models of reac-
tive systems, techniques, and approaches for model-based integration, and
modeling and simulation of real-time applications.

– Language Engineering: The chapters here review metamodeling as a fun-
damental tool, the methods for specifying the semantics of models for dy-
namic behavior, and the requirements for modeling languages for real-time
embedded systems.

– Domain-Specific Issues: Relevant issues of real-time embedded systems
are discussed in this section, including the use of model-based techniques
for safety-critical software, and analysis and development approaches to de-
pendable systems.

– Life-Cycle Issues: These chapters discuss requirements modeling tech-
niques for embedded systems, and the technology for model evolution and
management

The short papers provide a state-of-the-art survey of existing tools that are being
used in the model-based engineering of embedded real-time systems.

Finally, we would like to thank all authors and contributors to the project
without whom such a large and complex project could not have been completed.
It has been made possible by several researchers who supported the organizers
and kept things going. In particular, we have to thank Claas Pinkernell, Markus
Look, and Sven Bürger for their assistance in compiling this book. Thanks also
goes to the Dagstuhl organization staff members who always make our meetings
there a unique event.

Holger Giese
Gabor Karsai

Edward Lee
Bernhard Rumpe
Bernhard Schätz

Table of Contents

Part I: Foundation

1 Models of Reactive Systems: Communication,
Concurrency, and Causality . 3
Bernhard Schätz, Holger Giese

1.1 Models and Abstraction . 3
1.1.1 Approach . 4
1.1.2 Overview . 5
1.1.3 Terminology . 5

1.2 Communication . 6
1.3 Concurrency . 8
1.4 Causality . 9
1.5 Models and Aspects . 11
1.6 Methodical Combination . 12
1.7 Conclusion and Summary . 17

2 Model-Based Integration . 17
Holger Giese, Stefan Neumann, Oliver Niggemann, Bernhard Schätz

2.1 Introduction . 17
2.2 Integration . 19

2.2.1 Terminology . 19
2.2.2 Classification of Integration Problems 21
2.2.3 Fundamental Integration Techniques 22

2.3 State-of-the-Art Approach . 29
2.3.1 Function Development . 31
2.3.2 Function Integration . 33
2.3.3 Discussion . 35

2.4 Advanced Model-Based Solutions . 36
2.4.1 AUTOSAR . 36
2.4.2 ECHATRONIC UML . 43
2.4.3 Other Approaches . 46

2.5 Summary. 48

Part II: Language Engineering

3 Metamodelling: State of the Art and Research
Challenges . 57
Jonathan Sprinkle, Bernhard Rumpe, Hans Vangheluwe, Gabor Karsai

3.1 Metamodelling: State of the Art . 57

VIII Table of Contents

3.1.1 Concepts in Metamodelling 57
3.1.2 Meta Object Facility (MOF) 61
3.1.3 Essential MOF (EMOF) . 61
3.1.4 Eclipse Modelling Framework (EMF) 63
3.1.5 Metamodelling of Languages 64
3.1.6 Textual Metamodelling . 65
3.1.7 Concrete and Abstract Syntax 66
3.1.8 Type System . 67
3.1.9 Merging of Metamodels . 70

3.2 Metamodelling: Research Challenges 71
3.2.1 Semantic Attachment . 72
3.2.2 Inference between Metamodels 72
3.2.3 Evolution of Models Driven by Metamodel

Evolution . 73
3.3 Conclusions . 73

4 Semantics of UML Models for Dynamic Behavior:
A Survey of Different Approaches . 77
Mass Soldal Lund, Atle Refsdal, Ketil Stølen

4.1 Introduction . 77
4.2 Characterization of Scope, Main Notions, and Criteria

for Evaluation . 79
4.3 Main Categories of Semantics . 81
4.4 Sequence Diagrams and Similar Notations 83

4.4.1 Denotational Semantics . 85
4.4.2 Denotational Semantics with Time 86
4.4.3 Denotational Semantics with Probabilities 87
4.4.4 Operational Semantics . 87
4.4.5 Operational Semantics with Time 91
4.4.6 Operational Semantics with Probabilities 91

4.5 State Machines and Similar Notations 91
4.5.1 Denotational Semantics . 92
4.5.2 Denotational Semantics with Time 92
4.5.3 Denotational Semantics with Probabilities 93
4.5.4 Operational Semantics . 93
4.5.5 Operational Semantics with Time 94
4.5.6 Operational Semantics with Probabilities 95

4.6 Evaluation and Comparison . 95
4.7 Summary and Conclusions . 98

Table of Contents IX

Part III: Modeling

5 Modeling and Simulation of TDL Applications 107
Stefan Resmerita, Patricia Derler, Wolfgang Pree, Andreas Naderlinger

5.1 Introduction . 107
5.2 The Timing Definition Language . 109

5.2.1 TDL Description . 109
5.2.2 TDL Extensions for Control Applications 114

5.3 Simulation of TDL Models . 117
5.3.1 TDL Simulation in Simulink 117
5.3.2 Using Ptolemy II . 120

5.4 Related Work . 125
5.5 Conclusions . 126

6 Modeling Languages for Real-Time and Embedded
Systems: Requirements and Standards-Based Solutions 129
Sébastien Gérard, Huascar Espinoza, François Terrier, Bran Selic

6.1 Introduction . 129
6.2 Two Main Architectural Styles for Dealing with

Abstraction . 132
6.3 Modeling Needs for Real-Time and Embedded Systems

Design . 133
6.3.1 Layering and Needs for RTES 133
6.3.2 Slicing and Needs for RTES 134

6.4 MARTE, a Standard Real-Time and Embedded
Modeling Language . 136
6.4.1 UML Profiling Capabilities 137
6.4.2 MARTE Basics . 139
6.4.3 Architecture and Some Details of MARTE 140
6.4.4 An Extract of the MARTE Specification 143
6.4.5 Typical MARTE Usage Scenarios 145

6.5 Related Work . 149
6.6 Conclusions and Perspectives . 151

7 Requirements Modeling for Embedded Realtime Systems . . . 155
Ingolf Krüger, Claudiu Farcas, Emilia Farcas, Massimiliano Menarini

7.1 Introduction and Overview . 155
7.1.1 What’s in a Requirement? 156
7.1.2 Why Requirements Engineering for ERS Is

Hard . 158
7.1.3 Summary and Outline . 166

7.2 Requirements Specifications and Modeling for ERS 167
7.2.1 Requirements Models . 167
7.2.2 Programming Models . 172

X Table of Contents

7.3 Requirements Engineering Approaches: Processes and
Practices . 174
7.3.1 Requirements Development and Management . . . 174

7.4 Example: Failure Management in Automotive
Software . 179
7.4.1 Central Locking System (CLS) 180
7.4.2 Modeling the CLS Requirements 181
7.4.3 Discussion . 190

7.5 Summary and Outlook . 191

8 UML for Software Safety and Certification: Model-Based
Development of Safety-Critical Software-Intensive
Systems . 201
Michaela Huhn, Hardi Hungar

8.1 Introduction . 201
8.2 Development of Certifiable Software 203
8.3 Safety-Related Extensions of UML. 207

8.3.1 The UML Profile for Developing
Airworthiness-Compliant (RTCA DO-178B)
Safety-Critical Software . 208

8.3.2 rtUML and the OMEGA-RT Profile 210
8.3.3 Restricting UML for Specification and

Programming in a Certification Context 211
8.3.4 The UML Profile for Modeling and Analysis

of Real-Time Embedded Systems (MARTE) 213
8.3.5 The Railway Control System Domain Profile

(RCSD) . 215
8.4 Using UML in Certification-Oriented Processes 216

8.4.1 Questions to Be Addressed by a
Certification-Oriented Process 216

8.4.2 Purpose and Scope of the Proposed Process 216
8.4.3 Terms and Definitions . 218
8.4.4 Phases and Sub-processes . 219
8.4.5 The Use of UML in the Process 220
8.4.6 Realization . 221

8.5 Verification and Validation Techniques 222
8.5.1 General Remarks on Verification and

Validation Techniques in Model-Based
Development of Certifiable Software 222

8.5.2 Testing . 225
8.5.3 (Formal) Verification . 228
8.5.4 Tool Support . 229

8.6 Conclusion . 233

Table of Contents XI

Part IV: Model Analysis

9 Model Evolution and Management . 241
Tihamer Levendovszky, Bernhard Rumpe, Bernhard Schätz,
Jonathan Sprinkle

9.1 Why Models Evolve and Need to Be Managed? 241
9.1.1 Introduction . 241
9.1.2 Model Management . 242
9.1.3 Model Evolution . 243
9.1.4 Chapter Outline . 243

9.2 Model Management . 243
9.2.1 Model Quality and Modeling Standards 244
9.2.2 Model Transformation . 249
9.2.3 Model Versioning and Model Merging 252

9.3 Evolution . 253
9.3.1 Evolutionary Model Development 253
9.3.2 Automating Evolutionary Transformations 255
9.3.3 Semantics of Evolution . 257

9.4 Modelling Language Evolution . 259
9.4.1 Syntactic Model Evolution 259
9.4.2 Semantic Model Evolution 260
9.4.3 Techniques for Automated Model Evolution 261
9.4.4 Step-By-Step Model Evolution 262

10 Model-Based Analysis and Development of Dependable
Systems . 271
Christian Buckl, Alois Knoll, Ina Schieferdecker, Justyna Zander

10.1 Introduction . 271
10.2 An Overview on Dependability . 272
10.3 A Generic Model of Fault-Tolerant Systems 275

10.3.1 System Operation without Faults 275
10.3.2 Faults . 277
10.3.3 Fault-Tolerance Mechanism 277
10.3.4 Summary: Modeling of Dependable Systems 279

10.4 Reliability and Safety Analysis . 279
10.4.1 The FMECA Method . 280
10.4.2 The Fault Tree Analysis Method 281
10.4.3 Markov Analysis . 282
10.4.4 Testing and Model-Based Testing 283
10.4.5 Summary: Reliability and Safety Analysis 284

10.5 Languages and Tool Support . 284
10.5.1 Models . 285

XII Table of Contents

10.5.2 Implementations . 288
10.5.3 Summary: Language and Tool Support 289

10.6 Conclusion and Research Challenges 289

Part V: Approaches

11 The EAST-ADL Architecture Description Language for
Automotive Embedded Software . 297
Philippe Cuenot, Patrick Frey, Rolf Johansson, Henrik Lönn,
Yiannis Papadopoulos, Mark-Oliver Reiser, Anders Sandberg,
David Servat, Ramin Tavakoli Kolagari, Martin Törngren,
Matthias Weber

11.1 Introduction . 297
11.2 Modeling and Analysis Capabilities of the

EAST-ADL2 . 299
11.3 A Small Case Study . 301

11.3.1 Vehicle Features: Vehicle Level 301
11.3.2 Abstract Functional Description: Analysis

Level . 301
11.3.3 Concrete Functional Description: Design

Level . 302
11.3.4 Software Architecture: Implementation Level . . . 304

11.4 Related Work, Conclusions and Further Work 304

12 Fujaba4Eclipse Real-Time Tool Suite . 309
Claudia Priesterjahn, Matthias Tichy, Stefan Henkler, Martin Hirsch,
Wilhelm Schäfer

12.1 Introduction . 309
12.2 Features . 310
12.3 Case Study: RailCab . 313
12.4 Conclusions and Future Work . 314

13 AutoFocus 3 - A Scientific Tool Prototype for Model-Based
Development of Component-Based, Reactive, Distributed
Systems . 317
Florian Hölzl, Martin Feilkas

13.1 Introduction . 317
13.2 Capabilities of AutoFocus 3 . 318

13.2.1 Logical Architecture . 318
13.2.2 Technical Architecture . 320

13.3 Conclusion . 321

Table of Contents XIII

14 MATE - A Model Analysis and Transformation
Environment for MATLAB Simulink . 323
Elodie Legros, Wilhelm Schäfer, Andy Schürr, Ingo Stürmer

14.1 Introduction . 323
14.2 Approach . 324
14.3 Application . 326
14.4 Conclusion . 328

15 Benefits of System Simulation for Automotive
Applications . 329
Oliver Niggemann, Anne Geburzi, Joachim Stroop

15.1 System Models . 329
15.1.1 State of the Art and AUTOSAR 330

15.2 System Simulation . 332
15.3 Applications of System Simulation . 334

15.3.1 Specification Verification . 334
15.3.2 Software Component Tests 334
15.3.3 ECU Tests . 335
15.3.4 Virtual Integration . 335

15.4 Summary. 335

16 Development of Tool Extensions with MOFLON 337
Ingo Weisemöller, Felix Klar, Andy Schürr

16.1 Introduction . 337
16.2 History and Overview of Features . 338

16.2.1 MOF Editor and Code Generation for MOF
Models . 338

16.2.2 Additional Frontends . 339
16.2.3 Model Transformations . 339
16.2.4 Triple Graph Grammar Editor 339

16.3 Usage Scenarios . 340
16.3.1 Tool Adapters . 340
16.3.2 Model Analysis and Repair 341
16.3.3 Integration Framework . 341

16.4 Conclusions and Future Work . 342

17 Towards Model-Based Engineering of Self-configuring
Embedded Systems . 345
DeJiu Chen, Martin Törngren, Magnus Persson, Lei Feng,
Tahir Naseer Qureshi

18.1 Introduction . 345
18.2 Capabilities . 346
18.3 Case Study . 350

18.3.1 Architecture Modelling with UML 350
18.3.2 Verification and Validation through Analysis . . . 351
18.3.3 Run-Time Models . 352

18.4 Conclusions and Future Work . 352

XIV Table of Contents

18 Representation of Automotive Software Description Means
in ASCET . 355
Ulrich Freund

18.1 Introduction . 355
18.2 Overview of Design Means for Automotive Software

Design . 356
18.2.1 Description Means for Control Engineering 356
18.2.2 Description Means for Software Engineering 356

18.3 Integration of the Design Approaches in ASCET 357
18.3.1 Classes . 358
18.3.2 Modules . 358
18.3.3 Model-Types . 359
18.3.4 Tasks . 359
18.3.5 Implementations: Integer Arithmetic and

Memory Section . 359
18.3.6 Codegeneration Approach . 360

18.4 Conclusion . 360

19 Papyrus: A UML2 Tool for Domain-Specific Language
Modeling . 361
Sébastien Gérard , Cédric Dumoulin, Patrick Tessier, Bran Selic

19.1 Introduction . 361
19.2 Capabilities . 362

19.2.1 Overview . 363
19.2.2 Global Architecture and Design Tenets 363
19.2.3 UML2 Graphical Modeling Capabilities 364
19.2.4 Building DSL Tools Profiling the UML2 366

19.3 Case Study . 366
19.4 Conclusions and Future Work . 367

20 The Model-Integrated Computing Tool Suite 369
Janos Sztipanovits, Gabor Karsai, Sandeep Neema, Ted Bapty

20.1 Introduction . 369
20.2 Components of the MIC Tool Suite 370

20.2.1 The Generic Modeling Environment (GME) 370
20.2.2 Transforming the Models: UDM and GReAT . . . 371
20.2.3 Integrating Design Tools: The Open Tool

Integration Framework . 372
20.2.4 Design Space Exploration . 372

20.3 Application Example: Vehicle Control Platform 373
20.4 Conclusion . 374

Table of Contents XV

21 Application of Quality Standards to Multiple Artifacts
with a Universal Compliance Solution . 377
Tibor Farkas, Torsten Klein, Harald Röbig

21.1 Introduction . 377
21.2 Idea: Meta-modeling for Constraint Definition 378
21.3 Approach: Universal Compliance Achievement 379
21.4 Case Studies: Compliance with Modeling Standards 381
21.5 Conclusion . 382

Author Index . 385

Part I

Foundation

1 Models of Reactive Systems
Communication, Concurrency, and Causality

Bernhard Schätz1 and Holger Giese2

1 fortiss GmbH, München, Germany
schaetz@fortiss.org

2 Hasso Plattner Institute at the University of Potsdam, Germany
holger.giese@hpi.uni-potsdam.de

Abstract. In this chapter, communication, concurrency, and causality
are introduced as basic aspects of reactive systems together with dif-
ferent levels of abstraction for each aspect, giving prominent examples
of specific models as specifically useful combinations. By relating models
along different dimension, we show how to set up development processes
allowing not only to support step-wise adding of implementation details,
but also to treat different aspects of a system in isolation and to combine
the results, leading to a fork-and-join approach.

1.1 Models and Abstraction

Abstraction is a key attribute of modeling: by removing unnecessary and un-
wanted details, the complexity of the modeled object is reduced, allowing to
effectively engineer systems by successively building more detailed models of the
system under development. Therefore, a model-based development process is es-
sentially shaped by the aspects removed or retained by the choice of models used
in the development process. To build useful stacks of models, compatible and
complementary layers of abstractions are necessary.

When considering models for embedded – or more general reactive – software
systems, three central aspects can be distinguished: communication, concurrency,
and causality. For each aspect, layers of abstraction can be defined, removing more
details from the modeled (software) system; constructing specific combinations of
abstractions for each aspect leads to models for specific purposes. Examples for the
layers of models of communication are implicit variable based communication bet-
ween co-routines, synchronous handshake between concurrent processes, and buf-
fered message communication between concurrent processes. Examples for layers
of models of concurrency are models using fairness sets to characterize behavior,
behavior characterized by continuous stream-processing functions, and behaviors
characterized by sets of finite traces. Examples for layers of models of causality are
dense-time models, synchronous models, and linear models.

Each aspect heavily influences the usability of the development process: Com-
munication influences its functional composability, concurrency its operational
composability, and causality its temporal composability.

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 3–15, 2010.
� Springer-Verlag Berlin Heidelberg 2010

4 B. Schätz and H. Giese

Table 1.1. Aspects of Reactive Systems

Development Step Modeling Aspect Abstraction

Composition: Properties of
components still hold after
combing them to a system

Communication: How are be-
haviors of components combined
to describe behavior of a system?

Interference
between sys-
tems

Modularization: Properties of
components still hold after hi-
ding internal structure’

Concurrency: How are obser-
vations combined to describe a
behavior?

Scheduling
of processes

Refinement: Properties of com-
ponents actions still hold after
refining actions’

Causality: How are actions
combined to describe an observa-
tion?

Timing of
actions

1.1.1 Approach

As shown in Table 1.1, the above introduced central aspects are related to prin-
ciples of system description: Communication is related to the composition
of system out of components and the interaction between these components.
Concurrency is related to the abstraction from the internal structure of a
system and the scheduling of internal activities. Causality is related to refi-
ning the interaction of a system and the dependencies between elements of an
observation.

For each of these aspects, models can be grouped into few different basic
classes, characterizing elementary categories of these aspects. Each category des-
cribes a different level of abstraction from concrete implementations as found in
models of reactive systems. The corresponding classes are ordered concerning
their capability to support these aspects. For each aspect only three essential le-
vel of abstraction are distinguished, avoiding an over-sophisticated classification
of models while identifying the major variations.

The levels of abstractions are ordered concerning their reduction of (unneces-
sary) details. Here, we especially focus on abstractions that are relevant concer-
ning the development method, with more abstract classes removing ‘pathological
cases’ expressible within the more concrete classes. Thus, the abstraction with
respect to communication removes synchronization problems like buffer limita-
tions; abstraction with respect to concurrency removes scheduling problems like
weak fairness; and abstraction with respect to causality removes timing problems
like unclocked executions. Using more abstract models allows to concentrate on
the essential design issues by ignoring problems, which can be caused by choo-
sing the wrong or avoided by choosing the right implementation. Therefore,
these levels of abstraction support a methodical exploration of the design space,
by starting a more abstract level of system design and stepwise adding addi-
tional design details, finally arriving at a implementation in form of a concrete
model.

Of course, when considering fine-grained mathematical classifications more
complex orders are needed, as, e.g., [1] shows for behavioral models. Since, ho-
wever, in this chapter the focus is put on the methodical principles behind these

Models of Reactive Systems 5

formalisms, these aspects are restricted to the most basic classes, concentrating
on the aspect of combining them.

1.1.2 Overview

After providing some basic terminology in Subsection 1.1.3, in the following
Sections the three core aspects of reactive systems are considered, which allow
to classify models of reactive systems:

– Section 1.2 introduces the characteristics of communication and interaction
– Section 1.3 the characteristics of concurrency and scheduling
– Section 1.4 of causality and timing.

Since these classifications only cover a specific point of view for reactive sys-
tems, Section 1.5 shows examples of classification of specific models in all three
dimensions.

As this classification allows to relate different models in a common scheme, it
also provides a classification of different layers of abstractions of a system under
development. Section 1.6 therefore discusses how these different abstractions
can be combined and arranged to support a step-wise approach to design-space
exploration.

Section 1.7 finally recapitulates the essential elements of models of reac-
tive systems and relates them to the development of integrated and embedded
systems.

1.1.3 Terminology

To compare the models of computation in the following, a short informal list of
general concepts is introduced, needed to explain the aspects of communication,
concurrency, and causality:

Interface: An interface separates a system from its environment, allowing to
hide internal information and thus modularizing a system.

State: A state of a system assigns values to the variables of the system.
Component: A component is a unit of a system capsuling a state and sup-

plying an interface.1

Observation: An observation describes the sequence of states observable at
the interface of a system through the execution of a system, thus allowing
to describe behavior abstracted from aspects hidden inside the interface.

Behavior: The behavior defines the collection of all possible observations of
a system, thus allowing to define the construction of complex behavior by
combining the respective observations.

Furthermore, besides providing those basic concepts, a model must support me-
chanisms for its modular construction:
1 Note that a component itself can also be seen as a system, interpreting the remaining

components as part of the environment of that component.

6 B. Schätz and H. Giese

Composition: By means of composition, sub-parts of a system are combined
into the overal systems, thus allowing to decompose a complex system into
simpler parts.

Abstraction: Abstraction restricts an interface of a system, allowing to render
parts of a system invisible to its environment.

Finally, it must be possible to compare content models of different products:

Refinement: By means of refinement, the behaviors of systems can be com-
pared and related, making, e.g., one behavior a generalization of the other.

1.2 Communication

The aspect of communication deals with the different ways information can
be exchanged between the interfaces of components, allowing a component to
influence and be influenced by the state of another component. Via communi-
cation, the complex behavior of a system can be modularized – or functionally
decomposed – into the simpler behaviors of the components of that system.

Therefore, as mentioned above, the corresponding methodical aspect of com-
munication is the issue of functional compositionality, i.e., the capability to de-
duce the observations about the exchanged information of a composed system
from the observations of its components. Since communication deals with the
functional view of a system, issues like communication events or synchronization
of executions play an important role here.

In interactive, or more general, reactive systems, the possibility to interact
with its environment is an essential characteristic of a system. Observations
capture these interactions. In denotational models, (e.g., traces [2], failures [3],
or stream processing functions [4]), observations are defined by the sequences
of interface events of these components; in algebraic ([5]) or operational models
(e.g., CCS [6], I/O-Automata [7]) observations are defined in terms of events
enabled in the current state and triggering transitions to further states.

In this dimension, we consider the following three levels of abstraction:

Implicit communication: This form of communication corresponds to im-
plicit exchange of information, e.g., by using variables shared between the
system and the environment. Since no explicit communication mechanism
is used and both system and environment can read and write a variable,
the environment can change the (shared) variables unnoticed by the com-
ponent. Therefore, compositionality is dependent on the well-behavedness of
the environment, e.g., by changing the variables only at well-defined times.
Concerning modeling, this form is used, e.g., in approaches like co-procedures
[8] or UNITY [9]; concerning implementations, this form is used in paradigms
like co-rountines and thread-programming.

Explicit event based synchronous communication: This class of models
offers an explicit communication mechanism enforcing a synchronization bet-
ween the environment and the system, thus avoiding an unnoticed change of

Models of Reactive Systems 7

information. However, the synchronization imposed is undirected, since there
is no designated sender and receiver: Synchronization between the communi-
cating partners takes place by the agreeing on a communication they are all
ready to accept. Therefore, when embedding a system into its environment,
in this model the possibility of blocking has to be considered.

Concerning modeling, this from of communication is found, e.g., in TCSP
[3] or CCS [6], supporting only immediate synchronization between sender
and received (i.e., zero-buffer communication); concerning implementations,
this form is used, e.g., in remote procedure calls (RPC) or the client-server
communication found, e.g., in AUTOSAR [10].

Explicit message based asynchronous communication: In this class of
models there is an explicit communication mechanism with a clear distinc-
tion between sender and receiver concerning the synchronization of the in-
formation exchange. The communicating partners are decoupled, i.e., while
the receiver has to wait until a message is available to be read, the sender
can write a message without delay. Therefore, when embedding a system
into its environment, no (output) blocking has to be considered. System and
environment are always ready to accept a message.
Examples for this model are semantics for asynchronous circuits like [2],
reactive modules [11], or stream processing functions like [4]; concerning
implementation, this form is used, e.g., in (unbounded) buffered communi-
cation as used in SDL [12] or in queued communication with buffer-overwrite
as used in OSEK-COM [13].

Note that increasing modularity is related to increasing abstraction from restric-
tions concerning compositionality: from compositionality with respect to freedom
of interference (implicit), via compositionality with respect to deadlock (synchro-
nous), to unrestricted compositionality (asynchronous). Therefore, with respect
to functional compositionality, these classes provide layers of abstraction with im-
plicit communication as the least abstract class of models and the explicit message
based asynchronous communication as the most abstract class of models.

This can be methodically exploited in a design exploration process. Thus,
high-level functional design often starts with loosely coupled components using
asynchronous communication, e.g., with unbounded buffers, as model of compu-
tation. In a later development step, additionally, the size of buffers is limited,
e.g., based on bounds of the execution order or relative speed of the compo-
nents of the system. In a subsequent design step, these buffers are implemented
via access routines to shared dedicated input or output variables, which can be
easily implemented using a shared memory if implemented on a shared (single-
/multi-core) processor or a shared communication medium if implemented on a
multi-processor system.

8 B. Schätz and H. Giese

1.3 Concurrency

The aspect of concurrency deals with the different ways the behavior of a system
– described in form of its executions – can be obtained from the behaviors of its
components. The executions of the system is obtained by scheduling the execu-
tions of the components of this system, thus composing sequence of states of the
components to sequences of states of the system. Via concurrency, the complex
behavior of a system can be abstracted out of – or operationally composed from
– the behaviors of the components of that system.

Therefore, as mentioned before, the corresponding methodical aspect of concur-
rency is the issue of operational compositionality; i.e., the capability to deduce
observations about the order of computation of a composed system from the ob-
servations about the components of this system. Since concurrency is related to
the operational view of the system, issues like explicit parallelism via true concur-
rency of events as well as fairness of observations play an essential role here.

In parallel, or more generally, reactive systems, the possibility to perform (po-
tentially) infinite runs is an important characteristic of a system. In denotational
models (e.g., traces [2], failures [3], or stream processing functions [4]), observa-
tions are directly defined as the core elements of the models; in algebraic (e.g.,
[5]) or operational models (e.g., CCS [6], I/O-Automata [7]) observations are
defined in terms of states and possible transitions from these states. Since these
formalisms describe (potentially) nonterminating systems, infinite observations
are included in the behavior of a system.

Concerning the issues of concurrency, we obtain the following range:

General Fairness: This class of models makes no assumptions about the sche-
duling of actions to form observations about the behavior of a system. Since
no restrictions are imposed on the scheduling of these concurrent compo-
nents in a composed system, these models allow to describe all forms of
‘sound’/‘strongly fair’ as well as ‘pathological’/unfair’ executions, indepen-
dently of the form of concurrency used.
Examples for this class of concurrency are TLA [14], state-machine ap-
proaches using fairness constructs like I/O automata [7], or general trace-
based models like [5]. Concerning implementations, this class of concurrency
is most often found in parameterized operating systems leaving the schedu-
ling strategy to the designer.

Weak Fairness: This class of models supports the treatment of concurrent
systems, ensuring the fair combination of executions of the (concurrent)
components to the executions of the composed systems. Thus, for a single
component, its infinite observations are directly deduced from fair and un-
fair extension of finite observations, leading to an admissible or continuous
behavior for sequential executions. By supporting an explicit distinction bet-
ween a sequential or parallel execution, this class provides weak fairness for
concurrent components.
Concerning modeling, examples for this form of concurrency are models with
‘true concurrency’ in form of infinite observations like continuous stream

Models of Reactive Systems 9

processing functions [4] or synchronous languages like [15]. Concerning im-
plementations, this form of concurrency is used in operating systems pro-
viding a weak fair scheduling strategy like the task queues used in
OSEK/VDX [16].

Finite Observations: This class of models does not deal with the distinction
of different forms of parallelism at all, ignoring the issue of fairness altoge-
ther. Therefore these models have no need for or do not allow the description
of infinite behavior; they do not include a distinction between arbitrary se-
quentialization and parallel execution.
Concerning modeling, this form of concurrency is found in models based on
finite traces like TCSP [3] or receptive processes [17] with the possibility of
divergence, operational models with classical structural rules like CCS [6], or
in approaches based on finite state machines like AutoFocus [18]. Concerning
implementations, this form of concurrency is used in thread-models with
unspecified fair scheduling strategies like the Java Virtual Machine.

The methodical aspect of this dimension is the increasing abstraction from sche-
duling details: from arbitray forms of scheduling allowing different forms of fair-
ness (general fair), via a fair scheduling of parallel systems (weak fair), to schedu-
ling treating parallel systems analogously to sequential ones (finite). Therefore,
with respect to operational composability, these classes provide layers of abs-
traction with general fairness as the least abstract class of models and the finite
models as the most abstract class of models.

This can be methodically exploited in a design exploration process. Thus,
high-level functional design often starts with computations ignoring aspects of
concurrency during black-box-specification, e.g., using finite models of compu-
tation. In a later development step, additionally, a glass-box-design is added,
e.g., assuming a concurrent execution of the components of the system. In a
subsequent design step, these components are deployed to processes with expli-
cit scheduling assumptions, which can be easily implemented using a network of
concurrently running distributed processing units, each one sequentially schedu-
ling of these components.

1.4 Causality

The aspect of causality deals with the different possibilities of describing the
behavior of a system through combining the actions performed by a system to
form executions. Via causality, the complex behavior of a system can be refined
– or temporally decomposed – into the behaviors of its constituents.

Thus, the corresponding methodical aspect of causality is the issue of temporal
compositionality, i.e., the capability to deduce observations about the ordering
of actions of a composed system from the observations of its components. As
causality is related to the temporal view of a system, here the timing of actions
and their relative ordering play an essential role.

In timed, and more general, reactive systems, the capability to describe the
temporal dependencies between the interactions performed by a system is a core

10 B. Schätz and H. Giese

property of a modeling approach. In denotational models (e.g., traces [2], syn-
chronous traces [19], or dense traces [20] causality of actions is directly reflected
in the ordering relations imposed on the observations forming the core elements
of the models. In algebraic (e.g., [5]) or operational models (e.g., [21], [22]), cau-
sality is reflected in the ordering of events imposed by the transitions. Since
those relations describe the unfolding of interactions in executions, those models
always contain some (explicit or implicit) aspect of time.

Concerning causality we obtain the following range of this dimension:

Dense Ordering: This class of models imposes no restriction of the orde-
ring of interaction events in the construction of observations: Between each
two interactions there may be an unlimited number of causally dependent
interaction events, with those two interactions forming a lower and upper
bound of this chain of events. Thus, this class allows to model continuous
time observations by assigning interactions to arbitrary temporal instances.
Furthermore, in this class of models, there may be circular dependencies
between interaction events, allowing to describe a mutual cause-and-effect
relation between events.
Examples for this classof causalityaredense tracesasused in [20] or continuous-
timestreams [4].Concerning implementations, this class ismost suitable for the
description of non-digital hardware as found, e.g., in hybrid systems.

Clocked Ordering: This class of models restricts the occurrence of events
to fixed time instances, leading to models for discrete time or clocked sys-
tems: Between two interactions there is only a limited number of causality
dependent observations, with these two interactions forming the least and
greatest element of this chain of dependent events. Since, however, no further
restriction is imposed, causality ordering may still form circular dependen-
cies, allowing perfect synchrony between the causing and the effected event.
Concerning modeling, this form of causality is used in synchronous traces [19]
or some Statecharts variants [23]. Concerning implementations, this class is
most suitable for clocked circuits or – generally by avoiding circular depen-
dencies2 – synchronous languages like Esterel [15].

Linear Ordering: This class of models imposes a linear ordering of events
on the causality relation, by allowing only a finite number of dependent
interactions between two events, and furthermore excluding causal loops.
Concerning modeling, examples for this form of causality are trace-based (e.g.,
asynchronous circuits [2]) or state-basedhistory semantics (TLA [14]).Concer-
ning implementations, this approach is used, e.g., in time-triggeredapproaches.

The methodical aspect of this dimension is the increasing abstraction from ti-
ming aspects: From metric models explicitly dealing with real time (dense orde-
ring), via sequentialization abstracting from the passing of time between events
(clocked ordering), to restricted causality additionally separating cause and ef-
fect (linear ordering). Therefore, with respect to temporal composability, these

2 The restricted class of synchronous languages without causal loops actually therefore
uses a linear ordering.

Models of Reactive Systems 11

classes provide layers of abstraction with dense ordering as the least abstract
class of models and the linear models as the most abstract class of models.

Like in the case of communication and concurrency, this can be methodically
exploited in a design exploration process. To that end, in high-level functional
design often functional models without aspects of timing are used, e.g., using li-
near models of computation. In a later development step, additionally, timing as-
pects are added, enforcing a timed interaction between system and environment,
e.g., by using a clocked execution scheme with logical time. In a sub-sequent de-
sign step, this model is enriched to a real-time model by including aspects like
execution times, which can be effectively implemented on (digital) hardware.

1.5 Models and Aspects

The different aspects of computational models of reactive systems – introduced in
Sections 1.2, 1.3, and 1.4 – correspond to a specific point of view when considering
the characteristics of a model. Obviously, therefore, by classifying a model for
reactive systems for each of these aspects, an overall classification of the model
can be obtained.

To clarify the construction of Table 1.2, we use Esterel, Focus, and TCSP for
illustration.

Esterel [15] uses signals to describe system states. An execution of a system
consists of a sequence of clocked computing rounds, all signals computed per-
fectly synchronous, leading to a clocked model. Furthermore, communication is
“message asynchronous”, as the sender does not have to wait for the receiver. As
Esterel uses infinite runs and without any explicit fairness conditions, it belongs
to the class of weak fair systems.

Classical Focus [4] defines each component as a stream processing function.
Such a stream implies a linear order on messages, so we classify the causality
modeling as “strict sequentialization”. Message delivery is not influenced by
the receiver and therefore the communication mode is asynchronous. As Focus
includes infinite histories of interaction to describe the behavior of a system, it
is classified as a weak fair system.

In TCSP message exchange is realized by general synchronizing events; thus it
is classified as using synchronous event-based communication. Since additionally
TCSP considers only finite runs, it is classified as finite. Finally, since all interac-
tions take place in a sequentialized fashion, it is classified as a linear model.

Using the same scheme of classification, we classify formalisms as shown in
Table 1.2: TCSP [3], CCS [6], I/O-Automata [7], Asynchronous Traces [2] Esterel
[15], Focus [4], TLA [14], Co-routines [8], fair process algebra [24] and Receptive
Processes [17]. We also consider timed variants of some formalisms: Timed CSP
[25], Timed Focus[4] and Timed TLA [26].

When combining aspects to form a specific modeling formalism, the question
arises whether these combinations lead to reasonable models. While basically,
from a technical point of view, arbitrary classifications can be chosen, Table 1.2
shows that from a methodical point of view, the selection depends on the levels

12 B. Schätz and H. Giese

Table 1.2. Classification according to Communication, Concurrency, and Causality

Concur-
rency

Communication Causality

Dense Clocked Linear
Implicit Timed TLA TLA

General Synchronous
Asynchronous I/O-Automata

Implicit UNITY
Weak Synchronous Timed

CSP/CCS
Fair Process
Alg.

Asynchronous Timed Focus Esterel, Focus Traces

Implicit Co-routines
Finite Synchronous TCSP/CCS

Asynchronous Receptive Pro-
cesses

of abstraction needed in the application. Many formalisms provide an overall
medium level or high level of abstraction, trying to balance low complexity of
modeling with high simplicity of implementation.

The classification of Table 1.2 also shows that there is a justification for a wide
range of different models, since specific combinations of aspects lead to models
specially suited for application domains, from low-level models of unclocked,
analogue circuits to high-level models of untimed dataflow functions. This, in
turn, leads to the question of combining models of different levels of abstraction,
discussed in the following section.

1.6 Methodical Combination

The different classes of models provide tailor-made views of a system under de-
velopment. Thus, a asynchronous, weak, and clocked model may be most suited
to describe a data-flow module of a system. On the other hand, a synchronous,
finite, and linear model may be most suited to describe the event-handling of a
system. Therefore, models can be used to describe the same system at different
levels of abstraction as well as different parts of the system at different levels
of abstraction. The first case corresponds to the use of homogeneous models,
arranged in a stepwise development process. The second case corresponds to a
combination of heterogeneous models.

In the first, homogeneous case, different classes of models are arranged in a
development approach to support views of a system at different levels of abs-
traction. Here, the classification can be used to simplify the development process
by providing layers of abstractions for a system under development. On the one
hand, a more abstract model allows to focus on central aspects of a system, like

Models of Reactive Systems 13

the data flow between components, while ignoring other aspects, like limited buf-
fers between communicating components, live-locks of concurrent processes, or
respective timing of events. On the other hand, a more concrete model supports
a simpler implementation on the target platform, since these limiting factors like
buffer size, scheduling, or timing are explicitly considered in the model.

Here, the ordering within the dimensions can help to find appropriate models
and corresponding refinement steps stating which properties must be considered
explicitly (e.g., buffer sizes when moving from asynchronous to synchronous
communication).

Therefore, to provide a methodical development process supporting step-wise
design space exploration, these models mut be arranged in layers enabling smooth
transitions between the layers by adding additional details without invalidating
established properties of the system under development. Here, the classification
scheme of Section 1.5 can help by providing levels of abstractions of classes of
models, as well as systematic transitions between them. By integrating abstrac-
tions in a useful development process, leading from high-level abstract models to
low-level implementations, abstractions can be taken away (e.g., adding buffers,
adding access schedules) in a stepwise fashion, ensuring the properties on the
lower level that have already been established on the higher level.

This approach is, e.g., used in the Metropolis design methodology [27]. Here,
during subsequent design steps, additional implementation details concerning
synchronization of shared resources, scheduling policies, and timing constraints
are added to the system under development.

In the second, heterogeneous case, the system under development is construc-
ted by combining components of the system formalized by different classes of
models. Here, to obtain an integrated description of the system, these models
must be interpreted in a common framework. Here, too, the classification scheme
can help to provide such a common framework.

Since the scheme of Section 1.5 allows to classify models according to the
three different dimensions, and each dimension provides a simple (linear) order, a
partial order for all classes of models in this scheme is provided. For two arbitrary
classes of models, a common least abstract class can be identified by using the
least abstract class in each dimension, thus providing a common framework
allowing to capture the model of each part of the system.

The latter approach is, e.g., chosen in the Ptolemy II framework ([28], [29].
Ptolemy II is a Java based, network integrated framework, where multiple mo-
dels of concurrency, communication, and causality can be mixed hierarchically.
To support this form of combination, e.g., to provide a joint simulation of all
models, the framework uses the joint least abstract model of computation. Ob-
viously, due to the rich set of models provided by the framework, this is the
implementation model with unrestricted communication, concurrency, and cau-
sality. Each computational model provided by Ptolemy —— and using concepts
from high levels of abstraction is therefore interpreted in terms of this base
model, allowing their immediate integration.

14 B. Schätz and H. Giese

1.7 Conclusion and Summary

The classification of models for reactive systems according to the level of abs-
traction concerning communication, concurrency, and causality allows to re-
late different models along these dimensions. By means of this relation, the
differences and commonalities between models can be identified to select a com-
mon concretization, thus supporting approaches from joint simulation of models
to a guided design-space exploration.

Obviously, the introduced classification scheme only considers aspects of func-
tionality, operation, and timing. In the development of embedded systems, often
additional aspects play an important role, especially typical ‘non-functional’ pro-
perties like required footprint (e.g., in terms of FPGA elements or ASIC gates),
consumed energy, or cost of production. Since current development processes
generally use a two-stage approach, separating the ‘functional’ from the ‘non-
functional’ models, here the focus was put on level of abstractions for the first
aspect. However, by providing a more tight integration of both aspects, even
more flexibility can be added to the exploration of the design space.

References

[1] van Glabbeek, R.J.H.: Comparative concurrency semantics and refinement of
actions. Technical Report 109, Centrum voor Wiskunden en Informatica, CWI
Tracts (1996)

[2] Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed Inde-
pendent Circuits. In: ACM Distinguished Dissertations. The MIT Press, Cam-
bridge (1989)

[3] Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall International,
Englewood Cliffs (1985)

[4] Broy, M., Stølen, K.: Specification and Development of Interactive Systems: FO-
CUS on Streams, Interfaces, and Refinement. Texts and Monographs in Computer
Science. Springer, Heidelberg (2001)

[5] Bergstra, J.A., Ponse, A., Smolka, S.A.: Handbook of Process Algebra. Elsevier,
Amsterdam (2001)

[6] Milner, R.: Communication and Concurrency. Series in Computer Science.
Prentice-Hall, Englewood Cliffs (1989)

[7] Lynch, N., Tuttle, M.: An Introduction to Input/Output Automata. CWI Quar-
terly 2(3), 219–246 (1989)

[8] Owicki, S., Gries, D.: An Axiomatic Proof Technique for Parallel Programs. Acta
Informatica 14 (1976)

[9] Chandy, K.M., Misra, J.: Parallel Program Design - A Foundation, 2nd edn.
Addison-Wesley, Reading (May 1989)

[10] AUTOSAR GbR: Autosar Specification of RTE Software, Version 1.0.1 (2006)
[11] Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design:

An International Journal 15(1), 7–48 (1999)
[12] CCITT: Functional Specification and Description Language (SDL) Criteria for

Using Formal Description Techniques, FDTs (1989)
[13] OSEK/VDX Group: OSEK/VDX-COM 2.2 Communication Specification (2000)

Models of Reactive Systems 15

[14] Lamport, L.: Verification and Specification of Concurrent Programs. In: de Bak-
ker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1993. LNCS, vol. 803, pp.
347–374. Springer, Heidelberg (1994)

[15] Berry, G.: The Esterel v5 Language Primer. Technical report, INRIA (July 2000),
http://www-sop.inria.fr/meije/esterel/esterel-eng.html (accessed August
19, 2002)

[16] OSEK/VDX Group: OSEK/VDX-COM 2.2 Communication Specification (2005)
[17] Josephs, M.B.: Receptive process theory. Acta Informatica 29(1), 17–31 (1992)
[18] Schätz, B.: Mastering the Complexity of Embedded Systems - The AutoFocus

Approach. In: Kordon, F., Lemoine, M. (eds.) Formal Techniques for Embedded
Distributed Systems: From Requirements to Detailed Design. Kluwer, Dordrecht
(2004)

[19] Berry, G.: Synchronous Languages for Reactive Systems: Styles, Semantics, Im-
plementations. In: Symposium on Principles of Programming Languages, ACM
SIGPLAN-SIGACT (1993)

[20] Henzinger, T.A.: Masaccio: A Formal Model for Embedded Components. In: Wa-
tanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000.
LNCS, vol. 1872, pp. 549–563. Springer, Heidelberg (2000)

[21] Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M.
(ed.) ICALP 1990. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)

[22] Maler, O., Manna, Z., Pnueli, A.: From timed to hybrid systems. In: Huizing,
C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS,
vol. 600. Springer, Heidelberg (1992)

[23] von der Beeck, M.: Comparison of Statecharts Variants. In: FTRTFT 1994 and
ProCoS 1994. LNCS, vol. 863. Springer, Heidelberg (1995)

[24] Parrow, J.: Fairness properties in process algebra with applications in communi-
cation protocol verification. PhD thesis, Uppsala University (1985)

[25] Davis, J., Schneider, S.: An Introduction to Timed CSP. PRG- 75, PRG Program-
ming Research Group, Oxford (1989)

[26] Abadi, M., Lamport, L.: An old-fashioned recipe for real time. ACM Transactions
on Programming Languages and Systems 16(5), 1543–1571 (1994)

[27] Gössler, G., Sangiovanni-Vincentelli, A.L.: Compositional Modeling in Metropo-
lis. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS,
vol. 2491, pp. 93–107. Springer, Heidelberg (2002)

[28] Ptolemy II Website (2008), http://ptolemy.eecs.berkeley.edu
[29] Zhou, Y., Lee, E.A.: Causality interfaces for actor networks. Transactions on Em-

bedded Computing Systems 7(3) (2008)

http://www-sop.inria.fr/meije/esterel/esterel-eng.html
http://ptolemy.eecs.berkeley.edu

2 Model-Based Integration

Holger Giese1, Stefan Neumann1, Oliver Niggemann2, and Bernhard Schätz3

1 Hasso Plattner Institute at the University of Potsdam, Germany
{holger.giese,stefan.neumann}@hpi.uni-potsdam.de

2 Fraunhofer IOSB - Competence Center Industrial Automation, Lemgo, Germany
oliver.niggemann@iitb.fraunhofer.de

3 fortiss GmbH, München, Germany
schaetz@fortiss.org

Abstract. The integration of different development activities and arti-
facts into a single coherent system is a major challenge for the develop-
ment of complex embedded real-time systems. For complex software the
functional integration alone is a major undertaking, in the case of embed-
ded real-time systems we in addition have to cope with all the affected
system characteristics such as real-time behavior, resource consumption,
and behavior in the case of failures.

In this chapter we will discuss the state-of-the-art of model-based
integration. Therefore, we will clarify the terminology concerning inte-
gration, provide a classification of the integration challenges for complex
embedded real-time systems, and outline the fundamental techniques em-
ployed to cope with the integration challenges. This framework is then
used to explain the current standard practice concerning integration of
hardware and software for functional development as well as function in-
tegration. Furthermore, a number of advanced proposal how to address
some of the remaining integration challenges such as AUTOSAR and
Mechatronic UML using model-based concepts are presented using
the framework.

2.1 Introduction

One of the major challenges for the development of complex embedded real-time
systems is the integration of different development artifacts into a single coherent
system. The integration problems we have to face are exacerbated even further as
today’s advanced embedded real-time systems tend to contain more functionality
than in former times, are often expected to exhibit adaptive behavior and take
advantage of wireless or local networking, or even have to be classified as system
of systems rather than systems alone.1

For complex software systems integrating the functional aspects alone is often
already a major challenge. However, in the case of embedded real-time systems
we usually cannot restrict our attention to an abstract view on the software
only. In addition we have to cope with real-time behavior, resource consump-
tion, and behavior in the case of failures. All these system characteristics have
1 See [1] for a discussion of the resulting integration efforts.

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 17–54, 2010.
� Springer-Verlag Berlin Heidelberg 2010

18 H. Giese et al.

to be covered to ensure a proper integration. Therefore, the integration of com-
plex embedded real-time systems has not only to cover the integration of highly
complex functionality, but also to take care of additional relevant system cha-
racteristics such as hard real-time constraints, a proper use of resources, and
dependable operation with respect to severe reliability, availability and safety
requirements. Usually, it is not sufficient to only consider the software. Effects
of the hardware and the run-time environment as well as low-level design and
implementation decisions may be relevant.

When developing complex systems besides the technical aspects also process
issues as well as organization aspects become relevant (cf. [2]). However, we will
further restrict our discussion to the technical integration of development arti-
facts looking in particular at model-based development and ignore process and
organizational issues of integration. In [3] several approaches are characterized
which support the model-based development of embedded control systems and
cope with several integration problems. Selected domain-specific modeling lan-
guages (like AADL [4]) and tool sets (like Fujaba [5]) are characterized concer-
ning the integration problems which are solved by the particular approach. In [6]
several effects are discussed which result from the partitioning of a system in
subsystems or features, the separate development and the later combination and
integration. In this work different types of integration properties are discussed,
as well as what kinds of effects exist concerning these properties and how to
cope with them. In [6] the focus is set to shared resources, communication fea-
tures and interacting control concerning the partitioning and later composition
of the overall system. This chapter in contrast focuses on the underlying problem
and integration concepts and provides a characterization of existing integration
problems and fundamental integration techniques. It presents their role by dis-
cussing the standard approach to hardware integration and function integration
as well as several advanced model-based integration approaches.

In essence, the integration problem we have to face is related to the funda-
mental fact that we as humans somehow have to divide the problem into less
complex elements that can be handled independently or with limited dependen-
cies. While from a system engineering perspective [2] the technical integration
problem can be restricted to the problem of integrating complete components,
for software and embedded real-time systems the integration can also happen at
the level of abstract software components or even abstract software or hardware
models. Therefore, integration is usually related to some form of combining ar-
tifacts, which is often proceeded by some form of separation that divides the
development task into the later combined artifacts.

This need for integration also at the level of software and hardware com-
ponents rather than complete systems has several reasons. First the reuse of
already developed artifacts either as developed or including some adaption in
order to reduce costs is one major driver. In addition, the complexity of today’s
embedded real-time systems often makes it necessary to separate the develop-
ment of subsystems within a single organization or across a network of suppliers,
sub-suppliers and the manufacturer (in the case of the automotive domain called

Model-Based Integration 19

OEM). While the following discussed aspects and characteristics concerning the
integration are fundamental for several types of embedded systems the discus-
sed examples focus on the automotive domain. However, the assumptions and
conclusions made are also valid for the other domains. An example for the lat-
ter case is the automotive domain, where the traditional model of division of
labor is that the OEM integrates complete subsystems including software and
hardware developed by their suppliers. However, today this traditional model of
division of labor where only complete subsystems combining software and hard-
ware are integrated is no longer valid and therefore also integration scenarios
where different software has to be integrated on the same hardware are relevant.

In this chapter we will present a framework to discuss how model-based in-
tegration can in particular facilitate the outlined problem of the technical inte-
gration of development artifacts. Therefore, we will first clarify the terminology
concerning integration, provide a classification of the integration challenges for
complex embedded real-time systems, and review the main techniques employed
to cope with the integration challenge in Section 2.2. Then, this framework will
be employed in Section 2.3 to explain the current standard practice concerning
integration of hardware and software for functional development as well as func-
tion integration. A number of advanced proposals for how to address some of the
remaining integration challenges such as AUTOSAR and Mechatronic UML

using model-based concepts are discussed also by means of the framework in
Section 2.4. In this section we also review other approaches and discuss which
integration problems of our classification are covered and which fundamental
techniques are employed. Finally, we discuss which challenges have been ad-
dressed and which open problems remain and provide our final conclusions and
outlook on expected further research in Section 2.5 and close the chapter with
some final remarks.

2.2 Integration

No uniform definition for the term integration can be found in the literature
(cf. [2]). Therefore, we will at first outline the terminology employed in this
chapter, a classification for the integration challenges and the fundamental tech-
niques employed to support integration. These elements provide a conceptual
framework that is then used throughout the rest of the chapter to explain how
different approaches address integration.

2.2.1 Terminology

The counterpart of the integration is the division or decomposition of a system
into subsystems. At the more abstract level discussed here it relates to the di-
vision of development artifacts and not necessarily complete subsystems. Note
that the division can happen explicitly when a development artifact is used to
plan and document the decomposition or implicitly when either ad hoc or tra-
ditionally certain parts of a solution are developed separately. It is also worth

20 H. Giese et al.

mentioning that any such decomposition usually goes hand in hand with a break-
down and refinement of requirements.

The division used to derive development artifacts of reduced complexity conse-
quently leads to the need to integrate the results of the separate tasks to derive
the originally intended complete development artifact at the required level of de-
tail. The integration itself therefore consists of the activities required to achieve
a proper composition when combining development artifacts.2

Therefore, consequently, integration activities can be found during the de-
composition of a system into subsystems as well as during its composition from
the subsystems, and when related subsystems are developed in parallel. This
can include preventive activities such as the definition of abstract interfaces or
analytic activities such as integration testing which check system requirements
that could not be addressed at the subsystem level. In addition, all activities
to solve problems during the composition are included; this includes problems
encountered during the system division or during the parallel development.

Integration essentially happens when in a development task multiple develop-
ment artifacts serve as input and the specific combination of versions and va-
riants of these development artifacts has not been considered beforehand. Many
of these development artifacts are in fact models that represent some abstract
view on specific aspects of the envisioned or already existing version and /or
variant of a system or subsystems. Therefore, also in the case of classical inte-
gration usually models are already of paramount importance. If these models
are furthermore not only paper-and-pencil models, but are employed to derive
other development artifacts or facilitate specific integration steps, we consider
this to be one form of model-based integration.

Given a development task and a fixed level of detail, the decomposition step
results in a number of components with reduced dependencies. At a coarse grain
level the resulting structure is referred to as architecture which decomposes the
problem into components connected via links. The overall architectures capture
the different components and their structure in the form of links between them.

For our discussion it is useful to further distinguish two cases of architectural
decomposition: In the first case of a hierarchical architecture the components
are modules at the same conceptual level (e.g., an architecture with separate
components for motor and steering control) while in a layered architecture the
decomposition provides layers where one layer is operating on top of the under-
lying one (e.g., application, operating system, hardware). When developing using
such layers sometimes the models abstract from the layer beneath by means of
modeling concepts and thus no explicit initial decomposition is visible.

Taking the many different facets of composition into account, we can define
integration as the development activities which are employed to ensure a pro-
per composition when multiple conceptually development aspects are combined
which usually results in new or changed development artifacts.

2 We do not consider the problem here that the different artifacts have been defined
using different models of communication, computation, or causality as discussed in
Chapter 1.

Model-Based Integration 21

The composition of different software modules into a larger module is an
example of combined conceptual development aspects being used as concrete de-
velopment artifacts. Here decomposition as well as composition is done
explicitly.

On the other hand, the combination of a software module with its underlying
hardware relies on an implicit decomposition from the underlying layer. Af-
terwards, aspects are composed implicitly when enriching the model to include
more information of that layer. This enrichment happens usually in several steps
where additional conceptual development aspects such as limited precision, exe-
cution times or memory consumption are integrated with development artifacts
that beforehand were not included in these aspects (by initially abstracting from
them).

2.2.2 Classification of Integration Problems

Several problems are encountered when integrating different development ar-
tifacts. However, most of the relevant kind of conflicts can be covered by the
classification of integration problems depicted in Figure 2.1.

Fig. 2.1. Classification of Integration Problems

The outlined classification includes technological aspects refering to the abi-
lity to integrate at all on the basis of some technology and the syntactical aspect
covering that the parts have to be integrated concerning the exchanged or sha-
red data as well as the offered or required operations. Furthermore, we have the
full semantic, which ensures that the encoding of data and side effects of the
offered operations are compatible, the protocol, which addresses issues such as
non-uniform service availability the synchronization and control flow between
different parts, and dataflow, which covers the specific needs for composing da-
taflow computations as required for most control algorithms, are included.

While technological and syntactical integration are often addressed upfront
during decomposition (e.g., AUTOSAR in Section 2.4.1), more demanding in-
tegration problems such as semantic, protocol or dataflow are today often only
handled when it comes to composition.

The dependability resp. quality-of-service aspects include that the composi-
tion has to fulfill given reliability goals, availability requirements, exclude
unacceptable safety or security problems, and still ensures maintainability. The
real-time behavior may include the local behavior but also distributed real-time

22 H. Giese et al.

compatibility. For the resource consumption, either node limitations such as
CPU time, network limitations such as bandwidth or even system limitations
such as the overall power consumption may be relevant.

Embedded systems differ from standard software systems in particular when
it comes to integration problems related to real-time or resource requirements.
As real-time requirements, severe resource constraints, and more demanding de-
pendability requirements have to be fulfilled by an integrated system with often
rather limited hardware, a large fraction of the development efforts have to be
spent on addressing them explicitly. In standard software development, develo-
pers use resources rather excessively and remain at a higher level of abstraction,
and thus avoiding having to optimize their solution for a specific hardware. In
the embedded world in contrast this luxury is not possible and a sufficient be-
havior has to be achieved with rather constraint resources and thus all kinds of
hardware-related constraints such as execution times and resource consumption
have to be addressed explicitly.

2.2.3 Fundamental Integration Techniques

To exemplify the rather general considerations presented so far, we will now
look into a number of fundamental techniques for the proper integration. As the
steps undertaken to divide the labor and the effort for the final integration of
the independently achieved results can only be understood in combination, we
will introduce the basic principles for both aspects at once and then discuss their
interplay.

Explicit Horizontal Decomposition & Composition
The first fundamental concept operates at a constant level of abstraction and
looks into an explicit decomposition into subsystems at the same level (horizon-
tal decomposition). In order to achieve a suitable decoupling of the separately
considered parts some form of separation of concerns [7] as well as information hi-
ding [8] are usually employed, too. For example, architectural aspects (concerns)
covered by modules or components which provide interfaces. Using an interface
allows to decompose the architecture and hide implementation details (informa-
tion hiding) at the same horizontal abstraction level.3

This form of horizontal decomposition of the system usually permits the sub-
systems to be developed in parallel and work on disjoint sets of development
artifacts. In addition to the description of the system, this decomposition also
happens for the requirements which are broken down from the system into its
subsystems.

The explicit composition brings together subsystems which have been develo-
ped in parallel. In the ideal case all relevant system or subsystem characteristics
are captured during the decomposition and are guaranteed when doing the com-
position. However, often this is not the case. For example, when using separation

3 Some techniques (e.g., information hiding) also support vertical abstraction like des-
cribed later.

Model-Based Integration 23

of concerns several aspects are often not covered during decomposition but be-
come relevant when doing the composition (potentially in a later development
stage) or when the composition not only exhibits the characteristics of its com-
ponents but also characteristics which are determined by the composition (some-
times call emergent) itself. It is particularly relevant for the integration that all
system requirements that have not been broken down into subsystems require-
ments are checked for the composition result. This includes that characteristics
such as deadlocks which can often not be predicted when doing the decompo-
sition have to be addressed when doing the composition. Therefore, depending
on the question of which characteristics are compositional or not resp. which
requirements have been broken down to local properties of the subsystems more
or fewer characteristics of the composition have to be checked at composition
time to ensure a proper integration.

The standard case for composition is that the individual constituent parts
are simply combined by some generic form of composition (e.g., scheduling in
the case of processes on an operating system). More advanced cases employ
declarative constraints contained in the specification of the components to ensure
that the composition behaves properly (e.g., scheduling with guaranteed deadline
in case of processes on a real-time operating system).

(a) composition (b) abstraction (c) consistency

Fig. 2.2. Fundamental techniques employed to approach integration

The resulting interplay of decomposition and composition is depicted in Figure
2.2 (a). At a rather high level of abstract the system is decomposed into two
or more subsystems that are developed in parallel. These subsystems, which
are then further elaborated in parallel, are composed later on according to the
decomposition done upfront.

It has to be noted that in contrast to more restricted interpretations of the
term integration (cf. [9]) we do not limit integration to the case where checks at
composition time are employed, but also include the case where upfront activities
such as defining interfaces ensure a proper composition.

Module interfaces are the classical example for the decomposition / composi-
tion. If done proberly as in many programming languages, the definition of the

24 H. Giese et al.

Table 2.1. Coverage of integration aspects by modules with syntactical interfaces

Integration problems Technique Explanation

syntactical D/(S) Is checked already during decomposition guarantee pro-
per integration during composition. Synthesize syntac-
tical correct implementation of interfaces.

technological S try to solve problem using synthesis, e.g., generating
compatible C-Code for the implementation of interfaces.

semantically C Is checked only late during composition.

(legend: D = during decomposition – C = during composition – S = by synthesis).

syntactical interfaces at the time of the decomposition guarantees that during
the later composition no syntactical integration problem can result. In Table 2.1
this result is depicted using a classification that focuses on the question when
the integration problem becomes visible. The case during decomposition (D) im-
plies that the integration is guaranteed upfront, while the during composition
case (C) results in a risk that an integration problem is detected rather late.
The case by synthesis (S) refers to automated techniques that can generate a
solution that solves the integration problem in principle. However, usually no
guarantee can be given that the synthesis will thus be able to find a solution as
there might be not resolvable conflicts.

Vertical Abstraction & Enrichment
Another fundamental concept to separate details during the development of
a system is vertical abstraction and enrichment. Compared to the previously
described horizontal decomposition and composition, where the abstraction level
is the same when doing the composition or decomposition, vertical abstraction
and enrichment change the abstraction level itself.

In the abstraction step we omit details of the envisioned system and focus
on the characteristics that are relevant for the current development step. The
abstraction can be seen as a form of implicit separation by omitting the details
for a certain time. These omitted details are then later added to the development
artifacts when enriching them.

The abstraction concept can be employed to ease development when there is
only a unidirectional dependency between the upfront-addressed details and the
omitted ones. Often architectural layers are employed to realize the abstraction
independent of the concrete omitted details (application, operating system, hard-
ware). The fact that the lower architectural layers do not depend on the higher
layers in combination with standardized interface for the lower-level layers allows
that the higher layers could be developed more or less independent, and omitted
details are either filled in by the lower levels or can be considered later on.

The design characteristics that are affected by the combination are then
usually considered later. E.g., first the end-to-end timing constraints are consi-
dered and the specific timing resulting from the integration with the operating
system and the hardware layer is considered later. As the real-time scheduling
can only be considered in combination with the concrete real-time operating sys-
tem, the analysis of the real-time characteristics are only addressed when both

Model-Based Integration 25

are integrated. When abstraction is used in this manner, dependencies between
the separated layers often seriously constrain the decoupling of the development
activities for the subsystems. The development artifacts of the different activi-
ties depend on each other such that the ordering of the development activities
reflects the usage of development artifacts of other activities. E.g., details are
stepwise added to the development artifacts during function development (see
Section 2.3.1) where in each step the effects of other layers (runtime system,
hardware, ...) is added.

Vertical enrichment is the counterpart of abstraction where new characteris-
tics are added to a development artifact. We have to further distinguish two
fundamentally different forms of how enrichment can occur. Either the detail
adds new characteristics to the development artifact. In this case no constraint
between the abstract development artifact and the added detail exists (e.g., a
logical untimed model is enriched by timing information). On the other hand the
development artifact may already contain some abstract information about some
system characteristic which constraints the added details (e.g., an idealized mo-
del equal to some set of differential equations has to be developed into a model
equal to a set of difference equation scheme). Often the development starts with
such an abstract artifact and abstraction is used rather than explicitly applied.
In this case you either want to have refinement when the more detailed structure
and behavior is included in the more abstract one or approximation such that
the more detailed structure and behavior is similar to the idealized abstract one.

In the case of refinement the abstraction already includes the refined behavior
as one possibility and thus checking crucial properties for the abstraction can
guarantee these properties also for the refinement. In contrast, for an approxima-
tion it holds that the abstraction is an idealization and that the behavior which
could be observed for the enrichment should be somehow similar. Therefor, here
the opposite observation holds that only in the case a required property does not
hold for the approximation it can also not be expected to hold for any enrich-
ment (even though this is not necessarily always the case). Thus, refinement can
be used to guarantee the absence of failures upfront, while approximation can
be employed to detect possible integration failures upfront. A fully inconsistent
enrichment which is neither a refinement nor an approximation would mean to
redo all the construction work contained in the abstract development artifact
and thus is usually not intended. However, it must be mentioned that different
characteristics of a development artifact may be enriched differently and thus
some may be refined while others are approximated.

In both cases the enrichment is some form of implicit (vertical) composition
as a new or yet only insufficient covered development aspect is now considered.
The initially not considered development aspect is then brought back into the
picture and thus the related information about the related layer beneath is im-
plicitly composed with the model that beforehand used abstraction to omit that
information. An example for such a case is the usage of abstraction layers, e.g.,
hiding communication details or hardware properties like in case of the different
layers of the AUTOSAR architecture (see Section 2.4.1).

26 H. Giese et al.

Like in the case of (horizontal) composition again synthesis can be used to
automatically apply enrichment. Depending on the applied form of enrichment
respectively the previously applied abstraction, synthesis does not guarantee in
any case that all desired properties are fulfilled (e.g., no schedule for a set of
tasks can be synthesized). In many cases enrichment is automatically applied
using synthesis, e.g., in the case of automatic C-code-generation supported for
embedded systems.

As depicted in Figure 2.2 (b), the initial abstraction allows to omit a deve-
lopment aspect and later consider it when enriching the model in that respect.

Table 2.2. Coverage of integration aspects by the different approaches

Integration problems Technique Explanation

syntactical A Abstraction guarantees that the composition is syntac-
tically correct.

technological A/E(S) Abstraction and enrichment (potentially by synthesis)
provides some technological compatibility.

real-time local E The initial abstraction does not provide any guarantees.

(legend: A = during abstraction – E = during enrichment – S = by synthesis).

The explicit consideration of real-time constraints for a software function in
a subsequent development step is an example for an abstraction and enrichment
step. Upfront, the developer abstracts from the timing issues and instead fo-
cuses on the functional aspect of the solution. Then, in a later step the derived
functional solution is enriched with timing information in the form of deadlines
etc. As outlined in Table 2.2 the initial abstraction step does not provide any
guarantee for the later enrichment and thus the integration problem has to be
addressed late when the enrichment happens.

Often horizontal decomposition & composition, where parts of the system are
decomposed at a specific abstraction level and vertical abstraction & enrichment,
where the level of abstraction changes, are used in combination. An example for
such a situation is when different parts or subsystems are developed by different
stakeholders and one has only an abstract view on a subsystem provided by a
supplier while other parts are available on a more detailed level.

Consistency & Synchronization
A third fundamental concept to handle integration issues is to not only decom-
pose the problem initially and resolve integration problems later, but somehow
reflect the dependencies between the different artifacts throughout the parallel
development.

The first approach is to check the consistency of the models and resolve the
issue immediately or at least in the near future rather than waiting for the time
of integration. This case of consistency refers to horizontal consistency [10] and
takes care that no conflicts arise when the models developed in parallel are later
integrated.

Another option which provides a higher degree of automation is model syn-
chronization [11] where the equivalent parts of two models are automatically kept

Model-Based Integration 27

consistent. Like for consistency, the relevant case here is only horizontal synchro-
nization of parallel-developed models (analogous to horizontal model transfor-
mations [12]).

The main benefit of both approaches is that in contrast to the two former ones
the independently developed model can more freely evolve without resulting in
harm later on. In the case of decomposition and composition in contrast somehow
the basis for the separation is fixed after doing the upfront decomposition. Also
in the case of abstraction and enrichment the separation is somehow a-priori
fixed when doing the abstraction and it thus too only provides limited degrees
of freedom when enriching the model later on. However, this higher degree of
flexibility can only be preserved as long as the consistency rep. synchronization
is keeping track of the dependencies to prevent integration problems later on.

On the other hand, unless fully automated as in the case of model synchroni-
zation there is the permanent need to resolve inconsistencies during the parallel
development and therefore both parallel development activities might be slowed
down considerably. Therefore, the sketched benefit comes with the drawback
that no ”fully” parallel and independent development is really possible.

If during the parallel development the consistency is checked as depicted in
Figure 2.2 (c), integration problems during the later composition can be pre-
vented. Co-simulation of different models, which are developed independently or
for analysis purposes (like in the case of plant-models), is one example where
different development activities are checked for their consistency (see Table 2.3).
It is important to note that this also enables consistent changes of the interface
between the initially separated subsystems. Without consistency checks interface
changes would endanger the proper composition later on.

Table 2.3. Coverage of integration aspects by the different approaches

Integration problems Technique Explanation

semantic P The co-simulation helps to find inconsistent behaving
development artifacts.

(legend: P = during parallel development).

Combinations in Practice
It is important to note that in practice instead of these pure cases of parallel
and sequential processing you will encounter partially ordered activities that are
coupled by the production and use of different versions of development artifacts
depending on the employed decompositions and abstractions.

A frequently employed approach which combines horizontal decomposition
with vertical abstraction is interfaces. When planning the decomposition, e.g.,
when horizontally decomposing a system into subsystems, interfaces are used
to capture at a more abstract level the dependencies between the components.
Additionally such interfaces can be also defined between layers at different le-
vel of abstraction. If the dependencies are properly designed in the interfaces
this prevents that related integration problems will be encountered during com-
position. However, interfaces usually only cover a very restricted subset of the

28 H. Giese et al.

component characteristics and they only prevent integration problems for that
restricted set of characteristics. Examples where different sets of characteristics
are covered by interfaces presented later in the chapter in the case of AUTOSAR
and Mechatronic UML.

Using an abstract model of the environment or the other subsystems is another
technique used in engineering which combines decomposition and abstraction.
This is particularly useful when a simple interface will not capture all required
properties of the environment properly. Please note that such an environment
model together with the subsystem model can be checked during the parallel de-
velopment against requirements of the system which could not have been broken
down into subsystem requirements due to their non-compositional nature (like
the reactive interplay between the plant and implemented control functionality).
In the case of control engineering so-called plant models are employed to capture
that part of the environment which is relevant. Simulation runs check that the
given control requirements are met. The function development described in the
next section is a typical example where environment models play a prominent
role.

Another approach to derive a valid composition at a more detailed level is a
dedicated manual or automated synthesis step. The synthesis step generates a so-
lution which fulfills the constraints (e.g., fixed schedule for a dedicated hardware
and software stack) configuring an underlying layer or determining an additio-
nal glue component. To fulfill several resource constraints the synthesis can also
target to minimize the resulting resource consumption (e.g., synthesizing a mi-
nimal runtime kernel which only includes the necessary modules/functionality).
Alternatively, an online solution is often employed (e.g., real-time scheduling
in the case of processes on a real-time operating system). In this case usually
an additional check at integration time is required that evaluates whether the
constraints can be met (e.g., scheduability checks). Examples for synthesis ap-
proaches for the local real-time integration problem are Mechatronic UML

(see Section 2.4.2) and TDL (see Chapter 5).
Depending on the specific domain and the severity of the encountered conflicts

quite different means for the resolution of the integration problems are appli-
cable. A technique can only be employed when the resulting solution adheres to
the specific constraints of the domain (e.g., in a domain with high cost pressure
such as the automotive domain using more powerful hardware and additional
abstraction layers are often not affordable). Also the development efforts as well
as the scalability of composition techniques are important factors that have to
be considered. E.g., in the automotive domain the high cost pressure does not
allow the intensive use of more powerful hardware and additional abstraction
layers. However, in domains where safety issues prevail, like in the case of avio-
nics systems, more advanced concepts such as IMA exist allowing the modular
verfication of decomposed system parts [13]. Also the development efforts as well
as the scalability of composition techniques are important factors that have to
be considered.

Model-Based Integration 29

2.3 State-of-the-Art Approach

The construction of current complex embedded systems – as found, e.g., in the
avionics or automotive domain – is characterized by two sources of complexity:
First, these systems are composed of interacting distributed components. Second,
these components are developed in parallel by different suppliers. Thus, integra-
tion of these components becomes a core issue during development, especially
if individual components of different suppliers are combined by the equipment
manufacturer on a single electronic control unit.

To overcome the problem of late integration, often a model-based integration
approach is chosen, allowing the development process to be modularized. Here,
the techniques of decomposition and enrichment as described in Section 2.2.3 are
used to obtain two orthogonal dimension of development: By using functional
decomposition, braking the system down into separate functions or components,
these functions can be constructed, validated, and verified independently. By
using incremental enrichment, going from functional via logical to technical mo-
dels, these components can then be safely integrated on a common platform.

To effectively support such a development process, two prerequisites are ne-
cessary: On the one hand, the approach must support the description of the
system at different levels of abstraction, to support a stepwise enrichment of the
models of an individual function. This ensures that the more detailed model
respects the limitations of the more abstract model. On the other hand, the ap-
proach most support the combination of the models of all functions at each level
of abstraction, to enable a safe integration of the overall system. This ensures
that the combined functionality implements the intended overall behavior.

To support the different levels of abstraction, increasingly model-based ap-
proaches are used, especially for control functionality. Typically, here the func-
tional, logical, and technical level are realized by function-oriented models (e.g.,
MATLAB/Simulink or ASCET-MD), by software-oriented models (e.g., Target-
Link or ASCET-SD), and prototyping or pre-production platforms.

Currently, parallel engineering is achieved by decomposing the system into
several components at the functional level. Thereafter, the different functiona-
lities are developed separately. Composition is achieved mainly at the platform
level by defining the realization of the joint interfaces (e.g., the exchanged bus
messages).

Obviously, due to increasing dependencies between formerly independent func-
tionalities such an approach requires to support a combination of the top-level
functions. Furthermore, since obviously the late integration can cause inconsis-
tencies (e.g., when fixing different discretizations of joint interface signals during
the construction of the software model), current approaches specifically provide
support for a safe integration at earlier levels (e.g., Intecrio or SystemDesk).
Additionally, platforms (e.g., IMA4, AUTOSAR5) and a corresponding develop-
ment environment eliminate the need for the manual integration at the platform

4 Integrated Modular Avionics.
5 Automotive Open System Architecture.

30 H. Giese et al.

Fig. 2.3. Parallel development within the V-model (according to [14])

level, lifting the integration to the software level. Besides the functional aspects,
such an approach requires to include system wide properties like real-time re-
quirements.

As mentioned above and illustrated, e.g., in [14], the standard engineering pro-
cess combines parallel and incremental development, allowing to develop compo-
nents or functions in parallel while especially taking into account platform and
other restrictions (e.g., real-time and resource restrictions) in a stepwise man-
ner. The parallel development of multiple components is illustrated in Figure 2.3,
showing that parallel development is achieved by forking the development for
each component or function in the design phase, joining these components in
the integration phase. Each component or function, as described in the multiple
V-model shown in Figure 2.4, is iteratively developed with increasing level of
detail via a simulation, prototyping, and pre-production stage.

As indicated in Figure 2.5, the development of functions at different levels of
abstraction affects not only the design of the functions via the different models
used at these levels; it furthermore affects the different validation and verification
phases in the multiple V-model, e.g., concerning the used models of the envi-
ronment or test cases. However, it also requires providing an integration of the

Fig. 2.4. Stages of the multiple V-model (according to [14])

Model-Based Integration 31

Fig. 2.5. Test and simulation activities within the different stages (according to [14])

functions at these different levels to support the early validation or verification
of the system under development.

In the following, in Subsection 2.3.1 the development of an individual function
at different levels of abstraction is described in more detail, while Subsection 2.3.2
illustrates the possibilities of integrating several functions at these different levels
of abstraction.

2.3.1 Function Development

During function development a complex functionality in the form of a control
algorithm or reactive behavior controlling a physical process is developed. This
functionality is incrementally developed by adding constraints imposed by the
plant (environment) as well as the platform in a stepwise fashion. This stepwise
integration is accompanied by validation and verification techniques at the dif-
ferent stages. Figure 2.5 shows an overview of these different levels of abstractions
as well as the corresponding techniques.

The simulation and prototyping stages use abstracting assumptions to elimi-
nate details both from the environment as well as from the platform. Examples
for such assumptions are unlimited HW resources, e.g., eliminating the need to
consider execution times or memory consumption, or simplified plant models,
e.g., eliminating the need to deal with failures of sensors and actors.

Simulation Stage
At this stage, purely functional models build the basis for development. Com-
monly, data flow models in form of block diagrams (e.g., ASCET, Simulink) or
control flow models in the form of state diagrams (e.g., Statecharts) are used.

32 H. Giese et al.

Functionality is developed independent from platform and its interfaces to the
environment (e.g., A/D and D/A converter). Therefore, these models ignore pro-
perties like WCET limitations, characteristics of the HW (e.g., register size), or
memory consumption. Typically, these models use values and signals of types
that differ from these used within the real system (e.g., floating-point data types
instead of fix-point, abstract messages instead of CAN messages). Due to the
focus on the logical execution order and the data flow, for verification and vali-
dation often simulation of the models is used, using either no plant or a plant
model as environment. The goal of this stage is a first proof of concept and the
verification and validation of the overall design and control law. Using a plant
model during the simulation stage in parallel supports the validation of the
developed functionality concerning semantically as well as dataflow integration
problems like described in Section 2.2.2.

For validation and verification, at the simulation stage model tests (MT),
model-in-the-loop tests (MiL) and rapid control prototyping (RCP) are used.

For MT, one-way simulation of the models – also called one-shot simulation
– is used. Here, all input and output values are generated and analyzed for a
single execution of the system, abolishing the need for a dynamic interaction with
the environment. For MiL, the model of the function is simulated back-to-back
with virtual models of the dynamics of the environment in the form of a plant
model. The plant model is an abstracted and simplified representation of the real
environment, allowing a validation of the functionality. Due to the abstraction of
the plant model, issues like the calibration of the functionality generally cannot
be treated at his level. For a more accurate validation of the models, RCP can
be used together with the models of the simulation stage. To that end, typically
high-performance RCP-HW is used, allowing platform restrictions to be ignored
(e.g., computations times, floating point vs. fix point). By replacing the plant
model by the actual plant (or a close equivalent), RCP allows the functionality
to be validated against the real plant including the real-time behavior of the
plant, access special-purpose HW, and use actual actuators and sensors.

Prototyping Stage
At this stage, many aspects like real-time properties and resource restrictions
removed by the platform abstraction in the simulation stage are taken into ac-
count. The focus of this stage is the implementation of the designed functionality
and its validation and verification. Depending on the level of abstraction, only
software aspects (e.g., modularization, used data types) or also hardware aspects
(e.g., computation times and storage restrictions) can be addressed.

On the software level, software models are executed on a host computer. Un-
like to MT and MiL, the software models additionally consider implementation
aspects like discretization of the functionality in the value and the time dimen-
sion, e.g., by using fix-point arithmetics and task schedules. In practices, software
models are often generated from the functional models via parameterized auto-
coders (e.g., ASCET-SD, TargetLink, or Embedded Coder) and in such a way
that at the technological level the integration is supported via synthesis. An es-
sential part of the prototyping stage consists in the verification that the models

Model-Based Integration 33

from this stage are an enrichment of those of the simulation stage and intended
semantics are fulfilled, as mentioned in Section 2.2.3. Here, enrichments dealing
with refinement or approximation are often semi-automatically provided by a
target code generator during discretization. By using a specific host platform,
some aspects of the final platform are still ignored. Typically, resource restric-
tions are not examined or only in a simplistic fashion. Using such host platforms,
verification and validation via MiL can be covered by corresponding techniques
via software in the loop (SiL) test.

To again include more platform restrictions, software models to be executed on
the target processor can also be used in this stage. Such an integration of software
and target hardware can be done on different levels. The target processor can
be used to run a processor in the loop (PiL) simulation, providing extended
debugging or calibration functionalities. Therefore, in PiL simulation often the
used platform is different to the final one, and often Evaluation Boards are
used providing additional interfaces for debugging and calibrating. Alternatively,
the real hardware (the ECU) can be used for HiL simulation, allowing reliable
results to be obtained, e.g., also w.r.t. execution times, which may be affected
by the additional debugging and calibration functionalities. In both cases, the
environment is simulated via the use of a simplified and abstract model of the real
plant. However, in the PiL approach often simplified models are sufficient, while
HiL approaches in general use fine-grained models often requiring the use of real-
time systems for execution. Furthermore, within the HiL simulation additional
system parts can be included, e.g., legacy ECUs or even mechanical parts (e.g.,
the throttle of an otherwise simulated engine). By using more detailed execution
platforms (e.g., in the case of PiL simulation or in the case the real ECU is
used) additional properties like execution times and the resource consumption
can be evaluated at least for the local case by using the concept of enrichment
as introduced in Section 2.2.3.

Pre-Production Stage
Within the pre-production test the system is tested against external influences
of the environment. This includes the effects on the system due to environmental
conditions (like temperature, shock or vibration). The system under test is built
of prototyping HW fulfilling the required specifications for the end product. The
goal of the tests is to identify and fix problems and to measure the robustness
of the system as early as possible.

2.3.2 Function Integration

The function integration happens at the latest when the functions are integra-
ted during the pre-production stage. However, in contrast to such a big bang
integration usually whole functional groups are integrated beforehand using re-
placements for the missing rest of the system in order to ease the integration
testing.

The current practice for integrating multiple software modules on one node is
characterized by the following stepwise partially manual process: (1) Specification:

34 H. Giese et al.

The interface and decomposition of the software into modules are specified on a
high abstraction level while mainly functional properties are targeted (if at all),
then (2) Partitioning: The software is partitioned into concurrent modules resp.
logical threads with appropriate periods to make it run on a real-time operating
system or kernel (usually without adequate analysis), (3) Implementation: The
software is implemented (often manually), (4) Integration: The threads are com-
bined using either static schedules or concurrent threads in a RTOS or kernel
and it is verified that the software fulfills all real-time constraints in its given en-
vironment. In the case the implemented software is combined with an RTOS, at
least at the functional level the technological aspect concerning the integration
is supported by composing the software with a standardized execution platform
(e.g., an OSEK RTOS). Additionally scheduling analysis of the used RTOS tasks
can be applied to analyze and validate the real-time behavior, at least for the
local case. If the real-time constraints do not hold, partitioning, implementation
and integration have to be repeated. Repeating this cycle a number of times is
usually very costly but often unavoidable.

Prototyping Stage
The outlined early integration of functional groups might be addressed already at
the prototyping stage when integrating the control algorithm with more appro-
priate substitutes for the final hardware. This could happen using the prototypes
of other functions as well as their final version depending on the availability.

Pre-Production Stage
In the last stage of the multiple v-model (pre-production stage) the real system
is build including the real plant.

The system is tested within the real-life environment to ensure that all re-
quirements are met, including conformance to relevant standards like industrial
or governmental ones. The build system is close to the later product and some
calibration and configuration can be done. Tests concerning functional and non-
functional properties are possible but fixing problems concerning properties of
one of the earlier stages could not or only with extensive effort be done. E.g., to
change the system architecture or the design of the control functions is rarely
possible at this stage.

Encountered Problems
When the system is initially decomposed several properties (e.g., real-time pro-
perties or needed resources) are not considered. When composing the developed
parts these properties can lead to crucial problems, potentially leading to exten-
sive changes related to the earlier development stages. Furthermore, the com-
position of the developed parts can result in characteristics which are caused
only by the composition and not by the characteristics of the components itself.
For example, if several independent developed components have to use the same
communication channel (e.g., a shared bus) problems can occur which could be
hardly detected when components are tested and simulated individually.

Model-Based Integration 35

Decomposition at the system level is almost done at the same architectural
level (while additionally layered architectures play an important role, e.g., in
case of the integration of operating system properties like scheduling).

2.3.3 Discussion

The outlined process of decomposition, functional development and system in-
tegration represents a nearly optimal solution for systems with more or less in-
dependent functions and functions which require only a usual control law. Table
2.4 and 2.5 summarize the integration aspects concerning function development
and function integration, which are somehow supported by the described stan-
dard approach. Unfortunately today’s embedded real-time systems often include
much more sophisticated designs where an overwhelming number of functions
exist that have to interact in complex ways to achieve the envisioned overall
functionality. Therefore, this style of development and integration often result
in severe problems perhaps being detected rather later during system integration.
These can be true for

– interface compatibility problems,
– protocol compatibility problems,
– dependability issues,
– real-time behavior and
– resource consumption.

In all these cases, the rework required to fix such problems if encountered during
system integration can be quite costly.

Table 2.4. State-of-the-Art: coverage of integration aspects during FD

Integration problems FD Explanation
technological A/E(S) via code generation, standardized tools (e.g., MATLAB)
syntactical D/C define interface to sensors and actuators of the plant
semantic A/E(S)/P enrichment at each stage using (initial abstract) refined

SW (potentially synthesized) and HW models; simula-
tion of the SW models in combination with the model
of the plant

dataflow A/E(S)/P enrichment at each stage using (initial abstract) refined
SW (potentially synthesized) and HW models; simula-
tion of the SW models in combination with the model
of the plant

real-time compatibility
local E/P enrichment at each stage using refined SW and HW

models; consistency with HW checked during parallel
development by means of simulation techniques, e.g.,
PiL simulation

distributed
resource consumption

local E/P enrichment at each stage using refined SW and HW
models; consistency with HW checked during parallel
development by means of simulation techniques, e.g.,
prototyping stage

distributed

(legend: FD = function development – A = during abstraction – C = during composition – D = during

decomposition – E = during enrichment – P = during parallel development – S = by synthesis).

36 H. Giese et al.

Table 2.5. State-of-the-Art: coverage of integration aspects during FI

Integration problems FI Explanation
technological A/C later integration on standard platforms such as OSEK

allow upfront abstraction
syntactical A/(D)/C upfront definition of components and their interfaces

(not standard)
semantic C/(P) checked during integration testing – potentially using

functional groups in parallel with replacement for the
rest of the system

protocol C checked during integration testing
dataflow C/(P) checked when programming and compiling the integra-

ted code, checked during integration testing – poten-
tially using functional groups in parallel with replace-
ment for the rest of the system

real-time compatibility
local C scheduling analysis of the integrated tasks
distributed C/(P) using simulation techniques (later in the development

lifecycle) – potentially using functional groups in parallel
with replacement for the rest of the system

resource consumption
local C resource analysis of the integrated tasks and their code
distributed C analysis of the bus allocation for the integration of mul-

tiple nodes

(legend: FI = function integration – A = during abstraction – C = during composition – D = during

decomposition – P = during parallel development –).

2.4 Advanced Model-Based Solutions

A number of model-based approaches for the development of complex embedded
real-time systems have been proposed to avoid some of the problems encountered
for the standard approach for system development as outlined in the preceding
section. We will first review an industrial approach developed in the automotive
domain. The approach deals with some integration problems present in complex
and highly heterogeneous systems. In addition, we will discuss a particular aca-
demic proposal and a number of related approaches that try to address other
challenging integration problems.

2.4.1 AUTOSAR

AUTOSAR has been founded 2003 as an industrial standardization body for
the automotive industry and is now supported by all major car manufacturers,
their suppliers, semiconductor producers, and tool suppliers (see also [15, 16]).
AUTOSAR aims at the improvement of the software development and integra-
tion for Electronic Control Units (ECUs) by providing standards for software
architectures and software modeling techniques.

AUTOSAR responds to an increasing number of problems with the develop-
ment of ECUs, especially software development and software integration:

Traditionally manufacturers bought dedicated ECUs for dedicated functiona-
lities from ECU suppliers, e.g., an engine ECU or a left-door ECU. The increase
of functionalities has led therefore to an increase of the number of ECUs – rea-
ching numbers of up to 80 ECUs in some vehicles. A further increase of the
number of ECUs is hardly feasible: Function integration in such settings means

Model-Based Integration 37

integrating ECUs via communication busses; a feat which becomes more and
more difficult when the number of functionalities increases and functionalities
need to communicate intensively with each other.

This dilemma is solved by breaking with the tradition of equating functio-
nalities and hardware modules (i.e. ECUs). Instead software – not hardware –
becomes the means for implementing functionalities. This decouples the number
of ECUs from the increasing number of functionalities. But on the other hand
this entails changes in the development process: Manufacturers will not continue
to buy production-ready ECUs from suppliers. Instead they will buy software
modules, i.e. functionalities, and (generic) hardware platforms separately. So
function integration then means software integration.

In the automotive industry, software has so far not been a product; just finding
a pricing schema for software will therefore be a challenge in itself. Furthermore,
in the future several software functionalities must be integrated on one hardware
platform consisting of one or more interconnected ECUs. This will either be done
by traditional suppliers or by manufacturers which try to extend their fields of
competence – and try to become more independent from suppliers.

Another problem addressed by AUTOSAR is the testing and quality assurance
of the developed ECUs. Would it be just for the increasing number of ECUs,
the problem could be solved by also increasing the number of ECU tests. But
nowadays most functionalities communicate with other functionalities (which
may be on other ECUs) or high-level functionalities are even implemented by
combining already existing functionalities—being an example for the emerging
behavior described in Section 2.2.3.

Testing such distributed functionalities is difficult since all possible commu-
nication combinations between the building functionalities must be covered –
causing in the worst-case an exponential increase of necessary test cases. Tradi-
tional engineering fields such as electrical engineering have faced this problem
for decades and have mainly come up with three main solutions: (i) Systems are
decomposed into separate components, in doing so dependencies inbetween are
minimized – corresponding to the ideas from Section 2.2.3. (ii) Components are
tested separately. Tested and used components are then reused in later projects
– thus avoiding unnecessary and error-prone new implementations. (iii) Errors
are taken into consideration, e.g., by means of safety margins and diagnosis
functions.

AUTOSAR is trying to apply these ideas – to some extent – to automotive
software architectures. Generally speaking AUTOSAR comprises three main ac-
tivities:

(1) Introducing Software Component Models
(2) Standardizing Basic Software Modules
(3) Standardized Application Interfaces

Compared to the integration problems discussed in Section 2.2.2 in the current
release version 3.1 of AUTOSAR primarily syntactical aspects are supported
in the form of standardized interfaces for components and modules. Other key
issues like semantics, protocol integration or real-time properties are not covered.

38 H. Giese et al.

How other aspects can be included into the AUTOSAR standard is discussed
for the case of real-time properties in [17].

(1) Software Component Models
AUTOSAR introduces a software component model for automotive application
software. By this, AUTOSAR wants to facilitate (i) software reuse and (ii) soft-
ware exchange between different parties. Software components can either be
atomic (i.e. components implemented as C Code) or compositions which are for-
med by interconnected software components. In AUTOSAR all applications of
a vehicle are part of one overall software composition – i.e. independent of their
distribution on several ECUs. This top-level composition forms the vehicle’s
software architecture. From a software developer’s point of view, AUTOSAR
software components mainly introduce standardized C-APIs to communicate
with other software components, either on the same ECU or via the communi-
cation bus. No direct calls to C code contained in other software components
or to C code of basic software modules such as drivers are allowed anymore.
This makes the software independent of other components, hardware and basic
software modules – and hence reusable. By using APIs in form of C-APIs not
only syntactical aspects but also technological ones are treated.

These standardized C-APIs are based on a classical port concept. I.e. a soft-
ware component A will not send a signal directly to software component B
anymore; e.g., it will not directly call a method B receiveSignal(). Instead A
sends this signal to one of its own ports; ports being just proxies for other soft-
ware components. A software architect later on connects (normally in a modeling
tool) A’s port to the corresponding receiving port of B. The same concept is used
to connect software components to basic software modules such as I/O drivers,
the COM stack, or error management modules.

The usage of standardized C-APIs to communicate with a component’s en-
vironment has several advantages: Applications become reusable, hardware and
basic software dependencies are eliminated, communications become clearly vi-
sible. But on the other hand, standardized C-APIs also mean that (i) existing
C code must be wrapped or modified and (ii) existing tool chains such as code
generators must be adapted. These changes to the development process may well
delay the introduction of new AUTOSAR concepts.

This leaves one key question unanswered. How are A and B connected on
the C code level? Who generates the gluing code to implement the signal trans-
fer from A’s sending port to B’s receiving port? In AUTOSAR this is done
by a middleware layer, the so-called Run-Time Environment (RTE). The RTE
comprises the C code for the definitions of the C-API commands used within
software components. Since resource consumption and process usage are impor-
tant for ECU software development, this RTE code is generated for each ECU
individually.

Here two key concepts of software integration can be seen implemented:
(i) Software components and compositions are an example for composition and
decomposition (see Section 2.2.3). (ii) The standardized C-API generated by the
RTE abstracts the underlying hardware platform and is therefore an example

Model-Based Integration 39

of abstraction (see Section 2.2.3). Thus, the AUTOSAR framework supports
the composition and decomposition at the same conceptual level using software
components and compositions, while the RTE is an example where abstraction
is used in case of a layered architecture to allow the decomposition of the system
at different conceptual levels like discussed in Section 2.2.1.

From a process point of view, application software components and compo-
sitions are modeled first and then mapped onto ECUs – ECUs and their basic
software can also be described by AUTOSAR. The developer then connects the
application software components to basic software modules such as I/O drivers
or the operating system. These basic software modules also have to be configured
appropriately. E.g., tasks have to be defined for the operating system. Then the
RTE can be generated which connects software components to other software
components and to basic software modules.

(2) Standardized Basic Software
AUTOSAR also standardizes the C-API and the configuration files for ECU ba-
sic software modules such as I/O drivers, COM stack, operating system, error
manager, mode management, and network management. One goal was to make
basic software modules interchangable, i.e. a COM stack from provider 1 should
be used with an operating system from provider 2. Furthermore configuration
settings should become more reusable, i.e. the configuration files from an older
project (where provider 1 was used), should also be usable for a newer project
(where provider 2 is used). The introduction of standardized basic software mo-
dules also eases the implementation of the RTE because the to-be abstracted
basic software becomes more uniform.

The basic software modules are organized into several layers, making them
an example for the vertical abstraction described in Section 2.2.3 supporting
syntactical as well as technological aspects.

(3) Standardized Application Interfaces
Another activity from AUTOSAR is the standardization of the APIs for ap-
plication software components. E.g. the interior light control software used by
different manufacturers should have the same API. By this, manufacturers and
suppliers hope for fewer redundant implementations of the same functionality
by different software providers and for easier integration processes. Of course,
only commodity modules are standardized—no standardization is planned in
competitive areas.

As model-based integration is the key issue here, it is worth reviewing the AU-
TOSAR approach with regard to improvements of the ECU integration process.
First of all, several integration steps exist: basic software integration, ECU inte-
gration, and ECU system integration. In the following, AUTOSAR’s contribution
to these integration steps are assessed using the categories from Figure 2.1.
Basic Software Integration: Basic software is composed of different software
modules: operating system, drivers, services, and communication stack – most
of these modules are further decomposed into different submodules. AUTOSAR
makes the integration of these modules into one basic software layer easier by

40 H. Giese et al.

means of syntactical, technological and data flow agreements: (i) The decompo-
sition is standardized including the C-APIs between modules and (ii) configura-
tions are expressed using a standardized set of parameters – being an example
of the “Decomposition & Composition” principle of Section 2.2.3.

AUTOSAR does not address the key issue of semantic and protocol integra-
tion: In the standard, the precise behavior of the modules is not defined in a
formal way, leading to integration problems such as incorrect emerging beha-
vior – especially since the basic software is implemented by different software
suppliers. This problem is worsened by the large number of interacting and
behavior-influencing parameters. Furthermore real-time issues are not modeled
in a satisfying manner, leading to problems with the temporal features of the
integrated software system.

All these drawbacks lead to situations where, e.g., one basic software layer
from software supplier A behaves differently to an equally configured basic soft-
ware layer of supplier B – a situation rendering the reuse of configurations and
the exchange of software modules almost useless. A solution could be a precise,
executable model of the basic software behavior including the effects of parame-
ter settings.
ECU Integration: In this step, the application software components on one
ECU are integrated with each other and with the basic software layer. Unlike
with the basic software, the decomposition and the C-API cannot be standardi-
zed in most cases – except for AUTOSAR’s limited “ Standardized Application
Interfaces” activity explained above. This make the application of the “Decompo-
sition & Composition” principle harder, in fact the interface (and port) principle
from Section 2.2.3 must be used: modules (i.e. components) do not refer directly
to each other but refer indirectly to each other via ports and interfaces. The
data flow between modules is modeled by means of connections between ports;
at run-time these connections are implemented by the RTE middleware (see
above). So again, AUTOSAR solves to some extent the syntactic, technological
and data flow integration problem (see Figure 2.1).

The introduction of the component/interface software engineering pattern
causes the need for explicit software architectures; which in turn causes the need
for software architects, for a separate software design step in the development
process and for appropriate tools. This significant change to the development
process is one of the challenges when AUTOSAR is introduced: Software ar-
chitecture models must be synchronized with existing models (e.g., behavior
models), new tools must be tested, and new development teams must be esta-
blished.

Just like with the basic software integration, semantic, protocol, real-time,
and resource consumption integration problems are not addressed sufficiently.
I.e. predictions about the functional and real-time behavior of the integrated
ECU cannot be made. Since AUTOSAR does not cover algorithmic models, a
solution to the semantic and protocol problem cannot be expected.

Predicting the precise resource consumption of the ECU (i.e. processor and
memory usage) of the integrated software is another unsolved but highly relevant

Model-Based Integration 41

issue. Estimation techniques and simulation approaches might help in the future
to ease this problem.
ECU System Integration: In this final step, the ECUs are integrated into the
overall ECU network. The main agreement or contract between the ECUs is the
communication configuration, i.e. the messages and signals used to transport in-
formation on the communication network. In traditional development processes,
this configuration is defined first – and it is defined manually. In AUTOSAR,
this configuration is derived automatically from the mapping of the software
architecture on the hardware topology. This eases the integration since software
architecture and network configuration are therefore synchronized automatically
– an example of the synchronization principle of Section 2.2.3.

Real-time problems such as too high message delays on the network are not
addressed. Neither are resource consumption problems such as too-high network
loads. Again, due the lack of behavior models in AUTOSAR, problems concer-
ning the dynamic interaction between ECUs (semantic and protocol problems)
cannot be expected to be solved by AUTOSAR. Dependability issues such as
redundancy are also relevant but are currently not solved satisfyingly by AU-
TOSAR.

AUTOSAR is continuing to extend the standard (see, e.g., [18]). Currently
AUTOSAR works on topics such as variant management, MultiCore support,
functional safety, and the modeling of timing information such as end-to-end ti-
ming on the application level – this may ease the real-time integration problems.

This short overview of AUTOSAR’s role in the automotive software inte-
gration process shows that AUTOSAR helps mainly with statical, functional
integration problems such as syntactic, data flow, or technology issues. Dyna-
mical problems such as semantic and protocol issues are not solved, neither are
non-functional issues such as the estimation of resource consumptions. So AU-
TOSAR is not the “golden bullet” for integration but only a first step towards
a software-aware development process in the automotive industry.

Several studies have shown that AUTOSAR requires significant changes of
the development processes and of current business models: Software becomes a
product, software models must be created, new roles – e.g., a software architect
– must be established, manufacturers try to become software integrators, and
new tools must be introduced.

This leads to a problem that goes beyond simple missing features of AU-
TOSAR such as insufficient support for dynamic, real-time or non-functional
integration aspects like in the case of needed resources: AUTOSAR’s approach
to software engineering has been, from the very beginning on, based on the
component-oriented software engineering paradigm – mainly influenced by the
EAST project (see [19]). This paradigm requires an explicit software architecture
defined as inter-communicating software components. And it requires therefore
an explicit software architect, an explicit tool chain for software architectures,
explicit verification and testing strategies for software architectures, and espe-
cially an explicit software architecture design step in the development process.

42 H. Giese et al.

Table 2.6. Coverage of integration aspects using AUTOSAR

Integration problems AUTOSAR Explanation
technological D/E/S C-APIs; provides standardized platform and supports

code generation; code generation for the implementa-
tion of the RTE provided by tools

syntactical D/A/E AUTOSAR standardized APIs and means to define com-
ponents and ports; virtual function bus provides realiza-
tion; provides layered architecture with interfaces bet-
ween

semantic C checked during integration testing
protocol C checked during integration testing
dataflow C checked when programming and compiling the integra-

ted code, checked during integration testing
maintainability D/A decomposition the software architecture; abstraction via

standardized interfaces between different layer
real-time compatibility

local C scheduling analysis of the integrated AUTOSAR/OSEK
tasks

distributed C using simulation techniques later in the development
lifecycle

resource consumption
local C resource analysis of the integrated tasks and their code
distributed C analysis of the bus allocation for the integration of mul-

tiple nodes

(legend: A = during abstraction – C = during composition – D = during decomposition – E = during
enrichment –

S = by synthesis)

While these requirements can be met in classical computer science domains
such as business software or telecommunication, this must not be true for the
automotive software development. This domain possesses an established develop-
ment process based on ideas from control theory and signal processing – and it
possesses an adequate established tool chain and adequately trained developers.
So one might ask whether AUTOSAR should have chosen a software architec-
ture paradigm leveraging established procedures. And one might ask whether,
instead of choosing a software architecture approach from a technical (compu-
ter science) point of view, AUTOSAR should have chosen an approach which
would minimize changes to existing development processes and which would ex-
ploit strengths of automotive’s long-term and successful software development
history.

To give an example: Data-centric software engineering approaches (see [20, 21]
for details) couple software components via a signal repository. Components may
either write or read signals in the repository. Unlike with component-oriented
approaches, no explicit software architectures are required – and therefore no
separate tool chains and fewer changes to development processes are needed. And
such an approach also resembles the existing automotive development process
where ECUs communicate via communication buses, i.e. via a common pool of
bus signals. Of course, this does not mean that a data-centric approach would
solve all problems. But it may serve as an example that fundamentally different
alternatives would have existed and might have demanded fewer changes to the
established development process.

Model-Based Integration 43

2.4.2 MECHATRONIC UML

As outlined in Section 2.3.2, the current practice for model-based development
of software components with hard real-time constraints – whether AUTOSAR
is employed or not – is characterized by the following step-wise partially manual
process (1) Specification, (2) Partitioning, (3) Implementation, and (4) Integra-
tion which has to be repeated when the integration is not able to fulfill the
required real-time constraints.

Consequently, it would be attractive to extend the idea of model-driven archi-
tecture (MDA) [22, 23] to design software for embedded hard real-time systems.
When using MDA for such systems, the developer would have to specify the so-
called Platform-Independent Model (PIM) which describes the system behavior
including the real-time constraints which must be met. Ideally, a tool would then
automatically partition the specification and map it to the Platform-Specific
Model (PSM), based on a Platform Model (PM) that provides details about
the target platform. The PSM describes the active objects and their schedu-
ling parameters which are required to implement the system behavior, specified
by the PIM. In the next step, the PSM would be compiled automatically into
the platform-specific implementation which guarantees a correct implementa-
tion of the PIM’s semantics. The implementation would guarantee the real-time
constraints by construction and thus, no verification of the real-time constraints
is required. This would make the above mentioned manual steps (3) Implemen-
tation and (4) Integration unnecessary. However, the UML standard as well as
proposed extensions for embedded real-time systems [24, 25, 26, 27, 28, 29, 30, 31]
fail to provide a proper basis for this as the suggested models are not sufficient
to talk about platform-independent real-time behavior.

The Mechatronic UML approach (mUML) [32] in contrast provides the
missing platform-independent real-time models and also supports MDA for em-
bedded real-time systems [33]. Therefore, by applying mUML the sketched ite-
rative manual process often followed today in practice can be avoided by using
the automatic mapping of a PIM to a PSM that is appropriate for real-time sys-
tems. In addition to (1) MDA for embedded real-time systems, mUML provides
support for two particular problematic cases for integration embedded real-time
systems: (2) the real-time coordination of embedded real-time systems and (3)
their safety analysis. Tool support for (mUML) is provided in the form of the
Fujaba real-time tool suite, which offers a wide range of UML based diagrams,
the appropriate extension for the specification of real-time properties as well as
modelchecking and consistency analysis support [34].

(1) MDA for Embedded Real-Time Systems
The structure of embedded real-time systems consist of a complex architecture of
components. UML [35] despite it shortcomings can be considered as the standard
to model complex software systems even in the real-time domain [28, 29, 30,
31]. mUML therefore supports to specify the architecture and complex real-
time communication between the components by UML component diagrams
and patterns respectively [36].

44 H. Giese et al.

The semantics of the UML State Machines assumes the transitions to be fired
within zero-time cannot be realized in practice and the pragmatic interpretation
that zero-time means fast enough is only helpful in simple systems where a single
periodic deadline can characterize for the whole state machine and it states
what fast enough means. Therefore, in mUML Real-Time Statecharts (RTSC)
[32, 37] extend UML State Machines to allow the explicit specification of the
really required timing. Transitions are not assumed to fire infinitely fast, which
is unrealistic on real physical devices (especially when considering the execution
of the actions attached to the transitions), but it is possible to specify deadlines
for each transition which in turn determine what fast enough really is. Similar to
the notion in timed automata [38, 39] clocks and clock invariants are employed
to describe when transitions are enabled and what the minimum time and the
maximum time (d0, tans) for finishing the execution of a transition has to be
(more details see [33]).

Generating a PSM, consisting of active objects and deadlines, that guarantee
the real-time constraints as specified in the model is of course only possible,
when the model does not contain any conflicts between the declarative elements
such as time guards and time invariants. A possible conflict is, for example,
when multiple real-time constraints are contradicting and thus no behavior exists
which fulfills them (time-stopping deadlock). To exclude such conflicts, the full
state space of a Real-Time Statechart model has to be checked in the general
case. As outlined in [33], model checking with UPPAAL and static analysis
techniques can be employed to exclude such conflicts.

In order to generate the PSM, WCETs are required for all actions (side effects,
entry(), exit(), and do()- operations) and for the elementary instructions that
build the code fragments realizing the Real-Time Statechart behavior (e.g. che-
cking guards, raising events, etc.).

As the WCETs are platform-dependent, we first deploy our components (whose
behavior is each specified by a Real-Time Statechart) by a UML deployment dia-
gram. In such a deployment diagram, we assign the component instances of our
systems to dedicated nodes and the cross node links to available network connec-
tions in form of busses or direct communication links. Given such an assignment,
we can further look into the specific characteristics of the different nodes as des-
cribed in the platform model.

To analyze the resulting model with platform-specific annotations, we extend
our timed automata model for model checking as well as our static analysis
technique such that it also reflects the WCET behavior of the side effects of the
transitions (cf. [33]).

After modeling and analyzing the PIM with components and Real-Time Sta-
techarts and specifying the platform-specific WCET information in the PM and
the deployment, we have to map the components and links to active objects and
to network and communication links to come up with the final platform-specific
model. In our case the PSM can be described by the UML Profile for Schedu-
lability, Performance, and Time [29], as it allows the specification of priorities,
periods, and deadlines for active objects. We use it as a platform-specific model,

Model-Based Integration 45

as these values, which we derive automatically from the platform-independent
model, are different for different platforms. For such a PSM we can derive code
that guarantees the in the PIM and PSM specified timing constraints for Real-
Time Java and C++.

While mUML has been developed in the context of a research project different
case studies have been realized like described in [40] using an evaluation platform
equipped with a 40Mhz PowerPC processor. For the derivation ofWCETs the tool
Bound-T6 has been employed within the evaluation example described in [41].

Table 2.7. Coverage of integration aspects using mUML

Integration problems mUML Explanation
technological D* platform-independent model and code generation for

map those the a specific platform (*but only realized
for one)

syntactical D/C models capture components and ports; mapping to
code provides realization

semantic (D) model checking of the models prevent some semantic
integration problems

protocol D model checking of the models exclude protocol-related
integration problems

dataflow D dataflow part of the interface and modular syntax
checks guarantee proper dataflow specification

dependability
safety D compositional hazard analysis of the models enable up-

front guarantees; requires HW reliability data
real-time compatibility

local S generated task periods and scheduling analysis guaran-
tee correct timing

distributed D generated local tasks plus model checking guarantee
correct distributed timing

resource consumption
local
distributed

(legend: A = during abstraction – C = during composition – D = during decomposition – S = by synthesis).

(2) Correct Real-Time Coordination
As mUML further provides a compositional verification approach for the real-
time coordination of systems of systems with reconfiguration [36, 42, 43, 44]. It
further allow the model-based analysis of interoperability problems for the func-
tional and real-time behavior. By extending UML components the syntactical
compatibility (data, operations, ...) and semantic compatibility (data, opera-
tions, ...) is guaranteed while a run-time environment guarantees technological
compatibility. In [45] is outlined how mUML interfaces also take care of the
execution order of dataflow computations employed for evaluating control al-
gorithms. The extended port specifications by means of RTSC together with
the mentioned verification further ensure protocol compatibility (non uniform
service availability, synchronization) and real-time compatibility.

(3) Safe Real-Time Systems
In addition, an approach for a compositional safety analysis [46, 47] permits to do
a model-based upfront analysis of the resulting system safety when decomposing
6 http://www.tidorum.fi/bound-t/

46 H. Giese et al.

the systems into components in the form of an architecture. Therefore, safety
issues have not to be addressed later when integrating the components into the
overall system.

To sum-up, Table 2.7 provides an overview of the integration problems more
or less covered by the mUML approach. Like mentioned before mUML has been
developed in the context of a research project. While several studies have shown
the applicability of the approach a coherent professional tool chain currently
does not exist.

2.4.3 Other Approaches

A number of other approaches using models that also address several of the
integration problems outlined in Figure 2.1. We will provide only a sketch of their
benefits in the following text and refer to the referenced literature resp. chapters
for more information.

Infrastructure Abstraction
Several approaches address like mUML the problem that real-time issues can
in the traditional approach only be addressed rather late and that the resolu-
tion of related integration problems can become quite costly. The time-triggered
approach [48] addresses this problem at the hardware and network level and
provides a platform where the different real-time communication issues can be
clearly separated with respect to time and dependability. An approach which
similar to mUML address the timing problem at a single node is Giotto [49] as
well as its successor TDL (see Chapter 5). Here a virtual machine guarantees
that time constraints specified in the specification are guaranteed by the execu-
tion environment also allowing the higher level abstractions to be analyzed to
detect protocol compatibility problems.

Other approaches try to synthesize a proper task allocation from a given
software model [50] in order to meet the timing requirements. In addition, besides
avoiding the integration problem a model-based analysis of the composition of
distributed real-time embedded system may also be simply beneficial by enabling
an earlier analysis [51].

An approach targeting to an earlier analysis concerning the later used HW
infrastructure, including multiple nodes and the communication path between
them is described in [52]. Virtual execution platforms, which represent the la-
ter used HW infrastructure, are used to provide an execution environment for
simulation purpose, taking characteristics like the execution time into account.

An approach somehow in the middle is platform-based design [53] where no
full abstraction is provided but instead the stepwise realization of higher-level
abstractions by means of underlying platform components are the main design
step. This often allows to reduce the integration problems as designs are derived
by proper combinations of components with some degree of built-in compatibility
as they together represent a platform and not a ragtag group of components. In
some cases even correctness-by-construction can be achieved [54] by means of a
platform-based approach.

Model-Based Integration 47

The problem is also related to problem of heterogeneity (technology as well as
semantics) which is in particular problematic when the artifacts to be integrated
have not been decomposed upfront with the same model of computation (see
Chapter 1).

Interfaces and Component Models for Integration
Like advocated in AUTOSAR and the mUML approach, interfaces and com-
ponent models are a suitable concept to address integration issues upfront when
decomposing a system. Related approaches propose extended interface for com-
ponent-based design [55, 56] also covering stateless and stateful protocol beha-
vior as well as real-time behavior. In [57], like in [45] for mUML, interfaces that
take care of the execution order of dataflow as employed for computing control
algorithms are presented.

One more component-oriented approach is the rich component model [58] that
has been proposed mainly targeting reuse but also support early checking to
avoid integration problems. Another is the Behavior-Interaction-Priority (BIP)
component framework [59, 60] that can ensure the proper deadlock-free com-
position using a much simpler check of the resulting dependency graph rather
than the complete component synchronization and thus permits to do it upfront
when decomposing a system.

In [3] several approaches are discussed that provide specific DSLs for com-
ponent models (EAST-ADL and AADL): For example, AADL [4] is a DSL for
the development of embedded real-time systems which supports the description
and analysis of the system architecture addressing the integration of SW and HW
parts which can be developed by different stakeholders. EAST-ADL is a DSL
and architecture description language which is based on UML and SysML. One
key aspect of EAST-ADL is the usage of abstraction and an according system
model is structured with several abstraction layers. The EAST-ADL language
can be used within a tool, like it is done in the form of Papyrus for EAST-ADL.

Integrated Model-Based Development
Another thread of work focuses on a proper representation of all required sys-
tem characteristics by means of models and their consistent further elaboration.
In [3] several approaches are discussed that provide tool support (Fujaba [5],
GeneralStore [61], ToolNet [62] and IDM [63]) for the integrated model-based
development of embedded systems.

For keeping the different models, potentially used in different tools consistent,
model-transformation and model-synchronization techniques can be used. In [64]
the authors describe how modelsynchronization is used to keep AUTOSAR and
SysML models consistent.

In addition in [65] model-integrated computing (MIC) as a paradigm to ad-
dress the integration problems for embedded real-time systems. In [66] it is
advocated that the MIC approach employing a number of domain-specific lan-
guages (DSL), supporting the proper consistency of the different model, doing
frequent model analysis by mapping these models to available analysis tools, and
generating refined models as well as code (synthesis) can help to substantially

48 H. Giese et al.

reduce the later experienced integration problems. In [67] an implementation of
model-based integration for the development of avionics systems is evaluated.
Within this evaluation the benefits of the Model-Based Integration of Embed-
ded Software (MoBIES) development process7 and a special DSL (ESML) for
the development of avionic systems are evaluated.

2.5 Summary

If we review the presented results, we can conclude that a number of promising
approaches for different problems exist, while no solution for the overall pro-
blem seems available. This impression is also confirmed by the coverage of the
integration problems summarized in Table 2.8.

Table 2.8. Coverage of integration aspects by the different approaches

Integration problems FD FI AU-
TOSAR

mUML Other approaches

technological A/E(S) A/C D/E/S (D)

syntactical D/C A/(D)/C D/A/E D(UML) D [55, 56, 59, 60]

semantic D/E(S)/P C/P C D(UML) D [55, 56, 59, 60]

protocol C C D D [55, 56, 59, 60]

dataflow A/E(S)/P C/(P) C D D [57]

dependability/ quality of
service

reliability (C)

availability (C)

safety (C) D D [58]

security (C)

maintainability D

real-time compatibility

local E/P C C S S [49], see TDL in
Chapter 6

distributed C/(P) C D D [56, 58], S [48, 50]

resource consumption

local E/P C C

distributed C C D [48]

(legend: FD = function development – FI = function integration A = during abstraction – C = during

composition – D = during decomposition – E = during enrichment – P = during parallel development – S = by

synthesis).

If we review the summary of the findings depicted in Table 2.8, we can make
the following specific observations:

– It seems that the need for support of the functional integration problem at
the technological and syntactical level has been identified also in industry and
AUTOSAR or related approaches start to address them in a standardized
manner.

7 A project funded by the Defense Advanced Research Projects Agency (DARPA).

Model-Based Integration 49

– In contrast semantic, protocol or dataflow issues are at first addressed by
academic research projects but in practice they are addressed rather late if
at all (compare Section 2.3). Here it seems beneficial if the existing research
results could be transferred into industrial strength solutions to minimize the
integration costs by addressing these issues earlier in the development life
cycle. However, as these issues related to some extent to formal modeling,
it is not clear whether such a transfer is really possible taking the existing
workforce and their educational background into account.

– The integration of non-functional dependability resp. quality-of-service as-
pects is besides safety not very well covered either by industrial nor research
approaches. This is probably due to the fact that these are often system
properties which could not be easily established using in a compositional
manner and indicates that these topics require much more attention from
the research community.

– Concerning real-time compatibility we can observe that several well-suited
research results have been achieved and some of them are in a transition
phase to industrial praxis (e.g., see TDL in Chapter 5). These solution pro-
mises to ease the integration efforts considerably as they permit to exclude
that the integration problems are detected rather late resulting in enormous
costs due to the required rework of the integrated solutions.

– Finally, the resource consumption is a currently rather superficially covered
aspect. However, the importance of hardware costs in fields like the auto-
motive domain as well as the increasing importance of energy efficient and
resource-aware solutions will make this aspect another highly relevant re-
search topic. Here also the problem seems to be that resource consumption
is a system property that is not easily addressed in a compositional manner.

If we take a look at the overall picture, we can see that handling an integration
problem at composition time (C) as advocated in the traditional functional de-
velopment and functional integration is in principle always possible. However,
there is a clear trend that model-based integration results in a front loading
where instead of costly efforts to handle integration problems after the fact
these problems are upfront addressed by decomposition/composition (D), abs-
traction/enrichment (A) or parallel development & consistency (P). The more
mature approaches are those ones where instead of checking integration pro-
blems late when combining the different system constituents, the seperation in
the form of decomposition or abstraction provides already the basis to exclude
or limit most of these problems upfront (see also [9] for a related observation
based on several industrial studies).

However, it also became apparent that besides mUML and rich components
[58] most approaches provide a rather isolated solution to one integration problem.
Therefore, the main challenge for integration seems to be establishing a compre-
hensive solution that coversnot only the rather simple problems such as syntax and
technology compatibility but also most of the challenging aspects such as protocol
compatibility, dataflow compatibility and real-time behavior. As most proposals
for these advanced integration concepts have not yet been employed thoroughly in

50 H. Giese et al.

industrial practice and may have contradicting constraints, it is not clear whether
such an ”integration of advanced integration concepts” is really feasible.

Therefore, the current challenge is not only to develop better solutions of the
outlined separate integration problems (cf. Figure 2.1) but also to combine the
existing solutions into overall integration approaches that provide a coherent
solution that covers all required integration problems. It can be expected that
suitable overall integration approaches have to be tailored for the specific domain
of embedded real-time systems such as AUTOSAR while its ingredients will often
be applicable in several domains.

Acknowledgements

We thank Ingolf Krüger and Florence Maraninchi for their feedback on earlier
versions of the paper.

References

[1] Lane, J.A., Boehm, B.: System of systems lead system integrators: Where do they
spend their time and what makes them more or less efficient? Systems Enginee-
ring 11(1), 81–91 (2008)

[2] Sage, A.P., Lynch, C.L.: Systems integration and architecting: An overview of
principles, practices, and perspectives. Systems Engineering 1(3), 176–227 (1998)

[3] Chen, D., Torngren, M., Shi, J., Gerard, S., Lonn, H., Servat, D., Stromberg, M.,
Arzen, K.E.: Model integration in the development of embedded control systems
- a characterization of current research efforts. In: 2006 IEEE International Sym-
posium on Computer-Aided Control Systems Design, October 4-6, pp. 1187–1193
(2006)

[4] Feiler, P., Gluch, D., Hudak, J.: The architecture analysis & design language
(aadl): An introduction. Technical Report CMU/SEI-2006-TN-011, Software En-
gineering Institute, Carnegie Mellon University, Pittsburgh, PA, USA (2006)

[5] Burmester, S., Giese, H., Niere, J., Tichy, M., Wadsack, J.P., Wagner, R., Wen-
dehals, L., Zündorf, A.: Tool Integration at the Meta-Model Level within the FU-
JABA Tool Suite. International Journal on Software Tools for Technology Transfer
(STTT) 6(3), 203–218 (2004)

[6] Mosterman, P.J., Ghidella, J., Friedman, J.: Model-based design for system inte-
gration. In: Second CDEN International Conference on Design Education, Inno-
vation, and Practice, Kananaskis, Alberta, Canada, July 18-20 (2005)

[7] Dijkstra, E.W.: On the role of scientific thought, pp. 60–66. Springer, New York
(1982)

[8] Parnas, D.L.: On the Criteria To Be Used in Decomposing Systems Into Modules.
Communications of the ACM 15(12), 1053–1058 (1972)

[9] Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of
software product lines, global development and ecosystems. Journal of Systems
and Software 83(1), 67–76 (2010) (SI: Top Scholars)

[10] Küster, J.M., Engels, G.: Consistency management within model-based object-
oriented development of components. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 157–176. Springer,
Heidelberg (2004)

Model-Based Integration 51

[11] Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling 8(1) (March 2009) (online
first: 3/2008)

[12] Mellor, S., Scott, K., Uhl, A., Weise, D.: MDA Distilled: Principles of Model-
Driven Architecture. Addison-Wesley, Reading (2004)

[13] Watkins, C.B.: Modular Verification: Testing a Subset of Integrated Modu-
lar Avionics in Isolation. In: 25th Digital Avionics Systems Conference, 2006
IEEE/AIAA, Portland, OR, IEEE Xplore (2006)

[14] Broekman, B., Notenboom, E.: Testing Embedded Software. Addison-Wesley,
Reading (2003)

[15] AUTOSAR: Web page, http://www.autosar.org/
[16] Fennel, H., Bunzel, S., et al.: H.H.: Achievements and Exploitation of the AU-

TOSAR Development Partnership. In: Convergence, Detroit, USA (2006) (SAE
2006-21-0019)

[17] Richter, K.: On the Complexity of Adding Real-Time Properties to the AUTO-
SAR Software Component Model. In: Proc. of the 4th Workshop on Object-
oriented Modeling of Embedded Real-Time Systems (OMER 4), Paderborn, Ger-
many (October 2007)

[18] Fürst, S.: AUTOSAR - A World Wide Standard is on the Road. In: 14th In-
ternational VDI Congress Electronic Systems for Motor Vehicles, Baden-Baden,
Germany (October 2009)

[19] Lönn, H.: Far east: Modeling an automotive software architecture using the east
adl. In: ICSE 2004 workshop on Software Engineering for Automotive Systems,
SEAS (2004)

[20] Oki, B., Pfluegl, M., Siegel, A., Skeen, D.: The information bus: an architecture
for extensible distributed systems. In: SOSP 1993: Proceedings of the fourteenth
ACM symposium on Operating systems principles, pp. 58–68. ACM, New York
(1993)

[21] Pardo-Castellote, G.: OMG Data-Distribution Service: Architectural Overview.
In: International Conference on Distributed Computing Systems Workshops, p.
200 (2003)

[22] Allen, P. (ed.): The OMG’s Model Driven Architecture. Component Development
Strategies, The Monthly Newsletter from the Cutter Information Corp. on Ma-
naging and Developing Component-Based Systems, vol. XII (January 2002)

[23] Object Management Group: MDA Guide Version 1.0, Document omg/2003-05-01
(May 2003)

[24] Selic, B., Gullekson, G., Ward, P.: Real-Time Object-Oriented Modeling. John
Wiley & Sons, Inc., Chichester (1994)

[25] Awad, M., Kuusela, J., Ziegler, J.: Object-Oriented Technology for Real-Time
Systems: A Practical Approach Using OMT and Fusion. Prentice Hall, Englewood
Cliffs (1996)

[26] Douglass, B.P.: Real-Time UML: Developing Efficient Objects for Embedded Sys-
tems, 2nd edn. The Addison-Wesley Object Technology Series. Addison-Wesley,
Reading (October 1999)

[27] Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with
UML. Addison-Wesley, Reading (January 2000)

[28] Bichler, L., Radermacher, A., Schürr, A.: Evaluation uml extensions for mode-
ling realtime systems. In: Proc. on the 2002 IEEE Workshop on Object-oriented
Realtime-dependable Systems, WORDS 2002, San Diego, USA, pp. 271–278.
IEEE Computer Society Press, Los Alamitos (2002)

http://www.autosar.org/

52 H. Giese et al.

[29] Object Management Group: UML Profile for Schedulability, Performance, and
Time Specification. OMG Document ptc/02-03-02 (September 2002)

[30] Gu, Z., Kodase, S., Wang, S., Shin, K.G.: A Model-Based Approach to System-
Level Dependency and Real-Time Analysis of Embedded Software. In: The 9th
IEEE Real-Time and Embedded Technology and Applications Symposium, To-
ronto, Canada (2003)

[31] Masse, J., Kim, S., Hong, S.: Tool Set Implementation for Scenario-based Mul-
tithreading of UML-RT Models and Experimental Validation. In: The 9th IEEE
Real-Time and Embedded Technology and Applications Symposium, Toronto,
Canada (May 2003)

[32] Burmester, S., Giese, H., Tichy, M.: Model-Driven Development of Reconfigurable
Mechatronic Systems with Mechatronic UML. In: Aßmann, U., Aksit, M., Ren-
sink, A. (eds.) MDAFA 2003. LNCS, vol. 3599, pp. 47–61. Springer, Heidelberg
(2005)

[33] Burmester, S., Giese, H., Schäfer, W.: Model-driven architecture for hard real-time
systems: From platform independent models to code. In: Hartman, A., Kreische,
D. (eds.) ECMDA-FA 2005. LNCS, vol. 3748, pp. 25–40. Springer, Heidelberg
(2005)

[34] Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The Fujaba Real-
Time Tool Suite: Model-Driven Development of Safety-Critical, Real-Time Sys-
tems. In: ICSE 2005: Proceedings of the 27th International Conference on Software
Engineering, pp. 670–671. ACM Press, New York (2005)

[35] Object Management Group: UML 2.0 Superstructure Specification. Document:
ptc/04-10-02 (convenience document) (October 2004)

[36] Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Composi-
tional Verification of Real-Time UML Designs. In: Proc. of the European Software
Engineering Conference (ESEC), Helsinki, Finland. ACM Press, New York (2003)

[37] Giese, H., Burmester, S.: Real-Time Statechart Semantics. TechReport tr-ri-03-
239, University of Paderborn (2003)

[38] Larsen, K., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. Springer International
Journal of Software Tools for Technology 1(1) (1997)

[39] Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic Model Checking for
Real-Time Systems. In: Proc. of IEEE Symposium on Logic in Computer Science
(1992)

[40] Tichy, M., Giese, H., Seibel, A.: Story Diagrams in Real-Time Software. In: Giese,
H., Westfechtel, B. (eds.) Proc. of the 4th International Fujaba Days, Bayreuth,
Germany. Volume tr-ri-06-275 of Technical Report. University of Paderborn, pp.
15–22 (September 2006)

[41] Henkler, S., Oberthur, S., Giese, H., Seibel, A.: Model-Driven Runtime Resource
Predictions for Advanced Mechatronic Systems with Dynamic Data Structures.
In: Proc. of 13th International Symposium on Object/component/service-oriented
Real-time distributed Computing (ISORC), May 5-6. IEEE Computer Society
Press, Los Alamitos (accepted 2010)

[42] Burmester, S., Giese, H., Hirsch, M., Schilling, D.: Incremental Design and Formal
Verification with UML/RT in the FUJABA Real-Time Tool Suite. In: Proceedings
of the International Workshop on Specification and vaildation of UML models for
Real Time and embedded Systems, SVERTS 2004, Satellite Event of the 7th In-
ternational Conference on the Unified Modeling Language, UML 2004 (October
2004)

Model-Based Integration 53

[43] Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic Invariant Verifi-
cation for Systems with Dynamic Structural Adaptation. In: Proc. of the 28th In-
ternational Conference on Software Engineering (ICSE), Shanghai, China. (2006)

[44] Becker, B., Giese, H.: On Safe Service-Oriented Real-Time Coordination
for Autonomous Vehicles. In: Proc. of 11th International Symposium on
Object/component/service-oriented Real-time distributed Computing (ISORC),
May 5-7, pp. 203–210. IEEE Computer Society Press, Los Alamitos (2008)

[45] Burmester, S., Giese, H., Gambuzza, A., Oberschelp, O.: Partitioning and Mo-
dular Code Synthesis for Reconfigurable Mechatronic Software Components. In:
Bobeanu, C. (ed.) Proc. of European Simulation and Modelling Conference (ESMc
2004), Paris, France, pp. 66–73. EOROSIS Publications (2004)

[46] Giese, H., Tichy, M., Schilling, D.: Compositional Hazard Analysis of UML Com-
ponents and Deployment Models. In: Heisel, M., Liggesmeyer, P., Wittmann, S.
(eds.) SAFECOMP 2004. LNCS, vol. 3219, pp. 166–179. Springer, Heidelberg
(2004)

[47] Giese, H., Tichy, M.: Component-Based Hazard Analysis: Optimal Designs, Pro-
duct Lines, and Online-Reconfiguration. In: Górski, J. (ed.) SAFECOMP 2006.
LNCS, vol. 4166, pp. 156–169. Springer, Heidelberg (2006)

[48] Kopetz, H., Bauer, G.: The time-triggered architecture. Proceedings of the
IEEE 91(1), 112–126 (2003)

[49] Henzinger, T., Horowitz, B., Kirsch, C.: Giotto: a time-triggered language for
embedded programming. Proceedings of the IEEE 91(1) (January 2003)

[50] Wang, S., Shin, K.G.: Task construction for model-based design of embedded
control software. IEEE Trans. Software Eng. 32(4), 254–264 (2006)

[51] Madl, G., Abdelwahed, S.: Model-based analysis of distributed real-time embed-
ded system composition. In: EMSOFT 2005: Proceedings of the 5th ACM inter-
national conference on Embedded software, pp. 371–374. ACM, New York (2005)

[52] Krause, M., Bringmann, O., Hergenhan, A., Tabanoglu, G., Rosentiel, W.: Timing
simulation of interconnected AUTOSAR software-components. In: DATE 2007:
Proceedings of the conference on Design, automation and test in Europe, San
Jose, CA, USA, EDA Consortium, pp. 474–479 (2007)

[53] Sangiovanni-Vincentelli, A.: Defining platform-based design. EEDesign of EE-
Times (February 2002)

[54] Horowitz, B., Liebman, J., Ma, C., Koo, T., Sangiovanni-Vincentelli, A., Sastry, S.:
Platform-based embedded software design and system integration for autonomous
vehicles. Proceedings of the IEEE 91(1), 198–211 (2003)

[55] de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design.
In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp.
148–165. Springer, Heidelberg (2001)

[56] Thiele, L., Wandeler, E., Stoimenov, N.: Real-time interfaces for composing real-
time systems. In: EMSOFT 2006: Proceedings of the 6th ACM & IEEE Interna-
tional conference on Embedded software, pp. 34–43. ACM, New York (2006)

[57] Zhou, Y., Lee, E.A.: A causality interface for deadlock analysis in dataflow. In:
EMSOFT 2006: Proceedings of the 6th ACM & IEEE International conference
on Embedded software, pp. 44–52. ACM, New York (2006)

[58] Damm, W., Votintseva, A., Metzner, A., Josko, B., Peikenkamp, T., Böde, E.:
Boosting re-use of embedded automotive applications through rich components.
In: Proc. of Foundations of Interface Technologies 2005, FIT 2005 (2005)

[59] Gössler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput.
Program. 55(1-3), 161–183 (2005)

54 H. Giese et al.

[60] Bliudze, S., Sifakis, J.: The algebra of connectors: structuring interaction in bip.
In: EMSOFT 2007: Proceedings of the 7th ACM & IEEE international conference
on Embedded software, pp. 11–20. ACM, New York (2007)

[61] Reichmann, C., Markus, K., Graf, P., Müller-Glaser, K.D.: Generalstore - a case-
tool integration platform enabling model level coupling of heterogeneous designs
for embedded electronic systems. In: ECBS 2004: Proceedings of the 11th IEEE
International Conference and Workshop on Engineering of Computer-Based Sys-
tems, Washington, DC, USA, p. 225. IEEE Computer Society, Los Alamitos (2004)

[62] Altheide, F., Dörr, H., Schürr, A.: Requirements to a Framework for sustainable
Integration of System Development Tools. In: Stoewer, H., Garnier, L. (eds.) Proc.
of the 3rd European Systems Engineering Conference (EuSEC 2002), Toulouse,
AFIS PC Chairs, pp. 53–57 (2002)

[63] Karsai, G., Lang, A., Neema, S.: Design patterns for open tool integration. Soft-
ware and System Modeling 4(2), 157–170 (2005)

[64] Giese, H., Hildebrandt, S., Neumann, S.: Towards Integrating SysML and AU-
TOSAR Modeling via Bidirectional Model Synchronization. In: 5th Workshop on
Model-Based Development of Embedded Systems, MBEES (2009)

[65] Sztipanovits, J., Karsai, G.: Model-Integrated Computing. Computer 30(4), 110–
111 (1997)

[66] Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty: Model-integrated development of
embedded software. Proceedings of the IEEE 91, 145–164 (2003)

[67] Schulte, M.: Model-based integration of reusable component-based avionics sys-
tems - a case study. In: ISORC 2005: Proceedings of the Eighth IEEE International
Symposium on Object-Oriented Real-Time Distributed Computing, Washington,
DC, USA, pp. 62–71. IEEE Computer Society, Los Alamitos (2005)

Part II

Language Engineering

3 Metamodelling
State of the Art and Research Challenges

Jonathan Sprinkle1, Bernhard Rumpe2, Hans Vangheluwe3, and Gabor Karsai4

1 University of Arizona, Tucson, AZ, USA
sprinkle@ECE.Arizona.Edu

2 RWTH Aachen University, Germany
http://www.se-rwth.de

3 McGill University, Montreal, Canada
hv@cs.mcgill.ca

4 Vanderbilt University, Nashville, TN, USA
gabor.karsai@vanderbilt.edu

Abstract. This chapter discusses the current state of the art, and emer-
ging research challenges, for metamodelling. In the state-of-the-art re-
view on metamodelling, we review approaches, abstractions, and tools for
metamodelling, evaluate them with respect to their expressivity,
investigate what role(s) metamodels may play at run-time and how se-
mantics can be assigned to metamodels and the domain-specific mode-
ling languages they could define. In the emerging challenges section on
metamodelling we highlight research issues regarding the management
of complexity, consistency, and evolution of metamodels, and how the
semantics of metamodels impacts each of these.

3.1 Metamodelling: State of the Art

Models are powerful tools to express the structure, behavior, and other properties
in mathematics, each of the hard sciences and in all areas of engineering. While
models are very common, an explicit definition of a modelling language and an
explicit manipulation of its models is tightly connected to computer based tools.
Additional power can be gained by explicit definition and computer based mani-
pulation of models e.g. in CAD, control engineering, algebraic mathematics and of
course computer science. To be able to manipulate models, their language needs
to be specified as model of these models—metamodels. In this section, we des-
cribe the state of the art for metamodelling, including the metamodelling of data
structures, as well as the metamodelling of languages systems where appropriate.

3.1.1 Concepts in Metamodelling

Metamodelling (literally, “beyond Modelling”) is the Modelling of models. In
their most common use, metamodels describe the permitted structure to which
models must adhere [1]; although out of the scope of this chapter, meta-meta-
models formally describe metamodels, as they define the core abstractions

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 57–76, 2010.
� Springer-Verlag Berlin Heidelberg 2010

58 J. Sprinkle et al.

permitted in metamodelling. In fact, some metamodelling languages are self-
descriptive [2, 3]. A metamodel therefore describes the syntax of the models [4].
Through various extension mechanisms and additional rules with this represen-
tation of the syntax of models metamodels can also help to define the semantics
of models, as we discuss later. The layered approach to modelling (through me-
tamodelling) is depicted in Figure 3.1.

Model

Metamodel

Meta-metamodel

Semantic Artifacts
(e.g., code, simulation)

defines

defines

conforms to

conforms to

abstracts

implement

M0

M1

M2

M3

layer

layer

layer

layer

Fig. 3.1. The Four-layer metamodelling Architecture [5, 2, 6]. Some publications re-
verse the numbering of these layers, but we use this numbering, as platform transfor-
mations may create layers of arbitrary depth (e.g., M3 may in fact be models defined
in another layer M2).

In the four-layer approach (generalized to n-layers in the MDA, discussed
next) artifacts in each layer conform to, and/or are abstracted by the more
abstract layer adjacent (in this case, the layer with a lower subscript). Thus,
semantic artifacts in the M3 layer are abstracted in models from the M2 layer,
which in turn conform to the metamodels from the M1 layer. As these layers of
abstraction are traversed, the role of each abstraction layer changes.

For example, a model is an encoding of some application or design in a dif-
ferent abstraction. Metamodels constrain the structure (and perhaps behavior)
of models, but metamodels are relevant to all designs, not just a specific design.
A widely-known example of this is that an XML document conforms to some
type definition (either a DTD or XSD schema), but given only a schema, it is
not possible to recover a particular XML file. When modelling languages, a me-
tamodel basically needs to be considered a model of the abstract syntax of a
language.

In Figure 3.1 we mention semantic artifacts. These are data, running programs,
files, etc. that have some meaning in another context, e.g. by the user. They are

Metamodelling 59

artifacts in that they are produced through the design process. The running pro-
gramm is regarded as a semantic artifact by a number of approaches, if it is gene-
rated from high-level models, such as a state chart or dataflow model, while others
regard code mainly as another (and final) syntactic representation of the system
to be developed. For a metamodelling approach to have significant impact, some
of those artifacts must eventually be produced in the design process; else, the mo-
delling process is best classified as sophisticated documentation.

Metamodelling: A Design Process
Generally, a design process that utilizes metamodelling first involves abstraction
of the concepts of some domain or application into the appropriate meta-types
(these are defined by the meta-metamodel M0), using the metamodelling tools
working on the M1 layer. Metamodels can apply various archetypal concepts to
constrain how models models are built, as shown in Table 3.1. The informed rea-
der will see a dramatic similarity of these concepts with class modeling for soft-
ware design. In fact, the visual representation chosen for many object-oriented
modelling environments, and of metamodelling languages, is most commonly
that of UML class diagrams.

Table 3.1. Archetypal abstractions used in metamodelling (adapted from [2, 4])

Archetypal Description
Concept

Class Specific classes of entities that exist in a given system or domain.
Domain models are entities themselves and may contain other
entities. Entities are instances of classes. Classes (thus entities)
may have attributes.

Association Binary and n-ary associations among classes (and entities).
Specialization Binary association among classes denoting an IS-A relation.
Hierarchy Binary association among classes denoting “aggregation through

containment”. Performs encapsulation and information hiding.
Constraint An expression that defines the (statically computable) correctness

of part of the model: only if all these constraints evaluate to true,
the model is called “well formed”.

A visual depiction of the metamodelling design process can be seen in Fi-
gure 3.2. In this figure, the metamodelling Interface corresponds to tools on the
M1 layer, and the Modeling Environment corresponds to tools on the M2 layer,
while the Application Domain corresponds to tools in the M3 layer. As the appli-
cation evolves, changes are made not to the M3 layer, but to the more abstract
layer (M2). Similarly, as the Modeling Environment requires new types, they are
modified in the model of the modeling environment (the Metamodel Specifica-
tions). As we discuss in Section 3.1.5, metamodels that specify languages can
also denote the concrete syntax for language elements, and constraints for the
language, in the metamodel.

60 J. Sprinkle et al.

Modelling and ExecutionMetamodelling

Modeling Environment

Model Builder

Models

Semantic Mapping
Functions

Metamodelling Interface

Metamodel
Specifications

Application Domain

Metamodel
Translation

Semantic
Interpretation

App.
1

App.
2

App.
N

Metamodel
Evolution

Me

Application
Evolution

M1 M2

M3

Fig. 3.2. The metamodelling design process

A concrete example may help to better understand the metamodeling design
process. Let us consider the application domain (M3) of electronic control units
(ECUs) for automotive applications. The tool (M2) should permit components
to be connected to one another, and for components to be defined in terms
of mathematical operations on their multiple input/output connections. There
should also be constraints that prevent the outputs of two components to be
connected to one another, for example. The metamodelling interface (M1) can
be used to create the tool, M2, through the specification of the abstract syntax
that permits these kinds of applications to be modeled. Metamodel translation
synthesizes the tool, M2, and semantic interpretation of models built using M2

generates, for example, the embedded code for each component, a schedule for
execution of components on a real-time operating system, logging functions for
debugging purposes, and other necessary features in the application domain of
ECUs.

In the event that a particular design (M3) should be changed, the models
created in M2 should be modified, and then the semantic interpretation should
be performed again. This is called application evolution. If the domain some-
how changes, perhaps through additional constraints, new types that become
available, or changes in design philosophy, then metamodel evolution must be
performed, in order to change the design environment M2. As shown in Fi-
gure 3.2, M2 should be evolved by changing the metamodel specifications (M1)
and performing metamodel translation again.

Metamodelling 61

Archetypal Metamodelling Abstractions
All major metamodelling approaches permit some significant subset of the basic
abstractions shown in Table 3.1 [3, 7], though various tools may use a slightly
different nomenclature [8]. As an example, the fundamental abstraction of “in-
formation hiding” is usually implemented using containment (as in hierarchical
states).

Once the metamodels are defined in the design process, some transformation
process generates the semantic artifacts necessary to continue in the design. This
may be the generation of software skeletons that implement a class diagram, or
the synthesis of configuration files that permit the use of a generic modeling tool.
Textual modelers may use the metamodels to generate configurations for parsers
and lexers to operate on text files that conform to the defined metamodels.

This synthesis process (metamodel translation, in Figure 3.2) maps types
defined in the metamodel to concrete abstractions that an end-user will utilize to
abstract their model-based design. Once the design of the application or system
design is encoded in terms of meta-types (using tools from the M1 layer), some
transformation from the instances of these meta-types into the semantic domain
is performed. In the remainder of this section, we will discuss some significant
state-of-the-art approaches to metamodelling.

3.1.2 Meta Object Facility (MOF)

Central to the design and implementation of the UML 2.0 infrastructure and
superstructure is the concept of model transformations between varying layers
of abstraction. In order to permit these transformations (model to model, or as
instances, object to object), some additional specification must be used to des-
cribe the structure of these objects—and this is termed the Meta-Object Facility
(MOF).

The purpose of metamodelling through MOF is to describe the models in these
various layers using common Modelling abstractions. This permits homogeneous
access to models at all layers using reflection, standardizes access across tools
through a common API, and permits serialization of models through the XMI
standard. The specification of the MOF standard itself is well-described in the
OMG document governing MOF (see especially [9]), and we do not attempt to
fully describe those formalisms and terms here. However, we will describe the
modelling concepts used by MOF to perform metamodelling, and we will do this
from the perspective of the Essential MOF (EMOF), as described next.

3.1.3 Essential MOF (EMOF)

One major benefit of Modelling languages is to include concrete formalisms that
makes modelling of particular concepts easy. For metamodelling, however, a si-
gnificant amount of freedom in specification can lead to complexity when various
models need to be updated. Thus, the use of an essential subset of a metamo-
delling language can insulate created models from changes to the metamodel.

62 J. Sprinkle et al.

This is the concept behind the Essential MOF (EMOF), which is a subset of
the Complete MOF (CMOF) [9]. We present here the key concepts to EMOF,
so that they can be compared to those of other metamodelling languages. In
essence, what we present here is the metamodel of EMOF.

Reflection, Identifiers and Extension
Basic assumptions for using EMOF (and CMOF) include the ability to utilize
reflection, extension, and identifiers. Reflection is the ability of an object to
determine its type (class, or “metaobject” in the EMOF vocabulary, and its
associated metadata). Extension is the ability of an object to be dynamically
annotated with name-value pairs. This permits some amount of runtime Mo-
delling of particular objects, enabling an object to create new data fields which
it could later use, without creating a new type. Note that when using exten-
sion, only that object receives these new name-value pairs, they should not
propagate to all objects of that type. Finally, identifiers are a way for objects
to maintain uniqueness regardless of any values with which it is instantiated or
any extensions with which it is annotated.

In essence, two of these three concepts correspond to key attributes of Object-
Oriented languages: an object is unique, an object knows its type. The other (ex-
tension) is a novel introduction to models when compared to textual languages,
as in order to extend a class in a textual language requires creation of a new
type.

EMOF Classes
The fundamental metamodelling archetypes are easily visible in Figure 3.3 (com-
pare to Table 3.1). However, as this is the MOF metamodel, such concepts are
rewritten slightly. MOF permits Class objects (which inherit from Type). These
Class objects will be able to contain Property and Operation features. In turn,
the Property and Operation features that belong to a class are further made
up of Parameter objects, or associated with Property objects.

It should be clear to the reader from examining the kinds of attributes in
this metamodel that one major goal of MOF is Modelling software models. That
is, the Class object has a specific data member isAbstract, which is an at-
tribute commonly associated with software architecture. Not all metamodelling
techniques are used simply as abstractions for software models, as we discuss in
Section 3.1.5.

Given the wide acceptance of EMOF as a metamodelling framework, there
are some key features and benefits to EMOF. It is possible to serialize EMOF
models using the accompanying XMI standard (which provides mapping rules
from EMOF to XML). There are also mappings from EMOF to Java, so as to
generate software architectures and APIs from the models. Using these trans-
forms, it is also possible to generate reflective operations in software, to permit
manipulation of metamodel elements.

Metamodelling 63

isAbstract : Boolean = false
Class

Type

TypedElement
isOrdered : Boolean = false
isUnique : Boolean = true
lower : Integer = 1
upper : UnlimitedInteger = 1

MultiplicityElement

isReadOnly : Boolean = false
default : String [0..1]
isComposite : Boolean = false
isDerived : Boolean = false
isID : Boolean

Property

TypedElement MultiplicityElement TypedElement MultiplicityElement

Parameter

Type

Operation

0..*

0..1 ownedAttribute

{ordered}class

0..1

1

opposite

0..*

0..1 ownedOperation

{ordered}class

0..1

0..*

ownedParameter

{ordered}

0..*0..*

raisedException

0..*

superClass

Fig. 3.3. The EMOF metamodel [10]

3.1.4 Eclipse Modelling Framework (EMF)

Similarly to EMOF, the Eclipse Modelling Framework (EMF) is a facility for
building models of data structures. EMF, as it is tied to a particular tool
(Eclipse), presents some additional benefits in that it can generate refined tools
and applications that are tailored for Eclipse. At root, it is still quite closely tied
to creating software models. EMF is a restricted subset of UML class diagram
concepts, namely the definitions of classes, attributes belonging to those classes,
and relations between classes.

Accompanying the EMF toolsuite is a set of plugins that permit reuse of EMF
models. Among the most significant are tools that permit editing EMF models
(and customizing EMF editors), and synthesizing software from EMF models.
These are discussed further in metamodelling-languages surveys, such as [11], as
well as the EMF documentation.

The popularity of the Eclipse toolsuite brings with it a plethora of Eclipse,
and EMF, plugins and tools that use the serialization that comes with the EMF
use of XMI standards, and the implicit tool interchange that is possible through
popular acceptance of the Eclipse platform.

There is a companion modeling framework for the visualization of EMF mo-
dels, called the Graphical Modeling Framework (GMF), which is part of the
Eclipse toolsuite. GMF uses the Graphical Editing Framework (GEF) in order
to interface with domain models graphically, and can leverage existing EMF me-
tamodels to bootstrap the visual language definition in GMF. Some features of
domain-specific modeling, such as constraint specification and multi-aspect vi-
sualization, are not yet part of the GMF toolsuite, but it is nonetheless a strong
tool for modeling of Java-based applications.

64 J. Sprinkle et al.

3.1.5 Metamodelling of Languages

The domain-specific modeling approach using metamodelling treats metamodels
as language specifications, not software structure specifications. This difference
from the common uses of EMOF and EMF distinguishes MetaGME [12], Me-
taEdit+ [13], and AToM3[14, 15] tools. A common use of language generators is
to synthesize domain-specific languages [16], and a rich legacy of application in
this area can be found in the proceedings of [17, 18, 19, 20], and also in [21].

Language metamodelling defers representation and usage to a language or
model editor. Meta-configurable editors such as GME, AToM3, and MetaEdit+,
are capable of reusing the same editor framework for many different languages.
Eclipse’s GEF also permits single editor multi-configuration reuse. However, in
language use (alternatively, modeling environment use), the issues of concrete
syntax and visualization must be addressed. We discuss this in Section 3.1.7.

An additional property found in the metamodelling of languages is the ability
to specify selective visualization (also known as aspects or viewpoints). These
properties permit filtering of the visualization space for an intuitive subset of
the design, as partitioned at design time. An example of these properties is
seen in Figure 3.4, where subsets of each object are visible, depending on the
aspect in use. In this particular example from the signal processing domain,
certain computational blocks may share parameters, but these blocks are not
functionally connected. For the purposes of design it can be convenient to see
what computational blocks share the same parameters, but if this information
were shown in the same screen as the functional connections, it would be difficult
to understand the diagram.

The final property we discuss with respect to language modelling not regularly
found in data Modelling is that of constraint specification within the metamodel.
Constraints may exist for certain data Modelling applications, but at the lan-
guage level, such constraints can prevent or restrict the ability of a modeler to
create certain constructs that are known a priori to have no well-defined seman-
tic interpretation (or perhaps a disallowed, but known, semantic interpretation).
These constraints may be specified in terms of the OCL (Object Constraint
Language) [22].

A common use of constraints is to permit simple metamodel specifications, with
small exclusions from their use. For example, a metamodel may define connections
between ports of container objects (such as that shown in Figure 3.6a). However,
a constraint can prevent the connection of two output ports to one another unless
those output ports are at different levels of hierarchy (i.e., passing a value on to a
parent’s output port). Such a constraint can be written in OCL as:

OutPort.attachingConnections(BufferedConnection)->forAll(c |

c.connectionPoints("src")->theOnly().target().parent().parent() =

c.connectionPoints("dst")->theOnly().target().parent())

This concisely states that if an OutPort object participates in an association
of kind BufferedConnection, that the grandparent of the src must be the
parent of the dst. This prevents two OutPort objects of the same Component

Metamodelling 65

Inp
Inp

Out

p1

Out

source1

Inp Out

p2

Inp
Inp

Out

p3

Inp
Inp

Out

p4

Inp Out

p5

Inp
Inp
Inp

sinkOut

source2

(a) Signal flow structure.

c1

p1

Inp
Inp

source1

c2

p2

Inp

p3

Inp

p4

c3

p5

Out

sink

Inp
Inp

source2

param1

param2

(b) Shared parameters of the system.

Fig. 3.4. These two figures show how the same structural elements can be shown in
different aspects to visualize elements of the system effectively. In (a), the structure as
related to the signal flow is given. In (b) the parameters shared between components
are easily seen—and easily changed.

from connecting through this kind of association. Constraints provide a powerful
means to restrict the modeler from creating ill-formed models, while maintaining
a language that is easy to compile.

3.1.6 Textual Metamodelling

Metamodelling is useful in textual, as well as graphical/visual, languages. In
fact, there are certainly cases where a textual language is preferred [23]. When
considering the traditional methods of specifying grammars (e.g., Backus Naur
Form [24], and Extended BNF), it is apparent that such specifications do define
the abstract syntax of a language. Tools that generate parsers and lexers for
such grammars (such as antlr, bison, etc.) are the textual analogs to the abstract
syntax tree generators found in modeling environments [25]. The application of
programming language types to their semantics is well-studied [26], and rigorous
treatment of their specification can permit subtle understandings.

66 J. Sprinkle et al.

3.1.7 Concrete and Abstract Syntax

The differences between concrete and abstract syntax are well known, and well-
studied [26, 27]. However, their application to new modelling languages brings into
question how to specify concrete syntax best during the metamodelling phase of
language design, as well as how the abstract and concrete syntaxes are used.

For textual modelling languages, some concrete syntax is required in order to
streamline model construction. Although visual language developers have been
among the most vocal proponents of modelling, there is significant research in
textual domain-specific languages, because of their better efficiency, both in lan-
guage definition and use [28].

For graphical modelling languages, a (default) concrete syntax can be syn-
thesized directly from the metamodel, as long as a default concrete syntax is
provided for each archetypal type. The GME tool e.g. has generic types as de-
fined by the meta-metamodel, which provide a default concrete syntax if not
overridden at the metamodelling level. Overriding the concrete syntax is fairly
straightforward (many tools such as Simulink and LabVIEW permit this as well),
it can be done at the M2 or M1 level. There are important questions that must
be resolved with regards to the semantics of concrete syntax changes at any
level, especially for tools that are domain-specific in nature, and depend on an
intuitive understanding of visual models; we discuss these issues below. Other
tools such as DiaGen [29] utilize concepts similar to that of GME to attach
visualization attributes to the nodes and edges graph that encodes the model.

Metamodelling Level Concrete Syntax Specification.
Defining a specific concrete syntax is possible for graphical languages by spe-
cifying a glyph or glyph-generator that will provide a visualization (perhaps
context-specific) for a particular type in the language. Then, for every instance
of this type that is visualized, this image (or the imaged produced by the glyph-
generator) replaces the default value. This is very useful for simple domain-
specific visual languages, where concrete domain items can be composed easily
with other domain items.

Modelling Level Concrete Syntax Specification.
Redefining the appearance of a model, namely the concrete syntax, at the mo-
delling level is also possible, though not as widespread as overriding at the me-
tamodelling level. Whereas redefinition at the metamodelling level operate for
each created instance, redefinition at the modelling level overrides just for one
particular instance thus allowing allows individual shapes for each model ele-
ment. Such overrides are to some extent also questionable due to the fact that
(for some reason) the metamodel designer chose a different concrete syntax. Why
is this concrete syntax being overridden? Will this confuse other modelers using
this model? Any confusion in these areas will reduce the positive impact seen in
the utilization of modelling languages to specify a design, as new users will be
unable to distinguish between semantics of the language, and visual preferences
of another modeler.

Metamodelling 67

Concrete Syntax
Concrete syntax is carefully chosen to represent domain concepts (for domain-
specific languages), as “syntactic sugar” (for DSLs as well as general-purpose
languages), or to otherwise make programming or Modelling easier. For the se-
mantic interpretation of a language, however, there is the possibility that the
concrete syntax could be used in semantics definitions, or that different variants
of concrete syntax make the visual representation of a model ambiguous to de-
velopers. The inability to distinguish ambiguous representation in a screenshot
of the model is shown in Figure 3.5.

isAbstract : Boolean = false
Type2

Type1

(a) Line type is inheri-
tance, default concrete
syntax.

isAbstract : Boolean = false
Type2

Type1

(b) Line type is in-
heritance, but endpoint
changed to “diamond”.

Fig. 3.5. Changing the concrete syntax at modelling time can lead to confusion. In (a)
the default concrete syntax for inheritance is used. In (b) a modeler has changed the
appearance of the line, but the semantic interpretation will still be inheritance.

It is a good practice, generally, to not use the concrete syntax details in the
mapping of semantics, but to depend entirely on the abstract syntax tree. An
interesting research challenge would be general-purpose tools that could identify
issues such as these in completed models (or perhaps in their semantic mapping)
as potential design flaws in the model, language, or language compiler.

3.1.8 Type System

Type systems in traditional programming languages are established at language-
design time. In (typed) programming languages as well as in math, a type is
basically a description for a set of values together with a set of operations to
manipulate these values. In the metamodelling setting this approach needs to
be adapted to meta-type structures. Different to the programming language
approach, metamodelling approaches tend to merge typing and the meta-level.
The challenge of defining a type within the model while applying it at the same
time can then be met through the use prototypes and clones as discussed below.

For modelling language types the most common mode of type definition is
through specification in a metamodel (as described in Section 3.1.1). Using
this mode of definition, the traditional object-oriented abstractions of type de-
finitions can be leveraged into the modelling language. These include notions
of inheritance, containment, and association. Propagation of model features

68 J. Sprinkle et al.

(i.e., subclasses have all features of parent classes) through generalization/
specialization relationships in the metamodel provide a means to effect poly-
morphic behaviors at model execution or interpretation time. Please note that it
is rather convenient to lift the type infrastructure of the object-oriented realiza-
tion of the metamodel into the defined modelling language. However, one could
build an entirely different type system, and when the oo style of typing doesn’t
fit we are even forced to do so.

There are the following phases of type system use and specification:

– Meta-metamodelling time: specification of the fundamental meta-types, which
define how types permit containment, association, attribute values, etc.

– metamodelling time: specification of the metamodel, using meta-metamodel
types, in order to define model types (e.g., domain-specific concepts), and
the abstract syntax of the language for language-generating metamodels.

– Modelling time: specification of certain clones and clone structures as tem-
plates for further instantiation.

New patterns and structures not conceived at language-design time, however,
may emerge after the metamodels have been designed. Many modelling envi-
ronments permit the Modelling-time specification of new type systems, which
permits a modeler to develop a new “type” out of composition and association
of instances of domain types. In this case, the new “type” may be reused, re-
instantiated multiple times, and may propagate changes made to the type to
any instances of that type.

In order to distinguish easily between types (defined at metamodelling time),
and Modelling-time types, we use the following nomenclature (from [30]):

– prototypes: modelling-time types; and
– clones: instantiations of prototypes.

We explore this modelling-time types behavior through an example.

Types and Clones at Modelling Time
Consider the language defined by the metamodel shown in Figure 3.6a1, and
models built using this language shown in Figure 3.6b. Now, let us consider
that model C2, contained in Component1 is a clone of the prototype Component2.
This would mean that for each object contained in Component2, there would
be a corresponding object of the same type (and participating in corresponding
internal associations) in C2. By internal associations, we mean to say that the
association is contained by that model (and is not an association that resides
outside the type).

Regarding the attribute values of these models, whenever a clone of a proto-
type is created, it receives the attribute values of the prototype. From this time
on, there are several semantic issues which must be addressed by the modelling
environment.
1 This metamodel is reused in Chapter 9 in order to discuss the evolution of models.

Metamodelling 69

type : {int, float, byte}
bufferSize : int

PortComponent

InPort OutPort

0..*
Buffered
Connection

dst

src0..*

0..*

(a) The metamodel allows objects of kind Port, which is specialized as InPort

and OutPort.

Component1
p1

p2p3
Component2

pa

pb pc

C1 p1

p2p3

p11

p12
p13

C2
p21

p22
p23

Component1

(b) A model built using the metamodel in (a). The contents of Component1
are shown to display the additional associations in which its Port objects
play a role.

Fig. 3.6. (a) A metamodel allowing port interconnection between components. (b) A
model built using the metamodel in (a). The “arrow” end of the connections represent
the dst role.

(1) Are attribute values of the clones permitted to be modified?
(2) If an attribute value of a clone is modified, and the prototype attribute value

is modified, what then should be done for the clone model’s attribute values?
(3) If the attribute values of the prototype change, should unmodified attributes

of the clones be updated?

Tools and environments that permit prototypes and clones adopt a fairly
consistent view of these questions. Both GME [12] and Ptolemy II [31] permit
attribute value modifications of clones. In the event of changes to the original pro-
totype, an attribute-specific copy-on-write behavior is utilized, where unmodified
attribute values reflect the prototype values, rather than maintaining the values
at instantiation-time. We discuss in the next section how selective permission to
contain new objects in clones and prototypes can create some confusion.

It is generally up to the tool developer to determine how to visually depict
prototypes and clones. If a separate browser that permits searching for or dis-
playing only prototype and clone hierarchies is given, it is not necessary to even
have a visual cue that a particular object is a clone.

70 J. Sprinkle et al.

A final restriction on clone models is that they cannot contain objects that
are not contained in the prototype object (i.e., the correspondence function is
bijective). Similar to attribute propagation, then, new models created inside an
prototype propagate to all clones of that prototype. If an object contained within
an prototype is deleted, all clones remove their corresponding object (and any
associations to that model, as appropriate).

Prototypes and Subprototypes at Modelling Time
Subprototypes have a subset of the restrictions and constraints of clones. As a
class diagram permits subclasses to specialize the structure of their superclass,
a subprototype can add to the features of an prototype at modelling time. Thus,
the restriction that there does not exist any object in the instance that does not
correspond to a type-contained object is not necessary (i.e., the correspondence
is injective from prototype to subprototype).

3.1.9 Merging of Metamodels

Given the ability of models to apply hierarchy and refinement as abstractions,
and the fact that metamodels are models themselves, the ability to merge me-
tamodels (others say ”compose metamodels” structurally) is somewhat trivial.
The semantics of this merge, however, deserves some discussion.

Consider two metamodels, M1,M2, such that M1 ∩ M2 = ∅ (i.e. they do
not share any meta-class). Now, consider that some elements from each of these
metamodels can be related in a new, merged, metamodel, M3 = 〈M1 ∪M2, f〉.
When merging the metamodels, some elements from each of the two metamodels
must somehow be associated with one another. We can use this function f to
define appropriate relations between metamodel elements.

These relations can be considered as mappings for identity, or new properties.
As discussed in [30, 32], the identity equivalence maps two types (one from each
metamodel) as identical, and thus permits the associations and attribute values
of those types to be a union of the definition in the two metamodels. More
subtle is the desire to transfer only some of the associations and attribute values
of a certain type. These are created as new metamodel types (found only in M3)
which can inherit either the interface of the existing types, or the implementation
of the existing types (meaning that containment and other relations are, or are
not, transferred). For these subtleties, we refer the reader to [30, 32] for a full
explanation with examples.

A short example of merging metamodels is given in Figure 3.7. In Figure 3.7a
we see a simple modeling language for discrete systems. In this language, the
behavior of the system is obtained by firing the Behavior model(s) in the cur-
rent state. A simple modeling language for continuous time systems is shown in
Figure 3.7b, with the capability to assign values to Variable objects through
algebraic and differential (Flow) equations. In order to create a new language,

Metamodelling 71

isInitial : Boolean = false
State

0..*

event : String
guard : String
action : String

Transition

src

dst

0..*

fire() : void
description : String

Behavior

0..*

(a) A discrete systems modeling lan-
guage.

fire() : void
description : String

System

min : Float
max : Float

Variable
0..*

fire() : vector<Variable>
description : String

FlowDynamics

0..*

fire() : vector<Variable>
description : String
AlgebraicBehavior 0..*

isValid() : Boolean
description : String

Constraint
0..*

(b) A continuous systems modeling lan-
guage.

fire() : void
description : String

System

min : Float
max : Float

Variable
0..*

fire() : vector<Variable>
description : String

FlowDynamics

0..*

fire() : vector<Variable>
description : String
AlgebraicBehavior 0..*

isValid() : Boolean
description : String

Constraint
0..*

isInitial : Boolean = false
State

0..*

event : String
guard : String
action : String

Transition

src

dst

0..*

fire() : void
description : String

Behavior

0..*

Equivalent

(c) A hybrid systems modeling language.

Fig. 3.7. Elements from the discrete, and continuous, domains are merged/composed
in a new domain, and an equivalence relationship is used to indicate identity of one
element in each metamodel

capable of modeling hybrid systems (those systems where each discrete state
has a continuous dynamics), we can merge the two metamodels, and indicate an
equivalence relationship between Behavior in the discrete systems language, and
System in the continuous systems language. In this new modeling language, it is
then possible to create new objects of kind System inside of a State, even though
this is not explicitly shown through containment relations between System and
State. It is possible to further assign relations between objects, using contain-
ment, association, or other relations.

An additional, metamodelling, concern is the propagation of constraints when
metamodels are merged. These, and especially the issues of semantics, are re-
search issues, and discussed in the following Section 3.2.

3.2 Metamodelling: Research Challenges

Metamodelling as a technology provides significant power to designers and users,
and it has been thoroughly explored in terms of modeling data, software, and
languages. Although many of the properties, semantics, and uses of metamo-
delling are now “solved” problems, there are significant research challenges still

72 J. Sprinkle et al.

outstanding, regarding usability, evolution, intuitive representation, etc. We dis-
cuss these research challenges (in brief) in this section.

A Unifying Issue: Semantics
A unifying characteristic of nearly all outstanding research issues we discuss with
respect to metamodelling is the issue of semantics. The meaning of composed,
cloned, evolved, etc., models and metamodels may be unclear, depending upon
the circumstances under which these operations are performed.

3.2.1 Semantic Attachment

We recall that metamodels are basically pure syntactic representations of the mo-
dels they describe [4]. Significant strides have been made in attaching additional
information to these metamodels, which in many approaches is called ”seman-
tic attachments”. The significant issue in semantic attachment is not “can it
be done?” but rather “what methods are appropriately efficient and intuitive?”
A traditional compiler that traverses an abstract syntax tree to produce arti-
facts in the semantic domain can be readily produced (and tools to significantly
automate the parsing and traversal have been developed [33, 28]).

Methods to ground semantics between metamodels to a common semantic do-
main show promise [34, 35] or through explicit definition of the semantics domain
[36, 37, 38]. Utilizing those techniques, lossless, bijective, semantically-correct
mappings between a metamodel and a semantic anchor such as the abstract
state machine language (ASML) could foster semantically-correct interchange
between tools, or from one semantic domain to another. One issue that deserves
further research is the specifications of these mappings for complex metamodels,
and their intuitive representation.

The expected use cases for attaching semantics to metamodels include:

– for the purpose of documentation/precise definition;
– facilitation of automatic verification of some property; and
– automated translation between tools.

3.2.2 Inference between Metamodels

As described in Section 3.1.9 it is possible to merge metamodels into a new
metamodel, and (by design) mark certain metamodel elements as equivalent. The
automation of this identification between two related (but separately specified)
metamodels is an interesting research challenge. Issues are are present include:

– Semantic equivalence of inferred equivalent types in each metamodel;
– Visualization issues; and
– Propagation of constraints.

Among these, the semantic equivalence may require user interaction to deter-
mine. The propagation of constraints, however, presents a few interesting issues.

Metamodelling 73

It may, for example, be possible to evaluate all models to determine whether
constraints are violated prior to performing type inference. Perhaps, then, type
inference is predicated on constraint satisfaction. On the other hand, issues such
as selective propagation of containment (or containee) relationships may enable
constraint satisfaction, so an intelligent approach to utilizing implementation
and interface inheritance may permit some equivalence inference, while not vio-
lating any of the (union) of constraints.

3.2.3 Evolution of Models Driven by Metamodel Evolution

This issue presents tremendous challenge in the preservation of structure,
constraints and semantics. As the metamodel evolves, e.g. because the tools
are updated to a new version, it may be that models built using the metamodel
will no longer conform to the evolved metamodel. In this case, evolution of the
models (to conform to the new metamodel) may be required. This issue has been
studied for visual languages [39], but further research is necessary to determine
the best way to intuitively (and accurately) portray such evolutionary trans-
formations. An interesting extension is the automation of such transformations
based on changes to the metamodel in its evolution. More discussion is devoted
to this complex topic in the Chapter of Model Management.

3.3 Conclusions

Despite the many tools available for metamodelling, the underlying mechanism
of object-orientation has fostered that most of the metamodelling tools use a
common set of abstractions with only slight variations. Using these abstrac-
tions, it is possible to raise the specification of a language and its tooling far
above the implementation layer. Additional capabilities increase the power of
metamodelling by permitting the synthesis of languages as well as automated
or semi-automated analysis and synthesis techniques. Run-time modelling tools
permit users to define their own prototypes, and leverage new patterns not antici-
pated at metamodel-design time, and the visualization of models can be carefully
specified to ensure that information is appropriate presented to modelers. Mul-
tiple metamodels can be merged to specify new languages that appropriately
integrate the concepts into one big metamodel .

Model-based engineering and in particular modelling of embedded systems
benefits heavily from metamodelling due to the structure that metamodelling
gives to models, and the semantics that can be attached to metamodels. Given
this structure, the specification of semantics is easier, correspondences between
metamodels can be denoted, parsers/lexers can be synthesized, and constraints
can be evaluated. These capabilities are the foundations for raising the level of
specification of systems to models, rather than low-level implementation.

74 J. Sprinkle et al.

References

[1] Vangheluwe, H., de Lara, J.: Xml-based modeling and simulation: meta-models
are models too. In: WSC 2002: Proceedings of the 34th conference on Winter
simulation, Winter Simulation Conference, pp. 597–605 (2002)

[2] Karsai, G., Nordstrom, G., Ledeczi, A., Sztipanovits, J.: Specifying graphical mo-
deling systems using constraint-based meta models. In: IEEE International Sym-
posium on Computer-Aided Control System Design, CACSD 2000, pp. 89–94
(2000)

[3] Sprinkle, J., Karsai, G., Lédeczi, A., Nordstrom, G.: The new metamodeling ge-
neration. In: Eighth Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, April 2001, pp. 275–279 (2001)

[4] Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of “semantics”?
Computer 37(10), 64–72 (2004)

[5] Peltier, M., Bézivin, J., Ziserman, F.: On levels of model transformation. In: XML
Europe 2000, pp. 1–17 (2000)

[6] Sprinkle, J.: Model-integrated computing. IEEE Potentials 23(1), 28–30 (2004)
[7] Vangheluwe, H., de Lara, J.: Foundations of multi-paradigm modeling and simula-

tion: computer automated multi-paradigm modelling: meta-modelling and graph
transformation. In: WSC 2003: Proceedings of the 35th Conference on Winter
Simulation, Winter Simulation Conference, pp. 595–603 (2003)

[8] Weisemöller, I., Schürr, A.: A comparison of standard compliant ways to define
domain specific languages. In: ATEM 2007: 4th International Workshop on (Soft-
ware) Language Engineering, in conjuction with MoDELS (2007)

[9] Object Management Group: Meta Object Facility 2.0 (January 2006)
[10] Object Management Group: Unified Modeling Language 2.1.2: Superstructure and

Infrastructure (November 2007)
[11] Emerson, M., Neema, S., Sztipanovits, J.: 33. In: Metamodeling Languages and

Metaprogrammable Tools. CRC Press, Boca Raton (2008) ISBN: 9781584886785
[12] Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J.,

Karsai, G.: Composing domain-specific design environments. Computer 34(11),
44–51 (2001)

[13] Tolvanen, J.P., Rossi, M.: Metaedit+: defining and using domain-specific mode-
ling languages and code generators. In: OOPSLA 2003: Companion of the 18th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 92–93. ACM, New York (2003)

[14] Mosterman, P.J., Vangheluwe, H.: Computer automated multi-paradigm mode-
ling: An introduction. Simulation: Transactions of the Society for Modeling and
Simulation International 80(9), 433–450 (2004); Special Issue: Grand Challenges
for Modeling and Simulation.

[15] de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph grammars
for multi-paradigm modelling in AToM3. Software and Systems Modeling 3(3),
194–209 (2004)

[16] Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based dsl frameworks.
In: OOPSLA Companion, pp. 602–616 (2006)

[17] Gray, J., Sprinkle, J., Rossi, M., Tolvanen, J.P. (eds.): 8th OOPSLA Workshop on
Domain-Specific Modeling (DSM 2008), University of Alabama at Birmingham,
OOPSLA (October 2008), ISBN: 978-0-61523-024-5

Metamodelling 75

[18] Sprinkle, J., Gray, J., Rossi, M., Tolvanen, J.P. (eds.): 7th OOPSLA Workshop
on Domain-Specific Modeling (DSM 2007), University of Jyväskylä, Jyväskylä,
Finland, OOPSLA (October 2007), ISBN: 978-951-39-2915-2

[19] Tolvanen, J.P., Gray, J., Sprinkle, J. (eds.): 6th OOPSLA Workshop on Domain-
Specific Modeling (DSM 2006), University of Jyväskylä, Jyväskylä, Finland,
OOPSLA (October 2006), ISBN: 951-39-2631-1

[20] Tolvanen, J.P., Sprinkle, J., Rossi, M. (eds.): 5th OOPSLA Workshop on Domain-
Specific Modeling (DSM 2005), University of Jyväskylä, Jyväskylä, Finland,
OOPSLA (October 2005), ISBN 951-39-2202-2

[21] Gray, J., Tolvanen, J.P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-
specific modeling. In: Fishwick, P.A. (ed.) Handbook of Dynamic System Mode-
ling. Chapman & Hall/CRC, Boca Raton (2007), ISBN: 1584885653

[22] Warmer, J., Kleppe, A.: The Object Constraint Language: Precise Modeling With
UML. Addison-Wesley, Reading (1999)

[23] Whitley, K.: Visual programming languages and the empirical evidence for and
against. Journal of Visual Languages and Computing 8(1), 109–142 (1997)

[24] Knuth, D.E.: backus normal form vs. backus naur form. Commun. ACM 7(12),
735–736 (1964)

[25] Rekers, J., Schürr, A.: Defining and Parsing Visual Languages with Layered Graph
Grammars. Journal of Visual Languages and Computing 8(1), 27–55 (1997)

[26] Pierce, B.C.: Types and Programming Languages. The MIT Press, Cambridge
(2002)

[27] Winskel, G.: The Formal Semantics of Programming Languages. Foundations of
Computing Series. The MIT Press, Cambridge (1993)

[28] Krahn, H., Rumpe, B., Völkel, S.: MontiCore: Modular development of textual
domain specific languages. In: Paige, R.F., Meyer, B. (eds.) Proceedings of the
46th International Conference Objects, Models, Components, Patterns (TOOLS-
Europe), pp. 297–315. Springer, Heidelberg (2008)

[29] Minas, M.: Visual Specification of Visual Editors with VisualDiaGen. In: Pfaltz,
J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 473–478.
Springer, Heidelberg (2004)

[30] Karsai, G., Maroti, M., Ledeczi, A., Gray, J., Sztipanovits, J.: Composition and
cloning in modeling and meta-modeling. IEEE Transactions on Control Systems
Technology 12(2), 263–278 (2004)

[31] Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs,
S., Xiong, Y.: Taming heterogeneity–the Ptolemy approach. Proceedings of the
IEEE 91(1), 127–144 (2003)

[32] Ledeczi, A., Nordstrom, G., Karsai, G., Volgyesi, P., Maroti, M.: On metamo-
del composition. In: Proceedings of the 2001 IEEE International Conference on
Control Applications (CCA 2001), pp. 756–760 (2001)

[33] Nordstrom, S., Shetty, S., Chhokra, K.G., Sprinkle, J., Eames, B., Lédeczi, Á.:
Anemic: Automatic interface enabler for model integrated computing. In: Pfen-
ning, F., Smaragdakis, Y. (eds.) GPCE 2003. LNCS, vol. 2830, pp. 138–150. Sprin-
ger, Heidelberg (2003)

[34] Jackson, E., Sztipanovits, J.: Formalizing the structural semantics of domain-
specific modeling languages. Software and Systems Modeling 8(4), 451–478 (2009)

[35] Chen, K., Sztipanovits, J., Abdelwahed, S., Jackson, E.: Semantic anchoring with
model transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005.
LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005)

76 J. Sprinkle et al.

[36] Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML – Towards a System
Model for UML: The Control Model. Technical Report TUM-I0710, Institut für
Informatik, Technische Universität München (February 2007)

[37] Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML – Towards a System
Model for UML: The State Machine Model. Technical Report TUM-I0711, Institut
für Informatik, Technische Universität München (February 2007)

[38] Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML – Towards a System Mo-
del for UML: The Structural Data Model. Technical Report TUM-I0612, Institut
für Informatik, Technische Universität München (June 2006)

[39] Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evo-
lution. Journal of Visual Languages and Computing 15(3-4), 291–307 (2004); Spe-
cial Issue: Domain-Specific Modeling with Visual Languages

4 Semantics of UML Models for Dynamic
Behavior

A Survey of Different Approaches

Mass Soldal Lund1, Atle Refsdal1, and Ketil Stølen1,2

1 SINTEF ICT, Norway
{Mass.S.Lund,Atle.Refsdal,Ketil.Stolen}@sintef.no
2 Department of Informatics, University of Oslo, Norway

Abstract. Models are used for a number of different purposes, from
the requirements capture and design of a new system, to the testing
of an existing system. Many different modeling languages are available,
and the semantics given for the languages vary from informal natural
language descriptions to various kinds of mathematical or logical defini-
tions. When choosing a modeling language and accompanying semantics,
a number of things need to be taken into consideration, such as who are
the users of the models, what is the purpose of the models, what kind
of application is being modeled, and what are the essential features that
must be captured.

When modeling embedded systems, an essential aspect is the inter-
action between hardware and software. Hence, we need to capture the
behavior of the hardware and software components. For capturing the
dynamic behavior of components, modeling languages like UML sequence
diagrams, state machines and similar notations are often used. This pa-
per surveys different approaches to formally capturing the semantics of
models expressed using languages of this kind.

4.1 Introduction

In the context of development of embedded systems, a model is a description
of a computer system, possibly including its human users, controlled process or
environment, in some modeling language. Modeling plays an increasingly im-
portant role and is used for a number of purposes throughout the lifetime of a
system, from initial requirements capture and design to testing and maintenance
of the running system. Some models are intended to be processed automatically,
for example by code generators or model checkers, while other models are used
as an aid in communication between for example system developers and client
representatives.

A large number of languages for modeling computer systems are available.
The semantics given for the languages range from natural language explanations
of modeling language constructs and examples to highly formal mathematical
or logical definitions. When choosing a language and accompanying semantics, a

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 77–103, 2010.
� Springer-Verlag Berlin Heidelberg 2010

78 M.S. Lund, A. Refsdal, and K. Stølen

number of issues need to be taken into consideration. One question is: Who will
use the models, and what level of training do they have? Clearly, the language
need to have a notation that is understandable by the users of the models, at
least at an intuitive level. As an example, mathematical and logical formulas
may be well understood by computer scientists and some developers, but will be
incomprehensible for most client representatives.

Another question is: What is the purpose of the models? If the models are to
be used for giving formal proofs of system properties, then the language must be
supported by a formal semantics defined in clear mathematical or logical terms.
If the models will be used for code generation or automatic model checking then
we need to ensure that the semantics can also be processed by a computer.
On the other hand, if the models are intended for communicating with client
representatives then a natural language explanation of the language features
may be appropriate.

A third question is: What kind of system is being modeled, and what are the
essential features or properties that need to be captured by the models? For
example, capturing real-time requirements may be essential when modeling an
emergency communication network, but of little importance when designing a
chocolate automaton.

For embedded systems, the interaction between software and hardware com-
ponents is an essential feature. This means that we need to model the behavior
of hardware as well as software components, and in particular their mutual in-
teraction. For capturing dynamic component behavior, modeling languages like
UML [1] sequence diagrams and state machines are currently the most highly
profiled.

This paper surveys approaches to giving formal semantics to models expressed
in UML sequence diagrams, state machines or similar notations, such as MSC
[2], LSC [3], the Statecharts language [4], SDL [5], etc. An overview is given of
different types of semantics and their strong and weak points. The survey is not
exhaustive, but covers the most common variants. The survey does not address
semantics for hybrid models which is a field in its own [6, 7].

The rest of this paper is organized as follows: Sect. 4.2 characterizes the scope
of the survey and defines more carefully notions like “model”, “semantics”, and
“embedded system”. Furthermore, the semantic challenges related to embed-
ded systems are discussed and summarized as a set of criteria against which
the different approaches should be evaluated. In Sect. 4.3, the different types of
semantics and their strong and weak points are discussed. Sect. 4.4 presents a
survey of semantics approaches for UML sequence diagrams and similar nota-
tions. Section 4.5 is similar to Sect. 4.4, except that we now consider semantic
approaches for UML state machines and similar notations. In Sect. 4.6 we eva-
luate the semantic approaches surveyed in the previous two sections with respect
to the evaluation criteria formulated in Sect. 4.2. Summary and conclusions are
given in Sect. 4.7.

Semantics of UML Models for Dynamic Behavior 79

4.2 Characterization of Scope, Main Notions, and
Criteria for Evaluation

Embedded systems can be defined as “combinations of computer hardware and
software, and perhaps mechanical or other parts, designed to perform dedicated
functions”1 or “programmable, electronic (often in combination with mechani-
cal) systems that control and determine the functioning of devices (machines,
appliances, instruments, constructions).”2 MP3 players, routers, sensors, copying
machines, and cars are examples of embedded systems. The fact that embed-
ded systems, unlike general purpose computers, are dedicated to specific tasks,
means that they can be optimized with respect to for example performance or
reliability.3

A model is a description of a system in some modeling language, such as the
UML. The semantics of a model explains what the model means. More exactly,
the semantics of a model is a function mapping the syntactically well-formed
models of the modeling language into syntactically well-formed expressions in a
language that is well understood. What is a well-understood language depends
on the intended users of the semantics. It often makes sense to define several
equivalent semantics for the same modeling language; for example, an axioma-
tic semantics for logical deduction, a denotational semantics for mathematical
reasoning, an operational semantics for building tools, and a natural language
semantics to explain the language to its end-users. If the expressions of the mo-
deling language is mapped into a mathematical or logical domain so that the
semantic representation can be manipulated and analyzed using well-established
mathematical and logical techniques, we say that the language has a formal
semantics.

When modeling and developing embedded systems, several considerations
need to be taken into account. One is that the close interplay between dedicated
hardware and software components means that there is less room for corrections
and refactoring during the development process than for conventional computer
systems. A formal approach to model analysis and incremental development is
therefore highly desirable when developing embedded systems. Hence, modeling
languages should be supported by formal semantics, as well as definitions of
refinement characterizing what it means for a more concrete or detailed model
to “implement” or fulfill the requirements of a more abstract model. This re-
duces ambiguity and facilitates rigorous, and possibly automated, mathematical
or logical proof of system properties.

An essential requisite for an incremental development process is the ability
to leave some decisions open for later development steps. Consequently, we need

1 From Netrino embedded systems glossary:
http://www.netrino.com/Embedded-Systems/Glossary

2 From Embedded Systems Institute:
http://www.esi.nl/frames.html?/institute/research.html

3 Other examples are characteristics such as size and power usage, but this is outside
the scope of this paper.

http://www.netrino.com/Embedded-Systems/Glossary
http://www.esi.nl/frames.html?/institute/research.html

80 M.S. Lund, A. Refsdal, and K. Stølen

a modeling language that has the ability to express underspecification or im-
plementation freedom. By this we mean that a model may explicitly provide
alternative ways of fulfilling a task, so that the choice is left open to those res-
ponsible for implementing or further refining the specification. Moreover, in an
incremental development process one cannot describe all the relevant system
behavior in a single step. Thus we want to be able to produce models that are
incomplete in the sense that not all system behavior has been considered and
categorized as either positive (acceptable, desirable) or negative.

Finally, there is the issue of the kinds of features or properties that can be
captured by the modeling language. Properties can be categorized according to
the basis on which they are falsified: Properties that can be falsified on the basis
of a single trace are called trace properties, while properties that are falsified
on the basis of a set of traces are called trace-set properties [8].4 Examples of
trace properties are safety and liveness [9, 10], while permissions often used
in relation to policies and many information flow properties are examples of
trace set properties. Most modeling languages are well-suited to capture trace
properties, but only some allow us to specify trace-set properties as something
distinguishable from underspecification. Distinguishing trace-set properties from
underspecification is necessary since trace-set properties should be preserved
under refinement while this is not the case for underspecification.

Performance and reliability requirements are usually of high importance for
embedded systems. This is for example the case for routers and sensors. In-
deed, in many cases the motivation for building a dedicated embedded system
is to achieve high performance and reliability. Performance and reliability requi-
rements are typically expressed in terms of time and/or probability. Therefore,
modeling languages for embedded systems should ideally have the ability to cap-
ture real-time requirements (a special kind of trace properties) and probabilistic
requirements (a special kind of trace-set properties). These requirements should
be fully integrated in the semantics of the models in order to ensure that they
are taken into account when analyzing the models.

Based on the above considerations, we have identified the following questions
that we will use to evaluate the surveyed semantic approaches:

– What kind of semantics is given?
– Can underspecification be represented?
– Can trace-set properties be represented?
– Can incomplete models be represented?
– Is the approach supported by definitions of refinement?
– Can real-time requirements be captured by the semantics?
– Can probabilistic requirements be captured by the semantics?

In the following we survey and evaluate a number of semantic approaches with
respect to these questions. But first we give an overview of main categories of
semantics of relevance.

4 In [8], the term possibilistic properties is used instead of trace set properties.

Semantics of UML Models for Dynamic Behavior 81

4.3 Main Categories of Semantics

At an overall level, semantics of modeling languages can be categorized based on
whether they are formal or not, i.e. whether the expressions of the modeling lan-
guage are mapped into a mathematical or logical domain, or explained in natural
language. An advantage with natural language explanations is that they can be
understood by anyone, without requiring specialized training. However, natural
language explanations tend to be ambiguous and often contain inconsistencies.
For example, this is the case with the UML semantics provided by the Object
Management Group (OMG) [11, 12, 13]. Formalizing the semantics of a language
will help uncover ambiguities and inconsistencies. Moreover, formal semantics al-
lows models to be analyzed with mathematical and logical tools and techniques,
thus allowing system properties to be explored in a rigorous manner before the
implemented system even exists. Being able to perform this kind of analysis as
early as possible is particularly important when developing embedded systems,
as the cost of redesigning dedicated components at a late stage typically will be
high. Hence, a formal semantics is needed for the development process. There
are, however, different styles of formalizing semantics, each with their strong and
weak points. For the graphical modeling languages we are concerned with in this
paper, denotational and operational semantics are the most relevant styles. We
now look at these two styles of semantics and their strong and weak points.

David A. Schmidt [14] provides the following explanation for a denotational
semantics:

The denotational semantics method maps a program directly to its meaning,
called its denotation. The denotation is usually a mathematical value, such as
a number or function. No interpreters are used; a valuation function maps a
program directly to its meaning.

This corresponds well with the explanation given by Andreas Prinz [12, p. 149]
The basic idea is to give a denotation to every element of the language. This
means to map the syntactical expressions of the language to a well-known
domain.

Denotational semantics typically allows a fairly abstract system description. As
they also build on known domains, they are well suited for mathematical rea-
soning and formal proof of properties. On the negative side, a denotational se-
mantics provides little guidance for tool developers and will typically be too
complex for users. Expressing states and operations is usually difficult with a
denotational semantics.

For operational semantics, [14] suggests the following definition:
The operational semantics method uses an interpreter to define a language.
The meaning of a program in the language is the evaluation history that the
interpreter produces when it interprets the program. The evaluation history is
a sequence of internal configurations [. . .]

As a methodology for language development he suggests that “a denotational
semantics is defined to give the meaning of the language” and that “the deno-
tational definition is implemented using an operational definition” [14, p. 4].

82 M.S. Lund, A. Refsdal, and K. Stølen

Table 4.1. Different styles of semantics

Type of Advantages Disadvantages

semantics

Informal − Easy to communicate − Tends to be ambiguous

− Does not require − Often contains

specialized training inconsistencies

− Cannot be formally

analyzed

Denotational − Allows a fairly abstract − Provides little guidance

system description for tool developers

− Builds on known − Too complex for users

domains − Expressing states and

− Well suited for operations is usually

mathematical reasoning difficult

and formal analysis of

properties

Operational − Provides good − Tends to be very detailed

formalization of − It is often difficult to

implementation derive formal proofs

− Well suited for building − Relies on the underlying

tools semantics of the

− Expressing states and abstract computer

operations is usually

easy

Hoare and He [15, p. 258] describe more explicitly the notion of an operational
semantics:

An operational semantics of a programming language is one that defines not
the observable overall effect of a program but rather suggests a complete set of
possible individual steps which may be taken in its execution. The observable
effect can then be obtained by embedding the steps into an iterative loop [. . .]

Taken together, these two descriptions suggest that formalizing an operational
semantics of a language is to define an interpreter for the language. The formal
definition of the interpreter describes every step that can be made in the execu-
tion of the language in such a way that the executions are in conformance with
the meaning of the language as defined by a denotational semantics.

Major advantages of operational semantics is that such semantics provides good
formalization of implementation and is well suited for building tools. It is also
typically well suited for state-based languages. On the other hand, operational

Semantics of UML Models for Dynamic Behavior 83

semantics tends to be very detailed, and it is often difficult to derive formal proof
from operational semantics. Besides, an operational semantics relies on the under-
lying semantics of the abstract computer on which the interpreter is assumed to
run [12]. Table 4.1 summarizes the strong and weak points of the different styles
of semantics discussed above.

In the next three section we present and discuss a number of approaches to
giving semantics to models. We concentrate on two categories of models, models
expressed in a sequence diagram style and models expressed in a state machine
style, and two main categories of semantics, denotational and operational. Ma-
king a complete and exhaustive presentation of every existing approach is an
impossible task, and it has therefore been necessary to make a selection. With
respect to sequence diagrams, we focus on UML sequence diagrams and Message
Sequence Charts (MSC), and with respect to state machines, we focus on state-
charts, UML state machines and SDL. Furthermore, we have aimed at making
a representative selection of the approaches that exist.

In Sect. 4.4 we present and discuss approaches to giving semantics to sequence
diagrams and similar notations, and in Sect. 4.5 we do the same with respect to
state machines and similar notations. In Sect. 4.6 we evaluate and compare the
approaches using the evaluation criteria identified in Sect. 4.2.

4.4 Sequence Diagrams and Similar Notations

In this section we present different approaches to defining formal semantics to
models expressed in UML sequence diagrams and similar notations. This pre-
sentation cannot, however, be seen independently of the history of sequence dia-
grams. The various approaches of defining semantics have emerged at different
points in this history, and are clearly influenced by the state of the language(s)
at the time of their emergence.

Sequence diagrams is a graphical specification language defined in the Unified
Modeling Language (UML) 2.x5 standard [1]. Sequence diagrams as defined in
the UML 2.x standard are the last of a sequence of languages that have evolved
over the last 15 to 20 years. Both UML sequence diagrams and their predecessor
Message Sequence Charts (MSC) [2] are specification languages that have proved
themselves to be of great practical value in system development.

An early version called Time Sequence Diagrams was standardized in the
1980s (see [17, 18]). Better known are MSCs that were first standardized by
ITU in 1993 (see e.g. [19]). This standard is usually referred to as MSC-92,
and describes what is now called basic MSCs. This means that MSC-92 did
not have high-level constructs such as choice, but merely consisted of lifelines

5 The UML standard exists in versions 1.3, 1.4, 1.4.2, 1.5, 2.0 and 2.1.1. The for us
relevant changes occurred in the transition from version 1.5 to version 2.0. Hence,
in this paper we will operate with UML 1.x and UML 2.x with versions 1.4 [16] and
2.1.1 [1] as representatives.

84 M.S. Lund, A. Refsdal, and K. Stølen

and messages. MSC-92 had a lifeline-centric textual syntax6, and was given a
semantics formalized in process algebra.

In 1996, a new MSC standard was defined, called MSC-96 [20]. In this stan-
dard, high-level constructs and high-level MSCs were introduced, a kind of dia-
grams that show how control flows between basic MSCs. Further an event-centric
textual syntax7 and a new semantics were defined [21]. This semantics is also
a kind of process algebra, but holds substantial differences from the MSC-92
semantics. Finally, the MSC-96 standard was revised in 1999 and became MSC-
2000 [2], but kept the MSC-96 semantics. A further discussion on the MSC
semantics is found below.

The first versions of the Unified Modeling Language (UML 1.x) [16] included
a version of sequence diagrams similar to MSC-92, i.e., consisting of lifelines
and messages but no high-level constructs. An important difference, however,
was that the sequence diagrams of UML 1.x did not have the frame around the
diagram, which in MSC-92 allowed messages to and from the environment of the
specified system.

Sequence diagrams in UML 2.x may be seen as a successor of MSC-2000,
since many of the MSC language constructs have been incorporated in the UML
2.x variant of sequence diagrams. UML 2.x sequence diagrams are, however,
neither a subset nor a superset of MSC-2000; there are both similarities and
differences between the languages [22]. Most notably MSCs do not have any
notion of negative behavior.

The UML standard defines the semantics of sequence diagrams informally.
Most notably, this is a trace-based semantics:

Basic trace model: The semantics of an Interaction8 is given by a pair [P, I]
where P is the set of valid traces and I is the set of invalid traces. P ∪ I need
not be the whole universe of traces.
A trace is a sequence of event occurrences denoted 〈e1, e2, ..., en〉. [1, pp. 479–
480]

The UML standard [1] defines four timing concepts: Duration observation, dura-
tion constraint, time observation and time constraint. The timing concepts of the
UML Testing Profile [23] are a combination of the timing concepts from the UML
standard and the timers from MSC. In the UML Profile for Schedulability, Per-
formance, and Time [24] timing is specified by timestamps on events. This UML

6 Lifelines represent the time-lines of communicating parts or components in a se-
quence diagram. In “MSC-terminology”, lifelines are called instances or instance
lines. A lifeline-centric syntax means that each lifeline is characterized by itself and
a diagram as a collection of lifelines.

7 In an event-centric syntax events, as opposed to lifelines, are the basic building
blocks of a diagram. The event-centric syntax of MSCs is more general than the
lifeline centric-syntax in that all diagrams expressed in the lifeline-centric syntax
can be expressed in the event-centric syntax, but not the other way around.

8 In the UML standard, Interaction is used as the common name for diagrams speci-
fying interaction by sending and receiving of messages. Sequence diagrams are then
one kind of Interaction [our note].

Semantics of UML Models for Dynamic Behavior 85

profile also has the notion of a timer, and a notion of a system clock that can pro-
duce interrupt events. The MSC standard defines three timing concepts: Timer,
relative time constraints or relative time delays, and absolute measure or timing.

In the following we present briefly different denotational and operational se-
mantics of sequence diagrams and similar notations. We start by presenting
denotational semantics, then denotational semantics with time, and then de-
notational semantics with probabilities. Then we present operational semantics
following the same structure.

4.4.1 Denotational Semantics

In [25] Katoen and Lambert define a denotational semantics for MSCs over sets
of partially ordered multisets. They define two translations, one for basic MSCs
and one for high-level MSCs. The former is defined over the instance oriented
textual syntax of MSCs and therefore have one rule for strict sequencing of events
on a single lifeline and one rule for co-region and parallel composition of lifelines.
These two levels seem to be unnecessary. If the rules for lifeline composition is
combined with the rules for sequential and parallel composition, the semantics
can be defined directly over the HMSC syntax and we then get a more general
approach. A similar denotational semantics for both basic MSCs and high-level
MSCs is given in [26].

In [27], Krüger defines a variant of Message Sequence Charts that is suppor-
ted by formal definitions of the semantics, as well as refinement relations. The
semantics is defined in terms of streams, which consist of a sequence of system
channel valuations and a sequence of state valuations. A system is represented
semantically by a set of streams, and the existence of more than one stream indi-
cates nondeterminism. The MSC variant proposed in [27] has some features that
go beyond standard MSC. For example, a trigger composition operator allows us
to specify that that the occurrence of an interaction sequence always causes the
occurrence of another, thus providing a way of specifying liveness properties.
In addition, [27] defines four different interpretations of MSCs: an existential
interpretation, an universal interpretation, an exact interpretation and a nega-
tive interpretation. Four different refinement relations are defined: binding of
references, which allows references to empty MSCs, property refinement, which
reduces the set of possible behaviors of the system, message refinement which
allows a single message to be replaced by a whole interaction sequence, and
structural refinement, which allows a single lifeline to be replaced by a set of
lifelines thus allowing decomposition.

The STAIRS semantics [28, 29] is a trace based formalization of sequence
diagrams based on an extension of the semantic model of the UML standard,
and hence distinguishes between positive, negative and inconclusive traces. But
instead of a single pair (p, n) of positive and negative traces the semantic model
of STAIRS is a set of pairs {(p1, n1), . . . , (pm, nm)}. Such a pair of sets of traces
(pi, ni) is referred to as an interaction obligation. The word “obligation” is used
in order to emphasize that an implementation of a specification is required to
fulfill every pair captured by the specification. This semantic model makes it

86 M.S. Lund, A. Refsdal, and K. Stølen

possible to define trace-set properties. Refinement is defined as refinement of
each interaction obligation, and refinement of interaction obligations is defined
as reducing the set of positive traces by making them negative and reducing the
set of inconclusive traces by making them positive or negative.

Störrle [30, 31, 32] defines a denotational trace based semantics for UML 2.x
sequence diagrams that is quite similar to the STAIRS semantics. Among the
notable differences are that Störrle does not treat choices as underspecification.
Further, Sörrle gives a different treatment of negative behavior where sequence
diagrams are not allowed to be inconsistent and the negative operator can indi-
rectly specify positive traces. Refinement is defined, but are more restricted as
there is no treatment of underspecification in the semantics.

Cengarle and Knapp [33] defines denotational semantics for UML 2.x sequence
diagrams. Their denotational semantics is trace based and similar to STAIRS
and the semantics of Störrle with respect to the positive parts of sequence dia-
grams. In difference from STAIRS and Störrle, they make a prefix closure of
negative traces, but does not allow inconsistent sequence diagrams. Their refi-
nement relation differs from STAIRS in that the set of inconclusive traces may
be increased, something which is a problem with respect to the monotonicity of
the composition operators.

In [34], Küster-Filipe gives an LSC inspired denotational semantics of UML
2.x sequence diagrams based on partially ordered sets. The partially ordered
sets of sequence diagrams is used to build event structures, and modal logic
constraints over these event structures are used to express negative behavior, as
well as must and may behavior.

4.4.2 Denotational Semantics with Time

In [35, 36], the semantics of basic MSCs given in [26] is presented in a timed
version. A timing function assigns time stamps to the events of a MSC, and
the MSC can be annotated with timing constraints in the form of minimum
and maximum time intervals between events. In addition, algorithms are given
for checking the realizability of MSCs and whether or not there exists a timing
function that is consistent with the timing constraints of an MSC.

In [37], Zheng et al. give a semantics with time for MSC-2000. The semantics is
based on labeled partially ordered sets and defines semantics for both basic MSCs,
high-level operators of MCSs and high-level MSCs. Time is represented by a func-
tion mapping each event in a diagram to a set of time values, giving the absolute
time interval in which the event should occur. Relative timing constraints are ex-
pressed by a function mapping pairs of events to intervals of time values. In [38],
horizontal and vertical refinement of their timed MSCs are defined.

Timed STAIRS is an extension to STAIRS defined in [39, 40]. In timed STAIRS
there is a distinction between syntactic and semantic events: in the syntax an event
is a triple of a kind (transmit, receive, or consumption), message and time-stamp
tag, while in the semantic events the time-stamp tags are mapped to timestamps
represented by real numbers. A requirement is placed on traces to ensure that time
increases monotonically in every trace. Time constraints are defined as Boolean

Semantics of UML Models for Dynamic Behavior 87

expressions over the time-stamp tags of the events of a diagram. If the mapping
of timestamps to time-stamp tags in a trace satisfies the constraint, the trace is
interpreted as positive, otherwise it is interpreted as negative.

4.4.3 Denotational Semantics with Probabilities

Performance Message Sequence Chart (PMSC) [41, 42] extends MSC with syn-
tactic constructs for expressing performance requirements. The aim is to integrate
performance characteristics, such as response time and throughput, in functional
specifications. Of particular interest is the new operator altprob for probabilistic
choice that is introduced in [42]. This operator allows exact probabilities to be as-
signed to the alternatives represented by its operands. This means that underspe-
cification with respect to probability cannot be captured by this operator. Apart
from mentioning instance decomposition, refinement is not discussed, and no defi-
nition is given of what it means for a system to comply with a PMSC specification.
The semantics of PMSC is explained at a purely intuitive level.

Probabilistic STAIRS (pSTAIRS) [43, 44, 45] generalizes timed STAIRS in or-
der to allow probabilistic requirements, including soft real-time requirements, to
be captured. Sets of acceptable probabilities, rather than a single probability, can
be assigned to alternatives. Hence, it is possible to express requirements such as
“the probability of receiving a reply within 5 seconds after sending a request should
be at least 0.9” or, for a machine simulating a coin toss, “the probability of get-
ting a heads outcome should be between 0.4 and 0.6”. Semantically, probabilis-
tic STAIRS extends the semantic model of timed STAIRS by assigning probabi-
lity sets to each interaction obligation, thus yielding so-called p-obligations. Re-
finement is defined in a similar way as for timed STAIRS, with the additional
constraint that the probability set of the refined p-obligation must be a subset
of the original p-obligation, thus narrowing the range of acceptable probabilities.

4.4.4 Operational Semantics

In 1995 a formal algebraic semantics for MSC-92 was standardized by ITU
[46, 47]. MSC-92 has a lifeline-centric syntax and its semantics is based on cha-
racterizing each lifeline as a sequence (total order) of events. These sequences
are composed in parallel and a set of algebraic rules transforms the parallel
composition into a structure of (strict) sequential composition and choice. The
causality of messages is obtained by a special function that removes from the
structure all paths that violate the invariant. In a way this semantics is not a
proper operational semantics since a diagram first has to be transformed into
the event structure before runs can be obtained. This transformation replaces
parallel composition with choice and hence creates an explosion in the size of
the representation of the diagram. In addition, the lifeline-centric syntax is not
suitable for defining nested high-level constructs. In [48], similar semantics for
UML 1.x sequence diagrams is given.

MSC-96 got a standardized process algebra semantics in 1998 [21, 49, 50]. This
semantics is event-centric andhas semantic operators for all the syntactic operators

88 M.S. Lund, A. Refsdal, and K. Stølen

in MSC-96. Further, these operators are “generalized” to preserve the causality of
messages by coding information about messages into the operators in the transla-
tion from syntactical diagrams to semantic expressions. Runs are characterized by
inference rules over the semantic operators.Compared toUML semantics, themost
notable thing about this semantics is that it has no notion of negative behavior,
and therefore also makes no distinction between negative behavior and inconclu-
sive behavior (behavior that is neither positive nor negative). This is no surprise
since MSC does not have the negative operator of UML 2.x. The only available
meta-level is a flat transition graph, and this does not give sufficient strength to
extend the semantics with negative behavior. Nor is it possible to define trace-set
properties over this transition graph. The semantics has no explicit communica-
tion medium; the communication model is “hard-coded” in the semantics by the
“generalized operators” and does not allow for variation. Even though MSC has
timing concepts, these are not given proper treatment in the semantics.

Another process algebra semantics for MSC is presented in [51]. This seman-
tics may in some respects be seen as more general than both the MSC-92 and
the MSC-96 semantics. A simple “core semantics” for MSCs is defined and this
semantics is then inserted into an environment definition. Varying the definition
of the environment allows for semantic variability and extendibility, e.g., with
respect to the communication model. However, the semantics is heavily based
on synchronization of lifelines on the entry of referenced diagrams and combined
fragments and diverges in this respect from the intended semantics of MSCs
and UML sequence diagrams. Further, the same strategy as for the MSC-92
semantics is applied; interleaving is defined by means of choice, and the mes-
sage invariants obtained by removing deadlocks. This results in an unnecessary
amount of computation, especially in the cases where we do not want to produce
all traces but rather a selection of the traces that a diagram defines.

Realizability of MSCs is the focus of both [36, 52] and [53]. They define syn-
thesis of MSC to concurrent automata and parallel composition of labeled tran-
sition systems (LTS), respectively. (Each lifeline is represented as an automaton
or LTS; the lifelines are then composed in parallel.) Further they define high-
level MSCs as graphs where the nodes are basic MSCs. In addition, [53] defines
both syntax and semantics for negative behavior. In both approaches the transla-
tion of high-level MSCs to concurrent automata/LTSs removes the semi-global
nature of choices in a specification, and the high-level MSC graphs are non-
hierarchical, disallowing nesting of high-level operators. In [53] communication
is synchronous.

Various attempts at defining Petri-net semantics for MSCs have been made
[54, 55, 56, 57]. In [54, 56] only basic MSCs are considered. In [57], high-level
MSCs are defined as graphs where each node is a basic MSC. As with the above
mentioned semantics, it is then possible to express choices and loops, but the
approach does not allow for nesting of high-level operators. In [55], a Petri-net
translation of the choice operator is sketched, but no loop defined. In [58] a
Petri-net semantics for UML 1.x sequence diagrams is presented, but as with
the Petri-net semantics of basic MSCs it has major limitations.

Semantics of UML Models for Dynamic Behavior 89

Jonsson and Padilla [59] present a semantics for MSC which is based on syn-
tactic expansion and projection of diagram fragments during execution. Each
lifeline is represented by a thread of labels where the labels refer to events or
diagram fragments. The threads are executed in parallel and when a label refer-
ring to a fragment is reached the fragment is projected and expanded into the
threads. Expansions may happen at arbitrary points since there are no rules in
the semantics itself for when to expand. This creates a need for execution stra-
tegies, and the approach may be seen as having an informal meta-level where
ad hoc strategies are described. However, if completeness is to be ensured, or
if the semantics is to be extended with negative behavior or trace-set proper-
ties, this meta-level must be formalized. The semantics requires explicit naming
of all diagram fragments and this yields an unnecessary complicated syntax. It
does not have an explicit communication medium; the communication model is
“hard-coded” into the semantics and does not allow for variation.

In [60, 61] an operational semantics for UML 2.x sequence diagram is given.
The semantics is defined as the combination of two transition systems, which are
referred to as an execution system and a projection system. The projection system
is used for finding enabled events at each stage of the execution and is defined
recursively. These two systems work together in such a way that for each step in
the execution, the execution system updates the projection system by passing
on the current state of the communication medium, and the projection system
updates the execution system by selecting the event to execute and returning
the state of the diagram after the execution of the event. The execution system
can be configured with different communication models, and the semantics also
provides a formal meta-level for specifying execution strategies and for handling
of negative behavior and trace-set properties. The semantics is proved to be
sound and complete with respect to the denotational semantics of STAIRS (see
above).

In [62, 63] an operational semantics for UML 2.x sequence diagrams that is
equivalent to the denotational semantics defined in [33] (see above) is given.
This operational semantics has some similarities to the operational semantics
of [60, 61]; for every execution step an event is produced and at the same time
the syntactical representation of the diagram is reduced by the removal of the
event produced. Contrary to [60, 61], their semantics treats sequence diagrams
as complete specifications (with no inconclusive behavior). The rules are defined
so that a given diagram produces a set of positive and negative traces that
together exhaust the trace universe. The negative operator is replaced by a
“not” operator. This operator is defined so that the sets of positive and negative
traces are swapped, with the result that specifying some behavior as negative
means also specifying the complement of this behavior as positive. A variant of
the (positive part) of the operational semantics where each lifeline is executed
separately, and an extension with channels, are given in [63].

In [64], Cavarra and Küster-Filipe present an operational semantics for UML
2.x sequence diagrams inspired by Live Sequence Charts (LSC) (see below). The
semantics is formalized in pseudo-code that works on diagrams represented as

90 M.S. Lund, A. Refsdal, and K. Stølen

locations in the diagram, but no translation from diagrams to this representa-
tion is provided. The arguments of choices have guards and there is nothing to
prevent the guards of more arguments in a choice to evaluate to true. In this
case the uppermost operand will be chosen, which means that the choices es-
sentially are treated as nested if-then-else statements and may not be used for
underspecification. Each lifeline is executed separately which means that syn-
chronization at the entry of choices is necessary to ensure that all lifelines choose
the same operand. They also make the same assumption about negative behavior
as in LSCs, that if a negative fragment is executed, then execution aborts.

Grosu and Smolka [65] provide a semantics for UML 2.x sequence diagrams
based on translating the diagrams to Büchi automata. The approach is based on
composing simple sequence diagrams (no high-level operators) in high-level se-
quence diagrams (interaction overview diagrams), where a simple diagram may
be a positive or a negative fragment of the high-level diagram it belongs to.
Positive behavior is interpreted as liveness properties and negative behavior as
safety properties. Hence, for a high-level diagram two Büchi automata are de-
rived; a liveness automaton characterizing the positive behavior of the diagram
and a safety automaton characterizing the negative behavior. The diagrams are
composed by strict sequencing rather than weak sequencing, and hence has im-
plicit synchronization of lifelines when entering or leaving a simple diagram.
Refinement is defined as language inclusion.

Live Sequence Charts (LSC) [3, 66, 67] is a variant of MSC where diagrams
may be tagged as universal or existential, and parts of diagrams as hot or cold.
In addition, a diagram may have a triggering pre-chart. The semantics of LSC
characterizes the execution of diagrams. It also evaluates the conditions imposed
on diagrams by designating them as universal or existential, or by marking parts
of diagrams as hot or cold. The semantics complies with neither the MSC nor the
UML standard. Most importantly it requires synchronization between lifelines
at every entry point of diagram fragments, e.g. when resolving a choice.

Harel and Maoz [68] use LSC semantics to define negative behavior of UML 2.x
sequence diagrams. The operators are defined using already existing constructs
of LSCs, and hence no changes or additions to the LSC semantics are needed in
their approach.

In Triggered Message Sequence Charts (TMSC) [69, 70], an initial part of a
diagram can be designated as a trigger diagram, with the interpretation that
if the behavior described by the trigger diagram takes place, then the behavior
described by the rest of the diagram must subsequently take place. Unlike the
pre-charts of LSC, however, the trigger condition applies locally to each lifeline.
This means that, for any given lifeline, if the events on that lifeline described by
the trigger diagram take place, then the following events on that lifeline must
subsequently take place. As the fulfillment of the trigger condition is determined
locally on each lifeline, there is no need for synchronization between the lifelines.
A refinement relation is defined, with the intuitive interpretation that a speci-
fication S1 is refined by a specification S2 if S2 is more deterministic than S1.
TMSC contains two operators for choice. A delayed choice must be preserved in

Semantics of UML Models for Dynamic Behavior 91

a refinement step. An internal choice can be resolved at any point (including at
design time). In addition, an internal choice may be refined by a delayed choice.

4.4.5 Operational Semantics with Time

In [51], Letichevsky et al. claim they also have an extension to the semantics
where timing concepts such as time intervals and timing of events are defined.

The operational semantics of [60, 61] has in [60] an extension with data, va-
riables and time. Each lifeline has a set of local variables and a data state that
assigns values to these variables. In order to model time a special variable now
is introduced. Because the approach only has local variables, this variable is
placed in the data state of every lifeline in a diagram. It can, however, be consi-
dered a global variable in the sense that all the local now variables are updated
simultaneously and with equal increments, i.e. that the time of all lifelines are
synchronized. Except for increments by a special tick rule, the now variables
are read only, something that is ensured by syntactic constraints.

In [67], a time extension to LSCs is presented where a clock variable Time is
added to the formalism. Time is then treated as data and time constraints can
be expressed by means of ordinary variables.

Kosiuczenko and Wirsing [71] make a formalization of MSC-96 in a timed
version of the term rewriting language Maude. Every lifeline in a diagram is
translated into an object specified in Maude, and the behaviors of these objects
are specified by the means of states and transition rules. This way of reducing
diagrams to sets of communicating objects has the effect that all choices are
made locally in the objects and the choice operator looses its semi-global nature.
Hence, this formalization does not capture the intended understanding of the
choice operator. With respect to time, their semantics only deals with timers,
and their formalization makes restrictions on the MSC semantics.

4.4.6 Operational Semantics with Probabilities

We are not aware of any operational semantics with probabilities for sequence
diagrams or similar notations.

4.5 State Machines and Similar Notations

In this section we present some of the approaches that have been taken for
assigning formal semantics to models expressed in UML state machines and
similar languages. UML state machines represent one of many variations that
have emerged since Harel introduced the Statechart language in 1987 [4]. Over
the years very much work has been dedicated to providing a satisfactory formal
semantics. An extensive overview is beyond the scope of this article; our aim
is to illustrate the variety of approaches that have been taken. An alternative
overview from a different angle can be found in [72].

92 M.S. Lund, A. Refsdal, and K. Stølen

4.5.1 Denotational Semantics

Broy et al. [73, 74, 75] build a mathematical system model for UML in layers.
Each layer builds an algebra consisting of a universe of elements with accom-
panying functions and laws for the functions. The third part, presented in [75],
includes the “state machine part”, which is given in terms of state transition
systems. A state transition system consists of a state space (a set of states) and
a state transition function. The theory of state transition systems is based on
the theory of streams of FOCUS [76] for the I/O behavior, and thus inherits re-
finement from there. State transition systems can describe not only the behavior
of a single object, but also a collaborating group of objects.

A set theoretic approach to defining a semantics is taken in [77]; object states,
events, guards, and run-to-completion processing is described in set theoretic
terms. The aim is to provide a compositional semantics that allows models to
be subject to hierarchical and modular approaches to verification and testing.

4.5.2 Denotational Semantics with Time

In [75], the state transition systems are generalized into timed transition sys-
tems to account for time. The approach assumes a discrete global time. In each
step/transition the system is provided with a finite set of input events and pro-
duces a finite set of output events; this takes a fixed amount of time correspon-
ding to a clock tick.

Rossi et al. [78] provide a formalization of (fundamental aspects of) UML
state machines in terms of a temporal logic over discrete time called LNint-e.9

Time is represented by a discrete, linear and infinite set with a total ordering.
LNint-e allows inclusion of interval expressions, and time can be treated both
absolutely and relatively. The temporal primitives from which expressions can
be built are instants, intervals and dates. A state machine diagram is represen-
ted by set of predicates, and the formalization can be generated automatically.
States are formalized by means of expressions that can be affirmed over intervals
(“hereditary interval expressions”).

Hinkel, Holz and Stølen [79, 80] give a semantics for SDL specifications (whose
behavioral descriptions are similar to UML state machines) based on streams and
stream processing functions within the framework of FOCUS [76]. This allows
properties of SDL specifications to be proved using techniques of classical higher
order logic and of domain theory. Time is represented by a global clock which
increases time and is accessible to all processes. Time is an orthogonal concept
to system behavior, and time proceeds independently from the behavior. Timers
set by processes will expire after a finite duration of time and are put in the

9 Note that we have chosen to include [78] among the denotational semantics because
the translation from a state machine diagram to a set of logical formulae can be
viewed as a translation into a well-known domain. As there are very few approaches
that give an axiomatic semantics for UML sequence diagrams and state machines,
we have chosen not to have a separate category for axiomatic semantics.

Semantics of UML Models for Dynamic Behavior 93

input queue of the process. The refinement relations provided by FOCUS can
be used also for the approach of [79, 80].

4.5.3 Denotational Semantics with Probabilities

We are not aware of any approaches that assigns a formal denotational semantics
to state machines that also include probabilities.

4.5.4 Operational Semantics

In [4], Harel provides a brief discussion of how a formal semantics for statecharts
could be provided, without giving definitions. The semantics is built around
a function that provides the set of next possible configurations from a current
configuration together with a set of conditions and a set of external simultaneous
events. The set of possible next configurations represent nondeterminism. An
updated and more thorough presentation of the semantics is provided in [81],
which explains the executable semantics of the STATEMATE system [82].

One approach to assigning formal semantics to UML state machines is to use
abstract state machines [83]. Following the description of [84], abstract state ma-
chines are transition systems whose states are multi-sorted first-order structures,
i.e. sets with relations and functions. Relations can be considered as characte-
ristic Boolean-valued functions. The transition relation is specified by rules that
describe the modification of the functions from one state to the next. These
update rules are of the form “if Condition then Updates”, where Updates is a
set of function updates (assigning new function values for arguments) which are
simultaneously executed when Condition is true.

An example of an approach that uses abstract state machines is [85], which
employs multi-agent abstract state machines to model the dynamic semantics
of UML state machines. Their model is intended to define rigorously the UML
event handling scheme so that semantic variation points become explicit, while
reflecting the original structure of UML state machines. Furthermore, object
interaction is formalized by combining control and data flow. This work is further
extended by the authors in [86] to cover concurrent states, while [84] surveys
their previous work in order to further discuss semantic variation points and
unclarities of UML state machines from a formal point of view.

In [87], Jürjens extends the semantics given in [85, 86] by modeling actions,
internal activities, and their operations and parameters explicitly, as well as
providing message passing between different diagrams. This constitutes a further
step toward formal modeling of complete UML specifications and the goal of
executable UML specifications. A thorough presentation of Jürjens’ work on
formalization of UML is given in [88], which provides a formal semantics for
UML state machines (as well as other UML languages such as sequence diagrams
and static structure diagrams) in terms of so-called UML Machines and UML
Machine Systems. UML Machines are inspired by abstract state machines; they
are transition systems whose states are algebraic structures. In addition, UML
Machines have built-in communication mechanisms similar to the corresponding

94 M.S. Lund, A. Refsdal, and K. Stølen

mechanisms in UML. UML Machines interact by exchanging messages which
are dispatched from (or received in) multi-set buffers called output queues (or
input queues). Based on UML Machines, [88] defines refinement relations, as well
as security properties such as integrity and authenticity, and provides proofs of
preservation of security properties under refinement.

van der Beeck [89] starts with a precise textual syntax definition for UML
state machines. The terms of this textual syntax is designed to closely resemble
the intuitive notion of state machines. From the textual syntax a structured ope-
rational semantics is developed in two phases. First an auxiliary semantic which
only deals with processing single input events is defined. Then this auxiliary
semantics is used to define a semantics that also handles processing of sequences
of input events. Unlike many other approaches, [89] supports the history mecha-
nism of UML state machines, as well as entry and exit actions.

4.5.5 Operational Semantics with Time

In [81] Harel and Naamad provide two models of time: one synchronous and
one asynchronous. For the synchronous model it is assumed that the system
executes a single step each time unit as a reaction to the external changes that
have occurred in the single time unit since the completion of the previous step.
For the asynchronous model it is assumed that the system reacts whenever an
external change occurs. Several external changes may occur simultaneously, and
several steps may take place within a single point in time.

In [90], timed UML state machines are compiled into timed UPPAAL au-
tomata [91], which are timed automata as originally defined by Alur and Dill
[92], extended with primitives for synchronization. The passage of time is repre-
sented by increasing the value of a finite number of real-valued clocks by the
same amount. [90] extends the UML notation (after(t)) by allowing clocks to be
explicitly declared in class diagrams. These clocks can be tested in transition
guards and reset as the effect of a transition. Furthermore, clock invariants may
be associated with states to model timeouts. Even though a formal semantics as
such is not provided in [90], the translation of timed UML state machines has
been implemented in a prototype tool called HUGO/RT. The resulting timed
automata can then be analyzed by the UPPAAL model checker.

Building on ideas from timed process calculi, [93] suggests an approach to for-
malizing the Statechart language [4] semantics as flattened transition systems.
Transition relations are defined via structured operational rules. The work is mo-
tivated by the desire to achieve a semantics that is compositional (in the sense
that the semantics of a statechart can be determined from the semantics of its
components), while obeying causality and synchrony. In this context, causality
means the following: A statechart may respond to an event by engaging in an
enabled transition, thus performing a micro step. This transition may generate
new events which in turn may trigger additional transitions. Synchrony means
that one execution step (a macro step) is complete as soon as this chain reaction
comes to a halt. The semantics proposed in [93] represents macro steps as se-
quences of micro steps which begin and end with explicit global clock ticks. The

Semantics of UML Models for Dynamic Behavior 95

flat labeled transition systems thus have two kinds of transitions: those repre-
senting the execution of a statechart transition, and those representing global
clock ticks. Clock transitions are only allowed if no additional action transitions
can be executed.

4.5.6 Operational Semantics with Probabilities

Jansen et al. [94, 95] define StoCharts as an extension of UML state machines
to deal with quality of service (QoS) aspects. Probability is handled by allowing
state transitions to select probabilistically out of different effects. In addition,
the “after” operator is given a stochastic interpretation allowing the time delay
to be sampled from an arbitrary probability distribution. A formal semantics
is provided in the form of a mapping to Stochastic Input/Output Automata
(IOSA), which is an automata model based on timed, stochastic and probabilistic
(I/O-)automata extending the UML state machine semantics of [96].

Motivated by the need for quantitative dependability and performance ana-
lysis of UML behavioral models of embedded systems, [97] presents patterns
for translating UML state machines with timing and stochastic information and
classification of model elements (such as fault states) into Stochastic Rewards
Nets (SRN). SRNs are Petri-nets that are generalized to handle rewards (various
measures) and by assigning guards and distributions of the firing time to tran-
sitions. The SRN resulting from the translation gives a precise mathematical
model that can be analyzed by sophisticated tools. Standard UML mechanisms
are employed to achieve the required expressiveness for the UML state machines;
timing and stochastic information in captured by tagged values, while classifica-
tion of model elements is achieved by stereotyped states and events.

4.6 Evaluation and Comparison

The evaluation of the semantic approaches surveyed in Sects. 4.4 and 4.5 is
presented in Table 4.2 and Table 4.3, respectively. In these tables we indicate with
check marks whether the properties, given as evaluation criteria in Sect. 4.2, are
fulfilled. It should be noted that we have been somewhat liberal in the evaluation,
and the evaluation is to some degree based on the claims of the authors of the
evaluated papers. With respect to refinement, we have not assessed whether or
not the provided definitions of refinement correspond to our view of refinement,
but checked the refinement box if any refinement relation or similar notion is
defined. In the following we give further comments on the two tables.

In Table 4.2, we see that most of the approaches are evaluated to support
underspecification. The general rule is that an approach providing an explicit
mechanism for specifying nondeterministic choice supports underspecification,
unless such choices are interpreted as must behavior, as in [30, 32]. The ap-
proaches evaluated as supporting trace set properties are the approaches that
explicitly distinguish between underspecification and inherent nondeterminism,
as for example [28], the approaches distinguishing between universal and exis-
tential behavior, as for example [3, 66, 67, 68], and the approaches distinguishing

96 M.S. Lund, A. Refsdal, and K. Stølen

Table 4.2. Evaluation of semantics for sequence diagrams and similar notations

D
en

ot
at

io
na

l
se

m
an

ti
cs

?

O
pe

ra
ti
on

al
se

m
an

ti
cs

?

U
nd

er
sp

ec
ifi

ca
ti
on

?

T
ra

ce
se

t
pr

op
er

ti
es

?

In
co

m
pl

et
e

m
od

el
s?

R
efi

ne
m

en
t?

R
ea

l-
ti

m
e?

P
ro

ba
bi

lit
ie

s?

Katoen, Lambert [25]
√ √

Krüger [27]
√ √ √ √ √

Haugen, Husa, Runde, Seehusen, Solhaug,
Stølen (STAIRS) [28, 29]

√ √ √ √ √

Störrle [30, 31, 32]
√ √ √ √ √

Cengarle, Knapp [33]
√ √ √

Küster-Filipe [34]
√ √ √

Alur, Etassami, Holzmann, Peled, Yanna-
kakis [26, 35, 36]

√ √ √ √

Zheng, Khendek, Hélouët, Parraux [37, 38]
√ √ √ √

Haugen, Husa, Runde, Stølen (Timed
STAIRS) [39, 40]

√ √ √ √ √ √

Faltin, Lambert, Mitchele-Thiel, Slomka
(PMSC) [42, 41]

√ √ √ √ √

Refsdal, Husa, Runde, Stølen (pSTAIRS)
[43, 44, 45]

√ √ √ √ √ √ √

Mauw, Reniers (MSC-92) [46, 47]
√ √

Mauw, Reniers (MSC-96) [21, 49, 50]
√ √ √

Letichevsky, Kapitonova, Kotlyarov, Vol-
kov, Letichevsky Jr., Weigert [51]

√ √ √

Alur, Etassami, Yannakakis [36, 52]
√ √

Uchitel, Kramer, Magee [53]
√ √ √

Graubmann et al. [54, 55, 56, 57]
√

Jonsson, Padilla [59]
√ √

Lund, Stølen [60, 61]
√ √ √ √ √ √

Cengarle, Knapp, Mühlberger [62, 63]
√ √

Cavarra, Küster-Filipe [64]
√ √ √

Grosu, Smolka [65]
√ √ √ √

Harel, Damm, Maoz, Marelly, Thiagarajan
(LSC) [3, 66, 67, 68]

√ √ √ √ √

Sengupta, Cleveland (TMSC) [69, 70]
√ √ √ √ √

Kosiuczenko, Wirsing [71]
√ √ √

Semantics of UML Models for Dynamic Behavior 97

Table 4.3. Evaluation of semantics for state machines and similar notations

D
en

ot
at

io
na

l
se

m
an

ti
cs

?

O
pe

ra
ti

on
al

se
m

an
ti

cs
?

U
nd

er
sp

ec
ifi

ca
ti

on
?

T
ra

ce
se

t
pr

op
er

ti
es

?

In
co

m
pl

et
e

m
od

el
s?

R
efi

ne
m

en
t?

R
ea

l-
ti

m
e?

P
ro

ba
bi

lit
ie

s?

Broy, Cengarle, Rumpe [75]
√ √ √ √

Simons [77]
√ √

Rossi, Enciso, de Guzmán [78]
√ √

Hinkel, Holz, Stølen [79, 80]
√ √ √ √

Harel, Naamad [4, 81]
√ √ √

Börger, Cavarra, Riccobene [85, 86]
√ √

Jürjens [87, 88]
√ √ √ √

von der Beeck [89]
√ √

Knapp, Merz, Rauh [90]
√ √ √

Lüttgen, von der Beeck, Cleaveland [93]
√ √ √

Jansen, Hermanns, Katoen [94, 95]
√ √ √ √ √

Huszerl, Kosmidis, Cin, Majzik, Pataricza
[97]

√ √ √ √ √

between must and may behavior, as for example [34]. The final evaluation cri-
teria we want to comment upon is the support for incomplete models. This is
difficult to assess, as we can always choose to interpret a sequence diagram as
an incomplete model. The evaluation was therefore based on the approaches’
treatment of negative behavior, their support for existential behavior, and their
definitions of refinement.

A few comments to Table 4.3 are also needed. First, we notice that none of
the approaches capture incomplete models. The reason is that state machines,
unlike sequence diagrams, focus on describing a single component rather than
an interaction scenario. All state machine variants we are aware of describe only
the behavior that the component may exhibit; behavior not explicitly descri-
bed is negative in the sense that it should not occur. There is, therefore, no
explicit operator for expressing negative behavior, and all behavior is either po-
sitive or negative – there is no inconclusive behavior. Second, most approaches
have received a check mark under “Underspecification”, but only a few under
“Trace set properties”. The reason is that, for approaches with only one kind of
transition, we have assumed that nondeterministic choices between transitions
represent underspecification, rather than explicit nondeterminism. This decision

98 M.S. Lund, A. Refsdal, and K. Stølen

was made because a fairly standard notion of refinement is trace inclusion – the
requirement that the traces of the refined specification is a subset of the traces of
the original specification. Third, all approaches with probabilities have received
a check mark in the “Trace set properties” column, as all alternatives with a
certain (non-zero) probability are necessarily represented in a correct implemen-
tation. In this sense, probabilistic choices can be viewed as a kind of inherent
nondeterminism, which means that trace set properties can be captured.

4.7 Summary and Conclusions

In this paper we have defined a set of evaluation criteria for semantics of models
for embedded systems. We claim that our criteria represent an important set of
the properties that semantics of models for embedded systems should support.

These evaluation criteria have been applied in an evaluation of formal se-
mantics for models expressed in UML sequence diagrams, state machines, and
similar notations. In the paper we have presented and evaluated in all more
that 30 approaches, divided into four main categories: denotational semantics
of sequence diagrams, operational semantics of sequence diagrams, denotational
semantics of state machines and operational semantics of state machines. Our
selection of approaches to evaluate is not exhaustive, but we believe that it gives
a representative picture of the various approaches available.

As the evaluation reveals there is no lack of approaches to formal semantics for
UML sequence diagrams and state machines, and many of these have desirable
properties. We do not proclaim a winner, but we have established that formal
semantics of relevant modeling languages are readily available for the developers
of embedded systems. We have not evaluated to what degree the approaches
presented in this paper are supported by suitable tools, nor to what degree
they have been put to practical application. Still, judging from our evaluation,
there should be a large potential for applying UML models supported by formal
semantics in the development of embedded systems. It is up to developers to
choose a suitable approach based on the nature of the system to be developed,
and the background and experience of the development team.

Acknowledgements

The work on which this paper reports has partly been funded by the Research
Council of Norway through the projects SARDAS (15295/431) and ENFORCE
(164382/V30), and partly by the European Commission through the MODEL-
PLEX project (Contract no. 034081)under the IST Sixth FrameworkProgramme.

References

[1] Object Management Group: Unified Modeling Language: Superstructure, version
2.1.1 (non-change bar). OMG Document: formal/2007-02-05 (2005)

[2] International Telecommunication Union: Message Sequence Chart (MSC), ITU-T
Recommendation Z.120 (1999)

Semantics of UML Models for Dynamic Behavior 99

[3] Damm, W., Harel, D.: LSCs: Breathing life into Message Sequence Charts. Formal
Methods in System Design 19, 45–80 (2001)

[4] Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

[5] International Telecommunication Union: Specification and description language
(SDL), ITU-T Recommendation Z.100 (2000)

[6] Labinaz, G., Bayoumi, M.M., Rudie, K.: A survey of modeling and control of
hybrid systems. Annual Reviews of Control 21, 79–92 (1997)

[7] Giese, H., Henkler, S.: A survey of approaches for the visual model-driven develop-
ment of next generation software-intensive systems. Journal of Visual Languages
and Computing 17(6), 528–550 (2006)

[8] McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: Proceedings of the IEEE Symposium on Research in
Security and Privacy, pp. 79–93. IEEE Computer Society, Los Alamitos (1994)

[9] Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Let-
ters 21(4), 181–185 (1985)

[10] Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
System Security 3(1), 30–50 (2000)

[11] Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of “semantics”?
Computer 37(10), 64–72 (2004)

[12] Prinz, A.: Formal semantics of specification languages. Telektronikk (4), 146–155
(2000)

[13] Fecher, H., Schönborn, J., Kyas, M., de Roever, W.P.: 29 new unclarities in the
semantics of UML 2.0 state machines. In: Lau, K.-K., Banach, R. (eds.) ICFEM
2005. LNCS, vol. 3785, pp. 52–65. Springer, Heidelberg (2005)

[14] Schmidt, D.A.: Denotational semantics. A methodology for language development.
William C. Brown (1988)

[15] Hoare, C.A.R., Jifeng, H.: Unifying theories of programming. Prentice-Hall, En-
glewood Cliffs (1998)

[16] Object Management Group: Unified Modeling Language Specification, version 1.4.
OMG Document: formal/2001-09-67 (2001)

[17] Facchi, C.: Formal semantics of Time Sequence Diagrams. Technical report TUM-
I9540, Technische Universität München (1995)

[18] International Telecommunication Union: Information technology – Open Systems
Interconnection – Basic reference model: Conventions for the definition of OSI
services, ITU-T Recommendation X.210 (1993)

[19] Bræk, R., Gorman, J., Haugen, Ø., Møller-Pedersen, B., Melby, G., Sanders, R.,
St̊alhane, T.: TIMe: The Integrated Method. Electronic Textbook v4.0. SINTEF
(1999)

[20] International Telecommunication Union: Message Sequence Chart (MSC), ITU-T
Recommendation Z.120 (1996)

[21] International Telecommunication Union: Message Sequence Chart (MSC), ITU-T
Recommendation Z.120, Annex B: Formal semantics of Message Sequence Charts
(1998)

[22] Haugen, Ø.: Comparing UML 2.0 Interactions and MSC-2000. In: Amyot, D.,
Williams, A.W. (eds.) SAM 2004. LNCS, vol. 3319, pp. 65–79. Springer, Heidel-
berg (2005)

[23] Object Management Group: UML Testing Profile, version 1.0. OMG Document:
formal/2005-07-07 (2005)

[24] Object Management Group: UML Profile for Schedulability, Performance, and
Time Specification, version 1.1. OMG Document: formal/2005-01-02 (2005)

100 M.S. Lund, A. Refsdal, and K. Stølen

[25] Katoen, J.P., Lambert, L.: Pomsets for Message Sequence Charts. In: Formale
Beschreibungstechniken für Verteilte Systeme, pp. 197–208. Shaker (1998)

[26] Alur, J., Yannakakis, M.: Model checking of Message Sequence Charts. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 98–113. Springer,
Heidelberg (1999)

[27] Krüger, I.H.: Distributed system design with Message Sequence Charts. PhD the-
sis, Technische Universität München (2000)

[28] Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: STAIRS towards formal design
with sequence diagrams. Software and Systems Modeling 4(4), 355–367 (2005)

[29] Seehusen, F., Solhaug, B., Stølen, K.: Adherence preserving refinement of trace-set
properties in STAIRS: Exemplified for information flow properties and policies.
Software and Systems Modeling 8(1), 45–65 (2009)

[30] Störrle, H.: Assert, negate and refinement in UML 2 interactions. In: 2nd Interna-
tional Workshop on Critical Systems Development with UML (CSD-UML 2003),
Technische Universität München, pp. 79–93 (2003)

[31] Störrle, H.: Semantics of interaction in UML 2.0. In: IEEE Symposium on Human
Centric Computing Languages and Environments (HCC 2003), pp. 129–136. IEEE
Computer Society, Los Alamitos (2003)

[32] Störrle, H.: Trace semantics of interactions in UML 2.0. Technical report TR 0403,
Institut für Informatik, der Ludwig-Maximilians-Universität München (2004)

[33] Cengarle, M.V., Knapp, A.: UML 2.0 interactions: Semantics and refinement. In:
3rd International Workshop on Critical Systems Development with UML (CSD-
UML 2004), Technische Universität München, pp. 85–99 (2004)

[34] Küster-Filipe, J.: Modelling concurrent interactions. In: Rattray, C., Maharaj,
S., Shankland, C. (eds.) AMAST 2004. LNCS, vol. 3116, pp. 304–318. Springer,
Heidelberg (2004)

[35] Alur, R., Holzmann, G.J., Peled, D.: An analyzer for Message Sequence Charts.
In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 35–48.
Springer, Heidelberg (1996)

[36] Alur, R., Etessami, K., Yannakakis, M.: Inference of Message Sequence Charts.
IEEE Transactions on Software Engineering 29(7), 623–633 (2003)

[37] Zheng, T., Khendek, F., Hélouët, L.: A semantics for timed MSC. Electronic Notes
in Theoretical Computer Science 65(7), 85–99 (2002)

[38] Zheng, T., Khendek, F., Parreaux, B.: Refining timed MSCs. In: Reed, R., Reed,
J. (eds.) SDL 2003. LNCS, vol. 2708, pp. 234–250. Springer, Heidelberg (2003)

[39] Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: Why timed sequence dia-
grams require three-event semantics. In: Leue, S., Systä, T.J. (eds.) Scenarios:
Models, Transformations and Tools. LNCS, vol. 3466, pp. 1–25. Springer, Heidel-
berg (2005)

[40] Runde, R.K.: STAIRS - Understanding and developing specifications expressed
as UML interaction diagrams. PhD thesis, Faculty of Mathematics and Natural
Sciences, University of Oslo (2007)

[41] Faltin, N., Lambert, L., Mitschele-Thiel, A., Slomka, F.: An annotational exten-
sion of Message Sequence Charts to support performance engineering. In: 8th
International SDL Forum: Time for Testing, SDL, MSC and Trends (SDL 1997),
pp. 307–322. Elsevier, Amsterdam (1997)

[42] Lambert, L.: PMSC for performance evaluation. In: 1st Workshop on Performance
and Time in SDL/MSC, pp. 70–80 (1998)

[43] Refsdal, A., Husa, K.E., Stølen, K.: Specification and refinement of soft real-time
requirements using sequence diagrams. In: Pettersson, P., Yi, W. (eds.) FOR-
MATS 2005. LNCS, vol. 3829, pp. 32–48. Springer, Heidelberg (2005)

Semantics of UML Models for Dynamic Behavior 101

[44] Refsdal, A., Runde, R.K., Stølen, K.: Underspecification, inherent nondetermi-
nism and probability in sequence diagrams. In: Gorrieri, R., Wehrheim, H. (eds.)
FMOODS 2006. LNCS, vol. 4037, pp. 138–155. Springer, Heidelberg (2006)

[45] Refsdal, A.: Specifying computer systems with probabilistic sequence diagrams.
PhD thesis, Faculty of Mathematics and Natural Sciences, University of Oslo
(2008)

[46] Mauw, S.: The formalization of Message Sequence Charts. Computer Networks
and ISDN Systems 28(1), 1643–1657 (1996)

[47] Mauw, S., Reniers, M.A.: An algebraic semantics of Basic Message Sequence
Charts. The Computer Journal 37(4), 269–278 (1994)

[48] Okazaki, M., Aoki, T., Katayama, T.: Formalizing sequence diagrams and state
machines using Concurrent Regular Expression. In: 2nd International Workshop
on Scenarios and State Machines: Models, Algorithms, and Tools, SCESM 2003
(2003)

[49] Mauw, S., Reniers, M.A.: Operational semantics for MSC’96. Computer Net-
works 31(17), 1785–1799 (1999)

[50] Mauw, S., Reniers, M.A.: High-level Message Sequence Charts. In: 8th Interna-
tional SDL Forum: Time for Testing, SDL, MSC and Trends (SDL 1997), pp.
291–306. Elsevier, Amsterdam (1997)

[51] Letichevsky, A.A., Kapitonova, J.V., Kotlyarov, V.P., Volkov, V.A., Letichevsky
Jr., A.A., Weigert, T.: Semantics of Message Sequence Charts. In: Prinz, A., Reed,
R., Reed, J. (eds.) SDL 2005. LNCS, vol. 3530, pp. 117–132. Springer, Heidelberg
(2005)

[52] Alur, R., Etessami, K., Yannakakis, M.: Realizability and verification of MSC
graphs. Theoretical Computer Science 331(1), 97–114 (2005)

[53] Uchitel, S., Kramer, J., Magee, J.: Incremental elaboration of scenario-based spe-
cification and behavior models using implied scenarios. ACM Transactions on
Software Engineering and Methodology 13(1), 37–85 (2004)

[54] Graubmann, P., Rudolph, E., Grabowski, J.: Towards a Petri net based semantics
for Message Sequence Charts. In: 6th International SDL Forum: Using objects
(SDL 1993), pp. 179–190. Elsevier, Amsterdam (1993)

[55] Heymer, S.: A semantics for MSC based on Petri net components. In: 4th Inter-
national SDL and MSC Workshop (SAM 2000), pp. 262–275 (2000)

[56] Sgroi, M., Kondratyev, A., Watanabe, Y., Lavagno, L., Sangiovanni-Vincentelli,
A.: Synthesis of Petri nets from Message Sequence Charts specifications for proto-
col design. In: Design, Analysis and Simulation of Distributed Systems Symposium
(DASD 2004), pp. 193–199 (2004)

[57] Gunter, E.L., Muscholl, A., Peled, D.: Compositional Message Sequence Charts.
International Journal on Software Tools for Technology Transfer 5(1), 78–89
(2003)

[58] Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and
statecharts to analysable Petri net models. In: 3rd International Workshop on
Software and Performance (WOSP 2002), pp. 35–45. ACM Press, New York (2002)

[59] Jonsson, B., Padilla, G.: An execution semantics for MSC-2000. In: Reed, R.,
Reed, J. (eds.) SDL 2001. LNCS, vol. 2078, pp. 365–378. Springer, Heidelberg
(2001)

[60] Lund, M.S.: Operational analysis of sequence diagram specifications. PhD thesis,
Faculty of Mathematics and Natural Sciences, University of Oslo (2008)

102 M.S. Lund, A. Refsdal, and K. Stølen

[61] Lund, M.S., Stølen, K.: A fully general operational semantics for UML 2.0 se-
quence diagrams with potential and mandatory choice. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 380–395. Springer, Heidelberg
(2006)

[62] Cengarle, M.V., Knapp, A.: Operational semantics of UML 2.0 interactions. Tech-
nical report TUM-I0505, Technische Universität München (2005)

[63] Mühlberger, H.: Eine verteile operationale Semantik für UML 2.0-Interaktionen.
Diplomarbeit, Institut für Informatik, der Ludwig-Maximilians-Universität
München (2007)

[64] Cavarra, A., Küster-Filipe, J.: Formalizing liveness-enriched sequence diagrams
using ASMs. In: Zimmermann, W., Thalheim, B. (eds.) ASM 2004. LNCS,
vol. 3052, pp. 67–77. Springer, Heidelberg (2004)

[65] Grosu, R., Smolka, S.A.: Safety-liveness semantics for UML 2.0 sequence diagrams.
In: 5th International Conference on Application of Concurrency to System Design
(ACSD 2005), pp. 6–14. IEEE Computer Society, Los Alamitos (2005)

[66] Harel, D., Marelly, R.: Come, let’s play: Scenario-based programming using LSCs
and the Play-Engine. Springer, Heidelberg (2003)

[67] Harel, D., Thiagarajan, P.S.: Message Sequence Charts. In: Lavagano, L., Martin,
G., Selic, B. (eds.) UML for real. Design of embedded real-time systems, pp.
77–105. Kluwer, Dordrecht (2003)

[68] Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML se-
quence diagrams. In: 5th International Workshop on Scenarios and State Ma-
chines: Models, Algorithms, and Tools (SCESM 2006), pp. 13–19. ACM Press,
New York (2006)

[69] Sengupta, B., Cleaveland, R.: Triggered Message Sequence Charts. SIGSOFT
Software Engineering Notes 27(6), 167–176 (2002)

[70] Sengupta, B., Cleaveland, R.: Triggered Message Sequence Carts. IEEE Transac-
tions on Software Engineering 32(8) (2006)

[71] Kosiuczenko, P., Wirsing, M.: Towards an integration of Message Sequence Charts
and Timed Maude. Journal of Integrated Design & Process Science 5(1), 23–44
(2001)

[72] Crane, M.L., Dingel, J.: On the semantics of UML state machines: Categoriza-
tion and comparison. Technical report 2005-501, School of Computing, Queens’s
University, Kingston (2005)

[73] Broy, M., Cengarle, M.V., Rumpe, B.: Towards a system model for UML,
the structural data model. Technical report TUM-I0612, Technische Universität
München (2006)

[74] Broy, M., Cengarle, M.V., Rumpe, B.: Towards a system model for UML, part 2:
The control model. Technical report TUM-I0710, Technische Universität München
(2007)

[75] Broy, M., Cengarle, M.V., Rumpe, B.: Towards a system model for UML, part 3:
The state machine model. Technical report TUM-I0711, Technische Universität
München (2007)

[76] Broy, M., Stølen, K.: Specification and development of interactive systems. In:
FOCUS on streams, interface, and refinement. Springer, Heidelberg (2001)

[77] Simons, A.J.H.: On the compositional properties of UML statechart diagrams.
In: Rigorous Object-Oriented Methods (ROOM 2000), Workshops in Computing,
BCS (2000) (2000)

[78] Rossi, C., Enciso, M., de Guzmán, I.P.: Formalization of UML state machines
using temporal logic. Software and Systems Modeling 3(1), 31–54 (2004)

Semantics of UML Models for Dynamic Behavior 103

[79] Hinkel, U.: Verification of SDL specifications on the basis of stream semantics.
In: 1st Workshop of the SDL Forum Society on SDL and MSC (SAM 1998), pp.
241–250 (1998)

[80] Holz, E., Stølen, K.: An attempt to embed a restricted version of SDL as a target
language in Focus. In: Formal Description Techniques VII (FORTE 1994), pp.
324–339. Chapman and Hall, Boca Raton (1994)

[81] Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Tran-
sactions on Software Engineering and Methodology 5(4), 293–333 (1996)

[82] Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-
Trauring, A., Trakhtenbrot, M.: STATEMATE: A working environment for the
development of complex reactive systems. IEEE Transactions on Software Engi-
neering 16(4), 403–414 (1990)

[83] Gurevich, Y.: Evolving algebras 1993: Lipari guide. In: Specification and Valida-
tion Methods, pp. 9–36. Oxford University Press, Oxford (1995)

[84] Börger, E., Cavarra, A., Riccobene, E.: On formalizing UML state machines using
ASMs. Information and Software Technology 46(5), 287–292 (2004)

[85] Börger, E., Cavarra, A., Riccobene, E.: Modeling the dynamics of UML state
machines. In: International Workshop on Abstract State Machines, Theory and
Applications, pp. 223–241. Springer, Heidelberg (2000)

[86] Börger, E., Cavarra, A., Riccobene, E.: Modeling the meaning of transitions from
and to concurrent states in UML state machines. In: 2003 ACM Symposium on
Applied Computing, pp. 1086–1091. ACM Press, New York (2003)

[87] Jürjens, J.: A UML statecharts semantics with message-passing. In: 2002 ACM
Symposium on Applied Computing, pp. 1009–1013. ACM Press, New York (2002)

[88] Jürjens, J.: Secure systems development with UML. Springer, Heidelberg (2005)
[89] von der Beeck, M.: A structured operational semantics for UML-statecharts. Soft-

ware and Systems Modeling 1(2), 130–141 (2002)
[90] Knapp, A., Merz, S., Rauh, C.: Model checking timed UML state machines and

collaborations. In: 7th International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems, pp. 395–416. Springer, Heidelberg (2002)

[91] Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer 1, 134–152 (1997)

[92] Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer
Science 126(2), 183–235 (1994)

[93] Lüttgen, G., von der Beeck, M., Cleaveland, R.: A compositional approach to
statecharts semantics. Technical report, Institute for Computer Applications in
Science and Engineering (2000)

[94] Jansen, D.N., Hermanns, H., Katoen, J.P.: A QoS-oriented extension of UML sta-
techarts. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863,
pp. 76–91. Springer, Heidelberg (2003)

[95] Jansen, D.N., Hermanns, H.: Qos modelling and analysis with UML-statecharts:
the Stocharts approach. SIGMETRICS Performance Evaluation Review 32(4),
28–33 (2005)

[96] Eshuis, R., Wieringa, R.: Requirements-level semantics for UML statecharts. In:
4th International Conference on Formal Methods for Open Object-Based Distri-
buted Systems IV, pp. 121–140. Kluwer, Dordrecht (2000)

[97] Huszerl, G., Kosmidis, K., Cin, M.D., Majzik, I., Pataricza, A.: Quantitative
analysis of UML statechart models of dependable systems. The Computer Jour-
nal 45(3), 260–277 (2002)

Part III

Modeling

5 Modeling and Simulation of TDL
Applications

Stefan Resmerita, Patricia Derler, Wolfgang Pree, and Andreas Naderlinger

University of Salzburg, Austria
{stefan.resmerita,patricia.derler,wolfgang.pree,

andreas.naderlinger}@cs.uni-salzburg.at

Abstract. Most of the existing modeling tools and frameworks for em-
bedded applications use levels of abstraction where execution and com-
munication times of computational tasks are not captured. Thus,
properties such as time and value determinism can be lost when refi-
ning the model closer to a target platform. The Logical Execution Time
(LET) paradigm has been proposed to deal with this issue, by enabling
specification of platform-independent execution times of periodic time-
triggered computational tasks at higher levels of abstraction.

This chapter deals with modeling and simulation of embedded applica-
tions where LET requirements are specified by using the Timing
Definition Language (TDL). TDL provides a programming model for time-
and event-triggered components suitable for large distributed systems. We
present specific TDL extensions that increase the expressiveness of the
language, accommodating the needs of control applications such as mini-
mum sensor-actuator delays. We describe simulation of TDL programs in
dataflow models (using Simulink) and discrete event (DE) models (using
Ptolemy II). We show how the Ptolemy II based simulation can be used
to validate preservation of timing and value behaviors when mapping a
DE model of an application with concurrent components into a sequential
implementation platform with fixed priority preemptive scheduling.

5.1 Introduction

In complex embedded systems, execution and communication times related to
computational tasks of an application can have a substantial influence on the
application behavior that is unaccounted for in high level models. Consequently,
the implementation of a model on a certain execution platform may violate
requirements that are proved to be satisfied in the model. Explicitly considering
execution times at higher levels of abstractions has been proposed as a way to
achieve satisfaction of real-time properties [1]. One promising direction in this
respect is the Logical Execution Time (LET) [2], which forms the foundation of
several real-time programming languages [2] [3] [4]. Among these, the Timing
Definition Language [4] is under active development, with commercially available
support tools.

TDL is inspired from the Giotto programming model [2], which was targe-
ted for control applications. Giotto proposed trading end-to-end latency (which

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 107–128, 2010.
� Springer-Verlag Berlin Heidelberg 2010

108 S. Resmerita et al.

must be minimal in control systems) for determinism and robustness, which have
become more and more important due to increased complexity of both applica-
tions and platforms. TDL has been extended to address both requirements, in
the commonly encountered case where a control task can be split into a fast step,
used to compute controller outputs (i.e. actuator values) and a slow step, used to
determine new state information. Another TDL extension, called slot selection,
allows designation of LET values that are smaller than the invocation period
for a task, providing a separation of concerns between choosing the controller
sampling period, which is the job of the control engineer, and minimizing com-
putation latency, which is the job of the software engineer. By slot selection,
the designer specifies the beginning and end of a task’s LET within the task’s
invocation period. This also enables specification of executions with fixed time
offsets.

An important principle in embedded systems design is the separation between
the functionality of an application and the platform where the application is im-
plemented. This principle is adopted by modern design methodologies such as
Model Driven Architecture (MDA) [5] and Platform Based Design (PBD) [6].
An MDA application consists of a platform-independent model (PIM), speci-
fying the functionality, one or more platform-specific models(PSMs), and sets
of interfaces describing the coupling between PIM and each of the PSMs. PBD
proposes an iterative model-based development process where at each iteration
a functionality model is mapped to a platform model. The mapped functionality
becomes the functionality model for the next iteration, where it is mapped to a
(usually refined) platform model. This is repeated until the final implementation
is obtained for all components.

One of the main issues in the above approaches is the mapping between the
functionality model and the platform model, which should be done such that
the behaviors of the resultant model are in the intersection of the behavioral
sets of the individual models. A commonly encountered situation is mapping
a concurrent functional model into a sequential implementation platform. For
a real-time application, this may lead to violation of real-time properties such
as maximum sensor-actuator delays. Even if a suitable scheduling guarantees
latency bounds, it may not guarantee the same value behavior as in the func-
tionality model (a simple example of this situation will be further discussed in
this paper). Using LET ensures preservation of timing and value behaviors over
model refinement, by requiring that the platform model has the means to carry
out the LET semantics, which refers not only to task execution (resolved by
scheduling), but most importantly to data transfer (resolved by buffering). In
the final implementation, LET specifications are executed by a dedicated run-
time system, provided that the software components can be suitably scheduled
for execution. Scheduling can be done statically for the time-triggered, periodic
task executions.

Static schedulability analysis for LET-based software becomes hard to achieve,
or overly conservative, in embedded control systems containing also concur-
rent computations triggered by environment conditions (dynamic events), where

Modeling and Simulation of TDL Applications 109

event-triggered tasks share the same execution platform as the time-triggered
part, and may preempt or delay the execution of time-triggered components.
Thus, a simulation platform is needed for early verification and validation of such
heterogeneous systems. Existent simulation frameworks for LET-based models
operate at a functional (platform independent) level, where the most influential
LET benefits cannot be shown. For example, a DE model of a time-triggered
application with LET-based constraints has the same behavior as a model where
the LET constraints are replaced by delays. However, when mapping the func-
tional model into a platform model, the mapped delay-based model may exhibit
new behaviors, while the behaviors of the mapped LET-based model will always
be included in the behavioral set of the functional LET-based model.

In the embedded systems industry, simulation is widely used for testing and
validation of complex systems. It is also used for effectively demonstrating the
impact of new technologies. It is therefore important to be able to simulate a
model with LET specifications in order to demonstrate the benefits of the LET
approach. In this paper, we consider a platform abstraction consisting of execu-
tion times and fixed priority preemptive scheduling. Thus, the mapping means
assigning to each task in the functional model an execution time and a priority.
We present a Ptolemy II framework which allows simulating the behavior of a
LET-based application mapped to the platform. TDL is employed to specify the
timing structure based on LET. We use the simulator to run an example which
shows how TDL can ensure preservation of behavior over model refinement.

This paper is structured as follows. Section 5.2 describes the Timing Definition
Language, including the control-specific extensions. In Section 5.3 we present the
two main simulation frameworks for TDL. The relations with existing work are
shown in Section 5.4, which is followed by concluding remarks in Section 5.5.

5.2 The Timing Definition Language

We describe in this section the main constructs of the core TDL, followed by
extensions of the language that specifically address control applications. The
ensuing presentation of TDL components is necessarily brief. The complete TDL
specification can be found in [4].

5.2.1 TDL Description

The Timing Definition Language allows the specification of timing properties
of hard real-time applications by employing the LET concept and the principle
of separation between timing and functionality introduced in Giotto [2]. While
TDL is conceptually based on Giotto, it provides extended features, a more
convenient syntax, and an improved set of programming tools.

The Logical Execution Time associated with a computational unit, or task, re-
presents a fixed logical duration between the time instant when the task becomes
ready for execution and the instant when the execution finishes. A task’s LET
is specified at the model level, independently of the task’s functionality. When

110 S. Resmerita et al.

deploying the model on a platform, the LET specification is satisfied if the total
physical execution time of the task is included in the LET interval for every
task invocation, and an appropriate runtime system ensures that task inputs are
read at the beginning of the LET interval (the release time) and task outputs
are made available at the end of the LET interval (the termination time). This
is illustrated in Figure 5.1. Between release and termination points, the output
values are those established in the previous execution; default or specified initial
values are used during the first execution.

Fig. 5.1. Logical Execution Time

TDL is targeted for applications consisting of periodic software tasks designed
to control a physical environment. Thus, some tasks receive information from the
environment via sensors and some tasks act on the environment via actuators.
A task has input ports, output ports, and state ports. State ports are employed
for maintaining state information between different executions of the same task.
The main structure of a task declaration in TDL is given in Figure 5.2.

task <task_name> {

input <type> <list_of_input_ports>;

... //other input port declarations

output <type> <list_of_output_ports>;

... //other output port declarations

state <type> <list_of_state_ports>;

... //other state port declarations

uses <external_function_call>;

}

Fig. 5.2. Structure of TDL task declaration

Any of the lists of ports can be empty, while exactly one external function
name (possibly with arguments) must be specified after the ”uses” keyword.
This represents the implementation of the task functionality.

Tasks that are executed concurrently are grouped in modes. In TDL, a mode
is a set of periodically executed activities: task invocations, actuator updates,
and mode switches. A mode activity has a specified execution rate and may be
carried out conditionally. A mode declaration is schematically shown in Figure
5.3. The frequency attribute specifies the rate of execution of the corresponding

Modeling and Simulation of TDL Applications 111

mode <mode_name> [period=<time_duration>]{

task

[freq=<exec_rate>] <task_name>(<argument_list>);

... //other task invocations

actuator

[freq=<exec_rate>] <act_name>:=<task_name>.<output_port>;

... //other actuator updates

mode

[freq=<exec_rate>] if <condition> <name_of_target_mode>;

... //other mode switches

}

Fig. 5.3. Structure of TDL mode declaration

activity within one mode period. Thus, the LET of a task is expressed as the
mode period divided by the frequency of task invocation. Note that the time steps
of all activities in a mode period can be statically determined. Mode activities
are carried out by a runtime system which performs the following operations at
every time step:

(1) Update output ports of tasks whose LETs end at the current time step. At
time 0, the ports are initialized rather than updated.

(2) Update actuators.
(3) Test for mode switches. If a mode switch is enabled, switch to the target

mode.
(4) Update input ports of the tasks whose LETs start at the current time step.
(5) Trigger the execution of the tasks whose LETs start at the current time step.

TDL provides a top level structuring unit called a module, which is a logically
coherent group of sensors, actuators and modes. The module concept serves
multiple purposes: (1) a module provides a name space and an export/import
mechanism and thereby supports decomposition of large systems, (2) modules
provide parallel composition of real-time applications, (3) modules serve as units
of loading, i.e. a runtime system may support dynamic loading and unloading of
modules, and (4) modules are the natural choice as unit of distribution because
dataflow within a module (cohesion) will most probably be much larger than
dataflow across module boundaries (adhesion).

A schematic example of a TDL program is shown in Figure 5.4. Notice that a
module contains declarations of sensor and actuator variables, tasks and modes.
In the above example, module Sender contains a sensor variable s1, and an
actuator variable a1. The value of s1 is updated by executing the (platform-
specific) driver getS1 and the value of a1 is send to the physical actuator by using
the platform specific driver setA1. Each module has exactly one start mode,
indicated by preceding the mode declaration with the reserved word ”start”.
The declaration of the output port of task inc specifies also an initial value (10).
The task is invoked in mode main of the Sender module, where its input port is
connected to the sensor s1. In the same mode, actuator a1 is updated with the

112 S. Resmerita et al.

value of the task’s output port. The second module called Receiver imports the
Sender module in order to connect the input of the local task clientTask with the
output of the external task inc. These TDL components and their connectivity
are depicted in Figure 5.5.

Let us illustrate the operations carried out by the TDL runtime system for
the task inc during one mode period. At time 0, output ports are initialized and
connected actuators are updated. Sensor s1 is read and the value is provided
as input for the task, which is then released for execution. At time 5 (the end
of the LET), the task’s output port is updated, then actuator a1 is updated.
Next, the mode switch condition in the guard function exitMain is evaluated. If
it evaluates to true, a mode switch to the empty mode freeze is performed and
no further actions are processed. Otherwise the mode main remains active and
the above operations are repeated in the next mode period.

TDL enables so-called transparent distribution of hard real-time applications,
which can be described with respect to two points of view. Firstly, at run-
time a TDL application behaves exactly the same, no matter if all modules

module Sender {

sensor int s1 uses getS1;

actuator int a1 uses setA1;

public task inc {

input int i;

output int o := 10;

uses incImpl(i,o);

}

start mode main [period=5ms] {

task [freq=1] inc(s1); //LET = 5ms (=period/freq)

actuator [freq=1] a1 := inc.o;

mode [freq=1] if exitMain(s1) then freeze;

}

mode freeze [period=1000ms] {}

}

module Receiver {

import Sender;

. . .

task clientTask {

input int i1;

. . .

}

start mode main [period=10ms] {

task [freq=1] clientTask(Sender.inc.o); //LET = 10ms

. . .

}

. . .

}

Fig. 5.4. Example of TDL code

Modeling and Simulation of TDL Applications 113

s1

a1 inc [f = 1]

Sender

Receiver main [p = 5ms]

exitMain(s1)

[f = 1]

freeze [p = 1000ms]

main [p = 10ms]

clientTask [f = 1]

[f = 1]

Fig. 5.5. TDL constructs defined by the code in Figure 5.4

(i.e. components) are executed on a single node or if they are distributed across
multiple nodes. The logical timing is always preserved, only the physical timing,
which is not observable from the outside, may be changed. Secondly, for the
developer of a TDL module, it does not matter where the module itself and
any imported modules are executed. The TDL tool chain and runtime system
frees the developer from the burden of explicitly specifying the communication
requirements of modules. It should be noted that in both aspects transparency
applies not only to the functional but also to the temporal behavior of an ap-
plication. The advantage of transparent distribution for a developer is that the
TDL modules can be specified without having the execution on a potentially
distributed platform in mind. The functional and temporal behavior of the sys-
tem is independent of the mapping of modules to computation nodes, which is
defined separately.

A compiler transforms TDL programs into virtual instructions called E-Code
[7]. E-Code describes the application’s reactivity, i.e. time instants to release
or terminate tasks or to interact with the environment. A virtual machine, the
E-Machine [7], interprets the instructions at runtime and ensures the correct
timing behavior. According to the E-Code, the E-Machine timely hands tasks to
a dispatcher and executes drivers. A driver performs communication activities,
such as reading sensor values, providing input values for tasks at their release
time or copy output values at their termination time.

A commercially available tool suite deals with modeling and deployment of
TDL components [8]. TDL components can be written directly in textual form
(TDL source code) or designed graphically by using the TDL:VisualCreator tool.
The TDL:Compiler targets the TDL:E-Machine. The TDL:E-Machine exists
for several different platforms, including OSEK, INtime, RTLinux, etc. The
TDL:VisualDistributor can be used to assign TDL modules to a single specified
computational node or a distributed system of nodes. Also, the TDL:Scheduler
is employed to generate the necessary node and communication schedules. The

114 S. Resmerita et al.

tools also check for the schedulability of the system, based on provided worst
case execution times for the tasks, under the assumption that the periodically
time-triggered TDL tasks are the only significant computations competing for
the platform resources.

5.2.2 TDL Extensions for Control Applications

Reducing Latency for Control Applications
The main application field for the time-triggered programming model introduced
by Giotto is implementation of control systems. A control application reads en-
vironment data through sensors, and exercises control over the physical environ-
ment through actuators. In sampled data control systems, the controller is execu-
ted periodically, polling sensors and determining control actions in every period.
Usually, control actions depend on the latest sensor values and on the current state
of the controller, which is also updated at every period. The time delay between
reading sensors and updating actuators in the same period should be as small as
possible. Thus, the controller functions are organized in two steps: update outputs
and update state, with the first step to be executed as soon as possible after sensor
reading. To enable advance calculation of control outputs, in TDL a task’s func-
tionality code can be split in a fast step (corresponding to update outputs) and
a regular step (corresponding to update state), where the fast step is executed in
logical zero time at the release time of the TDL task, and the regular step is exe-
cuted within the task’s LET. To this end, the task declaration is modified to allow
specification of two external function calls, the fast one being indicated by a dedi-
cated driver annotation called ”[release]”, which means that the fast function has
to be executed immediately when the task is released for execution (i.e. at the be-
ginning of the task’s LET). A two-step task can now be declared according to the
structure shown in Figure 5.6. Syntactically, the only addition to the single-step
task declaration (shown in Figure 5.2) is another uses line containing the release
annotation, which is reserved for the fast step declaration. If an output port ap-
pears in the argument lists of both functions, then it acts as output of the fast
function (i.e. it must be updated by the fast function) and as input to the slow
function. An example is presented in Figure 5.7.

task <task_name> {

input <type> <list_of_input_ports>;

... //other input port declarations

output <type> <list_of_output_ports>;

... //other output port declarations

state <type> <list_of_state_ports>;

... //other state port declarations

uses [release] <fast_function_name>(<arg_list>);

uses <slow_function_name>(<arg_list>);

}

Fig. 5.6. Structure of TDL declaration for a two-step task

Modeling and Simulation of TDL Applications 115

task digiCon {

input int i1,i2;

output int o:=0;

state double s:=0;

uses [release] controllerOutput(i1,i2,s,o);

//o must be calculated here

uses controllerUpdate(i1,i2,s,o);

//o is an input argument here

}

Fig. 5.7. Declaration example of a two-step task

The explicit declaration of a task’s fast and slow steps is accompanied by
the introduction of a specific mode activity, called task sequence, to indicate
actuator updates that must take place upon execution of the task’s fast step.
A task sequence combines a task invocation and subsequent actuator updates.
These are performed at the release time of the invoked task, if the task contains
a fast step that provides the required output ports. Output ports updated in the
fast step are available immediately for actuator updates if the two-step task is
included in a task sequence. Figure 5.8 presents the layout of a mode declaration
including task sequences. An example where the task in Figure 5.7 appears in a
task sequence is shown in Figure 5.9. The effect of this code is that at every 10ms,
sensors s2 and s3 are read, the function controllerOutput is executed and the
actuator act1 is updated. Since these operations are considered as taking logical
zero time, their execution times must be much smaller than the execution times
of regular TDL tasks. Then the function controllerUpdate is executed, which
may take up to 10ms. Task t0 is a regular TDL task with a LET of 50ms. Thus,
at every 50ms tick, sensor s1 is read and task t0 is released for execution. The
output of t0 is provided to actuator act2 at the end of the 50ms period.

mode <mode_name> [period = <time_duration>]{

task

[freq=<exec_rate>] <task_name>(<arg_list>);

[freq=<exec_rate>] {<task_name>(<arg_list>);

<act_name>:=<task_name>.<output_port>;}

... //other task invocations

actuator

[freq=<exec_rate>] <act_name>:=<task_name>.<output_port>;

... //other actuator updates

mode

[freq=<exec_rate>] if <condition> <name_of_target_mode>;

... //other mode switches

}

Fig. 5.8. Structure of TDL mode declaration with task sequence

116 S. Resmerita et al.

start mode main [period=100ms] {

task [freq=2] t0(s1);

task [freq=10] {digiCon(s2, s3); act_1:=digiCon.o;} //sequence

actuator [freq=2] act_2 := t0.o;

}

Fig. 5.9. Example of task sequence

Task sequences entail a specific operational semantics. The operational steps
performed by the runtime system are now as follows:

(1) Update output ports of tasks whose LETs end at the current time step.
At time 0, the ports are initialized rather than updated. Exception: output
ports of two-step tasks that are arguments of both functions (fast and slow)
are not updated.

(2) Update actuators.
(3) Execute fast tasks. For every task sequence that occurs at the current step,

update the inputs of the task, then execute the fast function, then update
output ports and connected actuators as specified in the sequence.

(4) Test for mode switches. If a mode switch is enabled, switch to the target
mode.

(5) Update input ports of the tasks whose LETs start at the current time step,
except for those inputs already updated at step 3.

(6) Trigger the execution of the regular tasks whose LETs start at the current
time step. Also, for every task sequence that occurs at the current step,
trigger the execution of the slow function.

Increasing Control of Time-Triggered Activities
In TDL, the user can specify the endpoints of a task’s LET within the task’s
invocation period. Thus, as opposed to Giotto, a task’s LET may be different
(i.e. smaller) than the task’s period. TDL can express time-triggered executions
such as the one in Figure 5.10b, which shows two tasks with the same invocation
period of 8ms and a fixed offset of 3ms. TDL employs Giotto’s syntax to specify
a task’s invocation period, by using a mode period p and a frequency f of task
invocation within p. Thus, if the LET of a task equals its period of invocation,
then the task’s LET is p/f . TDL uses the additional feature of slot selection to
allow the LET of any individual task invocation to be defined more explicitly as
an interval that starts and ends at integer multiples of p/f . Thus, a task’s LET
corresponds to a slot group. The slots are numbered from 1 to p/f . TDL offers
a compact syntax for specifying a task’s slot groups within a mode period, as
follows. A repeating pattern of slot groups is specified by using the character
”*” after the pattern. A slot group can be optional, which means that the cor-
responding task execution may be skipped at runtime, if this helps in finding a
feasible schedule. Some examples are:

Modeling and Simulation of TDL Applications 117

slots=1* : all slots are mandatory and LET=p/f; this is the default.
slots=∼1|2* : LET=p/f, the first slot is optional and the remaining slots

are mandatory.
slots=1-3* : mandatory slot groups with LET=3*p/f each.

Figure 5.10a shows the specification of the execution pattern depicted in Figure
5.10b.

start mode main [period=8ms] {

task [freq=4,slots=2] t1();

task [freq=8,slots=6-8] t2();

}

(a) TDL code with slot selection

0 10 4 8 5 122 13

t1

16

t2 t1 t2

time

(b) Execution pattern with offsets

Fig. 5.10. Slot selection example

5.3 Simulation of TDL Models

Simulating TDL models means executing the operations described above on an
executable model in a simulation platform rather than a physical execution plat-
form. TDL is currently supported in two modeling and simulation frameworks:
Simulink and Ptolemy II.

5.3.1 TDL Simulation in Simulink

The MATLAB extension Simulink from The MathWorks [9] is a widely used
environment for modeling, simulating and analyzing dynamic and embedded
systems. Simulink is based on the data flow programming paradigm and provides
an interactive graphical interface. Together with automatic code generators such
as the Real-Time Workshop (Embedded Coder), it has become the de-facto
standard, particularly in the automotive domain.

Overview
Modeling TDL components manually with standard Simulink blocks is not fea-
sible [10]. Typically, control systems involve multiple modes [11]. Depending on
the current mode, the application executes individual tasks with different timing
constraints or even changes the set of executed tasks. At the latest when mode
switching logic and multiple execution rates come into play, it is all but impos-
sible to understand or maintain the model. Instead, we use an automatic model
generation approach to ensure TDL semantics in Simulink. Therefore, the TDL
tool chain was extended and integrated in MATLAB/Simulink to model and
simulate TDL applications and to support the code generation for particular,
potentially distributed, hardware platforms.

118 S. Resmerita et al.

Fig. 5.11. The TDL:VisualCreator tool in Simulink

Modeling TDL in Simulink
The plant and the task respectively guard functionality is modeled with regular
Simulink blocks, whereas the timing behavior, i.e. the TDL description, is speci-
fied by means of the TDL:VisualCreator tool. This graphical modeling tool is a
syntax driven editor that is integrated via the TDL Module Block as part of the
TDL Simulink library. Figure 5.11 shows the TDL:VisualCreator and a module
M that corresponds to the mode declaration in Figure 5.7.

The activities in mode main are shown on the right, where the task sequence is
indicated with the gray container that groups task digiCon and actuator act 1.
Individual TDL constructs are created and managed using the tree view on the
left. For each sensor (s1, s2, s3) and actuator (act 1, act 2) a corresponding
Simulink Inport respectively Outport is automatically created for the module
block. For each task (t0, digiCon), the tool generates a Simulink subsystem that
may then be implemented by the control engineer. Again, Inport and Outport
blocks are used to represent the task ports.

Simulating TDL in Simulink
For the simulation, we apply a model transformation with an E-Machine im-
plementation for Simulink at its core. Drivers are automatically generated as
function-call subsystems and are connected via Simulink signals. We implemen-
ted an E-Machine using the S-Function mechanism provided by Simulink to
timely trigger their execution and thus to ensure TDL semantics. Therefore,
the TDL:Compiler generates E-Code from the TDL description which is then
interpreted by the E-Machine during the simulation.

Figure 5.12 shows the generated Simulink model for module M. The gray blocks
for tasks (a) and sensors respectively actuators (b) were already generated by
the TDL:VisualCreator during the modeling process. They now get linked with
the rest of the newly generated model using Simulink’s Goto and From blocks.

Modeling and Simulation of TDL Applications 119

terminate M.digiCon

terminate M.t0

actuator M.act_2:=M.t0.o

get M.s1

get M.s2

get M.s3

release M.t0

release M.digiCon

actuator M.act_1:=M.digiCon.o.phy

(b)

(a)

(c)

(d)

(e) (f)

execute M.digiCon

execute M.t0

2
act_2

1
act_1

1/z

1/z

1/z

1/z

Trigger()

Trigger()

Trigger()

Trigger()

Trigger()

Trigger()

Trigger()

Trigger()

Trigger()

Trigger()

t0Impl

{M_digiCon_o_phy}

{M_digiCon_o_phy_M_task_0}

{M_digiCon_o}

{M_digiCon_i2}

{M_digiCon_i1}

trig_M_drv_5

{M_s3}

{M_s2}

trig_M_task_1

{M_s1}

{M_act_2}

{M_act_1}

[M_digiCon_o_M_drv_0]

[M_act_1_M_drv_10]

trig_M_drv_4

[M_digiCon_i2_M_drv_9]

trig_M_drv_0

[M_digiCon_i1_M_drv_9]

[future_pc]

[M_t0_i_M_drv_8]

[guards2]

[M_s3_M_drv_7]

[guards1]

[M_s2_M_drv_6]

trig_M_drv_10

[M_t0_o_M_drv_1]

trig_M_drv_9

trig_M_drv_8

trig_M_drv_7

trig_M_drv_6

[M_s1_M_drv_5]

{M_sensor_4}

[M_act_2_M_drv_4]

trig_M_task_0

[future_time]

{M_t0_o_phy_M_task_1}

{M_t0_o_phy}

{M_t0_o}

{M_t0_i}

trig_M_drv_1

{M_sensor_3}

{M_sensor_2}

M_digiCon_o_phy_M_task_0]

[trig_M_drv_1]

[M_digiCon_o_M_drv_0]

[M_digiCon_i2_M_drv_9]

[M_digiCon_i1_M_drv_9]

{M_digiCon_o_phy}

[M_s3_M_drv_7]

[M_s2_M_drv_6]

{M_digiCon_i2}

[M_s1_M_drv_5]

[M_act_2_M_drv_4]

[M_act_1_M_drv_10]

{M_digiCon_i1}

[M_digiCon_o_phy]

[trig_M_drv_10]

[M_s3]

[M_s2]

trig_M_task_0

[trig_M_drv_9]

[M_s1]

[future_pc]

{M_act_2}

[guards1]

[trig_M_drv_8]

[M_sensor_4]

[trig_M_drv_7]

[M_sensor_3]

{M_act_1}

[trig_M_drv_6]

[M_sensor_2]

[trig_M_drv_5]

[M_digiCon_o_phy]

[M_t0_o]

[future_time]

[trig_M_drv_4]

[guards2]

{M_t0_o_phy}

{M_t0_i}

[M_t0_o_phy_M_task_1]

[M_t0_o_M_drv_1]

[M_t0_i_M_drv_8]

trig_M_task_1
[M_t0_o_phy]

[trig_M_drv_0]

EMachine EMachine

Trigger()

digiConImpl

emem

12:34 12:34

3
s3

2
s2

1
s1

Fig. 5.12. An automatically generated TDL simulation model in Simulink

Section (c) contains the drivers (e.g. for reading sensor values or writing to ac-
tuators). The input ports of a driver are directly connected to the output ports,
which corresponds with assignments in an imperative programming paradigm
as soon as the system is triggered. Section (d) merges signals from drivers of
different modes that write to the same port (static single assignment). As mo-
dule M has only one mode, signals are simply forwarded in this example. Section
(e) and (f) together implement a 2-step E-Machine architecture [12], which trig-
gers the execution of drivers, tasks, and guards. To avoid restrictions on the set
of supported blocks (e.g. for the plant) caused by Simulink’s block execution
strategy, we split duties of the E-Machine among two collaborating S-Functions.
This allows Simulink to execute the plant or other blocks after actuators are
updated and before sensors are read. Delay blocks between the release and the
termination driver of a task and between the two E-Machines do not affect the
timing behavior. They are, however, required to enable Simulink to resolve alge-
braic (feedback) loops that typically arise when simulating plants without delay

120 S. Resmerita et al.

or when combining LET-based with conventional controllers that are modeled
as atomic (nonvirtual) subsystems [12].

Code generation
Once the simulation exhibits satisfactory behavior, one can go about generating
code. Therefore, the TDL:VisualDistributor tool, which is also integrated in
Simulink, may be used to define a hardware topology and to map the TDL
modules to their target nodes. This also requires to specify worst-case execution
times and hardware devices for sensors respectively actuators. A flexible plugin-
based code generation framework generates the required C code and, in case of
a distributed system, the required communication schedule. The TDL tool chain
employs MathWork’s Real-Time Workshop Embedded Coder [9] to generate C
code for the control task functionality. For supporting the fast step extension,
we make use of the possibility to split a Simulink task function implementation
into an Output (fast step) and an Update (slow step) function. The generated
code can then be compiled and linked with the platform specific E-Machine.

The main advantage of the E-Machine implementation for Simulink is that
both the simulation environment and the target platform execute the same E-
Code. This is a strong indicator (albeit no proof) that the simulation and the
execution of TDL modules exhibit exactly the same behavior.

5.3.2 Using Ptolemy II

Ptolemy II is the software infrastructure of the Ptolemy project at the University
of California at Berkeley [13]. The project studies modeling, simulation, and
design of concurrent, real-time, embedded systems. Ptolemy II is an open source
tool written in Java which allows modeling and simulation of systems adhering
to various models of computation (MoC). Conceptually, a MoC represents a set
of rules which govern the execution and interaction of model components.

Overview of Ptolemy II
The implementation of a MoC is called a domain in Ptolemy. Some examples of
existing domains are: Discrete Event (DE), Continuous Time (CT), Finite State
Machines (FSM), and Synchronous Data Flow (SDF).

Ptolemy is extensible in that it allows the implementation of new MoCs. Most
MoCs in Ptolemy support actor-oriented modeling and design, where models are
built from actors that can be executed and which can communicate with other
actors through ports. An actor is represented by a Java class that implements
the actor interface. The nature of communication between actors is defined by
the enclosing domain, which is itself represented by a special actor, called the
domain director. A model may define an external interface that enables it to be
regarded as an actor with input and output ports. Figure 5.13 shows a sample
Ptolemy model. The green block represents the local director which enforces
the model of computation used in the model. The model also contains actors
with input ports and output ports. Actors communicate if they are connected.

Modeling and Simulation of TDL Applications 121

Fig. 5.13. Example of a Ptolemy model

A model can have external input and output ports and can be embedded as a
composite actor in another model where it appears as an actor with local input
and output ports.

Simulating a model means executing actors as defined by the top level model
director. During the simulation, an actor experiences a number of iterations,
where an iteration generally consists of three successive actions: prefire, fire and
postfire. Each action is represented by a method in the actor interface. The main
functionality of the actor is encoded in the fire method. In prefire, possible pre-
conditions for execution are tested. Thus, the actor can indicate to the enclosing
director that it does not wish to be fired. By convention, if the prefire method
returns false, then the director will not call the fire method in the current ite-
ration. An actor reads inputs and produces outputs in the fire method, which
may be called multiple times in the same iteration. In postfire, the actor updates
its persistent state and indicates to the director if the execution is complete.
If postfire returns false, the director should perform no further iteration on the
actor in the current simulation.

The TDL Domain in Ptolemy II
The implementation of TDL’s modal structure is based on the modal model
variant of the Finite State Machine (FSM) domain in Ptolemy, and the imple-
mentation of the LET-based semantics employs essentially a DE approach. Like
modal models, TDL modules consist of modes with different behaviors, where
only one mode can be active at a time. Mode switches in modal models have the
same semantics as mode switches in TDL and TDL activities are conceptually
regarded as discrete events that are processed in increasing time stamp order.

The TDL domain consists mainly of three specialized actors: TDLModule,
TDLMode, and TDLTask. The TDLModule actor (with the associated TDL-
ModuleDirector) restricts the basic modal model according to the TDL modal
semantics. In a modal model actor, mode transitions are checked every time the

122 S. Resmerita et al.

actor is fired. TDL restricts the times when mode switches can be made (mode
switches are not allowed during a task’s LET). A similar restriction applies to
port update operations. A TDL module can have guards also on task invocations
and port updates, not only on mode transitions, as in the modal model. TDL
requires a deterministic choice of simultaneously enabled transitions, which is
not provided by the FSM domain. In this respect, we employ a convention simi-
lar to the one used in Stateflow(R), where the outgoing transitions of the active
mode are tested based on the graphical layout, in clockwise order starting from
the upper left corner of the graphical representation of the mode.

We consider applications with time-triggered and event-triggered components
modeled in the DE domain. The functional application model is mapped to a
platform model by assigning to each task a priority and a worst case execution
time. The mapped model is then simulated with the help of a specialized domain
controller, which is a modified DE controller. This uses an event queue and works
by processing the events in the queue in increasing timestamp order. While TDL
operations can be statically scheduled (they are periodic and have the highest
priority), the actual moments of task executions are represented by dynamic
events, as are the executions of the other event-triggered tasks.

The main difference between the implementation of the TDL-Simulink inte-
gration and the TDL domain in Ptolemy II refers to the fact that, while the for-
mer employs a Simulink implementation of the TDL:E-Machine, the latter uses
no virtual machine. TDL specifications are expressed as properties of Ptolemy
actors and the TDL domain uses these properties to generate an appropriate
schedule of events. TDL actions are naturally represented by discrete events,
and we leverage the event handling mechanism of the DE domain to achieve a
correct execution of the model. In particular, this implies that any future change
in the TDL semantics can be much more easily handled in the TDL Ptolemy
domain, where one has to change only the event scheduling part. In contrast,
in the Simulink case, changes may need to be done in the TDL compiler, in
the e-code instruction set and in the TDL:E-Machine implementation. An ad-
ditional advantage of the TDL-Ptolemy integration is related to the fact that
mapping of a functional model to a platform model can be done much easier in
Ptolemy II than in Simulink. This is due to the versatility of Ptolemy II and the
availability of different models of computation. Thus, a mapped model can be
obtained from the functional model by a combination of two actions: (1) Adding
properties to functional actors, and (2) Choosing or defining a suitable model of
computation. This enables one to simulate the (runtime) TDL operations at the
platform level.

Example
In the sequel, we show how the TDL domain in Ptolemy II can be employed
to demonstrate the benefits of using TDL. In the following example, a simple
application with timing constraints is developed from a high-level discrete event
model to an implementation on a given platform. We outline a case where, if
timing constraints are expressed without TDL, the behavior of the final imple-
mentation is different than the behavior of the original model. By using TDL,

Modeling and Simulation of TDL Applications 123

the behavior of the original model remains unchanged and it is preserved in the
final implementation.

Figure 5.14 shows an application modeled in Ptolemy II as a discrete event
system, with one time-triggered and two event-triggered tasks. The actor TTTask
is triggered by the clock signal with a period of 8 time units and it produces
output with a delay of 4 units of time after being triggered. Consider a simulation
of the model with two events from sensor1 at times 5 and 9, and one event
from sensor2 at time 7. The execution of the task actors is shown in Figure
5.15. Notice that the time-triggered actor TTTask reads (at time 8) the value
computed by the event-triggered actor ETTask1 at time 5.

This application is to be deployed on a computational platform with a fixed
priority preemptive scheduling policy. Thus, code is generated from the task
actors and priorities are assigned to the computational tasks. Assume that the
priority of ETTask1 is higher than the priorities of both ETTask2 and TTTask,
which are equal. Consider an execution of the application on the platform with
the same input as in the simulation of the functional model, where the execution

Fig. 5.14. A discrete event model

Fig. 5.15. An execution of the above model

124 S. Resmerita et al.

Fig. 5.16. A TDL model

Fig. 5.17. Simulation of the TDL model

times of ETTask1, ETTask2 and TTTask are respectively 1ms, 3ms and 1ms. In
this case, TTTask cannot be executed at time 8, when ETTask2 is still in execu-
tion. Also, ETTask1 preempts ETTask2 at time 9, further delaying the starting of
execution of TTTask until time 11. Notice that the order of execution of TTTask
and ETTask1 is changed in the implementation versus the original model. In
particular, this implies that TTTask may have a different input value, hence the
output behavior of the system may be changed.

Consider now a TDL model of the above application where the delay in the
original time-triggered task is replaced by a logical execution time equal to 4. Let
us map the TDL model into a platform model (see Figure 5.16). A specialized
director (a variant of the DE director) is employed to simulate the mapped mo-
del. Figure 5.17 shows the execution of tasks under the input described above.
Notice that the TDL module actor samples its input at time 8, then uses this
value as input for the TDL task corresponding to the original TTTask. Thus, the

Modeling and Simulation of TDL Applications 125

mapped TDL model has the same output behavior as the TDL functional model
(which has the same behavior as the functional DE model).

5.4 Related Work

TDL belongs to the family of time-triggered modeling languages and tools with
roots in Giotto, such as xGiotto [14], HTL [3], and FTOS [15]. TDL stands out
in this landscape due to its focus on control applications. It is, for example,
the only language with a fast step feature that matches the ”update outputs”
part of a controller, which accommodates the need for short response times. In
contrast, the Giotto software model maximizes the delay between sensor read
and actuator update (placing them one LET apart), while minimizing the delay
between actuator update and the next sensor read for the same task (placing
them in sequence at the same time step). One important aspect in which TDL
differs from Giotto is the treatment of mode switches. While Giotto allows mode
switches during the LET of a task, this is not supported in TDL because it
would imply a significantly more complex communication schedule generator
algorithm for distributed TDL modules. Also, Giotto ensures determinism of
mode switching by restricting the number of mode switch conditions that may
evaluate to true to at most one. In TDL, mode switch guards are evaluated in
the textual order from top to bottom and a mode switch is performed for the
first condition that evaluates to true.

Among the above mentioned languages, only HTL allows flexible placement
of the LET in as task’s invocation period. There is also a Simulink integration of
HTL [16]. In contrast to our approach, the simulation results do not match the
HTL description exactly. For breaking algebraic loops, additional delay blocks
are introduced which influence the observable timing. Additionally, the HTL
integration in Simulink trades off accuracy for performance since it requires the
sample rate of some blocks to be at least one decimal order of magnitude higher
than actually required by the HTL description.

The TDL domain in Ptolemy II is related to the experimental Giotto domain
in Ptolemy II[17]. The main differences between the TDL domain and the Giotto
domain are as follows:

– In addition to functional models, TDL operations can be simulated also in
mapped models, which contain platform specific attributes.

– The TDL domain leverages the existing DE domain while the Giotto domain
is designed based on basic Ptolemy II software components.

– The implementation of the TDL domain reflects the distinction between
the fundamental concepts (LET, modes) and the way these concepts are
used (the operational semantics). The implementation is two-layered: the
basic layer deals with scheduling LET-based tasks grouped in modes, and
the operational layer corresponds to a specific time-triggered programming
model. The latter extends the basic layer by specifying additional operations,
as well as the order of data transfer and mode-change operations according
to the programming model semantics. In principle, this enables achieving

126 S. Resmerita et al.

domain controllers for other time-triggered programming models (including
Giotto) by extending the basic layer.

Achieving determinism of time-triggered software is the main goal of several
commercially available tools such as TTTech [18], DaVinci [19] and dSPACE
[20]. A detailed comparison between TDL and each of these tools is provided in
[21].

5.5 Conclusions

Timing requirements of real-time applications can be effectively achieved by
using the LET approach through an established set of methodologies and tools
such as the ones provided by TDL. The ability to deal with control applications
was further increased by adding two extensions: (1) The fast step, which allows
actuator update immediately upon sensor reading, and (2) The slot selection for
flexible LET placement, which allows specification of offsets between tasks in
the system.

Simulation is a powerful tool, widely used in the embedded systems industry
to validate properties of complex systems. This chapter presented TDL-specific
extensions of two major simulation platforms: Simulink and Ptolemy II. The
TDL-Simulink integration significantly increased the accessibility of the LET-
based programming model to control application developers and system integra-
tors. The TDL tools available in Simulink make it possible to easily go through
the development stages of modeling, simulation/testing, code generation and
deployment to (possibly distributed) execution platforms.

The TDL domain in Ptolemy II enables, among other things, visualization of
an important LET benefit: preservation of time and value determinism from high
level models to lower level, platform specific, implementations. The main moti-
vation behind its development was the observation that the influence of using
LET on a system’s behavior can be captured by simulation of a mapped mo-
del, even when only few platform-specific properties are considered. This could
not be easily achieved by using Simulink. Ptolemy II enables experimentation
and investigation of heterogeneous models of computations, where LET-based
systems using Giotto and TDL can be mixed with more general, event-based
systems. This can help in exploring the concept of ”open” TDL models, where
event-based computations can be accommodated while still guaranteeing sche-
dulability of the system.

Acknowledgements

We thank the anonymous reviewers whose comments have been helpful in im-
proving the presentation of this chapter.

Modeling and Simulation of TDL Applications 127

References

[1] Stankovic, J.A.: Misconceptions about real-time computing: a serious problem for
next-generation systems. Computer 21(10) (1988)

[2] Henzinger, T.A., Kirsch, C.M., Sanvido, M., Pree, W.: From control models to
real-time code using giotto. IEEE Control Systems Magazine 23(1) (February
2003)

[3] Ghosal, A., Henzinger, T.A., Iercan, D., Kirsch, C.M., Sangiovanni-Vincentelli,
A.: A hierarchical coordination language for interacting real-time tasks. In: Pro-
ceedings of the 6th ACM International Conference on Embedded software, Seoul,
Korea. ACM, New York (October 2006)

[4] Templ, J.: TDL - Timing Definition Language 1.5 Specification. Technical report,
preeTEC GmbH (2008), http://www.preetec.com

[5] Object Management Group: Model driven architecture. Technical report (2008),
http://www.gigascale.org/pubs/141.html,
http://www.gigascale.org/pubs/141.html

[6] Sangiovanni-Vincentelli A.: Defining platform-based design. EEDesign of EE-
Times (February 2002)

[7] Henzinger, T.A., Kirsch, C.M.: The embedded machine: predictable, portable real-
time code. In: PLDI 2002: Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation, pp. 315–326. ACM, New
York (2002)

[8] preeTEC: The TDL tool chain. Technical report, GmbH (2008),
http://www.preetec.com

[9] The MathWorks (2008), http://www.mathworks.com
[10] Stieglbauer, G., Pree, W.: Visual and Interactive Development of Hard Real Time

Code. In: Automotive Software Workshop San Diego, ASWSD (January 2004)
[11] Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language

for embedded programming. Proceedings of the IEEE 91, 84–99 (2003)
[12] Naderlinger, A., Templ, J., Pree, W.: Simulating Real-Time Software Components

based on Logical Execution Time. In: SCSC 2009: Proceedings of the 2009 Summer
Computer Simulation Conference (2009)

[13] Brooks C., Lee E.A., Liu X., Neuendorffer S., Zhao Y., Zheng H. (eds.): Heteroge-
neous concurrent modeling and design in java (volume 1: Introduction to ptolemy
ii). EECS Department, University of California, Berkeley UCB/EECS-2007-7 (Ja-
nuary 2007)

[14] Ghosal, A., Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.: Event-driven program-
ming with logical execution times. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004.
LNCS, vol. 2993, pp. 357–371. Springer, Heidelberg (2004)

[15] Buckl, C., Regensburger, M., Knoll, A., Schrott, G.: Models for automatic gene-
ration of safety-critical real-time systems. In: Proceedings of the Second Interna-
tional Conference on Availability, Reliability and Security (ARES), pp. 580–587
(2007)

[16] Iercan, D., Circiu, E.: Modeling In Simulink Temporal Behavior of a Real-Time
Control Application Specified in HTL. Journal of Control Engineering and Applied
Informatics (CEAI) 10(4), 55–62 (2008)

http://www.preetec.com
http://www.gigascale.org/pubs/141.html
http://www.gigascale.org/pubs/141.html
http://www.preetec.com
http://www.mathworks.com

128 S. Resmerita et al.

[17] Brooks C., Lee E.A., Liu X., Neuendorffer S., Zhao Y., Zheng H. (eds.): Hetero-
geneous concurrent modeling and design in java (volume 3: Ptolemy ii domains).
EECS Department, University of California, Berkeley UCB/EECS-2007-9 (Ja-
nuary 2007)

[18] TTTech Computertechnik AG: TTP tools (2009),
http://www.tttech.com/products/ttp/design-development-software

[19] Vector Informatik GmbH: DaVinci Network Designer 2.0 (2009),
http://www.vector.com/vi_davinci_networkdesigner_en.html

[20] dSPACE GmbH: Real-time interface (RTI and RTI-MP) implementation guide
(2009), http://www.dspace.de

[21] Farcas C., Holzmann M., Pletzer H.: The TDL advantage. Technical report, Stie-
glbauer G. (2004), http://cs.uni-salzburg.at/pubs/reports/T002.pdf

http://www.tttech.com/products/ttp/design-development-software
http://www.vector.com/vi_davinci_networkdesigner_en.html
http://www.dspace.de
http://cs.uni-salzburg.at/pubs/reports/T002.pdf

6 Modeling Languages for Real-Time and
Embedded Systems

Requirements and Standards-Based Solutions*

Sébastien Gérard1, Huascar Espinoza2, François Terrier1, and Bran Selic2

1 CEA LIST, Laboratory of Model Driven Engineering for Embedded Systems
(LISE), Bôıte courrier 65, Gif sur Yvette Cedex, F-91191 France

{Sebastien.Gerard,Huascar.Espinoza,Francois.Terrier}@cea.fr
2 Malina Software Corp., Nepean, Ontario, Canada

selic@acm.org

Abstract. Development of increasingly more sophisticated dependable
real-time and embedded systems requires new paradigms since contem-
porary code-centric approaches are reaching their limits. Experience has
shown that model-based engineering using domain-specific modeling lan-
guages is an approach that can overcome many of these limitations. This
chapter first identifies the requirements for a modeling language to be
used in the real-time and embedded systems domain. Second, it des-
cribes how the MARTE profile of the industry-standard UML language
meets these requirements. MARTE enables precise modeling of pheno-
mena such as time, concurrency, software and hardware platforms, as
well as their quantitative characteristics.

6.1 Introduction

It is helpful to start with a clear definition of what is meant here by real-time
and embedded systems (RTES). To that end we provide below a taxonomy of
the different kinds of real-time and embedded systems that are of interest in this
chapter. There is no generally agreed on classification of systems in the real-time
and embedded domain. For our purposes, we shall use the following taxonomy
(NB: this categories are not mutually exclusive) [1]:

– The embedded domain – This covers systems composed of both hardware
and software components.

– The reactive domain – This sub-category covers systems thatrespond to dis-
crete stimuli generated by their environment.

– The command and control domain – These systems are usually built to
manage the running of a physical process or other systems.

– The intensive data flow computation domain – These systems generally deal
with large amounts of physical data for applications such as signal processing,
image processing, or various mobile device functions.

– The best-effort service domain –These are real-time systemswhich do not gua-
ranteemeeting all their timing and safety constraints for every individual input.

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 129–154, 2010.
� Springer-Verlag Berlin Heidelberg 2010

130 S. Gérard et al.

The use of abstraction as a means for coping with complexity when designing
large technological systems has always been a common and effective strategy
in engineering. It has proven particularly effective in the design and realization
of software-intensive systems through the use of computer languages of increa-
sing levels of abstraction, starting with assembly languages, followed by third-
generation languages such as C, and on to object-oriented languages like C++
and Java. However, faced with unrelenting demands for ever more sophisticated
and more dependable systems as well as for shorter time to market intervals, we
seem to be approaching the limits of effectiveness achievable by using traditional
code-based approaches.

Model-based design is considered by many as a suitable approach to over-
coming these limits, particularly in the embedded systems domain. One of the
expected advantages of this approach is the ability to exploit correct-by-con-
struction incremental design processes, which rely on extensive use of automated
transformations and synthesis, as well as formalized computer-based analyses of
correcteness.

Undoubtedly, much effort is required to develop the tools and methods ne-
cessary to bridge the gap between the very optimistic vision of Jacobson, who
advocated that ”software development is model building” [2], and the views held
by more conservative software programmers, who often feel that ”they don�t
have time to waste on modeling”. In the past decade significant progress has
been made in this direction, most notably the emergence of meta-modeling and
practical model transformation techniques. These and related innovations are at
the core of a new approach to system and software design and development of-
ten referred to as model-based engineering (MBE) or model-driven development
(MDD).

The incremental nature of model-based engineering approaches is based on
progressive refinement of an abstract design or system model through the gra-
dual inclusion of more and more detail. Supported by automation-based verifi-
cation and validation, this refinement is performed until the model is either (a)
sufficiently detailed for relatively straightforward trouble-free implementation
or (b), in case of software systems, it actually becomes the system that it was
modeling. The latter in particular relies on appropriate tools that can automa-
tically transform a model expressed using an abstract modeling language into a
corresponding concrete technology-specific implementation. Thus, there are two
key aspects to model-based engineering: one is the issue of selecting the right
abstractions for a modeling language and the other is the matter of tool design.
In this chapter, we will focus exclusively on the first aspect: the requirements for
and design of modeling languages suitable for real-time and embedded systems.

For the real-time and embedded system domain, a major source of design com-
plexity comes from the intrinsic heterogeneity of these systems. Indeed, design
of modern real-time and embedded systems depends more and more on effective
interplay of multiple disciplines, such as mechanical, control, electronics, and
software engineering. These systems are compositions of different inter-related
parts (also called components), some of which may have already been designed

Modeling Languages for Real-Time and Embedded Systems 131

while others need to be designed. Given their heterogeneous nature, the parts are
typically designed by different design teams, possessing different expertise, and
using different tools. This is often done through vertical design chains such as,
for example, in the avionics and automotive industries. A complete development
chain typically involves a multitude of tools and data that are today still poorly
integrated. In particular, the lack of a common modeling language to specify the
overall system architecture hampers reasoning about solution trade-offs during
early development phases. This results in high development costs due to long
feedback cycles for issues uncovered during the integration phase.

Examples of integration needs in this area include: bridging the gap between
both software and hardware models, or between software models expressed in a
systems language and their implementation in terms of a target programming
language. Other examples include coordinating modeling and design tools with
specific engineering analysis tools (e.g., for safety or performance analysis), or
connecting control engineering tools (such as Matlab/Simulink [3] or tools sup-
porting the Modelica [4] language) with architectural design tools. Such integra-
tions are usually complex, inefficient, and error-prone resulting in the infamous
“islands of automation”.

Given the importance that sharing knowledge has in embedded system de-
velopment, we subscribe to the view that both system design and integration
will be reduced significantly by the use of a common modeling formalism. In
particular, we believe that the widespread acceptance of UML (Unified Mode-
ling Language) [5] by both the industrial and academic communities, along with
the use of UML profiles1 for domain-specific purposes will considerably ease
integration difficulties.

In the following section, we summarize some key requirements for modeling
embedded systems. In section 6.3, we describe a standard modeling language
that meets these requirements. The profile mechanism is explained first, since it
is used to derive the domain-specific modeling language (DSML) out of standard
UML. This is followed by an introduction to the language itself, the UML pro-
file for modeling and analyzing real-time and embedded systems, MARTE. This
profile has been adopted by the OMG as a standard technology recommendation
that deals with modeling of time- and resource-constrained characteristics of sys-
tems, and includes a detailed taxonomy of relevant hardware and software pat-
terns along with their non-functional attributes. Among other things, MARTE
enables state-of-the-art quantitative analyses (e.g., performance or schedulabi-
lity analysis). Section 6.4 concludes with a description of some typical scenarios
that illustrate the value of MARTE in specifying real-time and embedded sys-
tems. Section 6.5 discusses contributions and shortcomings of other modeling
languages for the same domain, and section 6.6 summarizes the conclusions of
this chapter.

1 A profile is the mechanism standardized by the OMG for creating domain-specific
modeling languages by refining the concepts of an existing standard language such
as UML.

132 S. Gérard et al.

6.2 Two Main Architectural Styles for Dealing with
Abstraction

To cope with the complex nature of the real-time and embedded systems and
their ever increasing sophistication and more stringent requirements, it is helpful
to use higher levels of abstraction when specifying them. Since abstraction is one
of the most powerful benefits of using models and modeling languages, we concur
with the view described in [6], section 3.1.8 on page 3-13, that, when modeling
a system, abstraction can be applied both vertically and horizontally.

Vertical Abstraction (Layering)
This is one of the most popular architectural patterns. It provides a graduated
form of abstraction across multiple discrete levels. Two primary forms of this
pattern can be identified:

Refinement layering is needed to support the iterative refinement process
flows which occur during development; each layer focuses on a different level of
detail. From the language point of view, what is needed is the ability to trace
between corresponding model elements at two different levels of abstraction (ver-
tical layers). From the modeling language point of view as well as from a formal
perspective, it should be feasible to relate these different layer models in order
to (1) enable conformance verification between them and (2) ease derivation of
model elements from one level to the next. From the tooling point of view, the
goal is to define and automate the process of deriving one specialized model from
another (code generation is a typical example of this).

Concrete layering is used to deal with horizontal separation-of-concerns. It
comes from the recurrent need in system development to model relationships
between applications and their underlying software platforms (e.g., real-time
operating systems or dedicated middleware) and hardware implementation plat-
forms (e.g., SystemC and VHDL). They identify dependencies between applica-
tion models and implementation choices/constraints.

Horizontal Abstraction (Slicing)
When considering abstraction from a horizontal point of view, we will use the
term “slicing”. Indeed, in vertical abstraction the system is divided into layers,
whereas in horizontal abstraction, the system is represented as comprising dif-
ferent slices (i.e., partitions), with potential relationships between them. In [6],
this aspect was referred to as the peer-interpretation of the client-server rela-
tionship, in contrast with its layered-interpretation that matches the layering
introduced above. Again, as we did for layering, we can classify slicing into abs-
tract slicing and concrete slicing. Slicing is intended to be used for grouping the
components of a system into different sets, called slices. The rationale for grou-
ping entities into a particular slice may vary. For example, it may be for some
project-related organizational reasons or based on the need to separate distinct
functional concerns. Whatever the rationale, it is important to remember that
all components, regardless of which slice they belong to, share a common feature:
they all coexist at the same level of abstraction!

Modeling Languages for Real-Time and Embedded Systems 133

In addition, slicing can sometimes be associated with an abstraction operation
at a higher level. For example, this is typically required when it is desired to view
a system from a specific perspective. Consequently, abstract slices are sometimes
called views or projections. Such abstract slicing may contain slices that are quite
different from and unrelated to the concrete slices of a system. Examples of such
abstraction include task models for a schedulability analysis, or architectural
models centering on system functions and scenarios models for system testing.

In contrast to a slice, a layer is a view of a complete system, but at a specific
level of abstraction that is different from other layers. For example, one layer
(which RM-ODP would call the ”computational” layer) might show a system
as a network of concurrent logical components, whereas a lower layer would
represent the very same system as a set of operating system tasks (the RM-
ODP “technology” layer). In that sense, layers represent different viewpoints.

6.3 Modeling Needs for Real-Time and Embedded
Systems Design

In this section, we identify a set of requirements that a modeling2 language must
fulfill to support the design of real-time and embedded systems. These needs are
grouped into two categories following the dichotomy introduced in the previous
section.

6.3.1 Layering and Needs for RTES

First, we focus on the implications that different forms of layering have for a
real-time and embedded modeling language.

Refinement
Clearly, a modeling language must support the refinement relationships bet-
ween two model layers. In particular, in the real-time and embedded domain, it
is necessary to be able to attach non-functional properties to such refinement
relationships.

Resource
Real-time and embedded systems are computer-based systems that interact with
the physical world. This means that they are not only coupled to the physical
world but that they are also constrained by the physical capacities of their un-
derlying hardware and/or software platforms. Hence, these systems are typically
resource limited. It is therefore crucial that the modeling language provide fa-
cilities for a precise modeling of such resources. Specifically, this facilitates two
very important capabilities.
2 In this paper, the term modeling refers to the process of describing a system archi-

tecture and its features. Design refers to the activities involved in making solution-
oriented decisions that satisfy given requirements and constraints for the intended
product. Analysis is the process of verifying how well the resulting system satisfies
these requirements (usually before the actual systems is fully implemented).

134 S. Gérard et al.

First, since the application software will be embedded in a specific software
and/or hardware platform, the code that is generated from a model of the appli-
cation must be easily interfaced with a variety of potential computing platforms,
such as a real time operating systems (RTOS), middleware, micro-controllers, or
specific hardware (e.g., ASIC and FPGA).

Second, achieving a balance between the need to optimize the utilization of
resources for cost reasons while meeting an application�s functional and non-
functional (e.g., quality of service) requirements can be a very challenging design
task. Consequently, real-time and embedded design generally requires facilities
to perform resource optimizations.

Both of these point to a need for a modeling language that can accurately
model computing platforms and other kinds of resources commonly encountered
in the real-time and embedded domain.

Allocation
The design of real-time and embedded systems often follows the well-known Y-
Chart scheme [7]. This approach specifies how both the application model and
the resource platform model are combined to provide the full system model.
This is then achieved by means of a third model, often called the mapping
model, allocation model, or deployment model. This kind of model specifies how
the elements of an application model are allocated to elements of the platform.
Since an application is simply a software specification, it is the platform elements
that are ultimately responsible for its physical realization. In other words, the
allocation model identifies which elements of the platform are used to execute a
given part of the application specification. Moreover, for our specific domain, it is
very important to be able to specify the associated non-functional characteristics
of the allocation. For example, when deploying the execution of a behavior on a
given processor, one may need to specify its worst-case execution time.

Refinement Modeling
As explained in the section describing abstract layering, model-based develop-
ment process must support abstraction refinement. This also introduces the need
to trace and propagate changes up and down the layer hierarchy. Hence, a mo-
deling language must support explicit modeling of the refinement relationships
between models at different abstraction layers, and should also allow attaching
non-functional properties to such relationships.

6.3.2 Slicing and Needs for RTES

As might be expected, a real-time and embedded modeling language must also
support different kinds of domain-specific phenomena in a suitable manner. In
particular, it needs modeling concepts dedicated to specifying quantitative cha-
racteristics such as deadlines, periods, bandwidths, processing capacities, etc.
as well as qualitative features that are related to behavior, such as communica-
tion methods and concurrency. This results in a number of concrete language
requirements described below.

Modeling Languages for Real-Time and Embedded Systems 135

Time
The temporal (behavioral) models of real-time and embedded systems can be
grouped into three main categories as follows [1]:

(a) Asynchronous/Causal models are merely concerned with the proper orde-
ring of activities (instructions, actions, so on), due to some control or data flow
prescription. Some amount of scheduling may be needed if the specified flow is
partial. Therefore, in such cases, time is viewed in terms of causal dependencies
rather than specific quantities or durations. This model is used widely at the
algorithmic software level (and in software models of hardware at the transac-
tion level). In the presence of concurrency, the varying speeds of asynchronous
components (with synchronous or asynchronous communications) generally lead
to non-deterministic behavior.

(b) Synchronous/Clocked models add the notion of simultaneity of events and
activities. Time is modeled as a discrete set of instants, and need not be connec-
ted to any physical reality, in the sense that the corresponding clock need not
be regular. Henceforth we shall call this time “logical”. This type of time mo-
del is used in (discrete step) simulation formalisms such as Simulink/Stateflow,
in synchronous languages and Statecharts, as well as in hardware description
languages at the register transaction level (e.g., VHDL, Verilog, SystemC, etc.).

(1) Real/Continuous time models take physical durations into account. These
are important for doing various time-related analyses (e.g., deadline matches)
and, in particular, for real-time scheduling as in RMA approaches [8]. They
are also used for modeling the temporal characteristics of the physical envi-
ronment or system with which the embedded system is interacting (usually
before discretization).

A real-time and embedded modeling language needs concepts for dealing with
different models of time, an, in particular, the three models of time described
above, since they represent most of the common cases.

Quantitative Aspects
This concerns the use of mathematical techniques to identify or predict certain
quality attributes of a system. They include, for example stress, thermal, or fluid
analyses in mechanical engineering, as well as performance or reliability analyses
in software engineering. One challenging problem in model-based engineering is
to integrate models that are commonly used for system production or software
code generation with the information that is relevant to perform these kinds of
analyses. An important goal is to reduce the time required to prepare a design
model for performing analysis and ensuring that the analysis model accurately
represents the system. A related challenge is to hide, as much as possible, the
underlying complexity of the formal mathematical model underlying the analysis
methods. Both goals may be achieved by deriving the analysis model more or
less directly from a suitably annotated system model using automated or semi-
automated support.

To this end, it is critical to be able to capture the non-functional charac-
teristics (e.g., performance, reliability, power consumption) in system models.

136 S. Gérard et al.

Furthermore, it should be possible to do this with precision and with maximum
flexibility [9]. Thus, rather than fix in advance the set of non-functional pro-
perties that can be expressed with the language, modelers should be allowed to
define the desired information in the form that is the most suitable for their spe-
cific analysis technique.. Such annotations should be interpretable by different
editing or analysis tools and should not be dependent on any specific tool confi-
guration. However, it would be impractical if modelers would have to specify
all this semantic information in every design. Hence, a special requirement is
a trade-off between usability and flexibility. Usability concerns favor declaring
a set of fully interpretable non-functional properties for a given modeling sub-
domain, which are easily referred to and preserve the same meaning for every
usage, whereas flexibility requires a capability for users to define their own types
of non-functional properties, provided, of course, that they are semantically well-
formed.

Qualitative Concerns
By qualitative concerns we refer firstly to aspects related to parallelism and
related communication issues. By their very essence, real-time and embedded
systems are indeed closely coupled to the real world which is inherently concur-
rent. Consequently, the modeling language must firstly provide the ability to
specify concurrent entities capable of interacting and communicating with each
other.

Underlying this preliminary concern is the more complex need to support
various specific models of communication and computation. Behind this basic
need is a more complex need to deal with heterogeneity of different models of
communication and computation. Indeed, because of the growing complexity of
systems, their development is more and more based on the possibility to consider
a system as being made of a set of smaller parts. These latter can be developed
using different approaches, and then different technologies, involving different
models of computation and communication.. A useful modeling language must,
therefore, provide a means for composing sub-systems relying on various he-
terogeneous models of computation and communication. This requirement may
be met, for example, either by providing a means of composing different models
of communication and computation, or by providing a generic model of com-
putation and communication that can be specialized for different categories of
real-time and embedded systems. In the latter case, since the model of compu-
tation and communication of the different sub-components of an application are
based on the same generic model, it may be easier to compose them.

6.4 MARTE, a Standard Real-Time and Embedded
Modeling Language

The Object Management Group (OMG, www.omg.org) is one of the princi-
pal international organizations promoting standards supporting the usage of
model-based software and systems development. The Unified Modeling Language

Modeling Languages for Real-Time and Embedded Systems 137

standard (UML, [5]) is probably the most representative of these and has had si-
gnificant success in the software industry as well as in other domains such as IT
and financial systems. UML is now the most widespread language used for mo-
deling in both industry and academia. It was designed as a general-purpose mo-
deling language as well as a foundation for generating different domain-specific
languages, mainly through its profile mechanism. The latter capability allows the
general concepts of UML to be specialized for a specific domain or application.

In this section, we first introduce the UML profile concept, which is a very po-
werful means for defining domain-specific modeling languages (DSMLs). Next,
we present MARTE, which is a UML profile for modeling real-time and em-
bedded systems and is, in effect, a domain-specific modeling language for the
real-time and embedded domain.

6.4.1 UML Profiling Capabilities

Because of the diverse nature of the disciplines needed for designing real-time and
embedded system, it is clear that a single modeling language will not be enough
to cover all the various concerns involved in this specific area. Consequently,
there has been much discussion about the suitability of UML for such domains
relative to custom domain-specific modeling language designed from scratch
[10]. A custom language has the obvious advantage that it can be defined in
a way that is optimally suited to a specific problem. At first glance, this may
seem the ideal approach, but closer examination reveals that there it can have
serious drawbacks. If each individual sub-domain of a complex system uses a
different modeling language, the problem will be how to interface the various
sub-models into a consistent integrated whole that can be verified, tested, or
simply unambiguously understood. Furthermore, there is also the problem of
designing, implementing, and maintaining suitable industrial-strength tools and
training for a each custom language, which can result in significant and recurring
expenses.

Conversely, although UML was designed to eliminate the accidental com-
plexity stemming from gratuitous diversity [11], it still provides a built-in me-
chanism, the profile concept, for creating domain-specific modeling languages
that can take advantage of existing UML tools and widely available UML ex-
pertise. Note that we are not saying that UML profiles completely avoid DSML
integration problems. However, many of the fragmentation issues3 [12] stemming
from diversity can be mitigated because all domain-specific modeling languages
derived from UML share a common semantic and syntactic foundation. There
is typically a lot of commonality between the various disciplines in real-time

3 This is used to refer to the situation that occurs when different domain-specific
languages are used to describe different aspects of a complex system. For example,
one language might be used to describe the user interface function while a different
one for the database management and access functions. The individual languages
involved could have very different models of computation, which raises the question
of how to meld the different specifications into a coherent and consistent whole.

138 S. Gérard et al.

and embedded system design. For instance, the concepts of package, composi-
tion, property and connector, which are provided by UML, are common to many
disciplines, as are the basic notions of object, class, and interface.

The basic premise of profiles is that all domain-specific concepts are derived as
extensions or refinements of existing UML concepts. These extensions are called
stereotypes. A stereotype definition must be consistent with the abstract syntax
and semantics of standard UML, which means that a profile-based model can be
created and manipulated by any tool that supports standard UML. Moreover,
because of the underlying UML foundations of a profile, it is more easily learned
by anyone with a knowledge of UML.

A stereotype may have attributes and be associated with other stereotypes
or existing UML concepts. From a notational viewpoint, stereotypes can also be
used to adapt the concrete syntax of UML in order to provide a more domain
oriented concrete syntax if needed. For instance, a class model element stereo-
typed as �clock� might use a picture of a clock symbol instead of the generic
UML class symbol.

We can distinguish two main categories of UML profiles [13]: specification
and annotation profile. Specification profiles are fully-fledged domain-specific
modeling languages and are used to model systems from the viewpoint of a
particular domain. SysML [14] is an example of this kind of profile. Annotation
profiles are used to add supplementary information to various kinds of UML
elements that can then be interpreted by specialized tools or domain experts
for different purposes, such as model analyzers or code generators. Note that
annotation profiles are particularly useful for defining domain-specific modeling
languages that support abstract layering and slicing. As we shall describe later,
some parts of the MARTE profile, namely the sub-profiles that support various
analyses, are examples of this latter category.

While specification profiles is generally well understood, some explanation
may be necessary to understand the second category, annotation profiles. Speci-
fically, in case of MARTE’s analysis sub-profiles, a given analysis concept may
be manifested in a number of different ways in a particular model. For example,
a real-time clock may be manifested as a lifeline in a UML sequence diagram
or as a role in a UML collaboration diagram. From the analysis viewpoint, all
of these different manifestations represent the same thing. This means that it
is necessary to be able to apply the same analysis stereotype to different kinds
of UML concepts, and conversely, different stereotypes (possibly from different
analysis viewpoints) may be applied in the same model element.

Concepts defined in the MARTE annotation profiles that support quantita-
tive analysis can be applied to make a standard UML model look like an analysis
model (e.g., a performance model). This is achieved by tagging appropriate ele-
ments of the original UML model to represent concepts from the analysis view-
point. These can then be used by an automated performance analysis tool to
determine the fundamental performance properties of a software design. At the
same time (and independently of the performance modeler) a reliability engineer
might overlay a reliability-specific view on the same UML model to determine its

Modeling Languages for Real-Time and Embedded Systems 139

overall reliability characteristics, and so on. Annotation profiles allow the same
model to be viewed from different viewpoints (e.g., schedulability, performance,
security, availability or timing). Finally, it should be noted that UML profiles
have the very useful feature to be dynamically applied to a user model (e.g., to
produce a domain-specific viewpoint) without changing the underlying model in
any way. Subsequently, the profile can be removed to reveal the original model
unchanged. As described in section 6.4.3, this feature is crucial to this type of
profile usage.

6.4.2 MARTE Basics

As noted previously, UML is a general-purpose modeling language that can be
specialized or extended for dealing with specific domains or concerns. The field
of real-time and embedded software systems is one such domain for which exten-
sions to UML are required to provide more precise expression of domain-specific
phenomena (e.g., mutual exclusion mechanisms, concurrency, deadline specifica-
tions, and the like). The OMG had already adopted a UML profile for this pur-
pose, called the “UML Profile for Schedulability, Performance and Time” (SPT,
[6]). It provided concepts for dealing with model-based schedulability analysis,
focused primarily on rate monotonic analysis, and also concepts for model-based
performance analysis based on queuing theory. In addition, SPT also provided a
framework for representing time and time-related mechanisms. However, prac-
tical experience with SPT revealed shortcomings within the profile in terms of
its expressive power and flexibility. For example, it was necessary to support
the design of both hardware and software aspects of embedded systems and
more extensive support for schedulability and performance analysis, encompas-
sing additional techniques such as hierarchical scheduling. Furthermore, when
the new significantly revised version of UML, UML2, was adopted by the OMG,
it became necessary to upgrade the SPT profile. Consequently, a new Request
For Proposals (RFP) was issued by the OMG seeking a new UML profile for
real-time and embedded systems. This profile was named MARTE (an abbre-
viated form of “Modeling and Analysis of Real-Time and Embedded systems,”
[1]). The intent was to address the above issues as well as to provide alignment
with another standard OMG profile, the UML profile for Quality of Service and
Fault Tolerance (QoS & FT, [15]). The latter enables specification of not only
real-time constraints but also other embedded systems characteristics, such as
memory capacity and power consumption. MARTE was also required to support
modeling and analysis of component-based architectures, as well as a variety of
different computational paradigms (asynchronous, synchronous, and timed).

In response to this request for proposal, a number of OMG member organiza-
tions collaborated on a single joint submission. This group, called the ProMARTE
consortium, consisted of the following enterprises: Alcatel, ARTiSAN Software
Tools, Carleton University, CEA LIST, ESEO, ENSIETA, France Telecom,
International Business Machines, INRIA, INSA from Lyon, Lockheed Martin, Ma-
thWorks, Mentor Graphics Corporation, NoMagic, the Software Engineering Ins-
titute (Carnegie-Mellon University), Softeam, Telelogic AB, Thales, Tri-Pacific

140 S. Gérard et al.

Software, and Universidad de Cantabria. The resulting submission was voted on
and accepted by the OMG in June 2007 [16] as a “Beta Specification”.

As prescribed by the OMG�s Policies and Procedures manual (P&P, [17]),
following adoption, a Finalization Task Force (FTF) was instituted to prepare
the new specification for its formal adoption as an official OMG technology
recommendation. The working period of a finalization task force is about 18
months and its first phase (around 6 months) comprises a comments-gathering
phase during which feedback from the broader user and vendor communities
is collected. Of particular significance is input from commercial and other tool
vendors intending to support the new specifications in their products. The second
phase is then dedicated to solving the key issues identified in the initial phase
resulting in a Beta 2 version of the specification. This version is first screened
by the OMG�s Architecture Board and, if deemed acceptable, is submitted to
the OMG�s Board of Directors for final approval. At that point, the resulting
specification becomes formally available as version 1.0. In the case of MARTE,
it is expected that this will be available by the first quarter of 2009.

6.4.3 Architecture and Some Details of MARTE

As noted, MARTE is a UML profile intended for model-based engineering of
real-time and embedded systems. It consists of a set of extensions (i.e., speciali-
zations) of appropriate general UML concepts providing real-time and embedded
designers and developers with first-class language constructs from their domain.
Many of these extensions pertain to so-called non-functional aspects of real-time
and embedded applications. Non-functional concerns of an application can be
classified into two categories, quantitative and qualitative aspects. Furthermore,
these extensions may be available at different levels of abstraction and, finally,
they have been defined to support modeling, analysis, or both. In order to satisfy
all these requirements, MARTE is structured as a hierarchy of (sub-)profiles, as
depicted in the UML package diagram in figure 6.1. It has four main parts.

The topmost package, which is the foundation on which the rest of MARTE
is based, consists of four basics sets of UML extensions, also called MARTE
sub-profiles:

– Non-Functional Properties Modeling (NFP) This sub-profile provides
modeling constructs for declaring, qualifying, and applying semantically well-
formed non-functional aspects of UML models. The non-functional pro-
perties sub-profile supports the declaration of non-functional properties as
UML data types, whereas the value specification language is used to specify
the values of those types and any potential functional relationships bet-
ween them. It is complemented by the Value Specification Language (VSL),
which is a textual language for specifying algebraic expressions. The Value-
Specification Language sub-profile is separated out in the annexes package
because it was intended to be reused in other OMG profiles.

– Time Modeling This consists of concepts for defining time in applications,
and also for manipulating the underlying time representation. The Time

Modeling Languages for Real-Time and Embedded Systems 141

Fig. 6.1. MARTE�s Architecture View

extension defined in MARTE provides support for three qualitatively dif-
ferent models of time: chronometric, logical, and synchronous.

– Resource Modeling (GRM) One important requirement with regards to real-
time and embedded system modeling is to represent the set of resources
underlying an application and also how the system uses them. The Generic
Resource Modeling (GRM) sub-profile consists of an ontology of resources
enabling modeling of common computing platforms (i.e., a set of resources
on top of which an application may be allocated to be computed), and high-
level concepts for specifying resource usage. The level of abstraction used
here is at a general system level.

– Allocation Modeling This sub-profile of the foundational layer provides a
set of general concepts pertaining to allocation of functionality to entities
responsible for its realization. It may be either time-related allocation (i.e.,
scheduling) or space allocation. It also tackles the more abstract issue of
refinement between models at different levels of abstraction. Note that non-
functional characteristics may be attached to an allocation description (e.g.,
when specifying the allocation of a function to a given execution engine, it
is possible to specify its worst case execution time).

Starting from these foundational concepts, MARTE is then split into two dif-
ferent categories of extensions: One (denoted in figure 6.1 as the “MARTE design

142 S. Gérard et al.

model”) is dedicated to supporting model-based design, that is to say modeling
activities related to the left branch of the classical “V” development cycle4,
whereas the other, denoted by the “MARTE analysis model” package, provides
support for model-based analyses of real-time and embedded applications (i.e.,
more devoted to validation and optimization).

Model-based design of real-time and embedded systems with MARTE pro-
ceeds mostly in a declarative way. Hence, MARTE users may annotate their
models with real-time or embedded concerns using the extensions defined wi-
thin the High-Level Application Modeling sub-profile (refer to the following
section that illustrates this using extracts of the MARTE specification and an
example). For instance, concurrent computing units with real-time features may
be denoted using an extension called �rtUnit� and, by giving specific values
to its properties, they can also indicate what is the model of computation for
the concurrent unit. Note also that MARTE enables component-based system
engineering (either software or hardware) through its specific sub-profile cal-
led the Generic Component Model (GCM). This component model supports
both message- and data-based communication schemes between components.
In addition, MARTE also defines very refined concepts that enable users to
describe its computing platforms, either software or hardware, in a very de-
tailed and precise manner [18, 19, 20]. These features are supported by two
sub-profiles, Software Resource Modeling (SRM) and Hardware Resource Mode-
ling (HRM). In addition, based on its Software Resource Modeling sub-profile,
MARTE includes in its annexes facilities for modeling OSEK-, ARINC-, or
POSIX-compliant software computing platforms. Finally, to deal effectively with
the increasing degrees of parallelism available on chips, one of the MARTE an-
nexes includes the Repetitive Structure Modeling sub-profile, which enables com-
pact representations of multidimensional regular structures encountered in chip
design.

Model-based analysis using MARTE is enabled primarily through the ex-
tensions defined either in the Generic Quantitative Analysis Modeling profile
(GQAM), or using one of its two refinements, which are dedicated to schedu-
lability analysis [21] and performance analysis [22] respectively. The annotation
mechanism used in MARTE to support model-based analyses uses UML stereo-
types. These typically map the UML elements of the application or platform
into corresponding analysis domain concepts, including specifications of values
for properties which are needed to carry out the analyses. One of the typical use
cases of MARTE described in the following section provides more detail.

In summary, MARTE was designed to cover all five categories of real-time
and embedded systems listed earlier. The table below summarizes how MARTE
covers the requirements identified in section 6.2 of this chapter. The left-most
column denotes the different parts of MARTE: a part being either a sub-profile
or a specific model library.

4 Note that we are not advocating the “V”development cycle as the reference process
model for MARTE. We are simply using it to help orient the reader.

Modeling Languages for Real-Time and Embedded Systems 143

6.4.4 An Extract of the MARTE Specification

In this section we illustrate in practical terms some of the ideas described in
preceding sections. However, due to space limitations it is not possible to provide
examples covering the full specification. Therefore, we will focus on the MARTE
part dedicated to high-level modeling of real-time and embedded systems design.
In particular, the fragment of the MARTE profile focusing on the definition of
a real-time unit and a protected passive unit.

Fig. 6.2. Extract from the MARTE specification: the real-time unit and the passive
protected unitmetamodels

Figure 6.2 illustrates the graphical definition of two main concepts of the
MARTE specification: RtUnit and PpUnit. An RtUnit (Real-time Unit) is a
unit of concurency that encapsulates in a single concept both the object and the
process paradigms. This allows concurrency control to be encapsulated within
a single unit. Any real-time unit can invoke services of other real-time units,
or send and receive data flows to and from those units. It owns one or more
schedulable resources (i.e., threads or tasks in operating system terminology).
A PpUnit (Protected passive Unit), on the other hand, is used to represent
data containers that can be shared between real-time units but with some form
of concurrent access protection. Therefore, a PpUnit specifies its concurrency
policy, via its concPolicy attribute. It does not own any schedulable resource.

The next figure describes a UML class diagram of a very simple automotive
cruise control system annotated with the two of the aforementioned stereotypes.
Both classes, CruiseController and ObstacleDetector, are stereotyped as real-
time units. The first of these creates dynamically schedulable resources (e.g.,
threads) to handle the execution of its services, while the second has a pool of
ten (10) schedulable resources. Both real-time units are sharing data handled by

144 S. Gérard et al.

Table 6.1. MARTE�s coverages summary in terms of RTE-specific modeling language
(a box with the symbol ⊂ [23] means the MARTE part provides some support for the
requirement, else it is marked as ∅)

Slicing Layering

Quantitative
Concerns

Qualitative
Concerns

Time Allocation Resource Refinement

NFP ⊂ ⊂ ∅ ⊂ ∅ ⊂

Time ⊂ ⊂ ⊂ ∅ ∅ ∅

GRM ∅ ∅ ∅ ∅ ⊂ ∅

Alloc ∅ ∅ ∅ ⊂ ∅ ⊂

GCM ∅ ⊂ ∅ ∅ ∅ ∅

HLAM ⊂ ⊂ ⊂ ∅ ∅ ∅

SRM ∅ ∅ ∅ ∅ ⊂ ∅

HRM ∅ ∅ ∅ ∅ ⊂ ∅

GQAM ⊂ ∅ ∅ ∅ ⊂ ∅

SAM ⊂ ∅ ∅ ∅ ⊂ ∅

PAM ⊂ ∅ ∅ ∅ ⊂ ∅

VSL ⊂ ⊂ ∅ ∅ ∅ ∅

CCSL ∅ ∅ ⊂ ∅ ∅ ∅

RSM ∅ ∅ ∅ ∅ ⊂ ∅

MARTE
Library

⊂ ⊂ ⊂ ∅ ⊂ ∅

Modeling Languages for Real-Time and Embedded Systems 145

Fig. 6.3. An example of MARTE model using both stereotypes, �rtUnit� and �ppU-
nit�

the class Speedometer. Because real-time units execute concurrently, the access
to the data encapsulated within the class Speedometer needs to be protected.
To do that, the class Speedometer is tagged with the �ppUnit� stereotype. Its
concPolicy property is set to guarded, meaning that only one real-time unit at
a time can access a feature of Speedometer, while subsequent ones arriving later
are suspended until the first user releases it.

6.4.5 Typical MARTE Usage Scenarios

The modeling capabilities of MARTE are rich enough for a wide range of design
approaches. This yields the flexibility to support and integrate multiple design
perspectives, but also to deal with the problem of understanding and choosing
among a variety of language alternatives. In both cases, there is no standard pres-
criptive way of using the language constructs across the development cycle. This
means that individual projects or enterprises can define their own specific mode-
ling framework and methodology that suits their needs best. We identify below a

Fig. 6.4. Some typical scenarios of MARTE usage

146 S. Gérard et al.

set of representative scenarios in which using MARTE provides significant bene-
fits. Although these scenarios certainly do not cover all possibilities, they allow us
to illustrate the application of MARTE in a more focused and concrete manner.

Figure 6.4 illustrates some of example scenarios following the Y-Chart scheme
[7]. For the sake of simplicity, we limit the discussion of MARTE usage here to
just three simple use cases: (1) an application-oriented use case that illustrates
the modeling of non-functional features of a system, (2) a platform-oriented use
case that corresponds to the definition of the hardware and software resources of
the system, and (3) an allocation-oriented use case that denotes how to model
the deployment of an application to a platform.

Application-Oriented Use Case
The first MARTE usage scenario, depicted in the upper left-hand corner of Figure
6.4, deals with the application side and describing non-functional requirements.
UML has traditionally been used to document user requirements by means of use
case diagrams. Use cases follow a graphical, scenario-based approach. Although
use cases may be formalized to certain degree, for example by using sequence dia-
grams in order to detail such usage histories, they are often criticized for a number
of limitations. For instance, they are applied mainly to model functional require-
ments, but arenot veryhelpful for modelingnon-functional ones.One possible way
of usingMARTE is to addannotations that characterizenon-functional constraints
in use case diagrams and their corresponding sequence diagrams. This provides two
important capabilities leading toward more formal requirements specification.

First, note that thesenon-functional requirements are specified jointlywith their
corresponding functional requirements. While specifying non-functional aspects is
possible with UML comments, this would make their semantic relationship to the
concrete functional elements hard to capture. In particular, the verification of re-
quirements satisfaction in real-time systems is strongly dependent on the coupling
between system function and timing. In MARTE, timing annotations provide se-
mantic definitions closely related to the system behavior. For instance, one may de-
fine a jitter constraint in the arrival of an event and specify whether such an event
relates either to a send, receive, or consume occurrence within a sequence diagram.
Second, non-functional annotations follow a well-defined textual syntax, which is
supported by the Value Specification Language of MARTE. The main advantages
of this level of formalization are the ability to support automated validation, veri-
fication, and traceability, while being easily understood by stakeholders.

To model the application structure and behavior, MARTE adds key semantics
to UML model elements. In particular, a common model of computation provides
semantic support for the real-time object paradigm (the MARTE�s High-Level
Application Modeling sub-profile). This paradigm allows specifying applications
at a high level of abstraction, by delegating concurrency, communication, and
time-constraint aspects to a modular unit called RtUnit (see Section 6.4.4). Such
units can be encapsulated in structural units (structured components) specifying
interfaces and interactions with other structural elements. MARTE adopted the
notions of port and flow from SysML [14] and extended them with the notion of
message-based communications.

Modeling Languages for Real-Time and Embedded Systems 147

Platform-Oriented Use Case
MARTE can also be used to explicitly model resource patterns such as proces-
sing resources, communication buses, or power supply devices along with a set
of predefined quality attributes (illustrated in the upper right-hand corner of
Figure 6.4). Furthermore, the operating system (e.g., RTOS) and other software
library layers can be modeled and reused for multiple application models. In
this chapter we want to particularly focus on the usage of the software resource
modeling capabilities of MARTE (the MARTE�s Software Resource Modeling
sub-profile), which deal with one of the more important open issues in Model-
based Engineering: making platform models explicit.

Historically, model-driven approaches for real-time and embedded systems
have focused on improving dedicated real-time and embedded platform mo-
dels [6, 7] (i.e., platform models used as meta-models). At the same time, the
Model-based Engineering community has proposed generic transformation lan-
guages (e.g., ATL [4] or SmartQVT [24]) which facilitate the description of de-
dicated bridges or transformations between meta-models. Current model-driven
approaches for real-time and embedded therefore entail specific model transfor-
mations from a set of source platforms to a set of target platforms. In many
case, however, the platforms are not described as explicit input models to be
used in the transformation. This is a serious limitation as software platforms
(e.g., RTOS, programming languages) are continuously evolving and the resul-
ting dearth of customizable transformations hampers description of reusable
generative processes.

In [25], the authors propose a model-based framework enabling explicit
platform description considering the latter as an input parameter to the model
transformation. The proposed approach uses the MARTE�s Software Resource
Modeling sub-profile for describing the specific platforms. Its principal innova-
tion is that it avoids hard-coding the platform model in the model transforma-
tion. The main benefit is a cleaner separation of concerns within the design flow
enabling easy porting to different platforms without requiring a new transforma-
tion for each case. Real-time and embedded decisions are made explicitly in the
input models and not implicitly in the transformation description itself. This also
improves the maintainability of the transformations. In this way, the generation
process becomes more flexible, more adaptable, and more reusable for a variety of
different real-time and embedded platforms. In [25], the authors also focused on
the transformations dedicated to porting multitasking applications to heteroge-
neous computing platforms (e.g., multitasking operating systems).

Allocation-Oriented Use Case
An allocation view represents the system as a hierarchy of an application (at the
top) and the software/hardware platform layers (at the bottom), as shown in the
bottom of Figure 6.4. A set of MARTE stereotypes allow representing such hie-
rarchies either using allocation/deployment or using composition relationships.

In order to generate code for a given software platform, the system model
built on the real-time concepts (e.g., �rtUnit�) must be allocated to a specific
software platform model, as described in the preceding use case. In [26], the

148 S. Gérard et al.

authors implement a real-time framework that gives meaning to the features
defined in the MARTE�s High-Level Application Modeling sub-profile. This is
achieved by providing execution support for realizing the behavior, communi-
cations, and message management associated with this kind of objects. The
code generation facility provided by this execution framework, called ACCORD,
consists of a set of transformations used to apply implementation patterns on
real-time concepts, and a standard C++ code generator. A methodology (AC-
CORD|UML) constraints the usage of MARTE concepts and parameters to a
subset that are semantically meaningful in the ACCORD execution framework.

An allocation view should incorporate the non-functional annotations that
results from the running of the application on a particular hardware/software
platform. Some of these annotations are directly mapped to platform properties,
while others require special techniques to determine their values through either
computation or simulation. For instance, fine-grained timing analyzers can help
to determine the worst case execution times of relevant pieces of code, which are
then used in scheduling analysis to predict end-to-end response times.

In [27], MARTE is used in practical system integration scenarios (modeled
as “analysis contexts”), where multiple candidate configurations are analyzed
from a timing perspective, potentially by multiple techniques. In this paper, the
authors use the Value-Specification Language to specify non-functional variables
that are further evaluated to make efficient design decisions. One of the benefits
is that multi-objective analyses can be performed and trade-off decisions can
be taken on the basis of a smart binding of exposed parameters, which are
used in different analysis contexts. Each analysis technique may involve specific
parameters to be evaluated. Furthermore, sensitivity analysis can be used at the
system design level to understand the degree to which the overall results are
sensitive to a given parameter.

Fig. 6.5. Schema of the MARTE model-processing framework

Modeling Languages for Real-Time and Embedded Systems 149

Finally, MARTE fosters model processing in the way that it enables adding
semantics to a given UML model (e.g., for code production or quantitative ana-
lysis purposes). In this context, one generic usage of MARTE enables the model-
processing schema described in Figure 6.5. Note that this process can be highly
automated, which, in some cases, can even eliminate the need for analysis domain
experts which are often difficult to find.

6.5 Related Work

Both academia and industry have already proposed languages to support model-
based development of embedded systems.

SysML [14] is an OMG standard language “for specifying, analyzing, desi-
gning, and verifying complex systems that may include hardware, software, in-
formation, personnel, procedures, and facilities”. The so-called Block concept of
SysML is the common conceptual entity that can represent many different kinds
of system elements such as electronic or software components, mechanical parts,
information units, and almost any other type of structural entity in the system
under interest. Blocks articulate a set of modeling perspectives enabling separa-
tion of concerns during systems design. Among these perspectives, requirement
diagrams provide constructs for specifying text-based requirements and their
relationships, including requirements hierarchies, as well as derivation, satis-
faction, verification, and refinement relationships between requirements. Block
description diagrams and internal block diagrams enable the specification of
more generic interactions and phenomena than those existing just in software
systems. This includes physical flows such as liquids, energy, or electrical flows.
The dimension and measurement units of the flowing physical quantities can be
explicitly defined. Although most behavior constructs in SysML are similar to
those of UML (interactions, state machines, activities, and use cases), SysML
refines some of them for modeling continuous systems and probabilities in acti-
vity diagrams. A perspective called parametric diagram allows SysML users to
describe, in a graphical manner, analytical relationships and constraints, such
as those described by mathematical equations. Formally, SysML is defined as a
UML profile.

MARTE and SysML are complementary in many ways [28]. The MARTE
component model shares the same notions of ports and flows, and additionally
extends them with the concept of client/server port. This is intended to support
the request-reply and publish-consume communication paradigms. In addition,
there are some actions under way at the OMG to align the semantics of data
and event flows, to define a common framework to specify quantities, units,
dimensions and values, and to improve some aspects such as allocation and
timing modelling. This will be reflected in future versions of MARTE and SysML.

AADL (Architecture Analysis and Design Language) [29] is an architecture
description language standardized by SAE (Society of Automotive Engineers).
AADL has been designed for the specification, analysis, and automated inte-
gration of real-time performance-critical (timing, safety, schedulability, fault

150 S. Gérard et al.

tolerant, security) distributed systems. A system modeled in AADL consists
of application software components bound to execution platform components.
AADL application software components are made of data, threads, and process
components. AADL thread components model units of concurrent execution. A
scheduler manages the execution of a thread. AADL execution platform com-
ponents include processors, memory, buses and devices. Although AADL was
defined as a domain-specific language from scratch, there is a MARTE rende-
ring of AADL, as stated in Annex F of the AADL specification. This has been
formalized as a subset of MARTE with some specific guidelines defined in Annex
A of the MARTE specification.

In the automotive domain, AUTOSAR [30] is unquestionably the standard to
specify component-based software infrastructure and it includes a standardized
API. AUTOSAR’s goal is to support the exchange of parts of embedded sys-
tem implementation artifacts that have already been pre-designed or designed
independently by different teams (e.g., by OEM’s, software suppliers), without
the time-consuming and costly need to re-configure, port, and re-build their
code. In AUTOSAR, application models are organized in units called software
components. Such components hide the implementation of the functionality and
behavior they provide and simply expose well-defined connection points called
ports. In particular, atomic software components are entities that support an
implementation and hold behavioral entities called runnables. A runnable is an
entity that can be executed and scheduled independently from other runnable
entities. There is an action project funded by the European Union’s Seventh Fra-
mework Program called ADAMS [31] especially dedicated to promote and show
the complementarity of MARTE with other automotive and avionics standards,
among which AUTOSAR is of main interest.

In addition to AUTOSAR, some of the European automotive actors have de-
fined an architecture description language, EAST-ADL [32]. This complements
AUTOSAR to cover the system level that lies outside the scope of AUTOSAR.
This includes requirements modeling, feature content at the level of a vehicle
description, architecture variability, functional structure of applications, midd-
leware, plant (environment), abstract hardware architecture, and preliminary
functional allocation. The ADAMS project provided some important results on
the alignment of MARTE and EAST-ADL [33]. This was reflected as a set of
guidelines to describe EAST-ADL-like models with a subset of MARTE concepts
oriented to the design of automotive applications. Finally, note that these gui-
delines are part of the MARTE standard specification.

In addition to the aforementioned standards, two other non-standard ap-
proaches provide similar facilities as MARTE: MIC and Ptolemy.

Vanderbilt University�s Model Integrated Computing (MIC, [34]) tool suite
consists of meta-programmable model-builder (GME), model-transformation en-
gine (UDM/GReAT), tool-integration framework (OTIF), and design space ex-
ploration tool (DESERT). This tool suite is based on specific languages for meta-
modeling and provides the ability to build domain-specific modeling languages.
This framework is described in depth in a separate chapter of this book.

Modeling Languages for Real-Time and Embedded Systems 151

Ptolemy is a model-based tool dedicated to real-time and embedded systems
[35]. This project provides support for heterogeneous modeling, simulation, and
design of concurrent system. The modeling principle fostered in Ptolemy is cal-
led actor-oriented design. This relies on the concepts of models, actors, ports,
parameters and channels. Actors (the core Ptolemy concept for supporting com-
ponent based development) communicate with other concurrent computing ac-
tors only via their ports. Ports of two communicating actors needs to be linked
via a channel. A set of communicating actors belong to a given model which
may have parameters. Each model specifies a director that define its model of
computation and each of the actors owned by the model will conform to the
model of communication defined by the director. The key concept of actor as
defined in Ptolemy was inspired by the work introduced first in 1970�s by Carl
Hewitt of MIT, and later formalized by Agha in [36]. The MARTE, concept of
a real-time unit used for modeling real-time and embedded systems shares the
same origins. More specifically, the MARTE concept was inspired by the active
object concept of UML in one hand, as well as ACCORD concept of real-time
object [37].

6.6 Conclusions and Perspectives

The complexity of modern real-time and embedded systems is starting to ex-
ceed the capabilities of traditional code-centered technologies. Fortunately, new
model-based engineering methods have proven themselves capable of overco-
ming many of these limitations. These modern methods rely on intensive use
of computer-based automation and take advantage of computer languages with
higher-level constructs that abstract away much of the underlying implemen-
tation technology as compared to programming languages. The benefits gained
from using this approach increase the closer the language is to the problem do-
main, which is why there is much interest in defining so-called domain-specific
modeling languages (DSML). One such language is MARTE, which was specifi-
cally designed for modeling systems and phenomena in the real-time and embed-
ded domain. It allows direct expression of domain phenomena such as time and
timing mechanisms, concurrency control mechanisms, software and hardware
platforms and resources, as well as precise specification of their quantitative
characteristics (e.g., latency, capacity, speed and execution times).

MARTE is a profile-based language, which means that it was derived by refi-
nement and extension of the industry-standard UML language. This allows it to
reuse many existing UML tools as well as widely available UML expertise, while
still retaining the expressive power and other advantages of a specialized com-
puter language. Furthermore, MARTE itself is an industry standard, adopted
and endorsed by the OMG as one of its official technology recommendations.

The domain-specific nature of MARTE enables not only more straightfor-
ward specification of real-time and embedded applications but also automated

152 S. Gérard et al.

and semi-automated engineering analyses of MARTE-based models. This im-
portant capability allows candidate designs to be objectively evaluated for key
performance and quality indicators early in the development cycle, before com-
mitting full development resources. Consequently, potentially expensive design
flaws and shortcomings can be detected and eliminated earlier and at far less
cost compared to traditional code-based methods.

At the time of this writing, MARTE is available in its version 1.0 on the OMG
web site (www.omg.org). In June 2009, a revision task force was launched by
the OMG. This task force is scheduled to complete its work within one year
leading to a minor revision that will incorporate minor fixes for specification
issues received by the OMG in the meantime.

MARTE has already been applied extensively in practice by industry and is
supported by numerous tool vendors as indicated by the list of ongoing pro-
jects that identify MARTE as central to their concerns (cf. the OMG web site
dedicate to MARTE, www.omgmarte.org). But MARTE, is also an interesting
research subject being explored by academia and other research institutions.
The expectation is that all of these research activities will lead to new proposals
for using MARTE for designing and validating real-time and embedded systems
based on standards. And, of course, it will also lead to proposed enhancements
and extensions to the standard itself.

References

[1] Object Management Group: UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE) RFP (2005-02-06) (February 2005)

[2] Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Ap-
proach. Addison-Wesley, Reading (1990)

[3] The Mathworks, http://www.mathworks.fr/
[4] Eclipse-atl, http://www.eclipse.org/m2m/atl/
[5] Object Management Group: UML Version v2.1.2 (2007-02-05) (February 2007),

http://www.omg.org/spec/UML/2.1.2/

[6] Object Management Group: UML Profile for Schedulability, Performance, and
Time, v1.1 (2005-01-02) (January 2005),
http://www.omg.org/technology/documents/formal/schedulability.htm

[7] Chen, R., Sgroi, M., Martin, G., Lavagno, L., Sangiovanni-Vincentelli, A.L., Ra-
baey, J.: UML for Real: Design of Embedded Real-Time Systems. In: Selic, B.,
Lavagno, L., Martin, G. (eds.), pp. 189–270. Kluwer Academic Publishers, Dor-
drecht (2003)

[8] Klein, M., Ralya, T., Pollak, B., Obenza, R.: A Practitioner’s Handbook for Real-
Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems. LNCS.
Kluwer Academic Publishers, Dordrecht (1993)

[9] Espinoza, H.: An Integrated Model-Driven Framework for Specifying and Ana-
lyzing Non-Functional Properties of Real-Time Systems. Information Processing
Letters (2007)

[10] Gray, J., Tolvanen, J.P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-
Specific Modeling (in CRC Handbook of Dynamic System Modeling). CRC Press,
Boca Raton (2007)

http://www.mathworks.fr/
http://www.eclipse.org/m2m/atl/
http://www.omg.org/spec/UML/2.1.2/
http://www.omg.org/technology/documents/formal/schedulability.htm

Modeling Languages for Real-Time and Embedded Systems 153

[11] Selic, B.: On the semantic foundations of standard UML 2.0. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 181–199. Springer, Hei-
delberg (2004)

[12] Shonle, M., Lieberherr, K., Shah, A.: XAspects: An Extensible System for
Domain-Specific Aspect Languages. In: Object-Oriented Programming. LNCS.
Springer, Heidelberg (2003)

[13] Selic, B.: A Systematic Approach to Domain-Specific Language Design Using
UML. In: ISORC (2007)

[14] Object Management Group: Systems Modeling Language, Version 1.1(2008-11-01)
(November 2008), http://www.omg.org/cgi-bin/doc?formal

[15] Object Management Group: UML Profile for Modeling QoS and FT Characteris-
tics and Mechanisms, v1.1 (2006-05-02) (Mai 2006),
http://www.omg.org/spec/QFTP/1.1/

[16] Object Management Group: UML Profile for MARTE, Beta 2 (2008-06-09) (Juni
2008), http://www.omg.org/cgi-bin/doc?ptc/

[17] Object Management Group: Policies and Procedures, Version 2.7 (2008-06-01)
(Juni 2008), http://www.omg.org/cgi-bin/doc?pp

[18] Thomas, F., Gérard, S., Delatour, J., Terrier, F.: Software Real-Time Resource
Modeling. In: Proceedings of the International Conference Forum on Specification
and Design Languages (FDL). Information Processing Letters (2007)

[19] Taha, S., Radermacher, A., Gerard, S., Dekeyzer, J.L.: An Open Framework for
Hardware Detailed Modeling. In: IEEE Proceedings of SIES. Information Proces-
sing Letters (2007)

[20] Taha, S., Radermacher, A., Gerard, S., Dekeyzer, J.L.: Marte: Uml-based hard-
ware design from modeling to simulation. In: Proceedings of the international
conference forum on specification and design languages (fdl). Information Proces-
sing Letters (2007)

[21] Tawhid, R., Petriu, D.C.: Integrating Performance Analysis in the Model Driven
Development of Software Product Lines. In: Czarnecki, K., Ober, I., Bruel, J.-M.,
Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 490–504. Springer,
Heidelberg (2008)

[22] Espinoza, H., Medina, H.J., Dubois, H., Gerard, S., Terrier, F.: Towards a UML-
based, Modeling Standard for Schedulability Analysis of Real-time Systems. In:
International Workshop MARTES, MoDELS/UML 2006 (2006)

[23] Selic, B.: From Model-Driven Development to Model-Driven Engineering. LNCS.
Springer, Heidelberg (2007)

[24] (Smartqvt), http://smartqvt.elibel.tm.fr/
[25] Thomas, F., Delatour, J., Gérard, S., Terrier, F.: Toward a Framework for Expli-

cit Platform Based Transformations. In: 11th IEEE International Symposium on
Object-oriented Real-time distributed Computing. LNCS. Springer, Heidelberg
(2008)

[26] Mraidha, C., Tanguy, Y., Jouvray, C., Terrier, F.: Gerard: Presented in Workshop
UML&AADL 2008 and Published in Proceeding of the 13th IEEE International
Conference on Engineering of Complex Computer Systems. LNCS. Springer, Hei-
delberg (2008)

[27] Espinoza, H., Servat, D., Gérard, S.: Leveraging Analysis-Aided Design Decision
Knowledge in UML-Based Development of Embedded Systems. LNCS. Springer,
Heidelberg (2008)

http://www.omg.org/cgi-bin/doc?formal
http://www.omg.org/spec/QFTP/1.1/
http://www.omg.org/cgi-bin/doc?ptc/
http://www.omg.org/cgi-bin/doc?pp
http://smartqvt.elibel.tm.fr/

154 S. Gérard et al.

[28] Espinoza, H., Selic, B., Cancila, D., Gérard, S.: Challenges in Combining SysML
and MARTE for Model-Based Design of Embedded Systems. In: ECMDA 2009,
Published in Proceeding of the Conference (Model Driven Architecture- Founda-
tions and Applications). LNCS, pp. 98–113. Springer, Heidelberg (2009)

[29] SAE: Architecture Analysis and Design Language (AADL) Annex Volume 1: An-
nex A: Graphical AADL Notation, Annex C: AADL Meta-Model and Interchange
Formats, Annex D: Language Compliance and Application Program Interface An-
nex E. LNCS. Springer, Heidelberg (2006)

[30] Autosar, http://www.autosar.org/
[31] Adams-Project, http://www.adams-project.org/
[32] East-Adl, http://www.east-adl.org/
[33] Espinoza, H., Gérard, S., Lönn, H., Kolagari, R.T.: Harmonizing MARTE, EAST-

ADL2, and AUTOSAR to Improve the Modelling of Automotive Systems. In:
Presented in the Workshop STANDRT, Autosar (2009)

[34] (ISIS,MIC Tool Distribution), http://www.isis.vanderbilt.edu/Projects/gme/
[35] Lee, E.A.: Overview of the Ptolemy Project, Technical Memorandum No.

UCB/ERL M03/25 (2003)
[36] Agha, G.: Actors: a model of concurrent computation in distributed system. MIT

Press, Cambridge (1986)
[37] Terrier, F., Fouquier, G., Bras, D., Rioux, L., Vanuxeem, P., Lanusse, A.: A real

time object model. In: TOOLS Europe 1996 (1996)

http://www.autosar.org/
http://www.adams-project.org/
http://www.east-adl.org/
http://www.isis.vanderbilt.edu/Projects/gme/

7 Requirements Modeling for
Embedded Realtime Systems

Ingolf Krüger, Claudiu Farcas, Emilia Farcas, and Massimiliano Menarini

University of California, San Diego, USA
{ikrueger,cfarcas,efarcas,mmenarini}@ucsd.edu

Abstract. Requirements engineering is the process of defining the goals
and constraints of the system and specifying the system’s domain of
operation. Requirements activities may span the entire life cycle of the
system development, refining the system specification and ultimately lea-
ding to an implementation. This chapter presents methodologies for the
entire process from identifying requirements, modeling the domain, and
mapping requirements to architectures.

We detail multiple activities, approaches, and aspects of the require-
ments gathering process, with the ultimate goal of guiding the reader
in selecting and handling the most appropriate process for the entire li-
fecycle of a project. Special focus is placed on the challenges posed by
the embedded systems. We present several modeling approaches for re-
quirements engineering and ways of integrating real-time extensions and
quality properties into the models. From requirements models we guide
the reader in deriving architectures as realizations of core requirements
and present an example alongside with a formal verification approach
based on the SPIN model checker.

7.1 Introduction and Overview

Requirements engineering is arguably one of the most important and least-well-
understood [1] development activities. It can have a positive effect on the overall
development process – systems that actually provide value to their stakeholders,
i.e. systems for which there exists a good understanding of what the requirements
are, as well as a match between the system’s requirements and the implemen-
tation, are generally considered a success if implemented within the available
resources. At the same time, it is well-known that errors made during the acti-
vities that pertain to requirements analysis and management are hard to detect
and costly to fix as time progresses through the development process.

In this chapter, we discuss the challenges and opportunities of the require-
ments engineering process for complex embedded real-time systems (ERS) as
they arise in domains such as automotive, avionics, medical, communications
and entertainment systems to name but a few examples. This system class is of
high economic relevance and significant technical complexity – more than 98% of
processors are “embedded” [2]. In automotive systems, for instance, up to 90% of
all innovations are influenced by software-enabled electronics. In some high-end

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 155–199, 2010.
� Springer-Verlag Berlin Heidelberg 2010

156 I. Krüger et al.

vehicles more than 60 different electronic control units (ECUs), interconnected
using multiple communication bus technologies and hundreds of signals, toge-
ther provide thousands of externally observable functions. Heterogeneity and
distribution lead to high numbers of different configurations and variants. A
wide functional variety from hard real-time safety critical engine control to com-
fort electronics and infotainment systems, long product life cycles, demanding
time-to-market, and a strong need for competitive per-piece costs compound the
technical challenges. All of these aspects are directly or indirectly related to the
discovery, articulation, quality assurance and continued management of a highly
diverse and interdisciplinary requirements set.

In the following paragraphs we elaborate further on the challenges of require-
ments engineering for ERS. This account draws heavily on our experiences with
automotive systems [3, 4, 5, 6, 7]; furthermore, we provide an overview of the
remainder of this chapter.

7.1.1 What’s in a Requirement?

Before we can gain an understanding of why requirements engineering for ERS is
challenging, we first have to identify what we mean by the term “requirement”.
We view a requirement as a documented need of what a product or service should
be or do. A requirement also identifies the necessary attributes, capabilities,
characteristics, or qualities that have value or utility to a stakeholder. While
sufficiently intuitive at first glance, this definition leaves open what terms such
as “attribute”, “quality” and “value” mean concretely. Unless these terms are
precisely defined, of course, it is difficult – if not impossible – to identify whether
a given requirement is well articulated, let alone whether a given system correctly
implements this requirement.

Nevertheless, this definition brings forward a number of important concerns
for capturing and managing requirements. First, it is important to observe
that requirements are connected to stakeholders [8]. For each requirement there
should be an identified party with a vested interest in seeing the requirement
implemented. This implies also that the requirements, collectively, need to arti-
culate values of the stakeholders of the system under consideration. Stakeholders
include (and are not limited to) the customer who commissions and accepts the
system, regulatory bodies, marketing and productization entities, suppliers, in-
tegrators, developers, architects and maintainers, and end-users. Consequently,
models, techniques and tools for documenting and managing requirements ne-
cessarily need to be able to reflect the various different views [9] that each sta-
keholder group brings to the table. For instance, marketing representatives may
articulate requirements aspects that relate functionality with cost, end-users
may articulate usability requirements aspects [10, 11, 12, 13], and maintainers
may articulate requirements at readability of the source code from which the
software sub-system is compiled.

To address different stakeholder views, the literature distinguishes various
classifications for requirements. At the highest level, there is a distinction bet-
ween business, product, and process requirements. Here, business requirements

Requirements Modeling for Embedded Realtime Systems 157

refer to specifications of what the business wants to achieve with a specific pro-
ject. An example for a business requirement is “Offer the safest car on the
road today”. Requirements such as this are typically directly linked to an enter-
prise objective, such as “Being the world leader in safe vehicles” and associated
business and marketing accounts. Product requirements often encompass the
functionality and operational infrastructure that is required to implement the
business requirements. This includes a specification of the functions as well as
the hardware/software context in which they are to be implemented. Process
requirements typically refer to how the development of the system under consi-
deration is to come about, whether and how it needs to be certified, and what
methods are to be applied during development for documentation, implementa-
tion and quality assurance.

Another traditional classification distinguishes functional from non-functional
requirements. Here, functional requirements include those that determine what
the system is supposed to do – this amounts to a specification of the opera-
tional capabilities provided by the system. Non-functional requirements [14, 15]
(some authors also refer to them as quality requirements) then are defined as
constraints at the implementation level of the functional requirements. Such
constraints include product requirements1 (usability [13], performance and effi-
ciency [16, 17, 18], reliability [19, 20] and portability [21]), organizational requi-
rements (delivery, implementation, adherence to standards and regulations) [15],
and external requirements (interoperability [14, 22], ethics, and legislation).
Functional requirements address the operational capabilities of the system, non-
functional requirements define the context in which these capabilities come
about.

Characteristics of ERS often blur the line between the functional and non-
functional requirements. Consider, as an example, the air bag controller for a
modern car. The requirement “Within 10 milliseconds after impact, the airbag is
to be fully inflated” identifies an operational aspect (“after impact, the airbag is
to be fully inflated”), and a performance constraint (“within 10 milliseconds after
impact”). Clearly, the stakeholder group “driver and passengers” would rightly
argue that an airbag that misses its deadline is not a functioning product. Hence,
this requirement will likely be perceived as a functional requirement, despite its
performance aspect.

As we shall see below, time plays a critical role in specifying requirements
for ERS. Therefore, it often becomes part of the underlying system model in
relation to which requirements are expressed. In other words, timing constraints
become part of the operational capabilities of the system under consideration.
Then, requirements with timing constraints naturally fall into the category of
functional requirements. In general, however, it often makes sense to distinguish
functional and non-functional requirements aspects, and to allow specification
of both aspects in a singular requirement.

1 Note that this refers to a subset of what we called product requirements in the
preceding paragraph.

158 I. Krüger et al.

Independently from the chosen requirements classification scheme, the way
in which we are able to articulate requirements has a significant impact on
how useful requirements engineering is for all other development activities. We
need to be able to determine effectively and efficiently, (a) whether stakeholder
values and associated constraints at the system under consideration are captured
accurately in the requirements, and (b) whether the implementation is faithful
to the requirements as captured. (a) and (b) are commonly referred to as the
requirements validation and verification problems, respectively.

For a comprehensive approach to requirements engineering for ERS, we need
to be able to address all relevant requirements aspects of the system under consi-
deration such that they can be effectively and efficiently validated and verified.
This is a hard challenge in general and specifically so for ERS, as we will elabo-
rate in the following paragraphs.

7.1.2 Why Requirements Engineering for ERS Is Hard

We now discuss key forces that influence the difficulty of eliciting and managing
requirements for ERS; many of these forces interrelate. We have already pointed
out that precisely defining what a requirement is, is a challenge in and by itself.
A common solution for model-based engineering approaches is to create a system
model, which is a mathematical representation of the central phenomena exhibi-
ted by the system class into which the concrete system under development falls.
We can then formally define requirements as constraints at the system model.
These constraints reduce the set of all possible instances of the model to those
that fulfill the requirement.

We are interested in system models that are close to the problem domain.
For this purpose, system models built on top of process algebras, timed and
untimed, finite and infinite automata, temporal logics, partial orders, or streams
and stream, relations, and games have been devised to address a broad spectrum
of properties while placing bounds on the computational complexity of validation
and verification. Hence, in requirements engineering, a key challenge is to identify
system models and associated specification languages that allow representation
of the key domain concepts [23] within the formal model such that validation
and verification are effective and efficient. In the following paragraphs we discuss
the key forces that drive the selection of an appropriate system model for ERS.

Requirements do change over the lifecycle of a product [24, 25, 26] [27]. The
romantic idea that requirements can be captured completely at product incep-
tion, frozen, and then implemented to satisfaction is an illusion for all but the
most trivial systems. Consequently, requirements need to be managed actively
throughout the product lifecycle [28, 29], from inception to retirement.

Embedding – ERS are embedded into a context by definition. This context is
typically another product, such as a car, an airplane, or a medical device. The
ERS often plays the role of a controller of physical processes in which the overall
product engages. This means that the ERS needs to interface with the context
into which it is embedded, and thus needs to have a model of its environment
to appropriately react to changes in this environment.

Requirements Modeling for Embedded Realtime Systems 159

Furthermore, each ERS has a unit cost associated with it. There is a natu-
ral incentive to reduce the unit cost to reduce the overall product’s cost (or to
increase profit margins). Consequently, ERS are equipped with just enough com-
putational and storage resources (as in hardware) to fulfill their desired function.
Especially in mass markets, such as in automotive or entertainment electronics,
where comparatively tiny unit cost savings have an enormous impact on overall
profitability, cost reduction at the unit level is a critical and driving business
requirement. Of course, if the overall product consists of multiple ERS, this can
result in many local optimizations at the expense of realizing global cost sa-
vings across ERS. As we shall see, below, this is compounded by the distributed
development model for ERS, and by the absence of integrated system models
that would allow articulation and optimization of cost and functionality across
component ERS.

Multi-Disciplinary Stakeholder Communities. Clearly, describing the interface
between the ERS and its physical environment necessitates that requirements
can express the properties and constraints of the requirements that are relevant
for this interface. This alone already necessitates a multi-disciplinary approach
to requirements engineering for ERS. A car, for instance, provides a physical
context in which mechanical engineers are key domain experts. Add to this
electrical engineers for the hardware context of the ERS, as well as Human-
Machine-Interface (HMI) experts for the usability aspects, to obtain an initial
set of disciplines involved in ERS development besides the requirements engi-
neers and software developers, testers and maintainers with computer science
background. Each of these stakeholder groups has a different view [30] on the
system under consideration, and has its own domain concepts and associated
ways of articulating them. This necessitates that the chosen system model al-
lows expression of requirements from all relevant stakeholder groups.

Two techniques allow dealing with the resulting complexity: (1) introducing
mechanisms for expressing different views onto, or abstraction levels of the same
system model – in the language of the respective stakeholder group, and (2)
enabling the co-existence of multiple different system models, each of which is
tailored to a particular stakeholder group, or view; then the challenge is how
to mediate between requirements specified in the respective system models to
arrive at a consistent [31, 32, 33, 34], integrated requirements specification for
the overall product. This mediation can take on various forms; typically it will
consist of an elaboration of the domain entities (or abstractions thereof) shared
by multiple source models and the key relationships between these entities, as
well as projection relations between the source models and the mediation model.

Consistency and Realizability – If there is more than one requirement needed
to specify a system of interest (and for all but the most trivial ones, there is), we
have to address consistency between requirements. The underlying question is
whether the requirements as specified allow any system to be constructed such
that all requirements are fulfilled.

For instance, if we represent requirements as predicates on the underlying
system model, then we can express relationships between requirements using

160 I. Krüger et al.

logical conjunction and disjunction: conjunction expresses that of two require-
ments both must be satisfied together; disjunction indicates alternatives among
requirements. If we add negation as a logical construct, we can also express
“anti-requirements”, i.e. requirements that must not be fulfilled [35]. This then
allows us to express conditional requirements of the form “if requirement A is
fulfilled, then requirement B must be fulfilled also”. The overall requirements
specification can then be interpreted as a logical formula involving predicates
and the mentioned logical connectives. The question then arises whether the set
of tape valuations constrained by this logical formula has any elements in it.

As we have described in the preceding paragraph, we have to be able to re-
present different views on the set of requirements to different stakeholder groups.
Consequently, we have to concern ourselves with the consistency of the resulting
composite views. We have to add requirements that further restrict the set of
possible models to those that are realizable.

Outsourcing and Distributed Development – ERS are, in general, developed
in the interplay between an Original Equipment Manufacturer (OEM) and a
supplier. The OEM is responsible for the product into which the ERS integrates.
The supplier is responsible for the ERS. This necessitates precise and expressive
requirements specifications [36] that elucidate the interplay between the ERS
and its environment. In practice, requirements are seldom expressed precisely
enough, successful projects resort to cooperative and joint development between
the OEM and the supplier to ensure short feedback cycles to iteratively refine
the requirements. The precision to which we are able to articulate requirements
between OEM and supplier has a direct impact on the number of iteration cycles
needed, and the ability for both parties to verify and validate the requirements
they were able to specify.

Furthermore, the distribution of responsibility [37] between the OEM as the
system integrator, and the supplier has lead to two distinguishable levels of
abstraction in requirements specification, called user and system requirements,
respectively. User requirements are gathered by the OEM and articulate the
OEM’s expectations at the outcome of the supplier’s development efforts. The
supplier responds to a user requirements specification with a system require-
ments specification that details the user requirements, and incorporates further
business, product and process requirements from the supplier’s point of view.

Multi-Functionality [7] means that an ERS provides not one singular, but
multiple distinguishable, individually valuable functions (also called features) to
their environment. For instance, cell phones provide calendaring, email and a
wide variety of productivity and entertainment functions in addition to the all
but mundane functions of placing and receiving calls.

This necessitates that requirements for ERS explicitly address the partiality
of individual functions and precise specifications of how the individual functions
integrate into the whole. In particular, the requirements need be be explicit about
desirable and undesirable feature interaction. A desirable feature interactions
emerges from the interplay between two features to the (sometimes unforeseen)
benefit of a stakeholder. Undesirable feature interactions, on the other hand,

Requirements Modeling for Embedded Realtime Systems 161

reduce the value of the integrated system to a stakeholder. Again, this calls for
explicit means to determine consistency among requirements for the ERS and
the environment into which it is embedded.

Heterogeneity – Requirements for ERS that control physical processes often
are most succinctly represented in terms of the mathematical models that are
used to describe the physical processes. For instance, requirements for automo-
tive systems need to capture the vehicle’s continuous movement through space
and time. The adequate mathematical model for this movement will involve diffe-
rential equations. Specifically, the field of control theory was developed precisely
to study the phenomena that arise in the interactions between the physical world
and controllers that seek to influence the environment to effect a desirable condi-
tion. Any comprehensive requirements specification technique that attempts to
be successful in the automotive domain, therefore, needs to be able to capture
continuous behaviors (in the underlying mathematical models) to facilitate in-
teraction with control engineers. At the same time, a car is a good example for
the need to also express mixed discrete-continuous and purely discrete ERS [7].

Distribution and Integration – As mentioned above, the OEM typically acts
as the integrator of a set of independently developed ERS. Consequently, the
desired behavior for the integrated product emerges from the interplay of the
functionality provided by the sub-systems. For the system models underlying
requirements specifications this means that they need to be able to express
phenomena of concurrency and synchronization. Depending on the product and
the OEM, these ERS are developed by a variety of different, competing suppliers.
As a consequence, the functionality valuable to the end-user is scattered across
a wide variety of subsystems. This places a tremendous integration challenge
on the OEM – this finds its expression today in intense and costly integration,
calibration and testing activities in which the OEM engages when all subsystems
finally are available.

Often, there is no overarching requirements specification addressing the inte-
gration challenge – the user requirements suppliers see are then underspecified
in terms of these integration requirements, and the OEM has to work around the
resulting implicit assumptions the suppliers make. Furthermore, as mentioned
before, the absence of an overarching understanding of the integration requi-
rements results in poor resource optimization across the ERS of an integrated
system. Consequently, the requirements models for ERS should explicitly ad-
dress the scattering of functionality and the resulting integration requirements,
as well as the concerns that cut across the individual system components (see
below).

Safety-Criticality – ERS in safety-critical products [38, 39, 40] such as cars,
airplanes, trains, space ships, power-plant and factory control systems, heart-
pacers and other medical devices are safety-critical by association. Much research
has been invested into developing system models that allow the specification and
verification of safety properties [41, 42, 43, 44] [45, 46, 39, 47].

A remaining research challenge is to provide domain-specific system models
that allow articulation, validation and verification of safety requirements at the

162 I. Krüger et al.

scale of thousands of integrated functions while resolving the dependencies and
interactions between the requirements forces described in this section.

As a case in point we note that failure management is a critical concern for
many ERS [19, 48] and specifically so in the automotive domain. Yet, none of
the widely-used requirements specification techniques for automotive systems
even recognizes the notion of failure as a first-class modeling entity. Of course,
there are techniques such as Failure Mode and Effect Analysis (FMEA) [49] and
Fault Tree Analysis (FTA) [50] – however, these techniques are rarely applied
at the inception and requirements modeling phase, but rather reserved for an
after-the-fact analysis, when the subsystems have already been developed. We
will pick up this topic below, when we discuss cross-cutting concerns, as well as
in Section 7.4, in our case study.

Multi-scale Timing, Asynchronous vs. Synchronous Communication – Time
plays a critical role in ERS. Many models of physical phenomena depend on
time as a variable; for instance, velocity is the derivative of position in time.
ERS control properties are consequently frequently specified in the language of
differential equations. However, this is typically already at the level of a solution
(in the sense of specifying a particular controller) rather than at the level of a
requirement. This is facilitated by the available tool support for control system
development (see below), which favors the graphical specification of particular
solutions rather than requirements.

In general, most system models favor a particular model of time (conti-
nuous vs. discrete), which results in awkward requirements specifications for
systems with mixed discrete-continuous timing properties. Similarly, most sys-
tem models favor a specific communication model (message/time-synchronous
vs. message/time-asynchronous), which again can result in awkward expressions
of requirements for integrated systems with mixed types of communication requi-
rements. Of course, in concrete examples, such as cars, we find a broad range of
timing constraints on scales of milliseconds (motor control) to tenths of seconds
(comfort functions) to seconds (navigation). Similarly, we find a wide variety of
communication mechanisms ranging from time- and message-synchronous com-
munication within an ERS to time- and message-asynchronous communication
beyond vehicle boundaries for remote operation of vehicle functions.

It is one of the key research challenges in ERS to reconcile multiple time and
communication models within such that the corresponding requirements can be
expressed lucidly. In practice, the timing requirements are often only informally
stated on a per-component basis, following some intuitive, or implicit unders-
tanding of overall end-to-end response-time requirements, or implementation-
technology-dependent constraints (processor cycle times, cache hit-rates,
communication bus throughput and latencies). Using simulation and testing as
the main tools, the system is then instrumented to determine worst-case exe-
cution times. The results are then matched against the per-component timing
requirements.

Long Product Life Cycles – Products containing ERS typically have long
product life cycles from inception to retirement. This means that over this

Requirements Modeling for Embedded Realtime Systems 163

lifecycle, many changes in the environment of any particular ERS may occur:
other components may be exchanged, or the product may be placed into pre-
viously unanticipated environments. This, in turn, means that requirements spe-
cifications (and thus the system models supporting them) need to be durable and
accessible throughout the product lifecycle.

Time-to-Market While product life cycles are long, especially in consumer
mass-products, time-to-market is constantly under scrutiny for reduction to react
more rapidly to changes in consumer, environmental or regulatory needs. A case
in point is the rapidly increasing demand for hybrid vehicles on the backdrop of
rapidly rising fuel prices.

This impacts requirements engineering for ERS in the sense that it needs to
be able to respond to rapidly changing requirements to facilitate the agility and
flexibility needs of its container. In particular, the degree to which requirements
can be specified in a modular fashion will have significant impact on how rapidly
the parts of an integrated system of ERS can be adapted to support changes to
the product as a whole. Note that here, we are referring to the structuring of
the requirements, rather than the structuring of the resulting architecture; the
latter is also an important, albeit separate, topic.

Product Lines and Re-Configuration – Similarly, to amortize costs and re-
spond to market needs, OEMs often develop platform strategies and product
lines so as to be able to reuse significant parts of an integrated system, while
adapting others. This leads to the challenge of managing multiple different ver-
sions of requirements sets, which correspond to multiple different configurations
of the integrated system. In the automotive example, some product families have
variation points amounting to hundreds of thousands of different configurations
customers can order. Some of these configuration options are necessitated by
regional laws and regulations, others stem from different options for feature sets
of the vehicle.

Again, the major impact for requirements engineering is on the management
capabilities of the associated requirements documents, so as to avoid costly re-
work; also, there is impact on the ability to verify consistency of the requirements
configurations.

Influence of Hardware Architectures – Sometimes, products containing ERS
evolve from limited feature sets to thousands of software-enabled features; again,
the automotive domain is a telling example. From the beginnings of the use of
electronically controlled fuel injection to today the amount and impact of soft-
ware deployed in the car has grown exponentially. Now automotive engineers are
faced with the challenge of integrating, and supplying power for, 30 to 80 Elec-
tronic Control Units (ECUs) per car, depending on the target market (budget
vs luxury). This challenge includes calibrating the timing between the various
ECUs in their attempt to communicate with other ECUs in the vehicle – largely
due to the scattering of functionality across the various ECUs. To some degree,
this challenge is an artifact of dominant legacy architectures that were adopted
initially, and never reconsidered as more and more functions entered the vehicle
– often due to long-time licensing agreements and cost savings of reuse.

164 I. Krüger et al.

The impact on requirements engineering for ERS is that such legacy architec-
tures often become requirements constraints that also need to be articulated in
the requirements model. At the same time there is a tradeoff between articulating
legacy architecture requirements and writing requirements that describe more
of the “what”, rather than a particular “how”. This tradeoff must be resolved
at the level of the overall engineering process.

Deployment, Update, Diagnostics, and Maintenance – Because of their em-
bedding, ERS are less accessible for deployment, update and maintenance tasks
than desktop or laptop computers. Nevertheless, long product life cycles ulti-
mately necessitate updates to the software or hardware components of an ERS.
Especially in distributed, integrated ERS such as in cars and airplanes, howe-
ver, updates are (as of this writing) difficult to deploy. As mentioned above,
in such systems many ERS originate from different competing suppliers, each
applying their own strategies, technologies and methods for deployment, update
and maintenance (if any). This again points to the specification of dedicated
requirements for these important development tasks at the integration level.

Therein lies significant research potential – today’s formal requirements spe-
cification techniques have yet to broaden the range of requirements types they
address. Most system models (as we shall see in Section 7.2) assume static system
structures and mappings from behaviors to these system structures. This ren-
ders precise specification of deployment, update and maintenance requirements
all but impossible.

The drive towards service-oriented architectures (SOAs) that has gained signi-
ficant momentum in the world of business information systems is slowly gaining
ground in the ERS domain as well. One of the fundamental premises of SOAs
is that the location of a function is secondary to its interface due to static and
dynamic advertisements, registration and binding techniques. This dynamicity
today still clashes with the imperative of unit cost savings, and thus scarce re-
sources per ERS. As attention shifts from per-unit development to integrated
networks of ERS, we expect this reservation to give way to an understanding of
global reuse, dependability potentials and cost-savings.

As technical solutions for these concerns are on the doorstep so should be the
models for specifying the corresponding requirements – yet, there is very little
support in contemporary, widely accepted requirements modeling and enginee-
ring approaches.

Quality and Cross-Cutting Concerns – Deployment, update and maintenance
are good examples of cross-cutting ERS concerns that have little to no support in
today’s system models and corresponding systematic requirements engineering
techniques. Of course, the list of cross-cutting concerns does not stop there. Other
important ones are availability, fail-safety (across units in a set of networked
ERS), security [51, 15], and policy/governance. Availability and fail-safety are
addressed in this and other chapters explicitly, hence we focus on the other two
requirements aspects here.

Security has been regarded as a secondary concern for a long time in ERS
development. After all, most ERS were assumed to be inaccessible from outside of

Requirements Modeling for Embedded Realtime Systems 165

the product they were embedded into. This, of course, has changed radically with
the increased networking among and beyond ERS [52] – suddenly, for instance,
we find that the CLS functionality of a car is accessible via the Internet (to
support remote unlocking to recover locked-in keys). Signals in car networks
today are rarely encrypted, and can thus be reengineered, and reproduced in
malevolent ways (for instance to gain unauthorized entry into the vehicle).

Policy and governance also come into play in networked ERS – together they
address the question under which circumstances a party can (or must) perform a
particular action in the system. In our automotive example this becomes impor-
tant in identifying who has the authority to unlock the vehicle; another scenario
is the prevention of unauthorized after-market components to participate in the
exchange between the authorized ERS.

Similarly, the challenge of diagnostics – what and how much data to collect
at what locations and time points, to identify the root cause of a failure du-
ring system operation – is an area of active research with little explicit system
modeling support, and consequently no broadly accepted formal requirements
specification techniques.

Furthermore, all ERS undergo a set of distinct operational modes, such as
initializing, idling, operating, resetting and suspending, to name a few examples.
From a modeling point of view this can be addressed with regular state-based
modeling techniques such as state machines or activity diagrams. However, there
is a need to explicitly provide access to all or some of these modes at the ERS-
environment interface, especially in a networked ERS consisting of multiple sub-
systems. This need arises both for monitoring purposes and to ensure that sets
of components can be steered into defined operational modes together (say, for
start-up, shut-down, and testing).

Traceability – Because the requirements spectrum of ERS is vast and highly
heterogeneous, traceability becomes a particularly daunting task. Success is
again bound to our ability to articulate requirements at increasingly high le-
vels of detail, and to validate and verify requirements at different levels of abs-
traction against each other. Furthermore, methods are needed that establish a
trace between architecture specifications and implementations at various levels
of abstraction and the requirements that are implemented at these levels. This
challenge is again compounded by the distributed nature of the OEM-supplier re-
lationship, and the desire to support product lines with vast numbers of possible
system configurations, as well as by the tight coupling between requirements
specifications and the target hardware/system platform onto which the ERS
functionality is to be deployed.

At the level of system architecture specification, Model-Driven Architecture
(MDA) [53] has taken a step into a more tractable direction – here, we distinguish
between a Platform Independent Model (PIM) and a Platform Specific Model
(PSM). The PIM can largely be regarded as a highly detailed requirements model
that captures the core system entities and their interactions without specifying
how these are implemented. The PSM, on the other hand, captures all aspects
of the deployment architecture. Then a mapping between a PIM and multiple

166 I. Krüger et al.

PSMs can be be established to capture multiple different deployments for the
same functionality set. However, further research is needed to lift the degree of
abstraction from PIMs to genuine user and system requirements specifications.

Tool Landscape – A wide range of commercial and academic tools for require-
ments engineering and management have been developed. Few, however, cover
even a small subset of the concerns we have brought forward in the preceding
paragraphs to any degree of satisfaction. We attribute this largely to the absence
of comprehensive system models and associated requirements specification tech-
niques and standardized architectures that adequately capture and reduce the
complexities of ERS specific to particular domains.

Of course, tools such as DOORS [54], Rational RequisitePro [55], and Cradle
[56] have displayed their utility in the management [57] (as in organization
and version control) of requirements once they are elicited. Tools such as Mat-
lab/Simulink/Stateflow allow detailed architecture design of and even generation
of efficient code for controllers for which requirements are well understood. Ho-
wever, the challenge of finding adequate system models and requirements specifi-
cation techniques for systematic requirements discovery and refinement remain.
Yes, DOORS integrates with other UML-based tools for requirements elabo-
ration. However, for UML and its derivatives a wide variety of the challenges
posed above are unsolved as of yet; we name just a few examples: consistency
of description techniques and resulting requirements specifications, efficient and
effective validation and verification at the model level, notations and models for
system (re-)configuration, support for cross-cutting concerns in the requirements
models, including failure, safety, security, and policy/governance

7.1.3 Summary and Outline

In the preceding paragraphs we have identified a broad range of challenges
that render precise requirements specifications of ERS particularly difficult. We
have started by identifying requirements as the expression of stakeholder va-
lues, and have established a connection between mathematical system models
and requirements formalized as predicates (or constraints) over these system
models. Then we have called out a number of requirements aspects that a com-
prehensive requirements engineering approach needs to be able to articulate
and manage throughout the development process. Key challenges arise from the
multi-disciplinary and heterogeneous nature of ERS requirements, their distri-
bution, domain-specifics such as a broad range of timing specification needs,
deployment, update and maintenance requirements and the associated quality,
validation and verification concerns.

No currently available tool or integrated tool set addresses all of these concerns
comprehensively. We conclude that this necessitates further research and deve-
lopment in both academia and industry – this volume is evidence of the signifi-
cant research progress to date.

The remainder of this chapter is structured as follows: In Section 7.2 we
review a broad range of requirements engineering techniques proposed in the li-
terature – this provides an overview to what degree the mentioned concerns are

Requirements Modeling for Embedded Realtime Systems 167

addressed in today’s models and techniques. In the absence of a formal, compre-
hensive requirements engineering technique, we briefly recall key best-practices
of requirements engineering and how they relate to model-based development
(Section 7.2) for ERS. We discuss the relationship between requirements and
their traceability to architecture, and from there to implementation, in Section
7.3. In Section 7.4 we give an example for capturing safety requirements of an
automotive Central Locking System using structural and behavioral modeling
techniques so that these requirements can be formally verified.

7.2 Requirements Specifications and Modeling for ERS

Modeling plays an important role in all requirement engineering activities, ser-
ving as a common interface to domain analysis, requirements elicitation, specifi-
cation, assessment, documentation, and evolution. Initially, domain models are
created to describe the existing system for which the software should be built,
covering stakeholders, human actors that interact with the system, hardware
devices, and the environment in which the system will operate. In addition to
behavior, domain models define ”the language” of the system by capturing do-
main entities in a structural way [58]. Then, deficiencies in the existing system
and objectives for the target system are more clearly identified. During requi-
rements elicitation, alternative models for the target system are created, which
may define different boundaries between the target system and its environment.
Models can help in defining the questions for stakeholders and surfacing hidden
requirements. Ultimately, the requirements have to be mapped to the precise
specification of the system and the mapping should be kept up to date during
the evolution of requirements or the architecture.

After requirements are specified (more or less formally), the specifications
are checked for errors such as incompleteness, contradictions, ambiguities, in-
adequacies in respect to the real needs – which all can have disastrous effects
on the system development costs and the quality of the resulted product. The
choice of modeling notations is often a tradeoff between readability and powerful
reasoning techniques: natural language is very flexible, useful for communicating
requirements, but can not capture relationships and is often an expression of sub-
jective reasoning [59, 60]; applied/semi-formal models (e.g., entity-relationship
diagrams, UML diagrams, structured analysis) typically have a graphical re-
presentation which is very useful when communicating with stakeholders and
often offers simulation and animation capabilities; and formal notations (e.g.,
KAOS [61, 62], RML, Telos, SCR [63, 28], process algebra, Promela/SPIN [64])
capture precise semantics, which supports rich verification techniques.

7.2.1 Requirements Models

Many challenges of requirements engineering span multiple application domains.
For instance, business concerns such as conflicts from multiple viewpoints over re-
quirements of different stakeholders are present in domains as diverse as business

168 I. Krüger et al.

information systems, financial applications, avionics, car OEMs and suppliers,
etc. Hence, in this subsection we first briefly present general techniques for re-
quirements modeling that have a broader scope and can be applied on a variety
of domains. As embedded systems may require dedicated techniques for some
aspects such as timing, determinism, and formal verification of safety properties,
we then describe particular techniques for ERS.

Business modeling Goal-based approaches such as KAOS [61, 62] and i* [65,
66] focus on modeling goal hierarchies to capture the objectives of the system,
the associated tasks, and resources. The explicit modeling of goals helps in che-
cking the requirements completeness – the requirements are complete if they
are sufficient to meet the goal they are refining [67]. In KAOS [61, 62], the set
of high-level goals are iteratively refined using AND/OR decomposition, obtai-
ning a graph structure. KAOS allows to define agents and the actions they are
capable of, and the goals can be operationalized into constraints assigned to
individual agents. Each term is formally defined in temporal logic; therefore, a
main contribution of KAOS is to prove that goal refinement is correct and com-
plete [68], which implies proving that requirements correspond to system goals.
Furthermore, [69] shows how conflicts between goals can be formally detected.
The i* [65, 66] framework focuses on two models: the strategic rationale model
describes the goals of the actors and the interactions between goals and tasks
within each actor, whereas the strategic dependency model focuses on the re-
lationships between actors such as dependencies on the goals or resources from
other actors, or dependencies on tasks that other actors should perform. With
such models, properties such as viability of an agent’s plan or the fulfillment of
a commitment between agents can be verified.

Another approach is to focus on business processes (workflows), business rules,
and the services the system provides [70]. For this purpose, UML activity and
collaboration diagrams can be used to show how actors collaborate to perform
tasks. Moreover, UML class diagrams can show the roles of actors within the
domain and can be used to capture business rules, although often in an implicit
way through the class composition and multiplicity constraints. In UML, bu-
siness rules, as well as pre- and post- conditions, can be explicitly specified in
Object Constraint Language (OCL) [71].

Modeling information and behavior is an important part of the requirements
specification process dealing with the structure of the system in terms of entities
and their relationships; the behavior in terms of states and events that deter-
mine state transitions; and interactions in terms of communication patterns,
dataflows between system components, parallelism, concurrency coordination,
and dependencies – especially temporal dependencies in the case of ERS.

One way for specifying the structure of the systems is to use entity relation-
ship (E-R) diagrams to capture domain concepts and data models. Although
E-R diagrams are just notations, the concepts of objects, classes, attributes,
and instances map well to domain entities and enable an easy transition to
object-oriented system design. This ease of transition from requirements to de-
sign is sometimes a drawback as it becomes difficult to distinguish the real user

Requirements Modeling for Embedded Realtime Systems 169

requirements and their rationale from design decisions inferred from underspe-
cified requirements. Also, focusing on single use cases may prevent the deve-
lopment of the system vision or the ”big-picture”. In such cases, the solution
resides in operating with partial system specifications through an agile develop-
ment process that iteratively refines the requirements and constructs the vision
of the final system. Standards such as UML can be used to achieve consistency
between models developed in different iterations.

Modeling the system behavior is generally accomplished using variants of fi-
nite state machines (FSM) [72, 73] and notations such as Dataflow Diagrams
(DFD) [74]. The Structured Analysis is a data oriented approach for concep-
tual modeling initially intended for information systems and later adapted to
ERS. It presents a development/transition path from an indicative model of the
current system to an optative model of the new system. This methodology fa-
cilitates communication between stakeholders and system builder as it does not
require software development expertise and can be easily used in domain terms.
Abstractions and partitioning of the system into subsystems with clear bounda-
ries make it easier to handle larger projects. However, a major drawback comes
from the confusion between modeling the problem that the system is intended
to solve and modeling the actual solution. Also in particular for ERS, the timing
aspects are mostly invisible in the system model, making later tracing between
the system behavior and its requirements a difficult task [75, 76].

Several variants of this approach exist, Structured Analysis and Design Tech-
nique (SADT) [77], Structured Analysis and System Specification (SASS) [74],
Structured System Analysis (SSA) [78], Structured Requirements Definition
(SRD) [79]. SASS is the closest relative of the classic structured analysis tech-
nique. SADT is a semi-formal technique supports the formalization of the de-
clarative part of the system, but uses natural language for the requirements
themselves. It provides a data model linked through consistency rules with a
model for operations. It also uses activity diagrams instead of dataflow dia-
grams and distinguishes control data from process data. SSA uses a notation
similar with [74], but adds data access diagrams to describe contents of data
stores. SRD introduces the idea of building separate models for each perspective
and then merging them.

Specific Requirements Models for Embedded Systems A wide range of real-time
systems encountered in industrial environments, power plants, cars, airplanes,
can be modeled and reasoned about as “embedded systems”, because of the role
of the computing system in controlling a physical process and the integration of
the two aspects of “controlling” and “controlled” into a common system [80].

Modeling the requirements for embedded systems is crucial to be able to verify
their behavior. Correcting requirements errors, under-/over- specifications, or si-
milar imprecisions later in the development cycle can be extremely expensive [81,
82]. “The importance of determinism cannot be overestimated; deterministic sys-
tems are one order of magnitude simpler to specify, debug, and analyze than non-
deterministic ones.” [83]. Hence, formal models for specifying the requirements of
ERS try to prevent costly errors [43] or that may ultimately lead to accidents.

170 I. Krüger et al.

SCR Tabular notations [84] have been used for decades to specify require-
ments for readability reasons. The Software Cost Reduction (SCR) requirements
methodology [63, 28] was introduced for engineers working on the software for
embedded systems. It was later refined for complete systems to incorporate both
functional and nonfunctional requirements [85, 86, 87]. The method promotes a
tabular notation for specifying requirements, a finite state machine model, and
special constructs for expressing constraints such as modes, terms, conditions,
events, inputs and outputs [63]. The method associates a table for each output,
term, or mode class of the specification and enables system decomposition into
smaller, more manageable parts.

Faulk’s [88] initial formal foundations of this method use various classes of
tables as total functions and mode classes as finite-state machines defined over
events. There are monitored and controlled variables and input and output
data items (provided by external devices such as sensors and actuators), where
a monitored variable reflects the effect of the environment on the system behavior
and a controlled variable reflects the control of the system on some environmental
aspect. Events denote changes of value in the entities forming the system, where
input events are trigged by the environment, whereas conditional events may
also be triggered by internal system computations.

The Four-Variable Model [85] extends this method to systems by including
critical aspects of timing and accuracy as mathematical relations on monitored
and controlled variables. For complex systems several mode classes may operate
in parallel. [86] introduces another similar abstract model. A specialized form [89,
90] of the Four Variables model is used as formal foundation for a tool suite [91,
92] consisting of a specification editor to create and maintain specifications,
simulator for symbolically executing the specified system, automated consistency
checker [93], and verifier for critical properties such as timing [90, 94]. These tools
enable the developer to ensure proper syntax, type correctness, completeness of
variable and mode class definitions, mode reachability and proper setting of
initial values in all modes, disjointness (i.e., unique defined entities), coverage
and acyclic dependencies.

The CoRE methodology [95] tries to address the shortcomings of its SCR an-
cestor, namely the lack of structuring mechanisms for variables (e.g., aggregation
or generalization), models (e.g., and/or decomposition), and tables (e.g., refine-
ment relationships). [96] proves the scalability of the approach in the context of
large-scale avionics systems. [97] provides a practical comparison between SCR
and CoRE within the context of a flight guidance system.

Requirements State Machine Language (RSML) [98, 99, 100] is a formal state-
machine based hybrid approach using both tabular and graphical notations bor-
rowed from Statecharts [101]. It introduces boolean tables and guards to describe
state transitions in one or more high-level state machines that can communicate
directly with each other. RSML tables describe transition conditions based on
input events and may generate as result output events. Modes are defined expli-
citly as functions of input variables. The approach employs a state-based black-
box model for all system components and their interfaces, which separates the

Requirements Modeling for Embedded Realtime Systems 171

specification of requirements from design aspects and enables formal analysis of
the entire system its correctness and robustness [98].

[102] has a similar approach with tables and state machines but uses trace se-
mantics for system analysis. Other specification languages such as Statemate [103],
Hatley [104], Ward [105], include various models, yet not all of them are formally
defined to enable automatic analysis and behavior verification. ProCos [106] pro-
vides a similar language but uses process algebra for the system model.

UML for Embedded Systems – UML can be used at different levels of the
development process, especially for requirements modeling and functional de-
sign [107]. The high-level models of the system specify the requirements for
behavior, domain structure, and QoS properties. The advantage of UML is its
capability of modeling both system structure and behavior, specifically the struc-
ture of the problem domain and the interaction and collaboration between dif-
ferent agents in the system.

The profile mechanism in UML allows to define families of languages targe-
ted to specific domains and levels of abstractions. For example, [108] presents a
UML profile for a platform-based approach to embedded software development
using stereotypes to represent platform services and resources that can be as-
sembled together. Standardization activities under OMG include SysML [109]
and MARTE [110], a new UML profile for modeling and analysis of Embedded
Real-time Systems, in addition to the existing UML profile for Schedulability,
Performance and Time [111]. UML currently supports the specification of timing
and performance requirements, and could be extended to support also other QoS
requirements such as for power consumption and cost.

Several embedded systems require more than one model of computation to
reflect the nature of the application domain, whereas UML supports only event-
based models. Therefore, several proposals have been made to extend UML: [112]
introduces support for continuous-time by using stereotypes to represent conti-
nuous variables, time, and derivatives; [113] extends UML with a programming
language for hybrid systems; and D-UML [114] introduces a dataflow mechanism
(distinguishing between signal ports and data ports) coupled with mathematical
equations in UML/Realtime.

SysML [109] customizes and re-uses a sub-set of UML concepts for systems
engineering applications. It tries to be a cross-domain solution for modeling
entire systems, without making domain-specific description languages obsolete.
The SysML “block”, which abstracts the software details in UML classes, is a
significant extension in the direction of modeling complex ERS, where software
is just one aspect besides electronics, mechanics, etc. Blocks can be used to de-
compose the system into individual parts, with dedicated ports for accessing
their internals. SysML also adds requirements modeling as a key aspect of the
system development process. It provides requirements diagrams, tree structures,
or tables, which not only support the documenting requirements process, but
also provide traceability to requirements throughout the design flow, ensuring
that requirements are satisfied. SysML groups behavior, structure, analysis, and
requirements in a single, integrated system model. It also supports extensions for

172 I. Krüger et al.

guarding the information flow and the entities of the system. SysML is an impro-
vement over UML in that it allows to articulate requirements concerns relevant
at the system engineering level, including function networks, and requirements
allocation to subsystems. However, both UML and SysML lack the binding to
a concrete system model that enables formal analysis of requirements and their
associated models. Also, there is still too little support for a seamless transition
between requirements development and other development activities.

7.2.2 Programming Models

The observable behavior of the ERS is greatly influenced by the underlying pro-
gramming model used for their construction, which plays a significant role in en-
gineering the system requirements. High-level requirements are decomposed into
requirements for individual software components according to the constraints
supported by the programming model. For example, the requirement that a ve-
hicle must stop within a given time frame since the driver pressed the brakes may
translate into deadline requirements for several tasks and messages. Hence, the
interaction between the ERS and its environment is governed by two different
views over the notion of time: the stakeholders provide requirements in terms of
environment time, whereas the system is implemented in terms of software time.
The environment time represents the continuous time flow observable from the
external environment of the ERS (i.e., wall-clock time). On the other hand, the
software time is a discrete time flow of the ERS itself measured by the number of
occurrences of some events such as the pulses of the CPU clock. [115] identifies
three real-time programming models: synchronous, scheduled, and timed model.

The Synchronous model assumes that the ERS performs all computation and
communication instantaneously [83, 116], and can always keep pace with the
environment. This assumption imposes great constraints on the system require-
ments as an infinitely fast computer is not achievable in practice. Hence, verifying
the ERS model through simulation may fail to show that, in practice, the res-
ponse time of the implemented ERS may still be far from “atomic” and present
output jitter.

Depending on the functional requirements of the ERS, existing synchronous
languages can be classified under two categories: control-flow and data-flow orien-
ted. The control-flow oriented languages are also imperative languages and are
adequate for control-intensive applications such as communication controllers,
real-time process control. Esterel [83, 116] has high-level, modular constructs
that lead to a real structure of reactive programs based on the semantics of the
finite-state Mealy machine. Statecharts [101] has a graphical formalism and it
is not fully synchronous. Argos [117] simplifies the formalism of Statecharts and
provides full synchrony. The data-flow oriented languages (also known as decla-
rative languages) are appropriate for data-intensive applications such as digital
signal processing and steady stream process-control applications. Lustre [118]
is a declarative language that supports only the data-flow systems that can be
implemented as bounded automata-like programs.

Requirements Modeling for Embedded Realtime Systems 173

The synchronous approach is used in modeling tools such as Scade [119, 120],
which supports the development of real-time controllers on non-distributed plat-
forms or distributed platforms like the Timed-Triggered Architecture [121]. The
Scade suite supports the design of continuous dataflows (based on Lustre) with
discrete parts realized by a state-machine editor (based on Esterel). The com-
putational models are compatible by transforming values and signals [119]. The
Scade Suite is used by Airbus for the development of the critical software em-
bedded in several aircrafts.

The Scheduled model relies on the classical scheduling theory for real-time
programming. Functional requirements can be easily accommodated as the ERS
may be implemented using sequential languages (e.g., C/C++), or a parallel pro-
gramming language (e.g., Ada, Occam, CSP, RT-Java). Sequential languages lack
concurrency and require a real-time operating system (RTOS) for inter-program
communication and synchronization. Parallel languages support concurrency and
communication as first-class concepts and typically have specialized run-time
support systems. In this model, the software time is no longer an abstract no-
tion equal to zero, but an unpredictable run-time variable influenced by the CPU
speed, scheduler, utilization level, etc. Hence, schedulability analysis is necessary
to guarantee that all computations complete in the allocated time.

There exist several UML compliant modeling tools that support code gene-
ration to C/C++, Java, Ada, different RTOS, and CORBA. UML provides a
modeling framework for architecture description and behavior descriptions, but
it is still work in progress to properly include real-time aspects in UML 2.0. The
first step was made with the UML Profile for Schedulability, Performance, and
Time [111]. Predictability analyses include the control flow analysis for sequence
diagrams.

The Timed Model abstracts from ERS platform and the software time is
always equal with the environment time, such that all computations and com-
munication activities take a fixed logical amount of time, assuming that there
is enough soft time to perform the computation under the real-time constraints
imposed by the environment. The compiler of the specification language has to
verify the time-safety of the computation and guarantee that there is enough
software time to complete the computation before its deadline.

There are just a few examples of languages supporting this model, most of
them based on the Logical Execution Time abstraction introduced by Giotto
[122] – a task has a release time when it reads the inputs, and a terminate time
when it provides the outputs to the environment. Within this time-span, the
way the task executes on the target platform is irrelevant for the environment.
Giotto is a high-level time-triggered language, which decouples the timing and
functionality aspects, and abstracts from the execution platform. As a meta-
language, it describes the intended temporal behavior of a system and expects its
functionality as being externally implemented in a general-purpose programming
language such as C, Oberon, or Java. XGiotto [123] extends Giotto to support
event-driven programming, while preserving the benefits of the timed-model with
fixed response-time.

174 I. Krüger et al.

The Timing Definition Language (TDL) [124, 125] adds component support
and abstracts from the distributed platforms. It provides a complete tool-chain
fully integrated in the Matlab/Simulink suite. The developer can model the
functional aspects of the ERS in Simulink and the timing aspects in the in-
tegrated TDL visual editor. The ERS can then be verified through simula-
tion, which based on the timed model provides an accurate representation of
the ERS behavior. The TDL compiler is extensible through plug-ins such as
the bus schedule generator that enables automatic scheduling [126, 127] of the
communication in a distributed system. Hence, components can be developed
independently regardless of their distribution – this is the so-called transparent
distribution [128] feature of the language that preserves the time and value de-
terminism of the application regardless of how its components are deployed in a
distributed solution.

7.3 Requirements Engineering Approaches: Processes
and Practices

In the preceding two sections we have established why requirements engineering
for ERS is inherently difficult, and have surveyed some of the techniques and
tools available in the literature to address this difficulty from various angles.
From this overview it becomes clear that much progress has been made and
many research challenges remain in this important field. In particular, there is
“no silver bullet” in sight, nor is there one to be expected. Requirements enginee-
ring demands a holistic view on the problem at hand to address the challenges
we have brought forward in Section 7.1. In this section, we recall a few of the
practices that have emerged in collecting requirements for ERS, with an eye on
opportunities for building precise models that can be used throughout the deve-
lopment process. We do not attempt to give complete account of requirements
engineering; we refer the reader to [129] for a comprehensive review. Instead, our
aim is to draw attention to a few practices that, based on our experience, are
particularly valuable for ERS projects.

7.3.1 Requirements Development and Management

It is important to recall that ERS are embedded into a container product; conse-
quently, the requirements engineering process for ERS is embedded into and has
to interact with the overall systems engineering process for the container pro-
duct. This places constraints at the timelines in which requirements engineering
for the ERS can occur, determines when requirements artifacts must be delive-
red into the overall process, and often provides a significant amount of context
requirements for the interaction between the ERS and the rest of the system.

Even when not articulated explicitly, requirements play a central role throu-
ghout the development process of ERS. Following [129] we distinguish between
requirements development and requirements management. Requirements deve-
lopment refers to all activities that lead to establishing a requirements baseline

Requirements Modeling for Embedded Realtime Systems 175

agreed-upon by the project’s stakeholders. The baseline describes, as tightly as
possible, the original understanding of all project participants about what the
system to be built is. The requirements management process then starts from
the baseline, and includes all activities required to respond to changes to that
baseline. Its major activities include [129]:

– Define a change control process, including a Change Control Board (CCB)
– Maintain change request history
– Assess impact of change requests, and requirements volatility analysis
– Update of requirements baseline per CCB-decisions
– Establish versioning and change management tools

Explicit requirements management has the advantage that phenomena such as
requirements creep (more or less sublime addition of requirements without allo-
cation of new resources for their analysis and implementation) and requirements
thrashing (a constant barrage of more or less meaningful change requests) be-
come more transparent to all stakeholders, and can thus be addressed at the
management level.

The distinction between development and management is important, because
it draws explicit attention to the fact that requirements change needs to be
explicitly managed throughout the development process.

Note that the core activities involved in requirements development are inde-
pendent of the type of development process chosen. Any development process,
be it plan-driven or agile [130], needs to find out what the system to be built
is. The only difference is the value the respective process types place on formal
documentation of the requirements, and how frequently the change process is
triggered and executed.

A vast set of techniques has been developed and promoted to develop the
requirements baseline. [129] identifies elicitation, analysis, specification, and va-
lidation as the core requirements development activities. Elicitation refers to
activities that produce requirements from domain analysis and stakeholder in-
teractions. Analysis refers to the elaboration, refinement and structuring of the
requirements previously elicited with an eye towards building high-level design
models that establish context for the requirements; this, again, occurs with stake-
holder involvement. Specification refers to the prioritization and documentation
of the analyzed requirements for transition to establish the requirements base-
line. Validation refers to the inspection and testing of the specified requirements
before they enter the baseline.

In practice, of course, requirements development is a highly interactive, itera-
tive process, in which elicitation, analysis, specification and validation interleave.
Depending on the overall systems engineering process of the product into which
the ERS is embedded, these activities also interleave with and are informed by
the activities of the overall systems engineering process.

In Section 7.1 we have seen that many requirements aspects for ERS are
cross-cutting in the sense that they affect not only one component of the resul-
ting system, but relate to an entire network of components. Note that this is
not primarily a result of unnecessarily distributed architecture design (although

176 I. Krüger et al.

this can be a cause as well.) Instead, this phenomenon arises from the inherent
complexity of multi-functional systems, where hundreds to multiple thousands
of software functions need to be offered and harnessed into a system of systems.
Any decomposition of these functions into components will lead to some form
of cross-cutting. Failure management is a prime example: no matter how the
set of functions is sliced into logical or physical components, failures cannot be
effectively managed from within these individual components – communication
across components needs to occur to communicate failures, or to take remedying
actions.

It is our belief that requirements engineering for ERS necessarily focuses on
the interplay of the entities that make up the system, and the associated cross-
cutting concerns. The rationale behind this is simple: because of the embedded
nature of an ERS there is interaction between the ERS and its environment.
Therefore, these interactions need to be understood to the maximum extent
possible. Furthermore, for all but the most trivial systems, the ERS will itself
decompose into a set of interacting components, each of which can be understood
as an embedded component as well. Consequently the same rationale applies for
the development of the ERS as a unit. In a networked system of ERS all quality
properties of the system emerge from the interplay of all constituent ERS. Hence,
the cross-cutting concerns that are crucial to defining the overall system’s quality
are naturally associated with the interplay of the constituent ERS.

Furthermore, we believe that to properly address the requirements aspects
enumerated in Section 7.1, explicit domain models that speak to these concerns
need to be constructed. As we will see in the case study of Section 7.4, creating
such explicit domain models enables formal end-to-end analysis at the system of
systems integration level – as opposed to the component-by-component level.

Therefore, we see the key activities in the requirements development process
to bring out a sufficiently detailed domain model for ERS as follows:

(1) Identify the stakeholder group for the ERS under consideration.
(2) Identify pertinent business and process constraints for the ERS per stake-

holder class.
(3) Identify the set of functions expected of the ERS by the stakeholder group.
(4) Identify the internal and external actors and data entities involved in these

functions.
(5) Identify the interactions (event-, message-, control-, and data-flows) among

the identified actors.
(6) Iterate over the identified functions to identify the actors and data entities

needed to address the relevant cross-cutting concerns. Associate these with
the interaction model built in activity 5.

(7) Identify operational infrastructure constraints, including mandated deploy-
ment contexts.

(8) Document requirements relative to the resulting models of structure and
behavior.

(9) Validate requirements based on the resulting models.

Requirements Modeling for Embedded Realtime Systems 177

Clearly, each of these activities breaks down into a variety of sub-activities and
associated techniques; here, we focus on a high-level overview of these activities.

Activity 1 is critically important as per the definition of the term requirement
we have given in Section 7.1. Recall that requirements are intimately linked to
stakeholder values and, therefore, the set of stakeholders whose values the system
is to address needs to be fully understood and modeled explicitly, sometimes via
proxy elements, such as sensors.

Activity 2 serves to bring forward requirements aspects that are often neglec-
ted initially, and later turn out to be major success factors. This includes an
articulation of the cost model that underlies the development process for the
ERS and its container system. This is particularly important, at the integration
level if the ERS is part of a system of systems. Similarly, this is the place to
identify process requirements and laws or other regulations that govern the de-
velopment of the ERS and its container system. This can influence the resulting
domain models by creating data entities, actors or cross-cutting concerns that
need to be further analyzed for functional and quality requirements.

Activity 3 is facilitated by a wide variety of techniques, such as use case [131]
or user story analysis, stakeholder focus groups, flow analysis (event-, message-,
control-, or workflow). For ERS we find it particularly useful to hold focused
stakeholder workshops, within and across stakeholder groups to bring out not
only per-component, but also across-component requirements. This is particu-
larly critical for end-to-end and cross-cutting requirements aspects such as ti-
ming (specifically deadlines or time-budgets), failure modes and management,
security, policy/governance, and deployment, update, and maintenance require-
ments. In these workshops we typically execute steps 4 through 9 together with
the workshop participants to create initial domain model candidates on the spot.

Activities 4 through 7 amount to developing an ontology [132] and behavio-
ral model of the core concepts that make up the domain model for the system
under consideration. For an ERS this necessarily includes a model of the envi-
ronment into which the ERS is placed. For the structural aspects of this domain
model we favor class diagrams capturing the actor and data classes and their
structural relationships. For the associated interaction model, we favor Message
Sequence Charts (MSCs) and related interaction specification dialects such as
Life Sequence Charts (LSC) [133], which can be augmented with constraints that
reflect the cross-cutting concerns (see examples in Section 7.4).

A key observation is that the domain model should provide explicit hooks to
associate the cross-cutting concerns with the interactions identified for the do-
main entities. This ensures (a) that the cross-cutting concerns are in the purview
of the project team from the earliest stages as end-to-end aspects, rather than
becoming an integration-afterthought, and (b) makes the cross-cutting concerns
available for explicit validation and verification, rather than being an implicit,
inaccessible aspect of the requirements model.

All entities mentioned in a textual description of a requirement should occur
in the resulting model, and for each modeling entity there should be at least one
requirement to which they are related.

178 I. Krüger et al.

The domain model is of such paramount importance, because we can derive
a variety of other models from it, and use all models together for validation and
verification. Derivative models include, for instance, a context-diagram, which
shows the system entities outside the ERS under development, and what the
structural and behavioral relationships between the two are. Furthermore, a use-
ful domain model will capture the operational modes (high-level state transition
view), major exceptions and failure modes, and the input/ouput protocols requi-
red at the interface of the ERS and its environment. It is central to the success
of this exercise that it results in a model that captures the entities and rela-
tionships relevant to the problem domain and its associated stakeholder groups.
This greatly facilitates validation and verification, as well as the derivation of
design and implementation.

Of course, this modeling effort depends on a deep (and deepening) understan-
ding of the problem domain. In recent years, there have been important attempts
to help in building this understanding by providing catalogs of requirements pat-
terns both ERS-specific, and domain-neutral. For instance, [134] have identified
a catalog of ten requirements patterns that address the following concerns:

– Controller Decompose Pattern: decomposition of an ERS into subsystems
according to responsibilities

– Actuator-Sensor Pattern: relationships among sensors, actuators, computa-
tional components and associated (environment) models

– Examiner Pattern: device monitoring and error logging
– Fault Handler Pattern: core entities and models for handling faults in ERS
– Mask Pattern: resource mediation for devices with many sensors and actua-

tors
– Moderator Pattern: decoupling
– User Interface Pattern: reusability and flexibility for user interfaces associa-

ted with ERS
– Channel Pattern: communication facilitation among components
– Monitor-Actuator Pattern: fault management for actuators

Each of these patterns, among others, comes equipped with an explanation of
the intent, motivations, constraints, applicability, entities and their structural
and behavioral relationships.

Similarly, [135] presents a set of performance-related requirements patterns
that are relevant for ERS. This includes patterns for response time, throughput,
static and dynamic capacity (memory, computational power), and availability.

Besides these ERS-relevant requirements patterns, [135] also brings forward
a rich set of more generic templates. These cover technology choices, standards
compliance, inter-system interfaces, data typing and archiving, reporting, flexi-
bility, and access control.

We call out activity 6 explicitly, because it is key to obtaining comprehen-
sive requirements models for ERS. For each identified function of the ERS, the
requirements pertaining to all quality properties [129] (availability, efficiency,
flexibility, integrity, interoperability, reliability, robustness, usability, maintaina-
bility, portability, reusability, testability, security, safety, deployment, update,

Requirements Modeling for Embedded Realtime Systems 179

maintenance) should be iterated over to derive specific requirements that per-
tain to these qualities. Again, all of these qualities are cross-cutting in nature,
and intimately linked to interactions among the identified system entities, or to
the container system. Many of these qualities can thus be addressed at the
integration- rather than the per-component-level. Automotive manufacturers
and suppliers, for instance, have recognized this and are working together to
provide a car-wide “middleware” that addresses some of these qualities across
the components of the vehicular ERS networks.

Activity 7 serves to identify requirements that derive from the technical
context of the ERS. Often, the technical infrastructure into which an ERS has
to integrate is fixed long before the ERS proper is conceived. Then, this tech-
nical infrastructure injects deployment constraints into the ERS requirements
set. In a clean-slate development, of course, one would seek to avoid this, or at
least design the technical infrastructure after the integration requirements are
sufficiently understood. In reality, however, legacy technical infrastructures exist
and have to be considered. This interrelates with activity 6, of course, because
some of the cross-cutting concerns may be discharged by the technical infra-
structure if the latter is functionally rich enough. In any case, the capabilities
of this infrastructure need to be carefully examined so as to know which of the
cross-cutting concerns need to be lifted explicitly into the requirements model,
and which ones are readily dealt with in the infrastructure.

Activity 8 refers to articulating the gathered requirements and their associated
domain models in the form chosen by the project or mandated by a process
requirement. For ERS this typically involves writing a requirements document
that defines the scope, stakeholders, context, and all business, product, and
process requirements elicited as part of the previous process activities. Discussion
of an elaborate requirements document outline is beyond the scope of this text;
we refer the reader to [129] for an example. However, we note that the material
gathered in the previous activities typically provides a rich and authoritative
source for this documentation activity.

Activity 9 can build on the models created in the preceding activities. The
typical methods practiced for validation today are inspection, prototyping and
simulation, automated consistency checking and verification. Each of these is fa-
cilitated greatly by detailed requirements models, as well as by broad stakeholder
participation.

In reality, of course, all these activities will occur in an iterative, often inter-
leaved fashion, rather than being executed in a prescribed sequence. The product
of executing these activities, however, is a comprehensive requirements model for
the ERS under development.

7.4 Example: Failure Management in Automotive
Software

In the automotive domain, software has become the enabling technology for
almost all safety-critical and comfort functions offered to the customer. The

180 I. Krüger et al.

features supported by automotive software and electronics are increasingly
dependent on the interactions of distinct components designed by different sup-
pliers. Because of the increasing level of interaction between different compo-
nents, industry standards, including OSGi [136] and AMI-C [137], introduce
service based software-architectures and corresponding middleware layers as mo-
deling and deployment abstractions. This marks a significant shift from
component- to service-oriented software development in the automotive domain.

A major technological advantage of a service-based vehicle-electronics soft-
ware architecture over a traditional component-based one is the ability to move
the hardware-module-oriented partitioning of the vehicle system to a later point
in the design cycle, allowing greater flexibility in integrating functions into hard-
ware and potential elimination of redundant hardware across the vehicle. To
exploit this advantage it is desirable to be able to model the vehicular soft-
ware architecture on multiple levels, from static models of software structure to
executable, time-accurate models of the actual system. This, in turn requires
specifications for services that are sufficiently formal to allow tools to be built
that check the integrated architecture for consistency and completeness, and to
allow modeling tools to use the service-oriented specifications directly.

In the following, we illustrate the applicability of a service-oriented approach
to model parts of the Central Locking System (CLS) found in typical modern
cars. The CLS in the described form acts as a representative for similar problems
in automotive control electronics and distributed, reactive systems in other ap-
plication domains. We present aspects of requirements modeling, deriving a cor-
responding architecture, and performing safety-checking on the system model.

7.4.1 Central Locking System (CLS)

In modern cars, even a simple function such as locking the vehicle, i.e. central
locking system (CLS), interacts with a significant number of other functions.
There are not only interactions with the obvious modules, such as those control-
ling the individual door locks, but with less obvious systems as well, such as
the vehicle speed sensor (to implement lock on drive away), the exterior lights
(for remote lock acknowledgment) and the radio tuner and seat controllers (for
setting driver preferences on unlock). The various interacting features in such a
system are distributed across a number of different component modules, which
are typically produced by different suppliers. As interactions between different
subsystems increase, the features themselves become distributed across a num-
ber of components. This leads to increasing integration issues as features come
to be implemented by software produced independently by a number of different
suppliers.

Although we are considering a simplified version of the CLS for our study, it is
evident that, given the size and distributed nature of the system, it is practically
impossible to describe all the behaviors of all components involved completely.
Instead, we only have a partial view on the requirements of the overall system.

Requirements Modeling for Embedded Realtime Systems 181

7.4.2 Modeling the CLS Requirements

In the previous sections of this chapter, we have suggested a process for eli-
citing and managing requirements in 9 points. In this section, we present this
approach using the CLS example. We demonstrate the use of a Service ADL to
capture both the CLS system architecture and a set of dependability require-
ments along with formal verification techniques to verify the implementation of
the dependability requirements.

1. Stakeholders Identification represents the first step of our requirement ma-
nagement process and prescribes the identification of the stakeholders for the
system under consideration. In our case, the groups interested in the systems
are obviously “the driver and passengers” of the car that will use the given
CLS. Other groups come from the car development team, for example, the “en-
gineering team” that designs the electro mechanical actuators for locking and
unlocking the car. Each supplier is also a stakeholder that will have to agree
on the final integrated design and can impose constraints to other parts of the
system. In addition, marketing, cost, safety and legal considerations have great
influence in establishing requirements for the vehicle.

2. Business and process constraints per stakeholder is the second step, which
mandates to identify for each stakeholder the pertinent class of business or pro-
cess constraints. In this case, we can analyze the concerns of the “safety and
regulations” stakeholder and identify some critical requirements. One of such
requirements is that “all the doors of a car shall be unlocked after an accident”.

This type of regulation is not detailed enough to be a requirement directly.
We first need to have a proper model of the car system and of the CLS to be
able to articulate it further.

3. Identify functions expected by stakeholder – to support the previously stated
rule, the “safety and regulations” stakeholder assumes that there exists in the
system a function to detect an accident and a function to unlock all doors. It
is important to notice that there will also be a timing constraint on the time
interval between the accident and the unlocking of the car. For example, we can
assume that requirement (1) is “the system shall unlock all doors of the car
within half a second from the detection of an accident”. The problem with such
definition is that we need to define how an accident is detected and how reliably.
Moreover, during an accident there could be failures in the system, which limit
the functionality of the unlocking mechanism. This requirement could then be
complemented by requirement (2) stating that “even if one electronic control
unit of the car completely fails in an accident requirement 1 must be fulfilled”.

4. Identify actors and data for the functions is the fourth step, where we ana-
lyze the requirements and functions identified so far, which leads to a number
of use cases and actors. We identify the actors that participate in the services
of the system under development, abstract from the concrete system elements
and identify the communication roles. These roles will likely map to a variety
of different component configurations depending on the concrete make and mo-
del under consideration. For instance, in a concrete implementation, the central
controller (Control) and the lock management (LM) might end up on the same

182 I. Krüger et al.

Fig. 7.1. Components and relationships in the CLS example

ECU, whereas the database (DB) and the lighting system (LS) might reside on
others. Figure 7.1 depicts a simple configuration with each role being implemen-
ted by a system component. We indicate components using labeled boxes, and
directed communication channels between them using labeled arrows. In a real
car, most of these entities would be implemented on different ECUs (KF being
a likely exception).

5. Identify interactions among actors – the starting point for this step is
analyzing the set of relevant “use cases”. In our case, we use message sequence
charts to capture the identified use cases. Some of the use cases for the CLS are:
locking, unlocking, lock doors, unlock doors, transfer key ID, and handle crash.
For reasons of brevity, we consider only a subset of these services here; we refer
the reader to [138] for details.

transfer key ID is part of the unlocking process and associates seat and mirror
positions, as well as tuner settings with the driver’s key. handle crash is a cross-
cutting service that can interrupt all others, it captures the functionality that
whenever a crash signal occurs the CLS has to unlock all doors.

While both the unlocking of the car and the transfer of a key ID are triggered
by the user pressing a key on the key fob, we consider these two use cases
separately because there exist keys that can unlock the car (mechanically, for
instance) but do not transmit key identifiers. Therefore, separating use cases and
corresponding requirements enable more modularity and reuse across different
models of cars.

To capture the interaction patterns defining services we use an extended ver-
sion of Message Sequence Charts (MSC) [139, 140]. MSCs have proved useful
as a graphical representation of key interaction protocols, originally in the tele-
communications domain. They also form the basis for interaction models in the
most recent rendition of the UML [141]. In our extended MSC notation, each
MSC consists of a set of axes, each labeled with the name of a role (instead of a
class or component name). Roles map to components in a later design step of the
development process. An axis represents a certain segment of the behavior dis-
played by the component implementing the corresponding role. Arrows in MSCs
denote communication. An arrow starts at the axis of the sender; the axis at
which the head of the arrow ends designates the recipient. Intuitively, the order
in which the arrows occur (from top to bottom) within an MSC defines possible
sequences of interactions among the depicted roles. We also use labeled boxes in

Requirements Modeling for Embedded Realtime Systems 183

Fig. 7.2. MSC for “unlocking”

our MSCs to indicate alternatives and unbounded repetitions. High-level MSCs
(HMSCs) indicate sequences of, alternatives between and repetitions of services
in two-dimensional graphs - the nodes of the graph are references to MSCs,
to be substituted by their respective interaction specifications. HMSCs can be
translated into basic MSCs without loss of information [140].

Figure 7.2 shows an example; here we depict the interactions defining the
“unlocking” service. It consists of a triggering message “unlck” from the key fob
to the central controller. The latter forwards the “unlck” message to the lock
management (LM). By introducing the LM role we abstract from the concrete
number of locks present in the vehicle (doors front/back, trunk, moonroof, win-
dows, security system, etc.). When the locks have been operated, LM returns
an “ok” message to the control role. Upon its receipt, the control role issues a
“door unlckd sig” message to the lighting system role, which handles the signa-
ling of the locks’ states to the driver. Clearly, this is just one course of actions
that may happen during the execution of the unlocking service. The extended
MSC dialect we use enables succinct specification of such alternatives [140, 142].

The next use case we turn into a service is “transfer key ID”. Upon receipt
of an unlck message the control role sends a getID message to the key fob; KF
sends the id to Control, which relays it to the DB (see Figure 7.3). Again, Control
switches from state LCKD to UNLD in the course of executing the service. The
preceding two services are overlapping in the sense that both share references to
the unlck message and states LCKD/UNLD. To compose these services into an
overall service specification we have to identify the overlapping messages, and
“synchronize” the execution of the services on these joint messages.

6. Identify elements to address cross-cutting concerns – along the main func-
tional requirements for CLS we have also identified a cross-cutting requirement.
In case of an accident, all doors need to be unlocked immediately. This concern
comes from safety regulations that cars need to fulfill. Even if this concern is
not part of the normal functions performed by CLS, it imposes a new behavior
that interacts with the normal locking and unlocking behavior previously defi-
ned. Therefore, we need to identify structural elements and messages that are
affected by this behavior. Moreover, we need to identify when the new behavior
appears.

The handle crash service has a particularly simple interaction pattern (see Fi-
gure 7.4): whenever the control role receives an “impact” message it responds by
sending “unlck” to the lock management role, resulting in the unlocking of the

184 I. Krüger et al.

Fig. 7.3. MSC for “transfer key id” Fig. 7.4. MSC for “handle crash”

vehicle. Methodologically this can also be handled by introducing a “preemp-
tion” concept that treats the response of the control role as the handling of a
preemption triggered by the “impact” message.

7. Identify operational constraints – the ERS domain is characterized by tight
timing constraints that can originate from several requirements. In our case
study, we can consider, for example, the time constraints implied by the emer-
gency unlocking requirement. We can capture such information in our service
models using a modified MSC syntax.

Figure 7.5 shows the unlock function. The graphical syntax we use is derived
from MSCs as described in [140, 142]. Upon receipt of the unlck message from
KF, Control issues an unlck message to LM. Once LM acknowledges this with
an ok message, Control requests signaling of the unlocking from LM by means
of a door unld sig message, then returns ok to the keyfob.

The MSCs of Figure 7.5 is augmented with interaction deadlines, indicated
by means of a labeled dashed line. The unlock function has a deadline of 150 ms.
This means that the vehicle must be unlocked and the signaling must have
occurred within 150 ms according to the interaction specification.

The deadlines we introduced in the MSC represent additional constraint that
enable capturing QoS requirements directly in the service models.

8. Document requirements relative to the models – in our requirement elicita-
tion process we also develop deployment models with at least a partial view of

Fig. 7.5. A version of the unlock MSC with a QoS requirement added

Requirements Modeling for Embedded Realtime Systems 185

the deployment environment. In our case study, such model is useful to identify
possible failing components and ensure that the critical requirement of emer-
gency unlocking all doors is fulfilled even when some component fails.

In our case study, we create a component model defining the ECUs that
will run the CLS and the communication networks used to deliver messages to
them. The behavior of each component is defined by assigning it one or more
of the roles identified in our service models. This step of mapping the logical
services to a concrete deployment model, makes the outcome highly specialized
to the vehicle under design. On the other hand, the same functionality is often
needed across vehicle platforms; this is certainly true for the CLS, which today
is a standard feature across manufacturers and product lines. Therefore, the
mapping process has to be repeated again to yield another specialized solution
for each target platform. Because the requirements are clearly separated and we
distinguish between one logical model and a deployment model, only the part
of the work that deals directly with the deployment model has to be repeated
while developing different car models.

The outcome of a traditional process would be eight separate component
specifications; each individual component specification is complete in the sense
that it has to address all the different functions the component in question might
be involved in. In particular, the crosscutting nature of the functionality is lost
when we look at each individual component; this results in the mentioned labor-
and cost-intensive integration effort in late development stages.

We can obtain a trivial deployment domain model from the role domain mo-
del by removing the distinction between components and roles; then, each com-
ponent implements precisely one role. In this state of affairs, the role domain
model and the deployment domain model coincide. Another extreme case is to
map all roles to a single component; this again is a trivial affair, because we
simply need to treat the role domain model as a specification for the “internals”
(the substructure) of one encompassing component. The most interesting and
methodologically challenging case arises when we map multiple roles onto the
same deployment component. All other cases (such as mapping a single role onto
multiple components) can be dealt with by refactoring / refining the role do-
main model first, and then establishing the mapping to the deployment domain
model.

In our case study, we choose to have six ECUs where we map the roles iden-
tified in our process. Figure 7.6 shows the corresponding deployment domain
model. Our ADL enable us to specify communication busses (the big CAN BUS
block in the middle of the figure), and electronic control unit connected to com-
munication media (the six ECU blocks). An ECU can perform more than one
role. For example in Figure 7.6 ECU1 plays the role of Control and DB, and
ECU2 plays the role of UI and Tuner. On the other hand, the same role can be
played by more than on ECU. This is the case of the CS role played both by
ECU5 and ECU6. The reasons to replicate a role can be multiple. In the case of
CS (the crash sensor role), the replication enables the detection of a crash even
if one of the sensors fails.

186 I. Krüger et al.

Fig. 7.6. CLS Deployment Architecture

If we work with strictly hierarchical component models such as the ones of
UML2, UML-RT, or AutoFocus [143], one way to establish the mapping of mul-
tiple roles onto a single component is to take the role domain model as a staring
point, and to replace the roles in question by a single component having the
same input and output channels as the replaced roles taken together. Then,
the entire network of replaced roles with their supporting channels becomes the
hierarchical “child” of the freshly introduced component. This process can be
repeated recursively into all hierarchically decomposed composites, until all role
labels have been turned into component labels.

9. Validate requirements – failure management is particularly effective if it
is performed throughout the development process[144] – rather than, as often
happens, as an afterthought. For this reason, we raise awareness of failures al-
ready from the very early phases of the software and systems engineering pro-
cess, during the requirements gathering phase. To this end, we have created a
comprehensive taxonomy for failures and failure management entities. Failure
taxonomy is a domain specific concept [144]. Our model-based failure manage-
ment approach [145], leverages the interaction descriptions captured by services
to identify, at run time, deviations from the specified behavior.

We enrich our standard service-oriented methodology with special services to
manage failures. Hence, a key mechanism for dealing with failures is to define
and decouple Unmanaged and Managed Services (see Figure 7.7). The Unma-
naged Services are responsible for providing the required functionalities without
considering failures, whereas the Managed Services enable the detection of fai-
lures and the implementation of mitigation strategies that avoid, or recover from,
failures.

We also employ two special types of Services: Detectors and Mitigators (si-
milar to the detector/corrector approach [146]). A Detector can detect the oc-
currence of a Failure based on its Effect (see Figure 7.9. This relation binds the
Detector to the observable results of failures. Therefore, it is important to define
what type of Effects a failure can have, and then to create appropriate Detectors.

The Detector detects the possible occurrence of a failure based on a Detec-
tion Strategy. One possible Detection Strategy is based on Interactions. In this
case, a Detector compares the communication patterns captured in the service

Requirements Modeling for Embedded Realtime Systems 187

Fig. 7.7. Models of services

specification with the ones of the running system; then, it applies a mitiga-
tion strategy when behaviors don’t match the specification. Mitigators are ser-
vices that modify the interaction pattern of the system to recover from failure
conditions.

Managed Services are a type of Services and, therefore, they can also be a
component of a Composite Service. In particular, it is possible to have Managed
Services that are composed of other Managed Services. Each one of them will
have a Detector and a Mitigator that will address failures at its level. Using
this schema, by hierarchically composing simpler services in more complex ones,
and by adding Detectors and Mitigators to the various component services, it is
possible to achieve a fine level of granularity in managing failures.

Each Detector is associated with a corresponding Mitigator. Upon detection
of a failure, the Detector activates the corresponding Mitigator responsible for
managing that specific failure. A Mitigator is another specific Service that is
responsible for resolving the faulty state in order to maintain the safety of the
system. A Mitigator applies its corresponding Mitigation Strategy to resolve
the faulty state. Following the strategy pattern, decoupling the definition of the
mitigation strategy from the entity that applies it provides flexibility to the
model by allowing future changes to the strategy that is applicable to a specific
failure without the need to make any additional modifications to other elements
in the system.

This model allows us to compose a predefined Unmanaged Service with a
Detector and its associated Mitigator in order to add failure management to it,
thus, creating a Composite Managed Service. If multiple failures are supported
for one Service, it will be wrapped in multiple layers of Detectors and Mitigators.
This capability provides a seamless means to manage the failures that are found
in further iterations of the design/development process, without redefining the
existing Services. Figure 7.8 shows an example of a managed service for our case

188 I. Krüger et al.

Fig. 7.8. Managed impact service

study. In the ADL fragment depicted in this figure, the detector identified if
the impact service takes more than 500ms to acknowledge the unlocking of the
doors after an impact, and in this case, it executes a mitigation service where
an additional mitigation role (role M) repeats the unlck command.

An ontology guides the identification of failures and the activation of addi-
tional services that mitigate the effects of failures. We enrich the logical and
deployment models typical of any MDA with a failure hypothesis that captures
what physical and logical entities can fail in a system. It also provides a for-
mal basis to reason about system correctness in presence of failures. Figure 7.9
shows the extended failure taxonomy using UML2 class diagram notation[147].
It captures the relationships between failures and our means for detecting and
managing them. The central entity of this taxonomy is a Failure. A Failure has
one or more Causes and one or more Effects. A failure Cause is very dependent
on the application domain and could be due to either a software problem, i.e.,
Software Failure, or a hardware problem, i.e., Hardware Failure.

When a failure is detected, the system needs to mitigate it. This is done by
following certain Mitigation Strategies. The Mitigation Strategy we must apply
to deal with failures depends both on the associated Effects and their Causes.
We identify two main strategies: Runtime Strategy and Architectural Strategy.
Depending on the application domain, when a duplicated message is detected at
runtime, Ignore Message can be a feasible Runtime Mitigation Strategy. Simi-
larly, when a message loss is detected, Resend Message is a candidate Runtime
Mitigation Strategy if properly supported by the interaction protocol between
the exchanging parties. Replicate Component and Failsafe Mode are typical Ar-
chitectural Strategies.

Following the outlined approach, we have lifted the management of failures
to the logical architecture and started dealing with them from the early stages

Requirements Modeling for Embedded Realtime Systems 189

Fig. 7.9. Failure ontology

of the development process within the requirement elicitation phase. Once we
have formal models of the services and a deployment architecture, along with
a failure hypothesis, we can use a set of tools we developed to verify that the
proposed software architecture indeed fulfills the given requirements.

The first step is to obtain an executable model form the services captured by
our ADL – in [140] an algorithm to obtain state machines from MSC models
is discussed. We have developed a tool [148] that can parse the service ADL
and leverage the state machine synthesis algorithm to create a Promela [64]
model that can be used to verify the property of a system using the SPIN model
checker [149].

Each service is interpreted as a partial input/output function which defines
the contributions of all participating roles to a communication pattern. The tool
we have implemented uses all MSCs that define the system model to obtain a
total representation of the global behavior of the system. Then it projects all
messages sent or received by one role on a state machine that defines only the
contribution of that role to the interactions of the system. Moreover, to cater
for possible failures, the tool adds a sink state with guarded transitions from
all other states. As result of this process we have one state machine for each
role.

Once the tool has created all state machines for all roles, it can generate the
Promela code. For each ECU in the deployment model and for each role mapped
to them, the Promela code contains a concurrent process. Appropriate channel
variable are used to map the communication channels of the service models to the
proper ECUs. Additionally, a failure injector function, implementing the failure
hypothesis is created in the Promela code. Failures are injected by killing roles

190 I. Krüger et al.

(enabling the transition to the sink state) or disrupting communication channels
(removing messages from channels).

Using our Service ADL for managing failures and our Promela code generator
we have been able to verify the architecture of our CLS case study and ensure
that the chosen architecture supports the safety requirement of unlocking all
doors during an accident.

7.4.3 Discussion

In this example, we have seen that services require composition operators not
generally available in component-oriented development: the concept of overlap-
ping components is not very common. Roles, on the other hand, by definition
capture a partial view on all components playing that role – to be composed
with other partial views to produce the overall behavior of the component un-
der consideration. The composition of the services as elicited above translates
into a service specification. The mapping from a service specification to a set
of components implementing the services in the next phase of the development
process is a design step. This step entails fixing a component architecture, and
an association between the components and the roles they play to support the
given set of services.

In the CLS example, we could decide, for instance, to have just one component
to implement the Control and LM (lock management) roles. This gives rise
to a component-oriented “deployment” architecture. If the target architecture
supports the definition and deployment of individual services, however, we can
encapsulate the interaction protocols contained in each of the extended MSCs
we have presented, and publish those as individually accessible services within
service-oriented software architectures as outlined above.

We can also apply a bottom-up scheme for interaction composition. Dead-
lines can be applied to basic interactions. For instance, we define a deadline for
a single message or a message sequence. For each composition operation, we ap-
ply defined rules that constrain the deadlines of the composite interactions. In
this case, sequential composition leads to the addition of the operands’ deadlines,
loops to a multiplication, parallel, and join composition to the selection of the
minimum deadline. All deadlines can be tightened manually. A less restrictive
composition alternative (in comparison with applying the minimum constraint
for join composition) would be to only consider a newly defined deadline for the
composite. Doing so would allow the modeler to provide a different interpreta-
tion for the more complex composite function – it can be more than the sum of
its parts. However, this may not yield a true refinement of the specification in
the bottom-up sense, because the composite may not fulfill all QoS properties
of the composed interactions anymore. Practical considerations would determine
the concrete composition scheme used. We chose the composition variant that
maintains all properties of basic interactions and allows for methodological refi-
nement. We are aware that this is more restrictive to the modeler and requires
more frequent modifications or refactorings of the specification.

Requirements Modeling for Embedded Realtime Systems 191

In terms of methodology, we can also apply top-down refinement of deadlines,
while still fulfilling all properties of bottom-up composition as described above.
Starting from deadlines for entire functions, we allow the modeler to provide
specific deadlines to parts of the interaction, as long as the overall deadlines are
still satisfiable.

7.5 Summary and Outlook

Requirements engineering for Embedded Real-time Systems (ERS) is a tremen-
dous challenge. In this chapter we (a) have highlighted the key aspects that
render ERS requirements engineering difficult, (b) have discussed prominent ap-
proaches in the literature that tackle portions of these aspects, (c) have presented
key activities that can help in model engineering for ERS across development
processes, and (d) have shown how these activities play together to model and
validate central failure management requirements in an automotive case study.

Clearly, there is no single technique that addresses the entire spectrum of re-
quirements aspects from timing to distribution to failure management to local
and cost drivers. Specifically, because many relevant ERS are, in fact, network-
integrated systems of systems, most quality requirements are, in fact, concerns
that cut across all components of the integrated system. This necessitates a mo-
deling approach with due emphasis on the interactions among the parts to define
the function of the whole system. Such an approach needs to provide models for
interactions, but also for augmenting these interactions with constraints that
address the cross-cutting requirements.

We have sketched the beginnings of such an approach by identifying key re-
quirements elicitation activities for ERS, and how they can be used to produce
structural and behavioral aspects of a corresponding domain model. In speci-
fying the cross-cutting concerns we have identified interaction diagrams, such
as extended UML sequence diagrams or Message Sequence Charts as a useful
tool. The subsequent case study showed how to exploit this extensive domain
modeling approach for the elicitation of domain-specific failure models ranging
from logical to deployment architectures. The failure models capture a broad
range of failures and associated detection and mitigation strategies. For a subset
of these we have shown how to automatically generate [140, 148] verification
models targeting Promela/SPIN to establish (or refute) fail-safety of a given
architecture model. This technique can be utilized in validating requirements
(does the architecture model properly reflect our understanding of fail-safety for
the system under consideration?), or even the verification of proposed candidate
architectures (do they fulfill the fail-safety requirement?)

This case study shows a pathway to modeling and model exploitation for ERS
and can be expanded further to cover an increasingly rich set of requirements
aspects. Generalizing from this example to obtain requirements engineering pro-
cesses techniques and tools for a wide range of specific application domains is
one promising area for future research. Another one is the seamless transition

192 I. Krüger et al.

from gathered functional and (cross-cutting) quality aspects to re-configurable
deployment architectures.

Acknowledgments. Much of the overview of requirements challenges is influenced
by our long-time collaborations with automotive partners, as well as academic
collaborators. We would like to acknowledge the influences of Manfred Broy,
Alexander Pretschner, Bernhard Rumpe, Bran Selic, Wolfgang Pree, KV Pra-
sad, Ed Nelson, Chris Salzmann, and Thomas Stauner. The authors are grateful
for discussions with participants of the MBEERTS Dagstuhl Seminar, as well
as for the insightful comments of the reviewers of this paper. Our work was
partially supported by NSF grant CCF-0702791. Financial support came also
from the California Institute for Telecommunications and Information Techno-
logy (Calit2).

References

[1] Shaw, M.: Prospects for an engineering discipline of software. IEEE Soft-
ware 7(6), 15–24 (1990)

[2] Halfhill, R.T.: Embedded market breaks new ground, Embedded Processor
Watch, vol. 82 (2000)

[3] Broy, M., Krüger, I.H., Meisinger, M. (eds.): ASWSD 2004. LNCS, vol. 4147.
Springer, Heidelberg (2006)

[4] Broy, M., Krüger, I.H., Meisinger, M. (eds.): ASWSD 2006. LNCS, vol. 4922.
Springer, Heidelberg (2008)

[5] Ahluwalia, J., Krüger, I., Meisinger, M., Phillips, W.: Model-Based Run-Time
monitoring of End-to-End deadlines. In: Proc. of the Conference on Embedded
Systems Software, EMSOFT (2005)

[6] Krüger, I., Nelson, E.C., Prasad, V.: Service-based software development for
automotive applications. In: CONVERGENCE 2004 (2004)

[7] Pretschner, A., Broy, M., Kruger, I.H., Stauner, T.: Software engineering for
automotive systems: A roadmap. In: 2007 Future of Software Engineering, pp.
55–71. IEEE Computer Society, Los Alamitos (2007)

[8] Sharp, H., Finkelstein, A., Galal, G.: Stakeholder identification in the requi-
rements engineering process. In: Proc. Tenth Intl. Workshop on Database and
Expert Systems Applications, pp. 387–391 (1999)

[9] Easterbrook, S.M., School of Cognitive, Computing Sciences, University of Sus-
sex: Domain Modelling with Hierarchies of Alternative Viewpoints. University
of Sussex, School of Cognitive and Computing Sciences (1992)

[10] Anderson, J., Fleak, F., Garrity, K., Drake, F.: Integrating usability techniques
into software development. IEEE Software 18, 46–53 (2001)

[11] Bevan, N.: Usability is quality of use. Advances in Human Factors Ergonomics 20,
349 (1995)

[12] Mayhew, D.J.: The usability engineering lifecycle. In: Conference on Human
Factors in Computing Systems, pp. 147–148. ACM, New York (1999)

[13] Bennett, J.L.: Managing to meet usability requirements: Establishing and mee-
ting software development goals. Visual Display Terminals: Usability Issues and
Health Concerns, 161–184 (1984)

Requirements Modeling for Embedded Realtime Systems 193

[14] Chung, L.: Non-Functional Requirements in Software Engineering. Springer, Hei-
delberg (2000)

[15] Robertson, S., Robertson, J.: Mastering the requirements process. ACM
Press/Addison-Wesley Publishing Co. (1999)

[16] Nixon, B.A.: Representing and using performance requirements during the de-
velopment of information systems. LNCS, p. 187. Springer, Heidelberg (1994)

[17] Guinan, P.J., Cooprider, J.G., Faraj, S.: Enabling software development team
performance during requirements definition: a behavioral versus technical ap-
proach. Information Systems Research 9(2), 101–125 (1998)

[18] Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-Based performance
prediction in software development: A survey. IEEE Transactions on Software
Engineering, 295–310 (2004)

[19] Gobbo, D.D., Napolitano, M., Callahan, J., Cukic, B.: Experience in developing
system requirements specification for a sensor failure detection and identification
scheme. In: High-Assurance Systems Engineering Symposium, Proc. Third IEEE
Intl., pp. 209–212 (1998)

[20] Smidts, C., Stutzke, M., Stoddard, R.W.: Software reliability modeling: an ap-
proach to early reliability prediction. IEEE Transactions on Reliability 47(3),
268–278 (1998)

[21] Mooney, J.D.: Issues in the specification and measurement of software portability.
In: Poster Session at the 15th Intl. Conference on Software Engineering (May
1993)

[22] Lauesen, S.: Software Requirements: Styles and Techniques. Forlaget Samfund-
slitteratur (1999)

[23] Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley Professional, Reading (2004)

[24] Barker, S.D.P., Eason, K.D., Dobson, J.E.: The change and evolution of require-
ments as a challenge to the practice of software engineering. In: Proc. of the IEEE
Intl. Symposium on Requirements Engineering, San Diego, California, January
4-6. IEEE Computer Society Press, Los Alamitos (1993)

[25] Arnold, R.S.: Software Change Impact Analysis. IEEE Computer Society Press,
Los Alamitos (1996)

[26] Strens, M.R., Sugden, R.C.: Change analysis: A step towards meeting the chal-
lenge of changing requirements. In: Proc. of the IEEE Symposium and Workshop
on Engineering of Computer Based Systems, p. 278. IEEE Computer Society,
Washington (1996)

[27] Bohner, S.A., Arnold, R.S.: Software Change Impact Analysis. Wiley-IEEE Com-
puter Society Pr (1996)

[28] Heninger, K.: Specifying software requirements for complex systems: New tech-
niques and their application. IEEE Transactions on Software Engineering 6(1),
2–13 (1980)

[29] Carlshamre, P., Regnell, B.: Requirements lifecycle management and release
planning inmarket-driven requirements engineering processes. In: Proc. 11th Intl.
Workshop on Database and Expert Systems Applications, pp. 961–965 (2000)

[30] Al-Rawas, A., Easterbrook, S.M., National Aeronautics, Space Administration,
United States: Communication Problems in Requirements Engineering: A Field
Study. National Aeronautics and Space Administration; National Technical In-
formation Service, distributor (1996)

[31] Easterbrook, S.M.: Handling Conflict Between Domain Descriptions with
Computer-Supported Negotiation. University of Sussex, School of Cognitive and
Computing Sciences (1991)

194 I. Krüger et al.

[32] Easterbrook, S.: Resolving requirements conflicts with Computer-Supported ne-
gotiation. In: Requirements Engineering: Social and Technical Issues, pp. 41–65
(1994)

[33] Boehm, B., Bose, P., Horowitz, E., Lee, M.J.: Software requirements negotia-
tion and renegotiation aids. In: Proc. of the 17th Intl. Conference on Software
Engineering, pp. 243–253. ACM, New York (1995)

[34] Crowston, K., Kammerer, E.E.: Coordination and collective mind in software
requirements development. IBM Systems Journal 37(2), 227–246 (1998)

[35] van Lamsweerde, A.: Elaborating security requirements by construction of inten-
tional Anti-Models. In: Intl. Conference on Software Engineering: Proc. of the
26 th Intl. Conference on Software Engineering, vol. 23, pp. 148–157 (2004)

[36] Potts, C.: Requirements models in context. In: 3rd Intl. Symposium on Requi-
rements Engineering (RE 1997), pp. 6–10 (1997)

[37] Heeks, R., Krishna, S., Nicholson, B., Sahay, S.: Synching or sinking: Global
software outsourcing relationships. IEEE Software, 54–60 (2001)

[38] Lala, J.H., Harper, R.E.: Architectural principles for safety-critical real-time
applications. Proc. of the IEEE 82(1), 25–40 (1994)

[39] Lutz, R.R., Helmer, G.G., Moseman, M.M., Statezni, D.E., Tockey, S.R.: Sa-
fety analysis of requirements for a product family. In: Proc. 1998 Third Intl.
Conference on Requirements Engineering, pp. 24–31 (1998)

[40] Xu, J., Randell, B., Romanovsky, R.J., Stroud, R.J., Zorzo, A.F., Canver, E., von
Henke, F.: Rigorous development of a safety-critical system based on-coordinated
atomic actions. In: Twenty-Ninth Annual Intl. Symposium on Fault-Tolerant
Computing, Digest of Papers, pp. 68–75 (1999)

[41] Leveson, N.G., Stolzy, J.L.: Safety analysis using petri nets. In: The Fifteenth
Intl. Symposium on Fault-Tolerant Computing. IEEE, Los Alamitos (1985)

[42] Leveson, N.G.: Software safety in embedded computer systems. Communications
of the ACM 34(2), 34–46 (1991)

[43] Lutz, R.R.: Targeting safety-related errors during software requirements analysis.
ACM SIGSOFT Software Engineering Notes 18(5), 99–106 (1993)

[44] de Lemos, R., Saeed, A., Anderson, T.: Analyzing safety requirements for
process-control systems. IEEE Software 12(3), 42–53 (1995)

[45] Modugno, F., Leveson, N.G., Reese, J.D., Partridge, K., Sandys, S.D.: Integrated
safety analysis of requirements specifications. Requirements Engineering 2(2),
65–78 (1997)

[46] Bishop, P., Bloomfield, R.: A methodology for safety case development. In:
Safety-Critical Systems Symposium, Birmingham, UK (February 1998)

[47] Hansen, K.M., Ravn, A.P., Stavridou, V.: From safety analysis to software re-
quirements. IEEE Tran. on Software Engineering 24(7), 573–584 (1998)

[48] Napolitano, M.R., An, Y., Seanor, B.A.: A fault tolerant flight control system for
sensor and actuator failures using neural networks. Aircraft Design 3(2), 103–128
(2000)

[49] United States Military Procedure: Procedure for performing a failure mode effect
and criticality analysis, MIL-P-1629 (November 1949)

[50] Barlow, R.E., Chatterjee, P.: Introduction to Fault Tree Analysis (December
1973)

[51] Chung, L.: Dealing with security requirements during the development of infor-
mation systems. In: Rolland, C., Bodart, F., Cauvet, C. (eds.) Proc. 5th Int.
Conf. Advanced Information Systems Engineering, CAiSE, pp. 234–251. Sprin-
ger, Heidelberg (1993)

Requirements Modeling for Embedded Realtime Systems 195

[52] Landwehr, C., Heitmeyer, C., McLean, J.: A security model for military message
systems: retrospective. In: Proc. 17th Annual Computer Security Applications
Conference, ACSAC 2001, pp. 174–190 (2001)

[53] Frankel, D.S.: Model Driven Architecture. Wiley, New York (2003)
[54] IBM Rational DOORS (formerly Telelogic): DOORS (2009),

http://www.telelogic.com/

[55] IBM: Rational RequisitePro. (2009)
[56] 3SL Cumbria, England: Cradle Requirements Management v6.0 (July 2009),

http://www.threesl.com/

[57] Wiegers, K.E.: Automating requirements management. Software Develop-
ment 7(7), 1–5 (1999)

[58] Jackson, M., Zave, P.: Domain descriptions. In: Proc. of IEEE Intl. Symposium
on Requirements Engineering, pp. 56–64 (1993)

[59] Zave, P.: Classification of research efforts in requirements engineering. In: Proc.
of the Second IEEE Intl. Symposium on Requirements Engineering, pp. 214–216
(1995)

[60] Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM
Trans. Softw. Eng. Methodol. 6(1), 1–30 (1997)

[61] Dardenne, A., Fickas, S., van Lamsweerde, A.: Goal-directed concept acquisi-
tion in requirements elicitation. In: Intl. Workshop on Software Specifications &
Design: Proc. of the 6 th Intl. workshop on Software specification and design,
vol. 25, pp. 14–21 (1991)

[62] Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. In: Selected Papers of the Sixth Intl. Workshop on Software Specification
and Design, pp. 3–50. Elsevier Science Publishers B.V., Amsterdam (1993)

[63] Heninger, K.L., Kallander, J.W., Parnas, D.L., Shore, J.: Software requirements
for the a-7 e aircraft. Memorandum Report 3876, Naval Research Lab., Washing-
ton D.C. (November 1978)

[64] Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software En-
gineering 23(5), 279–295 (1997)

[65] Yu, E.S.: Modelling strategic relationships for process reengineering. PhD thesis,
University of Toronto (1995)

[66] Yu, E.S.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proc. of the Third IEEE Intl. Symposium on Requirements En-
gineering, pp. 226–235 (1997)

[67] Yue, K.: What does it mean to say that a specification is complete? In: Proc.
IWSSD-4, Fourth Intl. Workshop on Software Specification and Design, Monte-
rey (1987)

[68] Darimont, R., van Lamsweerde, A.: Formal refinement patterns for goal-driven
requirements elaboration. In: Proc. of the 4th ACM SIGSOFT symposium on
Foundations of software engineering, San Francisco, California, United States,
pp. 179–190. ACM, New York (1996)

[69] van Lamsweerde, A., Darimont, R., Letier, E.: Managing conflicts in goal-driven
requirements engineering. IEEE Transactions on Software Engineering 24(11),
908–926 (1998)

[70] Greenspan, S., Feblowitz, M.: Requirements engineering using the SOS para-
digm. In: Proc. of IEEE Intl. Symposium on Requirements Engineering, pp.
260–263 (1993)

[71] Warmer, J., Kleppe, A.: The object constraint language: precise modeling with
UML. Addison-Wesley Longman Publishing Co., Inc., Boston (1998)

http://www.telelogic.com/
http://www.threesl.com/

196 I. Krüger et al.

[72] Gill, A.: Introduction to the Theory of Finite-state Machines. McGraw-Hill, New
York (1962)

[73] Hennie, F.C.: Finite-state Models for Logical Machines. Wiley, Chichester (1968)
[74] DeMarco, T.: Structured analysis and system specification, pp. 409–424. Yourdon

Press, New York (1979)
[75] Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability

problem. In: Proc. of the First Intl. Conference on Requirements Engineering,
pp. 94–101 (1994)

[76] Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.
In: IEEE Transactions on Software Engineering, 58–93 (2001)

[77] Ross, D.T., Schoman, J.K.E.: Structured analysis for requirements definition,
pp. 363–386. Yourdon Press, New York (1979)

[78] Gane, C.P., Sarson, T.: Structured Systems Analysis: Tools and Techniques.
Prentice Hall Professional Technical Reference (1979)

[79] Orr, K.: Structured requirements definition. K. Orr, Topeka, Kan. (1981)
[80] Burns, A., Wellings, A.: Real-time Systems and Programming Languages, 3rd

edn. Addison Wesley, London (2001)
[81] Boehm, B.W.: Software Engineering Economics. Prentice Hall PTR, Englewood

Cliffs (1981)
[82] Fairley, R.: Software engineering concepts. McGraw-Hill, Inc., New York (1985)
[83] Berry, G., Gonthier, G.: The Esterel Synchronous Programming Language: De-

sign, Semantics, Implementation. Institut National de Recherche en, Informa-
tique et en Automatique (1992)

[84] Barnes, B.H.: Decision Table Languages and Systems. In: Metzner, J.R. (ed.)
Academic Press, Inc., London (1977)

[85] Parnas, D.L., Madey, J.: Functional Documentation for Computer Systems En-
gineering. Queen’s University at Kingston, Dept. of Computing & Information
Science (1990)

[86] Schouwen, J.V.: The A-7 requirements model: re-examination for real-time sys-
tems and an application to monitoring systems. National Library of Canada
(1991)

[87] van Schouwen, A., Parnas, D., Madey, J.: Documentation of requirements for
computer systems. In: Proc. of IEEE Intl. Symposium on Requirements Engi-
neering, pp. 198–207 (1993)

[88] Faulk, S.R.: State determination in hard-embedded systems. PhD thesis, The
University of North Carolina at Chapel Hill (1989)

[89] Heitmeyer, C., Labaw, B., Kiskis, D.: Consistency checking of SCR-style re-
quirements specifications. In: Proc. of the Second IEEE Intl. Symposium on
Requirements Engineering, pp. 56–63 (1995)

[90] Heitmeyer, C., Mandrioli, D.: Formal Methods for Real-Time Computing. John
Wiley & Son Ltd., Chichester (1996)

[91] Heitmeyer, C., Bull, A., Gasarch, C., Labaw, B.: SCR*: a toolset for specifying
and analyzing requirements. In: Reggio, G., Astesiano, E., Tarlecki, A. (eds.)
Abstract Data Types 1994 and COMPASS 1994. LNCS, vol. 906, pp. 109–122.
Springer, Heidelberg (1995)

[92] Heitmeyer, C., Kirby, J., Labaw, B.: The SCR method for formally specifying,
verifying, and validating requirements: Tool support. In: Proc. of the 1997 (19th)
Intl. Conference on Software Engineering, pp. 610–611 (1997)

[93] Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking
of requirements specifications. ACM Trans. Softw. Eng. Methodol. 5(3), 231–261
(1996)

Requirements Modeling for Embedded Realtime Systems 197

[94] Landwehr, C.E., Heitmeyer, C.L., McLean, J.: A security model for military
message systems. ACM Trans. Comput. Syst. 2(3), 198–222 (1984)

[95] Faulk, S., Brackett, J., Ward, P., Kirby, J.: The core method for real-time requi-
rements. IEEE Software 9(5), 22–33 (1992)

[96] Faulk, S., Finneran, L., Kirby, J., Shah, S., Sutton, J.: Experience applying the
CoRE method to the lockheed C-130J software requirements. In: Reggio, G.,
Astesiano, E., Tarlecki, A. (eds.) Abstract Data Types 1994 and COMPASS
1994. LNCS, vol. 906, pp. 3–8. Springer, Heidelberg (1995)

[97] Miller, S.P.: Specifying the mode logic of a flight guidance system in CoRE and
SCR. In: Proc. of the second workshop on Formal methods in software practice,
Clearwater Beach, Florida, United States, pp. 44–53. ACM, New York (1998)

[98] Jaffe, M.S., Leveson, N.G., Heimdahl, M.P.E., Melhart, B.E.: Software requi-
rements analysis for real-time process-control systems. IEEE Transactions on
Software Engineering 17(3), 241–258 (1991)

[99] Leveson, N.G., Heimdahl, M.P.E., Hildreth, H., Reese, J.D.: Requirements spe-
cification for process-control systems. IEEE Transactions on Software Enginee-
ring 20(9), 684–707 (1994)

[100] Heimdahl, M., Leveson, N.: Completeness and consistency in hierarchical state-
based requirements. IEEE Transactions on Software Engineering 22(6), 363–377
(1996)

[101] Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

[102] Parnas, D.L., Wang, Y.: The trace assertion method of module interface speci-
fication. Queen’s University, Dept. of Computing & Information Science, King-
ston, Ont., Canada (1989)

[103] Harel, D., Lachover, H., Naamad, A., Pnueli, A., Politi, M., Sherman, R., Shtull-
Trauring, A., Trakhtenbrot, M.: STATEMATE: a working environment for the
development of complex reactive systems. IEEE Transactions on Software Engi-
neering 16(4), 403–414 (1990)

[104] Hatley, D.J., Pirbhai, I.A.: Strategies for real-time system specification. Dorset
House Publishing Co., Inc., New York (1987)

[105] Ward, P.T., Mellor, S.J.: Structured Development for Real-Time Systems. Pren-
tice Hall Professional Technical Reference (1991)

[106] Ravn, A.P., Rischel, H.: Requirements capture for embedded real-time systems.
Proc. of IMACS-MCTS 91, 1147–1152 (1991)

[107] Douglass, B.P.: Doing hard time: developing real-time systems with UML, ob-
jects, frameworks, and patterns. Addison-Wesley Longman Publishing Co., Inc.,
Amsterdam (1999)

[108] Chen, R., Sgroi, M., Lavagno, L., Martin, G., Sangiovanni-Vincentelli, A., Ra-
baey, J.: UML and platform-based design, pp. 107–126. Kluwer Academic Pu-
blishers, Dordrecht (2003)

[109] Object Management Group: SysML Specification Version 1.0 (2006-05-03) (Au-
gust 2006), http://www.omg.org/docs/ptc/06-05-04.pdf

[110] Rioux, L., Saunier, T., Gerard, S., Radermacher, A., de Simone, R., Gautier, T.,
Sorel, Y., Forget, J., Dekeyser, J.L., Cuccuru, A.: MARTE: a new profile RFP
for the modeling and analysis of real-time embedded systems. In: UML for SoC
Design Workshop at DAC 2005, UML-SoC 2005 (2005)

[111] Object Management Group: UML profile for schedulability, performance, and
time (September 2003)

[112] Axelsson, J.: Real-world modeling in UML. In: Proc. 13th Intl. Conference on
Software and Systems Engineering and their Applications (2000)

http://www.omg.org/docs/ptc/06-05-04.pdf

198 I. Krüger et al.

[113] Berkenkötter, K., Bisanz, S., Hannemann, U., Peleska, J.: The HybridUML
profile for UML 2.0. Intl. Journal on Software Tools for Technology Transfer
(STTT) 8(2), 167–176 (2006)

[114] Bichler, L., Radermacher, A., Schürr, A.: Integrating data flow equations with
UML/Realtime. Real-Time Syst. 26(1), 107–125 (2004)

[115] Kirsch, C.: Principles of real-time programming. In: Sangiovanni-Vincentelli,
A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 61–75. Springer,
Heidelberg (2002)

[116] Berry, G.: The foundations of Esterel. In: Stirling, C., Plotkin, G., Tofte, M.
(eds.) Proof, Language and Interaction: Essays in Honour of Robin Milner. MIT
Press, Cambridge (2000)

[117] Maraninchi, F.: The Argos language: Graphical representation of automata and
description of reactive systems. In: IEEE Workshop on Visual Languages, Kobe,
Japan (October 1991)

[118] Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous data-flow
programming language Lustre. Proc. of the IEEE 79(9), 1305–1320 (1991)

[119] Camus, J.L., Dion, B.: Efficient Development of Airborne Software with Scade
Suite. Esterel Technologies (2003)

[120] Caspi, P., Raymond, P.: From control system design to embedded code: the
synchronous data-flow approach. In: 40th IEEE Conference on Decision and
Control, CDC 2001 (December 2001)

[121] Kopetz, H., Bauer, G.: The Time Triggered Architecture. In: Proc. of the IEEE
Special Issue on Modeling and Design of Embedded Software (2002)

[122] Henzinger, T., Horowitz, B., Kirsch, C.: Giotto: A time-triggered language for
embedded programming. Proc. of the IEEE 91(1), 84–99 (2003)

[123] Ghosal, A., Henzinger, T.A., Kirsch, C.M., Sanvido, M.A.A.: Event-driven pro-
gramming with logical execution times. In: Alur, R., Pappas, G.J. (eds.) HSCC
2004. LNCS, vol. 2993, pp. 357–371. Springer, Heidelberg (2004)

[124] Templ, J.: TDL Specification and Report. Technical report, Department of Com-
puter Science, University of Salzburg, Austria (March 2004)

[125] Farcas, C.: Towards Portable Real-Time Software Components. PhD thesis, Uni-
versity of Salzburg (2006)

[126] Farcas, E.: Scheduling Multi-Mode Real-Time Distributed Components. PhD
thesis, University of Salzburg (2006)

[127] Farcas, E., Pree, W., Templ, J.: Bus scheduling for TDL components. In: Reuss-
ner, R., Stafford, J.A., Szyperski, C. (eds.) Architecting Systems with Trustwor-
thy Components. LNCS, vol. 3938, pp. 71–83. Springer, Heidelberg (2006)

[128] Farcas, E., Farcas, C., Pree, W., Templ, J.: Transparent distribution of real-time
components based on logical execution time. ACM Press, Chicago (2005)

[129] Wiegers, K.E.: Software Requirements: Practical Techniques for Gathering and
Managing Requirements Throughout the Product Development Cycle. Microsoft
Press, Redmond (2003)

[130] Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Per-
plexed. Addison-Wesley Professional, Reading (August 2003)

[131] Holbrook, I.H.: A scenario-based methodology for conducting requirements eli-
citation. SIGSOFT Software Engineering Notes 15(1), 95–104 (1990)

[132] Gruber, T.: A translation approach to portable ontology specifications. Know-
ledge Acquisition 5, 199 (1993)

[133] Damm, W., Harel, D.: Lscs: Breathing life into message sequence charts. In:
Formal Methods in System Design, pp. 293–312. Kluwer Academic Publishers,
Dordrecht (1998)

Requirements Modeling for Embedded Realtime Systems 199

[134] Konrad, S., Cheng, B.: Requirements patterns for embedded systems. In: Proc.
IEEE Joint Intl. Conference on Requirements Engineering, pp. 127–136 (2002)

[135] Withall, S.: Software Requirement Patterns. Microsoft Press, Redmond (2007)
[136] OSGi: OSGi Alliance Specifications (2007), http://www.osgi.org/
[137] Automotive Multimedia Interface Collaboration: AMI-C Software API Specifi-

cations – Core API (2003), http://www.ami-c.org/
[138] Krüger, I.H., Ahluwalia, J., Gupta, D., Mathew, R., Moorthy, P., Phillips, W.,

Rittmann, S.: Towards a process and Tool-Chain for Service-Oriented automo-
tive software engineering. In: Proc. of the ICSE 2004 Workshop on Software
Engineering for Automotive Systems, SEAS (2004)

[139] ITU-T Geneva: ITU-T Recommendation Z.120 – Message Sequence Chart (MSC
1996) (1996)

[140] Krüger, I.H.: Distributed System Design with Message Sequence Charts. PhD
thesis, Technische Universität München (2000)

[141] Object Management Group (UML 2.0), http://www.omg.org/uml/
[142] Krüger, I.H.: Capturing overlapping, triggered, and preemptive collaborations

using MSCs. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 387–402.
Springer, Heidelberg (2003)

[143] Munich University of Technology: AutoFocus (1996-2002),
http://autofocus.informatik.tu-muenchen.de/index-e.html

[144] Leveson, N.G.: Safeware: system safety and computers. ACM Press, New York
(1995)

[145] Ermagan, V., Krüger, I., Menarini, M., Mizutani, J.I., Oguchi, K., Weir, D.:
Towards Model-Based Failure-Management for Automotive Software. In: Proc.
of the ICSE 2007 Workshop on Software Engineering for Automotive Systems,
SEAS (2007)

[146] Arora, A., Kulkarni, S.S.: Component based design of multitolerant systems.
IEEE Transactions on Software Engineering 24, 63–78 (1998)

[147] Object Management Group: UML 2.1.1 Superstructure Specification (2007)
[148] Ermagan, V., Farcas, C., Farcas, E., Krüger, I.H., Menarini, M.: A service-

oriented approach to failure management. In: Proc. of the Dagstuhl Workshop
on Model-Based Development of Embedded Systems, MBEES (April 2008)

[149] Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Ad-
dison Wesley, Reading (2003)

http://www.osgi.org/
http://www.ami-c.org/
http://www.omg.org/uml/
http://autofocus.informatik.tu-muenchen.de/index-e.html

8 UML for Software Safety and Certification
Model-Based Development of Safety-Critical

Software-Intensive Systems

Michaela Huhn1 and Hardi Hungar2

1 Institute for Software Systems Engineering, Technische Universität Braunschweig,
Mühlenpfordtstr. 23, 38106 Braunschweig, Germany

m.huhn@tu-bs.de

http://www.cs.tu-bs.de/sse
2 OFFIS eV, Escherweg 2, 26121 Oldenburg, Germany

hungar@offis.de

http://ses.informatik.uni-oldenburg.de

Abstract. With the proliferation of UML in the development of embed-
ded real-time systems, the interest in methods and techniques integra-
ting safety aspects into a UML-based software and system development
process has increased. This chapter provides a survey on relevant UML
profiles and dialects as well as on design and verification methods and
process issues supporting a safety assessment. These subjects are dis-
cussed in the light of norms and standards on software development for
safety-critical systems.

8.1 Introduction

Nowadays, software has become an integral part of safety-critical systems in
nearly all technical domains, from aeronautics or power generation, to traffic
control or medical devices. Due to advances in mechatronics and communication
the role which software plays is expected even to grow in future. In addition, the
complexity of control to be implemented increases permanently. The adaptation
of the well established model-based software engineering paradigm to the specific
needs of safety engineering is an obvious and frequently proposed approach to
systematically cope with the challenges of developing software components in
safety-critical systems.

As stated by N. Leveson [1] and others, safety is an issue to be solved on the
system and not the component level. Since software is immaterial, it differs from
physical entities: Software by itself will not harm persons, property or the envi-
ronment. But as an integral part controlling the behavior of physical components,
its correct functioning contributes to safe operation or hazardous situations [2],
as any other component of a safety-critical system. Software failures are mostly
considered as systematic, having their cause in the safety analysis or software
development process, whereas physical components may also fail at random.

It is the purpose of the discipline of software safety engineering to prevent
software failures to occur. According to [3], software safety engineering has three
major sub-processes: (1) Software safety analysis extends system safety analysis

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 201–237, 2010.
� Springer-Verlag Berlin Heidelberg 2010

http://www.cs.tu-bs.de/sse
http://ses.informatik.uni-oldenburg.de

202 M. Huhn and H. Hungar

to software components in that hazards particularly relevant for software and
software/hardware interaction are identified. The software safety analysis sub-
process results in software safety requirements and safety design strategies ai-
ming at elimination or mitigation of the identified hazards. (2) In software safety
design, the software is designed and implemented according to the requirements
and safety strategies. Safety design activities take the needs of safety assurance
for traceability, documentation and safety argumentation into account. (3) Soft-
ware safety assurance is concerned with all activities that provide evidence that
the software meets its safety objectives. Verification and validation (V&V) ac-
tivities are essential constituents of this sub-process. They are by themselves
not sufficient, but their results have to be incorporated into an overall safety
argumentation that integrates them into the system safety process.

In this paper, we focus on UML-based approaches to the sub-processes of
software safety design and assurance. These two are also considered together in
standards like the CENELEC standards for railway applications [4], the RTCA-
DO-178B for airworthy software [5], or the IEC 61508-3 [6] on software re-
quirements for the functional safety of electrical / electronic / programmable
electronic controlled systems. Model-based techniques for the preceding system
and software safety analysis like failure modes, effects and criticality analysis
(FMECA), hazard and operability analysis (HAZOP), or event tree analysis
(ETA) [7] are beyond the scope of this paper. They are partially addressed in
Chapter 10 “Model-based Analysis and Development of Dependable Systems”.
An approach to a further aspect not covered here, namely UML-based dependa-
bility analysis, can be found in [8, 9].

As a consequence, we assume the software safety requirements to be provided.
Another important input, coming from safety analysis, is the criticality level that
classifies the software’s contribution to system safety. The criticality level deter-
mines a so-called software integrity level (SIL) in the IEC 61508-3 [6], and the
CENELEC standard [4]1. Each SIL is equipped with requirements and recom-
mendations on processes, activities and roles, and on software engineering design
and V&V techniques. For the higher SILs, formal models are highly recommen-
ded for requirements analysis, design and verification. However, the relation of
formalisms, which are mentioned in present standards, to artifacts of the deve-
lopment process remains vague. Thus, model-based software development and in
particular the integration of model-based design and V&V techniques is a lively
research field and major challenge in safety-critical systems engineering [10].

We start our presentation in Section 8.2 by briefly recapitulating the essen-
tials of software development for safety-critical systems conforming to existing
norms and standards, and deriving from that a categorization of usages of soft-
ware models in software safety processes. In Section 8.3 we survey safety-related
extensions of UML and classify them according to their purposes and usages.
Section 8.4 sketches a seamless certification-oriented process based on UML. The
perspectives of model-based V&V techniques and tool support are discussed in
Section 8.5. Section 8.6 concludes.

1 A similar concept in RTCA-DO-178B [5] are development assurance levels (DAL).

UML for Software Safety and Certification 203

8.2 Development of Certifiable Software

The standards [4, 5, 6] do not prescribe a specific process model, but they require
clearly distinguished development phases or activities with predefined input and
output documents. The classical V-model (see Fig. 8.1) is well-accepted for soft-
ware development for high assurance systems, in particular in the context of the
CENELEC standards [4] and IEC 61508 [6] that both refer to it. The standards
regulate key objectives to be addressed by the activities and in the documents.
The development has to assure quality criteria like conciseness, completeness,
traceability or testability. Safety-related requirements and constraints have to
be distinguished and traced throughout the development phases. They are the
major subject of the recommended verification and validation techniques. Moreo-
ver, for achieving safety, programming strategies and mechanisms like defensive
programming or cyclic self-tests [4] are to be applied.

As stated in the introduction, we concentrate on UML-based approaches em-
ployed in software safety design and assurance of critical systems. Safety analysis,
which we mention briefly in Sec. 8.3.4, is a mandatory preceding sub-process in a
safety-critical system’s life cycle. For the phases of safety design and assurance,
two results of the safety analysis are of major interest: (1) The product-specific
requirements for functional safety, i.e., goals to be achieved constructively in
order to eliminate or mitigate the identified hazards. (2) The association of a
SIL classifying the risk resulting from a failure of a software component. A SIL
02 classification means that the component is not related to system safety func-
tions, whereas a SIL 3 and SIL 4 classification is assigned if a component failure
may cause a severe or even catastrophic accident.

The standards associate with each SIL a set of process requirements or objec-
tives to be met, concepts to be employed and techniques to be applied in order to
achieve an acceptable level of confidence that systematic flaws in software deve-
lopment are eliminated. For software developed under SIL 3 or 4, specific formal
and semi-formal model-based techniques are highly recommended for software
specification, for software verification, and to complement software validation
(see table A.2, A.5, and A.8 in [4]). However, today’s standards [4, 6], do not
state clearly which software engineering techniques should or may be used to
achieve the required software quality characteristics.

An advanced view is taken by the Committee Draft for Voting (CDV) of IEC
61508-3 [11]: It suggests an explicit semi-quantitative quality model to relate
particular usages of software engineering techniques to detailed quality charac-
teristics of development artifacts. This relation is expressed in terms of a degree
of rigour by which a certain software engineering technique can achieve a quality
characteristic.

Another issue that hampers the proliferation of model-based development
methodologies in software safety design is the fact that traditional programming
is assumed for module design and implementation in the standards (see for

2 In RTCA-DO-178B, the corresponding classification ranges from A to E in reversed
order.

204 M. Huhn and H. Hungar

Fig. 8.1. V-Model according to EN 50128

instance the V-model according to EN 50128 [4] in Fig. 8.1). Restrictions to a
safe subset of programming languages and approved compilers according to the
SIL are highly recommended. How to establish a corresponding notion of safe
model-based programming and code generation is discussed in Sec. 8.4.

All tools which are employed within the development process of safety-critical
software have to be qualified. In general, tools that facilitate design automation
– as in particular model-driven approaches incorporating code generation - are
requested to be qualified with the same rigour as the safety-critical software

UML for Software Safety and Certification 205

itself. Whereas tools that are intended for use in the safety assurance process –
i.e. that support testing, validation or verification - can be qualified by a more
light-weight assessment process. An example for a certified code generator is the
SCADE Software Factory [12].

We summarize this elaboration in the following observation: Any scientific ap-
proach to customize UML as a modeling notation for the use with safety-critical
systems has not only to fulfil the intentions but also the practical certification-
oriented requirements set by the standards. Only then, it will come into operation
in industrial safety-critical system development. Practical certification-oriented
requirements are in particular: (1) A conclusive argument for the usage of a
UML-based method for specific design or V&V activities has to be provided to
prove the method’s adequacy for the quality characteristics required for a certain
artifact. This part will benefit from progress in standards: E.g., the upcoming
CDV of IEC 61508-3 is less concrete with respect to the referenced modeling
formalisms than [4] and [6], and more explicit with respect to the quality cha-
racteristics to be achieved by a technique. (2) As explained in the previous pa-
ragraph, a tool supporting a UML-based method has to be qualified according
to its usage in the development process. Even if an approach does not strive for
design automation (see Sec. 8.5), the standards’ requirements are satisfied only
by very few UML tools today.

In the view of our recapitulation of the standards, we identify the following
six categories where software models can be used in the development and certi-
fication of safety critical systems:

Usage 1 - Precise specification of safety and software requirements:
As a starting point for software safety design, the domain and safety
engineers identify a set of safety requirements and constraints that have to
hold on the system under development or evolution. Subsets of these are
allocated to software components in the architectural steps of decomposition
and partitioning. Requirements models are used to assist a common and
detailed understanding of all safety-related issues between the software
engineers and the safety and system experts. This usage scenario aims at
enhancing the communication processes on safety-related requirements at
the interface between system level and software component view.

Usage 2 - Software design and evolution: The next step after require-
ments specification is software design. In a model-based approach, the soft-
ware architects and engineers describe the design or evolution task in terms
of models representing various views. In case of embedded safety-critical
software, hardware-dependent runtime properties like real-time behaviour,
power consumption or resource utilization are an integral part of the func-
tional safety requirements, and thus these properties should be addressed
in the models. Additionally, a number of specific software safety strategies
and techniques (e.g., defensive programming or multiple version dissimilar
software, watchdogs or voters) are recommended for architectural design.
Hence, this usage scenario describes the process of designing and thereafter
implementing software components of safety-critical systems.

206 M. Huhn and H. Hungar

Usage 3 - (Partial) code generation: In a model-driven approach, automa-
ted model transformations and code generation are employed to obtain
target-specific, executable models from design models. This scenario extends
the model-based design scenario described before: Code generation moves ef-
forts from manual implementation and extensive testing from the code level
to model analysis. But a prerequisite is a qualified development environ-
ment that assures that the semantics of the models within the modeling
environment corresponds to that of the generated code as it is executed by
the runtime environment on a specific target. In addition, from the safety
engineering viewpoint this usage of models faces a number of difficulties as
discussed in Sec. 8.5.

Usage 4 - Verification and testing: At all stages of software development,
the software engineers have to show that the outcomes meet the specifica-
tions and constraints induced by the previous stage. Verification and testing
are part of the safety assurance process. Formal modeling of the software
and system behaviour and its specification plays a prominent role here: The
standards, e.g. [4], recommend a number of formal modeling notations that
were considered potentially useful at the time the standards were publi-
shed. However, the standards remain unspecific in which technique should
be employed for which kind of safety requirement: Software safety require-
ments that are derived from well established safety analysis techniques like
SHARD (Software Hazard Analysis and Resolution in Design) [13] cover a
broad spectrum of software failures like omitted or untimely reactions, or
unexpected or missing parameters. In difference to that, the referenced tech-
niques like HOL [14] or CCS [15] focus on subsets like functional correctness
and correct interaction behaviour. Moreover, questions of model validation,
i.e. showing evidence that the formal model truly represents the relevant
behaviours of the real system, are not addressed explicitly though they are
of course highly important.
In practice, this phase is dominated by testing applied either to code or to
executable models. In research, the usage of formal models for different veri-
fication techniques is considered at least as relevant as model-based testing.

Usage 5 - Software validation: Validation is the process of establishing
conclusive, documented evidence that a system satisfies its requirements.
In early phases, validation can be supported by animating, resp., simulating
executable models. In later phases, software models may be part of the infor-
mations available to the validator, in particular for systems developed under
SIL 3 or 4. For these, the standards require that the validation and design
tasks have to be performed by independent teams. To transfer this principle
to model-based approaches, independence between the models that are used
for design and those to derive tests from has to be guaranteed.
Model validation is again, as already mentioned in Usage 4, an inevitable
prerequisite for accepting results from model analyses as evidence for requi-
rements compliance of the software.

Usage 6 - Software certification: In the certification process, assessors from
a certification authority will examine whether the system will operate

UML for Software Safety and Certification 207

adequately safe. Therefore, the manufacturer delivers a so-called safety case.
In the safety case, the safety claims for the system in its operating environ-
ment are identified and linked by structured, sufficient and comprehensible
arguments. These address the documentation on the development process,
design artifacts, and verification and test results that provide evidence that
the claims are valid. Traceability of the requirements through the whole
process as they are realised step by step in the design, and an underlying
rationale are major prerequisites for certification.
In practice, maturity of processes, techniques and tools is also mandatory. In
addition, particular software engineering techniques that are well accepted
in safety engineering, like the restriction of programming constructs to a safe
subset in the implementation phase or Modified Condition Decision Coverage
(MC/DC) as a testing technique oriented towards code coverage, are an
integral part of the documented evidence of conformity to the standards.
Formal models may be part of the design documentation (usage 1 or 2) or
the basis of analyses that support the evidence of the safety arguments.

It has to be pointed out that UML does not belong to the notations explicitly
referenced in safety standards. Hence, employing UML models in the software
safety design and assurance process requires conclusive safety case arguments on
several aspects:

(1) The use of UML models in activities and through the development process
has to be clarified as for any other artifact. It has to be demonstrated how
and to which confidence level the requested safety objectives and quality
characteristics can be achieved by UML-based techniques.

(2) The standards recommend a rich portfolio of safety strategies ranging from
defensive programming, design diversity or restriction of programming lan-
guages to elements that are statically verifiable to formal V&V techniques
and testing. Those strategies are widely accepted in safety engineering and
they should be supported by a modeling approach.

8.3 Safety-Related Extensions of UML

In this section we survey UML profiles and dialects dedicated to safety-critical
software development. From the numerous works, we have selected a subset of
approaches aiming at a seamless and tool-supported model-based software safety
and assurance process. As the software safety process is complex and multi-
faceted, the approaches differ significantly in their aims and methodologies:

UML Profile for Developing Airworthiness-Compliant Safety-Criti-
cal Software [16] aims at a tight linkage of a UML-based software design
with the safety argumentation in the context of RTCA DO-178B (see Sec.
8.3.1).

rtUML and the OMEGA-RT Profile [17] focusses on seamless integration
of UML design models and a rich collection of formally founded, tool-
supported V&V techniques (see Sec. 8.3.2).

208 M. Huhn and H. Hungar

Safe-UML [18] tailors UML for certifiable software safety design in the railway
domain. Besides a formal foundation, also best practices to achieve qua-
lity characteristics for the design and safety-directed issues in model-based
programming are considered. (see Sec. 8.3.3).

UML Profile for Modeling and Analysis of Real-Time Embedded
Systems [19] explicitly addresses resource allocation and SW/HW integra-
tion. It supports the specification and analysis of real-time and performance
properties (see Sec. 8.3.4).

Railway Control System Domain Profile [20] targets seamless support for
formally founded design, code generation and verification of interlocking
functionality in the railway domain (see Sec. 8.3.5).

A concise comparison of the particular strengths of these UML profiles is given
in Table 8.1.

SysML [21] is not discussed here, because it has a more general objective of
extending UML from software to system development and safety is not addressed
by particular modeling elements.

EAST-ADL [22] is an architecture description language for the automotive
domain defined upon UML 2.0. EAST-ADL offers notational elements for the
Goal Structuring Notation [23] to model arguments of a safety case in context
of the upcoming automotive standard ISO 26262 [24]. However, its support for
safety remains rudimentary compared to other UML profiles.

8.3.1 The UML Profile for Developing Airworthiness-Compliant
(RTCA DO-178B) Safety-Critical Software

In [16], Zoughbi, Briand, and Labiche address the explicit representation of safety
information within UML models that constitute the requirements, the design,
the deployment, or the finally installed configuration of a software system. The
authors aim at a better understanding of safety issues during development and
certification. They want to improve the communication between safety engineers,
software developers, and assessors from the certification authorities (usage 1, 2
and 6).

The authors identified 65 safety-related concepts in the airworthiness stan-
dard [5] that are relevant for software models. The concepts are grouped into
eight categories: safety, reliability, integrity, concurrency, performance, certifi-
cation, design, and configuration. However, all concepts contribute (at least in-
directly) to software safety. The relationship between the concepts is formalized
in a conceptual meta-model. The meta-model is the basis for the definition of
stereotypes, tagged values and constraints of the UML profile, and it reflects the
key idea of integrating the safety argument into the UML models for software
design.

A central concept is Safety Critical which is used to stereotype entities
with direct impact on system safety. By the tagged values Criticality Level
and Confidence Level the developer may declare the criticality level of a

UML for Software Safety and Certification 209

safety critical component determined in a safety analysis3 and his/her confi-
dence that the requested criticality level will be reached. Thus, a direct link is
established between the design elements in the UML model and the safety argu-
mentation according to a standard. The link between the safety terms from the
standard and the UML model is strengthened by two major groups of concepts
in the meta-model that are connected via the Safety Critical concept. The
first group supports argumentations on design by offering concepts like (safety)
Requirements, Rationale, Strategy, or Deviation. They describe design de-
cisions, architecture rationale and modifications of approved plans that the de-
velopers make when they transform the original requirements into a design. The
second group enables to explicitly represent technical safety engineering exper-
tise in the UML model. For instance, design elements to detect and handle any
kind of safety-related event are uniformly structured and classified by the ste-
reotypes Monitor, Handler, Event, or Reaction. In a similar way, a group of
concepts related to Replication Group allows to characterize the safety stra-
tegy of a replicated group of components whose elements are connected to a
voter. Among others, concepts like Style are provided to describe the kind of a
selected solution in common software safety terminology on the level of detailed
design and implementation.

Since the proposed UML extension is defined as a UML profile, integration
in existing UML modeling tools is possible. The authors propose an integration
into frameworks like Rhapsody by IBM [25] or the Eclipse Modeling Framework
(EMF)[26]. Thereby, the designer and certifier are supported in searching UML
designs for occurrences of specific stereotypes or tagged values either by using
a proprietary API or the Object Constraint Language (OCL). Thus, certain
information - like listings of all COTS components used or all hardware-software
interfaces - that are required for certification in the context of RTCA DO 178B [5]
can be generated automatically. Additionally, traceability can be achieved if the
model is fully elaborated according to the methodology suggested by the authors.
Therefore, not only the UML model must contain different views on the software
architecture and the design. The requirements linked to the design rationale
and safety considerations leading to that design have to be represented in the
model, too. Then the designer may traverse the model guided by the stereotypes
provided by airworthiness profile to comprehend the safety argumentation.

To summarize, the airworthiness profile by Zoughbi, Briand, and Labiche is
tailored for UML-based development and certification of safety-critical software
according to the RTCA DO-178B. Safety information supporting the commu-
nication, and reasoning for safety cases is integrated into UML design models.
With this focus on incorporating the safety argumentation into software design
models, the airworthiness profile can be understood as a standard-specific al-
ternative to approaches that provide the safety argumentations externally like
the Goal Structuring Notation by Kelly [23] or Assurance Based Development by
Knight et al. [27].

3 e.g. ”A” to ”E” if the component is developed according to RTCA DO-178B.

210 M. Huhn and H. Hungar

8.3.2 rtUML and the OMEGA-RT Profile

rtUML and the Omega-RT Profile were defined in the context of the EU funded
project Correct Development of Real-Time Embedded Systems Omega

4 as an
extension of UML 1.4. The Omega approach integrates functional views and
extra-functional properties, mainly timing, into functional views on specification,
architecture and detailed design. A main goal is a formal foundation enabling
tool-supported formal verification and validation techniques [17] (usages 1,2, 4,
and 5).

rtUML comprises those functional concepts from UML that are considered
most relevant in the embedded domain: For a structural design view, object-
oriented concepts like polymorphism, inheritance, aggregation as well as various
kinds of associations can be used in class diagrams. Active, passive and reactive
objects are distinguished. To model the behaviour of a class or object resp.,
hierarchical state machines with a rich action language are included in rtUML.
Interaction between so-called activity groups can be modelled as synchronous
or asynchronous inter-object communication. rtUML can be pre-compiled to a
kernel language krtUML containing only basic concepts from class diagrams and
flat state machines. An operational, discrete time semantics in terms of Symbolic
Transition Systems (STS) for krtUML was defined by Damm, Josko, Pnueli and
Votintseva in [28].

rtUML is extended for requirement specification, architectural descriptions
and in particular for the specification and verification of real-time aspects: Re-
quirements can be specified scenario-based as Live Sequence Charts (LSCs) [29]
or by temporal logic formulae. On the architectural level, a component-connector
view comprises required and provided interfaces, protocol state machines, and
OCL constraints. The Omega-RT Profile distinguishes different kinds of inter-
nal events like the send and accept of signals or state enter and exit events.
Additionally, matching clauses and filters can be used to specify constraints on
the duration between two event occurrences. The model can be extended by
classes stereotyped as observers to express more involved timing requirements.
Observers emulate timed automata in the UML modeling setting.

A rich portfolio of verification and validation techniques and tools supports
software development with rtUML and the Omega-RT Profile [17]: Live Se-
quence Chart specifications can be animated with the Play Engine tool for re-
quirements validation. Formal verification on finite state design models can be
performed in two ways: Either a model checker specifically optimized for rtUML
models can be used to prove specifications in terms of LSCs or temporal lo-
gic formulae. Alternatively, a model transformation to the IF framework [30]
can be applied, enabling discrete and continuous time verification. Automated
time and data abstraction mechanisms are offered for state space reduction as
a preparatory step for model checking. To enable formal verification for infinite
state models, a model transformation from rtUML to PVS (Prototype Verifica-
tion System) [31] is provided. Using the interactive theorem prover PVS, infinite

4 www-omega.imag.fr

UML for Software Safety and Certification 211

value domains or unbounded message queues can be handled. As the transfor-
mation includes type information and OCL constraints on the model, these can
be checked in PVS as well.

8.3.3 Restricting UML for Specification and Programming in a
Certification Context

Motivated by the wish to be able to use UML in a way compatible with the
railway norms (mainly EN 50128), Safe-UML has been designed as a restriction
of (a part of) general UML. It is intended to address the functional viewpoint,
expressed in class diagrams and statecharts [18]. To adequately cover an appli-
cation range from documentation over specification (artifacts in the early phases
of the design process) to actually UML-based programming, the definition has
been organized in two levels:

Safe-UML (S): (S for Superstructure) applies to the OMG standard [32] for
superstructures. It takes the definitions of state machines and class diagrams
of UML and eliminates all semantical ambiguities, sources of underspecifi-
cation, unclarity and unboundedness of system resources. In particular, it
considers the parallelism (and its potentially sequentialized implementation).

Safe-UML (P): (P for Programming) applies to IBM’s Rhapsody in Cpp as an
instance of a UML implementation which enables programming in UML via
the Cpp code generation. Safe-UML (P) gives directions on how to achieve
conformance of the generated code with coding guidelines. Together with the
rules from Safe-UML (S) it defines a set of restrictions which turn UML with
Cpp annotations into a programming language suitable for the development
of safety-critical systems.

Though originally designed for the rail domain – for instance, Part 42730 of the
Mü 8004 [33] was taken for the definition for an admissable subset of Cpp – it
is applicable also in other domains, particularly if the IEC 61508 is the source
for the standard to be adhered to.

Safe-UML (S) and the Principles Guiding its Definition
In the following, we will give a short overview of essential features of Safe-UML,
grouped as instances of four main principles which guided the definition of the
language. The cross-cutting issue of parallelism and communication is treated
separately.

Unambiguity: Every construct used must have a clearly (unambiguously) defi-
ned semantics. General UML, for instance, explicitly includes ”semantic varia-
tion points” such as the handling of incoming events. In such cases, Safe-UML
restricts to a particular interpretation, such as a bounded FIFO queue.

Determinacy: Usually, UML behavior specifications are nondeterministic. This
is, for instance, the case if there are conflicting transitions leaving the same state,

212 M. Huhn and H. Hungar

or if behavior is executed in orthogonal regions of a state machine. Safe-UML
(S) tackles these problems by adding constraints to (a) prevent these situations
to occur (e.g. guards of conflicting transitions must be exclusive, if they are
triggered by the same event), or, if this is not possible, (b) ensure that the
outcome is the same for each possible execution order, so that the internally
nondeterministic behavior cannot be observed externally.

Clarity: Clarity addresses the question of accessibility and understandability of a
specification or program. As an example, the state machines may be influenced
severely by the context in which they are used (e.g. a transition triggered by
an event may never fire, because the event is deferred in an enclosing state
machine). Such effects are targeted by adding constraints which try to reduce
context influence to a minimum (e.g. a constraint that events should not be
deferred).

Boundedness: Consumption of time and space are particularly important as-
pects of a safety-critical system. I.e., system reactions shall come in time, the
system must never deadlock nor run out of memory, etc. So, among other things,
unbounded multiplicities are forbidden in class diagrams, and transition loops
are ruled out in state machines.

Multiple Threads and Communication: To capture this major source of problems,
Safe-UML requires a conservative system structure which is closely related to the
one assumed by rtUML – in fact it also bases on [28] and its semantic definition.
A major feature is the requirement of a finite, static structure where all active
objects are organized in active groups, each featuring one active object with
a common set of queues for events, timers, calls and completion events (one
set for the active group). Problems related to sequentialization within queues,
potential queue overflow, deadlocks due to multiple calls are in general hard to
avoid. Safe-UML forbids some constructs and, for the rest, refers the developer to
proven patterns of communication and scheduling, resp., to methods establishing
correctness (like an abstraction to a decidable Petri-net property).

Safe-UML (P) — Safely Programming in UML
The objective in the definition of Safe-UML (P) is to turn state machines with
Cpp annotations and class diagrams into a graphical programming language
which by itself adheres to principles underlying the definition of coding guide-
lines ([33, 34]), and, taking the code generator from Rhapsody, translates into a
fragment of Cpp meeting these restrictions.

First, of course one must restrict the Cpp annotations to the UML constructs
accordingly. Part of the remaining answer is given by importing the Safe-UML
(S) restrictions, which essentially restrict the (mostly) graphical UML constructs
in a way one would restrict a programming language for safety – see the four prin-
ciples exemplified above. And last but not least, the implementation dependent
(Rhapsody-specific) code generation has to be considered.

UML for Software Safety and Certification 213

The generator translates the UML constructs to a Cpp program using a li-
brary, the so-called framework, which essentially provides all necessary objects
and methods to execute them, i.e., the equivalent of a runtime system. The code
generator, if parametrized properly [35], produces rather well-structured code, so
that only minor issues do arise. This analysis has been performed on a large set
of examples systematically covering the graphical constructs and annotations.5

The framework, which is part of the resulting Cpp, is itself not programmed
according to strict safety guidelines. It can freely be modified by the Rhapsody
user, so that one can remedy the defects identified in [36]. Framework modifi-
cations may also be employed to complement the restrictions on the graphical
UML level by adding safety features to, e.g., event communication. Such an ap-
proach has already be used successfully in a signaling application which has been
certified by the German Railway Authority.

Summarizing, Safe-UML defines a way to rigorously specify and safely program
using UML in the rail domain and similarly regulated contexts (usage 2,3 and
6). It is, however, not yet integrated into design environments, and its (P) level
is geared towards a particular implementation.

8.3.4 The UML Profile for Modeling and Analysis of Real-Time
Embedded Systems (MARTE)

In 2008, the OMG published the Beta Specification for a UML Profile for “Mo-
deling and Analysis of Real-Time Embedded Systems” (MARTE) [19] that shall
replace the existing UML Profile for “Schedulability, Performance and Time”
(SPT Profile) [37]. As stated in the title, the primary concern of the MARTE
profile is real-time in embedded (RTE) systems, and not safety. However, the
correct timing is part of functional correctness. With its modeling extensions,
the MARTE profile supports detailed design and verification of safety-critical
RTE systems (usages 2 and 4). Since MARTE is already realized as a plug-in of
Papyrus for UML [38], tool support is available.

The MARTE foundations offer elements for modeling logical and physical
time, resources and the spatial and temporal allocation of functional applica-
tion entities onto them. The MARTE design model contains a so-called “RTE
Model of Computation and Communication” to characterize the concurrency
and synchronization behavior. A generalized, UML-conformant description of
standardized APIs of real-time operating system like POSIX, QNX, or OSEK is
supported. The extensions of the MARTE analysis model aim at the integration
of state-of-the-art techniques for schedulability and performance analysis at the
level of detailed design. Techniques like SymTA/S [39] or Modular Performance
Analysis [40] offer tool supported analyses for various, common scheduling stra-
tegies and communication protocols. Their use is twofold - either predictive or
verifying: For predictive use, a design model is enriched with estimated values on
execution times and communication loads and with a specification of the planned
scheduling situation. The analysis result is predictive and can (only) increase the
5 This approach parallels a widely used practice of compiler validation.

214 M. Huhn and H. Hungar

confidence that the system design will fulfil its requirements on response times
(worst, average or best case) or path latencies. Moreover, the analysis can be
used to optimize the real-time dimensioning of a design [41]. In the case that
values from the implementation are available, the analysis formally verifies whe-
ther real-time requirements are met in all possible situations. To pave the way
for this kind of real-time analysis in the MARTE context, the concepts from the
real-time analysis models are included in the MARTE profile. Thus, the defini-
tion of model transformations into the analysis framework is straightforward.

Additionally, the MARTE profile provides a package for the declaration of
non-functional properties and an associated value specification language. The-
reby the developer may annotate the model with further information relevant
for safety-critical systems. In particular, reliability and availability issues addres-
sed in the UML profile for “Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms” [42] can be integrated seamlessly by these
means [43].

The MARTE profile has been extended towards dependability [44] analysis by
several authors: Pataricza [45] introduced the concept of error propagation6 to
the General Resource Model of the MARTE predecessor, the SPT profile [37], to
enable efficient system level diagnosis based on partial diagnostic information. He
used quality of service parameters to characterize errors and the error behavior
is modeled explicitly. Recently, Bernardi, Merseguer and Petriu [8] proposed a
more general extension of the MARTE profile for analyzing and modeling depen-
dability. Their “Dependability Analysis Model” addresses reliability, availability,
maintainability, and safety, so-called RAMS properties, as major attributes of
dependability. Among others, a “Threat Model” is introduced to describe ei-
ther errors and failures when reasoning on reliability and availability or hazards
that are relevant for safety. In that, the Dependability Analysis Model in [8]
mainly focuses on the analysis of RAMS properties which is a usage of UML
that precedes the software design and assurance process.

As shown by Thomas, Delatour, Terrier, and Gérard [46], the rich set of
concepts for resource allocation provided by MARTE permits to clearly separate
the model of the application from an explicit model of the real-time execution
platform. The explicit platform model is taken as input to govern the model
transformations to different target platforms in an MDA approach. In that, the
Software Resource Modeling sub-profile has the potential to support deployment
and code generation (usage 3) that goes beyond existing approaches that address
the RTE characteristics only implicitly.

An alternative approach was chosen in the Omega-RT profile by Graf, Ober,
and Ober [47] where a specific RTE platform model is explicitly addressed in
the formal semantics that fosters automatic, correct code generation.

6 According to [44], we call an event, at which a violation of the specified behavior
becomes observable at the system boundary, a failure. An error describes the occur-
rence of a deviation from the intended behavior that may be internally compensated.
If the error is propagated to the system’s interfaces, a failure occurs.

UML for Software Safety and Certification 215

8.3.5 The Railway Control System Domain Profile (RCSD)

Berkenkötter and Hannemann [20] conservatively extend UML 2.0 by a domain
specific profile for railway and tram control systems. The RCSD profile supports
the precise specification of railway networks with the aim to automatically gene-
rate code for a specific interlocking functionality. It shall foster the unambiguous
communication between railway experts and embedded software designers and
lay a foundation for the automated generation of verified controller software
(usages 2, 3 and 4 for a specific rail application).

The RCSD profile offers basic entities to model railway tracks, namely track
segments, points, and crossings. Additionally, there are elements for signals in-
dicating the driving instruction for the following track segment, specific sensors
for detecting whether a track element is occupied by a train, and automatic
train runnings, which enforce braking if a train does not obey the signaling.
The states of these elements are described by attributes for which specific da-
tatypes are introduced. The topology of a railway network is modeled through
the neighboring relation given by specific associations of sensors to track ele-
ments. Additionally, a set of top level constraints is included to ensure global
consistency and completeness.

A class diagram models a restricted pattern or sub-problem of the RCSD
domain, employing for instance further constraints on some entities. An object
diagram can then be used to describe the track layout of a concrete network
as an instance of the sub-problem of the corresponding class diagram. On both
modeling levels, the static semantics is precisely defined by an elaborated set
of OCL constraints that can be evaluated automatically on class and object
diagrams annotated according to the RCSD profile [48].

The dynamic semantics is defined as a Timed State Transition System. Timed
transitions are defined locally for the RCSD elements. The behavior of a network
is the parallel composition of its component behaviors. To ensure safe train
passage through the network, a controller realizing the interlocking functionality
has to be added to the network model. Haxthausen, Peleska et al. [49] have shown
how to generate the controller automatically from sets of generic transitions
patterns that are instantiated according to the concrete network and the set of
pre-defined routes when synthesizing the controller.

In addition, formal verification is supported on the level of the configured
network by employing bounded model checking and inductive reasoning. A set
of generic functional safety requirements is provided that covers the specific in-
terlocking problem addressed by RCSD. Thereby all those states of the network
are characterized - in terms of train locations, moving directions, and point po-
sitions - that are considered hazardous. The safety predicates on the configured
network to be enforced by the controller are derived automatically by instan-
tiation. The formal system description is transformed into SystemC that serves
for both, verification input and executable code. To validate software/hardware
integration the authors propose automated hardware-in-the-loop testing.

The RCSD profile provides proprietary prototype tool support for the deve-
lopment of a specific class of controllers in the railway domain on a non-standard

216 M. Huhn and H. Hungar

compliant, formal semantics. The profile’s application domain is clearly restric-
ted for the benefit of rigorous formalization of the specification and design and
an intertwined set of verification techniques covering several process phases.

8.4 Using UML in Certification-Oriented Processes

8.4.1 Questions to Be Addressed by a Certification-Oriented
Process

The central idea of model-based software development is to employ models as key
design elements, expressing design aspects in a tangible way. For safety criticality
or even certification, it is desirable to extend the role the models play: We want
to integrate them into the documentation of the development entering the safety
case. Thus, not only the detailed usage of UML models within each activity or
process phase has to be explained, but also quality characteristics requested for
artifacts have to be substantiated, and a way to achieve this quality has to be de-
lineated. Common quality characteristics are completeness and correctness wrt.
the requirement specification, traceability, simplicity and understandability, be-
havioral determinacy, testable and (statically) verifiable design, fault tolerance,
and last but not least, linkage to the safety analysis sub-process in both parts,
design and assurance. If UML models are employed in more than one activity,
their relation and consistency becomes an issue, too. Wrt. achieving the quality
of models, one may note that models which document the finished design usually
are not finalized in an early phase, but have to change over the course of the
development. This is an issue to be reflected in the process definition. In this
section, we sketch a process framework which emphasizes the aspect of itera-
tive model development in a way compatible with standard requirements. It is
a framework of a process in that it will have to be instantiated to the concrete
development context and to the project requirements.

8.4.2 Purpose and Scope of the Proposed Process

The process outlined here has been defined to be compliant with the EN 50128
for developing safety critical software for the railway domain. The sketch is based
on results of the OpRail7 project [50], and we will call it the OpRail process in
the following. Its primary goal is to delineate a way to harmonize the use of
UML for expressing design artifacts and tools related to UML development with
the strict requirements of the EN 50128. As this norm has been derived from the
more widely applicable IEC 61508, the sketched process outline is useful beyond
the railway domain.

The main motivation for the definition of the process was to introduce expres-
sive modeling features from UML into the development, to enhance precision and
7 This project has been funded by the German Ministry of Education and Research

(BMBF) under grant No. 01|SC26A. The process has been mostly developed by the
project partner Berner& Mattner.

UML for Software Safety and Certification 217
T
a
b
le

8
.1

.
Sa

fe
ty

-r
el

at
ed

U
M

L
pr

ofi
le

s
an

d
th

ei
r

us
ag

es

U
sa

ge
of

U
M

L
M

o
d
el

s
T
o
ol

S
u
p
p
or

t
1

2
3

4
5

6
S
p
e
c
ifi

c
a
ti

o
n

D
e
si

g
n

C
o
d
e

G
e
n
e
ra

ti
o
n

V
e
ri

fi
c
a
ti

o
n

&
T
e
st

in
g

V
a
li
d
a
ti

o
n

C
e
rt

ifi
c
a
ti

o
n

A
ir

w
o
rt

h
in

.
U

M
L

(a
er

os
pa

ce
)

an
no

ta
ti
on

s
fo

r
SW

sa
fe

ty
re

qu
ir

em
en

ts

bu
ilt

-i
n

SW
sa

fe
ty

de
si
gn

pa
tt

er
ns

&
st

ra
te

gi
es

tr
ac

ea
bi

lit
y

of
R
T

C
A

D
O

-1
78

B
sa

fe
ty

co
nc

ep
ts

th
ro

ug
h

U
M

L
m

od
el

s

(e
xt

en
da

bl
e

U
M

L
to

ol
s)

+
pr

op
.

su
pp

or
t

fo
r

se
ar

ch
&

re
vi

ew
rt

U
M

L
&

O
M

E
G

A
-

R
T

us
e

ca
se

s,
sc

en
ar

io
s,

co
ns

tr
ai

nt
s,

ob
se

rv
er

s

co
m

po
ne

nt
s

&
in

te
rf

ac
es

:
st

ru
ct

ur
e,

be
ha

vi
or

,
ti
m

in
g

m
od

el
ch

ec
ki

ng
&

th
eo

re
m

pr
ov

.,
re

fin
em

.
&

R
T

ve
ri
fic

at
io

n

L
SC

an
im

at
io

n,
co

ns
is
te

nc
y

ch
ec

ks
,p

ro
pe

rt
y

de
du

ct
io

n

to
ol

co
up

lin
g:

IF
2.

0
to

ol
bo

x,
P

la
y

E
ng

in
e,

P
V

S

S
a
fe

-U
M

L
(r

ai
lw

ay
)

us
e

ca
se

s,
sc

en
ar

io
s,

te
m

p.
lo

gi
c

fo
rm

ul
ae

co
m

po
ne

nt
st

ru
ct

ur
e

&
be

ha
vi

or
,

m
od

ul
e

be
ha

vi
or

re
st

ri
ct

ed
C

pp
co

de
ge

ne
ra

ti
on

fr
om

cl
as

se
s

&
st

at
e

m
ac

hi
ne

s

m
od

el
ch

ec
ki

ng
,

te
st

ge
ne

ra
ti
on

:
se

qu
.
di

ag
r.
,

co
ve

ra
ge

cr
it

er
ia

(M
C

/D
C

)

m
od

el
-b

as
ed

pr
oc

es
s

de
fin

it
.,

ad
ap

ta
ti
on

of
U

M
L

du
e

to
E

N
50

12
8

to
ol

in
te

gr
at

io
n:

R
ha

ps
od

y
+

A
T

G
+

pr
op

.
ex

te
ns

io
ns

M
A

R
T

E
ex

tr
a-

fu
nc

ti
on

al
pr

op
er

ti
es

,
re

so
ur

ce
m

od
el

in
g,

ti
m

in
g

SW
&

H
W

co
m

p.
,

al
lo

ca
ti
on

,
R
T

co
ns

tr
ai

nt
s,

de
pe

nd
ab

ili
ty

ex
te

ns
io

ns

P
IM

→
P

SM
:

op
er

at
in

g
sy

st
em

&
pr

ot
oc

ol
co

nfi
gu

ra
ti
on

sc
he

du
la

bi
lit

y
&

pe
rf

or
m

an
ce

an
al

ys
is

P
ap

yr
us

fo
r

U
M

L
+

in
te

rf
ac

es
to

sc
he

d.
an

al
ys

is
to

ol
s

R
C

S
D

(r
ai

lw
ay

su
b-

do
m

ai
n)

co
ns

tr
ai

nt
s,

ge
ne

ri
c

te
m

po
ra

l
lo

gi
c

sa
fe

ty
pr

op
er

ti
es

do
m

ai
n

m
od

el
fo

r
tr

ac
k

to
po

lo
gy

&
ra

ilw
ay

co
nt

ro
l

co
nt

ro
lle

r
sy

nt
he

si
s

&
Sy

st
em

C
co

de
ge

ne
ra

ti
on

m
od

el
ch

ec
ki

ng
,

in
du

ct
.
re

as
on

-
in

g,
au

to
m

.
H

IL
te

st
in

g

co
ns

is
te

nc
y

ch
ec

ks
co

up
lin

g
of

pr
op

.
to

ol
s

218 M. Huhn and H. Hungar

communicability of design artifacts, to explicitly represent the iterative nature of
development activities – for instance the way in which early prototyping is em-
ployed – and to profit from the wide offering of tool support available for UML.
It is mainly the intention to permit iterations and early prototyping which made
it necessary to deviate from the V shape as depicted in Fig. 8.1. Despite the V
model being quasi mandatory (as we mentioned above), norm compliance can
be achieved by mapping the components of the V process to the new one.

The OpRail process covers the software development only, with interfaces
to other development activities, including the integration of legacy code. Also
sketched is the role tools could play and the requirements they would have to
satisfy. In this short presentation, we only hint at these latter aspects.

8.4.3 Terms and Definitions

Process. A process defines who is doing what, when and how. A sketch of a
process model like the one given in Fig. 8.1 is an illustration with a focus on
the temporal aspect. A process may be composed of a set of sub-processes
and is divided into different phases.

Sub-Process. A sub-process is a part of a process with is either focused on a
particular aspect (like Safety Management) or the collection of actions to
perform a logical step like the components in Fig. 8.1. A sub-process may
span several phases of the process.

Phase. A phase is the period in a project begun and ended by major project
milestones. A phase may encompass several sub-phases that may be repeated
multiple times (iterations). Within a phase, a well-defined set of objectives
is to be met and certain artifacts are to be produced.

Step. Within a phase, a (sub-)process can be divided into a number of more
elementary steps.

Milestone. A milestone is an important event (completion of specified pro-
ducts) during the course of a project which can be scheduled and monitored
and may be used for evaluating the progress of the project. The decision to
move a project to the next phase is taken at a milestone. If the decision is
negative, the milestone must be rescheduled and repeated.

Artifact. An artifact is an outcome of a sub-process or phase. It may be a
required result of the process or some other piece of information that faci-
litates and supports the process. Artifacts may be grouped to artifact sets
that are assigned to different sub-processes. For example, an artifact set can
be composed of documentation, models, software modules etc. Artifacts shall
be clearly specified by a given version number.

Activity. An activity is the execution of a step of the process.
Iteration. An iteration is a repetition of an activity, with the purpose of im-

proving the end result, usually until a certain condition is met. Iterations are
introduced to capture explicitly that many activities are often performed in
this way, and to reflect agile development styles.

UML for Software Safety and Certification 219

8.4.4 Phases and Sub-processes

Since we do not consider maintenance activities in the definition of our process,
there are eleven sub-processes (of the twelve from Fig. 8.1) to be mapped.

Software Planning, Software Requirements Specification, Software Architec-
ture & Design, Software Module Design, Software Coding, Software Module Test,
Software Integration, Software/Hardware Integration, Software Validation and
Software Assessment.

The OpRail process organizes these into (only) four phases, where these phases
are not executed sequentially but overlap each other. Accordingly, there are five
milestones, M0 to M4: M0 starts the first phase of the project, M1 to M3 mark
transitions between phases, and M4 ends the project.

The artifacts which are tied to the sub-processes are transferred to the phases.
If a sub-process starts within a phase, this phase produces versions of the ar-
tifacts which are defined as an outcome of the phase, continuing a sub-process
means revising the artifact, and finishing a sub-process finalizes the artifact. Ac-
cordingly, an artifact may be produced in stages draft, revised and final, where
of course the version final corresponds to the artifact as defined in the standard.
That is, the OpRail process produces a documentation of the development of
the system as if it was carried out according to the V process, thus presenting a
familiar view suitable for certification.

In short, the phases are defined as follows.

Concept Phase (M0 to M1). Typically the concept phase consists of one to two
iterations. In practice, the first iteration can be interpreted as the offer phase.
Firstly, the main focus is to analyze and understand the problem. All input
documents shall be reviewed. All SW related requirements, architectures and
plans shall be proposed in draft.

Definition Phase (M1 to M2). In this phase the SW requirements, architecture
and detailed design shall be fixed and reviewed. The design shall be simulated
and tested early to figure out cost-intensive design flaws. This phase shall as-
certain that the proposed system can be realized as specified. Afterwards the
requirements set can be approved by e.g. the EBA (Eisenbahn-Bundesamt)
or assessed by an ISA (Independent Safety Assessor). After approval, it is
not allowed to change the requirements. Further changes have to be realized
as changes within the change management workflow.

Realization Phase (M2 to M3). The main focus of this phase is to realize the
solution and construct a product. First of all, this means implementation
of the functionality fixed in the System and SW Requirement Specifica-
tions. The implementation is accompanied by unit and SW integration and
SW/HW integration tests. This phase ends with approved SW and SW/HW
integration testing.

Qualification Phase (M3 to M4). This phase includes validation tests. Fur-
thermore it includes tasks for the assessment and certification of the system.
This phase should end with extensive field tests which include the approval
of the customer.

220 M. Huhn and H. Hungar

The full description (resp., a full instantiation) of the process contains a mapping
of the stages of all design artifacts to the phases. Fig. 8.2 illustrates such a
mapping.

Fig. 8.2. Subprocesses and Phases in the OpRail-Process

8.4.5 The Use of UML in the Process

In general, UML diagrams can be used as parts of design artifacts, or even
to replace some textual artifact completely. We indicate an elaboration which
employs the most common diagram types to the various purposes.

Requirements. For the formulation of requirements (System Requirements
Specification, SW requirements Specification etc.), the most suitable UML
diagrams are use case diagrams to provide an overview and sequence dia-
grams to visualize behaviors. These can complement textual use cases (see
e.g. [51]), as well as other, more traditional representation formats.

Architecture. An architecture may be visualized in a structure diagram, e.g.
as a component diagram in the SW Architecture Specification, or as a class
diagram on the level of module specifications. Depending on the nature of
the design object and the level of abstraction, sequence diagrams illustrating
the interaction of components may be useful.

Design/Module Specification. Detailed behavioral aspects can be specified
with state machines or activity diagrams, while class diagrams define the
software structure.

Test Specifications. Tests can be specified in sequence or timing diagrams.

The mapping above does not yet reflect the specific nature of a safety-critical
design process. To be in line with the requirements coming from the safety
criticality, one must observe that the diagrams are

– equipped with an unambiguous semantics, like for instance as given for Safe-
UML, see Sec. 8.3.3,

– embedded in a context completing the usually partial specification given by
the annotated graphics,

UML for Software Safety and Certification 221

– adequate in their level of detail to the development stage. For instance, it
is difficult to formulate a global requirement in a state machine without
referring already to a component of a particular implementation.

What makes the process specifically suitable for UML is its flexible phase struc-
ture which permits gradually refining models, switching between specification
and prototypically implementing components or aspects for explorative pur-
poses, and thus gaining a much clearer picture of characteristics of the remaining
design space than with most other development approaches. In short, it gives
a well-defined, norm-compliant elaboration for an agile software development
style, taking full advantage of the expressiveness of models for rich specifications
at different levels of abstraction, in particular in early stages.

8.4.6 Realization

There are several additional aspects to be taken into account when implementing
the OpRail employing UML and UML tools.

Models as Documents. Traceability of requirements and accessibility of ar-
tifacts require specific measures to be taken to integrate diagrams into the
development process. Often, model-based development environments come
equipped with model management mechanisms. But these are, usually, not
sufficient, so that integration with other tools (e.g., for requirement mana-
gement) and further measures become necessary which may go to the point
where all models used in the design are printed on paper.

Models as Specifications. While for ordinary development projects it makes
sense to have different views of one and the same object at the same or
at different stages of the development, which even need not be consistent,
this is not acceptable in a safety-critical process. All inconsistencies and
semantic ambiguities have to be ruled out. As already indicated, using a
restriction defined for such purposes like Safe-UML from Sec. 8.3.3 is one
possible approach for functional and communication aspects, while, for ins-
tance, Omega-RT from Sec. 8.3.2 is useful to address the real-time aspect.

Models and Code. If code is generated from models, this too has nontrivial
ramifications in the context of safety-criticality. As one aspect, the relation
between model and code has to be clarified. If the semantics of the model
itself is given by such a translation, all arguments relying on the model must
be rooted in the code it represents, which may be awkward. Otherwise, for-
mal relations between the model and the code semantics must be established.
One facet of this problem can be addressed by certifying the code generator
as it has been done for SCADE. Another facet comes with the execution en-
vironment, where the development environment (e.g., a Windows PC) and
the target system (e.g., a real-time operating system running on a small pro-
cessor in a simple architecture) may differ considerably. And if the generated
code is modified later, be it for reasons of efficiency or platform compatibi-
lity, this must be reflected in the model (e.g., via roundtrip engineering) or

222 M. Huhn and H. Hungar

addressed in the respective artifacts, the SW Module Verification Report, to
name an example.

Models and Formal Verification. Complete models with an operational se-
mantics permit the application of formal verification tools like theorem pro-
vers and model checkers. These, with their promise of assuring complete
coverage of the model behavior seem attractive for high SILs. Indeed formal
verification in the long run may further increase the usefulness of model-
based design. However, currently the tools and methods are rarely mature
enough for using them in industrial practice. Computational complexity and
tool qualification are common obstacles. Nevertheless, formal verification
techniques may already today help the designer in exploring models at abs-
tract design stages, or specific components with great scrutiny, without ma-
king use of the result in safety cases. A more complete treatment of these
issues and the following point can be found in Sec. 8.5.

Models and Tests. Test generation from models or models as components in
test scenarios constitute another possible benefit of employing the model-
based design paradigm. Mature techniques are available which can be put to
use in the OpRail process. Generating tests covering models can partly auto-
mate the construction of the Requirement Test Specification or the Software
Module Test Specification.

Taking into account all these issues, we conclude that it is possible to move
from traditional design processes to one which profits from the use of models
at different steps and levels of abstraction. The scheme provided by the OpRail
process has been favorably evaluated by the TÜV Süd Rail as being suitable for
an instantiation to a real-life process apt for the development of safety-critical
rail applications.

8.5 Verification and Validation Techniques

Almost all safety-related UML profiles come along with a number of formally
founded V&V techniques. It is far beyond the scope of this paper to present their
technical background to a satisfactory level of detail. Instead, we discuss issues on
the integration of formal verification techniques in the software safety assurance
process for certifiable systems. As it is the case for the use of models in design,
scope and objectives to be achieved by employing models in V&V activities have
to be made explicit for safety assessment in certification processes. A verifiable,
mathematical proof of a theorem on a formal model can serve as a piece of
evidence for a safety claim only, if conclusive arguments are provided how the
mathematical statement relates to the real-world system.

8.5.1 General Remarks on Verification and Validation Techniques
in Model-Based Development of Certifiable Software

In accordance with the standards, we perceive a technique as verification method
if it is adequate to evaluate whether or not the system or a component complies

UML for Software Safety and Certification 223

to a specification or constraints imposed at a preceding development phase. A
formal analysis technique is based on a mathematical model of the system and
the requirements and uses mathematical deduction for reasoning. In many cases
the reasoning can be mechanized. In case, the primary and immediate goal of the
technique is to prove that the (sub-)system satisfies the specification, we call it a
formal verification technique in the narrow sense; if it directly aims at disproving
the conformance of the system or component to the requirements it is called an
error detection technique. In this article, we use testing for V&V techniques that
execute the (sub-)system with selected inputs and compare its outcomes with the
expected ones. A validation technique increases our confidence that the system
accomplishes its intended requirements.

Following the terminology of Dwyer [52], we call a technique sound if a positive
result of the evaluation constitutes conclusive evidence that the stated claim
holds. Thus, a sound method does not generate false positives8. In this sense,
exhaustive state exploration is a sound formal verification technique on finite
state system models and testing usually is sound for error detection, but not for
verification because exhaustive testing is impossible in most cases. Pure bounded
model checking is sound for error detection only, as the state space is explored
to a limited depth. But enhanced with inductive reasoning it may be extended
to a verification technique. In particular in the realm of safety-critical systems,
the limitations of a verification technique have to be clarified carefully as the
evidence provided by the reported analysis results can only have relevance in a
safety argumentation if the technique is applied in a sound manner.

Furthermore, software verification and validation – whether model-based or
not – do not prove that software will not contribute to serious hazards under
any circumstances. The best what can be achieved is to demonstrate that the
software accomplishes its functional and safety requirements that have been
derived from the aggregated knowledge on the system, its environment, and the
foreseen hazards.

With models as design artifacts new V&V techniques can be applied. If design
models are executable, simulation of the functionality provides additional vali-
dation facilities already in design phases. In case models are formally founded,
model checking, abstract interpretation and theorem proving offer a powerful
formal verification tool kit that can be further enhanced with various abstrac-
tion heuristics or compositional reasoning. If safety-related, extra-functional cha-
racteristics like reliability or the error behaviour, real-time or performance are
explicitly represented in the model, then these can be subject of the analysis,
too. However, reliable data for extra-functional runtime characteristics are most
often only available when software/hardware integration is finished. Hence, ana-
lyses performed at earlier design stages on the basis of estimated values have to
be repeated to approve the results.

Additional V&V techniques are not only a possibility, but are also a necessity
in a model-based development process for several reasons: First of all, manual

8 While false positives principally compromise the value of a verification technique,
false negatives may cause additional effort, but do not put the technique in question.

224 M. Huhn and H. Hungar

review and inspection as traditionally performed on text documents have to be
significantly adjusted for models. Without denying the well-known deficiencies
of textual documents like incompleteness, inconsistency, poor structure, and the
lack of traceability, these problems are at most disarranged but not solved wi-
thout effort in a model-based integrated development environment:

Comprehensibility of a model-based design can be negatively affected by as-
pects of the method, the modeling language and the tooling: The design is usually
scattered over several views and kinds of diagrams. Moreover, UML is a rich no-
tation that often offers a set of alternative modelings to express the same issue.
The developer may not oversee all semantic interdependencies between complex
issues like object creation or deletion, event handling, transition selection, or
run-to-completion-steps, even if the semantics is precisely defined. Tools often
hide the details in the top view on a diagram, like, e.g., attribute or method
declaration in class diagrams or inner hierarchy levels in statecharts. Moreover,
specific settings severely influencing the semantics are often accessible only via
nested preference lists or attribute tables within internal model browsers. Ano-
ther open issue is the accessibility of different versions of a model stemming from
earlier design phases or abstraction levels within one model repository.

”Collateral validation”, as the implicit team validation has been called by
Heimdahl [10], is lost, if model-based development comes along with large scale
automation: Traditional development processes of safety-critical systems involve
a plurality of experts whose expertise covers a broad field ranging from domain
knowledge and software architecture to detailed questions of process and com-
munication integration and hardware drivers. In the V&V phases, test experts
and validators have a good chance to identify the tender points in a design due
to their experience. Model design encompasses tasks from the whole field and is
performed by fewer developers who may not always distinguish all consequences.

Also from a more technical perspective, several issues have to be considered to
provide a conclusive safety argument for a model-based development approach.

Model paradigms: Software design and verification models are based on a
model of communication and computation (MoCC) defining an abstraction
from physical time, the granularity of steps, a concurrency paradigm etc.
These abstractions may be adequate on a certain level of abstraction and
in certain contexts. On the level of implementation, the safety-critical soft-
ware applications are going to be executed in an environment of real-time
operating systems (RTOS) and communication protocols like IMA [53] or
time-triggered protocols [54]. Only if these support safe abstractions to ana-
lyzable MoCCs – which is not always the case – one may develop the software
applications independently from the RTOS. For applications themselves, an
answer to the model abstraction problem is given by approaches that esta-
blish a direct correspondence between the formal model and the code like
Safe-UML(P) (see Sec. 8.3.3 [18] or SystemC models in RCSD [49]).

Model content: It has to be justified by thorough model-based validation that
the formalized description of the requirements in a model-based specification
and their implementation in a design model meet the informal, intended

UML for Software Safety and Certification 225

requirements. Only then a formal modeling framework can benefit from the
enormous pool of techniques on model-based verification. Supplementary
vacuity checks can assure the specification in fact covers the relevant behavior
of the model (see Heimdahl for an overview [10]). Another caveat is the
impact of simplifications and omissions: For scalability reasons or due to an
early design stage, sub-systems or parts of the functionality are modelled
very coarsely or omitted at all. Obviously, verification results have to be
proven robust against such simplifications.

Backend questions: The more behavioral abstraction a modeling notation
provides, the more is added in a code generation step that can only roughly
be configured by the designer. In particular, extra-functional run-time pro-
perties like execution times and storage consumption may heavily depend
on a prudent choice and combination of modeling elements.
Software-intensive technical systems are mostly assembled with proprietary
hardware and operating systems for good reasons. But code generation of
commercial modeling tools is optimized and approved for usage on standard
processors. Thus, the code generator and linker have to be customized, which
is a delicate task for specialists with joint expertise on the tool and the target
system.

Tool qualification: The fundamental soundness requirements on tools offering
early simulation, code generation, or formal verification are the coincidence
of the simulation, the verification, and the execution semantics and sound
reasoning mechanisms. If the execution semantics diverges from any of the
other, or the deduction mechanism is corrupted, V&V results achieved on
the basis of the simulation or verification semantics become worthless.

In contrast to many papers advertising verification techniques, successful in-
dustrial applications of formal model-based techniques mainly address detailed
component design, not only for scalability reasons, but also for the validation
needs and the caveats mentioned above. To benefit from formal verification and
early simulation, a model must be precise and detailed with respect to all as-
pects that are the subject of verification. This can usually be carried out in the
detailed design phase at the earliest.

8.5.2 Testing

Testing is the predominant V&V method applied in practice. For safety-critical
systems, the standards explicitly recommend testing. Major test purposes are
(1) to explore the functional specification in appropriate detail, (2) to execute
the code to a sufficient degree of completeness, and (3) to ensure that the soft-
ware is running properly on the target hardware. Therefore, a number of testing
techniques are listed in the standards like testing based on equivalence partitio-
ning of inputs, boundary value analysis or structural coverage criteria referring
to data and control flow. Additionally, prototyping and animation for design
validation, stress testing and exploratory or risk based testing are advised.

226 M. Huhn and H. Hungar

Executable design models pave the way to integrate testing activities in design
phases: Well accepted test-selection criteria and the derived test-case specifica-
tions making such test criteria operational can be easily adapted to generate test
suites that are applicable on the level of executable models instead on the code
level. For instance, coverage criteria like statement, decision or MC/DC coverage
have been transferred to statechart models [55].

This way, development fully benefits from providing executable models early
in the process: Relevant shortcomings in the requirements specification can be
detected before detailed design and costly implementation efforts are started.

In the following, we shortly discuss three specific approaches to adapt testing to
model-based development:

(1) Design models from a previous development stage build the specification
from which test cases are constructed.

(2) Test models are built independently from the artifacts used in the develop-
ment and serve as basis for test case generation.

(3) Models are built by (automated) abstraction from code.

Test Cases Generated from Specifications
In the first approach, the current model or implementation is tested with respect
to its conformance to a specification from a previous phase. Generating test cases
from a previous design model can be applied iteratively at each stage to uncover
deviations of the behavior of the current model from that of preceding models
or artifacts. Detected deviations may have several causes:

– A preceding design step is flawed, but the specification is correct with respect
to the original requirements.

– The preceding model or requirements specification is ambiguous or incom-
plete. This may concern the function to be realized, the execution platform
and its limited resources or the assumptions on the environment. At some
point, such an aspect may come into focus because the latter, more detailed
model requires to settle it.

– The current model integrates different views or parts of the system that
have been developed separately so far9. In such a step, testing conformance
to the preceding separated models may reveal inconsistencies and erroneous
assumptions that have been introduced into one of the preceding models.

However, as the test cases are derived from the same source as the current design
model, this approach may support verification, but no independent validation.
In other words, this approach uncovers inconsistencies that are inherent in the
requirements specification itself or introduced in functional refinement steps.
Mismatches between the functional specification, the execution platform and
the environment can be detected only if the integrated models address these
issues. But if for any reason the issue is not faithfully reflected in the design
models this approach will not reveal any hint to a problem [56].
9 Examples are functional composition or resource allocation and deployment in a

layered architecture.

UML for Software Safety and Certification 227

Independent Test Models
The second approach is to construct dedicated test models independently from
the line of design models. Independence of the test model from the design models
opens up new views [57] for the obvious price of additional effort:

– The test model may represent the system under development (SUT), mo-
deled from the testing perspective, but also the system operator or the en-
vironment. Between these positions, numerous combinations of SUT and
environmental models are possible that may apply various abstraction prin-
ciples. For instance, a SUT test model may be restricted to the most common
usage scenarios or a functional kernel, an environmental model may consists
of a stochastic profile on input values and loads and their admissible ranges.

– Modeling formalisms differ with respect to the handling of fundamental
concepts like time, causality, determinism, etc. Additionally, they provide
different views and follow different computation paradigms like functional,
operational, probabilistic or data-flow-oriented models.

The key issue of an additional test model is to complement the knowledge on
the SUT from an independent perspective. As the test model is not a step in the
design, it may be optimised for validation and verification purposes with respect
to the functional and extra-functional requirements addressed, but also in terms
of the concepts, paradigms and notational elements used for modeling. Heim-
dahl [10] reported on experiences that complementing a specification by several
alternative models is considered a major factor towards achieving completeness.

Often, test models directly support derivation of test cases; alternatively, more
general test generation techniques via the definition of test selection criteria can
be adopted. Thus, building independent test models is adequate for all verifi-
cation purposes mentioned in the previous paragraph, and it adds a chance to
uncover defects that are outside the focus of the design artifacts, and extends
the scope towards validation.

Models as Code Abstractions
A third use of models for testing safety-critical systems is to deduce a formal
behavioral model as an abstraction from code and - if needed - a machine model.
An intermediate representation can be extracted from source code by standard
parsing techniques. The intermediate representation is symbolically interpreted
on an abstract machine model. Thereby, constraints on the variables are collected
and simplified by various techniques from abstract and concrete interpretation.
Solving the constraints enables the generation of input values for a test case that
covers a particular run through the model. The method supports the efficient
generation of test cases for structural coverage criteria and boundary value ana-
lysis, but also the precise construction of test cases for certain classes of runtime
errors. This way, testing the software/hardware integration can be transferred
partially to the model level when using a refined hardware model. An testing
technology based on this kind of models has been proposed by Peleska [58].

All three approaches to integrate testing in model-based development provide
new prospects of design verification at an earlier stage than code integration on

228 M. Huhn and H. Hungar

the target platform. They do not eliminate the need for final tests by executing
the implementation on the target system and showing that module, integration,
system, and acceptance tests are passed. But they can shorten these activities
and iterations in the design by uncovering errors earlier.

8.5.3 (Formal) Verification

In contrast to testing, the promise of formal verification is a hundred percent gua-
rantee for compliance of an artifact with a certain claim. Though this may sound
highly attractive, formal verification is still, even after forty years of thorough
research, only used very rarely in the development of safety-critical systems.
Some of the main obstacles can be summarized as follows.

(1) Incompatibility with the established design process.
(2) Limited scope and immaturity of the techniques and tools.
(3) Lack of skilled personnel.

We addressed the first and second point partly in Sec. 8.4. Here, we will elaborate
more on the fundamental weakness of formal verification in practice, namely, that
it firstly offers a proof in the mathematical sense and usually not in the juridical
sense. This means that mathematical proofs are in most cases not easily usable
in certification processes. This is due to several reasons.

(1) The proofs, if produced explicitly at all, are very large so that they cannot
be checked manually.

(2) Tools which produce the proofs need to be verified or at least qualified them-
selves, what they usually are not.

(3) The statements proved are accessible only to specialists, and they are often
difficult to interpret correctly.

We will exemplify these reasons by studying two proof techniques, model che-
cking and theorem proving, and suggest remedies to these obstacles.

Model checking: Model checking is the name for mostly automatic proof routines
which check whether the set of behaviors of a program (its runs) are a model for
a specification formula, i.e., whether the runs satisfy the specification. There is a
multitude of different model-checking algorithms and implementations. Explicit
model checkers enumerate systematically execution states of the program, sym-
bolic and SAT-based model checkers operate on logical representations of states.
Common to most model checkers is the requirement that the examined program
has only finitely many states (maybe after abstraction), and model checking
consists in cleverly covering all relevant cases. The problem with this approach
is that model checking is not intended to produce a proof – if the system is
correct, its output may simply be “yes”.

This is of course of not much help in convincing a certification authority
of the correctness of a particular statement. Since model checkers are complex
programs and efficiency is a major issue in their design, they are themselves hard
to verify. A very appealing way to overcome this hurdle is the following.

UML for Software Safety and Certification 229

(1) Extend the model checker to produce a proof. Such a proof might be rather
large, but will likely employ only simple constructs – codes for finite sets,
boolean representations and so on.

(2) Design a tool to check those proofs. It is easier to check proofs then to
construct them, and checking has only to be performed on the proofs relevant
to the safety case – namely on the final versions of design artifacts. Therefore,
such a tool need not be as efficient and elaborate as the prover itself, so it
can be much simpler and will be easier validated.

(3) Apply proof generation and proof checking for the program version to be
certified. Previous versions which have been produced during the develop-
ment need not be treated as thoroughly. Though formal verification may be
applied to them, the verification itself need not be checked.

Examples of how to extend different model checkers can be found in [59, 60],
though we are not aware of any realization used in practice. The reader may
consider the experiences with model checking Rhapsody in Sec. 8.5.4 to see
reasons for this state of affairs.

Theorem proving: Theorem proving offers a flexible way for machine assisted
proof of complex verification problems, see for instance the impressive achieve-
ments of the VeriSoft project [61, 62]. In principle, theorem provers construct
proofs, but there are two caveats: First, the proofs are constructed on the fly,
that means, they are not intended to be stored. Second, usually a theorem prover
for software verification employs automatic subroutines to increase efficiency. As
neither the theorem prover implementation nor its automatic subroutines (nor
the computer it runs on) are themselves verified, they face similar difficulties as
model checkers when certification is concerned. And approaches to overcome the
difficulties rely on similar means: Coq (http://coq.inria.fr/) has a small “certifi-
cation kernel” to check proofs, as does the Boyer-Moore theorem prover.

Summarizing, while the confidence in a system’s correctness may be greatly
improved through formal verification, its practical value today is still limited:
The effort involved is high, and the results, if achieved at all, are not readily
usable for system certification. Considering the remarkable progress made in this
field in the recent decade, we expect that these methods will gain importance in
the future.

8.5.4 Tool Support

In this section we give two examples of tools offering V&V support for UML, the
tool set ATG for automatic test generation [63] and the model checker RUVE
(Rhapsody UML Verification Environment) [64]. They both are extensions to
the “Rhapsody�10 in Cpp” design environment. Rhapsody in Cpp has an elabo-
rated Code Generator which produces Cpp code from models consisting of class
diagrams (for structure) and state machines or activity diagrams (for behavior)

10 Now IBM, formerly Telelogic, formerly i-Logix.

230 M. Huhn and H. Hungar

which carry conditions and statements formulated in Cpp. A Simulator permits
to execute the resulting code with user input for external stimuli. There is no
animation of models besides the one through Cpp, other for instance than in the
case of Statemate�. Therefore, one may view the Cpp code as the semantics of
a model.

We continue now with a presentation of the extensions and a discussion of
their suitability for a safety-critical development.

Test Generation
The architecture of the test-generation extension (ATG for Automatic Test Ge-
neration)11 to Rhapsody is depicted in Fig. 8.3. A simplified view of the Rhap-
sody environment is on the left of the figure, with Model Constructor, Code
Generator and Simulator as its main components for our presentation. When
an executable model has been constructed, the user can select a part of the mo-
del as a System Under Test (SUT) and provide test goals. These latter can be
expressed on the level either of the Cpp code or of the model itself. The most
important code-level testing goal is MC/DC, in model terms one may ask for
covering all states and transitions of the state machines in the SUT. In our sim-
plified description, we ignore details like code instrumentation (e.g. to observe
coverage in terms of the model) and the issue of the environment of the SUT
which is very important in practice. The goals are fed into the Test Generator.
The generator outputs a set of test sequences driving the model according tothe
specified goals, together with expected reactions of the SUT. It also reportson
the degree of coverage achieved by the set, which is not always hundred percent.

Fig. 8.3. Architecture of the Test-Generation Extension to Rhapsody

11 Developed and marketed by BTC-ES.

UML for Software Safety and Certification 231

The sequences may be exported in the form of sequence diagrams for visua-
lization through the simulator. They can be applied to the model itself, or a
different revision of the model, via the Test Conductor which, in the case of a
regression test, will report any deviation from the expected behavior. Or they
may be exported to other test-execution environments, e.g. for the purpose of
testing compliance of target code or target system to the model. If the coverage
is insufficient, the generated test suites may be completed by manual effort.

ATG can be applied in implementing the first two of the approaches to adapt
testing to model-based development: Test cases generated from a model may be
run on a model from a later stage, or even the target itself (first approach), or
one may generate the test cases from specifically constructed model for covering
certain aspects (second approach). With respect to standard requirements in
safety-critical design, the generated test cases can be used for functional and
black-box testing, or, with specific test models, also for non-functional aspects
like timing.

Qualification is of course an issue. The test generator is the most advanced
component of the ATG extension. It works by symbolically executing the Cpp
code. Fortunately, the test generator itself does not have to be validated. Ins-
tead, one may independently – using a much simpler tool – validate the coverage
achieved. The test-cases conductor is more critical. If one relies on automatic
execution, the environment performing the tests has to be validated. Alternati-
vely, one may add extensive reporting to provide evidence for correctness and
completeness of the test execution.

Summarizing, the ATG extension to Rhapsody provides tool support to au-
tomate part of the testing activities which consume a substantial percentage of
the development effort. Thus, it adds to the advantages of model-based design
over traditional methods. Taking adequate provisions, ATG may even be applied
when developing a safety-critical system.

Model Checking
The architecture of the model-checking extension is depicted in Fig. 8.4. Cpp
code generated from Rhapsody models is translated into an automaton format
and fed into a model-checking engine, whose other input may come from a num-
ber of different specification formats (graphical, pattern-based, temporal-logic
formulae). The model-check engine is based on VIS, i.e. it is a symbolic mo-
del checker employing BDDs (Binary Decision Diagrams)12. Its output is either
the message that the model satisfies the specified requirement (“true”) or an
error path which may be animated on the model or visualized as a graphical
specification.

Other than the ATG extension, RUVE is limited in the input it can process.
Some of the limitations are inherent, others are founded in the experimental,
not yet mature state of the tool set. Since semantically, the input to the model
checker must be a finite automaton, dynamic object creation must be limited by
static bounds. Also, the component and association structure cannot be changed

12 A SAT-based engine may be used as an alternative.

232 M. Huhn and H. Hungar

Fig. 8.4. Architecture of the Model-Checking Extension to Rhapsody

freely. Floating point numbers are not permitted for complexity reasons, and
pointer operations are restricted. What remains is still a large and practically
usable subset of the features of Rhapsody in Cpp.

The main usage of model checking is the verification of properties, which
are, despite the different input formats available to the user, in their essence
temporal-logic formulae. Model checking thus offers a way to verify properties
which are predicative in nature. It is less suited to show refinements, e.g. that
some model implements another, more abstract one. A second use case employs
the error-path feature for design animation. For the specification “Always Not
In(S)”, the model checker will output a path leading to the state S if S is
reachable. In that way, one may explore a model with automatic support. Further
usages employ instrumented models.

If one wants to use the model checker for direct verification, the qualification
question becomes important. There are two main issues.

First, the model checker does not work on the Cpp code (which, as already
discussed, can be seen as the true semantics of the UML model), but on an
automaton which has been generated by a nontrivial translation process. One
way to ensure the correctness of this step is to employ methods from compiler
validation. One could either validate the Code Translator, or independently
verify that it worked correctly on those models appearing in the safety case.

Second, one will have to verify the operation of the Model Checker com-
ponent. Since it seems impractical to certify this engine – the model checker
works on advanced data structures and is geared towards efficiency – the best
option is to verify that it worked correctly in the invocations relevant to the
safety case. In Sec. 8.5.3 we explained that a promising way is to equip the model

UML for Software Safety and Certification 233

checker with a feature that produces on request a proof for the answer “true”.
Though this has not been done for a BDD-based model checker as far as we
know, there is no fundamental difficulty involved. A proof will be a large object,
but a rather simple procedure would be able to check its correctness.

These obstacles prevent the practical application of RUVE in a safety-critical
development today. In addition, the resource consumption of RUVE is high
already for rather small UML models. One may say that UML state machines –
at least in this Rhapsody implementation – are a rather difficult object for formal
verification. As a result, RUVE can be applied successfully only in specific cases,
e.g. to aid the designer in analyzing a small model thoroughly. This may either
be an abstract model at an early design stage, or a model of a component like
one implementing a protocol for which model checking is particularly suited.
Other than test generation, model checking does not seem mature enough for
industrial application in UML-based design. Design for verification (i.e., language
restrictions), dedicated procedures and additions for certification seem to be
called for to enable profitable use of model checking on a larger scale.

8.6 Conclusion

UML and its extensions offer modeling elements for most aspects of interest in the
context of safety-critical software and system development. A major advantage of
UML is its wide dissemination for general purpose software development, while
e.g. domain-specific languages face communication barriers due to their limited
user basis. It is also clear that by introducing UML into the safety-critical systems
domain not any UML expert will automatically become a software safety engineer.

Model-based software development is not yet considered in the safety-critical
system standards. But statutory obligations and best practices recommend de-
sign qualities like structuredness, simplicity, and preciseness that are among the
key promises of model-based development. Considering the plurality and com-
plexity of UML, UML profiles and variants providing a well defined set of views
and a restricted set of notational elements with precise (formally defined) se-
mantics seem to be well suited for safety-critical systems. Upon the notational
basis, a consistent set of techniques supported by qualified tools has to be de-
fined that facilitates integration of UML models as key artifacts in a software
safety design process. Limited maturity of techniques and tools as well as lack of
elaborated methods supporting specific safety strategies are still severe hurdles
for the proliferation of UML in industrial safety-critical software design.

Verification and validation benefit a lot from executable models in early
design phases. Formal verification and testing contribute with a new quality of
rigour and completeness to verification efforts. Recent research in this field has
achieved substantial progress towards real-world size models and integration into
industrial design processes. By customizing verification techniques to particular
UML-based modeling frameworks, an equivalence between the verification mo-
del and the generated code executed on an abstract machine has been established

234 M. Huhn and H. Hungar

for several tool environments. Such approaches are pathbreaking with regard to
the rigour in establishing functional correctness. In addition, the adaptation of
static analysis techniques to UML models enables assurance of most statically
verifiable properties in principle. But in the whole, tool support is still fragmen-
ted, scalability is limited, and skilled personnel is rare.

Additionally, certification aspects have yet to be addressed adequately: A
number of formally founded approaches still lack an explicit and conclusive ar-
gument on how mathematically proven facts relate to the properties of the real
system, its software components, and the software design artifacts. Despite ad-
vances proposing solutions to particular aspects and sketches of integrating them
with the software safety analysis sub-process, this still need to be improved for
most UML-based techniques. This applies for design-centered methods as well
as for V&V-centered ones.

Therefore, we may conclude that a lot of useful progress has been made.
And while no mature, consistent methodology has been found yet, with prudent
choice of techniques and tools, employing UML can improve the development of
safety-critical systems in practice today.

References

[1] Leveson, N.: Safeware - System Safety and Computers. Addison-Wesley, Reading
(1995)

[2] Lutz, R.: Software engineering for safety: A roadmap. In: FOSE 2000: Future
of Software Engineering, Washington, DC, USA, pp. 137–152. IEEE Computer
Society, Los Alamitos (2000)

[3] McDermid, J.A., Pumfrey, D.J.: Software safety: Why is there no consensus? In:
19th International System Safety Conference, System Safety Society (2001)

[4] European Committee for Electrotechnical Standardization: EN 50128: Railway
applications - communications, signaling and processing systems - software for
railway control and protection systems (2001)

[5] Radio Technical Commission for Aeronautics (RTCA): Software Considerations
in Airborne Systems and Equipment Certification (December 1992)

[6] Intern. Electrotechnical Commission: IEC 61508: Functional safety of electrical /
electronic / programmableelectronic safety-related systems (1998)

[7] Federal Aviation Administration: System Safety Handbook (2008)
[8] Bernardi, S., Merseguer, J., Petriu, D.C.: Adding dependability analysis capabi-

lities to the MARTE profile. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A.,
Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 736–750. Springer, Hei-
delberg (2008)

[9] Bernardi, S., Merseguer, J.: A UML profile for dependability analysis of real-time
embedded systems. In: Proceedings of the 6th International Workshop on Software
and Performance (WOSP), pp. 115–124 (2007)

[10] Heimdahl, M.P.E.: Safety and software intensive systems: Challenges old and new.
In: FOSE 2007: Future of Software Engineering, Washington, DC, USA, pp. 137–
152. IEEE Computer Society, Los Alamitos (2007)

[11] Intern. Electrotechnical Commission: 65A/524/CDV: IEC 61508-3: Functional sa-
fety of electrical/electronic/programmable electronic safety-related systems part
3: Software requirements, Committee Draft for Voting (2008)

UML for Software Safety and Certification 235

[12] Esterel Technologies: Scade 6.0 (2008)
[13] McDermid, J.A., Nicholson, M., Pumfrey, D.J., Fenelon, P.: Experience with the

application of HAZOP to computer-based systems. In: Haveraaen, M., Dahl, O.-J.,
Owe, O. (eds.) Abstract Data Types 1995 and COMPASS 1995. LNCS, vol. 1130,
pp. 37–48. Springer, Heidelberg (1996)

[14] Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, Cambridge (1993)

[15] Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
[16] Zoughbi, G., Briand, L., Labiche, Y.: A UML profile for developing airworthiness-

compliant (RTCA-DO-178B) safety-critical systems. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 574–588.
Springer, Heidelberg (2007)

[17] Hooman, J., Kugler, H., Ober, I., Votintseva, A., Yushtein, Y.: Supporting UML-
based development of embedded systems by formal techniques. Software and Sys-
tem Modeling 7(2), 131–155 (2008)

[18] Hungar, H., Robbe, O., Wirtz, B.: Safe-UML - Restricting UML for the de-
velopment of safety-critical systems. In: Schnieder, E., Tarnai, G. (eds.) Proc.
FORMS/FORMAT 2007, pp. 467–475 (2007)

[19] Object Management Group: UML Profile for Modeling and Analysis of Real-Time
and Embedded systems (MARTE), Beta 2 (2008)

[20] Berkenkötter, K., Hannemann, U.: Modeling the railway control domain rigorously
with a UML 2.0 profile. In: Górski, J. (ed.) SAFECOMP 2006. LNCS, vol. 4166,
pp. 398–411. Springer, Heidelberg (2006)

[21] Object Management Group: SysML Specification Version 1.1 (2008-11-02) (No-
vember 2008), http://www.omg.org/spec/SysML/1.1/

[22] ATESST2: EAST-ADL2 Profile Specification (January 2008)
[23] Kelly, T.: Arguing Safety – A Systemic Approach to Managing Safety Cases. PhD

thesis, University of York (September 1998)
[24] ISO TC22/SC3/WG16: Road Vehicles – Functional Safety. Committee Draft (Sep-

tember 2008)
[25] Telelogic: Rhapsody (2008)
[26] Eclipse Modeling Framework Project, EMF (2008),

http://www.eclipse.org/modeling/emf/

[27] Graydon, P.J., Knight, J.C., Strunk, E.A.: Assurance based development of critical
systems. In: The 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), pp. 347–357. IEEE Computer Society, Los Alamitos
(2007)

[28] Damm, W., Josko, B., Pnueli, A., Votintseva, A.: A discrete-time uml semantics
for concurrency and communication in safety-critical applications. Sci. Comput.
Program. 55(1-3), 81–115 (2005)

[29] Harel, D., Marelly, R.: Come, Let’s Play - Scenario-Based Programming Using
LSCs and the Play-Engine. Springer, Heidelberg (2003)

[30] Bozga, M., Graf, S., Mounier, L.: If-2.0: A validation environment for component-
based real-time systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 343–348. Springer, Heidelberg (2002)

[31] Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 748–752. Springer,
Heidelberg (1992)

[32] Object Management Group: UML2.0 superstructure specification (2005)
[33] Eisenbahn-Bundesamt: Technische Grundätze für die Zulassung von Sicherung-

sanlagen (1999)

http://www.omg.org/spec/SysML/1.1/
http://www.eclipse.org/modeling/emf/

236 M. Huhn and H. Hungar

[34] Guidelines for the use of the language C in critical systems (2004)
[35] Sanders, R.: Rhapsody 6.0 properties, Technical report, OSC-ES, Oldenburg, Ger-

many (2006)
[36] Robbe, O.: Analysis of the Rhapsody C++-code and framework according to

compliance with the EBA-guidelines 42720 and 42730. Technical report, OFFIS,
Oldenburg, Germany (2005)

[37] Object Management Group: UML Profile for Schedulability, Performance, and
Time (SPT), Version 1.1 (2005)

[38] Papyrus for UML (2009), http://www.papyrusuml.org
[39] Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System level

performance analysis - the SymTA/S approach. IEEE Proceedings Computers
and Digital Techniques 152(2), 148–166 (2005)

[40] Thiele, L., Chakraborty, S., Naedele, M.: Real-time calculus for scheduling hard
real-time systems. In: International Symposium on Circuits and Systems (ISCAS),
vol. 4, pp. 101–104 (2000)

[41] Hagner, M., Huhn, M., Zechner, A.: Timing analysis using the MARTE profile in
the design of rail automation systems. In: 4th European Congress on Embedded
Realtime Software, ERTS 2008 (2008)

[42] Object Management Group: UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms Specification, Version 1.1 (2008)

[43] Espinoza, H., Dubois, H., Gérard, S., Pasaje, J.L.M., Petriu, D.C., Woodside,
C.M.: Annotating UML models with non-functional properties for quantitative
analysis. In: Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 79–90. Sprin-
ger, Heidelberg (2006)

[44] Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of dependability.
Technical Report LAAS Report no. 01-145, UCLA, LAAS-CNRS, Univ. of New-
castle upon Tyne (2001)

[45] Pataricza, A.: From the general ressource model to a general fault modeling para-
digm? In: Jürjens, J., Cengarle, M.V., Fernandez, E.B., Rumpe, B., Sandner, R.
(eds.) Critical Systems Development with UML – Proceedings of the UML 2002
workshop, TU München, Institut für Informatik, pp. 163–170 (2002)

[46] Thomas, F., Delatour, J., Terrier, F., Gérard, S.: Towards a framework for expli-
cit platform-based transformations. In: 11th IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC), pp. 211–218. IEEE
Computer Society, Los Alamitos (2008)

[47] Graf, S., Ober, I., Ober, I.: A real-time profile for UML. International Journal on
Software Tools for Technology Transfer (STTT) 8(2), 113–127 (2006)

[48] Berkenkötter, K.: OCL-based validation of a railway domain profile. In: Kühne, T.
(ed.) MoDELS 2006. LNCS, vol. 4364, pp. 159–168. Springer, Heidelberg (2007)

[49] Haxthausen, A., Peleska, J., Große, D., Drechsler, R.: Automated verification of
train control systems. In: Formal Methods for Automation and Safety in Railway
and Automotive Systems (FORMS/FORMAT), pp. 252–265 (2004)

[50] Hungar, H., Bruhns, G., Plan, O., Lemke, O.: OPRAIL - Normenkonforme Ent-
wicklung sicherheitsrelevanter Software unter Einsatz der UML. Signal + Draht 7
(2007)

[51] Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Reading (2000)
[52] Dwyer, M.B., Hatcliff, J., Robby, P.C.S., Visser, W.: Formal software analysis

emerging trends in software model checking. In: Briand, L.C., Wolf, A.L. (eds.)
Workshop on the Future of Software Engineering (FOSE), pp. 120–136 (2007)

http://www.papyrusuml.org

UML for Software Safety and Certification 237

[53] Lewis, J., Rierson, L.: Certification concerns with integrated modular avionics
(IMA) projects. In: Digital Avionics Systems Conference (DASC). IEEE, Los
Alamitos (2003)

[54] Kopetz, H., Grünsteidl, G.: TTP - a protocol for fault-tolerant real-time systems.
IEEE Computer 27(1), 14–23 (1994)

[55] Mücke, T., Huhn, M.: Minimizing test execution time during test generation.
In: IFIP Working Conference on Software Engineering Techniques (SET 2006).
Springer, Heidelberg (2006)

[56] Pretschner, A., Philipps, J.: Methodological issues in model-based testing. In:
Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.) Model-
Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 281–291. Springer, Hei-
delberg (2005)

[57] Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing.
Working Paper 04/2006, Department of Computer Science, The University of
Waikato (2006)

[58] Peleska, J.: A unified approach to abstract interpretation, formal verification and
testing of C/C++ modules. In: Fitzgerald, J.S., Haxthausen, A.E., Yenigün, H.
(eds.) ICTAC 2008. LNCS, vol. 5160, pp. 3–22. Springer, Heidelberg (2008)

[59] Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-
based checker: Practical implementations and other applications. In: DATE, pp.
10880–10885. IEEE, Los Alamitos (2003)

[60] Namjoshi, K.S.: Certifying model checkers. In: Berry, G., Comon, H., Finkel, A.
(eds.) CAV 2001. LNCS, vol. 2102, pp. 2–13. Springer, Heidelberg (2001)

[61] Alkassar, E., Hillebrand, M.A., Leinenbach, D., Schirmer, N.W., Starostin, A.:
The Verisoft approach to systems verification. In: Shankar, N., Woodcock, J. (eds.)
VSTTE 2008. LNCS, vol. 5295, pp. 209–224. Springer, Heidelberg (2008)

[62] Beyer, S., Jacobi, C., Kroening, D., Leinenbach, D., Paul, W.: Putting it all toge-
ther: Formal verification of the VAMP. International Journal on Software Tools
for Technology Transfer 8(4-5), 411–430 (2006)

[63] Lettrari, M.: Using abstractions for heuristic state space exploration of reactive
object-oriented systems. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003.
LNCS, vol. 2805, pp. 462–481. Springer, Heidelberg (2003)

[64] Schinz, I., Toben, T., Mrugalla, C., Westphal, B.: The Rhapsody UML Verifica-
tion Environment. In: Proceedings of the 2nd International Conference on Soft-
ware Engineering and Formal Methods (SEFM 2004), Bejing, China, pp. 174–183.
IEEE, Los Alamitos (September 2004)

Part IV

Model Analysis

9 Model Evolution and Management

Tihamer Levendovszky1, Bernhard Rumpe2,
Bernhard Schätz3, and Jonathan Sprinkle4

1 Vanderbilt University, Nashville, TN, USA
tihamer@isis.vanderbilt.edu

2 RWTH Aachen University, Germany
http://www.se-rwth.de

3 fortiss GmbH, München, Germany
schaetz@fortiss.org

4 University of Arizona, Tucson, AZ, USA
sprinkle@ECE.Arizona.Edu

Abstract. As complex software and systems development projects need
models as an important planning, structuring and development tech-
nique, models now face issues resolved for software earlier: models need
to be versioned, differences captured, syntactic and semantic correctness
checked as early as possible, documented, presented in easily accessible
forms, etc. Quality management needs to be established for models as
well as their relationship to other models, to code and to requirement
documents precisely clarified and tracked. Business and product requi-
rements, product technologies as well as development tools evolve. This
also means we need evolutionary technologies both for models within a
language and if the language evolves also for an upgrade of the models.

This chapter discusses the state of the art in model management and
evolution and sketches what is still necessary for models to become as
usable and used as software.

9.1 Why Models Evolve and Need to Be Managed?

9.1.1 Introduction

Any complex set of artifacts needs to be managed, and models are certainly no
exception—especially given that models are used to help manage complexity, and
are therefore used in complex projects. Even though models do reduce the pro-
ject’s complexity, projects often have a complexity that even clever abstractions
cannot transcend; thus, the models used in such a development project either
become complex themselves or there are very many (perhaps, heterogeneous)
models—or both.

This complexity also means that we cannot just create and forget models,
but we must continuously evolve a model when adding new information, after
quality reviews, redesigns against flaws and (in particular) according to changing
requirements.

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 241–270, 2010.
� Springer-Verlag Berlin Heidelberg 2010

242 T. Levendovszky et al.

9.1.2 Model Management

Model management is the coordination between model-driven engineering (MDE)
artifacts and resources, such as models, metamodels, transformations, correspon-
dence, versioning, etc. [1]. Thinking in terms of these global (and entirely model-
based) solutions has also been referred to as “megamodelling” [2].

Model management helps us to understand the status of models during the
development and the maintenance process as well as how models relate to each
other and to other artifacts of a development project. Proper model management
is therefore a basic necessity to run a model-based development process (of a
certain complexity). Most of the model management techniques are primarily for
the developers themselves to simplify their life, increase efficiency when assessing
or evolving models and ensure that less tedious work has to be done or even re-
done when requirements or technical components evolve. Other techniques in
particular high-level reports are for the project management— to understand
and measure progress and project status.

Among model management techniques, we distinguish the following main ca-
tegories:

– Checking for structural qualities of models, such as consistency and comple-
teness on the one hand, but also guideline checking for additional quality
attributes like readability or evolvability

– Transforming of models, including constructive and declarative descriptions
of structural relations between models

– Versioning and version control of models, including the reporting of diffe-
rences between model versions and merging of independently changed models
with a common ancestor (so called “three way merge”)

While we consider code generation, analysis and simulation tools the part of
model management, we will not concentrate on these issues, but rather on the
issues that treat the models as artifacts. Code generation, model-based analysis
and simulation, etc., are undergoing heavy discussion and development right
now, and there is a tremendous variety of approaches, from interactive one-
shot generation of code-frames to repeatable fully automatic generation and
customization/configuration of complete and deployable software components.

Model management for embedded systems includes additional twists on ma-
naging models for non-software artifacts. For example in product lines or other
kinds of evolvable systems it is necessary to keep track of the connections between
software and the mechanical, hydraulic or electric parts of an engine and their
controlling software. This needs integrated models and thus integrated model
management.

Model management for embedded systems includes additional twists on ma-
naging models for non-software artifacts. For example in product lines or other
kinds of evolvable systems it is necessary to keep track of the connections between
software and the mechanical, hydraulic or electric parts of an engine and their
controlling software. This needs integrated models and thus integrated model
management.

Model Evolution and Management 243

9.1.3 Model Evolution

According to our taxonomy, model evolution is one part of the more general
model management issue. However, model evolution has many variations, and
it is an important piece of model management. That is why we concentrate on
model evolution, both from methodical as well as from a technical viewpoint in
Section 9.3, because many of its concepts can be generalized to reflect versioning,
interchange, tracking, consistency, etc.

In this paper, we use the term model evolution to refer to techniques to adapt
existing models, as well as their related context, according to evolving needs.
This context includes other models, code, tests, informal descriptions etc. that
all might be affected when a model’s content is changed. Evolution occurs when
requirements or technology change as well as when improvements are made.

Model evolution may be necessary because of quality deficiencies according to
two categories: if the model does not fit its context anymore; or if the represen-
tation of a model is bad and needs to be enhanced (e.g., to increase readability).
As an important new problem, we also see the need of models to evolve together
with the underlying language in which the model is expressed. As domain-specific
languages (DSLs) [3] increase in popularity, and are often developed within or
in parallel to the project, the evolution of a language quite often enforces the
evolution of the models as well.

In this paper, we use language evolution to refer to techniques to evolve a
modelling language according to domain or technology change, including the
parallel evolution of that language’s models and tools.

9.1.4 Chapter Outline

The rest of this chapter is organized as follows. Section 9.2 discusses the above
mentioned techniques of model management. Section 9.3 deals with management
of models, both from methodical as well as from a technical viewpoint, and in
Section 9.4, we examine a particular instance of evolution driven by evolution of
a domain-specific language. Furthermore, we examine in detail the case in which
the evolution happens in small steps rather than abrupt changes.

9.2 Model Management

With a more widespread use of industrial-scale models throughout the develop-
ment process, ‘classical’ problems found in code-oriented development start to
impact a model-based development in a similar manner: The legacy of long-living
models requires to address issues such as modeling standards and the quality of
models, or model-versioning and -merging.

While for a code-based development many solutions have already been put
in place to counteract these problems, in mode-based development these solu-
tions are increasingly becoming available. For many issues, e.g., conformance
or consistency analysis, the use of concept-rich, domain-specific models with a

244 T. Levendovszky et al.

precise interpretation even allow to improve existing solutions for a code-based
approach with its weaker-structured, more generic form of representation. For
other issues, e.g., the merging or versioning, the additional complexity introdu-
ced by the rich structure of models leads to new challenges.

9.2.1 Model Quality and Modeling Standards

The application of quality constraints on the construction of software products –
generally in the form of standards providing rules and guidelines for the construc-
tion of code – has repeatedly shown its merits in the development process concer-
ning the quality of the product, both with respect to reliability as well as the
maintainability. While the use of models in a development process provides an
important constructive form of quality assurance, the rich and rigid structure
and the domain-specific nature of the models used in the development allow to
add new forms of quality constraints to the development process.

Therefore, quality constraints have increasingly gained attentions. Modeling
tools provide mechanisms to ensure that the model under development respect
modeling guidelines (e.g., the MAAB [4] guidelines for the Matlab/Simulink
tool such [5]). Depending on the extent of these guidelines, they provide some
constraints on the presentation (e.g., start state in top left area), the structure
(e.g., number of interface elements), or even their interpretation (e.g., no lacking
transitions). These constraints help to improve quality aspects like understan-
dability, maintainability or even correctness.

Since obviously, not every syntactically correct model is a good model, there
are many additional constraints that need to hold for a model to make it rea-
dable, changeable, or usable, etc. Depending on the nature of the constraints –
and subsequently their implementation in a corresponding modeling framework
– different kinds of conditions can be classified:

Syntactic constraints are immutable constraints enforced by construction on
the structure of the model, ensuring that a model conforms to its meta-
model and thus can be processed, stored and loaded, etc. Such a constraint
e.g. ensures that a transition always is connected to a start and an end state.

Well-formedness constraints are constraints on the structure of the model
enforced at specific steps in the development process, to ensure that the
model is structurally sound. Such a constraint, e.g., ensures that used va-
riables are actually defined and have the appropriate type. Such conditions
are generally mechanically checked, e.g., upon processing or editing models.

Semantic constraints are constraints on the interpretation of a model, to en-
sure that a model is semantically correct. Such constraint, e.g., ensures that
a state-transition model is not non-deterministic or incomplete. These condi-
tions cannot always be effectively checked mechanically, facing the typical
problems of model-checking approaches.

Note that shifting constraints between the first and the second class influences
the rigidness of the development process.

Model Evolution and Management 245

Since model-based development increasingly deals with ’mega-modeling’ is-
sues [6] like large-scale, distributed models including linking models from hetero-
geneous domains – or meta-models – a second taxonomy builds around relations
within and between models and domain-languages:

Intra-model conditions are defined over a single given model and thus can
be formalized within the same domain-language and checked on a single
model directly. A typical example is the type-correctness of a single data-
flow model.

Inter-model conditions are conditions define for a set of models from the
same domain, which still can be formalized within the same language but
are checked on a set of models. A typical example is the interface consistency
between models describing the environment of a system and its internal
structure.

Inter-language conditions are conditions defined on a set of model of dif-
ferent modeling domains or languages. These conditions do not only require
to check several models, but also can only be expressed in a super-language
for these different languages. A typical examples is the consistency between
different abstractions or viewpoints of a system, e.g., in case of the UML
with its various sub-languages the consistency between a sequence diagram
of a component, its state machine, as well as its interface view.

As both taxonomies are independent of each other, each combination has its
relevance in the practical application.

For the practical application of conformance constraints in the development
process, support for the definition of constraints on the models of the product un-
der development as well the automated enforcement of these constraints proves
to be an important asset, improving and front-loading this form of quality assu-
rance in a model-based approach.

By adding a mechanism to automatically check for the validity of these
constraints with respect to a product model and report violations on the le-
vel of the product model, conformance analysis can be supported by translating
constraints of the guidelines to conformance conditions and using this mechanism
for their validation.

Since analyzing the conformance of a model of a product to a certain modeling
guideline is becoming increasingly relevant for the model-based development
process, corresponding functionalities are added to tools supporting this kind
of process. For widely used tools such as MatLab [5], additional mechanisms
– integrated into the tool itself or provided as a stand-alone checker – ensure
that the model under development respect conformance constraints. However,
since often those mechanisms use the API of the tools (e.g., M-Script for MINT
or Model Advisor [5]; Java for MATE [7]; MDL for ConQAT [8]), conformance
constraints are rather defined on the level of the concepts of implementation
language than at level of the concepts of the application domain.

Here the fact can be exploited that the conceptual domain model allows to
define a conceptual product model and furthermore provides a vocabulary capable

246 T. Levendovszky et al.

Fig. 9.1. Defining a Conformance Condition

of defining properties of such a product model. In order to enforce conformance
constraints on products of a specific domain of application, this vocabulary must
allow to express these constraints as logical conditions over the classes and as-
sociations of the concept model characterizing the domain of application. Ob-
viously, this formalism should reflect the concept model as closely as possible, to
abstract from the actual technical representation of the model of the product.

In [9], an approach is used for formalization of conformance constraints based
on the OCL formalism [10]. [11] uses a simular formalism, based on predicate
logic with the classes and associations of the concept model as first-class-citizens.
Constraint checking can be performed by

– providing a checker separate from the tool for the construction of the product
itself, generating a report as mentioned for the further improvement of the
model; this technique is chosen in the former approach;

– integrating the checker into the construction tool, allowing direct navigation
or direct application of improvement operations; this technique is chosen in
the latter approach.

Independently of the degree of integration, this form of constraint analysis is
performed in three steps:

(1) Definition of constraints, often combined with a grouping of similar constraints
(2) Checking of the validity of the constraints
(3) Inspection of the counterexamples for violated constraints.

In the following, these steps are demonstrated for the approach described in [11].
Although conformance analysis can be understood as checking the validity

of conceptual conditions, for practical application, issues besides the evaluation
have to be considered. Therefore, as shown in Figure 9.1, the definition of a
consistency condition consists of a constraint name for selecting the the condition
using the process interface, an informal constraint description, generally for the

Model Evolution and Management 247

Fig. 9.2. Checked Conditions of a Phase

purpose of the condition and possible remedies in case the condition does not
hold for the model, and an expression formalizing the condition definition.

Besides the validity of the consistency condition, the collection of all model
elements not satisfying the condition are an important result in case the condi-
tion is not satisfied. Accordingly, the user is rather interested in in all model
elements satisfying the complement of the consistency conditions. To check the
validity of the formalized constraints in the next step, the constraints are eva-
luated. If all conditions are satisfied, the validity is stated. Otherwise – as shown
in Figure 9.2 – violated entry conditions like ‘Unique Port Names’ are reported,
and can be inspected as described below.

When evaluating a constraint, besides returning its validity, the checker re-
turns the set of all unsatisfying assignments of the quantified variables. This
collection of model elements not satisfying the consistency condition is the set
of all counterexamples throughout the product model violating the consistency
constraint imposed on the model

As shown in Figure 9.3, this result is returned as a list of assignments; additio-
nally, the informal description of the consistency check is presented to support
the user in correcting the inconsistency. To simplify correcting a violated consis-
tency condition, a simple navigation mechanism from such an assignment to the
graphical representation of the model is provided: by activating an assignment
from the list of inconsistencies, the corresponding editors containing the violating
element is presented.

248 T. Levendovszky et al.

Fig. 9.3. Counterexamples of a Constraint Evaluation

Like the checking of modeling standards corresponding to the checking of
coding standards, also other techniques found in a code-centric development are
applicable for a model-based development process, e.g., the detection of model
clones. In general, clones are description fragments that are similar w.r.t. to some
definition of similarity. The employed notions of similarity are heavily influenced
by the program representation on which clone detection is performed and the
task for which it is used.

The central observation motivating clone detection research is that code clones
normally implement a common concept. A change to this concept hence typi-
cally requires modification of all fragments that implement it, and therefore
modifications of all clones, thus potentially increasing the maintenance effort.
Additionally, clones increase description sizes and thus further increase main-
tenance efforts, since several maintenance-related activities are influenced by
description size. Furthermore, bugs can be introduced, if not all impacted clones
are changed consistently.

Here, detection of model clones like in [12] can improve the maintainability
of evolving models, helping to identify redundant model fragments. Figure 9.4
shows the application of clone detection to dataflow languages as used in Simu-
link.

Model Evolution and Management 249

Fig. 9.4. Example for Clones in Dataflow Models

9.2.2 Model Transformation

Especially in a model-based approach with structure-rich system descriptions,
automated development steps, – using mechanized transformations – have the
potential to provide an important technique to improve the efficiency of the
development process. Besides increasing efficiency, these structural transforma-
tions can offer consistency ensuring modification of models. There is a range of
different applications for model transformation:

– Refactoring of models, e.g, to improve the architecture of a system, operating
on a single model

– Merging of models, e.g., to consistently weave in standard behavior, opera-
ting on a set of model of the same language

– Translation of models, e.g., to generate a platform-specific model from a
platform-independent model, operating on a set of models of different lan-
guages

However, for their effective application, frameworks providing these transforma-
tions should use formalisms to enable sufficiently abstract yet executable des-
criptions, support their modular definition by simple composition, and supply
mechanisms for parameterization. Generally, these transformations are executed

250 T. Levendovszky et al.

on the internal representation, called abstract syntax, of the models, but often
defined on the representation of the model, called the concrete syntax.

Similarly to the case of the structural analysis of conceptual product models,
the principle of transformation on the internal model representation makes use of
the fact that, in a model-based approach, a product model comes with an explicit
representation of the abstract syntax composed of domain-specific concepts and
their associations; therefore, transforming this structure corresponds to trans-
forming the product model.

By providing a language capable of relating properties of those structures of
concepts and associations, a transformation can be understood as a relation
between a product before and after the transformation. Then, by applying one
argument of this relation to the model of the product under development and by
providing a mechanism to constructively compute the other argument, the rela-
tion creates the transformed product. Thus, by formalizing standard operations
of a development process as transformation relations, the process can be suppor-
ted by mechanized operations. Examples for these operations are architectural
refactorings of systems consisting of hierarchical components and connected via
ports linked by channels; e.g., the pushing down of a component into a contai-
ner component, making it a subcomponent of that container and requiring to
split or merge channels crossing the boundary of the container component via
the introduction or elimination of intermediate ports. Transformations like this
structural refactoring or the semantically equivalent refactorings of state ma-
chines found in [13] are especially important since they leave the behavior of the
modeled system unchanged.

Due to their generality, model transformations form the basis for many model-
driven approaches ([14, 6, 15, 16]). In contrast to other development environment
such as the Eclipse Refactoring plug-in, providing a fixed set of refactoring rules, a
generic transformation mechanism allows the tool-user or tool-adaptor to enhance
the functionality of the tool by defining domain-specific operations such as safe re-
factoring rules. Since models can be interpreted as graphs, transformation frame-
works generally define operations as graph transformations, providing constructs
to manipulate nodes (elements) and edges (relations) of a product model.

This generic approach is used in graph-based frameworks such as MOFLON/
TGG [17], VIATZRA [18], FuJaBa [19], DiaGen [20], AToM3 [21], or GME

[22]. These approaches are based on graph-grammars or graphical, rule-based
descriptions [23]. Basically, for the declaration of basic transformations the trans-
formations are described in a pre-model/post-model style using graph-patterns.
In triple-graph-grammar approaches [24] additionally a correspondence graph
[25] is added to explicitly model mappings between (parts of) the pre- and post-
model during transformation. Furthermore, those approaches often use exten-
sions to enhance the patterns as well as to describe their compositions, such as
OCL expressions, and state machines. Figure 9.5 shows the formalization of a
rule for the merging of a channel in the push-down refactoring in the FuJaBa ap-
proach, using an extended object diagram notation with annotations to specify
the creation or destruction of objects and links in a product model.

Model Evolution and Management 251

«destroy»
chanCompoc

«destroy»
srcPort

chanCompoc

dstPort

portComp

portComp

subComponen

«create» srcPort

«destroy» dstPort«destroy»srcPort

Component:comp

Port:src

Component:contr

Component:subComp

Port:dst

«destroy»

Channel:left

Channel:right

«destroy»

Port:mid

«destroy» portCompComponent:context

// Merge input channel

Fig. 9.5. Pattern-Based Specification of the Merge Rule of the Push-Down Refactoring

Since transformations basically correspond to relations between graphs, be-
sides using these object pattern diagrams operations can be described directly
in relational formalisms similar to the QVT approach [26] and its respective
implementations such as ATLAS [27], F-Logics based transformation [28], or
TefKat [29]. Furthermore, these rule-based relational approaches allow to use
more declarative as well as more imperative forms of specification, e.g., provi-
ding a description of a specification in a purely declarative fashion, and an alter-
native, more imperative and efficient form. Strictly declarative, relational, and
rule-based approaches as in [30] even allow to use a single homogenous forma-
lism to describe the basic transformation rules and their composition. Complex
analysis or transformation steps can be easily modularized since there are no
side-effects or incremental changes during the transformation. Additionally, de-
clarative approaches allow to use loose characterizations of the resulting model,
supporting the exploration of a set of possible solutions to automatically search
for an optimized solution, e.g., balanced component hierarchies, using guiding
metrics; the set of possibile solutions can also be incrementally generated to
allow the user to interactively identify and select the appropriate solution.

Technically, often a distinction between exogenous and endogenous transfor-
mations is used, depending on the characteristics of the metamodels, the source
and the target of the transformation conforms to ([31], [32]). While in endoge-
nous transformations, the source and target models are instances of the same
metamodel, in the exogenous case they are instances of different metamodels.
Besides the endogenous model refactorings and the exogenous model transla-
tions, model transformations are particularly helpful in the in between case of
metamodel evolution. Large overlaps between source and the target domain lead
to similar but differing metamodels. Here, model transformations can support
the migration of models during the evolution of the metamodel, as discussed in
Section 9.4.

Besides these fundamental issues of model transformation – see [31] for an
overview – for the practical application also further aspects are of importance.
Specifically, aspects like debugging support to trace the application of rules,
analysis support to ensure syntactic and semantic correctness of transformation

252 T. Levendovszky et al.

rules, the understandability of rules and their changeability with respect to size,
complexity and degree of modularization,or the efficiency of transformations
both with respect to the framework to import and export models as well as the
execution of the transformation rules are gaining increasing attention.

9.2.3 Model Versioning and Model Merging

Model-based software engineering improves the development process by lifting
the level of description from the solution domain – i.e., the domain of the imple-
mentation – to the problem domain – i.e., the domain of application – raising the
level of abstraction to reduce the accidental complexity of the engineering task
to focus on the essential complexity. Model analysis, e.g., conformance checking,
and model synthesis, e.g., model transformation increase the degree of automa-
tion. However, raising the level of abstraction also introduces new problems.

A core aspect in the development of complex and long-lasting systems, as,
e.g., generally found in embedded software systems, is the construction of those
systems in incremental and often parallel steps. In traditional, code-based ap-
proaches, techniques like versioning and merging support the step-wise and dis-
tributed implementation. In a model-based development process, corresponding
techniques must be supplied on model-level. While the linear structure of pro-
gram code simplifies the task of comparing different fragments or merging them,
the same problem of comparing or merging models is more complex due to their
more general, graph-like structure.

To compute the difference between two models or to obtain a merge version
of two models, the commonalities between those two models are identified via
matching. To construct this matching, two different approaches are possible. If
a model is described via its edit-history, consisting of the basic operations – like
introducing or deleting elements or relations, changing their attributes, etc – to
obtain this model, the matching essentially corresponds to identify the common
operations.

However, in many cases models do not include those edit histories. Here,
the matching has to be constructed by directly comparing these models; since
elements of these models generally also do not maintain unique identifiers under
modification – especially during deletion and re-insertion – matching has to be
based on some notion of correspondence over model elements, generally based
on similarities of attribute values. The most general approach to construct a
matching for that case is based on a fixed-point iteration, starting with a pair-
wise correspondance between the elements of two models, and extending this
correspondance through the relations of each model. Since this general approach
is rather complex, generally heuristics are used to improve the efficiency of the
matching.

The latter matching approach is, e.g., implemented in the SiDiff algorithm
[33]. For the construction of differences on the model level, SiDiff has, e.g.,
been integrated in the MatLab environment MATE [7], or the UML-like FuJaBa
framework [19].

Model Evolution and Management 253

9.3 Evolution

Model management generally handles the operations necessary to deal with mo-
dels on a large scale in large projects. Equal in importance, though perhaps not
equal in scale, is the need to manage models as incremental evolution is required.
We discuss these issues in this section.

We use the term evolution here in the same sense that it is commonly used
in discussions of science: incremental changes brought about as external factors
change. As we discuss in this section, these external factors can include changes
to the system requirements, the language used to describe requirements and
models, as well as changes of style. In each of these cases, the technology used
to evolve the models is largely the same. However, the techniques to evolve the
models may vary.

The problem of evolution is not new to software engineering. Various ap-
proaches have been suggested to address the evolution problem in various soft-
ware domains, the most prominent being schema evolution in object oriented
databases. While there have been some attempts to extend these techniques to
other areas such as model based software [34] [35], the nature of DSMLs and
their evolution suggest that there is a need for a dedicated solution.

9.3.1 Evolutionary Model Development

When categorizing development processes that we use today, we find two basi-
cally different approaches with respects to models: The document / waterfall like
approaches use chains of models from early requirements down to running code.
When changes appear they are usually applied on the current level only (i.e.,
the code level) and models of earlier phases are not touched anymore. These
approaches need tracking of decisions between their artifacts that then allow
co-evolution of models and code with respects to new requirements etc.

The other type of software development approaches, namely the agile ones,
do not use models at all. They rely on code from the beginning, and this has
several advantages: Code is executable and thus provides a form of immediate
feedback that non-executable models couldn’t. Furthermore, tests can be written
in code to and automatically rerun every single adaptation of the code. Regres-
sion tests such as these give confidence that changes to the code do not violate
the requirements that are encoded in such tests.

Many users of modelling technologies desire to raise the level of abstraction at
which they are programming. This requires code generators to produce software
based on the semantics of the models. Assuming that such code generators pro-
vide us with the ability to “program” on the higher level using models, we can use
these models to create tests as well as our system specifications. Such models can
be considered “executable” (i.e., not used simply for analysis or documentation),
and are therefore the principal artifacts of our construction phase.

254 T. Levendovszky et al.

Metamodel/Language

Model(s)

Requirements

Metamodel/Language

Model(s)

Requirements

Language
Evolution

Requirements
Evolution

Model
Evolution

Fig. 9.6. There are two major preconditions for the need to evolve models. The evolu-
tion of the modelling language may invalidate structures, types, or constraints that are
used and assumed by the original models. The evolution of requirements may invalidate
design choices made by the original modeler. Either, or both, of these evolution types
may trigger the need for model evolution.

Elements of Model Evolution
When discussing model evolution there are a few terms that we use with a
specific meaning. We discuss mainly the evolution of models that conform to a
metamodel. This metamodel describes the language used to specify the models.

Models are frequently transformed in order to be used as an artifact later
in the design chain. We use the term model transformation to describe rules for
rewriting models. Model transformation is one technique for model interpretation
which is a generic term that describes how meaning is given to some model.

In model transformation, we talk about transforming some source model (SM)
into a destination model (DM). Rules that describe how these transformations
are specified are discussed later. Destination models may conform to a different
metamodel than the source models.

Now, any of these elements may change, and thus require evolutionary changes
to the models. If the destination metamodel changes, then existing rules to trans-
form source models may need to be updated. If changes are made to the source
metamodel, these transformation rules may also be invalid. Similar changes may
need to be made if new constraints on the structure of either the source or
destination languages is anticipated.

Actors in Model Evolution
There are several actors specific to model evolution:

– Model Designer (a.k.a., Original Modeler): This actor utilizes a modelling
language to develop a model. This model is the original or source model in
the discussions of this section, and represents an authoritative version of the
intent of the model designer.

– Model Evolver: This actor takes the original model and evolves it as neces-
sary. Reasons for this evolution may include bug fixes, changes in require-
ments, changes in the language, etc.

– Language Designer: This actor created the modelling language used by the
original modeler (the original modelling language).

Model Evolution and Management 255

– Language Evolver: This actor modified the original modelling language.
– Requirements Specifier: This actor created the original requirements against

which the original model was designed or tested.
– Requirements Evolver: This actor modified the original requirements.

These roles may be played by the same person for small projects, but for many
large projects there will be several persons playing the various roles, or in fact
several persons playing the same role. As such, the issue of maintaining intent
throughout the design and construction phases, as well as subject to various
evolutionary paths, is of great importance. However, not all evolutionary trans-
formations need human intervention, as we discuss next.

9.3.2 Automating Evolutionary Transformations

Although there are many motivators for transformations, we examine here a few
of the most common reasons for transforming models, namely changes in requi-
rements, and changes in style that fall under the category of “refactoring.” As
discussed earlier, the changes in requirements may result in changes of seman-
tics, while refactoring changes are (by definition) limited to behavior-preserving
transformations. We also will discuss how transformations of a domain-specific
modeling environment can be further automated, based on the strong typing in
their metamodel. Another major reason for model transformations is changes in
the domain itself, but the complexity of this issue deserves additional explana-
tion, and it is covered in Section 9.4.

How can we automate the transformation of models, or automate the creation
of transformation specifications, to aid model evolution? In fact, the former
is achievable if the burden of creating the patterns and other assorted rules
is placed on a model transformation expert. The automatic creation of these
specifications (rules) is computationally feasible, though it brings into question
whether semantics are maintained, constraints are satisfied, etc.

Evolution through Refactoring
In an agile development process (where only executable artifacts are created) we
must accept that the executable artifacts—in our case, the models—need to be
capable of modifications similar to those of software refactoring [36].

Model refactoring is a form of model evolution, where the semantics of the
model remain the same, but the structure changes. We note that this defini-
tion is not always used for refactoring (specifically the clause that semantics
are preserved), but we use this definition to avoid confusion with other kinds
of model evolution where semantic preservation is not the goal. It may also be
useful for the reader to consider the notion of software refactoring, where auto-
matic changes are made to a software project based on renaming a variable, or
changing a class name (i.e., all dependencies and uses are appropriately renamed
throughout the software project). A comprehensive listing of refactoring types
for software is presented by Fowler et al. in [36].

256 T. Levendovszky et al.

Similar changes in the domain of model refactoring are possible. For example,
in [37] a tool is discussed that shows how to specify model transformations
that will extract a superclass from a set of selected classes on the metamodel
level. This application towards domain-specific modelling languages provides an
avenue to maintain the types of a modelling language, while streamlining the
metamodel definition.

There are also many applications to model refactoring for domain-independent
models created using UML modelling tools. In [38], the authors show how the
development of new metamodels (representing the “source” patterns to be mat-
ched, and “destination” patterns to be the resultant models) can work with
existing UML models.

Evolution for Requirements Changes
The application of agile techniques in a model-driven sense means that models
are used in the beginning of development, and continued to be used throughout
the project lifecycle. Since the definition of agile development is to discover
requirements along the way, or refine them as they are clarified by some customer,
a model-driven approach must be robust to changes in the requirements during
the development phase [39].

This means that some models, though correct when they were built, may
be subject to new requirements now, or in the future. Automating these trans-
formations based on updated specifications changes is not feasible, and many
specifications languages such as Z [40] are somewhat infamous for an inability to
synthesize the system for which they describe requirements. This is not as much
a limitation of those requirements languages, but rather a reminder that up-
dates from changes in formal requirements should be made by a knowledgeable
actor—namely the model evolver, consulting with the requirements evolver.

Consider a model-based design of a controller for an unmanned aerial vehicle
[41]. The controller is designed to satisfy a certain requirement for rise-time and
overshoot of the vehicle state. However, if that requirement changes, the control-
ler design must also change. This may be simply a change in values (changing
the rise time, for example), but if the change in requirements is significant, or
disruptive, the design may also need to change.

In any case, one major benefit of model-based engineering is that the control-
ler is synthesized from the model (either in software, configuration for a runtime
tool, etc.). However, there is the question of are any existing requirements unmet,
after the evolution performed for requirements changes? In order to answer these
questions, the model must be subjected to regression tests that verify require-
ments satisfaction for the model. Previous work in regression tests for models
[42] concentrates on the differences between two models, thus reducing the num-
ber of regression tests that need to be run. If models are appropriately tracked,
then work such as this can dramatically reduce the time to confirm that the
models still conform to the requirements.

It is important to point out, though, that without existing tests for mee-
ting requirements, that there can be no certainty that the models as built even
conform to the specified requirements.

Model Evolution and Management 257

Domain-Specific Model Evolutions
A domain-specific modeling language provides special advantages to evolving
models within the same language. This is because the specific goal of domain-
specific modeling is to provide a programming environment (language) that re-
presents the domain concepts as programming primitives. This is true both for
domain-specific models that are in a metaconfigurable environment such as GME
[43] or AToM3 [21], but also for sophisticated user environments such as LabView
and MATLAB/Simulink, who present domain-specific toolboxes for creating
models.

9.3.3 Semantics of Evolution

A conflict of intentions comes to the forefront when evolving models. Specifically,
the following question must be answered: as these models evolve, should the
original intent of the modeler be preserved, or does this evolution overrule any
original intent? Answering this question can be difficult, and in many cases
requires judgement to be made by the model evolver.

There are many changes to the language, and some in the requirements, that
can be automated such that no model evolver need be “in the loop” to confirm
semantic interaction. However, there are many other evolutionary transforma-
tions that can be automated, but certainly need intervention by a modeler to
confirm intent of evolution.

Consider the example of port specialization, where an object of kind Port,
specialized into two types, InPort and OutPort, should be rewritten as either
one of these types. The metamodel is shown in Figure 9.7a, and explicitly shows
that a Component can contain zero or more Port objects. These Port objects
can be associated through a BufferedConnection. As the metamodel shows,
this connection can either be made to any to Port objects (who would then play
the role of src or dst in that association), or explicitly between an OutPort
(playing the role of src) and an InPort (playing the role of dst).

In order to rewrite models to (essentially) make Port an abstract type, some
context is needed to determine whether existing Port objects are likely to be
playing the role of src or dst. Certainly a patten could be written such that all
models playing the role of src become OutPort models. However, this gives rise
to two obvious problems: (1) what if there exists a Port that is not playing any
role in an association, and (2) what if there exists a Port object that is playing
both the src and dst role in two separate associations? These possibilities are
shown in Figure 9.7b.

Port p12 of C1 exemplifies the issue of determining the type of a Port that
plays no role in any association. A casual human observer may infer that the
placement near another InPort, or its proximity to the left of C1 would imply
an InPort, but at this point, some human must enter the decision loop to help
determine this, or a policy of “all unmatched ports become InPort models” must
be adopted.

258 T. Levendovszky et al.

type : {int, float, byte}
bufferSize : int

PortComponent

InPort OutPort

0..*
Buffered
Connection

dst

src0..*

0..*

(a) The metamodel allows objects of kind Port, which is specialized as InPort

and OutPort.

Component1
p1

p2p3
Component2

pa

pb pc

C1 p1

p2p3

p11

p12
p13

C2
p21

p22
p23

Component1

(b) A model built using the metamodel in (a). The contents of Component1
are shown to display the additional associations in which its Port objects
play a role. The “arrow” end of the connections represent the dst role.

Fig. 9.7. (a) A metamodel allowing port interconnection between components. (b) A
model built using the metamodel in (a). The “arrow” end of the connections represent
the dst role. If all ports in the various components are of type Port, then how to
automatically convert them into InPort or OutPort while maintaining the original
modeler’s intent?

Port p3 of Component1 plays the role of dst in its connection with port pc
of Component21, and plays the role of src in its connection with ports p11 of
C1, and p22 of C2. It is clear to a casual human observer that p3 is an InPort,
but making this determination based on context requires careful specification of
many partially ordered matches.

In [44] the issue of additional context is solved, where the containment rela-
tionships of various Port objects, the Component to which they belong, and the
Component to which the BufferedConnectionbelongs all play a role in matching
the pattern. However, as that work also states, the first problem (Port objects
that play no role at all) still requires some actor, namely the model evolver, to
make a decision on which type the Port should assume upon transformation.

Although there are a significant number of corner cases such as these, where
the difficulty of creating an evolution strategy that preserves the original intent

1 As a shorthand, we use directed connections to show src and dst roles, where the
arrow resides on the dst role.

Model Evolution and Management 259

is called into question, there are a significant number of evolutions that can be
created computationally. We will discuss the techniques useful for automating
such transformations in Section 9.3.2, but now we turn to the mechanics most
commonly used in performing the transformations.

9.4 Modelling Language Evolution

Development environments evolve as tool vendors constantly improve their tools.
Although programming languages have become quite stable, we cannot claim the
same about modelling languages: OMG languages are still the subjects of major
upgrades and the UML models created so far need to be upgraded as well. If
models are used to program against libraries or components, we have another
source of model upgrades, although they do not change the structure of the
models, but their vocabulary. With domain-specific languages, [3], we will need
even more profound evolution techniques, as DSLs are usually made for single
domains/companies or even projects and thus have the tendency to strongly
evolve over time.

Model evolution is the transformation of domain models that were created
under a language, L, to be well-formed and conform in the successor language,
L’. Of particular importance is the question of the semantics of the models under
each language. Existing work in the area of domain model evolution focuses on
the techniques and methods for synthesizing transformations based on changes
in the metamodel. Sprinkle’s thesis [44] provides an academic perspective (for
the mechanics of synthesizing such transformations, see [45]). Techniques for the
graphical specification of the semantics of a modeling language (i.e., the code
generator associated with a metamodel) can be found in [46]. A proposal by Bell
[47] advocates the creation of a catalog of grammar transformations that are
capable of automating the evolution of DSL programs.

We divide these kinds of model evolution tasks into two categories: syntactic
model evolution and semantic model evolution.

9.4.1 Syntactic Model Evolution

Syntactic model evolution is a transformation or set of transformations that
rewrites a model to conform to its new metamodel. It is useful for this set of
transformations to be partially ordered, to permit deterministic results of the
application. We do not require syntactic model evolution to be an atomic trans-
lation, but we instead depend upon the definition of a deterministic syntactic
transform set to produce a logically atomic translation (though perhaps in seve-
ral phases which produce intermediate or temporary artifacts).

Syntactic model evolution only guarantees that the model as transformed will
be syntactically valid (i.e., conform to the new metamodel). As such, a trivial
solution is to delete all models in the repository, but such a solution is clearly not
acceptable. However, it does present the difficulty of using syntactically driven
transformations to a model evolver after the language has evolved. Consider the

260 T. Levendovszky et al.

frustration of loading a model into a modeling environment, only to realize that
one single model is causing an exception. If deleting that model allows the model
evolver to load the models, they may decide that they have completed evolution,
but may have violated a large set of requirements in deleting that model.

There is a concrete example, which we can draw from our previous discussion
of Figure 9.7. If we interpret this issue as removing the type Port from the mode-
ling language, and replacing it with two types, InPort and OutPort, we are now
dealing with a model that does not conform to its evolved metamodel. Namely,
the existence of objects of type Port violates the abstract syntax requirements.

There are two trivial solutions which satisfy the requirements for syntactic
model evolution; (1) transform all models of type Port to InPort, and delete
all BufferedConnections; (2) transform all models of type Port to OutPort,
and delete all BufferedConnections. Of course, nontrivial solutions will yield
a “correct” result, which we discuss in the next subsection.

Nonetheless, syntactic model evolution is a powerful tool for an advanced
model evolver. With expert knowledge of the metamodel, and of the state of
the model, syntactic model evolution can provide a rapid way to reload exis-
ting models, regardless of their semantics. One reason for this might be that
changes to the language were to remove types that were no longer relevant: so,
deleting those types is appropriate. Another reason might be that the models
were developed in the very early stages of the project, and they will all have to
be examined anyway, so any models preserved will be used, but deleting models
that violate new language conditions is not disastrous, as they will be recreated
with new types.

Of course, much of this depends on the size of the database of models as well.
For model databases of size 10-20, a careful, complete, model evolution may
take weeks to create, but the models can be rebuilt in a few hours. All of these
considerations are relevant to the decision of the model evolver.

9.4.2 Semantic Model Evolution

Semantic model evolution is a transformation or set of transformations that re-
writes a model to have the same semantics in its new language that it had in
its original language. The observant reader will note that syntactic model evolu-
tion is guaranteed in a semantic model evolution process, because for preserved
semantics, the evolved model must conform to the evolved language.

It is undoubtedly true that syntactic model evolution can result in a semantic
model evolution, if properly applied by the model evolver. This allows standard
model transformation techniques to be applied to evolving models, if the trans-
formation patterns are appropriately designed. Such is the work by Sprinkle in
[45], and by Karsai et al. in [46].

The semantic model evolution problem is also similar to the tool integration
problem. In [48], Tratt motivates the benefits that model transformation offers
for tool integration. The two issues of syntactic and semantic interoperability
of tools is discussed in [49], which also advocates model transformation as the
conversion mechanism between tool models.

Model Evolution and Management 261

Questions of Semantics
What happens when more than one semantic domain exists for a particular
language? If multiple semantic interpretations exist, then each member of the set
of semantics must be satisfied in order to claim that a semantic model evolution
has taken place. This issue can be extremely difficult, as changes in the language
may negate the ability to attach a models semantics to a particular semantic
domain.

Consider the domain of hybrid systems, where transitions between states re-
present discrete switches in the continuous dynamics of a system. If two parti-
cular semantic domains, simulation using one tool, and analysis using another,
depend on portions of the modeling space not used by the other tool, than any
removal of those portions of the modeling space may affect one tool, but not the
other. A concrete example is to remove the invariant set from the modeling lan-
guage: analysis tools require this set in order to verify whether the system state
travels outside this set, while simulation tools can still operate without that set.
It is possible, therefore, to still utilize one semantic domain, but not the other,
with existing models by just deleting the invariant set from all objects.

The lesson here is that the more semantic domains to which a modeling lan-
guage attaches, the more difficult it is to evolve that modeling language. For
domain-specific languages, the issue is both more complex, and simpler, in that
by constraining the language to a particular domain, the risk of that domain
changing is reduced: however, if changes do propagate to that domain, the lan-
guage must be evolved in order to maintain its intuitive relationship with the
domain types.

There are additional difficulties introduced when changes in the constraints
of a language (only) may in fact cause certain models to no longer satisfy those
constraints. However, this problem can easily be checked by loading the models
and running the constraint checker to determine any violations. It is still an
open problem to understand what changes of constraints can be directly used
to transform models where violations occur, or to predict that no violations will
occur.

9.4.3 Techniques for Automated Model Evolution

Automating model evolution in the face of language evolution is tricky, if the
goal is semantic model evolution. Nonetheless, there exist techniques for helping
to determine how models should evolve in order to maintain semantics across
evolution.

Differences between the original and evolved metamodel can help identify
elements that have changed. This does require, however, some fairly advanced
algorithms for detecting changes [50], unless such changes are recorded as they
are made. In this sense, the correspondence models of a triple-graph grammar
may provide sufficient indication of change, but may not provide a sufficient
indication of what transformations are required for a semantic model evolution.

Examining the semantic domains to which the modeling language attaches,
and how that semantic domain has changed between the original and evolved

262 T. Levendovszky et al.

Event
Guard
Action

State

Event
Guard
Action

Transition

0..*

0..*

(a) A metamodel for a hierarchical
finite state machine.

Event
Guard
Action

State

Event
Guard
Action

Transition

(b) A metamodel for a “flat-
tened” finite state machine.

Fig. 9.8. (a) This metamodel allows containment of states by other states.(b) This
evolved metamodel removes the ability to contain states hierarchically. Looking at the
code generator, which removes checking for State containment, may imply that such
semantics are no longer important, rather than implying that such semantics should
be reapplied without hierarchy.

metamodel, is another aid. For example, if the algorithm to generate code or
models has simply renamed Type1 to Type2, then this may be sufficient to evolve
the models (change all models of type Type1 to be of type Type2).

However, there may be subtle issues even with this approach, as we show with
the metamodel and evolved metamodel shown in Figure 9.8. If the algorithm to
generate code removes the check for State objects contained within a State,
and the metamodel indicates that containment of States within each other is
no longer allowed, then a naive approach could simply remove all State objects
contained within another State. Unfortunately, this can also be interpreted as a
requirement that an existing hierarchical state machine must be flattened. Algo-
rithms exist that can refactor state machines [13] to be semantically equivalent,
but the model evolver must realize that this is the requirement.

9.4.4 Step-By-Step Model Evolution

In the previous sections, we discussed modeling language evolution methods that
are able to handle arbitrarily large gap between the original and the evolved
language. However, in most of the practical cases, modeling language evolution
does not happen as an abrupt change in a modeling language, but in small steps
instead. This also holds for UML: apart from adding completely new languages
to the standard, the language has been changing in rather small steps since its
first release.

This assumption facilitates further automation of the model evolution by tools
for metamodeled visual languages [51] [52]. The main concepts of a step-by-step
evolution method is depicted in Figure 9.9.

Model Evolution and Management 263

MMdst

DM1,DM2 ,…, DMn

Model interpreter

MMsrc

SM1,SM2, …, SMn

Model interpreter

MM’src

SM’1,SM’2, …, SM’n

MMdst

DM1,DM2 ,…, DMn

Migration

Fig. 9.9. Step-By-Step Evolution Concepts

The backbone of the diagram is a well-known DSL scenario depicted in the up-
per half of the figure. When a domain-specific environment is created, it consists
of a metamodel (MMsrc), which may have arbitrary number of instance models
(SM1, SM2, ...,SMn. The models need to be processed or transformed (”in-
terpreted”), therefore, an interpreter is built. The interpreter expects that its
input models are compliant with MMsrc. In parallel, the output models of the
interpreter must be compliant with the target metamodel MMdst. The inputs
of the interpreter are MMsrc, MMdst, and an input model SMi, and produces
an output model DMi.

The objective is to migrate the the existing models and interpreters to the
evolved language. For the sake of simplicity, we assume that only the input mo-
deling language evolves, de output model remains the same. The evolved coun-
terparts are denoted by adding a prime to the original notation. In the evolution
process, we create the new (evolved) metamodel (MM ′

src). We assume that the
changes are minor enough both in size and nature, such that they are worth
being modeled and processed by a tool, rather than writing a transformation
from scratch to convert the models in the old language to models in the evolved
language. This is a key point in the approach.

Having created the new language by the evolved metamodel, we describe the
changes in a separate migration DSL (Model Change Language, MCL). This is
denoted by Δ, and it represents the differences between MMsrc and MM ′

src.
Besides the changes, this model contains the actual mappings from the old mo-
dels to the evolved ones, providing more information how to evolve the models
of the old language to models of the new language. Given (MMsrc), (MM ′

src),
and MCL, a tool can automatically migrate the models of the old language to
models of the evolved language.

Furthermore, also based on the (MMsrc), (MM ′
src), and MCL, it is possible

to migrate the model interpreter. Since it cannot be expected that the way of
processing the new concepts added by the evolution can be invented without
human interaction, the tool can produce an initial version of the evolved in-
terpreter only. A usual implicit assumption here is that the language elements
appearing in both the old an the evolved model should be processed in the same
way. Moreover, using this assumption and the MCL model, the interpreter for

264 T. Levendovszky et al.

the parts of the old language that have been unambiguously changed by the
evolution can also be generated.

In the following two sections, we present a possible realization for both the
change description and the interpreter evolution.

Describing the Changes
Recall that our approach uses a DSL to describe the changes between the original
and the evolved metamodels. This raises a a natural question: what sort of
changes should be described and how? The second part of the question is partly
answered: one can use a DSL to describe these changes. However, there is another
criterion: the change description must hold enough information to facilitate the
automated evolution of the already existing models (SMn).

The first part of the question can only be answered by the practice. Below we
show the construct we distilled by the experience gained in one of our research
project and described in detail in [51].

Figure 9.10 outlines the structure of an MCL rule. For the sake of simplicity,
we use the convention that elements on the left-hand-side of the MapsTo re-
lationship belong to the original metamodel (MMsrc), and the right-hand-side
elements are taken from the evolved metamodel (MM ′

src). The most important
concept in MCL is the MapsTo connection. This connection originates from a
class in the original metamodel, and points to a class in the evolved metamo-
del. One can assign conditions and commands written in imperative code to a
mapping.

The basic operations provided by MCL are as follows:
(i) Adding elements, such as class, associations, and attributes. In Figure

9.11, we add a new element called Thread within a Component, along with a
constraint that every Component must contain at least one Thread. The old
models can then be migrated by creating a new Thread within each Component.

(ii) Deleting elements: classes, attributes, or associations. It is important that
deleting elements means that we do not need that information anymore, we can
lose it. If the information contained by an element is used in the evolved model,
the element should not be deleted. The operation needed in this case falls into
the next category. As Figure 9.12 shows, deletion is modeled with mapping a
class to the null class.

(iii) Modifying elements, such as attributes and class names. The conditional
mapping to new or other model elements also falls into this category. Figure 9.13
depicts a migration rule for a prevalent model refactoring case: a class becomes
abstract base, and the existing instances are migrated as the instances of the
new subclasses, based on certain conditions, typically, the attribute values of
the instances. The conditions assigned to the MapsTo connections specify which
mapping must be performed. The attribute calculations and other projections
from the old class to the new ones are described by the commands assigned to
the connection MapsTo.

(iv) Local structural modifications. If the operations detailed above need to
be performed in a certain context, it can be defined by the WasMappedTo

Model Evolution and Management 265

oldElement newElement

mapping conditions

additional commands

MapsTo

Fig. 9.10. Schematic description of an MCL rule

Fig. 9.11. Addition rule

Fig. 9.12. Deletion rule

connection. Figure 9.14 shows an example, where we short-circuit the contain-
ment hierarchy. The intent of the migration is to move all instances of Class up
in the containment hierarchy: the instances should be contained by ParentParent
instead of Parent. WasMappedTo does not specify an operation, it ensures that
that ParentParent originally containing the Parent should be the parent of the
Parent ’s children. Recall that the left-hand-side of the figure references classes
from the source metamodel, whereas the other side references classes in the
evolved metamodel, thus, the name conflict does not matter in this case.

Given a the old metamodel, the evolved metamodel and the MCL description,
a code generator is able to create executable code that migrated the (SMn)
models to the new DSL defined by the evolved metamodel.

Evolving the Model Transformations
As it is shown in Figure 9.10, not only the models, but the model interpre-
ter must also evolve. The Universal Model Migrator Interpreter Evolver (UM-
MIE) package is a tool to semi-automate the interpreter migration process.
The tool takes the old metamodel (MMsrc), the evolved metamodel (MM ′

src),
the Δ model in MCL, the destination metamodel (MMdst) and the old model

266 T. Levendovszky et al.

Fig. 9.13. Modification rule

Fig. 9.14. Rule with context

transformation rules under the assumption that the destination model does not
evolve (MMdst is identical to MM ′

dst).
We assume that the rule nodes in the transformation reference the input

and output metamodel classes. The tool traverses the transformation rules, and
takes each rule node to process the referenced metamodel classes. If these classes
are in the destination model (MMdst), or they were not changed by the MCL
model, they remain intact. If a class has been deleted, the reference in the rule
is set to null reference. Moreover, a warning is emitted that the null reference
in the rule must be resolved manually. If a class has changed unambiguously by
modification, such as renaming attributes, the tool automatically updates the
rules. If there are multiple mappings such as in Figure 9.13, the tool emits a
warning that the mapping should be done manually. Since the tool traverses
the old transformation rules, the additions are not handled by the tool, their
evolution must be performed by hand.

Model Evolution and Management 267

The UMMIE tool performs all the changes that must always be made. There
are cases, in which there are several options, it depends on the intentions of the
transformation developer. The main future direction of the tool is to provide
“design patterns” for these cases, exposing the options to the developer, and
after the selection, the evolution step is completed automatically.

Acknowledgements

The work presented is partially sponsored by DARPA, under its Disruptive Ma-
nufacturing Program. The views and conclusions presented are those of the au-
thors and should not be interpreted as representing official policies or endorse-
ments of DARPA or the US government.

References

[1] Bézivin, J., Favre, J.M., Rumpe, B.: Introduction to gamma 2006 first inter-
national workshop on global integrated model management. In: GaMMa 2006:
Proceedings of the 2006 International Workshop on Global Integrated Model Ma-
nagement, pp. 1–3. ACM, New York (2006)

[2] Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., Sabetzadeh, M.: A
manifesto for model merging. In: GaMMa 2006: Proceedings of the 2006 Interna-
tional Workshop on Global Integrated Model Management, pp. 5–12. ACM, New
York (2006)

[3] Tolvanen, J.P., Gray, J., Sprinkle, J. (eds.): 6th OOPSLA Workshop on Domain-
Specific Modeling (DSM 2006). University of Jyväskylä, Jyväskylä, Finland,
OOPSLA (October 2006), ISBN: 951-39-2631-1

[4] MathWorks Automotive Advisory Board: Control Algorithm Modeling Guidelines
Using MATLAB Simulink, Simulink, and Stateflow (2007)

[5] The MathWorks: Using MATLAB (2002)
[6] Bézivin, J.: On the unification power of models. Software and Systems Mode-

ling 4(2), 171–188 (2005)
[7] Stürmer, I., Dziobek, C., Pohlheim, H.: Modeling Guidelines and Model Analysis

Tools in Embedded Automotive Software Development. In: Rumpe, B., Giese, H.,
Klein, T., Schätz, B. (eds.) Modellbasierte Entwicklung eingebetteter Systeme
(2008)

[8] Deissenboeck, F., Juergens, E., Hummel, B., Wagner, S., Parareda, B.M., Pizka,
M.: Tool Support for Continuous Quality Control. IEEE Software 25(5) (2008)

[9] Farkas, T., Röbig, H.: Automatisierte, werkzeugübergreifende Richtlinienprüfung
zur Unterstützung des Automotive-Entwicklungsprozesses. In: Rumpe, B., Giese,
H., Klein, T., Schätz, B. (eds.) Modellbasierte Entwicklung eingebetteter Systeme
(2006)

[10] OMG: Object Constraint Language Specification. Technical Report 1.1, ad/97-
08-08, Object Management Group, OMG (1997), http://www.omg.org

[11] Schätz, B.: Mastering the Complexity of Embedded Systems - The AutoFocus
Approach. In: Kordon, F., Lemoine, M. (eds.) Formal Techniques for Embedded
Distributed Systems: From Requirements to Detailed Design. Kluwer, Dordrecht
(2004)

http://www.omg.org

268 T. Levendovszky et al.

[12] Deissenboeck, F., Hummel, B., Jürgens, E., Schätz, B., Wagner, S., Girard, J.F.,
Teuchert, S.: Clone detection in automotive model-based development. In: Schäfer,
W., Dwyer, M.B., Gruhn, V. (eds.) 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, May 10-18, pp. 603–612. ACM, New
York (2008)

[13] Pretschner, A., Prenninger, W.: Computing refactorings of state machines. Soft-
ware and Systems Modeling 6(4), 381–399 (2007)

[14] Fabro, M.D., Valduriez, P.: Semi-automatic model integration using matching
transformations and weaving models. In: MT 2007 - Model Transformation Track,
The 22nd Annual ACM SAC, pp. 963–970 (2007)

[15] Porres, I.: Rule-based update transformations and their application to model re-
factorings. Software and Systems Modeling 4(5), 368–385 (2005)

[16] Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using
graph transformation. Software and Systems Modeling 6(3), 269–285 (2007)

[17] Klar, F., Königs, A., Schürr, A.: Model transformation in the large. In: ESEC/FSE
2007. ACM Press, New York (2007)

[18] Varro, D., Pataricza, A.: Generic and meta-transformations for model transfor-
mation engineering. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.)
UML 2004. LNCS, vol. 3273, pp. 290–304. Springer, Heidelberg (2004)

[19] Grunske, L., Geiger, L., Lawley, M.: A graphical specification of model transforma-
tions with triple graph grammars. In: Hartman, A., Kreische, D. (eds.) ECMDA-
FA 2005. LNCS, vol. 3748, pp. 284–298. Springer, Heidelberg (2005)

[20] Minas, M.: Spezifikation und Generierung graphischer Diagrammeditoren. Habi-
litation, Universität Erlangen-Nürnberg (2001)

[21] de Lara, J., Vangheluwe, H., Alfonseca, M.: Meta-modelling and graph grammars
for multi-paradigm modelling in AToM3. Software and Systems Modeling 3(3),
194–209 (2004)

[22] Sprinkle, J., Agrawal, A., Levendovszky, T.: Domain Model Translation Using
Graph Transformations. In: ECBS 2003 - Engineering of Computer-Based Systems
(2003)

[23] Rozenberg, G. (ed.): Handbook on Graph Grammars and Computing by Graph
Transformation: Foundations. World Scientific, Singapore (1997)

[24] Klar, F., Königs, A., Schürr, A.: Model Transformation in the Large. In: Procee-
dings of the 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering.
ACM Digital Library Proceedings, pp. 285–294. ACM Press, New York (2007)

[25] Schürr, A.: Specification of graph translators with triple graph grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903. Springer,
Heidelberg (1995)

[26] OMG: Initial submisison to the MOF 2.0 Q/V/T RFP. Technical Report ad/03-
03-27, Object Management Group (OMG) (2003), http://www.omg.org

[27] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: ATL: a QVT-like
transformation language. In: OOPSLA 2006, pp. 719–720. ACM Press, New York
(2006)

[28] Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The
Missing Link of MDA. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg,
G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 90–105. Springer, Heidelberg (2002)

[29] Lawley, M., Steel, J.: Practical declarative model transformation with tefkat. In:
Bruel, J.-M. (ed.) MoDELS 2005. LNCS, vol. 3844, pp. 139–150. Springer, Hei-
delberg (2006)

http://www.omg.org

Model Evolution and Management 269

[30] Schätz, B.: Formalization and Rule-Based Transformation of EMF Ecore-Based
Models. In: Gašević, D., Lämmel, R., Van Wyk, E. (eds.) SLE 2008. LNCS,
vol. 5452, pp. 227–244. Springer, Heidelberg (2009)

[31] Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

[32] Mens, T., Czarnecki, K., Gorp, P.V.: A taxonomy of model transformations. In:
Dasgstuhl Proceedings of the Seminar on Language Engineering for Model-Driven
Software Development, vol. 04101 (March 2004)

[33] Schmidt, M.: Generische, auf Ähnlichkeiten basierende Berechnung von Modell-
differenzen. SiDiff 27(2) (2007)

[34] Bernstein, P.A., Melnik, S.: Model Management 2.0: Manipulating Richer Map-
pings. In: SIGMOD 2007 (2007)

[35] Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and Implementation of
Schema Evolution in Object-Oriented Databases. In: Proceedings of the Associa-
tion for Computing Machinery Special Interest Group on Management of Data,
pp. 311–322 (1987)

[36] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code. Addison-Wesley Object Technology. Addison-Wesley
Professional, Reading (1999), ISBN: 978-0201485677

[37] Zhang, J., Lin, Y., Gray, J.: Generic and domain-specific model refactoring using
a model transformation engine. Research and Practice in Software Engineering,
vol. II, pp. 199–218. Springer, Heidelberg (2005)

[38] France, R., Ghosh, S., Song, E., Kim, D.K.: A metamodeling approach to pattern-
based model refactoring. IEEE Softw. 20(5), 52–58 (2003)

[39] Ambler, S.W.: Agile Modeling: Effective Practices for Extreme Programming and
the Unified Process. Wiley, Chichester (2002), ISBN: 978-0471202820

[40] Woodcock, J., Davies, J.: Using Z: Specification, Refinment and Proof. Prentice-
Hall, Englewood Cliffs (1996), ISBN: 0-13-948472-8

[41] Hoffmann, G.M., Huang, H., Wasl, S.L., Tomlin, C.J.: Quadrotor helicopter flight
dynamics and control: Theory and experiment. In: Proc. AIAA Guidance, Navi-
gation, and Control Conf. (2007)

[42] Korel, B., Tahat, L., Vaysburg, B.: Model based regression test reduction using de-
pendence analysis. In: Proceedings of International Conference on Software Main-
tenance, pp. 214–223 (2002)

[43] Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J.,
Karsai, G.: Composing domain-specific design environments. Computer 34(11),
44–51 (2001)

[44] Sprinkle, J.: Metamodel Driven Model Migration. PhD thesis, Vanderbilt Univer-
sity, Nashville, TN 37203 (August 2003)

[45] Sprinkle, J., Karsai, G.: A domain-specific visual language for domain model evo-
lution. Journal of Visual Languages and Computing 15(3-4), 291–307 (2004); Spe-
cial Issue: Domain-Specific Modeling with Visual Languages

[46] Karsai, G., Agrawal, A., Shi, F., Sprinkle, J.: On the use of graph transformation
in the formal specification of model interpreters. Journal of Universal Computer
Science 9(11), 1296–1321 (2003)

[47] Bell, P.: Automated transformation of statements within in evolving domain-
specific languages. In: Sprinkle, J., Gray, J., Rossi, M., Tolvanen, J.P. (eds.) 7th
OOPSLA Workshop on Domain-Specific Modeling (DSM 2007), Montreal, pp.
172–177 (October 2007)

[48] Tratt, L.: Model transformations and tool integration. Software and Systems Mo-
deling 4(2), 112–122 (2005)

270 T. Levendovszky et al.

[49] Bézivin, J., Brunelière, H., Jouault, F., Kurtev, I.: Model engineering support
for tool interoperability. In: MODELS Workshop in Software Model Engineering
(WiSME), Montego Bay, Jamaica (September 2005)

[50] Mens, T.: A state-of-the-art survey on software merging. IEEE Transactions on
Software Engineering 28(5), 449–462 (2002)

[51] Balasubramanian, D., van Buskirk, C., Karsai, G., Narayanan, A., Ness, S.N.B.,
Shi, F.: Evolving paradigms and models in multi-paradigm modeling. Technical
Report ISIS-08-912-2008, Institute for Software Integrated Systems (December
2008)

[52] Narayanan, A., Levendovszky, T., Balasubramanian, D., Karsai, G.: Automatic
domain model migration to manage meta-model evolution. In: Schürr, A., Selic, B.
(eds.) MODELS 2009. LNCS, vol. 5795, pp. 706–711. Springer, Heidelberg (2009)

10 Model-Based Analysis and Development of
Dependable Systems

Christian Buckl1, Alois Knoll2, Ina Schieferdecker3, and Justyna Zander3

1 fortiss GmbH, Germany
buckl@fortiss.org

2 Technische Universität München, Germany
knoll@in.tum.de

3 Technical University Berlin, Germany, Fraunhofer FOKUS, Germany
{ina.schieferdecker,justyna.zander}@fokus.fraunhofer.de

Abstract. The term dependability was defined in the 1980s to encom-
pass aspects like fault tolerance and system reliability. According to IFIP,
it is defined as the trustworthiness of a computing system which allows
reliance to be justifiably placed on the service it delivers. Hence, depen-
dability is the capability of a system to successfully and safely complete
its mission. This chapter concentrates on safety and reliability aspects.
It starts with a review of the basic terminology including, for example,
fault, failure, availability, and integrity. In the following, a mathematical
model of fault-tolerant systems is defined. It is used in the further sec-
tions for comparison with different techniques for safety and reliability
analysis. Also selected currently available model-based development tools
are reviewed. A summary and identification of future research challenges
conclude the chapter.

10.1 Introduction

In the last years, the trend to replace mechanical/electrical solutions by software
centric solutions has been intensified. Even systems with strong requirements on
safety and reliability are automated by the use of computer systems. Although
the term dependability comprises several other aspects as well, the focus of this
chapter is set on safe and/or reliable systems. These systems have to be designed
fault-tolerant to fulfill the targeted requirements.

Typically, fault-tolerance is achieved by running the applications on replicated
hardware and/or software components. The resulting complexity of the conside-
red systems raises major concerns, in particular with respect to the validation
and analysis of performance, timing, and dependability-related requirements,
but also with respect to development times. Model-driven engineering addresses
the problem of complexity by increasing the level of abstraction and by partial
or total automation of selected phases within the development process.

Several tools are available for modeling dependable systems, many of them
based on the Unified Modeling Language [1]. This chapter, however, focuses on
model-driven methods that automate phases in the development process either

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 271–293, 2010.
� Springer-Verlag Berlin Heidelberg 2010

272 C. Buckl et al.

by automating the dependability analysis for certain system architectures, or by
automating the code generation process.

The chapter starts with a definition of terms relevant for dependable systems
in Sec. 10.2. Section 10.3 presents a generic model of fault-tolerant systems
based on the work of Arora and Kulkarni [2, 3]. Section 10.4 discusses existing
approaches for reliability and safety analysis. Subsequently, three examples of
model-driven tools in the area of safety-critical systems are analyzed in Sec. 10.5.
The chapter is concluded by a summary and the identification of some research
challenges in Sec. 10.6.

10.2 An Overview on Dependability

The term dependability was defined in the 1980s to unite relevant aspects [4].
Laprie defined computer system dependability as the quality of the delivered
service such that reliance can justifiable be placed on this service. Avizienis et
al. [5] defined six attributes of dependable systems as depicted in Figure 10.1:
availability, reliability, safety, confidentiality, integrity, and maintainability. As
mentioned before, this chapter focuses mainly on safety and reliability aspects.

Dependability

Reliability MaintainabilitySafety IntegrityConfidentialityAvailability

Fig. 10.1. Dependability Aspects

Definition 10.1. Safety is defined as the freedom from those conditions that
can cause death, injury, occupational illness, or damage to or loss of equipment
or property [6]. It is also the expectation that a system does not, under defined
conditions, lead to a state in which human life is endangered [7].

Definition 10.2. Functional safety is part of the overall safety that depends
on a system or equipment operating correctly in response to its inputs [8].

In case when the correct behavior cannot be guaranteed a safety-critical system
should be brought into a safe mode (e.g., an emergency stop) instead of conti-
nuing to deliver the specified function. This is the main difference in comparison
to reliability:

Definition 10.3. Reliability is the ability of a device, system, or process to
perform a required function under given environmental and operational condi-
tions, and for a stated period of time [9].

Both, safety and reliability of a system can be impacted by faults, errors,
and failures. The system must handle them appropriately to achieve safety and

Model-Based Analysis and Development of Dependable Systems 273

reliability (i.e., it must be designed as fault-tolerant). The terms fault, error, and
failure can be explained best by using a three-universe model of Pradhan [10].
This model, an adaptation of the four-universe model introduced by Avizie-
nis [11], describes the different phases of the evolution from a fault to a failure.

The first universe is the physical universe, where faults occur.

Definition 10.4. A fault is a physical defect, imperfection, or flaw that occurs
within some hardware or software component [10].

Faults can be dormant for a long time and not influence the execution of the
component. When a fault is activated, the effects can be observed in the infor-
mational universe, classified as the second universe in [10].

Definition 10.5. An error is the manifestation of a fault [10].

Errors can be detected by the component itself, if some rules are defined to
evaluate the state of the component. However, these tests may not be able to
identify the cause of the error (i.e., the fault). Initially, errors are only reflected
in parts of the component’s state. If the error is not detected early enough by
the component, the error may cause a subsequent failure.

It is important to notice that different definitions for fault and error are used
in the literature as they are closely related concepts. Throughout this chapter,
we will try to use the terms as defined in the previous definitions. However, if in
the described projects or approaches the terms are used differently, we will use
the terminology of the projects.

Definition 10.6. A failure of a component occurs when the component de-
viates from the specified behavior [12].

Hence, the third universe is the external universe, where the deviation from
the expected behavior of a component can be observed. Consequently, a failure
is the event that can be detected by interacting components. Thereby, a failure
of a component can be a fault to its environment.

There are various reasons for faults. For instance, a fault can be a design
fault, a physical fault, or an operational fault. While design faults are always
active, physical faults are activated spontaneously with a certain probability.
Faults can be classified according to their effect, as well. The effect can either
be in the value domain or in the time domain [13]. Faults in the time domain
are, for example, lost or delayed messages in a communication channel, but
also replicated messages. Faults in the value domain are, for instance, erroneous
results or bit flips in a message.

Fault-tolerance is the technique to guarantee that despite the presence of
faults a system provides the specified behavior to its outer boundaries [4]. Fault-
tolerance is always based on the effective deployment of redundancy, additional
means that are not required to provide the specified behavior in the absence of
faults. It is important to note, that redundancy is not only restricted to replica-
ting hardware: the type of redundancy ranges from software or data redundancy
to time and hardware redundancy.

274 C. Buckl et al.

A concrete selection and implementation of fault-tolerance mechanism de-
pends on the number and types of the expected faults. These assumptions are
summarized in the fault hypothesis.

Definition 10.7. The fault hypothesis contains the assumptions about pos-
sible faults, their probability, and their effects to the components of a system.

Based on the concrete fault hypothesis, the developer has to select appropriate
mechanisms to tolerate these faults. Most of the different mechanisms are known
since the 1950’s due to the unreliability of the components at that time [5]. In
general, one can divide the applied fault-tolerance mechanisms into four groups:
error detection, error recovery, error handling / masking, and integration.

Definition 10.8. Error detection allows the detection and localization of er-
rors.

Detecting an error is the first step to achieve the fault-tolerance. After an error
is detected, the component has to analyze the affected subcomponents and the
error type. This is essential to perform error recovery.

Definition 10.9. Error recovery transforms a system state that contains one
or more errors into a state without detected errors [5].

There are different mechanisms to perform error recovery. The two most pro-
minent types are rollback and rollforward recovery. Rollback is realized by
restoring a previous state of the component [10]. This state is saved in a check-
point before the component detects the error. The difficulty of a rollback reco-
very arises from designing and generating the checkpoints. Especially, if several
components must be set back the realization may demand more efforts. The roll-
forward recovery uses application knowledge to compute a new, correct state out
of the erroneous state. Usually, this transformation implicates a reduced quality
of service.

Regardless of the concrete error recovery mechanism it is essential to ensure
that the same fault is not activated again.

Definition 10.10. Error handling prevents system’s state corruption after
the detection of a fault.

To correctly perform the error handling the first step is the localization of the
error and the identification of its cause. Within the second step, the fault is
isolated by excluding the affected component from further interactions with other
components. The affected component might be replaced by spare components.
Further possibilities are to use other components to deliver the functionality
in addition to the already delivered functionality or to degrade the system (i.e.,
graceful degradation). The isolated component can then be repaired, typically
by an external agent.

If a sufficient level of redundancy is employed in the system, explicit error
detection is not required. Instead one can use error masking.

Model-Based Analysis and Development of Dependable Systems 275

Definition 10.11. Error masking guarantees that programs continually sa-
tisfy their intended specification, even in the presence of faults [14].

Typical examples for error masking are hot-redundant systems, where several
redundant units are executed in parallel. Errors can be detected by comparing
the results. If the master unit is affected by an error, another correct unit imme-
diately takes over the master’s task. The erroneous unit is excluded and can be
repaired in the following. After a successful repair, it is necessary to reintegrate
the repaired unit into the system to preserve the intended dependability:

Definition 10.12. Integration allows a repaired component to resume with its
intended behavior and interaction.

For a successful integration, the state synchronization is essential. All parti-
cipating units must agree on a new system state. A correct implementation of
the state synchronization is an important, though complicated step.

The dependency goals and fault assumption determine the type of the fault-
tolerance mechanism applied in a system.

10.3 A Generic Model of Fault-Tolerant Systems

The development of dependable systems can be supported by modeling. On the
one hand, models are used to analyze the dependability of the system, (e.g.,
by using fault trees as discussed in Sec. 10.4. On the other hand, model-driven
approaches can be used for generation of code related to fault-tolerance mecha-
nisms.

In this section, a generic mathematical model of dependable systems is given.
It is based on the work of Arora et al. [2, 3]. Based on this model, we can
identify the basic aspects required to describe dependable system and compare
the differenct models used by the tools discussed in this paper.

In the following, we start by specifying the execution of a system. Subse-
quently, we introduce the effects of faults and of fault-tolerance mechanisms.

10.3.1 System Operation without Faults

Definition 10.13. A system S = (V, Π) can be described by a finite set of va-
riables V = {v1, ..., vn} and a finite set of processes Π = {π1, ..., πm}. The do-
main Di is finite for each variable vi. A state s of system S is the valuation
(d1, ...dn) with di ∈ Di of the program variables in V. A transition is a function
tr : Vin → Vout that transforms a state s into the resulting state s′ by changing
the values of the variables in the set Vout ⊆ V based on the values of the variables
in the set Vin ⊆ V.

Definition 10.14. The system is build up from a set of components C. A set
of variables Vc ⊆ V is associated with each component c ∈ C. Vc = Vc,internal∪
Vc,interface∪ Vc,environment is composed by three disjoint variable sets: the set of
internal variables Vc,internal, the set of interface variables Vc,interface, and the

276 C. Buckl et al.

set of environment variables Vc,environment. Internal variables can only be ac-
cessed and altered by the set of processes associated with C: Πc ⊆ Π. Interface
variables are used for component interaction and can be accessed by all interac-
ting processes. Environment variables are variables that are shared between the
component and the environment of the system. Note that environment variables
can only accessed by exactly one component. This set can be again divided into
the input variables Vc,input that are read from the environment and the output
variables that are written to the environment Vc,output.

Components can also be structured in a hierarchical way. A component
c ∈ C may consist of several subcomponents c1, ..., cn ⊂ C. The set of inter-
face variables Vc,interface ⊆

⋃
1≤i≤n Vci,interface of c is a subset of the inter-

face variables of its subcomponents c1...cn. The set of environment variables
Vc,environment =

⋃
1≤i≤n Vci,interface is the union set of all environment variables

of the subcomponents.

Definition 10.15. The functional behavior of a component c ∈ C is reflected by
the corresponding processes Πc. Let Vinterface = {v|v ∈ Vc′,interface ∧ c′ ∈ C} be
the set of all interface variables. Πc is specified as a finite set of operations of
the form guard → transition, where guard : Vguard → B is a Boolean expres-
sion over a subset Vguard ⊆ Vc ∪ Vinterface ∪ Vc,input and transition : Vin → Vout
is the appendant transition with Vin ⊆ Vc ∪ Vinterface ∪ Vc,input and Vout ⊆ Vc∪
Vinterface ∪ Vc,output. We refer to the old value of a variable by v and to the new
value by the primed variable v′.

The processes are expected to be deterministic, meaning that for each state s at
most one guard can evaluate to true. This condition can be easily implemented
by using one variable as a program counter and including this variable into the
guard expression.

However, by allowing different processes to coexist simultaneously, non-de-
terminism is introduced. There is no semantics which process will perform its
operation, if several processes have an enabled operation. While non-determinism
is not desirable for modeling the normal execution of the system, it is required
to model faults due to the non-deterministic behavior of faults. To achieve de-
terminism of the system execution, the interplay between different processes can
be implemented in a deterministic way by specifying adequate guards in such a
manner that for each possible state at most one process is enabled. To reach this
goal, one might need to introduce auxiliary interface variables or use the value
of time for time-triggered systems.

Definition 10.16. Time is modeled similar to a component and represented
by one process ΠTime realizing the time progress and a variable vtime containing
the current time. ΠTime reflects the logical time and cannot be affected by any
faults. In contrast, the local time on the individual computational nodes of the
distributed system is derived from the components describing the behavior of the
clocks used in the system, the related process, and its variables. The transitions
can describe their temporal behavior by adapting the local time variable.

Model-Based Analysis and Development of Dependable Systems 277

Until now, the system has been considered in the absence of faults and wi-
thout any fault-tolerance mechanisms. The first step to reach fault-tolerance is
to translate the safety specification into a set of properties that must be valid
for the application. While Arora et al. use computations and sequences of sub-
sequent states to express safety properties we use state predicates P to express
properties.

Definition 10.17. A state predicate P is a Boolean function over a set of
variables VP ⊂ V. The set of state predicates represents the specification of the
system and is therefore defined implementation-independent. Hence, the set of
variables VP ⊆

⋃
c∈C Vc,environment is a subset of all variables that can be observed

by the environment of the system.

It may be necessary to define auxiliary variables that record the progress of
the environment variables over time to express temporal properties. Establi-
shing these variables explicitly, a potentially unnecessary tracking of all variables
can be avoided. In general, only very few variables are needed for the history
state [14]. Liveness specifications can be expressed by state predicates using the
time process Πtime.

The transitive closure of the transitions of all processes defines the fault-free
system as depicted in Fig. 10.2. It is defined as all states that can be reached
beginning from some start states sstart. The state predicates P describing the
intended operation must be true for all states within this transitive closure.

10.3.2 Faults

The introduction of faults into our model of fault-tolerant system is straightfor-
ward and can be designed as a component FH.

Definition 10.18. The fault component is described as a set of variables Vc,FH
and processes Πc,FH that perform actions in accordance to the fault hypothesis.

Due to the non-deterministic behavior of processes, the non-deterministic beha-
vior of certain fault types appears. The propagation of an error depends, in turn,
on the interaction between different components and their implementation. The-
refore, it is necessary to define the behavior of a component in the presence of
faults. This can be done by changing the actions of Πc for a specific component.
These could be the introduction of new actions or the addition of conditions to a
guard. Both, additional elements and new actions can be based on the variables
Vc and Vc,FH.

A good example is a fail-stop [14], where an auxiliary variable upc denoting
the fault status of a component c can be introduced. For all actions of Pc, the
guard is expanded with a condition !upc to restrict the execution to such states
where the component is not affected by a fail-stop fault.

10.3.3 Fault-Tolerance Mechanism

Kulkarni and Arora [15, 3, 14] pointed out that it is sufficient to use detectors
and correctors to reach fault-tolerance.

278 C. Buckl et al.

Intended
Operation

Exceptional Operation
(fail-safe, graceful

degradation,...)

Behavior
Conflicting

Specification

Legend:
 Program Transition
 Fault Transition (in FaultHypothesis)
 Fault Transition (not in FaultHypothesis)
 Error Handling
 Error Recovery Transition
 Correct State
 Erroneous State
 Unsafe/Unreliable State

Fig. 10.2. Fault-Tolerance Concepts

Definition 10.19. Detectors de : V′ ⊆ V → B are Boolean functions that mo-
nitor the variables of a system and can detect errors. Using the definition of
predicates, a predicate d (Detector) detects a predicate e (erroneous state), if the
following conditions are satisfied for each possible sequences s0, s1, ...:

– Safeness: ∀i ≥ 0 : de(si) ⇒ e(si). This condition requires that, if the detec-
tor detects an erroneous state, the decision has to be correct. False positives
are not accepted.

– Eventual Detection: ∀i ≥ 0 : e(si) ⇒ ∃j ≥ i : de(sj)∨!e(sj). This condi-
tion requires that a detector will eventually detect a permanent erroneous
state.

– Stability: ∀i ≥ 0 : de(si) ⇒ de(si+1)∨!e(si+1). The detector is also requi-
red to be stable, that is, it should not signal the disappearance of an error if
the error is still present.

Definition 10.20. Correctors are actions of the form guard → transition
that transform an erroneous system into a correct system. The actions are trig-
gered by a detected error.

This notion is, however, very abstract and it is useful to distinguish between
different types of correctors. We will differentiate between operations for error
treatment, error recovery, proactive operations, and integration. Operations for
error treatment describe the reactions of the system when new errors are detec-
ted. A classic error treatment is the switch to a correct backup unit or a rollback

Model-Based Analysis and Development of Dependable Systems 279

recovery operation [16]. The operation may be based on previously executed
proactive operations that are executed to generate information redundancy
(e.g., in the form of checkpoints). The introduction of proactive operations al-
low a separation of fault-tolerance concepts and application logic. Erroneous
components are usually excluded from the system operation and can perform
error recovery operations offline. After a successful completion of the recovery
operations, the erroneous components can be integrated to guarantee the achie-
vement of the reliability goals. The integration operations perform the state
synchronization.

10.3.4 Summary: Modeling of Dependable Systems

When analyzing the discussed formal model, it becomes evident that it is ne-
cessary to model all three aspects of dependable systems: the normal operation,
the fault hypothesis, and the fault-tolerance mechanism. A strict separation of
the related mechanisms supports a better maintainability and increases the reu-
sability. However, most of the existing approaches do not support the modeling
of all three aspects or mix these aspects.

10.4 Reliability and Safety Analysis

Dependability analysis techniques have been developed so as to evaluate the
systems and correct the failures. Initially, reliability and/or availability were
the most interesting attributes to be analyzed. For that, just the binary states
(e.g., on or off) of the system and its components were considered. Therefore,
Boolean methods such as reliability block diagrams, fault or success trees were
adequate and sufficient. These classical methods are widespread. However, they
provide a static view of the system only. As embedded systems grew rapidly,
a dynamic view has been needed to analyze the dependability. Such a dynamic
view can represent multiple states of a system changing over time. An example of
a technique handling this behavior is Continuous Time Markov Chains approach.

The objective of the reliability analysis is to identify the kinds of system
failures that are to be expected (i.e., qualitative analysis) or the distribution
of the times-to-failure of a component, subsystem or system (i.e., quantitative
analysis). The reliability analysis is performed during system design or operation
to decide whether the reliability level of a system is acceptable or which parts
of a system are particularily critical. Its results indicate how and which parts of
the system should be improved.

In the following, we shortly describe selected, but typical reliability and safety
analysis methods:

– Failure Modes, Effects and Criticality Analysis (FMECA)
– Fault Tree Analysis (FTA)
– Markov Chains
– Model-based Testing (MBT)

280 C. Buckl et al.

10.4.1 The FMECA Method

The Failure Modes, Effects and Criticality Analysis (FMECA) is ba-
sically a qualitative reliability analysis method that uses a static view of the
system and/or its components. It analyzes potential failure modes within a sys-
tem, classifies the severity, and determines the failure’s effects on the system.
It is widely used in the manufacturing industries in various phases of the pro-
duct life cycle [17]. It also includes a criticality analysis that is used to chart
the probability of failure modes against the severity of their consequences. The
result highlights failure modes with relatively high probability and severity of
consequences, allowing remedial effort to be directed where it will produce the
greatest value [18].

FMECA is one of the first systematic approaches to failure analysis. It was
developed in the 1950s for the use in U.S. military systems. It is put forward
by international standards, in particular in SAE-ARP 5580 [19], IEC60812 [20],
and BS 5760-5 [21].

Applying FMECA the system is split into subsystems. Within each subsystem
the components and their relations are identified. Functional block diagrams are
used to represent them. For each component a detailed FMECA worksheet (see
Fig. 10.3) is specified. It includes:

– functions and operational modes;
– failure modes, their causes, and their detection methods;
– failures effects;
– failure rates and their severity; and
– a specification of risk reducing measures.

Ref.
no Function

Opera-
tional
mode

Failure
mode

Failure
cause or

mechanism
Detection
of failure

On the
subsystem

On the
system
function

Failure
rate

Severity
ranking

Risk
reducing
measures Comments

Description of unit Description of failure Effect of failure

System:

Ref. drawing no.:

Performed by:

Date: Page: of

Fig. 10.3. FMECA worksheet

Typically, FMECA is integrated in the design process right from the begin-
ning and updated during the development and maintenance. It is most often a
bottom-up technique. FMECA does not handle dependencies between compo-
nents, cannot handle systems with redundancy, and cannot cope with common
cause failures or cascading failures. As single events are considered, the effects of
sequences of events cannot be addressed. Furthermore, as FMECA has a focus
on hardware component failures human errors and software errors cannot well
be reflected.

On the other hand, FMECA is simple to apply. It requires, however, thorough
knowledge of a system and its environment. FMECA can be tailored to meet
specific industry or product needs. It helps to reveal weak points in the system

Model-Based Analysis and Development of Dependable Systems 281

structure during early phases of system design and by that, it can help to avoid
expensive design changes. FMECA is very effective where system failures are
caused by single components failures.

10.4.2 The Fault Tree Analysis Method

The Fault Tree Analysis (FTA) is used to show causes or combinations of
causes that then lead to overall system failures. It is basically a quantitative
reliability analysis method that uses a static view of a system.

A fault tree is a logic diagram that displays the interrelationships between
a potential critical event in a system and the causes for this event. It analyzes
combinations of causes using Boolean logic with and- and or-gates. The fault
tree analysis (FTA) method was developed at Bell Telephone Laboratories [22].
It was extended by Boeing and became a part of the IEC 61025 standard [23].

FTA is used in the design phase to reveal hidden failures caused by underlying
combinations of faults or errors. During system operation, it is used to identify
potential hazardous combinations of component failure and operator or proce-
dural faults. It is also used in combination with FMECA to analyze selected
system parts.

top event

or

intermediate
event

1 2

intermediate
event

basic event

and

or

4 5

basic event basic event

3

basic event basic event

Fig. 10.4. A Fault Tree

A fault tree (see Fig. 10.4) is constructed following the procedure provided
below:

(1) Select a top level event for analysis.
(2) Identify faults that could lead to the top level event and that represent an

immediate, necessary, or sufficient cause that results in the upper event.
(3) Connect these fault events to the top event using logical and- or or-gates.
(4) Proceed level by level until all fault events have been described in an appro-

priate level of resolution.

282 C. Buckl et al.

Given a fault tree, the minimal cut sets can be determined: for a given event,
the set of basic events that lead to this event are identified. In a qualitative
analysis of a fault tree, the minimal cut sets give potential combinations of
environmental factors, human errors, normal events, and component failures
that may result in a critical event in the system.

For a quantitative analysis, failure rates for each basic event are assigned
which are then cummulated to the probability of the top event (i.e., the unwanted
incident) by assuming that all the basic event parts of the minimal cut set of
the top event are independent and happen simultaneously.

Fault trees provide a static view on event combinations that may cause in-
cidents. They cannot accurately model system dynamics. A fault tree is just
a Boolean method (failure or success only). For the quantitative analysis, ba-
sic events are assumed to be statistically independent, so that the results are
imprecise whenever this assumption does not hold.

Fault trees provide a clear picture of component failures and other events that
may cause unwanted incidents. The graphical model is well known and fairly
simple to explain. It forces users to understand the details of a system and to
discover weaknesses at an early stage. It is able to handle common cause failures
if component dependencies are well defined. It addresses redundant components
in a system. Last but not least, the static nature of fault trees may be mitigated
using scenario-based simulation of fault trees.

10.4.3 Markov Analysis

The Markov chain is a mathematical model for the random evolution of a
memoryless system, for which the likelihood of a future state, at any given mo-
ment, depends only on the present system state and not on any past states.
For reliability analysis Markov chains (also called Markov models) and their va-
rious flavors have been extensively used. Markov analysis enables a quantitative
reliability analysis of the dynamic system behavior.

For Markov modeling the states of a system and transitions between them are
considered. The system transitions are typically between a perfect state and a
failure state. Transition probabilities define the degradation/failure rates and the
repair rates. The Markov model has been developed by Andrej A. Markov [24].
It has been included in the standards IEC 61165 [25] and IEC 61508 [8].

A Markov model (see Fig. 10.5) is established according to the following
procedure:

(1) Define all system states including failure states such as operation, degrada-
tion, maintenance, or repair.

(2) Define transitions between the states and assign failure and repair rates.
(3) Define initial state probabilities.

For large systems Markov models are often exceedingly large, complicated, and
difficult to construct and validate. They suffer from the state space explosion
problem. On the other hand, Markov models are able to handle systems that

Model-Based Analysis and Development of Dependable Systems 283

DescriptionSystem state
3
2
1
0

Both components functioning
Component A in failed state
Component B in failed state
Both components in failed state

A two-component system

Its Markov model Its evolution over time

Its states

Fig. 10.5. Exemplified States Evolution over Time

exhibit strong dependencies between its components. System reconfiguration due
to failures, repair, and switching strategies can easily be described. The analysis
of a Markov model does not only give the probabilities for states, but also for
sequences of events.

Although Markov models are a powerful and mathematically sound formalism
for analysing system reliability, a Markov model is considered to be too low-level,
which makes building a Markov model a tedious and error-prone task [26]. Hence
this method is not yet widely used, despite the considerable benefits offered by
Markov analysis [27].

10.4.4 Testing and Model-Based Testing

Testing is an analytic means for assessing the quality of systems [28, 29]. It ”can
never show the absence of failures” [30], but it aims at increasing the confidence
that a system meets its specified behavior. Testing is an activity performed for
improving the product quality by identifying defects and problems. It cannot
be undertaken in isolation. Instead, in order to be in any way successful and
efficient, it must be embedded in adequate system development process and
have interfaces to the respective sub-processes.

Model-based Testing (MBT) relates to a process of test generation from a
model of the system under test (SUT) by application of a number of sophisticated
methods. It can be understood as the automation of black-box or white-box test
design [29]. Several authors [31, 32, 33, 34, 35, 36] define MBT as testing in
which test cases are derived in whole or in part from a model that describes
some aspects of the SUT based on selected criteria in different contexts.

MBT allows tests to be linked directly to the SUT requirements, makes rea-
dability, understandability, and maintainability of tests easier. It helps to ensure
a repeatable and scientific basis for testing and it may give good coverage of all
the behaviors of the SUT [32]. Finally, it is a way to reduce the efforts and cost
for testing [37].

The term MBT is widely used today with slightly different meanings.
Surveys on selected MBT approaches are given in [38, 32, 29, 39, 40]. In the

284 C. Buckl et al.

automotive industry MBT is used to describe all testing activities that are related
to model-based development [41, 42]. To that end, the authors of [43, 44, 45, 46]
define MBT as a test process that usually encompasses a combination of dif-
ferent test methods which utilize the executable system model as a source of in-
formation. Thus, the automotive viewpoint on MBT is rather process-oriented.
A single testing technique is often not enough to provide an expected level of
test coverage. Though, it strongly depends on the targeted coverage criteria,
for example, white/box test criteria can be succesfully fulfilled with a single
method. Relating to all the test dimensions different test approaches should be
combined to complement each other (e.g., functional and structural). Then, ana-
lyzing testing activities throughout the entire test process, one can assume that
if sufficient test coverage has been achieved on model level, the test cases can be
reused for testing the control software generated from the model and the end-
product unit within the framework of back-to-back tests [47]. With this practice,
the functional equivalence between executable model, code, and product can be
verified [41].

10.4.5 Summary: Reliability and Safety Analysis

This section reviewed reliability and safety analysis methods and provided details
on FMECA, FTA, Markov models, and MBT. A comparison of these methods
is given in Table 10.1.

Table 10.1. Comparison of Dependability Analysis Methods

Method Modeling Concepts Dynamic Modeling Quantitative Eva-
luation

FMECA Components and
Failures

No No

FTA Events No Yes
Markov Models States and Transi-

tions
Yes Yes

Test Methods Any Yes Yes

Markov models and many testing methods allow to analyze system behavior
dynamically. Though, Markov chains are not wide-spread basically because of
their low abstraction level. Techniques described in Sec. 10.5, such as interaction-
based models, AADL, or proprietary solutions, can be applied as complementary
methods on a higher abstraction level.

10.5 Languages and Tool Support

After introducing the different methods for safety and reliability analysis, this
section discusses selected examples for model-based development tools that tar-
get the area of dependable systems. Since tools based on the Unified Modeling

Model-Based Analysis and Development of Dependable Systems 285

Language are already discussed in chapter UML for Software Safety and Certica-
tion, this section focuses on domain-specific approaches. Zougbi et al. pointed out
that generic UML-based tools have the disadvantage of not covering all neces-
sary aspects for modeling fault-tolerant real-time systems [48]. They also do not
support adequate code generators supporting transformations from more sophis-
ticated models than class diagrams and state charts [49]. The reason is mainly
the lack of precise semantics of the UML models [50, 51]. The main advantage
of domain-specific tools is the possibility to use restrictions (e.g., with respect to
the model of computation) suitable for the intended domain. Therefore, it is pos-
sible to offer a better tool support, for example extensive code generation ability
or formal verification. In the following, we discuss three concrete examples.

Within a project at the University of California in San Diego (UCSD), a
taxonomy of software failures and interaction-based models for logical and de-
ployment architectures were developed for the automotive domain [52]. Based on
these models, a verification tool has been developed that allows the generation
of models that can be feed into the SPIN model checker [53].

FTOS [54] is amodel-driven tooldevelopedat theTechnicalUniversityMünchen
(TUM). It supports modeling of dependable systems and code generation for non-
functional properties such us scheduling, communication within the distributed
system, and fault-tolerance mechanisms. It is based on a meta code generation fra-
mework [55] and thus, supports expandability with respect to both the modeling
language and code generation ability.

The third tool developed by LAAS-CNRS [56, 57] is based on Architecture
Analysis and Design Language (AADL) [58]. The main contribution of this work
is the definition of reusable fault-tolerance patterns that can be used at architec-
tural level. These patterns can be instantiated and customized for a particular
system. By transforming the AADL model into a stochastic model, dependability
measures can be obtained.

10.5.1 Models

In the following, different approaches based on the applied models are discussed.
Note, the terminology provided at the beginning of this chapter is used in the
upcoming paragraphs independently of other variants proposed elsewhere (e.g.,
error and fault definitions).

Logical and Deployment Models. The first two approaches mentioned above offer
two models to specify the application logic and hardware architecture (i.e., plat-
form). In the UCSD approach, the Logical Model represents the Platform Inde-
pendent Model (PIM) and the Deployment Model the Platform Specific Model
(PSM) in the spirit of the Model Driven Architecture (MDA) [59]. The mapping
is achieved by a Mapping Model as depicted in Fig. 10.6. This contrasts the ap-
proach of FTOS, where the hardwaremodel is firstly defined and the resulting soft-
ware model refers to this hardware model. This approach is motivated by the fact
that the safety goals can only be reached when using the correct hardware architec-
ture [8]. In AADL, interacting application components (e.g., processes, threads,

286 C. Buckl et al.

Fault-tolerance mechanisms
Pro-active Operations, Error Detection, Online Error Treatment, Offline

Error Recovery

Hardware Architecture Model
Controller, Sensors, Actuators, Network Topology

Software Architecture Model
Software Components, Interaction Schedule (time-triggered)

Fault Model
Expected Faults, Effects on Hardware / Software Components

Deployment Model
Controller, Sensors, Actuators,

Connections

Logical Model
Services, Service Interaction (Messages)

Failures, Detectors, Mitigators

Mapping Model

Models by UCSD Models by TUM

Fig. 10.6. Models and their Dependencies

subprograms, and platform components, such as processors, memory, buses) are
specified as hierarchical collections in one model.

Another major difference is the model of computation. The design of an
adequate model of computation can drastically leverage the implementation
complexity of fault-tolerant embedded systems [60]. FTOS uses the concept of
logical execution times [61] as a model of computation. This enhances the fault-
tolerance mechanisms [62]. Within the software model, all interaction points
between software components (i.e., actors) are specified with respect to time.
An event-triggered execution can only be realized on basis of this time-triggered
execution scheme. In contrast, the UCSD approach is based on a service-oriented
architecture, where message-passing is used as a means for component interac-
tion. The messages can be applied both for services executed on one controller
and for services executed in the distributed system. This contrasts the approach
in FTOS, where ports are used to realize the communication. AADL itself de-
fines no concrete model of computation. Dynamic aspects are described by the
selected operational model. This concept allows for the definition of different ope-
rational models for a system or a given system component to represent various
system configurations and connection topologies.

Fault Models. All the reviewed approaches force the user to specify the fault hy-
pothesis directly in the model. In the approach of the UCSD, a failure taxonomy
allows for the description of the possible failures. The base failure taxonomy is
depicted in Fig. 10.7. It can be augmented by domain specific failures. For each
failure the cause can be specified and hardware/software, permanent/temporary,
and unexpected/non occurrence behavior is distinguished. In addition, possible
failure effects are categorized as Nonhazardous, PotentiallyHazardous, and Ha-
zardous. The concrete effects and the affected components can be described in
the logical model. The approach in AADL is similar. AADL error models allow
for modeling component behavior in the presence of faults. Error models describe
error states, error events, and error propagation. By the occurrence property, the
arrival rate and probability of events and propagations can be specified.

In contrast to application specific errors, FTOS specifies a number of generic
fault effects for each software/hardware component type in a distinct model.

Model-Based Analysis and Development of Dependable Systems 287

Fig. 10.7. Failure Taxonomy [52]

For network components for instance, FTOS defines seven different fault effects
as suggested in the international standard IEC 61508 [8]: DataCorruption, Ti-
meDelay, DeletedTelegram, Repetition, InsertedTelegram, ResequencedTelegram,
AddressingError, and Masquerade. It is possible to specify which components
might be affected by which fault effect and constrain the number of simul-
taneous faults. Because of generic fault effects, generic fault detectors can be
applied. Code generation and verification are also supported [54].

Fault-Tolerance Mechanisms. The fault-tolerance mechanisms in the UCSD ap-
proach are specified in a similiar manner than the fault hypothesis within the
logical model. For each failure effect a detector has to be specified. Detectors
activate appropriate mitigators, similar to Arora’s concept of Detectors and Cor-
rectors. Services can be used both as unmanaged service that defines system be-
havior without considering failures, and managed service that are equipped with
detectors and mitigators. The services can be composed hierarchically allowing
the fault-tolerance mechanisms to be applied at different levels of abstractions.

FTOS extends the concept of Arora and uses a separate model to specify
the fault-tolerance mechanism. The system is split into fault containment units
(FCU) and sets of components that can be affected by faults. In addition, re-
levant sets of fault configurations, and functions mapping each FCU to correct
or false can be specified. At runtime, tests monitor one or more FCUs. If at
least one associated test assumes the FCU to be faulty, the status of this FCU is
set to false. Whenever the status of a FCU changes, the system determines the
active fault configuration set. Changes of this set can trigger reactions (error
treatment) by the system. Examples for error treatment operations are roll-
back operations or switches to a correct redundant unit. All error treatment
operations are performed online. They can lead to the exclusion of erroneous
components. The excluded components perform recovery operations offline

288 C. Buckl et al.

monitors

changes
 trigger

influences

exclusion
trigger

uses

completion
triggers

Fig. 10.8. Concept of Fault-Tolerance Mechanism

followed by tests to check the correctness of the repaired component. If suc-
cessful, the component request the integration into the running system. The
integration leads to a change of the active fault configuration set and triggers a
new iteration of reactions. The relationship between different types is illustrated
in Fig. 10.8.

For AADL, Rugina et al. propose different reusable fault-tolerance patterns
at the architectural level (e.g., hot standby). The interaction between different
components is specified within a dedicated pattern. The patterns should be
customized for a concrete application, for example, by defining error detection
strategies.

10.5.2 Implementations

All mentioned approaches have been tested in the context of different applica-
tions to point out the benefits of the model-based approach. UCSD used their
approach to verify a central locking system in the automotive domain. The mo-
del was translated into another model that could be directly feed into the SPIN
model checker. Based on the generated model one can verify the achievement of
the safety goals or use the produced counter examples to refactor the system’s
architecture.

FTOS has been applied to prove the efficiency of the code generation and the
possibility to cope with heterogeneous systems. One application is the classic
”inverted pendulum” controlled by a triple-modular redundancy (TMR) system.
Here, the generated code could be executed with a control response time of
2.5 milliseconds. Another application is the control of an elevator, consisting
of a hot-standby system executing the control logic and five microcontrollers
implementing the I/O functionality. Since the focus of FTOS is on the non-
functional requirements, the code implementing the control functionality has to
be provided manually. However, this gap can be closed by combining FTOS with
existing tools for the development of control functionality [54].

The work of LAAS CNRS is used for dependability analysis. AADL models
can be transformed to other models (e.g., stochastic Petri nets). In the context

Model-Based Analysis and Development of Dependable Systems 289

of a safety-critical subsystem of the French Air Traffic Control System, different
architecture solutions were compared to evaluate their availability. The complete
approach allows for a simple and fast evaluation of the design alternatives.

10.5.3 Summary: Language and Tool Support

Several tools for analysis and development of dependable systems are emerging.
They differ in the number of covered aspects and in their application domain.
For specific domains and application areas, these tools can facilitate the deve-
lopment/analysis process considerable. By using domain-specific concepts, such
as a specific model of computation, or restricting the application purpose of the
tool, these tools offer extensive code generation or analysis abilities. However,
there are no generic tools available that can be used in the development process
of arbitrary dependable systems.

10.6 Conclusion and Research Challenges

Within this chapter, we discussed the current state of the art with respect to
model-based tools in the context of dependable systems. As dependability com-
prises very different aspects ranging from availability to maintainability. Here,
safety and reliability were in focus. The chapter started with a definition of
the relevant terms and concepts. Subsequently, in Sec. 10.3 we defined a formal
model of a fault-tolerant system. This model can be used to discuss and com-
pare different approaches and to get a good understanding of the concepts of
fault-tolerant systems.

To illustrate the state of the art of model-based methods for reliability and
safety analysis, Sec. 10.4 provided details on FMECA, FTA, Markov models,
and MBT. A comparison of these methods can be found in Table 10.1.

Finally, Sec. 10.5 gave insight in some tools from academia that show the po-
tential of model-based approaches with respect to formal verification and code
generation. By using domain-specific models, the system, fault hypothesis, and
fault-tolerance mechanisms can be specified. The presented tools allow the au-
tomatic synthesis of code or the translation into formal models that can be used
as input for verification tools.

Regarding future research challenges, three main areas can be identified: mo-
del use throughout the whole development process, tool support for formal ve-
rification, and designing adequate fault models.

In currently available tools, different models of the system are used in each
phase of the development process. Typically, these models can not be reused in
the next phases, nor is there an automated transformation into adequate mo-
dels. Especially in the area of dependable systems, where the developer has to
provide a complete tracing from requirements to the resulting system, an in-
tegrated model-based development process with extensive tool support ranging
from requirements analysis through code generation to validation would be tre-
mendously beneficial. Some promising results have been provided by industry in
the context of control systems [63, 40].

290 C. Buckl et al.

Furthermore, the integration of formal verification techniques is becoming
more and more essential. The current state of the art with very complex ma-
thematical models restricts the application to experts in formal verification. A
promising approach is the automatic synthesis of these models out of domain-
specific models that can be designed by non-experts. A major drawback is ho-
wever that the counter examples are presented using the mathematical models.
A translation back to original models is still an open research challenge.

Another major issue is the formal specification of the fault-hypothesis. Cur-
rently, this fault hypothesis is typically specified as a textual document that is
not machine-readable and usually inconsistent or even contradictory. A formal
model to specify the fault assumptions within the system model, which is also
linked to the basic faults described in the certification guidelines, is only partially
covered in some ongoing research (e.g., [54]).

Acknowledgements

We thank the anonymous referees for their valuable comments.

References

[1] Object Management Group: OMG Unified Modelling Language Specification.
2.1.2 edn. (November 2007)

[2] Arora, A., Gouda, M.: Closure and convergence: A foundation of fault-tolerant
computing. IEEE Transactions on Software Engineering 19(11), 1015–1027 (1993)

[3] Arora, A., Kulkarni, S.S.: Detectors and correctors: A theory of fault-tolerance
components. In: International Conference on Distributed Computing Systems, pp.
436–443 (1998)

[4] Laprie, J.C.: Dependable computing and fault-tolerance: Concepts and termi-
nology. In: Proceedings of the 15th International Symposion on Fault Tolerant
Computing Systems, pp. 2–11 (June 1985)

[5] Avizienis, A., Laprie, J.C., Randell, B.: Fundamental concepts of dependability.
Technical report, LAAS-CNRS (April 2001)

[6] Department of Defense: Standard Practise for System Safety. MIL-STD-882D
(2000)

[7] United Kingdom Ministry of Defence: Safety Management Requirements for De-
fence Systems. Def Stan 00-56 (2000)

[8] International Electrotechnical Commission: Functional safety of electri-
cal/electronic/programmable electronic safety-related systems. IEC 61508 (2002)

[9] International Standards Organization: Quality management and quality assurance
- Vocabulary. ISO 8402-1986 (1986)

[10] Pradhan, D.K.: Fault-Tolerant Computer System Design. Prentice-Hall, Engle-
wood Cliffs (1996)

[11] Avizienis, A.: The four-universe information system model for the study of fault-
tolerance. In: International Symposium on Fault-Tolerant Computing, Santa Mo-
nica, CA, vol. 12, pp. 6–13 (June 1982)

[12] Lee, P.A., Anderson, T.: Fault Tolerance: Principles and Practice. Springer, New
York (1990)

Model-Based Analysis and Development of Dependable Systems 291

[13] Powell, D., Chérèque, M., Drackley, D.: Fault-tolerance in delta-4. ACM SIGOPS
Operating Systems Review 25(2), 122–125 (1991)

[14] Arora, A., Kulkarni, S.S.: Designing masking fault-tolerance via nonmasking fault-
tolerance. IEEE Transactions on Software Engineering 24(6), 435–450 (1998)

[15] Kulkarni, S.S.: Component based design of fault-tolerance. PhD thesis, Ohio State
University, Adviser-Anish Arora (1999)

[16] Randell, B., Lee, P., Treleaven, P.C.: Reliability issues in computing system design.
ACM Computing Surveys 10(2), 123–165 (1978)

[17] Stamatis, D.H.: Failure Mode and Effect Analysis: FMEA from Theory to Exe-
cution. American Society for Quality (2003)

[18] Haimes, Y.Y.: Risk Modeling, Assessment, and Management. Wiley, Chichester
(2005)

[19] Society of Automotive Engineers: Recommended Failure Modes and Effects Ana-
lysis (FMEA) Practices for Non-Automobile Applications. SAE ARP 5580 (2001)

[20] International Electrotechnical Commission: Analysis techniques for system relia-
bility - Procedure for failure mode and effects analysis (FMEA). IEC 60812:2006
(2006)

[21] British Standards: Reliability of systems, equipment and components. Guide to
the specification of dependability requirements. BS5760-4:2003 (2003)

[22] Ericson, C.: Fault Tree Analysis: A History. In: Proceedings of the 17th Interna-
tional System Safety Conference (1999)

[23] International Electrotechnical Commission: Fault Tree Analysis (FTA). IEC 61025
(1990)

[24] Markov, A.A.: In: Classical Text in Translation: An Example of Statistical In-
vestigation of the Text Eugene Onegin Concerning the Connection of Samples in
Chains. Science in Context. Cambridge Journals, 591–600 (2006)

[25] International Electrotechnical Commission: Application of Markov techniques.
IEC 61165:2006 (2006)

[26] Boudali, H., Crouzen, P., Stoelinga, M.: Dynamic Fault Tree Analysis Using In-
put/Output Interactive Markov Chains. In: International Conference on Depen-
dable Systems and Networks, pp. 708–717 (2007)

[27] Hausler, P.A., Linger, R.C., Trammell, C.J.: Adopting Cleanroom software engi-
neering with a phased approach. IBM Syst. J. 33(1), 89–109 (1994)

[28] Wallmueller, E.: Software- Qualitätsmanagement in der Praxis. Hanser Verlag
(2001) (in German)

[29] Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco (2006)

[30] Dijkstra, E.W.: Notes on Structured Programming. Circulated Privately (April
1970)

[31] Bernard, E., Legeard, B., Luck, X., Peureux, F.: Generation of test sequences from
formal specifications: Gsm 11-11 standard case study. Softw. Pract. Exper. 34(10),
915–948 (2004)

[32] Utting, M.: Model-Based Testing. In: Proceedings of the Workshop on Verified
Software: Theory, Tools, and Experiments, VSTTE 2005 (2005)

[33] Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N.,
Veanes, M.: Model-Based Testing of Object-Oriented Reactive Systems with Spec
Explorer. Microsoft Research, MSR-TR-2005-59 (2005)

[34] Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-
Based Testing. In: Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) FATES
2006 and RV 2006. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

292 C. Buckl et al.

[35] Kamga, J., Herrmann, J., Joshi, P.: D-MINT Automotive Case Study. Deployment
of Model-Based Technologies to Industrial Testing (D-MINT), ITEA2 Project,
Deliverable 1.1 (2007)

[36] Tretmans, J.: Model based testing with labelled transition systems. In: Hierons,
R.M., Bowen, J.P., Harman, M. (eds.) FORTEST 2008. LNCS, vol. 4949, pp.
1–38. Springer, Heidelberg (2008)

[37] Pretschner, A., Prenninger, W., Wagner, S., Kühnel, C., Baumgartner, M., Sos-
tawa, B., Zölch, R., Stauner, T.: One evaluation of model-based testing and its
automation. In: ICSE 2005: Proceedings of the 27th International Conference on
Software Engineering, pp. 392–401. ACM, New York (2005)

[38] Broy, M., Jonsson, B., Katoen, J.P., Leucker, M., Pretschner, A.: Model-Based
Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

[39] D-MINT Consortium: D-MINT Project - Deployment of Model-Based Technolo-
gies to Industrial Testing (2008), http://d-mint.org/ (last visited 01/05/09)

[40] Zander-Nowicka, J.: Model-based Testing of Real-Time Embedded Systems in the
Automotive Domain. PhD thesis, Technical University Berlin (2009)

[41] Conrad, M., Fey, I., Sadeghipour, S.: Systematic model-based testing of embedded
automotive software. Electr. Notes Theor. Comput. Sci. 111, 13–26 (2005)

[42] Bringmann, E., Krämer, A.: Model-based testing of automotive systems. In: ICST,
pp. 485–493. IEEE Computer Society, Los Alamitos (2008)

[43] Rau, A.: Model-Based Development of Embedded Automotive Control Systems.
PhD thesis, University of Tübingen (2002)

[44] Lamberg, K., Beine, M., Eschmann, M., Otterbach, R., Conrad, M., Fey, I.: Model-
Based Testing of Embedded Automotive Software Using MTest. In: Proceedings
of SAE World Congress, Detroit, US (2004); SAE technical paper 2004-01-1593

[45] Conrad, M.: Modell-Basierter Test Eingebetteter Software im Automobil: Aus-
wahl und Beschreibung von Testszenarien. PhD thesis, Technical University Berlin
(2004) (in German)

[46] Conrad, M.: A systematic approach to testing automotive control software. SAE
Technical Paper Series, 2004210039, Detroit USA (2004)

[47] Wiesbrock, H.W., Conrad, M., Fey, I., Pohlheim, H.: Ein Neues Automatisiertes
Auswerteverfahren für Regressions und Back-To-Back-Tests Eingebetteter Regel-
systeme. Softwaretechnik-Trends 22(3), 22–27 (2002) (in German)

[48] Zoughbi, G., Briand, L.C., Labiche, Y.: A uml profile for developing airworthiness-
compliant (rtca do-178b), safety-critical software. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 574–588.
Springer, Heidelberg (2007)

[49] Khan, M.U., Geihs, K., Gutbrodt, F., Gohner, P., Trauter, R.: Model-driven de-
velopment of real-time systems with uml 2.0 and c. In: MBD-MOMPES 2006:
Proceedings of the Fourth Workshop on Model-Based Development of Computer-
Based Systems and Third International Workshop on Model-Based Methodologies
for Pervasive and Embedded Software (MBD-MOMPES 2006), Washington, DC,
USA, pp. 33–42. IEEE Computer Society, Los Alamitos (2006)

[50] Johnson, I., Snook, C., Edmunds, A., Butler, M.: Rigorous development of reu-
sable, domain-specific components, for complex applications. In: CSDUML 2004
- 3rd International Workshop on Critical Systems Development with UML (2004)

[51] Bunse, C., Gross, H.G., Peper, C.: Applying a model-based approach for em-
bedded system development. In: EUROMICRO 2007: Proceedings of the 33rd
EUROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO 2007), Washington, DC, USA, pp. 121–128. IEEE Computer So-
ciety, Los Alamitos (2007)

http://d-mint.org/

Model-Based Analysis and Development of Dependable Systems 293

[52] Ermagan, V., Krueger, I., Menarini, M., ichi Mizutani, J., Oguchi, K., Weir,
D.: Towards model-based failure-management for automotive software. In: SEAS
2007: Proceedings of the 4th International Workshop on Software Engineering
for Automotive Systems, Washington, DC, USA. IEEE Computer Society, Los
Alamitos (2007)

[53] Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–
295 (1997)

[54] Buckl, C.: Model-Based Development of Fault-Tolerant Real-Time Systems. PhD
thesis, TU München (October 2008)

[55] Stahl, T., Voelter, M.: Model-Driven Software Development: Technology, Engi-
neering, Management, 1st edn. Wiley, Chichester (May 2006)

[56] Rugina, A.E., Feiler, P.H., Kanoun, K., Kaâniche, M.: Software dependability
modeling using an industry-standard architecture description language. CoRR
(2008)

[57] Rugina, A.E.: Dependability modeling and evaluation - From AADL to stochastic
Petri nets. PhD thesis, LAAS CNRS (2007)

[58] International Society of Automotive Engineers: SAE Architecture Analysis and
Design Language, AADL (November 2004)

[59] Miller, J., Mukerji, J.: MDA Guide. Object Management Group, Inc. (June 2003),
Version 1.0.1, omg/03-06-01

[60] Wensley, J., Lamport, L., Goldberg, J., Green, M., Levitt, K., Melliar-Smith, P.,
Shostak, R., Weinstock, C.: Sift: Design and analysis of a fault-tolerant computer
for aircraft control. Proceedings of the IEEE 66(10), 1240–1255 (1978)

[61] Henzinger, T.A.: Embedded software: Better models, better code. In: ICATPN,
pp. 35–36 (2004)

[62] Buckl, C., Regensburger, M., Knoll, A., Schrott, G.: A model-based code generator
in the context of safety-critical systems. In: Third Latin-American Symposium on
Dependable Computing - Fast Abstracts Volume, pp. 3–4 (2007)

[63] Nicolescu, G., Mosterman, P.J. (eds.): Model-Based Design for Embedded Sys-
tems. CRC Press, Boca Raton (2009)

Part V

Approaches

11 The EAST-ADL Architecture Description
Language for Automotive Embedded Software

Philippe Cuenot1, Patrick Frey2, Rolf Johansson3, Henrik Lönn4,
Yiannis Papadopoulos5, Mark-Oliver Reiser6, Anders Sandberg7,

David Servat8, Ramin Tavakoli Kolagari4,
Martin Törngren9, and Matthias Weber10

1 Continental Automotive
2 ETAS

3 Mentor Graphics
4 Volvo Technology
5 University of Hull

6 TU Berlin
7 Mecel

8 CEA LIST
9 KTH

10 Carmeq

Abstract. Current trends in automotive embedded systems focus on
how to manage the increasing software content, with a strong emphasis
on standardization of the embedded software structure. The management
of engineering information remains a critical challenge in order to support
development and other stages of the life-cycle. System modelling based
on an Architecture Description Language (ADL) is a way to keep these
assets within one information structure. This paper presents the EAST-
ADL2 modelling language, developed in the ITEA EAST-EEA project
and further enhanced in the ATESST project (www.atesst.org). EAST-
ADL2 supports comprehensive model-based development of embedded
systems and provides dedicated constructs to facilitate variability and
product line management, requirements engineering, representation of
functional as well as software/hardware solutions, and timing and safety
analysis.

11.1 Introduction

Current trends in automotive software development focus to a large extent on
how to manage the increasing software content. Hybrid vehicle control, active
safety systems, diagnostics services, etc., all rely on embedded systems. The
automotive industry faces the challenge of incorporating software and embedded
systems engineering within traditional mechanical engineering enterprises. This
challenge is addressed in many ways, including incorporation of new processes,
tools, and the standardization of the embedded software structure. Software
standardization is addressed in the AUTOSAR standardization initiative [1].
The AUTOSAR standard specifies how to model the software architecture and

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 297–307, 2010.
� Springer-Verlag Berlin Heidelberg 2010

298 P. Cuenot et al.

final implementation, but the requirements, functional content realized by this
solution, and non-functional aspects such as support for safety analysis, are not
covered [2].

EAST-ADL2 is an Architecture Description Language. As such it provides a
basis for documenting and managing the various artefacts of an advanced embed-
ded system (requirements, features, desired behaviours, software and hardware
components), and their dependencies (refinement, allocation, composition, com-
munication, etc.). Any modelling language is directed by the product aspects and
process stages it intends to support. EAST-ADL2 is defined with the develop-
ment of safety-related embedded control systems as a benchmark. EAST-ADL2
bridges the gap from vehicle content definition and early analysis via functional
design to the implementation perspective and back to integration and acceptance
testing up to vehicle-level. An early, high-level representation of the system can
evolve seamlessly into the detailed specifications of the AUTOSAR language. In
addition, EAST-ADL2 incorporates the following system development concerns:

• Modelling of requirements and verification/validation information,
• Feature modelling and support for product lines,
• Structural and behavioural modelling of functions and hardware entities in

the context of distributed systems,
• Modelling of variability of the system design,
• Environment, i.e., plant model and adjacent systems, and
• Non-functional operational properties such as a definition of function timing

and failure modes, supporting system level analysis.

The main role of EAST-ADL2 is that of providing an integrated system model.
As such, EAST-ADL2 must address multiple aspects of a system [3] including:

- Documentation, in terms of an integrated system model.
- Communication, by providing predefined views as well as the information

sufficient for generating a number of other views.
- Analysis of a complete embedded system through the description of system

structure and properties. Special emphasis has been placed on modelling
support for analysis of component interfaces, timing correctness and safety
analysis.

EAST-ADL2 and AUTOSAR in concert provide means for efficient development
and management of the complexity of automotive embedded systems from early
analysis right down to implementation. Concepts from model based development
and component based development reinforce one another [4].

The following sections briefly summarize the language capabilities of EAST-
ADL2 and present an illustrative example of its use. We conclude by comparing
EAST-ADL2 with related work and discuss ongoing activities in the development
of the language.

The EAST-ADL Architecture Description Language 299

11.2 Modeling and Analysis Capabilities of the
EAST-ADL2

EAST-ADL2 is a domain-specific language specified through a metamodel and
implemented/released as a UML2 profile.

The primary structural organization of EAST-ADL2 is the division of the
model into different abstraction levels (see Fig. 11.1). On a high abstraction level,
only the externally perceivable aspects of the embedded system are handled,
while on a low abstraction level the implementation-specific solution is managed
in an AUTOSAR-conforming software architecture. This ensures separation of
concerns and provides means to trace between the solution and problem domains.

Fig. 11.1. EAST-ADL2 abstraction layers and relation to AUTOSAR. Cross-cutting
concerns like requirements, V&V information, variability and safety/error modeling
span all abstraction levels.

The abstraction levels implicitly represent different stages of an engineering
process. However, the order in which a system is modelled could be top-down,
middle-out, or bottom-up, in relation to the abstraction levels.

The structural organization of EAST-ADL2 is the backbone onto which addi-
tional modeling constructs are applied. Behavior, requirements, variability and
safety aspects are examples of concepts that apply to the structural entities on
several abstraction levels. A short summary follows below.

Behaviour
The goal of EAST-ADL2 with respect to behaviour is to define how model
components (from different tools, in different modelling languages, or just re-
presenting code) are related to each other in order to capture behaviour and
algorithms of the vehicle systems as well as the environment [5][6]. EAST-ADL

300 P. Cuenot et al.

enables structural components to refer to external behavior models, such as a
Simulink model. The language also enables specification of triggering of blocks
and precedence relations in their execution. The purpose of the behavioural
definitions includes documentation, code generation and analysis, and the repre-
sentation is chosen depending on the respective purpose.

Requirements
Requirements are captured in EAST-ADL2 according to the principles of SysML
[7]: Requirements are separate entities that are associated to its target elements
with a specific association, “ADLSatisfy”.

Requirements are related to each other to support traceability between requi-
rements. Typically, requirements on the higher abstraction levels of EAST-ADL2
are refined to more detailed requirements on lower abstraction levels.

Verification and Validation is supported through the concept of Verification &
Validation Cases. These are linked to requirements and target entities, in order
to show how a certain requirement is verified in the context of a specific model
entity.

An important aspect of traceability is the possibility to follow which requi-
rements are the results of safety concerns. This is needed to comply with the
upcoming automotive standard for safety, ISO/WD 26262 [8]. EAST-ADL2 also
supports this standard by providing support for safety case, safety integrity
levels, and error propagation.

Variability
Variability is captured in EAST-ADL2 both in the feature models on vehicle level
and in the architectures at analysis level and down. Feature model variability
defines the permitted and expected variability regarding a certain aspect of the
complete system. The idea is not to define how the system varies with respect
to this aspect, but only that the system should exhibit such variability.

Variability on lower abstraction levels, on the other hand, defines how the
feature variability is achieved. Variability mechanisms applied to the entities of
EAST-ADL2 defines which of them are optional and under which circumstances
they are included or excluded and the effect on structure and hierarchy. The
mechanism is linked to the feature models such that variant choices in the feature
model affects the variability resolution of the concrete architecture.

The variability management of EAST-ADL2 especially takes into account the
automotive-specific challenges, e.g., management of a family of model ranges,
different views on variability information (e.g., customer-related as opposed to
development-related variability information), and extensibility of the variability
management approach, e.g., for AUTOSAR modelling entities.

Error Modelling and Safety
State-of-the-art safety analysis techniques provide analysis support for deriving
the causes and consequences of errors, based on a representation of the depen-
dencies between system components. EAST-ADL2 provides means to manage

The EAST-ADL Architecture Description Language 301

the safety-related information together with the engineering information in a
systematic way. An error model is defined with a structure that may be in-
dependent of the nominal system architecture. This way, the error model may
capture errors and error propagation at the level of detail and according to a
structure that is appropriate for the safety analysis at hand.

Further, it is possible to trace from the final implementation back to safety-
related design choices and the applicable hazards. The requirement constructs for
traceability and explicit support for safety cases according to the Goal Structure
Notation [9] are relevant parts of EAST-ADL2 in this context.

11.3 A Small Case Study

To explain how the model is organized, an electric steering column lock function
will be used. This is a security function for preventing any steering wheel mo-
vement without an authorized key. Traditional solutions for locking a steering
column use the position of physical starter key as the authentication and unlo-
cking mechanism. The introduction of immobilizers improved vehicle security by
allowing advanced cryptography for authentication control prior to engine start.
With a keyless engine start solution the steering lock also needs to be realized
by the embedded system: a mechanical lock placed on the steering column is the
actuation element, and a control unit reads the immobilizer transponder code
and vehicle state and controls the mechanical lock accordingly.

11.3.1 Vehicle Features: Vehicle Level

To document what the embedded system provides to the user and other external
stakeholders, a feature model is used. The feature model can be used as an
entry point to related requirements, use cases, and other constructs. The feature
model can be used to expose what the system provides and how a product line
is organized in terms of available options and dependencies between options.

The steering column lock can be represented by a feature tree according to
Figure 11.2. Steering column lock may be mechanical or electronic, and the
electronic version may be based on a key or be key-less. Top level requirements
are linked to each feature (not shown in Figure 11.2).

11.3.2 Abstract Functional Description: Analysis Level

The vehicle features are realized at the Analysis level by abstract functions
(“ADLFunction”) and devices that interact with the vehicle environment (“Func-
tionalDevice”). The Analysis level captures the principal interfaces and
behaviour of the embedded system without design details or decisions on im-
plementation technology.

The “Functional Analysis Architecture” for the example is sketched in Fi-
gure 11.2. The “ECL Function” is the primary controller. It requires certain
inputs including vehicle speed, engine status, the key position and more. The

302 P. Cuenot et al.

Fig. 11.2. The feature model and abstract functional representation of the Steering
Column Lock

“ECL Function” outputs signals to the ECL actuator. Signals for exchange with
the environment are continuous while signals within the embedded system are
typically modelled as discrete. All sensors and actuators are modelled as Func-
tionalDevices with ports connecting to the physical environment. For those fa-
miliar with dynamic simulation environments such as MATLAB/Simulink, this
is a similar view, allowing mixed discrete/continuous signals, and implicit time-
marching.

11.3.3 Concrete Functional Description: Design Level

On the Design level, models are refined with more implementation-oriented as-
pects that allow a subsequent software decomposition of the functional archi-
tecture. While our functional analysis architecture above did not differentiate
between application software, middleware and hardware, the functional design
architecture now separates these areas of the system implementation. To distri-
bute the systems functionality among these areas already constitutes an impor-
tant design decision.

The abstract interface elements on analysis level (“FunctionalDevices”) are
realized by hardware elements such as sensors, actuators and amplifiers, and
the software parts for signal transformation (“LocalDeviceManager”). Middle-
ware abstraction projects the platform services and functionality (OS, AUTO-
SAR Basic software, etc.) to the functional level. The hardware architecture
is introduced in parallel to capture the hardware entities as abstract elements
(e.g. I/O, sensor, actuator, power, Electronic Control Units (ECU), electrical
wiring including communication buses) describing the topology of the electronic

The EAST-ADL Architecture Description Language 303

architecture of the systems. Design level allows preliminary allocation of functio-
nal entities to ECUs and provides the basis for verification either by simulation
or analysis techniques such as timing and dependability analysis.

The DesignArchitecture contains three parts, as shown in Figure 11.1, repre-
senting the application software, execution platform and hardware respectively.
To show how they are related, a part of the example related to vehicle speed is
shown in Figure 11.3. The Hardware Design Architecture can be seen as a cir-
cuit diagram of the system. The “StalkEcu” with its connected speed sensor is
represented with its wiring. In addition, a transfer function of hardware devices
can be specified to capture sensor and hardware characteristics as well as other
behaviour of the hardware architecture.

Fig. 11.3. Parts of design architecture and implementation architecture with realiza-
tion and allocation relations. Note that only selected model entities and relations are
shown.

The Middleware Abstraction contains a representation of the software plat-
form that the applications rely on. In the example, the driver/interface software
for the speed sensor is represented. The “WSensIO” represent the platform func-
tionality that provides pulse rate of the wheel sensor.

The Functional Design Architecture contains the functionality that is subse-
quently realized by application software. The “WheelSensor” LocalDeviceMa-
nager translates to wheel speed according to the characteristics of the wheel
sensor in use. The abstract function “ECLFunction” on analysis level is reali-
zed by three separate functions, two of which represent a redundant decision on
whether the vehicle is moving.

304 P. Cuenot et al.

11.3.4 Software Architecture: Implementation Level

System implementation in software is not represented by EAST-ADL2 entities,
since this is the scope of AUTOSAR. However, the AUTOSAR entities are part
of the system model to support traceability. Figure 11.3 also shows the AU-
TOSAR model and its relation to the EAST-ADL2 functions. As a realistic
example would be too complex, only one-to-one mappings between AUTOSAR
and EAST-ADL2 entities are shown. Readers not familiar with AUTOSAR may
ignore the details and consider the shown entities as parts of the software and
hardware architecture, respectively: The AUTOSAR software architecture typi-
cally shows a different structure than the functional architecture on design level.
The purpose of the AUTOSAR hardware entities is to capture details necessary
for the correct configuration of software. EAST-ADL2 provides a more abstract
view of the hardware architecture, with a functional description of hardware ele-
ments and support for early assessment of feasibility of the system realization.

11.4 Related Work, Conclusions and Further Work

Model based development for embedded systems, and in particular automotive
systems can be supported in various ways. The AADL is a modelling language
dedicated to embedded systems with its roots in the aerospace domain. Com-
pared to the EAST-ADL2 and AUTOSAR combination it covers parts of this
scope. However, because of its overlap with AUTOSAR on the software architec-
ture level, and the lack of complementary abstraction levels it does not provide
an appropriate structural framework for automotive systems development. Also,
the support for feature modelling, requirements and variability is unique for
EAST-ADL2.

SysML and MARTE are UML profiles that augment plain UML with
constructs for systems engineering and embedded real-time systems modelling,
respectively. Both approaches, and even plain UML are useful tools in automo-
tive development and EAST-ADL2 has integrated some of these concepts, for
example requirement concepts from SysML and timing constructs from MARTE.
But the abstraction levels and tailored model structure as well as complementary
constructs of EAST-ADL2 adds a framework that both supports the modelling
needs and guides modelling in a way that improves model exchange and unders-
tanding between stakeholders.

Off-the-shelf tools like SCADE, ASCET, Simulink, etc. all support model ba-
sed development with analysis and synthesis to various degrees. Our conclusion,
however, is that no single tool will be used for an entire vehicle development
project, but model integration is necessary. EAST-ADL2 supports this aspect
by allowing external representation of behaviour and concepts for integration
with requirements management tools.

Another effort with large impact on automotive systems is the safety stan-
dard developed by the ISO working group on functional safety for road vehicles
(ISO TC 22/SC 3/WG 16), ISO/WD 26262. The standard calls for rigorous
development methods and requires documentation that shows that adequate

The EAST-ADL Architecture Description Language 305

measures are taken to achieve safety. EAST-ADL2 provides a framework that
makes this possible and includes dedicated constructs for safety assessment and
documentation.

Having had the opportunity to define this architecture description language in
parallel with the dynamic phases of the definitions of AUTOSAR and ISO/WD
26262, EAST-ADL2 has a good potential to become a de facto standard as it
fits well with the major critical needs of the automotive industry of today.

The language has received further momentum from its deployment in several
industrial research projects that claim the central role of EAST-ADL2 in their
work. Among others, the ADAMS project (www.adams-project.org) leads the
dissemination of MARTE, where AUTOSAR and EAST-ADL2 are of primary
importance for the automotive domain. Another example is the EDONA project
(http://www.edona.org) in which EAST-ADL2 is a cornerstone of an integra-
ted tool suite for the automotive domain. Finally, TIMMO (www.timmo.org)
defines a methodology and representation of timing aspects in automotive em-
bedded systems, where EAST-ADL2 together with AUTOSAR is the basis.

To enable a wide spread use of EAST-ADL2, its UML2 implementation is
released as a public UML2 profile. The profile is supported in the open-source
UML modeller Papyrus which can be downloaded on the www.atesst.org or
the www.papyrusuml.org websites. In the ongoing European research project
ATESST2, the EAST-ADL2 is currently extended in several areas:

– Modelling concepts for requirements and verification and validation are ex-
tended to support e.g. views on requirements and product line support.

– Timing modelling extensions, as being developed in the TIMMO project,
will be integrated into the EAST-ADL2.

– Various aspects of native behavior descriptions are being further investigated
for potential inclusion including explicit support for modes of operation and
representation of continuous-time behavior as part of environment models.

– Variability mechanisms are used to choose between different behavioural
representations.

– Variability concepts are extended to support product-line oriented
manufacturer-supplier exchange.

– New dependability and cost modelling concepts are being developed to sup-
port multi-objective optimisation of system models, in conjunction with tools
such as HiP-HOPS [10] that provide such advanced capabilities. The aim of
optimization is to automatically evolve models that do not necessarily meet
dependability requirements (e.g. safety, reliability or availability) to designs
that fulfil such requirements with minimal costs [11]. Optimization can be
done via exploration of potential design spaces using meta-heuristics such as
genetic algorithms. The specification of design alternatives and variant sub-
architectures the combinations of which define the potential design space
can be described in EAST-ADL2 by using the variability constructs of the
language. This work pushes the boundaries of the state-of-the-art in this
area, as no modelling language provides support for such unique capabilities
in design.

www.adams-project.org
http://www.edona.org
www.timmo.org
www.atesst.org
www.papyrusuml.org

306 P. Cuenot et al.

– Specialised plug-ins, based on the UML profile of the language, are being de-
veloped to achieve practical integration of EAST-ADL2 with existing tools.
For example, data exchange will be supported with a plug-in for the RIF
[12] requirement interchange format. As another example behavioural simu-
lation, safety analysis and optimisation of models will be supported with
plug-ins for Hip-HOPS and MATLAB/Simulink..

In addition, a methodology for the EAST-ADL2 will be developed, that explains
the use and the interrelation of the different modelling concepts on the different
abstraction levels during system specification and design as well as integration
and testing.

Acknowldegements

The authors acknowledge the financial support provided by the European Com-
mission through the Project ATESST2 (call FP7-ICT-2007-2, grant agreement
number 224442).

References

[1] AUTOSAR Development Partnership: AUTOSAR Development Partnership
(2007), http://www.autosar.org

[2] Sangiovanni-Vincentelli, A., Di Natale, M.: Embedded system design for automo-
tive applications. Computer 40(10), 42–51 (2007)

[3] Törngren, M., Chen, D.J., Malvius, D., Axelsson, J.: Model based development
of automotive embedded systems. In: Handbook on Automotive Embedded Sys-
tems. Taylor and Francis CRC Press - Series: Industrial Information Technology
(invited) (forthcoming 2008), ISBN=9780849380266

[4] Törngren, M., Chen, D.J., Crnkovic, I.: Component-based vs. model-based de-
velopment: A comparison in the context of vehicular embedded systems. In:
EUROMICRO-SEAA, pp. 432–441 (2005)

[5] ATESST consortium: Report on behavioral modeling within east-adl2, d3.2 deli-
verable. Technical report (December 2007), http://www.atesst.org/

[6] Sjöstedt, C.J., Shi, J., Törngren, M., Servat, D., Chen, D., Ahlsten, V., Lönn,
H.: Mapping Simulink to UML in the Design of Embedded Systems: Investigating
Scenarios and Structural and Behavioral Mapping. In: OMER4 Post-Proceedings
(2008)

[7] SysML Partners: Systems Modeling Language (SysML) open source specification
project, http://www.sysml.org

[8] International Organization for Standardization: ISO Working Draft 26262 Base-
line 10 (2007)

[9] Kelley, T.P.: Arguing Safety - A Systematic Approach to Managing Safety Cases.
PhD thesis, University of York (1998)

[10] Papadopoulos, Y., McDermid, J.A.: Hierarchically performed hazard origin and
propagation studies. In: Felici, M., Kanoun, K., Pasquini, A. (eds.) SAFECOMP
1999. LNCS, vol. 1698, pp. 139–152. Springer, Heidelberg (1999)

[11] Papadopoulos, Y., Grante, C.: Evolving car designs using model-based automated
safety analysis and optimisation techniques. J. Syst. Softw. 76(1), 77–89 (2005)

http://www.autosar.org
http://www.atesst.org/
http://www.sysml.org

The EAST-ADL Architecture Description Language 307

[12] HIS: Specification Requirements Interchange Format (RIF), version 1.1a (2007)
[13] OMG: Uml profile for modeling and analysis of real-time and embedded systems

(marte), beta1, omg document number: ptc/07-08-04 (August 2007)
[14] The Motor Industry Software Reliability Association (MISRA): Development gui-

delines for vehicle based software (1994)
[15] International Electrotechnical Commission: Functional safety of electri-

cal/electronic/ programmable electronic safety-related systems - part 0: Func-
tional safety and iec 61508 (2005)

[16] Törner, F., Chen, D.J., Johansson, R., Lönn, H., Törngren, M.: Supporting an
automotive safety case through systematic model based development - the east-
adl2 approach. In: SAE World Congress (2008), SAE paper number 2008-01-0127

12 Fujaba4Eclipse Real-Time Tool Suite

Claudia Priesterjahn, Matthias Tichy, Stefan Henkler,
Martin Hirsch, and Wilhelm Schäfer

Software Engineering Group, Department of Computer Science,
University of Paderborn, Paderborn, Germany

{cpr,mtt,shenkler,mahirsch,wilhelm}@uni-paderborn.de

Abstract. The Fujaba Real-Time Tool Suite supports modeling and
verification of software in mechatronic or embedded systems. It also ad-
dresses the specification of advanced systems which reconfigure part of
their structure and behavior at runtime. The Fujaba Real-Time Tool
Suite requires a rigorous development process concerning the use of the
different (partially refined) UML diagrams. All diagrams have a formally
and well-defined semantics which allow to check models for given safety
properties. Further, the tool suite provides a tight integration with soft-
ware tools used by control engineers like CaMEL-View and Matlab to
enable the simulation of production code of a complete system.

12.1 Introduction

Fujaba is an Open Source UML CASE tool project which was kicked off by the
software engineering group at the University of Paderborn in 1997. Current ma-
jor contributors to Fujaba are research groups at the University of Paderborn, the
University of Kassel, the Technical University of Darmstadt, the Hasso-Plattner
Institute at the University of Potsdam, the University of Bayreuth, the Technical
University of Dresden and the University of Antwerp. Minor contributions come
from a number of other places like Tampere and Victoria. In 2002, Fujaba has
been redesigned and became the Fujaba Tool Suite with a plug-in architecture
allowing developers to add functionality easily while retaining full control over
their contributions. There are different Fujaba tool suites available, consisting of
the Fujaba Core with different sets of plug-ins, each of which supports modeling
and analysis for different domains.

One of the above mentioned tool suites is the Fujaba Real-Time Tool Suite
which supports modeling and verification of software in mechatronic or embed-
ded systems. The Fujaba Real-Time Tool Suite requires a rigorous development
process concerning the use of the different (partially refined) UML diagrams. All
diagrams have a formally and well-defined semantics which allow to check models
for given safety properties. Further, the tool suite provides a tight integration
with software tools used by control engineers like CaMEL-View and Matlab and
a transformation from domain-spanning models of the early development phases
to domain-specific models of the Fujaba Real-Time Tool Suite.

In 2008, this tool suite received an IBM Real-Time Innovation Award. In
addition, another FUJABA tool suite (supporting the teaching of object-oriented

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 309–315, 2010.
� Springer-Verlag Berlin Heidelberg 2010

310 C. Priesterjahn et al.

concepts in undergraduate education) was acknowledged by an IBM Eclipse
Innovation Grant in 2004.

In this paper, we present an overview of the features and the corresponding
development process of the Fujaba4Eclipse Real-Time Tool Suite1. The whole
approach is called mUML (cf. [1]). We further show how the mUML was em-
ployed to develop the software of a prototype of a new type of public transport
system, i.e. a non trivial case study.

12.2 Features

The software of mechatronic systems is characterized by hard real-time
constraints and the integration of controllers to control the dynamics of me-
chanical components. Hence, our approach supports the modeling and formal
verification of so-called hybrid systems and the specification of timed behavior.
As formal verification techniques like model checking suffer from the state space
explosion problem, we developed a modular and compositional verification ap-
proach (cf. [2]). Code synthesis (for C++ and Java real-time) takes the specified
real-time requirements into account such that the code exhibits the specified
time constraints [3].

In more detail, the structure (architecture) of the system is specified by soft-
ware components (as well as the relevant parts of the physics of the system,
e.g. for the control engineers) and connectors between them using a slightly re-
fined and formally defined UML 2.0 component model. The behavior of each
port to port connection between components is specified by so-called real-time
coordination patterns. Using an extended version of timed automata cal-
led Real-time Statecharts, which includes a number of additional syntactical
constructs, the pattern specifications define, besides the particular communica-
tion protocols, all related required time constraints like invariants, guards, worst
case execution times (WCET), and deadlines. The coordination patterns consist
of different roles, which correspond to a particular port’s behavior. Each pattern
is individually verifiable concerning safety properties, specified using ATCTL,
using the model checker UPPAAL.

The complete behavior of components, consisting of a number of ports as
depicted in Figure 12.1(a), is automatically composed of all port roles of cor-
responding patterns. The user just sets a few parameters like eliminating non-
deterministic choices in the pattern definition, i.e. synchronizing all behavior
using internal events which do not affect the external behavior. A well defined
refinement relation, which is checked by the tool, guarantees that the already
verified properties still hold after composition without the need to check them
again. The only check remaining is to make sure that the composed automaton
does not include any deadlocks [2].

1 The Fujaba4Eclipse Real-Time Tool Suite is available for download at
http://wwwcs.uni-paderborn.de/cs/fujaba/projects/realtime/index.html

Fujaba4Eclipse Real-Time Tool Suite 311

<<Component>>
Shuttle

<<Component>>

dt : DriveTrain

<<Component>>

lmb : LMB

continuous port

Legend:

discrete port

(a) Component Diagram

VelocityControl

<<Component>>

velCtrl : VelocityControl

PositionControl

<<Component>>

posCtrl : PositionControl

<<Component>>

velCtrl : VelocityControl

PositionControlWithPilotControl

<<Component>>

posCtrl : PositionControl

<<Component>>

velCtrl : VelocityControl

<<Component>>

pilCtrl : PilotControl

<<Component>>

sum : Sum

toPC f_fade
[l_ac1 ; d_ac1]

[l_ac2 ; d_ac2]
toVC

toPCPC

toVC

toPC

toPCPC

f_fade
[l_ac4 ; d_ac4]

[l_ac5 ; d_ac5]

[l_ac6 ; d_ac6] continuous port

fading transitionf_fade

[l_ac1 ; d_ac1] deadline interval

Legend:

(b) Hybrid Reconfiguration Chart

this destination

currentTrack: Track

<<destroy>>
target

<<create>>
target

(c) Part of a Story Diagram

(d) Qualitative Hazard Analysis

Fig. 12.1. Development with the Fujaba4Eclipse Real-Time Tool Suite

312 C. Priesterjahn et al.

To integrate controllers into the component model, they are embedded into
hierarchical component structures. Hybrid reconfiguration charts (s. Figure
12.1(b)) are used to specify the different controller modes. The provided embed-
ding concept enables the specification and modular verification of reconfigura-
tion, i.e. the activation and deactivation of software as well as hardware compo-
nents, across multiple components. Simple consistency checks ensure again that
the verified real-time constraints of the coordination patterns are still valid in
spite of the embedding. Thus, a verification of the whole system is not necessary,
because the verification results of the individual patterns and components hold
for the complete system [4].

Advanced systems may change their structure during runtime, i.e. a part of
or even a complete component may be replaced or removed. These structural
changes which may correspond e.g. to a removal of a pattern or the addition of
a component, are also specified at design time. As a usual infinite state space
has to be specified, we employ a grammar-based formalism in the sense of a
generator definition. In more detail, a graph transformation system defines all
valid and usually infinitely many system configurations by a finite set of rules.
The correctness of such a rules set concerning safety properties and reachability
of only valid system configurations is automatically verifiable [5] and [6, 7, 8].
Timing constraints of the execution of rules may also be specified such that the
real time constraints of a system reconfiguration are expressable and analyzable
on the model level as well.

We employ a special formalism to define the transformation rules called Story
Diagrams [9] as depicted in Figure 12.1(c). We have shown in [10] that this
formalism supports the computation of worst case execution times such that the
time constraints defined on the model level correspond to the real execution time
on a particular implementation platform. This approach ”only” assumes that
the implementation platform guarantees time constraints for basic operations
like adding or deleting a graph node or edge resp.

The tool suite further supports a hazard analysis [11]. That analysis iden-
tifies random faults by propagating the impact of component errors through the
whole system architecture. A qualitative analysis, as shown in Figure 12.1(d),
determines which hazards result from a given set of basic errors (bottom up)
or which basic errors have to occur in order to make a given hazard happen
(top down). This qualitative analysis is accompanied by a quantitative analy-
sis which computes the hazard’s probability. The hazard analysis furthermore
supports the analysis of reconfigurable systems.

If the hazard analysis shows that the required hazard probability is not sa-
tisfied, we apply fault tolerance patterns [12]. We again use Story Diagrams
for their specification (s. Figure 12.1(c)).

Input to code synthesis are the hybrid reconfiguration charts and the graph
rules defining reconfiguration. As not all system properties and the whole sys-
tem behavior can be checked on the model level, the resulting code is executed
using an advanced simulation system, which is partly based on the integra-
tion of a commercially available control engineering tool. The key point of this

Fujaba4Eclipse Real-Time Tool Suite 313

approach is that the simulated code is the same as the production code which is
driving the real system, thus avoiding variations of behavior in simulation and
implementation.

12.3 Case Study: RailCab

In terms of ecological values, public transport by bus or railway is deemed su-
perior to individual transport by car. Unfortunately, individual transport clearly
provides more flexibility and comfort for the passenger. The RailCab project2

was founded at the University of Paderborn in 1998 in order to develop a new
railway system that features the advantages of both techniques in terms of cost
and fuel efficiency as well as flexibility and comfort. The novel system is cha-
racterized by autonomous vehicles operating on demand instead of trains being
determined to a fixed schedule. RailCabs exhibit self-adaptive properties and
operate in a safety-critical domain. Consequently, they provide an excellent case
study for the Fujaba4Eclipse Real-Time Tool Suite.

We used the Fujaba4Eclipse Real-Time Tool Suite in different scenarios in the
RailCab project. These scenarios include the active steering, the suspension/tilt
[13] and the air gap adjustment system [14].

One particular problem is to reduce the energy consumption due to air re-
sistance by coordinating the autonomously operating RailCabs in such a way
that they build convoys whenever possible. Such convoys are built on-demand
and require a small distance between the different RailCabs such that a high
reduction of energy consumption is achieved. The convoy operation is clearly
safety-critical. It requires a rigorous development approach for the real-time
coordination between the RailCabs as well as for the integration of feedback
controllers.

The first step is to specify the structure and behavior of the system [15].
The structure reflects typically the relevant parts of the physics. In our case
study, we specify a RailCab component which embeds further components like
a drive component. Like the RailCab component, the drive component could be
composed of multiple other component instances. This leads to an architectural
description of the RailCab, consisting of multiple layers. The coordination be-
havior of a convoy is specified by a real-time coordination pattern. We further
embed the controllers of the RailCab – the distance and velocity controllers –
into the internal component behavior and specify the reconfiguration between
the different controller modes.

After building the model, we verify it applying two different techniques. First,
we verify for the convoy scenario the real-time protocol behavior as well as the
internal real-time component behavior through model checking, thus ensuring
the safety critical property that the RailCabs will not collide [15]. Therefore,
we check that all RailCabs are driving in convoy mode simultaneously. Second,
we check structural properties as the correct instantiation of patterns and the
consistent reconfiguration. For the first property we check, whether RailCabs
2 http://www.railcab.de/en/index.html

314 C. Priesterjahn et al.

driving on consecutive tracks apply the appropriate real-time coordination pat-
tern to ensure they keep enough distance between each other. For consistency in
reconfiguration, we check the correct embedding of controllers [3].

For hazard analysis, we consider the hazard of a RailCab driving in convoy
mode at a wrong speed, which might result in collision. Therefore, a value failure
on the output of the speed control is specified. Then, we employ the top down
analysis to determine the errors that result in the hazard, e.g. wrong values from
the speed sensor. The next step is to compute the hazard’s probability by quan-
titative analysis. Thereafter, we determine the error’s propagation paths leading
to the hazard (see Figure 12.1(d)) by bottom up analysis thereby obtaining
improvement points in the system’s architecture [12].

After obtaining the final model, the tool generates source code that inte-
grates the continuous and the discrete behavior. Then, we validate it through
simulation that uses the same code as the final implementation, thus avoiding
variation of behavior in simulation and implementation.

12.4 Conclusions and Future Work

We applied the Fujaba4Eclipse Real-Time Tool Suite successfully in the deve-
lopment of the RailCab’s software. Up to now, we focused mainly on the forward
engineering of the software. We are currently complementing our approach by
a reverse engineering part [16]. This enables the integration of legacy software
into our rigorous development approach. Due to space constraints, a discussion
of related work is only contained in the cited papers.

References

[1] Burmester, S., Tichy, M., Giese, H.: Modeling Reconfigurable Mechatronic Sys-
tems with Mechatronic UML. In: Aßmann, U. (ed.) Proc. of Model Driven Archi-
tecture: Foundations and Applications (MDAFA 2004), Linköping, Sweden, pp.
155–169 (June 2004)

[2] Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Compo-
sitional Verification of Real-Time UML Designs. In: Proc. of the 9th European
software engineering conference held jointly with 11th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering (ESEC/FSE-11), pp.
38–47 (September 2003)

[3] Burmester, S., Giese, H., Henkler, S., Hirsch, M., Tichy, M., Gambuzza, A., Müch,
E., Vöcking, H.: Tool support for developing advanced mechatronic systems: In-
tegrating the fujaba real-time tool suite with camel-view. In: Proc. of the 29th
International Conference on Software Engineering (ICSE), Minneapolis, Minne-
sota, USA, pp. 801–804. IEEE Computer Society Press, Los Alamitos (May 2007)

[4] Giese, H., Burmester, S., Schäfer, W., Oberschelp, O.: Modular Design and Veri-
fication of Component-Based Mechatronic Systems with Online-Reconfiguration.
In: Proc. of 12th ACM SIGSOFT Foundations of Software Engineering 2004 (FSE
2004), Newport Beach, USA, pp. 179–188 (November 2004)

Fujaba4Eclipse Real-Time Tool Suite 315

[5] Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic Invariant Ve-
rification for Systems with Dynamic Structural Adaptation. In: Proc. of the 28th
International Conference on Software Engineering (ICSE), Shanghai, China, pp.
72–81. ACM Press, New York (2006)

[6] Burmester, S., Giese, H.: Visual Integration of UML 2.0 and Block Diagrams
for Flexible Reconfiguration in Mechatronic UML. In: Proc. of the IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC 2005),
Dallas, Texas, USA, pp. 109–116. IEEE Computer Society Press, Los Alamitos
(September 2005)

[7] Tichy, M., Henkler, S., Holtmann, J., Oberthür, S.: Component story diagrams:
A transformation language for component structures in mechatronic systems. In:
Postproc. of the 4th Workshop on Object-oriented Modeling of Embedded Real-
Time Systems (OMER 4), Paderborn, Germany (2008)

[8] Hirsch, M., Henkler, S., Giese, H.: Modeling Collaborations with Dynamic Struc-
tural Adaptation in Mechatronic UML. In: Proc. of the ICSE 2008 Workshop on
Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2008),
Leipzig, Germany, pp. 33–40. ACM Press, New York (May 2008)

[9] Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph
rewrite language based on the unified modeling language. In: Ehrig, H., Engels,
G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–
309. Springer, Heidelberg (2000)

[10] Burmester, S., Giese, H., Seibel, A., Tichy, M.: Worst-case execution time opti-
mization of story patterns for hard real-time systems. In: Proc. of the 3rd Inter-
national Fujaba Days 2005, Paderborn, Germany, pp. 71–78 (September 2005)

[11] Giese, H., Tichy, M.: Component-Based Hazard Analysis: Optimal Designs, Pro-
duct Lines, and Online-Reconfiguration. In: Górski, J. (ed.) SAFECOMP 2006.
LNCS, vol. 4166, pp. 156–169. Springer, Heidelberg (2006)

[12] Tichy, M., Henkler, S., Meyer, M., von Detten, M.: Safety of component-based
systems: Analysis and improvement using fujaba4eclipse. In: Companion Pro-
ceedings of the 30th International Conference on Software Engineering (ICSE),
Leipzig, Germany, pp. 1–2 (May 2008)

[13] Burmester, S., Giese, H., Oberschelp, O.: Hybrid UML Components for the Design
of Complex Self-optimizing Mechatronic Systems. In: Braz, J., Araújo, H., Vieira,
A., Encarnacao, B. (eds.) Informatics in Control, Automation and Robotics I,
Springer, Heidelberg (March 2006)

[14] Henkler, S., Hirsch, M., Kahl, S., Schmidt, A.: Development of self-optimizing
systems: Domain-spanning and domain-specific models exemplified by an air gap
adjustment system for autonomous vehicles. In: ASME International Design En-
gineering Technical Conferences and Computers and Information in Engineering
Conference, New York, USA, ASME, August 3-6, pp. 1–11 (September 2008)

[15] Burmester, S., Giese, H., Hirsch, M., Schilling, D., Tichy, M.: The fujaba real-
time tool suite: Model-driven development of safety-critical, real-time systems.
In: Proc. of the 27th International Conference on Software Engineering (ICSE),
St. Louis, Missouri, USA, pp. 670–671. ACM Press, New York (May 2005)

[16] Giese, H., Henkler, S., Hirsch, M.: Combining Compositional Formal Verification
and Testing for Correct Legacy Component Integration in Mechatronic UML. In:
de Lemos, R., Di Giandomenico, F., Gacek, C., Muccini, H., Vieira, M. (eds.)
Architecting Dependable Systems V. LNCS, vol. 5135, pp. 248–272. Springer,
Heidelberg (2008)

13 AutoFocus 3 - A Scientific Tool Prototype
for Model-Based Development of

Component-Based, Reactive, Distributed
Systems

Florian Hölzl and Martin Feilkas

Institut für Informatik
Technische Universität München

D-85748 Garching, Germany
{hoelzlf,feilkas}@in.tum.de

Abstract. We give an introduction of the AutoFocus 3 tool1, which
allows component-based modeling of reactive, distributed systems and
provides validation and verification mechanisms for these models. Fur-
thermore, AutoFocus 3 includes descriptions of specific technical plat-
forms and deployments. The modeling language is based on precise se-
mantics including the notion of time and allows for a refinement-based
methodology for the development of reactive systems, typically found in
user-accessible embedded realtime-systems.

13.1 Introduction

Focus is a general theory providing a model of computation based on the no-
tion of streams and stream processing functions [1]. It is suitable to describe
models for distributed, reactive systems. Based on this mathematical semantic
foundation, we have developed a CASE tool, named AutoFocus 3, to allow for
graphical description of systems according to this model of computation. While
Focus allows different techniques to build formal specifications of component-
based, distributed systems, AutoFocus 3 only uses some of these techniques
as shown in the following. Furthermore, Focus allows to use different models of
time expressed through the notion of streams: in particular untimed, timed and
time-synchronous streams. AutoFocus 3 is based on the time-synchronous no-
tion of streams, which corresponds to a discrete notion of time based on globally
synchronized clocks. Focus targets at precise description of applications on a
logical level. Time is divided into logical ticks and logical components interact
synchronously with each other in this setting.

In order to develop real distributed systems, the application must be executed
on real hardware. Thus, during the development of the system, it is convenient to
have several levels of abstraction and different development views. While early
1 http://af3.in.tum.de/ provides a set of tutorials and screen shots of the current

released version.

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 317–322, 2010.
� Springer-Verlag Berlin Heidelberg 2010

http://af3.in.tum.de/

318 F. Hölzl and M. Feilkas

requirements are captured in natural language to allow flexibility, later levels
use more formal specifications and finally add technical details. We believe that
such a multi-layered set of models is the only way to cope with the complexity
of today’s systems by applying a strict separation of concerns during the phases
of the development process.

AutoFocus 3, as presented here, currently covers the lower-most levels of
abstraction, namely the logical system architecture and the technical architec-
ture, which provides the application execution environment. Higher levels of
abstraction and requirements oriented models have been studied in earlier ver-
sions [2]. Our goal is to provide a prototypical tool implementation that clearly
distinguishes between the models of different levels of abstraction and provides
support for methods to combine these models into a description of the system
under development along the complete development process. Larger case studies
showing the complete methodology from requirements to deployment have been
published: [3] presents a case study from the field of business systems, while [4]
presents a case study from the automotive domain.

13.2 Capabilities of AutoFocus 3

This section briefly describes the modeling techniques of the two levels of abs-
traction currently supported by the AutoFocus 3 tool: the logical architecture
and its mapping onto a hardware/software execution platform. The logical archi-
tecture describes application specific components, while the topology describes
the execution environment. For embedded systems the latter is usually a set
of distributed control units and communication busses. Finally, the deployment
model describes the mapping from application components onto execution and
communication units.

13.2.1 Logical Architecture

The logical architecture defines a model of the system under development from
an abstract point of view. The system’s functionality is described independently
of the concrete hardware/software environment and also independently of the
concrete distribution of (parts of) the system on these resources.

The system consists of a set of communicating components, each having its
own behavior specification, which may be stateful or stateless. Components ex-
change pieces of data in the form of typed messages. The semantic foundation
assumes a global, discrete notion of time, e.g. the components are synchronized
to a global clock.

Component Architecture
In AutoFocus 3 the system’s model is described as a set of communicating
components. Each component has a defined interface (e.g its black-box view)
and an implementation (e.g. its white-box behavior). The interface consists of a
set of communication ports. A port is either an input port or an output port. It is

AutoFocus 3 319

Fig. 13.1. A simple pedestrian crossing traffic light system

identified by its name and it has a defined type, thus describing which messages
can be sent or received via this port.

Components can exchange data by sending messages through output ports
and receiving messages via input ports. Communication paths are described by
channels. A channel connects an output port to some input port, thus describing
the sender/receiver relation. The data type of both ports must be compatible,
of course. Under certain conditions, a component is allowed to send messages to
itself, i.e. the model contains a feedback channel or more general a feedback loop.
Output ports allow multi-cast messages, while input ports only allow a single
incoming channel. From the logical point of view, channels transmit messages
instantaneously.

Fig. 13.1 shows an example of a pedestrian traffic lights system, which consist
of a controller for the application behavior and a merge component that merges
button signal from both sides of the road. Note that AutoFocus 3 provides a
hierarchical structuring of components in order to deal with larger systems in
an easily comprehensible manner.

Causality and Time
AutoFocus 3 component networks are executed synchronously based on a dis-
crete notion of time and a global clock. In this setting a component belongs to
one of two classes. A strong causal component (the blue ‘Controller’-component
in Fig. 13.1) has a reaction delay of at least one logical time tick which means
that the current output cannot be influenced by the current input values. A weak
causal component (marked yellow in AutoFocus 3, c.f. ‘Merge’ in Fig. 13.1)
may produce an output, which depends on the current input, e.g. the com-
ponent’s reaction is instantaneous. From the semantics point of view, networks
consisting of strong causal components are always well-defined, e.g. for the re-
cursive equation system induced by the channel connections unique fixed-points
always exist. Component networks including weak causal components are also
well-defined under the constraint that no weak-causal cycles exist, i.e. no weak
causal component may send a signal that would be fed back to itself in the
current time tick.

Stateful Behavior
To define stateful component behavior, we use a simple input / output automa-
ton model. The automaton consists of a set of control states, a set of data state
variables and a state transition function. One of the control states is defined to be

320 F. Hölzl and M. Feilkas

Fig. 13.2. Two ECU example topology for automotive lab hardware

the initial state of the component, while each data state variable has also a defined
initial value. The state transition function is defined as a mapping from the cur-
rent state, the current input values, and the current data state variable values to
output values and subsequent data state variable values. A single transition has a
source control state and a target control state, defines a set of input patterns, a set
of preconditions over data state variables and variables bound in input patterns,
and characterizes the output patterns and successor data state variable values.

Stateless Behavior
Time and again, some component has a relatively simple behavior like prioriti-
zing certain input values or making a pre-computation. These components might
not need data and control states at all. For this reason AutoFocus 3 provides
a simple tabular behavior specification that gives a (possibly non-deterministic)
mapping from input patterns to output patterns.

Validation and verification
AutoFocus 3 supports techniques to verify the logical architecture early in the
development process, such as automatic test case generation and model checking.
[4] presents the application of model checking techniques to verify the logical
architecture. Automatic test case generation (from a separate test model) has
also been applied in this case study to ensure the functional correctness of the
system.

13.2.2 Technical Architecture

The topology architecture describes the execution environment of the system
by means of execution control units (ECU) and busses. Embedded systems can
observe their environment through sensors and influence it via acutators, which
are connected to some ECU (like I/O devices in classical computers) or directly
on some bus.

Fig. 13.2 shows an example of a topology with two ECUs connected to a
common CAN bus. Each ECU provides a set of hardware ports: some LEDs,
push buttons and potentiometers. These ECUs are part of our automotive lab2

2 http://www4.in.tum.de/lehre/automotivelab/

http://www4.in.tum.de/lehre/automotivelab/

AutoFocus 3 321

demonstration hardware which is actively used in academic and industrial case
studies and students’ education [4].

Deployment
Having described the logical architecture and the execution environment, these
two views of the system must be related to each other. In particular, each logical
component has to be mapped onto some execution resource. Furthermore, logical
signals need to be mapped to hardware ports, e.g. I/O devices or bus messages.

For the given example system, we could define a distributed deployment by
assigning the Merge component to one ECU and the Controller component to
the other. Since the Merge sends a signal to the Controller the connecting chan-
nel channelReq is automatically deployed on the connecting CAN bus. For the
remaining signals, in particular the input signals of Merge and the output signals
of Controller, we use the push buttons and LEDs, respectively.

Code Generation
Having completed the deployment by assigning components to ECUs and signals
to hardware ports and bus messages, we can build our system to be run on
the real hardware. Practically, this means to use all of the information of the
model and produce C code from it, which can be compiled and flashed onto the
demonstration hardware. Most of this task can be automated by suitable code
generators or at least supported by the tool. Currently, this area is the most
active part of our tool development activities.

13.3 Conclusion

We have given a compact introduction to the core features of AutoFocus 3.
We have shown two system model layers: the logical architecture describing the
system application by means of communicating components and the technical
architecture describing the execution environment of the application by means
of electronic control units, sensors, activators, and busses. We have shown a
deployment model, which describes the mapping of system components to these
execution resources, thus relating the abstraction levels to each other. Finally,
we have obtained a complete model to be used for automatic code generation.

Of course, the model provided here is very simplistic. In particular, concerning
hardware and software resources of the execution environments, we have not
treated issues like precise timing and task scheduling, bus message identification
and mappings of data values to bus messages. Further work must be done in this
direction, possibly also including upcoming hardware techniques like multi-core
processors.

AutoFocus 3 is currently implemented on the Eclipse platform3. Since we
also develop other CASE-oriented tools, e.g. with different semantic foundations
or different target domains, like machine engineering, we have built a common
infrastructure, which allows a modular architecture. The deployment extension

3 http://www.eclipse.org/

http://www.eclipse.org/

322 F. Hölzl and M. Feilkas

presented here makes heavy use of this modularity and extensibility. In detail, the
topology and deployment features can be extended in specific ways: here, we have
shown our automotive lab extension, which provides a event-triggered execu-
tion environment, as an example. Other extensions might include time-triggered
architectures based on, e.g., FlexRay and OSEKtime. [5] already presents the
formally verified mapping between the logical architecture and a time-triggered
execution platform using the AutoFocus task model, which is closely related
to the model of computation of AutoFocus 3.

We believe that rigorous division of the engineering process into different levels
of abstraction with suitable models and precise semantics is a fundamental step
towards model-based software engineering, in particular for embedded systems.
We also believe that appropriate relations between these abstraction levels is
vital and must be well understood from the methodological point of view, and
of course supported by suitable tools. We have presented first steps towards this
vision by the example of AutoFocus 3.

Acknowledgements

We are especially grateful to Bernhard Schätz for providing continuous discus-
sions, in particular on the language semantics and deployment questions, to
Benjamin Hummel for his great work in building large parts of the tool infra-
structure, and to Wolfgang Schwitzer for his work on the deployment extension
of AutoFocus 3.

References

[1] Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces and Refinement. Springer, Heidelberg (2001)

[2] Geisberger, E., Grünbauer, J., Schätz: Interdisciplinary requirements-analysis using
the model-based rm tool autoraid. In: Automotive Requirements Engineering
(AURE 2006) Workshop at IEEE Intl. RE Conf. (2006)

[3] Broy, M., Fox, J., Hölzl, F., Koss, D., Kuhrmann, M., Meisinger, M., Penzenstadler,
B., Rittmann, S., Schätz, B., Spichkova, M., Wild, D.: Service-oriented modeling of
cocome with focus and autofocus. In: The Common Component Modeling Example:
Comparing Software Component Models, pp. 177–206. Springer, Heidelberg (2008)

[4] Feilkas, M., Fleischmann, A., Hölzl, F., Pfaller, C., Rittmann, S., Scheidemann, K.,
Spichkova, M., Trachtenherz, D.: A top-down methodology for the development of
automotive software. Technical Report TUM-I0902 Technical Report, Technische
Universität München (2009)

[5] Botaschanjan, J., Broy, M., Gruler, A., Harhurin, A., Knapp, S., Kof, L., Paul, W.,
Spichkova, M.: On the correctness of upper layers of automotive systems. Formal
Aspects of Computing 20(6), 637–662 (2006)

14 MATE - A Model Analysis and
Transformation Environment for MATLAB

Simulink

Elodie Legros1, Wilhelm Schäfer2, Andy Schürr1, and Ingo Stürmer3

1 Technische Universität Darmstadt, Real-Time Systems Lab
{legros,schuerr}@es.tu-darmstadt.de

2 University of Paderdorn, Software Engineering Group
wilhelm@uni-paderborn.de

3 Model Engineering Solutions, Berlin
stuermer@model-engineers.com

Abstract. In the automotive industry, the model driven development
of software is generally based on the use of the tool MATLAB Simulink.
Huge catalogues with hundreds of modeling guidelines have already been
developed to increase the quality of models and ensure the safety and
reliability of the generated code. In this paper, we present the MAT-
LAB Simulink Analysis and Transformation Environment (MATE), a
tool using metamodeling techniques and visual graph transformations to
automate the analysis and correction of models according to these gui-
delines. The MATE approach is illustrated by a typical example, and
compared to other classical approaches for model analysis.

14.1 Introduction

Nowadays, model-based development is common practice within a wide range
of automotive embedded software development projects. In model-based deve-
lopment, de facto standard modeling and simulation tools such as MATLAB
Simulink are used for specifying, designing, implementing, and checking the func-
tionality of new controller functions. The quality and efficiency of the software
are strongly dependent upon the quality of the model used for code generation.
For that purpose, modeling guidelines such as the MathWorks Automotive Ad-
visory Board (MAAB) guidelines [1] have been defined and are usually adopted.
There are tools available to help the modeler check a model according to these
guidelines, such as the Simulink Model Advisor (part of the Simulink toolbox),
the Model Examiner [2] or MINT [3]. They assist the developer in reporting
violations of block settings, model configurations, or modeling styles that do not
comply with such guidelines. However, for huge controller models, this can add
up to a few hundreds, or even a few thousands, violations that must be correc-
ted manually by the modeler. That is a cumbersome, complex, and expensive
task. An in-house case study at Daimler detected in a model more than 2,000

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 323–328, 2010.
� Springer-Verlag Berlin Heidelberg 2010

324 E. Legros et al.

guideline violations. After closer inspection, it was estimated that tools such as
MATE could fix automatically up to 45% (900) of these 2,000 rule violations,
and approximately 40% with user feedback. Only 8% required a manual correc-
tion. Finally, 4% remained undefined, i.e. the modeler had to determine whether
the reported violations really infringed upon a modeling guideline (Cf. [4] for
details).

For that reason we developed the MATLAB Simulink Analysis and Trans-
formation Environment (MATE)1. This environment supports the detection of
previously specified guideline violations. In addition to the Model Advisor or
MINT, the Model Examiner and MATE also provide the possibilities of model
repair operations. While the Model Examiner supports only static repair ope-
rations, i.e. without performing a model transformation (refactoring), MATE
provides also layout improvements and modeling pattern instantiations. Apart
from that, MATE is capable to perform high-level model analysis operations,
such as control flow and data flow analysis.

14.2 Approach

Analysis as well as refactoring of MATLAB models demands full access to MAT-
LAB’s model repository. This requires an intimate knowledge of the API written
in M-Script, a proprietary script language. Because both the used language and
the tool’s API evolved over many years, learning how to program reliable model
checks and transformations using this approach costs time and efforts. It requires
an intimate knowledge of the MATLAB API. MATE overcomes this problem by
providing a layer of uniform API adapters on top of which visual graph queries
can be developed in a more human friendly manner and on a considerably higher
level of abstraction. Another benefit of the graph transformation is the possibi-
lity to express model transformations, and, hence, to define repair actions in an
abstract way.

MATE provides two ways to analyze and repair models: online and offline.
The corresponding architecture is represented in Fig. 14.1. The online modus
enables an interactive analysis of a model within MATLAB. The communication
between MATE and Simulink is realized through an Online-Adapter which sup-
ports all required read-and-write operations. The MATE-Tool represents the Java
application controlling the execution of the analysis and transformation opera-
tions. On the other hand, the offline modus works on an efficiently processable
main memory representation of the data representing the models to be checked
and is generally used for complex analyses and corrections. The models are ex-
ported in their proprietary mdl -format, and imported in the Model Repository
through the Reader/Writer as instances of the Simulink metamodel represented
in Fig. 14.2. The module SDM Transformation - SDM Analysis defined in both
parts (online and offline) of the MATE architecture represents the specifications
of model analysis and correction.
1 MATE project: Model Engineering Solution and DaimlerChrysler in partnership

with the universities of Paderborn, Siegen, Kassel and the TU Darmstadt.

MATE 325

MATE-ToolSDM Transformation
SDM Analysis

Online Adapter

Reader /
Writer

Model Repository
(MOF 2.0 Metamodel)

SDM Transformation
SDM Analysis

API Import / Export

Java

M-Script M-Script

OfflineOnline

mdl

MATLAB Simulink
ToolNet Visualisierung

Console

M-Script

JMI

JMI

XML

XML

mdlM-Script

Java

Java

Java

Fig. 14.1. MATE Architecture

Inside MATE, guideline specifications are based on a MOF 2.0 [5] compliant
metamodel of Simulink. This metamodel is specified using the meta-CASE-Tool
MOFLON presented in chapter 16. The real metamodel is very large and com-
plicated. Therefore, only a very small version is presented in Fig. 14.2. The
simplified metamodel consists of a single package Simulink containing only the
most important classes. A Simulink model is a System that may contain a hierar-
chy of Subsystems with Blocks as leafs. Blocks are the atomic processing units.
They are connected to each other by connecting their Outports and Inports via
Lines.

Simulink

Port
Block

qualifiedName: String
block

0..1
port
0..*

Line
dstPort : String

line 0..*0..* block

inport

line0..1

0..1

System

Subsystem SubsystemBlock Inport OutportEnableBlock

BlockReferencesLine

SystemContainsBlock BlockContainsPort

1

outport
0..1

line
0..1

blocksystem

subsystem
subsystemBlock

0..*

LineReferencesOutport

1 1
LineReferencesInport

SubsystemBlockContainsSubsystem

Fig. 14.2. Very simplified Simulink metamodel

This metamodel acts as graph schema for the specification of graph transfor-
mation rules. The technique of graph transformations is on the one hand ap-
plied for the detection of incorrect models as well as, on the other hand, for the
(semi)automatic repair of identified errors. MATE uses the visual graph trans-
formation approach of Story Driven Modeling (SDM) supported by the graph
transformation tool Fujaba [6] and our plug-in MOFLON [7]. The next section
gives an example of guideline specification with SDM. For more details about
SDM, please refer to [8].

326 E. Legros et al.

14.3 Application

MATE provides the analysis and correction of models according to modeling
guidelines such as the MAAB guidelines [1]. One of the MAAB guideline concerns
the naming of Enable Port blocks (jc 0281, “Naming of Trigger Port block and
Enable Port block” [1]) The Enable block’s name matches the name of the
corresponding enable signal of the regarded subsystem (Cf. Fig. 14.3).

Fig. 14.3. Naming of Enable Port Block

Such a guideline can be implemented in different ways. It is state of the art
that MATLAB modeling guidelines are implemented using the imperative scrip-
ting language M-Script. The M-Script specification of the guideline presented
above would be the following:

function f_block_h = guideline_2(system, cmd_s)
top_h = get_param(bdroot,’Handle’);
f_block_h = [];
subsys = get_param(get_param(find_system(top_h, ’BlockType’,’EnablePort’), ’Parent’),

’Handle’);
for k=1:length(subsys)

subsys_handle = get_param(subsys{k},’Handle’);
porth = get_param(subsys{k},’PortHandles’);
enable_port_name = get_param(porth.Enable,’Name’);
enableh = find_system(subsys{k},’SearchDepth’,1,’BlockType’,’EnablePort’);
enable_block_name = get_param(enableh,’Name’);
if ~(strcmp(enable_port_name, enable_block_name))

f_block_h = [f_block_h;subsys_handle];
end

end % for
end % function

In fact, the implementation of model guidelines with M-Script is nothing
else than traversing graph structures and implementing graph pattern matching
operations with an imperative language. Thus, implementing guidelines with M-
Script is rather a task of programming skills and detailed API knowledge than
a task of a conceptual and well structured conversion of an informal description
into a formal one.

Since modeling guidelines represent constraints on model elements or relations
between model elements which have to be respected, the OMG’s logic-based
language OCL [9] can be used for a formal description of rules like the modeling
guideline described above:

context SubsystemBlock inv:
if self.containedBlock ->exists(b:Block j b.oclIsTypeOf(EnableBlock))

MATE 327

then self.containingSubsystemBlock.incomingLine ->select(line j line.dstPort = "enable")
->collect(qualifiedName)

-> intersection (self.containedBlock ->select(b:Block j b.oclIsTypeOf(EnableBlock))
->collect(qualifiedName))

-> notEmpty()
endif

Though, OCL is not very well-suited for the specification of complex patterns,
where we have to navigate along different paths through a model and to compare
their results. Even worse, OCL is not able to define most modeling guidelines
about naming conventions since the available operations on strings and charac-
ters are pretty poor. In the same way, guidelines requiring complex arithmetic
operations cannot be defined using OCL.

Analyzer :: analyzeAndRepair(enable : EnableBlock) : Void

LineReferencesInport

enableSignal : Line enableInport : Inport subsystemBlock : SubsystemBlock

dstPort == “enable” BlockContainsPort

SubsystemBlockContainsSubsystem

enable

qualifiedName != enableSignal.qualifiedName
qualifiedName := enableSignal.qualifiedName

subsystem : Subsystem

SystemContainsBlock

Fig. 14.4. Guideline specification with SDM

Therefore, we considered another approach when developing MATE, namely
the visual graph transformation approach. To define these graph transforma-
tions, we use the visual SDM syntax. Fig. 14.4 simultaneously checks and fixes
violations of the guideline presented above. It matches any occurrence of a pat-
tern, where an EnableBlock and an EnableSignal object, which belong to the
same Subsystem, do not have the same qualifiedName attribute. The line with
the “:=”-operator inside the enable object rectangle assigns the name of the
matched enableSignal to the regarded enable object.

This specification shows how visual graph transformations facilitate the search
for more complex object/link patterns. Moreover, while OCL only defines mo-
del checking operations, the SDM graph transformations provide incorporated
repair actions. In case of guidelines that cannot be translated into graph trans-
formation (e.g. naming conventions), Java code can be embedded within a story
diagram by using so-called Java Statements, whereas OCL proposes no alterna-
tive for guidelines that cannot be specified as OCL constraints. A more detailed
comparison between the SDM approach and other classical approaches for the
analysis and correction of models, as well as the M-Script and OCL specification
of the guideline described forehand, can be found in [10].

328 E. Legros et al.

14.4 Conclusion
The adoption of modeling guidelines for the design of automotive controller
models is important. MATE supports the developer in analyzing MATLAB Si-
mulink models and automatically or interactively transforming such models into
guideline-compliant ones. This tool is based on the use of visual graph transfor-
mations to specify the guidelines. The advantages of graph transformation are
the higher level of abstraction, and the possibility to define not only check but
also repair actions. The used language SDM is a visual graph transformation lan-
guage. The visual aspect facilitates the specification of patterns to be matched
as well as the navigation through a model to find information to be checked, i.e.
tasks which are frequently needed when specifying modeling guidelines.

Although the SDM graph transformations are pretty well-suited, they are not
equipped for handling all sorts of modeling guidelines. Moreover, many guide-
lines require the definition of quite similar transformation rules. Therefore, we
are just extending the SDM syntax with generic and reflective features to in-
crease the reusability and expressiveness of story diagrams [11]. Since MATLAB
Simulink is widely used in the automotive industry, MATE should not remain a
pure research prototype but be developed according to the needs of the industry.
Therefore, we are integrating MATE within the Model Examiner developed by
Model Engineering Solution [2] so that it can be used and, hence, evaluated in
the context of concrete industrial use cases.

References
[1] MathWorks Automotive Advisory Board Homepage,

http://www.mathworks.com/industries/auto/maab.html
[2] Model Examiner Homepage,

http://www.model-engineers.com/our-products/model-examiner.html
[3] Mint Homepage,

http://www.ricardo.com/engineeringservices/

controlelectronics.aspx?page=mint
[4] Stürmer, I., Kreuz, I., Schäfer, W., Schürr, A.: Enhanced simulink and stateflow

model transformation: The MATE approach. In: Proc. of MathWorks Automotive
Conference (MAC 2007), June 19-20, Dearborn (MI), USA (2007)

[5] Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification.
ptc/03-10-04 (2003)

[6] Fujaba Homepage, http://www.fujaba.de
[7] MOFLON Homepage, http://www.moflon.org
[8] Zündorf, A.: Rigorous Object Oriented Software Development. University of Pa-

derborn, Habilitation Thesis (2001)
[9] OCL Specification, http://www.omg.org/docs/ptc/03-10-14.pdf

[10] Amelunxen, C., Legros, E., Schürr, A.: Checking and Enforcement of Mode-
ling Guidelines with Graph Transformations. In: Schürr, A., Nagl, M., Zündorf,
A. (eds.) Proceedings of the Third International Symposium on Applications of
Graph Transformations with Industrial Relevance (October 2007)

[11] Amelunxen, C., Legros, E., Schürr, A.: Generic and Reflective Graph Transforma-
tions for the Checking and Enforcement of Modeling Guidelines. In: Proc. of the
Visual Languages and Human-Centric Computing (VL/HCC 2008), pp. 211–218
(September 2008)

http://www.mathworks.com/industries/auto/maab.html
http://www.model-engineers.com/our-products/model-examiner.html
http://www.ricardo.com/engineeringservices/controlelectronics.aspx?page=mint
http://www.ricardo.com/engineeringservices/controlelectronics.aspx?page=mint
http://www.fujaba.de
http://www.moflon.org
http://www.omg.org/docs/ptc/03-10-14.pdf

15 Benefits of System Simulation for
Automotive Applications

Oliver Niggemann1, Anne Geburzi2, and Joachim Stroop2

1 Institute for Industrial IT, University of Applied Sciences, Lemgo, Germany
2 dSPACE GmbH, Technologiepark 25, 33100 Paderborn

Abstract. The automotive industry faces the challenge of handling in-
creasingly complex software systems in modern vehicles. The solution
may be twofold: (i) A model-based development paradigm on the system
level, using standards such as AUTOSAR, (ii) the usage of such models
for a seamless testing and quality assurance process, using simulations
and (reusable) tests.

This paper describes, from an automotive industry perspective, sys-
tem models and their advantages for manufacturers and suppliers. The
main focus is on tooling for offline system simulations and on the intro-
duction of such solutions in standard development processes. For this, dif-
ferent industrial simulation and testing scenarios are outlined; starting
with single software component tests and ending with virtual integra-
tions. For each phase of the development process, chances and problems
are discussed.

15.1 System Models

System models—a buzz word which has been spreading through journals and
conferences for years, has reached industry. But it is more than just a buzz
word: System models will improve the development of ECUs. Developers will use
system models to formalize the design process for distributed ECU systems—
a process which currently is getting out of hand (see [1], [2]). System models
will also help to increase the rate of software reuse and to test complex systems
earlier.

But for many developers, system models will first of all cause additional work.
Another model to be created. Another model to keep updated. Another tool that
must be used to edit such models. So why are many manufacturers currently
introducing these models in their development processes?

The electronic system of most modern vehicles has reached a complexity that
rivals almost any other known embedded system. Vehicles comprise up to 80
different ECUs that are connected via several different communication buses.
ECUs often contain 1 MB of software (ROM) which may be built of more than
200 different software modules. And many vehicle functionalities such as braking
or lane keeping are not implemented by one single ECU but rely on several
communicating ECUs, i.e. they are implemented as distributed software systems.

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 329–336, 2010.
� Springer-Verlag Berlin Heidelberg 2010

330 O. Niggemann, A. Geburzi, and J. Stroop

In addition to these technical issues, there are other constraints that make the
design of electronic vehicle systems one of the most difficult challenges known to
computer science: Most ECUs must work under hard real-time constraints. And
often safety-related constraints must be considered—after all, we all trust ABS
and ESP systems to work under harsh conditions and at high velocities. Further-
more, ECUs are not implemented by the car manufacturers themselves but by
many different ECU suppliers, making the integration process of ECU networks
rather difficult. And finally, hard cost constraints apply to these systems; no
customer wants to pay for invisible vehicle electronics.

Like models used in traditional engineering disciplines, system models are a
way to formalize these complex design processes (see [3]). An improved planning
process will mean fewer integration problems later: (i) Work is shared in an ela-
borate way between developers and suppliers. Each working party gets a formal
description of interfaces and other applicable constraints. (ii) Software can be
designed in a way that makes reuse as easy as possible. The more software is
reused, the fewer new implementations are needed and the fewer problems will
occur. (iii) Formal models can be analyzed or simulated in early stages, helping
developers to find errors as soon as possible.

In this paper, the focus will be on the simulation of system models to support
early error identification. Because a significant percentage of errors are due to
distributed software–25% according to [4]–we will especially describe the simu-
lation and testing of such systems.

15.1.1 State of the Art and AUTOSAR

It is important to remember that model-based development has been used in
engineering fields such as control, civil, or electric engineering for much longer
than in computer science. This becomes evident by the success of tools such as
The Mathwork’s MATLAB �, Simulink�, and Stateflow� development tools
which are commonplace in almost all application development processes. These
solutions use graphical models to represent control algorithms or physical sys-
tems. The integration of these existing tools into new tool chains is crucial for
the success of new development paradigms such as system models.

The term “system model” is not defined formally and is therefore used ambi-
guously. This paper describes the implementation of system models (including
their simulation) within a commercial tool that aims at the software produc-
tion process in automotive industry. Such tools nowadays normally follow the
AUTOSAR ([5]) standard. I.e. while different model-based system development
approaches have been used in the past (see e.g. [6, 7, 1, 2, 8, 9]), AUTOSAR has
lead to a standardization for the modeling of embedded production software in
the vehicle. Such system models comprise the following parts.

Application Software Models: In the automotive community, these models
are currently the main novelty and the main point of controversy. They are used
to model several aspects of the software:

Benefits of System Simulation for Automotive Applications 331

– Software component models refer to reusable application software modules.
AUTOSAR uses an AtomicSoftwareComponentType for this.

– Composition models define the hierarchical interconnection of application
software components based on the structure of the software architecture.
In AUTOSAR this corresponds to the CompositionType of the Software
Component Template, in UML [10] one could use the Component Diagram,
or with SysML [11] the Internal Block Diagram. Similar approaches exist in
EAST-ADL [12, 13].

Hardware Topology Models: Current automotive hardware topologies nor-
mally comprise (i) electronic control units (ECUs), (ii) buses such as CAN, LIN,
FlexRay and (iii) I/O such as DIO, ADC, or PWM. AUTOSAR has defined the
ECU Resource Template to describe these hardware elements. SysML provides
the Block Definition Diagram to express such static system structures.

Platform Models: To use hardware elements additional software modules or
configuration settings are needed. E.g. an ECU would need an operating sys-
tem, I/O relies on I/O drivers, and communication buses must be configured by
defining communication matrices. Here mainly two types of models are used:

– Interfaces and configuration settings of ECU basic software such as operating
system, COM stack or I/O drivers are modeled. Standards such as OSEK’s
OIL format or AUTOSAR’s ECU Configuration Template are used in the
automotive domain.

– Besides essential parameters such as bus type and bus speed, buses and
bus controlers are mainly configured by communication matrices. Important
standards here are ASAM’s FIBEX or AUTOSAR’s system template.

Deployment Models: Another important type of information is how applica-
tion software is mapped onto the hardware topology and how it is connected to
basic software:

– Mapping of software components onto ECUs. E.g. in UML deployment dia-
grams are used for this. AUTOSAR uses the system template.

– Connection of software components to basic software modules such as I/O
drivers (e.g. analog/digital converters) or to COM stacks (e.g. for a CAN
bus).

– Mapping of communication between software components onto bus signals,
e.g. AUTOSAR uses the system template to map signals contained in a port
of an AUTOSAR software component onto a bus message.

Behavior Models: These are models of the behavior of software components,
e.g. given as C code, Simulink or TargetLink models. AUTOSAR allows the
integration of C code for software components—this code could be generated by
code generators from graphical models such as Simulink.

Plant Models: Plant models describe the environment of the ECU network,
i.e. the vehicle, the driver, road conditions, etc. Such models are often given as

332 O. Niggemann, A. Geburzi, and J. Stroop

C code, Modelica models or as Simulink models. In AUTOSAR and most other
system model formalisms such models are not part of the standard itself; only
sensors and actuators can be modeled.

So far, no standard exists that covers all these aspects. For example, AUTO-
SAR [5] does not include plant and behavior models.

SystemDesk—the dSPACE system modeling and simulation tool—offers an
integrated modeling environment for automotive systems (see figure 15.1). While
being mainly based on AUTOSAR, it extends the standard by interfacing with
function and plant behavior models (mainly Simulink) to offer a holistic and
complete solution. As the next section will outline, this is necessary to make the
system models executable.

Fig. 15.1. Modeling Software Architectures with SystemDesk

While formal software and system models (e.g. according to AUTOSAR) are
now rapidly becoming part of a mainstream automotive software development
process, the question remains open what types of more abstract models are
needed in earlier phases. Several research projects (e.g. compare EAST’s Vehicle
Feature Models in [8] or Mobilsoft’s Services and Interaction Models in [14]) have
proposed a hierarchical decomposition of a vehicle’s functionality – sometimes
combined with a model of the vehicle variants. Other approaches also provide
more (e.g. [15]) or less formal (e.g. [11]) model types for early system designs
and requirements.

15.2 System Simulation

Companies have introduced model-based development processes (e.g. with Simu-
link) to speed up algorithm development, to ensure feasible documentation of the
solution and to leverage automatic code generation methods. But model-based
design has a useful by-product: The ability to simulate and to test the algorithm
design in early stages, e.g. on the developer’s PC. A similar development can
already be seen with system models.

Benefits of System Simulation for Automotive Applications 333

System models are called executable if they can be simulated. Simulation
scenarios and thus test cases might cover both offline simulations on PCs or
real-time simulations on designated hardware platforms, e.g. hardware-in-the-
loop (HIL) simulations. First experiences with dSPACE’s SystemDesk tools can
be found in [16] and [17].

But AUTOSAR system models are in most cases not executable. This is due
to their focus on the structural and integration aspects of systems. However,
when behavior descriptions for software and hardware modules are added, sys-
tem models can be used for simulation purposes (see also [18]). For example,
AUTOSAR is not executable because it lacks a way of describing application
and plant behavior, but by adding behavior models, i.e. for software compo-
nents, AUTOSAR models are made executable. Typical behavior models are
Simulink, IBM’s Rhapsody, or plain C code.

Executable system models provide the chance to simulate aspects that tra-
ditional, behavior-focused models can either not describe at all, or only with
significant effort. Examples are (see also [16]):

– Effects caused by bus communication such as signal delays or signal syn-
chronization

– Timing effects such as task scheduling, execution times of functions, or per-
iodic communication tasks

– Mode management functionality such as system boot-up behavior or initia-
lization and system sleeping/wake-up behavior

– Errors and problems on the system level such as bus faults (e.g. CRC errors),
jitter effects in task executions, or driver-related faults.

From a theoretical perspective, traditional behavior-based modeling environ-
ments can also be used to simulate these aspects. However, since behavior-based
modeling environments provide no first-level way of describing typical system
aspects, so this approach involves a high workload and in many cases high main-
tenance costs.

For example, the scheduling behavior of an ECU can be modeled and simu-
lated using finite state machine models such as Stateflow. However, this effec-
tively requires manual reimplementation of operating system behavior. System
models, on the other hand, provide formalisms to describe scheduling configura-
tions. That is, the simulation task is easier when high-level system models are
used instead of traditional behavior-based modeling formalisms.

SystemDesk implements this idea systematically. During system design, Sys-
temDesk tries to keep the model executable on condition that the user provides
suitable behavior models (see [19]). SystemDesk follows the paradigm of requi-
ring as little simulation-specific work as possible. In most cases, users just have
to provide the test cases and can then simulate the system model.

Figure 15.2 shows a typical SystemDesk simulation: Some variables are simu-
lated and plotted over time. Detailed descriptions of SystemDesk’s simulation
capabilities can be found in section 15.3.

334 O. Niggemann, A. Geburzi, and J. Stroop

Fig. 15.2. Simulating a System Model with SystemDesk

15.3 Applications of System Simulation

System simulation can be used in different stages of the development cycle.
Please note that the (AUTOSAR) system models are enriched during the de-
velopment phases. While the first scenarios rely on some parts of the system
models only (e.g. models for software components only), later scenarios need
fully defined system models.

15.3.1 Specification Verification

In early design stages, manufacturers decompose their electronic system into in-
terconnected functions or software components—often disregarding ECUs and
communication buses. These software components are normally not implemen-
ted yet; instead their behavior is only roughly specified (e.g. using Stateflow
models). But even in these early stages, developers want to verify whether the
function specifications work correctly and whether the interplay of local com-
ponent specifications produces the wanted overall behavior. For this, the network
of components (and their behavior) must be simulated in a suitable execution
order—with or without plant models. SystemDesk offers both scenarios in its
virtual functional bus (VFB) simulation mode (VFB is a term coined by AU-
TOSAR).

15.3.2 Software Component Tests

SystemDesk provides the capability of simulating a single (AUTOSAR) software
component. This includes stimulating input signals, and measuring outputs and
internal variables. Software components such as AUTOSAR rely on other ECU
software modules such as the operating system, mode management, diagnostic
services or I/O drivers. SystemDesk provides an ECU-like simulation framework
which allows the execution of production software components in an offline si-
mulation on the developer’s PC. Another use case is the verification of software
components implemented by third-party software suppliers: ECU integrators are

Benefits of System Simulation for Automotive Applications 335

interested in testing these components without looking at the behavior definition
models (e.g. Simulink/TargetLink models). In many cases, for reasons of intel-
lectual property protection, such components only exist in the form of object
files.

15.3.3 ECU Tests

Later on in the production process, ECU integrators (normally ECU suppliers)
want to verify the correct behavior of ECUs. At this stage, application software
components have been implemented. In order to simulate whole ECUs, not only
the application software components but also the ECU platform must be simula-
ted. SystemDesk takes basic software configurations of the production ECUs and
uses them to simulate the application software on a PC as realistically as pos-
sible. The SystemDesk simulation uses emulations of the basic software models
for this: An AUTOSAR operating system is emulated for the production ECU
under development, and the NVRAM and fault memory are also reproduced
on the PC. A practical example, the verification of ECU diagnosis algorithms
within SystemDesk at Daimler AG, is presented in [20].

15.3.4 Virtual Integration

Manufacturers need to verify whether the interconnected ECUs work together
correctly. Traditionally such tests are done using hardware-in-the-loop (HIL)
simulations. SystemDesk offers virtual integration using an offline simulation.
For this, besides the ECU simulation from section 15.3.3, a simulation of the
communication buses is needed. Also plant models are used to simulate the
vehicle and specific driving maneuvers. A major challenge for the introduction
of such virtual HIL simulations is the usage of the same test cases and models
for the offline and the HIL simulation respectively. First experiences at AUDI
can be found in [17].

15.4 Summary

In this paper, the authors tried to show that system models are not only a new
buzz word but really offer advantages for the automotive industry. System models
enable users to get an overall view of vehicle software systems. When behavior
descriptions for software modules and plants are added, system models become
executable and can be used for simulation purposes. Accordingly, system models
allow the verification and simulation of the E/E architecture in early stages of
the development process of electronic control units. Thus it is possible to perform
HIL-like test scenarios in an offline simulation on the PC.

The offline simulation of system models therefore supports manufacturers and
suppliers in their task of detecting design errors in distributed systems, problems
caused by bus communication, etc. In view of the increasing complexity of soft-
ware in modern vehicles and the resulting increase in the number of possible
faults, this will prove to be a significant development step.

336 O. Niggemann, A. Geburzi, and J. Stroop

References

[1] Kraft, D., Lapp, A., Schirmer, J.: Elektrik/Elektronik-Architektur - Die Heraus-
forderung für die Automobilindustrie. In: VDI Berichte Nr. 1789 (2003)

[2] Steiner, P., Schmidt, F.: Anforderungen und Architektur zukünftiger Karosseriee-
lektroniksysteme. In: VDI Berichte Nr. 1789 (2003)

[3] Niggemann, O., Stroop, J.: Models for Model’s Sake. In: ICSE Experience Track
on Automotive Systems (2008)

[4] McKinsey, Company: Managing innovations on the road. In: Automotive Electro-
nics (2005)

[5] AUTOSAR 3.1 Specifications, http://www.autosar.org
[6] Eppinger, K., Berentroth, L.: Plattform versus Flexibilitaet: Die Siemens VDO

EMS 2 Plattform Architektur. In: VDI Berichte Nr. 1789 (2003)
[7] Hietl, H., Streit, W.: Integration komplexer Elektroniksysteme am Beispiel des

neuen A8. In: VDI Berichte Nr. 1789 (2003)
[8] Voget, S., de Boer, G., Heidl, P., Adis, F., Virnich, U.: Analyse fahrzeug-

weiter Softwarekonzepte im Rahmen des europäischen Förderprojekts ITEA-
EAST/EEA. In: AUTOREG, Wiesloch, Germany (2004)

[9] Wolf, F.: Integrationsverfahren für Softwaresysteme im Antriebsstrang. In: VDI
Berichte Nr. 1789 (2003)

[10] OMG: Unified Modeling Language, UML (2003), http://www.omg.org
[11] SysML, http://www.sysml.org
[12] EAST-EEA, http://www.east-eea.net
[13] Lönn, H., Saxena, T., Nolin, M., Törngren, M.: FAR EAST: Modeling an Au-

tomotive Software Architecture Using the EAST ADL. In: ICSE Workshop on
Software Engineering for Automotive Systems (SEAS). IEE (2004)

[14] Wild, D., Fleischmann, A., Hartmann, J., Pfaller, C., Raapl, M., Rittmann, S.:
An Architecture-Centric Approach towards the Construction of Dependable Au-
tomotive Software. In: SAE World Congress (2006)

[15] Hartmann, J., Rittmann, S., Wild, D., Scholz, P.: Formal Incremental Require-
ments Specification of Service-oriented Automotive Software Systems. In: Procee-
dings of the Second IEEE International Symposium on Service-Oriented System
Engineering, SOSE 2006 (2006)

[16] Thiessen, C., Geburzi, A., Lamberg, K., Niggemann, O.: Übertragung von HIL-
Tests in die Offline-Simulation. In: 2nd AutoTest Technical Conference (2008)

[17] Stichling, D., Niggemann, O., Schmidt, K., Reichelt, S., Maleuda, M.:
Durchgängige Systemtests von der virtuellen Integration bis zum Verbundtest.
ATZ elektronik (November 2008)

[18] Otterbach, R., Niggemann, O., Stroop, J., Thümmler, A., Kiffmeier, U.: System
Verification throughout the Development Cycle. ATZ Automobiltechnische Zeit-
schrift (April 2007)

[19] Nawratil, P., Niggemann, O.: Der kleine grüne Pfeil ... Hanser automotive (July
2008)

[20] Adam, V., Kohlweyer, M., Balzer, H., Nawratil, P.: Diagnoseverifikation in frühen
Entwicklungsphasen. Elektronik automotive (December 2008)

http://www.autosar.org
http://www.omg.org
http://www.sysml.org
http://www.east-eea.net

16 Development of Tool Extensions with
MOFLON

Ingo Weisemöller2, Felix Klar1, and Andy Schürr1

1 Fachgebiet Echtzeitsysteme
Technische Universität Darmstadt, Germany

{klar,schuerr}@es.tu-darmstadt.de
2 RWTH Aachen University, Germany

http://www.se-rwth.de

Abstract. The increasing complexity of embedded systems is accom-
panied by an increasing number and complexity of models, modeling
languages and tools in the development process. This results in a need
for appropriate tool support at the metamodel level. Besides the neces-
sity to develop new languages and tools, there is also a large demand
for extensions to existing tools as well as for integration frameworks.
Such frameworks ensure consistency between data that is distributed
over several tools. In this chapter, we present MOFLON, a metamode-
ling tool primarily focused on tool extension and integration. It adopts
several standards such as MOF 2.0 and JMI. It also supports story dri-
ven modeling as a means of describing on-model transformations as well
as a combination of MOF QVT and triple graph grammars for model-to-
model transformations and integration. We present a typical application
of these features to tools used in the development of embedded systems.

16.1 Introduction

Because the number of software development processes, especially for embedded
systems, has rapidly increased recently, the number of modeling languages and
commercial off-the-shelf (COTS) modeling tools has increased as well. There-
fore, documents created with these modeling tools are also becoming harder to
manage and maintain. These documents and models may be difficult to unders-
tand and to develop further. Therefore, modeling guidelines are a wide spread
approach to improve readability and maintainability of these documents. Such
guidelines may also enforce properties of the model that are necessarily required
for automatic processes, such as code generation. Data spread across several do-
cuments may be redundant and needs to be kept consistent. These documents
are usually developed with different COTS tools. Most of such tools neither
provide proper interfaces to couple them with one another, and they do not pro-
vide a way to define domain specific rules for data consistency between several
documents. Thus, alignment and adjustment of this data is usually performed
manually, which results in considerable efforts and costs.

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 337–343, 2010.
� Springer-Verlag Berlin Heidelberg 2010

338 I. Weisemöller, F. Klar, and A. Schüurr

Since new tools are not usually an option in ongoing processes, tool extensions
are a more adequate way to enforce modeling guidelines and to ensure consis-
tency between several models. The metamodeling tool MOFLON is focused on
efficient development of such extensions. We use MOFLON to develop tool adap-
ters that comply to the Meta Object Facility (MOF) [1] and to the Java Metadata
Interface (JMI) [2], and thus provide standardized access to model data. Based
on these adapters,we use model transformations to describe rules for analysis and
semi-automatic repair of models according to guidelines. MOFLON also allows
to define model-to-model transformations and consistency rules in a declarative
notation based on MOF Query/View/Transformation (QVT) [3].

The remainder of this chapter is outlined as follows: In Section 16.2 we des-
cribe the core features and briefly introduce the standards adopted by MOFLON.
Section 16.3 provides an overview of usage scenarios for MOFLON, and in Sec-
tion 16.4 we give a short summary and present some ideas for future versions of
MOFLON.

16.2 History and Overview of Features

The development of MOFLON began in 2002. Based on code generated by the
MOF Model Compiler (MOMoC) [4] from a simplified version of the MOF meta-
model, we developed a graphical editor as a plugin for the UML tool Fujaba [5].
Besides this editor, the graph transformation environment of Fujaba was reused
for model transformations. This step required a refactoring of the existing en-
vironment in order to make it work on an abstract metamodel interface, which
could be implemented by plugins. Having completed these steps successfully, we
released MOFLON 1.0 in December 2006.

More recent versions of MOFLON introduced an editor and code genera-
tor for model-to-model transformation rules based on triple graph grammars
(TGGs) (MOFLON 1.1, July 2007), a compiler for the Object Constraint Lan-
guage (OCL) [1] based on the Dresden OCL toolkit [6] (MOFLON 1.2, De-
cember 2007) and modularization concepts for model-to-model transformations
(MOFLON 1.3, December 2008).

16.2.1 MOF Editor and Code Generation for MOF Models

MOFLON adopts the MOF 2.0 standard [1] by the Object Management Group
(OMG). MOF compliant metamodels describe the abstract syntax of modeling
languages in a notation based on UML class diagrams. MOFLON supports the
complete MOF (CMOF); in comparison to its subset essential MOF (EMOF),
which is, for instance, supported by the Eclipse Modeling Framework [7], CMOF
has much more sophisticated association and modularization concepts, which are
substantial for metamodeling in the large. Constraints can be added to meta-
models using the Object Constraint Language (OCL) [1] in MOFLON.

The code generated from metamodels by MOFLON complies to the JMI stan-
dard by Sun. This defines tailored interfaces, which are specific to the respective

Development of Tool Extensions with MOFLON 339

metamodel, and reflective interfaces, which provide generic access to model and
metamodel data. Our mapping from MOF 2.0 to JMI is an extension of the JMI
mapping for MOF 1.4 defined by the OMG. Because JMI does not describe an
event mechanism, MOFLON metamodels implement the interface of Netbeans’
metadata repository (MDR) [8] for events.

16.2.2 Additional Frontends

Besides the graphical MOF editor, MOFLON provides import modules for seve-
ral other frontends. UML models can be imported from Rational Rose or Sparx
Systems Enterprise Architect. For Enterprise Architect, there is also a plugin [9]
that introduces MOF diagrams, provides a toolbox for editing MOF models,
and performs checks on these models to ensure they can be imported and used
for code generation in MOFLON. The import from UML tools is based on the
XML Metadata Interchange (XMI) standard. Because many tools have their own
extensions to or interpretations of XMI, one can run XSL Transformations on
the XMI data before the import. This results in low efforts to develop import
modules for further tools. Currently, we are also working on a textual frontend.

16.2.3 Model Transformations

Since one of our core areas of application is model analysis and repair, MOFLON
can be used to describe rules and constraints for this. We make extensive use of
OCL constraints, pattern matching and model transformations for model ana-
lysis and repair. MOFLON uses the transformation engine provided by Fujaba,
with a set of code generation templates that has been adopted to MOF and JMI.

Model transformations in MOFLON are described in story diagrams [10],
which are a combination of UML activity diagrams and an adopted version
of collaboration diagrams. The control flow of a transformation is specified in
an activity diagram. Inside each activity, pattern matching and replacement is
described in an extended collaboration diagram. Chapter 14 of this book gives
an example of model transformations with MOFLON.

16.2.4 Triple Graph Grammar Editor

Model-to-model transformations can be specified using the MOFLON triple
graph grammar editor. TGGs [11] are a formal transformation language that al-
lows to relate model elements with each other. TGGs specify bidirectional model-
to-model transformations in a declarative manner. TGG rules can be translated
into operational transformation rules. These can be used to perform forward
and backward transformations as well as consistency checks on related models.
TGGs are closely related to the model transformation standard QVT [12]. Ho-
wever, since QVT is not based on a formal foundation and, therefore, also suffers
from a lack of precision, we decided to base our transformation implementation
on TGGs, which have formally and precisely defined semantics.

340 I. Weisemöller, F. Klar, and A. Schüurr

16.3 Usage Scenarios

Extensions to COTS tools, which we develop with MOFLON, typically perform
analysis and repair tasks on single models, or they keep data across several tools
consistent. A combination of both kinds of extensions is possible.

Code-
Fragment

MATLAB
ObjectsAPI AdapterMATLAB

Model

MATLAB Meta
Model (MOF)

SDM Graph
Transformation

Code-
Fragment
Analysis
Results

Model Analyser

OCL
Constraints

Model
Transformer

ModellDOORS
Model API Adapter DOORS

Objects

Model
Integrator

Model Analyser

Code-
Fragment
Analysis
Results

Model
Transformer

Integration
Rules (TGG)

DOORS Meta
Model (MOF)

SDM Graph
Transformation

OCL
Constraints

Fig. 16.1. Integration Scenario Including Model Analysis and Repair

Figure 16.1 provides an overview of such a combination. It shows the inte-
gration of the requirements engineering tool DOORS with the systems modeling
environment MATLAB/Simulink. Adapters provide standardized interfaces to
the data in each tool, i.e. the adapter provides JMI compliant objects to all
other components. This is, for instance, required for the model transformation
rules to work properly. For both the DOORS and the MATLAB data, there
is a model analyzer and transformer, which take OCL constraints and model
transformation rules as input and apply them to the models. Moreover, there
is a model integrator, which applies TGG rules to keep data between the tools
consistent.

16.3.1 Tool Adapters

The code generated by MOFLON for model transformations requires a JMI
compliant metamodel to run. In order to perform analysis and repair actions
on models in tools, we need a JMI compliant interface to this data. We use
MOFLON to describe the API and data structure of the tool in a metamodel,
and to generate the interfaces and a substantial part of the adapter implemen-
tation with a customized set of templates. As an example, Figure 14.2 shows the
metamodel of the modeling and simulation tool MATLAB/Simulink.

Development of Tool Extensions with MOFLON 341

Since adapters use calls to the proprietary tool API, a part of it needs to be
written manually. An evaluation based on the MATLAB/Simulink adapter has
shown that about 95% of the adapter (measured in lines of code) can be genera-
ted. This includes the interfaces and most of the implementation of the reflective
methods, whereas calls to the tool API must be implemented manually. Further
increment of this percentage will be possible, if some API calls like setting at-
tribute values in model elements are generated with tool specific templates.

16.3.2 Model Analysis and Repair

With the JMI compliant tool adapter, one can perform model analyses and
repairs, which are implemented by means of OCL constraints and model trans-
formations. Minor repairs may be performed automatically, but more complex
actions require a user to choose one of several possible repair actions. Analyses
and repairs with MOFLON, especially on MATLAB/Simulink models are dis-
cussed in detail in chapter 14 of this book.

16.3.3 Integration Framework

Integration rules specified in the TGG editor can be translated to operational
graph analysis and transformation rules by MOFLON. Figure 16.2 provides a
more detailed view of the integration between DOORS and MATLAB/Simulink
models.

Ad
ap

ta
tio

n
C

od
e

G
en

er
at

ed
R

ep
os

ito
ry

Ad
ap

ta
tio

n
C

od
e

G
en

er
at

ed
R

ep
os

ito
ry

DOORS

DOORS
Repository

DOORS
Model

DOORS
Model*

Matlab/
Simulink

ML/SL
Repository

ML/SL
Model

ML/SL
Model*

Generated
Repository

(TGG)

Correspondence
Links

l:Link b:Subsystem* b:Subsystema:FObject*a:FObject

DOORS Adapter ML/SL Adapter

Integration Framework

Fig. 16.2. Integration between DOORS and MATLAB/Simulink [13]

Access to the tool repositories is provided by the JMI adapters. The integra-
tion framework applies the TGG rules to the models. For instance, it may ensure
that for every use case in DOORS, which is specified in a so called formal object
(FObject in the figure), a corresponding subsystem must implement this use case
in the MATLAB/Simulink model.

342 I. Weisemöller, F. Klar, and A. Schüurr

16.4 Conclusions and Future Work

The metamodeling tool MOFLON is designed for the rapid development of tool
extensions rather than for developing tools from scratch. It includes editors and
code generators for MOF compliant metamodels, OCL constraints, endogenous
and exogenous transformations. Typical areas of application are model analysis
and repair as well as model-to-model consistency checking and integration.

Future versions of MOFLON will provide enhanced possibilities to use com-
mercial or open source tools for metamodel and transformation editing as well as
more sophisticated modularization concepts for metamodeling in the large [14].

Acknowledgments

We would like to thank Tobias Rötschke, Alexander Königs and Carsten Ame-
lunxen, who have initiated the MOFLON project and contributed a lot to it.

References

[1] OMG, Inc.: Catalog of OMG Modeling and Metadata Specifications (November
2008),
http://www.omg.org/technology/documents/modeling_spec_catalog.htm.

[2] Dirckze, R.: Java Metadata Interface (JMI) Specification, v1.0 (June 2002)
[3] Amelunxen, C., Königs, A., Rötschke, T., Schürr, A.: MOFLON: A Standard-

Compliant Metamodeling Framework with Graph Transformations. In: Rensink,
A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 361–375. Springer,
Heidelberg (2006)

[4] Bichler, L.: Tool Support for Generating Implementations of MOF-based Mode-
ling Languages. In: Proceedings of the Third OOPSLA Workshop on Domain-
Specific Modeling (2003)

[5] Zündorf, A.: Rigorous Object Oriented Software Development. University of Pa-
derborn (2002),
http://www.se.eecs.uni-kassel.de/fileadmin/se/publications/Zuen02.pdf

[6] Loecher, S., Ocke, S.: A Metamodel-Based OCL-Compiler for UML and MOF.
Electr. Notes Theor. Comput. Sci. 102, 43–61 (2004)

[7] The Eclipse Foundation: Eclipse Modeling – EMF – Home (2008),
http://www.eclipse.org/modeling/emf/

[8] netbeans.org: Metadata Repository (MDR) Project Home (2008),
http://mdr.netbeans.org/

[9] Patzina, S.: Anpassung eines UML-Modellierungswerkzeuges für die Metamodel-
lierung domänenspezifischer Sprachen. Master’s thesis, TU Darmstadt (2008)

[10] Amelunxen, C., Rötschke, T., Schürr, A.: Graph Transformations with MOF 2.0.
In: Giese, H., Zündorf, A. (eds.) Proc. 3rd International Fujaba Days 2005, vol. tr-
ri-05-259, pp. 25–31. Universität Paderborn (September 2005)

[11] Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp.
151–163. Springer, Heidelberg (1995)

http://www.omg.org/technology/documents/modeling_spec_catalog.htm
http://www.se.eecs.uni-kassel.de/fileadmin/se/publications/Zuen02.pdf
http://www.eclipse.org/modeling/emf/
http://mdr.netbeans.org/

Development of Tool Extensions with MOFLON 343

[12] Königs, A.: Model Integration and Transformation - A Triple Graph Grammar-
based QVT Implementation. PhD thesis, Technische Universität Darmstadt
(2009)

[13] Amelunxen, C., Klar, F., Königs, A., Rötschke, T., Schürr, A.: Metamodel-based
Tool Integration with MOFLON. In: 30th International Conference on Software
Engineering, pp. 807–810. ACM Press, New York (2008) (Formal Research De-
monstration)

[14] Weisemöller, I., Schürr, A.: Formal Definition of MOF 2.0 Metamodel Components
and Composition. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 386–400. Springer, Heidelberg (2008)

17 Towards Model-Based Engineering of
Self-configuring Embedded Systems

DeJiu Chen, Martin Törngren, Magnus Persson,
Lei Feng, and Tahir Naseer Qureshi

Mechatronics Lab, Department of Machine Design,
Royal Institute of Technology (KTH), Stockholm, Sweden

{chen,martin,magnper,leifeng,tnqu}@md.kth.se

Abstract. In self-configuring embedded systems, upgrades, attachment
of devices, relocation of applications and adjustment of performance pa-
rameters can be carried out during run-time for the purposes of informa-
tion/function integration, maintenance, performance, resource efficiency,
and robustness. We describe a model-based engineering approach to sup-
port the development of such systems. Essential ingredients include a
combined usage of a system model, simulation combined with a number
of formal techniques, and run-time models used as a basis for on-line de-
cision making, with the overall goal to ascertain flexible, yet dependable,
system behavior.

17.1 Introduction

Distributed embedded systems are traditionally configured at deployment time,
i.e. tasks are statically allocated to nodes and settings are fixed for the entire
life time of the product. It is usually not easy to upgrade the software or add
new functions after deployment time.

In a self-configurable system, on the other hand, it would be possible to up-
grade the software (or parts thereof), add new modules (hardware and software)
to the system, and change system properties, e.g. periodicity of tasks and on
which nodes they run, either at run-time or when the system is in an idle mode.
We use the following definition:

An embedded system is self-configuring if it is able to autonomously
adapt to changing environmental conditions or internal status, by al-
tering its structure, behavior, and data to meet its functionality and
quality requirements.

Self-configuration relies on the system’s awareness of its internal and external
status, its built-in knowledge about system variability and rules for inferring
and planning configuration changes, and appropriate run-time mechanisms for
performing dynamic configuration management.

There are many reasons why the needs for dynamic and self-configuring sys-
tems are increasing, including cost-efficient and reliable field maintenance and

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 345–353, 2010.
� Springer-Verlag Berlin Heidelberg 2010

346 D. Chen et al.

upgrades of software, integration of external resources for information and/or
functionality sharing. A typical example of this is the infotainment area in au-
tomotive systems, where new devices and software have much shorter lifecycle
compared to the rest of the vehicle.

Many embedded systems are moreover exposed to a varying number of events
and applications running at the same time, and with varying resource require-
ments over time. The applications are often heterogeneous in nature, e.g. event-
and clock triggering, and tasks of different criticality. Taking this into account
causes a further need for adaptation of the application behavior, configuration,
and resource deployment at run-time in order to optimize system performance
and improve system robustness.

New model-based development approaches and software platforms are requi-
red to meet these needs[1]. In this chapter, we describe work in the FP6 pro-
ject DySCAS[2], which has developed a middleware architecture for dynamically
configurable automotive embedded systems. The architecture itself is described
in [3, 4, 5] and is out of scope for this chapter. The reader is especially referred to
[3] for elaboration on the middleware architecture, the corresponding processes
and more details on the methodology described in the following.

In this brief chapter, we focus on summarizing and synthesizing methodologi-
cal experiences. We describe a suggested model-based approach to developing a
middleware architecture for self-configuring automotive embedded systems (Sec-
tion 17.2), together with a case study on concrete methodology actually used in
the DySCAS project (Section 17.3).

17.2 Capabilities

Self-configuring embedded systems highlight the use of software as a means to
provide advanced features that allow transparent handling of uncertainties, such
as changing internal status and/or environment conditions. At the same time,
such features often involve complex decisions, behavior synchronization, plat-
form interactions and error handling, while requiring additional computation
and communication resources. It is clear that a configuration change, if not de-
signed and performed properly, would introduce faults of various types (i.e.,
primary, secondary, and command faults [6]) or cause violations of the intended
architecture (i.e., architectural erosion [7]). Therefore, the DySCAS approach
emphasizes the importance of systematic reasoning and decision making, and
predictable behavior in performing dynamic configuration management for the
reasons of performance, dependability, verification and validation.

The DySCAS reference architecture provides a domain-specific strategy and
approach for introducing context-aware, self-managing dynamic configuration
and QoS behavior into automotive embedded systems through middleware. To
support the architecture design, a model-based methodology has been develo-
ped, illustrated in Fig. 17.1. The methodology distinguishes the platform-neutral
aspect of architecture design from the platform-specific aspects, and adopts an
incremental approach including the following stages:

Towards Model-Based Engineering of Self-configuring Embedded Systems 347

System and
requirements

definition

System
conceptualization

Design and analysis
of MW functions
and architecture

Platform-specific
design and analysis

of middleware

Software building,
loading, running

and testing

Prototype
algorithm

s
and policies

R
equirem

ents, technology constraints,and V&V m
easures

Architecture
m

odel

C
om

ponent
m

odel

Inform
ation

m
odel

D
ySC

A
S M

W

R
eference

architecture

D
escription of
concrete
platform

System
configuration

Policies and
platform

m
eta-data

D
ySC

A
S M

W
R

eference
Im

plem
entation

Softw
are

com
ponents

D
efinition of
generic
platform

D
efinition of

architecture
concepts

D
ySC

A
S M

W
C

onceptual
A

rchitecture

Feedback from
 analysis, verification and validation

Online
algorithms

Platform
-neutral levels

Platform
-specific levels

Activities and workflow System artefacts and information flow

Prototype system
with MW-supported

self-configurability

Workflow

Data flow (e.g. usage as input
data or received constraints)

Online database (run-time model)

Work product / Artefact
(e.g. document, model)

System

Key activity

Architecture descriptions
developed in DySCAS

Fig. 17.1. Outline of the adopted design methodology of middleware architecture for
self-configurable systems

348 D. Chen et al.

– System and requirements definition.
– Architecture conceptualization and analysis.
– Design and analysis of MW functions and architecture (on generic plat-

forms).
– platform-specific design and analysis of MW functions and architecture.
– Software building, loading, running, and testing.

Each architecture design stage is characterized by an iterative loop of require-
ment specification and refinement, design and verification, involving the following
major activities:

– Assessing available information, including the requirements and technology
constraints.

– Performing quality-oriented design and defining effectiveness measures for
architecture evaluation, in respect to performance and dependability.

– Peforming structural design to specify system components and their data,
functionality, properties, composition and connections.

– Performing behavioral design to specify modes and transitions, actions and
control flow, interactions and synchronizations, and other related properties.

– Evaluating alternative solutions, describing refined/derived constraints and
requirements, and repeating the structure and behavioral design for any
unsatisfactory solutions.

There are various concerns of performance and dependability, e.g. in regards to
logic and behavior, timing and synchronization, error detection and handling.
In the DySCAS methodology, such concerns have been treated incrementally
throughout the design in separate stages. At the platform-neural architecture
design stages, the fundamental paradigms of communication and computation
have been decided using a generic platform definition. At this level, the design
focuses on the structuring and behavioral semantics of the middleware services,
the implementation strategy in regards to partitioning, allocation, and schedu-
ling, and the necessary platform support, that together promote the decision
determinism, behavior and timing predictability, and delimitation of error pro-
pagation. The solutions at these stages have been captured and specified within
the DySCAS component model and architecture model [3]. For example, each
DySCAS middleware component is a self-contained and active object with its
own thread-of-control and hierarchically defined behavior, triggered by signals.
The inter-component communication is based on asynchronous message passing
with well-defined buffering queues. To avoid undesired behavior during execution
(e.g., deadlock, overflow and starvation), with the purpose of simplifying veri-
fication, a component always reads and removes all messages from all its input
message queues, and carries out the computation using these messages. After
the computation, the component writes messages to its output message queues
if necessary. The strategy of implementation, as a part of the component and
architecture models, is that the middleware services, as well as the application
and system tasks subjected to dynamic configuration, should have hierarchical
task scheduling support.However, the concrete definition of particular scheduling

Towards Model-Based Engineering of Self-configuring Embedded Systems 349

solutions are left to the platform-specific design stages, where a specific platform
is chosen for the implementation.

While the architecture design solutions are captured in UML, a combined
usage of simulation and formal analysis techniques, supported by model trans-
formations, has been employed to support advanced architecture verification
and validation in regards to the logic, algorithmic and execution behavior, and
performance/resource usage. To address safety and robustness concerns, a preli-
minary hazard analysis through FFA (Functional Failure Analysis) and FMEA
(Failure Modes and Effects Analysis)has also been performed for the envisioned
self-configurable automotive systems [8].

Compared to traditional statically configured systems, one key difference of
the DySCAS approach is the support for middleware users to systematically de-
sign and embedded various design information, quality concerns, and predefined
variability for dynamic configuration decisions in the forms of meta-data. For
example, each application component in DySCAS is represented not only by the
executable code itself, but also by associated meta-data describing the condi-
tions and contracts under which the component can operate and be adaptive.
The covered concerns include for example its dependencies on other compo-
nents, restrictions on hardware binding and amount of resources, and its QoS
regions. One fundamental concept is variability, which refers to the specification
of possible variations that a particular system configuration can have. Traditio-
nally, variability is used for the feature configuration of product lines and dealt
with off-line [9]. In DySCAS, the concept is extended to many more configura-
tion items, levels of abstractions, and product lifecycle concerns. Based on such
meta-data, the middleware provides dynamic configuration management support
by monitoring run-time system conditions and then reacting to such conditions
according to some a priori defined control policies/rules. It is assumed that all
meta-information and configuration management policies/rules that provide the
middleware-based online configuration management are derived from correspon-
ding off-line function and architecture design, verification and validation activi-
ties. The issues of particular concern include impacts of changes on the overall
system functionality, end-to-end performance, and dependability.

Some further explanations of key artefacts in the methodology are as follows.

– The conceptual architecture outlines the middleware services and compo-
nents, boundaries, and environments. It also provides a generic platform
definition characterizing some common features or concerns of hardware ar-
chitecture and system support.

– The information model of the DySCAS reference architecture provides a
framework and a set of predefined data types for specifying system configu-
ration and configuration variability at architectural levels, embedding such
meta-information for run-time configuration management and QoS control,
capturing environmental conditions and system internal status, and descri-
bing expected dynamic configuration tasks and activities.

– The component model of the DySCAS reference architecture provides a com-
mon means for packaging configuration management data and control

350 D. Chen et al.

functions, exploiting a policy-based mechanism for the implementation and
maintenance of reasoning and decision algorithms, and controlling fundamen-
tal service behaviour in regards to execution, interaction and synchronization.

– The architecture model of the DySCAS reference architecture provides a
layered data hierarchy and control strategy for identifying, structuring, and
deploying various middleware services. Together they provide distributed
run-time configuration management.

As a complement, we found it useful to apply safety analysis techniques. While
the intended middleware system is not primarily intended to be used in sa-
fety critical applications, the use of such analysis techniques promotes system
robustness, by stimulating and aiding reasoning about critical failure modes,
fault hypotheses and causes of component failures. The platform-neutral design
has also been refined into a concrete implementation on the specfic platforms.
For example, the componentization, communication and execution details will
depend on the exact real-time operating system and communication protocols
available on the platform. Much of the analysis can also be repeated and refined
at different levels of abstraction. Some prototype on-line configuration algorithms
were tested through simulation and verified formally.[10]

17.3 Case Study

The case study focuses on a few examples on how models have practically been
used within the DySCAS project.

17.3.1 Architecture Modelling with UML

The DySCAS architecture has been modelled in UML[11], using the MagicDraw
UML tool[12]. This model is presented in [3]. See Fig. 17.2 for an overview.

For middleware implementers using the DySCAS architecture framework, sui-
table modeling languages and tools (based on UML or domain-specific) will be
needed to document the exact interpretation of the DySCAS concept that has

DySCAS Component ModelDySCAS Architecture Model

DySCAS Information Model

<<merge>>

<<import>><<import>>

Fig. 17.2. A package overview of the DySCAS Reference Architecture in UML

Towards Model-Based Engineering of Self-configuring Embedded Systems 351

been used. Further, implementers of hardware devices and software applications
intended to run on DySCAS systems will have to use compatible languages
and tools to capture relevant meta-data such as limitations, dependencies and
other requirements the devices/applications have, and which they put on their
environment.

17.3.2 Verification and Validation through Analysis

Several model-based approaches to V&V have been used in the development of
DySCAS, both to supply early design feedback and to perform quality control.

As a high-level design support tool, logic simulation of the middleware using
the SimEvents[13]/Stateflow/Simulink/Matlab environment has been performed
[14]. These simulations have provided feedback for the architecture develop-
ment. Results include a specification of an example model transformation from
the UML-based specification of the middleware architecture to the simulation
environment, simulation guidelines and conceptual evaluation of the DySCAS
reference architecture.

Several different variations of on-line reconfiguration algorithms were develo-
ped [10]. The development was supported with simulation covering applications,
middleware and their software/hardware realization using the TrueTime[15] tool-
box for Simulink. The level of abstraction supports evaluation of algorithms and
timing properties. Formal verification (i.e. mathematical proofs of their proper-
ties) on the algorithms was also performed.

To further introduce the reconfiguration problem: Assume a set of embedded
computers, with limited memory and CPU resources, connected by a network;
a set of application tasks with specified resource usage; timing requirements;
eligible computers on which tasks can run, for each task a list of required and
provided services; and the overall benefit metrics for the system, based on each
task’s significance. Further assume that a task can only execute when enough
resources are available and all required services are present in the system.

The challenge then is to find an algorithm to allocate tasks to computers, such
that all allocated tasks are schedulable and provide maximal benefit to the sys-
tem. Events such as hardware failures, addition of new resources, and workload
disturbances may trigger self-reconfiguration. This problem is provably NP-hard,
and hence intractable for online configuration. To enable quick system response,
a suite of efficient algorithms to find acceptable solutions (rather than optimal)
has been proposed. They are capable of online configuration management and
adaptive resource management, both in polynomial time of the number of tasks
and computers of the network[10].

Further, a safety analysis model was developed, using the FFA (Functional
Failure Analysis) and FMEA (Failure Modes and Effects Analysis) methods to
find sensitive failure modes of the middleware itself.[8] Such types of verification
are vital to be able to guarantee system properties such as availability.

352 D. Chen et al.

17.3.3 Run-Time Models

During run-time, in-memory models are used to keep track of the current execu-
tion status of the system. This is examplified by DyLite[16], a partial reference
implementation of DySCAS focusing on QoS and reconfiguration. Using a model
of the applications’ behavior, describing resource usage over time based on an
automata formalism. The automata states correspond to different QoS modes,
and along with each mode, maximum resource usage levels for CPU time, net-
work communication and memory usage are documented. This information is
used to predict the maximum resource utilization of the applications.

Additionally, applications explicitly switch between different modes by calling
a function from the DyLite API. As parameters, the application gives the set of
modes that it wants to switch to. In return, after considering system constraints,
the middleware returns which one of these modes will actually be used. The
middleware may in certain cases also block the application, even indefinately
(i.e. in the case of overload situations). Since the DyLite middleware is able to
predict future resource usage, it is able to give resource availability guarantees
to applications; either the application is granted the requested resources, or it
won’t run at all.

17.4 Conclusions and Future Work

In this chapter, we have presented a model-based development methodology for
middleware for dynamically self-configuring distributed embedded systems, ba-
sed on experiences in the DySCAS project. There are several interesting threads
of ongoing and desired work. We plan to perform validation on the DyLite im-
plementation to validate the system behavior models, thus closing the loop from
models to reality. While all the aspects of the outlined methodology were cove-
red in the DySCAS project, many tool-related issues require further work, e.g.
to automate the model transformations we have defined. Finally, further work
is required to elaborate the developed methodology and architecture, in parti-
cular in order to support systematic analysis and synthesis, where repeating all
verification at each level will no longer be required.

Acknowledgement

As a part of DySCAS project, this work is funded by the 6th framework program
of the European Commission. Project number: FP6-IST-2006-034904.

References

[1] Törngren, M., Chen, D., Malvius, D., Axelsson, J.: Model based development of
automotive embedded systems. In: Automotive Embedded Systems Handbook.
Industrial Information Technology. Taylor and Francis, CRC Press (2008)

[2] DySCAS, http://www.dyscas.org

http://www.dyscas.org

Towards Model-Based Engineering of Self-configuring Embedded Systems 353

[3] DySCAS Consortium: D2.3 DySCAS system specification. Technical report (2008)
[4] Anthony, R., Ekelin, C.: Policy-driven self-management for an automotive midd-

leware. In: Proceedings of First International Workshop on Policy-Based Autono-
mic Computing (PBAC 2007), at the Fourth IEEE International Conference on
Autonomic Computing, in Jacksonville, Florida, USA, June 11-15 (2007)

[5] Chen, D., Anthony, R., Persson, M., Scholle, D., Friesen, V., de Boer, G., Rettberg,
A., Ekelin, C.: An architectural approach to autonomics and self-management of
automotive embedded electronic systems. In: Proceedings of the 4th European
Congress Embedded Real-Time Software (ERTS 2008), Toulouse, France, January
29-February 1 (2008)

[6] Leveson, N.G.: Safeware: System safety and computers. Addison-Wesley Publi-
shing Company, Reading (1995)

[7] Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17(4), 40–52 (1992)

[8] Feng, L., Törngren, M., Chen, D.: Safety analysis of dynamically self-configuring
automotive systems. Technical report, Mechatronics Lab, Department of Machine
Design, KTH, Stockholm (2008)

[9] Cuenot, P., Chen, D., Gérard, S., Lönn, H., Reiser, O., Servat, D., Kolagari, R.T.,
Törngren, M., Weber, M.: Improving dependability by using an architecture des-
cription language. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.) Architec-
ting Dependable Systems IV. LNCS, vol. 4615, pp. 39–65. Springer, Heidelberg
(2007)

[10] Feng, L., Chen, D., Törngren, M.: Self configuration of dependent tasks for dy-
namically reconfigurable automotive embedded systems. In: Proceedings of 47th
IEEE Conference on Decision and Control, Cancún, Mexico, December 9-11 (2008)

[11] UML, http://www.uml.org
[12] MagicDraw, http://www.magicdraw.com
[13] SimEvents, http://www.mathworks.com/products/simevents/
[14] Naseer Qureshi, T., Chen, D., Törngren, M., Feng, L., Persson, M.: Experiences

in simulating a dynamically self-configuring middleware: A case study of DyS-
CAS. Technical report, Mechatronics Lab, Department of Machine Design, KTH,
Stockholm (2008)

[15] TrueTime, http://www.control.lth.se/truetime/
[16] Persson, M., Garćıa, J., Feng, L., Naseer Qureshi, T., Chen, D., Törngren, M.:

DyLite: Design, implementation and experiences. Technical report, Mechatronics
Lab, Department of Machine Design, KTH, Stockholm (2009)

http://www.uml.org
http://www.magicdraw.com
http://www.mathworks.com/products/simevents/
http://www.control.lth.se/truetime/

18 Representation of Automotive Software
Description Means in ASCET

Ulrich Freund

ETAS GmbH,
Borsigstrasse 14, 70469 Stuttgart, Germany

{ulrich.freund}@etas.com
http://www.etas.com

18.1 Introduction

Embedded automotive real-time software is developed according to the V-Cycle.
The control engineers start with the so-called function development where they
specify the control-algorithm. This control-algorithm transforms input signals to
output signal reflecting also the state variables and parameters. A software engi-
neer partitions the control-algorithm to executable software components, which
are then transformed to C-code with a code-generator. The software engineer also
integrates the generated code in a μ-Controller (μC) of an ECU. Afterwards, the
ECU is integrated into a vehicle network by a software engineer too. The inte-
grated control-algorithm is then tuned by a control engineer. This V-Cycle is
shown in figure 18.1. From a software engineering point of view, the design arti-
fact created in the V-Cycle is the embedded control software. The actual values
of the control-algorithm’s parameters, i.e. the calibration data, is seen as part of
the control software. However, the first and the last design step in the V-cycle
are not done by software engineers, but by control engineers. As a result, nei-
ther pure control engineering nor pure software engineering descriptions appear

Fig. 18.1. The V-Cycle for Embedded Automotive Software Development

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 355–360, 2010.
� Springer-Verlag Berlin Heidelberg 2010

http://www.etas.com

356 U. Freund

to be appropriate as sole description means. Applying dedicated descriptions at
each design step is a valid approach, but the transition from control to software
engineering requires dedicated attention because two different ways of thinking
intersect. At this design step, an appropriate description well apprehended by
control and software engineers can avoid a lot of misunderstandings.

18.2 Overview of Design Means for Automotive Software
Design

18.2.1 Description Means for Control Engineering

Control engineers describe the control-algorithm by means of signal flow and
expect the implemented ECU-software to expose its calibration parameters for
trimming. Thus, the control engineer has to specify the following items:

– Data-Flow-Diagrams: The most prominent design approach stems from
control engineering where components containing control-algorithms are cou-
pled in a data-flow manner. When coupled to a physical model of a plant, the
control-algorithm can be executed in a closed-loop simulation running typi-
cally on an engineering workstation. As a rule, hierarchies in the data-flow
diagram will be flattened before the simulation starts.

– Control-Algorithm Parameters: A control-algorithm consists of a structural
part, e.g. PID-controller, and a parameter part, e.g. P, Tv, and Ti. While
analytical parameter design techniques typically require a relatively exact
dynamic model of the plant, which is not always available, automotive engi-
neers tend to trim the vehicles on a test-track in driving experiments. The
more parameters the structure of the control algorithm provides, the more
flexibility has the calibration engineer on the test-track for trimming.

18.2.2 Description Means for Software Engineering

Software engineers transform control-algorithm to concurrent embedded soft-
ware, requiring the specification of:

– Software-Components and Tasks: Creating reusable control engineering com-
ponents is part of the software engineering. A well-proved concept in soft-
ware engineering is the encapsulation of algorithms in classes by means of
methods and the instantiation of the class in another algorithm, which will
be called by a task. Tasks interact with communication means like queues
and remote procedure calls, whose mutual exclusive access is encapsulated
in system-functions. Proxy-concepts relieve a component programmer from
knowing all system resources by name.

– Synchronous-Reactive Design: A different approach in software engineering
is synchronous-reactive design. Besides the clock-concept of triggering com-
putational blocks in an appropriate order and a zero time assumption on

Representation of Automotive Software Description Means in ASCET 357

execution time for blocks an important element of synchronous-reactive sys-
tems is the name-matching approach for signals. In practice, this means that
a signal has one sender (writer) and n receivers (readers). The signal is thus
becoming a global variable. An algorithm developer has to know the global
name of the signal for receiving and sending.

– Automotive Software Design Practice: Due to the static nature of embedded
automotive software prohibiting dynamic creation of control-engineering ob-
jects, the concept of a global signal space is used in the automotive industry
for more than three decades. In actual vehicles there are typically around
thousand signals available on several buses while electronic control units
(ECUs) e.g. for engine-management work on more than thousand signals
internally. At the vehicle manufacturer as well as at the supplier there are
dedicated departments established for maintaining the global signal pool.

– Integer Arithmetic: Since a considerable number of μCs do not support floa-
ting point operations, a control-algorithm has to be implemented in fixed
point arithmetic [1]. This implies that a control-engineering signal has an
integer representation in bits. To achieve a higher resolution, there is no
one-to-one mapping of the physical value to its integer value, but a conver-
sion formula determines the physical limits of a signal and distributes the
values between the limits to the available bits in the integer variable. Arith-
metic operations on integer represented signal have to take into account the
conversion formula applied on the signal. As a result, additional adaptive
operations need to be applied to the original operation.

– Memory Layout of μCs: Electronic Control Units employ one or more(μCs).
These μCs have different kinds of memory available. For example, parameters
change their value only during the trimming phase and are therefore located
in a flash-memory. This section might be changed for series production to
ROM. Of course, the variables representing state-variables in the structural
part of the control-algorithms have to be located in a RAM section. But
the RAM might be available internally on the μC or externally in the ECU.
As a result, the embedded software realizing a control-algorithm will be
distributed over several parts of the μC- and ECU-memory. ROM has also
several flavors. There might be pure ROM, flash or EEPROM. Similar to
RAM all kinds of ROM might be internal of a μC or external in the ECU.

18.3 Integration of the Design Approaches in ASCET

The embedded automotive design tool ASCET [2] combines the design ap-
proaches described above by executable models and transforms the model μC-
production C-Code via code generation.

Control-Algorithms are constructed in ASCET by means of classes and mo-
dules. While classes represent sequential encapsulation, modules are real-time
components working on a global signal space.

358 U. Freund

18.3.1 Classes

Similar to the class encapsulation approach in an object-oriented programming
language the ASCET classes consist of attributes and methods. However attri-
butes can be classified in simple and complex variables or parameters. Complex
variables are instances of other classes.

Methods have return values and in, inout, and out arguments. Methods have
a collection of sequentially ordered statements. Statements assign the results
of expressions to variables. Expressions may involve arithmetic operations, va-
riables, parameters, arguments and method calls to instances of other classes.
Statements can be constructed graphically or textually. There are statements
for iterations and conditional execution. ASCET classes do not support inheri-
tance. Recursions can be modeled but are not recommended in a safety critical
environment. Methods can be called iteratively.

18.3.2 Modules

A module consists of send- and receive-messages. Messages represent signals in
a global name space. When modules are grouped in an ASCET system, the mes-
sages are mapped by name thus creating a global message name space in the
ECU. Modules provide so called processes reading messages, performing com-
putations, and writing messages. Processes are mapped to tasks in a sequential
manner. A process at position n will be executed when its operating system task
is triggered and the n-1 preceding processes also mapped to the task are finished.

Besides representing an ECU global signal-name space, messages serve as
inter-process communication mechanism between tasks. Depending on the map-
ping of processes to tasks, the task properties (e.g. preemptive), and the task
schedule message access and buffering will be protected appropriately.

Modules can contain instances of classes. A typical execution of a process
starts by reading data from receive messages and calling methods. When calling
a method, data read from the messages will be written to arguments of the
method while result of a method call will be written to send messages. The
called method might call methods of complex attributes. Since modules contain
messages representing signals on a global name space, modules can only be
instantiated once.

Figure 18.2 shows a module running a data-flow graph for a throttle control-
ler. One can see at the left hand side the receive messages current-position and
target-pos while on the right hand side there is the send message new-position.
In the data-flow from the receive- to the send-messages one can see that every
variable is annotated with a tag of the process it runs, in this example the pro-
cesses normal and out. The method compute of the instantiated PID class is
also called by the process normal. Parameters (e.g. T1, Td, Ti, Pgain) as des-
cribed in section 18.2.1 have a different color and shape. When the process out
calls the PID’s method out the return value will be written to the send message
new-position. It is up to the ECU integrator to assign the processes normal and
out in alphabetical order to one task or to assign the processes to one task in a
different order or even to two different tasks.

Representation of Automotive Software Description Means in ASCET 359

Fig. 18.2. ASCET Module for a Throttle-Controller

18.3.3 Model-Types

ASCET elements like messages, variables, parameters, and method arguments
are typed by so-called model-types. The model-types are cont representing conti-
nuous values, signed discrete and unsigned discrete for representing the respec-
tive integer values and logic for logical values. In a refinement step, the model
types are replaced by platform types like real64 or uint8.

18.3.4 Tasks

An ASCET system represents a control-algorithm constructed of modules. These
modules communicate via messages. Messages are read or written in processes
when they are executed by tasks. As written in section 18.3.2, processes of mo-
dules are assigned to tasks and messages constitute interprocess communication
buffers. Publication [3] shows that an appropriate scheduling strategy of tasks run-
ning processes with message access keeps the synchronous reactive hypothesis.

Depending on the stage of development, the ASCET system contains, be-
sides the modules of the control-algorithm, either I/O-modules for accessing
μC-registers or continuous time blocks representing a plant model. The pro-
cesses of the I/O-modules will be mapped to tasks while the numerical solvers
of the continuous time blocks represent tasks on their own.

18.3.5 Implementations: Integer Arithmetic and Memory Section

Depending on the actual development step the ASCET model types are transfor-
med to float or integer C-variables. When variables or parameters of continuous
type are transformed to an integer, one has to specify a conversion formula.
During code-generation this formula will be evaluated and original operators de-
fined for the model type of variable will be concatenated with additional adaptive
operations.

When code will be generated for a μC, one has to specify a memory section
for every variable and parameter. From a C-programming point of view, the

360 U. Freund

only difference between a variable and a parameter is that the parameter will be
located in a kind of ROM.

18.3.6 Codegeneration Approach

All attributes of modules and classes in an ASCET system are encapsulated du-
ring code-generation in C-structs. The attached implementation w.r.t. memory
allocation will be reflected during code-generation. Methods and processes are
transformed to C-functions which are of type void in case of a process or to
C-functions with arguments, instance handle and return value when the method
belongs to a class which is multiple instantiated in the ASCET system. Since
messages serve interprocess-communication, they are generated together with
the operating system and managed in a different way. The final variable layout
depends on the buffering technique and the access protection, which themselves
depend on the OS-layout. Messages have a unique name in an ASCET system.

18.4 Conclusion

Development of embedded automotive software requires implies a control-
engineering as well as a software-engineering view on the very same design arti-
fact. ASCET combines both views by an object-based real-time representation of
control-algorithms. These representations are transformed to embedded C-code
by means of code-generators.

References

[1] Schäuffele, J., Zurawka, T.: Automotive Software Engineering. Vieweg Verlag,
Wiesbaden (2003)

[2] ETAS GmbH Stuttgart: ASCET User-Manual (2008)
[3] Baleani, M.: Correct-by-construction transformations across design environments

for model-based embedded software development. In: Proceedings of DATE,
München (2005)

19 Papyrus: A UML2 Tool for Domain-Specific
Language Modeling

Sébastien Gérard1, Cédric Dumoulin2, Patrick Tessier1, and Bran Selic3

1 CEA LIST, Laboratory of Model Driven Engineering for Embedded Systems
(LISE), Bôıte courrier 65, Gif sur Yvette Cedex, F-91191 France

{Sebastien.Gerard,Patrick.Tessier}@cea.fr
2 LIFL and INRIA-Lille Nord Europe, University of Lille, France

Cedric.Dumoulin@lifl.fr
3 Malina Software Corp., Nepean, Ontario, Canada

Selic@acm.org

Abstract. This chapter outlines Papyrus, a tool for graphical mode-
ling of UML2 applications. It is an open-source project, designed as an
Eclipse component, and based on the existing EMF-based realization of
the UML2 meta-model. The goal of this open-source project is twofold.
First, it is a complete, efficient, robust, and methodologically agnostic
implementation of a UML2 tool to both industry and academia. Second,
it is an open and flexible facility for defining and utilizing domain-specific
modeling languages using a very advanced implementation of the UML
profile concept.

Keywords: UML2, UML profile, DSL, MDD, MDE, Modeling and
Eclipse.

19.1 Introduction

As part of its Model-Driven Architecture (MDA) initiative, the Object Ma-
nagement Group (OMG, http://www.omg.org) – an international consortium
representing numerous industrial and academic institutions – has provided a
comprehensive series of standardized technology recommendations in support
of model-based development of both software and systems in general. These
cover core facilities such as meta-modeling, model transformations, and general-
purpose and domain-specific modeling languages. A key component in the latter
category is UML (the Unified Modeling Language, [1]), which has emerged as
the most widely used modeling language in both industry and academia.

A number of tools supporting UML are available from a variety of sources. Ho-
wever, these are generally proprietary solutions whose capabilities and market
availability are controlled by their respective vendors. This can be problema-
tic for industrial users, who may require highly-specific tool capabilities as well
as long-term support which, from a vendor perspective, often extend beyond
the point of commercial viability. Consequently, some industrial enterprises are
seeking open-source solutions for their UML tools. Of course, the fact that open-
source solutions are often less costly is another influencing factor, although it is

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 361–368, 2010.
� Springer-Verlag Berlin Heidelberg 2010

362 S. Gérard et al.

typically not the primary motivation for selecting them, since there is always a
cost involved in integrating such solutions. Indeed, industrial developers using
open-source solutions need time and money to account for debugging or develo-
ping new features in their projects.

A similar situation is encountered in research which typically depends on open
source tools, as most proprietary products are too constraining and inflexible to
allow optimized implementation of new ideas and prototypes.

Therefore, the Eclipse platform along with its Model Development Tools
(MDT, http://www.eclipse.org/modeling/mdt) subproject is the environ-
ment of choice for developing open-source tools for modeling. Indeed, MDT
focuses on big ”M” modeling within the Modeling project of Eclipse. To achieve
this goal, MDT aims at providing: (a) an implementation of industry stan-
dard meta-models, and (b) exemplary tools for developing models based on
those meta-models. The UML2 meta-model implementation was its first com-
ponent (also known as the “UML2 Component”, http://wiki.eclipse.org/
MDT-UML2). This component has become the de facto standard implementation of
the UML2 meta-model (note that it is also the basis for the UML2 tool suites pro-
vided by IBM). Based on the UML2 component, several open-source tools emer-
ged providing facilities for graphical modeling within Eclipse. In early 2008, three
of the main community initiatives developing such a tool —MOSKitt (http://
www.moskitt.org/eng/), Papyrus (http://www.papyrusuml.org) and TOP-
CASED (http://www.topcased.org) — decided to merge their efforts and
provide a joint contribution to the Eclipse MDT. This new graphical editor,
named as Papyrus (http://wiki.eclipse.org/MDT/Papyrus-Proposal), was
accepted by the Eclipse�s Project Management Committee in August 2008, and
the first code delivered in November 2008: http://wiki.eclipse.org/MDT/
Papyrus.

The following section outlines the architecture of the Papyrus tool and its
main capabilities in terms of UML2 graphical modeling and openness for custo-
mization. Section 19.3 provides some snapshots of UML2 diagrams created with
Papyrus illustrating its graphical capabilities. Finally, section 19.4 gives some
conclusions and a roadmap for the tool.

19.2 Capabilities

As explained previously, Papyrus is a graphical editing tool for UML2. It is
Eclipse-based and it uses the Eclipse Graphical Modeling Framework (GMF,
http://www.eclipse.org/modeling/gmf/). This section first provides an overview
of Papyrus capabilities and its architecture, and then expands on two of its
distinguishing features: Subsection 19.2.3, describes the general Papyrus capa-
bilities for graphical UML2 modeling, while subsection 19.2.4 focuses on the
abilities of the tool to be customized for domain-specific needs through the use
of UML profiles to define domain-specific modeling languages (DSLs).

http://www.eclipse.org/modeling/mdt
http://wiki.eclipse.org/MDT-UML2
http://wiki.eclipse.org/MDT-UML2
http://www.moskitt.org/eng/
http://www.moskitt.org/eng/
http://www.papyrusuml.org
http://www.topcased.org
http://wiki.eclipse.org/MDT/Papyrus-Proposal
http://wiki.eclipse.org/MDT/Papyrus
http://wiki.eclipse.org/MDT/Papyrus

Papyrus: A UML2 Tool for Domain-Specific Language Modeling 363

19.2.1 Overview

Papyrus is a tool consisting of several editors, mainly graphical editors but also
completed with other editors such as textual-based and tree-based editors. All
these editors allow simultaneous viewing of multiple diagrams of a given UML
model. Modifying an element in one of the diagrams is immediately reflected in
others diagrams showing this element. Papyrus is integrated in Eclipse as a single
editor linked to one UML 2 model. Papyrus provides a main view, showing model
diagrams, and additional views including an outline view, a property view, and
a bird�s-eye view. The multiple diagrams are managed by Papyrus rather than
by Eclipse. Model diagrams can be arranged in tabbed views, and several tabbed
views can be arranged side by side (left, right, top and bottom). Such views can
be created, re-sized, moved, and deleted by dragging them to the desired position.

Papyrus is highly customizable and allows adding new diagram types develo-
ped using any Eclipse-compatible technology (GEF, GMF, EMF Tree Editors,
...). This is achieved through a diagram plug-in mechanism. In fact, even the
default diagrams use this mechanism, allowing their easy replacement if desired.

19.2.2 Global Architecture and Design Tenets

As shown in Fig. 19.1, the Papyrus top-level architecture consists of two main
parts: a core providing the common services used by the various diagram editors,
and a part containing the various model editors.

One of the main functions of the core component of Papyrus is to enable
collaboration of the different editors regardless of their specific implementation
technology (e.g., EMF or GMF). The main services provided by the papyrus
core are:

Fig. 19.1. This figure sketches the architecture model of the papyrus tool

– A sash windows system. This provides the ability to have multiple diagrams
opened simultaneously, and to arrange them as desired.

– Model life-cycle support. This allows loading and saving of models.
– Pluggable diagram editor factories. A diagram factory is used to create a

particular kind of diagram in Papyrus. For example, there is a factory for

364 S. Gérard et al.

class diagrams. The plug-in mechanism allows registering such factory in
the core, enabling thereby the management of existing diagrams via the
sash window system.

– Pluggable tools factories. A tool factory allows creation of a tool that will
interact with the model. Examples of such tools are: code generators, trans-
formations engines, model checkers, and refactoring facilities.

The Papyrus core is not linked to a particular technology other than EMF,
allowing use of various different technologies. The core also provides facilities
that enables diagrams and tools using the same implementation technology (e.g.,
GMF) to share classes.

In Papyrus, the UML meta-model and the graphical models are at the heart
of the proposed architecture: diagram editors and other external tools can be
used to define and modify any models, but they can also be used to observe
them and react accordingly. Thus, diagram editors and external tools can be
independent while still reacting to each other�s actions.

Both the property view and the outline editors are also independent model
editors in Papyrus. This means that they can interact with the model like any
other diagram editors, providing hence another interesting and useful point of
view on the model.

Several diagram editors have been developed and integrated successfully in
Papyrus, using different technologies like GEF, GMF, EMF Tree Editors, SWT.

The UML part of Papyrus consists of diagrams partly generated with GMF,
and of a property view editor also generated with a dedicated framework. Section
19.3 provides some snapshots of UML diagrams edited with Papyrus.

19.2.3 UML2 Graphical Modeling Capabilities

Papyrus allows supporting all the diagram types defined in UML2. Hence, a
Papyrus user can build UML2 models that strictly conform to the standardized
specification of the language. Papyrus can then be used to check against the
UML specification: if something cannot be represented in Papyrus, this generally
means that it is not allowed by the specification.

Papyrus provides a lot of functions in support of UML 2 modeling. The follo-
wing list is not exhaustive (due to space limitation), but is still a representative
sample of the advanced modeling features of Papyrus:

– A tools palette. Each diagram type has its own palette of tools allowing
creation of UML elements in the diagram.

– A property view. This allows the editing of any property of a UML element
as well as any of its graphical properties. These properties are organized by
categories for ease of use. There is also an �expert� category, allowing access
to all the properties defined in the UML meta-model.

– Contextual accelerator actions. When the cursor is moved to an area where
some actions are available, these actions are shown in a popup near the
cursor. An action can then be selected directly without going to the palette.

Papyrus: A UML2 Tool for Domain-Specific Language Modeling 365

– Contextual text editors enabling syntax highlight, completion and content as-
sist. When a text-based model element is accessed, e.g., a property, Papyrus
helps by providing a list of possible values, such as a list of existing types, or
existing cardinalities. Papyrus also validates the text according to its gram-
mar (if the latter is defined). This functionality is customizable: one can
provide one�s own implementation (e.g., a specific text editor and validation
rules) for specific needs.

– OCL constraint specification and checking. OCL constraints can be specified
for each UML element at the model or at the meta-model level, such as in a
profile definition. Furthermore, these constraints can be checked against the
current model.

– Model import. Papyrus can import models, profiles or elements from other
files. Imported elements can be used in the model and edited the same as
any other elements.

Figure 19.2 illustrates the default perspective of the Papyrus tool: The diagram
editor is in the top right of the figure, with the corresponding palette to its right.
At the bottom right is the properties view editor. This editor is used to edit, and
modify (if required), the properties of the element selected in the diagram editor
or in the project outline editor. The latter is located in the bottom left part of
the figure. Finally, in the top left part of the figure is the file system navigator,
which enables access to different existing projects.

Fig. 19.2. Default perspective of Papyrus

366 S. Gérard et al.

19.2.4 Building DSL Tools Profiling the UML2

In accordance with its primary goal of realizing the UML2 specification, Papyrus
provides extensive support for UML profiles. It includes all the facilities for
defining and applying UML profiles in a very rich and efficient manner. It also
provides powerful tool customization capabilities similar to DSML-like (Domain
Specific Modeling Language) meta-tools. The main intent here is to enable the
profile plug-in of Papyrus to dynamically drive its customization as defined by
a profile. This means that when applying a profile, the tool may adapt its visual
rendering and GUI to fit the specific domain supported by that profile. Of course,
if the profile is unapplied later, the tool resumes to its previous configuration.

When designing a UML2 profile, it may be necessary to customize one or
more existing UML2 diagram editors. For that purpose, Papyrus supports cus-
tomization of existing editors with the added capability of extending such cus-
tomizations by adding new tools relevant to the stereotypes defined in the UML
profile. For example, the SysML requirements diagram editor is designed as a
customization of the classical UML2 class diagram editor with additional features
for direct manipulation of all the concepts defined in the SysML requirements
diagram (see example show in section 19.3).

Finally, when embedding a profile within an Eclipse plug-in, a designer can
also provide a specific properties view that will simplify (i.e., make more user
friendly) the manipulation of the stereotypes and their related properties. The
outline editor and the menu of the tools can also be customized to fit domain-
specific concerns appropriate to the profile.

19.3 Case Study

The purpose of this section is to provide the reader some sense of the facilities of
Papyrus in terms of UML2 graphical modeling. It is, of course, infeasible to give
the full set of possibilities offered by the tool in a short summary article such
as this. Hence, this section will only illustrate one specific papyrus editor—the
class diagram editor.

The following two figures represent a class association between two classes
and a multipoint-dependency relationship linking three classes (two sources and
one target) respectively.

The Class diagram example is very illustrative of the Papyrus tenets in terms
of its implementation goal: 99,9% of the specification without imposing any
methodological constraints or assumptions. This is very important because it is
common in many tools that some particular form of UML2 usage is not supported
because of hard-coded implementation choices. The intent of basic Papyrus is
to not favour any specific methodology and thereby offer an unhampered access
to the full extent of UML2. Furthermore, it is intended to give methodologists
and users the ability to construct specific customizations of the tool to support
methodologies that are best suited to given profiles. That is, when applied to a

Papyrus: A UML2 Tool for Domain-Specific Language Modeling 367

(a) Example of class association mode-
ling

(b) Example of multipoint dependency
relationship modeling

user model, such a profile also reconfigures the GUI and behavior of the Papyrus
tool to fit a domain-specific methodology.

The following figure illustrates the palette customization feature of Papyrus.
This palette provides both standard UML tool capabilities (called “UML Links”
and “UML Elements” respectively) as well as an extended set of domain-specific
tool capabilities required for the EAST ADL2.0 language profile. (EAST-ADL2.0
is an architectural description language, intended for modeling automotive em-
bedded systems (http://www.atesst.org/)).

Fig. 19.3. Example of customized palette

19.4 Conclusions and Future Work

This article introduces the Papyrus tool, an Eclipse-based graphical editor for
UML2 modeling. This open-source application was devised with two principal
objectives in mind. First, it aims at implementing the complete UML specifi-
cation (currently in its 2.2 revision), enabling thereby its potential use as the
reference implementation of the OMG standard. Furthermore, it was designed
as a highly scalable and robust tool for supporting large-scale industrial projects
(as indicated by the growing list of industrial supporters). The second princi-
pal objective of Papyrus was to provide an open and highly customizable tool

http://www.atesst.org/

368 S. Gérard et al.

for defining domain-specific languages and corresponding tools via the UML
profile mechanism. This facilitates interchange with other tools supporting the
UML standard and also takes advantage of the widespread acceptance of UML
2. Consequently, Papyrus provides an efficient and effective alternative to cus-
tom and proprietary DSL tools, without losing the benefits of an international
standard.

At present, a significantly revised version of Papyrus is under development
with a major delivery milestone set for mid-year 2009. This version will support
all 13 diagram types of UML2 and will also provide the fullest support for profiles
of any UML tool currently available, whether open-source, or commercial. The
next major deliverable is set for mid-year 2010, when Papyrus will be integrated
into the principal Eclipse release schedule whereby key components are packaged
and released jointly each year.

Finally,it is intended that Papyrus serve as an experimental platform for
researchers who need to construct proof of concept prototypes. Built on top
of Eclipse as an open-source project, Papyrus is an ideal candidate for this
purpose.

Reference

[1] OMG: UML Version v2.1.2, http://www.omg.org/spec/UML/2.1.2/

http://www.omg.org/spec/UML/2.1.2/

20 The Model-Integrated Computing Tool
Suite

Janos Sztipanovits, Gabor Karsai, Sandeep Neema, and Ted Bapty

ISIS - Vanderbilt University, Nashville TN 37203, USA

Abstract. Embedded system software development is challenging,
owing to a tight integration of the software and its physical environ-
ment, profoundly impacting the software technology that can be applied
for constructing embedded systems. Modeling and model-based design
are central to capture all essential aspects of embedded systems. Van-
derbilt University’s Model Integrated Computing tool suite, driven by
the recognition of the need for integrated systems and software mode-
ling, provides a reusable infrastructure for model-based design of em-
bedded systems. The suite includes metaprogrammable model-builder
(GME), model-transformation engine (UDM/GReAT), tool-integration
framework (OTIF), and design space exploration tool (DESERT). The
application of the MIC tool suite in constructing a tool chain for Auto-
motive Embedded System (VCP) is presented.

20.1 Introduction

The tight integration of the software and its physical environment has profound
impact on the nature of the software technology to be applied for construc-
ting embedded systems. The reason can be best explained by Brook’s argument,
which remains valid nearly 20 years after its publication: the essential com-
plexity of large-scale software systems is in their conceptual construct [1]. In
embedded systems, the conceptual construct of the software is combined with
the conceptual construct of its physical environment; therefore, the methods and
tools developed for managing complexity must include both the physical and
computational sides. The common ”denominator” for representing, relating and
analyzing all essential aspects of embedded systems is modeling and model-based
design.

The significance of modeling in software engineering has been recognized from
the early nineties (see. e.g. Harel [2]). The recognition of the need for integra-
ted system and software modeling led us to pursue the construction of a reu-
sable infrastructure for model-based design. We have built several generations
of tool environments since the late eighties directed to a wide range of appli-
cation domains starting with signal processing [3]. Important milestones in the
development of the Model-Integrated Computing (MIC) tool suite have been
the following: (a) introduction of multiple-view modeling, programmable mo-
del builder and model-based integration of distributed applications in chemical
process industry [4], (b) use of complex, multiple-view graphical modeling tool

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 369–376, 2010.
� Springer-Verlag Berlin Heidelberg 2010

370 J. Sztipanovits et al.

with object-oriented database backend for the diagnosability analysis of the In-
ternational Space Station design [5], (c) generation of high-performance parallel
signal processing applications from models [6], and (d) use of embedded models
for the structural adaptation of signal processing systems [7].

The technology advancements related to different applications led to the for-
mulation of the MIC architecture concept [8] with domain-specific modeling
languages (DSML) and modeling at its center. The main challenge has been
the dichotomy between domain-specificity and reusabality. The construction of
the meta-level tool architecture [9] [10] was followed by the first appearance of
the metaprogrammable model builder [11] that ultimately led to the subsequent
development of the metaprogrammable MIC tool suite [12].

20.2 Components of the MIC Tool Suite

Domain-specific modeling is at the center of the MIC development approach:
domain-specific models are created in the design process, they are analyzed via
formal and simulation-based analysis techniques, and they are used to construct
and generate the implementation of applications, i.e. the actual software code
that performs, for instance, control functions. The domain-specific models in an
MIC engineering process are constructed in domain-specific modeling languages
(DSML) whose syntax and semantics are precisely defined using metamodels and
model transformations. However, MIC cannot exist without tooling: tools that
assist the designer and developer in modeling, analysis, generation, evolution,
and the maintenance of systems. This section provides a summary of the tools
of MIC: the Generic Modeling Environment (GME), the Universal Data Model
(UDM) package, the Graph Rewriting and Transformation language (GReAT),
the Design Space Exploration Tool (DESERT), and the Open Tool Integration
Framework (OTIF). These tools form a metaprogrammable tool suite that are
connected by shared meta models as shown in Fig. 20.1. The tools can be exten-
ded by ’best of breed’ analysis, simulation and verification tools connected via
model transformation to build domain-specific toolchains.

20.2.1 The Generic Modeling Environment (GME)

GME is the core MIC tool [13] that is used for both meta-modeling and mo-
deling. GME is metaprogrammable: it can load metaprograms generated from
metamodels and ”morph” itself into a domain-specific modeling environment.
GME is primarily a visual modeling tool (although textual model elements are
also supported). GME is equipped with a metaprogram that configures it to
behave as the metamodeling tool: it understands a UML-like notation (the me-
tamodeling language), and an associated translator program can generate the
metaprogram from the metamodel. The GME metamodeling approach is ba-
sed on the use of stylized UML class diagrams and Object Constraint Language
(OCL) constraints [14]. These metamodels capture the abstract syntax and well-
formedness rules of the modeling language. Abstract syntax defines the set of

The Model-Integrated Computing Tool Suite 371

Fig. 20.1. The MIC Tool Suite

concepts, their attributes, and relationships one can use for building models
in the language. For example, in a control system design language that sup-
ports event-driven control, the abstract syntax includes concepts like ”states”,
”events”, and ”finite state machine”, etc., relationships like ”transitions”, and
attributes like ”guard expression”, ”initial state”, etc. The well-formedness rules
of a language formally describe the constraints that the models need to satisfy
in order to be syntactically correct.

20.2.2 Transforming the Models: UDM and GReAT

GME is a general purpose modeling environment, and it provides a set of Ap-
plication Programming Interfaces (API-s) to access models. These low-level pro-
grammatic interfaces allow building software tools using traditional languages
that access and possibly manipulate models. As a higher-level, more formal al-
ternative to the API-s we have created tools that allow structured access to
models on one hand, and allow the transformation of those models into other
kinds of objects on the other hand. The first step is facilitated by the tool cal-
led ”Universal Data Model” (UDM), and the second is done using the ”Graph
Rewriting and Transformation” (GReAT) language.

UDM is a metaprogrammable software tool [15] that generates domain-specific
classes and API-s to access the models within GME, in XML form, in ODBC-
based data-bases. The advantage of using UDM is that tools that access models
could be developed using the concepts from the domain-specific modeling lan-
guage (e.g. ”Assembly”, and ”TimeTrigger”), instead of the generic concepts of
GME. GReAT is a (graphical) modeling language for describing transformations
on models [16]. The transformation specification is built upon metamodels of the
input and the target of the transformations, and is expressed with the help of
sequenced rewriting (or transformation) rules. The key point here is that both

372 J. Sztipanovits et al.

the input and the target must have a defined metamodel (i.e. abstract syntax
with well-formedness rules). Often target models use some lower level modeling
language, like a modeling language of simple finite transition systems. Note that
in the ultimate, a target metamodel may represent the instruction set of a (real
or virtual) machine. In practice, target metamodels often consist of concepts
that correspond to code patterns (e.g. while-loop) that are instantiated with the
values of attributes of the concept instances.

20.2.3 Integrating Design Tools: The Open Tool Integration
Framework

The MIC toolsuite is often used to build not only a single tool, but tool chains
consisting of various modeling, analysis, and generation tools, where many tools
could be non-MIC tools. In this case one faces a tool integration problem: na-
mely, how to construct integrated tool chains from tools that were not designed
to work together. The MIC toolsuite includes a framework, called Open Tool In-
tegration Framework (OTIF) that supports the construction of such integrated
tool chains [17]. The tool integration problem that OTIF provides a tool for is as
follows. In an engineering workflow various design tools are used, and the data
(”models”) need to be exchanged between the design tools. Each design tool has
its own format (i.e. DSML) for storing models. The workflow implicitly speci-
fies an ordering among the tools, and the direction of ”model flow” defines the
producer/consumer relationships between specific pairs of tools. We also assume
that models are available in a packaged, ”batch” form. OTIF provides a skele-
ton architecture for building tool chains that follow this model. OTIF has been
implemented as a set of components, some of which are metaprogrammable, and
it relies on the UDM and GReAT tools. It has been used to construct a number
of tool chains consisting of MIC and other tools.

20.2.4 Design Space Exploration

When large-scale systems are constructed, in the early design phases it is often
unclear what implementation choices could be used in order to achieve the requi-
red performance. In embedded systems, frequently multiple implementations are
available for components (e.g. software on a general purpose processor, software
on a DSP, FPGA, or an ASIC), and it is not obvious how to make a choice, if
the number of components is large. Another meta-programmable MIC tool can
assist in this process. This tool is called DESERT (for Design Space Exploration
Tool) [18]. DESERT expects that the DSML allows the expression of alterna-
tives for components in a complex model. A model, with hierarchically layers
alternatives, defines a design space. Once a design spaces is modeled, one can
attach applicability conditions to the design alternatives. These conditions are
symbolic logical expressions that express when a particular alternative is to be
chosen. Conditions could also link alternatives in different components via impli-
cation. One example for this feature is: ”if alternative A is chosen in component
C1, then alternative X must be chosen in component C2”. During the design

The Model-Integrated Computing Tool Suite 373

process, engineers want to evaluate alternative designs, which are constrained
by high-level design parameters like latency, jitter, power consumption, etc. DE-
SERT provides an environment in which the design space can be rapidly pruned
by applying the constraints, thereby restricting the applicable aletrnatives.

20.3 Application Example: Vehicle Control Platform

The MIC tools have been used in numerous projects, and various tool chains have
been constructed using it. Application experience includes large systems enginee-
ring projects such as the International Space Station diagnosability analysis [5],
automotive manufacturing execution systems deployed in major plants [19] and
prototypes for integrated design environments [12]. In this section we describe
a tool chain that illustrates how the metaprogrammable tools have been used
to solve the construction and integration of non-trivial tool architecture for em-
bedded control applications. This is called the Vehicle Control Platform (VCP)
tool chain [20] and it was built for constructing vehicle control software. The de-
sign flow starts with specifying controller components in the form of behavioral
models, using Simulink/Stateflow.

Fig. 20.2. The VCP Tool Suite

This step primarily consists of building up a library of controller blocks. The
next step is design space modeling, which happens in a DSML called ECSL-DP,
and which is supported by GME. During the construction of the design space
models, the designer constructs hierarchical designs for the controllers, with pos-
sible alternative implementations on various levels of the hierarchy. The designer

374 J. Sztipanovits et al.

specifies component structures and component interactions. Note that the ele-
mentary components are from the behavioral models built in the first step. Once
the design space modeling is finished, the designer can explore alternative designs
with the help of DESERT. This stage will result in specific point design(s) that
satisfy all design parameters. The specific designs are also captured in ECSL-DP.
ECSL-DP has provisions for mapping designs into distributed electronic control
units (ECU-s) and buses in the vehicle, and this mapping is specified in the
models. Once the design models are finished a number of analysis steps can take
place. Here we mention two: one can perform a schedulability analysis using a
tool called AIRES [21], or one can perform a behavioral simulation using tools
from the Vector toolsuite [22]. Note that this behavioral simulation on the ECSL-
DP models is an alternative to the simulation of Simulink/Stateflow models and
it can potentially be more accurate because of the finer details ECSL-DP cap-
tures. The result of these analyses (e.g. end-to-end latency in the system) can
be annotated back into the ECSL-DP models. Finally, executable code (in C)
is generated that runs on the real-time operating system OSEK. Figure 20.2
shows the high-level architecture and workflow in the tool chain. For the tool
chain we have built the ECSL-DP modeling tool using GME, created various tool
adaptors, and built a number of model transformation tools using GReAT. The
five model translators contain, on average, 50 transformation rules, and process
practical models with acceptable speed: 1-2 minutes, maximum. These model
translators are automatically invoked as and when they are needed by OTIF.

20.4 Conclusion

In this paper we have introduced and briefly described the metaprogrammable
toolsuite for MIC. We showed the evolution of the MIC tool suite and its use
in a wide range of domain-specific tool chains supporting complex design flows.
In each stages of a design flow, the actual state of the design is expressed using
a DSML. These languages comprise the required heterogeneous abstractions for
expressing controller dynamics, software and system architecture, component
behavior, and deployment. The models expressed in these DSMLs need to be
precisely related to each other via the specification/implementation interfaces,
need to be analyzable and their fidelity need to be sufficiently precise to accura-
tely predict the behavior of the implemented embedded controller. In addition,
the design flow is supported by heterogeneous tools including modeling tools,
formal verification tools, simulators, test generators, language design tools, code
generators, debuggers, and performance analysis tools must all cooperate to as-
sist developers and engineers struggling to construct the required systems. If the
DSMLs are only informally specified then mismatched tool semantics may intro-
duce mismatched interpretations of requirements, models and analysis results.
This is particularly problematic in the safety critical real-time and embedded
systems domain, where semantic ambiguities may produce conflicting results
across different tools. Our current efforts focus on the formal, transformational
specification of structural [23] and behavioral [24] semantics for DSMLs.

The Model-Integrated Computing Tool Suite 375

References

[1] Brooks Jr., F.P.: No silver bullet: Essence and accidents of software engineering.
IEEE Computer Magazine, 10–19 (April 1987)

[2] Harel, D.: Biting the silver bullet. IEEE Computer Magazine, 8–19 (January 1992)
[3] Sztipanovits, J., Karsai, G., Biegl, C.: Graph model based approach to the re-

presentation, interpretation and execution of real time signal processing systems.
International Journal of Intelligent Systems 3(3), 269–280 (1988)

[4] Karsai, G., Sztipanovits, J., Franke, H., Padalkar, S., DeCaria, F.: Model-
embedded on-line problem solving environment for chemical engineering. In: Pro-
ceedings of the International Conference on Engineering of Complex Computer
Systems, Ft. Lauderdale, FL, pp. 361–368 (November 1995)

[5] Misra, A., Sztipanovits, J., Underbrik, A., Carnes, R., Purves, B.: Diagnosability
of dynamical systems. In: Third Intenational Workshop on Principles of Diagnosis,
Rosario, Orcas Island, WA, pp. 239–244 (May 1992)

[6] Abbott, B., Bapty, T., Biegl, C., Karsai, G., Sztipanovits, J.: Model-based software
synthesis. IEEE Software, 42–53 (May 1993)

[7] Sztipanovits, J., Wilkes, D., Karsai, G., Lynd, L.: The multigraph and structural
adaptivity. IEEE Transaction on Signal Processing 41(8), 2695–2716 (1993)

[8] Sztipanovits, J., Karsai, G., Biegl, C., Bapty, T., Ledeczi, A., Malloy, D.: Mul-
tigraph: An architecture for model-integrated computing. In: Proceedings of the
International Conference on Engineering of Complex Computer Systems, Ft. Lau-
derdale, FL, pp. 361–368 (November 1995)

[9] Sztipanovits, J., Karsai, G.: Model-integrated computing. IEEE Computer 22(5),
110–112 (1997)

[10] Nordstrom, G., Sztipanovits, J., Karsai, G.: Meta-level extension of the multi-
graph architecture. In: Engineering of Computer-Based Systems Conference, Je-
rusalem, Israel, pp. 61–68 (May 1998)

[11] Nordstrom, G., Sztipanovits, J., Karsai, G., Ledeczi, A.: Metamodeling - rapid
design and evolution of domain-specific modeling environments. In: Proceedings
of the IEEE ECBS 1999 Conference, Nashville, TN, pp. 68–74 (April 1999)

[12] ISIS: Mic tool distribution
[13] Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J.:

Composing domain-specific design environments. IEEE Computer Magazine, 44–
51 (November 1997)

[14] Object Management Group: UML 2.0 OCL Specification (2003)
[15] Bakay, A.: The udm framework
[16] Karsai, G., Agrawal, A., Shi, F.: On the use of graph transformations for

the formal specification of model interpreters. Journal of Universal Computer
Science 9(11), 1296–1321 (2003)

[17] Karsai, G., Lang, A., Neema, S.: Design patterns for open tool integration. Journal
of Software and System Modeling 4(1) (2004)

[18] Neema, S., Sztipanovits, J., Karsai, G., Butts, K.: Constraint-based design space
exploration and model synthesis. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS,
vol. 2855, pp. 290–305. Springer, Heidelberg (2003)

[19] Earl, L., Amit, M., Janos, S.: Increasing productivity at saturn. IEEE Computer
Magazine, 35–44 (August 1998)

376 J. Sztipanovits et al.

[20] Porter, J., Karsai, G., Volgyesi, P., Nine, H., Humke, P., Hemingway, G., Thi-
bodeaux, R., Sztipanovits, J.: Towards model-based integration of tool and tech-
niques for embedded control system design, verification, and implementation. In:
Chaudron, M.R.V. (ed.) Models in Software Engineering. LNCS, vol. 5421, pp.
20–34. Springer, Heidelberg (2009)

[21] Zonghua, G., Wang, S., Kodase, S., Shin, G.K.: An end-to-end tool chain for
multi-view modeling and analysis of avionics mission computing software. In: 24th
IEEE International Real-Time Systems Symposium (RTSS 2003), Cancun, Mexico
(September 2003)

[22] Vector Informatik Group: The vector tools
[23] Jackson, E., Sztipanovits, J.: Formalizing the structural semantics of domain-

specific modeling languages. Journal of Software and Systems Modeling (2009)
(to appear)

[24] Chen, K., Sztipanovits, J., Neema, S.: Compositional specification of behavioral
semantics. In: Design, Automation, and Test in Europe: The Most Influential
Papers of 10 Years DATE, pp. 253–256 (April 2008)

21 Application of Quality Standards
to Multiple Artifacts with a

Universal Compliance Solution

Tibor Farkas1, Torsten Klein2, and Harald Röbig2

1 Fraunhofer Institute FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
tibor.farkas@fokus.fraunhofer.com

2 Carmeq GmbH, Carnotstrasse 4, 10587 Berlin, Germany
{torsten.klein,harald.roebig}@carmeq.com

Abstract. For standards compliance achievement in model-based engi-
neering of embedded real-time systems, model analyzers and code checkers
are constituted in early development phases to lower error rates and to eli-
minate time-consuming quality reviews. However, solutions available to-
day only address a singlemodeling language and examinations are localized
to specific development environments. Fulfilling more advanced traceabi-
lity examinations required by procedural and technical quality standards,
compliance checking has to be applicable across different modeling tools
and development workflows. Furthermore it should cover correlation ana-
lyses that include model-to-model, model-to-file and model-to-database
comparisons on multiple artifacts. This chapter introduces a novel com-
pliance solution Assessment Studio that supports universal guideline and
traceability checking with automated analyses in multi-domain modeling
environments.MESA, our meta-modeling approach for guideline checking,
was enhanced to support multiple meta-models with associated artifacts.
Therefore, we use a XML-based transformation and proof mechanism by
automatically executing ruleswritten inLINQ, adding auto-correction and
metrics measurement capabilities. Several case studies demonstrate the
feasibility of this approach at Volkswagen.

Keywords: Automated Review, Compliance, Traceability, Guideline
Checking, Assessment, Metrics, LINQ, XML, CMMI, MISRA,
AUTOSAR.

21.1 Introduction

In today’s automotive global market, the pressures facing industrial and tech-
nology standards compliance is more important than ever. In recent years many
automotive manufacturers have passed laws and regulations that require em-
bedded systems engineers to adopt certain new standards and policies into their
model-based product development for more transparency, better interoperability
and standards compliance [1]. Vehicle functions are designed in workflows across
interdisciplinary development groups whereas engineering is mostly based on a

H. Giese et al. (Eds.): MBEERTS, LNCS 6100, pp. 377–384, 2010.
� Springer-Verlag Berlin Heidelberg 2010

378 T. Farkas, T. Klein, and H. Röbig

vast number of artifacts: As depicted in [2], rich vehicle function requirements
are managed with DOORS, conceptual designs are modeled in Unified Modeling
Language (UML) or Systems Modeling Language (SysML), algorithmic control is
modeled for simulation and code generation with MATLAB/Simulink/Stateflow
(ML/SL/SF) or on a physical plane with ASCET-MD and finally, huge test spe-
cifications are determined with tools like Microsoft Excel or Classification Tree
Editor XL (CTE). In model-based engineering of embedded real-time systems
compliance to local and global quality requirements will become more important
for car manufacturers (OEM) and its suppliers [3]. At the global level, there are
two primary types of compliance: Procedural and technical [4]. Procedural gui-
delines generically describe ’what’ has to be done (e.g. in ISO/IEC 61508 [5] or
CMMI [6]) versus technical related guidelines such as MAAB [7], MISRA [1] or
AUTOSAR [8] style guides that give instructions ’how’ the quality requirements
have to be realized. Not fulfilling such compliance standards could have bad
impacts on traceability in workflows.

Compliance targets different process levels in the V-Model. Nevertheless,
being able to achieve compliance to procedural and technical standards on dif-
ferent development stages and tools is very challenging. Guidelines and policies
are written mostly in an individual textual representation with a different kind
of graphical illustrations included [7, 1, 8]. Paper documents have considerable
disadvantages: Complex models with more than thousands of model elements – a
model size that is easily reached today – cannot be feasibly checked by a human.
Today in a model-based development only insufficient automatic verifiability is
possible, because multiple models, files, glossaries and test specifications are in-
volved. Especially a formal notation is missing that could be used for automated
examinations. Automated quality review tools available today are dedicated to
one specific development environment or target only a unique modeling lan-
guage [9, 10]. However, for traceability checks comparisons on multiple artifacts
like model-to-model, model-to-file or model-to-database are needed. Using a dif-
ferent checker for each tool environment or development stage makes compliance
achievements ineffective and opaque.

21.2 Idea: Meta-modeling for Constraint Definition

Our idea was to have a tool independent compliance achievement that includes
multiple artifacts in correlation with traceability analysis and furthermore al-
lows comparisons across workflows. Therefore, our approach was to formalize
narrative rule descriptions to computable expressions. This was introduced in
MESA [2] with the approach to adopt concepts of the Model-Driven Architec-
ture (MDA). MDA uses open standards for meta-modeling like Meta-Object
Facility (MOF) and the Object Constraint Language (OCL) for constraint de-
finition by executable expressions. A common tool-chain at Volkswagen (VW)
was selected (DOORS, ML/SL/SF, CTE) to exemplify the feasibility. Practical
use of automated guideline examination and constraint violation analysis was
demonstrated through a software prototype (Automotive Software Development

Application of Quality Standards to Multiple Artifacts 379

Rule Checker) to achieve VW modeling guidelines based on Mathworks Auto-
motive Advisory Board style guide (MAAB). Artifact specific meta-models were
developed for DOORS, ML/SL/SF, CTE and a central meta-model repository
was build to show, how conformance checking with OCL could be constituted
on a multitude of different development artifacts stored to that repository as
described in [2, 4]. This chapter introduces Assessment Studio [11], an enhanced
approach for automated compliance achievement and model assessment based on
the general idea of MESA (Fig. 1 shows an example). In difference to our former
work, Assessment Studio supports multiple-check languages and file-based exa-
minations, if a global artifact repository is not present. Therefore, we investigated
for distributed environments a direct artifact meta-model transformation to a
common file-basis using Extensible Markup Language (XML). Furthermore, an
utilization of different languages for checking and auto-correction (e.g. M-script,
DXL-script, VBScript) for various artifact and model examinations is targeted.
Implied is a new duality concept that supports universal constraint checking with
LINQ (Language INtegrated Query [12]) to handle multiple artifact assessments.
Via integrated tool-adapters dedicated scripting languages are also supported in
Assessment Studio.

21.3 Approach: Universal Compliance Achievement

A first idea to automate rule checking is in tool programming of check code
using a scripting language supported by the development environment itself.
This could be M programming with ML/SL/SF or DXL scripting with DOORS,
for instance. Scripts would be then executed with eventually available batch pro-
grams, such as [9, 10]. Problematic is the case when common tool environments
do not offer such an integrated programming environment – like ASCET-MD,
Excel or CTE or if traceability is needed between tools (e.g. references between
requirements to a model). Redundant and ineffective scripts would be possible if
multiple environments should be addressed in an script-based examination. So-
lutions that focus on the application of a single modeling language are depended
and limited to their environments. Affected and related artifacts are not included
into checks. Therefore, this delimited scripting approach seems feasible for some
reasons, but is not sustainable for continuous workflows in model-driven deve-
lopment. In our approach independence of a vendor specific tool environment is
necessary. This is provided by using artifact meta-models that are transformed to
XML as open file format. Each developed artifact has an in-memory meta-model
representation of its information structure, when working with it. Technically,
this is a tree structured schema – an abstract collection of meta-data – consis-
ting of a set of components: Element and attribute declarations and complex and
simple type definitions. These components are usually created by processing and
managing documents, code or models, which contain the source language defi-
nitions of these components. XML itself has achieved tremendous adoption as
a basis for structuring data, whether with XML Metadata Interchange (XMI),
AUTOSAR ECU/SWC definitions, in numerous ASAM standards or simply as

380 T. Farkas, T. Klein, and H. Röbig

data-dumps exported from databases. Some tools already use a structured XML
file format like UML/SysML tools, AUTOSAR development environments or
CTE. Other tools support exporting their in-memory model data to XML struc-
tured files like ASCET-MD or Microsoft Office applications. For environments
that originally do not support XML persistence, mostly third party converter
programs are available on the market like SimEx [13] for ML/SL/SF or EXERPT
[14] for DOORS.

We make an assertion, that an artifact is an instance of the tool specific meta-
model in general, containing specific data that could be stored into a XML file.
Besides, data in this file contains also tool specific information (e.g. settings
for simulation or compilation). Having all requirements data, model data and
test specification data as a XML representation, we have to choose a global and
tool independent programming language for the definition of executable rules
on a high abstraction level. OCL was used in MESA to formalize guidelines as
executable expressions (rules) with OSLO [15] and to show, how textual guide-
lines could be transformed into a more formal specification (descriptive check
algorithm). This was feasible for value checks on attributes or uniformity of
properties (e.g. Object.BackgroundColor = white). Due more complex rules we
investigated that large OCL constructs are hard to read by a human. Further-
more, the capability of the OCL interpreter OSLO was limited to basic equations
and operations of first order logic. More advanced checks required enhanced func-
tionality that is specialized for querying and modifying, grouping, joining and
managing object collections. In addition, we needed regular expression evalua-
tion for fast pattern matching, compact control statements (e.g. while, for each,
if-then-else) for traversing large object trees and rule packaging (library of rules)
capabilities.

The following guideline for ASCET-MD prescribes that all basic operators
such as addition, subtraction, multiplication and division should only have two
ingoing operands. The code excerpt introduces an algorithm written in LINQ.
It was constituted for the correct and coherent modeling of algorithms.
Example: LINQ expression of an executable guideline.

string[] arithOperators = { "+", "-", "*", "/" };

var Operators =
from Obj in Artefact["ASCET-Model"].Descendants("Operator")
where arithOperators.Contains(Obj.Attribute("type").Value) &&
Obj.Descendants("ReturnPort").First().Elements().Count() > 2
select Obj;

if(Operators.Count() > 0) Result = "FAIL"; else Result = "PASS";

(Excerpt taken from instructions in MISRA modeling guide for ASCET-MD [11].)
First a set of basic operands are defined in an array arithOperators. Next the

Artefact -statement references the corresponding model file (ASCET-Model.xml)
and loads an instance into memory. According to the ASCET meta-model the
from-clause selects all nested child elements from operator descendants and

Application of Quality Standards to Multiple Artifacts 381

defines a general query named Operators. In the where-clause multiple condi-
tions could be defined for our guideline. In this guideline, first of all only the
basic operands are filtered with a comparison of two quantities from all operands
inside the model. The second condition selects all operands where the amount of
ingoing ports (named ReturnPort in ASCET meta-model) exceeds two. Finally
the select-clause gets all those defected elements that have more than two ope-
rands and store them into our Operators collection. Therefore, if the Operators
contains defected elements, the guideline check result is set to fail else to pass.
To allow guideline checks including multiple artifacts, in one expression mul-
tiple queries could be defined on different artifacts. After gathering all required
information from different artifacts with multiple queries, we could join them,
compare them, group them etc. for different examinations. Because those larger
examples exceed our space in this chapter, we only show an example for one arti-
fact. LINQ to XML, a sub-component of the LINQ project [12], aims to address
our demands. LINQ to XML is a modernized in-memory XML programming
API designed to take advantage of the latest .NET Framework 3.5 language.
It provides both DOM and XQuery/XPath like functionality in a consistent
programming language (C# syntax) across the different data access technolo-
gies. Therefore, we used LINQ instead of OCL in our new approach to achieve
enhanced capabilities for examination. Similar to Structured Query Language
(SQL), LINQ defines a set of query operators for objects that can be used to
query, group and filter object oriented data stored in arrays, collections or class
hierarchies. It operates on object trees, XML files and relational databases.

21.4 Case Studies: Compliance with Modeling Standards

With Assessment Studio, we developed an extension mechanism that implements
a specialized and dual query processing engine that executes LINQ queries on
multiple transformed (XML files) artifacts for traceability checks and compa-
risons on the one side and executes dedicated script queries (M-, DXL-, VB-
Scripts) over tool API’s for auto-correction on the other side. Furthermore, we
defined a methodology that translates check results to a defined achievement of
failure categories and prepare them in a pie chart for later assessments.

In our cases we implemented MISRA, MAAB and AUTOSAR basic com-
pliance achievements in model-based engineering of embedded software. In ad-
dition, most companies use enhanced or customized guidelines on top of basics
guidelines. We used those standards as our basis to transform depicted guidelines
into executable rule queries with LINQ. For automated compliance adherence,
query operations have to be executed by a query processing engine. Such an en-
gine was developed with Assessment Studio for the descriptive usage of LINQ.
Furthermore, it contains integrated modules for reporting, analysis, rule mana-
gement (authoring and versioning) and electronic documentation.

In addition to automotive standards compliance checks we defined key per-
formance indicators (metrics) written as LINQ expression that define a set of
values used to measure artifacts, like efficiency measurements of model-based

382 T. Farkas, T. Klein, and H. Röbig

Fig. 21.1. Assessment Studio Overview

designs. The measurement is done by the query processing engine that sum-
marizes information, such as: (a) Quantitative indicators which can be presen-
ted as a number, (b) Practical indicators that interface with existing company
processes, (c) Directional indicators specifying whether an organization is get-
ting better or not, (d) Actionable indicators are sufficiently in an organization’s
control to effect change. In the end comparisons were carried out for relevant
characteristics [16] in a quality management system: Process assessment, pros-
pective development, conciseness, clarity, correctness, consistency, completeness
and predictions. In several case studies Assessment Studio (Fig. 1) enabled deve-
lopers to use a more open and generic proof mechanism for standards compliance
achievement on model-level by checking rules, using auto-correction features
(in ML/SL/SF with M-script execution) and measuring metrics for efficiency
to monitor and document quality goals within several development stages. We
have developed conformance checks for MISRA, MAAB, CTE and AUTOSAR
compliance in model-based engineering in conjunction with requirements ma-
nagement with DOORS (based on RIF), with models such as UML/SysML,
ML/SL/SF and ASCET-MD and for test cases specifications made with Micro-
soft Excel spreadsheets or classification trees with CTE.

21.5 Conclusion

Organizations implement internal procedural and technical standards so they are
able to operate more efficiently. The question of adhering to standards confor-
mance (technical compliance) is becoming increasingly challenging for automo-
tive businesses. Compliance adherence will increase further over time because of

Application of Quality Standards to Multiple Artifacts 383

the adoption of common standards (e.g. AUTOSAR). Typically, very specialized
quality assurance solutions in model-based engineering of embedded real-time
systems are used by companies that are seeking certification with standards bo-
dies such as the International Standards Organization (ISO), or that need to
comply with requirements for special issues, like safety issues in software code
(e.g. MISRA). Code checking is done today, but is not sufficient due to an in-
creased use of model-based development and mutual relations to process related
quality standards. Moving more and more from code towards a software-model
in embedded real-time systems engineering – beginning at requirements specifi-
cation, over functional design and simulation down to the code development –
the overall quality compliance at model-level is gaining more importance.

Ensuring standards compliance in model-based engineering is a difficult task
– especially, because besides a model other related files are involved, such as
specification documents, data files, glossaries and test data. They all have to be
considered in an examination or for traceability checks. Another tangible reason
for early quality compliance achievement is that a model serves as specification
and as source for auto-code generation. Of course, not every conformance check
could be automated. However, reducing most of time consuming manual arti-
fact reviews for standards conformance saves immediately costs and enhances
product quality at the end.

In model-based engineering quality assurance and standards compliance soft-
ware helps organizations with code checkers and model analyzers adhere to exis-
ting and emerging safety and security regulations. Unfortunately, automated
quality review solutions available today are dedicated to one specific develop-
ment environment or targeting even just one unique modeling language. Using
different kind of checker tools for each development environment or develop-
ment stage makes compliance achievements ineffective, reports ambiguous and
opaque.

Today universal automatisms for ensuring the standards conformance of mul-
tiple artifacts by guideline checking and especially executable and tool independent
rules for quality assurance are missing. Therefore the intention of this chapter was
to present an overall guideline checker solution Assessment Studio for embedded
software and systems engineering based on former research work MESA. Assess-
ment Studio offers development groups a universal mechanism for quality assu-
rance and standards compliance by automatically checking rules on XML-basis,
using auto-correction via tool-adapters and measuring key performance indicators
to monitor and document quality goals in all development stages.

With the presented approach errors and defects could be avoided during the
development process. Further it is possible to formalize executable rules in LINQ
that concern more than one tool and check them automatically in correlation
and for comparisons. Additionally it was stated, that it also could be used for the
evaluation of quality metrics and measurements to achieve estimations. In this
way, automotive manufacturers and its suppliers can automate reviews globally,
better track and report information to regulatory bodies, passing quality audits
and reducing the risk of non-compliance.

384 T. Farkas, T. Klein, and H. Röbig

References

[1] The Motor Industry Software Reliability Association: MISRA-C: Guidelines for
the Use of the C Language in Vehicle Based Systems. MISRA-C (1998)

[2] Farkas, T., Röbig, H.: Automatisierte, werkzeugübergreifende richtlinienprüfung
zur unterstützung des automotive-entwicklungsprozesses. In: Conrad, M., Giese,
H., Rumpe, B., Schätz, B. (eds.) Proceedings of Model Based Engineering of Em-
bedded Systems III (MBEES III), Dagstuhl, Germany, TU Braunschweig Report
TUBS-SSE 2007-01 (2007)

[3] Mack, M.: Ascet autocode ensures misra conformance, etas,
http://www.etas.com

[4] Rech, J., Bunse, C.: Quality Improvement in Automotive Software Engineering
using a Model-Based Approach. In: Model-Driven Software Development Inte-
grating Quality Assurance (Premier Reference Source). Idea Group Publishing
(2008)

[5] ISO 61508, I.O.f.S..I.E.C.: IEC-61508 Functional safety of electri-
cal/electronic/programmable electronic safety-related system. IEC (1998)

[6] Kneuper, R.: CMMI: Verbesserung von Softwareprozessen mit Capability Matu-
rity Model Integration. dPunkt Verlag, Heidelberg (2006)

[7] MAAB The MathWorks Automotive Advisory Board: Control Algorithm Mode-
ling Guidelines Using MATLAB, Simulink, and Stateflow, Version 2.0,
http://www.mathworks.com/industries/auto/maab.html

[8] AUTOSAR: Automotive open system architecture specification, deliverables: Ap-
plying simulink to autosar; applying ascet to autosar, http://www.autosar.org

[9] The MathWorks, Simulink Verification and Validation Toolbox,
http://www.mathworks.de/products/simverification

[10] Stürmer, I., Kreuz, I., Schäfer, W., Schürr, A.: The mate approach: Enhanced
simulink and statfelow model transformation. In: Proceedings of MathWorks Au-
tomotive Conference, Dearborn (MI), USA (June 2007)

[11] Match Technologies, Assessment Studio, http://www.match-technologies.com
[12] Microsoft Developer Network: The LINQ Project,

http://msdn.microsoft.com/en-us/netframework/aa904594.aspx

[13] IT-Power Consultants, SimEx - Konvertierung von Simulink/Stateflow Modellda-
ten in das XML-Format, http://www.itpower.de

[14] EXTESSY, EXCERPT - Extessy Engineering Requirements Platform,
http://www.extessy.com

[15] OSLO Open Source Library for OCL, http://oslo-project.berlios.de
[16] International Organization for Standardization: ISO 9126: Software Engineering -

Product quality, Part 1-4. International Organization for Standardization (2007)

http://www.etas.com
http://www.mathworks.com/industries/auto/maab.html
http://www.autosar.org
http://www.mathworks.de/products/simverification
http://www.match-technologies.com
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
http://www.itpower.de
http://www.extessy.com
http://oslo-project.berlios.de

Author Index

Bapty, Ted 369
Buckl, Christian 271

Chen, DeJiu 345
Cuenot, Philippe 297

Derler, Patricia 107
Dumoulin, Cédric 361

Espinoza, Huascar 129

Farcas, Claudiu 155
Farcas, Emilia 155
Farkas, Tibor 377
Feilkas, Martin 317
Feng, Lei 345
Freund, Ulrich 355
Frey, Patrick 297

Geburzi, Anne 329
Gérard, Sébastien 129, 361
Giese, Holger 3, 17

Henkler, Stefan 309
Hirsch, Martin 309
Hölzl, Florian 317
Huhn, Michaela 201
Hungar, Hardi 201

Johansson, Rolf 297

Karsai, Gabor 57, 369
Klar, Felix 337
Klein, Torsten 377
Knoll, Alois 271
Krüger, Ingolf 155

Legros, Elodie 323
Levendovszky, Tihamer 241
Lönn, Henrik 297
Lund, Mass Soldal 77

Menarini, Massimiliano 155

Naderlinger, Andreas 107
Neema, Sandeep 369
Neumann, Stefan 17
Niggemann, Oliver 17, 329

Papadopoulos, Yiannis 297
Persson, Magnus 345
Pree, Wolfgang 107
Priesterjahn, Claudia 309

Qureshi, Tahir Naseer 345

Refsdal, Atle 77
Reiser, Mark-Oliver 297
Resmerita, Stefan 107
Röbig, Harald 377
Rumpe, Bernhard 57, 241

Sandberg, Anders 297
Schäfer, Wilhelm 309, 323
Schätz, Bernhard 3, 17, 241
Schieferdecker, Ina 271
Schürr, Andy 323, 337
Selic, Bran 129, 361
Servat, David 297
Sprinkle, Jonathan 57, 241
Stølen, Ketil 77
Stroop, Joachim 329
Stürmer, Ingo 323
Sztipanovits, Janos 369

Tavakoli Kolagari, Ramin 297
Terrier, François 129
Tessier, Patrick 361
Tichy, Matthias 309
Törngren, Martin 297, 345

Vangheluwe, Hans 57

Weber, Matthias 297
Weisemöller, Ingo 337

Zander, Justyna 271

	Title
	Preface
	Table of Contents
	Part I: Foundation
	1 Models of Reactive Systems Communication, Concurrency, and Causality
	Models and Abstraction
	Approach
	Overview
	Terminology

	Communication
	Concurrency
	Causality
	Models and Aspects
	Methodical Combination
	Conclusion and Summary
	References

	2 Model-Based Integration
	Introduction
	Integration
	Terminology
	Classification of Integration Problems
	Fundamental Integration Techniques

	State-of-the-Art Approach
	Function Development
	Function Integration
	Discussion

	Advanced Model-Based Solutions
	AUTOSAR
	MECHATRONIC UML
	Other Approaches

	Summary
	References

	Part II: Language Engineering
	3 Metamodelling State of the Art and Research Challenges
	Metamodelling: State of the Art
	Concepts in Metamodelling
	Meta Object Facility (MOF)
	Essential MOF (EMOF)
	Eclipse Modelling Framework (EMF)
	Metamodelling of Languages
	Textual Metamodelling
	Concrete and Abstract Syntax
	Type System
	Merging of Metamodels

	Metamodelling: Research Challenges
	Semantic Attachment
	Inference between Metamodels
	Evolution of Models Driven by Metamodel Evolution

	Conclusions
	References

	4 Semantics of UML Models for Dynamic Behavior
	Introduction
	Characterization of Scope, Main Notions, and Criteria for Evaluation
	Main Categories of Semantics
	Sequence Diagrams and Similar Notations
	Denotational Semantics
	Denotational Semantics with Time
	Denotational Semantics with Probabilities
	Operational Semantics
	Operational Semantics with Time
	Operational Semantics with Probabilities

	State Machines and Similar Notations
	Denotational Semantics
	Denotational Semantics with Time
	Denotational Semantics with Probabilities
	Operational Semantics
	Operational Semantics with Time
	Operational Semantics with Probabilities

	Evaluation and Comparison
	Summary and Conclusions
	References

	Part III: Modeling
	5 Modeling and Simulation of TDL Applications
	Introduction
	The Timing Definition Language
	TDL Description
	TDL Extensions for Control Applications

	Simulation of TDL Models
	TDL Simulation in Simulink
	Using Ptolemy II

	Related Work
	Conclusions
	References

	6 Modeling Languages for Real-Time and Embedded Systems
	Introduction
	Two Main Architectural Styles for Dealing with Abstraction
	Modeling Needs for Real-Time and Embedded Systems Design
	Layering and Needs for RTES
	Slicing and Needs for RTES

	MARTE, a Standard Real-Time and Embedded Modeling Language
	UML Profiling Capabilities
	MARTE Basics
	Architecture and Some Details of MARTE
	An Extract of the MARTE Specification
	Typical MARTE Usage Scenarios

	Related Work
	Conclusions and Perspectives
	References

	7 Requirements Modeling for Embedded Realtime Systems
	Introduction and Overview
	What's in a Requirement?
	Why Requirements Engineering for ERS Is Hard
	Summary and Outline

	Requirements Specifications and Modeling for ERS
	Requirements Models
	Programming Models

	Requirements Engineering Approaches: Processes and Practices
	Requirements Development and Management

	Example: Failure Management in Automotive Software
	Central Locking System (CLS)
	Modeling the CLS Requirements
	Discussion

	Summary and Outlook
	References

	8 UML for Software Safety and Certification
	Introduction
	Development of Certifiable Software
	Safety-Related Extensions of UML
	The UML Profile for Developing Airworthiness-Compliant (RTCA DO-178B) Safety-Critical Software
	rtUML and the OMEGA-RT Profile
	Restricting UML for Specification and Programming in a Certification Context
	The UML Profile for Modeling and Analysis of Real-Time Embedded Systems (MARTE)
	The Railway Control System Domain Profile (RCSD)

	Using UML in Certification-Oriented Processes
	Questions to Be Addressed by a Certification-Oriented Process
	Purpose and Scope of the Proposed Process
	Terms and Definitions
	Phases and Sub-processes
	The Use of UML in the Process
	Realization

	Verification and Validation Techniques
	General Remarks on Verification and Validation Techniques in Model-Based Development of Certifiable Software
	Testing
	(Formal) Verification
	Tool Support

	Conclusion
	References

	Part IV: Model Analysis
	9 Model Evolution and Management
	Why Models Evolve and Need to Be Managed?
	Introduction
	Model Management
	Model Evolution
	Chapter Outline

	Model Management
	Model Quality and Modeling Standards
	Model Transformation
	Model Versioning and Model Merging

	Evolution
	Evolutionary Model Development
	Automating Evolutionary Transformations
	Semantics of Evolution

	Modelling Language Evolution
	Syntactic Model Evolution
	Semantic Model Evolution
	Techniques for Automated Model Evolution
	Step-By-Step Model Evolution

	References

	10 Model-Based Analysis and Development of Dependable Systems
	Introduction
	An Overview on Dependability
	A Generic Model of Fault-Tolerant Systems
	System Operation without Faults
	Faults
	Fault-Tolerance Mechanism
	Summary: Modeling of Dependable Systems

	Reliability and Safety Analysis
	The FMECA Method
	The Fault Tree Analysis Method
	Markov Analysis
	Testing and Model-Based Testing
	Summary: Reliability and Safety Analysis

	Languages and Tool Support
	Models
	Implementations
	Summary: Language and Tool Support

	Conclusion and Research Challenges
	References

	Part V: Approaches
	11 The EAST-ADL Architecture Description Language for Automotive Embedded Software
	Introduction
	Modeling and Analysis Capabilities of the EAST-ADL2
	A Small Case Study
	Vehicle Features: Vehicle Level
	Abstract Functional Description: Analysis Level
	Concrete Functional Description: Design Level
	Software Architecture: Implementation Level

	Related Work, Conclusions and Further Work
	References

	12 Fujaba4Eclipse Real-Time Tool Suite
	Introduction
	Features
	Case Study: RailCab
	Conclusions and Future Work
	References

	13 AutoFocus 3 - A Scientific Tool Prototype for Model-Based Development of Component-Based, Reactive, Distributed Systems
	Introduction
	Capabilities of AutoFocus 3
	Logical Architecture
	Technical Architecture

	Conclusion
	References

	14 MATE - A Model Analysis and Transformation Environment for MATLAB Simulink
	Introduction
	Approach
	Application
	Conclusion
	References

	15 Benefits of System Simulation for Automotive Applications
	System Models
	State of the Art and AUTOSAR

	System Simulation
	Applications of System Simulation
	Specification Verification
	Software Component Tests
	ECU Tests
	Virtual Integration

	Summary
	References

	16 Development of Tool Extensions with MOFLON
	Introduction
	History and Overview of Features
	MOF Editor and Code Generation for MOF Models
	Additional Frontends
	Model Transformations
	Triple Graph Grammar Editor

	Usage Scenarios
	Tool Adapters
	Model Analysis and Repair
	Integration Framework

	Conclusions and Future Work
	References

	17 Towards Model-Based Engineering of Self-configuring Embedded Systems
	Introduction
	Capabilities
	Case Study
	Architecture Modelling with UML
	Verification and Validation through Analysis
	Run-Time Models

	Conclusions and Future Work
	References

	18 Representation of Automotive Software Description Means in ASCET
	Introduction
	Overview of Design Means for Automotive Software Design
	Description Means for Control Engineering
	Description Means for Software Engineering

	Integration of the Design Approaches in ASCET
	Classes
	Modules
	Model-Types
	Tasks
	Implementations: Integer Arithmetic and Memory Section
	Codegeneration Approach

	Conclusion
	References

	19 Papyrus: A UML2 Tool for Domain-Specific Language Modeling
	Introduction
	Capabilities
	Overview
	Global Architecture and Design Tenets
	UML2 Graphical Modeling Capabilities
	Building DSL Tools Profiling the UML2

	Case Study
	Conclusions and Future Work
	Reference

	20 The Model-Integrated Computing Tool Suite
	Introduction
	Components of the MIC Tool Suite
	The Generic Modeling Environment (GME)
	Transforming the Models: UDM and GReAT
	Integrating Design Tools: The Open Tool Integration Framework
	Design Space Exploration

	Application Example: Vehicle Control Platform
	Conclusion
	References

	21 Application of Quality Standards to Multiple Artifacts with a Universal Compliance Solution
	Introduction
	Idea: Meta-modeling for Constraint Definition
	Approach: Universal Compliance Achievement
	Case Studies: Compliance with Modeling Standards
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

