

Lecture Notes in Computer Science 6396
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Dominique Méry Stephan Merz (Eds.)

Integrated
Formal Methods
8th International Conference, IFM 2010
Nancy, France, October 11-14, 2010
Proceedings

13

Volume Editors

Dominique Méry
Stephan Merz
INRIA Nancy-Grand Est & LORIA, Bâtiment B, équipe MOSEL
615 rue du Jardin Botanique, 54602 Villers-lès-Nancy cédex, France
E-mail: {Dominique.Mery; Stephan.Merz@loria.fr}

Library of Congress Control Number: 2010935597

CR Subject Classification (1998): D.2, F.3, D.3, D.2.4, F.4.1, D.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-16264-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16264-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the proceedings of IFM 2010, the 8th International Confer-
ence on Integrated Formal Methods. The conference took place October 12–14,
2010, at the INRIA research center and the LORIA laboratory in Nancy, France.
Previous editions were held in York, Dagstuhl, Turku, Canterbury, Eindhoven,
Oxford, and Düsseldorf. The IFM conference series seeks to promote research
into the combination of different formal methods, including the combination of
formal with semiformal methods, for system development. Such combinations
are useful in order to apprehend different aspects of systems, including func-
tional correctness, security, performance, and fault-tolerance. The conference
provides a forum for discussing recent advances in the state of the art and for
disseminating the results among the academic and industrial community.

IFM 2010 received 59 submissions, covering the spectrum of integrated formal
methods and ranging from formal and semiformal notations, semantics, refine-
ment, verification, and model transformations to type systems, logics, tools, and
case studies. Each submission was reviewed by at least three members of the
Program Committee. The committee decided to accept 20 papers. The confer-
ence program also included invited talks by Christel Baier, John Fitzgerald, and
Rajeev Joshi. The conference was preceded by a day dedicated to the Work-
shop on Formal Methods for Web Data Trust and Security (WTS 2010) and two
tutorials, one on the verification of C# programs using Spec# and Boogie 2,
by Rosemary Monahan, and the other on the TLA+ proof system, by Denis
Cousineau and Stephan Merz.

We are grateful to the members of the Program Committee and the external
reviewers for their care and diligence. The reviewing process and the prepara-
tion of the proceedings were facilitated by the EasyChair system that we highly
recommend to every program chair. We thank the INRIA Nancy research center
for organizational and logistic support, and gratefully acknowledge the finan-
cial support by CNRS (through GDR GPL), Nancy University, GIS 3SGS, the
Lorraine Region, and the Greater Nancy.

October 2010 Dominique Méry
Stephan Merz

Conference Organization

Program Chairs

Dominique Méry University of Nancy, France
Stephan Merz INRIA Nancy, France

Program Committee

Yamine Aı̈t-Ameur ENSMA Poitiers, France
Jean-Paul Bodeveix University of Toulouse, France
Bernard Boigelot University of Liège, Belgium
Eerke Boiten University of Kent, UK
Jim Davies University of Oxford, UK
David Déharbe UFRN Natal, Brazil
John Derrick University of Sheffield, UK
Jin Song Dong University of Singapore, Singapore
Wan Fokkink Free University of Amsterdam, The Netherlands
Martin Fränzle University of Oldenburg, Germany
Andy Galloway University of York, UK
Hubert Garavel INRIA Grenoble, France
Diego Latella CNR Pisa, Italy
Stefan Leue University of Konstanz, Germany
Michael Leuschel University of Düsseldorf, Germany
Heiko Mantel Technical University of Darmstadt, Germany
Jun Pang University of Luxemburg, Luxemburg
David Pichardie INRIA Rennes, France
Wolfram Schulte Microsoft Research, USA
Graeme Smith University of Queensland, Australia
Martin Steffen University of Oslo, Norway
Kenji Taguchi NII Tokyo, Japan
Helen Treharne University of Surrey, UK
Elena Troubitsyna Åbo Akademi, Finland
Heike Wehrheim University of Paderborn, Germany

Local Organization

Nicolas Alcaraz
Anne-Lise Charbonnier
Rachida Kasmi
Dominique Méry
Stephan Merz

VIII Conference Organization

External Reviewers

Erika Abraham
Markus Aderhold
Maurice H. ter Beek
Nazim Benäıssa
Yves Bertot
Sandrine Blazy
Andrea Bracciali
Erik Burger
Taolue Chen
Véronique Cortier
Frédéric Dabrowski
Mohammad T. Dashti
Henning Dierks
Xinyu Feng
Mamoun Filali-Amine
Pascal Fontaine
Richard Gay
Stefan Hallerstede
Ian J. Hayes
Keijo Heljanko
Alexei Iliasov
Ethan Jackson

Mohammad M. Jaghoori
Suresh Jagannathan
Michael Jastram
Matthias Kuntz
Hironobu Kuruma
Peter Ladkin
Linas Laibinis
Florian Leitner-Fischer
Peter Lindsay
Yang Liu
Michele Loreti
Alexander Lux
Mieke Massink
Alexander Metzner
Martin Musicante
Anantha Narayanan
Khanh Nguyen Truong
Daniel Plagge
Jean-Baptiste Raclet
Thomas Ruhroth
Christoph Scheben
Rudi Schlatte

Neeraj Singh
Heiko Spiess
Barbara Sprick
Dominik Steenken
Volker Stolz
Martin Strecker
Henning Sudbrock
Toshinori Takai
Anton Tarasyuk
Tino Teige
Thi Mai Thuong Tran
Nils Timm
Sebastian Uchitel
Chen-wei Wang
James Welch
Bernd Westphal
Anton Wijs
Kirsten Winter
Peng Wu
Shaojie Zhang
Xian Zhang
Huiquan Zhu

Sponsoring Institutions

– Centre de Recherche INRIA Nancy-Grand Est
– Nancy Université: Université Henri Poincaré Nancy 1, Institut National

Polytechnique de Lorraine
– CNRS: GDR GPL – Génie de la Programmation et du Logiciel
– GIS 3SGS: Surveillance, Sûreté et Sécurité des Grands Systèmes
– Communauté Urbaine du Grand Nancy
– Région Lorraine

Table of Contents

On Model Checking Techniques for Randomized Distributed Systems
(Invited Talk) . 1

Christel Baier

Collaborative Modelling and Co-simulation in the Development of
Dependable Embedded Systems (Invited Talk) . 12

John Fitzgerald, Peter Gorm Larsen, Ken Pierce,
Marcel Verhoef, and Sune Wolff

Programming with Miracles (Invited Talk) . 27
Rajeev Joshi

An Event-B Approach to Data Sharing Agreements 28
Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui, and
Michael D. Wilson

A Logical Framework to Deal with Variability . 43
Patrizia Asirelli, Maurice H. ter Beek, Alessandro Fantechi, and
Stefania Gnesi

Adding Change Impact Analysis to the Formal Verification of
C Programs . 59

Serge Autexier and Christoph Lüth

Creating Sequential Programs from Event-B Models 74
Pontus Boström

Symbolic Model-Checking of Optimistic Replication Algorithms 89
Hanifa Boucheneb, Abdessamad Imine, and Manal Najem

From Operating-System Correctness to Pervasively Verified
Applications . 105

Matthias Daum, Norbert W. Schirmer, and Mareike Schmidt

A Compositional Method for Deciding Equivalence and Termination of
Nondeterministic Programs . 121

Aleksandar Dimovski

Verification Architectures: Compositional Reasoning for Real-Time
Systems . 136

Johannes Faber

X Table of Contents

Automatic Verification of Parametric Specifications with Complex
Topologies . 152

Johannes Faber, Carsten Ihlemann, Swen Jacobs, and
Viorica Sofronie-Stokkermans

Satisfaction Meets Expectations: Computing Expected Values of
Probabilistic Hybrid Systems with SMT . 168

Martin Fränzle, Tino Teige, and Andreas Eggers

Showing Full Semantics Preservation in Model Transformation –
A Comparison of Techniques . 183

Mathias Hülsbusch, Barbara König, Arend Rensink,
Maria Semenyak, Christian Soltenborn, and Heike Wehrheim

Specification and Verification of Model Transformations Using
UML-RSDS . 199

Kevin Lano and Shekoufeh Kolahdouz-Rahimi

Multiformalism and Transformation Inheritance for Dependability
Analysis of Critical Systems . 215

Stefano Marrone, Camilla Papa, and Valeria Vittorini

Translating Pi-Calculus into LOTOS NT . 229
Radu Mateescu and Gwen Salaün

Systematic Translation Rules from astd to Event-B 245
Jérémy Milhau, Marc Frappier, Frédéric Gervais, and Régine Laleau

A CSP Approach to Control in Event-B . 260
Steve Schneider, Helen Treharne, and Heike Wehrheim

Towards Probabilistic Modelling in Event-B . 275
Anton Tarasyuk, Elena Troubitsyna, and Linas Laibinis

Safe Commits for Transactional Featherweight Java 290
Thi Mai Thuong Tran and Martin Steffen

Certified Absence of Dangling Pointers in a Language with Explicit
Deallocation . 305

Javier de Dios, Manuel Montenegro, and Ricardo Peña

Integrating Implicit Induction Proofs into Certified Proof
Environments . 320

Sorin Stratulat

Author Index . 337

On Model Checking Techniques for
Randomized Distributed Systems

Christel Baier

Technische Universität Dresden, Faculty of Computer Science, Germany

Abstract. The automata-based model checking approach for random-

ized distributed systems relies on an operational interleaving semantics

of the system by means of a Markov decision process and a formalization

of the desired event E by an ω-regular linear-time property, e.g., an LTL

formula. The task is then to compute the greatest lower bound for the

probability for E that can be guaranteed even in worst-case scenarios.

Such bounds can be computed by a combination of polynomially time-

bounded graph algorithm with methods for solving linear programs. In

the classical approach, the “worst-case” is determined when ranging over

all schedulers that decide which action to perform next. In particular, all

possible interleavings and resolutions of other nondeterministic choices in

the system model are taken into account. The worst-case analysis relying

on this general notion of schedulers is often too pessimistic and leads to

extreme probability values that can be achieved only by schedulers that

are unrealistic for parallel systems. This motivates the switch to more

realistic classes of schedulers that respect the fact that the individual pro-

cesses only have partial information about the global system states. Such

classes of partial-information schedulers yield more realistic worst-case

probabilities, but computationally they are much harder. A wide range

of verification problems turns out to be undecidable when the goal is to

check that certain probability bounds hold under all partial-information

schedulers.

Probabilistic phenomenon appear rather natural in many areas of computer sci-
ence. Randomized algorithms, performance evaluation, security protocols, con-
trol theory, stochastic planning, operations research, system biology or resilient
systems are just a few examples. Although a wide range of different stochas-
tic models are used in these areas, it is often possible to deal with Markovian
models. These rely on the memoryless property stating that the future system
behavior only depends on the current state, but not on the past. If the state
space is finite, then Markovian models can be viewed as a variant of classical
finite automata augmented with distributions which makes them best suited for
the application of model checking techniques.

In this extended abstract, we summarize the main steps of the automata-
based model checking approach for the quantitative analysis of Markov decision
processes in worst-case scenarios, and point out the difficulties that arise when
taking the local views of the processes into account.

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 1–11, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 C. Baier

Markov decision processes (MDPs) can be understood as a probabilistic
extension of labeled transition systems. Nondeterminism can be represented in
an MDP by the choice between different actions. The actions of an MDP can
have a probabilistic effect, possibly depending on the state in which they are
executed.

The coexistence of nondeterminism and probabilism in an MDP allows for
representing concurrent (possibly randomized) activities of different processes
by interleaving, i.e., the choice which process performs the next step. Besides
interleaving, the nondeterminism in an MDP can also be useful for abstraction
purposes, for underspecification to be resolved in future refinement steps, or for
modeling the interface with an unknown environment. Formally, an MDP is a
tuple M = (S, Act, P, s0, . . .) where

– S is a finite nonempty set of states,
– Act is a finite nonempty set of actions,
– P : S × Act × S → [0, 1] is a function, called transition probability function,

such that for all states s ∈ S and actions α ∈ Act, the function s �→ P(s, α, ·)
is either the null-function or a probabilistic distribution, i.e.,∑

s′∈S

P(s, α, s′) ∈ {0, 1} for all states s ∈ S and actions α ∈ Act,

– s0 ∈ S is the initial state.

Alternatively, one can deal with a distribution over initial states. Further com-
ponents can be added, such as reward or cost functions or atomic propositions.
MDPs with a rewards for the states and actions can be useful to model so-
journ times in states or other quantitative measures such as energy consumption.
Atomic propositions can serve as state predicates and are often used to formalize
properties in some temporal or modal logic.

If s ∈ S then Act(s) denotes the set of actions that are enabled in state s, i.e.,

Act(s) def=
{
α ∈ Act : P(s, α, s′) > 0 for some s′ ∈ S

}
.

For technical reasons, it is often useful to assume that there are no terminal
states, i.e., for each state s ∈ S the set Act(s) in nonempty.

The intuitive operational behavior of an MDP M as above is the following.
The computation starts in the initial state s0. If after n steps the current state
is sn then first an enabled action αn+1 ∈ Act(sn) is chosen nondeterministically.
The effect of action αn+1 in state sn is given by the distribution P(sn, αn+1, ·).
Thus, the next state sn+1 belongs to the support of P(sn, αn+1, ·) and is chosen
probabilistically. The resulting sequence of states π = s0 s1 s2 . . . ∈ Sω is called
a path of M.

Markov decision processes are widely used as an operational model for parallel
systems where some components behave probabilistically, e.g., if they rely on a
randomized algorithms or communicate via an unreliable fifo channel that looses
or corrupts messages with some small (fixed) probability.

On Model Checking Techniques for Randomized Distributed Systems 3

Example 1 (MDP for a randomized mutual exclusion protocol). Figure 1 shows
an MDP modeling a simple mutual exclusion protocol for two processes P1, P2
that compete to access a certain shared ressource. Process Pi is represented by
three local states ni, wi, ci. Local state ni stands for the non-critical phase of
process Pi, wi represents the location where process Pi is waiting and ci denotes
the critical section. The local states ni and ci can be left by performing a request
or release action, respectively. If Pi is waiting, i.e., its current local state is wi,
and the other process Pj is not its critical section then Pi can enter the local state
ci (action enteri). If both P1 and P2 are waiting then the competition is resolved
by a randomized arbiter who tosses a fair coin to decide whether P1 will enter
its critical section (if the outcome is head) or P2 gets the grant (if the outcome is
tail). All other actions requesti, releasei, and enteri have a deterministic effect in
the sense that, in all states s where they are enabled, the associated distribution
is a Dirac distribution, i.e., assigns probability 1 to the unique successor state.

n1n2

w1n2 n1w2

w1w2

c1n2 n1c2

c1w2 w1c2

request
2

re
le

as
e 1

en
ter

1

req
uest1

request
2

request
2 req

uest1 enter2

req
ue

st 1

release
2

toss a
coin

release
2 re

le
as

e 1

1
2

1
2

Fig. 1. MDP for mutual exclusion with randomized arbiter

Schedulers. Reasoning about the probabilities for path events (i.e., conditions
that might or might not hold for a path) in an MDP requires the concept of
schedulers, also often called policies or adversaries. A scheduler refers to any,
possibly history-dependent, strategy for resolving the nondeterministic choices.
Formally, a scheduler for an MDP M = (S, Act, P, s0, . . .) can be defined as a
function

D : S+ → Act such that D(s0 s1 . . . sn) ∈ Act(sn).

The input s0 s1 . . . sn of D stands for the “history”, i.e., the sequence of states
that have been visited in the past. The last state sn represents the current
state sn. (The values of D are only relevant for finite D-paths, i.e., sequences
s0 s1 . . . sn such that P(si, D(s0, . . . , sn), si+1) > 0 for 0 ≤ i < n.)

In the literature, more general types of schedulers have been defined, e.g.,
randomized schedulers that assign distributions of actions to finite paths rather

4 C. Baier

than single actions. Furthermore, the input of a scheduler can also include the
actions that have been taken in the past. Vice versa, one can also restrict the
class of schedulers to those that are realizable by a finite-state machine. For
reasoning about probabilities for ω-regular path events in worst-case scenarios,
these differences in the definition of schedulers are irrelevant, as long as they
rely on complete information about the states of M.

Given a scheduler D, the operational behavior of M under D can be unfolded
into a tree-like infinite Markov chain. This allows to apply standard techniques
for Markov chains to define a σ-algebra over infinite paths and the probability of
path events, i.e., measurable sets of infinite paths. Details can be found in any
textbook on Markov decision processes, see e.g. [27].

Quantitative worst-case analysis. The typical task of the quantitative anal-
ysis of an MDP is to determine the probabilities for a certain path event E in a
worst-case scenario, i.e., the maximal or minimal probabilities for E when rang-
ing over all schedulers. Thus, the purpose of a quantitative analysis is to provide
lower or upper probability bounds that are guaranteed for all interleavings of
concurrent activities, all refinements of nondeterministic choices that have been
obtained from abstraction techniques, and no matter how the environment be-
haves, provided that the environment has been modeled nondeterministically.
When Markov decision processes are augmented with cost functions, then the
quantitative analysis can also establish lower or upper bounds on expected val-
ues (e.g., costs for reaching a certain goal set or long-run averages) that can be
guaranteed for all schedulers. The notion qualitative analysis refers to the task
where one has to check whether a given event E holds almost surely, i.e., with
probability 1 for all schedulers, or whether E holds with zero probability, no
matter which scheduler is used.

For an example, let us regard the mutual exclusion protocol modeled by the
MDP shown in Figure 1 again.

– The safety property Esafe stating that the two processes are never simul-
taneously in their critical section needs no probabilistic features and can
be establsihed by standard (non-probabilistic) model checking techniques,
as the mutual exclusion property holds along all paths. Note that the state
〈c1, c2〉 is not reachable.

– The liveness property Elive stating that each waiting process will eventually
enter its critical section does not hold along all paths. E.g., in any infinite
path that runs forever through the cycle 〈n1, w2〉 〈w1, w2〉 〈c1, w2〉 〈n1, w2〉
the second process is waiting forever. However, such paths have probabil-
ity measure 0 under all schedulers. Hence, event Elive holds almost surely
(i.e., with probability 1) under each scheduler. This yields that the minimal
probability for Elive is 1.

– Suppose now that process P2 is waiting in the current state, i.e., we treat
state 〈n1, w2〉 as initial state.
For each scheduler, the probability that P2 will enter its critical section
within the next n rounds is at least 1 − 1

2n . Here, by a “round” we mean

On Model Checking Techniques for Randomized Distributed Systems 5

any simple cycle containing the state 〈w1, w2〉 where the randomized arbiter
tosses a coin. The worst case scenario for process P2 is a scheduler that always
schedules action request1 in state 〈n1, w2〉. Under this scheduler, process P1
is the winner of the first n coin tossing experiment with probability 1

2n . It
sould be noticed that under other schedulers, process P2 can have better
chances to enter its critical section within the next n rounds. For example,
if action enter2 is scheduled in state 〈n1, w2〉 then process P2 will enter its
critical section in the first round.
The expected number of rounds that P2 has to wait after having requested
its critical section is less or equal

∞∑
n=1

n · 1
2n = 2

for each scheduler. Value 2 is obtained under the scheduler which always
schedules the action request1 in state 〈n1, w2〉. Hence, the MDP in Figure
1 enjoys the property that the minimal expected number of rounds that P2
has to wait before entering its critical section is 2.

path event E
randomized

distributed system

deterministic
ω-automata A

Markov decision

process M

probabilistic model checker
quantitative analysis of M×A

(graph algorithms + methods for linear programs)

maximal or minimal probability for E

Fig. 2. Schema for the quantitative analysis

Probabilistic model checking. Probabilistic model checking techniques for
finite-state Markov decision processes have been designed for verifying qualita-
tive and quantitative properties specified in probabilistic computation tree logic
[8,15,7] or computing extremal probabilities for ω-regular path events [32,33,13,5].
The schema of the standard model checking approach for computing extremal
(i.e., minimal or maximal) probabilities for ω-regular path events in MDPs is
shown in Figure 2. The main idea relies on an analysis of the product that results
from the given MDP M with a deterministic ω-automaton A representing the

6 C. Baier

path event. (See, e.g., [31,19] for an overview of automata over infinite struc-
tures.) As A is deterministic, the product M×A can be understood as an MDP
that behaves operationally as M and additionally mimicks A’s behavior when
scanning a path of M. The extremal probabilities for the given path event E in
M agree with the extremal probabilities for the acceptance condition of A in the
product-MDP M. The latter can be computed by means of a graph analysis and
linear programming techniques for calculating minimal or maximal reachability
probabilities. The details of this procedure can be found in the above mentioned
literature.

Several efficient probabilistic model checking tools for MDPs are available
that have been used in many application areas. The most prominent one that
uses a symbolic approach with BDD-variants is PRISM [20].

Anomalies when ranging over all schedulers. The approach sketched above
computes “worst-case” probabilities for path events when ranging over all sched-
ulers. In particular, all possible interleavings and resolutions of other nonde-
terministic choices in the system model are taken into account. However, the
computed worst-case probabilities are often too pessimistic since there are un-
realistic schedulers that might yield extremal probabilities.

As in the non-probabilistic case, fairness assumption might be necessary to
rule out schedulers that treat some processes in an unfair way. E.g., for the
MDP in Figure 1, the scheduler that never takes an action of process P2 and only
schedules the actions request1, enter1 and release1 can be viewed to be unrealistic
since the request-operation of process P2 is always enabled. The schema sketched
in Figure 2 can be refined to compute the minimal and maximal probabilities of
ω-regular path events when ranging over fair schedulers only [7,6]. The major
difference is that the graph-based analysis has to be revised.

But there are still other curious phenomena when ranging over all (possibly
fair) schedulers in MDPs that can contort the extremal probabilities.

Example 2. The MDP in Figure 3 arises through the parallel composition of two
processes P1 and P2 with local integer variables x and y, respectively, that have
initial value 0.

Process P1 consists of a nondeterministic choice between actions β and γ, rep-
resenting the deterministic assignments x := 1 (action β) and x := 2 (action γ).
Process P2 probabilistically assigns value 1 or 2 to y, depending on the outcome
of a coin tossing experiment (action α). To ensure that no state is terminal, self-
loops can be added to all states that have no outgoing transition in Figure 3.
These self-loops might represent an internal step performed by a third process.

The maximal probability that a state where x = y ∈ {1, 2} will be reached
is 1, since we might first schedule α and then, depending on the outcome of
α, we can choose β or γ to ensure that finally x = y ∈ {1, 2}. This scheduler,
however, is not realizable if there is no central control and process P1 cannot
access the current value of P2’s local variable y. Indeed, intuitively we might
expect the answer 1

2 (rather than 1) as the maximal probability for reaching a

On Model Checking Techniques for Randomized Distributed Systems 7

action effect

α toss a fair coin;

if head then y := 1

else y := 2

β x := 1

γ x := 2

x=0

y=0

x=1

y=0

x=0

y=1

x=0

y=2

x=2

y=0

1
2

α

1
2

β γ

x=1

y=2

x=1

y=1

x=2

y=2

x=2

y=1

β γ

γβ

α

1
2

1
2

1
2 1

2

α

Fig. 3. MDP for P1‖P2 where P1 = β + γ and P2 = α

state where x = y ∈ {1, 2} is 1
2 when ranging over all strategies to resolve the

nondeterministic choice between β and γ in process P1.

Partially-observable Markov decision processes. The above observation
motivates to study the worst-case behavior of MDPs for restricted classes of
schedulers that take the local view of the processes that run in parallel into
account. In the literature, several classes of schedulers have been considered that
are more adequate for reasoning about distributed systems [12,18,1]. Partially-
observable MDPs, briefly called POMDPs, can be seen as a simple variant that
can serve to model the view of one process.

POMDPs are formally defined as MDPs that are augmented by an equiv-
alence relation ∼ on the state space which identifies those states that cannot
be distinguished by an observer. A scheduler D : S+ → Act for an POMDP
is called observation-based iff D’s decisions only depend on the observables of
the history, i.e., if π1 = s0 s1 . . . sn and π2 = t0 t1 . . . tn are finite paths of the
same length such that [si] = [ti] for 0 ≤ i ≤ n then D(π1) = D(π2). Here,
[s] = {s′ ∈ S : s ∼ s′} denotes the ∼-equivalence class of state s.

POMDPs are used in many application areas, see e.g. [9], and many algorithms
have been proposed for the analysis of the behavior up a fixed number of steps
(“finite-horizon”) [23,25,21,24]. However, many difficulties arise for path events
of the standard safety-liveness spectrum where no restrictions are imposed on
the number of relevant steps. The design of algorithms for a quantitative anal-
ysis that determines worst-case probabilities for, e.g., a reachability condition,
under all observation-based schedulers is impossible. This is due to the close
link between POMDPs with an reachability objective, say ♦F where F is a set
of states and ♦ denotes the eventually operator of LTL, and probabilistic finite
automata (PFA) [28,26]. Note that in the extreme case of an POMDP M where

8 C. Baier

∼ identifies all states, the observation-based schedulers can be viewed as func-
tions D : N → Act, and hence, as infinite words in Actω. But then the question
whether there exists an observation-based scheduler D for M such that the prob-
ability for ♦F under D is larger than a given a threshold λ ∈]0, 1[is equivalent
to the non-emptiness problem for the PFA that results from M by treating F
as the set of final states and λ as threshold for the accepted language; and the
latter is known to be undecidable [26,22].

There is even no approximation algorithm for maximal reachability probabil-
ities in POMDPs and the verification problem for almost all interesting quanti-
tative properties for POMDPs and related models are undecidable [22,18]. Even
worse, undecidability results can be established for certain instances of the model
checking problem for POMDPs and qualitative properties, such as the question
whether there exists an observation-based scheduler such that a repeated reacha-
bility condition �♦F (“visit infinitely often some state in F”) holds with positive
probability. This problem is a generalization of the non-emptiness problem for
probabilistic Büchi automata (PBA) with the probable semantics [3] which is
known to be undecidable [2].

However, some qualitative model checking problems for POMDPs are decid-
able. Examples for decidable verification problems for POMDPs are the question
whether there exists an observation-based scheduler such that an invariance �F
(“always F”) holds with positive probability [16], or whether the maximal prob-
ability under all observation-based schedulers for a reachability condition ♦F
(“eventually F”) or a repeated reachability condition �♦F (“infinitely often
F”) is 1 [2], see also [10,11]. The algorithms for such qualitative model checking
problems for POMDPs rely on variants of the powerset construction that has
been introduced for incomplete-information games [29].

Besides the observation that ranging over the full class of schedulers can yield
too pessimistic worst-case probabilities, also several other techniques suffer from
the power of general schedulers.

In the context of partial order reduction for MDPs, it has been noticed in
[4,14] that the criteria that are known to be sound for non-probabilistic systems
are not sufficient to preserve extremal probabilities for ω-regular path events. In
this setting, the problem is that the commutativity of independent probabilistic
actions is a local property that does not carry over to a global setting. Consider
again the MDP in Example 2. Action α is independent from both β and γ, as α
accesses just variable y, while β and γ operate on x, without any reference to y.
Indeed if we consider the parallel execution of α and β (or α and γ) in isolation,
then the order of α and β (or α and γ) is irrelevant for the probabilities of the
final outcome. But the commutativity of α and β resp. α and γ does not carry
over to the nondeterministic choice between β and γ (process P1).

– The scheduler which first chooses α and then β if x=0 ∧ y = 1 and γ if
x=0 ∧ y = 2 yields probability 1 for a final outcome where x = y ∈ {1, 2}
hold.

On Model Checking Techniques for Randomized Distributed Systems 9

– For the schedulers that first choose one of the actions β or γ and then perform
α, an outcome where x = y ∈ {1, 2} hold is obtained with probability 1

2 .

This observation causes some care for the design of partial order reduction tech-
niques for MDPs and either requires an extra condition [4,14] or to restrict the
class of schedulers for the worst-case analysis [17].

Another problem that arises from the power of the full class of schedulers is
the lack of compositionality of trace distribution equivalence in MDP-like models
[30]. This problem can be avoided by introducing some appropriate concept
of distributed scheduling [12]. But as the series of undecidability results for
POMDPs shows, the price one has to pay when switching from the full class
of schedulers to more realistic ones is the loss of model checking algorithms for
the quantitative analysis against infinite-horizon path events, and partly also
verification algorithms for qualitative properties.

Nevertheless, further restrictions on the scheduler types might be possible to
overcome the limitations due to undecidability results.

References

1. Andres, M., Palamidessi, C., van Rossum, P., Sokolova, A.: Information hiding in

probabilistic concurrent systems. In: Proc. of the 7th International Conference on

Quantitative Evaluation of SysTems (QEST 2010). IEEE Computer Society Press,

Los Alamitos (to appear 2010)

2. Baier, C., Bertrand, N., Grösser, M.: On decision problems for probabilistic Büchi

automata. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301.

Springer, Heidelberg (2008)

3. Baier, C., Grösser, M.: Recognizing ω-regular languages with probabilistic au-

tomata. In: Proc. of the 20th IEEE Symposium on Logic in Computer Science

(LICS 2005), pp. 137–146. IEEE Computer Society Press, Los Alamitos (2005)

4. Baier, C., Grösser, M., Ciesinski, F.: Partial order reduction for probabilistic sys-

tems. In: Proc. of the First International Conference on Quantitative Evaluation

of SysTems (QEST), pp. 230–239. IEEE Computer Society Press, Los Alamitos

(2004)

5. Baier, C., Größer, M., Ciesinski, F.: Model checking linear time properties of prob-

abilistic systems. In: Handbook of Weighted Automata, pp. 519–570 (2009)

6. Baier, C., Größer, M., Ciesinski, F.: Quantitative analysis under fairness con-

straints. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 135–150.

Springer, Heidelberg (2009)

7. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time

logic with fairness. Distributed Computing 11 (1998)

8. Bianco, A., de Alfaro, L.: Model checking of probabilistic and non-deterministic

systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.

Springer, Heidelberg (1995)

9. Cassandra, A.R.: A survey of POMDP applications. Presented at the AAAI Fall

Symposium (1998), http://pomdp.org/pomdp/papers/applications.pdf

10. Chadha, R., Sistla, P., Viswanathan, M.: Power of randomization in automata

on infinite strings. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,

vol. 5710, pp. 229–243. Springer, Heidelberg (2009)

http://pomdp.org/pomdp/papers/applications.pdf

10 C. Baier

11. Chatterjee, K., Doyen, L., Henzinger, T.: Qualitative analysis of partially-

observable markov decision processes. In: Proc. Mathematical Foundation of Com-

puter Science. LNCS, Springer, Heidelberg (2010)

12. Cheung, L., Lynch, N., Segala, R., Vaandrager, F.: Switched PIOA: Parallel com-

position via distributed scheduling. Theoretical Computer Science 365(1-2), 83–108

(2006)

13. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.

Journal of the ACM 42(4), 857–907 (1995)

14. D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic

programs. In: Proc. of the First International Conference on Quantitative Evalua-

tion of SysTems (QEST), pp. 240–249. IEEE Computer Society Press, Los Alamitos

(2004)

15. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford

University, Department of Computer Science (1997)

16. de Alfaro, L.: The verification of probabilistic systems under memoryless partial-

information policies is hard. In: Proc. of the 2nd International Workshop on Proba-

bilistic Methods in Verification (ProbMiV 1999), pp. 19–32. Birmingham University

(1999), Research Report CSR-99-9

17. Giro, S., D’Argenio, P., Maŕıa Ferrer Fioriti, L.: Partial order reduction for proba-

bilistic systems: A revision for distributed schedulers. In: Bravetti, M., Zavattaro,

G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 338–353. Springer, Heidelberg

(2009)

18. Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither decidable

nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007.

LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg (2007)

19. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:

A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

20. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic model check-

ing with PRISM: A hybrid approach. International Journal on Software Tools for

Technology Transfer (STTT) 6(2), 128–142 (2004)

21. Littman, M.: Algorithms for Sequential Decision Making. PhD thesis, Brown Uni-

versity, Department of Computer Science (1996)

22. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning

and related stochastic optimization problems. Artificial Intelligence 147(1-2), 5–34

(2003)

23. Monahan, G.: A survey of partially observable Markov decision processes: Theory,

models and algorithms. Management Science 28(1), 1–16 (1982)

24. Mundhenk, M., Goldsmith, J., Lusena, C., Allender, E.: Complexity of finite-

horizon Markov decision process problems. Journal of the ACM 47(4), 681–720

(2000)

25. Papadimitriou, C., Tsitsiklis, J.: The complexity of Markov decision processes.

Mathematics of Operations Research 12(3) (1987)

26. Paz, A.: Introduction to probabilistic automata. Academic Press Inc., London

(1971)

27. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-

ming. John Wiley and Sons, Chichester (1994)

28. Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–245

(1963)

On Model Checking Techniques for Randomized Distributed Systems 11

29. Reif, J.H.: The complexity of two-player games of incomplete information. Journal

of Computer System Sciences 29(2), 274–301 (1984)

30. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-

tems. PhD thesis, Massachusetts Institute of Technology (1995)

31. Thomas, W.: Languages, automata and logic. In: Rozenberg, G., Salomaa, A. (eds.)

Handbook of Formal Languages, vol. 3, pp. 389–455. Springer, New York (1997)

32. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-

grams. In: Proc. of the 26th Symposium on Foundations of Computer Science

(FOCS), pp. 327–338. IEEE Computer Society Press, Los Alamitos (1985)

33. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program

verification. In: Proc. of the 1st IEEE Symposium on Logic in Computer Science

(LICS), pp. 332–345. IEEE Computer Society Press, Los Alamitos (1986)

Collaborative Modelling and Co-simulation in the
Development of Dependable Embedded Systems

John Fitzgerald1, Peter Gorm Larsen2, Ken Pierce1,
Marcel Verhoef3, and Sune Wolff2,4

1 Newcastle University, UK
{John.Fitzgerald,K.G.Pierce}@ncl.ac.uk

2 Aarhus School of Engineering, Denmark
{pgl,swo}@iha.dk

3 Chess, Haarlem, The Netherlands
Marcel.Verhoef@chess.nl

4 Terma A/S, Denmark
sw@terma.dk

Abstract. This paper presents initial results of research aimed at developing
methods and tools for multidisciplinary collaborative development of dependable
embedded systems. We focus on the construction and analysis by co-simulation
of formal models that combine discrete-event specifications of computer-based
controllers with continuous-time models of the environment with which they in-
teract. Basic concepts of collaborative modelling and co-simulation are presented.
A pragmatic realisation using the VDM and Bond Graph formalisms is described
and illustrated by means of an example, which includes the modelling of both
normal and faulty behaviour. Consideration of a larger-scale example from the
personal transportation domain suggests the forms of support needed to explore
the design space of collaborative models. Based on experience so far, challenges
for future research in this area are identified.

1 Introduction

Whether viewed from a technical or a commercial perspective, the development of em-
bedded systems is a demanding discipline. Technical challenges arise from the need to
develop complex, software-rich products that take the constraints of the physical world
into account. Commercial pressures include the need to innovate rapidly in a highly
competitive market and to offer products that are simultaneously resilient to faults and
highly efficient.

Traditional development approaches are mono-disciplinary in style, in that separate
mechanical, electronic and software engineering groups handle distinct aspects of prod-
uct development and often do so in sequence. Contemporary concurrent engineering
strategies aim to improve the time to market by performing these activities in parallel.
However, cross-cutting system-level requirements that cannot be assigned to a single
discipline, such as performance and dependability, can cause great problems, because
their impact on each discipline is exposed late in the development process, usually dur-
ing integration. Embedded systems, in which the viability of the product depends on

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 12–26, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Collaborative Modelling and Co-simulation 13

the close coupling between the physical and computing disciplines, therefore calls for
a more multidisciplinary approach.

High-tech mechatronic systems are complex (a high-volume printer typically con-
sists of tens of thousands of components and millions of lines of code) and so is the
associated design process. There are many design alternatives to consider but the im-
pact of each design decision is difficult to assess. This makes the early design process
error-prone and vulnerable to failure as downstream implementation choices may be
based on it, causing a cascade of potential problems. Verhoef identifies four causes of
this problem [24]. First, the disciplines involved have distinct methods, languages and
tools. The need to mediate and translate between them can hamper development by in-
troducing opportunities for imprecision and misunderstanding. The inconsistencies that
result are difficult to detect because there is usually no structured process for analysing
system-level properties. Second, many design choices are made implicitly, based on
previous experience, intuition or assumptions, and their rationale is not recorded. This
can lead to locally optimal but globally sub-optimal designs. Third, dynamic aspects of
a system are complex to grasp and there are few methods and tools available to sup-
port reasoning about time varying aspects in design, in contrast to static or steady-state
aspects. Fourth, embedded systems are often applied in areas where dependability is
crucial, but design complexity is compounded by the need to take account of faults in
equipment or deviation by the environment (plant or user) from expected norms. Non-
functional properties associated with dependability can be hard to capture and assess.
This typically leads to designs that are over-dimensioned, making implementation im-
practical due to the associated high costs.

A strong engineering methodology for embedded systems will be collaborative 1. It
will provide notations that expose the impact of design choices early, allow modelling
and analysis of dynamic aspects and support systematic analysis of faulty as well as
normal behaviour. The hypothesis underpinning our work is that lightweight formal
and domain-specific models that capture system-level behaviour can supply many of
these characteristics, provided they can be combined in a suitable way and be eval-
uated rapidly. Formal techniques of system modelling and analysis allow the precise
modelling of desired behaviour upstream of expensive commitments to hardware and
code. The support for abstraction in formal modelling languages allows the staged intro-
duction of additional sources of complex behaviour, such as fault modelling. A recent
review of the use of formal methods [27] suggests that successful industry applica-
tions often make use of tools that offer analysis with a high degree of automation, are
lightweight in that they are targeted at particular system aspects, are robust and are
readily integrated with existing development practices.

We conjecture that a collaborative methodology based on lightweight formal mod-
elling improves the chances of closing the design loop early, encouraging dialogue be-
tween disciplines and reducing errors, saving cost and time. Throughout the paper, we
term this approach “collaborative modelling” or “co-modelling”. In previous work [24],

1 Collaboration is “United labour, co-operation; esp. in literary, artistic, or scientific work.” [23].
Simple coordination between disciplines, for example, bringing mechatronic and software en-
gineers together in the same space, or enabling communication between them, is necessary but
not sufficient to achieve collaboration.

14 J. Fitzgerald et al.

Verhoef has demonstrated that significant gains are feasible by combining VDM and
Bond Graphs, using co-simulation as the means of model assessment. Andrews et al.
have suggested that collaborative models are suited to exploring fault behaviours [1].
In this paper, we build upon these results, indicating how a collaborative modelling
approach can be realised in existing formally-based technology, how models can be ex-
tended to describe forms of faulty behaviour, and identifying requirements for design
space exploration in this context.

In Section 2 we introduce concepts underpinning co-modelling and co-simulation.
Section 3 shows how we have so far sought to realise these ideas using the VDM dis-
crete event formalism and the Bond Graph continuous-time modelling framework. We
outline some of the design decisions that face collaborative teams in the area of fault
modelling in particular. Section 4 looks towards the application of co-simulation in ex-
ploring the design space for larger products. Section 5 identifies research challenges
that spring from our experience so far.

2 Collaborative Modelling and Design Space Exploration

In our approach to collaborative development, a model is a more or less abstract rep-
resentation of a system or component of interest. We regard a model as being compe-
tent for a given analysis if it contains sufficient detail to permit that analysis. We are
primarily concerned with analysis by execution, so we will generally be interested in
formal models that, while they are abstract, are also directly executable. A test run of a
model is called a simulation. A design parameter is a property of a model that affects
its behaviour, but which remains constant during a given simulation. A simulation will
normally be under the control of a script that determines the initial values of modelled
state variables and the order in which subsequent events occur. A script may force the
selection of alternatives where the model is underspecified and may supply external
inputs (e.g. a change of set point) where required. A test result is the outcome of a
simulation over a model.

A goal of our work is to support the modelling of faults and resilience mechanisms.
Adopting the terminology of Avizienis et al. [2], we regard a fault as the cause of an
error which is part of the system state that may lead to a failure in which a system’s
delivered service deviates from specification. Fault modelling is the act of extending
the model to encompass faulty behaviours. Fault injection is the act of triggering faulty
behaviour during simulation and is the responsibility of a script.

A co-model (Figure 1 (a)) is a model composed of:

– Two component models, normally one describing a computing subsystem and one
describing the plant or environment with which it interacts. The former model
is typically expressed in a discrete event (DE) formalism and the latter using a
continuous-time (CT) formalism.

– A contract, which identifies shared design parameters, shared variables, and com-
mon events used to effect communication between the subsystems represented by
the models.

A co-model is itself a model and may be simulated under the control of a script. The
simulation of a co-model is termed co-simulation. A co-model offers an interface that

Collaborative Modelling and Co-simulation 15

Fig. 1. (a) conceptual view of a co-model (left) and (b) execution of a co-model realised using a
co-simulation engine (right)

can be used to set design parameters and to run scripts to set initial values, trigger
faulty behaviour, provide external inputs and observe selected values as the simulation
progresses. Our goal is to provide modelling and simulation techniques that support
design space exploration, by which we mean the (iterative) process of constructing
co-models, co-simulation and interpretation of test results governing the selection of
alternative models and co-models as the basis for further design steps.

In a co-simulation, a shared variable is a variable that appears in and can be accessed
from both component models. Predicates over the variables in the component models
may be stated and may change value as the co-simulation progresses. The changing of
the logical value of a predicate at a certain time is termed an event. Events are referred
to by name and can be propagated from one component model to another within a co-
model during co-simulation. The semantics of a co-simulation is defined in terms of the
evolution of these shared variable changes and event occurrences while co-model time
is passing. In a co-simulation, the CT and DE models execute as interleaved threads
of control in their respective simulators under the supervision of a co-simulation en-
gine (Figure 1 (b)). The DE simulator calculates the smallest time Δt it can run before
it can perform the next possible action. This time step is used by the co-simulation
engine in the communication to the CT simulator which then runs the solver forward
by up to Δt. If the CT simulator observes an event, for example when a continuously
varying value passes a threshold, this is communicated back to the DE simulator by the
co-simulation engine. If this event occurred prior to Δt, then the DE simulator does not
complete the full time step, but it runs forward to this shorter time step and then re-
evaluates its simulator state. Note that it is not possible (in general) to roll the DE simu-
lation back, owing to the expense of saving the full state history, whereas the CT solver
can work to specified times analytically. Verhoef et al. [25] provide an integrated oper-
ational semantics for the co-simulation of DE models with CT models. Co-simulation
soundness is ensured by enforcing strict monotonically increasing model time and a
transaction mechanism that manages time triggered modification of shared variables.

3 Co-modelling and Co-simulation in 20-Sim and VDM

The work reported in this paper is aimed at demonstrating the feasibility of multidis-
ciplinary collaborative modelling for early-stage design space exploration. As a proof

16 J. Fitzgerald et al.

of concept, methods and an open tools platform are being developed to support mod-
elling and co-simulation, with explicit modelling of faults and fault-tolerance mech-
anisms from the outset. This activity is undertaken as part of the EU FP7 Project
DESTECS [4]2.

The proof of concept work uses continuous-time models expressed as differential
equations in Bond Graphs [17] and discrete event models expressed using the Vi-
enna Development Method (VDM) [16,10] notation. The simulation engines supporting
the two notations are, respectively, 20-sim [6] 3 and Overture [18] 4. Complementary
work investigates the extension of the co-simulation approach to other modelling lan-
guages [26]. An open, extensible tools platform will be developed, populated with plug-
ins to support static analysis, co-simulation, testing and fault analysis. Trials will be
conducted on industrial case studies from several domains, including document hand-
ling, heavy equipment and personal transportation. Aspects of the latter study are intro-
duced in Section 4. In this section we first introduce the two modelling notations and
their tools (Sections 3.1–3.2) before discussing a simple example of co-simulation (Sec-
tion 3.3) and fault modelling (Section 3.4).

3.1 VDM

VDM is a model-oriented formal method that permits the description of functionality at
a high level of abstraction. The base modelling language, VDM-SL, has been standard-
ised by ISO [15]. Extensions have been defined for object-orientation (VDM++ [11])
and real-time embedded and distributed systems (VDM-RT [19]). VDM-RT includes
primitives for modelling deployment to a distributed hardware architecture and support
for asynchronous communication.

VDM is supported by industrial strength tools: VDMTools [8,12] and the open source
Overture tool [18] (being developed with the Eclipse Platform). Both tools have been
extended with the capability to generate logfiles derived from execution of VDM-RT
models [9,19].

3.2 20-Sim

20-sim [6], formerly CAMAS [5], is a tool for modelling and simulation of dynamic
systems including electronics, mechanical and hydraulic systems. All models are based
on Bond Graphs [17] which is a non-causal technology, where the underlying equations
are specified as equalities. Hence variables do not initially need to be specified as in-
puts or outputs. In addition, the interface between Bond Graph elements is port-based
where each port has two variables that are computed in opposite directions, for example
voltage and current in the electrical domain. 20-sim also supports graphical represen-
tation of the mathematical relations between signals in the form of block diagrams and
iconic diagrams (building blocks of physical systems like masses and springs) as more
user friendly notations. Combination of notations is also possible, since Bond Graphs
provide a common basis. It is possible to create sub-models of multiple components or
even multiple sub-models allowing for a hierarchical model structure.

2 http://www.destecs.org/
3 http://www.20sim.com/
4 http://www.overturetool.org/

http://www.destecs.org/
http://www.20sim.com/
http://www.overturetool.org/

Collaborative Modelling and Co-simulation 17

dV

dt
= ϕin − ϕout (1)

ϕout =
{ ρ∗g

A∗R ∗ V if valve open
0 if valve closed

(2)

Fig. 2. Water tank level controller case study system overview

3.3 Basic Co-simulation in 20-Sim and VDM

In this section, co-simulation between a VDM and 20-sim model is illustrated by means
of a simple example based on the level controller of a water tank (Figure 2). The tank
is continuously filled by the input flow ϕin, and can be drained by opening the valve,
resulting in the output flow ϕout. The output flow through the valve when this is opened
or closed is described by Equation 2 in Figure 2, where ρ is the density of the water, g
is acceleration due to gravity, A is the surface area of the water tank, R is the resistance
in the valve and V is the volume. An iconic diagram model of this system created in 20-
sim is shown in Figure 3 (a). There are two simple requirements for the discrete-event
controller: when the water reaches the “high” level mark the valve must be opened, and
when the water reaches the “low” level mark, the valve must be closed. A VDM model
of the controller is in Figure 3 (b).

The controller model is expressed in VDM-RT. An instance variable represents the
state of the valve and the asynchronous Open and Close operations set its value.
Both operations are specified explicitly in the sense that they are directly executable.
In order to illustrate the recording of timing constraints in VDM-RT, the duration
and cycles statements constrain the time taken by the operations to 50 ms in the
case of Open and 1000 processor cycles in the case of Close. The time taken for a
Close operation is therefore dependent on the defined speed of the computation unit
(CPU) on which it is deployed (described elsewhere in the model). The synchronisation
constraints state that the two operations are mutually exclusive.

A co-model can be constructed consisting of the 20-sim model and VDM model
shown above. The co-simulation contract between them identifies the events from the
CT model that are coupled to the operations in the DE model and indicates that valve
is shared between the two models. The contract indicates which state event triggers
which operations. In the case the water level rises above the upper sensor, the Open
operation shall be triggered and respectively when the water level drops below the lower
sensor, the Close operation shall be called. Note that valve represents the actual
state of the valve, not merely the controller’s view of it. These facets are explored in
Section 3.4 below.

18 J. Fitzgerald et al.

class Controller

instance variables
private i : Interface

operations
async public Open:() ==> ()
Open() == duration(50)

i.SetValve(true);

async public Close:() ==> ()
Close() == cycles(1000)

i.SetValve(false);

sync
mutex(Open, Close);
mutex(Open); mutex(Close)

end Controller

Fig. 3. (a) 20-Sim model (left) and (b) event-driven controller in VDM (right)

3.4 Modelling of Faults

The water tank case study has so far considered only the nominal behaviour of the
environment and controller. This section considers the types of faults that one might
wish to explore using co-simulation and how they might be modelled, taking the water
tank as an example. The choice of which faults to model depends on the purpose of the
overall modelling process. For example, where the purpose is to identify mechanisms
for recovering from or tolerating faults that lead to significant system-level failures
(those with unacceptable likelihood or severity), an analytic technique such as Fault
Tree Analysis might be used to identify particular faults that lead to significant system
failures. However faults of interest are identified, the model must be made competent
to express them and to describe any recovery or tolerance measure to be put in place.

Sensor and actuator faults are particularly interesting because they typically cross the
boundary between components of the co-model. In the water tank example, the sensors
(high and low) and the actuator (valve) are not modelled as distinct units. Their connec-
tion is realised purely through the co-simulation framework and is essentially perfect
— the controller is always notified of events and the valve always reacts correctly to the
controller.

The designer faces a choice of alternative ways in which to represent sensor and ac-
tuator faults. One approach is to specify failures of communication in the co-simulation
contract. This is somewhat disconnected from reality however, since a contract will not
necessarily map directly to the physical sensors and actuators of the real system. In our
current work, we advocate keeping the contract pure and instead introducing explicit

Collaborative Modelling and Co-simulation 19

models of sensors and actuators to either the controller or plant model (or both where
necessary). These models can then exhibit faulty behaviour as required. Since the con-
troller and plant are modelled in far richer languages than the contract, this approach
provides scope for describing complex faults. In addition, the capability to exhibit faults
then exists statically in the controller and/or plant model and not simply dynamically as
part of the co-simulation.

Bearing this in mind, we can introduce sensors and actuators into the model shown
above. Let us first consider a faulty valve that can become stuck. That is, if the valve is
open it will not close when commanded and if it is closed it will not open. We make the
co-model competent to exhibit this fault by introducing a ValveActuator class into
the VDM controller model, representing the actuator (Figure 4).

class ValveActuator

types
ValveCommand = <OPEN> | <CLOSE>;

instance variables
private i : Interface;
private stuck : bool := false

operations
public Command: ValveCommand ==> ()
Command(c) == duration(50)
if not stuck then
cases c:
<OPEN> -> i.SetValve(true),
<CLOSE> -> i.SetValve(false)

end
pre not stuck
post i.ReadValve() <=> c = <OPEN> and

not i.ReadValve() <=> c = <CLOSE>
errs STUCK : stuck -> i.ReadValve() = ˜i.ReadValve();

private SetStuckState: bool ==> ()
SetStuckState(b) == stuck := b
post stuck <=> b and not stuck <=> not b;

end ValveActuator

Fig. 4. Explicit model of a valve in VDM, which can exhibit a stuck fault

First, note the instance variable stuck. This represents an internal error state: when
stuck is false, the valve actuator will behave correctly. An operation called
SetStuckState is defined to control when the valve actuator becomes stuck. In this

20 J. Fitzgerald et al.

model, no logic is included to control exactly when faults occur. A more complex fault
model could include parameters to tune when faults occurred, for example, based on
stochastic measures. Alternatively, the SetStuckState operation could be exposed
to the co-simulation tool, which could then activate the fault during a co-simulation, in
response to some scripted behaviour. Both methods have benefits and drawbacks, so it
is suggested that the DESTECS approach will allow both, leaving it up to the user to
decide.

Second, consider the main operation of the class called Command. This operation
should open and close the valve (using i.SetValve), depending on the command
given. Note that in Figure 3 (b), the controller was directly responsible for operating the
valve. In this new model however, the controller must call the Command operation. The
body of Command gives an explicit definition for the operation, which is reasonably
intuitive — if the valve is not stuck, the valve will open if the command given was
<OPEN> and close if the command was <CLOSE>. If the valve is stuck, nothing will
happen.

In addition to the explicit definition, a precondition, postcondition and errors clause
are also given. The precondition records assumptions about the state and input parame-
ters when an operation is invoked. In this case, the precondition states that the operation
will only behave correctly if the valve is not stuck. The postcondition captures the be-
haviour of the operation as a relation between the initial and final state. Postconditions
must hold if the precondition holds. It is obvious however that the precondition may not
be met, i.e. when the valve is stuck. In this case, it is not necessary for the operation to
meet the postcondition and its behaviour is typically undefined. We can however intro-
duce an errors clause to capture the behaviour when the valve is stuck. Here, the errs
clause records that the valve’s state will remain unchanged (note ˜-prefixed instance
variable names indicate the initial value of the variable).

Another valve fault that might be considered is a leak. A simple model of a leaky
valve would be one in which a constant amount of water flows out of the tank, even
when the valve is closed. It is much more natural to model this fault in 20-sim, since
it involves altering the flow rate (part of the plant model). Reproducing this on the
VDM side would (at least) involve modifying the co-simulation contract to allow direct
modification of the flow rate, which is an inelegant solution. Thus a modification of the
20-sim plant model is required. A diagram of the modified model is given in Figure 5
(based on Figure 3).

Fig. 5. Block diagram model of a valve which can exhibit a leak

Collaborative Modelling and Co-simulation 21

The leak is modelled as an alternative route for water to flow from the tank to the
drain, bypassing the valve. The rate of flow is a constant (K). As with the VDM model,
the fault can be active or dormant (zero flow). In 20-sim however, activation of the fault
is modelled as an input signal to the leaky component, in much the same way that the
valve control activates the flow of water through the valve itself. As with the previous
fault, this activation signal could be sent by the co-simulation framework executing a
script to allow for fault injection. Using 20-sim to model this fault also allows for more
complex models, for example a leak where the rate of flow depends on the pressure.

A scenario that could be explored with this leaky valve in the plant model would be
to see whether or not the controller could discover that such a leak existed, based on
the sensors with which it can observe the plant. Currently, the controller would only
discover a potential leak if the low water sensor was activated while the valve was
closed. Based on this discovery, we might suggest additional sensors that would allow
the controller to discover a leak sooner.

4 Towards the Exploration of Design Alternatives

As indicated in Section 1, our practical approach to formal modelling of embedded sys-
tems must address the need to support the comparison and selection of design alterna-
tives. Section 3.4 discussed some of the choices that developers can face in constructing
a co-model for a simple control system that includes fault behaviour. In this section, we
look towards the support for design space exploration based on the use of co-models,
using a more substantial case study.

The ChessWay is an industrial challenge problem originated by Chess. It is a self-
balancing personal transporter, much akin to the well-known Segway 5. The device has
two wheels, mounted on either side of a base platform on which the rider can stand,
holding on to a handlebar (Figure 6). The systems weight is mostly positioned above
the two powerful, direct drive wheels. As such, it acts like an inverted pendulum and is
therefore unstable. In order to stop the ChessWay from falling over and perhaps injuring
the rider, it must be actively balanced by driving the wheels. The aim of the system
controller therefore is to keep the ChessWay upright, even while stationary. It can do
this by applying torque to each wheel independently, such that the base of the ChessWay
is always kept directly underneath the centre of gravity of the entire system. The rider
can move forward (and backward) by leaning forward (or backward). The controller
measures the deviation angle of the handlebar and performs an immediate control action
in order to keep the ChessWay stable, similar to the way that you might try to balance a
pencil on the tip of your finger.

The control laws for this kind of system are relatively simple, but the ChessWay
remains a challenging control problem because the desired nominal system state is in
fact metastable. Furthermore, the system dynamics require high frequency control in
order to guarantee smooth and robust handling. Safety plays a crucial (complicating)
role: there are circumstances in which the safest thing for the controller to do is to al-
low the ChessWay to fall over. For example, if the ChessWay is lying on the floor (90
degrees deviation from upright), then the controller needs a dangerously large torque

5 http://www.segway.com/

http://www.segway.com/

22 J. Fitzgerald et al.

Fig. 6. The ChessWay personal transporter

to correct this. This would result in the handlebar swinging suddenly upright, possibly
hitting the user. In fact, any sudden deviation exceeding 10 degrees from upright could
result in similarly violent control correction subjected to the user. This obviously di-
minishes the driving experience, which should be smooth and predictable. Moreover, it
is intuitively clear that even small failures of the hardware or software could easily lead
to the ChessWay malfunctioning.

The challenge is to find a modelling methodology that allows the system developer
to define a controller strategy (based on several possible user scenarios), while reason-
ing about the suitability of the system under possibly changing environmental condi-
tions and in the presence of potential faults. The need for this methodology is easily
demonstrated by the well-known public debate regarding the legality of allowing the
Segway on public roads. For the device to become street legal, its usability had to be
demonstrated to several third parties (such as government road safety inspectors) and to
private insurance companies. This is of course a significant challenge and representative
for many industrial products being developed today.

In the ChessWay case study, we should be able to specify multi-modal controller
behaviour. For example, the controller should contain a start-up procedure in which the
user must manually hold the ChessWay upright for a certain amount of time, before
the controller will begin to balance the device actively. Similarly, the user may step off
the platform and the controller needs to be turned off at some point. Furthermore, we
wish to model an independent safety controller which monitors and intervenes in the
case of extreme angles, hardware failure, sensor failure and so on. In addition, we wish
to model: a joystick, allowing the user to turn the ChessWay; degraded behaviour, based
on low battery level; a safety key, in case the user falls off; a parking key, allowing the
user to safely stop the ChessWay; and feedback to the user, in the form of LED indica-
tors. It is clear that even this simple case study demonstrates the intrinsic complexity of
modern real-time control systems.

There are numerous faults which we would hope to explore by developing and co-
simulating a ChessWay co-model. These include sensor failures (e.g. missing, late, or

Collaborative Modelling and Co-simulation 23

jittery data) of the accelerometer, gyroscope, safety key and steering joystick. Other
issues can arise with hardware, such as battery degradation, communication bus faults,
and CPU crashes. In addition, complex environmental factors are not currently mod-
elled. For example, uneven surfaces or those where the wheels experience different
friction; or scenarios in which the ChessWay collides with obstacles or loses ground
contact. Users can also cause faults, such as rapidly leaning forward on the ChessWay,
which can lead to a dangerous overreaction of the controller 6.

The trade-off between safety, functionality and cost price is a typical bottleneck dur-
ing system design. There are numerous factors to be explored in the ChessWay study.
Low-cost accelerometers may be sufficient to meet the basic system requirements, while
a more expensive IMU (Inertial Measurement Unit) could deliver a wider safety mar-
gin, reduced complexity and better performance, but at a higher cost. Choice of motor,
desired top speed and desired running time will affect choice of battery capacity. In
turn, battery capacity affects the size and weight of the battery, which affects the design
of the frame and so on. Electronics and processors must be selected to meet the timing
requirements. Deciding between the myriad options is envisioned as a typical design
space exploration task in the DESTECS project.

The large variety in usage scenarios, functional requirements, environmental condi-
tions and fault types described above makes it clear that suitable analysis of any design
can only be sensibly done semi-automatically. It is also clear that current state of the art
modelling technology does not provide efficient means to do so (at the appropriate level
of abstraction). Rapid co-model analysis by simulation will be used in the DESTECS
project to explore the design space. This iterative process rates each possible design
on a number of predefined quantitative and qualitative (and possibly conflicting) de-
sign objectives for predefined sets of scenarios, environment conditions and faults. This
ranking provides objective insight into the impact of specific design choices and this
guides, supports and logs the decision making process.

5 Concluding Remarks

We have presented an approach to collaborative modelling and co-simulation with an
emphasis on exploring the design space of alternative fault models. Our work is in
very early stages, but we have already demonstrated the feasibility of coupling discrete
event models in VDM with continuous-time models in 20-Sim using existing tools. We
believe that we have viable apparatus on which to build tools that will allow design
exploration in terms co-models (and explicit fault models in particular).

Several authors have argued that the separation of the physical and abstract soft-
ware worlds impedes the design of embedded systems. Henzinger and Sifakis conclude
that a new discipline of embedded systems design, developed from basic theory up,
is required [14]. Lee argues that new (time-explicit) abstractions are needed [20]. Our
approach brings relevant timing requirements into otherwise conventional formal con-
troller models. We expect that developing methods and tools for collaborative mod-
elling and co-simulation, especially for fault-tolerant systems, will yield insights into
the mathematical frameworks required for a unified discipline.

6 Search www.youtube.com for “segway crashes” for examples of malicious users.

www.youtube.com

24 J. Fitzgerald et al.

Our work aims for a pragmatic, targeted exploitation of formal techniques to get
the best value from currently under-exploited formal methods and tools. Note that in
early design stages, we are not interested in a design that is provably correct under all
circumstances, but in finding the class of system models that is very likely to have that
property when studied in more detail. This is sound engineering practice, because in
reality the cost involved in performing this detailed analysis for a specific design is
usually significant and can be performed at most once during the design of a system.

The concept of co-simulation has also attracted interest. Nicolescu et al. [22,21] pro-
pose CODIS, a co-simulation approach based on a generic “co-simulation bus” archi-
tecture. Verhoef’s semantics [24] appears to differ from CODIS in that there is a direct
connection between the CT interface and the operational semantics of the DE system.
The COMPASS project [3] aims to support co-engineering of critical on-board systems
for the space domain, using probabilistic model checking of AADL models extended
with an explicit notion of faults. The MODELISAR7 project shares many goals with
the DESTECS project, particularly in using co-simulation to aid collaborative design. It
is focused on the automotive industry and uses the Modelica [13] modelling language.
The main output is the definition of a “Function Mock-up Interface” (FMI), which is
essentially a specification for co-simulation. Models can be co-simulated by generating
C-code which implement this FMI. There is less focus on explicit fault modelling.

Ptolemy [7] is a radically different actor-based framework for the construction of
models of complex systems with a mixture of heterogeneous components, where dif-
ferent models of computation can be used at different hierarchical modelling levels.
The Ptolemy execution semantics provides facilities that address similar goals to co-
simulation – this is especially true for the built-in tool HyVisual.

Our exploration of co-models is already beginning to raise interesting questions for
future work. Even the simple water tank example shows the choices facing modellers –
some of which might not be explicit in more conventional development processes. For
example, faults can be modelled on either side of the co-model and there is flexibility
in how much fault behaviour is encoded within the model, as opposed to the external
script driving a co-simulation. Practical experience will yield guidelines for modellers
in future. Further, our goal is to develop patterns that allow the automatic (or semi-
automatic) enhancement of normative models with descriptions of faulty behaviour.

We have argued that co-simulation should not be decoupled from design space ex-
ploration. A necessary activity is to develop forms of ranking and visualisation for test
outcomes in order to support model selection. Further, a means of validating system-
level timing properties by stating validation conjectures is required [9]. Regarding the
co-simulation framework, there are open questions. Here there are open questions about
how open the co-model’s interface to the script should be. For example, should private
variables and operations be made available to the script, or should the information hid-
ing (in the DE models in particular) be enforced on the script? These are currently
open points.

Finally, collaborative modelling and co-simulation have the same strengths and weak-
nesses as all formal modelling. The predictive accuracy of models depends in turn on
the accuracy with which properties, especially timing properties, of components can be

7 http://www.modelisar.org/fmi.html

http://www.modelisar.org/fmi.html

Collaborative Modelling and Co-simulation 25

determined. The linking of heterogeneous models by co-simulation contracts brings into
the light many of the choices and conflicts that are currently only poorly understood,
or are made implicitly or with weak justification. It is to be hoped that exposing these
decisions to scrutiny will help to reduce the late feedback and rework that characterises
so much embedded systems development today.

Acknowledgements. We are grateful to our colleagues in the EU FP7 project DESTECS,
and we especially acknowledge the contributions of Jan Broenink. In addition we would
like to thank Nick Battle for providing input on this paper. Fitzgerald’s work is also
supported by the EU FP7 Integrated Project DEPLOY and by the UK EPSRC platform
grant on Trustworthy Ambient Systems (TrAmS).

References

1. Andrews, Z.H., Fitzgerald, J.S., Verhoef, M.: Resilience Modelling through Discrete Event
and Continuous Time Co-Simulation. In: Proc. 37th Annual IFIP/IEEE Intl. Conf. on De-
pendable Systems and Networks, vol. (Supp.), pp. 350–351. IEEE Computer Society, Los
Alamitos (June 2007)

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of de-
pendable and secure computing. IEEE Transactions on Dependable and Secure Computing 1,
11–33 (2004)

3. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: The compass
approach: Correctness, modelling and performability of aerospace systems. In: Buth, B.,
Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol. 5775, pp. 173–186. Springer,
Heidelberg (2009)

4. Broenink, J.F., Larsen, P.G., Verhoef, M., Kleijn, C., Jovanovic, D., Pierce, K., Wouters, F.:
Design support and tooling for dependable embedded control software. In: Proc. of Serene
2010 International Workshop on Software Engineering for Resilient Systems. ACM, New
York (2010)

5. Broenink, J.F.: Computer-aided physical-systems modeling and simulation: a bond-graph
approach. Ph.D. thesis, Faculty of Electrical Engineering, University of Twente, Enschede,
Netherlands (1990)

6. Broenink, J.F.: Modelling, Simulation and Analysis with 20-Sim. Journal A Special Issue
CACSD 38(3), 22–25 (1997)

7. Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., Xiong,
Y.: Taming heterogeneity – the Ptolemy approach. Proceedings of the IEEE 91(1), 127–144
(January 2003)

8. Elmstrøm, R., Larsen, P.G., Lassen, P.B.: The IFAD VDM-SL Toolbox: A Practical
Approach to Formal Specifications. ACM Sigplan Notices 29(9), 77–80 (1994)

9. Fitzgerald, J.S., Larsen, P.G., Tjell, S., Verhoef, M.: Validation Support for Real-Time Em-
bedded Systems in VDM++. In: Cukic, B., Dong, J. (eds.) Proc. HASE 2007: 10th IEEE High
Assurance Systems Engineering Symposium, pp. 331–340. IEEE, Los Alamitos (November
2007)

10. Fitzgerald, J., Larsen, P.G.: Modelling Systems – Practical Tools and Techniques in Software
Development, 2nd edn. Cambridge University Press, Cambridge (2009), ISBN 0-521-62348-
0

11. Fitzgerald, J., Larsen, P.G., Mukherjee, P., Plat, N., Verhoef, M.: Validated Designs for
Object–oriented Systems. Springer, New York (2005), http://www.vdmbook.com

http://www.vdmbook.com

26 J. Fitzgerald et al.

12. Fitzgerald, J., Larsen, P.G., Sahara, S.: VDMTools: Advances in Support for Formal Model-
ing in VDM. ACM Sigplan Notices 43(2), 3–11 (2008)

13. Fritzson, P., Engelson, V.: Modelica - a unified object-oriented language for system mod-
elling and simulation. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 67–90. Springer,
Heidelberg (1998)

14. Henzinger, T., Sifakis, J.: The Discipline of Embedded Systems Design. IEEE Com-
puter 40(10), 32–40 (2007)

15. Information technology – Programming languages, their environments and system software
interfaces – Vienna Development Method – Specification Language – Part 1: Base language
(December 1996)

16. Fitzgerald, J.S., Larsen, P.G., Verhoef, M.: Vienna Development Method. In: Wah, B. (ed.)
Wiley Encyclopedia of Computer Science and Engineering. John Wiley & Sons, Inc., Chich-
ester (2008)

17. Karnopp, D., Rosenberg, R.: Analysis and simulation of multiport systems: the bond graph
approach to physical system dynamic. MIT Press, Cambridge (1968)

18. Larsen, P.G., Battle, N., Ferreira, M., Fitzgerald, J., Lausdahl, K., Verhoef, M.: The Overture
Initiative – Integrating Tools for VDM. ACM Software Engineering Notes 35(1) (January
2010)

19. Larsen, P.G., Fitzgerald, J., Wolff, S.: Methods for the Development of Distributed Real-
Time Systems using VDM. International Journal of Software and Informatics 3(2-3)
(October 2009)

20. Lee, E.A.: Computing needs time. Communications of the ACM 52(5), 70–79 (2009)
21. Nicolescu, G., Boucheneb, H., Gheorghe, L., Bouchhima, F.: Methodology for efficient de-

sign of continuous/discrete-events co-simulation tools. In: Anderson, J., Huntsinger, R. (eds.)
High Level Simulation Languages and Applications, SCS, San Diego, CA, pp. 172–179
(2007)

22. Nicolescu, G., Bouchhima, F., Gheorghe, L.: CODIS – A Framework for Continuous/Dis-
crete Systems Co-Simulation. In: Cassandras, C.G., Giua, A., Seatzu, C., Zaytoon, J. (eds.)
Analysis and Design of Hybrid Systems, pp. 274–275. Elsevier, Amsterdam (2006)

23. Oxford English Dictionary Online. Oxford University Press (2010)
24. Verhoef, M.: Modeling and Validating Distributed Embedded Real-Time Control Systems.

Ph.D. thesis, Radboud University Nijmegen (2008), ISBN 978-90-9023705-3
25. Verhoef, M., Visser, P., Hooman, J., Broenink, J.: Co-simulation of Real-time Embedded

Control Systems. In: Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 639–
658. Springer, Heidelberg (2007)

26. Wolff, S., Larsen, P.G., Noergaard, T.: Development Process for Multi-Disciplinary Embed-
ded Control Systems. In: EuroSim 2010, EuroSim (September 2010)

27. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal Methods: Practice and
Experience. ACM Computing Surveys 41(4), 1–36 (2009)

Programming with Miracles

Rajeev Joshi

Laboratory for Reliable Software�

NASA Jet Propulsion Laboratory, Pasadena, CA, USA

Abstract. In his seminal book, A Discipline of Programming [EWD 76],

Dijkstra proposed that all sequential programs satisfy four laws for their

weakest preconditions. By far the catchiest name was reserved for the

Law of the Excluded Miracle, which captured the intuition that, started

in a given state, a program execution must either terminate or loop

forever. In the late 1980s, both Nelson [GN 89] and Morgan [CCM 90]

noted that the law was unnecessarily restrictive when writing programs

to be used as specifications. In the years since,“miracles” have become

a standard feature in specification languages (for instance, the assume

statement in JML [LLP+00] and BoogiePL [DL 05]).

What is perhaps surprising is that miracles are not as commonly used

in programs written as implementations. This is surprising because for

many everyday tasks, programming in a language with miracles is often

far superior to the popular scripting languages that are used instead. In

this talk, we build upon pioneering work by Burrows and Nelson [GN 05]

who designed the language LIM (“Language of the Included Miracle”).

We describe a language LIMe (“LIM with extensions”), and discuss its

application in the context of flight software testing, including the analysis

of spacecraft telemetry logs.

References

[EWD 76] Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood

Cliffs (1976)

[GN 89] Nelson, G.: A Generalization of Dijkstra’s Calculus. ACM Transactions on

Programming Languages and Systems (TOPLAS) 11(4) (1989)

[CCM 90] Carroll Morgan, C.: Programming from specifications, Prentice Hall Inter-

national Series in Computer Science, NJ, USA (1990), 2nd edition (1994)

[LLP+00] Leavens, G.T., Leino, K.R.M., Poll, E., Ruby, C., Jacobs, B.: JML: no-

tations and tools supporting detailed design in Java. In: OOPLSA 2000

Companion, pp. 105–106. ACM, New York (2000)

[DL 05] DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for

checking object-oriented programs, Microsoft Research Technical Report

MSR-TR-2005-70 (March 2005)

[GN 05] Nelson, G.: LIM and Nanoweb, Hewlett-Packard Laboratories Technical

Report HPL-2005-41 (February 2005)

� The research described in this talk was carried out at the Jet Propulsion Laboratory,

California Institute of Technology, under a contract with the National Aeronautics

and Space Administration.

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, p. 27, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Event-B Approach to Data Sharing Agreements

Alvaro E. Arenas, Benjamin Aziz, Juan Bicarregui, and Michael D. Wilson

e-Science Centre, STFC Rutherford Appleton Laboratory
Oxfordshire OX11 0QX, U.K.

{alvaro.arenas,benjamin.aziz,juan.bicarregui,
michael.wilson}@stfc.ac.uk

Abstract. A Data Sharing Agreement (DSA) is a contract among two or more
principals regulating how they share data. Agreements are usually represented
as a set of clauses expressed using the deontic notions of obligation, prohibition
and permission. In this paper, we present how to model DSAs using the Event-B
specification language. Agreement clauses are modelled as temporal-logic for-
mulas that preserve the intuitive meaning of the deontic operators, and constrain
the actions that a principal can execute. We have exploited the ProB animator and
model checker in order to verify that a system behaves according to its associ-
ated DSA and to validate that principals’ actions are in agreement with the DSA
clauses.

Keywords: Data Sharing Agreements; Formal Analysis; Event-B.

1 Introduction

Data sharing is increasingly important in modern organisations. Every organisation re-
quires the regular exchange of data with other organisations. Although the exchange of
this data is vital for the successful inter-organisational process, it is often confidential,
requiring strict controls on its access and usage. In order to mitigate the risks inherent
in sharing data between organisations, Data Sharing Agreements (DSAs) are used to
ensure that agreed data policies are enforced across organisations [11].

A DSA is a legal agreement among two or more parties regulating who can access
data, when and where, and what they can do with it. DSAs either include the data poli-
cies explicitly as clauses, or include existing organisational data policies by reference.
DSA clauses includes deontic notions stating permissions for data access and usage,
prohibitions on access and usage which constrain these permissions, and obligations
that the principles to the agreement must fulfil. DSA can be created between an or-
ganisation and each of many collaborators. A single data set may result from multiple
sources, so that the clauses in the DSA with each contributor need to be combined to-
gether and applied to it. DSAs are represented in natural language with its concomitant
ambiguities and potential conflicts, which are exacerbated by DSA combination. Natu-
ral language DSA clauses can be enforced by transforming them into executable policy
languages [5]. However, support is required to ensure this transformation conveys the
intention of the natural language, while avoiding its potential problems. The formal
representation and analysis of agreement clauses could provide this support.

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 28–42, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Event-B Approach to Data Sharing Agreements 29

This paper presents a formalisation of DSAs using the Event-B specification lan-
guage [2]. This involves incorporating normative deontic notions (obligations, permis-
sions and prohibitions) into the Event-B modelling process. The main contribution of
the paper is the development of an approach to model agreements using the Event-B
specification language. The process itself forces the explicit statement of implicit as-
sumptions underlying the natural language which are required in the formal modelling.
The contribution includes a method to transform natural-language data-sharing agree-
ment clauses, including deontic notions, into linear temporal logic predicates suitable
for verification and validation.

The paper is structured as follows. Section 2 introduces DSAs and their main com-
ponents. Then, section 3 summarises the Event-B method. Section 4 presents our ap-
proach to model contracts in Event-B, and section 5 applies that approach to a DSA
for scientific collaborations. Section 6 discusses the verification and validation of con-
tracts in Event-B. Finally, section 7 relates our work with others, and section 8 presents
concluding remarks and highlights future work.

2 An Overview of Data Sharing Agreements

To introduce DSAs, we take as an example data sharing in scientific collaborations [4].
Large-scale research facilities such as particle accelerators and synchrotrons are used
by teams of scientists from around the world to produce data about the structure of
materials which can be used in many ways, including to create new products, change
industrial methods or identify new drugs. There are many individuals and organisations
involved in these processes who make agreements with each other to share the data
from the facilities, within specified time limits, and for use in particular ways.

Data sharing requirements are usually captured by means of collaboration agreements
among the partners, typically established during the scientific proposal preparation. They
usually contains clauses defining what data will be shared, the delivery/transmission
mechanism, the processing and security framework, among others. Following [12], a
DSA consists of a definition part and a collection of agreement Clauses. The definition
part usually includes the list of involved Principals; the start and end dates of the agree-
ment; and the list of Data covered by the agreement. Three type of clauses are relevant
for DSAs: Authorisation, Prohibitions and Obligation clauses. Authorisations indicate
that specified roles of principal are authorised to perform actions on the data within con-
straints of time and location. Prohibitions act as further constraints on the authorisations,
prohibiting actions by specific roles at stated times and locations. Obligations indicate
that principals, or the underlying infrastructure, are required to perform specified ac-
tions following some event, usually within a time period. The DSA will usually contain
processes to be followed, or systems to be used to enforce the assertions, and define
penalties to be imposed when clauses are breached.

For instance, in the case of scientific collaborations, principals typically involve in-
vestigators and co-investigators from universities or industrial research departments,
and a scientific facility provider, whose facilities provide the infrastructure for

30 A.E. Arenas et al.

performing scientific experiments. Data generated from experiments is usually held on
a experimental database, which is exposed via a web service API. The following are
examples of DSA clauses, taken from existing DSAs:

1. During the embargo period, access to the experimental data is restricted to the prin-
cipal investigator and co-investigators.

2. After the embargo period, the experimental data may be accessed by all users.
3. Access to data must be denied to users located in un-secure locations such as the

cafeteria.
4. System must notify principal investigator when a public user access experimental

data, within 2 days after the access.
5. User must renew use license within 30 days if it has expired before the three year

embargo period.

Clauses 1 and 2 correspond to authorisation clauses. Clause 3 is a prohibition. Clauses
4 and 5 are examples of obligation clauses.

2.1 Main Components of Data Sharing Agreements

The set-up of DSAs requires technologies such as DSA authoring tools [8], which may
include controlled natural language vocabularies to define unambiguously the DSAs
conditions and obligations; and translators of DSAs clauses into enforceable policies.
Our work aims at providing formal reasoning support to DSA authoring tools such as
the one presented in [8], focusing mainly on the clauses part of a DSA.

We represent DSA clauses as guarded actions, where the guard is a predicate char-
acterising environmental conditions, such as time and location, or restrictions for the
occurrence of the event, such as ”user is registered” or ”data belongs to a project”.

Definition 1. (Action). An action is a tuple consisting of three elements 〈p, an, d〉,
where p is the principal, an is an action name, and d is the data.

Action 〈p, an, d〉 expresses that the principal p performs action name an on the data d.
Action names represent atomic permissions, where actions are built from by adding the
identity of the principal performing the action name and the data on which the action
name is performed. Actions are analogous to fragments defined in [8], We assume that
actions are taken from a pre-defined list of actions, possibly derived from an ontology.
An example of an action is ”Alice accesses experimental data”, where ”Alice” is the
principal, ”accesses” is the action and ”experimental data” is the data.

We are interested in four types of of clauses: permissions, prohibitions, bounded
obligations, and obligations. Clauses are usually evaluated within a specific context,
which is represented by a predicate characterising environmental conditions such as
location and time.

Definition 2. (Agreement Clause). Let G be a predicate, n an integer denoting a time
unit, and a = 〈p, an, d〉 be an action. The syntax of agreement clauses is defined as
follows:

An Event-B Approach to Data Sharing Agreements 31

C ::= IF G THEN P(a) | IF G THEN F(a)
| IF G THEN O(a) | IF G THEN On(a)

In the following, we provide an intuitive explanation of the clause syntax. A more
precise meaning will be given later when representing agreement clauses in the Event-B
language. A permission clause is denoted as IF G THEN P(a), which indicates that
provided the condition G holds, the system may perform action a. A prohibition clause
is denoted as IF G THEN F(a), which indicates that the system must not perform ac-
tion a when condition G holds. An obligation clause is denoted as IF G THEN O(a),
which indicates that provided the condition G holds, the system eventually must per-
form action a. Finally, a bounded-obligation clause is denoted as IF G THEN On(a),
which indicates that provided the condition G holds, the system must perform action a
within n time units.

A data sharing agreement can be defined as follows.

Definition 3. (Data Sharing Agreement). A DSA is a tuple
〈Principals, Data, ActionNames, fromT ime, endT ime, P(C)〉.
Principals is the set of principals signing the agreement and abiding by its clauses.
Data is the data elements to be shared. ActionNames is a set containing the name
of the actions that a party can perform on a data. fromT ime and endT ime denotes
the starting and finishing time of the agreement respectively; this is an abstraction rep-
resenting the starting and finishing date of the agreement. Finally, P(C) is the set of
clauses of the agreement.

3 Event-B with Obligations

3.1 Introduction to Event-B

Event-B [2] is an extension of Abrial’s B method [1] for modelling distributed systems.
In Event-B, machines are defined in a context, which has a unique name and is identified
by the keyword CONTEXT. It includes the following elements: SETS defines the sets
to be used in the model; CONSTANTS declares the constants in the model; and finally,
AXIOMS defines some restrictions for the sets and includes typing constraints for the
constants in the way of set membership.

An Event-B machine is introduced by the MACHINE keyword, it has a unique name
and includes the following elements. VARIABLES represents the variables (state) of
the model. INVARIANT describes the invariant properties of the variables defined
in the clause VARIABLES. Typing information and general properties are described
in this clause. These properties shall remain true in the whole model and in further
refinements. Invariants need to be preserved by the initialisation and events clauses.
INITIALISATION allows to give initial values to the variables of the system. EVENTS
cause the state to change by updating the values of the variables as defined by the gener-
alised substitution of the event. Events are guarded by a condition, which when satisfied
implies that the event is permitted to execute by applying its generalised substitution in
the current state of the machine.

32 A.E. Arenas et al.

Event-B also incorporates a refinement methodology, which can be used by software
architects to incrementally develop a model of a system starting from the initial most
abstract specification and following gradually through layers of detail until the model
is close to the implementation.

In Event-B, an event is defined by the syntax: EVENT e WHEN G THEN S END ,
where G is the guard, expressed as a first-order logical formula in the state variables, and
S is any number of generalised substitutions, defined by the syntax S ::= x := E(v) |
x := z : |P (z). The deterministic substitution, x := E(v), assigns to variable x the
value of expression E(v), defined over set of state variables v. In a non-deterministic
substitution, x := z : |P (z), it is possible to choose non-deterministically local vari-
ables, z, that will render the predicate P (z) true. If this is the case, then the substitution,
x := z, can be applied, otherwise nothing happens.

3.2 Linear Temporal Logic in Event-B

The Event-B Rodin platform1 has associated tools, such as ProB2 and Atelier B3 for
expressing and verifying Linear Temporal Logic (LTL) formulae properties of Event-
B specifications. LTL formulae are defined based on a set of propositional variables,
p1, p2 . . ., the logical operators, ¬ (not), ∧ (and), ∨ (or), → (implication), as well as
future temporal operators: � (always), ♦ (eventually), � (next), U (until), W (weak
until) and R (release). It also includes dual operators for modelling the past.

The propositions themselves can be atomic, which include predicates on states writ-
ten as {. . .}, and the event enabled predicate (in the case of ProB), written as
enabled(a), which states that event a is enabled in the current state. They can also
be transition propositions, such as [a], to state that the next event to be executed in the
path is a. Finally, (P ⇒ Q) is often written to denote the formula �(P → Q).

3.3 Modelling Obligations in Event-B

Classical Event-B does not include a notion of obligation. When the guard of an event
is true, there is no obligation to perform the event and its execution may be delayed as a
result of, for example, interleaving it with other permitted events. The choice of schedul-
ing permitted events is made non-deterministically. In [3], we describe how obligations
can be modelled in Event-B as events, interpreting the guard of an event as a trigger
condition. An obliged event is written as EVENT e WHEN T WITHIN n NEXT S END ,
where T is the trigger condition such that when T becomes true, the event must be
executed within at most n + 1 number of time units, provided the trigger remains true.
If the trigger changes to false within that number, the obligation to execute the event
is canceled. This type of event represents a bounded version of the leads-to modality,
represented by the obligation (T ⇒ ♦≤n(T → e)). The obliged event is a syntactic
sugar and can be encoded and refined in the standard Event-B language (see [3]). In the
rest of the paper, we adopt Event-B with obligations as our specification language.

1 www.event-b.org/platform.html
2 www.stups.uni-duesseldorf.de/ProB
3 www.atelierb.eu

An Event-B Approach to Data Sharing Agreements 33

Fig. 1. A Lifecycle for Modelling DSAs in Event-B

4 Formal Modelling of Data Sharing Agreements in Event-B

This section introduces our method for modelling DSAs in Event-B. The method con-
sists of a number of stages, as shown in Figure 1.

First, the system domain and variables are defined, and actions are identified (see
subsections 4.1 and 4.2). Second, once defined the system vocabulary, the agreement
clauses are modelled using the deontic operators introduced in definition 2 (see subsec-
tion 4.3). Finally, each agreement clause is modelled as a logical formula that holds as
an invariant in the Event-B system (see subsections 4.4, 4.5 and 4.6).

4.1 Defining System Domains

The first step in the modelling of DSAs in Event-B consists of defining the domains
to be used in the model. This corresponds to the definition of primitive sets and con-
stant values. A DSA includes three main sets: PRINCIPALS indicating the principals
participating in the DSA; DATA indicating the date to be shared, and PACTIONNAMES
denoting the actions that principals may perform on data. Following definition 1, an
action is defined as a tuple consisting of a principal, an action name, and a data. In
addition, we are interested in registering the actions performed by the system, there-
fore we introduce set SACTIONNAMES to indicate such actions. The main motive in
distinguishing user and system action names stems from our later treatment of obliga-
tions where we distinguish between the non-enforceable obligations on users and the
enforceable obligations on systems.

Our example follows a role-based model, hence we identify the roles to be used in
the system; LOCATIONS indicates the set of location of a principal may be located.
Below, we present the context for our DSA example. We are using a slightly different
syntax to the one used in Event-B for readability purpose, associating each set with its
constant elements.

34 A.E. Arenas et al.

CONTEXT

PRINCIPALS = { Alice, Bob, Charlie , · · · }
PACTIONNAMES = { access, renewlicence, · · · }
DATA = { ExpData, · · · }
PACTION = PRINCIPALS × PACTIONNAMES ×DATA

SACTIONNAMES = { notify }
MESSAGE = PRINCIPALS ×DATA
SACTION = SACTIONNAMES × PRINCIPAL×MESSAGE

LOCATIONS = { room1, room2, cafeteria, · · · }
ROLES = { PI, CoI, PublicUser }

4.2 Modelling System Variables

The following are the main variables associated to a DSA. action is the input to the
system. actionLog represents the actions performed by principals, where each action
is labelled with the occurrence time. Those actions performed by the system are logged
into the systemLog. Variables fromT ime, endT ime and currentT ime denote the
starting time of the agreement, final time, and the current time respectively. In addi-
tion, there are domain-specific variables related to specific DSAs. For our example of
DSA in the scientific domain, we require variables such as embargoT ime, indicating
the end of the embargo on the data being shared; location associates each principal
with his current location and safeLocation indicates if a location is safe. The relation
roleAssig associates principals with their role in the system; and getPI is a function
that given a data returns its associated principal investigator. Finally, licenceExpT ime
indicates the time when the licence of a principal for accessing a data expires. Below,
we present the variables of our DSA, their domain, and their main properties.

INVARIANTS

action ∈ PACTION ∪ SACTION
actionLog ∈ P(N × PACTION)

systemLog ∈ P(N × SACTION)

fromTime ∈ N

endT ime ∈ N

currentT ime ∈ N

location ∈ PRINCIPALS → LOCATIONS
safeLocation ∈ LOCATIONS → B

embargoT ime ∈ DATA→ N

getPI ∈ DATA→ PRINCIPALS
roleAssig ∈ (PRINCIPALS ×DATA) → ROLES
licenceExpT ime ∈ (PRINCIPALS ×DATA) → N

fromTime ≤ currentT ime ≤ endT ime
∀t ∈ ran licenceExpT ime · t ≤ endT ime
∀d ∈ DATA · roleAssig(getPI(d),d) = PI

An Event-B Approach to Data Sharing Agreements 35

4.3 Initial Modelling of Agreement Clauses

Having defined system variables enables us to model the guard associated to each
clause, and to identify the actions of the system. The next step consists in represent-
ing agreement clauses in the style presented in Definition 2. For instance, the clauses
described in Section 2 can be modelled as follows.

C1 : ∀p ∈ PRINCIPALS, d ∈ DATA ·
IF (d = ExpData ∧
currentT ime ≤ embargoT ime(d) ∧ roleAssig(p, d) ∈ {PI,CoI})

THEN P(〈p,access, d〉)
C2 : ∀p ∈ PRINCIPALS, d ∈ DATA ·

IF (d = ExpData ∧ currentT ime > embargoT ime(d))

THEN P(〈p,access, d〉)
C3 : ∀p ∈ PRINCIPALS, d ∈ DATA ·

IF ¬ safeLocation(location(p))
THEN F(〈p, access, d〉)

C4 : ∀p ∈ PRINCIPALS, d ∈ DATA ·
IF (〈p,access, d〉 ∈ ran (actionLog) ∧ roleAssig(p, d) = PublicUser)
THEN O2(〈notify, getP I(d), (p, d)〉)

C5 : ∀p ∈ PRINCIPALS, d ∈ DATA ·
IF currentT ime > licenceExpT ime(p, d)
THENO30(〈p,renewlicence, d〉)

4.4 Modelling Permission and Prohibition Clauses

We proceed now to represent agreement clauses in Event-B. As a starting point, we as-
sume that principal actions are modelled in the system as Event-B events. For instance,
if 〈p, a, d〉 is an arbitrary principal action, we assume then there is an event called a that
models the effect of principal p performing action a on data d as a guarded substitution.

EVENT a1 ANY action WHERE action = 〈p1, a1, d1〉 THEN
· · · /* Execution of action a1 */ END

EVENT a2 ANY action WHERE action = 〈p2, a2, d2〉 THEN
· · · /* Execution of action a2 */ END

· · ·

We represent agreement clauses as assertions that the system must validate. Let
〈p, a, d〉 be an arbitrary principal action and a be its associated Event-B event. Let
IFG THEN P(〈p, a, d〉) be an arbitrary permitted clause. The following assertion must
be valid in the system, indicating that the event associated to the clause may be executed
when condition G holds:

((action = 〈p, a, d〉 ∧ G) ⇒ enabled(a))

where enabled is the event-B enable proposition, indicating that an event is enabled
in the current state.

Let IF G THEN F(〈p, a, d〉) be an arbitrary prohibition clause. The following as-
sertion must be valid in the system, indicating that the event associated to the clause
must not be executed when condition G holds:

36 A.E. Arenas et al.

((action = 〈p, a, d〉 ∧ G) ⇒ ¬ enabled(a))

In order to validate agreement clauses, some changes are needed in the structure of
the events associated to actions. First, the permitted clauses indicate when an action
may be executed, then the guard of the associated actions should be strengthened with
the disjunction of the clauses conditions. Second, the prohibition clauses indicate when
an action must not be executed, then the guard of the associated actions is strengthened
with the conjunction of the negation of the clauses. Formally, let 〈p, a, d〉 be an arbitrary
principal action and a be its associated event. Let IF Gi THEN P(〈pi, a, di〉), for
i = 1, · · · , k be all the permitted clauses associated to action a, and let
IF G′

j THEN F(〈pj , a, dj〉), for j = 1, · · · , l be all the prohibition clauses associated
to action a. The event is transformed as follows to meet the agreement clauses.

EVENT a ANY action WHERE action = 〈p, a, d〉 ∧
k∨

i=1

Gi ∧
l∧

j=1

¬G′
j THEN

· · · ‖ actionLog := actionLog ∪ {currentT ime �→ (p �→ a �→ d)}
END

4.5 Modelling Obligations on the System

Without loss of generality, we will consider only bounded-obligation clauses. Any un-
bounded obligation in a DSA can be transformed into a bounded one by limiting it by
the duration of the contract. Let 〈b, c, d〉 be an arbitrary system action; and
C : IF G THEN Ok(〈b, c, d〉) be an arbitrary obligation clause. This imposes an obli-
gation on the system expressed by the following temporal logic formula.

(G ∧ currentT ime < clockC + k) ⇒
♦((¬G ∨ (currentT ime �→ (b �→ c �→ d)) ∈ systemLog) ∧

currentT ime ≤ clockC + k)

In above LTL formula, variable clockC indicates the time when trigger condition G
becomes true. The formula expresses that condition G holds for at most k time units,
until a new action 〈b, c, d〉 is registered in the systemLog. This is indeed the intuitive
meaning of the obligation clause expressed using deontic operators. The above obliga-
tion could be enforced by adding a new event performing the associated change in the
system state, as described in subsection 5.4.

4.6 Modelling Obligations on Users

Let 〈p, a, d〉 be a principal action and C : IF G THEN Ok(〈p, a, d〉) be an arbitrary
obliged clause. In general, the system cannot enforce users’ obligations, but it can detect
when a user’s obligation has not been fulfilled, as illustrated by the formula below.

(G ∧ currentT ime < clockC + k) ⇒
♦((¬G ∨ (currentT ime �→ (p �→ a �→ d)) ∈ actionLog) ∧

currentT ime ≤ clockC + k)

An Event-B Approach to Data Sharing Agreements 37

5 An Example of a DSA in Event-B

This section applies the method presented previously to our DSA example for scientific
collaborations. The first two steps, defining system domain and variables and expressing
the agreement clauses using deontic operators, were presented in section 4. We continue
with the modelling of the clauses as logic formulae.

5.1 The Agreement Clauses as Logic Formulae

Below we model the clauses introduced in subsection 4.3 as logic formulae, following
the patterns presented in the previous section. Permission and prohibition clauses are
modelled in predicate logic, and can be represented as invariants of the system. Obliga-
tions are modelled in LTL, and can be represented as theorems that the system can verify
using model-checking techniques or validate via simulators. We assume that all clauses
are universally quantified with the variable p ∈ PRINCIPALS and d ∈ DATA.

C1 : (action = 〈p, access, d〉 ∧ d = ExpData ∧
currentT ime ≤ embargoT ime(d) ∧ roleAssig(p, d) ∈ {PI,CoI}) ⇒

enabled(access)
C2 : (action = 〈p, access, d〉 ∧ d = ExpData ∧ currentT ime > embargoT ime(d)) ⇒

enabled(access)
C3 : (action = 〈p, access, d〉 ∧ ¬ safeLocation(location(p))) ⇒

¬enabled(access)
C4 : ((clockC4 �→ (p �→ access �→ d)) ∈ actionLong) ∧

roleAssig(p, d) = PublicUser ∧ currentT ime < clockC4 + 2) ⇒
♦((currentT ime �→ (notify �→ getPI(d) �→ (p �→ d))) ∈ systemLog ∧

currentT ime ≤ clockC4 + 2)
C5 : (currentT ime > licenceExpT ime(p, d) ∧ currentT ime < clockC5 + 30) ⇒

♦((currentT ime �→ (p �→ renewlicence �→ d)) ∈ actionLog) ∧
currentT ime ≤ clockC5 + 30

5.2 Initialising the System

For completeness sake, we include here the initialisation of the system. The DSA is
assumed to have a duration of 100 time units.

INITIALISATION

actionLog, systemLog := ∅,∅
fromTime, endT ime, currentT ime := 1, 100, 1
location := { Alice �→ room1, Bob �→ room2, Charlie �→ cafeteria }
safeLocation := { room1 �→ TRUE, room2 �→ TRUE, cafeteria �→ FALSE }
embargoT ime := { ExpData �→ 60 }
getPI := { ExpData �→ Alice }
roleAssig := { (Alice, ExpData) �→ PI, (Bob,ExpData) �→ CoI,

(Charlie, ExpData) �→ PublicUser }
licenceExpT ime := { (Alice, ExpData) �→ 50, (Bob,ExpData) �→ 30,

(Charlie, ExpData) �→ 30 }

38 A.E. Arenas et al.

5.3 User Actions as Event-B Events

The system includes two events: access, indicating that a principal will access a data,
and renewlicence, indicating that a principal has renewed the licence to access a data.

In the case of access, the event guard is strengthened with the disjunction of the
guards of its associated permitted clauses (clauses C1 and C2 in subsection 4.3) and the
conjunction of the negation of the forbidden clauses (clause C3).

EVENT access ANY action WHERE
action = 〈p,access, d〉 ∧ d = ExpData ∧
((currentT ime ≤ embargoT ime(d) ∧ (roleAssig(p, d) ∈ {PI,CoI})) ∨

currentT ime > embargoT ime(d)) ∧
safeLocation(location(p)) THEN

actionLog := actionLog ∪ {currentT ime �→ (p �→ access �→ d)}
END

For renewlicence, we introduce a new constant RENEWTIME that indicates
the constant time a licence is increased once the event occurs.

EVENT renewlicence ANY action WHERE
action = 〈p, renewlicence, d〉 THEN

licenceExpT ime(p, d) := currentT ime+RENEWTIME ‖
actionLog := actionLog ∪ {currentT ime �→ (p �→ renewlicence �→ d)}

END

5.4 System Obligations as Events

The system is obliged to notify the principal investigator when a data item is accessed
by a public user. This is modelled as the obligated Event-B event notify, which must
be executed within 2 time units after the guard holds.

EVENT renewlicence ANY action WHERE
action = 〈p, renewlicence, d〉 THEN

licenceExpT ime(p, d) := currentT ime+RENEWTIME ‖
actionLog := actionLog ∪ {currentT ime �→ (p �→ renewlicence �→ d)}

END

5.5 User Obligations as Events

As mentioned before, user obligations cannot be enforced by the system, although
they can be detected. Below, we show the checklicence event, which checks if a
principal has renewed a licence for accessing a data within 30 time units after ex-
piring the license. If the licence is not renewed, the principal is blacklisted for using
such data. To model such action, we assume the existence of a predicate blacklist :
PRINCIPALS × DATA → B, which is initialisated as false for any principal and
any data. We also assume that the RENEWTIME constant is greater that 30 time
units. The system designer could, for instance, use the blacklist information to restrict
access to the associated data.

An Event-B Approach to Data Sharing Agreements 39

EVENT checklicence WHEN
(currentT ime > licenceExpT ime(p, d)) WITHIN 30 NEXT

blacklist(p, d) := (currentT ime > licenceExpT ime(p, d))
END

5.6 Dealing with the Environment

In our model of the DSAs in Event-B, we assume that the environment is modelled
through time and location. Our notion of time can based on some standard represetation
(e.g. ISO 8601), which could include a combined date and time representation. We
assume, for simplicity, that currentTime is a natural number and that every event in the
machine representing an action will perform its own time incrementation. Hence, the
event representing action a will become as follows, assuming that the event lasts for
only one time unit,

EVENT a1 WHEN . . . THEN
· · · ‖ currentTime := currentTime + 1 END

The other environment variable is location, where we have assumed the second so-
lution, i.e. a separate event for changing locations of users, which has overrides the
current value of the location function with a new location for some principal.

6 Formal Verification and Validation of DSA Properties

6.1 Verifying DSA Properties

The minimum global property that must hold for any DSA is that all permissions, pro-
hibitions and system obligations stated in the DSA clauses must hold true.

One example of common conflicts is when an event corresponding to a principal
action is both enabled (permitted) and disabled (prohibited) in the same state of the
machine. Verifying that the model is free from this sort of conflicts corresponds to
model-checking the following LTL formulae:

�¬(enabled(a) ∧ ¬(enabled(a)))

Another example of conflicts is when obligations are not permitted. Hence, for ex-
ample, a user obligation of the sort IF G THEN On(〈p, a, d〉) must be permitted,

∀t ∈ N · (G ∧ currentT ime = t) ⇒
¬((¬enabled(a)) U (currentTime > t+ n))

which means that the obliged event a must have been enabled at some stage prior to the
current time passing the deadline t + n.

Healthiness properties are desirable aspects of the DSA that are not expressed by
any of the previous properties we mentioned above. For example, healthiness property
of our DSA for scientific collaborations state that all accesses to experimental data are
performed by principals with a valid licence. This would correspond to the following
formula, which was verified in our system.

40 A.E. Arenas et al.

∀p ∈ PRINCIPALS, d ∈ DATA, n ∈ N :

(n, (p,access, d)) ∈ actionLog ⇒ n ≤ licenceExpTime(p, d)

Other possible healthiness properties would be: to check that no accesses occur at
unsafe locations; to prove that system-notification events are idempotent; and to ver-
ify that any penalties associated with obligation violation (both for systems and users)
are properly enforced. For example, in the case of violating user obligations, that the
associated capabilities (certain events) are disabled if the user has not fulfilled their
obligation.

6.2 Validating DSA Properties

The validation of the example DSA was carried out using the animation capabilities of
the Pro-B plug-in for Rodin. This method of validation has a number of advantages for
revealing problems with the specification, mainly:

– It helps monitor every value of the state variables as the machine executes each
event. This may reveal certain under-specifications of the types of variables. For
example, in one instance, it was discovered that sets are not sufficient to model logs
(both action and system logs), since sets do not distinguish different instances of
the same actions. Hence, timestamps were added to achieve that effect.

– It helps to view which of the events of the machine are currently active. In the case
of modelling user obligations, this is quite helpful since it can reveal whether the
obligation conditions are strong enough to disable other events in the case where
the obliged event has not yet been executed. More generally, this gives an idea as
to whether the activation of events is as expected or not.

– Simulating the machine allows understanding better traces that violate invariants,
for those invariants that cannot be verified. For example, in the case of the obli-
gations on users to renew the licence when it expires, these cannot be enforced.
Hence, there are runs of the machine in which the user will not renew the licence.
Therefore, simulation is beneficial since it will demonstrate the effects of not ful-
filling such obligations.

7 Related Work

There have been other attempts to model and analyse contracts using event/state-based
modelling approaches. [10] presents how standard conventional contracts can be de-
scribed by means of Finite State Machines (FSMs). Rights and obligations extracted
from the clauses of the contract are mapped into the states, transition and output func-
tions, and input and output symbols of a FSM. The FSM representation is then used to
guarantee that the clauses stipulated in the contract are observed when the contract is
executed. The approach is more directed to contract monitoring than analysis, since no
formal reasoning is included.

In [6], Daskalopulu discusses the use of Petri Nets for contract state tracking, and
assessing contract performance. Her approach is best suited for contracts which can

An Event-B Approach to Data Sharing Agreements 41

naturally be expressed as protocols, or workflows. She model-checks a contract to ver-
ify desired properties. Our work has been inspired by hers, but it differs in that we
separate the modelling of the contract – declarative approach by representing clauses
as temporal-logic predicates – from the modelling of the system. Following similar ob-
jectives, [7] uses the Event Calculus to represent a contract in terms of how its state
evolves according to a narrative of (contract-related) events.

An initial model of DSAs is proposed in [12]. The model is based on dataflow graphs
whose nodes are principals with local stores, and whose edges are channels along which
data flows. Agreement clauses are modelled as obligation constraints expressed as dis-
tributed temporal logic predicates over data stores and data flows. Although the model
is formal, they do not exploit formal reasoning about agreements.

In [9], the authors propose an event language with deontic concepts like permis-
sions, rights and obligations, which are relevant to the modelling of DSAs. However,
their main focus is the access control framework, whereas we focus on a more general
framework related to clauses that may occur in any DSA.

Our work has been influenced by the work by Matteucci et al [8], which presents an
authoring tool for expressing DSAs in a controlled natural language. One of our aims
is to provide formal reasoning support for such a tool. The underlying semantic model
for DSAs in [8] is an operational semantics expressing how a system evolves when
executed under the restriction of an agreement. Within this view, agreement clauses are
encoded within the system. We consider that for formal reasoning, it is important to
separate the agreement clauses from the system functionality, hence we have proposed
to represent clauses as LTL assertions that the system must respect.

8 Conclusion and Future Work

This paper presents an approach for modelling contracts using the Event-B specification
language. This involves incorporating normative deontic notions (obligations, permis-
sions and prohibitions) into the Event-B modelling process. We have focused on one
particular type of contract, the so-called data sharing agreements (DSAs).

The starting point of the proposed method is an informal DSA. In order to formalise
it, the following steps are proposed. First, the system domain and variables are defined,
and actions are identified. Second, agreements clauses are modelled using deontic logic.
Third, each deontic-logic clause is represented in linear temporal logic (LTL), and the
Event-B event dealing with the action is transformed so that the LTL predicate is valid
in the model. The relation between the LTL clause and the Event-B model is established
by applying verification (model-checking) and validation (animation) techniques.

DSAs typically follow a lifecycle comprising the following stages: (1) contract draft-
ing, which includes the drafting of contracts with the aid of authoring tools; (2) con-
tract analysis, which includes the formalisation and analysis of contracts in order to
detect potential conflicts among contract clauses; (3) policy derivation from the con-
tract clauses; and (4) finally, monitoring and enforcement of contract policies. This
paper has concentrated on the second stage, contract analysis. As future work, we plan
to study formally the policy derivation process. In addition, we will investigate the

42 A.E. Arenas et al.

problem of agreement evolution (changes in an agreement), and whether those changes
can be verified/maintained using refinement techniques.

Acknowledgment

This work was partly supported by the EU FP7 project Consequence (Context-Aware
Data-Centric Information Sharing), project grant 214859.

References

1. Abrial, J.-R.: The B Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R., Hallerstede, S.: Refinement, Decomposition, and Instantiation of Discrete Mod-

els: Application to Event-B. Fundamenta Informaticae 77(1-2), 1–28 (2007)
3. Bicarregui, J., Arenas, A.E., Aziz, B., Massonet, P., Ponsard, C.: Toward Modelling Obliga-

tions in Event-B. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS,
vol. 5238, pp. 181–194. Springer, Heidelberg (2008)

4. Crompton, S., Aziz, B., Wilson, M.D.: Sharing Scientific Data: Scenarios and Challenges.
In: W3C Workshop on Access Control Application Scenarios (2009)

5. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification Language.
In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp. 18–38.
Springer, Heidelberg (2001)

6. Daskalopulu, A.: Model Checking Contractual Protocols. In: Legal Knowledge and Informa-
tion Systems. Frontiers in Artificial Intelligence and Applications Series (2001)

7. Farrell, A.D.H., Sergot, M.J., Sallé, M., Bartolini, C.: Using the Event Calculus for Track-
ing the Normative State of Contracts. International Journal of Cooperative Information
Systems 14(2-3), 99–129 (2005)

8. Matteucci, I., Petrocchi, M., Sbodio, M.L.: CNL4DSA a Controlled Natural Language for
Data Sharing Agreements. In: 25th Symposium on Applied Computing, Privacy on the Web
Track. ACM, New York (2010)

9. Méry, D., Merz, S.: Event Systems and Access Control. In: Gollmann, D., Jürjens, J. (eds.)
6th Intl. Workshop Issues in the Theory of Security, Vienna, Austria. IFIP WG 1.7, pp. 40–
54. Vienna University of Technology (2006)

10. Molina-Jimenez, C., Shrivastava, S., Solaiman, E., Warne, J.: Run-Time Monitoring and En-
forcement of Electronic Contracts. Electronic Commerce Research and Applications 3(2),
108–125 (2004)

11. Sieber, J.E.: Data Sharing: Defining Problems and Seeking Solutions. Law and Human Be-
haviour 12(2), 199–206 (1988)

12. Swarup, V., Seligman, L., Rosenthal, A.: A Data Sharing Agreement Framework. In: Bagchi,
A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 22–36. Springer, Heidelberg (2006)

A Logical Framework to Deal with Variability�

Patrizia Asirelli1, Maurice H. ter Beek1,
Alessandro Fantechi1,2, and Stefania Gnesi1

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”, CNR, Pisa, Italy
{asirelli,terbeek,gnesi}@isti.cnr.it

2 Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, Italy
fantechi@dsi.unifi.it

Abstract. We present a logical framework that is able to deal with
variability in product family descriptions. The temporal logic MHML is
based on the classical Hennessy–Milner logic with Until and we interpret
it over Modal Transition Systems (MTSs). MTSs extend the classical
notion of Labelled Transition Systems by distinguishing possible (may)
and required (must) transitions: these two types of transitions are useful
to describe variability in behavioural descriptions of product families.
This leads to a novel deontic interpretation of the classical modal and
temporal operators, which allows the expression of both constraints over
the products of a family and constraints over their behaviour in a single
logical framework. Finally, we sketch model-checking algorithms to verify
MHML formulae as well as a way to derive correct products from a
product family description.

1 Introduction

Product Line Engineering (PLE) is a paradigm to develop a family of prod-
ucts using a common platform and mass customisation [30,32]. This engineering
approach aims to lower production costs of the individual products by letting
them share an overall reference model of the product family, while at the same
time allowing them to differ with respect to particular characteristics in order
to serve, e.g., different markets. As a result, the production process in PLE is
organised so as to maximise commonalities of the products and at the same time
minimise the cost of variations.

Managing planned variability in product families has been the subject of ex-
tensive study in the literature on PLE, especially that concerning feature mod-
elling [5,13,22], which provides compact representations of all the products of a
PL in terms of their features. Variability modelling addresses how to explicitly
define the features or components of a product family that are optional , alterna-
tive, or mandatory. Formal methods are then developed to show that a certain
product belongs to a family, or to derive instead a product from a family, by
means of a proper selection of the features or components.
� Research funded by the Italian project D-ASAP (MIUR–PRIN 2007) and by the

RSTL project XXL of the CNR.

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 43–58, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

44 P. Asirelli et al.

Many years after their introduction in [26], Modal Transition Systems (MTSs)
and several variants have been proposed as a formal model for defining product
families [1,16,17,19,25,33]. An MTS is a Labelled Transition System (LTS) with
a distinction among so-called may and must transitions, which can be seen as
optional or mandatory for the products of the family. Hence, given a family of
products, an MTS allows one to model in a single framework:

1. the underlying architecture, by means of states and transitions, modelling
the product platform shared by all products, and

2. the variation points , by means of possible and required transitions, modelling
the variability among different products.

Deontic logic [2,29] has recently become popular in computer science for mod-
elling descriptional and behavioural aspects of systems, mainly because of the
natural way of formalising concepts like violation, obligation, permission, and
prohibition. This makes deontic logic an obvious candidate for expressing the
conformance of products of a family with respect to variation points. Such a
conformance concerns both static requirements, which identify the features that
constitute the different products, and behavioural requirements, which describe
how products differ in their ability to deal with events in time.

Taking into account the Propositional Deontic Logic (PDL) that was pro-
posed in [8,9] and which combines the expression of permission and obligation
with concepts from temporal logics, in [3,4] we laid the basis for the application of
deontic logic to model variability in product families. We showed how to charac-
terise certain MTSs in terms of deontic logic formulae in [3]. In [4], we presented
a first attempt at a logical framework capable of addressing both static and be-
havioural conformance of products of a family, by defining a deontic extension
of an action- and state-based branching-time temporal logic interpreted over so-
called doubly-labelled MTSs. Model checking with this logic was left as future
work. Modelling and verifying static constraints over the products of a fam-
ily usually requires separate expressions in a first-order logic [5,18,27], whereas
modelling and verifying dynamic behavioural constraints over the products of a
family is typically not addressed in feature modelling.

The first contribution of this paper is the introduction of the action-based
branching-time temporal logic MHML, which allows expressing both constraints
over the products of a family and constraints over their behaviour in a single
logical framework. MHML is based on the “Hennessy–Milner logic with Until”
defined in [14,24], but it is interpreted over MTSs rather than LTSs. This leads
to a novel deontic interpretation of the classical modal and temporal operators.

The second contribution is a first step towards a modelling and verification
framework based on model-checking techniques for MHML. We do so by provid-
ing a global model-checking algorithm to verify MHML formulae over MTSs.

Related Work

In [1,16,17,19,25,33], (variants of) MTSs have been proposed for modelling and
verifying the behaviour of product families. We have extended MTSs in [17] to

A Logical Framework to Deal with Variability 45

allow modelling different notions of behavioural variability. A different, algebraic
approach to behavioural modelling and verification of product lines instead has
been developed in [20,21]. In this paper, we continue research we started in [3,4].
In [3], we showed how to finitely characterise certain MTSs by means of deontic
logic formulae. In [4], we presented a first attempt at a logical framework capable
of addressing both static and behavioural conformance of products of a family,
by defining a deontic extension of an action- and state-based branching-time
temporal logic interpreted over so-called doubly-labelled MTSs.

In [12], the authors present a model-checking technique over so-called Featured
Transition Systems (FTSs), which are able to describe the combined behaviour
of an entire product family. Their main purpose is to provide a means to check
that whenever a behavioural property is satisfied by an FTS, then it is also
satisfied by every product of the PL, and whenever a property is violated, then
not only a counterexample is provided but also the products of the PL that
violate the property. The main difference between their approach and ours is
our use of a branching-time temporal logic with a deontic flavour that allows us
to express and verify in a single framework both behavioural properties and the
satisfiability of constraints imposed by features.

Outline

Section 2 contains a simple running example used throughout the paper. After
a brief description of feature models in Section 2, we discuss how to use deontic
logic to characterise them in Section 4. We introduce the behavioural modelling
of product families by means of MTSs in Section 5. In Section 6, we define
the temporal logic MHML and show that it can be used to express both static
and behavioural requirements of product families. We provide a model-checking
algorithm for MHML in Section 7 and we sketch how to use it to derive correct
products from a family in Section 8. Section 9 concludes the paper.

2 Running Example: Coffee Machine Product Family

To illustrate the contribution of this paper we consider a family of (simplified)
coffee machines as running example, with the following list of requirements:

1. The only accepted coins are the one euro coin (1e), exclusively for European
products and the one dollar coin (1$), exclusively for Canadian products;

2. After inserting a coin, the user has to choose whether (s)he wants sugar, by
pressing one of two buttons, after which (s)he may select a beverage;

3. The choice of beverage (coffee, tea, cappuccino) varies for the products. How-
ever, delivering coffee is a must for all the family’s products, while cappuccino
is only offered by European products;

4. After delivering the appropriate beverage, optionally, a ringtone is rung.
However, a ringtone must be rung whenever a cappuccino is delivered;

5. The machine returns to its idle state when the cup is taken by the user.

46 P. Asirelli et al.

This list contains both static requirements, which identify the features that con-
stitute the different products (see requirements 1, 3 and, partially, 4) and be-
havioural requirements, which describe the admitted sequences of operations
(requirements 2, 5 and, partially, 4).

In the sequel, we will first distill the feature model of this family and provide
a formal representation of it in terms of deontic logic formulae. We will then
show how the behavioural requirements of this family can be described using an
MTS. Finally, we will show how to combine the two approaches by defining a
deontic logic framework to check the satisfiability of both static and behavioural
requirements over products that should belong to this family.

3 Product Families: Feature Diagrams and Feature Models

Feature diagrams were introduced in [22] as a graphical and/or hierarchy of
features; the features are represented as the nodes of a tree, with the product
family as its root. Features come in several flavours. In this paper, we consider:
optional features may be present in a product only if their parent is present;
mandatory features are present in a product if and only if their parent is

present;
alternative features are a set of features among which one and only one is

present in a product if their parent is present.

When additional constraints are added to a feature diagram, one obtains a feature
model. Also these constraints come in several flavours. In this paper we consider:

requires is a unidirectional relation between two features indicating that the
presence of one feature requires the presence of the other;

excludes is a bidirectional relation between two features indicating that the
presence of either feature is incompatible with the presence of the other.

An example feature model for the Coffee Machine family of Section 2 is given in
Fig. 1; the requires constraint obligates feature Ringtone to be present whenever

requires

Coffee1$ 1e

Coin Beverage

Coffee Machine

Ringtone

Tea Cappuccino

mandatoryoptional alternative excludes

Fig. 1. Feature model of the Coffee Machine family

A Logical Framework to Deal with Variability 47

Cappuccino is and the excludes constraint prohibits features 1$ and Cappuccino
to both be present in any product of this family. Obviously, this feature model
satisfies the static requirements (i.e. 1, 3 and, part of, 4) of our running example.

4 Deontic Logic Applied to Feature Models

Deontic logic has been an active field of research in computer science for many
years now [2,29]. Most deontic logics contain the standard operators of classical
propositional logic, i.e. negation (¬), conjunction (∧), disjunction (∨) and im-
plication (=⇒), augmented with deontic operators. In this paper, we consider
only two of the most common deontic operators, namely it is obligatory that (O)
and it is permitted that (P), which in the most classical versions of deontic logic
enjoy the duality property

P (α) = ¬O(¬α),

i.e. something is permitted if and only if its negation is not obligatory.
The way deontic logics formalise concepts such as violation, obligation, per-

mission and prohibition is very useful for system specification, where these
concepts arise naturally. In particular, deontic logics seem to be very useful
to formalise product family specifications, since they allow one to capture the
notions of optional and mandatory features.

4.1 A Deontic Characterisation of Feature Models

In [4], we have presented a deontic characterisation of feature models. Such a
characterisation consists of a set of deontic formulae which, taken as a conjunc-
tion, precisely characterise the feature model of a product family. If we assume
that a name of a feature A is used as the atomic proposition indicating that A
is present, then the deontic characterisation is constructed as follows:

– If A is a feature, and A1 and A2 are two subfeatures (marked alternative,
optional or mandatory), then add the formula A =⇒ Φ(A1, A2), where
Φ(A1, A2) is defined as

Φ(A1, A2) = (O(A1) ∨ O(A2)) ∧ ¬(P (A1) ∧ P (A2))

if A1 and A2 are marked alternative, whereas Φ(A1, A2) is otherwise defined
as

Φ(A1, A2) = φ(A1) ∧ φ(A2),

in which φ(Ai), for i ∈ {1, 2}, is defined as:

φ(Ai) =
{

P (Ai) if Ai is optional and
O(Ai) if Ai is mandatory.

Moreover, since the presence of the root feature is taken for granted, the
premise of the implication related to that feature can be removed.1

1 Hence, we tacitly do not deal with trivially inconsistent graphs whose root is involved
in an excludes relation with a feature.

48 P. Asirelli et al.

– If A requires B, then add the formula A =⇒ O(B).
– If A excludes B (and hence B excludes A), then add the formula (A =⇒

¬P (B)) ∧ (B =⇒ ¬P (A)).

This deontic characterisation is a way to provide semantics to feature models.
The resulting conjunction of deontic formulae, expressing features and the con-
straints between them, is called a characteristic formula and it can be used to
verify whether or not a certain product belongs to a specific family.

5 Behavioural Models for Product Families

In this section we present a behavioural modelling framework able to deal with
the variability notions characterising product families at different levels of detail.
The underlying model of this framework is a Labelled Transition System (LTS).

Definition 1. A Labelled Transition System (LTS) is a quadruple (Q, A, q,−→),
where Q is a set of states, A is a set of actions, q ∈ Q is the initial state, and
−→⊆ Q × A × Q is the transition relation.

If (q, a, q′) ∈−→, then we also write q
a−→ q′.

Since we are interested in characterising the dynamic behaviour of product fam-
ilies, we need a notion for the evolution of time in an LTS.

Definition 2. Let (Q, A, q,−→) be an LTS and let q ∈ Q. Then σ is a path from
q if σ = q (empty path) or σ is a (possibly infinite) sequence q1a1q2a2q3 · · · such
that q1 = q and qi

ai−→ qi+1, for all i > 0.
A full path is a path that cannot be extended any further, i.e. which is infinite

or ends in a state without outgoing transitions. The set of all full paths from q
is denoted by path(q).

If σ = q1a1q2a2q3 · · · , then its i-th state qi is denoted by σ(i) and its i-th
action ai is denoted by σ{i}.
When modelling a product family as an LTS, the products of a family are con-
sidered to differ with respect to the actions that they are able to perform in any
given state. This means that the definition of a family has to accommodate all
the possibilities desired for each derivable product, predicating on the choices
that make a product belong to the family.

An LTS representing all the possible behaviours conceived for the family of
coffee machines described in Section 2 is presented in Fig. 2(a). Note that this
LTS cannot distinguish optional transitions from mandatory ones, since vari-
ation points in the family definition are modelled as nondeterministic choices
(i.e. alternative paths), independent from the type of variability.

5.1 Modal Transition Systems

To overcome the limitation pointed out earlier of using LTSs as modelling frame-
work for product families, Modal Transition Systems (MTSs) [26] and several
variants have been proposed to capture variability in product family specifica-
tions [1,16,17,19,25,33].

A Logical Framework to Deal with Variability 49

(a) LTS of the family. (b) MTS of the family.

Fig. 2. (a)-(b) Modelling the family of coffee machines

Definition 3. A Modal Transition System (MTS) is a quintuple (Q, A, q,−→�,
−→♦) such that (Q, A, q,−→� ∪ −→♦) is an LTS, called its underlying LTS.

An MTS has two distinct transition relations: −→♦ ⊆ Q × A × Q is the may
transition relation, which expresses possible transitions, while −→� ⊆ Q×A×Q
is the must transition relation, which expresses required transitions.

By definition, any required transition is also possible, i.e. −→�⊆−→♦.

In an MTS, transitions are either possible (may) or required (must), correspond-
ing to the notion of optional or mandatory features in product families. This
allows the distinction of a special type of path.

Definition 4. Let (Q, A, q,−→�,−→♦) be an MTS and let σ = q1a1q2a2q3 · · · be a
full path in its underlying LTS. Then σ is a must path (from q1) if qi

ai−→� qi+1,
for all i > 0, in the MTS.

The set of all must paths from q1 is denoted by �-path(q1). A must path σ is
denoted by σ�.

The MTS of Fig. 2(b), in which dashed arcs are used for may transitions and
solid ones for must transitions, is another representation of the family of cof-
fee machines described in Section 2. Note that an MTS is able to model the
requirements concerning optional and mandatory characteristics through the
use of may and must transitions. However, an MTS is not able to model that
the actions 1e and 1$ are exclusive (i.e. alternative features) nor that the ac-
tion cappuccino cannot be executed in a European product (as results from the
excludes relation between the features Cappuccino and 1$). This will be more
clear later, after we define how to generate correct products from an MTS.

50 P. Asirelli et al.

Definition 5. Given an MTS F = (Q, A, q,−→�,−→♦) specifying a family, a set
of products specified as a set of LTSs {Pi = (Qi, Ai, qi,−→i) | i > 0 } may be
consistently derived by considering the transition relation −→i to be −→� ∪R,
with R ⊆−→♦, and by pruning all states that are not reachable from q.

More precisely, we say that Pi is a product of F , denoted by Pi � F , if and
only if qi � q, where qi � q holds, for some qi ∈ Qi and q ∈ Q, if and only if:

– whenever q
a−→� q′, for some q′ ∈ Q, then ∃ q′i ∈ Qi : qi

a−→i q′i and q′i � q′,
and

– whenever qi
a−→i q′i, for some q′i ∈ Qi, then ∃ q′ ∈ Q : q

a−→♦ q′ and q′i � q′.

Following Def. 5, starting from the MTS of Fig. 2(b), two consistent products can
be derived: the coffee machines for the European and Canadian markets shown
in Fig. 3. Note, however, that also the coffee machine described by the LTS of
Fig. 2(a) can be consistently derived from this MTS. This is the demonstration
of the fact that MTSs cannot model constraints in feature models regarding
alternative features and the excludes relation. In fact, the product described
by the LTS of Fig. 2(a) violates requirements 1 and 3 (cf. Section 2) by allowing
the insertion of both 1e and 1$ and at the same time offering cappuccino.

(a) LTS of a European coffee machine. (b) LTS of an Canadian coffee machine.

Fig. 3. (a)-(b) Modelling coffee machines for the European and Canadian markets

6 A Logical Framework for Modelling Variability

In [3], we showed how certain MTSs can be completely characterised by deontic
logic formulae and in [4] we presented a first attempt at a logical framework able
to address both static and behavioural conformance of products of a family.

A Logical Framework to Deal with Variability 51

In this paper, we further develop that work and define a single logical frame-
work in which to express both the evolution in time and the variability notions
considered for product families. To this aim, we define the action-based and
branching-time temporal logic MHML based on the “Hennessy–Milner logic with
Until” defined in [14,24], but we interpret it over MTSs rather than LTSs. This
leads to a deontic interpretation of the classical modal and temporal operators.

With respect to [4], we thus consider an action-based logic rather than an
action- and state-based logic, and in Section 7 we will moreover provide model-
checking algorithms to verify MHML formulae over MTSs.

6.1 Syntax of MHML

MHML extends the classical Hennessy–Milner logic with Until by taking into
account the different type of transitions of an MTS and by incorporating the
existential and universal state operators (quantifying over paths) from CTL [10].
As such, MHML is derived from the logics defined in [14,23,24] and it is an
action-based variant of the logic proposed in [4].

MHML is a logic of state formulae (denoted by φ) and path formulae (denoted
by π) defined over a set of atomic actions A = {a, b, . . .}.
Definition 6. The syntax of MHML is:

φ ::= true | ¬φ | φ ∧ φ′ | 〈a〉φ | [a]φ | E π | Aπ

π ::= φ U φ′ | φ U� φ′

The semantics over MTSs makes MHML incorporate deontic interpretations
of the classical modalities. In fact, the informal meaning of the nonstandard
operators of MHML is as follows:

– 〈a〉φ: a next state exists, reachable by a must transition executing action a,
in which φ holds

– [a] φ: in all next states, reachable by whatever transition executing action a,
φ holds

– E π: there exists a full path on which π holds
– Aπ: on all possible full paths, π holds
– φ U φ′: in the current state, or in a future state of a path, φ′ holds, while φ

holds in all preceding states of the path (but not necessarily in that state)
– φ U� φ′: in the current state, or in a future state of a path, φ′ holds, while φ

holds in all preceding states of the path (but not necessarily in that state),
and the path leading to that state is a must path

6.2 Semantics of MHML

The formal semantics of MHML is given through an interpretation over the
MTSs defined in Section 5.1.

52 P. Asirelli et al.

Definition 7. Let (Q, A, q,−→�,−→♦) be an MTS, let q ∈ Q and let σ be a full
path. Then the satisfaction relation |= of MHML over MTSs is defined as follows:

– q |= true always holds
– q |= ¬φ iff not q |= φ
– q |= φ ∧ φ′ iff q |= φ and q |= φ′

– q |= 〈a〉φ iff ∃ q′ ∈ Q : q
a−→� q′ and q′ |= φ

– q |= [a] φ iff ∀ q′ ∈ Q : q
a−→♦ q′ and q′ |= φ

– q |= E π iff ∃σ′ ∈ path(q) : σ′ |= π
– q |= Aπ iff ∀σ′ ∈ path(q) : σ′ |= π
– σ |= [φ U φ′] iff ∃ j ≥ 1 : σ(j) |= φ′ and ∀ 1 ≤ i < j : σ(i) |= φ
– σ |= [φ U� φ′] iff ∃ j ≥ 1 : σ�(j) |= φ′ and ∀ 1 ≤ i < j : σ�(i) |= φ

The classical duality rule of Hennessy–Milner logic, which states that 〈a〉φ ab-
breviates ¬[a]¬φ, does not hold for MHML. In fact, ¬[a]¬φ corresponds to a
weaker version of the classical diamond operator which we denote as P (a)φ: a
next state may exist, reachable by executing action a, in which φ holds.

A number of further operators can now be derived in the usual way: false
abbreviates ¬ true, φ∨φ′ abbreviates ¬(¬φ∧¬φ′), φ =⇒ φ′ abbreviates ¬φ∨φ′.
Moreover, F φ abbreviates (true U φ): there exists a future state in which φ
holds. Likewise, F� φ abbreviates (true U� φ): there exists a future state of a
must path in which φ holds. Finally, AGφ abbreviates ¬EF ¬φ: in every state
on every path, φ holds; and AG� φ abbreviates ¬EF� ¬φ: in every state on
every must path, φ holds.

An illustrative example of a well-formed formula in MHML is thus

[a] (P (b) true ∧ (φ =⇒ 〈c〉 true)),

which states that after the execution of action a, the system is in a state in which
executing action b is permitted (in the sense of a may transition) and, moreover,
whenever formula φ holds, then executing action c is obligatory (in the sense of
a must transition). Note that by defining the semantics of MHML over MTSs,
we have indeed given a deontic interpretation to the classical box and diamond
modalities of Hennessy–Milner logic. In fact, MHML can express both permitted
and obligatory actions (features).

We could of course extend the semantics of MHML formulae to an interpreta-
tion over LTSs rather than over MTSs. In that case, since LTSs consist of only
must transitions, all modalities would need to be interpreted as in the classical
Hennessy–Milner logic; this would mean that the weaker version of the diamond
operator P (a)φ in MHML would collapse onto the classical diamond operator
〈a〉φ of Hennessy–Milner logic.

6.3 Expressing Static and Behavioural Requirements

MHML is able to complement the behavioural description of an MTS by ex-
pressing constraints over possible products of a family, modelling in this way the
static requirements that cannot be expressed in an MTS.

A Logical Framework to Deal with Variability 53

To begin with we consider the following formalisations of the static require-
ments 1 and 3 (cf. Section 2).

Property A. The actions of inserting 1e or 1$ are alternative features:

(EF 〈1$〉 true ∨ EF 〈1e〉 true) ∧ ¬(EF P (1$) true ∧ EF P (1e) true)

Property B. The action cappuccino cannot be executed in Canadian coffee
machines (excludes relation between features):

((EF 〈cappuccino〉 true) =⇒ (AG¬P (1$) true)) ∧
((EF 〈1$〉 true) =⇒ (AG¬P (cappuccino) true))

These formulae combine static requirements represented by the pure deontic
formulae of Section 4.1, through their deontic interpretation in MHML, with
behavioural relations among actions expressible by the temporal part of MHML.

Recall that the deontic obligation operator is mapped onto MHML’s diamond
modality and the deontic permission operator is represented by MHML’s weaker
version of the classical diamond modality. It is important to note, however, that
the classical duality property among the O and P operators of deontic logic is
not preserved by this mapping.

To continue, we consider the following formalisation of the static part of re-
quirement 4 (cf. Section 2).

Property C. A ringtone must be rung whenever a cappuccino is delivered:

(EF 〈cappuccino〉 true) =⇒ (AF 〈ring_a_tone〉 true)

This is an example of a requires relation between features. Note that such a
static relation between features does not imply any ordering among the related
features; e.g., a coffee machine that performs a ringtone before producing a
cappuccino cannot be excluded as a product of the family of coffee machines
on the basis of this relation. It is the duty of the behavioural description of a
product (family) as provided by an LTS (MTS) to impose orderings.

Subsequently, we consider the following formalisation of a further requirement
that is particularly interesting for the user of a coffee machine:

Property D. Once the user has selected a coffee, a coffee is eventually delivered:

AG [coffee] AF� 〈pour_coffee〉 true

7 Model-Checking Algorithms for MHML

The problem model checking aims to solve can be stated as: Given a desired
property, expressed as a formula ψ in a certain logic, and a model M , in the
form of a transition system, one wants to decide whether M |= ψ holds, where

54 P. Asirelli et al.

|= is the logic’s satisfaction relation. If M �|= ψ, then it is usually easy to generate
a counterexample. If M is finite, model checking reduces to a graph search.

Based on the model-checking parameters M and ψ, different strategies can be
pursued when designing a model-checking algorithm. The following global model-
checking algorithm extends classical algorithms for the Hennessy–Milner logic
and for CTL to MHML [10,11,31]. Actually, the only variation is the distinction
of the transition relation (−→♦ or −→�) used in the different cases.

Algorithm 1. A global model-checking algorithm for MHML.
for all q ∈ Q do L(q) := {true}
for i = 1 to length(ψ) do

for all subformulae φ of ψ such that
length(φ) = i do

if φ = true then
{nothing to do}

else if φ = ¬φ1 then
for all q ∈ Q do

if φ1 /∈ L(q) then
L(q) := L(q) ∪ {φ}

else if φ = φ1 ∧ φ2 then
for all q ∈ Q do

if φ1∈L(q) and φ2∈L(q) then
L(q) := L(q) ∪ {φ}

else if φ = [a]φ1 then
for all q ∈ Q do

if ∀ q′:q a−→♦ q′, φ1∈L(q′) then
L(q) := L(q) ∪ {φ}

else if φ = 〈a〉φ1 then

for all q ∈ Q do
if ∃ q′ : q a−→� q′, φ1 ∈ L(q′) then
L(q) := L(q) ∪ {φ}

else if φ = P (a)φ1 then
for all q ∈ Q do

if ∃ q′ : q a−→♦ q′, φ1 ∈ L(q′) then
L(q) := L(q) ∪ {φ}

else if φ = E (φ1 U
� φ2) then

T := { q | φ2 ∈ L(q) }
for all q ∈ T do
L(q) := L(q) ∪ {E (φ1 U

� φ2)}
while T
= ∅ do

choose q ∈ T
T := T \ {q}
for all p such that p −→� q do

if E(φ1U
�φ2) /∈L(p) and φ1∈L(p)

then
L(p) := L(p) ∪ {E (φ1 U

� φ2)}
T := T ∪ {p}

Algorithm 1 stores in L(q) all subformulae of ψ that are true in q, initially
associating true to every state and then evaluating subformulae of increasing size
on the MTS. Evaluating Until formulae requires another visit of the MTS. The
algorithm’s complexity is O(|ψ|×|Q|×(|Q|+|−→♦|)). A more efficient version uses
for Until a depth-first search: its complexity is linear w.r.t. the state space size.

Note that we consider only one of the existential Until operators; other com-
binations of existential/universal quantification and Until operators can be dealt
with similarly. In particular, the procedure for the classical Until operator U can
be obtained from that for U� by allowing a may transition in its inner for-loop.

Verifying properties A–D on Figs. 2–3 with Algorithm 1 leads to Table 1.
Finally, note the potential for inconsistency: An MTS of a family might not

allow any products that satisfy all constraints on features expressed by MHML
formulae, i.e. all MHML formulae complementing the behavioural description of
an MTS would be false in that MTS. This clearly advocates the usefulness of
our model-checking algorithm on MTSs.

A Logical Framework to Deal with Variability 55

Table 1. Results of verifying properties A–D on Figs. 2–3 with Algorithm 1

Property Fig. 2(a) Fig. 2(b) Fig. 3(a) Fig. 3(b)
A false false true true
B false true true true
C false true true true
D true true true true

8 Towards the Derivation of Correct Products from a
Family Description

In Section 5.1, we sketched an algorithm for deriving LTS descriptions of correct
products from the MTS description of a product family. These products are
correct in the sense that they respect the family’s requirements as modelled by
the MTS, such as, e.g., the presence of features that are optional or mandatory
but also their behavioural ordering in time. We subsequently presented a relation
between LTSs and MTSs to formalise when an LTS is a product of a family
(specified as an MTS).

In [19], the authors present an algorithm for checking conformance of LTS
models against MTS ones according to a given branching relation, i.e. for check-
ing conformance of the behaviour of a product against its product family’s be-
haviour. It is a fixed-point algorithm that starts with the Cartesian product of
the states and iteratively eliminates those pairs that are not valid according to
the given relation. They have implemented their algorithm in a tool that allows
one to check whether a given LTS conforms to a given MTS according to a
number of different branching relations.

Both algorithms allow the derivation of products (specified as LTSs) that are
correct with respect to the MTS model of a family of products. As we have seen
in the previous section, this means that these products might be incorrect with
respect to the static constraints that cannot be expressed in MTSs, such as, e.g.,
the presence of features that are alternative or part of an excludes relation.
Since these constraints can be formulated in MHML, we envision an algorithm
for deriving correct LTS descriptions of products from an MTS description of
a product family and an associated set of MHML formulae expressing further
constraints for this family. The idea is to prune optional (may) transitions in the
MTS in a counterexample-guided way, i.e. based on model-checking techniques.

We informally present our idea by considering as example Property A of Sec-
tion 6.3, i.e. 1e and 1$ are alternative features:

(EF 〈1$〉 true ∨ EF 〈1e〉 true) ∧ ¬(EF P (1$) true ∧ EF P (1e) true)

Model checking this formula over the MTS of Fig. 2(b) returns as counterexample
two paths through this MTS, one starting with the 1$ action and one starting
with the 1e action. Both these actions are optional, which means that two correct
products (cf. Fig. 3) can be derived from this MTS: one by pruning the 1$ action

56 P. Asirelli et al.

and one by pruning the 1e action instead. At this point, model checking should
be repeated in order to see whether other counterexamples remain (which is not
the case for our example).

Based on the principle illustrated by means of this example, an algorithm
can be devised in which the conjunction of the constraints is repeatedly model
checked, first over the MTS description of the product family and consequently
over the resulting (set of) pruned MTSs. These intermediate MTSs are obtained
by pruning may transitions in a counterexample-guided way until the formula
(conjunction of constraints) is found to be true.

The precise definition of such an algorithm is left for future work, and re-
quires a careful study of the different possible types of constraints and of the
effectiveness of the counterexample-guided pruning. After an initial analysis, it
seems that local model checking is a more effective strategy to base such an algo-
rithm on, due to its ability to generate counterexample paths early on, without
the need of an extensive exploration of the state space. The resulting algorithm
would thus allow one to generate all LTSs that satisfy both the family’s require-
ments as modelled by the MTS and its associated set of MHML formulae, i.e. all
products that are correct with respect to the MTS model of a family of products.

9 Conclusions and Future Work

In this paper we have continued the line of research we initiated in [3,4] with the
following contributions:

1. We have introduced the action-based branching-time temporal logic MHML,
which allows the expression of both constraints over the products of a family
and constraints over their behaviour in a single logical framework.

2. We have set a first step towards a modelling and verification framework based
on model-checking techniques for MHML, by providing a model-checking al-
gorithm to verify MHML formulae over MTSs and by sketching a way to derive
correct products from a family description. Both an analysis of the complexity
of the model-checking algorithm for MHML and the actual implementation of
a model-checking environment for MHML are left as future work.

Such an actual implementation of a model-checking environment for MHML
could be an extension of existing model-checking tools, like UMC [6,7,28] or
MTSA [15]. UMC is an on-the-fly model checker for UCTL (UML-oriented CTL)
formulae over a set of communicating UML state machines. MTSA, built on top
of the LTS Analyser LTSA, is a tool that supports the construction, analysis
and elaboration of MTSs. To this aim, we can make use of the fact that model
checking MTSs is not more complex than model checking LTSs, as checking an
MTS can be reduced to two times checking an LTS [19].

The added value of the logical framework we have introduced in this paper can
thus be summarised as allowing the possibility to reason, in a single framework,
on static and dynamic aspects of products of a family. Moreover, from a theo-
retical point of view, we provide a novel deontic interpretation of the classical
modal and temporal operators.

A Logical Framework to Deal with Variability 57

Finally, there are a number of aspects of our line of research that require a
deeper understanding:
– how to identify classes of properties that, once proved over family descrip-

tions, are preserved by all products of the family;
– how to evaluate quantitative properties, like the number of different possible

products of a family;
– how the approach scales to real-world situations in PLE;
– how to hide the complexity of the proposed modelling and verification frame-

work from end users.

References

1. Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wąsowski, A.: 20 Years of Modal
and Mixed Specifications. B. EATCS 95, 94–129 (2008)

2. Åqvist, L.: Deontic Logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philo-
sophical Logic, 2nd edn., vol. 8, pp. 147–264. Kluwer, Dordrecht (2002)

3. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: Deontic Logics for modelling
Behavioural Variability. In: Benavides, D., Metzger, A., Eisenecker, U. (eds.) Pro-
ceedings Variability Modelling of Software-intensive Systems (VaMoS 2009). ICB
Research Report, vol. 29, pp. 71–76. Universität Duisburg, Essen (2009)

4. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: A deontic logical framework for
modelling product families. In: Benavides, D., Batory, D., Grünbacher, P. (eds.)
Proceedings Variability Modelling of Software-intensive Systems (VaMoS 2010).
ICB Research Report, vol. 37, pp. 37–44. Universität Duisburg, Essen (2010)

5. Batory, D.: Feature Models, Grammars and Propositional Formulas. In: Obbink, H.,
Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

6. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp.
133–148. Springer, Heidelberg (2008)

7. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: A state/event-based model-
checking approach for the analysis of abstract system properties. Sci. Comput. Pro-
gram. (to appear 2010)

8. Castro, P.F., Maibaum, T.S.E.: A Complete and Compact Propositional Deontic
Logic. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711,
pp. 109–123. Springer, Heidelberg (2007)

9. Castro, P.F., Maibaum, T.S.E.: A Tableaux System for Deontic Action Logic. In:
van der Meyden, R., van der Torre, L. (eds.) DEON 2008. LNCS (LNAI), vol. 5076,
pp. 34–48. Springer, Heidelberg (2008)

10. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite State
Concurrent Systems using Temporal Logic Specifications. ACM Trans. Pro-
gram. Lang. Syst. 8(2), 244–263 (1986)

11. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT, Cambridge (1999)
12. Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model Check-

ing Lots of Systems: Efficient Verification of Temporal Properties in Software Prod-
uct Lines. In: Proceedings 32nd ACM/IEEE International Conference on Software
Engineering, vol. 1, pp. 335–344. ACM, New York (2010)

13. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, Boston (2000)

14. De Nicola, R., Vaandrager, F.W.: Three Logics for Branching Bisimulation.
J. ACM 42(2), 458–487 (1995)

58 P. Asirelli et al.

15. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA: The Modal Transi-
tion System Analyser. In: Proceedings 23rd IEEE/ACM International Conference
on Automated Software Engineering, pp. 475–476. IEEE, Washington (2008)

16. Fantechi, A., Gnesi, S.: A Behavioural Model for Product Families. In: Crnkovic,
I., Bertolino, A. (eds.) Proceedings 6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT symposium on Foundations of
Software Engineering, pp. 521–524. ACM, New York (2007)

17. Fantechi, A., Gnesi, S.: Formal modelling for Product Families Engineering. In:
Proceedings 12th International Software Product Line Conference, pp. 193–202.
IEEE, Washington (2008)

18. Fantechi, A., Gnesi, S., Lami, G., Nesti, E.: A Methodology for the Derivation
and Verification of Use Cases for Product Lines. In: Nord, R.L. (ed.) SPLC 2004.
LNCS, vol. 3154, pp. 255–265. Springer, Heidelberg (2004)

19. Fischbein, D., Uchitel, S., Braberman, V.A.: A Foundation for Behavioural Con-
formance in Software Product Line Architectures. In: Hierons, R.M., Muccini, H.
(eds.) Proceedings ISSTA 2006 Workshop on Role of Software Architecture for
Testing and Analysis, pp. 39–48. ACM, New York (2006)

20. Gruler, A., Leucker, M., Scheidemann, K.D.: Modelling and Model Checking Soft-
ware Product Lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS,
vol. 5051, pp. 113–131. Springer, Heidelberg (2008)

21. Gruler, A., Leucker, M., Scheidemann, K.D.: Calculating and Modelling Common
Parts of Software Product Lines. In: Proceedings 12th International Software Prod-
uct Line Conference, pp. 203–212. IEEE, Washington (2008)

22. Kang, K., Choen, S., Hess, J., Novak, W., Peterson, S.: Feature Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report SEI-90-TR-21, Carnegie Mel-
lon University (1990)

23. Larsen, K.G.: Modal Specifications. In: Sifakis, J. (ed.) Automatic Verification Meth-
ods for Finite State Systems. LNCS, vol. 407, pp. 232–246. Springer, Heidelberg
(1989)

24. Larsen, K.G.: Proof Systems for Satisfiability in Hennessy-Milner Logic with Re-
cursion. Theor. Comput. Sci. 72(2-3), 265–288 (1990)

25. Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O Automata for Interface and
Product Line Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64–79. Springer, Heidelberg (2007)

26. Larsen, K.G., Thomsen, B.: A Modal Process Logic. In: Proceedings 3rd Annual
Symposium on Logic in Computer Science, pp. 203–210. IEEE, Washington (1988)

27. Mannion, M., Camara, J.: Theorem Proving for Product Line Model Verification.
In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 211–224. Springer,
Heidelberg (2004)

28. Mazzanti, F.: UMC model checker v3.6 (2009), http://fmt.isti.cnr.it/umc
29. Meyer, J.-J.C., Wieringa, R.J. (eds.): Deontic Logic in Computer Science: Norma-

tive System Specification. John Wiley & Sons, Chichester (1994)
30. Meyer, M.H., Lehnerd, A.P.: The Power of Product Platforms: Building Value and

Cost Leadership. The Free Press, New York (1997)
31. Müller-Olm, M., Schmidt, D.A., Steffen, B.: Model-Checking: A Tutorial Intro-

duction. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 330–354.
Springer, Heidelberg (1999)

32. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer, Heidelberg (2005)

33. Schmidt, H., Fecher, H.: Comparing disjunctive modal transition systems with an
one-selecting variant. J. Logic Algebraic Program. 77(1-2), 20–39 (2008)

http://fmt.isti.cnr.it/umc

Adding Change Impact Analysis to the Formal
Verification of C Programs

Serge Autexier and Christoph Lüth�

Deutsches Forschungszentrum für Künstliche Intelligenz (DFKI),
Enrique-Schmidt-Str. 5, 28359 Bremen, Germany
{serge.autexier,christoph.lueth}@dfki.de

Abstract. Handling changes to programs and specifications efficiently
is a particular challenge in formal software verification. Change impact
analysis is an approach to this challenge where the effects of changes
made to a document (such as a program or specification) are described in
terms of rules on a semantic representation of the document. This allows
to describe and delimit the effects of syntactic changes semantically. This
paper presents an application of generic change impact analysis to formal
software verification, using the GMoC and SAMS tools. We adapt the
GMoC tool for generic change impact analysis to the SAMS verification
framework for the formal verification of C programs, and show how a few
simple rules are sufficient to capture the essence of change management.

1 Introduction

Software verification has come of age, and a lot of viable approaches to verifying
the correctness of an implementation with respect to a given specification exist.
However, the real challenge in software verification is to cope with changes —
real software is never finished, the requirements may change, the implementa-
tion may change, or the underlying hardware may change (particularly in the
embedded domain, where hardware is a major cost factor). Here, many existing
approaches show weaknesses; it is not untypical to handle changes by rerunning
the verification and see where it fails (though there exist more sophisticated
approaches [1,5], cf. Sec. 5).

To handle changes efficiently, a verification methodology which supports a no-
tion of modularity is needed, together with the appropriate tool support which
allows to efficiently delimit the impact of changes made to source code or spec-
ifications, thus leveraging the benefits of modularity. This is known as change
impact analysis, and this paper describes how to adapt it to formal software
verification. We make use of a change impact analysis tool for collections of
documents developed by the first author, which supports document-type spe-
cific, rule-based semantic annotation and change propagation, and apply it to a
framework for formal verification of C programs developed by the second author
� Research supported by BMBF under research grant 01 IW 07002 FormalSafe, and

DFG under research grant Hu737/3-1 OMoC.

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 59–73, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

60 S. Autexier and C. Lüth

and others, which is based on annotating C programs with specifications. Our
contribution here is to demonstrate that a generic change impact analysis tool
can be adapted quickly to obtain a working solution for management of change
in formal verification. We posit that separating change impact analysis from the
actual software verification is useful, as it is a sensible separation of concerns and
allows the impact analysis to be adapted and reused with other tools. This is a
typical situation in verification, where often different tools are used for different
aspects of the verification (e.g. abstract interpretation to check safety properties,
and a theorem prover for functional correctness).

This paper is structured as follows: we first describe the two frameworks, the
generic change impact analysis tool GMoC in Sec. 2 and the SAMS verification
framework in Sec. 3, and show how to apply the former to the latter in Sec. 4.

2 Generic Semantic Change Impact Analysis

The motivation to develop a framework for generic semantic change impact is
that an overwhelming amount of documents of different types are produced
every day, which are rarely isolated artifacts but rather related to other kinds of
documents. Examples of documents are filled and signed forms, research reports,
or artifacts of the development process, such as requirements, documentation,
and in particular specifications and program source code as in our application.
These documents evolve over time and there is a need to automate the impact
of changes on other parts of documents as well as on related documents. In [4],
we proposed the GMoC framework for semantic change impact analysis that
embraces existing document types and allows for the declarative specification
of semantic annotation and propagation rules inside and across documents of
different types. We give a brief and necessarily incomplete overview over the
framework here, and refer the reader to [4] for the technical details.

Document Graph Model. The framework assumes documents to be XML files,
represented and enriched by semantic information in a single typed graph called
the document graph. The framework is parametrised over the specific XML for-
mat and types for the nodes and vertices of the document graph. The document
graph is divided into syntactic and semantic subgraphs; the latter is linked to
those syntactic parts which induced them, i.e. their origins. As a result the
graphs have interesting properties, which can be methodologically exploited for
the semantic impact analysis: it may contain parts in the document subgraph for
which there exists no semantic counter-part, which can be exploited during the
analysis to distinguish added from old parts. Conversely, the semantic subgraph
may contain parts which have no syntactic origin, that is they are dangling se-
mantics. This can be exploited during the analysis to distinguish deleted parts
of the semantics from preserved parts of the semantics. The information about
added and deleted parts in the semantics subgraph is the basis for propagating
the effect of changes throughout the semantic subgraph. In order to be able to
distinguish semantically meaningful changes, we further define an equivalence

Adding Change Impact Analysis to the Formal Verification of C Programs 61

<guests>
<person confirmed="true">

<firstName>Serge</firstName>
<lastName>Autexier</lastName>
<email>serge.autexier@dfki .de
</email>

</person>
<person confirmed="true">

<firstName>Normen</firstName>
<lastName>Müller</lastName>
<email type="prv">

n.mueller@gmail.com
</email>

</person></guests>

<guests>
<person confirmed="true">

<firstName>Normen</firstName>
<lastName>Müller</lastName>
<email type="prv">n.mueller@gmail.com</email>

</person>

<person confirmed=" false ">
<firstName>Serge</firstName>
<lastName>Autexier</lastName>

<birthday>1/23/45</birthday>

<email type=" bus ">serge.autexier@dfki.de</email>
</person></guests>

Fig. 1. Semantically Equivalent Guest Lists

relation indicating when two syntactically different XML elements are to be
considered equivalent.
Abstraction and Projection Rules. To relate the two subgraphs, we define ab-
straction rules, which construct the semantic graph representing the semantics
of a document, and projection rules, which project semantic properties computed
in the semantic graph into impact annotations for the syntactic documents. The
rules are defined as graph rewriting rules operating on the document graph.
Change Propagation Rules. The actual change impact is described by propaga-
tion rules, which are defined on the semantic entities, taking into account which
parts of the semantics have been added and which have been deleted.

Example 1. Consider for instance a wedding planning scenario, where two types
of documents occur: The first document is the guest list and the second one the
seating arrangement. Both are semi-structured documents in an XML format as
shown in Fig. 1; the latter depends on the former with the condition of male and
female guests being paired. The change impact we consider is if one guest cancels
the invitation the respective change in the guest list ripples through to the seat-
ing arrangement breaking the consistency condition of guests being rotationally
arranged by gender. The idea of the semantic entities is that the semantic entity
for a specific guest remains the same, even if its syntactic structure changes. For
instance, the semantic entity of guest Serge remains the same even though the
subtree is changed by updating the confirmed status.
Change Impact Analysis. Change impact analysis starts with taking all doc-
uments under consideration, building the syntactic document graph from the
XML input, and applying in order the abstraction, propagation, and projec-
tion rule sets exhaustively. This initial step semantically annotates a document
collection, and can be used to define semantic checks on document collections.

For change impact analysis between two versions of document collections, we
then analyse the differences between the source and target documents. In order
to ignore syntactic changes which are semantically irrelevant, we use a semantic
difference analysis algorithm [13] for XML documents which is parametric in
the equivalence relation of the documents. The result of the difference analysis

62 S. Autexier and C. Lüth

is an edit script, which is a set of edit operations; the effect of the equivalence
models is that in general the edit scripts are less intrusive, thus preserving those
parts of the documents from which the semantic parts have been computed.
The edit scripts are applied on the syntactic parts of the document graph. As a
result now there exists in the document graph new syntactic objects, for which
no semantic counterparts exist yet as well as there are semantic parts, which
syntactic origins have been deleted. On the graph we execute again the semantic
annotation step, which exploits the information on added and deleted parts to
compute the impact of the syntactic changes, represented by impact annotations
to the documents.

Example 1 (continued). To sharpen our intuition on equivalent XML fragments,
let us assume the two guests records shown in Fig. 1. Our focus is on the identifi-
cation of guests. A guest is represented by an unordered person with the addition
of whether this is committed or cancelled (confirmed attribute). Furthermore,
information such as first name (firstName), surname (lastName), and e-mail ad-
dress is stored. For the latter the distinction is between private address (prv)
and business address (bus) encoded within a (type) attribute whereas the type is
defaulted to be private. Optionally the date of birth is represented in a birthday
element. Over time, the entries in the guest list change. Thus, for example, in the
bottom half of Fig. 1 the order of guests is permuted and for one person element
the status of commitment and the e-mail address type changed. In addition, the
date of birth has been registered. To identify guests, we are not interested in
the status regarding commitment or cancellation and we do not care if we send
the invitation to the business address or home address. Therefore, we define the
primary key of a guest as a combination of first name, last name and e-mail
address, i.e. when comparing two person elements, changes in confirmed status
or e-mail address type are negligible as well as the existence of birthday infor-
mation. Existing XML differencing tools, however, would even with an adequate
normalisation consider the two guest records to be different. The change of the
confirmation status makes the two XML fragments unequal although regarding
our primary key definition for person elements those two are equal.

Realisation. The semantics-based analysis framework has been realised in the
prototype tool GMoC [2] that annotates and analyses the change impacts on col-
lections of XML-documents. The abstraction, propagation and projection rules
are graph transformation rules of the graph rewriting tool GrGen [9], which
has a declarative syntax to specify typed graphs in so-called GrGen graph mod-
els as well as GrGen graph rewriting rules and strategies. The GMoC-tool is
thus parametrised over a document model which contains (i) the GrGen graph
model specifying the types of nodes and edges for the syntactic and semantic
subgraphs for these documents, as well as the equivalence model for these docu-
ments; (ii) the abstraction and projection rules for these documents in GrGen’s
rule syntax; and (iii) the propagation rules for these documents, written in the
GrGen rule syntax as well.

Adding Change Impact Analysis to the Formal Verification of C Programs 63

3 Formal Verification of C Programs

In this section, we give a brief exposition of the SAMS verification framework
in order to make the paper self-contained and show the basics on which the
change management is built in Sec. 4. For technical details, we may refer the
interested reader to [10]. The verification framework is based on annotations : C
functions are annotated with specifications of their behaviour, and the theorem
prover Isabelle is used to show that an implementation satisfies the specification
annotated to it by breaking down annotations to proof obligations, which are
proven interactively. Thus, in a typical verification workflow, we have the role of
the implementer, who writes a function, and the verifier, who writes the proofs.
Specifications are typically written jointly by implementer and verifier.
Language. We support a subset of the C language given by the MISRA pro-
gramming guidelines [11]; supported features include a limited form of address
arithmetic, arbitrary nesting of structures and arrays, function calls in expres-
sions, and unlimited use of pointers and the address operator; unsupported are
function pointers, unstructured control flow elements such as goto, break, and
switch, and arbitrary side effects (in particular those where the order would
be significant). Programs are deeply embedded into Isabelle and modelled by
their abstract syntax, thus there are datatypes representing, inter alia, expres-
sions, statements and declaration. (A front-end translates concrete into abstract
syntax, see Fig. 3.) The abstract syntax is very close to the phrase structure
grammar given in [7, Annex A].
Semantics. The foundation of the verification is a denotational semantics as
found e.g. in [15], suitably extended to handle a real programming language,
and formalised in Isabelle. It is deterministic and identifies all kinds of faults like
invalid memory access, non-termination, or division by zero as complete failure.
Specifications are semantically considered to be state predicates, as in a classical
total Hoare calculus. A specification of a program p consists of a precondition P
and a postcondition Q, both of which are state predicates, and we define that
p satisfies this specification if its semantics maps each state satisfying P to one
satisfying Q:

Γ �s [P] p [Q] def= ∀S. P S −→ def ([[p]] S) ∧ Q([[p]] S) (1)

where Γ is the global environment containing variables and the specifications
of all the other functions. We can then prove rules for each of the constructors
of the abstract syntax as derived theorems. Special care has been taken to keep
verification modular, such that each function can be verified separately.
Specification language. Programs are specified through annotations embedded in
the source code in specially marked comments (beginning with /∗@, as in JML or
ACSL). This way, annotated programs can be processed by any compiler with-
out modifications. Annotations can occur before function declarations, where
they take the form of function specifications, and inside functions to denote
loop invariants. A function specification consists of a precondition (@requires),
a postcondition (@ensures), and a modification set (@modifies). Fig. 2 gives an

64 S. Autexier and C. Lüth

/∗@
@requires 0 <= w

&& w < sams_config.brkdist.measurements[0].v
&& brkconfig_OK(sams_config)

@modifies \nothing
@ensures 0 < \result

&& \result < sams_config.brkdist.length
&& sams_config.brkdist.measurements[\result−1].v > w
&& w >= sams_config.brkdist.measurements[\result].v

@∗/
Int32 bin_search_idx_v(Float32 w);

Fig. 2. Example specification: Given a velocity w, find the largest index i into the
global array sams_config.brkdist .measurements such that measurements[i].v is larger
than w. The assumption is that at least the first entry in measurements is larger than
w, and that the array is ordered (this is specified in the predicate brkconfig_OK). The
function has no side effects, as specified by the @modifies \nothing clause.

example. The state predicates are written in a first-order language into which
Isabelle expressions can be embedded seamlessly using a quotation/antiquota-
tion mechanism; the exact syntax can be found in [10]. In contrast to programs,
specifications are embedded shallowly as Isabelle functions; there is no abstract
syntax modelling specifications.
Tool chain and data flow. The upper part of Fig. 3 shows a graphical repre-
sentation of the current data flow in the SAMS environment. We start with
the annotated source code; it can either be compiled and run, or verified. For
each source file, the frontend checks type correctness and compliance with the
MISRA programming guidelines, and then generates a representation of the ab-
stract syntax in Isabelle, and for each function in that source file, a stub of the
correctness proof (if the file does not exist). The user then has to fill in the
correctness proofs; users never look at or edit the program representation. The
resulting proof scripts can be run in Isabelle; if Isabelle finishes successfully, we
know the program satisfies its specification. Crucially, the verification is modular
— the proofs can be completed independently and in any order.
Proving correctness. This is because correctness is proven in a modular fash-
ion, for each function separately. The correctness proof starts with the goal
correct Θ f , which is unfolded to a statement of the form Θ �s [pre] body [post],
where body is the body of the function, and pre and post the pre- and postcon-
ditions, respectively. This goal is reduced by a tactic which repeatedly applies
proof rules matching the constructors of the abstract syntax of the body, together
with tactics to handle state simplification and framing. After all rules have been
applied, we are left with proof obligations relating to the program domain, which
have to be proven interactively in Isabelle. These proofs make up the individual
proofs scripts in Fig. 3.

Adding Change Impact Analysis to the Formal Verification of C Programs 65

file_defs.thy

file_f_proofs.thy
file_g_proofs.thy
file_h_proofs.thy

λ →

∀
=

β
α

file.o

file.c

file.xml

file.c
file.xml

Fig. 3. Dataflow of the verification environment. Grey files are generated, white files
are created and edited by the user. The lower part (highlighted in grey) is the added
change impact analysis; given a change made by the user, the GMoC tool compares
the two XML representations of original and changed copy, and calculates which proof
scripts are affected by the change.

The proof scripts can be large, and the whole framework including proof rules
and tactics implementing the reduction of correctness assertions to proof obli-
gations is even larger. However, the correctness of the whole verification process
reduces to correctness of a very small trusted core, consisting of the denotational
semantics of the programming language and the notion of satisfaction from equa-
tion (1); the rest is developed conservatively from that. One consequence of this
is that when we implement change management as meta-rules, we can never
produce wrong results (i.e. a result which erroneously states a program satisfies
a specification), as Isabelle is always the final arbiter of correctness.
Change Management. The framework has been developed and used in the SAMS
project to verify the correctness of an implementation of a safety function for
autonomous vehicles and robots, which dynamically computes safety zones de-
pending on the vehicle’s current speed. The implementation consists of about
6 kloc of annotated C source code, with around fifty functions. What happens
now if we change one of these functions or its specification? In the current frame-
work, any changes to the annotated source code require the front-end to be run
again, producing a new representation of the program. (The front-end will never
overwrite proof scripts.) One then has to rerun the proof scripts, and see where
they fail. For large programs, this is not very practical, as proof scripts can run

66 S. Autexier and C. Lüth

from several minutes up to an hour. One might break down a source file into
smaller parts containing only one function each, but besides not being desirable
from a software engineering point of view, this does not help when we change
the specification or declaration of a function, which lives in its header file, and
is always read by other functions.

In practise, the change impact analysis formalised here is done manually —
when a change is made, the verifier reruns those proof scripts which he suspects
may break. But this is error prone, and hence we want to make use of change
impact analysis techniques, and in particular the GMoC tool, to help us delim-
iting the effects of changes, pointing us to the proofs which we need to look at.
This will extend the current tool chain as depicted in the lower part of Fig. 3.

4 Change Impact Analysis for the SAMS Environment

In order to adapt the generic change impact analysis to the specific SAMS set-
ting, we need to instantiate the generic document model of Sec. 2 in three easy
steps: (i) define the graph model representing the syntax and semantics of an-
notated C programs, together with the equivalence relation on the semantics,
then (ii) define abstraction and projection rules relating syntax and semantics,
and finally (iii) define the rules how changes in annotated programs propagate
semantically. We also need to tool the SAMS front-end to generate output of the
abstract syntax in the specified XML format, so it can be input to GMoC. All
of this has only to be done once and for all, to set up the generic environment.
This is because of the basic assumption of the GMoC tool that the underlying
document model does not change during the document lifetime (which is the
case here, as the syntax and semantics of annotated C programs is fixed).

We now describe the three steps in turn. As a running example we consider
the safety function software for autonomous vehicles and robots mentioned in
the previous section. In this software one source file contained the functions
to compute the configuration of the safety function based on an approxima-
tion of the braking distance. It consists of three functions bin_search_idx_v
called by the function brkdist_straight itself called by compute_brkconfig. The
specification of bin_search_idx_v was given in Fig. 2, and the change we con-
sider is that there had been an error in the postcondition saying @ensures w >
sams_config.brkdist.measurements[\result].v (wrongly using > instead of >=),
and this is now changed in the source code to result in the (correct) spec-
ification in Fig. 2. This changes the specification of bin_search_idx_v, and
as a consequence the proofs of bin_search_idx_v and of the calling function
brkdist_straight must be inspected again, but not the proof of any other func-
tion, such as compute_brkconfig. Detecting this automatically is the goal of the
change impact analysis with GMoC.

4.1 Graph Model of the Documents

The syntactic document model is the abstract syntax of the annotated C pro-
grams, with nodes corresponding to the types of the non-terminals of the abstract

Adding Change Impact Analysis to the Formal Verification of C Programs 67

enum CIAStatus {added,deleted,preserved}
node class CIANode extends GmocNode {status:CIAStatus = CIAStatus::added;}
abstract node class Symbol extends CIANode { name : string;}
node class Function extends Symbol {}
node class SemSpec extends CIANode { function : string;}
node class SemBody extends CIANode { function : string;}
edge class Origin extends GmocLink {}
edge class CIALink extends GmocLink { status : CIAStatus = CIAStatus::added;}
edge class Uses extends CIALink {}
edge class IsSpecOf extends CIALink {}
edge class IsBodyOf extends CIALink {}

Fig. 4. Semantic GrGen Graph Model for Annotated C Programs

equivspec annotatedC {
element invariant {}
unordered declaration {constituents = {InitDecl , StorageClassSpec}}
element InitDecl {constituents = {IdtDecl, FunDecl}}
element FunDecl {constituents = {IdtDecl}}
element IdtDecl {constituents = { Identifier }}
element Identifier {annotations = {id?}} ... }

Fig. 5. Part of the equivalence model for the XML syntax of annotated C files

syntax, and edges to the constructors. We use an an XML representation of that
abstract syntax, and let the SAMS front-end generate that XML representation.
The semantic entities relevant for change impact analysis of the annotated C
programs as sketched above are:
– functions of a specific name and for which we use the node type Function;
– the relationship which function calls which other functions directly and for

which we have the Uses edges among Function nodes;
– specifications of functions, for which we use the nodes of type SemSpec which

are linked to the respective Function-nodes by IsSpecOf edges; and
– bodies of functions, for which we use nodes of type SemBody, are linked to

the respective Function-nodes by IsBodyOf edges.
Every semantic node has at most one link from a syntactic part, its Origin. Fi-
nally, all semantic nodes and edges have a status attribute indicating whether
they are added, deleted, or preserved. Fig. 4 shows the GrGen graph model dec-
laration to encode the intentional semantics of annotated C files.

Next we use the declarative syntax to specify the equivalence model for these
files, an excerpt of which being shown in Fig. 5: first, the equivalence model
specifies to ignore the filename and the file-positions contained as attributes.
Thus, for most XML elements, the annotations-slot in the entry on the equiva-
lence model does not contain these attribute names. Furthermore, it indicates
that declarations are unordered elements and that two declarations are to be

68 S. Autexier and C. Lüth

rule detectNewFunDecls {
attr : Attribute −: IsAttribute−>
id : Identifier −: isin−> idt:IdtDecl
−: isin−> fd:FunDecl −:isin−>

d:FunDef;
if { attr .name == "id";}

negative {
id −:Origin−> f:Function;
if { f .name == attr.value; }}

modify {
id −:Origin−> f:Function;
exec (findSpec(fd , f)) ;
exec (findFctBody(d,f)) ; }}

rule detectExistingFunDecls {
attr : Attribute −: IsAttribute−>
id : Identifier −: isin−> idt:IdtDecl
−: isin−> fd:FunDecl −: isin−>

d:FunDef;
if { attr .name == "id";}
id −:Origin−> f:Function;
if { f . status == CIAStatus::deleted;}
if { f .name == attr.value;}

modify {
eval {f . status=CIAStatus::preserved;}
exec (findSpec(fd , f)) ;
exec (findFctBody(d,f)) ; }}

Fig. 6. Rules to detect new and existing functions

considered equal, if the children Initdecl and StorageClassSpec are equivalent.
These equivalence relations specifications are also given and for Identifiers the
recursion is over the value of the attribute id.

For the specifications spec and the bodies FctBody of functions no entries
are specified. As a consequence, they are compared by deep tree equality in
the semantic difference analysis and thus every change in these is detected as a
replacement of the whole specification (respectively body) by a new version.

4.2 Abstraction and Projection Rules

The abstraction rules are sequences of GrGen graph rewriting rules that take
the abstract syntax of annotated C programs and compute the semantic repre-
sentation. In our case these are rules matching function declarations, bodies of
functions and specifications of functions and — depending on whether a corre-
sponding semantic entity exists or not — either adjust its status to preserved or
add a new semantic entity which gets status added. Corresponding GrGen rules
for these two cases are shown in Fig. 6. Both rules modify the graph structure as
specified in the modify part and can invoke the call to other rules now concerned
with matching the specification and body parts of found functions, which are
defined analogously, except that they also add or update the IsSpecOf and Is-
BodyOf edges to the given Function-node f passed as an argument. Finally, there
is one rule that establishes the function call relationship between functions by
checking the occurrence of functions in function bodies.

Prior to the application of the abstraction rules, the status of all nodes and
edges in the semantic graph are set to deleted. The adjustment of that informa-
tion during the abstraction phase for preserved parts and setting the status of
new semantic objects to added results in a semantic graph, where the status of
the nodes and edges indicates what happened to these objects. For instance, if
the specification of a function f has been changed, then the function node f has

Adding Change Impact Analysis to the Formal Verification of C Programs 69

Function
name: bin_search_idx_v, status: added

(a) After initial annotation

SemBody

id: 1, status: added

SemSpec

id: 2, status: added

Is
Sp

ec
O

f IsBodyOf

<fundef>

<fundecl>

<IdtDecl>

< Identifier
id=’’bin_search_idx_v’ ’/>

<spec> <FctBody>

O
rig

in

O
rigin O

rig
in

Function
name: bin_search_idx_v, status: deleted

(b) After Edit
Script Application

SemBody

id: 1, status: deleted

SemSpec

id: 2, status: deleted

Is
Sp

ec
O

f IsBodyOf

<fundef>

<fundecl>

<IdtDecl>

< Identifier
id=’’bin_search_idx_v’ ’/>

<FctBody> <spec>’

O
rig

in

O
rig

in

Function
name: bin_search_idx_v, status: preserved

(c) After Impact Analysis

SemBody

id: 1, status: preserved

SemSpec

id: 3, status: added

SemSpec

id: 2, status: deleted

Is
Sp

ec
O

f

IsSpec
Of IsBodyOf

<fundef>

<fundecl>

<IdtDecl>

< Identifier
id=’’bin_search_idx_v’ ’/>

<FctBody> <spec>’

O
rig

in

Origin

O
rig

in

Fig. 7. Phases of the document graph during impact analysis

one IsSpecOf edge to an old SemSpec node, which has status deleted, and one
IsSpecOf edge to a new SemSpec node, which has status added.

Example 2. In our running example the abstraction rules detect the functions
bin_search_idx_v, brkdist_straight and compute_brkconfig as well as their cor-
responding bodies and specifications (see Fig. 7(a) for the part for the func-
tion bin_search_idx_v only). Finally, they add the Uses edges indicating that
bin_search_idx_v is called by brkdist_straight , which in turn is called by the
function compute_brkconfig (all not shown in Fig. 7(a)).

The projection rules simply project the computed affect information into the
syntactic documents by linking the origins of the semantic entities with respec-
tive Impact nodes. Since we have essentially two kinds of changes causing the
re-inspection of proofs, we have two corresponding rules, of which we only present
the specification change rule:

pattern markSpecCauseProofRequiresInspection (f:Function,cause:Function) {
id : Identifier −:Origin−> f;
negative { if { f . status == CIAStatus::deleted; }

:fctSpecChangeMarked(f,cause); }
modify { i :Impact−:affects−> id;
eval { i .name = "ProofAffected"; i.value = "SpecChange "+cause.name;}}}

The Impact nodes will be automatically serialised into an XML description of
the impacts of the changes, reusing the name and value specified in the impact
node and referencing the XML subtree corresponding to the linked node (e.g.,
id:Identifier) by its XPath in the document.

The final part of the projection phase is to actually delete those nodes and
edges in the semantic graph still marked as deleted, which is some kind of garbage
collection after completing the analysis — and before the next analysis phase
starts after application of the syntactic changes on the documents.

70 S. Autexier and C. Lüth

4.3 Change Propagation Rules

In the SAMS verification environment, the verification is modular and each C
function is verified separately. In this context, changes in the annotated source
code affect proofs as follows:
(CIABodyChange). If a function is modified but its specification not changed,

then only the proof for this function needs to be checked again.
(CIASpecChange). If the specification of a function f is changed, then the

correctness proof of that function needs to be checked as well as the proofs
of all functions that directly call f , because in these proofs the specification
may have been used.

These are two simple rules that can be checked on the C files directly. In the fol-
lowing we describe how these checks have been automated using the GMoC-tool,
presenting the formalisation of the latter in detail. First, we specify a pattern
to recognise if the specification of a function has changed based on the fact that
we have a function which has not status deleted and which has an IsSpecOf edge
from an added SemSpec:

pattern fctSpecChanged(f:Function) {
negative { if { f . status == CIAStatus::deleted; }}
newss:SemSpec −:IsSpecOf−> f;
if { newss. status == CIAStatus::added; }}

This pattern is used to detect functions which specifications have changed and
mark these and all functions calling them as being affected by the change. This
is done by the sub-rules markSpecCauseProofRequiresInspection and markCalling-
FunctionsProofInspection in the pattern below, where the keyword iterated indi-
cates that the enclosed pattern must be applied exhaustively:

pattern propagateChangedSpec {
iterated { f :Function;

:fctSpecChanged(f);
markself :markSpecCauseProofRequiresInspection(f,f) ;
markothers:markCallingFunctionsProofInspection (f) ;
modify { markself () ; markothers(); }}

modify {} }

A similar but simpler propagation rule exists to detect changed function bodies
which marks only the function itself, but not the calling functions.

4.4 Change Impact Analysis

For the change impact analysis, the original annotated C programs are semanti-
cally annotated using the abstraction, propagation and projection rules from the
previous section. Before analysing the changes caused by a new version of the an-
notated C programs, all impact nodes are deleted, because they encode the im-
pacts of going from empty annotated C programs to the current versions. This is
the equivalent to an adjustment of the baseline in systems like DOORS.

Adding Change Impact Analysis to the Formal Verification of C Programs 71

Next the differences to the new versions of the annotated C programs are
analysed using the semantic difference analysis instantiated with the equivalence
model for annotated C programs. This model is designed such that all type,
constant and function declarations are determined by the name of the defined
objects and any change in a specification or function body causes its entire
replacement. Applying the resulting edit script thus deletes the node which was
marked as the origin of a specification (resp. body, function, type or constant),
and thus the corresponding node in the semantic graph becomes an orphan.
Example 2 (continued). For our example, the change in the specification of
bin_search_idx_v from > to >= is detected by the semantic difference analysis
and due to the way the equivalence model is defined, the edit script contains the
edit operation to remove the entire specification and replace it with a new one.
Applying that on the SDI graph deletes the old specification node in the docu-
ment graph and adds a new specification to the document graph. Thus, in the
semantic graph the SemSpec node for the function bin_search_idx_v now lacks
an Origin-node. The shape of the graph now including deletion information on
the semantic parts and the removed/added syntactic parts from the edit script
is shown in Fig. 7(b).

On that graph the same abstraction, propagation and projection rules are
applied again. All rules are change-aware in the sense that they take into ac-
count the status (added, deleted, or preserved) of existing nodes and edges in
the semantic graph and adapt it to the new syntactic situation. As a result we
obtain Impact-nodes marking those functions, which proofs must be inspected
again according to the rules (CIABodyChange) and (CIASpecChange).

More specifically, for our example C files, the abstraction-phase introduces
a new SemSpec, and hence the Function-node for bin_search_idx_v in the se-
mantic graph now has one IsSpecOf-edge to the old SemSpec-node (i.e. with
status deleted) and one to the SemSpec-node which has just been added (see
Fig. 7(c)). This is exploited by the propagation rules to mark bin_search_idx_v
and brkdist_straight as those functions which proofs need inspection.

5 Conclusions, Related and Future Work

This paper has shown how change impact analysis can be used to handle changes
in formal software verification. Our case study was to adapt the generic GMoC
tool to the change impact analysis for annotated C programs in the SAMS
verification framework, and demonstrate its usage with source code developed
in the SAMS project. Currently, prototypes of both tools are available at their
respective websites [2,14].
Results. The case study has shown that the principles of the explicit semantic
method underlying the GMoC framework indeed allow to add change impact
analysis to an existing verification environment. Note that we have not shown
all rules above, but only those of semantic importance. As far as the C language is
concerned, further impact analysis is unlikely to be much of an improvement, as
functions are the appropriate level of abstraction. One could consider analysing

72 S. Autexier and C. Lüth

the impact of changing type definitions, but because type checking takes place
before the change impact analysis, this is covered by the rules described above:
if we change the definition of a type, then in order to have the resulting code
type-check, one will typically need to make changes in the function definitions
and declarations using the type, which will in turn trigger the existing rules.

On a more technical note, the case study also showed that the current proto-
type implementation of GMoC does not scale well for large XML files, because
interaction between GMoC, implemented in Java, and GrGen, based on .NET,
is currently based on exchanging files. Thus, future work will consist of moving
to an API based communication between GrGen and GMoC.

Related work. Other formal verification tools typically do not have much man-
agement of change. For example, two frameworks which are close to the SAMS
framework considered here are Frama-C [8] and VCC [6], both of which use C
source code annotated with specifications and correctness assertions, and both of
which handle changes by rerunning the proofs. Theorem provers like Isabelle and
Coq (which is used with Frama-C) have very course-grained change management
at the level of files (i.e. if a source file changes, all definitions and proofs in that
file and all other files using this, are invalidated and need to be rerun). Some
formal methods tools, such as Rodin [1] and KIV [5], have sophisticated change
management, which for these tools is more powerful than what a generic solution
might achieve, but the separation advocated here has three distinct advantages
which we believe outweigh the drawbacks: (i) it makes change impact analysis
(CIA) reusable with other systems (e.g. the SAMS instantiation could be reused
nearly as is with Frama-C); (ii) it allows experimentation with different CIA al-
gorithms (amounting to changing the rules of the document model); and (iii) it
allows development of the verification system to be separated from development
of the change management, and in particular allows the use of third-party tools
(such as Isabelle in our case) for verification. In previous work the first author co-
developed the MAYA system [3] to maintain structured specifications based on
development graphs and where change management support was integrated from
the beginning. These experiences went into the development of GMoC which is
currently also used to provide change impact analysis for the Hets tool [12] where
change management was not included right from the beginning.

Outlook. The logical next step in this development would be change impact
analysis for Isabelle theories, to allow a finer grained change management of
the resulting theories. As opposed to the situation in C, fine-grained analysis in
Isabelle makes sense, because in general proof scripts are much more interlinked
than program source code, and because they take far longer time to process.
However, for precisely this reason it requires a richer semantic model than C.

The change impact analysis could then be used for the Isabelle proof scripts
occurring in the SAMS framework, for standalone Isabelle theories, or for Isabelle
proof scripts used in other tools. This demonstrates that it is useful to keep
change impact analysis separate from the actual tools, as it allows its reuse,
both across different versions of the same tool (this is particularly relevant when
tools are still under active development, which is often the case in academic

Adding Change Impact Analysis to the Formal Verification of C Programs 73

environment), or when combining different tools (a situation occurring quite
frequently in software verification). Thus, we could have implemented the rules
above straight into the frontend with not much effort, but that would still leave
the necessity to handle changes for the Isabelle theories.

On a more speculative note, we would like to extend the change impact
analysis to handle typical re-factoring operations (both for C, and even more
speculative, for Isabelle), such as renaming a function or parameter (which is
straightforward), or e.g. adding a field to a structure type t; the latter should
not impact any correctness proofs using t except those calling sizeof for t.

References

1. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Metha, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. International Journal on
Software Tools for Technology Transfer (STTT) (2010)

2. Autexier, S.: The GMoC Tool for Generic Management of Change (2010),
http://www.informatik.uni-bremen.de/dfki-sks/omoc/gmoc.html

3. Autexier, S., Hutter, D.: Formal software development in Maya. In: Hutter,
D., Stephan, W. (eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI),
vol. 2605, pp. 407–432. Springer, Heidelberg (2005)

4. Autexier, S., Müller, N.: Semantics-based change impact analysis for heterogeneous
collections of documents. In: Proc. 10th ACM Symposium on Document Engineer-
ing (DocEng 2010), UK (2010)

5. Balser, M., Reif, W., Schellhorn, G., Stenzel, K., Thums, A.: Formal system de-
velopment with KIV. In: Maibaum, T. (ed.) FASE 2000. LNCS, vol. 1783, pp.
363–366. Springer, Heidelberg (2000)

6. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen,
T., Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C.
In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) Theorem Proving in
Higher Order Logics. LNCS, vol. 5674, pp. 23–42. Springer, Heidelberg (2009)

7. Programming languages — C. ISO/IEC Standard 9899:1999(E), 2nd edn. (1999)
8. Frama-C, http://frama-c.cea.fr/ (2008)
9. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: A fast SPO-

based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L.,
Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer, Heidel-
berg (2006)

10. Lüth, C., Walter, D.: Certifiable specification and verification of C programs.
In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 419–434.
Springer, Heidelberg (2009)

11. MISRA-C: 2004. Guidelines for the use of the C language in critical systems.
MISRA Ltd. (2004)

12. Mossakowski, T., Maeder, C., Lüttich, K.: The Heterogeneous Tool Set. In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer,
Heidelberg (2007)

13. Müller, N.: Change Management on Semi-Structured Documents. PhD thesis,
School of Engineering & Science, Jacobs University Bremen (2010)

14. Safety Component for Autonomous Mobile Service Robots, SAMS (2010),
http://www.sams-project.org/

15. Winskel, G.: The Formal Semantics of Programming Langauges. Foundations of
Computing Series. The MIT Press, Cambridge (1993)

http://www.informatik.uni-bremen.de/dfki-sks/omoc/gmoc.html
http://frama-c.cea.fr/
http://www.sams-project.org/

Creating Sequential Programs from Event-B
Models

Pontus Boström

Åbo Akademi University, Department of Information Technology

Joukahaisenkatu 3-5, 20520 Turku, Finland

pontus.bostrom@abo.fi

Abstract. Event-B is an emerging formal method with good tool sup-

port for various kinds of system modelling. However, the control flow

in Event-B consists only of non-deterministic choice of enabled events.

In many applications, notably in sequential program construction, more

elaborate control flow mechanisms would be convenient. This paper ex-

plores a method, based on a scheduling language, for describing the flow

of control. The aim is to be able to express schedules of events; to rea-

son about their correctness; to create and verify patterns for introducing

correct control flow. The conclusion is that using patterns, it is feasible

to derive efficient sequential programs from event-based specifications in

many cases.

1 Introduction

Event-B [1] has emerged as a well known method for high-level specification of
a wide variety of different types of systems. It has good tool support in the form
of theorem provers [1], animators [2] and model checkers [2] to analyse speci-
fications. The specifications can also be developed and analysed in a stepwise
manner using the notion of refinement. However, the control flow in Event-B is
very simplistic, with only non-deterministic choice of enabled events. This can
be inconvenient especially when developing software.

Conceptually an Event-B model consists of a set of events inside a loop, where
one enabled event is non-deterministically chosen for execution in each iteration
of the loop. If there are no enabled events, the loop terminates. However, many
problems could be expressed more conveniently if more expressive control flow
constructs were allowed. Two different approaches to do this are already provided
in [3,4]. Here a similar approach is developed, but based on the well-known theory
for set-transformers. The benefit of using set-transformers is that they provide
a mature theory that supports a refinement notion compatible with the one
in Event-B. Furthermore, powerful algebraic rules for high-level manipulation of
set-transformers have been developed [5]. For implementation of Event-B models,
Abrial has developed patterns to translate them to an (imperative) programming
language. In [6,7], Abrial gives a method for development of sequential programs
in Event-B and patterns for introducing control flow constructs, such as while-
loops and if-statements, to obtain the final imperative program. Those patterns

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 74–88, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Creating Sequential Programs from Event-B Models 75

work well in many cases, but they are fairly limited in the type of sequential
behaviour that can be introduced. An alternativ approach to development of
sequential programs in Event-B can also be found in [8].

This paper proposes a method to introduce control flow to Event-B models.
The main goal is creation of sequential programs. By creation of a sequential
program, we mean that control flow constructs such as while-loops, if-statements
and sequential composition are introduced to schedule the events from the Event-
B model. The methods are based on using a scheduling language to describe the
flow of control. The main goal is to show how to verify scheduling of events, as
well as to develop and reason about reusable patterns for introducing control
flow constructs in practice. To illustrate the approach, patterns for scheduling
events are presented and applied on an example. A more thorough presentation
of sequential program development using an earlier version of this method can
be found in [9].

The paper starts with an overview of Event-B. Event-B has no fixed semantics
and we first present a semantics based on set transformers similar to the one in
[10] and action systems. This semantics is compatible with the proof obligations
generated by the Event-B tools. To create sequential programs from the Event-B
models, a scheduling language is then developed. We then show how schedul-
ing events according to the schedule will lead to a refinement of the original
model. Patterns for verified schedules, as well as creation of executable program
statements from the scheduled events are also presented.

2 Event-B

An Event-B model is referred to as a machine [1]. A machine consists of a set
of variables constituting the state of the model, an invariant that describes the
valid states and a collection of events that describes the evolution of the state
of the model. The model can also use a context machine, with constant and
set definitions. The properties of these constants and sets are given by a set of
axioms.

2.1 Events as Set Transformers

The events in Event-B can be viewed as set transformers [11,10]. Our presenta-
tion of events as set transformers is similar to the presentation in [10].

The state space of an Event-B model is modelled as the Cartesian product of
the types of the variables. Variables v1, . . . , vn having types Σ1, . . . , Σn give the
state space Σ = Σ1×. . .×Σn. An event E has the form E =̂ when G(v, c) then v :
|S(v′, v, c) end . Here v denotes the variables, c the constants, G(v, c) denotes
the guard of the event and v : |S(v′, v, c) denotes a non-deterministic assignment
to the variables. Whenever G(v, c) is true the substitution v : |S(v′, v, c) can be
executed. The substitution assigns variables v any value v′ such that S holds.
The events of the machine are then considered to be inside a loop, where one
event is executed in each iteration of the loop as long as there are enabled events.

76 P. Boström

To describe the valid subset of the state space, an invariant I is used. A model
has a special initialisation event initialisation, which consists of a substitution
of the form v : |A(v′, c). We have the following definitions:

Σ = {v|�}
i = {v|I(v, c)}
g = {v|G(v, c)}
s = {v �→ v′|S(v, v′, c)}
a = {v′|A(v′, c)}

(1)

The sets i and g describe the subsets of the state space where the invariant I
and the guard G holds, respectively. The relation s describes the possible before-
after states that can be achieved by the assignment. Note that the initialisation
results in a set a instead of a relation, since it does not depend on the previous
values of the variables. In this paper, we do not consider properties of constants
c separately, as it is not important on this level of reasoning. The axioms that
describe the properties of the constants are here considered to be part of the
invariant.

To simplify the definitions and increase readability, we introduce the following
notation. The symbol true will be used to denote the complete state space of an
Event-B model. In the above definition we have that trueΣ = Σ. We will use
negation to denote the complement of a set ¬q =̂ true\q1. For completeness false
is defined as false =̂ ∅. This is similar to the approach in [11].

We give the semantics of events as set transformers. A set transformer ap-
plied to a set q describes the set of states from where the set transformer will
reach a state in q (cf. weakest precondition semantics of programs). We have the
following set transformers:

[g](q) =̂ ¬g ∪ q (Assumption) (2)
{g}(q) =̂ g ∩ q (Assertion) (3)
[s](q) =̂ {v|s[{v}] ⊆ q} (Non − deterministic update) (4)
(S1 � S2)(q) =̂ S1(q) ∩ S2(q) (Non − deterministic choice) (5)
S1; S2(q) =̂ S1(S2(q)) (Sequential composition) (6)
Sω(q) =̂ μX.(S; X � skip)(q) (Strong iteration) (7)
S∗(q) =̂ νX.(S; X � skip)(q) (Weak iteration) (8)
skip(q) =̂ q (Skip) (9)
magic(q) =̂ [false](q) (Magic) (10)
abort(q) =̂ {false}(q) (Abort) (11)

The sequential composition ; has higher precedence than �. The set transformers
here are similar to the predicate transformers in e.g. [11]. The first four set
transformers (2)-(5) also occur in [10]. The two set transformers (7) and (8)
model iteration of a set transformer S using the least and greatest fixpoint
1 \ denotes set subtraction.

Creating Sequential Programs from Event-B Models 77

[11,5], respectively. The three last set transformers are important special cases:
skip is a set transformer that does nothing, magic(q) is always true and abort(q)
is always false.

Let g and h denote two sets. We have the following rules that will be useful
later:

{g}; {h} = {g ∩ h} [g]; [h] = [g ∩ h]
{g} � {h} = {g ∩ h} [g] � [h] = [g ∪ h]
abort � S = abort magic � S = S
abort; S = abort magic; S = magic

(12)

These rules are easy to prove directly from the definitions and proofs can also
be found in [11].

The guard g (13) of a set transformer denotes the states where it will not
behave miraculously (establish false) and the termination guard t (14) denotes
the states where it will terminate properly (reach a state in the state space).

g(S) =̂ ¬S(false) (13)
t(S) =̂ S(true) (14)

These functions have the following useful properties:

g({g}) = true g([g]) = g
t({g}) = g t([g]) = true

t(S1 � S2) = t(S1) ∩ t(S2) g(S1 � S2) = g(S1) ∪ g(S2)
(15)

The proofs are again easy to do directly from the definitions.
Using the definitions in (1) and the set transformers in (2) and (4), an event

E =̂ when G(v, c) then v : |S(v′, v, c) end can be modelled as the set trans-
former [E] =̂ [g]; [s] (see [10]). Note that the proof obligations for Event-B guar-
antee that g([E]) = g and t([E]) = true for all events [10]. The initialisation
event initialisation is modelled by the set transformer [initialisation] =̂ [a].

An Event-B model can be modelled as an action system [12,13]. The reason
for introducing action systems is that we can use the algebraic transformation
rules that have been developed for them [5]. Like an Event-B model, an action
system consists of a list of variables, an initialisation of the variables and a set of
actions given as set transformers. The variables form the state of the system. The
actions are iterated inside a do od -loop and thus they describe the evolution
of the system. Consider an Event-B model M with variables v, initialisation
initialisation and events E1, . . . , En. The corresponding action system MA is
then:

MA =̂ |[var v; init [initialisation]; do [E1] � . . . � [En] od]| (16)

The action system MA has a list of variables v corresponding to the variables
in the Event-B model. The initialisation event, initialisation, of the Event-B
model becomes the initialisation of the action system. The do od -loop denotes
non-deterministic execution of the events [E1] � . . . � [En]. In each execution

78 P. Boström

of the loop body, one event is non-deterministically chosen. In terms of the set
transformers presented earlier, the semantics of the loop is defined as [5]:

do S od =̂ Sω; [¬g(S)] (17)

This means S is executed zero or more times. The assumption at the end ensures
that the loop does not terminate before the guard of S is false.

2.2 Refinement

Data refinement is a key concept when developing models in Event-B [1]. This
topic has been discussed elsewhere in detail [5,1,10]. Here we only need algorith-
mic refinement, which can be seen as a special case of data refinement and is
defined as [11]:

S � R =̂ ∀s · S(s) ⊆ R(s) (18)

Here S and R are set transformers. Intuitively S � R means that if S will reach
a state in a set s then so will R. Collections of refinement rules for statements
can be found in e.g. [11,5]. All refinement rules used in this paper that have no
explicit reference can be found in [11].

3 Introduction of Control Flow by Scheduling Events

We are interested in introducing more precise control flow constructs to Event-B
models to e.g. create efficient sequential programs. This means that we create
a schedule for the events which they should be executed according to. Here the
control flow is introduced as a refinement of the underlying Event-B model. It
could also be introduced as a basic modelling construct as in [3,4]. The approach
in this paper has the advantage of not requiring changes to the basic modelling
notation and tools, only new tool support for the final scheduling step is needed.
In order for the schedule to be correct, execution of the events according to it
should lead to a refinement of the original loop of events. First we describe the
scheduling language. Based on this language, the events from the Event-B model
are scheduled to obtain a sequential statement. We then show how to prove the
correctness of this statement and present two reusable patterns for scheduling.

3.1 The Scheduling Language

First we introduce a scheduling language to describe the scheduling of events. It
has the following grammar:

DoStmnt ::= do Stmnt od
ChoiceStmnt ::= E1 ‖ . . . ‖ En

Stmnt ::= [{g} →] (DoStmnt | ChoiceStmnt)[→ Stmnt]
(19)

Here [exp] optional occurrence of exp, g a predicate and E an event name. We
can have sequential composition of events →, choice of events ‖ and iteration of

Creating Sequential Programs from Event-B Models 79

events do od . We can also have assertions {g} before a choice or a loop. This
is often needed in the proofs of correctness. The language is not very flexible.
However, the aim is that it should be possible to automatically generate proof
obligations for schedule correctness directly from the events and the assertions
given in the schedule. Furthermore, the statement obtained after scheduling
should easily map to an imperative programming language.

The correctness criteria for the statement obtained by scheduling the events
is that it refines the original loop of events (see (16)). The scheduled statement
should also be non-miraculous, in order for the statement to be implementable.
These properties can be difficult verify in one step and the proof of correctness
would probably not be reusable. The verification of the scheduling is therefore
here done inductively in a top-down manner. Assume that we have a recursive
decent parser sched of schedules that conform to the grammar in (19), which
also acts as one-pass compiler from schedule to set-transformer. We show that
each recursive call to sched will create a refinement of the previous call. Due
to monotonicity of all set transformers involved, this will ensure that at the
end the final statement obtained from the schedule refines the original Event-B
model. This type of stepwise verification of scheduling seems to be well suited
for creation and verification of reusable patterns for introducing different types
of control flow. The creation of sequential programs in [6,7] is done in a more
bottom-up manner, where individual events are merged to form larger units.
However, there are often side-conditions for the scheduling patterns (see pattern
(25) later) concerning non-interference of the rest of the system. In our approach
those conditions are explicitly taken into account, which might be more difficult
to do in a bottom-up approach.

3.2 Verification of Scheduling

Let the schedule compiler function sched(S) be a function from a schedule S to
a set transformer. Below E denotes a set of events. E.g. the set E is assumed
to consist of events E1, . . . , En and thus ‖i Ei denotes E1 ‖ . . . ‖ En . Here
we use the notation [‖i Ei] to mean the demonic choice of all events in E,
[‖i Ei] =̂ [E1] � . . . � [En]. Furthermore, we need a function e(S) that returns
the set of events mentioned in the schedule S. The function sched is recursively
defined as follows:

sched({g} → S) −→ {g}; sched(S)
sched(‖i Ei → {g} → S) −→ [‖i Ei]; {g}; sched(S)
sched(do S1 od → {g} → S) −→

([g([‖i e(S1)])]; sched(S1))ω ; [¬g(‖i e(S1)]; {g}; sched(S)
sched(〈〉) −→ skip

(20)

To emphasize the direction of function application, we have used −→ instead
of = for definition of the function sched. We have also here omitted the case
when the assertion {g} is not present, since it can be handled using the identity
{true} = skip. The empty schedule 〈〉 is given the meaning skip. To verify that the

80 P. Boström

events can be scheduled according to the desired schedule, each application of the
scheduling function should lead to a refinement of the previous step. The function
application sched(S) above refers to events that have not been scheduled yet and
its semantics is therefore [‖i e(S)]ω; [¬g([‖i e(S)])]. Hence, we prove that the left-
hand side is always refined by the right-hand side. Furthermore, it might also
be desirable to prove that the right-hand side is non-miraculous. For simplicity,
from here on we directly denote the set transformer [‖i E] corresponding to the
choice of events E with only E.

Note that on the right-hand side, scheduling statements of the form sched(Si

→ S) are always preceded by an assertion. This means that we can usually do
the desired refinement proofs in a context [11] where a context assertion holds.
In the proof obligation below we assume that all applications of sched in (20)
are done in a context, where the assertion {c} holds. We then have refinement
conditions of the form {c}; sched(Si → S) �

The proof obligations for the scheduling using sched from (20) become:

{c}; e(S)ω; [¬g(e(S)] �
{g}; e(S)ω; [¬g(e(S))] (21)

{c}; (e(S) � E1)ω ; [¬g(e(S) � E1)] �
E1; {g}; e(S)ω; [¬g(e(S))] (22)

{c}; (e(S) � e(S1))ω ; [¬g(e(S) � e(S1))] �
{g}; ([g(e(S1))]; e(S)ω ; [¬g(e(S))])ω ; [¬g(e(S1))]; {g}; e(S)ω; [¬g(e(S))] (23)

The statement sched(S) is interpreted as a still unscheduled loop and thus its
semantics is given as e(S)ω; [¬g(e(S))]. To handle the complexity of the state-
ment ([g(e(S1))]; e(S1)ω ; [¬g(e(S1))])ω ; [¬g(e(S1))], Lemma 1 can then be used.

Lemma 1. T ω; [¬g(T)] = ([g(T)]; T ω; [¬g(T)])ω; [¬g(T)]

Proof.

([g(T)];Tω; [¬g(T)])ω; [¬g(T)]

= {Unfolding [5] : Tω = T ;Tω � skip}
([g(T)];Tω; [¬g(T)]; ([g(T)];Tω; [¬g(T)])ω � skip); [¬g(T)]

= {Leapfrog (Lemma 11 in [5]) : S; (T ;S)ω = (S;T)ω;S}
([g(T)];Tω; ([¬g(T)]; [g(T)];Tω)ω; [¬g(T)] � skip); [¬g(T)]

= {[¬g(T)]; [g(T)] = magic and magic;T = magic and magicω = skip}
([g(T)];Tω; [¬g(T)] � skip); [¬g(T)]

= {Unfolding [5] : Tω = T ;Tω � skip}
([g(T)]; (T ;Tω � skip); [¬g(T)] � skip); [¬g(T)]

= {Distribution over � and [g(T)]; [¬g(T)] = magic}
(([g(T)];T ;Tω; [¬g(T)] �magic) � skip); [¬g(T)]

= {Definition of g and T �magic = T}
(T ;Tω; [¬g(T)] � skip); [¬g(T)]

= {Distribution over � and rule : [g]; [g] = [g]}
(T ;Tω � skip); [¬g(T)]

= {Unfolding [5] : Tω = T ;Tω � skip}
Tω; [¬g(T)] ��

Creating Sequential Programs from Event-B Models 81

3.3 Scheduling Patterns

The proof obligations in (21)-(23) cannot be proved for arbitrary events. As-
sumptions about the events have to be made. There are also many possibilities
for the schedules to actually be correct. The best approach to scheduling is prob-
ably to develop a set of patterns with known correctness conditions. The key to
the development of patterns is that we can prove incrementally that the applica-
tions of the scheduling function sched result in a non-miraculous refinement. This
can be used to show that a certain sequence of scheduling steps (i.e. a pattern)
results in a refinement. A pattern P consists of a pre-condition for the pattern,
a schedule describing the pattern, a list of assumptions about the events in the
schedule and the statement obtained by applying the pattern. The pre-condition
states under which conditions the pattern can be applied and it can therefore
be used as a context assertion. The schedule describes the scheduling statement
the pattern concerns. The list of assumptions describes the assumptions about
the events that have to hold before the pattern can be applied. The result of the
pattern then gives the statement (set-transformer) obtained after the pattern
has been applied.

Loop introduction. Here we will first prove the correctness of the pattern for loop
introduction in [6,7]. The pattern states that a loop of events can be refined into
a loop where the first event is iterated until it becomes disabled and the second
event is then executed. The goal is to introduce an inner while-loop so that the
Event-B model to the left below is refined by the one to the right.

E1 =̂ when G1 then T1 end
E2 =̂ when G2 then T2 end � E =̂ when G1 ∨ G2 then

while G1 then T1 end ;
T2

end

The pattern above can be described as the scheduling pattern P1 in (24), which
has the parameters E2 denoting a set of events and S1 denoting an arbitrary
schedule of events. Here we do the generalisation of the pattern in [6,7] that the
events in the inner loop are scheduled according to some unknown schedule S1.

P1(E2, S1) =̂
Precondition : true
Schedule : do do S1 od → E2 od
Assumption 1 : {i ∩ g(e(S1) � E2)}; e(S1) =

{i ∩ g(e(S1) � E2)}; e(S1); {g(e(S1) � E2)}
Result : ([g(e(S1) � E2)]; ([g(e(S1))]; sched(S1))ω; [¬g(e(S1))];

E2)ω ; [¬g(e(S1) � E2)]

(24)

The statement in the result is obtained by applying function sched three times.
Note that we still have one un-scheduled part sched(S1), which is unknown. As
before, this statement is interpreted as e(S1)ω; [¬g(e(S1))] at this level. Since we
like to prove that the application of the pattern results in a refinement, we get
the following condition to prove:

82 P. Boström

(e(S1) � E2)
ω; [¬g(e(S1) �E2)]

([g(e(S1) �E2)]; ([g(e(S1))]; e(S1)

ω; [¬g(e(S1))])
ω; [¬g(e(S1))];E2)

ω; [¬g(e(S1) �E2)]

To prove this refinement correct, Assumption 1 is needed. This assumption states
that events e(S1) do not disable both e(S1) and E2. The condition holds if e(S1)
was introduced after E2 in the refinement chain and the value of g(e(S1) � E2)
depends only on variables introduced before or simultaneously with E2 (events
e(S1) cannot change the value of this condition then). This requirement is also
discussed in [7]. Note that the invariant i from the Event-B model holds after
the execution of each event. This means that invariant assertions can be added
between events, but they are not written out here [9]. To make the proof more
readable, events e(S1) are denoted E1. The refinement can now be proved:

Proof.

(E1 � E2)
ω; [¬g(E1 � E2)]

= {Decomposition (Lemma 12 in [5]) : (S � T)ω = Sω; (T ;Sω)ω}
Eω

1 ; (E2;E
ω
1)ω; [¬g(E1 � E2)]

= {Leapfrog (Lemma 11 in [5]) : S; (T ;S)ω = (S;T)ω;S}
(Eω

1 ;E2)
ω;Eω

1 ; [¬g(E1 � E2)]

� {Rule : Sω � skip}
(Eω

1 ;E2)
ω; [¬g(E1 � E2)]

� {Assumption introduction : skip � [g]}
(Eω

1 ; [¬g(E1)];E2)
ω; [¬g(E1 � E2)]

= {g(E1) ⊆ g(E1 � E2) and g ⊆ h⇒ [g] = [h]; [g]}
([g(E1 � E2)];E

ω
1 ; [¬g(E1)];E2)

ω; [¬g(E1 � E2)]

= {Rule : [g] = [g]; {g}}
([g(E1 � E2)]; {g(E1 � E2)};Eω

1 ; [¬g(E1)];E2)
ω; [¬g(E1 � E2)]

� {Assumption 1 and Lemma 14c in [5] : S;T � U ;S ⇒ S;Tω � Uω;S}
([g(E1 � E2)];E

ω
1 ; {g(E1 � E2)}; [¬g(E1)];E2)

ω; [¬g(E1 � E2)]

� {Distribution of assertions over assumptions and rule : [g] = [g]{g}}
([g(E1 � E2)];E

ω
1 ; [¬g(E1)]; {¬g(E1)}; {g(E1 � E2)};E2)

ω; [¬g(E1 � E2)]

= {Assertion properties : {g}; {h} = {g ∩ h} and definition of g}
([g(E1 � E2)];E

ω
1 ; [¬g(E1)]; {¬g(E1) ∩ (g(E1) ∪ g(E2))};E2)

ω; [¬g(E1 � E2)]

= {Set theory}
([g(E1 � E2)];E

ω
1 ; [¬g(E1)]; {¬g(E1) ∩ g(E2)};E2)

ω; [¬g(E1 � E2)]

= {Rule : {g ∩ h} = {g}; {h} and [g] = [g]; {g}}
([g(E1 � E2)];E

ω
1 ; [¬g(E1)]; {g(E2)};E2)

ω; [¬g(E1 � E2)]

= {Lemma 1 and {g} � skip}
([g(E1 � E2)]; ([g(E1)];E

ω
1 ; [¬g(E1)])

ω; [¬g(E1)];E2)
ω; [¬g(E1 � E2)]

In order to ensure that the refined statement is non-miraculous, we prove that
g([g(E1 � E2)]; ([g(E1)]; E1)ω ; [¬g(E1)]; E2) = g(E1 � E2) and then use Lemma
17b in [5], Sω; [¬g(S)](false) = false.

Creating Sequential Programs from Event-B Models 83

g([g(E1 � E2)]; ([g(E1)];E
ω
1 ; [¬g(E1)])

ω; [¬g(E1)];E2)

= {Lemma 1}
g([g(E1 � E2)];E

ω
1 ; [¬g(E1)];E2)

= {Rule : [g] = [g]; {g}, Assumption 1 , , Set − theory}
g([g(E1 � E2)];E

ω
1 ; [¬g(E1)]; {g(E2)};E2)

= {Definition of g }
¬[g(E1 � E2)];E

ω
1 ; [¬g(E1)]; {g(E2)};E2 (false)

= {{g(E2)};E2 (false) = false}
¬[g(E1 � E2)];E

ω
1 ; [¬g(E1)] (false)

= {Rule (Lemma 17b in [5]) : Sω; [¬g(S)](false) = false}
¬[g(E1 � E2)] (false)

= {Definitions}
¬(¬g(E1 � E2) ∪ false)

= {Set theory}
g(E1 � E2) ��

This demonstrates one possible proof of one simple schedule. Note that the user
of this scheduling pattern will only have to prove Assumption 1.

Sequential composition. One of the most important type of patterns concerns
the introduction of sequential composition of events. This pattern is already
given as the equation two in the definition of sched (20). It is thus a pattern that
concerns only one application of sched:

Pseq(E, g, S) =̂
Precondition : g(E)
Schedule : E → ({g} → S)
Assumption 1 : {i ∩ ¬g(E)}; e(S) =

{i ∩ ¬g(E)}; e(S); {¬g(E)}
Assumption 2 : {i}; E = {i}; E; {¬g(E) ∩ g}
Result : E; {g}; sched(S)

(25)

To verify this pattern, we have to prove condition (22). There are no unique
assumptions that would enable the proof, but there are several possibilities. In
this pattern, we use the assumption that once E has become disabled it remains
disabled. This property is stated in Assumption 1. To prove the schedule correct,
Assumption 2 is also needed. The proof is carried out in the same manner as the
proof of pattern P1.

This way of proving sequencing of events is not without problems. Note that
the assumptions about the events for this pattern do not depend on only E, but
also on the all the rest of the events e(S). Here we prove that each event does
not become re-enabled. Assume we have n events that should be executed after
each other. We need to show for each step that the event just scheduled is not
re-enabled by any event that comes after. Furthermore, each condition of the
form g ⊆ (E1 � E2)(h) is divided into two separate proof obligations g ⊆ E1(h)
and g ⊆ E2(h). Taking these properties into account, there will be O(n2) proof
obligations (more exactly n(n − 1)/2) from the schedule due to Assumption
1. For long sequences of events this means there are a huge number of proof

84 P. Boström

obligations to prove. This is not the only assumption that enables a proof, but
the correctness will always in the end depend also on the events e(S).

Discussion. We have here given two patterns to introduce nested loops and se-
quential composition to Event-B specifications. Wherever in a schedule, a sched-
ule fragment matching the pattern occurs, we can use the result of the pattern
and be sure that it leads to a correct refinement of the original event loop. This
requires that the assumptions the pattern rely on are fulfilled. The choice of
patterns that were presented here is rather ad-hoc. They were chosen to demon-
strate how patterns are developed and verified. To use the scheduling method ef-
ficiently, a library of scheduling patterns with associated proof obligations would
be needed.

One might ask why the scheduling language and the patterns are needed at
all. It would also be possible to directly use the algebraic rules to reason about
an Event-B model as a whole. The problem with that approach is that the
derivations and proofs have to be done for each developed program, which might
be demanding especially for people who are not formal methods experts. The
patterns expressed in the scheduling language encode reusable structures that
have known proof obligations, which could be generated automatically by a tool.
The idea is that the scheduling method and patterns partition the scheduling
problem into smaller parts. New patterns can then be applied separately on
the parts themselves. This will hopefully make the scheduling problem more
manageable.

3.4 Creation of Sequential Programs

The scheduling of events presented so far does not yet provide deterministic
programs, only statements that are known to be implementable. To develop se-
quential programs with the familiar constructs, such as if-statements and while-
loops, the scheduling language need to be extended slightly. First recall that an
event of the form E = when G then S end corresponds to a set transformer
[E] = [g]; [s] as discussed in Section 2. Let s(E) denote the assignment part of
event E, i.e., here s(E) = S. We have the extended grammar for the scheduling
language:

DoStmnt ::= while Stmnt end | do Stmnt od
ChoiceStmnt ::= if g(E1) then s(E1) elsif . . . else s(En) end |

s(E) | E1 ‖ . . . ‖ En

Stmnt ::= [{g} →] (DoStmnt | ChoiceStmnt)[→ Stmnt]

(26)

No new concepts is needed for verification of schedules that conforms to this
scheduling language. The assignment s(E) does not introduce any new proof
obligations, as it can be verified by replacing it by {g(E)} → [E], since

{g(E)}; [E] � [s(E)] (27)

We can also introduce if-statements if g(E1) then s(E1) elsif . . . else s(En) end
as a refinement of the original choice statement. This does not require any new

Creating Sequential Programs from Event-B Models 85

proof obligations, but can be verified by replacing it by {g(‖i E)} → [‖i E],
since

{g([‖i E])}; [‖i E] � if g(E1) then [s(E1)] elsif . . . else [s(En)] end (28)

[11]. This is similar to the implementation pattern for choice between events
given in [7]. While loops can also be easily introduced. The semantics of the
while-loop while g then S end is given as e(S)ω; [¬g] [11]. Due to how a loop
of the form do S od is verified in the schedule, it will always be translated as
e(S)ω; [¬g([‖i e(S)])]. We thus have that:

while g([‖i e(S)]) then S end = do S od (29)

3.5 Example of Development of a Sequential Program

To give feel for how the control flow constructs can be used for development of a
sequential program in Event-B, a small example is given. The example consists
of the development of an algorithm for computing the variance of an array of
integers. We use the method outlined in [6,7] for the algorithm development.
The variance V of an array f : 1..n → Z is defined as V = 1

nΣn
i=1(f(i) − μ)2,

where μ is the arithmetic mean μ = 1
nΣn

i=1f(i). The variance is used in many
statistical methods, e.g. the standard deviation is the square root of the variance.
To make the algorithm efficient, the mean is first pre-computed and then used
in the computation of the variance. In the abstract machine Variance in Fig. 1
the variance is computed in one step. In the refinement machine Variance1 the
pre-computation of the mean value mean is introduced. In the final refinement
machine Variance2 shown in Fig. 2, the sums are iteratively computed. The final
model is implementable as all constructs in the events are deterministic. Note
that the merging rules in [6,7] do not work well for creating a sequential program
here, since the event comp mean should be executed only once in between two
loops. Using our scheduling approach we can derive and verify a schedule:

Sched =̂
while g(c m p) then s(c m p) end → s(c m) →
while g(c v p) then s(c v p) end

(30)

Note that we are only interested in scheduling the new events, since due to
the development method in [6,7], the original event is known to be executed
last. This is discussed in more detail in [9]. All constructs in this schedule did
not occur in the language given in (19) and in the corresponding verification
rules (21)-(23). However, verification of also these constructs was presented in
Subsection 3.4. Using the mappings for unguarded assignments and while-loops
we get the schedule:

Sched2 =̂ do c m p od → {g(c m)} → c m → do c v p od (31)

To verify this schedule, we like to apply patterns. However, no pattern de-
veloped in the paper so far match the beginning of this schedule. An additional
pattern is needed for verification. Such a pattern is, e.g., Ploop:

86 P. Boström

machine Variance
variables variance
invariant . . .
events
INIT =̂
begin variance :∈ Z end
final =̂
any

res, μ
where

μ = (1/n)Σn
i=1f(i)∧

res = Σn
i=1(f(i) − μ)2

then
variance := (1/n)res

end

machine Variance1
refines Variance
variables variance, mean, mean done
invariant . . .
events
INIT extends INIT =̂
begin

mean :∈ Z

mean done :∈ FALSE
end
c m =̂
any res
where

res = Σn
i=1f(i)

mean done = FALSE
then

mean := (1/n)res
mean done := TRUE

end
final =̂
any res
where

mean done = TRUE
res = Σn

i=1(f(i) − mean)2

with μ = mean
then variance := (1/n)res
end

Fig. 1. Abstract model and its refinement for computing the variance of array f

Ploop(E1, g, S) =̂
Precondition : true
Schedule : do E1 od → {g} → S)
Assumption 1 : {i ∩ ¬g(E1)}; e(S) =

{i ∩ ¬g(E1)}; e(S); {¬g(E1)}
Assumption 2 : {i ∩ ¬g(E1)} = {i ∩ ¬g(E1) ∩ g}
Result : Eω

1 ; [¬g(E1)]; {g}; sched(S)

(32)

Using the pattern Pseq and Ploop the schedule can now be verified. First we in-
stantiate Ploop as Ploop(c m p, g(c m), c m → do c v p od). On the remaining
schedule in the result, we then instantiate Pseq as Pseq(c m, true,do c v p od).
Note that the pre-condition for the pattern is given as the assertion {g(c m)}. To
then obtain the final program, we instantiate Ploop again, but now as Ploop(c v p,
true, 〈〉). After these pattern instantiations, we have obtained a set-transformer
that is a non-miraculous refinement of the original loop of events. The user only
has to prove that the assumptions about the events in the patterns hold. In this
case, the assumptions lead to four proof obligations.

Note that we here chose to do the scheduling on the final Event-B model.
The scheduling could be introduced earlier as in [3,4] and the scheduled Event-B
model could then be refined. This has not been explored in the paper.
However, the refinement proof obligations in Event-B are compatible with the
set-transformers in the paper and refinement of schedules would therefore be
straightforward to incorporate in this scheduling framework.

Creating Sequential Programs from Event-B Models 87

machine Variance2
refines Variance1
variables

variance, mean, m comp,
v comp, i, j

invariant . . .
events
INIT extends INIT =̂
begin

. . .
m comp, v comp := 0, 0
i, j := 0, 0

end
c m p =̂
when i < n
then

m comp := m comp + f(i + 1)
i := i + 1

end

c m =̂
when i = n
with res = m comp
then

mean := (1/n)m comp
i := i + 1

end
c v p =̂
when i > n ∧ j < n
then

v comp := v comp + (f(i + 1) − mean)2

j := j + 1
end
final =̂
when j = n
with res = v comp
then variance := (1/n)v comp
end

Fig. 2. The final refinement of the models in Fig. 1

4 Conclusions

This paper describes a method for introducing control flow constructs to Event-
B models and for deriving sequential programs from event-based specifications.
We first presented a suitable semantics for Event-B models for this purpose,
which was based on set transformers. A scheduling language for describing the
flow of control was then presented. The algebraic approach from [5] was used to
analyse the models and the scheduling. Using this approach, we developed and
verified scheduling patterns and applied them on an example.

The most similar approaches are [3] and [4]. However, here we do the analysis
based on set-transformers which is a very well-developed theory with power-
ful algebraic methods for high-level program analysis. Scheduling of events in
Event-B or actions in action system has also been done in CSP before [14,15].
A related approach has also been used for hardware synthesis utilising a special
scheduling language [16]. In those approaches, program counters are introduced
in the (Event-)B models to verify the scheduling. Here we use a more direct ap-
proach where we directly give the needed proof obligations for a schedule. Our
approach is not as flexible as scheduling using CSP, but it might be easier to
apply since the correctness conditions for the schedules are explicit. The bene-
fits of our approach is that it is easy to derive and analyse reusable scheduling
patterns, which help reasoning about control flow in Event-B models in practice.

There are limitations to creating sequential programs from event-based speci-
fications using the approach proposed in the paper. The proof obligations needed
by the scheduling can create a significant extra work (see pattern presented for
sequential composition). On the other hand, the example showed that it can
work rather well in some circumstances. However, it might be beneficial to in-
troduce at least some degree of control flow already in the more abstract models
as described in [4]. This could be easily done here also. The expressiveness of
the scheduling language is also a limitation. E.g., the choice operator ‖ operates

88 P. Boström

on events and not on statements. This was a design decision to simplify the
methods in this paper. However, this limitation will be removed in the future.

This paper gives one approach how to schedule events and prove the cor-
rectness of schedules. It shows how scheduling patterns can be developed and
proved. The algebraic approach used in the paper seems to be useful for reason-
ing about Event-B models on a higher level of abstraction than the traditional
proof obligations.

References

1. Abrial, J.R.: Modelling in Event B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)

2. Leuschel, M., Butler, M.: ProB: An Automated Analysis Toolset for the B Method.

Journal Software Tools for Technology Transfer 10(2), 185–203 (2008)

3. Iliasov, A.: On Event-B and control flow. Technical Report CS-TR No 1159, School

of Computing Science, Newcastle University (2009)

4. Hallerstede, S.: Structured Event-B models and proofs. In: Frappier, M., Glässer,

U., Khurshid, S., Laleau, R., Reeves, S. (eds.) ABZ 2010. LNCS, vol. 5977, pp.

273–286. Springer, Heidelberg (2010)

5. Back, R.J.R., von Wright, J.: Reasoning algebraically about loops. Acta Informat-

ica 36, 295–334 (1999)

6. Abrial, J.R.: Event driven sequential program construction. Clearsy (2001),

http://www.atelierb.eu/php/documents-en.php

7. Abrial, J.R.: Event based sequential program development: Application to con-

structing a pointer program. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME

2003. LNCS, vol. 2805, pp. 51–74. Springer, Heidelberg (2003)

8. Méry, D.: Refinement-based guidelines for algorithmic systems. Int. J. Software

and Informatics 3(2-3), 197–239 (2009)

9. Boström, P.: Creating sequential programs from Event-B models. Technical Report

955, TUCS, Turku, Finland (2009)

10. Hallerstede, S.: On the purpose of Event-B proof obligations. In: Börger, E., Butler,

M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 125–138. Springer,

Heidelberg (2008)

11. Back, R.J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction.

Graduate Texts in Computer Science. Springer, Heidelberg (1998)

12. Back, R.J.R., Kurki-Suonio, R.: Decentralization of process nets with centralized

control. In: Proceedings of the 2nd ACM SIGACT-SIGOPS Symposium of Princi-

ples of Distributed Computing, pp. 131–142 (1983)

13. Back, R.J.R., Sere, K.: Stepwise refinement of action systems. Structured Program-

ming 12, 17–30 (1991)

14. Butler, M.: Stepwise refinement of communicating systems. Science of Computer

Programming 27, 139–173 (1996)

15. Butler, M.: csp2b: A practical approach to combining CSP and B. Formal Aspects

of Computing 12(3), 182–198 (2000)

16. Plosila, J., Sere, K., Waldén, M.: Asynchronous system synthesis. Science of

Computer Programming 55, 259–288 (2005)

http://www.atelierb.eu/php/documents-en.php

Symbolic Model-Checking of Optimistic Replication
Algorithms

Hanifa Boucheneb1, Abdessamad Imine2, and Manal Najem1

1 Laboratoire VeriForm, Department of Computer Engineering,
École Polytechnique de Montréal, P.O. Box 6079, Station Centre-ville, Montréal,

Québec,Canada, H3C 3A7
hanifa.boucheneb@polymtl.ca

2 INRIA Grand-Est & Nancy-Université, France
imine@loria.fr

Abstract. The Operational Transformation (OT) approach, used in many collab-
orative editors, allows a group of users to concurrently update replicas of a shared
object and exchange their updates in any order. The basic idea of this approach
is to transform any received update operation before its execution on a replica of
the object. This transformation aims to ensure the convergence of the different
replicas of the object. However, designing transformation algorithms for achiev-
ing convergence is a critical and challenging issue. In this paper, we address the
verification of OT algorithms with a symbolic model-checking technique. We
show how to use the difference bound matrices to explore symbolically infinite
state-spaces of such systems and provide symbolic counterexamples for the con-
vergence property.

Keywords: collaborative editors; operational transformation; difference bound
matrices; symbolic model checking; convergence property.

1 Introduction

Motivations. Collaborative editing systems constitute a class of distributed systems
where dispersed users interact by manipulating simultaneously some shared objects
like texts, images, graphics, etc. One of the main challenges is the data consistency.
To improve data availability, optimistic consistency control techniques are commonly
used. The shared data is replicated so that the users update their local data replicas and
exchange their updates between them. So, the updates are applied in different orders at
different replicas of the object. This potentially leads to divergent (or different) replicas,
an undesirable situation for collaborative editing systems. Operational Transformation
(OT) is an optimistic technique which has been proposed to overcome the divergence
problem [4]. This technique consists of an algorithm which transforms an update
(previously executed by some other user) according to local concurrent updates in
order to achieve convergence. It is used in many collaborative editors including Joint
Emacs [8] (an Emacs collaborative editor), CoWord [13] (a collaborative version of

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 89–104, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

90 H. Boucheneb, A. Imine, and M. Najem

Microsoft Word), CoPowerPoint [13] (a collaborative version of Microsoft PowerPoint)
and, more recently, the Google Wave (a new google platform1).

It should be noted that the data consistency relies crucially on the correctness of
an OT algorithm. According to [8], the consistency is ensured iff the transformation
function satisfies two properties TP1 and TP2 (explained in Section 2). Finding such
a function and proving that it satisfies TP1 and TP2 is not an easy task. In addition,
the proof by hand of these properties is often unmanageably complicated due to the fact
that an OT algorithm has infinitely many states. Consequently, proving the correctness
of OT algorithms should be assisted by automatic tools.

Related Work. Very little research has been done on automatically verifying the cor-
rectness of OT algorithms. To the best of our knowledge, [7] is the first work that
addresses this problem. In this work, the authors have proposed a formal framework
for modelling and verifying transformation functions with algebraic specifications. For
checking the properties TP1 and TP2, they used an automatic theorem prover. How-
ever, this theorem proving approach has some shortcomings: (i) the model of the system
is sound but not complete w.r.t. TP1 and TP22(i.e., it does not guarantee that the viola-
tion of property TP1 or TP2 is really feasible); (ii) there is no guidance to understand
the counterexamples (when the properties are not verified); (iii) it requires some inter-
action (by injecting new lemmas) to complete the verification. In [3], the authors have
used a model-checking technique to verify OT algorithms. This approach is not based
on the verification of properties TP1 and TP2 but is instead based on the generation
of the effective traces of the system. So, it allows to get a complete and informative
scenario when a bug (a divergence of two copies of the shared object) is detected. In-
deed, the output contains all necessary operations and the step-by-step execution that
lead to the divergence situation. This approach guaranties that the detected divergence
situations are really feasible. However, it needs to fix the shared object, the number of
sites, the number of operations, the domains of parameters of operations and to execute
explicitly the updates.

Contributions. We propose here a symbolic model-checking technique, based on dif-
ference bound matrices (DBMs) [1], to verify whether an OT algorithm satisfies prop-
erties TP1 and TP2. We show how to use DBMs, to handle symbolically the update
operations of the collaborative editing systems and to verify symbolically the properties
TP1 and TP2. The verification of these properties is performed automatically without
carrying out different copies of the shared object and executing explicitly the updates.
So, there is no need to fix the alphabet and the maximal length of the shared object.
Thus, unlike [3], the symbolic model-checking proposed here enables us to get more
abstraction and to build symbolic counterexamples. Moreover, for fixed numbers of
sites and operations, it allows to prove whether or not an OT algorithm satisfies proper-
ties TP1 and TP2.

The paper starts with a presentation of the OT approach (Section 2). Section 3 is
devoted to our symbolic model-checking. Conclusions are presented in Section 4.

1 http://www.waveprotocol.org/whitepapers/operational-transform
2 A model M of a system S is said to be sound w.r.t. a given property φ ifM satisfies φ implies
S satisfies φ. It is complete w.r.t. φ if S satisfies φ implies M satisfies φ.

http://www.waveprotocol.org/whitepapers/operational-transform

Symbolic Model-Checking of Optimistic Replication Algorithms 91

2 Operational Transformation Approach

2.1 Background

OT is an optimistic replication technique which allows many sites to concurrently
update the shared data and next to synchronize their divergent replicas in order to
obtain the same data. The updates of each site are executed on the local replica
immediately without being blocked or delayed, and then are propagated to other sites to
be executed again. The shared object is a finite sequence of elements from a data type
E (alphabet). This data type is only a template and can be instantiated by many other
types. For instance, an element may be regarded as a character, a paragraph, a page, a
slide, an XML node, etc. It is assumed that the shared object can only be modified by
the following primitive operations:

O = {Ins(p, e)|e ∈ E and p ∈ N} ∪ {Del(p)|p ∈ N} ∪ {Nop}
where Ins(p, e) inserts the element e at position p; Del(p) deletes the element at po-
sition p, and Nop is the idle operation that has null effect on the object. Since the
shared object is replicated, each site will own a local state l that is altered only by
operations executed locally. The initial state of the shared object, denoted by l0, is
the same for all sites. Let L be the set of states. The function Do : O × L → L,
computes the state Do(o, l) resulting from applying operation o to state l. We de-
note by [o1; o2; . . . ; on] an operation sequence. Applying an operation sequence to a
state l is defined as follows: (i) Do([], l) = l, where [] is the empty sequence and;
(ii) Do([o1; o2; . . . ; on], l) = Do(on, Do(. . . , Do(o2, Do(o1, l)))). Two operation se-
quences seq1 and seq2 are equivalent, denoted by seq1 ≡ seq2, iff Do(seq1, l) =
Do(seq2, l) for all states l.

The OT approach is based on two notions: concurrency and dependency of opera-
tions. Let o1 and o2 be operations generated at sites i and j, respectively. We say that o2
causally depends on o1, denoted o1 → o2, iff: (i) i = j and o1 was generated before o2;
or, (ii) i �= j and the execution of o1 at site j has happened before the generation of o2.
Operations o1 and o2 are said to be concurrent, denoted by o1 ‖ o2, iff neither o1 → o2
nor o2 → o1. As a long established convention in OT-based collaborative editors [4,11],
the timestamp vectors are used to determine the causality and concurrency relations be-
tween operations. A timestamp vector is associated with each site and each generated
operation. Every timestamp is a vector of integers with a number of entries equal to the
number of sites. For a site j, each entry Vj [i] returns the number of operations generated
at site i that have been already executed on site j. When an operation o is generated at
site i, a copy Vo of Vi is associated with o before its broadcast to other sites. Vi[i] is
then incremented by 1. Once o is received at site j, if the local vector Vj “dominates”3

Vo, then o is ready to be executed on site j. In this case, Vj [i] will be incremented by 1
after the execution of o. Otherwise, the o’s execution is delayed.

Let Vo1 and Vo2 be timestamp vectors of o1 and o2, respectively. Using these times-
tamp vectors, the causality and concurrency relations are defined as follows:
(i) o1 → o2 iff Vo1 [i] < Vo2 [j]; (ii) o1 ‖ o2 iff Vo1 [i] ≥ Vo2 [j] and Vo2 [j] ≥ Vo1 [j].

3 We say that V1 dominates V2 iff ∀ i, V1[i] ≥ V2[i].

92 H. Boucheneb, A. Imine, and M. Najem

2.2 Operational Transformation Approach

A crucial issue when designing shared objects with a replicated architecture and arbi-
trary messages communication between sites is the consistency maintenance (or conver-
gence) of all replicas. To illustrate this problem, consider the group text editor scenario
shown in Fig.1. There are two users (on two sites) working on a shared document repre-
sented by a sequence of characters. Initially, both copies hold the string “ efecte”. Site 1
executes operation o1 = Ins(1, f) to insert the character f at position 1. Concurrently,
site 2 performs o2 = Del(5) to delete the character e at position 5. When o1 is received
and executed on site 2, it produces the expected string “effect”. But, when o2 is received
on site 1, it does not take into account that o1 has been executed before it and it pro-
duces the string “effece”. The result at site 1 is different from the result of site 2 and
it apparently violates the intention of o2 since the last character e, which was intended
to be deleted, is still present in the final string. Consequently, we obtain a divergence
between sites 1 and 2. It should be pointed out that even if a serialization protocol [4]
was used to require that all sites execute o1 and o2 in the same order (i.e. a global order
on concurrent operations) to obtain an identical result effece, this identical result is still
inconsistent with the original intention of o2.

To maintain convergence, the Operational Transformation (OT) approach has been
proposed by [4]. When a site i gets an operation o that was previously executed by a
site j on his replica of the shared object, the site i does not necessarily integrate o by
executing it “as is” on his replica. It will rather execute a variant of o, denoted by o′

(called a transformation of o) that intuitively intends to achieve the same effect as o.
This transformation is based on an Inclusive Transformation (IT) function.

site 1
“efecte”

site 2
“efecte”

o1 = Ins(1, f)

�������������� o2 = Del(5)

���
���

�����
���

“effecte” “efect”

Del(5) Ins(1, f)

“effece” “effect”

Fig. 1. Incorrect integration

site 1
“efecte”

site 2
“efecte”

o1 = Ins(1, f)

������������������� o2 = Del(5)

��������

����������“effecte” “efect”

IT (o2, o1) = Del(6) IT (o1, o2) = Ins(1, f)

“effect” “effect”

Fig. 2. Integration with transformation

As an example, Fig.2 illustrates the effect of an IT function on the previous example.
When o2 is received on site 1, o2 needs to be transformed according to o1 as follows:
IT (Del(5), Ins(1, f)) = Del(6). The deletion position of o2 is incremented because
o1 has inserted a character at position 1, which is before the character deleted by o2.
Next, o′2 is executed on site 1. In the same way, when o1 is received on site 2, it is trans-
formed as follows: IT (Ins(1, f), Del(5)) = Ins(1, f); o1 remains the same because f
is inserted before the deletion position of o2.

Symbolic Model-Checking of Optimistic Replication Algorithms 93

2.3 Inclusive Transformation Functions

We can find, in the literature, several IT functions: Ellis’s algorithm [4], Ressel’s al-
gorithm [8], Sun’s algorithm [12], Suleiman’s algorithm [9] and Imine’s algorithm [6].
Due to the lack of space, we report, here, only the IT function proposed by Ellis and
Gibbs [4]. In Ellis’s IT function, the insert operation is extended with another parame-
ter pr4. The priority pr is used to solve a conflict occurring when two concurrent insert
operations were originally intended to insert different characters at the same position.
Note that concurrent editing operations have always different priorities. Fig.3 gives the
four transformation cases for Ins and Del proposed by Ellis and Gibbs.

IT(Ins(p1, c1, pr1), Ins(p2, c2, pr2)) =⎧⎪⎨⎪⎩
Ins(p1, c1, pr1) if (p1 < p2) ∨ (p1 = p2 ∧ c1
= c2 ∧ pr1 < pr2)
Ins(p1 + 1, c1, pr1) if (p1 > p2) ∨ (p1 = p2 ∧ c1
= c2) ∧ pr1 > pr2)
Nop() if p1 = p2 ∧ c1 = c2

IT(Ins(p1, c1, pr1), Del(p2))=

{
Ins(p1, c1, pr1) if p1 < p2

Ins(p1 − 1, c1, pr1) otherwise

IT(Del(p1), Ins(p2, c2, pr2)) =

{
Del(p1) if p1 < p2

Del(p1 + 1) otherwise

IT(Del(p1), Del(p2)) =

⎧⎪⎨⎪⎩
Del(p1) if p1 < p2

Del(p1 − 1) if p1 > p2

Nop() otherwise

Fig. 3. IT function of Ellis et al

Let seq = [o1; o2; . . . ; on] be a sequence of operations. Transforming any editing
operation o according to seq is denoted by IT ∗(o, seq) and is recursively defined
by: IT ∗(o, []) = o, where [] is the empty sequence, and IT ∗(o, [o1; o2; . . . ; on]) =
IT ∗(IT (o, o1), [o2; . . . ; on]).

2.4 Integration Procedures

Several integration procedures have been proposed in the groupware research area, such
as dOPT [4], adOPTed [8], SOCT2,4 [10, 14] and GOTO [11]. Every site generates
operations sequentially and stores these operations in a stack also called a history (or
execution trace). When a site receives a remote operation o, the integration procedure
executes the following steps:
1. From the local history seq, it determines the equivalent sequence seq′ that is the

concatenation of two sequences seqh and seqc where (i) seqh contains all op-
erations happened before o (according to the causality relation defined in Sub-
section 2.1), and (ii) seqc consists of operations that are concurrent to o.

2. It calls the transformation component in order to get operation o′ that is the trans-
formation of o according to seqc (i.e. o′ = IT ∗(o, seqc)).

3. It executes o′ on the current state and then adds o′ to local history seq.

4 This priority is calculated at the originating site. Two operations generated from different sites
have always different priorities. Usually, the priority i is assigned to all operations generated
at site i.

94 H. Boucheneb, A. Imine, and M. Najem

The integration procedure allows history of executed operations to be built on every
site, provided that the causality relation is preserved. At stable state5, history sites are
not necessarily identical because the concurrent operations may be executed in different
orders. Nevertheless, these histories must be equivalent in the sense that they must lead
to the same final state.

2.5 Consistency Criteria

An OT-based collaborative editor is consistent iff it satisfies the following properties:

1. Causality preservation: if o1 → o2 then o1 is executed before o2 at all sites.
2. Convergence: when all sites have performed the same set of updates, the copies of

the shared document are identical.

To preserve the causal dependency between updates, timestamp vectors are used. In [8],
the authors have established two properties TP1 and TP2 that are necessary and suf-
ficient to ensure data convergence for any number of operations executed in arbitrary
order on copies of the same object: For all o0, o1 and o2 pairwise concurrent operations:

• TP1: [o0 ; IT (o1, o0)] ≡ [o1 ; IT (o0, o1)].
• TP2: IT ∗(o2, [o0 ; IT (o1, o0)]) = IT ∗(o2, [o1 ; IT (o0, o1)]).

Property TP1 defines a state identity and ensures that if o0 and o1 are concurrent, the
effect of executing o0 before o1 is the same as executing o1 before o0. Property TP2
ensures that transforming o2 along equivalent and different operation sequences will
give the same operation. Accordingly, by these properties, it is not necessary to enforce
a global total order between concurrent operations because data divergence can always
be repaired by operational transformation. However, finding an IT function that satisfies
TP1 and TP2 is considered as a hard task, because this proof is often unmanageably
complicated.

3 Modeling Execution Environment of the OT Algorithms

We propose a symbolic model, based on the DBM data structure and communicating
extended automata, to verify the consistency of OT algorithms. The DBM data structure
is usually used to handle dense time domains in model-checkers of timed systems. It is
used here to handle symbolically parameters (positions and symbols) of update opera-
tions (discrete domains) and verify properties TP1 and TP2 on traces (sequences of
operations). Using DBM enables us to 1) abstract the shared object, 2) manipulate sym-
bolically parameters of operations without fixing their sizes and 3) provide symbolic
counterexamples for TP1 and TP2. First, we present the DBM data structure. After-
wards, our symbolic model of the OT execution environment is described. We show,
at this level, how to use the DBM data structure to handle symbolically operations and
verify properties TP1 and TP2.

5 A stable state is a state where all sites have executed the same set of operations but possibly in
different orders.

Symbolic Model-Checking of Optimistic Replication Algorithms 95

3.1 Difference Bound Matrices

Let X = {x1, ..., xn} be a finite and nonempty set of variables. An atomic constraint
over X is a constraint of the form xi − xj ≺ c, xi ≺ c, or−xj ≺ c, where xi, xj ∈ X ,
≺∈ {<,≤} and c ∈ Z, Z being the set of integers. Constraints of the form xi − xj ≺ c
are triangular constraints while the others are simple constraints. Constraints xi ≺ xj +
c, xi = xj + c, xi ≥ xj + c, xi > xj + c, xi > c, −xi > c, xi ≥ c and −xi ≥ c are
considered as abbreviations of atomic constraints.

In the context of this paper, X is a set of nonnegative integer variables (discrete
variables), representing operation parameters (positions and lexical values of symbols).
Therefore, atomic constraints xi − xj < c, xi < c and −xi < c are equivalent to
xi − xj ≤ c − 1, xi ≤ c − 1 and −xi ≤ c − 1, respectively. Moreover, we are
interested in triangular constraints (i.e., all atomic constraints are supposed to be of the
form xi−xj ≤ c). In the rest of the paper, for simplicity, we will invariantly use atomic
constraints or their abbreviations.

A difference bound matrix is used to represent a set of atomic constraints. Given a
set of atomic constraints A over the set of variables X . The DBM of A is the square
matrix M of order |X |, where mij is the upper bound of the difference xi − xj in A.
By convention mii = 0, for every xi ∈ X . In case, there is no constraint in A on
xi − xj (i �= j), mij is set to∞. For example, we report, in Table 1, the DBM M of
the following set of atomic constraints:

A = {x2 − x1 ≤ 5, x1 − x2 ≤ −1, x3 − x1 ≤ 3, x1 − x3 ≤ 0}.
Though the same nonempty domain may be expressed by different sets of atomic

constraints, their DBMs have a unique form called canonical form. The canonical form
of a DBM is the representation with tightest bounds on all differences between vari-
ables. It can be computed, in O(n3), n being the number of variables in the DBM, using
a shortest-path algorithm, like Floyd-Warshall’s all-pairs shortest-path algorithm [1].
As an example, Table 1 shows the canonical form M ′ of the DBM M . Canonical forms
make easier some operations over DBMs like the test of equivalence. Two sets of atomic
constraints are equivalent iff the canonical forms of their DBMs are identical.

A set of atomic constraints may be inconsistent (i.e., its domain is empty). To verify
the consistency of a set of atomic constraints, it suffices to apply a shortest-path algo-
rithm and to stop the algorithm as soon as a negative cycle is detected. The presence of
negative cycles means that the set of atomic constraints is inconsistent.

In the context of our work, we use, in addition to the test of equivalence, three
other basic operations on DBMs: adding a constraint to a set of constraints, incre-
menting/decrementing a variable in a set of constraints. We establish, in the following,
computation procedures for these operations which do not need any operation of can-
onization (computing canonical forms).

Let X = {x1, ..., xn} be a finite and nonempty set of nonnegative integer variables,
A a consistent set of triangular constraints over X , M the DBM, in canonical form, of
A, xi and xj two distinct variables of X .

Incrementing by 1 a variable xi in A is realized by replacing xi with xi − 1
(old xi = new xi − 1). Using the DBM M , in canonical form, of A, this incre-
mentation consists of adding 1 to each element of the line xi and subtracting 1 from
each element of the column xi. Intuitively, this corresponds to replacing each constraint

96 H. Boucheneb, A. Imine, and M. Najem

xi − xj ≤ mij with xi − xj ≤ mij + 1 and each constraint xj − xi ≤ mji with
xj − xi ≤ mji − 1. The resulting set of constraints and its DBM are denoted A[xi++]
and M[i++], respectively. The complexity of this operation is O(n).

Similarly, to subtract 1 from a variable xi in A, it suffices to replace xi with xi + 1
(old xi = new xi + 1). Using the DBM M , in canonical form, of A, this operation
consists of subtracting 1 from each element of the line xi and adding 1 to each element
of the column xi. The resulting set of constraints and its DBM are denoted A[xi−−] and
M[i−−], respectively. This operation is also of complexity O(n). The following theo-
rem establishes that M[i++] and M[i−−] are in canonical form too. There is not need to
compute their canonical forms.

Theorem 1. (i) A∪ {xi − xj ≤ c} is consistent iff mji + c ≥ 0. If A∪ {xi − xj ≤ c}
is consistent, its DBM M ′, in canonical form, can be computed from M as follows:
M ′ = M if mij ≤ c, and (∀k, l ∈ [1, n], m′

kl = Min(mkl, mki +c+mjl)) otherwise.
(ii) M[i++] and M[i−−] are in canonical form.

Proof. (i) A can be represented by a weighted and oriented graph where each constraint
xl − xk ≤ d of A is represented by the edge (xl, xk, d). Since A is consistent, its
graph does not contain any negative cycle. Therefore, A ∪ {xi − xj ≤ c} is consistent
iff, in its graph, the shortest cycle going through edge (xi, xj , c) is nonnegative (i.e.,
mji + c ≥ 0). If A ∪ {xi − xj ≤ c} is consistent, then ∀k, l ∈ [1, n], m′

kl is the weight
of the shortest path connecting xk to xl, i.e., m′

kl = Min(mkl, mki + c + mjl). By
assumption M is in canonical form. It follows that mkl ≤ mki + mij + mjl and then:
mij ≤ c implies that m′

kl = mkl.
(ii) M is in canonical form iff ∀j, k, l ∈ [1, n], mjk ≤ mjl + mlk.
We give the proof for M[i++]. The proof for M[i−−] is similar. By definition,

∀j, k ∈ [1, n], m[i++]jk
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mjk if j �= i ∧ k �= i

mjk + 1 if j = i ∧ k �= i

mjk − 1 if j �= i ∧ k = i

0 if j = i ∧ k = i
It follows that:
- If j
= i, k
= i, and l
= i then: m[i++]jk

= mjk and m[i++]jl
+m[i++]lk

= mjl +mlk.
- If j
= i, k
= i, and l = i then:m[i++]jk

= mjk andm[i++]jl
+m[i++]lk

= mjl−1+mlk+1.
- If j = i, k
= i, and l
= i then:m[i++]jk

= mjk+1 andm[i++]jl
+m[i++]lk

= mjl+1+mlk.
- If j = i, k
= i, and l = i then: m[i++]jk

= mjk +1 and m[i++]jl
+m[i++]lk

= 0+mjk +1.
- If j
= i, k = i, and l
= i then:m[i++]jk

= mjk−1 andm[i++]jl
+m[i++]lk

= mjl+mlk−1.
- If j
= i, k = i, and l = i then: m[i++]jk

= mjk−1 and m[i++]jl
+m[i++]lk

= mjl−1+0.
- If j = i, k = i, and l = i then: m[i++]jk

= 0 and m[i++]jl
+m[i++]lk

= 0.
By assumption mjk ≤ mjl + mlk . Then m[i++]jk

≤ m[i++]jl
+ m[i++]jl

. ��

The complexity of the consistency test of A∪ {xi− xj ≤ c} is O(1). The computation
complexity of the canonical form of its DBM is reduced to O(n2).

For instance, consider the set of constraints A of the previous example and its DBM,
in canonical form, M ′. According to Theorem 1, A ∪ {x2 − x3 ≤ 0} is consistent iff
m′

32 + 0 ≥ 0 (i.e., 2 ≥ 0). We give in Table 1, DBMs M” of A ∪ {x2 − x3 ≤ 0} and
M”2++.

Symbolic Model-Checking of Optimistic Replication Algorithms 97

Table 1. Some examples of DBMs

M x1 x2 x3

x1 0 −1 0

x2 5 0 ∞
x3 3 ∞ 0

M ′ x1 x2 x3

x1 0 −1 0

x2 5 0 5

x3 3 2 0

M” x1 x2 x3

x1 0 −1 −1

x2 3 0 0

x3 3 2 0

M ′
[2++] x1 x2 x3

x1 0 −2 0

x2 4 0 1

x3 3 1 0

3.2 Our Symbolic Model

Our model of OT-based collaborative editor is a network of communicating extended
automata. A communicating extended automaton is an automaton extended with finite
sets of variables, binary channels of communication, guards and actions. In such au-
tomata, edges are annotated with selections, guards, synchronization signals and blocks
of actions. Selections bind non-deterministically a given identifier to a value in a given
range (type). The other three labels of an edge are within the scope of this binding. A
state is defined by the current location and current values of all variables. An edge is en-
abled in a state if and only if the guard evaluates to true. The block of actions of an edge
is executed atomically when the edge is fired. The side effect of this block changes the
state of the system. Edges labelled with complementary synchronization signals over a
common channel must synchronize. Two automata synchronize through channels with
a sender/receiver syntax [2]. For a binary channel, a sender can emit a signal through
a given channel Syn (Syn!), if there is another automaton ready to receive the signal
(Syn?). Both sender and receiver synchronize on execution of complementary actions
Syn! and Syn?. The update of the sender is executed before the update of the receiver.

An OT-based collaborative editor is composed of two or more sites (users) which
communicate via a network and use the principle of multiple copies, to share some ob-
ject (a text). Initially, each user has a copy of the shared object. It can afterwards modify
its copy by executing operations generated locally and those received from other users.
When a site executes a local operation, it is broadcast to all other users. The execu-
tion of a non local operation consists of the integration and the transformation steps
as explained in Sub-section 2.4. To avoid managing queues of messages, the network
is abstracted by allowing access to all operations and all timestamp vectors (declared
as global variables). We propose also to abstract away the shared object and managing
symbolically, using DBMs, the update operations.

Our OT-based collaborative editor model consists of one automaton per site, named
Site, and an automaton named Integration devoted to the integration procedure and
the verification of properties TP1 and TP2. Each automaton has only one parameter
which is also an implicit parameter of all functions defined in the automaton. The pa-
rameter of automaton Site is the site identifier named pid. The parameter of automaton
Integration is the property TP1 or TP2 to be verified. These automata communicate
via shared variables and a binary channel named Syn.

3.3 Automaton Site

This automaton, depicted in Fig.4 (left), is devoted to generate, using timestamp vectors
of different sites (V [NbSites][NbSites]), all possible execution orders of operations

98 H. Boucheneb, A. Imine, and M. Najem

l1

l0

k:pid_t
ExecutionCondition(k)
&& NeedTP1TP2(k)
Syn!
SymbolicExecution(k),
stable=false

k:pid_t
ExecutionCondition(k)
&& ! NeedTP1TP2(k)
SymbolicExecution(k)

Syn?

stable = true

l0

l1

Stop == false &&
NeedIT()==false
nextIteration()

k : int[0,10]
Stop == false
&& TransformationCaseG(k)

TransformationCase(k),
nextIteration()

Stop
Syn!

VerifyTP1TP2()

Syn?
ReorderSeq()

Fig. 4. Automata Site (const pid t pid) and Integration (const Property prop)

(traces), respecting the causality principle. The loop on the initial location l0 specifies
the symbolic execution of an operation leading to a situation where there is no need
to verify properties TP1 and TP2. The transition from l0 to l1 corresponds to the
symbolic execution of an operation that needs the verification of TP1 or TP2. The
boolean function ExecutionCondition(k) verifies whether a site pid can execute, ac-
cording to the causality principle, an operation o of site k (k in pid t). The function
SymbolicExecution(k) adds o to the symbolic trace of site pid, sets the timestamp
vector of o to V [pid], and then updates V [pid] (i.e., V [pid][pid] + +).

The integration of operations is performed by automaton Integration when there is
a need to verify TP1 or TP2 (i.e., function NeedTP1TP2(k) returns true). For TP1,
NeedTP1TP2(k) returns true, if the execution, by site pid, of an operation o1 of site
k leads to a state where there is another site j s.t. traces of pid and j are [seq1; o0; o1]
and [seq2; o1; o0], respectively, seq1 and seq2 are two equivalent operation sequences,
o0 and o1 are two concurrent operations. This function returns true for TP2, if the
execution of an operation o2 by site pid leads to a state where there is another site j
s.t. traces of pid and j are [seq1; o0; o1; o2] and [seq2; o1; o0; o2], respectively, seq1 and
seq2 are two equivalent sequences, o0, o1 and o2 are pairwise concurrent operations.

3.4 Automaton Integration

This automaton, depicted in Fig.4 (right), is devoted to the verification of proper-
ties TP1 and TP2 on two sequences of operations. The verification starts when
it receives a signal Syn from any site. It consists of applying the integration pro-
cedure to each sequence and then verifying that the resulting sequences satisfy the
property TP1 or TP2. As explained in Section 2.4, the integration procedure of
a non local operation o, in a sequence seq, consists of two steps: 1) computing
a sequence seq′ equivalent to seq, where operations dependent of o precede the
concurrent ones (this is the role of function ReorderSeq()), and 2) transforming
o against seq′ (i.e. IT ∗(o, seq′)), realized by loops on location l1 and functions
TransformationCaseG(k), TransformationCase(k) and NextIteration(). The
loop containing NeedIT () == false is executed if o does not need to be transformed
against the current operation of seq′. Otherwise, the other loop is executed and o is

Symbolic Model-Checking of Optimistic Replication Algorithms 99

transformed against the current operation of seq′. The verification of properties TP1
and TP2 on two sequences is performed by V erifyTP1TP2(), when the transforma-
tion process is completed for both sequences. The transformation and the verification
are symbolic in the sense that operations are manipulated symbolically using DBMs.

3.5 Symbolic Transformation

The transformation procedure is applied when there is a need to verify TP1 or TP2
on traces of two sites. To handle symbolically the update operations of these traces, we
use a DBM over the positions of the original operations, their copies and also symbols
of the original operations. Initially, there is no constraint on symbols of operations and
the position of each original operation is identical to those of its copies. Note that, the
transformation of an operation does not affect the symbols, but, in some IT functions,
the transformation procedures depend on symbols. So, there is no need to represent,
symbols of the copies of operations, since they are always equal to the original ones.

Let us explain, by means of an example, how to handle and transform symboli-
cally an operation against another operation. Suppose that we need to verify TP1 on
sequences seq0 = [o0; o1] of site 0 and seq1 = [o1; o0] of site 1, where operations
o0 and o1 are concurrent and generated at sites 0 and 1, respectively. The automaton
Integration starts by calling function ReorderSeq() to reorder sequences seq0 and
seq1 as explained in Section 2.4 and create the initial DBM of the set of constraints
A = {p0 = p′0 = p′′0 , p1 = p′1 = p′′1}, where pi, p

′
i, p

′′
i , i ∈ {0, 1} represent positions

of operations oi and its copies o′i and o′′i , respectively. Afterwards, two transformations
are performed sequentially by the automaton (loops on location l1): IT (o′1, o′0) for Seq0
and IT (o′′0 , o′′1) for Seq1.

For IT (o′1, o
′
0), the process offers different possibilities of transformation, through

the selection block on k, which are explored exhaustively. Each value of k corresponds
to a case of transformation. For instance, for Ellis’s IT function, the eleven cases of
transformation are shown in Fig.5. These cases are trivially derived from Ellis’s IT algo-
rithm given in Fig. 3. Note that initially, the kinds of operations are not fixed. They will
be fixed when a case of transformation is selected. For example, k = 10 corresponds to
the case where o′0 is a delete operation, o′1 is an insert operation and p′1 = p′0. The func-
tion TransformationCaseG(10) returns true iff the set of constraints A∪{p′0 = p′1}
is consistent, o′0 is either a delete operation or not fixed yet6 (Nfx), and o′1 is either
an insert operation or not fixed yet. In our case TransformationCaseG(10) returns
true and the function TransformationCase(10) adds the constraint p′0 = p′1 to A
(i.e., A = {p0 = p′0 = p′′0 = p1 = p′1 = p′′1}), decrements p′1 in the resulting A (i.e.,
A = {p0 = p′0 = p′′0 = p1 = p′′1 , p1 − p′1 = 1}), sets o0, o

′
0, o

′′
0 to delete operations,

and o1, o
′
1, o

′′
1 to insert operations.

For IT (o′′0 , o′′1), the automaton Integration offers only one possibility of trans-
formation corresponding to the case fixed by the previous transformation, i.e., o′′0 is
a delete operation, o′′1 is an insert operation and p′′0 = p′′1 . In this case, the func-
tion TransformationCase adds the constraint p′′0 = p′′1 to A (i.e., A = {p0 =
p′0 = p′′0 = p1 = p′′1 , p1 − p′1 = 1}) and increments p′′0 in the resulting A, (i.e.,
A = {p0 = p′0 = p1 = p′′1 , p1 − p′1 = 1, p0 − p′′0 = −1}) (see Fig.6 and Fig.7).

6 Nfx means that the operation type is not fixed yet and then can be set to Del or Ins.

100 H. Boucheneb, A. Imine, and M. Najem

A p1'=p0', c0>c1} is consistent and
op0', op1' Ins,Nfx} and pr0>pr1

o0
=(

op
0,

p0
,c

0,
pr

0)
an

d
o1

=(
op

1,
p1

,c
1,

pr
1)

ar
e

or
ig

in
al

op
er

at
io

ns
;

o1
'=

(o
p1

',p
1'

,c
1,

pr
1)

an
d

o0
'=

(o
p0

',p
0'

,c
0,

pr
0)

ar
e

co
pi

es
of

o0
an

d
o1

,r
es

pe
ct

iv
el

y;
op

0'
{In

s,
D

el
,N

op
,N

fx
},

op
1'

{In
s,

D
el

,N
op

,N
fx

};
A

is
th

e
se

to
fc

on
st

ra
in

ts
ov

er
po

si
tio

ns
an

d
sy

m
bo

ls
of

or
ig

in
al

an
d

tra
ns

fo
rm

ed
op

er
at

io
ns

A = A {p1' < p0'}

If(op0'==Nfx) op0=op0'=op0" = Ins;
A = A { p0' < p1}; A[p1'++]

If(op0'==Nfx) op0=op0'=op0"= Ins;
If(op1'==Nfx) op1= op1'=op1"=Del;

A = A {p1'=p0'}; A[p1'++]

If(op0'==Nfx) op0=op0'=op0"= Del;
A = A {p0' < p1'}; A[p1'--]

If(op0'==Nfx) op0=op0'=op0"=Del;
If(op1'==Nfx) op1=op1"=Del;
A = A {p1'=p0'}; op1'=Nop

If (op0'==Nfx) op0= op0'=op0"=Ins;
If(op1'==Nfx) op1=op1'=op1"=Ins;
A = A {p1'=p0', c0<c1}; A[p1'++]

A {p1' < p0'} is consistent

A p1' > p0'} is consistent and
op0' Ins,Nfx}

A p1' > p0'} is consistent and
op0' Del,Nfx}

A p1'=p0'} is consistent
and op1', op0' Del,Nfx}

If(op0'==Nfx) op0=op0'=op0"= Ins;
If(op1'==Nfx) op1=op1"=Ins

A = A {p1'=p0', c0=c1}, op1'=Nop

A p1'=p0', c0=c1} is consistent
and op1',op0' Ins,Nfx}

A p1'=p0'} is consistent and
op0' Ins,Nfx} and op1' Del,Nfx}

A p1'=p0', c0<c1} is consistent and
op0', op1' Ins,Nfx} and pr0<pr1

Functions TransformationCaseG(int k) and TransformationCase(int k) for Ellis’s IT algorithm
TransformationCaseG(k) tests whether a transformation numbered k can be applied;

Function TransformationCase(k) applies the transformation k (IT(o1',o0'))

k=0

k=1

k=2

k=3

k=4

k=9

k=5

k=6

k=7

If(op0'==Nfx) op0= op0'=op0"=Ins;
If(op1'==Nfx) op1=op1'=op1"=Ins;

A = A {p1'=p0', c0<c1}

A p1'=p0', c0<c1} is consistent and
op0', op1' Ins,Nfx} and pr0>pr1

If(op0'==Nfx) op0= op0'=op0"=Ins;
If(op1'==Nfx) op1=op1'=op1"=Ins;
A = A {p1'=p0', c0>c1}; A[p1'++]

A p1'=p0', c0>c1} is consistent and
op0', op1' Ins,Nfx} and pr0<pr1

k=8
If(op0'==Nfx) op0= op0'=op0"=Ins;
If(op1'==Nfx) op1=op1'=op1"=Ins;

A = A {p1'=p0', c0>c1}

If(op0'==Nfx) op0=op0'=op0"= Del;
If(op1'==Nfx) op1= op1'=op1"= Ins;

A = A {p1'=p0'}; A[p1'--]

A p1'=p0'} is consistent and
op0' Del,Nfx} and op1' Ins,Nfx}k=10

Used
Data

Fig. 5. Symbolic IT algorithm of Ellis

3.6 Verification of TP1 and TP2

Property TP1 ensures that the execution of two operations o0 and o1 in different or-
ders, on two identical copies of a text, has the same effect. To compare the effects of
sequences [o′0; o

′
1] and [o′′0 ; o′′1] on two identical copies of a text, it suffices to determine

the final positions, in each copy, of all parts affected, when both operations are executed.
The affected parts must be the same in both copies. Since the operations are handled
symbolically (represented by a set of atomic constraints A (i.e., DBMs)), the effect of
these symbolic operations must be also represented by a set of constraints. Property

Symbolic Model-Checking of Optimistic Replication Algorithms 101

site 0 site 1

o′0 = Nfx(p′0, c0)

�������������� o′′1 = Nfx(p′′1 , c1)

������

��������

o′1 = Nfx(p′1, c1) Nfx(p′′0 , c0)

Fig. 6. Before integration: A =

{p0 = p′0 = p′′0 , p1 = p′1 = p′′1}

site 0 site 1

o′0 = Del(p′0)

��������������� o′′1 = Ins(p′′1 , c1)

������

��������

o′1 = Ins(p′1, c1) o′′0 = Del(p′′0)

Fig. 7. After Integration for k = 10: A =

{p0 = p′0 = p1 = p′′1 = p′1 + 1 = p′′0 − 1}

TP1 is not satisfied if the number of idle operations differs from one sequence to the
other. It is also not satisfied if there is an idle operation in each sequence and the re-
maining ones are of different types, their positions are different or their symbols are
different.

For the other cases, let us first explain how to verify TP1 on our previous example
(see Fig.7). Since, in A = {p0 = p′0 = p1 = p′′1 = p′1+1 = p′′0−1}, constraint p′1 < p′0
is always satisfied, it follows that after executing the sequence [Del(p′0); Ins(p′1, c1)],
the positions of the deleted and the inserted elements are p′0 + 1 and p′1, respectively. In
A, constraint p′′1 > p′′0 is also always satisfied. Therefore, after executing the sequence
[Ins(p′′1 , c1); Del(p′′0)], the inserted and the deleted elements are at positions p′′1 and p′′0 ,
respectively. Property TP1 is satisfied iff each valuation of the domain of A, satisfies
the both constraints: p′0 + 1 = p′′0 and p′1 = p′′1 , i.e., A = A ∪ {p′0 + 1 = p′′0 , p′1 = p′′1}.
Since, in A, we have p′1 �= p′′1 , it follows that TP1 is not satisfied for Ellis’s IT algorithm
and then the previous example is a symbolic counterexample for TP1. Each nonneg-
ative valuation of positions p0 and p1 that satisfies constraints of A but do not satisfy
constraints of A ∪ {p′0 = p′′0 , p′1 = p′′1} corresponds to a concrete counterexample. As
an example, for p0 = p1 = 2, we obtain the counterexample where sequences executed
by sites 0 and 1 are [Del(2); Ins(1, c1)] and [Ins(2, c1); Del(3)], respectively. These
sequences lead to a divergence. For instance, if the initial text is abcde, the previous
sequences lead to two different copies: ac1bde and abc1de.

To verify TP1, function V erifyTP1TP2 partitions the domain of A in three or four
partitions as shown in Table 2 and then determines, for each consistent partition, the po-
sitions of the inserted/deleted elements when both sequences are executed. We give, in
Table 2, the different partitions of A and the associated conditions that guarantee to get
the same effect on both copies of the shared text, for different sequences of two non idle
operations. As an example, suppose two sequences seq′ = [Ins(p′0, c0); Ins(p′1, c1)]
and seq′′ = [Ins(p′′1 , c1); Ins(p′′0 , c0)]. Let us compare the effects of these sequences.
The positions of the inserted elements, when seq′ is executed, depend on the relation-
ships between p′0 and p′1: p′0 + 1 and p′1, if p′0 ≥ p′1; and p′0 and p′1 otherwise. Sim-
ilarly, the positions of the inserted elements when seq′′ is executed are: p′′1 + 1 and
p′0, if p′′1 ≥ p′′0 ; and p′′1 and p′′0 otherwise. Therefore, to compare the effects of both
sequences, four cases are considered (see Fig.8). Each case has its own condition of
convergence. For example, for p′0 ≥ p′1 ∧ p′′1 ≥ p′′0 , the condition of convergence is
A ∪ {p′0 ≥ p′1, p

′′
1 ≥ p′′0} = A ∪ {p′0 ≥ p′1, p

′′
1 ≥ p′′0 , p′0 = p′′1 , p′1 = p′′0 , c0 = c1}.

102 H. Boucheneb, A. Imine, and M. Najem

Table 2. Symbolic verification of TP1

[Ins(p′0, c0); Ins(p
′
1, c1)] || [Ins(p′′1 , c1); Ins(p′′0 , c0)]

Partitions of A Convergence condition
A1 = A ∪ {p′1 ≤ p′0, p

′′
1 < p′′0} A1 = A1 ∪ {p′0 + 1 = p′′0 , p

′
1 = p′′1}

A2 = A ∪ {p′1 ≤ p′0, p
′′
1 ≥ p′′0} A2 = A2 ∪ {p′0 = p′′1 , p

′
1 = p′′0 , c0 = c1}

A3 = A ∪ {p′1 > p′0, p
′′
1 < p′′0} A3 = A3 ∪ {p′0 = p′′1 , p

′
1 = p′′0 , c0 = c1}

A4 = A ∪ {p′1 > p′0, p
′′
1 ≥ p′′0} A4 = A4 ∪ {p′0 = p′′0 , p

′
1 + 1 = p′′1}

[Del(p′0);Del(p
′
1)] || [Del(p′′1);Del(p′′0)]

Partitions of A Convergence condition
A1 = A ∪ {p′1 < p′0, p

′′
1 ≤ p′′0} A1 = A1 ∪ {p′0 = p′′0 + 1, p′1 = p′′1}

A2 = A ∪ {p′1 < p′0, p
′′
1 > p′′0} A2 = A2 ∪ {p′0 = p′′1 , p

′
1 = p′′0}

A3 = A ∪ {p′1 ≥ p′0, p
′′
1 ≤ p′′0} A3 = A3 ∪ {p′0 = p′′1 , p

′
1 = p′′0}

A4 = A ∪ {p′1 ≥ p′0, p
′′
1 > p′′0} A4 = A4 ∪ {p′0 = p′′0 , p

′
1 = p′′1 + 1}

[Del(p′0); Ins(p
′
1, c1)] || [Ins(p′′1 , c1);Del(p′′0)]

Partitions of A Convergence condition
A1 = A ∪ {p′1 < p′0} A1 = A1 ∪ {p′0 + 1 = p′′0 , p

′
1 = p′′1}

A2 = A ∪ {p′1 ≥ p′0, p
′′
1 ≤ p′′0} A2 = A2 ∪ {p′0 = p′′1 , p

′
1 + 1 = p′′0 , p

′
0 = p′1}

A3 = A ∪ {p′1 ≥ p′0, p
′′
1 > p′′0} A3 = A3 ∪ {p′0 = p′′0 , p

′
1 = p′′1 − 1}

p’1 p’0 + 1
c1 c0

p’’0 p’’1 +1
c0 c1

Fig. 8. Effect of seq′ and seq′′ in case p′0 ≥ p′1 ∧ p′′1 ≥ p′′0

The verification of property TP2 is much more simpler than TP1. Let
[seq0; o0; o1; o2] and [seq1; o1; o0; o2] be a pair of equivalent sequences, such that o0, o1
and o2 are pairwise concurrent operations. Verifying TP2 consists of testing that o2 is
transformed in the same manner against sequences [seq0; o0; o1] and [seq1; o1; o0].

For both properties, function V erifyTP1TP2 sets a boolean variable named
Detected to true as soon as the violation of property TP1 or TP2 is detected. This
variable is initially set to false.

Our approach is sound and complete w.r.t. to the comvergence property as it gen-
erates only feasible traces (in respect with the causality principle) and the integration
procedure is performed exactly as in OT-based collaborative editors. Properties TP1
and TP2 are verified on feasible traces in conformity with their definitions.

We have used the on-the-fly model-checker UPPAAL7 to test the symbolic model
proposed here. The Computation tree logic (CTL) formula [5] AG not Detected al-
lows us to verify whether or not property TP1 or TP2 is satisfied. We have con-
sidered several IT functions: Ellis [4], Ressel [8], Sun [12], Suleiman [9] and
Imine [6]. To test different IT functions, it suffices to rewrite accordingly functions

7 www.uppaal.com

Symbolic Model-Checking of Optimistic Replication Algorithms 103

Table 3. Verification of TP1 and TP2 for five IT functions proposed in the literature

IT function Verification of TP1 and TP2
Ellis TP1 false, o0 ∈ {Ins(p0, c0),Del(p0)}, o1 = Ins(p1, c1), p1 < p0

Sizes / Time 234 / 157 / 0.452
TP2 false, o0 = Del(p0), o1 = Ins(p0 − 1, c1), o2 = Ins(p0, c1)

Sizes / Time 667 / 561 / 1.029

Ressel TP1 true
Sizes / Time 788 / 788 / 0.811

TP2 false, o0 = Del(p0), o1 = Ins(p0 + 1, c1), o2 = Ins(p0, c2)
Sizes / Time 477 / 413 / 0.686

Sun TP1 false, o0 ∈ {Ins(p0, c0),Del(p0)}, o1 = Ins(p1, c1), p1 < p0

Sizes / Time 225 / 156 / 0.405
TP2 false, o0 = Ins(p0, c0), o1 = Del(p0 − 1), o2 = Ins(p0 − 1, c2)

Sizes / Time 477 / 413 / 0.717

Suleiman TP1 true
Sizes / Time 1023 / 1023 / 1.060

TP2 false, o = Del(p0 − 1), o0 = Ins(p0, c0), o1 = Ins(p0 − 1, c1),
o2 = Ins(p0 − 1, c2), c1 < c2 < c0

Sizes / Time 10961 / 9913 / 2.124

Imine TP1 true
Sizes / Time 963 / 963 / 1.130

TP2 false, o = Del(p), o0 = Del(p0), o1 = Ins(p0, c1),
o2 = Ins(p0, c2), p+ 1 ≤ p0, c2 < c1

Sizes / Time 9730 / 8808 / 2.130

TransformationCaseG(k) and TransformationCase(k). We give, in Table 3,
the results obtained for both properties TP1 and TP2 in the case of four operations
o0, o1, o2, o and three sites. All operations are pairwise concurrent, except that o2 is
causally dependent of o. The property TP2 is not satisfied for all considered IT func-
tions. A symbolic counterexample is provided for each unsatisfied property. We report
also the number of explored/computed abstract states and the time, in second, of the
verification, under UPPAAL, of CTL formula AG not Detected.

4 Conclusion

We have proposed here a symbolic model-checking technique to verify that an OT algo-
rithm used, in replication-based collaborative editors ensures convergence of replicas.
In our technique, the shared objects are abstracted and their update operations are han-
dled symbolically using difference bound matrices. Unlike in [3], there is no need to
fix neither the shared object nor sizes of parameters of its update operations. Unlike
in [7], our approach allows us to provide symbolic feasible counterexamples for the
convergence property. Indeed, in [7], the verification of convergence is not based on
only feasible traces. Consequently, it is sound but not complete. Our approach is sound
and complete. However, its termination needs to fix the numbers of sites and operations.
We plan to determine, if they exist, the smallest values for m and n s.t. an OT algorithm

104 H. Boucheneb, A. Imine, and M. Najem

ensures convergence for m operations and n sites implies that the OT algorithm ensures
convergence for any arbitrary numbers of operations and sites.

References

1. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in zone-based
abstractions of timed automata. Theoretical Computer Science 8(3) (2006)

2. Bérard, B., Bouyer, P., Petit, A.: Analysing the pgm protocol with UPPAAL. International
Journal of Production Research 42(14), 2773–2791 (2004)

3. Boucheneb, H., Imine, A.: On model-checking optimistic replication algorithms. In:
FMOODS/FORTE, pp. 73–89 (2009)

4. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. In: SIGMOD Confer-
ence, vol. 18, pp. 399–407 (1989)

5. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science,
ch. 16. Formal Methods and Semantics, vol. B (1990)

6. Imine, A., Molli, P., Oster, G., Rusinowitch, M.: Proving correctness of transformation func-
tions in real-time groupware. In: ECSCW 2003, Helsinki, Finland (September 14-18, 2003)

7. Imine, A., Rusinowitch, M., Oster, G., Molli, P.: Formal design and verification of operational
transformation algorithms for copies convergence. Theoretical Computer Science 351(2),
167–183 (2006)

8. Ressel, M., Nitsche-Ruhland, D., Gunzenhauser, R.: An integrating, transformation-oriented
approach to concurrency control and undo in group editors. In: ACM CSCW 1996, Boston,
USA, pp. 288–297 (November 1996)

9. Suleiman, M., Cart, M., Ferrié, J.: Serialization of concurrent operations in a distributed
collaborative environment. In: ACM GROUP 1997, pp. 435–445 (November 1997)

10. Suleiman, M., Cart, M., Ferrié, J.: Concurrent operations in a distributed and mobile collab-
orative environment. In: IEEE ICDE 1998, pp. 36–45 (1998)

11. Sun, C., Ellis, C.: Operational transformation in real-time group editors: issues, algorithms
and achievements. In: ACM CSCW 1998, pp. 59–68 (1998)

12. Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving convergence, causality-
preservation and intention-preservation in real-time cooperative editing systems. ACM Trans.
Comput.-Hum. Interact. 5(1), 63–108 (1998)

13. Sun, C., Xia, S., Sun, D., Chen, D., Shen, H., Cai, W.: Transparent adaptation of single-
user applications for multi-user real-time collaboration. ACM Trans. Comput.-Hum. Inter-
act. 13(4), 531–582 (2006)

14. Vidot, N., Cart, M., Ferrié, J., Suleiman, M.: Copies convergence in a distributed real-time
collaborative environment. In: ACM CSCW 2000, Philadelphia, USA (December 2000)

From Operating-System Correctness to
Pervasively Verified Applications�

Matthias Daum1, Norbert W. Schirmer2, and Mareike Schmidt1

1 Computer Science Dept., Saarland University

66123 Saarbrücken, Germany

{md11,mareike}@wjpserver.cs.uni-saarland.de
2 German Research Center for Artificial Intelligence (DFKI)

66041 Saarbrücken, Germany

Norbert.Schirmer@dfki.de

Abstract. Though program verification is known and has been used

for decades, the verification of a complete computer system still remains

a grand challenge. Part of this challenge is the interaction of applica-

tion programs with the operating system, which is usually entrusted

with retrieving input data from and transferring output data to periph-

eral devices. In this scenario, the correct operation of the applications

inherently relies on operating-system correctness. Based on the formal

correctness of our real-time operating system Olos, this paper describes

an approach to pervasively verify applications running on top of the op-

erating system.

1 Introduction

Various electronic devices are embedded in the modern car, and some are even
in charge of safety-critical tasks like accelerator control. In the past years, a
failing accelerator control has caused several fatal accidents [1]. Though the
manufacturer has attributed these failures to a blocked gas pedal, a software
problem has recently been suspected for the sudden, unintended acceleration of
a car from the same manufacturer while driven by cruise control [2]. The mere
rumor of such a software flaw is economically troublesome, not to mention the
tragedy of possibly resulting fatal accidents.

There are different approaches to increase the reliability of software. A rigor-
ous way to prevent flaws is the exclusion of systematic errors by verification. If
the proofs are checked by a computer, we speak of formal verification. Certainly,
this method should not be limited to a single system layer but span as many lay-
ers as possible. Pervasive verification means that the system layers are coupled
by formal soundness and simulation theorems, such that any verification result,
obtained on a suitable layer, can ultimately be transferred down to a correct-
ness theorem on the lowest level. While program verification has been known

� Work partially funded by the German Federal Ministry of Education and Research

(BMBF) in the framework of the Verisoft project under grant 01 IS C38.

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 105–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

106 M. Daum, N.W. Schirmer, and M. Schmidt

Simpl

seqC0

seqasm

Transfer

Theorem 1

procC0

procasm

Theorem 2

Simpl

ccC0

ccasm

Ext. Transfer

Theorem 3

tc
Olos

Fig. 1. Extending the Language Stack towards Concurrency

and used over decades, the pervasive formal verification of complete computer
systems still remains a grand challenge [3].

Among others [4], the Verisoft project takes on this challenge. The goal of
its automotive subproject is a pervasively verified distributed real-time system,
consisting of hardware, a real-time operating system, and application programs.
We have implemented the operating system Olos on a verified processor [5]
using a generic programming framework for operating systems [6]. Moreover, we
have proven the correctness of Olos [7] in the proof assistant Isabelle/HOL [8].

In this paper, we report on the formally proven foundation of a verification
approach for applications running on top of Olos. We present the necessary
theorems to transfer verification results down to the operating-system level and
thus, establish a formal link between the proofs on the application layer and
those on the operating-system layer. More specifically, our verification approach
is an extension of an existing language stack [9] based upon a verified C compiler
[10] and a generic verification framework for sequential imperative programs [11].

Our overall proof architecture is depicted in Fig. 1: The original language
stack (see Sect. 2.3) is shown on the left column. On the lower end, we have the
sequential assembly language (seqasm), above is the C variant C0. Leinenbach &
Petrova’s [10] correct compiler translates a sequential C0 program (seqC0) to
assembly. Schirmer [11] has developed the generic Simpl language together with
Hoare logics and a transfer theorem stating that properties proven for Simpl
actually hold in C0. The sequential semantics, however, have no means for com-
munication. Thus, we extend seqC0 and seqasm in Sect. 3 to application processes
(marked by proc in the 2nd column), where the communication with Olos is mod-
eled by explicit inputs and outputs. We do not extend Simpl because it is solely
used for reasoning in Hoare logic, which does not support inputs and outputs.
Instead, we further extend the language stack in Sect. 4 to cooperative concur-
rent applications (marked by cc in the 3rd column). By cooperative concurrency,
we refer to the sequential execution of an application with calls to the operating
system until a final call of a synchronization primitive. Finally, we embed the
lowest layer of this stack into a true concurrent model (tcOlos) of our operating
system with an interleaved execution of applications (last column, Sect. 5).

In Sect. 6, we provide an application example demonstrating how our ap-
proach may be used in practice. We conclude in Sect. 7.

From Operating-System Correctness to Pervasively Verified Applications 107

Notation. The formalizations presented in this article are mechanized and
checked within the interactive theorem prover Isabelle/HOL [8]. This paper is
written using Isabelle’s document generation facilities, which guarantees that the
presented theorems correspond to formally proven ones.1 We distinguish formal
entities typographically from other text. We use a sans-serif font for types and
constants (including functions and predicates), e. g., map, a slanted serif font for
free variables, e. g., x, and a slanted sans-serif font for bound variables, e. g., x .
Small capitals are used for data-type constructors, e. g., ExFinish. Type vari-
ables have a leading tick, e. g., ′a. Keywords are typeset in bold font, e. g., let.

The logical and mathematical notation mostly follows standard conventions;
we only present the more unconventional parts here. We prefer curried function
application, e. g., f a b instead of f (a, b). We write f n for the n-fold composition
of function f .

Isabelle/HOL provides a library of standard types like Booleans, natural num-
bers, integers, total functions, pairs, lists, and sets as well as packages to define
new data types and records. Isabelle allows polymorphic types, e. g., ′a list is the
list type with type variable ′a. In HOL all functions are total, e. g., nat ⇒ nat
is a total function on natural numbers. There is, however, a type ′a option to
formalize partial functions. It is a data type with two constructors, one to inject
values of the base type, e. g., �x�, and the additional element ⊥. A base value
can be projected by �x�, which is defined by the sole equation ��x�� = x. As
HOL is a total logic, the term �⊥� is still a valid yet unspecified value. Partial
functions can be represented by the type ′a ⇒ ′b option.

2 Background

2.1 On A Simple Real-Time Operating System

The continually increasing number and variety of electronic components in cars
result in an even faster growing demand for communication channels. Over time,
adding more and more wires has led to space, complexity and maintenance prob-
lems. Alternatively, several components can share the same wire and use a com-
munication protocol on this bus. For that purpose, Kopetz and Grünsteidl [12]
have developed the time-triggered protocol, which schedules fixed transmission
times for each component on the bus. Variations of this protocol are nowadays
widely accepted in industry.

We adopt this idea and assume a distributed system comprising a number of
components that are connected via a communication bus. The components are
called electronic control units (ECUs). Each ECU consists of a general-purpose
RISC processor and an automotive bus controller (ABC). The latter takes care
of the timely transmission and reception of messages. This device is responsible
for clock synchronization, decoupling the processor from the communication bus.

On each processor there runs an instance of the operating system Olos, pro-
viding a virtual processor abstraction to the applications that share the same
1 For the theory files, see http://www.verisoft.de/VerisoftRepository.html

http://www.verisoft.de/VerisoftRepository.html

108 M. Daum, N.W. Schirmer, and M. Schmidt

AppAppApp

MBMBMBMB

ABC

Transmission

Bus

Phase

ECU

AppAppApp

MBMBMBMB

ABC

Receive

AppAppApp

MBMBMBMB

ABC

Compute

AppAppApp

MBMBMBMB

ABC

Send

Slot Boundary

AppAppApp

MBMBMBMB

ABC

Transmission

Fig. 2. The transition phases in each slot of our time-triggered computer system

physical processor. Olos features its own message buffers (MB) for the com-
munication between applications (on the same as well as on different physical
processors). The schedule of the transmission times on the bus is statically fixed
and repeated perpetually. A period, or round, is subdivided into equal time slices,
the so-called slots.

Each slot is divided into four transition phases. Fig. 2 illustrates the data flow
between the ECU components in the different phases:

Transmission. In this phase, the ABC device of one ECU transmits a message
to the communication bus. According to a predefined schedule, exactly one
ECU has the send permission in each slot. All ECUs listen on the bus to
receive the transmitted message.

Receive. The operating system reads the receive buffer from the ABC device
into one of its own message buffers.

Compute. A statically fixed table specifies, which application is executed dur-
ing this phase of the current slot. The application may compute locally or
exchange messages with Olos. When the application has finished its com-
putation for the current slot, it informs the operating system by a special
system call ExFinish.

Send. If the ECU is permitted to send, the operating system writes the corre-
sponding message into the ABC’s send buffer.

2.2 Formally Specifying OLOS – The True Concurrent ECU Model

Correctness is usually defined as the compliance with a specification. In our
case, this specification is an automaton. Note that Olos relies on a specific pro-
tocol with the ABC. Hence, the abstract automaton describes the behavior of
the whole ECU consisting of the processor with its running operating system
and applications together with the ABC device. A state s of this ECU automa-
ton comprises the application states s.AM, the message buffers s.MB, an ABC
state (s.abc dev), and an idle flag (s.idle flag). The latter determines whether
the application scheduled in the current slot has finished its computation.

From Operating-System Correctness to Pervasively Verified Applications 109

The transitions of the abstract ECU automaton concisely specify our informal
description of the ECU behavior as depicted in Fig. 2. In Isabelle/HOL, we have
formalized the transitions by the function �ECU t i. The static schedule t deter-
mines for each slot, which message buffer should be sent, and which application
should be scheduled. The input i distinguishes external device steps (i = �e�)
from processor computation (i = ⊥).

In this paper, we are primarily interested in the compute phase. The beginning
of the compute phase is marked by the ECU turning into the computing state.
The name is derived from the fact that all transitions starting in this state
involve a computation of the application scheduled in this slot. In this state, the
idle flag as well as the ABC’s interrupt flag are unset. Several transitions are
possible from this state:

– An external device input might raise the interrupt line of the ABC device.
In this case, the currently scheduled application has exceeded its execution
time. Olos reacts exactly as if it had been waiting for the interrupt.

– If the application issues an ExFinish call, the operating system acknowl-
edges the call and waits for an interrupt. Formally, the ECU transition raises
the idle flag. It thereby turns into an idle state waiting for an input �e�.

– Otherwise, the ECU simply remains in the computing state.

2.3 On a Correct Compiler – The Sequential Language Stack

ANSI C [13] has a complex and highly underspecified semantics. Low-level func-
tionality like the communication with the operating system, however, inherently
relies on properties of a particular compiler and a specific target hardware, e. g.,
register bindings or the internal representation of data types. They can therefore
not be verified based only on the vague ANSI C semantics. Hence, Leinenbach
and Petrova [10] specified the C-like imperative language C0, which has sufficient
features to implement low-level software but is interpreted by a more specific se-
mantics. Due to lack of space, we omit the details of the language and only
glance at its formal semantics.

The C0 Small-Step Semantics. A C0 program is statically defined by a type-
name table tt, a function table ft, and a symbol table gst of global variables.

In contrast to this static program definition, the program state evolves during
the execution of a C0 program. A state sC0 comprises: (a) the statement sC0.prog
of the program that remains to be executed, and (b) the current state sC0.mem
of the program variables and the heap objects. The transition relation �C0 of the
C0 semantics is deterministic, i. e., a partial function.

The Target Language. Leinenbach & Petrova’s verified C0 compiler translates
C0 programs into the assembly language developed for the Vamp architecture
[5]. Vamp assembly abstracts from the paging mechanism of the processor and
employs a linear memory model. An assembly state sasm is a record comprising

110 M. Daum, N.W. Schirmer, and M. Schmidt

two program counters2 (sasm.pcp and sasm.dpc), general-purpose as well as special-
purpose register files (sasm.gprs and sasm.sprs), and memory (sasm.mm).

Assembly transitions are modeled by function �asm. Again, we omit the details
of the semantics because of space restrictions. Note that the effects of hardware
exceptions like accessing unavailable memory cannot be fully determined from
an assembly-machine state. In this case, �asm gets stuck. With sufficient memory,
however, there are no exceptions generated when a well-formed C0 program is
compiled and executed.

On a Correct Compiler. Compiler correctness is formulated as a simulation
theorem. The simulation relation consistent holds for corresponding C0 and as-
sembly states. In essence, the compiler-simulation theorem states that every step
i of the source program executed on the C0 semantics simulates a certain number
si of steps of the Vamp assembly machine executing the compiled code.

The memory requirements can directly be checked on the C0 semantics. We
assume that memory is available from 0 to an address x ≤ 232. The predicate
sufficient memory x tt ft sC0 holds iff x is large enough such that the C0 state
sC0 of the program (tt, ft) can be encoded in assembly. Furthermore, we denote
the successful (i. e., fault-free) execution from an assembly state sasm in t steps
to state s ′

asm by (crange, arange)�asm sasm →t s ′
asm, where instructions are only

read from range crange and only memory addresses in range arange are accessed.
We can compute the ranges for a given C0 program by the functions code range
and address range, respectively.

Theorem 1 (Stepwise Compiler Simulation). We assume:
– The C0 state sC0 is well-formed, i. e., is validC0 tt ft sC0.
– The program counters of the well-formed assembly state sasm do not start in

a delay slot,3 i. e., is validasm sasm and sasm.pcp = sasm.dpc + 4.
– The simulation relation holds for sC0 and sasm under an allocation function

alloc, i. e., consistent tt ft sC0 alloc sasm.
– The C0 transition from sC0 is defined to s ′

C0, i. e., �C0 tt ft sC0 = �s ′
C0�.

– there is sufficient memory before and after the transition, i. e., x ≤ 232,
sufficient memory x tt ft sC0 and sufficient memory x tt ft s ′

C0.
Under these assumptions, there exists a step number n, an allocation function
alloc ′, and an assembly state s ′

asm such that (a) the assembly machine success-
fully advances in n steps from sasm to s ′

asm, (b) the final C0 state s ′
C0 simulates

s ′
asm under the allocation function alloc ′, and (c) no special-purpose registers

have been changed. Formally:

∃n alloc ′ s ′
asm.

(code range tt (gm st sC0.mem) ft, address range x)�asm sasm →n s ′
asm ∧

consistent tt ft s ′
C0 alloc ′ s ′

asm ∧ s ′
asm.sprs = sasm.sprs

2 We need two program counters because branches are delayed by one instruction.
3 When a C0 statement has been completely executed, the assembly machine should

certainly not be about to execute a previously seen branch.

From Operating-System Correctness to Pervasively Verified Applications 111

Verifying C Programs – the Isabelle/Simpl Framework. The verifica-
tion environment Isabelle/Simpl [11] is implemented as a conservative extension
of the higher-order logic (HOL) instance of the theorem-proving environment
Isabelle [8]. Though the verification environment was motivated by C0, it is by
no means restricted to C0. In fact, it is a self-contained theory development for
a quite generic model of a sequential imperative programming language called
Simpl. Part of this extensive framework are big- and small-step semantics as well
as Hoare logics for both, partial and total correctness. In order to facilitate the
usage of the Hoare logics within Isabelle/HOL, the application of the rules is
automated as a verification-condition generator. Furthermore, proofs have been
developed that the logics are sound and complete with respect to the operational
semantics. Soundness is crucial for pervasive verification in order to formally link
the results from the Hoare logics to the operational Simpl semantics. Correct-
ness theorems about the embedding of C0 into Simpl then allow us to map these
results to the small-step semantics of C0 [11,14]. Completeness can be viewed
as a sophisticated sanity check for the Hoare logics, ensuring that verification
cannot get stuck because of missing Hoare rules.

3 Application Processes

As their most basic feature, operating systems provide a processor abstraction to
applications with (a) an exclusive access to resources like registers and memory
and (b) means for the communication with the operating system to request
further services. This abstraction is commonly referred to as a process. As even
most high-level programs are eventually compiled to run as a process, we consider
any program semantics with primitives for the communication with an operating
system as a process. In this section, we formally specify processes as automata
with outputs and inputs, present two particular process semantics for C0 and
Vamp assembly, and finally extend compiler correctness to processes.

3.1 Process Semantics

In general, we define:

Definition 1 (Process Semantics). A process semantics is an automaton
Aproc specified by a tuple (Sproc, is validproc, is initproc, ��proc, �proc, �proc, �proc)
with a state space Sproc, a validity predicate is validproc, an initialization predicate
is initproc, an input alphabet ��proc, an output alphabet �proc, a transition function
�proc, as well as an output function �proc.

The state space Sproc depends on the underlying programming language – in our
case, C0 or Vamp assembly. The communication interface, on the contrary, is
determined by the operating system such that all Olos processes possess the
same in- and output alphabets. Table 1 presents both alphabets side by side.
Note the strong correlation of outputs and inputs: When a process state features
an output seen on the left, Olos responds with one of the inputs shown in the

112 M. Daum, N.W. Schirmer, and M. Schmidt

Table 1. Interface between Olos and its application processes

Outputs Ωproc Inputs Σproc

εΩ (no call to a primitive) εΣ (internal step)

SendMsg msgval msgnr SendSuccess

InvalidMsgNr

RecvMsg msgnr RecvSuccess msgval

InvalidMsgNr

ExFinish FinishSuccess

InvPtrErr InvPtrResponse

RepeatErr —

ContinueErr Continue

same table row on the right. Formally, we collect the matching output-input
pairs (�, i) in the set olos responses.

The predicate is initproc mainly determines the set of initial states; it takes two
parameters that constrain the initial memory of processes (effectively, specifying
different subsets of initial states). We implicitly assume that the parameters fulfill
basic validity constraints, which are formalized in the predicate valid params.
The predicate is validproc formulates an invariant over the execution traces of
processes.

Definition 2 (Validity of Process Semantics). We call a process semantics
valid, iff the invariant is validproc holds for all initial states, i. e.,

[[valid params img pages; is initproc img pages sproc]] =⇒ is validproc sproc

and furthermore, the invariant is preserved under transitions with valid inputs:

[[is validproc sproc; (�proc sproc, i) ∈ olos responses]] =⇒ is validproc (�proc i sproc)

3.2 Specifying the Semantics for C0 and Assembly Processes

In this section, we shortly glance at the specification of our two particular process
semantics. There are several runtime errors, namely InvPtrErr, RepeatErr,
and ContinueErr. As correct programs do not feature these errors, we omit
further details, here. Vamp assembly provides a special instruction trap n for
the communication of a process with an operating system. The process-output
function �proc sasm uses the number n to distinguish between the SendMsg, the
RecvMsg, and the ExFinish primitive; a number not assigned to a primitive
results in ContinueErr, i. e., the instruction will simply be skipped. The pa-
rameter msgval is specified by a register pointing into the memory. Finally, the
parameter msgnr is directly taken from a register. If neither a runtime error
occurred nor the next instruction is trap n, the process output is εΩ.

For a transition �proc sasm with the empty input εΣ, the assembly process
semantics employs the underlying, sequential assembly semantics �asm for its

From Operating-System Correctness to Pervasively Verified Applications 113

transition. Otherwise, the response from Olos is reflected by placing a corre-
sponding value into a specified response register ; and in case of RecvSuccess,
the received message is additionally stored into the process memory.

For C0 processes, we have implemented functions with inline assembly that
wrap the necessary assembly instructions for the communication with Olos.
For illustration, Table 2 shows the implementation of the function olosRecvMsg,
which wraps the system call RecvMsg.

The C0-process semantics treats a call to these functions as a primitive, i. e.,
the output function �proc sC0 simply determines whether the next statement is
a call to such a wrapper function, and the transition function �proc i sC0 directly
removes the function-call statement from the remaining program and updates
the C0 state sC0 according to the input i.

3.3 Extending Compiler Correctness to Processes

Recall that Leinenbach & Petrova [10] have shown compiler correctness for the
sequential C0 semantics with respect to the sequential part of Vamp assembly
(cf. Theorem 1). Below, we extend their result to the two corresponding process
semantics, which we have defined above.

First, we extend the existing simulation relation consistent for processes to
consisproc. This is mainly a syntactic adaptation and therefore we omit the details.
Second, we define predicates for the successful execution of processes analogous
to the sequential counterpart for assembly machines. Intuitively, a successful
execution is characterized by the absence of runtime errors (including the suf-
ficiency of memory). Furthermore, process transitions take inputs from Olos.
We make the output-input sequence ois explicit and require that the outputs
in the sequence equal the process output in the corresponding state as well as
that the sequence only contains matching output-input pairs, i. e., all pairs in
the sequence are contained in olos responses. Successful execution, we denote as:
�proc

C0 sC0
ois−→ s ′

C0 for C0 processes and crange �proc
asm sasm

ois−→ s ′
asm for assembly

processes, respectively. We only need the code range crange to determine that
the assembly code does not modify itself. The maximal address, in contrast, that
we know from the sequential assembly semantics, is encoded in the process state.

Table 2. C0 implementation of the receive primitive

int olosRecvMsg (t msg ∗msg ptr, unsigned int msgnr) {
int result ;

asm { lw(r11, r30, asm offset(msg ptr));

lw(r12, r30, asm offset (msgnr));

trap(2);

sw(r22, r30, asm offset(result));

};
return result;

}

114 M. Daum, N.W. Schirmer, and M. Schmidt

sn
asm s1asm s3asm s4asm s5asm sm

asm

si
C0 s′C0 s′′C0 si+1

C0

�
+
asm �

2
asm

�proc i

�asm �
+
asm

�C0

FCall

�C0

Return

�proc i
co

n
si
s p

ro
c

co
n
si
s p

ro
c

co
n
si
s p

ro
c

co
n
si
s p

ro
c

ω

ω

Fig. 3. Verification plan for the C0 implementation of the olosRecvMsg primitive

We overload code range taking a C0 process state sC0, which also contains the
static C0 program.

Recall that multiple assembly transitions might simulate a single C0 transi-
tion. With our notions of successful process execution, we reflect this circum-
stance by output-input sequences of different length. Nevertheless, both process
models should invoke the same primitives, i. e., all output-input pairs except for
internal steps (εΩ, εΣ), remain equal. For this purpose, we define a normalization
function �ois� over the ois sequences that simply removes all internal steps.

Finally, we extend the compiler theorem to processes:

Theorem 2 (Process Simulation). As in Theorem 1, we assume well-formed
C0 and assembly states sC0 and sasm, where the latter is not in a delay slot.
Moreover, we assume that the states are related by consisproc and there is a
successful execution from sC0 to a state s ′

C0.
Then, it exists a sequence ois ′, a function alloc ′, and a state s ′

asm such that
the normalized sequences are equal, sasm successfully advances under ois ′ to s ′

asm,
which is not in a delay slot, and s ′

C0 and s ′
asm are related by consisproc. Formally:

[[is validproc sC0; is validproc sasm; sasm.pcp = sasm.dpc + 4; consisproc sC0 alloc sasm;

�proc
C0 sC0

ois−→ s ′
C0]]

=⇒ ∃ois ′ alloc ′ s ′
asm. �ois� = �ois ′� ∧ code range sC0 �proc

asm sasm
ois ′
−−→ s ′

asm ∧
s ′

asm.pcp = s ′
asm.dpc + 4 ∧ consisproc s ′

C0 alloc ′ s ′
asm

Proof. We prove the theorem by induction on the output-input sequence ois.
The induction start is trivial. In the induction step, we distinguish the possible
process inputs. For an empty input εΣ, we employ Theorem 1.

For the other inputs, we examine the implementation of the corresponding
primitives. Fig. 3 shows the case that primitive olosRecvMsg is called in some
C0-process state si

C0. From the induction hypothesis, we know that there exists a
corresponding assembly state sn

asm that satisfies the simulation relation consisproc.
Using the sequential C0 semantics, we execute the function-call statement. From

From Operating-System Correctness to Pervasively Verified Applications 115

the sequential compiler theorem, we know that the execution (�+asm) of the corre-
sponding, compiled code yields an assembly state s1

asm satisfying the simulation
relation consisproc.

Starting in this state, we execute the inlined assembly code (cf. Table 2) of
the function body.4 After 2 steps, the code reaches the trap instruction in state
s3
asm. If our implementation is correct, the assembly process signals the same

output ω in this state as the C0 process does in si
C0. At this stage, the transition

function �proc uses an input i from Olos to proceed to s4
asm. After a further

step, we arrive at the end of the inlined assembly code. From the final assembly
state s5

asm and the C0 state s′C0 immediately before the execution of the inlined
assembly statement, we construct the corresponding s′′C0 immediately after the
assembly statement.5 For this to work, we have to show that the assembly code
did not disrupt the C0 execution environment (code, stack pointer, etc.). If the
assembly code preserves the integrity of the execution environment, we can again
establish the consisproc relation.

In state s′′C0, we employ the sequential C0 semantics to execute the return
statement and arrive in the state si+1

C0 . From the compiler theorem, we know
that there exists a corresponding assembly process such that the simulation
relation holds. If the primitive implementation is correct, the state si+1

C0 is equal
to the state computed from state si

C0 by �proc with the input i.
The proof for the other primitives proceeds very similarly. ��

4 The Cooperative Concurrent Application Model

The previous section presented a computational model for applications featuring
inputs and outputs for the communication with Olos. For the verification of ap-
plications, however, the communication primitives are distracting. Most notably,
Isabelle/Simpl cannot deal with inputs and outputs. Hence, we prefer a coop-
erative concurrent execution model, where we can sequentially reason about a
complete computation phase, i. e., between two calls to the ExFinish primitive.
This execution model forms the basis of the application semantics in Simpl.

Recall that during the compute phase, the sole task of Olos is the exchange
of messages with the application that is scheduled to compute in the current
slot. Hence, we can perceive the computation of Olos and the application as a
single, sequential program with two separate states: The internal process state,
on the one hand, and the Olos message buffers, on the other hand. While the
internal state can be accessed via normal C0 statements, the message buffers are
only accessible through the Olos-communication primitives.

The definition of this new computational model is straightforward: Each state
is a pair (sproc, mb) of a process state sproc and a file of message buffers mb.
The transition function emulates the behavior of Olos during the computation

4 Recall that a transition δasm is equal to δproc εΣ.
5 For reasoning about inlined Vamp assembly, we have been able to reuse previous work

[15]. Note, however, that the semantics of the trap instruction is Olos-specific.

116 M. Daum, N.W. Schirmer, and M. Schmidt

phase (assuming the corresponding application is scheduled). It distinguishes the
output of the process and computes the corresponding input. Formally:

�cc (sproc, mb) ≡
case �proc sproc of
SendMsg msgval msgnr ⇒
if msgnr < MSGCOUNT
then (�proc SendSuccess sproc, mb[msgnr := msgval])
else (�proc InvalidMsgNr sproc, mb)
| RecvMsg msgnr ⇒

if msgnr < MSGCOUNT then (�proc (RecvSuccess mb[msgnr]) sproc, mb)
else (�proc InvalidMsgNr sproc, mb)

| ExFinish ⇒ (�proc FinishSuccess sproc, mb)
| InvPtrErr ⇒ (�proc InvPtrResponse sproc, mb)
| RepeatErr ⇒ (sproc, mb)
| ContinueErr ⇒ (�proc Continue sproc, mb)
| εΩ ⇒ (�proc εΣ sproc, mb)

Note that this model uses the generic process interface, i. e., sproc might equally
refer to a C0 or assembly state. Thus, it is easy to lift process simulation
(Theorem 2) to cooperative concurrently executing applications:

Theorem 3 (Cooperative Concurrent Simulation). Assuming (a) well-
formed process states sC0 and sasm, where the latter is not in a delay slot, (b) the
absence of runtime errors in sC0 and all its immediate successors (predicate
runtime error does not hold), and (c) a well-formed file of message buffers mb
(predicate is valid mb holds), then a C0 transition in the cooperative concurrent
model simulates a number of cooperative concurrent assembly steps. Formally:

[[is validproc sC0; is validproc sasm; sasm.pcp = sasm.dpc + 4; consisproc sC0 alloc sasm;
¬ runtime error sC0; is valid mb mb]]

=⇒ ∃n alloc ′ s ′
asm.

let (s ′
C0, mb ′) = �cc (sC0, mb)

in (s ′
asm, mb ′) = (�ccn) (sasm, mb) ∧ consisproc s ′

C0 alloc ′ s ′
asm

Proof. At first, we show that the inputs i chosen by function �cc always match
the process output. Hence, the transition from sC0 to �proc i sC0 is a successful
execution. With Theorem 2, we know that there is a corresponding output-input
sequence ois ′ such that
– the sequence ois ′ contains exactly one pair (�proc sC0, i) as well as a number

of pairs (εΩ, εΣ), i. e., �ois ′� = [(�proc sC0, i)], and
– there is a successful assembly execution under ois ′ starting in sasm and ending

in a state s ′
asm, where consisproc s ′

C0 alloc ′ s ′
asm holds.

As �cc reacts with an empty input whenever the process outputs εΩ, function �cc
yields the assembly state s ′

asm if it is applied |ois ′| times to sasm. Furthermore,
the message buffers are equal in both cases. ��
Verifying Applications in Isabelle/Simpl. The chief attraction of our co-
operative concurrent execution model is that it allows us to reuse Isabelle/Simpl

From Operating-System Correctness to Pervasively Verified Applications 117

[14]. The necessary adaptation of the existing technology for application verifi-
cation is straightforward: It amounts to specify the effects of the primitives for
SendMsg and RecvMsg in the Simpl language and show that this specifica-
tion corresponds with the definition of �cc for these cases. Using the Hoare logic
of Isabelle/Simpl, we can conveniently establish the absence of runtime errors
as well as efficiently reason about functional correctness of applications between
two calls to the ExFinish primitive.

5 Embedding Applications into the Overall ECU Model

In the previous section, we have claimed that the transition function �cc of the
cooperative concurrent application model emulates the Olos transitions during
the computation phase iff the corresponding application is scheduled. In this
section, we prove that claim. Formally, we express our claim with the help of
a projection function �p, which extracts the state of the application p, and an
injection injp scc sECU, which updates the state of application p in the ECU state
sECU by scc. We state:

Theorem 4 (Application Embedding). We assume that (a) the application
p is computing in the ECU state s according to the static schedule t and (b) that
p does not call for ExFinish. Then, the projection of p followed by a transition
of �cc and its injection into s is equal to a transition of �ECU. Formally:

[[is computing p t s; ¬ calls finish p s]] =⇒ injp (�cc (�p s)) s = �ECU t ⊥ s

Proof. We have proven this fact in Isabelle/HOL. ��
Note that Olos leaves the computing state (cf. Sect. 2.2) when an application
calls for ExFinish, i. e., predicate calls finish pid s holds. In this case, the tran-
sition �ECU tables ⊥ s only raises the idle flag and sends FinishSuccess to
process pid. From the Olos specification, we know that at all other ECU states,
the process states remain constant.

6 Reasoning about Applications – A Practical Example

Initial Set-Up

compute

olosExFinish

Fig. 4. General control-

flow of applications

So far, we have elaborated on the foundation of our
verification approach. Now, we take our arguments
a step further and venture a practical example. For
this purpose, we use a simple application program for
cruise control. Note that all Olos applications share
a common control flow, which is depicted in Fig. 4:
After an application-specific set-up, they implement
an infinite loop. The loop body contains a function
call to a function compute, which implements the ac-
tual functionality of the application, and a call to the
ExFinish primitive.

118 M. Daum, N.W. Schirmer, and M. Schmidt

int compute() {
unsigned int command; unsigned int current speed;

dummy = olosRecvMsg(buffer, 0u); command = buffer−>Field; // read command
dummy = olosRecvMsg(buffer, 1u); current speed = buffer−>Field; // read current speed

// target speed adjustment
if (enabled) {

if (command == CC INCREASE) {
if (target speed < MAX SPEED − 1u) { target speed = target speed + 2u; }

}
else if (command == CC DECREASE) {

if (target speed > MIN SPEED + 1u) { target speed = target speed − 2u; }
}
else if (command != CC SET) { enabled = false; }

}
else if (current speed >= MIN SPEED && (command == CC SET ||

command == CC INCREASE || command == CC DECREASE)) {
enabled = true;
if (current speed >= MAX SPEED) { target speed = MAX SPEED; }
else { target speed = current speed; }

}

// speed regulation
∗buffer = INIT BUFFER;
if (!enabled) { dummy = olosSendMsg(buffer, 2u); dummy = olosSendMsg(buffer, 3u); }
else if (current speed > target speed) {

dummy = olosSendMsg(buffer, 2u);
buffer−>Field = current speed − target speed; dummy = olosSendMsg(buffer, 3u);

}
else {

dummy = olosSendMsg(buffer, 3u);
buffer−>Field = target speed − current speed; dummy = olosSendMsg(buffer, 2u);

}

return 0;
}

Fig. 5. Function compute of our simple cruise-control application

Our example program features a global variable target speed storing the
speed that the regulator is aiming for. Furthermore, there is a global Boolean
variable enabled that is true iff the speed control is enabled.

The compute function (see Fig. 5) reads the message buffer 0 to receive one of
the commands ON, OFF, INCREASE, and DECREASE as well as the message
buffer 1 to receive the current speed. The function adjusts the global variables
wrt. the received command and subtracts the current from the target speed. If
the difference is positive, the function sends the difference to message buffer 2
(which we assume to be read by the accelerator unit) and value 0 to message
buffer 3 (which we assume to be read by the brake unit). If the difference is
negative, the function sends the absolute value to buffer 3 and value 0 to buffer
2. Afterwards, compute returns and the program calls ExFinish.

For the verification of the compute function, we employ the existing technol-
ogy for sequential reasoning: At first, we mechanically translate the C0 code into
Simpl. Then, we formally specify the functionality in terms of Hoare triples and,
conveniently relying on the Hoare logics, prove the correctness of our specifica-
tion. Obviously, the containing loop alters neither the application’s variables nor

From Operating-System Correctness to Pervasively Verified Applications 119

the message buffers. Thus, our proven property holds for a complete computation
phase (i. e., the loop body). Finally, we know from the property transfer theorem
of Isabelle/Simpl that there is an equivalent property over the C0 semantics.

Using Theorem 3, we can then infer that the property can be translated down
to assembly level. Furthermore, Theorem 4 allows us to infer properties about
the whole ECU behavior by combining verification results from the applications
running on the ECU. Recall that our example application relied on several as-
sumptions: The message buffers 0 and 1 are assumed to stem from sensors, and
the buffers 2 and 3 should be sent to other control units. Consequently, the
static schedule should provide slots, where the messages received from the bus
are stored into the buffers 0 and 1; moreover, the buffers 2 and 3 should be
sent onto the bus. Furthermore, the applications sharing the same ECU as our
example application, should not alter the buffers after receiving or before send-
ing, respecively. In addition, we have assumed that the example application calls
ExFinish before the slot end. Within the Hoare logic, we can prove that our
compute function terminates. Thus, the only remaining issue is to find an upper
bound for the worst-case execution time, which is easily done by static analysis
[16]. Eventually, we can then argue that the values computed by our example
application are indeed sent onto the bus several slots later.

7 Conclusion

Based on existing technology for ordinary program verification, we formally
proved the foundation of a pervasive verification approach for applications com-
municating with the operating system Olos. Additionally, we provided an ap-
plication example illustrating that our approach can indeed be used in practice.

With our work, we respond to a long lasting grand challenge [3]. Despite
many recent achievements in operating-systems verification [4], we only know of
a single project that attempted pervasive systems verification: Bevier et. al [17]
verified the correctness of KIT, a small assembly program that provides task
isolation, device I/O, and single word message passing. Moreover, they ventured
into the verification of applications but could not fully integrate their results.
We can only refer to their work as groundbreaking because of KIT’s simplicity.

Though even our computer system is simple, it is practically usable and the
developed verification technique as well as the overall proof architecture may
be reused for real computer systems. We implemented Olos as well as our
example application in a C variant and employed a verified compiler for the
mechanic translation into executable code. Thus, we are able to verify programs
on the source code level—conveniently in a Hoare logic using the verification
environment Isabelle/Simpl—and can then transfer the proven properties down
to the assembly level (or even further [9]), e. g., to combine it with properties of
the operating system or peripheral devices.

Integrating different layers of abstraction into a coherent theory is an im-
portant prerequisite for efficient reasoning. The verification engineer can then
choose a convenient abstraction layer for reasoning although the results might

120 M. Daum, N.W. Schirmer, and M. Schmidt

eventually be needed at a different abstraction layer. We see our contribution as
an important milestone towards an evidence-based validation of safety-critical
computer systems. Pervasive verification and software engineering should be-
come two complementing disciplines aiming at the same target: perfectly reliable
software.

Acknowledgments. We thank the anonymous peer reviewers for their detailed
review reports with a very constructive criticism and many helpful suggestions.

References

1. Vartabedian, R., Bensinger, K.: Doubt cast on Toyota’s decision to blame sudden

acceleration on gas pedal defect, Los Angeles Times (January 30, 2010)

2. Guynn, J.: Apple co-founder Steve Wozniak says his Toyota Prius accelerates on

its own, Los Angeles Times (February 3, 2010)

3. Moore, J.S.: A grand challenge proposal for formal methods: A verified stack. In:

10th Anniversary Colloquium of UNU/IIST, pp. 161–172. Springer, Heidelberg

(2002)

4. Klein, G.: Operating system verification — an overview. Sādhanā 34(1), 27–69 (2009)

5. Beyer, S., Jacobi, C., Kröning, D., Leinenbach, D., Paul, W.J.: Putting it all to-

gether: Formal verification of the VAMP. STTT 8(4-5), 411–430 (2006)

6. In der Rieden, T., Tsyban, A.: CVM – a verified framework for microkernel pro-

grammers. In: Huuck, R., Klein, G., Schlich, B. (eds.) Systems Software Verifica-

tion. ENTCS, vol. 217, pp. 151–168. Elsevier Science B.V., Amsterdam (2008)

7. Daum, M., Schirmer, N.W., Schmidt, M.: Implementation correctness of a real-

time operating system. In: van Hung, D., Krishnan, P. (eds.) SEFM, pp. 23–32.

IEEE Computer Society, Los Alamitos (2009)

8. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for

Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

9. Alkassar, E., Hillebrand, M.A., Leinenbach, D.C., Schirmer, N.W., Starostin, A.,

Tsyban, A.: Balancing the load – leveraging a semantics stack for systems verifi-

cation. J. Autom. Reasoning 42(2-4), 389–454 (2009)

10. Leinenbach, D., Petrova, E.: Pervasive compiler verification: From verified pro-

grams to verified systems. In: Huuck, R., Klein, G., Schlich, B. (eds.) Systems

Software Verification. ENTCS, vol. 217, pp. 23–40. Elsevier Science B.V., Amster-

dam (2008)

11. Schirmer, N.W.: Verification of Sequential Imperative Programs in Isabelle/HOL.

PhD thesis, TU Munich (2006)

12. Kopetz, H., Grünsteidl, G.: TTP – A protocol for fault-tolerant real-time systems.

IEEE Computer 27(1), 14–23 (1994)

13. American National Standards Institute: ANSI ISO IEC 9899-1999: Programming

Languages — C. American National Standards Institute, New York, USA (1999)

14. Alkassar, E., Hillebrand, M.A., Leinenbach, D., Schirmer, N., Starostin, A.: The

Verisoft approach to systems verification. In: Shankar, N., Woodcock, J. (eds.)

VSTTE 2008. LNCS, vol. 5295, pp. 209–224. Springer, Heidelberg (2008)

15. Starostin, A., Tsyban, A.: Correct microkernel primitives. In: Huuck, R., Klein,

G., Schlich, B. (eds.) Systems Software Verification. ENTCS, vol. 217, pp. 169–

185. Elsevier Science B.V., Amsterdam (2008)

16. Heckmann, R., Ferdinand, C.: Worst-case execution time prediction by static pro-

gram analysis. White paper, AbsInt Angewandte Informatik GmbH (2004)

17. Bevier, W.R.: Kit and the short stack. J. Autom. Reasoning 5(4), 519–530 (1989)

A Compositional Method for Deciding
Equivalence and Termination of

Nondeterministic Programs

Aleksandar Dimovski

Faculty of Information-Communication Tech., FON University, Skopje, 1000, MKD

Abstract. In this paper we address the problem of deciding may- and

must-equivalence and termination of nondeterministic finite programs

from second-order recursion-free Erratic Idealized Algol. We use game

semantics to compositionally extract finite models of programs, and the

CSP process algebra as a concrete formalism for representation of models

and their efficient verification. Observational may- and must-equivalence

and liveness properties, such as divergence and termination, are decided

by checking traces refinements and divergence-freedom of CSP processes

using the FDR tool. The practicality of the approach is evaluated on

several examples.

1 Introduction

Game semantics is a syntax-independent approach of modeling open programs
by looking at the ways in which a program can observably interact with its en-
vironment (context). Types are modeled by games (or arenas) between a Player
(i.e. program) and an Opponent (i.e. environment), and programs are modeled by
strategies on games. It was shown that, for several interesting programming lan-
guage fragments, their game semantics yield algorithms for model checking. The
focus has been on Idealized Algol (IA) [1,12], which represents a metalanguage
combining imperative with higher-order functional features. Game semantics is
compositional, i.e. defined recursively on the syntax, which is essential for the
modular analysis of larger programs. Previous work on model checking using
game semantic models has been mainly concerned with verification of safety
properties of sequential, concurrent, and probabilistic programs [9,10,13]. All
these models say about what a program may do, but nothing about what it
must do. This reflects the deficiencies of the models for reasoning about any-
thing other than safety properties.

In order to take account of liveness properties of nondeterministic programs,
the requested model must make distinctions between a reliable program, such
as skip, and an unreliable program, such as skip or divergecom. This means that
the model must capture two complementary notions of program equivalence: the
possibility of termination (may-termination) and the guarantee of termination
(must-termination). To address this issue, the strategy of a program, apart from
containing the potential convergent behaviours of the program, must be enriched

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 121–135, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

122 A. Dimovski

with an extra information about the possible divergent behaviours of the pro-
gram. In [11,12], it is given a game semantic model for Erratic IA (EIA) which
is fully abstract with respect to may &must-termination equivalence. EIA rep-
resents a nondeterministic extension of IA, i.e. it is IA enriched with an erratic
choice ‘or’ operator. The full abstraction result means that the model validates all
and only correct (may &must-termination) equivalences between programs, i.e.
it is sound and complete. Although this model is appropriate for verifying both,
safety and liveness, properties, it is complicated and so equivalence and a range
of properties are not decidable within it. However, it has been shown in [14] that
the game models of second- (resp., third-) order recursion-free finitary EIA can
be represented by finite (resp., visibly pushdown) automata. This gives a decision
procedure for a range of verification problems to be solved algorithmically, such
as: may-equivalence, must-equivalence, may &must-equivalence, termination and
other properties.

In this work we propose a verification tool for analyzing nondeterministic pro-
grams. We show how for second-order recursion-free EIA with finite data types
game semantic models can be represented as CSP processes, i.e. any program is
compositionally modeled as a CSP process whose terminated traces and minimal
divergences are exactly all the complete plays and divergences of the strategy
for the program. This enables observational may- and must-equivalence between
any two programs and a range of (safety and) liveness properties, such as termi-
nation and divergence, of programs to be decided by checking traces refinements
and divergence-freedom of CSP processes by using the FDR tool.

CSP [15] is a particulary convenient formalism for encoding game semantic
models. The FDR model checker can be used to automatically check refinements
between two processes and a variety of properties of a process, and to debug inter-
actively when a refinement or a property does not hold. FDR has direct support
for three different forms of refinement: traces (�T), failures (�F), and failures-
divergences (�FD); and for the following properties: deadlock, divergence, and
determinism. Then, composition of strategies, which is used in game semantics
to obtain the strategy for a program from strategies for its subprograms, is rep-
resented in CSP by renaming, parallel composition and hiding operators, and
FDR is highly optimised for verification of such networks of processes. Finally,
FDR builds the models gradually, at each stage compressing the submodels to
produce an equivalent process with many fewer states. A number of hierarchical
compression algorithms are available in FDR, which can be applied during either
model generation or refinement checking.

The paper is organised in the following way. Section 2 introduces the language
considered in this paper. The game semantic model of the language is defined in
Section 3, and its CSP representation is presented in Section 4. Correctness of
the CSP representation, decidability of observational may- and must-equivalence
and termination are shown in Section 5. The effectiveness of this approach is
evaluated in Section 6. In the end, we conclude and present some ideas for
future work.

A Compositional Method for Deciding Equivalence and Termination 123

Related work. Automated verification of liveness properties of programs is an
active research topic. The work in [5] presents an abstraction refinement proce-
dure for proving termination of programs. The procedure successively weakens
candidate transition invariants and successively refines transition predicate ab-
stractions of the given program. The approach taken in [3,4] proves termination
of programs by generating linear ranking functions, which assign a value from a
well-founded domain to each program state. The method represents program in-
variants and transition relations as polyhedral cones and constructs linear rank-
ing functions by manipulating these cones. Compared to the aforementioned
approaches, the main focus of our method is compositionality which is reached
in a clean and theoretically firm semantics-based way. Namely, the model of a
program is constructed out of the models of its subprograms, which facilitates
breaking down the verification of a larger program into verifications of its sub-
programs. By applying various program analysis techniques, such as predicate
abstraction and counter-example guided abstraction refinement [2,7], the effi-
ciency of our method and its applicability to a broader class of programs can be
significantly improved.

2 Programming Language

Erractic Idealized Algol [12] is a nondeterministic imperative-functional language
which combines the fundamental imperative features, locally-scoped variables,
and full higher-order function mechanism based on a typed call-by-name λ-
calculus.

The data types D are a finite subset of the integers (from 0 to n − 1, where
n > 0) and the Booleans (D ::= intn | bool). The phrase types consists of
base types (expressions, commands, variables) and function types (B ::= expD |
varD | com, T ::= B | T → T). Terms are formed by the following grammar:

M ::=x | v | skip | divergeB | M opM | M ;M | if M thenM elseM | whileM doM
| M := M |!M | newvarD x :=v in M | mkvarMM |M orM | λ x .M | MM |YM

where v ranges over constants of type D . The language constants are a “do
nothing” command skip which always terminates successfully, and for each base
type there is a constant divergeB which causes a program to enter an unre-
sponsive state similar to that caused by an infinite loop. The usual imperative
constructs are employed: sequential composition (;), conditional (if), iteration
(while), assignment (:=), and de-referencing (!). Block-allocated local variables
are introduced by a new construct, which initializes a variable and makes it local
to a given block. There are constructs for nondeterminism, function creation and
application, as well as recursion.

Well-typed terms are given by typing judgements of the form Γ � M : T ,
where Γ is a type context consisting of a finite number of typed free identifiers.
Typing rules of the language are those of EIA (e.g. [1,12]), extended with a rule
for the divergeB constant: Γ � divergeB : B .

124 A. Dimovski

The operational semantics of our language is given in terms of states. Given
a type context Γ = x1 : varD1, . . . , xk : varDk where all identifiers are variables,
which is called var-context, we define a Γ -state s as a (partial) function assigning
data values to the variables {x1, . . . , xk}. The canonical forms are defined by
V ::= x | v | λ x : T .M | skip | mkvarMN . The operational semantics is
defined by a big-step reduction relation:

Γ � M , s =⇒ V , s′

where Γ � M : T is a term, Γ is a var-context, s, s′ are Γ -states, and V is
a canonical form. Reduction rules are those of EIA (see [1,12] for details). The
divergeB constant is not reducible.

Since the language is nondeterministic, it is possible that a term may reduce
to more than one value. Given a term Γ � M : com where Γ is a var-context,
we say that M may terminate in state s, written M , s ⇓may , if there exists a
reduction Γ � M , s =⇒ skip, s′ for some state s′. We say that M must termi-
nate in a state s, written M , s ⇓must , if all reductions at start state s end with
the term skip. If M is a closed term then we abbreviate the relation M , ∅ ⇓may

(resp., M , ∅ ⇓must) with M ⇓may (resp., M ⇓must). Next, we define a program
context C [−] : com with hole to be a term with (possibly several occurrences
of) a hole in it, such that if Γ � M : T is a term of the same type as the hole
then C [M] is a well-typed closed term of type com, i.e. � C [M] : com. Then, we
say that a term Γ � M : T is a may-approximate (resp., must-approximate) of
a term Γ � N : T , denoted by Γ � M �∼ mayN (resp., Γ � M �∼ mustN), if and
only if for all program contexts C [−] : com, if C [M] ⇓may (resp., C [M] ⇓must)
then C [N] ⇓may (resp., C [N] ⇓must). If two terms may-approximate (resp.,
must-approximate) each other they are considered may-equivalent (resp., must-
equivalent), denoted by Γ � M ∼=may N (resp., Γ � M ∼=must N). Combining
may- and must-approximation (resp., equivalence) gives rise to may&must ap-
proximation (resp., equivalence). For instance, the following facts hold:
skip or divergecom

∼=may skip skip or divergecom
∼=must divergecom

skip or divergecom �may&must skip skip or divergecom �may&must divergecom

Example 1. Consider the term from [14]:

f : com→ com � newint2 x := 0 in
(
f (x := 1) ; if (x = 1) then divergecom

)
or

(
f (x := 1) ; if (x = 0) then divergecom

)
: com

in which f is a non-local function. The function-call mechanism is by-name, so
every call to the argument of f sets x to 1. In what follows, we will see that this
term is may-equivalent to f (skip), must-equivalent to divergecom, and may &must-
equivalent to f (skip) or divergecom. ��

3 Game Semantics

In this section we give an overview of game semantics for EIA, which is fully
abstract with respect to may &must-equivalence. A complete definition can be
found in [12, pp. 99–138].

A Compositional Method for Deciding Equivalence and Termination 125

An arena A is a triple 〈MA, λA,�A〉, where MA is a countable set of moves,
λA : MA → {O, P} × {Q, A} is a labeling function which indicates whether a
move is by Opponent (O) or Player (P), and whether it is a question (Q) or an
answer (A). Then, �A is a binary relation between MA +{∗} (∗ �∈ MA) and MA,
called enabling (if m �A n we say that m enables move n), which satisfies the
following conditions: (i) Initial moves (a move enabled by ∗ is called initial) are
Opponent questions, and they are not enabled by any other moves besides ∗;
(ii) Answer moves can only be enabled by question moves; (iii) Two participants
always enable each others moves, never their own.

We denote the set of all initial moves in A as IA. The simplest arena is the
empty arena I = 〈∅, ∅, ∅〉. The base types are interpreted by arenas where all
questions are initial and P-moves answer them.

[[expD]] = 〈 {q, v | v ∈ D}, {λ(q) = OQ, λ(v) = PA}, {(∗, q), (q, v) | v ∈ D} 〉
[[com]] = 〈 {run, done}, {λ(run) = OQ, λ(done) = PA}, {(∗, run), (run, done)}〉
[[varD]] = 〈 {read , v ,write(v), ok | v ∈ D}, {λ(read ,write(v)) = OQ,

λ(v , ok) = PA}, {(∗, read), (∗,write(v)), (read , v), (write(v), ok) | v ∈ D} 〉
Given arenas A and B , we define new arenas A× B , A⇒ B as follows1:

A× B = 〈MA + MB , [λA, λB], �A + �B 〉
A⇒ B = 〈MA + MB , [λA, λB],�B +

(
IB × IA

)
+

(�A ∩ (MA ×MA)
)〉

A justified sequence s in arena A is a finite sequence of moves of A together
with a pointer from each non-initial move n to an earlier move m such that
m �A n. We say that n is (explicitly) justified by m. A legal play (or just a play)
is a justified sequence with some additional constraints: alternation (Opponent
and Player moves strictly alternate), well-bracketed condition (when an answer
is given, it is always to the most recent question which has not been answered),
and visibility condition (a move to be played depends upon a certain subsequence
of the play so far, rather than on all of it). The set of all legal plays in arena A is
denoted by LA. We use meta-variables m,n to range over moves, and s to range
over sequences of moves. We also write s m or s · m for the concatenation of s
and m. The empty sequence is written as ε, and � denotes the prefix ordering
on sequences.

A strategy σ on an arena A (written as σ : A) is a pair (Tσ ,Dσ), where:

– Tσ is a non-empty set of even-length plays of A, known as the traces of σ,
satisfying: if s ·m · n ∈ Tσ then s ∈ Tσ.

– Dσ is a set of odd-length plays of A, known as the divergences of σ, satisfying:
if s ·m ∈ Dσ then s ∈ Tσ; and if s ∈ Tσ, s ·m ∈ LA, and s ·m · n �∈ Tσ for
∀n then ∃ d ∈ Dσ.d � s ·m.

A strategy specifies what options Player has at any given point of a play and it
does not restrict the Opponent moves. If Player can not respond at some point of

1 λA is like λA except that it reverses O/P part, and + is a disjoint union.

126 A. Dimovski

a play then this is reflected by an appropriate divergence sequence in the strat-
egy. Note that, here we choose a “minimal” representation of divergence, where
only the minimal divergences of a strategy, denoted by div(σ), are recorded.
An alternative “maximal” representation, as is done in CSP, is also possible. It
considers the divergences as extension-closed set, which forces the traces set to
include all possible sequences after a divergence has been reached. These two
representations are equivalent.

Given strategies σ : A ⇒ B and τ : B ⇒ C , the composition σ o
9 τ =

(Tσo
9τ ,Dσo

9τ) : A ⇒ C is defined in the following way. Let u be a sequence
of moves from A, B , and C . We define u � B ,C to be the subsequence of u
consisting of all moves from B and C as well as pointers between them (pointers
from/to moves of A are deleted). Similarly define u � A,B . Define u � A,C
to be the subsequence of u consisting of all moves from A and C , but where
there was a pointer from a move mA ∈ MA to an initial move m ∈ IB extend
the pointer to the initial move in C which was pointed to from m. We say that
u is an interaction of A, B , C if u � A,B ∈ LA⇒B , u � B ,C ∈ LB⇒C , and
u � A,C ∈ LA⇒C . The set of all such sequences is written as int(A,B ,C).

Tσo
9τ = {u � A,C | u ∈ int(A,B ,C) ∧ u � A,B ∈ Tσ ∧ u � B ,C ∈ Tτ}

So Tσo
9τ consists of sequences generated by playing Tσ and Tτ in parallel, making

them synchronize on moves in B , which are afterwards hidden.
We define an infinite interaction of A,B ,C to be a sequence u ∈ (MA +MB +

MC)∞ such that u � A,C ∈ LA⇒C , and for all i ∈ N0, u<i � A,B ∈ LA⇒B

and u<i � B ,C ∈ LB⇒C , where u≤i denotes the finite prefix of u with length i .
The set of all such sequences is written as int∞(A,B ,C). Then, a set of finitely
generated divergences is defined as:

Dσ ↙ Dτ = {u ∈ int(A,B ,C) | (u � A,B ∈ Tσ ∧ u � B ,C ∈ Dτ

)
∨ (

u � A,B ∈ Dσ ∧ u � B ,C ∈ Tτ

)}
Dσ ↙ Dτ consists of sequences containing a trace from σ and a divergence from
τ , or vice versa. A set of infinitely generated divergences is defined as2:

Tσ ↙ Tτ = {u ∈ int∞(A,B ,C) | ∀ i ∈ N0.u≤i � A,B ∈ Tσ ∪ dom(σ)
∧ u≤i � B ,C ∈ Tτ ∪ dom(τ)}

Tσ ↙ Tτ consists of sequences that have an infinite tail in B . This situation is
called livelock. We have that: Dσo

9τ = {u � A,C | u ∈ Dσ ↙ Dτ ∨ u ∈ Tσ ↙ Tτ}.
The identity strategy, which is also called copy-cat, for an arena A is IdA =

(idA, ∅), where idA = {s ∈ PA⇒A | ∀ s ′ �even s . s ′ � Al = s ′ � Ar}. We use
the l and r tags to distinguish between the two occurrences of A and s ′ �even s
means that s ′ is an even-length prefix of s . So in idA, a move by Opponent in
either occurrence of A is immediately copied by Player to the other occurrence.

In general, plays in a strategy may contain several occurrences of initial moves,
which define several different threads of the play in the following way: two moves
2 The domain of a strategy σ is the set dom(σ) = {s ·m | ∃n.s ·m · n ∈ Tσ}.

A Compositional Method for Deciding Equivalence and Termination 127

are in the same thread if they are connected via chains of pointers to the same
occurrence of an initial move. We consider the class of single-threaded strategies
whose behaviour depends only on one thread at a time, i.e. any Player response
depends solely on the current thread of the play and any divergence is caused by
the play in a single thread. We say that a strategy is well-opened if all its plays
have exactly one initial move. It can be established one-to-one correspondence
between single-threaded and well-opened strategies. It is shown in [12] that are-
nas as objects and single-threaded (well-opened) strategies as arrows constitute
a cpo-enriched cartesian closed category, which can be used for construction of
semantic models of programming languages. From now on, we proceed to work
only with well-opened strategies and plays with exactly one initial move.

A term Γ � M : T , where Γ = x1 : T1, . . . , xn : Tn , is interpreted by a
strategy [[Γ � M : T]] for the arena [[Γ � T]] = [[T1]] × . . . × [[Tn]] ⇒ [[T]].
Language constants and constructs are interpreted by strategies and compound
terms are modelled by composition of the strategies that interpret their con-
stituents. For example, some of the strategies are [12]: [[n : expint]] = ({ε, q n}, ∅),
[[skip : com]] = ({ε, rundone}, ∅), [[divergecom : com]] = ({ε}, {run}), [[or : expD0 ×
expD1 → expD2]]3 = ({ε, q2 q0, q2 q1, q2 q0 v0 v2, q2 q1 v1 v2 | v ∈ D}, ∅), free iden-
tifiers are interpreted by identity strategies, etc. Using standard game-semantic
techniques, it has been shown in [12] that the quotient of this model with respect
to the so-called intrinsic preorder is fully abstract for may &must-equivalence.
However, the model itself is sound [12], so the must-termination of terms follows
from this result.

Proposition 1. Γ � M must terminate iff D[[Γ
M]] = ∅.
More explicit characterizations of may- and must-approximation (resp., equiva-
lence) are given in [14]. A play is complete if all questions occurring in it have
been answered. Given a strategy σ, we write comp(σ) for the set of its non-empty
complete plays.

Proposition 2. Γ � M �∼ mayN iff comp([[Γ � M]]) ⊆ comp([[Γ � N]]).

In order to capture must-approximation, we define a new relation ≤must on
strategies over any arena A: σ ≤must τ iff for any s ∈ (Tτ ∪Dτ)\(Tσ ∪Dσ) there
exists s ′ �odd s such that s ′ � d for some d ∈ Dσ.

Proposition 3. Γ � M �∼ mustN iff [[Γ � M]] ≤must [[Γ � N]].

4 CSP Representation

In the rest of the paper, we work with the 2nd-order recursion-free fragment of
EIA. In particular, function types are restricted to T ::= B | B → T . Without
loss of generality, we consider only terms in β-normal form. We now show how
the game semantic model of this fragment of EIA can be given a concrete repre-
sentation using the CSP process algebra. This translation is an extension of the
3 Every move is tagged with the index of type component where it occurs.

128 A. Dimovski

one presented in [6,9], where the considered language is IA and the model takes
account of only safety properties.

CSP (Communicating Sequential Processes) [15] is a language for modelling
systems which consist of interacting components. Each component is specified
through its behaviour which is given as a process. Processes are defined in terms
of the events that they can perform. The set of all possible events is denoted Σ.

Processes can be given denotational semantics by the following sets of their
possible behaviours. The set traces(P) contains all possible finite sequences of
events that the process P can perform. The set failures(P) consists of all pairs
(s ,X), where s ∈ traces(P) and X is a set of events that P can refuse to do in
some stable state after the trace s . And, we define divergences(P) as the set of
traces after which the process can perform an infinite sequence of consecutive
internal events called τ . We consider here two semantic models of CSP processes:
traces semantics, denoted as PT , and failures-divergences semantics, denoted
as PFD . We omit the subscripts when they are clear from the context. Traces
semantics of a process P is given by the set traces(P), while failures-divergences
semantics of P is given by the pair (failures(P),divergences(P)). Divergences of
a process are not modeled in its traces semantics, but they have “maximal”
representation in its failures-divergences semantics. For example, let consider
the div process. It represents a special divergent process in CSP which does
nothing but diverge. It is equivalent to the recursive process μ p.p. We have that
divT = {ε}, but divFD = (Σ∗� × P(Σ�), Σ∗�), where Σ� = Σ ∪ {�}4, and
Σ∗� = Σ ∪ {s ·� | s ∈ Σ∗}. Traces refinement between processes is defined as:

P1 �T P2 ⇔ traces(P2) ⊆ traces(P1)

CSP processes can also be given operational semantics using labelled transition
systems (LTS). The LTS of a process is a directed graph whose nodes represent
process states and whose edges are labelled by events representing what happens
when the given event is performed. LTSs have a distinguished start state, and
any edge whose label is � leads to a special terminated state Ω.

With each type T , we associate a set of possible events: an alphabet A[[T]].
It contains a set of events q ∈ Q[[T]], called questions, which are appended to a
channel with name Q , and for each question q, there is a set of events a ∈ Aq

[[T]],
called answers, which are appended to a channel with name A.

A[[intn]] = {0, . . . ,n − 1} A[[bool]] = {tt ,ff }
Q[[expD]] = {q} Aq

[[expD]] = A[[D]] Q[[com]] = {run} Arun
[[com]] = {done}

Q[[varD]] = {read,write.v | v ∈ A[[D]]} Aread
[[varD]] = A[[D]] Awrite.v

[[varD]] = {ok}
Q[[B1→...→Bk→B]] =

⋃
1≤i≤k

{i .q | q ∈ Q[[Bi]]} ∪Q[[B]]

Ai.q
[[B1→...→Bk→B]] = {i .a | a ∈ Aq

[[Bi]]
}, q ∈ Q[[Bi]], 1 ≤ i ≤ k

Aq
[[B1→...→Bk→B]] = Aq

[[B]], q ∈ Q[[B]]

4 SKIP is a process that successfully terminates causing the special event � (�
∈ Σ).

A Compositional Method for Deciding Equivalence and Termination 129

A[[T]] = Q .Q[[T]] ∪ A.
⋃

q∈Q[[T]]

Aq
[[T]]

For any term Γ � M : T , we define a CSP process [[Γ � M : T]] which
represents the strategy for the term. Events of this process are from the alphabet
A[[Γ
T]] defined as follows: A[[x :T]] = x .A[[T]], A[[Γ]] =

⋃
x :T∈Γ

A[[x :T]], and A[[Γ
T]] =

A[[Γ]] ∪A[[T]].
Processes for constants and free identifiers x : T � x : T are defined in

Table 1. The process for divergeB performs the div process after communicating
the initial question event.

Table 1. Processes for constants and free identifiers

[[Γ � v : expD]] = Q .q→ A.v → SKIP , v ∈ A[[D]]

[[Γ � skip : com]] = Q .run → A.done → SKIP
[[Γ � divergeB : B]] = Q?q : Q[[B]] → div
[[x : expD � x : expD]] = Q .q→ x .Q .q → x .A?a : A

q
[[expD]] → A.a→ SKIP

[[x : com � x : com]] = Q .run → x .Q .run → x .A.done → A.done→ SKIP
[[x : varD � x : varD]]=(Q .read→ x .Q .read → x .A?a : Aread

[[varD]] → A.a→ SKIP)

� (Q .write?v : A[[D]] → x .Q .write.v → x .A.ok → A.ok→ SKIP)

[[x : B1 → . . .→ Bk → B � x : B1 → . . .→ Bk → B]] = Q?q : Q[[B]] → x .Q .q →
μL �

(
SKIP �

(
�

k

j=1

(
x .Q .j ?qj : Q[[Bj]] → Q .j .qj → A.j ?aj : A

qj

[[Bj]]
→

x .A.j .aj → SKIP) o
9 L

))
o
9 x .A?a : A

q
[[B]]

→ A.a → SKIP

For each language construct ‘c’, a process Pc which corresponds to its strat-
egy is defined in Table 2. For example, Por nondeterministically runs either its
first or its second argument. Events of the first (resp., second) argument of ‘or’
occur on channels tagged with index 1 (resp., 2). Then, for each composite term
c(M1, . . . ,Mn) consisting of a language construct ‘c’ and subterms M1, . . . ,Mn ,
we define [[c(M1, . . . ,Mn)]] from the process Pc and processes [[Mi]] and [[Mi]]∗5,
using only the CSP operators of renaming, parallel composition and hiding. For
example, the process for ‘or’ is defined as:

[[Γ �M1 orM2 : B]] = ([[Γ � M1 : B]][Q1/Q ,A1/A] � SKIP) ‖
{|Q1,A1|}(

([[Γ � M2 : B]][Q2/Q ,A2/A] � SKIP) ‖
{|Q2,A2|}

Por \ {| Q2,A2 |}
) \ {| Q1,A1 |}

After renaming the channels Q ,A to Q1,A1 in the process for M1, and to Q2,A2
in the process for M2 respectively, the processes for M1 and M2 are composed
5 P∗ is a process which performs the process P arbitrary many times.

130 A. Dimovski

with Por. The composition is performed by synchronising the component pro-
cesses on events occurring on channels Q1,A1,Q2,A2, which are then hidden.
Since one of the processes for M1 and M2 will not be run in the composition,
SKIP is used to enable such empty termination.

Table 2. Processes for constructs

Pop = Q .q→ Q1.q→ A1?a1 : A
q
[[expD]] → Q2.q → A2?a2 : A

q
[[expD]]

→ A.a1 op a2 → SKIP
P; = Q?q : Q[[B]] → Q1.run → A1.done→ Q2.q → A2?a : A

q
[[B]]

→ A.a→ SKIP

Pif = Q .q : Q[[B]] → Q0.q → A0?a0 : A
q
[[expbool]] → if (a0) then

(
Q1.q →

A1?a1 : A
q
[[B]] → A.a1 → SKIP

)
else

(
Q2.q → A2?a2 : A

q
[[B]] → A.a2 → SKIP

)
Pwhile = Q .run → μ p � Q1.q → A1?a1 : A

q
[[expbool]] →

(
if (a1) then(

Q2.run → A2.done→ p
)

else
(
A.done→ SKIP

))
P:= = Q .run → Q1.q → A1?a : A

q
[[expD]]

→ Q2.write.a→ A2.ok→ A.done → SKIP

P! = Q .q→ Q1.read → A1?a : Aread
[[varD]] → A.a → SKIP

Por = (Q .q : Q[[B]] → Q1.q → A1?a1 : A
q
[[B]] → A.a1 → SKIP) �

(Q .q : Q[[B]] → Q2.q → A2?a2 : A
q
[[B]] → A.a2 → SKIP)

Pnew(x , v) = Q .run → Q1.run → UD(x , v)

UD(x , v) =
(
x .Q .read → x .A.v → UD(x , v)

)
�(

x .Q .write?v ′ : A[[D]] → x .A.ok → UD (x , v ′)
)
�

(
A1.done → A.done → SKIP

)

Example 2. Consider the term from Example 1:

f : com→ com � newint2 x := 0 in
(
f (x := 1) ; if (x = 1) then divergecom

)
or

(
f (x := 1) ; if (x = 0) then divergecom

)
: com

The LTS of the CSP process representing this term is shown in Fig. 1. The first
argument of ‘or’ terminates successfully when f does not call its argument; other-
wise it diverges. The second argument of ‘or’ terminates successfully when f calls
its argument, one or more times; otherwise it diverges. The set of divergences is
Q .run · f .Q .run · (f .Q .1.run · f .A.1.done)∗ · f .A.done, while the set of traces that
end with � is Q .run · f .Q .run · (f .Q .1.run · f .A.1.done)∗ · f .A.done ·A.done ·�.
Notice that no references to the variable x appear in the model because it is
locally defined. ��

Q.run f.Q.run f.A.done A.done �
�

�

f.Q.1.run f.A.1.done

Fig. 1. A strategy as a LTS

A Compositional Method for Deciding Equivalence and Termination 131

5 Correctness and Formal Properties

We now show that for any term from 2nd-order recursion-free EIA with finite
data types, the sets of all terminated traces and divergences of its CSP inter-
pretation are isomorphic to the sets of all complete plays and divergences of
its fully abstract game semantic model. Given a term Γ � M : T , we denote
by [[Γ � M : T]]GS its game semantic model as described in Section 3, and we
denote by [[Γ �M : T]]CSP its CSP interpretation as described in Section 4.

Theorem 1. For any term Γ � M : T, we have:

traces�([[Γ � M : T]]CSP
T)

φ≡ comp([[Γ �M : T]]GS)

div(divergences([[Γ � M : T]]CSP
FD))

φ≡ D[[Γ
M :T]]GS

where traces�(PT) is the set of all terminated traces of process P that end with
� in its traces semantics, div(divergences(PFD)) is the set of all minimal di-
vergences of P in its failures-divergences semantics, and φ is an isomorphism
defined by:

– For a type T of the form B1 → . . .→ Bk → B:
φ(a) = L.j .a , for a ∈ M[[Bj]]GS , λ

QA(a) = L, 1 ≤ j ≤ k
φ(a) = L.a , for a ∈ M[[B]]GS , λQA(a) = L

– For any x : B ′
1 → . . .→ B ′

kx
→ B ′ ∈ Γ :

φ(a) = x .L.i .a , for a ∈ M[[B ′
i]]GS , λQA(a) = L, 1 ≤ i ≤ kx

φ(a) = x .L.a , for a ∈ M[[B ′]]GS , λQA(a) = L

Proof. The proof is by a routine induction on the typing rules. ��

Corollary 1

Γ � M �∼ mayN ⇔ [[Γ � N : T]]CSP �RUNA[[Γ�T]] �T [[Γ � M : T]]CSP

where RUNA = μ p�?x : A→ p, i.e. it is a process which can perform any event
from the set A, but it cannot perform � or any other event not in A.

Proof. It follows from Proposition 2, Theorem 1, and the traces semantics of the
� operator and the RUNA[[Γ�T]] process. ��

The checks performed by FDR terminate only for finite-state processes, i.e. those
whose labelled transition systems are finite. It is easy to show that this is the
case for the processes interpreting the EIA terms by extending the same result
for IA terms in [9]. As a corollary, we have that observational may-approximation
is decidable using FDR.

Corollary 2. Observational may-approximation and may-equivalence of EIA
terms are decidable by using FDR tool.

132 A. Dimovski

Example 3. Consider the process for the term M from Examples 1 and 2. As
shown in Fig. 1, we have that traces�([[M]]CSP

T) = Q .run · f .Q .run · (f .Q .1.run ·
f .A.1.done)∗ · f .A.done · A.done · �. But, this is the same as the set of all ter-
minated traces of the process for f : com → com � f (skip) : com. So, these two
terms are may-equivalent. ��

By Proposition 3 and Theorem 1, we have that must-approximation Γ �
M �∼ mustN can be determined by the following procedure:

(1) Check: [[Γ � M]]CSP �T [[Γ � N]]CSP , [[Γ � N]]CSP is divergence-free, and
[[Γ � M]]CSP is divergence-free. If all three checks hold, then terminate with
answer Γ � M �∼ mustN , else go to (2).

(2) Let C1, C2, and C3 be the sets of all minimal counterexamples returned by
the above three checks respectively. Set C := C1 ∪ (C2\C3). If C3 = ∅, then
terminate with answer Γ � M �∼/mustN , else go to (3).

(3) For each c ∈ C , check whether there exists s ′ �odd c, such that s ′ � d
for some d ∈ C3. If this is correct, then terminate with Γ � M �∼ mustN ,
otherwise with Γ � M �∼/mustN .

Proposition 4. The procedure for determining must-approximation is correct.

Proof. We can check by inspection that all answers returned by the procedure are
correct. Let the procedure terminate in Step (1). Then, traces([[Γ � N]]CSP) ⊆
traces([[Γ � M]]CSP), divergences([[Γ � N]]CSP) = ∅, and divergences([[Γ �
M]]CSP) = ∅. So, we have that (T[[Γ
N]]GS ∪D[[Γ
N]]GS)\(T[[Γ
M]]GS ∪D[[Γ
M]]GS) =
∅, which implies that Γ � M �∼ mustN . The other cases are similar. ��

Corollary 3. Observational must-approximation and must-equivalence of EIA
terms are decidable by using FDR tool.

Example 4. We can verify that the term M from Examples 1 and 2 is must-
equivalent with � divergecom. Let C1, C2, C3, and C4 be the minimal coun-
terexamples associated with the following checks: [[divergecom]]CSP �T [[M]]CSP ,
[[M]]CSP �T [[divergecom]]CSP , [[M]]CSP and [[divergecom]]CSP are divergence-free,
respectively. Then, C1 = {Q .run · f .Q .run}, C2 = ∅, C3 = {Q .run · f .Q .run ·
f .A.done}, C4 = {Q .run}. By following the previously described procedure for
determining must-approximation, it is easy to check that these two terms are
must-equivalent. ��

In addition to checking observational equivalence of two terms, it is desirable to
be able to check properties, safety (see [9,8] for details) and liveness, of terms.
By Proposition 1 and Theorem 1, we have that:

Corollary 4. Must-termination of a term Γ � M is decidable using FDR tool
by checking one divergence-freedom test:

[[Γ �M]]CSP is divergence-free (1)

A Compositional Method for Deciding Equivalence and Termination 133

If the test (1) does not hold, then the term diverges and one or more counter-
examples reported by the FDR debugger can be used to explore the reasons why.
Otherwise, the term does not diverge, i.e. it terminates.

Example 5. By testing the process for the term while (true) do skip for divergence-
freedom, we can verify that the term diverges. The counter-example is: Q .run.
We can also verify that the term from Examples 1 and 2 diverges. The obtained
counter-example is:

Q .run f .Q .run f .A.done ��

6 Applications

We have implemented a tool, which automatically converts a term into a CSP
process which represents its game semantics. The resulting CSP process is de-
fined by a script in machine readable CSP [15] which the tool outputs. In the
input syntax, we use simple type annotations to indicate what finite sets of inte-
gers will be used to model integer free identifiers and local variables. An integer
constant n is implicitly defined of type intn+1. An operation between values of
types intn1 and intn2 produces a value of type intmax{n1,n2}. The operation is
performed modulo max{n1,n2}.

We now analyse an implementation of the linear search algorithm:

x [k] : varint2, y : expint2 �
newint2 a[k] := 0 in
newintk+1 i := 0 in
while (i < k) do {a[i] := x [i]; i := i + 1; }
newint2 z := y in
newbool present := false in
while (not present) do {

if (i < k) then if (a[i] = z) then present := true;
i := i + 1; } : com

The code includes a meta variable k > 0, representing array size, which will
be replaced by several different values. The data stored in the arrays and the
expression y is of type int2, i.e. two distinct values 0 and 1 can be stored, and the
type of index i is intk+1, i.e. one more than the size of the array. The program

Q.run x[0].Q.read
x[0].A.1

x[0].A.0

x[1].Q.read

x[1].Q.read

x[1].A.1

x[1].A.0

x[1].A.0

x[1].A.1

y.Q.q

y.Q.q

y.Q.q

y.A.1

y.A.1
y.A.0

y.A.0

y.A.1

�

y.A.0

A.done �
�

Fig. 2. Model for linear search with k=2

134 A. Dimovski

Table 3. Model generation of linear search

Arr size k Time (sec) Model states

5 2 35

10 5 65

20 39 125

30 145 185

first copies the input array x into a local array a, and the input expression y
into a local variable z . Then, the local array is searched for an occurrence of the
value y. The array being effectively searched, a[], and the variable z , are not
visible from the outside of the term because they are locally defined, so only
reads from the non-local identifiers x and y are seen in the model of this term.

A labelled transition system of the CSP process for the term with k = 2 is
shown in Fig. 2. It illustrates the possible behaviours of this term: if the value
read from y has occurred in x [] then the term terminates successfully; otherwise
the term diverges. If we test this process for divergence-freedom, we obtain the
following counter-example:

Q .run x [0].Q .read x [0].A.1 x [1].Q .read x [1].A.1 y.Q .q y.A.0

So the linear search term diverges when the value read from y does not occur in
the array x [] making the while loop forever.

Table 3 shows some experimental results for checking divergence-freedom. The
experiment consisted of running the tool on the linear search term with different
values of k , and then letting FDR generate its model and test its divergence-
freedom. The latter stage involved a number of hierarchical compressions, as
described in [9]. For different values of k , we list the execution time in seconds,
and the size of the final model. We ran FDR on a Machine AMD Sempron
Processor 3500+ with 2GB RAM.

7 Conclusion

We presented a compositional approach for verifying equivalence and liveness
properties of nondeterministic sequential programs with finite data types. An
interesting direction for extension is to consider infinite integers with all the
usual operators. Counter-example guided abstraction refinement procedures [7,8]
for verifying safety properties can be adopted to the specific setting for verifying
liveness properties. It is also important to extend the proposed approach to
programs with concurrency [10], probabilistic constructs [13], and other features.

References

1. Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game

semantics for Idealized Algol with active expressions. In: O’Hearn, P.W., Tennent,

R.D. (eds.) Algol-like languages. Birkhaüser, Basel (1997)

A Compositional Method for Deciding Equivalence and Termination 135

2. Bakewell, A., Ghica, D.R.: On-the-fly techniques for game-based software model

checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,

pp. 78–92. Springer, Heidelberg (2008)

3. Colon, M.A., Sipma, H.B.: Practical Methods for Proving Program Termination.

In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454.

Springer, Heidelberg (2002)

4. Colon, M.A., Sipma, H.B.: Synthesis of linear ranking functions. In: Margaria,

T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg

(2001)

5. Cook, B., Podelski, A., Rybalchenko, A.: Abstraction Refinement for Termination.

In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer,

Heidelberg (2005)

6. Dimovski, A., Lazić, R.: CSP Representation of Game Semantics for Second-order

Idealized Algol. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,

vol. 3308, pp. 146–161. Springer, Heidelberg (2004)

7. Dimovski, A., Ghica, D.R., Lazić, R.: Data-Abstraction Refinement: A Game Se-

mantic Approach. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672,

pp. 102–117. Springer, Heidelberg (2005)

8. Dimovski, A., Ghica, D.R., Lazić, R.: A Counterexample-Guided Refinement Tool

for Open Procedural Programs. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925,

pp. 288–292. Springer, Heidelberg (2006)

9. Dimovski, A., Lazić, R.: Compositional Software Verification Based on Game

Semantics and Process Algebras. Int. Journal on STTT 9(1), 37–51 (2007)

10. Ghica, D.R., Murawski, A.S.: Angelic semantics of fine-grained concurrency. In:

Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 211–225. Springer,

Heidelberg (2004)

11. Harmer, R., McCusker, G.: A fully abstract game semantics for finite nondeter-

minism. In: Proceedings of LICS, pp. 422–430. IEEE, Los Alamitos (1999)

12. Harmer, R.: Games and Full Abstraction for Nondeterministic Languages. Ph. D.

Thesis Imperial College (1999)

13. Legay, A., Murawski, A., Ouaknine, J., Worrell, J.: On Automated Verification of

Probabilistic Programs. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.

LNCS, vol. 4963, pp. 173–187. Springer, Heidelberg (2008)

14. Murawski, A.: Reachability Games and Game Semantics: Comparing Nondeter-

ministic Programs. In: Proceedings of LICS, pp. 173–183. IEEE, Los Alamitos

(2008)

15. Roscoe, W.A.: Theory and Practice of Concurrency. Prentice-Hall, Englewood

Cliffs (1998)

Verification Architectures:
Compositional Reasoning for Real-Time Systems�

Johannes Faber

Department of Computing Science, University of Oldenburg, Germany
j.faber@uni-oldenburg.de

Abstract. We introduce a conceptual approach to decompose real-time
systems, specified by integrated formalisms: instead of showing safety
of a system directly, one proves that it is an instance of a Verification
Architecture, a safe behavioural protocol with unknowns and local real-
time assumptions. We examine how different verification techniques can
be combined in a uniform framework to reason about protocols, assump-
tions, and instantiations of protocols. The protocols are specified in CSP,
extended by data and unknown processes with local assumptions in a
real-time logic. To prove desired properties, the CSP dialect is embed-
ded into dynamic logic and a sequent calculus is presented. Further, we
analyse the instantiation of protocols by combined specifications, here il-
lustrated by CSP-OZ-DC. Using an example, we show that this approach
helps us verify specifications that are too complex for direct verification.

1 Introduction

In the analysis of real-time systems, several aspects have to be covered, e.g.,
(1) behaviour that conforms to communication protocols, (2) rich data struc-
tures, and (3) timing constraints such that the system reacts timely to external
events. Thus, in practise it turns out that, to adequately handle those systems,
engineers fall back on combinations of techniques. An example is the wide ac-
ceptance of the UML, combining multiple graphical notations for different views
of a design. Similarly, in the world of formal analysis there has been a lot of
work on integrating specification techniques to condense advantages of single
formalisms into combined formalisms, e.g., [2,25,19,1,10,32,28,15,29]. However,
a major problem remains: these integrated techniques are designed for hetero-
geneous systems, i.e., they cover several different aspects, and when formally
verifying those systems we have to cope with their inherent complexity.

We thus propose a Verification Architecture approach to verify global prop-
erties by combining local analyses. This idea originates from previous case stud-
ies [21], where we decomposed a train control system according to its abstract
behavioural protocol that splits the system runs into several phases (e.g., brak-
ing, running) with local real-time properties that hold during these phases. After
� This work was partly supported by the German Research Council (DFG) under

grant SFB/TR 14 AVACS. See http://www.avacs.org for more information.

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 136–151, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.avacs.org

Verification Architectures: Compositional Reasoning for Real-Time Systems 137

showing the correctness of a desired global property for this protocol, the global
property is also guaranteed by all instances of the protocol for that the local
properties are satisfied. We generalise and formalise this approach in the con-
text of combined languages. The approach is structured into several layers:

1. abstract behavioural protocols with unknowns, that have a large degree of
freedom to comprise a large class of concrete systems, need to be specified
and verified with respect to desired safety properties;

2. since the analysed systems are often time-dependent it is important to allow
imposing of additional real-time assumptions on protocol phases and it must
be possible to verify the protocols taking these assumptions into account;

3. it needs to be checked that concrete models, given as combined specifications
to capture heterogeneous systems, are instantiations of the protocol;

4. it needs to be checked that concrete models actually guarantee the assump-
tions on the protocol phases.

The challenge is to tackle each layer of the problem with a suitable formalisation
and to integrate the heterogeneous formalisations into a uniform framework.

As several combined specification formalisms base on Communicating Sequen-
tial Processes (CSP) [14,26], we propose to use CSP to specify system protocols
with unknowns. Thus, we define a CSP extension by data constraints and un-
known processes and show that it is suited to specify abstract system protocols.
In addition, we allow the unknown processes to be constrained by formulae in an
arbitrary temporal logic. We call this combination of protocol with local assump-
tions Verification Architecture (VA). To establish safety properties on VAs, we
embed our CSP extension into a temporal dynamic logic [12,22] and introduce
a sound sequent-style calculus [11] over this logic that allows for establishing
desired properties under local real-time assumptions. We prove that all specifi-
cations that refine the architecture’s CSP part and for that the local assumptions
are valid directly inherit the desired properties.

To exemplify the instantiation of VAs by a combined specification language,
we choose CSP-OZ-DC (COD) as instantiation language and Duration Calculus
(DC) [33] for the local assumptions on protocol phases. We introduce a sim-
ple syntactical proof rule to show efficiently that a concrete specification is a
VA refinement. The correctness of the local assumptions can be shown using an
established model checking approach for COD and DC [21]. Using a running ex-
ample motivated by the European Train Control System (ETCS) [7], we provide
evidence that our method enables the verification of a system that is too large
to be verified without decomposition techniques.

We summarise our contributions:

Section 1. We provide a new conceptional approach on how to use behavioural
protocols, called Verification Architectures (VA), as a decomposition technique
to enable verification of realistic systems specified by combined formalisms.
Section 2. We introduce a CSP dialect with data, unknown process parts, and
local real-time assumptions for the specification of VAs.
Section 3. A new sequent-style calculus over this CSP dialect allows us to verify
desired properties of VAs. We establish basic properties of the calculus.

138 J. Faber

Section 4. We examine the instantiation of VAs by COD specifications and
give a proof rule to syntactically check refinement relations.

1.1 Discussion of Related Work

Our approach is inspired by [3], where for a fixed DC protocol a design pattern
for cooperating traffic agents is introduced. Also, [3] motivates the work of [17],
in which CSP-OZ-DC patterns are applied as a formal counterpart to some
standard patterns from software engineering. In contrast to our approach no
formal framework for the use, application, and verification of design patterns
is introduced. A general view on formalisation techniques for design patterns
is given in [30], but there, verification of real-time systems is not considered.
[6] presents an approach using patterns for a combined real-time language: timed
automata patterns for a set of timing constraints are formally linked to TCOZ.

The work [18] introduces context systems that can be instantiated with con-
crete processes, a concept similar to the unknown processes of this paper. They
consider arbitrary process algebras as context systems and the generation of
compositional assumptions in Hennessy-Milner logic whereas we use a fixed pro-
cess algebra but allow arbitrary real-time logics for the assumptions. In [18], no
real-time aspects and no data aspects are considered.

Our approach can be seen as Assume-Guarantee reasoning in the context of
combined, parametric specifications, because we show validity of global prop-
erties assuming local component properties. [4] contains a general introduction
into Assume-Guarantee reasoning without time and without the context of con-
joint verification techniques. In [20] a verification approach for CSP-OZ (without
time) is investigated that does not consider decompositions by given protocols
but instead uses a learning-based algorithm to generate assumptions on lay-
ered components. [5] presents an Assume-Guarantee based, sound and complete
proof system to reason about CCS processes with Hennessy-Milner assumptions
on the environment of processes. In contrast to the approach of this paper, these
unknown parts with assumptions are not explicitly represented as process ex-
pressions and, thus, are always composed in parallel to the known process of the
system. In addition, neither real-time properties, data constraints, nor combined
specifications are considered. Both approaches have in common that concrete
systems instantiating the unknown parts and satisfying the assumptions inherit
the properties of the abstract system.

Our CSP extension by data and unknown processes enables us to specify para-
metric systems because (1) we can use global data parameters and (2) unknown
processes give a parametric view to process components that are not fixed but
represent a class of concrete processes. In doing so, we provide a general formal-
ism that is on the one hand flexible enough to express behavioural protocols with
a large degree of freedom and on the other hand integrates well with combined
specification formalisms based on CSP [19,10,32,28,15,29]. So, our goal was not
to introduce a further combination of CSP with data as a replacement for exist-
ing formalisms but to provide a notation for VAs that can be used in combination
with these formalisms. It turned out that direct usage of a combined formalism

Verification Architectures: Compositional Reasoning for Real-Time Systems 139

like [15] is not appropriate for a proof rule approach because of the complex com-
bination of languages in an object-oriented structure.

[22,23] introduce a sequent calculus for temporal dynamic logic to verify tem-
poral properties for hybrid systems; they also examine fragments of the ETCS
as case study. The work [16] introduces a sequent calculus to verify the Java
part of JCSP programs and a translation to Petri nets for the CSP library calls.
Recursion in CSP processes and timing constraints are not considered.

Our instantiation rule for COD is not intended to be complete—it is defined
as an efficient syntactic refinement check. General results on refinement or sub-
typing in CSP-OZ and related formalisms can be found in [10] and [31].

1.2 The Verification Architecture Approach

Let prtcl(p,P1, . . .Pn) be an abstract behavioural protocol depending on a vec-
tor of data parameters p and process parameters Pi . Additionally, we consider
assumptions in a temporal logic on the Pi , asm1(p), . . . , asmn(p), that also de-
pend on the parameters. We denote the combination of behavioural protocol and
temporal assumptions as Verification Architecture (VA). Our aim is to show that
a safety property safe(p) is valid for every possible model that is a refinement
of the behavioural protocol and that respects the assumptions.

To apply our approach, we have to show that the VA is correct, i.e., the
protocol is correct for all parameters and processes respecting the assumptions:

∀ p,Pi • (
∧

i=1,...,n

Pi |= asmi(p))⇒ (prtcl(p,P1, . . . ,Pn) |= safe(p)) (1)

This verification task to verify the correctness of the parametric VA is for realistic
systems not necessarily easy and we will provide proof rules for the verification.
But once it is verified, this result is reusable as all instantiations of this archi-
tecture inherit the correctness property automatically. We only have to show
that a potential instantiation is a refinement of the protocol and that the local
assumptions are valid, which is due to their locality easier than to verify the
global property directly. To be more concrete, we consider the concrete model
spec(p,P0

1 , . . . ,P0
n), where the P0

i are instantiations of the process parameters.
Firstly, we have to show that every trace of this model (without assumptions)
is also a trace of the protocol:

∀ p • [[spec(p,P0
1 , . . . ,P0

n)]] ⊆ [[prtcl(p,P0
1 , . . . ,P0

n)]]. (2)

This refinement relation on the processes can be shown syntactically for a specific
class of instantiations (cf. Sect. 4). Thus, it is easy to verify. Secondly, we have
to show that the assumptions are valid for the concrete specification:

∀ p • P0
i |= asmi(p) for all i = 1..n. (3)

This can be done by applying existing verification techniques for the language of
the assumptions. With this, our approach yields that the desired safety property

140 J. Faber

is valid for the concrete model. We argue that this proposition is correct. From
(1) and (3) we can conclude (4) and with (2) we get the desired property (5).

∀ p • prtcl(p,P0
1 , . . . ,P0

n) |= safe(p) (4)

∀ p • spec(p,P0
1 , . . . ,P0

n) |= safe(p) (5)

We summarise that if a correct VA is given, we only have to show that, firstly,
the model’s process is a refinement of the abstract protocol and, secondly, the
model respects the assumptions. Then, we say that the model is an instantiation
of the VA and we can conclude that it inherits the VA’s correctness.

2 CSP Processes with Data Constraints and Unknowns

In this section, we introduce a CSP extension by data constraints and unknown
processes to specify Verification Architectures (VA).

For specifying VAs, a high degree of freedom is necessary to handle general
patterns of parametric systems with data. To this end, we extend CSP by data
constraints to define state changes and by a new construct, so-called unknown
processes. Unknown processes are special processes that allow the occurrence of
arbitrary events except for events from a fixed alphabet and arbitrary changes
of variables except for variables from a fixed set. They can terminate and may
be restricted by constraints from an arbitrary real-time logic.

Syntax. We consider many-sorted first order formulae FormΣ from a signa-
ture Σ = (Sort ,Symb,Var ,Par) with primed and unprimed system variables
and functions Symb with sorts Sort , variables Var , and parameters Par with
fixed but arbitrary values. The syntax of CSP processes with data and unknown
processes is given by

P ::= Stop | Skip | (a • ϕ)→ P | P1 � P2 | P1‖|P2 | P1 ‖A P2 | P1
o
9 P2 | X

| (Proc\A,V •F) | (Proc∞\A,V •F)

where a ∈ Events ,A ⊆ Events , ϕ ∈ FormΣ , V ⊆ Symb and F is a constraint
in a temporal logic with the same semantical domain as CSP with data con-
straints. In this definition, a difference to the standard CSP definition is that
we have constrained occurrences of events a by formulae ϕ, denoted a • ϕ. The
intuition is that when the event a occurs the state space is changed according
to the constraint ϕ, where unprimed symbols in ϕ refer to valuations before the
occurrence of a and primed symbols to the valuations after a. The intuition be-
hind an unknown process like (Proc\{a,b},{v} • F) is that during the execution
of the process arbitrary behaviour is allowed provided that the formula F is not
violated. The events a and b are forbidden and the system variable v cannot be
changed in this execution. A process Proc∞ marked with∞ will never terminate.

Example 1. As a running example we consider a small train control system moti-
vated by the European Train Control System [7]: a so-called Radio Block Center

Verification Architectures: Compositional Reasoning for Real-Time Systems 141

System c
= Go � Ext Ext c

= (extend • ϕextend)→ System

Go c
= FAR o

9 (check • ϕcheck)→ ((fail • ϕfail)→ REC � (pass • ϕpass)→ System)

ϕextend = sf ′ > sf
ϕcheck = Ξ(sf) ∧ sf ≤ RD ∧ ¬ok ′

∨ Ξ(sf) ∧ sf > RD ∧ ok ′

ϕfail = Ξ(sf) ∧ ¬ok
ϕpass = Ξ(sf) ∧ ok

FAR c
= Proc\A,C • FFAR

REC c
= Proc

∞
\A,C • FREC

FFAR = ¬�(� > CT) ∧
¬�(�sf > RD�� � < CT � �sf ≤ 0�)
FREC = ¬�(�sf > 0���sf ≤ 0�)

A = {check , fail ,pass, extend},C = {RD ,CT}

Fig. 1. VA for a train control system

(RBC) grants movement authorities (MA) to a train. The system is considered
safe as long as the train stays within the MA. The distance of the train to the
end of the MA is given by a real-valued variable sf , reflecting the safety of the
system that shall never be below or equal to 0. The position RD is the last
position at which the train needs to apply the brakes to stop in time. The train
can request extensions of MAs at any time.

Fig. 1 defines this train control system as a VA. The system is described
by the CSP process System, that consists of a choice of sub-processes Go and
Ext . The process Ext can perform an event extend , that extends the current
MA, which is expressed in the constraint ϕextend . The Go process starts with an
unknown process FAR that can produce arbitrary behaviour except for events
from A, which are all events of this VA, and it cannot change the constants of
the specification, RD and CT . We further constrain the unknown process by
the real-time DC formula FFAR , that demands that if sf is greater than RD
anywhere on the execution of FAR then sf cannot decrease to a value smaller
than 0 within CT time units. After termination of FAR the process checks the
current value of sf and, depending on that, behaves as the System again or it
changes to a safe recovery process REC .

Semantics of CSP processes with data constraints. The semantics of
CSP processes with data constraints is given here by interpretations I that are
mappings from a time domain Time (usually N or R) into the set of all models:
I : Time → Model . A model (or valuation)M for system variables and parame-
ters of sort S is a (partial) mapping into a corresponding domain:M : (Symb ∪
Par) $→ DS . We denote the set of all interpretations by Intpr . So, an interpreta-
tion is a timed sequence of models that corresponds to state changes performed by
constrained event occurrences. Every interpretation belongs to a run of the CSP
process. Events are modelled as boolean variables that change their values if a cor-
responding event occurs. To compute the semantics, we first compute the labelled
transition system (LTS) [26,15] of the CSP process in the standard way as if there
were no data part but with events that are annotated with data constraints. We
say that an interpretation I fits to a run π = 〈(a1 • ϕ1), (a2 • ϕ2), . . . 〉 of the LTS

142 J. Faber

with events ai iff there are a points t0, t1, · · · ∈ Time with 0 = t0 < t1 < t2 < . . .
and models I(t) =Mi for ti ≤ t < ti+1 s.t.

Mi(ai+1) �=Mi+1(ai+1) for i ≥ 0,

where all ai are of sort B in Σ. We call 〈M0,M1, . . . 〉 untimed sequence of I.
The semantics of a CSP process P (with data constraints) is a mapping from
models to sets of interpretations: [[·]] : Model → PIntpr . An interpretation is
valid, I ∈ [[P]]M, iff it respects the state changes of the process, i.e., iff

1. there is a run π = 〈(a1 • ϕ1), (a2 • ϕ2), . . . 〉 of the LTS of P such that I fits
to π. Let the resulting untimed sequence be 〈M0,M1, . . . 〉.

2. M0 =M
3. (Mi−1 ∪M′

i) |= ϕi for i > 0
4. Mi(v) =Mi+1(v) for all parameter v ∈ Par and i ≥ 0
5. if ai = � then Mi−1(v) =Mi(v) for all symbols v ∈ Symb,

where M′
i is a model for primed symbols, i.e., M′

i(f ′) = Mi(f), and � the
termination symbol of CSP. Note that this definition makes use of CSP’s trace
semantics. One consequence is that we do not have to distinguish external and
internal choice that are equivalent in the trace semantics.

Semantics of unknown processes. The definition above does not capture
unknown processes with data constraints. Even though a process Proc\A,V with-
out temporal constraints can be rewritten to a standard CSP process, we need
to take care of the additional constraints. Since these constraints need to be
valid everywhere on all traces of the process we do not give (single step) transi-
tion rules for constrained unknown processes. Instead, we give transition rules to
compute the LTS of unconstrained processes and we additionally demand that
for every trace of those processes the constraint is also valid. The set of transition
rules for computing the LTS of a CSP process is extended by the rules

Proc
(∞)
\A,V

a•ΞV−→ Proc
(∞)
\A,V

Proc\A,V
�−→ Ω

,

in which a ∈ UEvents \ A, i.e., a is in the universe of events (without τ) except
A. The process can perform an arbitrary event that is not in the set A and the
event’s constraint ensures that symbols from the set V are not changed, which
is expressed in Z syntax by ΞV . If the process is not marked as an infinite
unknown process it can non-deterministically decide to terminate.

The semantics of a constrained process is given by interpretations I ∈
[[Proc(∞)

\A,V •F]]M iff I ∈ [[Proc(∞)
\A,V]]M and I is in the semantics of F : I ∈ [[F]].

The latter is well-defined because we have demanded that the semantical do-
main of F is compatible with the semantics of CSP with data constraints. The
semantics of a constrained unknown process in the context of a CSP expression
can then be computed by exploiting that the trace semantics is a congruence
in each CSP operator [26]. So, to compute the semantics of P � Proc\A,V • F
with � ∈ {‖, �, o

9} we lift the operators to the trace level: iff I1 ∈ [[P]]M and
I2 ∈ [[Proc\A,V • F]]M then (I1 � I2) ∈ [[P � Proc\A,V • F]]M.

Verification Architectures: Compositional Reasoning for Real-Time Systems 143

3 Verification of Architectures

After introducing the CSP extension for specifying VAs, we go on to the verifi-
cation of architectures specified by CSP processes. A well-investigated approach
for rule-based verification of programs is the sequent calculus [11] over dynamic
logic formulae [12]. Hence, to use the advantages of sequent-style reasoning, we
first introduce a dynamic logic over CSP processes with data constraints and
unknown processes—called dCSP—and then we propose a sequent calculus for
this dynamic logic extension.

A dynamic logic over CSP processes. The logic dCSP is a dynamic logic
extension that uses CSP processes with data and unknown processes instead
of programs within the box operator [·]. As we are only interested in safety
properties, we omit the diamond operator in this paper. The dynamic logic
operator [P]δ states that after every run of P the formula δ is true, whereas
[P]�ϕ expresses that on all runs of P always ϕ holds.

Definition 1 (Syntax of dCSP). We consider a signature Σ and define the
set FormdCSP of dCSP formulae inductively:

if p is a predicate symbol and θi terms then p(θ1, . . . , θn) ∈ FormdCSP

if δ1, δ2 ∈ FormdCSP then (¬δ1), (δ1 ∧ δ2) ∈ FormdCSP

if δ ∈ FormdCSP , x ∈ Var then (∀ x • δ), (∃ x • δ) ∈ FormdCSP

if δ ∈ FormdCSP ,P a CSP process then ([P]δ) ∈ FormdCSP

if ϕ ∈ FormdCSP ,P a CSP process and
ϕ does not contain a [·] then ([P]�ϕ) ∈ FormdCSP

We use the convention that a formula ϕ does not contain [·]-operators, δ does
not begin with �, whereas γ always represents an arbitrary dCSP formula.

Definition 2 (Semantics of dCSP formulae). The semantics of a dCSP
term θ with sort S is a mapping [[·]] : Model → DS defined as usual. The seman-
tics of dCSP formulae is given by models M∈ Model :

M |= p(θ1, . . . , θn) iff pI([[θ1]]M, . . . , [[θn]]M) = true
M |= ¬γ iff M �|= γ

M |= γ1 ∧ γ2 iff M |= γ1 and M |= γ2

M |= ∀ x • γ iff for all d ∈ DS holds M[x $→ d] |= γ

M |= ∃ x • γ iff there is a d ∈ DS s.t. M[x $→ d] |= γ

M |= [P]�δ iff I |= �δ holds for all I ∈ [[P]]M
M |= [P]δ iff M′ |= δ holds for all I ∈ [[P]]M with terminating M′

Here, S is the sort of variable x . A terminating model is the last model of an in-
terpretation that terminates with �. The formula �δ holds for an interpretation
I, i.e., I |= �δ, iff I(t) |= δ for all t ∈ Time.

144 J. Faber

�
γ � (P1)

�
� γ (P2)

γ � � γ
�

(P3) ϕ � ϕ (P4) � ϕ
¬ϕ � (P5)

ϕ �
� ¬ϕ (P6)

ϕ,ψ �
ϕ ∧ ψ � (P7)

� ϕ � ψ
� ϕ ∧ ψ

(P8)

ϕ � ψ �
ϕ ∨ ψ �

(P9)

� ϕ,ψ
� ϕ ∨ ψ (P10)

ψ � � ϕ
ϕ⇒ ψ �

(P11)

ϕ � ψ
� ϕ⇒ ψ

(P12)

ϕ[t/x], ∀ x : T • ϕ �
∀ x : T • ϕ �

(F1)

� ϕ[y/x]

� ∀ x : T • ϕ (F2)
ϕ[y/x] �

∃ x : T • ϕ � (F3)
� ϕ[t/x], ∃ x : T • ϕ

� ∃ x : T • ϕ
(F4)

[P]γ

[Q]γ
(C1)

δ

[Skip]δ
(C2)

ϕ

[Skip]�ϕ
(C3)

[a][P]δ

[a → P]δ
(C4)

[a]�ϕ ∧ [a][P]�ϕ
[a → P]�ϕ

(C5)

[P1]γ ∧ [P2]γ

[P1 � P2]γ
(C6)

[P1][P2]δ

[P1
o
9 P2]δ

(C7)
([P1]�ϕ) ∧ ([P1][P2]�ϕ)

[P1
o
9 P2]�ϕ

(C8)

ψv0
v ′ ⇒ δv0

v

[a • ψ]δ
(C9)

ϕ ∧ [a • ψ]ϕ

[a • ψ]�ϕ
(C10)

[Q]γ

[P]γ
(A1)

[P]�ϕ
[P]ϕ

(A2)
ϕ � [P]δ

[Q]ϕ � [Q][P]δ
(A3)

Δ � ϕin(y), Γ ϕin(y),∀ x • (ϕin(x) ⇒ [Qx
y]γ(x)) � [F (Q)]γ(y)

Δ � [P]γ(y), Γ
(I1)

ψ � [Proc∞\A,V • F]δ

(U1)

ϕ � δ
Δ,ψ � [Proc\A,V • F]δ, Γ

(U2)
ψ � [Proc

(∞)

\A,V • F]�ϕ
(U3)

In (F1) up to (F4), the term t is of type T and y is a fresh variable of type T not
occurring elsewhere. The process Q in (C1) is defined by Q c

= P . A formula ψv0
v

denotes the replacement of variables v with fresh variables v0 for all v in ψ. In (A1),
P and Q are equivalent CSP processes. In (I1), P is a recursive process P c

= F (P),
γ(y), ϕin(y) are formulae over vectors of system variables containing no other system
variables besides y . For side conditions of (U2), (U3) (that introduce ϕ) see Sect. 3.
We abbreviate [a → Skip]γ by [a]γ and a • ϕ→ P by a → P if ϕ is of no relevance.

Fig. 2. Sequent calculus for CSP with data constraints

Sequent Calculus. To prove validity of dCSP formulae, we define a set of
verification rules in a sequent-style proof calculus. Given finite sets of formulae
Δ and Γ , a sequent Δ � Γ is an abbreviation of the formula

∧
ϕ∈Δ ϕ⇒ ∨

ψ∈Γ ψ.

Our sequent calculus contains rule schemata of the shape Φ1
Ψ1 ··· Φn
Φn
Φ
Ψ that

can be instantiated with arbitrary contexts, i.e., for every Δ and Γ the rule
Δ,Φ1
Ψ1,Γ ··· Δ,Φn
Ψn ,Γ

Δ,Φ
Ψ,Γ is part of the calculus. As usual, formulae above the
line are premises and the formula below the line the consequence: if the premises
(and possibly some side-conditions) are true then the consequence also holds.

Verification Architectures: Compositional Reasoning for Real-Time Systems 145

Symbolic execution of dCSP formulae. The rules of our calculus can
be found in Fig. 2. The rules (P1) up to (F4) are standard (cf. e.g., [11]) and
resolve First-order formulae. Note that some of the rules like the cut rule (P3)
are actually not necessary [11] but included to simplify proofs.

Our new proof rules are given in Fig. 2 from (C1) up to (U3). They symbol-
ically unwind the CSP processes with data constraints and unknown processes
along their process structure. The rules correspond to the process operators in-
troduced in Sect. 2. Rules that do not contain a sequent symbol can be applied
on both sides of a sequent. Generally, we have two rules for every operator be-
cause we need different rules to cover the temporal case and the non-temporal
case. In the non-temporal case of the prefix operator (C4), we check that after
all executions of a → P the property δ holds. In the temporal case (C5), we need
to check that ϕ is valid everywhere on all executions of a → P : we prove that
�ϕ holds everywhere on a → Skip and that [P]�ϕ holds after every execution
of a. Rule (C6) splits up choice of processes into a conjunction of formulae. The
sequence rules (C7), (C8) are built-up identical to the prefix rules.

The rules (C9) and (C10) perform the symbolical execution of an event step
with a corresponding data constraint: the event and the constraint are consumed
and replaced by a new constraint representing the data change. Events are only
required for synchronisation and can be reduced in this sequential situation. In
rule (C9), the constraint ψ of the event a contains primed and unprimed symbols,
where the former relates to the post-state of the operation and the latter to the
pre-state. After an execution of the data change in ψ the post-state of a system
variable needs to coincide with the pre-state of this variable in δ. Hence, we show
that the constraint ψ, where every primed symbol v ′ is replaced by a fresh v0,
implies δv0

v , i.e., δ, where every v is replaced by the corresponding v0.
The rules (A1) up to (A3) are auxiliary rules for, e.g., �-introduction and

replacement of equivalent processes. The latter is also used to cope with parallel
composition: parallelism is replaced by an equivalent choice of processes.

Induction rules. In contrast to standard dynamic logic, dCSP expresses prop-
erties over recursive processes. Hence, we provide induction rule (I1) here to allow
reduction of recursion in CSP expressions. The rule is a variant of the Fixed-
point Induction Rule of [26], but it is adapted to our needs. The premise of rule
(I1) consists of two proof commitments. First, we need to show that an initial
condition ϕin (y) holds in the current context. The intuition is that this formula
ϕin holds after every cycle of the recursion and implies validity of the desired
formula γ for the next cycle and so on. The second commitment1 contains the
inductive argument: assuming that ϕin implies that γ holds for an arbitrary
process Q we must show that γ also holds for F (Q). The induction hypothesis is
hereby given by ∀ x • (ϕin (x)⇒ [Qx

y]γ(x)). It states that regardless of how ϕin

is instantiated with system variables x , if ϕin is valid for these x then [Qx
y]γ(x)

is also valid. We need to replace system variables y in Q by x because during
symbolical execution of the process F (Q) new symbols are introduced.
1 The right formula of the premise (and likewise the premise of (U2)) does actually

not contain the context formulae Δ and Γ , that are implicit in the remaining rules.

146 J. Faber

Symbolic execution of constrained unknown processes. Finally, we need
rules to handle unknown processes with temporal constraints. The idea is not
to handle these constraints in our calculus directly. Instead, we call an external
(semi-)decision procedure that checks if the constraints of the unknown process
actually ensure properties by which the remaining proof can be completed. Thus,
the rules we give here for handling of unknown process can be seen as oracle
rules that access external techniques to reason over the temporal constraints.
Hence, the rules directly reflect the semantics of constrained unknown processes.
Rule (U1) is an axiom expressing the trivial fact that after termination of all
non-terminating processes everything is true. For the remaining two rules, the
interesting part is contained in the side-conditions. Rule (U2) is correct if for
all models M with M |= ψ and all interpretations I ∈ [[Proc\A,V • F]]M with
terminating modelM the formula ϕ holds:M |= ϕ. This represents exactly the
semantics of [Proc\A,V • F]ϕ. Further, δ has to follow from ϕ. The rule only
applies to terminating unknown processes (for the infinite case we cannot allow
to consume the unknown process). Analogously, the side condition that must be
proven for application of rule (U3) is that for all models M with M |= ψ and
and all interpretations I ∈ [[Proc(∞)

\A,V • F]]M the formula �ϕ holds: I |= �ϕ.
In this way, we can use an arbitrary proof method for the temporal logic if it

is possible to check the side-conditions of rules (U2) and (U3). By this means,
our approach flexibly integrates arbitrary timed logics to formulate assumptions
on unknown processes.

Example 2. The safety condition we want to prove for the architecture from
Fig. 1 is that sf never reaches 0, in terms of dCSP sf > RD > 0 � [System]�sf >
0 and we use our sequent calculus to prove its validity. To apply the proof rules
for FAR and REC we need to verify the corresponding formulae FFAR and
FREC via the standard model checking approach for COD and DC [21]. We
demonstrate this for one branch of the proof tree:

sf > RD > 0
(U3)
� [Proc\A,C • FFAR]�sf > 0 (C1)

sf > RD > 0 � [FAR]�sf > 0
... (P8)

sf > RD > 0 � [FAR]�sf > 0 ∧ [FAR][check → · · · → Skip]�sf > 0 (C8)
sf > RD > 0 � [FAR o

9 · · · → Skip]�sf > 0

To close the left branch of the tree (we omit the right branch indicated by
dots) we apply rule (U3), i.e., we need to verify the side-condition of the rule,
which can be done by a DC formula expressing that for all runs fulfilling the
FFAR constraints and starting with sf > RD > 0 the constraint �sf > 0
is true. We verified this property automatically with the abstraction refinement
model checker ARMC [24] using the approach of [21]. In this way, we successfully
applied our sequent calculus to verify the validity of the desired safety property.
The entire proof tree (which can be found in an extended version of this paper [9])
consists of 157 nodes and 22 branches. Eight ARMC calls (finished in less than
8 seconds) to solve branches on TFAR and TREC were necessary.

Verification Architectures: Compositional Reasoning for Real-Time Systems 147

3.1 Correctness and Incompleteness of the Calculus

Theorem 1 (Soundness). The calculus as presented in Fig. 2 is sound, i.e.,
validity follows from derivability in the calculus.

Proof. To proof the soundness of the calculus, we need to proof soundness of
every single rule in Fig. 2, which is exactly like for the standard sequent calculus
for rules (P1) up to (F4) and which is relatively straightforward for most of the
rules for dCSP formulae. Thus, we give only the proof idea of the most interesting
case, the induction rule (I1):

The process P is recursively defined by P c= F (P), i.e., it is given by the
fixed point of F . The set of non-empty, prefix-closed traces of a CSP process is
a complete lattice wrt. the ⊆-order [26]. First, we need to show that, likewise,

Lγ := {[[Q]]| ∀N ∈ Model : (N |= ϕin(y)⇒ [[Q]]N ⊆ [[γ(y)]])}
is a complete lattice. We abbreviate [[Q]] :=

⋃
M [[Q]]M. The set Lγ contains

all traces of processes P for that [[Q]]N ⊆ [[γ(y)]] holds when N is a model
satisfying ϕin (y). Second, we define a monotone function on traces by f ([[Q]]) :=
[[F (Q)]] and show using the induction hypothesis from (I1) that [[Q]] ∈ Lγ implies
f ([[Q]]) ∈ Lγ . With this we can conclude that f has a fixed point in Lγ that is
equal to [[P]]. By construction of Lγ this means that [[P]]M ⊆ [[γ(y)]] for all M
with M |= ϕin(y). To that we apply the left premise of rule (I1) and get the
validity of the rule’s conclusion. �

Theorem 2 (Incompleteness). The calculus as presented in Fig. 2 is incom-
plete, i.e., we cannot derive every valid formula in the calculus.

Proof. This is a direct consequence of the integration of an arbitrary temporal
logic to constrain unknown processes. By this, we can choose an undecidable
logic like the full DC [33] and, thus, cannot resolve the constraints of those
unknown processes in every case. �

4 Refinement of Verification Architectures

We now show how a verified VA can be instantiated by specifications in the
combined formalism CSP-OZ-DC (COD) [15]. We recall that in our approach
we verify instantiation relations in two steps: assumptions on unknown processes
are verified by customary verification approaches for the temporal logic and a
refinement relation for the process structure needs to be established. Thus, we
here provide a rule to prove refinement by COD specifications syntactically.

CSP-OZ-DC [15,8] combines three well-investigated formalisms into a single
language: it uses CSP to model the control flow of a system, Object-Z (OZ)
[27] to specify data space and state changes via OZ schemata, and for defining
(dense) real-time constraints, it applies DC counterexample traces. A key feature
of CSP-OZ-DC is its separation of concerns, because every part, control flow,
data space, and timing part can be specified on its own. Its semantic is given in

148 J. Faber

terms of interpretations [[cod]] and it is compositional, thus, if one can establish
a safety property for a single part of the specification the property automatically
holds likewise for the entire specification. Note that the CSP part is defined in
terms of standard CSP (using trace semantics), i.e., it does not support unknown
processes and it does not contain data (which is integrated via the OZ part).

Definition 3 (Refinement by COD specifications). Given a process P and
a COD specification cod, a refinement of P by cod, written P � cod, is given iff

{I | Minit ∈ Init(cod), I ∈ [[P]](Minit)} ⊇ [[cod]], (6)

where Init(cod) is the set of all models that are valid initial models of cod.

This definition entails that the symbols, which are introduced in cod and thus
are interpreted by the model Minit , coincide with the symbols of the signature
Σ of a refined process P . Even though this definition does not impose explicitly
restrictions on how symbols are declared and used in cod , it implicitly enforces
the desired behaviour: whenever a symbol is changed in each execution of P the
symbol must be declared in cod .

We now give a proof rule that establishes a refinement relation between a
CSP process with data and unknown processes (but without assumptions on
unknowns, which are verified separately; cf. Sect. 1.2) and a COD specification:
a COD specification refines a process if there is a syntactic matching between
them. The rule is not complete, i.e., not all valid refinements can be shown
applying the rule. But this is not our goal here, because in our application
scenario concrete realisations are modelled with respect to a given VA and thus
we assume that the concrete model reflects the structure of the VA directly.

Definition 4 (Matching). Given a process P with unknown processes X1
c=

Proc
(∞)
\A1,V1

, . . . ,Xn
c= Proc

(∞)
\An ,Vn

and a COD class cod, cod matches P if

1. The symbols of the signature Σ of P coincide with the symbols introduced
in cod. That is, for Σ = (Sort ,Symb,Par ,Var) the types of cod correspond
to the sorts Sort, state and message variables of cod to symbols from Symb,
global constants to Par.

2. The CSP process of cod (the main process) structurally equals P except that
all unknown processes are replaced by implementing processes. We demand
that processes implementing Proc∞ do not contain the Skip process.

3. For every process Pi implementing Proc\A,V we demand that (1) the for-
bidden events from A are respected, i.e., alphabet(Pi)∩Ai = ∅, and (2) the
function symbols from V are not changed, i.e., given an operation a ∈
alphabet(Pi) with a delta list2 Δ(s1, . . . , sn) it holds si �∈ V for i ∈ 1..n.

4. For every occurrence of an event a • ϕ in P, where ϕ has function symbols
s1, . . . , sm and primed function symbols u ′

1, . . . , u ′
l , there is a schema

com a = [Δ(u1, . . . , ul); x1 : S1; . . . ; xn : Sn | ϕ]
2 Operations in COD carry a delta list Δ(s1, . . . , sn) of symbols that can be changed.

Verification Architectures: Compositional Reasoning for Real-Time Systems 149

in cod and the function symbols are declared in cod. The variables x1 to xn
are the message variables of channel a used for communications.

The last condition also implies that for events a • ϕ1 and a • ϕ2, ϕ1 and ϕ2 are
always equal, because different definitions of com a are not allowed in COD.

Theorem 3 (Proof rule: Matching implies refinement). Let P be a CSP
process and let cod a COD specification such that cod matches P. Then, P � cod.

Proof. We give the proof idea here. The COD specification cod and the process
P have the same semantical domain, timed interpretations. State changes are
executed by constraints alongside the occurrence of events in both cases. By
construction of the refinement rule, all constraints (and by this all state changes)
coincide and hence we only need to prove that all traces of events performed by
cod , which are traces of its main process, are also valid traces of the process P .
We show this by proving that P down-simulates the process of cod , that is, there
is a relation & on processes s.t. for all R,S ,S

R & S and S a=⇒ S implies that there is an R with R a=⇒ R and R & S .

It is then a standard result [13] that we can conclude from P & main that main
is a refinement of P and by this P � cod . �

The notion of refinement introduced here is rather restricted because the sym-
bols and the constraints of COD specification and VA process have to coincide.
It is straightforward to extend the definitions as well as the refinement rule to
arbitrary refinement relations on the symbols of COD specification and VA pro-
cess by which more sophisticated connections are possible. E.g., an abstract data
type like a list over arbitrary objects can be mapped by the refinement relation
to a concrete list of integer values.

Example 3. In our running example, we proved the correctness of an instanti-
ation of the VA from Fig. 1. This instantiation was given as a concrete COD
model [9], for that direct verification was not possible (timeout after 80h) due
to its complexity with 17 real-valued variables and clocks, over 300 program lo-
cations, and 17000 transitions. Since the model is a refinement of the VA, which
can be syntactically checked, we only needed to verify the local DC formulae
FFAR and FREC to conclude the safety of the entire system (cf. Sect. 1.2). This
was done automatically with ARMC in 7h (FFAR) and 4m (FREC), respectively.

5 Conclusion

The main theme in this work was to uniformly integrate verification techniques
in a formal framework to allow compositional verification of real-time systems:
VAs combine CSP with data and additional real-time constraints to define be-
havioural protocols for classes of systems. Our new sequent-style proof calculus
allows us to verify VAs by a combination of proof rule based reasoning and a

150 J. Faber

suited verification technique for timed constraints. As a proof of concept, we con-
sidered instantiations of VAs by COD specifications and gave a syntactic proof
rule to establish refinement relations. We were able to verify a COD-specified
train control system that is too complex to be verified without further decom-
position techniques. However, the basic ideas of our VA approach carry over to
other formalisms. Particularly, our new CSP dialect is not bound to COD but
can be used with other CSP-based combined formalisms, e.g., [32,29], for which
syntactic refinement rules can be defined similarly to the rule from Sect. 4.

Even though we do not have tool support for the proof calculus from Sect. 3,
the VA approach is dedicated to automated verification and there are promising
results in automated verification for similar calculi [23].

A question that we have not investigated in this paper is the completeness
of the VA approach: can appropriate assumptions be found for every possible
instantiation of an architecture? The answer depends on the languages used for
the assumptions and the instantiations. Present results for COD and DC suggest
that this is actually the case because every COD instantiation can be translated
into an equivalent DC expression.

Additionally, we have first achievements in extending the logic and the calculus
to reason about more complex real-time properties like DC traces.

Acknowledgements. The author thanks Ernst-Rüdiger Olderog and Anders
P. Ravn for helpful comments.

References

1. Abrial, J.R., Mussat, L.: Introducing dynamic constraints in B. In: Bert, D. (ed.)
B 1998. LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)

2. Butler, M.J.: A CSP Approach To Action Systems. Ph.D. thesis, University of
Oxford (1992)

3. Damm, W., Hungar, H., Olderog, E.R.: Verification of cooperating traffic agents.
Int. J. Control. 79(5), 395–421 (2006)

4. de Roever, W.P., et al.: Concurrency Verification: Introduction to Compositional
and Noncompositional Methods. Cambridge University Press, Cambridge (2001)

5. D’Errico, L., Loreti, M.: Assume-Guarantee Verification of Concurrent Systems.
In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521,
pp. 288–305. Springer, Heidelberg (2009)

6. Dong, J.S., Hao, P., Qin, S., Sun, J., Yi, W.: Timed patterns: TCOZ to timed
automata. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 483–498. Springer, Heidelberg (2004)

7. ERTMS User Group, UNISIG: ERTMS/ETCS System requirements specification
(2002), http://www.aeif.org/ccm/default.asp (version 2.2.2)

8. Faber, J., Jacobs, S., Sofronie-Stokkermans, V.: Verifying CSP-OZ-DC specifica-
tions with complex data types and timing parameters. In: Davies, J., Gibbons, J.
(eds.) IFM 2007. LNCS, vol. 4591, pp. 233–252. Springer, Heidelberg (2007)

9. Faber, J.: Verification Architectures: Compositional reasoning for real-time sys-
tems. Reports of SFB/TR 14 AVACS 65 (2010), http://www.avacs.org

10. Fischer, C.: Combination and Implementation of Processes and Data: from CSP-
OZ to Java. Ph.D. thesis, University of Oldenburg (2000)

http://www.aeif.org/ccm/default.asp
http://www.avacs.org

Verification Architectures: Compositional Reasoning for Real-Time Systems 151

11. Gentzen, G.: Untersuchungen über das logisches Schließen. Mathematische
Zeitschrift 1, 176–210 (1935)

12. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
13. He, J.: Process simulation and refinement. Form. Asp. Comput. 1(3), 229–241

(1989)
14. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International,

Englewood Cliffs (1985)
15. Hoenicke, J.: Combination of Processes, Data and Time. Ph.D. thesis, University

of Oldenburg (2006)
16. Klebanov, V., Rümmer, P., Schlager, S., Schmitt, P.H.: Verification of JCSP pro-

grams. In: Broenink, J.F., Roebbers, H.W., Sunter, J.P.E., Welch, P.H., Wood,
D.C. (eds.) CPA. CSES, vol. 63, pp. 203–218. IOS Press, Amsterdam (2005)

17. Knudsen, J., Ravn, A.P., Skou, A.: Design verification patterns. In: Jones, C.B.,
Liu, Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems.
LNCS, vol. 4700, pp. 399–413. Springer, Heidelberg (2007)

18. Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of
contexts. J. Log. Comput. 1(6), 761–795 (1991)

19. Mahony, B.P., Dong, J.S.: Blending object-Z and timed CSP: An introduction to
TCOZ. In: ICSE, pp. 95–104 (1998)

20. Metzler, B., Wehrheim, H., Wonisch, D.: Decomposition for compositional verifica-
tion. In: Liu, S., Maibaum, T.S.E., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256,
pp. 105–125. Springer, Heidelberg (2008)

21. Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration cal-
culus: A practical approach. Form. Asp. Comput. 20(4-5), 481–505 (2008)

22. Platzer, A.: A temporal dynamic logic for verifying hybrid system invariants. In:
Artemov, S., Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 457–471. Springer,
Heidelberg (2007)

23. Platzer, A., Quesel, J.D.: Logical verification and systematic parametric analysis
in train control. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981,
pp. 646–649. Springer, Heidelberg (2008)

24. Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model check-
ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2007)

25. RAISE Language Group: The RAISE Specification Language. BCS Practitioner
Series. Prentice Hall International, Englewood Cliffs (1992)

26. Roscoe, A.: Theory and Practice of Concurrency. Prentice Hall International, En-
glewood Cliffs (1998)

27. Smith, G.: An integration of real-time object-Z and CSP for specifying concurrent
real-time systems. In: Butler, M.J., Petre, L., Sere, K. (eds.) IFM 2002. LNCS,
vol. 2335, pp. 267–285. Springer, Heidelberg (2002)

28. Sühl, C.: An overview of the integrated formalism RT-Z. Form. Asp. Comput. 13(2),
94–110 (2002)

29. Sun, J., Liu, Y., Dong, J.S.: Model checking CSP revisited: Introducing a process
analysis toolkit. In: ISoLA 2008. CCIS, vol. 17, pp. 307–322. Springer, Heidelberg
(2008)

30. Taibi, T.: Design Pattern Formalization Techniques. IGI Publishing (2007)
31. Wehrheim, H.: Behavioural subtyping in object-oriented specification formalisms.

University of Oldenburg, Habilitation (2002)
32. Woodcock, J.C.P., Cavalcanti, A.L.C.: A concurrent language for refinement. In:

Butterfield, A., Pahl, C. (eds.) IWFM 2001. BCS Elec. Works. in Computing (2001)
33. Zhou, C., Hansen, M.R.: Duration Calculus. Springer, Heidelberg (2004)

Automatic Verification of Parametric
Specifications with Complex Topologies�

Johannes Faber1, Carsten Ihlemann2,
Swen Jacobs3, and Viorica Sofronie-Stokkermans2

1 Department of Computing Science, University of Oldenburg, Germany
2 Max-Planck-Institut für Informatik, Saarbrücken, Germany

3 École Polytechnique Fédérale de Lausanne, Switzerland

Abstract. The focus of this paper is on reducing the complexity in

verification by exploiting modularity at various levels: in specification,

in verification, and structurally. For specifications, we use the modular

language CSP-OZ-DC, which allows us to decouple verification tasks con-

cerning data from those concerning durations. At the verification level,

we exploit modularity in theorem proving for rich data structures and use

this for invariant checking. At the structural level, we analyze possibili-

ties for modular verification of systems consisting of various components

which interact. We illustrate these ideas by automatically verifying safety

properties of a case study from the European Train Control System stan-

dard, which extends previous examples by comprising a complex track

topology with lists of track segments and trains with different routes.

1 Introduction

Parametric real-time systems arise in a natural way in a wide range of applica-
tions, including controllers for systems of cars, trains, and planes. Since many
such systems are safety-critical, there is great interest in methods for ensuring
that they are safe. In order to verify such systems, one needs (i) suitable formal-
izations and (ii) efficient verification techniques. In this paper, we analyze both
aspects. Our main focus throughout the paper will be on reducing complexity
by exploiting modularity at various levels: in the specification, in verification,
and also structurally. The main contributions of the paper are:

(1) We exploit modularity at the specification level. In Sect. 2, we use the modu-
lar language CSP-OZ-DC (COD), which allows us to separately specify pro-
cesses (as Communicating Sequential Processes, CSP), data (using Object-Z,
OZ) and time (using the Duration Calculus, DC).

(2) We exploit modularity in verification (Sect. 3).
• First, we consider transition constraint systems (TCSs) that can be auto-

matically obtained from the COD specification, and address verification
tasks such as invariant checking. We show that for pointer data struc-
tures, we can obtain decision procedures for these verification tasks.

� This work was partly supported by the German Research Council (DFG) under

grant SFB/TR 14 AVACS. See http://www.avacs.org for more information.

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 152–167, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.avacs.org

Automatic Verification of Parametric Specifications 153

• Then we analyze situations in which the use of COD specifications allows
us to decouple verification tasks concerning data (OZ) from verification
tasks concerning durations (DC). For systems with a parametric number
of components, this allows us to impose (and verify) conditions on the
single components which guarantee safety of the overall complex system.

(3) We also use modularity at a structural level. In Sect. 4, we use results from
[24] to obtain possibilities for modular verification of systems with complex
topologies by decomposing them into subsystems with simpler topologies.

(4) We describe a tool chain which translates a graphical UML version of the
CSP-OZ-DC specification into TCSs, and automatically verifies the specifi-
cation using our prover H-PILoT and other existing tools (Sect. 5).

(5) We illustrate the ideas on a running example taken from the European Train
Control System standard (a system with a complex topology and a para-
metric number of components—modeled using pointer data structures and
parametric constraints), and present a way of fully automatizing verification
(for given safety invariants) using our tool chain.

Related work. Model-based development and verification of railway control
systems with a complex track topology are analyzed in [10]. The systems are
described in a domain-specific language and translated into SystemC code that
is verified using bounded model checking. Neither verification of systems with a
parametric number of components nor pointer structures are examined there.

In existing work on the verification of parametric systems often only few
aspects of parametricity are studied together. [21] addresses the verification of
temporal properties for hybrid systems (in particular also fragments of the ETCS
as case study) but only supports parametricity in the data domain. [2] presents
a method for the verification of a parametric number of timed automata with
real-valued clocks, while in [5] only finite-state processes are considered. In [3],
regular model checking for a parametric number of homogeneous linear processes
and systems operating on queues or stacks is presented. There is also work on the
analysis of safety properties for parametrized systems with an arbitrary number
of processes operating on unbounded integer variables [1,7,16]. In contrast to
ours, these methods sacrifice completeness by using either an over-approximation
of the transition relation or abstractions of the state space. We, on the other
hand, offer complete methods (based on decision procedures for data structures)
for problems such as invariant checking and bounded model checking.

Motivating example. Consider a system of trains on a complex track topology
as depicted in Fig. 1, and a radio block center (RBC) that has information about
track segments and trains, like e.g. length, occupying train and allowed maximal
speed for segments, and current position, segment and speed for trains. We will
show under which situations safety of the system with complex track topology is
a consequence of safety of systems with linear track topology. Such modular ver-
ification possibilities allow us to consider the verification of a simplified version
of this example, consisting of a linear track (representing a concrete route in the
track topology), on which trains are allowed to enter or leave at given points. We
model a general RBC controller for an area with a linear track topology and an

154 J. Faber et al.

Track Network

Fig. 1. Complex Track Topology

next t next t next t

prev s prev s prev s

next next nexts s s

segm train

prev t prev t
prev t

Fig. 2. Linear Track Topology

arbitrary number of trains. For this, we use a theory of pointers with sorts t (for
trains; nextt returns the next train on the track) and s (for segments; with nexts ,
prevs describing the next/previous segment on the linear track). The link be-
tween trains and segments is described by appropriate functions train and segm
(cf. Fig. 2). In addition, we integrated a simple timed train controller Train into
the model. This allowed us to certify that certain preconditions for the verifica-
tion of the RBC are met by every train which satisfies the specification of Train,
by reasoning on the timed and the untimed part of the system independently.

2 Modular Specifications: CSP-OZ-DC

We start by presenting the specification language CSP-OZ-DC (COD) [12,11]
which allows us to present in a modular way the control flow, data changes,
and timing aspects of the systems we want to verify. We use Communicating
Sequential Processes (CSP) to specify the control flow of a system using pro-
cesses over events; Object-Z (OZ) for describing the state space and its change,
and the Duration Calculus (DC) for modeling (dense) real-time constraints over
durations of events. The operational semantics of COD is defined in [11] in terms
of a timed automata model. For details on CSP-OZ-DC and its semantics, we
refer to [12,11,9]. Our benefits from using COD are twofold:

– COD is compositional in the sense that it suffices to prove safety properties
for the separate components to prove safety of the entire system [11]. This
makes it possible to use different verification techniques for different parts
of the specification, e.g. for control structure and timing properties.

– We benefit from high-level tool support given by Syspect1, a UML editor for
a dedicated UML profile [20] proposed to formally model real-time systems.
It has a semantics in terms of COD. Thus, Syspect serves as an easy-to-use
front-end to formal real-time specifications, with a graphical user interface.

2.1 Example: Systems of Trains on Linear Tracks

To illustrate the ideas, we present some aspects of the case study mentioned
in Sect. 1 (the full case study is presented in [8]). We exploit the benefits of
COD in (i) the specification of a complex RBC controller; (ii) the specification
of a controller for individual trains; and (iii) composing such specifications. Even
though space does not allow us to present all details, we present aspects of the
1 http://csd.informatik.uni-oldenburg.de/~syspect/

http://csd.informatik.uni-oldenburg.de/~syspect/

Automatic Verification of Parametric Specifications 155

example which cannot be considered with other formalisms, and show how to
cope in a natural way with parametricity.

CSP part. The processes and their interdependency is specified using the CSP
specification language. The RBC system passes repeatedly through four phases,
modeled by events with corresponding COD schemata updSpd (speed update),
req (request update), alloc (allocation update), and updPos (position update).

CSP:
method enter : [s1? : Segment ; t0? : Train; t1? : Train; t2? : Train]
method leave : [ls? : Segment ; lt? : Train]
local chan alloc, req, updPos , updSpd

main
c=((updSpd→State1) State1 c=((req→State2) State2 c=((alloc→State3) State3 c=((updPos→main)
�(leave→main) �(leave→State1) �(leave→State2) �(leave→State3)
�(enter→main)) �(enter→State1)) �(enter→State2)) �(enter→State3))

The speed update models the fact that every train chooses its speed according
to its knowledge about itself and its track segment as well as the next track
segment. The request update models how trains send a request for permission
to enter the next segment when they come close to the end of their current
segment. The allocation update models how the RBC may either grant these
requests by allocating track segments to trains that have made a request, or
allocate segments to trains that are not currently on the route and want to
enter. The position update models how all trains report their current positions
to the RBC, which in turn de-allocates segments that have been left and gives
movement authorities to the trains. Between any of these four updates, we can
have trains leaving or entering the track at specific segments using the events
leave and enter . The effects of these updates are defined in the OZ part.

OZ part. The OZ part of the specification consists of data classes, axioms, the
Init schema, and update rules.

Data classes. The data classes declare function symbols that can change their
values during runs of the system, and are used in the OZ part of the specification.

SegmentData
train : Segment → Train [Train on segment]
req : Segment → Z [Requested by train]
alloc : Segment → Z [Allocated by train]

TrainData
segm : Train → Segment [Train segment]
next : Train → Train [Next train]
spd : Train → R [Speed]
pos : Train → R [Current position]
prev : Train → Train [Prev. train]

Axioms. The axiomatic part defines properties of the data structures and
system parameters which do not change during an execution of the system:
gmax : R (the global maximum speed), decmax : R (the maximum deceleration
of trains), d : R (a safety distance between trains), and bd : R → R (mapping
the speed of a train to a safe approximation of the corresponding braking dis-
tance). We specify properties of those parameters, among which an important
one is d ≥ bd(gmax) + gmax ·Δt stating that the safety distance d to the end
of the segment is greater than the braking distance of a train at maximal speed
gmax plus a further safety margin (distance for driving Δt time units at speed
gmax). Furthermore, unique, non-negative ids for trains (sort Train) and track
segments (sort Segment) are defined. The route is modeled as a doubly-linked

156 J. Faber et al.

list2 of track segments, where every segment has additional properties specified
by the constraints in the state schema. ∀ t : Train • tid(t) > 0

∀ t1, t2 : Train | t1 �= t2 • tid(t1) �= tid(t2)
∀ s : Segment • prevs(nexts(s)) = s
∀ s : Segment • nexts(prevs(s)) = s
∀ s : Segment • sid(s) > 0
∀ s : Segment • sid(nexts(s)) > sid(s)
∀ s1, s2 : Segment | s1 �= s2 • sid(s1) �= sid(s2)
∀ s : Segment | s �= snil • length(s) > d + gmax ·Δt
∀ s : Segment | s �= snil • 0 < lmax (s) ∧ lmax (s) ≤ gmax
∀ s : Segment • lmax (s) ≥ lmax (prevs(s)) − decmax ·Δt
∀ s1, s2 : Segment • tid(incoming(s1)) �= tid(train(s2)) (*)

E.g., sid is increasing along the
nexts pointer, the length of a seg-
ment is bounded from below in terms
of d and gmax · Δt , and the differ-
ence between local maximal speeds on
neighboring segments is bounded by
decmax ·Δt . Finally, we have a func-
tion incoming, the value of which is
either a train which wants to enter the given segment from outside the current
route, or tnil if there is no such train. Although the valuation of incoming can
change during an execution, we consider the constraint (*) as a property of our
environment that always holds. Apart from that, incoming may change arbi-
trarily and is not explicitly updated. Note that Train and Segment are pointer
sorts with a special null element (tnil and snil , respectively), and all constraints
implicitly only hold for non-null elements. So, constraint (*) actually means
∀ s1, s2 : Segment | s1
= snil
= s2 ∧ incoming(s1)
= tnil ∧ train(s2)
= tnil

• tid(incoming(s1))
= tid(train(s2))

Init
∀ t : Train • train(segm(t)) = t
∀ t : Train • next(prev(t)) = t
∀ t : Train • prev(next(t)) = t
∀ t : Train • 0 ≤ pos(t) ≤ length(segm(t))
∀ t : Train • 0 ≤ spd(t) ≤ lmax (segm(t))
∀ t : Train • alloc(segm(t)) = tid(t)
∀ t : Train • alloc(nexts(segm(t))) = tid(t)
∨ length(segm(t)) − bd(spd(t)) > pos(t)

∀ s : Segment • segm(train(s)) = s

Init schema. The Init schema de-
scribes the initial state of the system.
It essentially states that trains are ar-
ranged in a doubly-linked list, that all
trains are initially placed correctly on
the track segments and that all trains
respect their speed limits.

Update rules. Updates of the state space, that are executed when the cor-
responding event from the CSP part is performed, are specified with effect
schemata. The schema for updSpd , for instance, consists of three rules, distin-
guishing (i) trains whose distance to the end of the segment is greater than the
safety distance d (the first two lines of the constraint), (ii) trains that are beyond
the safety distance near the end of the segment, and for which the next segment
is allocated, and (iii) trains that are near the end of the segment without an al-
location. In case (i), the train can choose an arbitrary speed below the maximal
speed of the current segment. In case (ii), the train needs to brake if the speed
limit of the next segment is below the current limit. In case (iii), the train needs
to brake such that it safely stops before reaching the end of the segment.

effect updSpd
Δ(spd)

∀ t : Train | pos(t) < length(segm(t)) − d ∧ spd(t) − decmax · Δt > 0
• max{0, spd(t) − decmax · Δt} ≤ spd′(t) ≤ lmax(segm(t))

∀ t : Train | pos(t) ≥ length(segm(t)) − d ∧ alloc(nexts(segm(t))) = tid(t)
• max{0, spd(t) − decmax · Δt} ≤ spd′(t) ≤ min{lmax(segm(t)), lmax(nexts(segm(t)))}

∀ t : Train | pos(t) ≥ length(segm(t)) − d ∧ ¬ alloc(nexts(segm(t))) = tid(t)
• spd′(t) = max{0, spd(t) − decmax · Δt}

2 Note that we use relatively loose axiomatizations of the list structures for both trains

and segments, also allowing for disjoint families of linear, possibly infinite lists.

Automatic Verification of Parametric Specifications 157

Timed train controller.
Train

�

RBC
1

Environment

grant
reject

req

updPos
updSpd1

1 updPos
updSpd1

1

TrainData

SegmentData

Fig. 3. Structural overview

In the DC part of a speci-
fication, real-time constraints
are specified: A second, timed
controller Train (for one train
only) interacts with the RBC
controller, which is presented
in the overview of the case study in Fig. 3. The train controller Train consists
of three timed components running in parallel. The first updates the train’s
position. This component contains e.g. the DC formula

¬(true � ' updPos � (� < Δt) � ' updPos � true),

that specifies a lower time bound Δt on updPos events. The second component
checks periodically whether the train is beyond the safety distance to the end
of the segment. Then, it starts braking within a short reaction time. The third
component requests an extension of the movement authority from the RBC,
which may be granted or rejected. The full train controller can be found in [8].

3 Modular Verification

In this section, we combine two approaches for the verification of safety properties
of COD specifications:

– We introduce the invariant checking approach and present decidability re-
sults for local theory extensions that imply decidability of the invariant
checking problem for a large class of parameterized systems.

– We illustrate how we can combine this invariant checking for the RBC speci-
fication with a method for model checking of real-time properties (introduced
in [19]) for the COD specification for a single train Train.

Formally, our approach works on a transition constraint system (TCS) obtained
from the COD specification by an automatic translation (see [9]) which is guar-
anteed to capture the defined semantics of COD (as defined in [11]).

Definition 1. The tuple T = (V , Σ, (Init), (Update)) is a transition constraint
system, which specifies: the variables (V) and function symbols (Σ) whose values
may change over time; a formula (Init) specifying the properties of initial states;
and a formula (Update) which specifies the transition relation in terms of the
values of variables x ∈ V and function symbols f ∈ Σ before a transition and
their values (denoted x ′, f ′) after the transition.

In addition to the TCS, we obtain a background theory T from the specification,
describing properties of the used data structures and system parameters that do
not change over time. Typically, T consists of a family of standard theories (like
the theory of real numbers), axiomatizations for data structures, and constraints
on system parameters. In what follows φ|=T ψ denotes logical entailment and
means that every model of the theory T which is a model of φ is also a model
for ψ. We denote false by ⊥, so φ|=T ⊥ means that φ is unsatisfiable w.r.t. T .

158 J. Faber et al.

3.1 Verification Problems

We consider the problem of invariant checking of safety properties.3 To show
that a safety property, represented as a formula (Safe), is an invariant of a TCS
T (for a given background theory T), we need to identify an inductive invariant
(Inv) which strengthens (Safe), i.e., we need to prove that

(1) (Inv) |=T (Safe),
(2) (Init) |=T (Inv), and
(3) (Inv) ∧ (Update) |=T (Inv′), where (Inv′) results from (Inv) by replacing each

x ∈ V by x ′ and each f ∈ Σ by f ′.

Lemma 2. If (Inv), (Init) and (Update) belong to a class of formulae for which
the entailment problems w.r.t. T above are decidable then the problem of checking
that (Inv) is an invariant of T (resp. T satisfies the property (Safe)) is decidable.

We use this result in a verification-design loop as follows: We start from a spec-
ification written in COD. We use a translation to TCS and check whether a
certain formula (Inv) (usually a safety property) is an inductive invariant.
(i) If invariance can be proved, safety of the system is guaranteed.
(ii) If invariance cannot be proved, we have the following possibilities:

1. Use a specialized prover to construct a counterexample (model in which the
property (Inv) is not an invariant) which can be used to find errors in the
specification and/or to strengthen the invariant4.

2. Using results in [25] we can often derive additional (weakest) constraints on
the parameters which guarantee that Inv is an invariant.

Of course, the decidability results for the theories used in the description of a
system can be also used for checking consistency of the specification.

If a TCS models a system with a parametric number of components, the for-
mulae in problems (1)–(3) may contain universal quantifiers (to describe proper-
ties of all components), hence standard SMT methods – which are only complete
for ground formulae – do not yield decision procedures. In particular, for (ii)(1,2)
and for consistency checks we need possibilities of reliably detecting satisfiability
of sets of universally quantified formulae for which standard SMT solvers cannot
be used. We now present situations in which this is possible.

3.2 Modularity in Automated Reasoning: Decision Procedures

We identify classes of theories for which invariant checking (and bounded model
checking) is decidable. Let T0 be a theory with signature Π = (S0, Σ0, Pred),
where S0 is a set of sorts, and Σ0 and Pred are sets of function resp. predicate
symbols. We consider extensions of T0 with new function symbols in a set Σ,
whose properties are axiomatized by a set K of clauses.
3 We can address bounded model checking problems in a similar way, cf. [15,9,13].
4 This last step is the only part which is not fully automatized. For future work we

plan to investigate possibilities of automated invariant generation or strengthening.

Automatic Verification of Parametric Specifications 159

Local theory extensions. We are interested in theory extensions in which for
every set G of ground clauses we can effectively determine a finite (preferably
small) set of instances of the axioms K sufficient for checking satisfiability of
G without loss of completeness. If G is a set of Πc-clauses (where Πc is the
extension of Π with constants in a set Σc), we denote by st(K,G) the set of
ground terms starting with a Σ-function symbol occurring in K or G, and by
K[G] the set of instances of K in which the terms starting with Σ-functions are
in st(K,G). T0∪K is a local extension of T0 [23] if the following condition holds:

(Loc) For every set G of ground clauses, G |=T0∪K⊥ iff K[G] ∪G |=T Σ
0
⊥

where T Σ
0 is the extension of T0 with the free functions in Σ. We can define

stable locality (SLoc) in which we use the set K[G] of instances of K in which
the variables below Σ-functions are instantiated with terms in st(K,G). In local
theory extensions, sound and complete hierarchical reasoning is possible.

Theorem 3 ([23]). With the notations introduced above, if T0 ⊆ T0∪K satisfies
condition ((S)Loc) then the following are equivalent to G |=T0∪K⊥:

(1) K∗[G]∪G |=T Σ
0
⊥ (K∗[G] is K[G] for local; K[G] for stably local extensions).

(2) K0∪G0∪D |=T Σ
0
⊥, where K0∪G0 ∪ D is obtained from K∗[G]∪G by intro-

ducing (bottom-up) new constants ct for subterms t = f (g1, . . . , gn) with
f ∈ Σ, gi ground Σ0 ∪Σc-terms; replacing the terms with the corresponding
constants; and adding the definitions ct ≈ t to the set D.

(3) K0∪G0∪N0 |=T0⊥, where

N0 = {
n∧

i=1

ci ≈ di → c = d | f (c1, . . . , cn) ≈ c, f (d1, . . . , dn) ≈ d ∈ D}.

The hierarchical reduction method is implemented in the system H-PILoT [14].

Corollary 4 ([23]). If the theory extension T0 ⊆ T1 satisfies ((S)Loc) then sat-
isfiability of sets of ground clauses G w.r.t. T1 is decidable if K∗[G] is finite and
K0∪G0∪N0 belongs to a decidable fragment F of T0. Since the size of K0∪G0∪N0
is polynomial in the size of G (for a given K), locality allows us to express the
complexity of the ground satisfiability problem w.r.t. T1 as a function of the com-
plexity of the satisfiability of F-formulae w.r.t. T0.

3.3 Examples of Local Theory Extensions

We are interested in reasoning efficiently about data structures and about up-
dates of data structures. We here give examples of such theories.

Update axioms. In [13] we show that update rules Update(Σ, Σ′) which de-
scribe how the values of the Σ-functions change, depending on a set {φi | i ∈ I }
of mutually exclusive conditions, define local theory extensions.

Theorem 5 ([13]). Assume that {φi | i ∈ I } are formulae over the base signa-
ture such that φi(x) ∧ φj (x) |=T0 ⊥ for i �=j , and that si , ti are (possibly equal)

160 J. Faber et al.

terms over the signature Σ such that T0 |= ∀ x(φi(x)→si(x)≤ti(x)) for all i ∈ I .
Then the extension of T0 with axioms of the form Def(f) is local.

Def(f) ∀ x (φi(x)→ si(x) ≤ f (x) ≤ ti(x))i ∈ I .

Data structures. Numerous locality results for data structures exist, e.g. for
fragments of the theories of arrays [6,13], and pointers [18,13]. As an illustration
– since the model we used in the running example involves a theory of linked
data structures – we now present a slight extension of the fragment of the theory
of pointers studied in [18,13], which is useful for modeling the track topologies
and successions of trains on these tracks. We consider a set of pointer sorts
P = {p1, . . . , pn} and a scalar sort s.5 Let (Σs , Preds) be a scalar signature, and
let ΣP be a set of function symbols with arguments of pointer sort consisting
of sets Σp→s (the family of functions of arity p→s), and Σp→p (the family of
functions of arity p→pi). (Here p is a tuple pi1 . . . pik with k ≥ 0.) We assume
that for every pointer sort p ∈ P, ΣP contains a constant nullp of sort p.

Example 6. The fact that we also allow scalar fields with more than one argu-
ment is very useful because it allows, for instance, to model certain relationships
between different nodes. Examples of such scalar fields could be:

– distance(p, q) associates with non-null p, q of pointer type a real number;
– reachable(p, q) associates with non-null p, q of pointer type a boolean value

(true (1) if q is reachable from p using the next functions, false (0) otherwise).

Let Σ = ΣP ∪Σs . In addition to allowing several pointer types and functions of
arbitrary arity, we loosen some of the restrictions imposed in [18,13].

Definition 7. An extended pointer clause is a formula of form ∀ p̄. (E ∨ϕ)(p̄),
where p̄ is a set of pointer variables including all free variables of E and ϕ, and:

(1) E consists of disjunctions of pointer equalities, and has the property that for
every term t = f (t1, . . . , tk) with f ∈ ΣP occurring in E ∨ ϕ, E contains an
atom of the form t ′ = nullp for every proper subterm (of sort p) t ′ of t;

(2) ϕ is an arbitrary formula of sort s.

E and ϕ may additionally contain free scalar and pointer constants, and ϕ may
contain additional quantified variables of sort s.

Theorem 8. Let Σ = ΣP ∪ Σs be a signature as defined before. Let Ts be a
theory of scalars with signature Σs . Let Φ be a set of Σ-extended pointer clauses.
Then, for every set G of ground clauses over an extension Σc of Σ with constants
in a countable set c the following are equivalent:

(1) G is unsatisfiable w.r.t. Φ ∪ Ts ;
(2) Φ[G]∪G is an unsatisfiable set of clauses in the disjoint combination Ts∪EQP

of Ts and EQP , the many-sorted theory of pure equality over pointer sorts,

5 We assume that we only have one scalar sort for simplicity of presentation; the scalar

theory can itself be an extension or combination of theories.

Automatic Verification of Parametric Specifications 161

where Φ[G] consists of all instances of Φ in which the universally quantified vari-
ables of pointer type occurring in Φ are replaced by ground terms of pointer type
in the set st(Φ,G) of all ground terms of sort p occurring in Φ or in G.

The proof is similar to that in [13]. H-PILoT can be used as a decision procedure
for this theory of pointers – if the theory of scalars is decidable – and for any
extension of this theory with function updates in the fragment in Thm. 5.

Example 9. Let P = {sg(segment), t(train)}, and let nextt, prevt : t → t, and
nexts, prevs : sg → sg, and train : sg → t, segm : t → sg, and functions of scalar
sort as listed at the beginning of Sect. 2.1. All axioms describing the background
theory and the initial state in Sect. 2.1 are expressed by extended pointer clauses.
The following formula expressing a property of reachability of trains can be
expressed as a pointer clause:
∀ p, q(p
= nullt∧q
= nullt∧nextt (q)
= nullt →(reachable(p, q)→ reachable(p, nextt (q))).

Decidability for verification. A direct consequence of Thm. 3 and Cor. 4 is
the following decidability result for invariant checking:

Corollary 10 ([25]). Let T be the transition constraint system and T be the
background theory associated with a specification. If the update rules Update and
the invariant property Inv can be expressed as sets of clauses which define a chain
of local theory extensions T ⊆ T ∪ Inv(x , f) ⊆ T ∪ Inv(x , f) ∪ Update(x , x ′, f , f

′
)

then checking whether a formula is an invariant is decidable.

In this case we can use H-PILoT as a decision procedure (and also to construct
a model in which the property Inv is not an invariant). We can also use results
from [25] to derive additional (weakest) constraints on the parameters which
guarantee that Inv is an invariant.

3.4 Example: Verification of the Case Study

We demonstrate how the example from Sect. 1 can be verified by using a com-
bination of the invariant checking approach presented in Sect. 3.1 and a model
checking approach for timing properties. This combination is necessary because
the example contains both the RBC component with its discrete updates, and the
train controller Train with real-time safety properties. Among other things, the
specification of the RBC assumes that the train controllers always react in time
to make the train brake before reaching a critical position.

Using the modularity of COD, we can separately use the invariant checking
approach to verify the RBC for a parametric number of trains, and the approach
for model checking DC formulae to verify that every train satisfies the timing
assumptions made in the RBC specification.

Verification of the RBC. The verification problems for the RBC are satis-
fiability problems containing universally quantified formulae, hence cannot be
decided by standard methods of reasoning in combinations of theories. Instead,
we use the hierarchical reasoning approach from Sect. 3.2.

162 J. Faber et al.

Safety properties. As safety property for the RBC we want to prove that we
never have two trains on the same segment:

(Safe) := ∀ t1, t2 : Train. t1 �= t2 → ids (segm(t1)) �= ids (segm(t2)).

To this end, we need to find a formula (Inv) such that we can prove

(1) (Inv) ∪ ¬(Safe) |=T ⊥,

(2) (Init) ∪ ¬(Inv) |=T ⊥, and

(3) (Inv) ∪ (Update)∪ ¬(Inv′) |=T ⊥,

where (Update) is the update formula associated with the transition relation
obtained by translating the COD specification into TCS [11,9], and (Init) consists
of the constraints in the Init schema. The background theory T is obtained
from the state schema of the OZ part of the specification: it is the combination
of the theories of real numbers and integers, together with function and constant
symbols satisfying the constraints given in the state schema.

Calling H-PILoT on problem (3) with (Inv) = (Safe) shows us that (Safe) is
not inductive over all transitions. Since we expect the updates to preserve the
well-formedness properties in (Init), we tried to use this as our invariant, but with
the same result. However, inspection of counterexamples provided by H-PILoT
allowed us to identify the following additional constraints needed to make the
invariant inductive:

(Ind1) := ∀ t : Train. pc
= InitState ∧ alloc(nexts(segm(t)))
= tid(t)

→ length(segm(t)) − bd(spd(t)) > pos(t) + spd(t) ·Δt

(Ind2) := ∀ t : Train. pc
= InitState ∧ pos(t) ≥ length(segm(t)) − d

→ spd(t) ≤ lmax(nexts(segm(t)))

The program counter pc is introduced in the translation process from COD to
TCS and we use the constraint pc �= InitState to indicate that the system is
not in its initial location. Thus, define (Inv) as the conjunction (Init) ∧ (Ind1) ∧
(Ind2). Now, all of the verification tasks above can automatically be proved us-
ing Syspect and H-PILoT, in case (3) after splitting the problem into a number
of sub-problems. To ensure that our system is not trivially safe because of in-
consistent assumptions, we also check for consistency of T , (Inv) and (Update).
Since by Thm. 5 all the update rules in the RBC specification define local theory
extensions, and the axioms specifying properties of the data types are extended
pointer clauses, by Cor. 10 we obtain the following decidability result.

Corollary 11. Checking properties (1)–(3) is decidable for all formulae Inv ex-
pressed as sets of extended pointer clauses with the property that the scalar part
belongs to a decidable fragment of the theory of scalars.

Topological invariants. We also considered certain topological invariants of the
system – e.g. that if a train t is inserted between trains t1 and t2, the next and
prev links are adjusted properly, and if a train leaves a track then its nextt and
prevt links become null. We also checked that if certain reachability conditions –
modeled using a binary transitive function reachable with Boolean output which

Automatic Verification of Parametric Specifications 163

is updated when trains enter or leave the line track – are satisfied before an
insertion/removal of trains then they are satisfied also after. We cannot include
these examples in detail here; they will be presented in a separate paper.

Verification of the timed train controller. Using the model checking ap-
proach from [19], we can automatically prove real-time properties of COD spec-
ifications. In this case, we use the approach only on the train controller part
Train (Fig. 3). We show that the safety distance d and the braking distance bd
postulated in the RBC controller model can actually be achieved by trains that
comply with the train specification. That is, we prove that (for an arbitrary
train) the train position curPos is never beyond its movement authority ma:

(SafeT) := ¬�(curPos > ma).

Safety of the overall system. The safety property for trains (SafeT) im-
plies that train controllers satisfying the specification also satisfy the timing
assumptions made implicitly in the RBC controller. Compositionality of COD
guarantees [11] that it is sufficient to verify these components separately. Thus,
by additionally proving that (Inv) is a safety invariant of the RBC, we have
shown that the system consisting of a combination of the RBC controller and
arbitrarily many train controllers is safe.

4 Modular Verification for Complex Track Topologies

We now consider a complex track as described in Fig. 1. Assume that the track
can be modeled as a directed graph G = (V ,E) with the following properties:

(i) The graph G is acyclic (the rail track does not contain cycles);
(ii) The in-degree of every node is at most 2 (at every point at which two lines

meet, at most two linear tracks are merged).

Theorem 12. For every track topology satisfying conditions (i) and (ii) above
we can find a decomposition L = {ltracki | i ∈ I } into linear tracks such that
if (x , y) ∈ E then y = nextltracki

s (x) for some i ∈ I and for every ltrack ∈ L
identifiers are increasing w.r.t. nextltracks .

We assume that for each linear track ltrack we have one controller RBC ltrack

which uses the control protocol described in Sect. 2.1, where we label the func-
tions describing the train and segment succession using indices (e.g. we use
nextltrackt , prevltrack

t for the successor/predecessor of a train on ltrack, and nextltracks ,
prevltrack

s for the successor/predecessor of a segment on ltrack. Assume that
these controllers are compatible on their common parts, i.e. (1) if two tracks
track1, track2 have a common subtrack track3 then the corresponding fields agree,
i.e. whenever s , nexttracki

s (s) are on track3, nexttrack1
s (s)=nexttrack2

s (s)=nexttrack3
s (s)

(the same for prevs , and for nextt , prevt on the corresponding tracks); (2) the up-
date rules are compatible for trains jointly controlled.6 Under these conditions,
proving safety for the complex track can be reduced to checking safety of linear
train tracks with incoming and outgoing trains (for details cf. [8]).
6 We also assume that all priorities of the trains on the complex track are different.

164 J. Faber et al.

UML CSP-OZ-DC PEA toolkit H-PILoT

ARMC

Prover

Syspect

PEA

TCS

TCS

Fig. 4. Tool chain

Lemma 13. A state s of the system is a model (Pt,Ps, R, Z, {nextltrack, prevltrack,
nextltracks , prevltrack

s }track∈L ∪ {segm, train, pos, ...}), where all the functions rela-
tivized to tracks are compatible on common subtracks. The following hold:

(a) Every state s of the system of trains on the complex track restricts to a state
sltrack of the system of trains on its component linear track.

(b) Any family {sltracki
| i ∈ I } of states on the component tracks which agree on

the common sub-tracks can be “glued together” to a state s of the system of
trains on the complex track topology.

(a) and (b) also hold if we consider initial states (i.e. states satisfying the initial
conditions) and safe states (i.e. states satisfying the safety conditions in the
invariant Inv). Similar properties hold for parallel actions and for transitions.

Theorem 14. Consider a complex track topology satisfying conditions (i)–(ii)
above. Let L = {ltracki | i ∈ I } be its decomposition into a finite family of finite
linear tracks such that for all ltrack1, ltrack2 ∈ L, L contains all their common
maximal linear subtracks. Assume that the tracks ltracki ∈ L (with increasing
segment identifiers w.r.t. nextltracks) are controlled by controllers RBC ltracki using
the protocols in Sect. 2.1 which synchronize on common subtracks. Then we can
guarantee safety of the control protocol for the controller of the complex track
obtained by interconnecting all linear track controllers {RBC ltracki | i ∈ I }.

5 From Specification to Verification

For the practical application of verification techniques tool support is essential.
For this reason, in this section we introduce a full tool chain for automatically
checking the invariance of safety properties starting from a given specification
and give some experimental results for our RBC case study.

Tool chain. The tool chain is sketched in Fig. 4. In order to capture the systems
we want to verify, we use the COD front-end Syspect (cf. Sect. 2). [11] defines
the semantics of COD in terms of a timed automata model called Phase Event
Automata (PEA). A translation from PEA into TCS is given in [11], which is
implemented in the PEA toolkit7 and used by Syspect.

Given an invariance property, a Syspect model can directly be exported into a
TCS in the syntax of H-PILoT. If the specification’s background theory consists
of chains of local theory extensions, the user needs to specify via input dialog

7 http://csd.informatik.uni-oldenburg.de/projects/epea.html

http://csd.informatik.uni-oldenburg.de/projects/epea.html

Automatic Verification of Parametric Specifications 165

(i) that the pointer extension of H-PILoT is to be used; (ii) which level of exten-
sion is used for each function symbol of the specification. With this information,
our tool chain can verify invariance of a safety condition fully automatically
by checking its invariance for each transition update (cf. Sect. 3.1). Therefore,
for each update, Syspect exports a file that is handed over to H-PILoT. The
safety invariance is proven if H-PILoT detects the unsatisfiability of each verifi-
cation task. Otherwise, H-PILoT generates a model violating the invariance of
the desired property, which may be used to fix the problems in the specification.

In addition, the PEA toolkit also supports output of TCS into the input
language of the abstraction refinement model checker ARMC [22], which we
used to verify correctness of the timed train controller from our example.

Table 1. Results

(sys) (hpi) (yic)
(Inv) unsat
Part 1 11s 72s 52s
Part 2 11s 124s 131s
speed update 11s 8s 45s
(Safe) sat 9s 8s t.o.
Consistency 13s 3s (U) 2s
(obtained on: AMD64, dual-core

2 GHz, 4 GB RAM)

Experimental results. Table 1 gives experimental
results for checking the RBC controller.8 The table
lists execution times for the involved tools: (sys)
contains the times needed by Syspect and the PEA
toolkit to write the TCS, (hpi) the time of H-PILoT
to compute the reduction and to check satisfiabil-
ity with Yices as back-end, (yic) the time of Yices
to check the proof tasks without reductions by H-
PILoT. Due to some semantics-preserving transfor-
mations during the translation process the resulting TCS consists of 46 transi-
tions. Since our invariant (Inv) is too complex to be handled by the clausifier of
H-PILoT, we check the invariant for every transition in two parts yielding 92
proof obligations. In addition, results for the most extensive proof obligation are
stated: one part of the speed update. Further, we performed tests to ensure that
the specifications are consistent.

The table shows that the time to compute the TCS is insignificant and that
the overall time to verify all transition updates with Yices and H-PILoT does
not differ much. On the speed update H-PILoT was 5 times faster than Yices
alone. During the development of the case study H-PILoT helped us finding
the correct transition invariants by providing models for satisfiable transitions.
The table lists our tests with the verification of condition (Safe), which is not
inductive over all transitions (cf. Sect. 3): here, H-PILoT was able to provide a
model after 8s whereas Yices detected unsatisfiability for 17 problems, returned
“unknown” for 28, and timed out once (listed as (t.o) in the table). For the
consistency check H-PILoT was able to provide a model after 3s, whereas Yices
answered “unknown” (listed as (U)).

In addition, we used ARMC to verify the property (SafeT) of the timed train
controller. The full TCS for this proof tasks comprises 8 parallel components,
more than 3300 transitions, and 28 real-valued variables and clocks (so it is
an infinite state system). For this reason, the verification took 26 hours (on a
standard desktop computer).

8 Note that even though our proof methods fully support parametric specifications,

we instantiated some of the parameters for the experiments because the underlying

provers Yices and ARMC do not support non-linear constraints.

166 J. Faber et al.

6 Conclusion

We augmented existing techniques for the verification of real-time systems to
cope with rich data structures like pointer structures. We identified a decidable
fragment of the theory of pointers, and used it to model systems of trains on
linear tracks with incoming and outgoing trains. We then proved that certain
types of complex track systems can be decomposed into linear tracks, and that
proving safety of train controllers for such complex systems can be reduced to
proving safety of controllers for linear tracks. We implemented our approach in
a new tool chain taking high-level specifications in terms of COD as input. To
uniformly specify processes, data and time, [17,4,26] use similar combined spec-
ification formalisms. We preferred COD due to its strict separation of control,
data, and time, and its compositionality (cf. Sect. 2), which is essential for auto-
matic verification. There is also sophisticated tool support given by Syspect and
the PEA toolkit. Using this tool chain we automatically verified safety properties
of a complex case study, closing the gap between a formal high-level language
and the proposed verification method for TCS. We plan to extend the case study
to also consider emergency messages (like in [9]), possibly coupled with updates
in the track topology, or updates of priorities. Concerning the track topology,
we are experimenting with more complex axiomatizations (e.g. for connected-
ness properties) that are not in the pointer fragment presented in Sect. 3.3; we
already proved various locality results. We also plan to study possibilities of
automated invariant generation in such parametric systems.

Acknowledgments. Many thanks to Werner Damm, Ernst-Rüdiger Olderog
and the anonymous referees for their helpful comments.

References

1. Abdulla, P.A., Delzanno, G., Rezine, A.: Approximated parameterized verification

of infinite-state processes with global conditions. Form. Method Syst. Des. 34(2),

126–156 (2009)

2. Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes. In: Steffen, B.

(ed.) TACAS 1998. LNCS, vol. 1384, pp. 298–312. Springer, Heidelberg (1998)

3. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model

checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.

35–48. Springer, Heidelberg (2004)

4. Abrial, J.R., Mussat, L.: Introducing dynamic constraints in B. In: Bert, D. (ed.)

B 1998. LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)

5. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.D.: Parameterized verification with

automatically computed inductive assertions. In: Berry, G., Comon, H., Finkel, A.

(eds.) CAV 2001. LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

6. Bradley, A., Manna, Z., Sipma, H.: What’s decidable about arrays? In: Emerson,

E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442. Springer,

Heidelberg (2006)

7. Clarke, E.M., Talupur, M., Veith, H.: Environment abstraction for parameter-

ized verification. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS,

vol. 3855, pp. 126–141. Springer, Heidelberg (2006)

Automatic Verification of Parametric Specifications 167

8. Faber, J., Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: Automatic verifica-

tion of parametric specifications with complex topologies. Reports of SFB/TR 14

AVACS No. 66, SFB/TR 14 AVACS (2010), http://www.avacs.org
9. Faber, J., Jacobs, S., Sofronie-Stokkermans, V.: Verifying CSP-OZ-DC specifica-

tions with complex data types and timing parameters. In: Davies, J., Gibbons, J.

(eds.) IFM 2007. LNCS, vol. 4591, pp. 233–252. Springer, Heidelberg (2007)
10. Haxthausen, A.E., Peleska, J.: A domain-oriented, model-based approach for con-

struction and verification of railway control systems. In: Jones, C.B., Liu, Z., Wood-

cock, J. (eds.) Formal Methods and Hybrid Real-Time Systems. LNCS, vol. 4700,

pp. 320–348. Springer, Heidelberg (2007)

11. Hoenicke, J.: Combination of Processes, Data, and Time. Ph.D. thesis, University

of Oldenburg, Germany (2006)
12. Hoenicke, J., Olderog, E.R.: CSP-OZ-DC: A combination of specification tech-

niques for processes, data and time. Nordic J. Comput. 9(4), 301–334 (2002)
13. Ihlemann, C., Jacobs, S., Sofronie-Stokkermans, V.: On local reasoning in verifica-

tion. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.

265–281. Springer, Heidelberg (2008)
14. Ihlemann, C., Sofronie-Stokkermans, V.: System description: H-PILoT. In:

Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 131–139. Springer, Heidel-

berg (2009)

15. Jacobs, S., Sofronie-Stokkermans, V.: Applications of hierarchic reasoning in the

verification of complex systems. ENTCS 174(8), 39–54 (2007)
16. Lahiri, S.K., Bryant, R.E.: Indexed predicate discovery for unbounded system ver-

ification. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 135–147.

Springer, Heidelberg (2004)

17. Mahony, B.P., Dong, J.S.: Blending Object-Z and timed CSP: An introduction to

TCOZ. In: ICSE 1998, pp. 95–104 (1998)
18. McPeak, S., Necula, G.: Data structure specifications via local equality axioms.

In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490.

Springer, Heidelberg (2005)

19. Meyer, R., Faber, J., Hoenicke, J., Rybalchenko, A.: Model checking duration cal-

culus: A practical approach. Form. Asp. Comput. 20(4-5), 481–505 (2008)
20. Möller, M., Olderog, E.R., Rasch, H., Wehrheim, H.: Integrating a formal method

into a software engineering process with UML and Java. Form. Asp. Comput. 20,

161–204 (2008)
21. Platzer, A., Quesel, J.D.: European train control system: A case study in formal

verification. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885,

pp. 246–265. Springer, Heidelberg (2009)

22. Podelski, A., Rybalchenko, A.: ARMC: The logical choice for software model check-

ing with abstraction refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,

pp. 245–259. Springer, Heidelberg (2007)
23. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:

Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 219–234. Springer,

Heidelberg (2005)
24. Sofronie-Stokkermans, V.: Sheaves and geometric logic and applications to modular

verification of complex systems. ENTCS 230, 161–187 (2009)
25. Sofronie-Stokkermans, V.: Hierarchical reasoning for the verification of parametric

systems. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp.

171–187. Springer, Heidelberg (2010)
26. Woodcock, J.C.P., Cavalcanti, A.L.C.: A concurrent language for refinement. In:

Butterfield, A., Strong, G., Pahl, C. (eds.) IWFM 2001. BCS Elec. Works. Comp.

(2001)

http://www.avacs.org

Satisfaction Meets Expectations�

Computing Expected Values of
Probabilistic Hybrid Systems with SMT

Martin Fränzle, Tino Teige, and Andreas Eggers

Carl von Ossietzky Universität, Oldenburg, Germany

{fraenzle,teige,eggers}@informatik.uni-oldenburg.de

Abstract. Stochastic satisfiability modulo theories (SSMT), which is

an extension of satisfiability modulo theories with randomized quantifi-

cation, has successfully been used as a symbolic technique for computing

reachability probabilities in probabilistic hybrid systems. Motivated by

the fact that several industrial applications call for quantitative measures

that go beyond mere reachability probabilities, this paper extends SSMT

to compute expected values of probabilistic hybrid systems like, e.g.,

mean-times to failure. Practical applicability of the proposed approach

is demonstrated by a case study from networked automation systems.

1 Introduction

Hybrid discrete-continuous dynamics arises when discrete and continuous pro-
cesses become connected, as in the case of embedded computers and their physical
environment. An increasing number of the technical artifacts shaping our ambi-
ence are relying on such, often invisible, embedded computer systems, provok-
ing the quest for automatic analysis methods for hybrid behavior. Ideally, such a
method would be able to analyze the intricate feedback behavior between the dis-
crete and the continuous components in detail and to rigorously quantify the prob-
ability of erroneous behavior, as 100% absence of error is unrealistic in practice and
perhaps more an artifact of the model than a reasonable certificate.Unfortunately,
procedures for such probabilistic analysis of hybrid systems are still rare, in con-
trast to a steadily growing body of ever more powerful tools for their qualitative
analysis. Suggestions include abstraction-based model-checking procedures like
[10], which compute safe upper bounds on the probability of erroneous situations
and thus provide verification capabilities, and bounded model-checking (BMC)
procedures exploiting stochastic extensions of satisfiability modulo theories [4].
As inherent to BMC, the latter underapproximate the reach set and are thus ver-
satile debugging tools, able to falsify a design.

Industrial applications often call for quantitative measures distinct from the
reachability probabilities compututed by the aforementioned techniques, as reach-
ability probabilities and related figures frequently tend to 1 in the long run and
� This work has been partially supported by the German Research Council (DFG)

as part of the Transregional Collaborative Research Center “Automatic Verification

and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 168–182, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Satisfaction Meets Expectations 169

maximum conditional expectation of

sat satunsat satsat unsat sat sat

0.20.8 0.8 0.8 0.80.2 0.2 0.2

sat satunsat satsat unsat sat sat

0.20.8 0.8 0.8 0.80.2 0.2 0.2

maximum probability of satisfaction

0.50.5 0.50.5

x2

x3x3

x1

x2

x3 x3

x2

x3x3

x1

x2

x3 x3

y ∈ [0, 8]

Pr=1 Pr=0 Pr=0 Pr=1 Pr=1 Pr=1 Pr=1

Pr=0.8 Pr=1

Pr=1Pr=1Pr=0.8

Pr=0.9

Ey=0.8 Ey=5.6

Ey=5.6Ey=4.2Ey=0

Ey=3.2

Ey=0.8Pr=0.2

R

[0→0.5,1→0.5]x1 ∈ {0, 1} ∃x2 ∈ {0, 1} R

[0→0.8,1→0.2]x3 ∈ {0, 1} :

(x1 = 1 ∨ x2 = 1 ∨ x3 = 0) ∧ (x1 = 1 ∨ x2 = 0 ∨ x3 = 1) ∧ (y = 4 · x1 + (x2 + x3)
2)

Pr=1 Ey=0 Ey=0 Ey=4 Ey=4 Ey=5 Ey=5 Ey=8Ey=0

Fig. 1. Semantics of SSMT: probability of satisfaction (left) and conditional expecta-

tion (right). Dashed and solid lines denote variable assignments 0 and 1, respectively.

thus are not sufficiently discriminative in practice when applied to systems with
unbounded lifetime. Motivated by this fact, this paper provides state-exploratory
methods for computing expected values of probabilistic hybrid systems like, e.g.,
mean-time to failure (MTTF). The suggested method generalizes the proba-
bilistic BMC approach of [4,8], yet owing to the shape of the requirements
has fundamentally different properties than conventional BMC: the resulting
BMC procedures are no longer falsification procedures, yet turn to verification
procedures being able to verify that a probabilistic hybrid system meets re-
quirements on, e.g., its expected MTTF. Supporting a demonic interpretation
of non-determinism, the procedure permits the analysis of partial designs or of
open systems in an unknown environment. The method builds on the notion of
stochastic satisfiability modulo theories [4,9], which extends satisfiability modulo
theories [1] by randomized quantification over variables [7,6].

2 Conditional Expectations in SSMT

Stochastic satisfiability modulo theories (SSMT), as introduced in [4], extends
the reasoning power of satisfiability modulo theories (SMT) [1] to probabilis-
tic logics. It achieves this by adopting the concept of randomized quantification
from stochastic propositional satisfiability [7,6]. An SSMT formula Φ = Q : ϕ
consists of a quantifier prefix Q = Q1x1 ∈ Dx1 . . . Qnxn ∈ Dxn binding some
variables xi with domains Dxi by quantifiers Qi, and of an SMT formula ϕ
in conjunctive normal form (CNF) over some quantifier-free arithmetic theory
T over the reals, integers, and Booleans. That is, ϕ is a logical conjunction of
clauses, and a clause is a logical disjunction of (atomic) arithmetic predicates
from T , as in ϕ = (x > 0 ∨ 2a · sin(4b) ≥ 3) ∧ (y > 0 ∨ 2a · sin(4b) < 1).
We demand that the individual domains Dx of quantified variables x are finite,
but ϕ may also contain free variables ranging over infinite domains (in particu-
lar, subranges of R), with the individual types and range bounds being defined

170 M. Fränzle, T. Teige, and A. Eggers

through explicit declarations. Free variables are understood as being innermost
existentially quantified. A quantifier Qi, associated with variable xi, is either
existential, denoted as ∃, or randomized, denoted as

R

di , where di is a discrete
probability distribution over Dxi . The value of a variable xi bound by a ran-
domized quantifier (randomized variable for short) is determined stochastically
according to the corresponding distribution di, while the value of an existentially
quantified variable can be set arbitrarily. We denote a probability distribution
di by explicit enumeration [v1 → p1, . . . , vm → pm] of a finite-domain function
associating probability pj ≥ 0 to value vj . The mapping vj → pj is understood
as pj is the probability of setting variable xi to value vj . The distribution sat-
isfies vk �= vl for k �= l,

∑m
j=1 pj = 1, and Dxi = {v1, . . . , vm}. For instance,

R

[0→0.2,1→0.5,2→0.3]x ∈ {0, 1, 2} expresses that the variable x is assigned the val-
ues 0, 1, and 2 with probabilities 0.2, 0.5, and 0.3, respectively. Adopting the
semantics of stochastic formulae established in stochastic SAT [7] and stochastic
constraint programming, the original definition of SSMT [4] defines the seman-
tics of an SSMT formula Φ as the maximum probability of satisfaction, denoted
Pr(Φ) and illustrated in Fig. 1. Intuitively, a solution here is a strategy for as-
signing values to the existential variables depending on the values previously
assigned to variables with earlier appearance in the prefix, where the optimal
strategy maximizes the probability that the SMT formula ϕ is satisfiable after
substituting all quantified variables by their respective values. (As standard, a
quantifier-free formula ϕ in CNF is satisfiable iff there exists an assignment σ to
the variables in ϕ s.t. each clause is satisfied under σ, i.e., iff at least one atom
in each clause is satisfied under σ. Otherwise, ϕ is unsatisfiable.) For a game-
theoretic interpretation, SSMT formulae can be seen as 1 1

2 player games (or 2 1
2

if universal quantifiers are also admitted) between a player selecting values for
the existential variables as well as the free variables and a probabilistic enemy
selecting those for randomized variables, where the winning condition is satisfac-
tion of ϕ after substituting the selected values for the respective variables. The
game is played in turns defined by the quantifier prefix plus, finally, a selection
of values for the free variables by the existential player.

In this paper, we propose a conservative extension of the aforementioned se-
mantics of SSMT formulae which adds considerably to the expressiveness of
SSMT. The new semantics is based on the maximum conditional expectation
of a designated free variable in an SSMT formula. Game-theoretically, it adds
a reward, where the reward is 0 if ϕ is not satisfied after substituting the se-
lected values for the respective variables and the reward equals the value of
the designated variable else. Let Φ = Q : ϕ be an SSMT formula with prefix
Q = Q1x1 ∈ Dx1 . . .Qnxn ∈ Dxn , and let y be a free variable in ϕ with interval
domain [ly, uy] ⊂ R, i.e. y /∈ {x1, . . . , xn}. The maximum conditional expectation
of y given Φ, denoted as Ey(Φ), is recursively defined as follows:

Ey(ε : ϕ) = maxσ|=ϕ σ(y) ,(1)
Ey(∃x ∈ Dx · Q : ϕ) = maxv∈Dx Ey(Q : ϕ[v/x]) ,(2)

Ey(

R

dx ∈ Dx · Q : ϕ) =
∑

v∈dom(d)
d(v) ·Ey(Q : ϕ[v/x]) ,(3)

Satisfaction Meets Expectations 171

tr2

s
1.00.1

0.3 tr3

tr1

true

true

x′ = x

x = 2.5
sin(x) < 0

cost = 0x′ = x2

x′ = x− 2

cost = |x|

cost = 1.5

x′ = x
cost = 0

cost = x2
x′ = x/2

pc1
0.9

0.7

pc2

pc3

pc4

pc5
¬s

Fig. 2. A probabilistic hybrid automaton A with costs

where ε denotes the empty andQ an arbitrary quantifier prefix. Rules 2 and 3 are
identical to the semantic rules of SSAT and SSMT conventionally used for defin-
ing the maximum probability of satisfaction [7,4]. Rule 1 generalizes the classical
scheme by, instead of just checking for satisfiability ofϕ [7,4], determining the max-
imal value σ(y) ∈ [ly, uy] of the random variable y over all satisfying assignments
σ to ϕ. In case no such satisfying assignment exists, we follow the order-theoretic
convention that the maximum over the empty subset of the ordered set [ly, uy] is
the minimum domain value ly. For an example confer Fig. 1.

Observe that the maximum conditional expectation is a conservative extension
of the classical semantics based on maximum probability of satisfaction in the
sense that Pr(Q : ϕ) = Ey(Q : (ϕ ∧ y = 1)) with a fresh variable y ranging
over [0, 1].

3 Probabilistic Hybrid Automata with Costs

The computational entities we want to analyze by SSMT solving are discrete-
time probabilistic hybrid automata extended by a notion of costs. Formally, a
discrete-time probabilistic hybrid automaton A with cost function (PHA, for
short), as depicted in Fig. 2, consists of the following.

– A finite set D = {d1, . . . , dk} of discrete variables with finite ranges range(dj)
spanning the discrete state space (sometimes called the locations) of A, plus
a finite vector R = {x1, . . . , xm} of continuous state components, where each
xj ranges over an interval range(xj) = [lxj , uxj] within the reals R. Thus, the
hybrid state space of A is given by S =

∏k
j=1 range(dj)×

∏m
j=1 range(xj).

– A predicate init in an arithmetic theory T with free variables in D and R
describing the initial state of A. W.l.o.g., we demand that there is exactly
one initial state of A, i.e. exactly one valuation in S satisfies init .

– A finite family Tr = {tr1, . . . , tr�} of symbolic transitions, each comprising
• an arithmetic predicate g(trj) in theory T over variables in D and R,

called the transition guard, which states the conditions on the discrete
as well as the continuous state under which the transition may be taken.
To avoid pathological situations otherwise arising in the definition of an

172 M. Fränzle, T. Teige, and A. Eggers

adversary in a probabilistic game, we demand that the automaton is
non-blocking in the sense that ∀s ∈ S∃t ∈ Tr : s |= g(t).1

• a probability distribution p(trj) ∈ P (PCtrj), where PCtrj is a finite,
nonempty set of symbolic transition alternatives and P (PCtrj) denotes
the set of probability distributions over PCtrj . p(trj) assigns to transition
trj a distribution over |PCtrj | many transition alternatives.
• for each transition alternative pc ∈ PCtrj of transition trj an assignment

predicate asgn(trj , pc) defining the successor state. asgn(trj , pc) is an
arithmetic predicate in T over variables in D and R as well as primed
variants thereof, i.e. D′ = {d′1, . . . , d′k} and R′ = {x′

1, . . . , x
′
m}, the latter

representing the successor states. We demand that assignments uniquely
determine the successor state for each state satisfying the guard, i.e. for
each tr ∈ Tr, pc ∈ PCtr, g(tr) ⇒ ∃1d′1, . . . , d′k x′

1, . . . , x
′
m : asgn(tr, pc)

holds where ∃1 denotes unique existence.
– The function cost : Tr×PC×S → R≥0 with PC =

⋃
tr∈Tr PCtr associates

to each transition alternative pc ∈ PCtr of each transition tr a non-negative
cost value cost(tr, pc, s) that also depends on the current state s. We demand
that cost is defined by a T -term.

The semantics of such an automaton A is defined by its runs. A run r of A is an
alternating finite or infinite sequence of states and selections of transitions and
probabilistic transition alternatives, i.e. r = 〈s0, (t1, p1), s1, . . . , (tk, pk), sk, . . .〉
with si ∈ S, ti ∈ Tr, pi ∈ PCti s.t. r starts in the initial state, i.e. s0 |= init ,
the transition guards are satisfied sk−1 |= g(tk), and the successor states are
defined by the assignments (sk−1, sk) |= asgn(tk, pk). The cost of step k in r is
given by cost(tk, pk, sk−1). For an example, consider the PHA A from Fig. 2.
The unique initial state of A is (s, x = 2.5). Transition tr1 cannot be taken
since the guard is not satisfied due to sin(2.5) > 0.59. A decides to take tr2
followed by the probabilistic choice pc4 of probability 0.7. The cost of this step
is |x| = 2.5, and A enters successor state (s, x = 6.25). The guard of tr1 is now
satisfied since sin(6.25) < 0. A thus can execute tr1 and may select transition
alternative pc1 with probability 0.9. The transition cost is in this case given by
the constant 1.5, and the post state is (s, x = 4.25). Thereafter selecting tr2 non-
deterministically and pc3 probabilistically, A performs a step to (¬s, x = 4.25)
at zero cost, altogether yielding a run of length 3 reaching (¬s, x = 4.25) with
an accumulated cost of 2.5 + 1.5 + 0 = 4.

In the remainder of this article, we will be interested in the expected value of
the accumulated cost when A reaches a target state. Due to the presence of non-
determinism, we first define an adversary that resolves the non-determinism in
A. While in general adversaries may depend on the entire history of the system,
we do here restrict ourselves to Markovian adversaries that depend on the current
system state only. A Markovian adversary for A is a total function adv : S → Tr
that maps the current state to an enabled transition, i.e. ∀s ∈ S : s |= g(adv (s)).
1 Note that while this condition is undecidable due to non-computability of the reach-

able state space of a disc.-time HA, there are sufficient conditions that can be verified

by SMT solving, like enabledness of transitions throughout the static state space.

Satisfaction Meets Expectations 173

Definition 1 (Cost expectation). Let A be a PHA with cost function, ts be
a T -predicate over variables in D and R defining the target states, and adv :
S → Tr be a Markovian adversary. The cost expectation for A under adversary
adv is the least (wrt. the product order) solution of the equation system⎛⎝CEA,ts,adv (z) =

⎧⎨⎩
0 if z |= ts∑

pc∈PCtr
p(tr)(pc) ·

(
cost(tr, pc, z)

+ CEA,ts,adv (z′)

)
if z �|= ts

⎞⎠
z∈S

with tr = adv(z), and (z, z′) |= asgn(tr, pc). For a particular state s ∈ S, the
cost expectation for reaching a target state from state s under adversary adv is
CEA,ts,adv(s), while the worst-case cost expectation for reaching a target state
from state s is CEA,ts(s) := infadv :S→Tr CEA,ts,adv (s).

Note that the cost expectation is non-negative. In the remainder of the article,
we will consider the problem of deciding whether the cost expectation for A is
acceptable, where acceptability is defined by a threshold value θ to be exceeded
irrespective of the actual adversary. An example is a setting where costs of steps
correspond to their durations and the target states denote system failures. The
expected cost then is A’s mean time to failure (MTTF) and the threshold θ can
be interpreted as a requirement on the MTTF of the design under inspection.
Adopting a demonic interpretation of non-determinism, the latter has to be
guaranteed irrespective of the actual adversary.

Definition 2 (Cost-expectation model-checking). Given a PHA A with
cost function, a T -predicate ts over variables in D and R defining the target
states, and a target threshold θ ≥ 0, the cost-expectation model-checking prob-
lem (CEMC) is to determine whether CEA,ts(ı) ≥ θ for the initial state ı |= init .

4 Reducing CEMC to SSMT

We facilitate the automatic verification of CEMC problems by a reduction to
SSMT. Unfortunately, only step-bounded behavior of a PHA A can be directly
encoded into SSMT due to the absence of quantifier alternation over real-valued
variables, which would be essential for a complete characterization of the reach-
able state set. To alleviate this problem, we first introduce a step-bounded variant
of the CEMC problem which provides a lower bound on the worst-case cost ex-
pectation of A. In a second step, we present an SSMT encoding of PHA such
that the additive inverse of the maximum conditional expectation of the cost-
variable given the resulting SSMT formula coincides with the cost expectation
of the step-bounded CEMC problem. Thus, together with the SSMT algorithm
in Section 5, the proposed approach constitutes a verification procedure for the
general CEMC problem with target threshold θ in the sense that once a lower
expectation bound l ≥ θ is computed, the unbounded CEMC problem is decided
to be true.

174 M. Fränzle, T. Teige, and A. Eggers

Step-bounded CEMC problem. The step-bounded CEMC problem replaces the
mutually recursive equation defining the unbounded cost expectation for each
state in Def. 1 by a well-founded recursion over the remaining step depth.
Definition 3 (k-step minimum cost expectation). Be A a PHA with cost
function cost, ts a T -predicate defining the target states, and k ∈ N a step bound.
The k-step minimum cost expectation for reaching a target state from a state
s ∈ S and cost seeds c ∈ R≥0, d ∈ S → R≥0, denoted CEk

A,ts(s, c, d), is defined
as follows. With En = {tr ∈ Tr : s |= g(tr)} and (s, s′) |= asgn(tr, pc),

CE k
A,ts(s, c, d) =

⎧⎪⎨⎪⎩
c if s |= ts and
c + d(s) if k = 0, s �|= ts and else
min

tr∈En

∑
pc∈PCt

(
p(tr)(pc) · CE k−1

A,ts(s
′, c + cost(tr, pc, s), d)

)
The k-step minimum cost expectation can be used for obtaining safe estimates
of the worst-case cost expectation, as the following lemma shows.
Lemma 1. Assume a PHA A with cost function and a T -predicate ts defin-
ing the target states. Let k ∈ N. Then CEA,ts(s) ≥ CE k

A,ts(s, 0,0), where 0
is the constant function assigning 0 to all states. Furthermore, the sequence
CE k

A,ts(s, 0,0) is (not necessarily strictly) monotonically increasing.
Likewise, if C : S → R≥0 satisfies C≥ CEA,ts then CEA,ts(s) ≤ CE k

A,ts(s, 0, C).

Proof. We show by induction on k that CEk
A,ts (s, c,CEA,ts) = c + CEA,ts(s)

for arbitrary c ≥ 0. As CEk
A,ts(s, c, d) is monotonic in d and as C is such that

0 ≤ CEA,ts ≤ C, this implies both inequalities CEA,ts(s) ≥ CE k
A,ts(s, 0,0) and

CEA,ts(s) ≤ CE k
A,ts(s, 0, C) by taking c = 0.

For the base case of the induction, it is immediate from the definition of CE k

that CE0
A,ts (s, c,CEA,ts,adv) = c + CEA,ts,adv (s) holds. For k > 0,

CE k
A,ts (s, c,CEA,ts)

=

{
c if s |= ts holds, otherwise
min

tr∈En

∑
pc∈PCtr

(
p(tr)(pc) · CEk−1

A,ts(s
′, c + cost(tr, pc, s),CEA,ts)

)
[Ind. Hyp.]

=

{
c if s |= ts holds, otherwise
min

tr∈En

∑
pc∈PCtr

(
p(tr)(pc) · (c + cost(tr, pc, s) + CEA,ts(s′))

)
[Def. 1]

=

{
c if s |= ts holds, otherwise
min

tr∈En

∑
pc∈PCtr

(
p(tr)(pc) · (c + cost(tr, pc, s) + inf

adv
CEA,ts,adv (s′))

)
=

{
c if s |= ts holds, otherwise
inf
adv

∑
pc∈PCtr∗

(
p(tr∗)(pc) · (c + cost(tr∗, pc, s) + CEA,ts,adv(s∗))

)
[Def. 1]

= inf
adv

(c + CEA,ts,adv (s))
[Def. 1]

= c + CEA,ts(s)

where tr∗ = adv (s) and (s, s∗) |= asgn(tr∗, pc). The monotonic increase of the
sequence CE k

A,ts(s, 0,0) can be shown by a straightforward induction. ��

Satisfaction Meets Expectations 175

0.50.5

0.8 0.2

(non−deterministic choices)

(probabilistic choices)

s

t
r
u
et2

t1

t
r
u
e

p2
2 p2

1

cost
=

2.6

p1
1 p1

2

x ′
=

0
x ′

=
x

+
1

x = 0

cost
=

x
4

cost
=

x
+

1

x ′
=

x2
x ′

=
2x

cost
=

3x

∃tri ∈ {t1, t2}

R

[p1
1→0.5,p1

2→0.5]pc
1
i

s0 ∧ x0 = 0 ∧ c0 = 0

R

[p2
1→0.2,p2

2→0.8]pc
2
i

INIT (0) =

PREFIX (i) =

(
(si−1 ∧ tri−1 = t1 ∧ pc1

i−1 = p1
1) ⇒

(
(si−1 ∧ tri−1 = t1 ∧ pc1

i−1 = p1
2) ⇒

(
(si−1 ∧ tri−1 = t2 ∧ pc2

i−1 = p2
1) ⇒

(
(si−1 ∧ tri−1 = t2 ∧ pc2

i−1 = p2
2) ⇒

TRANS (i− 1, i) =

(si ∧ xi = 0 ∧ ci = ci−1 − x4
i−1)

) ∧

(si ∧ xi = xi−1 + 1 ∧ ci = ci−1 − (xi−1 + 1))
)

(si ∧ xi = 2xi−1 ∧ ci = ci−1 − 2.6)
) ∧

(si ∧ xi = xi−1

2
∧ ci = ci−1 − 3xi−1)

) ∧

Fig. 3. Example of SSMT encoding. The inverted sign of the cost compensates for the

duality betw. extistential quantifier in SSMT and demonic non-determinism in PHA.

SSMT encoding of step-bounded CEMC. In [4], we have developed a reduction of
step-bounded probabilistic reachability problems of discrete-time PHA to SSMT
problems. In the following, we adapt this SSMT reduction to the more general
step-bounded CEMC problem, which subsumes probabilistic bounded reachabil-
ity as a special case. The key idea of the SSMT encoding, however, remains the
same as in [4] and we repeat it only in brief due to space limitations.

Given a discrete-time PHA A with costs, we can encode the initial state of
A by a predicate INIT (0) using a copy of the discrete and continuous variables
in D and R indexed with 0, the non-deterministic selection of a transition and
the probabilistic choice of a transition alternative for step i by a block of quan-
tified variables PREFIX (i) with index i, and the transition relation of step i
by a predicate TRANS(i − 1, i) where undecorated and primed variables carry
index i − 1 and i, resp., e.g. x′ = 2x � xi = 2xi−1. An illustrating example is
shown in Fig. 3. Observe that non-deterministic and probabilistic choices in A
are described by existential and randomized quantification, resp., in PREFIX (i).
Furthermore, we take indexed copies of a fresh variable c ∈ [lc, 0] that accumu-
lates the negative costs of the individual transition steps: the predicate INIT (0)
forces c0 = 0 as the costs are initially zero, and the cost progress is determined
in TRANS(i−1, i) by predicates ci = ci−1−cost(tr, pc) for each valid transition
and transition alternative pair (tr, pc) ∈ Tr × PC (cf. Fig. 3). Note that we
subtract step costs from the accumulated cost rather than add them to it as in
the original PHA. The SSMT encoding thus features negative costs to be maxi-
mized rather than positive costs to be minimized, reflecting the duality between
the SSMT semantics, where the player wants to maximize the expectation, and
PHA, where the adversary minimizes it. Hence, the additive inverse −E of the
maximum expectation E of negative costs, as described by the SSMT encoding,
then obviously gives the (step-bounded) minimum cost expectation for the PHA
A. We need to remark that variable c must range over an interval domain, which

176 M. Fränzle, T. Teige, and A. Eggers

is required by the SSMT definition, and thus calls for a lower domain bound lc.
The reason for that is inherent in an optimization of the SSMT algorithm intro-
duced in Section 5. However, practically this need not to be a huge restriction as,
first, lc can be chosen arbitrarily small and, second, in cases where the maximum
value costmax of the individual transition costs exists and is known —which is
most often the case in industrial applications when considering entities like time,
position, or velocity— the value of lc can be safely set to k · (−costmax), where
k is the step bound from Definition 3.

Given a predicate ts over variables in D and R defining the target states, we
denote by TARGET (i−1) the predicate that results from replacing all variables
v ∈ D∪R in ts by vi−1. For any given step bound k ∈ N, the k-bounded CEMC
formula CEMCA,ts(k) is the SSMT formula
(4)

PREFIX (1, k) : INIT (0) ∧
k∧

i=1

(
(TARGET (i− 1) ⇒ ci = ci−1) ∧

(¬TARGET (i− 1) ⇒ TRANS(i− 1, i))

)
where PREFIX (1, k) abbreviates PREFIX (1) . . .PREFIX (k). Please note that
the quantifier-free body of this formula has as its models both runs reaching the
target (in which case the cost is kept constant after reaching the target, cf. upper
line of the conjunction) and runs not reaching the target within k steps. The
rationale is that the costs of the latter runs still provide safe lower bounds on the
costs of their extensions. Actually, this approximation is the same as in Lemma 1
such that we have obtained a symbolic encoding of step-bounded CEMC:

Proposition 1. Be A a PHA with costs and ts be a target states predicate.
Given a step-bound k ∈ N, the equation CEk

A,ts(ı, 0,0) = −Eck
(CEMCA,ts(k))

holds, where ck is the k-th copy of cost variable c and ı |= init .

Note that CEMCA,ts (k) is an SSMT formula and that its maximum expected
value Eck

(CEMCA,ts(k)) thus can be determined by a procedure for computing
expected values of SSMT formulae, as explained in the next section.

5 SSMT Algorithm for Conditional Expectation

The key idea of the algorithm computing the maximum conditional expectation
of a variable y ∈ [ly, uy] in an SSMT formula is a branch-and-bound search that
implements the semantic rules (1) to (3) by branching through the quantifier
tree, as illustrated in Fig. 1, yet optimizes this by pruning the tree. The algo-
rithm basically traverses the Cartesian product of the domains of the quantified
variables and upon each complete assignment to the quantified variables, seeks
for a solution of the remaining quantifier-free SMT problem which maximizes y.

For maximizing y in quantifier-free SMT problems, we use bifurcation search
in interval constraint propagation (ICP), which yields safe estimates on the
actual maximum due to the conservative approximation provided by interval
arithmetic. Such a procedure has been integrated into our ICP-based satisfia-
bility solver iSAT [3], which addresses large Boolean combinations of non-linear

Satisfaction Meets Expectations 177

arithmetic constraints. This procedure adequately handles the quantifier-free
base case corresponding to rule (1). Being based on ICP, iSAT offers guaranteed
termination despite the undecidable arithmetic domain addressed and is refuta-
tionally sound, yet not refutationally complete, which means that unsat results
are reliable while some unsatisfiable problems may be classified as potentially
satisfiable. Note that the latter (which only happens if the problem fails to be
δ-robustly unsatisfiable, i.e. has a δ-small perturbation in the constants which
renders it satisfiable for some small δ) can only lead to overestimation of the
maximum expectation, and thus to a safe lower estimate of the additive inverse.

For dealing with quantifiers in the recursive cases (2) and (3), we have to
traverse the quantifier tree, thereby— if done naively— generating one SMT
problem per element of the Cartesian product of the quantifier ranges, i.e. expo-
nentially many problems. To mitigate this explosion, we integrate an algorithmic
optimization that saves visits to major parts of the quantifier ranges based on
thresholding [6,4]. Here, we assume that the algorithm is given a lower and an up-
per threshold tl ≤ tu in the domain of the cost variable and that it is not required
to return an exact value if the actual expectation lies outside [tl, tu]. Instead, a
witness ey < tl suffices if Ey(Φ) < tl and a witness ey > tu if Ey(Φ) > tu. Note
that this suffices for deciding the CEMC problem with threshold θ by setting
both the lower and upper threshold to θ. Conversely, the algorithm can still be
used for actually computing the expectation by setting the lower and the upper
thresholds to the respective domain limits of the cost variable.

The algorithm for computing Ey(Q : ϕ) with thresholds tl, tu is presented in
pseudo-code as Alg. 1. Following rules (2) and (3), the algorithm MaxExp(y,Q :
ϕ, tl, tu) descends recursively through the quantifiers in Q, yet prunes branches
by thresholding, which skips subproblems when detecting that a lower threshold
can no longer be reached or that an upper threshold already is exceeded. This
optimization build on the monotonicity argument that the intermediate values
ei of the exact expectation e computed while branching over the values in the
domain of a quantifier are never decreasing, i.e. ei+1 ≥ ei, and do all establish
lower bounds on e, i.e. e ≥ ei. Such monotonicity cannot be expected from a
straightforward implementation of the semantics, as the terms of the sum in rule
(3) of Ey(Φ) may be both positive and negative if the domain of the designated
variable y features positive and negative values. Therefore, we initialize the re-
turn value ey in Alg. 1 by the minimum domain value ly of y. For an existential
quantifier, we replace the provisional return value by the actual value of the
current subproblem whenever the latter is larger, which is a monotonic process.
For the randomized case, we renormalize and accumulate the non-negative in-
creases pv ·(e′y−ly) ≥ 0 wrt. the minimum value ly of the individual expectations
ey ≥ ly. The increasing partial sums for ey finally yield the desired expectation
as ly +

∑
v∈D pv · (ev

y − ly) =
∑

v∈D pv · ev
y due to

∑
v∈D pv = 1.

With such monotonic estimates, we are able to safely conclude that an upper
threshold tu is exceeded based on the intermediate expectation ei by checking
ei > tu. In case of success, we skip investigation of all remaining subproblems
and return the witness value ei. For randomized variables, we can also safely

178 M. Fränzle, T. Teige, and A. Eggers

Algorithm 1. MaxExp(y,Q : ϕ, tl, tu)
1: ey := ly . {Initialize return value with domain minimum of y.}
2: {Existential quantifier.}
3: if Q = ∃x ∈ D Q′ then
4: while D
= ∅ do
5: if ey > tu or ey = uy then
6: return ey. {Upper threshold exceeded or maximum possible value.}
7: end if
8: select v ∈ D, D := D − {v}.
9: new tl := max(tl, ey). {New lower threshold: neglect expectations < ey.}

10: e′y := MaxExp(y,Q′ : ϕ[v/x], new tl, tu). {Compute expectation for x = v.}
11: ey := max(ey, e

′
y). {Store greater expectation.}

12: end while
13: return ey. {Return maximum expectation.}
14: end if
15: {Randomized quantifier.}
16: if Q =

R

dx ∈ D Q′ then
17: while D
= ∅ do
18: if ey > tu or ey = uy then
19: return ey. {Upper threshold exceeded or maximum possible value.}
20: end if
21: premain :=

∑
w∈D d(w). {Probability mass of remaining branches.}

22: max inc := premain · (uy − ly). {Maximum possible remaining increase of ey.}
23: if ey + max inc < tl then
24: return ey. {Lower threshold cannot be reached by remaining branches.}
25: end if
26: select v ∈ D, D := D − {v}, pv := d(v).
27: needed inc := tl − ey. {Total increase needed to reach lower threshold.}
28: max inc others := (premain − pv) · (uy − ly). {Maximum possible increase of

remaining branches except x = v.}
29: needed inc v := needed inc − max inc others . {Needed increase of branch

x = v to reach tl.}
30: new tl := ly + needed inc v/pv. {Branch x = v must yield expectation ≥

new tl to reach tl.}
31: new tu := ly +(tu− ey)/pv. {Expectation > new tu is enough to exceed tu.}
32: e′y := MaxExp(y,Q′ : ϕ[v/x], new tl, new tu). {Expectation for x = v.}
33: ey := ey + pv · (e′y − ly). {Increment by current weighted increase.}
34: end while
35: return ey. {Return weighted sum of expectations.}
36: end if
37: {No quantifier left. Solve quantifier-free SMT formula, return max value for y.}
38: return solveSMT (y,ϕ).

Satisfaction Meets Expectations 179

object

transport unit

inputs

ex
ec

ut
io

n

outputs

PLC

P
LC

−
IO

network

SA SB

Fig. 4. A networked automation system from [5]. (Source of figure: [8])

determine whether the lower threshold can no longer exceed tl. Detection de-
pends on the probability mass premain of all values v ∈ D not yet explored. As
the maximum increase ei+1−ei of the partial sum per subproblem is the domain
width uy− ly of y times the probability of the branch, the maximum possible in-
crease due to all remaining branches is m = premain ·(uy− ly). If ei +m < tl then
witness value ei + m can be returned without exploring any remaining branch.

It remains to explain how the thresholds are updated for analyzing the sub-
ordinate quantifiers. In the existential case, we can hand over t′l = max(tl, ey)
to the subordinate quantifier, where ey is the current intermediate expectation,
since subproblems with expectation less than ey will not modify the maximum.
The upper threshold remains unchanged. For the randomized case, the upper
threshold may be decreased by considering the already computed expectation
ey: the increase tu−ey needed to reach tu is first normalized wrt. the probability
pv of the current value v, i.e. divided by pv, as the increase of the result of the
subproblem will be weighted with pv, and then added to the domain minimum ly
to obtain an expectation threshold. Formally, to check whether the intermediate
expectation ey + pv · (e′y − ly), with e′y being the result of the next subproblem,
is greater than tu, we can check the equivalent inequality e′y > ly +(tu− ey)/pv.
For computing the lower threshold, we first determine the total increase tl − ey

needed to reach tl, and then subtract from it the maximum possible increase of
the remaining branches except for x = v. This gives the minimum increase for
branch x = v required to reach tl. Again, dividing the result by pv and adding it
to the domain minimum ly yields the lower threshold for the next subproblem.

The algorithm including the aforementioned optimizations has been imple-
mented in an extension of the SSMT-solver SiSAT [4,9]. SiSAT does also handle
the generation of the BMC formula (4) from a symbolic description of a PHA.

6 Practical Application to Networked Automation
Systems

In this section, we illustrate CEMC on a case study of a networked automation
system (NAS) from [5,8]. As shown in Fig. 4, it involves networked control by
programmable logic controllers (PLCs) connected to several sensors and actua-
tors via communication networks. Its objective is to transport a workpiece from

180 M. Fränzle, T. Teige, and A. Eggers

its initial position to the drilling position by means of a conveyor belt. The PLC
can set the deceleration of the belt via network messages to the transportation
unit, but cannot determine the position of the object unless it hits two sensors
SA and SB close to the drilling position. The sensors are connected to the IO
card of the PLC over the network. When the object reaches sensor SA, the PLC
reacts with sending a command to the transportation unit that forces the belt to
decelerate to slow speed. Likewise, the belt is asked to decelerate to stand-still
when the PLC notices that SB has been reached. The goal is to stop the object
close to the drilling position despite the uncontrollable latencies in the network.

Using abstract length units (lu) and time steps (ts)2, the positions of SA
and SB are 699 lu and 470 lu, resp., while the desired drilling position is at
0 lu. The initial speed of the object is 24 lu/ts, its slow speed is 4 lu/ts, while
the decelerations for the two types of speed changes at SA and SB are 2 and
4 lu/ts2, resp. The network routing time is determined stochastically, needing
1 ts for delivery with probability 0.9 and 2 ts with probability 0.1. The cycle
time of the PLC-IO card is 10 ts, and of the PLC is 7 ts. This yields 70 equally
probable initial phase shifts. Furthermore, as the minimum sampling interval
is 1 ts while the initial speed is 24 lu/ts, the initial position of the object when
sampling starts is distributed equally over the 24 values 999 . . .976 lu.

We have previously modeled the NAS case study in [8] as a system of 10
parallel PHA. When flatting the parallelism, the overall model would consist of
more than 24 million discrete states while the continuous state space is spanned
by 23 real-valued variables. The predicative SSMT encoding, however, avoids an
explicit construction of the product automaton.3 In [8], we were interested in
the probability that the workpiece stops close enough to the drilling position.
To do this, we first determined the number of steps k s.t. the object has stopped
in all system runs of length k, which applies for k = 44. Then, we were able to
compute the probability of stopping in a desired target region within k = 44
steps. Taking for example the region 100 . . .0 lu, this probability is ≈ 39.7%.

Our extended setting now permits to address more sophisticated questions
than just classical reach probabilities: it can compute or check expected values
like, e.g., the mean-time to stop or the expected final position of the object.
Note that the SSMT algorithm from Sect. 5 can compute the expectation of any
monotonic variable in the model. If we can provide a bound k on the length
of paths reaching target states (k = 44 here), the computed expectation fur-
thermore is exact (up to the rather small interval width accepted for models in
interval constraint propagation) rather than a safe approximation.

For the automatic analysis, we used our novel extension of the SiSAT tool [4,9]
and our SSMT encoding of the NAS from [8]. The progression of the expected
object position, the expected speed, and the expected time4 over the number of
transition steps are shown in Fig. 5. These stabilize at step depth 44, yielding
expected final object position 57.84 lu and expected mean-time to stop 46.32 ts.
2 One length unit corresponds to 0.01 mm of the real system [5], a time step to 1 ms.
3 For details of the formal NAS model and its SSMT encoding confer to [8, Sect. 6].
4 The model employs a scheduled event semantics and thus uses discrete, yet not

equidistant time. Consequently, expected times are not in 1-1 relation to step counts.

Satisfaction Meets Expectations 181

 0

 200

 400

 600

 800

 1000

 5 10 15 20 25 30 35 40 45 50

po
si

tio
n

 0
 5

 10
 15
 20
 25

 5 10 15 20 25 30 35 40 45 50

sp
ee

d

 0
 10
 20
 30
 40
 50

 5 10 15 20 25 30 35 40 45 50

tim
e

number of transition steps

Fig. 5. Expected values of position, speed, and time as developing over the step depth

H
a
lt

ti
m

e

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100

ru
nt

im
e

[s
ec

]

thresholds

expected value

H
a
lt

p
o
si
ti

o
n

 0

 1000

 2000

 3000

 4000

 5000

 6000

-200 0 200 400 600 800 1000

ru
nt

im
e

[s
ec

]

thresholds

expected value

Fig. 6. Runtime effect of thresholding on checking expected halt time and position

Probabilistic requirements for industrial applications frequently demand a cer-
tificate that certain target thresholds on expected values are exceeded, e.g. that
the mean-time to failure is greater than 1 year. This motivates the algorithmic
optimization of thresholding (cf. Alg. 1) for improving performance of the tool
on such decision problems. The experimental results (obtained on a 2.4 GHz
AMD Opteron machine with 128 GB physical memory running Linux) for the
expected time and expected position at step k = 44 are shown in Fig. 6. The
thresholds are provided on the x-axis (lower and upper thresholds coincide, i.e.
tl = tu) and the corresponding runtimes for solving on the y-axis. The graphs
confirm that runtimes are reduced significantly when thresholds occurring in the
decision problem are distinct from the actual expectation value. These empirical
results show that thresholding saves visits to major parts of the quantifier ranges
and thus is an effective algorithmic optimization in practice.

7 Conclusion

We have extended previous work on the symbolic analysis of reachability proba-
bilities for probabilistic hybrid systems to the computation of expectation values
in such systems under the influence of adversaries. This facilitates the compu-
tation of mean-time-to-failure and of related figures for hybrid systems under

182 M. Fränzle, T. Teige, and A. Eggers

a demonic interpretation of non-determinism, thus permitting the analysis of
partially developed systems and of open systems in an unknown environment.
The overall procedure, which is based on a stochastic extension to satisfiabil-
ity modulo theories and on a reduction of step-bounded expectations to such
satisfiability problems, provides exact (modulo the ability of the underlying
SMT solver to decide formulae; otherwise, safe lower bounds) figures for step-
bounded expectation values and convergent safe lower estimates for unbounded
expectations. Consequently, requirements on e.g. the minimum MTTF of a sys-
tem under design can be verified (yet not falsified due to depth boundedness)
with these bounded procedures, even in the presence of an unknown environ-
ment. This is dual to previous closely related work by the authors addressing
reach probabilities [4,8], where probabilistic bounded model checking was able
to provide falsification yet not verification, as usual for bounded model checking.
To the best of our knowledge, our new procedure provides the first procedure
safely estimating MTTFs and related figures in discrete-time probabilistic hybrid
automata. Extensions to continuous time are underway.

References

1. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.

In: Biere, et al. (eds.) [2], ch. 26, pp. 825–885.

2. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-

fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,

Amsterdam (February 2009)

3. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient Solving of

Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure.

JSAT Special Issue on SAT/CP Integration 1, 209–236 (2007)

4. Fränzle, M., Hermanns, H., Teige, T.: Stochastic Satisfiability Modulo Theory: A

Novel Technique for the Analysis of Probabilistic Hybrid Systems. In: Egerstedt,

M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidel-

berg (2008)

5. Greifeneder, J., Frey, G.: Probabilistic hybrid automata with variable step width

applied to the analysis of networked automation systems. In: Proc. 3rd IFAC Work-

shop on Discrete Event System Design. IFAC, pp. 283–288 (2006)

6. Majercik, S.M.: Stochastic Boolean satisfiability. In: Biere, et al. (eds.) [2], ch. 27,

pp. 887–925

7. Papadimitriou, C.H.: Games against nature. J. Comput. Syst. Sci. 31(2), 288–301

(1985)

8. Teige, T., Eggers, A., Fränzle, M.: Constraint-based analysis of concurrent proba-

bilistic hybrid systems: An application to networked automation systems. In: Non-

linear Analysis: Hybrid Systems (accepted for publication 2010)

9. Teige, T., Fränzle, M.: Stochastic Satisfiability modulo Theories for Non-linear

Arithmetic. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp.

248–262. Springer, Heidelberg (2008)

10. Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification for

probabilistic hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) Computer

Aided Verification. LNCS, vol. 6174, pp. 196–211. Springer, Heidelberg (2010)

Showing Full Semantics Preservation in Model
Transformation – A Comparison of Techniques�

Mathias Hülsbusch1, Barbara König1, Arend Rensink2, Maria Semenyak3,
Christian Soltenborn3, and Heike Wehrheim3

1 Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Germany

2 Department of Computer Science, University of Twente, The Netherlands
3 Institut für Informatik, Universität Paderborn, Germany

Abstract. Model transformation is a prime technique in modern, model-driven
software design. One of the most challenging issues is to show that the semantics
of the models is not affected by the transformation. So far, there is hardly any
research into this issue, in particular in those cases where the source and target
languages are different.

In this paper, we are using two different state-of-the-art proof techniques (ex-
plicit bisimulation construction versus borrowed contexts) to show bisimilarity
preservation of a given model transformation between two simple (self-defined)
languages, both of which are equipped with a graph transformation-based op-
erational semantics. The contrast between these proof techniques is interesting
because they are based on different model transformation strategies: triple graph
grammars versus in situ transformation. We proceed to compare the proofs and
discuss scalability to a more realistic setting.

1 Background

One of today’s most promising approaches for building complex software systems is
the Object Management Group’s Model Driven Architecture (MDA). The core idea of
MDA is to first model the target system in an abstract, platform-independent way, and
then to refine that model step by step, finally producing platform-specific, executable
code. The refinement steps are to be performed automatically using so-called model
transformations; the knowledge needed for each refinement step is contained in the
respective transformation.

As a consequence, in addition to the source model’s correctness, the correctness of
the model transformations is crucial for MDA; if they contain errors, the target system
might be seriously flawed. But how to ensure the correctness of a model transformation?
In this paper, we take a formal approach: We want to prove that the presented model
transformation is semantics preserving, i.e., we prove that the behaviour of source and
generated target model is equivalent (in a very strict sense, discussed below) for every
source model we potentially start with.

As an example of a realistically sized case for which behavioural preservation is de-
sirable, in [5] we have presented a model transformation from UML Activity Diagrams

� Partially supported by DFG project Behaviour-GT.

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 183–198, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

184 M. Hülsbusch et al.

[19] (called AD below) to TAAL [11], a Java-like textual language. The choice of this
case is motivated by two reasons:

– It involves a transformation from an abstract visual language into a more concrete
textual one, and hence it perfectly fits into the MDA philosophy.

– The semantics of both the source and target language (AD and TAAL) have been
formally specified by means of graph transformation systems ([8] and [11], resp.).

The latter means that every AD model and every TAAL program give rise to a transition
system modelling its execution. This in turn allows the application of standard concepts
from concurrency theory in order to compare the executions and to decide whether they
are indeed equivalent or not. Our aim is eventually to show weak bisimilarity between
the transition system of any Activity Diagram and that of the TAAL program resulting
from its transformation. Since weak bisimilarity is one of the most discriminating no-
tions of behavioural equivalence (essentially preserving all properties in any reasonable
temporal logic), we call this full semantic preservation.

Unfortunately, the size and complexity of the above problem are such that we have
decided to first develop proof strategies for the intended result on a much more simpli-
fied version of the languages. In the current paper, we therefore apply the same question
to two toy languages, inspired by AD and TAAL. Especially we model one non-trivial
aspect: the token offer-based semantics of AD. Then, we solve the problem using two
contrasting proof strategies.

The contribution of this paper lies in developing these two general strategies, carrying
out the proofs for our example and afterwards comparing the strategies. Although sim-
ple, our example exhibits general characteristics of complex model-to-model transforma-
tions: different source and target languages, different levels of granularity of operational
steps in the semantics and different labellings of steps. Our two proof strategies represent
general approaches to proving semantics preservation of such model transformations.

The first strategy relies on a triple graph grammar-based definition of the model
transformation (see [12,24]). Based on the resulting (static) triple graphs, we define an
explicit bisimulation relation between the dynamic, run-time state graphs.

The second strategy relies instead on an in-situ definition of the model transforma-
tion and an extension of the operational semantics to the intermediate (hybrid) models.
Using the theory of borrowed contexts (see [4]), we show that each individual model
transformation step preserves the semantics.

The rest of the paper is structured as follows: Section 2 sets up a formal basis for
the paper. Additionally, the source and target language and their respective semantics
are introduced. Sect. 3 defines the model transformation, in both variants (triple graph
grammar-based and in-situ). The actual proofs are worked out in Sections 4 and 5,
respectively. Finally, Sect. 6 discusses and evaluates the results. Detailed proofs and
additional information are contained in the extended version of this paper [10].

2 Definitions

2.1 Graphs and Morphisms

Definition 1 (Graph). A graph is a tuple G = 〈V, E, src, tgt , lab〉, where V is a finite
set of nodes, E a finite set of edges, src, tgt : E → V are source and target functions

Showing Full Semantics Preservation in Model Transformation 185

associating nodes with every edge, and lab : E→ Lab is an edge labelling function. We
always assume V ∩ E = ∅.

For a given graph G, we use VG, EG etc. to denote its components. Note that there is
a straightforward (component-wise) definition of union and intersection over graphs,
with the caveat that these operators may be undefined if the source, target or labelling
functions are inconsistent.

In example graphs, we use the convention that self-edges may be displayed through
node labels. That is, every node label in a figure actually represents an edge from that
node to itself, with the given label. We now define morphisms as structure-preserving
maps between graphs.

Definition 2 (Morphism). Given two graphs G, H , a morphism f : G→ H is a pair
of functions (fV : VG→VH , fE : EG→EH) from the nodes and edges of G to those of
H which are consistent with respect to the source and target functions of G and H in
the sense that srcH ◦ fE = fV ◦ srcG, tgtH ◦ fE = fV ◦ tgtG and labH ◦ fE = labG.
If both fV and fE are injective (bijective), we call f injective (bijective).

A bijective morphism is often called an isomorphism: if there exists an isomorphism
from G to H , we call them isomorphic. A frequently used notion of graph structuring
is obtained by typing graphs over a fixed type graph.

Definition 3 (Typing). Given two graphs G, T , the graph G is said to be typable over
T if there exists a typing morphism t : G→ T . A typed graph is a graph G together
with such a typing morphism, say tG. Given two graphs G, H typed over the same type
graph (using typing morphisms tG and tH), a typed graph morphism f : G→ H is a
morphism that preserves the typing, i.e., such that tG = tH ◦ f .

Besides imposing some structural constraints over graphs, typing also provides an easy
way to restrict to subgraphs:

Definition 4 (Type restriction). Let T, U be graphs such that U ⊆ T , and let G be an
arbitrary graph typed over T via t : G→ T . The restriction of G to U , denoted πU (G),
is defined as the graph H such that

– VH = {v ∈ VG | t(v) ∈ VU}, EH = {e ∈ EG | t(e) ∈ EU},
– srcH = srcG �EH , tgtH = tgtG �EH and labH = labG �EH .

The set of graphs with their morphisms form a category, which we will denote by Graph.

2.2 Graph Languages

In this paper we consider model transformation between two languages. In particular,
we consider graph languages, i.e. sets of graphs; the models are the graphs themselves.
We concentrate on a running example where there are two distinct, very simple graph
languages denoted A and B. Fig. 1 shows type graphs for the languages, denoted T st

A
and T st

B , respectively. They describe the typing of the static parts of our two languages.
We will sometimes also call these the (static) metamodels of the two languages. The

186 M. Hülsbusch et al.

T st
A T st

B T rt
A T rt

B

Fig. 1. Static (st) and run-time (rt) type graphs for graph languages A and B

Fig. 2. Example graphs of languages A (left) and B (right)

figure also shows the corresponding extended run-time type graphs, which will be dis-
cussed below (Section 2.4).

The type graphs themselves impose only weak structure: not all graphs that can be
typed over theA- and B-type graphs are considered to be part of the languages. Instead,
we impose the following further constraints on the static structure:

LanguageA consists of next-connected S-labelled nodes (statements). There should
be a single S-node with a start-edge to itself, from which all other nodes are reachable
(via paths of next-edges). Furthermore no next-loops are allowed.

Language B consists of bipartite graphs of A- (action) and C-labelled (connector)
nodes. Every C-node has exactly one incoming conn-edge and exactly one outgoing
act-edge; the opposite nodes of those edges must be distinct. Like A-graphs, B-graphs
have exactly one node with a start-self-edge, from which all other nodes are reachable
(via paths of conn- and act-edges).

Small example graphs are shown in Fig. 2. We use Gst
A (Gst

B) to denote the set of all
well-formed (static) A-graphs (B-graphs).

2.3 Rules and Rule Systems

To specify the semantics of our languages, we have to formally describe changes on
our graphs. This is done by means of graph transformation rules. A rule describes the
change of (parts of) a graph by means of a before and after template (the left-hand and
right-hand hand side of a rule); the interface fixes the part on which left and right hand
side have to agree.

Definition 5 (Transformation rule). A graph transformation rule is a tuple
r = 〈L, I, R,N〉, consisting of a left hand side (LHS) graph L, an interface graph
I , a right hand side (RHS) graph R, and a set N ⊆ Graph of negative application
conditions (NAC’s), which are such that L ⊆ N for all N ∈ N . The interface I is the
intersection of L and R (I = L ∩R).

Showing Full Semantics Preservation in Model Transformation 187

We let Rule denote the set of rules. A rule (without a NAC) is basically a pair of injective
morphisms in Graph: L← I → R. The diagram for a rule with NACs is this basic span
together with injective morphisms from L to the elements of N . For a single NAC N ,
a rule has the following form: N ← L ← I → R. There are other definitions of graph
transformation rules in the literature, the one used here is the one for double-pushout
rewriting (DPO-rewriting).

A transformation rule r = 〈L, I, R,N〉 is applicable to a graph G (called the host
graph) if there exists an injective match m : L→G such that for no N ∈ N there exists a
match n : N→G with m = n �L (i.e., all negative application conditions are satisfied),
and moreover, the dangling edge condition holds: for all e ∈ EG, src(e) ∈ m(VL \VI)
or tgt(e) ∈ m(VL \ VI) implies e ∈ m(EL \ VI). This condition can be understood by
realising that the elements of G that are in m(L), but not in m(I), are scheduled to be
deleted by the rule, whereas the elements in m(I) are preserved (see below). Hence we
can not delete a node without explicitly deleting all adjacent edges.

Given such a match m, the application of r to G is defined by extending m to L∪R,
by choosing distinct “fresh” nodes and edges (outside VG and EG, respectively) as
images for VR \ VL and ER \ EL and adding those to G. This extension results in a
morphism m̄ : (L ∪R)→ C for some extended graph C ⊇ G. Now let H be given by
VH = VC \m(VL \VR), EH = EC \m(EL\ER), together with the obvious restriction
of srcC , tgtC and labC to EH . The graph H is called the target of the rule application;
we write G −r,m−−→ H to denote that m is a valid match on host graph G, giving rise to
target graph H , and G −r→ H to denote that there is a match m such that G −r,m−−→ H .
Note that H is not uniquely defined, due to the freedom in choosing the fresh images
for VR \ VL and ER \ EL; however, it is well-defined up to isomorphism.

Definition 6 (Rule system). A rule system is a partial mapping R : Sym ⇀ Rule.
Here, Sym is a universe of rule names.

2.4 Language Semantics

In the context of the two languages defined in Section 2.2, we can use graph transfor-
mation rules for two separate purposes: to give a grammar that precisely and formally
defines the languages or to specify the operational language semantics. In the latter
case, the transformation rules describe patterns of state changes.

We will demonstrate the second usage here, by giving operational rules forA-graphs
and B-graphs. This means that the graphs will represent run-time states. As we will see,
this will involve auxiliary node and edge types that do not occur in the language type
graphs. Fig. 1 shows extended type graphs T rt

A and T rt
B that include these run-time types.

For A, a T-node (of which there can be at most one) models a thread, through a single
program counter (pc-labelled edge). For B, we use token- and offer-loops which play a
similar role; details will become clear below. Similar to the static part, we use Grt

A (Grt
B)

to denote the set of well-formed (run-time) A-graphs (B-graphs). The semantics of A-
and B-models is defined in Fig. 3. Note that the figure shows the rules in DPO style, i.e.
the middle part gives the interface I , and the sides are L and R, given as L← I → R.
Additionally, NACs might be present.

We let dom(RA) = {initA, movePC} and dom(RB) = {initB, createO, moveT}
be the names in the rule systems for theA- and B-models, the mapping to rules follows

188 M. Hülsbusch et al.

initA movePC initB

← →
← →

← →

createO moveT

NAC← ← → ← →

Fig. 3. Operational rules for A (initA and movePC) and B (initB, createO and moveT)

Fig. 3. Intuitively, the init-rules perform an initialisation of the run-time system, setting
the program counter to the start statement (in A) or putting a token onto a start action
(in B). Rule movePC simply moves the program counter to the next statement, createO
moves an offer to a C-node and moveT moves the token. The semantics of A- and
B-graphs is completely fixed by these rules, giving rise to a labelled transition system
summarizing all these executions.

Definition 7 (Labelled transition system). An L-labelled transition system (LTS) is a
structure S = 〈Q,−→, ι〉, where Q is a set of states and −→ ⊆ Q × L × Q is a set of
transitions labelled over some set of labels L. Furthermore ι ∈ Q is the start state.

In our case, the states are graphs and the transitions are rule applications. That is, given
a rule system R and a start graph G, we obtain a dom(R)-labelled transition system
by recursively applying all rules to all graphs. We will denote this transition system by
S(G) (leaving the rule system R implicit). For instance, the LTS of an A-graph G is
S(G) = (Grt

A,−→A, G), where−→A is defined by the rules in RA.
Semantic equivalence comes down to equivalence of the LTSs generated by two

different graphs. There are several notions of equivalence over LTSs; see, e.g., [25]. In
this paper, we use weak bisimulation. Weak bisimulation requires two states to mutually
simulate each other, where a simulation may however involve internal (unobservable)
steps. As usual, we use the special transition label τ to denote such internal steps.

For states q, q′ ∈ Q and a label α, we write q =α⇒ q′ if q −τ→∗−α→−τ→∗
q′ and use =ε⇒

to stand for−τ→∗. Furthermore, we define for (visible or invisible) labels α the following
function :̂ τ̂ = ε and α̂ = α if α �= τ .

Definition 8 (Weak bisimilarity). Weak bisimilarity between two labelled transition
systems S1, S2 is a relation ≈ ⊆ Q1 ×Q2 such that whenever q1 ≈ q2

– If q1 −α→ q′1, then q2 =̂α⇒ q′2 such that q′1 ≈ q′2;
– If q2 −α→ q′2, then q1 =̂α⇒ q′1 such that q′1 ≈ q′2.

We call S1 and S2 as a whole weakly bisimilar, denoted S1 ≈ S2, if there exists a weak
bisimilarity relation between S1 and S2 such that ι1 ≈ ι2.

Showing Full Semantics Preservation in Model Transformation 189

2.5 Semantics-Preserving Model Transformation

Our objective is to compare the LTSs of graphs of languagesA and B. In Section 3 we
will define a (relational) model transformation MT ⊆ Gst

A × Gst
B translating A-graphs

to B-graphs. We aim at proving this model transformation to be semantics preserving,
in the sense that the LTSs of source and target models are always weakly bisimilar.

However, there is an obvious problem: the LTSs ofA- and B-graphs do not have the
same labels, in fact dom(RA) ∩ dom(RB) = ∅. Nevertheless, there is a clear intuition
which rules correspond to each other: on the one hand the two initialisation rules, and
on the other hand the rules movePC and createO. The reason for taking the latter two
as corresponding is that both rules decide on where control is moving. The rule moveT
has no matching counterpart in theA-language, it can be seen as an internal step of the
B-language, completing a step initiated by createO. These observations give rise to the
following renaming of the labels (i.e., the rule names) to a common set of names.

mapA : initA $→ init, movePC $→ move
mapB : initB $→ init, createO $→ move, moveT $→ τ

We call such a mapping map : dom(R)→ Sym (for a given rule systemR) non-trivial
if it does not map every rule name to τ .

Definition 9 (Preservation of semantics). Given two (graph) languages Gst
A ,Gst

B , a
model transformation MT ⊆ Gst

A ×Gst
B is semantics-preserving if there are non-trivial

mapping functions mapA : dom(RA)→ Sym, mapB : dom(RB)→ Sym such that for
all GA ∈ Gst

A , GB ∈ Gst
B with MT (GA, GB)

mapA(S(GA)) ≈ mapB(S(GB)) .

3 Model Transformation

Our model transformation needs to translateA-models into B-models. We will actually
present two definitions of the transformation, both tailored towards the specific proof
technique used for showing semantics preservation.

3.1 Triple Graph Grammars

Our first transformation uses triple graph grammars (TGGs). TGG rules [24,12] typi-
cally capture transformations between models of different types. Triple graphs can be
separated into three subgraphs, typed over their own type graphs. Two of these sub-
graphs evolve simultaneously while the third keeps correspondences between them.
For our example, we have the two type graphs T rt

A and T rt
B which — for forming a type

graph for TGGs — are conjoined and augmented with one new correspondence G-node
(the glue); see Fig. 4, resulting in a combined type graph T rt

AB.
Normally, for a transformation, the source model is given in the beginning and is then

gradually transformed. TGG rules however build two models simultaneously, matching
each part of the source model to the target one. This allows to keep correspondences
between transformed elements and to prove certain properties of the corresponding
graphs. The TGG rules for the A to B transformation are given in Fig. 5.

190 M. Hülsbusch et al.

Fig. 4. Type graph T rt
AB for TGG graph rules

Fig. 5. TGG transformation rules

These rules incrementally build combined A and B-graphs. Initially, only the upper
rule in Fig. 5 can be applied; it constructs one S- and one A-node connected via one cor-
respondence G-node. The middle rule creates further S-, A- and C-nodes together with
their correspondences; the lower rule simultaneously generates next-edges between S-
nodes and connections via C-nodes between corresponding A-nodes. Let Grt

AB denote
the set of graphs obtained by applying the three TGG rules on an empty start graph.
To obtain the actual translation, restrict Grt

AB to the type graphs of A and B. Using the
definition of type restriction as given in Section 2, the model transformation MT thus
works as follows: Given anA-graph GA and aB-graph GB , we have MT (GA, GB) ex-
actly if there is some GAB ∈ Grt

AB such that GA = πT st
A(GAB) and GB = πT st

B (GAB).

3.2 In-Situ Transformation

Instead of building two models simultaneously, in-situ transformations destroy the
source model while building the target model. This has the disadvantage of leading
to “mixed” states, with components of both the source and the target model. This ne-
cessitates additional operational rules (see Section 5). On the other hand, in-situ trans-
formations describe a clear evolution process. This is better suited as a basis for proof
strategy 2, which relies on a congruence result for bisimilarity: the basic idea is that re-
placing a part of the model does not affect behavioural equivalence of the entire model.

We will now present the in-situ transformation rules, which are shown in Fig. 6.
The first rule relabels nodes by replacing the label S by the label A1. The second rule
replaces a next-edge by a connection via a C-node. The third rule replaces the program

1 Remember that labels are represented by loops on an unlabelled node.

Showing Full Semantics Preservation in Model Transformation 191

Fig. 6. In-situ transformation rules from language A to language B

counter by a token and allows the transformation of run-time models. We have reached
a model in language B as soon as no further rule applications are possible. We define
that MT (GA, GB) iff GA is transformed into GB via the rules in Fig. 6.

3.3 Comparison

In this section we argue that both strategies define the same model transformation. As-
sume that a graph GA is transformed into a graph GB via the TGG transformation of
Section 3.1. This means that GA and GB are constructed simultaneously by the TGG
grammar and arise as projections of a graph GAB . Then we can apply the in-situ rules
of Fig. 6 to GA, obtaining the corresponding items of GB .

The other direction is slightly more complicated. Assume that we are given a graph
GA of languageA. Then, with the TGG rules, we generate a graph GAB which projects
(via πT st

A) to GA. We can then show, by induction on the length of this generating
sequence and by using the fact that the transformation rules are confluent, that the graph
πT st

B (GAB) obtained in this way coincides with GB , the graph generated by applying
the in-situ transformation rules as long as possible.

4 Proof Strategy 1

In this section, we present our first approach to proving semantic preservation of the
model transformation on all source models (for more details see the extended version
[10]). This proof strategy uses the correspondences generated by the TGG rules, de-
spite the fact that the semantic rules are applied on the individual models, based on the
following two observations.

First observation: Both for A and B-models, the operational rules keep the syntactic,
static structure of a model, except for start-edges: all S-nodes and next-edges, and all
A, C-nodes and conn, act-edges stay the same.

To formulate structural correspondences, we introduce the following notation. For an
S-node vS and an A-node vA, we write corr(vS , vA) if there is a G-node vG and a
left-edge from vG to vS and a right-edge from vG to vA. For an edge e labelled label
going from a node v to v′, we simply write label(v, v′). We also use these as predicates.
The first result shows that correspondences between S and A-nodes are unique. Here,
∃! stands for “there exists exactly one”.

Proposition 10. Let G ∈ Grt
AB , vS an S-node and vA an A-node in G. Then the follow-

ing two properties hold: (A) ∃!v of type A such that corr(vS , v), and (B) ∃!v of type S
such that corr(v, vA).

192 M. Hülsbusch et al.

A number of further results show that (1) corresponding nodes either both or none have
start-edges, and (2) next-edges between S-nodes will generate connections via C-nodes
between corresponding A-nodes and vice versa.

Second observation: Correspondences between nodes in A-models and B-models are
kept during application of semantic rules. Predicate corr as well as Prop. 10 and prop-
erties (1) and (2) can thus also be applied to separateA and B-graphs.

Theorem 11. Let G0
A, G0

B be an A- and a B-graph such that MT (G0
A, G0

B). Then

mapA(S(G0
A)) ≈ mapB(S(G0

B))

For the proof, we need to construct a weak bisimulation relationR (defining≈) between
the states of the first and the second LTS:

R = {(GA, GB) ∈ Grt
A × Grt

B | ∃GAB ∈ Grt
AB

(1) πTst
A\start(GA) = πTst

A\start(GAB) ∧ πTst
B\start(GB) = πTst

B\start(GAB),

(2) ∀ S-nodes vS in GA, A-nodes vA in GB s.t. corr(vS , vA):
start(vS) iff start(vA),

(3) ∀ S-nodes vS in GA, A-nodes vA in GB s.t. corr(vS , vA): ∃vT s.t. pc(vT , vS)
iff (i) token(vA) ∧ ∀vC s.t. conn(vA, vC) : ¬offer(vC) or

(ii) ¬token(vA) ∧ ∃vC , v′A : token(v′A) ∧ offer(vC) ∧
conn(v′A, vc) ∧ act(vC , vA),

(4) ∃vT , vS : pc(vT , vS) ⇐⇒ ¬∃v′S : start(v′S) ∧
∃vA : token(vA) ⇐⇒ ¬∃v′A : start(v′A) ∧
¬∃vA : start(vA) =⇒ ∃!v′A : token(v′A) ∧
∀vC : offer(vC) =⇒ ∃vA : token(vA) ∧ conn(vA, vC) ∧
¬∃vS : start(vS) =⇒ ∃!v′S s.t. ∃vT : pc(vT , v′S) }

It contains all pairs of A and B-graphs which (1) in their static structure (except for
start) still follow the structure generated by the TGG rules, (2) have start-edges only
on corresponding nodes, (3) exhibit run-time properties only on corresponding nodes,
and (4) obey certain well-formedness criteria for run-time elements.

Fig. 7 further illustrates condition (3). We have two possibilites for run-time ele-
ments in matching states: either the pc-edge is on an S-node and the token is on the
corresponding A-node and no further offers exist (left), or the pc-edge is on a node for
which the corresponding A-node has no token yet, but an offer has already been created
and is ready to move the token to the A-node by means of the invisible step moveT

Fig. 7. Illustration of condition (3): Left (i), right (ii)

Showing Full Semantics Preservation in Model Transformation 193

(right). We show that the relation R is a weak bisimulation by proving that the states
of transition systems can mimic each others moves. Due to space limitations we cannot
give the full proof here, which can instead be found in the extended version [10].

5 Proof Strategy 2

5.1 The Borrowed Context Technique

In the following we will describe a different proof strategy, based on the borrowed
context technique [4,21], which refines a labelled transition system (or even unlabelled
reaction rules) in such a way that the resulting bisimilarity is a congruence [14]. Weak
bisimilarity as in Def. 8 is usually not a congruence. By a congruence we mean a re-
lation over graphs that is preserved by contextualization, i.e., by gluing with a given
environment graph over a specified interface. This is a mild generalization of standard
graph rewriting in that we consider “open” graphs, equipped with a suitable interface.

The basic idea behind the borrowed context technique is to describe the possible
interactions with the environment. In addition to existing labels, we add the following
information to a transition: what is the (minimal) context that a graph with interface
needs to evolve? More concretely we have transitions of the form

(J → G) α,(J→F←K),N−→ (K → H)

where the components have the following meaning: (J → G) is the original graph with
interface J (given by an injective morphism from J to G) which evolves into a graph
H with interface K . The label is now composed of three entities: the original label
α = map(r) stemming from the operational rule r (as detailed in Section 2.5) and
furthermore two injective morphisms (J → F ← K) detailing what is borrowed from
the environment. The graph F represents the additional graph structure, whereas J, K
are its inner and the outer interface. Finally we provide a set N of negative borrowed
contexts, describing negative constraints on the environment (see also [21]). We are
using a saturated and weak version of bisimulation (see the extended version [10]).

5.2 Using Borrowed Contexts for Verification of Model Transformation

For in-situ model transformation within the same language, applications of the bor-
rowed context technique are straightforward: show for every transformation rule that
the left-hand and right-hand sides L, R with interface I are bisimilar with respect to the
operational rules. Then the source model must be bisimilar to the target model by the
congruence result. This idea has been exploited in [22] for showing behaviour preser-
vation of refactorings.

However, in order to apply the idea above in our situation it is necessary to have an
operational semantics also for “mixed” (or hybrid) models which incorporate compo-
nents of both the source and the target model. Hence below we introduce such a mixed
operational semantics, which has to satisfy the following conditions: (i) the mixed rules
are not applicable to a pure source or target model; (ii) it is possible to show (borrowed
context) bisimilarity of left-hand and right-hand sides of all transformation rules. Fi-
nally, observe that our final aim is to show bisimilarity of closed graphs, i.e., of graphs
with empty interface. It can be shown that if all left-hand sides are connected, the notion
of bisimilarity induced by borrowed contexts coincides with the standard one.

194 M. Hülsbusch et al.

MixSem1 MixSem13

NAC← ← → NAC← ← →

Fig. 8. Some rules of the operational semantics of mixed models

Fig. 9. Modified operational rules for the source and target languages

5.3 Rules of the Mixed Semantics

There are sixteen additional rules for the mixed semantics. Seven of them handle the
behaviour of pc-edges at A-nodes, seven the semantics of the token-edge at an S-node
and two of them are mixed counterparts to the initialization rules. Fig. 8 shows two
examples of mixed rules, the rest are provided in [10]. Here we work with a single
function map (see Section 2.5), both rules in Fig. 8 are mapped to move.

Furthermore, we modify some of the operational rules of Fig. 3: first, we equip sev-
eral rules, also of the source semantics (language A) with NACs (without changing
the operational behaviour). Second, we restrict to a minimal interface by deleting and
recreating the connections (see Fig. 9). Due to the layout of the graphs, this does not
modify the semantics. Both modifications are needed to make the proof work and the
latter modification is also very convenient since it allows us to derive fewer labels.

5.4 The In-Situ Transformation Preserves Weak Bisimilarity

Theorem 12. The left-hand sides and right-hand sides of the three in-situ transforma-
tion rules in Fig. 6 are weakly bisimular, with respect to the borrowed contexts tech-
nique, under the rules of the mixed semantics.

Showing Full Semantics Preservation in Model Transformation 195

Fig. 10. Example of a label derivation using the borrowed context technique

Since weak bisimilarity is a congruence [10] and borrowed context bisimilarity co-
incides with standard bisimilarity (see Def. 8) on source and target models, this implies
that map(S(GA)) ≈ map(S(GB)) whenever MT (GA, GB).

We give some intuition on the label derivation process by discussing one example,
which needs the handling of weak moves and NACs (see Fig. 10).

In the labelled transition system, the graph consisting only of an S-node makes a
move (with rule MixSem13) with the label shown in the (big) dashed box, i.e., it borrows
a token, a C-node and an A-node. Spelling out the transition labels more concretely we
have α = move, F is the graph in the dashed box on the left (where the grey node
represents both interfaces J, K) and the only NAC in N is given on the right. The
corresponding graph (the A-node) can answer this step with the same label, by making a
step with rule newCreateO plus a weak step (τ) with rule newMoveT. After this second
step, using an up-to-context proof technique, the same context (see dotted boxes) can
be removed from both graphs, leaving the original pair of graphs already in the relation.

On the other hand, the answer to the newCreateO-step is with rule MixSem13. So
the pair of graphs reached after one step has to be in the bisimulation as well and we
have to check that they can mimic each others moves.

The entire bisimulation relation only contains five pairs, three are the in-situ trans-
formation rules of Fig. 6 and two additional ones are needed. However, it is necessary
to derive a large number of labels to prove that it is a bisimulation.

6 Discussion and Evaluation

Providing proof techniques for showing that full semantics preservation of a set of
model transformation rules, for arbitrary source models, is a very difficult problem,
on which there has been little work so far. The difficulty of the problem stems from
three aspects: first, we need to show bisimilarity in transition systems based on graphs,
a topic that has only recently started to receive attention; second, we do not only have to

196 M. Hülsbusch et al.

prove bisimilarity for a given pair of start graphs, but for an infinite set of pairs of source
and corresponding target models; and third, we want to address this on the level of a
reusable proof technique, and not just a single proof for a given model transformation.

We feel that so far little progress has been made in tackling the inherent underlying
difficulty. Hence it is our strong feeling that it is first necessary to consider case studies
of modest size to clearly outline and evaluate possible solutions.

The case study that was chosen for this paper might seem small, but it already incor-
porates several non-trivial aspects: a heterogeneous setup (different source and target
languages), negative application conditions and the need for weak bisimilarity, since
one step in the source model has to be matched by two steps in the target model.

Our two proof strategies reflect two major possibilities: either to work out a direct
proof manually – which could be verified with a theorem prover – or to use a semi-
automatic method based on bisimulation proof theory.

Direct approach. The direct bisimulation proof based on triple graph grammars uses lit-
tle additional theory and can be carried out by resorting to standard proof methodology.
Because of that it is more flexible than the borrowed context technique and can deal
with the rules of the operational semantics without modification.

Borrowed contexts. Here we extended the borrowed context technique to work with
weak bisimilarity, which is a novel contribution. The technique seems to be easier to
mechanize than the direct proof: the label derivation process can be done fully automat-
ically and, at least in the case where a finite bisimulation up-to context exists, there are
possibilities to find it via an algorithm as suggested in [9]. We also have some initial
ideas for automatically generating the mixed semantics (by applying the transformation
rules to the left-hand sides of the operational rules).

Summary. We were able to make both proofs work with a reasonable effort, but further
work is necessary in order to make the approach scale. We conclude that additional
techniques, in particular mechanisation, will be needed to address realistic languages
such as the ones in [5]. However, we do see a lot of unused potential in exploiting
bisimulation theory and congruence results as was done in the second proof strategy.
In the future it will also be interesting to study refactoring cases, rather than transfor-
mations between distinct modelling languages: they promise to be easier, because they
involve only a single operational semantics. Furthermore we have to consider whether
weak bisimilarity is the appropriate behavioural equivalence in all instances.

Related work. The work closest to ours in its objective of showing semantic preser-
vation for a transformation between models of different types is [6]. They present a
mechanised proof of semantics preservation (wrt. some version of bisimilarity — the
paper does not contain an explicit definition) for a transformation of automata to PLC-
code, based on TGG rules. This proof faced some problems since it was not trivial to
present graph transformation within Isabelle/HOL.

Although there is extensive work on the verification of model transformations, to
our knowledge there are only few attempts to show that transformations will always
transform source models into behaviourally equivalent target models. For instance, [1]
discusses several proof techniques (bisimulation, model-checking), but does not really
explain how they could be exploited to prove full semantics preservation.

Showing Full Semantics Preservation in Model Transformation 197

As opposed to general model transformation, there has been more work on showing
correctness of refactorings. The methods presented in [26,20,17,7] address behaviour
preservation in model refactoring, but are in general limited to checking a certain num-
ber of models. The employment of a congruence result is also proposed in [3] which
uses the process algebra CSP as a semantic domain. The techniques used in [15,23]
mainly treat state-based models, using set theory and predicate logic to show equiv-
alences. In [2] it is shown how to exploit confluence results for graph transformation
systems in order to show correctness of refactorings. A number of approaches also focus
on preserving specific aspects instead of the full semantics (see [16]).

Instead of generally proving correctness of a transformation, a number of ap-
proaches, also in the area of compiler validation, carry out run-time checks of equiva-
lence between a given source and generated target model [17,18,13].

References

1. Barbosa, P.E.S., Ramalho, F., de Figueiredo, J.C.A., dos, S., Junior, A.D., Costa, A., Gomes,
L.: Checking semantics equivalence of MDA transformations in concurrent systems. The
Journal of Universal Computer Science 11, 2196–2224 (2009)

2. Baresi, L., Ehrig, K., Heckel, R.: Verification of model transformations: A case study with
BPEL. In: Montanari, U., Sannella, D., Bruni, R. (eds.) TGC 2006. LNCS, vol. 4661, pp.
183–199. Springer, Heidelberg (2007)

3. Bisztray, D., Heckel, R., Ehrig, H.: Verification of architectural refactorings by rule ex-
traction. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 347–361.
Springer, Heidelberg (2008)

4. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to graph
rewriting with borrowed contexts. MSCS 16(6), 1133–1163 (2006)

5. Engels, G., Kleppe, A., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim, H.: From
UML Activities to TAAL - Towards Behaviour-Preserving Model Transformations. In:
Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095, pp. 94–109.
Springer, Heidelberg (2008)

6. Giese, H., Glesner, S., Leitner, J., Schäfer, W., Wagner, R.: Towards verified model trans-
formations. In: Workshop on Model Development, Validation and Verification, pp. 78–93
(2006)

7. Gorp, P.V., Stenten, H., Mens, T., Demeyer, S.: Towards automating source-consistent UML
refactorings. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol. 2863, pp.
144–158. Springer, Heidelberg (2003)

8. Hausmann, J.: Dynamic Meta Modeling: A Semantics Description Technique for Visual
Modeling Languages. PhD thesis, University of Paderborn (2005)

9. Hirschkoff, D.: On the benefits of using the up-to techniques for bisimulation verification. In:
Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 285–299. Springer, Heidelberg
(1999)

10. Hülsbusch, M., König, B., Rensink, A., Semenyak, M., Soltenborn, C., Wehrheim, H.: Full
semantics preservation in model transformation – a comparison of proof techniques. Techni-
cal Report TR-CTIT-10-09, CTIT, University of Twente (2010)

11. Kastenberg, H., Kleppe, A., Rensink, A.: Defining object-oriented execution semantics us-
ing graph transformations. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 186–201. Springer, Heidelberg (2006)

12. Königs, A.: Model transformation with triple graph grammars. In: Workshop on Model
Transformations in Practice (2005)

198 M. Hülsbusch et al.

13. Küster, J., Gschwind, T., Zimmermann, O.: Incremental development of model transforma-
tion chains using automated testing. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS,
vol. 5795, pp. 733–747. Springer, Heidelberg (2009)

14. Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive systems. In:
Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer, Heidelberg
(2000)

15. McComb, T., Smith, G.: Architectural Design in Object-Z. In: ASWEC 2004, pp. 77–86.
IEEE, Los Alamitos (2004)

16. Mens, T., Tourwé, T.: A survey of software refactoring. IEEE Trans. Software Eng. 30(2),
126–139 (2004)

17. Narayanan, A., Karsai, G.: Towards verifying model transformations. In: GT-VMT 2006.
ENTCS, vol. 211, pp. 185–194 (2006)

18. Necula, G.: Translation validation for an optimizing compiler. In: PLDI 2000. SIGPlan No-
tices, vol. 35, pp. 83–95. ACM, New York (2000)

19. Object Management Group: OMG Unified Modeling Language (OMG UML) – Superstruc-
ture, Version 2.2 (2009), http://www.omg.org/docs/formal/09-02-02.pdf

20. Pérez, J., Crespo, Y.: Exploring a method to detect behaviour-preserving evolution using
graph transformation. In: Third International ERCIM Workshop on Software Evolution, pp.
114–122 (2007)

21. Rangel, G., König, B., Ehrig, H.: Deriving bisimulation congruences in the presence of neg-
ative application conditions. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp.
413–427. Springer, Heidelberg (2008)

22. Rangel, G., Lambers, L., König, B., Ehrig, H., Baldan, P.: Behavior preservation in model
refactoring using DPO transformations with borrowed contexts. In: Ehrig, H., Heckel, R.,
Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 242–256. Springer,
Heidelberg (2008)

23. Ruhroth, T., Wehrheim, H.: Refactoring object-oriented specifications with data and pro-
cesses. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp.
236–251. Springer, Heidelberg (2007)

24. Schürr, A., Klar, F.: 15 years of triple graph grammars. In: Ehrig, H., Heckel, R., Rozenberg,
G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg
(2008)

25. van Glabbeek, R.: The linear time - branching time spectrum II. In: Best, E. (ed.) CONCUR
1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)

26. van Kempen, M., Chaudron, M., Kourie, D., Boake, A.: Towards proving preservation of
behaviour of refactoring of UML models. In: SAICSIT 2005, pp. 252–259 (2005)

http://www.omg.org/docs/formal/09-02-02.pdf

Specification and Verification of Model
Transformations Using UML-RSDS�

Kevin Lano and Shekoufeh Kolahdouz-Rahimi

Dept. of Computer Science, King’s College London

Abstract. In this paper we describe techniques for the specification and

verification of model transformations using a combination of UML and

formal methods. The use of UML 2 notations to specify model transfor-

mations facilitates the integration of model transformations with other

software development processes. Extracts from three large case studies

of the specification of model transformations are given, to demonstrate

the practical application of the approach.

1 Introduction

Model transformations are mappings of one or more software engineering models
(source models) into one or more target models. The models considered may be
graphically constructed using languages such as the Unified Modelling Language
(UML) [14], or can be textual notations such as programming languages or
formal specification languages.

The concepts of Model-driven Architecture (MDA) [11] and Model-driven De-
velopment (MDD) use model transformations as a central element, principally to
transform high-level models (such as Platform-Independent Models, PIMs) to-
wards more implementation-oriented models (Platform-Specific Models, PSMs),
but also to improve the quality of models at a particular level of abstraction.

We consider that the following properties are particularly important for model
transformations:

Syntactic correctness. Can it be shown that a transformation maps correct
models of the source language into correct models of the target language?

Definedness. Is the transformation applicable to every model of the source
language?

Determinacy/Uniqueness. Does the specification define a unique targetmodel
from a given source model?

Rule completeness. Can the intended effect of a transformation rule can be
unambiguously deduced from its explicit specification?

Language-level semantic correctness. Is there an interpretation χ from the
source language L1 to the target language L2 such that, for any M 1 and M 2
which are models of L1 and L2 and are related by the transformation:

M 1 |= ϕ ⇒ M 2 |= χ(ϕ)

for each sentence ϕ of L1, where M |= ϕ denotes that ϕ is true in M ?
� Work carried out within the HoRTMoDA EPSRC project.

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 199–214, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

200 K. Lano and S. Kolahdouz-Rahimi

Confluence. Is the effect of the transformation independent of any alterna-
tive orders of application of transformation rules which are allowed by the
specification?

In Section 2 we introduce the UML-RSDS specification approach for model trans-
formations, and compare it with other approaches. Section 3 describes particular
verification techniques for such specifications. In Section 4 we illustrate the use of
UML-RSDS on the UML to relational database schema transformation, in Sec-
tion 5 we give extracts from the specification of a transformation-based slicing
tool. Section 6 describes a transformation from the UML 1.4 activity diagram
notation to that of UML 2.2.

2 Specification Techniques for Model Transformations

A large number of formalisms have been proposed for the definition of model
transformations: declarative approaches such as graph grammars [1] or the Rela-
tions notation of QVT [16], hybrid approaches such as ATL [3] and Epsilon [6],
and imperative approaches such as Kermeta [5].

Ideally, any specification language for model transformations should support
validation, modularity, verification, and the implementation of transformations.
Modularity is the key property which supports the other three properties. Trans-
formations described as single large monolithic relations cannot be easily under-
stood, analysed or implemented. Instead, if transformations can be decomposed
into appropriate smaller units, these parts can be (in principle) more easily anal-
ysed and implemented, and the analysis and implementation of the complete
transformation can be composed from those of its parts.

UML-RSDS (UML Reactive System Development Support) is a subset of
UML with a precise axiomatic semantics [9], [10] (Chapter 6). A UML-RSDS
toolset supports the specification and analysis of systems in this subset, and
the generation of executable code from specifications. UML-RSDS can be used
to define model transformations in two alternative ways: (i) declaratively and
abstractly using constraints, which express implicitly how two (or more) models
are related, and what changes to one model need to be made (to preserve the
truth of the constraints) when a change in another model takes place, or (ii) by
using operations of metamodel classes to explicitly define how a target model is
produced from a source model.

For example, the well-known tree to graph transformation (Figure 1) can be
specified by two global constraints1:

(C1) : t : Tree implies ∃n : Node · n.name = t .name

(C2) : t : Tree and t .parent �= t and
n : Node and n.name = t .name and
n1 : Node and n1.name = t .parent .name implies

∃ e : Edge · e.source = n and e.target = n1
1 ∃ x : C · P abbreviates the OCL formula C .allInstances()→exists(x | P).

Specification and Verification of Model Transformations Using UML-RSDS 201

Tree Node

Edge

name: String

source

*

target

*

*

parent

name: String
{frozen,

 identity}
{frozen,

 identity}

Fig. 1. Tree to graph transformation metamodels

This model expresses that there is a mapping between the tree objects in
the source model and the node objects in the target model, and that there is an
edge object in the target model for each non-trivial relationship from a tree node
to its parent. The identity constraint means that tree nodes must have unique
names, and likewise for graph nodes.

The constraints correspond directly to the informal requirements for the trans-
formation. In the UML-RSDS approach, such constraints are implemented by
identifying for each operation op of the system if op can potentially invalidate a
constraint, either by making the antecedent true or the succedent false [8]. For
operations that can affect the constraint the tool generates additional code for
op which ensures the constraint is preserved.

In this case, a creation operation createTree will have additional code gener-
ated which creates a Node element for the new Tree object, and the operation
setparent will have additional code to create a new Edge element if the parent
of a tree node is set to be different to itself (and if matching graph nodes for the
parent and tree node already exist).

Code generation directly from such high-level constraints may produce highly
inefficient code, however. Instead, the constraints can be refined by defining
explicit transformation rules as operations, specified by precondition and post-
condition predicates, defining how particular elements of the source model are
mapped to the target model. These operations are usually placed in new classes,
external to the source or target metamodels, but referring to these metamodels.

In this example, the mapping from trees to graph nodes could be expressed
by two explicit operations, using the OCL notation of UML:

mapTreeToNode(t : Tree)

post:

∃ n : Node · n.name = t .name

mapTreeToEdge(t : Tree)

pre: t
= t .parent and
t .name : Node.name and t .parent .name : Node.name

post:

∃ e : Edge · e.source = Node[t .name] and
e.target = Node[t .parent .name]

202 K. Lano and S. Kolahdouz-Rahimi

The notation Node[x] refers to the node object with primary key (in this case
name) value equal to x , it is implemented in the UML-RSDS tools by maintaining
a map from the key values to nodes. In OCL it would be expressed as

Node.allInstances()→select(name = x)→any()

Likewise, Node.name abbreviates

Node.allInstances()→collect(name)

The explicit transformation rules generally permit more efficient implementa-
tion than the purely constraint-based specifications. They can be related to the
global declarative form by showing, using reasoning in the axiomatic semantics
(Chapter 6 of [10]) of UML-RSDS, that they do establish the constraints:

t : Tree ⇒
[mapTreeToNode(t)](∃ n : Node · n.name = t .name)

and hence

[for t : Tree do mapTreeToNode(t)](∀ t :Tree · ∃n : Node · n.name = t .name)

because the individual applications of mapTreeToNode(t) are independent and
non-interfering. [stat]P is the weakest precondition of predicate P with respect
to statement stat (Chapter 6 of [10]).

In the explicit specification approach individual transformation rules are spec-
ified as operations using pre/post pairs in the OCL notation. The precondition
of the rule identifies when it is applicable, and to which elements of the source
model. The postcondition identifies what changes to elements and connections
should be made in the target model.

Rules are grouped into rulesets, which are UML classes. The attributes of a
ruleset are common data used by its contained rules (operations). All rules in
a ruleset can be applied in the same phase of a transformation. A ruleset has
an algorithm or application policy which controls the order and conditions of
application of its rules: this can be specified as a UML activity, state machine or
other UML behaviour formalism, as the classifierBehavior of the ruleset class. In
this paper we will use an abstract program notation which is a specific concrete
syntax for a subset of UML structured activities. Since the ruleset algorithm is a
UML Behavior , it can itself be specified by a BehavioralFeature, and by pre and
post condition constraints. Ruleset verification checks that the composition of
rules defined by the algorithm satisfies these constraints, using inferences based
on the structure of the algorithm. For example, if P ⇒ [r1]Q and Q ⇒ [r2]R
for rules r1 and r2, then P ⇒ [r1; r2]R for the sequential combination of r1
and r2.

For the tree to graph transformation, the ruleset activity is defined by:

for t : Tree do mapTreeToNode(t) ;
for t : Tree do mapTreeToEdge(t)

Specification and Verification of Model Transformations Using UML-RSDS 203

This also defines the rule application order for the complete transformation.
Individual rules and rulesets can be reused for different transformations, and

rulesets can be validated and verified independently of other parts of the trans-
formation. At the same time, only standard UML and OCL notations are used to
define transformations, improving reuse of transformations and the integration
of transformations with other UML tools.

In terms of the properties discussed in the introduction, UML-RSDS supports
the proof of syntactic correctness, semantic correctness, definedness, determinacy
and confluence. Completeness checks upon individual rules are also supported.
Syntactic correctness can be checked by translating rulesets into B machines and
rules into operations of these machines. The proof of internal correctness of the
machine will demonstrate that applications of the rules establish the properties
of the target language, which are expressed as invariants of the machine. Seman-
tic correctness can be shown by the use of inference rules for []. Definedness
is shown by checking that rules are only invoked at points in a transformation
where their precondition is true, and that expressions are always defined at the
point where they are evaluated. For unbounded loops and recursions, proof of
termination using variants is necessary. Determinary is shown by analysing op-
eration postconditions to check that they are unambiguous, and by establishing
confluence for unordered loops.

UML-RSDS has the following advantages compared to other model transfor-
mation approaches:

– Standard UML and OCL is used, so that developers do not need to learn a
new notation to specify model transformations.

– Transformations can be analysed by other UML tools, such as OCL checkers
[18].

– The abstract specification level, using constraints, is inherently bidirectional
[20], supporting transformation in both directions between two metamodels.

– Since model transformation specifications are themselves UML models, trans-
formations can be applied to themselves, supporting reflection, a capability
absent from most model transformation approaches [4].

– The notation has a formal semantics which supports verification.

UML-RSDS is not restricted to single-target, single-source transformations; map-
pings involving any number of metamodels can be defined.

3 Verification Techniques for Model Transformations

For UML-RSDS specifications of model transformations, syntactic correctness
and language-level semantic correctness of individual rules can be verified by
translating the specifications to the B formalism, following the set-theoretic def-
inition of UML semantics given in [10].

For the tree to graph example, the transformation metamodels and operation
mapTreeToNode can be formalised in B as:

204 K. Lano and S. Kolahdouz-Rahimi

MACHINE Tree2Graph

SEES String_TYPE

SETS Tree_OBJ; Node_OBJ

VARIABLES trees, nodes, name, nname

INVARIANT

trees <: Tree_OBJ & nodes <: Node_OBJ &

name : trees >-> String & nname : nodes >-> String

INITIALISATION

trees, nodes, name, nname := {}, {}, {}, {}

OPERATIONS

mapTreeToNode(t) =

PRE t : trees

THEN

IF #n.(n : nodes & nname(n) = name(t))

THEN skip

ELSE

ANY nx WHERE nx : Node_OBJ - nodes

THEN

nodes := nodes \/ { nx } ||

nname(nx) := name(t)

END

END

END

END

This translation is performed automatically by the UML-RSDS tool. Internal
consistency proof of the machine in B then demonstrates syntactic correctness
of the mapTreeToNode rule: that it maintains the identity constraint of names in
the target model. More precisely, it shows that if the source model satisfies the
source language constraints, and the existing target model satisfies the target
language constraints, then applying the mapTreeToNode operation with a true
precondition results in a target model which also satisfies the target language
constraints.

The same procedure can be used to verify language-level semantic correct-
ness: that source-language properties remain true, in interpreted form, in the
transformed model. An example would be the property that a tree has no cycles
under the parent relationship: this translates into an acyclicity property of the
resulting graph.

Checks on definedness, uniqueness and rule completeness can be carried out
by syntactic analysis of the rulesets and individual transformation rules. Defined-
ness of a transformation τ is ensured if the termination condition trm(Sτ) of the
B statement Sτ corresponding to τ is equivalent to true [7]. That is, [Sτ]true is
true. In turn, this is ensured if the precondition of each operation is guaranteed
to be true each time it is invoked within τ , if unbounded loops and recursions can
be proved to terminate, and expression evaluations are well-defined. Uniqueness
is ensured if all operations have deterministic postconditions, and if all unordered
iterations are confluent. In the case of rule completeness, the checks include that
for every object x created or modified in the target model by the rule, all data

Specification and Verification of Model Transformations Using UML-RSDS 205

features of x are explicitly set by the rule, unless their values can be deduced
from default initialisations of the target language, or from derivation constraints
from explicitly set features.

Confluence of a specification is the most complex property to establish. We
can however define rules which show that bounded unordered loops are confluent
in specific cases. A for x : s do acts loop is a form of loop activity in UML
structured activities. In the general case an execution of the loop consists of a
collection of executions of acts [v/x], one for each element v of s at the start of
the loop. These executions may occur in any order and may be concurrent.

We assume that the loop body is a single operation call with its parameter
ranging over s .

The inference rule: from

v : s ⇒ [acts(v)]P(v)

derive

[for v : s do acts(v)](∀ v : s@pre · P(v))

is valid for such loops, provided that one execution of acts does not affect an-
other: the precondition of each acts(v) has the same value at the start of acts(v)
as at the start of the loop, and if acts(v) establishes P(v) at its termination,
P(v) remains true at the end of the loop.

Technically, we can say that the acts(v) are strongly confluent with respect to
P , permitting concurrent execution within the iteration statement stat : for v :
s do acts(v), if, for i ∈ N1:

1. P(v)	↓(acts(v), j) ≡ P(v)	↓(stat , i) for each v ∈ s
↑(stat , i) and j ∈
Occstat,i(acts(v)), the occurrences of acts(v) within the occurrence i of stat .

2. Preacts(v)	↑(acts(v), j) ≡ Preacts(v)	↑(stat , i) for each v ∈ s
↑(stat , i)
and j ∈ Occstat,i(acts(v)).

P	t means P holds at time t , e
t is the value of e at time t , and ↑(S , i) and
↓(S , i) are the start and end times of the i-th occurrence of S [9].

Together these properties show complete non-interference between the sepa-
rate invocation instances within the for loop, with regard to the truth of P on
elements of s .

For the tree to graph transformation, both iterations over Tree satisfy strong
confluence with regard to the respective postconditions of their iterated opera-
tions, which allows us to deduce that the constraints of this transformation are
achieved by the Tree2Graph activity.

4 Case Study: UML to Relational Database Schemas

We have used UML-RSDS to specify the well-known transformation from UML
class diagrams to relational database schemas. Our specification differs from
existing transformations for this mapping, because we avoid the use of recursion

206 K. Lano and S. Kolahdouz-Rahimi

between rules. Instead a sequential ordering of separate transformation steps is
used.

A simple transformation rule in this transformation is the introduction of a
primary key, to a class which does not have one, using the metamodel of Figure
2:

introducePrimaryKey(c : UMLClass)
pre:

‘‘persistent” : c.stereotypes.name and
c.ownedAttribute.stereotypes .name→excludes(‘‘identity”) and
c.feature.name→excludes(c.name + ‘‘Id”)

post:

∃ a : Property ·
a.name = c.name + ‘‘Id” and
a : c.ownedAttribute and
a.type = IntegerType and
∃ s : Stereotype ·

s.name = ‘‘identity” and
a.stereotypes = Set{ s }))

e@pre refers to the value of e at the start of the operation.
This transformation rule is defined in a metaclass, TransformationRules , in the

metamodel. This metaclass represents the ruleset to which introducePrimaryKey
(c : UMLClass) belongs. A behaviour can be attached to this class, to identify
how the rule should be applied, and, in the case of several rules, in which order
they should be applied.

Type

UMLClassProperty

Transformation
Rules

feature
*

ownedAttribute
* {subsets feature}

*

1

type

classifier

introduce
PrimaryKey(
 c: UMLClass)

name: String

Element Stereotype
* *

stereotypes

Fig. 2. Metamodel for primary key transformation

In this example, the rule should be applied by iterating it over all classes in
the source model, in an arbitrary order:

Specification and Verification of Model Transformations Using UML-RSDS 207

introducePrimaryKeys()
for c : UMLClass
do

if ‘‘persistent” : c.stereotypes.name and
c.ownedAttribute.stereotypes.name→excludes(‘‘identity”) and
c.feature.name→excludes(c.name + ‘‘Id”)

then

introducePrimaryKey(c)

If inheritance has been removed from the model, then the separate iterations
of introducePrimaryKey are independent and non-interfering, provided they do
not overlap in their executions, so it can be deduced that the ruleset satisfies an
overall pre-post specification defining the introduction of primary keys to each
persistant class.

This ruleset is one step within the model transformation which maps a UML
class diagram to a relational database schema (Figure 3).

Remove Association
Classes
do:
removeAssociationClasses()

Define Primary
Keys

do: introduce
 PrimaryKeys()

Eliminate
Inheritance

do:

removeMultiple
Inheritances();

removeSingle
 Inheritances()

[no many−many
explicit
associations] Remove Many−many

[no many−
 one explicit
 association
 without foreign
 key]

Define Foreign

do:
introduceForeignKeys()

Keys Associations
do: removeManyMany
 Associations()

[AssociationClass = {}]

[all persistent
classes have

primary keys]

[Generalization = {}]

Fig. 3. Transformation algorithm

The correctness of a transformation with multiple phases can be demonstrated
from the correctness of the individual phases. Syntactic correctness follows if
there is a series of intermediate languages LI1, ..., LIn such that each ruleset τi
transforms from LIi to LIi+1, and so that the starting language for the algorithm
combining these rulesets is L1, and the final language is L2.

In the example of Figure 3, the intermediate languages are subsets of the UML
class diagram metamodel, which are successively reduced to smaller languages
(without the metaclasses AssociationClass , Generalization, and with restricted

208 K. Lano and S. Kolahdouz-Rahimi

forms of association, etc) until a metamodel isomorphic to that of the relational
data model can be used in the final step.

The semantic correctness of this algorithm can be shown by defining suitable
state invariants. For example, the entire transformation preserves the property
that no class has two different features with the same name, because each indi-
vidual ruleset preserves this property. Only ruleset specifications are needed for
this high-level verification, not the detailed specifications of individual rules.

The transformation specifications can be used directly as input to the code
generation tool of the UML-RSDS toolset, which automatically synthesises Java
code representing the metamodel (in a similar manner to Kermeta code) and
code implementing the transformation rules and any algorithm for their combi-
nation.

For the introduce primary key rule, this code is, in part:

public void introducePrimaryKey(UMLClass c)

{ if (!(Element.getAllname(

c.getstereotypes()).contains("persistent") &&

!(Element.getAllname(

Element.getAllstereotypes(

c.getownedAttribute())).

contains("identity"))))

{ return; }

Property a = new Property();

Controller.inst().addProperty(a);

Controller.inst().addownedAttribute(c,a);

Stereotype s = new Stereotype();

Controller.inst().addStereotype(s);

Controller.inst().setname(s,"identity");

Controller.inst().setstereotypes(a,

(new SystemTypes.Set()).add(s).getElements());

}

The implicit effects of the changes to ownedAttribute are explicitly coded in the
definition of addownedAttribute in the generated code.

In contrast to other specifications of the UML to relational database trans-
formation, our approach uses sequential composition of transformation steps,
instead of recursive invocation of rules. This approach has the advantage of sim-
plifying verification, and reducing dependencies between rules. The individual
transformation steps can be reused in different contexts, independently of this
transformation. New steps can also be added (for example, to remove qualified
associations) without the need to modify the details of existing steps. This set
of transformations has been incorporated into the UML-RSDS toolset.

5 Case Study: State Machine Slicing

Model transformations can be used to carry out the slicing of UML state ma-
chines. We have specified a toolset for state machine slicing, using model trans-
formations defined in UML-RSDS. In this section we will give extracts from the

Specification and Verification of Model Transformations Using UML-RSDS 209

specification to illustrate the use of UML-RSDS for a substantial application of
model transformations. In the formulation of Harman and Danicic [2] a slice is
considered as a transformed version S of an artifact C which has a lower value
of some complexity measure, but an equivalent semantics with respect to the
sliced data:

S <syn C ∧ S =sem C

We use the following criteria for slicing a state machine M : S <syn M if S is
syntactically smaller than M . S =sem M if for all input sequences e of events,
starting from S and M in their initial states, and with the same initial values for
their common variables, the state s of interest is reached by S as a result of the
input sequence whenever it is reached by M as a result of the same sequence,
and then the value of the variables V of interest in the state s of interest are
the same in the two models.

This definition means that an analyser can deduce properties about M from
properties of S , for properties which concern the values of V in s over all paths
to s . In order to achieve independence of semantic variations of UML state
machines, we can define strict semantic equality S =str

sem M which only requires
the behaviour of S and M to be the same for input sequences e which always
trigger explicit transitions in M at every step.

We will consider transformations which are valid under one or both of these
semantics (if a transformation preserves S =sem M then also it preserves S =
str
semM).

The following transformations are used to slice state machines:

– removeStates : Remove states (and their incoming and outgoing transitions)
which cannot be reached from the initial state, or which have no outgoing
path to the selected state of the slice.

– sliceTransitions: Slice transition actions to remove assignments which cannot
affect the value of the variables of interest in the selected state.

– deleteTransitions : Delete transitions with a false guard.
– mergeTransitions: Merge two transitions which have the same sources, tar-

gets and actions. The guard of the resulting transition is the disjunction of
the original guards.

– replaceVariablesByConstants: Replace a feature v by a constant value e
throughout a state machine, if v is initialised to e on the initial transition
of the state machine, and is never subsequently modified.

– mergeStates : Merge a group K of states into a single state k if the states
are connected only by actionless transitions and all transitions which exit K
are triggered by events distinct from any of the events that trigger internal
transitions of K .

For example, transitions can be merged if their sources, targets and actions are
the same: tr1 : s1 →op(x)[G1]/acts s2 and tr2 : s1 →op(x)[G2]/acts s2 can be
replaced by:

tr : s1→op(x)[G1 or G2]/acts s2

210 K. Lano and S. Kolahdouz-Rahimi

Likewise, state merging can be used to reduce a set of states to a single state: A
group K of states can be merged into a single state k if:

1. All transitions between the states of K have no actions.
2. All transitions which exit the group K are triggered by events distinct from

any of the events that trigger internal transitions of K . If two transitions
that exit K have the same trigger and different targets or actions, they must
have disjoint guard conditions.

3. Each event α causing exit from K cannot occur on states within K which
are not the explicit source of a transition triggered by α.

This transformation rule is only valid for the S =str
sem M semantics, an alternative

state merging transformation is valid for the S =sem M semantics.
If the initial state is in a group g which is merged to a single state p, then p

is initial in the new state machine.
Semantic correctness of the slicing transformation can be proved by analysis

of the individual steps. For example, for the property

InitialState.allInstances()→size() = 1

that there is a unique initial state, only the rulesets removeStates and mergeStates
can fail to preserve this property, and so it is sufficient to establish their correct-
ness with respect to the property, in order to verify the correctness of the entire
algorithm.

6 Case Study: Model Migration of Activity Diagrams
from UML 1.4 to UML 2.2

This transformation was one of the case studies for the 2010 transformation
tool competition [19]. It involves the transformation of models of the UML 1.4
activity diagram language [12] into models of the UML 2.2 activity diagram
language [15].

In UML 1.4 the language of activity diagrams was a variant of the state
machine language. However in UML 2.2, a separate language is defined. The
structure of these two languages are quite similar, so the transformation can be
specified in a direct manner based on the structure of the source language.

Figure 4 shows a screen shot of the UML-RSDS system with the transforma-
tion source metamodel on the left, and the target metamodel on the right.

We assume that there is only one composite state in the source model, the
top state of the model, an OR-composite state (Page 2-158 of the UML 1.4
superstructure specification [13]). Then top.subvertex in the source model is
interpreted by node in the target model.

The transformation is mainly a direct mapping from source language meta-
classes and features to corresponding target language metaclasses and features.
The only parts requiring significant logic in the transformation are (i) the map-
ping of different kinds of pseudostate to different kinds of activity nodes, and (ii)

Specification and Verification of Model Transformations Using UML-RSDS 211

Fig. 4. Model Migration case study metamodels

the mapping of transitions to control or object flows, depending on what state
verticies they connect, and of transitions with triggers to control nodes which
receive the trigger event or signal.

The transformation can be formalised by a set of constraints, which define
how the source and target models are related. For example, the correspondence
of final states and activity final nodes could be defined by a constraint C1:

f : FinalState implies ∃n : ActivityFinalNode · n.name = f .name

Likewise for the other source language metaclasses and features. We assume
that name is a primary key (identity) attribute for the source model elements.
An artificial element id attribute could be introduced instead if name is not an
identity attribute.

Because of the similarity in structure between the source and target metamod-
els, the transformation can be specified by rules placed in the source language
metaclasses, one per metaclass, to define how that entity should be mapped into
the target model. This makes the transformation easy to understand and modify,
and also facilitates the use of inheritance.

For states, we have six operations, one for each concrete subclass of StateVertex .
For example, in ObjectFlowState:

toActivity()

post:

∃ n : DataStoreNode · n.name = name and n.type = type

212 K. Lano and S. Kolahdouz-Rahimi

It is assumed that UML 1.4 types can be mapped without change into UML 2.2
types. Similar operations are defined in FinalState and ActionState.

In Pseudostate we define:

toActivity()

post:

(kind = initial implies ∃ n : InitialNode · n.name = name) and
(kind = join implies ∃ n : JoinNode · n.name = name) and
(kind = fork implies ∃ n : ForkNode · n.name = name) and
(kind = junction and incoming .size = 1 implies

∃ n : DecisionNode · n.name = name) and
(kind = junction and incoming .size > 1 implies

∃ n : MergeNode · n.name = name)

A junction state is mapped to a decision node if it has one incoming transition,
otherwise to a merge node.

A simple state is assumed to be used in an activity diagram in order to
wait for an event to occur (since action states cannot have triggers on their
outgoing transitions, page 3-159 of [13]). These states are therefore mapped to
AcceptEventAction instances:

toActivity()

post:

outgoing .size = 1 and outgoing .trigger .size = 1 implies
∃ n : AcceptEventAction · n.name = name and

n.trigger = outgoing .trigger

in SimpleState.
Transitions are mapped to particular activity edges:

toActivity()

pre:

source.name : ActivityNode.name and
target .name : ActivityNode.name

post:

(source : ObjectFlowState or target : ObjectFlowState implies
∃ f : ObjectFlow · f .name = name and

f .source = ActivityNode[source.name] and
f .target = ActivityNode[target .name] and
f .guard = OpaqueExpression[guard .name]) and

(source / : ObjectFlowState and target / : ObjectFlowState implies
∃ f : ControlFlow · f .name = name and

f .source = ActivityNode[source.name] and
f .target = ActivityNode[target .name] and
f .guard = OpaqueExpression[guard .name])

A transition is mapped to an object flow if it has source or target in
ObjectFlowState, otherwise to a control flow.

The notation Classname[pkset] can be used to obtain a set of objects of
Classname, from a set pkset of primary key values. For example
OpaqueExpression[guard .name] abbreviates

Specification and Verification of Model Transformations Using UML-RSDS 213

OpaqueExpression.allInstances()→select(oe | oe.name : guard .name)

The partitions of the source model are mapped to activity partitions of the
target model, with corresponding contents. Finally, activity graphs are mapped
to activities:

toActivity()

post:

∃ a : Activity · a.name = name and
a.node = ActivityNode[top.subvertex .name] and
a.group = ActivityPartition[partition.name] and
a.edge = ActivityEdge[transitions.name]

The overall algorithm is specified as the activity of the transformation meta-
class SMtoActivity:

init() ;

CompositeState.toActivity() ;

Guard .toActivity() ;

Transition.toActivity() ;

Partition.toActivity() ;

ActivityGraph.toActivity()

In general, the mapping of subordinate parts of an element must be performed
before the mapping of the element itself.

7 Comparison with Other Approaches

Model transformation specification approaches are divided between those which
are declarative in style, and often implicit in their execution, and those that
are imperative and explicit. ATL [3], VIATRA [17] and QVT-R [16] are in the
first category, whilst Kermeta [5] is in the second. VIATRA and UML-RSDS
combine explicit and implicit aspects, providing control expressions to define
specific execution orders of transformation steps. Kermeta and UML-RSDS allow
the implicit specification of changes to inverse association ends: these changes
are deduced from the explicit modifications of one end. UML-RSDS also deduces
changes to association ends which generalise the modified end. Iterations over
unordered collections may occur in any order (the for loop in UML-RSDS, forall
in VIATRA and each iteration in Kermeta). ATL and QVT-R avoid explicit
definition of the order of execution of rules: the implementation of the rules
is determined by the transformation tools and not by the specifier. Implicit
specifications have the advantage that they are usually more concise, and that
they require the specifier only to specify the essential parts of a transformation.
However, explicit specifications allow the specifier to have greater control over the
details of the transformation. Control over the order of execution of rules is often
particularly important to enable efficient implementation of the transformation,
so it is a desirable feature of a model transformation language that it supports
the explicit definition of rule ordering. If implicit ordering is used, then there

214 K. Lano and S. Kolahdouz-Rahimi

should be tool support to check that specifications are confluent, that is, different
possible execution orders for rules do not change the meaning of the specification.
ATL provides a runtime check to detect possible ambiguities of this kind.

References

1. Ehrig, H., Engels, G., Rozenberg, H.-J. (eds.): Handbook of Graph Grammars and

Computing by Graph Transformation, vol. 2. World Scientific Press, Singapore

(1999)

2. Harman, M., Binkley, D., Danicic, S.: Amorphous Program Slicing. Journal of

Systems and Software 68(1), 45–69 (2003)

3. Jouault, F., Kurtev, I.: Transforming Models with ATL. In: Bruel, J.-M. (ed.)

MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

4. Jouault, F., Kurtev, I.: On the interoperability of model-to-model transformation

languages. Science of Computer Programming 68, 114–137 (2007)

5. Kermeta (2010), http://www.kermeta.org

6. Kolovos, D., Paige, R., Polack, F.: The Epsilon Transformation Language. In: Val-

lecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 46–60.

Springer, Heidelberg (2008)

7. Lano, K.: The B Language and Method. Springer, Heidelberg (1996)

8. Lano, K.: Constraint-Driven Development. Information and Software Technol-

ogy 50, 406–423 (2008)

9. Lano, K.: A Compositional Semantics of UML-RSDS. SoSyM 8(1), 85–116 (2009)

10. Lano, K. (ed.): UML 2 Semantics and Applications. Wiley, Chichester (2009)

11. OMG, Model-Driven Architecture (2004), http://www.omg.org/mda/

12. OMG, UML Specification, version 1.4 (2001),

http://www.omg.org/spec/UML/1.4/

13. OMG, UML Superstructure Specification, version 1.4. OMG document 01-09-67

(2001), http://www.omg.org/spec/UML/1.4/

14. OMG, UML superstructure, version 2.1.1. OMG document formal/2007-02-03

15. OMG, UML Specification, version 2.2 (2007), http://www.omg.org/spec/UML/2.2

16. OMG, Query/View/Transformation Specification, ptc/05-11-01 (2005)

17. OptXware, The Viatra-I Model Transformation Framework Users Guide (2010)

18. Richters, M.: A UML-based Specification Environment (2001),

http://www.db.informatik.uni-bremen.de/projects/USE

19. Rose, L., Kolovos, D., Paige, R., Polack, F.: Model Migration Case for TTC 2010,

Dept. of Computer Science, University of York (2010)

20. Stevens, P.: Bidirectional model transformations in QVT. SoSyM 9(1) (2010)

http://www.kermeta.org
http://www.omg.org/mda/
http://www.omg.org/spec/UML/1.4/
http://www.omg.org/spec/UML/1.4/
http://www.omg.org/spec/UML/2.2
http://www.db.informatik.uni-bremen.de/projects/USE

Multiformalism and Transformation Inheritance
for Dependability Analysis of Critical Systems

Stefano Marrone1, Camilla Papa2, and Valeria Vittorini2

1 Seconda Università di Napoli, Dipartimento di Matematica

via Vivaldi, 43, 81100 - Caserta, Italy

stefano.marrone@unina2.it
2 Università di Napoli “Federico II”, Dipartimento di Informatica e Sistemistica

Via Claudio 21, 80125 Napoli, Italy

{camilla.papa,valeria.vittorini}@unina.it

Abstract. Multiformalism approaches and automatic model generation

are challenging issues in the context of the analysis of critical systems for

which formal verification and validation are mandatory. Reusable model

transformations may reduce the skill level required in formal modeling,

time and cost of the analysis process, and they may support the integra-

tion among different formal languages. This paper investigates how the

relationship existing between different classes of formal languages may

be exploited to define new model transformations by extending existing

definitions. Specifically, the inheritance relationship is considered with

the ultimate goal of achieving formalisms integration also by develop-

ing proper reusable model transformations. This idea is applied to the

integration between Repairable Fault Trees and Generalized Stochastic

Petri Nets, where the inheritance relationship between Fault Trees and

Repairable Fault Trees is the basis to define inheritable model transfor-

mations. The described techniques are demonstrated on the availability

model of a modern railway controller.

Keywords: Multiformalism, Model Transformation, Language Inheri-

tance, Model Composition, System Availability.

1 Introduction

In order to assess the compliance of critical (computer-based) systems with the
international safety and dependability standards, the usage of formal methods
is sometimes strictly required. Modeling languages such as Fault Trees (FT) [15]
and Generalized Stochastic Petri Nets (GSPN) [18] have been widely used, for
example, to evaluate the occurrence probability of unsafe events and perform
risk analysis. Formal methods are one of the most advocated techniques in this
context but their effective usage in industrial settings is limited by time and
cost efforts in developing complex models of complex systems: the need of proper
skills, the lack of agile modeling methodologies, the difficulty related to model
validation, the shortage of really user friendly modeling and analysis tools make
their use hard.

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 215–228, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

216 S. Marrone, C. Papa, and V. Vittorini

Moreover, when complexity and heterogeneity of systems and applications
increase, a single formalism is not more able to capture all important concerns. To
cope with heterogeneity and address different views and aspects of such systems,
models must be expressed by using different formal languages: this requires a
considerable effort in formalisms integration that is one of the research objectives
of the multi-formalism approaches.

Within this scope, automatic generation of models according to Model Driven
Engineering (MDE) techniques and the definition of strategies and tools enabling
model reuse may be a way to achieve a more agile approach to multiformal model
development. The work described in this paper is part of the wider ongoing re-
search project OsMoSys (Object-based multi-formaliSm MOdeling of SYStems)
[23], [12], in which a new thread has been recently opened to explore the syn-
ergies between model transformations and formal languages. Specifically, we are
investigating the application of MDE to the automatic generation of depend-
ability models and the role that model transformations may play in presence of
hierarchies of modeling languages. The contribution of this paper is twofold: to
demonstrate that model transformations reuse may be achieved by exploiting
inheritance relationship between classes of formal languages and to provide a
practical engineering approach to the design and the development model trans-
formations within hierarchies of formal languages.

The concepts and the techniques described in this paper are applied to the
integration of Repairable Fault Trees (RFT) [19] and GSPN, where the inheri-
tance relationship between FT and RFT is the basis to define an derived model
transformation. The case described in the paper suggests that two advantages
can be gained from this approach: 1) both model and transformation reuse will
be improved, 2) extensible model transformations in formal language hierarchies
contribute to the definition of a more usable modeling methodology.

The effectiveness of the proposed techniques is shown by applying them to
a RFT model of the Radio Block Centre (RBC), the vital core of the Eu-
ropean Railway Traffic Management System/European Train Control System
(i.e., the reference standard of the new European railway signalling and control
systems [22]).

The paper is organized as follows. Section 2 introduces languages hierarchies
and discusses how model transformations may act in presence of such hierar-
chies. In Section 3 a FT-GSPN transformation is realized and used to derive the
RFT-GSPN transformation according to the discussion presented in Section 2;
Section 3 also contains a brief description of the RFT formalism. Section 4 illus-
trates the application of proposed techniques to the RBC case study. In Section 5
a review of related works is provided. Finally, Section 6 contains some closing
remarks and directions for further works.

2 Transformations in Hierarchies

Several approaches have been proposed for multi-formalism modeling: a brief
review of these solutions can be found in [10]. Multi-formalism techniques are

Multiformalism and Transformation Inheritance for Dependability Analysis 217

very appealing in modeling complex systems since they allow to build complex
models by integrating or composing sub-models specified by different formal lan-
guages. Since each formalism is usually coupled with efficient solution techniques,
proper approaches and tools must be adopted to solve a multi-formalism model.
The OsMoSys methodology (which is focused on component based model devel-
opment and multi-formalism) defines a conceptual framework based on object
orientation concepts and meta-modeling in which the modeling languages are
introduced by means of meta-classes called formalisms. Table 1 shows the four
layers of meta-modeling on which the OsMoSys approach is based [23], [12].

Table 1. The OsMoSys modeling stack

Level OsMoSYs layer Description

M3 Meta-formalisms Languages to

define formalisms.

M2 Model Meta-classes Formalisms to

build models

M1 Model Classes Model

specifications

M0 Model Objects Model

instances

In the OsMoSys framework new formalisms can be easily defined by inheri-
tance from existing ones. Fig. 1 shows a situation in which a hierarchy expresses
such relationship among languages. In this example both Fault Trees and Petri
Nets can be defined in terms of graph concepts. Hence, they both inherit from a
Graph formalism used to define the basic elements of all graph-based languages,
for example Node and Edge.

Within the Petri Nets hierarchy in Fig. 1, the Place and Transition elements
of the Petri Net formalism extend the Node element of the Graph formalism,

Fig. 1. An example of formalism hierarchy

218 S. Marrone, C. Papa, and V. Vittorini

<<metamodel>>

A

+elem1

+elem2

+arc

<<metamodel>>

A’

+elem3

<<transformation>>

A-to-B

+<<rule>> rule1(x:elem1)

+<<rule>> rule2(x:elem2)

+<<rule>> rule3(x:arc)
<<metamodel>>

B

<<transformation>>

A’-to-B

+<<rule>> rule1(x:elem1)

+<<rule>> rule3(x:arc)

+<<rule>> rule4(x:elem3)

<<inherits>>

<<input>> <<output>>

<<inherits>>

<<input>> <<output>>

Fig. 2. Inheritance in transformations

and the Arc element inherits from the Edge element. The inherited elements add
to the parent elements some properties (e.g. marking for Place, weight for Arc,
etc.). Similarly, the GSPN formalism is obtained by extending Petri Nets with
temporal specification. Timed and Immediate Transition elements extend the
Transition element of Petri Nets by associating a firing delay to timed transitions
and a null-delay to immediate transitions.

Now we can better state the problem at the basis of this work. With reference
to Fig. 2, A← A′ is a hierarchy, where the formalism A′ inherits from A. As an
example, A′ extends A by adding the element elem3. Let us suppose that a model
transformation A − to − B is defined from the source formalism A to a target
formalism B and it is available for reuse. We want to investigate the existence
of the A′ − to−B transformation and the relationship between A− to−B and
A′ − to − B induced by the inheritance relation existing between A and A′. In
the following we will refer to rule-based transformation languages, according to
the the taxonomy introduced in [17]. This means that a transformation consists
of a set of rules triggered by elements belonging to the source language and
producing elements in the target language.

The exact meaning of inheritance between formalisms should be defined in
order to exploit the relationship between model transformations in formalisms
hierarchies. At the state of our work, we restrict our considerations to the
following cases:

1. addition: the derived formalism (A′) extends the parent formalism (A) by
adding a new element (e.g. elem3);

2. re-definition:
a. new context : an element defined by the parent formalism A is inherited

without changes but it may be used within a new context in the derived
formalism A′;

b. old context : an element defined by the parent formalism A assumes a
new meaning within the derived formalism A′, but the context in which
it is used does not change;

Multiformalism and Transformation Inheritance for Dependability Analysis 219

3. full reuse: an element defined by the parent formalism A is inherited by A′

without modifications.

With respect to the cases above, the model transformation A′ − to−B may be
built by “inheriting” from A− to−B as follows:

1. addition: a new rule must be defined that maps the new source element onto
the target one. In Fig. 2 this is the case of rule4(x : elem3).

2. re-definition:
a. new context : the subset of rules in A − to − B transformation which

is related to the translation of inherited elements is extended and/or
partially redefined in A′− to−B. In Fig. 2, this could be the case of the
arc element. rule3(x : arc) must be redefined so that it triggers if an arc
must connect elem1 to elem3.

b. old context : the subset of rules in A − to − B transformation which is
related to the translation of inherited elements must be redefined. This
is the case of elem1 in Fig. 2, where rule1(x : elem1) is redefined in
A′ − to−B;

3. full reuse: the subset of rules in A− to−B transformation which is related
to the translation of inherited elements is re-used. This means that such
rules are inherited from A − to − B to A′ − to − B. This is the case of
rule2(x : elem2) in Fig. 2.

In Section 3 the cases 2.a and 3 will be applied. In order to better understand
the real application of the case 2.b., let us consider an example of language
inheritance where a derived formalism extends an element defined in the parent
formalism by adding some properties. In this case, a derived rule for such element
must define the proper mapping only for new properties.

Two main mechanisms have been defined in the literature for transformation
composition, that here we propose to use for defining transformation inheri-
tance: superimposition and rule overriding. Superimposition allows for overlay-
ing several transformation definitions and executing them as they were a single
transformation [13]. In other word superimposition builds a new transformation
by union of the sets of rules of all involved transformations. From our point of
view, superimposition makes possible that a transformation inherits all the rules
of one or more superimposed transformations. Within superimposition mecha-
nism, rule overriding allows to substitute an existing rule by a new one with the
same name. Of course we use rule overriding to change rule implementations in
derived transformations without changing their matching elements.

3 The Repairable Fault Trees Transformation

In this Section the concepts introduced above are applied to define the RFT −
to − GSPN transformation by inheritance from a FT − to − GSPN transfor-
mation. Although both the transformations have been already defined from a
theoretical point of view in [7] and [9] respectively, the contribution here given

220 S. Marrone, C. Papa, and V. Vittorini

is deeply different. Indeed, the pure theoretical definition of the transformations
themselves is not the goal of this paper. This paper addresses the formalisms in-
tegration perspective within the multi-formalism modeling, the methodological
approach to model transformations inheritance and reuse based on the formal
language relationship, the definition of a practical method to the concrete real-
ization of the model transformations based on widely used MDE techniques and
tools.

Hence, this Section starts with a brief introduction to RFT, then it illustrates
the rules set of the FT-to-GSPN transformation, and then continues by defining
and illustrating the steps needed to provide a concrete method to inherit and
implement the RFT-to-GSPN transformation.

3.1 Repairable Fault Trees

The RFT formalism was introduced to ease the modeler’s approach to com-
plex repair policy modeling and evaluation [19] as a result of the application of
the OsMoSys multi-formalism multi-solution methodology [23]. Repairable Fault
Trees preserve the modeling simplicity of FTs and allow to exploit the expressive
power of Petri Nets by implementing where possible an efficient divide-et-impera
solving process [19]. At the state, RFTs allow to model a series of complex
maintenance policies and extend the well known FT formalism by adding a new
element, called Repair Box (RB), that is able to take into account:

– which fault condition will start a repair action (trigger event);
– a repair policy, including the repair algorithm, the repair timing and priority,

and the number of repair facilities;
– the set of components in the system that are actually repairable by the RB.

Graphically, a RFT model is a simple FT with the addition of the RBs. The FT
is obtained exactly as for usual FT models, then RBs are added to implement
repair actions. A RB is connected to the tree by arcs linking the trigger event to
the RB and the RB to all the Basic Events in the FT (that are the elementary
events, at the bottom of the tree) on which the repair operates. The RFT model
of a system can be obtained in two steps. First, the FT of the system is built
by inspection of its structure; then the chosen repair policies are applied to
the model by evaluating which conditions will trigger the repair and on which
sub-tree the repair will be applied.

The RB node encapsulates a GSPN model of the repair action. Under proper
hypotheses, a RFT model is solved by translating the parts affected by a repair
into equivalent GSPN sub-models, in order to (efficiently) evaluate the steady-
state probability of the related subsystems failures [19] in presence of repair
policies. Then, those parts of the tree are collapsed into Basic Events whose
occurrence probabilities are given by the solution of the GSPNs sub-nets. After
that, the overall probability of the top event may be evaluated by means of the
usual combinatorial techniques.

Multiformalism and Transformation Inheritance for Dependability Analysis 221

3.2 FT-to-GSPN Model Transformation

The FT − to−GSPN transformation consists of seven matched rules that map
the ones described in [7] into the declarative language we used to implement the
model transformation. In the following we refer to the ATLAS Transformation
Language (ATL) [13] that provides the composition mechanisms we described in
Section 2. ATL is one of the most used and supported transformation language
by academic and industrial model driven community. Its success is due to its
simplicity and also to its participation to the Eclipse Modeling Projects.

Fig. 3. Rule 1 Fig. 4. Rule 2 Fig. 5. Rule 3

AND gate

Fig. 6. Rule 4

KooN
K

Fig. 7. Rule 5 Fig. 8. Rule 6

KooN

Fig. 9. Rule 7

The seven matched rules are illustrated in the figures from Fig. 3 to Fig. 9.
A dotted line means that those elements just describe the context in which the
rule operates, but they are not translated. rule1 translates the output event of
an OR gate (Fig. 3). rule2 translates an input arc of an OR gate (Fig. 4). rule3
translates the output event of an AND gate (Fig. 5). rule4 translates an input
arc of an AND gate (Fig. 6). rule5 translates the output event of an K-out-of-N
(KooN) gate (Fig. 7). rule6 translates a basic event (Fig. 8) and finally rule7
translates an input arc of an KooN gate (Fig. 9).

3.3 Inheriting RFT-to-GSPN

According to our model driven approach based on the formalisms inheritance,
the first step requires that the formalisms meta-models involved as source and
target languages of the transformations are considered. Fig. 11 shows the meta-
model of the GSPN language which is the target language, and Fig. 10 shows
the RFT meta-model and how RFT 0 inherits1 from FT.

The set of elements of the RFT formalism consists of all the elements defined
by the FT formalism plus the RB node that models a repair action. Hence this is
the case 1 described in Section 2. When fault propagation causes an event which

222 S. Marrone, C. Papa, and V. Vittorini

Repair Box

Event Gate

Basic Event

Middle Event

OR

KooN

Top Event

AND

arc

arc

arc

Fig. 10. Metamodel of Fault Tree

language

Place Transition

Immediate

StochasticDeterministic

inhibitor

arc

Fig. 11. Metamodel of GSPN

language

is connected to a RB to happen (trigger event), the events that caused the fault
get cleared (repaired) according to a defined policy. As a consequence, the FT
arc element is inherited by RFT but it is used in two new contexts (Section 2
case 2.a):

– to connect a RB to a middle event (i.e. the trigger, representing a failure
occurring at a sub-tree level and enabling the repair);

– to connect a RB to a basic event to be repaired.

This would mean that two rules must be defined that take into account the
translation of triggering and repair arcs. The first one generates the target GSPN
subnet depicted in Fig. 12 that is needed to model the copy of a token from a
place to another; this token enables the activation of the GSPN subnet repre-
senting the repair action. The second rule has an intrinsic high complexity. It
must generate the GSPN target subnets in charge of modeling the restoration
of the initial marking after the repair has been completed. This aim is achieved
by two kinds of subactions: one that clears a marked place (clearing pattern
Fig. 14) and one that marks an empty place (filling pattern in Fig. 13). Some
of the places of these GSPN patterns are tagged with two labels (endLabel and
triggerLabel) in order to merge with the translated RFT with the GSPN model
of the repair policy as described at the end of this Section.

The seven rules from FT − to − GSPN transformation are inherited and
fully reused since they are related to the FT elements neither modified nor
reinterpreted by the RFT formalism. In conclusions Fig. 15 summarizes the
RFT − to−GSPN transformation rules. On the left part of the figure a generic

triggeringLabel

Fig. 12. Triggering pattern

pi=3endLabel

Fig. 13. Filling pattern

pi=3endLabel

Fig. 14. Clearing pattern

Multiformalism and Transformation Inheritance for Dependability Analysis 223

T

A B pi=3

pi=3

E

pT

pA

pB

pE

endLabel

triggeringLabel

endLabel

RB

pi=3
endLabel

pi=3
pEc endLabel

Fig. 15. RFT-to-GSPN

RFT model is depicted where a RB is connected by a trigger arc to the T event
and by two repair arcs to the Basic Events A and B.

Let us suppose that the E event is in the path from A and B to T. According
to the defined rules, a triggering pattern is generated from the trigger arc: one
place of the triggering pattern is connected to the place pT representing the
event T. The repair arcs connecting the Basic Events A and B are translated by
the clearing patterns connected to the places pA and pB. For the intermediate
events proper clearing and/or filling patterns are generated according to the
type of the gate in input to the event. From the previous description it should
be clear that the RFT − to − GSPN transformation is more complex than
FT − to − GSPN due to the complexity of the single repair action and of the
global repair strategy of a RFT. The rule that matches a trigger arc is quite
simple, but the rule that matches the repair arc requires recursive calls in order
to explore an entire subtree when the subsystem must be repaired. The RFT-to-
GSPN transformation does not explicitly address the translation of the repair
policies embedded into the RBs that are already expressed by means of a GSPN
models. Hence, in our approach a GSPN model template is considered available
for each repair policy. In order to have the entire solvable GSPN net, the GSPN
resulting from the application of the RFT-to-GSPN transformation must be
integrated with the GSPN model of the repair policy.

This integration is accomplished by superposing the places that has been
tagged during the translation (triggerLabel and endLabel).

3.4 Model-to-Text Transformation

In order to allow the analysis of the generated GSPN models we must translate
them into the format of a some existing solution tool. This is done by means

224 S. Marrone, C. Papa, and V. Vittorini

of a Model-to-Text (M2T) transformation. A full description of M2T techniques
and the main supporting tools is out of the scope of this paper: for this purpose
we use ATL whose queries can also be exploited in order to obtain a string
as output. As solving tool we have choosen GreatSPN [8] due to its assessed
architecture, great efficiency in GSPN analyses. The Algebra tool can be used
in order to integrate the GSPN models. Notwithstanding, the use of Algebra it
is not mandatory since it is possible to define a proper M2M transformation to
merge two GSPN nets.

4 The Radio Block Centre Case Study

In [11] the RBC case-study was analyzed in order to investigate the impact of
different repair policies on the system availability. To that aim, a rather complex
formal model was built (by hand) using the RFT formalism. We will show how
a GSPN model can be obtained from this RFT by applying the transformations
defined in Section 3. RBC is an ERTMS/ETCS subsystem1 and controls the
movements of the trains traveling across supervised track area. The availability
of a RBC is critical as there is no way for the signalling system to work without
its contribution. In case of a RBC failure, all the trains under its supervision
are compelled to brake and proceed in a degraded mode. This would lead to the
Immobilising Failure, the most critical among the ERTMS/ETCS safe failures.

power system bus TMRWAN GSMR

ps1

ps2

ps3 bus1 bus2 wan1 wan2
gsmr1 gsmr2

RBC failure

global

voter cpu

fpga2fpga1

cpu2

cpu1 cpu3

2oo3

Fig. 16. The RBC model

1 ERTMS/ETCS is the signalling system at the basis of several worldwide high speed

rail projects.

Multiformalism and Transformation Inheritance for Dependability Analysis 225

Table 2. MTBFs of the RBC components

Unit MTBF[h]

CPU board 1.35 ∗ 105

Bus 2.25 ∗ 105

FPGA 3.33 ∗ 108

Power Supply 5.5 ∗ 104

GSM-R card 1.752 ∗ 105

Network card 4 ∗ 105

startRep repFinished pi=2repair

restore

triggeringLabel endLabel

Fig. 17. GSPN template

Due to RBC the criticality and its positioning in technical rooms, maintenance
takes an important role for the non-functional requirements fulfillment: proper
repairing policies have to be defined and evaluated by means of (formal) models.

Thus, a RFT model has been developed starting from the RBC reference archi-
tecture. The underlying FT was built according to the usual Fault Tree Analysis
techniques. Then Repair Boxes can been applied to the RBC in order to evaluate
the effect of maintenance policies on the overall system availability. In order to
better explain the translation steps, let us consider just a single repair box.

According to Fig. 16, when a failure occurs the global RB is triggered and
one or more Basic Events connected to global may be repaired. The reference
values for the MTBFs (in hours) of system components have been chosen from
the data-sheets of commercial devices (see [11]) and are reported in Table 2.

Here we suppose that the Repair Box encapsulates the GSPN model described
in Fig. 17. This GSPN net is a simple Global Repair Time (GRT) repair policy:
only one parameter, representing the global time needed to repair the whole set
of basic events connected with the RB, is given; when the repair time elapses,
then all basic events connected with the RB are immediately repaired. We choose
the MTTR of 0.5 hours that is, according to [11], the time for system repair that
is the inverse of the rate of repair stochastic transition.

Fig. 18 describes the transformations from the RFT to GSPN model of the
system. For sake of simplicity we focus our attention only on a part of the
RFT (including the GSMR module). The application of the RFT − to−GSPN
transformation translates the model according to superimposition mechanism:
that is it generates the Petri Nets contained in the ft structure box using
the set of seven rules inherited from FT − to − GSPN ; then the parts of the
GSPN described in the boxes trigger arc and repair arc are generated by
translating the triggering and repair arcs according to its own rules. The whole
GSPN model is obtained by merging the GRT policy model and the RBC model
by place superposition over the matching labels (superposition area ovals).

226 S. Marrone, C. Papa, and V. Vittorini

GSMR

gsmr1 gsmr2

RBC failure

global

pi=3

pi=3

endLabel

triggeringLabel

endLabel

pi=3

endLabel

startRep

pi=2

repair

restore

repFinished

triggeringLabel

endLabel

repair policy

trigger arc ft structure

repair arc

repair arc

repair arc

superposition
area

rbcFailure

Fig. 18. GSPN model of RBC

The generated GSPN is now ready to be analyzed by means of specific tools.
The probability of occurrence of immobilising failure (and so the RFT top event
occurrence) can be computed by evaluating the mean number of tokens into the
GSPN corresponding place (rbcFailure). According to data previously reported,
the probability of unavailability is 1.63 ∗ 10−3: this value is too high due to
the fact that only a single repair box has been considered for containing the
description of example in a limited space.

5 Related Work

Language inheritance and formalism hierarchies are wide research fields. In [21]
a very deep analysis of inheritance mechanisms has been done with particu-
lar reference to programming languages, while in [4] the focus of the analysis
shifts towards models and metamodels. More systematic studies [17] confirm
that compositionality and reuse are hot topics in this research field. First ap-
proaches in transformation composition are focused on reusing single rules [14]
or patterns [3]. Another interesting approach is represented by VIATRA2 [2]
that can be easily applied also in the context of embedded and critical systems.
As it comprehends a graph pattern matching based language, reuse is almost
applied at rule level: in order to make the transformational processes usable in
real world applications, it is necessary to increase the level of reuse allowing
entire transformations to be used as extension point for the others. A recent
research proposes an alternative compositional mechanism that fulfills the pre-
vious requirement: in [13], the authors define the module superimposition as a
simple mechanism for coarse-grain reuse. In [1] this mechanism has been applied
to model composition in software product lines.

Multiformalism and Transformation Inheritance for Dependability Analysis 227

The integration of formal methods and techniques into MDE based develop-
ment processes is still an open research issue. A recent research work [6] proposes
an extension of MARTE for dependability and modeling (MARTE-DAM). In
the past, research efforts have focused on the generation of formal models from
UML [16], [5] or from AADL [20].

6 Conclusions

In this paper we have presented a study on deriving (and more broadly engineer-
ing) model-to-model transformations from existing ones, under the hypothesis
of inheritance relationship between meta-models. Specifically, such mechanism
has been applied in formalism integration within the context of the availability
analysis of critical systems.

The implementation of a model transformation from FT to GSPN is provided
and a RFT to GSPN transformation is inherited from it, where the RFTs lan-
guage (Repairable Fault Trees) is an extension of FTs. As other factorization and
modularization mechanisms described in the literature, the proposed approach
allows to apply a divide-et-impera principle that is very important when coping
with a transformation that presents several layers of complexity.

The primary concern of any future work is a deeper insight into the formal
language hierarchies and the role that they play in model transformations. A
first development in this line will result in the definition of integration mecha-
nisms between xFT languages (Fault Trees and their extensions, Dynamic Fault
Trees, Non Deterministic Repairable Fault Trees, Parametric Fault Trees, ...)
and xPN languages (Petri Nets different classes, Timed Petri Nets, Stochastic
Petri Nets, Stochastic Well Formed Petri Nets,...). Further efforts will be spent
on the application of transformational and compositional approaches to other
dependability aspects as safety and security.

References

1. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model Superimposition in Software

Product Lines. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 4–19.

Springer, Heidelberg (2009)

2. Balogh, A., Varró, D.: Advanced model transformation language constructs in the

VIATRA2 framework. In: 21st Annual ACM Symposium on Applied Computing,

pp. 1280–1287. ACM, New York (2006)

3. Balogh, A., Varró, D.: Pattern composition in graph transformation rules. In: Eu-

ropean Workshop on Composition of Model Transformations (2006)

4. Barbero, M., Jouault, F., Gray, J., Bézivin, J.: A Practical Approach to Model

Extension. In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA 2007.

LNCS, vol. 4530, pp. 32–42. Springer, Heidelberg (2007)

5. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and stat-

echarts to analysable petri net models. In: Proceedings of the 3rd International

Workshop on Software and Performance, pp. 35–45. ACM, New York (2002)

6. Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile within MARTE.

Software and Systems Modeling (2009)

228 S. Marrone, C. Papa, and V. Vittorini

7. Bobbio, A., Franceschinis, G., Gaeta, R., Portinale, L.: Parametric Fault Tree for

the Dependability Analysis of Redundant Systems and Its High-Level Petri Net

Semantics. IEEE Transaction on Software Engineering 29(3), 270–287 (2009)

8. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: Graphical

Editor and Analyzer for Timed and Stochastic Petri Nets. Performance Evalua-

tion 24(1), 47–68 (1995)

9. Codetta-Raiteri, D.: Extended Fault Trees Analysis supported by Stochastic Petri

Nets. Ph.D. Thesis. Univ. di Torino (2005)

10. Di Lorenzo, G., Flammini, F., Iacono, M., Marrone, S., Moscato, F., Vittorini, V.:

The software architecture of the OsMoSys Multisolution Framework. In: Proc. of

2nd International Conference on Performance Evaluation Methodologies and Tools

(VALUETOOLS). ACM, New York (2007)

11. Flammini, F., Mazzocca, M., Iacono, M., Marrone, S.: Using Repairable Fault Trees

for the Evaluation of Design Choices for Critical Repairable Systems. In: Proc. of

High Assurance System Engineering, pp. 163–172. IEEE Computer Society, Wash-

ington (2005)

12. Franceschinis, G., Gribaudo, M., Iacono, M., Marrone, S., Moscato, F., Vittorini,

V.: Interfaces and Binding in Component Based Development of Formal Models. In:

Proc. of 4th International Conference on Performance Evaluation Methodologies

and Tools (VALUETOOLS). ACM, New York (2009)

13. Wagelaar, D., Van Der Straeten, R., Deridder, D.: Module superimposition: a com-

position technique for rule-based model transformation languages. Software and

Systems Modeling (2009)

14. Kurtev, I., van den Berg, K., Jouault, F.: Rule-based modularization in model

transformation languages illustrated with ATL. Sci. Comput. Program. 68(3), 111–

127 (2007)

15. Lee, W.S., Grosh, D.L., Tillman, F.A., Lie, C.H.: Fault Tree Analysis, Methods

and Applications-A Review. IEEE Trans. Reliability 34, 194–203 (1985)

16. Majzik, I., Pataricza, A., Bondavalli, A.: Stochastic dependability analysis of

system architecture based on UML models. In: de Lemos, R., Gacek, C., Ro-

manovsky, A. (eds.) Architecting Dependable Systems. LNCS, vol. 2677, pp. 219–

244. Springer, Heidelberg (2003)

17. Mens, T., Czarnecki, K., Van Gorp, P.: A Taxonomy of Model Transformations.

In: Proc. Dagstuhl Seminar on Language Engineering for Model-Driven Software

Development (2005)

18. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE 77(4), 541–580 (1989)

19. Raiteri, D.C., Franceschinis, G., Iacono, M., Vittorini, V.: Repairable fault tree for

automatic evaluation of repair policies. In: Proc. of the Performance and Depend-

ability Symposium. IEEE Computer Society, Washington (2004)

20. Rugina, A.E., Kanoun, K., Kaâniche, K.: A System Dependability Modeling Frame-

work Using AADL and GSPNs. In: de Lemos, R., Gacek, C., Romanovsky, A. (eds.)

Architecting Dependable Systems IV. LNCS, vol. 4615, pp. 14–38. Springer, Hei-

delberg (2007)

21. Taivalsaari, A.: On the notion of inheritance. ACM Computing Surveys 28(3),

438–479 (1996)

22. UIC: ERTMS/ETCS class1 System Requirements Specification, SUBSET-026, is-

sue 2.2.2 (2002)

23. Vittorini, V., Iacono, M., Mazzocca, N., Franceschinis, G.: The OsMoSys approach

to multiformalism modeling of systems. Journal of Software and Systems Model-

ing 3(1), 68–81 (2004)

Translating Pi-Calculus into LOTOS NT

Radu Mateescu1 and Gwen Salaün1,2

1
Inria Grenoble – Rhône-Alpes / Vasy project-team / Lig, Inovallée

655, av. de l’Europe, Montbonnot, F-38334 Saint Ismier, France
2 Grenoble Inp, 46, av. Félix Viallet, F-38031 Grenoble, France

{Radu.Mateescu,Gwen.Salaun}@inria.fr

Abstract. Process calculi supporting mobile communication, such as

the π-calculus, are often seen as an evolution of classical value-passing

calculi, in which communication between processes takes place along a

fixed network of static channels. In this paper, we attempt to bring these

calculi closer by proposing a translation from the finite control fragment

of the π-calculus to Lotos NT, a value-passing concurrent language with

classical process algebra flavour. Our translation is succinct in the size

of the π-calculus specification and preserves the semantics of the lan-

guage by ensuring a one-to-one correspondence between the states and

transitions of the labeled transition systems corresponding to the input

π-calculus and the output Lotos NT specifications. We automated this

translation by means of the Pic2Lnt tool, which makes it possible to

analyze π-calculus specifications using all the state-of-the-art simulation

and verification functionalities provided by the Cadp toolbox.

1 Introduction

Process calculi (or algebras) are abstract specification languages used to model
concurrent systems. These formalisms have been widely studied and used for
the specification of real-world systems in many different application areas such
as telecommunication protocols, hardware design, or embedded systems. One of
the most famous calculi is the π-calculus [20] proposed by Milner, Parrow, and
Walker about twenty years ago. The π-calculus is an extension of Ccs [18] with
mobile communication, and is equipped with an operational semantics defined in
terms of labeled transition systems (Ltss). Although a lot of theoretical results
have been achieved on this language (see [24] for a survey), only a few verification
techniques and tools, such as the Mobility Workbench (Mwb) [28] or Jack [8],
are operational for analyzing π-calculus specifications automatically.

In this paper, we attempt to provide similar analysis features for π-calculus
specifications by reusing the verification technology already available for classical
(i.e., without mobility) value-passing process algebras. Contrary to existing anal-
ysis tools for the π-calculus, which rely on specific algorithms and intermediate
models, such as HD-automata [8], our approach is based on a novel translation
from π-calculus to a classical process algebra. We focus here on the finite control
fragment of the π-calculus and adopt as target language Lotos NT [4], a re-
cent enhancement of Lotos [16]. In Lotos NT, the abstract data type part was

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 229–244, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

230 R. Mateescu and G. Salaün

abandoned in favor of constructive data type definitions and pattern-matching,
and the behavior process algebraic part was replaced by an imperative-like lan-
guage with a user-friendly syntax. To the best of our knowledge, this is the first
π-calculus translation that uses a classical process algebra as target language.

Most of the π-calculus constructs can be translated quite straightforwardly
into Lotos NT thanks to its good level of expressiveness. Nevertheless, we faced
some subtle difficulties in order to have a translation as succinct as possible and
preserving the Lts semantics, i.e., mapping each transition of a π-calculus agent
to a transition of the resulting Lotos NT term. Obviously, one of the main
problems was to emulate mobile communication in a language that offers only
communication on static channels; we overcame this issue by heavily exploiting
the data types and synchronization features of Lotos NT. Our translation is
fully automated by the Pic2Lnt tool we have implemented. Since Lotos NT

is one of the input languages of the Cadp [12] verification toolbox, all the state-
of-the-art verification features of Cadp can be used on the Lotos NT specifi-
cations generated from the π-calculus ones.

The outline of the paper is as follows. In Section 2, we introduce both specifi-
cation languages, namely the π-calculus and Lotos NT. Section 3 presents the
translation rules and shows the semantics preservation. Section 4 describes the
Pic2Lnt translator and Section 5 illustrates the overall approach on the spec-
ification and verification of a simple Web services case study. Finally, Section 6
compares our proposal with related approaches, and Section 7 draws up some
conclusions and lines for future work.

2 Pi-Calculus and LOTOS NT

We briefly present below the syntax and semantics of π-calculus and of the
Lotos NT fragment that serves as target language for the translation.

Pi-Calculus. We consider the original version of π-calculus [20] equipped with
the early operational semantics defined in [21]. For simplicity of the presentation,
we focus on the monadic π-calculus, although the translation to Lotos NT given
in Section 3 can be straightforwardly extended to handle the polyadic version
of the calculus [19]. The syntax and semantics of the π-calculus are shown in
Figure 1. Channel names (denoted by a, ..., z) belong to an infinite countable set
of names N . Agents (denoted by P) are built from inaction (0), action prefix
(.), parallel composition (|), choice (+), channel creation (ν), guard ([]), and
instantiation (A(...)). The occurrences of y in x(y).P and (νy)P are bound and
the other occurrences of channel names are free. The set of free (resp. bound)
names of an agent P is denoted by fn(P) (resp. bn(P)), and the set of names of P
is defined as n(P) = fn(P)∪bn(P). Each agent identifier A has an arity r(A) ≥ 0
and must be defined by an equation A(x1, ..., xr(A))

def= P . The parameter names
x1, ..., xr(A) must be pairwise distinct and fn(P) ⊆ {x1, ..., xr(A)}.

The actions (denoted by α) that an agent can perform are of four kinds: inter-
nal action (τ), free output (xy), bound output (x(z)), and free input (xy). The

Translating Pi-Calculus into LOTOS NT 231

P ::= 0 | τ.P | xy.P | x(y).P | P1|P2 | P1 + P2

| (νx)P | [x = y]P | [x
= y]P | A(x1, ..., xr(A))

α ::= τ | xy | x(z) | xy

Tau τ.P
τ→ P Out xy.P

xy→ P In x(y).P
xz→ P{z/y}

Sum
P1

α→ P ′
1

P1 + P2
α→ P ′

1

Par
P1

α→ P ′
1

P1|P2
α→ P ′

1|P2

if bn(α) ∩ fn(P2) = ∅

Com
P1

xy→ P ′
1 P2

xy→ P ′
2

P1|P2
τ→ P ′

1|P ′
2

Close
P1

x(y)→ P ′
1 P2

xy→ P ′
2

P1|P2
τ→ (νy)(P ′

1|P ′
2)

if y
∈ fn(P2)

Res
P

α→ P ′

(νx)P
α→ (νx)P ′

if x
∈ n(α) Open
P

xy→ P ′

(νy)P
x(z)→ P ′{z/y}

if x
= y, z
∈ fn((νy)P ′)

Match
P

α→ P ′

[x = x]P
α→ P ′

Mismatch
P

α→ P ′

[x
= y]P
α→ P ′

if x
= y

Ide

P{y1/x1, ..., yr(A)/xr(A)} α→ P ′

A(y1, ..., yr(A))
α→ P ′

if A(x1, ..., xr(A))
def
= P

Fig. 1. Syntax and early operational semantics of π-calculus

same notations fn(α), bn(α), and n(α) are used for actions, the only bound oc-
currence being z in the bound output x(z). Intuitively, bound names in actions
correspond to references of places in the executing agent where substitutions
must be performed; bound outputs are used to represent scope extrusions (rules
Open and Close). The early operational semantics is given in terms of rules
enabling to infer the transitions, labeled by actions, that an agent can perform.
The rules associated to binary operators (| and +) have also symmetric forms,
omitted here for conciseness. Given a substitution σ : N → N , we denote by
Pσ the agent P in which each free name x has been replaced by σ(x), pos-
sibly with changes of the bound variables to avoid captures. The substitution
{y1/x1, ..., yn/xn} maps each xi into yi for i ∈ [1, n] and keeps all the other
names unchanged. In the sequel, we will consider only π-calculus agents that
satisfy the finite control property [6], i.e., do not contain recursive calls of agent
identifiers through the parallel composition operator.

LOTOS NT fragment. Lotos NT [4] is a simplified variant of the E-Lotos

standard [15] that attempts to combine the best features of imperative pro-
gramming languages and value-passing process algebras. Lotos NT has a user-
friendly syntax and a formal operational semantics defined in terms of labeled
transition systems (Ltss). Lotos NT is supported by the Lnt.Open tool of
Cadp [12], which allows the on-the-fly exploration of the Ltss corresponding
to Lotos NT specifications. As target of our translation, we use only a small
fragment of Lotos NT, whose syntax and semantics are given in Figure 2.

Lotos NT terms (denoted by B) are built from actions, choice (“select”),
conditional (“if”), sequential composition (“;”), hiding (“hide”), and parallel
composition (“par”). Communication is carried out by rendezvous on gates
G with bidirectional transmission of multiple values (for simplicity, in Fig. 2
we considered actions with only two values being sent in both directions).

232 R. Mateescu and G. Salaün

B ::= stop | null | G(!E, ?x) where E′ | B1;B2 | if E then B end if
| var x:T in x := E;B end var | hide G in B end hide
| select [var x1:T1, ..., xn:Tn in] B1[]...[]Bn end select
| par G in B1||...||Bn end par | P [g1, ..., gm](E1, ..., En)

Lnt-Null null
δ→ stop Lnt-Act

v′ ∈ type(x) ∧ [[E′{v′/x}]] = true

G(!E, ?x) where E′;B
G ![[E]] !v′→ B{v′/x}

Lnt-Seq-1
B1

β→ B′
1

B1;B2
β→ B′

1;B2

Lnt-Seq-2
B1

δ→ B′
1 B2

β→ B′
2

B1;B2
β→ B′

2

Lnt-If
[[E]] = true B

β→ B′

if E then B end if
β→ B′

Lnt-Var
B{[[E]]/x} β→ B′

var x:T in x := E;B end var
β→ B′

Lnt-Hid-1
B

β→ B′ gate(β)
= G

hide G in B end hide
β→ hide G in B′ end hide

Lnt-Hid-2
B

β→ B′ gate(β) = G

hide G in B end hide
i→ hide G in B′ end hide

Lnt-Sel
i ∈ [1, n] Bi

β→ B′
i

select [var x1:T1, ..., xn:Tn in] B1[]...[]Bn end select
β→ B′

i

Lnt-Par
i ∈ [1, n] Bi

β→ B′
i gate(β)
= G

par G in B1||...||Bn end par
β→ par G in B1||...||B′

i ||...||Bn end par

Lnt-Com
I ⊆ [1, n] ∀i ∈ I.Bi

β→ B′
i gate(β) = G j ∈ I

par G in B1||...||Bn end par
β→ par G in B1||...||B′

j ||...||Bn end par

Lnt-Ide
B{g1/G1, ..., gm/Gm}{[[E1]]/x1, ..., [[En]]/xn} β→ B′

P [g1, ..., gm](E1, ..., En)
β→ B′

where process P [G1, ..., Gm](x1:T1, ..., xn:Tn) is B end process

Fig. 2. Syntax and early operational semantics of the Lotos NT fragment

Synchronizations may also contain optional guards (“where”) expressing
boolean conditions on received values. The gate on which an action β takes
place is denoted by gate(β). The special action δ is used for defining the se-
mantics of sequential composition. An action G(...) can occur in isolation, in
which case it is considered to be equivalent to G(...);null. The internal action
is denoted by the special gate i, which cannot be used for synchronization. The
parallel composition operator allows multiway rendezvous on the same gate. As
in Lotos [16], processes are parameterized by gates and data variables.

The reader familiar with Lotos may notice that the Lotos NT fragment con-
sidered is not far from Lotos itself, which could also serve as the target lan-
guage for the translation. However, as it will become clear in Section 3, Lotos NT

presents at least two advantages w.r.t. Lotos for translating π-calculus agents:
(a) the symmetric sequential composition operator “;” ofLotos NT makes it pos-
sible to group together the behaviour following the branches of a “select” state-
ment, thus enabling a succinct translation of nested action prefixes occurring in
π-calculus agents, and (b) as opposed to the sequential composition operator “>>”

Translating Pi-Calculus into LOTOS NT 233

of Lotos, the semantics of the “;” operator of Lotos NT does not create spuri-
ous internal actions in the Lts, making possible to achieve a one-to-one correspon-
dence between the transitions of a π-calculus agent and those of the Lotos NT

term resulting after translation.

3 Translation from Pi-Calculus to LOTOS NT

The translation presented below maps each π-calculus agent P to a Lotos NT

behaviour term t(P, G, k), where G is the set of Lotos NT gates on which the
term communicates with its environment and k ≥ 1 is a natural number identi-
fying the corresponding concurrent activity (i.e., the operand of the immediately
enclosing parallel composition operator, if any, which contains the term). Two
classes of channels are distinguished: public channels correspond to the free chan-
nel names occurring in P , whereas private channels correspond to channel names
bound by ν operators occurring in P . The set G includes two predefined gates
Gpub and Gpriv , which serve to model the non-synchronized communications on
public and private channels, respectively.

Channel names. Since the communication in Lotos NT takes place along
static gates, we cannot use directly these gates to represent mobile communica-
tion. Instead, we represent π-calculus channel names as values of a Lotos NT

data type Chan, and we model channel mobility between π-calculus agents
by communicating values of this type along gates between the corresponding
Lotos NT processes. The example below shows the definition of the Lotos NT

type Chan for the π-calculus agent (νx)(ab.cx.0).

type Chan is
a, b, c, x (id:Nat) with ”==”, ”!=”

end type
function new id () : Nat is
!external null

end function

function is public (ch:Chan) : Bool is
case ch in

a | b | c -> return true

| any -> return false

end case
end function

The Chan type is equipped with the comparison operators “==” and “!=”. It pro-
vides a constant constructor for each public channel and a constructor parame-
terized by a natural number id for each private channel. The predicate is public
characterizes public channels. To create new Chan values when a ν operator is
evaluated, we use a function new id defined externally in C, which returns a new
natural number at each invocation.

Inaction and action prefix. The null π-calculus agent 0 is naturally translated
into the stop Lotos NT operator, which does not perform any action. The pre-
fix operator is translated using the choice operator “select” and the sequential
composition operator “;” as shown below. In order to capture all potential inter-
actions that may become possible during execution due to mobility of channels,
the communication on a channel x is modeled by a nondeterministic choice on
all the gates connecting the current Lotos NT term to its environment.

234 R. Mateescu and G. Salaün

Binary synchronizations between the current term and its environment are
enforced by emitting the value x of type Chan corresponding to x and the iden-
tifier k of the current term, which acts as sender (resp. receiver) for output
(resp. input) actions. The semantics of Lotos NT parallel composition (used
to translate the | operator, see below) ensures that only the terms corresponding
to different concurrent activities (having different identifiers k) and sharing the
same value x can communicate in an unidirectional manner by transmitting a
value y of type Chan on some gate. Variables s and r act as placeholders for the
identifiers of the sender and receiver terms, respectively.

t(xy.P, {G1, ..., Gn, Gpub , Gpriv}, k) =

select var r:Nat in
G1 (!x, !y, !k, ?r) [] ...

Gn (!x, !y, !k, ?r) []

Gpub (!x, !y, !true)

where is public (x) []

Gpriv (!x, !y, !true)

where not (is public (x))

end select ;

t(P, {G1, ..., Gn, Gpub , Gpriv}, k)

t(x(y).P, {G1, ..., Gn, Gpub , Gpriv}, k) =

select var s:Nat, y:Chan in
G1 (!x, ?y, ?s, !k) [] ...

Gn (!x, ?y, ?s, !k) []

Gpub (!x, ?y, !false)

where is public (x) []

Gpriv (!x, ?y, !false)

where not (is public (x))

end select ;

t(P, {G1, ..., Gn, Gpub , Gpriv}, k)

When x denotes a public (resp. private) channel, an action on gate Gpub (resp.
Gpriv) is added in order to model the possibly non-synchronized execution of
send/receive actions, which comprise the emission of a true/false boolean value
in order to differentiate them in the Lts of the resulting Lotos NT term. Note
that the translation makes no difference between free and bound output, these
actions being distinguished by the value y of type Chan being sent, which can
be either public or private.

Sum, match, and mismatch. The sum operator is naturally translated by
using the choice operator of Lotos NT. The match and mismatch operators
are translated in terms of the conditional operator.

t(P1 + P2, G, k) = select t(P1, G, k) [] t(P2, G, k) end select
t([x = y]P,G, k) = if x == y then t(P,G, k) end if
t([x
= y]P,G, k) = if x != y then t(P,G, k) end if

Note that in the translation of the operands P1, P2, and P the set of gates G
and the identifier k of the current term do not change, since the sum operator
is sequential (i.e., it does not create new concurrent activities).

Parallel composition. The parallel composition operator is translated using
the “par” operator of Lotos NT. A fresh gate Gnew is introduced to model the
communication between the two Lotos NT terms resulting from the translation
of the operands P1 and P2. Since the parallel operator creates two concurrent
activities, two new distinct identifiers 2k and 2k + 1 are assigned to the corre-
sponding Lotos NT terms. Given that Gnew is added to the sets of gates con-
necting the two terms to their environment, every send/receive communication
carried out by P1|P2 will also be executed by the whole Lotos NT term. Indeed,

Translating Pi-Calculus into LOTOS NT 235

according to the translation of the action prefix (see above), all input/output
operations of P1 and P2 will also occur in the two Lotos NT terms as actions
along Gnew , and the “par” operator will enforce their proper synchronization1.
All synchronizations on Gnew are renamed into the internal action i using the
“hide” operator to reflect the semantics of the π-calculus communication.

t(P1|P2, G, k) = hide Gnew in par Gnew in

t(P1, G ∪ {Gnew}, 2k) || t(P2, G ∪ {Gnew}, 2k + 1)

end par end hide

The scheme for assigning concurrent activity identifiers yields a contiguous num-
bering if the direct nestings of parallel operators in the π-calculus agents are
arranged to form balanced binary trees. Given that the parallel operator is as-
sociative, this can be easily obtained by an adequate insertion of parentheses,
e.g., ((P1|P2)|(P3|P4)) instead of (((P1|P2)|P3)|P4), which would be the default
parsing of the agent in absence of parentheses.

Channel creation. The channel creation operator (νx) is translated by creating
a new private value of type Chan and storing it in a variable x, which can be
subsequently used by the Lotos NT term.

t((νx)P,G, k) = var x:Chan in x := x (new id ()); t(P,G, k) end var

This translation rule does not directly forbid the Lotos NT term to perform
an emission along the channel x, in the sense that some action xa present in P
(whose execution is forbidden by the rule Res in Fig. 1) will be translated as
an action “G (!x, !a, !k, ?r)” on some gate G ∈ G. Such emissions are forbid-
den indirectly by the way in which action prefix and parallel composition are
translated (see above). Indeed, for the synchronization on G to take place, the
environment must propose on G an action containing the same fresh value x. This
is impossible unless x has been previously sent by the current Lotos NT term
to the environment, by an emission corresponding to a bound output previously
executed by the agent. Thus, scope extrusions are modeled by the communica-
tion of fresh values of type Chan, which can be subsequently used by different
Lotos NT terms for communication.

Agent definition and instantiation. Agent definitions A are mapped to
Lotos NT process definitions as shown below. In addition to the channel names
x1, ..., xr(A) (represented as values of type Chan), the process is parameterized
by the gate set G and the identifier k, which capture the context of the call.

t(A(x1, ..., xr(A))
def
= P,G, k) = process Ad [G] (x1, ..., xr(A):Chan, k:Nat) is

t(P,G, k)
end process

t(A(y1, ..., yr(A)), G, k) = Ad [G] (y1, ..., yr(A), k)

1 The translation of an agent P1|...|Pn requires n−1 gates, one for each | operator. The

number of gates could be reduced to 1 by using the generalized parallel composition

operator (not yet fully implemented in Lotos NT) proposed in [13], which can

model binary synchronization between n processes.

236 R. Mateescu and G. Salaün

Since an agent identifier may be invoked at several places in the π-calculus
agent under translation, and Lotos NT processes have a fixed number of gate
parameters, we chose to produce one Lotos NT process definition Ad for each
occurrence of the agent identifier A in a context where |G| = d. This increases
the size of the Lotos NT specification by only a logarithmic factor w.r.t. the
size of the input π-calculus specification (see the discussion on complexity be-
low). Finally, the restriction to finite control agents ensures that all (direct or
transitive) recursive invocations of the agent identifier A inside its body P will
occur inside the same concurrent activity, and therefore all the corresponding
calls to process Ad will have the same context G and k. This enables to translate
each π-calculus agent definition into a finite number of Lotos NT processes.

Pi-calculus specification. The π-calculus agent occurring at the top-level of
a specification is translated in a context consisting of the gates Gpub and Gpriv

(which model the communications on public and private channels, respectively)
and a concurrent activity with identifier 1.

π2lnt(P) = par Gpriv in t(P, {Gpub , Gpriv}, 1) || stop end par

The translation of action prefix and channel creation operator (see above) pro-
duces extra synchronizations on gate Gpriv , which must be forbidden in order to
reflect that the environment of the π-calculus agent is not aware of the private
channels of P . This is done by a synchronization on Gpriv with “stop”, the sim-
plest environment not aware of private channels, added at the top-level of the
resulting Lotos NT term.

Correctness and complexity of the translation. While devising the trans-
lation, we sought to preserve the behaviour by ensuring a one-to-one corre-
spondence between the transitions performed by the π-calculus agent and those
performed by the Lotos NT term. The actions α of the agent are related to
Lotos NT actions by the function h(α, G, k), where G is a gate name and k ≥ 1:

α h(α,G, k)

τ i

xy G !x !y !k ?r:Nat

x(z) G !x !z !k ?r:Nat where ¬is public(z)

xy G !x ?y:Chan ?s:Nat !k

We also define the set Ck
def= {2l · k + r | l ≥ 0 ∧ r < 2l}, which represents

the set of concurrent activity identifiers generated as children of activity k. The
following proposition states the correctness of the translation.

Proposition 1 (Behaviour preservation). Let P be a π-calculus agent, G a
set of Lotos NT gates, and k ≥ 1. Then, for every action α and agent P ′:

P
α→ P ′ iff ∃k′ ∈ Ck . ∀G ∈ G . t(P, G, k)

h(α,G,k′)→ t(P ′, G, k).

The proof of this proposition (omitted here due to space limitations) is by in-
duction on the depth of the derivation leading to the transition P

α→ P ′. When

Translating Pi-Calculus into LOTOS NT 237

translating a top-level π-calculus agent P in the context given by {Gpub, Gpriv}
and activity identifier 1 (see the rule for π-calculus specification), Proposition 1
and the semantics of the “par” operator ensure that each internal transition of
P is mapped to one internal transition of the Lotos NT term and each com-
munication on a public channel corresponds to an action on gate Gpub . On the
other hand, since the synchronizations on Gpriv are blocked, there are no com-
munications between P and its environment along the private channels of P .
Thus, every action performed by a top-level π-calculus agent is mapped into a
single action (either i, or an action on Gpub) of the resulting Lotos NT term.

In order to estimate the complexity of the translation, we calculate the size of
the output Lotos NT term w.r.t. the size |P | of the input π-calculus agent P .
The size is defined as the number of operators contained in the Lotos NT term
and in the π-calculus agent, respectively. The definition of type Chan has a size
linear w.r.t. |P | and each translation rule given above invokes the translation t
only once for each operand of P . The only sources of increase in size are the
translation rules for action prefixes and for agent definitions. In the worst case,
the former rule expands each action of P into |G|max actions, and the latter
duplicates the definition of an agent as many times as |G|max , the maximum
size of the set G. Assuming that all nestings of parallel operators inside P are
arranged to form balanced binary trees, |G|max is bounded by O(log |P |), which
makes the size of the whole Lotos NT term proportional to O(|P | · log |P |).

4 Tool Support: Pic2Lnt

We developed an automatic translator tool from π-calculus to Lotos NT,
named Pic2Lnt, implemented using the Syntax+Traian compiler construc-
tion technology [11]. It consists of about 900 lines of Syntax code, 2, 300 lines
of Lotos NT code, and 500 lines of C code. Although the π-calculus version
used in Sections 2 and 3 to illustrate the translation is monadic, the Pic2Lnt

translator implements a polyadic version of the π-calculus, by exploiting the fact
that Lotos NT allows the communication of multiple values on the same gate.
The concrete syntax of polyadic π-calculus accepted by Pic2Lnt subsumes the
syntax implemented in Mwb, with the restriction to finite control agents. Fig-
ure 3 gives an overview of the tool chain that makes possible the verification of
π-calculus specifications using the Cadp toolbox [12].

We applied Pic2Lnt on a benchmark of π-calculus specifications, which in-
cludes most of the examples provided with Mwb (except those with self-recursion
along the parallel operator), as well as unitary tests that we wrote ourselves. Our
benchmark currently contains 160 files, which consist of about 2, 000 lines of π-
calculus and were translated in about 23, 000 lines of Lotos NT. This expansion
in size is caused partly by the complexity of the translation (estimated at the
end of Section 3) and partly by the fact that Lotos NT is more verbose than
the π-calculus (e.g., Lotos NT requires more keywords, gates have to be de-
clared explicitly and passed as parameters to each process call, variables must
be declared before usage, etc.).

238 R. Mateescu and G. Salaün

Pic2Lnt Lnt2Lotos

.pic pic2lnt.t

.lnt .lotos Open/Cæsar

Cadp tools

Lnt.Open

Fig. 3. Overview of the translation and verification process

Once a π-calculus specification is translated into Lotos NT, the Lnt.Open

tool connects, by means of an intermediate translation into Lotos (the pic2lnt.t
file contains the external C definition of the function new id()), the resulting
specification to the Open/Cæsar environment [10], which gives access to all the
state-of-the-art on-the-fly verification tools of Cadp. In particular, one can use
the Evaluator 4.0 model checker [17] to verify temporal properties specified
in Mcl (an extension of alternation-free μ-calculus with regular expressions,
data-based constructs, and fairness operators) involving channel names and/or
data values present on transition labels. The counterexamples provided by the
model checker are translated back into the π-calculus format by using the label
renaming features provided by Cadp.

5 Case Study: A Dispatcher Web Service

With the recent advent of Web services, the π-calculus has found a new appli-
cation area. Many works have focused on the application of the π-calculus for
modelling Web services and their composition, see e.g., [7,14,25]. As far as imple-
mentation languages are concerned, Bpel is an Xml-based executable language
for implementing Web services orchestrations, and its specification [5] includes
some dynamic communication primitives, namely endpoint references. As writ-
ten in the Bpel specification: “An endpoint reference makes it possible in Bpel

to dynamically select a provider for a particular type of service and to invoke
their operations”.

In this section, we present an example of Web service (a dispatcher) involving
dynamicity in the system architecture. This service receives requests from some
clients, and depending on the product searched by the client, forwards this re-
quest to the adequate server. The server receives this request from the dispatcher
as well as a private channel (x), and uses this new channel to interact directly
with the client. First, it sends to him/her some information about the product
(e.g., price, availability, etc.) and next it receives the client’s final decision (pur-
chase or refuse). The client stops as soon as (s)he accepts the purchase. We show

Translating Pi-Calculus into LOTOS NT 239

below the π-calculus specification of a system composed of one client and three
servers selling different products (identified by a, b, c). In the specification, we
use four private channels (req, a, b, and c) and three public channels (request,
purchase, and refuse). Polyadic emissions are enclosed between angle brackets.

Main = (ν req , a, b, c)(Client(req , a, b, c) | Dispatcher (req) |
Server (a) | Server(b) | Server (c))

Client(req , a, b, c) = (νx)(request a.req〈a, x〉.ClientAux(req , a, a, b, c, x)) +

(νx)(request b.req〈b, x〉.ClientAux (req , b, a, b, c, x)) +

(νx)(request c.req〈c, x〉.ClientAux(req , c, a, b, c, x))

ClientAux (req , k, a, b, c, x) = x(info).(x purchase .purchase k.0 +

x refuse.refuse k.Client(req , a, b, c))

Dispatcher (req) = req(k, x).k x.Dispatcher (req)

Server(k) = k(x).x info.x(decision).Server (k)

Figure 4(a) shows the Lts generated using the Lnt.Open tool from the
Lotos NT specification (an excerpt of which can be found in Appendix A)
produced by the Pic2Lnt translator. The transition labels have been renamed
using Cadp to keep only the relevant information about channels. The system
starts emitting a request for one of the three possible products (state 0). Then,
the dispatcher interacts with the concerned server, and this server with the client.
This corresponds to sequences of τ transitions in the Lts because private inter-
actions result in hidden transitions according to the π-calculus semantics. At
that point of the execution, if the client decides to purchase the product (states
13, 15, 17), the system terminates (state 19). If the client decides to refuse the
purchase (states 14, 16, 18), state 20 is reached where the client can submit
another request.

Next, we illustrate how the Evaluator 4.0 model checker [17] of Cadp can be
used for analyzing this simple example. This tool accepts as input Mcl formulas

17

0

18

1

20

19

2
3

4 56

7 8

10

9

1112

13 14 1516

REQUEST !a

i

i

REQUEST !c

ii

PURCHASE !c

i

REQUEST !b

i

PURCHASE !b

i REFUSE !c i

REQUEST !a

i
REFUSE !b

i

i

PURCHASE !a

i

REFUSE !a

i

REQUEST !c

i

REQUEST !b

i

(a)
0

4

1

5

26

3

REQUEST !a

i

i

REQUEST !a

i

REFUSE !a

i

(b)

Fig. 4. (a) Lts of the dispatcher specification. (b) Lasso-shaped counterexample.

240 R. Mateescu and G. Salaün

expressing properties on actions but also on data parameters. In particular, for
Lts models generated from π-calculus specifications, Mcl makes it possible
to specify properties about channels appearing either as subject or object of a
communication. For example, the Mcl formula below expresses that each request
submitted by the client is eventually answered positively:

[true∗.{request ?x:String}] μX.(〈true〉true ∧ [¬{purchase !x}]X)

The first box modality matches all transition sequences starting at the initial
state of the Lts and ending with a request action. The channel value (encoded as
a character string) communicated via request is captured in the x variable, which
is reused later on in the minimal fixed point formula expressing the inevitable
reachability of a purchase action involving x. This formula fails on the Lts in
Figure 4(a) because a client can indefinitely refuse a product, as illustrated in
Figure 4(b) by the lasso-shaped counterexample exhibited by Evaluator 4.0.

The other Mcl formula below states that no positive or negative answer can
be delivered for product a without a corresponding request being issued:

[(¬{request !”a”})∗.{purchase !”a”} ∨ {refuse !”a”}]false
This box modality forbids the existence of a sequence consisting of (0 or more)
actions different from a request for a, followed by a purchase or a refuse action
concerning a. Using Evaluator 4.0, we checked that this property holds on the
Lts shown in Figure 4(a).

6 Related Work

During the past two decades, various approaches were followed for analyzing π-
calculus specifications automatically. One of the first analysis tools specifically
dedicated to the π-calculus was the Mobility Workbench (Mwb) [28], developed
in the 90s for manipulating and analyzing mobile concurrent systems. The main
features of Mwb are checking open bisimulation equivalences [26] and modal
μ-calculus formulas using a sequent-calculus based model checker.

Other works considered automata-based representations of finite control π-
calculus agents, with the goal of reusing the equivalence checkers and model
checkers available for automata. Several decidability results about the strong
and weak equivalence of π-calculus agents under certain assumptions on name
spaces were presented in [6]. In a similar line of work, [21] introduce an irre-
dundant unfolding notion that enables to check efficiently bisimilarity of finitary
agents using an ordinary partition refinement algorithm, and also to minimize
single agents. This line of work was continued in [8] by associating ordinary
finite state automata to equivalent π-calculus agents using HD-automata as in-
termediate representation. This enabled to reuse the automata-based verification
environment Jack for analyzing mobile processes, both by means of equivalence
checking (using the Mauto tool) and by model checking formulas specified in π-
logic (a variant of modal μ-calculus dedicated to the π-calculus), by translating
them into Actl and applying the Amc model checker of the Jack environment.

Translating Pi-Calculus into LOTOS NT 241

A logical encoding of the operational semantics of the π-calculus into Mmc

processes was proposed in [30]. Mmc is a model checker for mobile systems
which builds on Xmc, a model checker for Milner’s value passing Ccs imple-
mented using the Xsb tabled logic-programming engine. This connection allows
the specification of correctness properties in an expressive subset of the π-logic
and their verification using Mmc. A probabilistic / stochastic version of the π-
calculus was considered in [23], where an automated procedure was proposed
for generating first the corresponding symbolic transition graphs, and second
Markov decision processes or continuous-time Markov chains. These models can
be used as input of existing probabilistic model checkers such as Prism, where
properties are typically specified using the temporal logics Pctl and Csl.

Compared to these works, we chose to follow here a different approach, by
translating a π-calculus specification into an equivalent description in a high-
level language equipped with tools for the generation and manipulation of the
underlying transition system. This translation-based approach was subject to
several proposals concerning various languages. In [2], the authors show how
to map the π-calculus into the Monstr graph rewriting language. This work,
which was not targeted to verification purposes, illustrated the convenience of
representing an evolving network of communicating agents in a graph manip-
ulation formalism, but also pointed out the heavy cost in practice of faithfully
implementing the communication primitive of mobile process calculi.

Another way of analyzing π-calculus specifications, proposed independently
in [29,27], consists in translating them in Promela and verifying Ltl formulas
using the Spin model checker. As regards channel mobility, Promela is suitable
as a target language because it allows channel names to be communicated be-
tween processes as ordinary data values. The rule-based translation of [29] was
implemented in the Pi2Promela tool and successfully applied to model the
Bluetooth service discovery protocol. In [27] a different translation is proposed
(only for the monadic π-calculus) and implemented as an add-on to the Mwb

tool. The verification of Ltl properties on the generated Promela code requires
the manual specification of an environment whose role is to close the Promela

description and to define the variables needed in the Ltl formulas. Therefore,
as observed in [27], the verification approach based on translation to Promela

cannot be completely automated. Moreover, no attempt is made in [29,27] to
justify that the translations proposed preserve the π-calculus semantics. Indeed,
Promela is not equipped with an Lts semantics and the underlying state space
model is suited mainly for Ltl model checking in the state-based setting, whereas
the π-calculus semantics relies on Ltss and bisimulation relations.

Finally, another group of works aimed at modelling the mobility in the Lotos

specification language. A first method for modelling dynamic communication
structures by encoding link names as data values was proposed in [9], together
with a sufficient condition on the communication structures (binary group com-
munication) guaranteeing that the modelling is possible. This method is illus-
trated in [9] by specifying the handover procedure implemented in a mobile
telecommunication network. In [22], the authors introduce M-Lotos, a mobile

242 R. Mateescu and G. Salaün

extension of Lotos based on the π-calculus, which preserves the other Lotos

specification styles. An operational semantics of M-Lotos and a notion of early
bisimulation are defined, and the usage of the language is illustrated by several
examples, including an Odp trader.

Our translation from π-calculus to Lotos NT makes the state-of-the-art ver-
ification tools of Cadp directly available for analyzing π-calculus specifications:
μ-calculus model checking with Evaluator [17], equivalence checking (branch-
ing, weak, etc.) with Bisimulator [3], compositional and distributed verifica-
tion, rapid prototyping, etc.

7 Conclusion and Future Work

We have presented a translation from the finite control fragment of the π-calculus
to Lotos NT, which is one of the input languages of the Cadp toolbox. Con-
sequently, this translation makes it possible to use all the state-of-the-art ver-
ification tools of Cadp to analyze π-calculus specifications. The translation is
completely automated by the Pic2Lnt tool and validated on many examples.
The restriction to the finite control fragment of the π-calculus, first considered
in [21,6], does not hamper the practical usability of the language: even if the
number of π-calculus agents must be statically known, the mobility of commu-
nication channels can be fully exploited.

We plan to continue our work by extending the π-calculus with data-handling
features, with the goal of widening its possible application domains. This can
be done by extending the language grammar and the translation to support
typed variables and data expressions. As language for describing data, a natural
candidate would be Lotos NT itself: indeed, the data types and functions used
in the π-calculus specification could be described in Lotos NT and directly
incorporated to the Lotos NT code produced by translation. This would result
in an applied π-calculus, such as the variant of the calculus proposed in [1] for
the verification of security properties.

References

1. Abadi, M., Blanchet, B., Fournet, C.: Just Fast Keying in the Pi-Calculus. ACM

Trans. Inf. Syst. Secur. 10(3) (2007)

2. Banach, R., Balazs, J., Papadoupolous, G.: A Translation of the Pi-Calculus Into

MONSTR. J. UCS 1(6), 339–398 (1995)

3. Bergamini, D., Descoubes, N., Joubert, C., Mateescu, R.: BISIMULATOR: A Mod-

ular Tool for On-the-Fly Equivalence Checking. In: Halbwachs, N., Zuck, L.D.

(eds.) TACAS 2005. LNCS, vol. 3440, pp. 581–585. Springer, Heidelberg (2005)

4. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Lang, F., Serwe, W., Smed-

ing, G.: Reference Manual of the LOTOS NT to LOTOS Translator (Version 5.0).

In: INRIA/VASY, 107 pages (March 2010)

5. OASIS Technical Committee. Web Services Business Process Execution Language

Version 2.0 (2007)

6. Dam, M.: On the Decidability of Process Equivalences for the pi-Calculus. Theor.

Comput. Sci. 183(2), 215–228 (1997)

Translating Pi-Calculus into LOTOS NT 243

7. Deng, S., Wu, Z., Zhou, M., Li, Y., Wu, J.: Modeling Service Compatibility with

Pi-Calculus for Choreography. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER

2006. LNCS, vol. 4215, pp. 26–39. Springer, Heidelberg (2006)

8. Ferrari, G.L., Ferro, G., Gnesi, S., Montanari, U., Pistore, M., Ristori, G.: An

Automated Based Verification Environment for Mobile Processes. In: Brinksma,

E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 275–289. Springer, Heidelberg (1997)

9. Fredlund, L.-Å., Orava, F.: Modelling Dynamic Communication Structures in LO-

TOS. In: Proc. of FORTE 1991. IFIP Transactions, vol. C-2, pp. 185–200. North-

Holland, Amsterdam (1991)

10. Garavel, H.: OPEN/CÆSAR: An Open Software Architecture for Verification, Sim-

ulation and Testing. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 68–84.

Springer, Heidelberg (1998)

11. Garavel, H., Lang, F., Mateescu, R.: Compiler Construction using LOTOS NT. In:

Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, pp. 9–13. Springer, Heidelberg

(2002)

12. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A Toolbox for the

Construction and Analysis of Distributed Processes. In: Damm, W., Hermanns, H.

(eds.) CAV 2007. LNCS, vol. 4590, pp. 158–163. Springer, Heidelberg (2007)

13. Garavel, H., Sighireanu, M.: A Graphical Parallel Composition Operator for Pro-

cess Algebras. In: Proc. of FORTE/PSTV 1999. IFIP, pp. 185–202. Kluwer Aca-

demic Publishers, Dordrecht (October 1999)

14. Lucchi, R., Mazzara, M.: A Pi-Calculus based Semantics for WS-BPEL. J. Log.

Algebr. Program. 70(1), 96–118 (2007)

15. ISO/IEC. Enhancements to LOTOS (E-LOTOS). International Standard

15437:2001, International Organization for Standardization, Genève (September

2001)

16. ISO/IEC. LOTOS — A Formal Description Technique Based on the Temporal

Ordering of Observational Behaviour. International Standard 8807, International

Organization for Standardization, Genève (September 1989)

17. Mateescu, R., Thivolle, D.: A Model Checking Language for Concurrent Value-

Passing Systems. In: Cuellar, J., Maibaum, T., Sere, K. (eds.) FM 2008. LNCS,

vol. 5014, pp. 148–164. Springer, Heidelberg (2008)

18. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs

(1989)

19. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. Cambridge Uni-

versity Press, Cambridge (1999)

20. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes. Information

and Computation 100(1), 1–77 (1992)

21. Montanari, U., Pistore, M.: Checking Bisimilarity for Finitary Pi-Calculus. In:

Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 42–56. Springer,

Heidelberg (1995)

22. Najm, E., Stefani, J.-B., Février, A.: Towards a Mobile LOTOS. In: FORTE 1995.

IFIP Conference Proceedings, vol. 43, pp. 127–142. Chapman & Hall, Boca Raton

(1995)

23. Norman, G., Palamidessi, C., Parker, D., Wu, P.: Model Checking Probabilistic

and Stochastic Extensions of the Pi-Calculus. IEEE Trans. Software Eng. 35(2),

209–223 (2009)

24. Parrow, J.: An introduction to the pi-calculus. In: Handbook of Process Algebra,

ch. 8, pp. 479–544. North-Holland, Amsterdam (2001)

25. Puhlmann, F.: Why Do We Actually Need the Pi-Calculus for Business Process

Management? In: Proc. of BIS 2006, GI. LNI, vol. 85, pp. 77–89 (2006)

244 R. Mateescu and G. Salaün

26. Sangiorgi, D.: A Theory of Bisimulation for the pi-Calculus. Acta Inf. 33(1), 69–97

(1996)

27. Song, H., Compton, K.J.: Verifying Pi-Calculus Processes by Promela Translation.

Technical Report CSE-TR-472-03, University of Michigan, USA (2003)

28. Victor, B., Moller, F.: The Mobility Workbench – A Tool for the π-Calculus. In:

Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg

(1994)

29. Wu, P.: Interpreting Pi-Calculus with Spin/Promela. In: Proc. of NCTCS 2003.

Computer Science, vol. 8(Suppl.), pp. 7–9 (2003)

30. Yang, P., Ramakrishnan, C.R., Smolka, S.A.: A Logical Encoding of the Pi-

Calculus: Model Checking Mobile Processes using Tabled Resolution. STTT 6(1),

38–66 (2004)

A Dispatcher Web Service Translated to LOTOS NT

We show below an excerpt of the Lotos NT code (processes MAIN and Dis-
patcher 4 corresponding to the agents Main and Dispatcher) generated by the
Pic2Lnt translator from the π-calculus specification of the dispatcher Web ser-
vice given in Section 5. The names of Lotos NT processes are indexed by the
number of gates in G (not counting the Gpub and Gpriv gates).

process MAIN [PUBLIC,PRIVATE:any] is

var req, a, b, c:Chan in

req:=req(new_id()); a:=a(new_id()); b:=b(new_id()); c:=c(new_id());

hide G0:any in par G0 in hide G1:any in par G1 in

hide G2:any in par G2 in hide G3:any in par G3 in

Client_4 [PUBLIC,PRIVATE,G0,G1,G2,G3] (req,a,b,c,2)

|| Dispatcher_4 [PUBLIC,PRIVATE,G0,G1,G2,G3] (req,6) end par end hide

|| Server_3 [PUBLIC,PRIVATE,G0,G1,G2] (a,14) end par end hide

|| Server_2 [PUBLIC,PRIVATE,G0,G1] (b,30) end par end hide

|| Server_1 [PUBLIC,PRIVATE,G0] (c,31) end par end hide

end var

end process

process Dispatcher_4[PUBLIC,PRIVATE,G0,G1,G2,G3:any](req:Chan,pid:Nat) is

select var k,x:Chan, s:Nat in

G0 (!req, ?k, ?x, ?s, !pid) [] G1 (!req, ?k, ?x, ?s, !pid) []

G2 (!req, ?k, ?x, ?s, !pid) [] G3 (!req, ?k, ?x, ?s, !pid) []

PUBLIC (!req, ?k, ?x, !false) where is_public(req) []

PRIVATE (!req, ?k, ?x, !false) where not(is_public(req))

end select ;

select var r:Nat in

G0 (!k, !x, !pid, ?r) [] G1 (!k, !x, !pid, ?r) []

G2 (!k, !x, !pid, ?r) [] G3 (!k, !x, !pid, ?r) []

PUBLIC (!k, !x, !true) where is_public(k) []

PRIVATE (!k, !x, !true) where not(is_public(k))

end select ; Dispatcher_4 [PUBLIC,PRIVATE,G0,G1,G2,G3] (req,pid)

end process

Systematic Translation Rules from astd to
Event-B

Jérémy Milhau1,2, Marc Frappier1, Frédéric Gervais2, and Régine Laleau2

1 GRIL, Département Informatique, Université de Sherbrooke,

2500 boulevard université, Sherbrooke J1K 2R1, Québec, Canada

{Jeremy.Milhau,Marc.Frappier}@USherbrooke.ca
2 Université Paris-Est, LACL, IUT Sénart Fontainebleau,

Département Informatique, Route Hurtault, 77300 Fontainebleau, France

{Frederic.Gervais,Laleau}@u-pec.fr

Abstract. This article presents a set of translation rules to generate

Event-B machines from process-algebra based specification languages

such as astd. Illustrated by a case study, it details the rules and the

process of the translation. The ultimate goal of this systematic trans-

lation is to take advantage of Rodin, the Event-B platform to perform

proofs, animation and model-checking over the translated specification.

Keywords: Process algebra, Translation rules, Systematic translation,

astd, Event-B.

1 Introduction

Information Systems (IS) are taking an increasingly important place in today’s
organizations. As computer programs connected to databases and other systems,
they induce increasing costs for their development. Indeed, with the importance
of the Internet and their high computer market penetration, IS have become the
de-facto standard for managing most of the aspects of a company strategy. In
the context of IS, formal methods can help improving the reliability, security
and coherence of the system and its specification. The apis (Automated Pro-
duction of Information system) project [7] offers a way to specify and generate
code, graphical user interfaces, databases, transactions and error messages of
such systems, by using a process algebra-based specification language. However,
process algebra, despite their formal aspect, are not as easily understandable
as semi-formal graphical notations, such as UML [13]. In order to address this
issue, a formal notation combining graphical elements and process algebra was
introduced: Algebraic State Transition Diagrams (astd) [8]. Using astd, one
can specify the behavior of an IS. The interpreter iastd [15] can efficiently ex-
ecute astd specifications. However, there is no tool allowing proof of invariants
or property check over an astd specification. This paper aims to define sys-
tematic translation rules from an astd specification to Event-B [2] in order to
model check or prove properties using tools of the RODIN platform [3]. More-
over, translation results will allow to bridge other process algebras (like eb

3 [6]

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 245–259, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

246 J. Milhau et al.

or CSP [11]) with Event-B as they share a similar semantics with astd. Event-B
is first introduced to the reader in Section 2. An overview of astd and a case
study will be then presented. This case study will help readers unfamiliar with
astd to discover the formalism in Section 3. The Event-B machine resulting
from translation rules applied to this case study will be described as well as
rules and relevant steps of translation in Section 4. Finally, future work and
evolution perspectives will be presented.

2 Event-B Background

Event-B [2] is an evolution of the B method [1] allowing to model discrete systems
using a formal mathematical notation. The modeling process usually follows
several refinement steps, starting from an abstract model to a more concrete one
in the next step. Event-B specifications are built using two elements: context
and machine. A context describes the static part of an Event-B specification. It
consists of declarations of constants and sets. Axioms, which describe types and
properties of constants and sets, are also included in the context. A machine is
the dynamic part of an Event-B specification. It has a state consisting of several
variables that are first initialized. Then events can be executed to modify the
state. An event can be executed if it is enabled, i.e. all the conditions prior
to its execution hold. Theses conditions are named guards. Among all enabled
events, only one is executed. In this case, substitutions, called actions, are applied
over variables. All actions are applied simultaneously, meaning that an event is
atomic. The state resulting from the execution of the event is the new state of
the machine, enabling and disabling events. Alongside the execution of events,
invariants must hold. An invariant is a property of the system written using a
first-order predicate on the state variables. In order to ensure that invariants
hold, proofs are performed over the specification.

3 astd Background

astd is a graphical notation linked to a formal semantics allowing to specify
systems such as IS. An astd defines a set of traces of actions accepted by the
system. astd actions correspond to events in Event-B. Event-B actions and
substitutions, as they modify the state of an Event-B machine, can be binded to
the change of state in astd. The astd notation is based on operators from the
eb

3 [9] method and was introduced as an extension of Harel’s Statecharts [10]. An
astd is built from transitions, denoting action labels and parameters, and states
that can be elementary (as in automata) or astd themselves. Each astd has
a type associated to a formal semantics. This type can be automata, sequence,
choice, Kleene closure, synchronization over a set of action labels, choice or
interleaving quantification, guard and astd call. One of astd most important
features is to allow parametrized instances and quantifications, aspects missing
from original Statecharts. An astd can also refer to attributes, which are defined
as recursive functions on traces accepted by the astd, as in the eb

3 method.

Systematic Translation Rules from astd to Event-B 247

Such a recursive function compares the last action of the trace and maps each
possible action to a value of the attribute it is defining. Computing this value
may imply to call the function again on the remaining of the trace.

3.1 astd Operators

Several operators, or astd types, are used to specify an IS. We detail them in the
following paragraphs. Operators will be further illustrated in Section 3.2 with
the introduction of a case study.

Automata. In an astd specification, one can describe a system using hierar-
chical states automata with guarded transitions. Each automata state is either
elementary or another astd of whichever type. Transitions can be on states of
the same depth, or go up or down of one level of depth. A transition decorated
by a bullet (•) is called a final transition. A final transition is enabled when the
source state is final. As in Statecharts, an history state allows the current state
of an automata astd to be saved before leaving it in order to reuse it later.

Sequence. A sequence is applied to two astd. It implies that the left hand
side astd will be executed and will reach a final state before the right hand
side astd can start. There is no immediate equivalent of this operator in Harel’s
Statecharts, but its behavior can be reproduced with guards and final transitions.
A sequence astd is noted with a double arrow ⇒.

Choice. A choice, noted | allows the execution of only one of its operands, like
a choice in regular expressions or in process algebras. The choice of the astd

to execute is made on the first action executed. After the execution of the first
action, the chosen astd is kept until it terminates its execution. If both operands
of a choice astd can execute the first action, then a nondeterministic choice is
made between the two astd. The behavior of a choice astd can be modeled in
Statecharts using internal transition from an initial state, in a similar way to
automata theory with ε transitions.

Kleene Closure. As in regular expressions, a Kleene closure astd noted ∗ allows
its operand to be executed zero, one or several times. When the state of its
operand is final, a new iteration can start. There is no similar operator in Stat-
echarts, but the same behavior can be reproduced with guards and transitions.

Synchronization Over a Set of Action Labels. As the name suggests, this operator
allows the definition of a set of actions that both operands must execute at

the same time. It is similar to Roscoe’s CSP parallel operator
‖
X. There are

some similarities with AND states of Statecharts and synchronization astd. A
synchronization over the set of actions Δ is noted |[Δ]| . We derive two often used
operators from synchronization : interleaving, noted �, is the synchronization
over an empty set ; parallel, noted ‖, synchronizes astd over the set of common
actions of its operands, like Hoare’s CSP ‖.

248 J. Milhau et al.

Quantified Interleaving. A quantified interleaving models the behavior of a set
of concurrent astd. It sets up a quantification set that will define the number
of instances that can be executed and a variable that can take a value inside
the quantification set. Each instance of the quantification is linked to a sin-
gle value, two different instances have two different values. This feature lacks
in Statecharts, as we have to express distinctly each instance behavior, but
was proposed as an extension and named “parametrized-and” state by Harel.
A quantified interleaving of variable x over the set T is noted � x : T.

Quantified Choice. A quantified choice, noted | x : T, lets model that only one
instance inside a set will be executed. Once the choice is made, no more instances
can be executed. As in quantified synchronization, the instance is linked to one
value of a variable in the quantification set. An extension of Statecharts named
a similar feature “parametrized-or” state.

Guard. Usually, guards are applied to transitions. With the guard astd, one can
forbid the execution of an entire astd until a condition holds. The predicate of
a guard can use variables from quantifications and attributes. A predicate P (x)
guarding an astd is noted =⇒ P (x)

astd call. An astd call simply links to other parts of the specification using the
name of another astd. The same astd can be called several times, in different
locations of the specification. It allows the designer to reuse astd in the same
specification and helps synchronize processes. An astd call is made by writing
the name of the astd called and its parameters (if any).

3.2 An astd Case Study

In order to present features and expressiveness of the astd notation to the
reader, Fig. 1 introduces the case study that will be used throughout this pa-
per. This astd models an information system designed to manage complaints
of customers in a company. In this system, each complaint is issued from a
customer relatively to a department. This example is inspired from [19]. The
main astd, whose type is a synchronization over common actions, describes
the system as a parallel execution of interleaved customers and departments
processes. The IS lifecycle of a given customer is described by the parametrized
astd customer (u), the same applies for the description of the company de-
partments in the astd department (d). In the initial state, a customer or a
department must be created. Then complaints regarding these entities can be
issued. This is described using an astd call. The final transition means that the
event can be executed if the source state is final. In our case, in order to delete
a customer or a department, any related complaints must be closed. Finally, the
astd describing the checking and processing of a complaint c issued by customer
c about department d is given by complaint (c, d, u). After registering a com-
plaint in the system, it must be evaluated by the company and a questionnaire
is sent to the customer in order to detail his/her complaint. The specification

Systematic Translation Rules from astd to Event-B 249

Fig. 1. An astd specification describing a complaint management system

takes into account the possibility that the customer does not answer the ques-
tionnaire with the Timeout(c) event. Then, if the complaint is accepted and the
questionnaire received or timed out, a check is performed. In case of refusal of
the complaint, it is archived, but it can be reactivated later. The only final state
is state s8, meaning that the complaint was archived (solved or not). In this
specification, no attribute modification is performed. An astd only describes
traces and has no consequences on updates to be performed against IS data,
such as attributes that are stored in databases. However, an astd can access
attribute values to use them in guards, as shown in both Archive(c) actions.

3.3 Motivations

astd are not the only way to specify IS behavior. The UML-B [18] method in-
troduces a behavior specification in the form of a Statecharts. Using Statecharts,
it is easy to describe an ordered sequence of actions whereas using B, it is eas-
ier to model interleaving events. A systematic translation of Statecharts into B

250 J. Milhau et al.

machines is proposed by [17]. Compared to Statecharts, astd offer additional
operators to combine astd in sequence, iteration, choice and synchronisation.
When a UML-B specification models a system, it can only describe the life-cycle
of a single instance of a class whereas astd specification models the behavior
of all instances of all classes of the system. A new version of UML-B [14] in-
troduces the possibility to refine class and Statecharts as part of the modeling
process, and can translate it into Event-B. The UML-B approach can describe
the evolution of entity attributes using B substitutions, a feature that astd

lacks. csp2B [4] provides better proofs (on the B machine) and model checking
(on the CSP side) tools than Statecharts but lacks the visual representation of
the specification given by UML Statecharts. It is also limited to a subset of CSP
specifications, where the quantified interleaving operator must not be nested.
astd aims to be a compromise in both visual and synchronization aspects. On
the other hand, astd lacks proofs and model checking allowed by the B side
of UML-B and csp2B approaches. In order to answer this issue, a systematic
translation of astd specifications into Event-B is proposed.

The choice between classical B and Event-B was made at an early stage by
comparing tools and momentum of both methods. It appears that community
efforts and tool development are currently focused on Event-B. Despite the fact
that classical B offers some convenient notation such as if / then statements or
operation calls, Event-B appeared as a good compromise for our efforts. Classical
B translation rules inspired by Event-B rules might be written.

4 Translation

Translation from astd to Event-B is achieved in several steps. Fig. 2 presents the
architecture of the translation process. A context derived from astd operators
introduces constants and sets needed to code their semantics. This context is the
same in all translations and is described by Table 1. It codes elements from the
semantics of all types of astd except automata, and is inspired of mathematical
definition of astd semantics. Constants, sets and axioms defined in this context
may be re-used in other part of the Event-B translation, hence this context is
extended by a translation specific context. Automata states are translated into
such a specific context since automata states depend on the astd specification

Fig. 2. The architecture resulting from the translation process

Systematic Translation Rules from astd to Event-B 251

Table 1. Event-B representation of astd states

astd state State domain Initial State

choice State ∈ { none, first, second } none

sequence State ∈ { left, right } left

Kleene closure State ∈ { neverExecuted , started } neverExecuted

synchronization - -

quantified choice State ∈ { notMade, made } �→ quantificationset notMade �→ 0

quantified synch State ∈ quantificationset → stateset initial for all

guard State ∈ {checked, notChecked } notChecked

astd call - -

to translate. For each astd, a variable and an invariant corresponding to its type
are created. The invariant associates the variable to the set of values it can take,
as defined in both contexts. In the following sections, we provide translation
rules for each astd type, generating appropriate contexts and machines.

4.1 Automata

The first part of automata translation concerns the static part, the context.
Several elements are introduced in the context: states, initial states, final states
and transition functions.

States. States from automata astd are represented as constants and grouped
into state sets in order to facilitate later use. Even hierarchical states are repre-
sented by a constant.

Initial States. Since an astd can be reset by the execution of a Kleene clo-
sure, initial states are defined as separate constants. They are also useful in the
initialisation event of the machine generated in next step of our translation.

Final Predicates. A final predicate is a function taking a state as argument and
returning true or false depending if the state is final or not. The number of
arguments depends on the type of the astd. This predicate is useful in the case
of final transitions, sequences or Kleene closures, when transitions are activated
if, and only if, a state is final. Hence, a final predicate is written for each astd

type in the context common to all translations.

Transition Functions. A transition function for each action label is generated.
It takes as argument the current state of an automata astd and returns the
resulting state. Transition functions are deterministic and partial.

The generated context for our case study defines 40 constants, 5 sets and
29 axioms. It is not presented here for the sake of conciseness. Then, for the
dynamic part, for each distinct action label in the translated automata astd, a
single event will be produced. If the action has a guard, a when clause i.e. a

252 J. Milhau et al.

Table 2. Automata astd to Event-B translation rules

Automata astd pattern Added to the context Modifications on the machine

SETS

StatesA

CONSTANTS

s0, s1

initA, isFinalA, TransE

AXIOMS

ax1 : partition(
StatesA, {s0}, {s1})

ax2 : initA = s0

ax3 : isFinalA = {s0 �→ FALSE ,
s1 �→ TRUE}

ax4 : TransE = {s0 �→ s1}

Event e =̂

any
x

where
g1 : x ∈ XSET

g2 : P(y)
g3 : StateA ∈

dom(TransE)
then

a1 : StateA :=
TransE (StateA)

end

CONSTANTS

isFinalB

AXIOMS

ax1 : isFinalB = . . .
// Depends
on B type

Event e =̂

where
g1 : isFinalB(StateB)

= TRUE

. . .

guard, is generated. If the astd action has arguments (in the case of quantified
variable for instance), an any clause is built accordingly and a guard specifying
a type for the variable is added. Then a guard testing that the execution of
the action is allowed i.e. the current state is in the domain of the transition
function of the event. The modification of the state is applied by generating a
then substitution.

Translation rules for automata astd are presented in Table 2. When a tran-
sition, an initial state or a final state is found, the first rule applies. In the
case of a final transition, the second rule then applies. In the second pattern
translation, the guard numbered g1 of Table 2 is added to event e that was
generated by applying first rule. In our case study, the second rule is applied for
the ProcessComplaint(c) action. The guard added in this case is described by
guard grdAutomata.

grdAutomata : isFinalProcessing(isFinalQuery(StateQuery(c)) �→
isFinalEvaluate(StateEval(c))) =true

Constants isF inalX and StateX refer to astd X in Fig. 1. An interleaved
state is final if, and only if, both of its operand states are final. For this reason,
guard grdAutomata checks if both states of Query and Evaluation astd are
final. A pair (x, y) is noted x $→ y in Event-B.

The action CreateCustomer(u) is translated into the event described below.
grd1 describes the set in which the parameter u can take its value. grd2 verifies

Systematic Translation Rules from astd to Event-B 253

that a customer is in a state of the domain of transition function TransCreate-
Customer. act1 describes the state update for action CreateCustomer(u): it only
modifies the state of customer u according to the transition function TransCre-
ateCustomer.

Event CreateCustomer =̂

any
u

where
grd1 : u ∈ USERSET
grd2 : StateCustomer(u) ∈ dom(TransCreateCustomer)

then
act1 : StateCustomer(u) := TransCreateCustomer(StateCustomer(u))

end

4.2 Sequence

Because of the number of possibilities to determine whether or not a sequence
can switch from left state to right state, an extra event is introduced. This
event is similar to an internal event of the IS and will verify that all the conditions
for the switch from left to right side to happen holds and then change the state
of the sequence. For example, if an astd named A is a sequence of astd B and
C, the generated event will be called switchSequenceA. Then, in order to ensure
that the current state allows the execution of every events of astd B and C,
a guard is added to each event of B and C to check if the state of astd A is
left or right respectively. As for automata, a final predicate must be generated
in the context for astd B state. Translation rule is described in the following
table.

Sequence astd pattern Modifications on the machine

Event switchSequenceA =̂

where
g1 : isFinalB(StateB) = TRUE

then
a1 : StateA := right

end

Event e =̂

where
g2 : StateA = left

. . .

Event f =̂

where
g3 : StateA = right

. . .

4.3 Choice

A choice astd can be in three states as described by the general astd context:
none when the choice is not made yet, first or second depending of the side
chosen. The translation rule for a choice astd is presented in the following table.
If an astd named A is a choice between astd B and C, then a guard and an

254 J. Milhau et al.

action are added to each event. Events from B will receive guard g1 and action
a1. A similar transformation of events from astd C is also needed with guard
g2 and action a2.

Choice astd pattern Modifications on the machine

Event e =̂

where
g1 : StateA = first ∨ StateA = none

. . .
then

a1 : StateA := first

. . .

Event f =̂

where
g2 : StateA = second ∨ StateA = none

. . .
then

a2 : StateA := second

. . .

4.4 Kleene Closure

When an iteration of a Kleene closure astd is completed, its operand must be
reset to initial state. For this reason, an additional event is generated. In the
IS, this event is internal and hidden, in the astd specification, the semantics off
Kleene operator handles the process, but in Event-B the reset must be described.
This event will be activated when the its operand is final, and will reinitialize
all sub-states in the hierarchy. The following table details the resulting Event-B
machine.

Kleene astd pattern Modifications on the machine

Event lambdaA =̂

where
g1 : isFinalB(StateB) = TRUE

then
a1 : StateB := initB

And all sub states . . .
end

Event e =̂

then
a2 : StateA := started

. . .

As presented for automata and sequence, a final predicate must be generated
in the context for astd under the Kleene closure operator.

4.5 Synchronization Over a Set of Action Labels

For actions that are not synchronized, nothing is introduced or modified by the
translation of synchronization astd. This is the case for interleaving astd and
action labels not common to both operands of the parallel operator. In the case
of a synchronized action, guards from both operand must be put in conjunction,
and substitutions applied conjointly.

Systematic Translation Rules from astd to Event-B 255

Synchronization astd pattern Modifications on the machine

Event e =̂

where
gB : guardsfromBastd
gC : guardsfromCastd

. . .
then

a1 : StateB := . . .
a2 : StateC := . . .

. . .

In our case study, the only synchronization astd is main. Common actions of
both sides are only actions appearing in the astd complaint (c, d, u). For each
one of the generated events of complaint (c, d, u), the guards readyInCustomer
and readyInDepartment must hold. cc and dc states correspond to states where
the customer and the department respectively are in the complaint quantified
interleaving astd.

readyInCustomer : StateCustomer(AssociationCustomer(c)) = cc

readyInDepartment : StateDepartment(AssociationDepartment(c)) = dc

Theses guards check that the customer associated to the complaint c is in the
state allowing him to complain i.e. created and not deleted, and if the department
associated to the complaint c exists in the IS.

4.6 Quantified Interleaving

The quantified interleaving does not introduce additional constraints to events.
The following table shows how variables induced by quantified interleaving are
handled in events.

Quantified interleaving astd pattern Modifications on the machine

Event e =̂

any
x

where
g1 : x ∈ XSET

g2 : StateA(x) = . . .
. . .

then
a1 : StateA(x) := . . .

. . .

Entities and associations patterns are common in eb
3 and astd as mentionned

in [9]. Such pattern are expressed using interleaving quantifications. In order to
code in Event-B the association between several entities, a table variable must
register their link. In our case study, we can see that a 1-n association between

256 J. Milhau et al.

a customer and a complaint is created. When a complaint is created, an unique
customer u is linked to the complaint c. The same applies to the department
associated to the complaint. An Event-B variable is created in order to save the
link between a complaint and a customer (respectively a department) and is
updated whenever a complaint is registered in the system.

4.7 Quantified Choice

Similarly to the choice operator, the quantified choice implies that for all events
using it, a check is performed about whether the choice was made or not. In the
case of an action labeled e and taking x as a parameter, where x is the variable of
a quantified choice astd named A then the guard g2 described in the following
table must hold. The substitution a1 must also be executed in case this is the
first call of an action with this quantified variable. All the events of astd A will
be modified to include this guard and substitution.

Quantified choice astd pattern Modifications on the machine

Event e =̂

any
x

where
g1 : x ∈ XSET

g2 : StateA = (qNone �→ 0)
∨ StateA = (qSome �→ x)
. . .

then
a1 : StateA := (qSome �→ x)

. . .

4.8 Guard

There are two cases for guard state: the guard was checked and held when we
executed an event ; the guard did not hold, and no event was executed. These
cases are handled with guard g1 and substitution a1 for a guard astd named
A guarded with predicate P (x). All the events of astd A will be modified to
include this guard and substitution.

Guard astd pattern Modifications on the machine

Event e =̂

any
x

where
g1 : StateA = checked ∨

(StateA = notChecked ∧ P(x))
. . .

then
a1 : StateA := checked

. . .

4.9 Process Call

An astd that calls other astd does not need any constraint over its actions
in Event-B. The translation will be achieved as if the entire called astd was
substituted for the ASTD call. We do not deal with recursive astd calls yet.

Systematic Translation Rules from astd to Event-B 257

When the translation process is completed, we can now access all the tools
offered by Rodin to animate, model check and prove elements of the translated
astd specification.

5 Animation and Model Checking of the Case Study

The final generated system, a context and a machine, translated from our case
study represents 270 lines of Event-B, including 40 constants, 5 sets and 29
axioms for the static part and 7 variants, 7 invariants, 17 events (one for initial-
ization, 13 representing astd actions and 3 internal events for Kleene Closure
induced resets) representing 57 guards and 33 actions for the dynamic part. Dur-
ing the construction of translation rules, animation helped to correct rules, to
improve the quality of translation rules and to factor contexts in order to sepa-
rate static elements from machine. It was chosen to limit the size of quantification
sets to three elements each. Only three departments, customers and complaints
can be registered inside the system at any time. The screen capture was taken
after the execution of 150 events and shows the state of variables of the machine.
In order to informally verify the consistency of the Event-B machine with the
initial astd specification, we generated a set of traces of events executed via the
ProB animator. Then, for each trace, we removed the internal events introduced
by the translation process such as lambdaComplaint(c). Then we interpreted
the initial astd specification with iastd and executed the traces. We could not
find a trace of events that could not be interpreted by iastd. A more formal
proof of the consistency of the translation must be performed, but first results
are encouraging. Formal proof of translation rules is work in progress, and will
be based on simulation.

Regarding the Event-B machine, 86 proof obligations were generated and 62
were automatically proved. The 24 remaining are proved manually and involved
functional and set operators that are known for not being proved automatically.
The manual proofs raised no specific difficulty. This Event-B specification was
model checked for deadlocks and invariant violations using the consistency check-
ing feature of ProB. More than 111 500 nodes were visited and 226 000 transitions
activated. No deadlock nor invariant violation were found. More invariant prop-
erties might be written in order to be proved. Since astd only focuses on event
control and not on event effects on the IS, when an event is executed, there is no
way to know only by looking at the astd specification how IS state will evolve.
Hence, no invariant can be generated during the translation. But it could be in-
terresting to express invariants on astd as it was done with Statecharts [16]. For
instance we could add an invariant to astd Department saying that whenever
transition DeleteDepartment(d) is active, no complaint about this department
must be registred in the system.

6 Limitations, Conclusion and Future Work

We have presented a set of translation rules allowing generation of Event-B
contexts and machines from astd specifications. The animation of the resulting

258 J. Milhau et al.

machine using ProB [12] animator helped to find errors and to tweak translation
rules. Kleene closure and sequence operators were the most tricky to translate
since these operators defines the ordering of events and because they introduce
additional events in order to code semantics of astd in Event-B. A formal proof
of the translation rules will be performed in order to entrust the translation
process.

Refinement is one of the most important features of Event-B modelling pro-
cess. In our approach, this aspect is missing. Indeed, we are translating an astd

specification modelling a concrete system. Because of that, there is no need to
refine the Event-B machine resulting from the translation process. It would have
been relevant to introduce refinement in the translation process if a similar no-
tion existed in astd, but it is currently not the case. Proof is an important
aspect of Event-B that our approach would like to take advantage of. Alongside
with formal IS specification, we advocate writing security or functional proper-
ties during the modeling process. This way, properties can be checked against
the system as soon as it is modeled. Expressing these properties as Event-B
invariants and proving invariant preservation in the translated machine is an
important step of IS specification validation. Another feature of Event-B we do
not use is composition. This may be very useful for the translation of some astd

operators such as synchronization. It could lead to a more modular approach of
translation, in a way similar to astd.

It would be interesting to compare the machine resulting of the translation
process with a hand-written Event-B specification for the same system. Indeed,
we would like to know if the automatic prover can do the same job with the
hand-written and the translated machine. This study is work in progress and
may result in an evolution of translation rules. Another step that we currently
work on is to implement an astd modeler as a Rodin plugin. Using benefits
from The Eclipse Graphical Modeling Framework (GMF) [5], a graphical edi-
tor could be used to build complete IS specifications. One could interpret them
using the iastd [15] interpreter and then translate them to Event-B on the fly
in order to perform model checking or proofs. This integrated tool would allow
a great flexibility and would combine advantages of process algebra’s power of
expression, graphical representation’s ease of understanding and Event-B’s tools
for proving, checking and animating.

Acknowledgements. The authors would like to thank the anonymous refer-
ees for their insightful comments. This research is financed by ANR (France)
as part of the SELKIS project (ANR-08-SEGI-018) and supported by NSERC
(Canada).

References

1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University

Press, Cambridge (1996)

2. Abrial, J.R.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)

Systematic Translation Rules from astd to Event-B 259

3. Abrial, J.R., Butler, M., Hallerstede, S., Voisin, L.: An open extensible tool envi-

ronment for Event-B. In: Liu, Z., He, J. (eds.) ICFEM 2006. LNCS, vol. 4260, pp.

588–605. Springer, Heidelberg (2006)

4. Butler, M.: csp2b: A practical approach to combining CSP and b. Formal Aspects

of Computing 12(3), 182–198 (2000)

5. Eclipse Consortium: Eclipse graphical modeling framework (gmf),

http://www.eclipse.org/modeling/gmp/?project=gmf

6. Fraikin, B., Frappier, M.: Efficient symbolic computation of process expressions.

Science of Computer Programming (2009)

7. Fraikin, B., et al.: Synthesizing information systems: the apis project. In: Rolland,

C., Pastor, O., Cavarero, J.L. (eds.) First International Conference on Research

Challenges in Information Science (RCIS), Ouarzazate, Morocco, p. 12 (April 2007)

8. Frappier, M., Gervais, F., Laleau, R., Fraikin, B., St-Denis, R.: Extending state-

charts with process algebra operators. Innovations in Systems and Software Engi-

neering 4(3), 285–292 (2008)

9. Frappier, M., St-Denis, R.: eb
3: an entity-based black-box specification method for

information systems. Software and System Modeling 2(2), 134–149 (2003)

10. Harel, D.: Statecharts: A visual formalism for complex systems. Science of computer

programming 8(3), 231–274 (1987)

11. Hoare, C.A.R.: CSP–Communicating Sequential Processes. Prentice Hall, Engle-

wood Cliffs (1985)

12. Leuschel, M., Butler, M.: ProB: A model checker for b. In: Araki, K., Gnesi, S.,

Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg

(2003)

13. Rumbaugh, J., Jacobson, I., Booch, G.: The unified modeling language. University

Video Communications (1996)

14. Said, M.Y., Butler, M., Snook, C.: Language and tool support for class and state

machine refinement in UML-B. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.

LNCS, vol. 5850, pp. 579–595. Springer, Heidelberg (2009)

15. Salabert, K., Milhau, J., et al.: iASTD: un interpréteur pour les ASTD. In: Atelier

Approches Formelles dans l’Assistance au Développement de Logiciels (AFADL

2010), Actes AFADL, Poitiers, France, pp. 3–6 (June 9-11, 2010)

16. Sekerinski, E.: Verifying Statecharts with State Invariants. In: 13th IEEE Interna-

tional Conference on Engineering of Complex Computer Systems, pp. 7–14. IEEE,

Los Alamitos (2008)

17. Sekerinski, E., Zurob, R.: Translating statecharts to b. In: Butler, M., Petre, L.,

Sere, K. (eds.) IFM 2002. LNCS, vol. 2335, pp. 128–144. Springer, Heidelberg

(2002)

18. Snook, C., Butler, M.: UML-B: Formal modeling and design aided by UML.

ACM Transactions on Software Engineering and Methodology (TOSEM) 15(1),

122 (2006)

19. Van Der Aalst, W.M.P.: The application of Petri nets to workflow management.

The Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

http://www.eclipse.org/modeling/gmp/?project=gmf

A CSP Approach to Control in Event-B

Steve Schneider1, Helen Treharne1, and Heike Wehrheim2

1 Department of Computing, University of Surrey
2 Institut für Informatik, Universität Paderborn

Abstract. Event-B has emerged as one of the dominant state-based

formal techniques used for modelling control-intensive applications. Due

to the blocking semantics of events, their ordering is controlled by their

guards. In this paper we explore how process algebra descriptions can

be defined alongside an Event-B model. We will use CSP to provide ex-

plicit control flow for an Event-B model and alternatively to provide a

way of separating out requirements which are dependent on control flow

information. We propose and verify new conditions on combined spec-

ifications which establish deadlock freedom. We discuss how combined

specifications can be refined and the challenges arising from this. The

paper uses Abrial’s Bridge example as the basis of a running example to

illustrate the framework.

Keywords: Event-B, CSP, control flow, integration, consistency,

deadlock-freedom.

1 Introduction

Event-B [1] is an elegant modelling language which is supported by a notion
of refinement to enable descriptions of systems to be elaborated during refine-
ment. Event-B has proven to be applicable in a wide range of domains, including
distributed algorithms, railway systems and electronic circuits. The basic spec-
ification construct is a machine that comprises of a number of events in which
control flow is implicit within their guards. Hence, Event-B can be classified as
being a state-based language: control can only be modelled via state variables and
guards on the state. On the other side, there are a number of specification for-
malisms with language support for explicitly specifying control, like statecharts,
Petri nets or process algebras, which are however not good at specifying state.
This observation has lead to introducing integrated formal methods, combining
state-based formalisms with control-oriented languages. Examples include com-
binations of (Object-)Z and CSP [17,7,11,20], or closer to the approach presented
here, those integrating B with a process algebra [3,4,19].

Though Event-B can be and is used for modelling control-intensive appli-
cations, it has recently been observed that explicit control specifications along-
side Event-B machines are nevertheless beneficial [10]. Control specifications can
serve two purposes: on the one hand they can make the control flow in the Event-
B machine explicit, and thus enhance readability but also facilitate analysis. On

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 260–274, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A CSP Approach to Control in Event-B 261

Machine M1 =̂

Variables n
Invariants n ∈ {0, 1}
Initialisation n := 0

Event up =̂

when n = 0 then n := n + 1 end
Event down =̂

when n = 1 then n := n − 1 end

Machine M2 =̂

Variables n
Invariants n ∈ {0, 1}
Initialisation n := 0

Event up =̂

when true then n := 1 end
Event down =̂

when true then n := 0 end

P =̂ up → down → P

Fig. 1. Event-B machines and control

the other hand, they can be used as a straightforward way of modelling control-
oriented requirements, and can thus ease specification. Figure 1 illustrates these
two applications. The machine M 1 on the left hand side regulates its control flow
(alternation between up and down events) via guards on the events. This control
flow is made explicit in the Communicating Process Algebra (CSP) [9] process
P below. Alternatively, we could have used the machine M2 on the right hand
side to describe the state, and then let the CSP process P in addition fix the
ordering of events. In this simple case the flow of control in M 1 is obvious and
the variable n might be needed anyway. However, more complex applications
might necessitate introducing variables solely acting as program counters. This
compromises readability of the specification and ease of modelling.

In this paper we will propose a combination of Event-B with the process alge-
bra CSP which serves these two purposes. The paper begins with a motivating
example in order to illustrate how CSP descriptions can be defined alongside
an Event-B machine. We will then give a failures divergences semantics (the se-
mantics domain of CSP) to the integration via a weakest precondition semantics
for Event-B. This follows previous approaches to integrating B with CSP [19]
through relating weakest preconditions with CSP’s failures-divergence seman-
tics [13]. The main focus of the paper rests on studying two fundamental issues
arising for the combination: how can we determine whether the obtained speci-
fications stay deadlock free despite the addition of CSP processes, and how can
the central notion of refinement used for developing specifications be applied in
the combination? The first issue is of particular importance because establish-
ing deadlock-freedom in pure Event-B models is often difficult in practice when
the flow of control is not simple, and so it is valuable to investigate approaches
which can make that easier. In this paper we introduce proof obligations on
Event-B machines which guarantee deadlock-freedom of a combination. For the
second part we develop conditions which allow to prove refinement for a com-
bined specification on the Event-B and CSP part in isolation. This gives rise
to a compositional refinement framework. Both techniques are illustrated on a
running example.

The paper is structured as follows: Section 2 introduces the notation and
semantics for CSP and for Event-B; Section 3 introduces the Bridge example

262 S. Schneider, H. Treharne, and H. Wehrheim

used to illustrate the approach; Section 4 contains the main results for estab-
lishing deadlock-freedom; and Section 5 discusses refinement; finally, Section 6
concludes.

2 Notation

We start with a short introduction to the two formalisms, CSP and Event-B.

2.1 CSP

CSP [9] is a process algebra and used to specify control oriented applications.
In this paper we will use the following subset of the CSP language:

P ::= e → P | P1 � P2 | P1 � P2 | P1 ‖ P2 | S
The event e here is drawn from the set of events in process P , and S is a CSP
process variable. Events can either be pure CSP events, or correspond to events
in the corresponding Event-B machine. Notationally we will use e for simple
atomic CSP events not corresponding to Event-B events, whereas op will be used
for Event-B event names. In this paper we assume that we have no parameters
to channels. Recursive definitions are given as S =̂ P . In a CSP definition, all
process variables used are bound by some recursive definition. External choice,
�, is a choice between alternatives which can be influenced by other components
running in parallel, whereas � is an internal choice taken by the process alone.
The prefix operator → denotes sequencing. The CSP process P in Figure 1 thus
specifies a recursive process alternating between up and down events.

The form of parallel combination we use is alphabet parallel, in which processes
are associated with an alphabet (usually denoted α(P)) which is a set of events.
The occurrence of an event in the combination requires the participation of all
processes whose alphabet contains that event.

The semantics of CSP (see e.g. [16]) is given in terms of its traces (the se-
quences of events it can execute), its failures (the events it might refuse after
a trace) and its divergences (the traces after which it might engage in internal
events only):

traces(P) ⊆ α(P)∗

failures(P) ⊆ α(P)∗ × 2α(P)

divergences(P) ⊆ α(P)∗

The process P =̂ up → down → P for instance has the alphabet {up, down}
and traces(P) = {〈〉, 〈up〉, 〈up, down〉, 〈up, down, up〉, . . .}, failures(P) = {(〈〉,
{down}), (〈up〉, {up}), . . .} and divergences(P) = ∅. These three semantic do-
mains come with three different notions of process refinement in CSP, two of
which we are going to consider.

Definition 1. Let P1,P2 be CSP processes.
P2 is a traces refinement of P1 (P1 �T P2) if traces(P2) ⊆ traces(P1).
P2 is a failures refinement of P1 (P1 �F P2) if failures(P2) ⊆ failures(P1).

A CSP Approach to Control in Event-B 263

Intuitively, trace refinement is only concerned with safety: the refinement may
not exhibit more execution traces than the abstract process. Failures on the other
hand also treat liveness: a pair (tr ,X) ∈ failures(P) specifies events X which
may be refused to be executed after some trace tr . Failures refinement guarantees
that the concrete process may not refuse more events than the abstract one.
Further explanation of refinement can be found in [16]

2.2 Event-B

Event-B [1,12] is a state-based specification formalism based on set theory. We
cannot describe all of Event-B here, only the basic parts of an Event-B machine,
required for this paper. A machine specification usually defines variables (collec-
tively called v), constants c (possibly with axioms A(c), which however do not
occur in our examples) and a set of invariants I (c, v) on constants and variables.
The core part is the definitions of events, each consisting of a guard G(c, v) over
constants and variables and a body (usually written as an assignment on the
variables) which defines a before-after predicate E(c, v , v ′) describing changes of
variables upon event execution, in terms of the relationship between the variable
values before (v) and after (v ′). A machine also has an initialisation T . Proof
obligations on events are expressed in terms of weakest precondition semantics,
where [S]R denotes the weakest precondition for statement S to guarantee to
establish postcondition R. A machine will have various proof obligations on it.
These includeconsistency obligations, that events preserve the invariant. They
can also include (optional) deadlock-freeness obligations, that at least one event
guard is always true.

A machine M1 is refined by another machine M2 if there is a linking invariant
(i.e. a predicate) J on the variables of the two machines, which is established
by their initialisations, and which is preserved by all events, in the sense that
any event of M2 can be matched by an event of M 1 to maintain J . This is
the standard notion of downwards simulation data refinement (see e.g. [5] for
a description). New events can also be introduced as data refinements of skip
[1]: they need not always be enabled, but their execution should maintain the
linking relationship to the same abstract state. Event-B admits a variety of proof
obligations depending on what is appropriate for the application. For the pur-
poses of this paper (where we need refinement in Event-B to induce refinement
in the CSP semantics), we require the strong relative deadlock freeness property
S DLK E of [12], which states that whenever an event E is enabled in machine
M1, then either E or a newly introduced event should be enabled in M2. We
also require the non-divergence property WFD REF , which states that newly
introduced events cannot always be enabled. When the standard refinement con-
ditions, together with both these conditions, are met we write M1 �D M2.

The machine M 1 in Figure 1 for instance defines one variable n, specifies this
to only take values 0 and 1 (invariant) and defines the two events up and down.
An initialisation section furthermore fixes the initial value for n.

Morgan’s CSP semantics for action systems [13] allows traces, failures, and
divergences to be defined for Event-B machines in terms of the sequences of

264 S. Schneider, H. Treharne, and H. Wehrheim

operations that they can and cannot engage in. This gives a way of considering
Event-B machines as CSP processes, and treating them within the CSP frame-
work. Note that the notion of traces for machines is dual to that presented in
[1], where traces are considered as sequences of states rather than our treatment
of traces as sequences of events.

The alphabet α(M) of a machine M is simply its set of events.
The traces of a machine M are those sequences of events tr = 〈a1, . . . , an〉

which are possible for M (after initialisation T): those that do not establish
false:

traces(M) = {tr | ¬[T ;tr]false}

Here, the weakest precondition on a sequence of events is the weakest precon-
dition of the sequential composition of those events: [〈a1, . . . , an〉]P is given as
[a1; . . . ; an]P .

The failures of a machine M are those pairs (tr ,X) for which performing tr
followed by refusing X is possible:

failures(M) = {(tr ,X) | ¬[T ;tr]((
∨

op∈X

Gop(c, v)))}

In other words, it is not always the case that performance of tr is followed by
some event from X being enabled.

A sequence of operations tr is a divergence if the sequence of operations is
not guaranteed to terminate, i.e. ¬[T ; tr]true. Thus

divergences(M) = {tr | ¬[T ;tr]true}

M is divergence-free if divergences(M) = ∅.
These definitions provide the link between the weakest precondition semantics

of the operations, and the CSP semantics of the B machine.

2.3 Combining CSP and Event-B

Figure 1 has defined the process P that alternates between two events. We do
not require both the process P and the machine M 1 in order to capture the
requirement of alternating events. Either description independently would have
been clear enough. Nonetheless, it is possible to combine the descriptions of P
and M 1 and we could view P as being an annotation of M 1. This is exactly
the way in which control flow expressions are being used in [10]. The author is
using flows to provide patterns for the events of an Event-B machine, but does
not permit the flows to contain events other than those in the Event-B machine.
Being able to provide clear annotation of control flow is one benefit of including
control flow expressions within Event-B machines. Another is to be able to relieve
an Event-B machine of describing control flow explicitly and handing over that
responsibility to a CSP process. Then the purpose of the Event-B machine is to
define appropriate updates of the state of the machine.

A CSP Approach to Control in Event-B 265

Fig. 2. Single lane bridge between mainland and island

Consider machine M 2, also defined in Figure 1. The process P combined with
M 2 (i.e. P ‖ M 2) also provides a definition which specifies alternating events.
In this example we have handed over complete control to the CSP. We will
illustrate in this paper a mixture of responsibilities in which both the CSP and
the Event-B contribute to controlling the ordering of events within a system. It
will enable us to see clearly how control flow is also restricted by the state of the
system. To this end, we define a joint semantics for the integration in terms of
the failures-divergence model of CSP. By giving a CSP semantics to an Event-B
machine M , the CSP semantics of P ‖ M follows from the CSP semantics of the
parallel operator ‖.

We will also explore in this paper how consistency conditions can be used to
ensure deadlock-freedom of an integrated specification and how refinement can
be proven in the integration.

3 Motivating and Running Example

We start with an example, inspired by Abrial’s car-island example of [1], to
exemplify the usefulness of control flow specifications in Event-B machines. The
specification is of a single lane bridge going from the mainland (ml) to an island
(il). The bridge has a capacity of 10 cars (stored in a constant CAP). Unlike
[1], our island has no limit on the number of cars on it. The specification needs
to ensure that cars only travel in one direction on the bridge; variables a and c
are used to track the number of cars on the bridge travelling from mainland to
island and vice versa.

Figure 2 shows the bridge and four events which are part of the abstract spec-
ification: ml out and ml in are events moving cars out of and into the mainland,
and il in and il out are the corresponding events for the island. The abstract
Event-B machine Bridge0 given in Figure 3 needs to guarantee that cars on
the bridge only travel in one direction and that the bridge does not become
overloaded. The guards of the events ensure this, e.g., a car may only move
from mainland to bridge (ml out) if the direction island-to-mainland is cur-
rently empty, which we can see from the value of variable c, and if the capacity
of the bridge is not already reached, which we can see from a. When it enters
the bridge in direction island, variable a is incremented.

266 S. Schneider, H. Treharne, and H. Wehrheim

Machine Bridge0 =̂

Variables a, c
Constants CAP = 10

Invariants a, c ∈ N

Initialisation a := 0, c := 0

Event ml out =̂ when c = 0 ∧ a < CAP then a := a + 1 end
Event ml in =̂ when c > 0 then c := c − 1 end
Event il out =̂ when a = 0 ∧ c < CAP then c := c + 1 end
Event il in =̂ when a > 0 then a := a − 1 end

Fig. 3. Abstract bridge model

This constitutes our abstract specification. Here, there is no necessity of ex-
plicitly modelling control. The ordering of events depends on the data values of
a and c only. This could also be modelled in CSP, but state is not CSP’s primary
domain.

3.1 Bridge with CSP Control

In a development step, the specification is refined so as to introduce traffic lights
which regulate the flow of cars onto the bridge. There are two traffic lights here,
one between mainland and bridge (ml tl) and the second one between island
and bridge (il tl). Each can be either green or red. The single lane use of the
bridge should now be achieved by proper switching of traffic light colours. In
this setting it becomes obvious that certain orderings among events need to be
specified, and CSP provides a natural way of doing so. The first part concerns
the behaviour of car drivers: if car drivers would ignore red traffic lights, then
the correctness of the system can never be achieved, and so we capture the
expectation that drivers will not drive through a red light. The environment
assumption about correct driver behaviour is formulated in CSP as REQ1 and
REQ2:

REQ1 = ml tl green → P
P = ml out→ P

� ml tl red → REQ1

REQ2 = il tl green → Q
Q = il out→ Q

� il tl red → REQ2
These two processes specify constraints on cars going past the two traffic

lights: ml out is only possible when the mainland traffic light is green (REQ1)
and a similar property needs to hold for il out. REQ1 specifies a process which
first of all executes event ml tl green and then has the choice of allowing ml out
or carrying on with ml tl red.

A second constraint contains the switching of traffic lights: at most one of
them is allowed to be green, which gives a natural ordering on the events. The
process TL1 allows the choice of which light to switch at any stage. Thus we
model the choice between turning the island or the mainland light to green.

A CSP Approach to Control in Event-B 267

Machine Bridge1 =̂

Variables a, c
Constants CAP = 10

Invariants a, c ∈ N

Initialisation a := 0, c := 0

Event ml out =̂ when a < CAP then a := a + 1 end
Event ml in =̂ when c > 0 then c := c − 1 end
Event il out =̂ when c < CAP then c := c + 1 end
Event il in =̂ when a > 0 then a := a − 1 end
Event ml tl green =̂ when c = 0 then skip end
Event il tl green =̂ when a = 0 then skip end

Fig. 4. The Bridge1 machine

TL1 = ml tl green→ ml tl red → TL1
� il tl green→ il tl red → TL1

The data dependent part of the system still remains in an Event-B machine,
Bridge1, given in Figure 4. Observe that the guards c = 0 and a = 0 have been
dropped from events ml out and il out respectively. Responsibility for ensuring
this element of the condition that these events are enabled is now within the
CSP part of the description, arising from the behaviour of the traffic lights,
and the assumptions about correct driver behaviour. The combination of CSP
and Event-B allows for a natural and clear separation of data-dependent and
control-dependent aspects of a model. The resulting model is:

TL1 ‖ REQ1 ‖ REQ2 ‖ Bridge1

We will wish to show that this model is internally consistent: that the CSP
control description is compatible with the Event-B model, and does not introduce
new deadlocks. We will also want to be able to relate this model to the original
abstract Bridge0 model, to demonstrate that it is a refinement. The next sections
provide the underlying theory to enable us to consider these issues.

3.2 Event-B Bridge with Control

Figure 5 gives a pure Event-B machine which has the same behaviour as the com-
bined model TL ‖ REQ1 ‖ REQ2 ‖ Bridge1, where all the control is managed
within the event guards. We introduce a variable for each of the CSP control
components: tl , r1, and r2, for TL1, REQ1, and REQ2 respectively. Their val-
ues correspond to the states of the processes: they are used as guards to enable
events, and they are updated when events occur in accordance with the control
process description. For example, tl = reds is part of the enabling condition for
the tl green events, and tl is updated according to which light turns green.

268 S. Schneider, H. Treharne, and H. Wehrheim

Machine ControlledBridge =̂

Variables a, c, tl , r1, r2

Sets LIGHTS = {reds,mlgreen, ilgreen}
Constants CAP = 10

Invariants a, c ∈ N ∧ r1, r2 ∈ {0, 1} ∧ tl ∈ LIGHTS
Initialisation a := 0, c := 0, r1 := 0, r2 := 0, tl := reds

Event ml out =̂ when a < CAP ∧ r1 = 1 then a := a + 1 end

Event ml in =̂ when c > 0 then c := c − 1 end

Event il out =̂ when c < CAP ∧ r2 = 1 then c := c + 1 end

Event il in =̂ when a > 0 then a := a − 1 end

Event ml tl green =̂ when c = 0 ∧ r1 = 0 ∧ tl = reds
then r1 := 1 ‖ tl := mlgreen end

Event il tl green =̂ when a = 0 ∧ r2 = 0 ∧ tl = reds
then r2 := 1 ‖ tl := ilgreen end

Event ml tl red =̂ when r1 = 1 ∧ tl = mlgreen
then r1 := 0 ‖ tl := reds end

Event il tl red =̂ when r2 = 1 ∧ tl = ilgreen
then r2 := 0 ‖ tl := reds end

Fig. 5. The Bridge machine with control incorporated within the guards

In contrast to the previous specification, we cannot directly see the flow of
control on this machine anymore. There is no way of detecting that variables a
and c are used for holding data values, whereas variables r1, r2 and tl are used
for regulating the ordering of events. Furthermore, the switching of traffic lights
and the requirement on the car drivers respecting traffic lights is now mixed
together. The need for separation of different requirements on the model which
we had in the bridge with CSP control is gone.

3.3 Abrial’s Event-B Bridge

The standard Event-B approach taken by Abrial in the development of the bridge
in [1] is to proceed by a series of refinement steps focusing on the state invariants,
each of which introduces new events (such as the traffic lights), and where the
control emerges gradually as proof obligations are discharged. For example, the
requirement that at least one light must be red emerges from the requirement
that all events should preserve the invariant that the bridge should not contain
cars travelling in both directions.

The resulting bridge system is quite different to that in Figure 5, reflecting
the fact that allowing implicit control to emerge naturally in an Event-B devel-
opment is a different approach to imposing the flow of control explicitly, as we
propose in this paper. However, it is recognised (anecdotally) [8] that establishing
deadlock-freedom for such developments is often difficult in practice.

A CSP Approach to Control in Event-B 269

I (c, v) ∧ ¬G1(c, v) ∧ . . . ∧ ¬Gn (c, v)

�
H1(c, v) ∧ . . . ∧ Hm(c, v)

DF-CSP

G1 . . .Gn guards of operations in α(M) \ α(P)

H1 . . .Hm guards of operations in α(M) ∩ α(P)

Fig. 6. Deadlock freedom for CSP control

4 Deadlock

Having formally defined the meaning of a combined CSP and Event-B specifica-
tion now, we will next look at our two main issues: establishing deadlock-freedom
in this section, and compositional refinement in the next section.

If a CSP control description P is introduced to a deadlock-free Event-B ma-
chine M , then there is a possibility that the additional constraints introduced
by P might lead to a deadlock. This is possible since both CSP and Event-B
define restrictions on the execution of events, and whenever these restrictions
are not consistent for shared events the combined model may deadlock. In terms
of the failures-divergence semantics this means that there is a trace after which
all events are being refused.

Definition 2. Let P be a CSP process and M an Event-B machine. The com-
bination P ‖ M is said to deadlock if there is a trace tr ∈ (α(P) ∪ α(M))∗ such
that (tr , α(P) ∪ α(M)) ∈ failures(P ‖ M).

We will generally introduce a CSP controller over events which will be made
available by the Event-B part of the description. Such events might always be
enabled, but more generally we would only require them to be enabled at points
where none of the other events (i.e. those not in the CSP, and therefore under
the control of the Event-B) are enabled. This design principle gives rise to the
proof rule DF-CSP given in Figure 6. This condition could for instance be
established using the Rodin toolset [2]. In this rule, G1 . . .Gn are the guards of
the operations in α(M) \ α(P) and H1 . . .Hm are the guards of operations in
α(M) ∩ α(P). The proof rule requires that whenever all of the events coming
from the Event-B machine alone are disabled, then all events jointly controlled
by the CSP process and the Event-B machine need to be enabled in the machine.
Thus the machine cedes control at that point to the CSP controller.

Theorem 1. Let P be a deadlock-free CSP process and M a divergence-free
Event-B machine which satisfies DF-CSP. Then P ‖ M is deadlock-free.

This theorem considers the case where, whenever all of the events controlled
by M alone are not enabled, then all of the events shared with P are enabled.
In such a situation, deadlock-freedom of P yields deadlock-freedom of P ‖ M .

270 S. Schneider, H. Treharne, and H. Wehrheim

Observe that if α(M) ∩ α(P) �= ∅, then the condition on the operation guards
of M implies that M is deadlock-free.

Theorem 1 is applicable to the Bridge1 example of Section 3. In that example
we have that

α(Bridge1) \ α(TL1 ‖ REQ1 ‖ REQ2) = {ml in, il in}
α(Bridge1) ∩ α(TL1 ‖ REQ1 ‖ REQ2) = {ml out , il out ,

ml tl green, il tl green}

If all of the guards in α(Bridge1) \ α(TL1 ‖ REQ1 ‖ REQ2) are false, then we
have c = 0 ∧ a = 0. This implies each of the guards in α(Bridge1) ∩ α(TL1 ‖
REQ1 ‖ REQ2), and hence implies their conjunction. This is the condition to
conclude deadlock-freedom of TL1 ‖ REQ1 ‖ REQ2 ‖ Bridge1.

The condition establishes that all of Bridge1’s events shared with TL1 ‖
REQ1 ‖ REQ2 are enabled whenever all of the events that Bridge1 controls
independently are blocked. In such a state Bridge1 does not constrain TL1 ‖
REQ1 ‖ REQ2 at all, so TL1 ‖ REQ1 ‖ REQ2’s deadlock-freedom extends to
TL1 ‖ REQ1 ‖ REQ2 ‖ Bridge1.

Theorem 1 is also applicable to the example P ‖ M 2 of Figure 1. However, it
is not applicable to P ‖ M 1, since the two events of M are shared with P , but
their guards are never both true, i.e.

∧
op∈α(M1)∩α(P) Gop(c, v) does not hold.

A more general theorem for deadlock-freedom is available, as a specialisation
of a result presented in [19] concerned with blocking B operations in classical
B. It is applicable to sequential controllers, i.e. those made up of prefix, choice,
and recursion, and focuses on the choices provided by the controller after any
particular trace.

To state the theorem we need first to define for sequential CSP terms P :

– offers(P): the offers made by P at stages before a recursive call;
– pass(P): the traces corresponding to a single complete pass through a recur-

sively defined process

Definition 3. For a CSP term P, the set offers(P) is defined inductively as
follows:

offers(a → P) = {(〈〉, {a})} ∪ {(〈a〉 � tr ,Off) | (tr ,Off) ∈ offers(P)}
offers(P1 � P2) = {(〈〉,Off 1 ∪Off 2) | (〈〉,Off 1) ∈ offers(P1)

∧ (〈〉,Off 2) ∈ offers(P2)}
∪{(tr ,Off 1) | (tr ,Off 1) ∈ offers(P1) ∧ tr �= 〈〉}
∪{(tr ,Off 2) | (tr ,Off 2) ∈ offers(P2) ∧ tr �= 〈〉}

offers(P1 � P2) = offers(P1) ∪ offers(P2)
offers(S) = {}

Definition 4. For a CSP term P, the set pass(P) is defined inductively as
follows:

A CSP Approach to Control in Event-B 271

pass(a → P) = {〈a〉� tr | tr ∈ pass(P)}
pass(P1 � P2) = pass(P1) ∪ pass(P2)
pass(P1 � P2) = pass(P1) ∪ pass(P2)

pass(S) = {〈〉}
Theorem 2. For a recursive definition N =̂ P, if α(P) = α(M) and if there is
a (control loop invariant) predicate CLI such that

– [T]CLI
– ∀ tr ,Off .(tr ,Off) ∈ offers(P) ⇒ (CLI ⇒ [tr](

∨
op∈Off Gop(c, v)))

– tr ∈ pass(P) ⇒ (CLI ⇒ [tr]CLI)

then P ‖ M is deadlock-free.

Consider P and M 1 from Figure 1. We obtain

offers(P) = {(〈〉, {up}), (〈up〉, {down})}
pass(P) = {〈up, down〉}

We identify the control loop invariant CLI as n = 0, and check the conditions
in turn:

– [n := 0](n = 0) is indeed true.
– Checking the condition for the two offers in offers(P): n = 0 ⇒ [〈〉]Gup),

and n = 0 ⇒ [〈up〉]Gdown) are both true.
– Checking the condition for the single pass: n = 0 ⇒ [〈up, down〉](n = 0) is

also true.

The conditions are all true, so we conclude that P ‖ M 1 is deadlock-free.

5 Refinement

In addition to introducing control to Event-B models, we are also interested in
further developing an existing CSP ‖ Event-B model. Both CSP and Event-B
come with existing definitions of refinement [5] or development: in CSP this is
process refinement and in Event-B data refinement. These guarantee the refine-
ment to only have less traces or less failures than the abstract specification.

In contrast to process refinement, Event-B refinements usually also introduce
new events. The corresponding notion of refinement in CSP would need to first
hide (\) these events in the concrete process and then check for trace or failures
refinement. Hiding turns visible events into invisible, internal τ events. Thus
for instance checking for trace refinement with new events A means checking
P �T Q \A.

The data refinement on machines discussed in Section 2.2 thus induces traces,
failures, and divergences refinement. If M1 �D M2 in the Event-B setting, then
M1 � M2 \ A in each of the CSP semantic models, where A = α(M2) \ α(M1),
the set of new events introduced in M2.

272 S. Schneider, H. Treharne, and H. Wehrheim

Our objective is to achieve a compositional framework for refinement (like
for integrations of CSP and Object-Z [18,15]). In the case of trace refinement,
the refinement relations are compositional. In other words, separately refining
the components of a CSP‖Event-B model results in a trace refinement of the
model as a whole. Hence safety properties are preserved. This is expressed in
Theorem 3.

Theorem 3. Let P and P ′ be CSP processes such that P �T P ′ \ A1, and M
and M ′ Event-B machines such that M �D M ′ with new events A2. Then the
following holds:

P ‖ M �T (P ′ ‖ M ′) \ (A1 ∪ A2) .

Unfortunately a similar result for failures refinement does not hold, and it is
not in general possible to deduce particular liveness behaviour of P ′ ‖ M ′ from
that of P ‖ M . This is because parallel composition does not in general preserve
liveness properties. However, Theorem 1 is applicable directly to P ′ ‖ M ′, thus
still allowing deadlock-freedom results to be established directly for the refined
models. Furthermore, we are able to obtain a less general result: if there is no
intersection between the new events introduced into P and those introduced into
M , then failures refinement is preserved.

Theorem 4. Let P and P ′ be CSP processes such that P �F P ′ \ A1, and
M and M ′ Event-B machines such that M �D M ′ with new events A2, where
A1 ∩ α(M ′) = ∅ and A2 ∩ α(P ′) = ∅. Then the following holds:

P ‖ M �F (P ′ ‖ M ′) \ (A1 ∪ A2) .

Returning to our Bridge example, the bridge may occasionally need to be raised
(to allow large ships through). This should occur only when there are no cars
on the bridge in either direction, and also when the traffic lights are red in both
directions. The lights should remain red until the bridge is lowered again.

This new feature is introduced in terms of new events in the Event-B model
and the CSP description. The CSP description is augmented to capture the
required relationship between the bridge lifting and the lights:

TL2 = ml tl green→ ml tl red → TL2
� il tl green→ il tl red → TL2
� bridge raise → bridge lower→ TL2

The requirement that no cars should be on the bridge when it is raised is captured
naturally as a new Event-B machine Bridge2 consisting of Bridge1 augmented
with the following event:

bridge raise =̂ when a = 0 ∧ c = 0 then skip end

Considering the control and the model separately, we have TL1 �T TL2 \ A,
where A = {bridge raise, bridge lower}, and also Bridge1 �D Bridge2 with new
events A.

A CSP Approach to Control in Event-B 273

Theorem 3 yields that TL1 ‖ Bridge1 �T (TL2 ‖ Bridge2) \ A, and hence
that

TL1 ‖ REQ1 ‖ REQ2 ‖ Bridge1 �T (TL2 ‖ REQ1 ‖ REQ2 ‖ Bridge2) \ A

This demonstrates that the new feature is compatible with the existing system.
Furthermore, Bridge2 meets DF-CSP, and TL2 ‖ REQ1 ‖ REQ2 is deadlock-

free, so we can also conclude that TL2 ‖ REQ1 ‖ REQ2 ‖ Bridge2 is deadlock-
free.

6 Conclusion

This paper has illustrated how CSP and Event-B descriptions can be com-
bined and what reasoning can be performed on the combined models. The
work resonates closely with [10] but is wider in scope because we want to
consider using the process descriptions to specify requirements of a system
which may not already be defined in the Event-B model. The benefit of split-
ting responsibility across both CSP and Event-B is that requirements can be
dealt with separately. We must however investigate how global invariants can
be expressed. In our example, one might say that if the most recent event is
ml tl green then the number of cars coming the other way should be zero.
i.e., last(tr) = ml tl green ⇒ c = 0. Since we are now combining descriptions,
we lose the benefit of being able to express all invariants as state predicates.
Further work is needed before we can conclude what can be expressed using a
combination which would have been difficult using only Event-B predicates.

This paper is the basis of our ongoing research; we want to consider developing
conditions which ensure that an introduction of a CSP process in a specification
constitutes a valid refinement step, possibly using ideas of [6]. Mussat describes
in [14] that we should be very clear about the separation between system vari-
ables and those that depict the physical environment, and it will be interesting to
investigate whether CSP can contribute to the clear delineation of these aspects.

Acknowledgements

We are grateful to the anonymous reviewers for their thoughtful and constructive
suggestions.

References

1. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)

2. Abrial, J.-R., Butler, M.J., Hallerstede, S., Voisin, L.: A Roadmap for the Rodin

Toolset. In: Börger, E., Butler, M., Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS,

vol. 5238, p. 347. Springer, Heidelberg (2008)

274 S. Schneider, H. Treharne, and H. Wehrheim

3. Butler, M.J.: csp2B: A practical approach to combining CSP and B. In: FACS, pp.

182–196 (2000)

4. Butler, M.J., Leuschel, M.: Combining CSP and B for specification and property

verification. In: Fitzgerald, J.S., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS,

vol. 3582, pp. 221–236. Springer, Heidelberg (2005)

5. Derrick, J., Boiten, E.A.: Refinement in Z and Object-Z. Springer, Heidelberg

(2001)

6. Derrick, J., Wehrheim, H.: Model transformations incorporating multiple views.

In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS, vol. 4019, pp. 111–126.

Springer, Heidelberg (2006)

7. Fischer, C.: CSP-OZ - a combination of CSP and Object-Z. In: Bowman, H., Der-

rick, J. (eds.) Second IFIP International Conference on Formal Methods for Open

Object-based Distributed Systems, pp. 423–438 (July 1997)

8. Hoang, T.S.: Personal Communication, Email (May 25, 2010)

9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood

Cliffs (1985)

10. Iliasov, A.: On Event-B and Control Flow. Technical report, School of Computing

Science, Newcastle University (July 2009)

11. Mahony, B.P., Dong, J.S.: Blending Object-Z and timed CSP: An introduction

to TCOZ. In: Futatsugi, K., Kemmerer, R., Torii, K. (eds.) 20th International

Conference on Software Engineering (ICSE 1998). IEEE Press, Los Alamitos (1998)

12. Métayer, C., Abrial, J.-R., Voisin, L.: Event-B language. RODIN Project Deliver-

able 3.2, http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf (accessed 25/5/10)

13. Morgan, C.: Of wp and CSP. In: Beauty is Our Business: a Birthday Salute to E.

W. Dijkstra, pp. 319–326 (1990)

14. Mussat, L.: Modéles Réactifs. Technical report, ClearSy (July 2008)

15. Olderog, E.-R., Wehrheim, H.: Specification and (property) inheritance in CSP-OZ.

Sci. Comput. Program. 55(1-3), 227–257 (2005)

16. Schneider, S.: Concurrent and Real-time Systems: The CSP approach. Wiley,

Chichester (1999)

17. Smith, G.: A semantic integration of Object-Z and CSP for the specification of

concurrent systems. In: Fitzgerald, J.S., Jones, C.B., Lucas, P. (eds.) FME 1997.

LNCS, vol. 1313, pp. 62–81. Springer, Heidelberg (1997)

18. Smith, G., Derrick, J.: Specification, Refinement and Verification of Concurrent

Systems-An Integration of Object-Z and CSP. Formal Methods in System De-

sign 18(3), 249–284 (2001)

19. Treharne, H., Schneider, S.: How to drive a B machine. In: Bowen, J.P., Dunne, S.,

Galloway, A., King, S. (eds.) B 2000, ZUM 2000, and ZB 2000. LNCS, vol. 1878,

pp. 188–208. Springer, Heidelberg (2000)

20. Woodcock, J., Cavalcanti, A.: The Semantics of Circus. In: Bert, D., Bowen, J.P.,

Henson, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp.

184–203. Springer, Heidelberg (2002)

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf

Towards Probabilistic Modelling in Event-B

Anton Tarasyuk1,2, Elena Troubitsyna2, and Linas Laibinis2

1 Turku Centre for Computer Science
2 Åbo Akademi University

Joukahaisenkatu 3-5 A, 20520 Turku, Finland

{anton.tarasyuk,elena.troubitsyna,linas.laibinis}@abo.fi

Abstract. Event-B provides us with a powerful framework for correct-

by-construction system development. However, while developing depend-

able systems we should not only guarantee their functional correctness

but also quantitatively assess their dependability attributes. In this pa-

per we investigate how to conduct probabilistic assessment of reliability

of control systems modeled in Event-B. We show how to transform an

Event-B model into a Markov model amendable for probabilistic reli-

ability analysis. Our approach enables integration of reasoning about

correctness with quantitative analysis of reliability.

Keywords: Event-B, cyclic system, refinement, probability, reliability.

1 Introduction

System development by refinement is a formalised model-driven approach to
developing complex systems. Refinement enables correct-by-construction devel-
opment of systems. Its top-down development paradigm allows us to cope with
system complexity via abstraction, gradual model transformation and proofs.
Currently the use of refinement is mainly limited to reasoning about functional
correctness. Meanwhile, in the area of dependable system development – the area
where the formal modelling is mostly demanded – besides functional correctness
it is equally important to demonstrate that the system adheres to certain quanti-
tatively expressed dependability level. Hence, there is a clear need for enhancing
formal modelling with a capability of stochastic reasoning about dependability.

In this paper we propose an approach to introducing probabilities into Event-
B modelling [1]. Our aim is to enable quantitative assessment of dependability
attributes, in particular, reliability of systems modelled in Event-B. We consider
cyclic systems and show that their behaviour can be represented via a common
Event-B modelling pattern. We show then how to augment such models with
probabilities (using a proposed probabilistic choice operator) that in turn would
allow us to assess their reliability.

Reliability is a probability of system to function correctly over a given period
of time under a given set of operating conditions [23,24,17]. It is often assessed
using the classical Markov modelling techniques [9]. We demonstrate that Event-
B models augmented with probabilities can be given the semantic of a Markov

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 275–289, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

276 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

process (or, in special cases, a Markov chain). Then refinement of augmented
Event-B models essentially becomes reliability-parameterised development, i.e.,
the development that not only guarantees functional correctness but also ensures
that reliability of refined model is preserved or improved. The proposed approach
allows us to smoothly integrate quantitative dependability assessment into the
formal system development.

The paper is structured as follows. In Section 2 we overview our formal frame-
work – Event-B. In Section 3 we introduce a general pattern for specifying cyclic
systems. In Section 4 we demonstrate how to augment Event-B models with
probabilities to enable formal modelling and refinement of fully probabilistic
systems. In Section 5 we generalise our proposal to the cyclic systems that also
contain non-determinism. Finally, in Section 6 we overview the related work and
give concluding remarks.

2 Introduction to Event-B

The B Method [2] is an approach for the industrial development of highly de-
pendable software. The method has been successfully used in the development
of several complex real-life applications [19,5]. Event-B is a formal framework
derived from the B Method to model parallel, distributed and reactive systems.
The Rodin platform [21] provides automated tool support for modelling and ver-
ification (by theorem proving) in Event-B. Currently Event-B is used in the EU
project Deploy [6] to model several industrial systems from automotive, railway,
space and business domains.

In Event-B a system specification is defined using the notion of an abstract
state machine [20]. An abstract machine encapsulates the state (the variables)
of a model and defines operations on its state. A general form of Event-B models
is given in Fig.1.

Machine M
Variables v
Invariants I
Events

Initialisation
evt1
· · ·
evtN

Fig. 1. An Event-B machine

The machine is uniquely identified by its name M . The state variables, v, are de-
clared in the Variables clause and initialised in the init event. The variables are
strongly typed by the constraining predicates I given in the Invariants clause.
The invariant clause might also contain other predicates defining properties that
should be preserved during system execution.

The dynamic behaviour of the system is defined by the set of atomic events
specified in the Events clause. Generally, an event can be defined as follows:

evt =̂ when g then S end,

Towards Probabilistic Modelling in Event-B 277

where the guard g is a conjunction of predicates over the state variables v and
the action S is an assignment to the state variables. If the guard g is true, an
event can be described simply as

evt =̂ begin S end,

In its general form, an event can also have local variables as well as parameters.
However, in this paper we use only the simple forms given above.

The occurrence of events represents the observable behaviour of the system.
The guard defines the conditions under which the action can be executed, i.e.,
when the event is enabled. If several events are enabled at the same time, any of
them can be chosen for execution nondeterministically. If none of the events is
enabled then the system deadlocks.

In general, the action of an event is a parallel composition of assignments.
The assignments can be either deterministic or non-deterministic. A determin-
istic assignment, x := E(x, y), has the standard syntax and meaning. A nonde-
terministic assignment is denoted either as x :∈ S, where S is a set of values, or
x :| P (x, y, x′), where P is a predicate relating initial values of x, y to some final
value of x′. As a result of such a non-deterministic assignment, x can get any
value belonging to S or according to P .

The semantics of Event-B events is defined using so called before-after (BA)
predicates [20]. A before-after predicate describes a relationship between the
system states before and after execution of an event, as shown in Fig.2.

Action (S) BA(S)

x := E(x, y) x′ = E(x, y) ∧ y′ = y

x :∈ S ∃t. (t ∈ Set ∧ x′ = t) ∧ y′ = y

x :| P (x, y, x′) ∃t. (P (x, t, y) ∧ x′ = t) ∧ y′ = y

Fig. 2. Before-after predicates

where x and y are disjoint lists (partitions) of state variables, and x′, y′ represent
their values in the after state. A before-after predicate for Event-B events is then
constructed as follows:

BA(evt) = g ∧ BA(S).

The formal semantics provides us with a foundation for establishing correct-
ness of Event-B specifications. In particular, to verify correctness of a specifica-
tion, we need to prove that its initialisation and all events preserve the invariant.

Event-B employs a top-down refinement-based approach to system develop-
ment. Development starts from an abstract system specification that models the
most essential functional requirements. While capturing more detailed require-
ments, each refinement step typically introduces new events and variables into
the abstract specification. These new events correspond to stuttering steps that
are not visible at the abstract level. By verifying correctness of refinement, we
ensure that all invariant properties of (more) abstract machines are preserved.
A detailed description of the formal semantics of Event-B and foundations of
the verification process can be found in [20].

278 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

3 Modelling of Cyclic Systems in Event-B

In this paper, we focus on modelling systems with cyclic behaviour, i.e. the sys-
tems that iteratively execute a predefined sequence of steps. Typical representa-
tives of such cyclic systems are control and monitoring systems. An iteration of a
control system includes reading the sensors that monitor the controlled physical
processes, processing the obtained sensor values and setting actuators according
to a predefined control algorithm. In principle, the system could operate in this
way indefinitely long. However, different failures may affect the normal system
functioning and lead to a shutdown. Hence, during each iteration the system
status should be re-evaluated to decide whether it can continue its operation.

In general, operational states of a system, i.e., the states where system func-
tions properly, are defined by some predicate J(v) over the system variables.
Usually, essential properties of the system (such as safety, fault tolerance, live-
ness properties) can be guaranteed only while system stays in the operational
states. The predicate J(v) partitions the system state space S into two disjoint
classes of states – operational (Sop) and non-operational (Snop) states, where
Sop =̂ {s ∈ S | J.s } and Snop =̂ S \ Sop.

Abstractly, we can specify a cyclic system in Event-B as shown in Fig.3.
In the machine CS, the variable st abstractly models the system state, which
can be either operational (J(st) is true) or failed (J(st) is false). The event iter
abstractly models one iteration of the system execution. As a result of this event,
the system can stay operational or fail. In the first case, the system can execute
its next iteration. In the latter case, the system deadlocks.

Machine CS
Variables st
Invariants

st ∈ STATE
...

Events
Initialisation =̂

begin
st :| J(st′)

end
iter =̂

when
J(st)

then
st :∈ STATE

end

Fig. 3. A cyclic system

The Invariants clause (besides defining the variable types) can contain other
essential properties of the system. Usually they are stated only over the opera-
tional states, i.e., they are of the form:

J(st) ⇒ ...

We can refine the abstract specification CS by introducing specific implemen-
tation details. For example, we may explicitly introduce new events modelling

Towards Probabilistic Modelling in Event-B 279

the environment as well as reading the sensors or setting the actuators. The event
iter can be also refined, e.g., into detection operation, which decides whether the
system can continue its normal operation or has to shut down due to some un-
recoverable failure. However, the Event-B refinement process will preserve the
cyclic nature of the system described in the abstract specification CS.

The only other constraint we put on the refinement process is that all the new
events introduced in refined models can be only enabled in operational system
states, e.g., the event guards should contain the condition J(v). To enforce this
constraint, we propose a simple syntactic extension of the Event-B model struc-
ture. Specifically, we introduce a new clause Operational guards containing
state predicates precisely defining the subset of operational system states. This
is a shorthand notation implicitly adding the corresponding guard conditions to
all events enabled in the operational states (except initialisation). We also as-
sume that, like model invariants, operational guards are inherited in all refined
models. By using this new clause, we can rewrite the system CS as follows.

Machine CS
Variables st
Invariants

st ∈ STATE
...

Operational guards
J(st)

Events
Initialisation =̂

begin
st :| J(st′)

end
iter =̂

begin
st :∈ STATE

end

Fig. 4. A cyclic system

In general, the behaviour of some cyclic system M can be intuitively described by
the sequential composition (Initialisation;doJ → E do), where do J → E do
is a while-loop with the operational guard J and the body E that consists of all
the machine events except initialisation. For example, the behaviour of CS can
be described simply as (Initialisation;doJ → iter do).

Each iteration of the loop maps the current operational system state into a
subset of S. The resulting set of states represents all possible states that can
be reached due to system nondeterministic behaviour. Therefore, an iteration of
a cyclic system M can be defined as a partial function IM of the type Sop →
P(S).1 The concrete definition of IM can be derived from the composition of
before-after predicates of the involved events. Moreover, we can also consider the
behaviour of the overall system and observe that the final state of every iteration
defines the initial state of the next iteration provided the system has not failed.

The specification pattern for modelling cyclic systems defined above restricts
the shape of Event-B models. This restriction allow us to propose a scalable
1 Equivalently, we can define an iteration as a relation between Sop and S.

280 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

approach to integrating probabilistic analysis of dependability into Event-B.
This approach we present next.

4 Stochastic Modelling in Event-B

4.1 Introducing Probabilistic Choice

Hallerstede and Hoang [7] have extended the Event-B framework with a new
operator – qualitative probabilistic choice, denoted ⊕|. This operator assigns
new values to variables with some positive but generally unknown probability.
The extension aimed at introducing into Event-B the concept of “almost-certain
convergence”– probabilistically certain termination of new event operations in-
troduced by model refinement. The new operator can replace a nondeterminis-
tic choice (assignment) statement in the event actions. It has been shown that
any probabilistic choice statement always refines its demonic nondeterministic
counterpart [13]. Hence such an extension is not interfering with traditional re-
finement process.

In this paper we aim at introducing quantitative probabilistic choice, i.e., the
operator ⊕| with precise probabilistic information about how likely a particular
choice should be made. In other words, it behaves according to some known
probabilistic distribution. The quantitative probabilistic assignment

x ⊕| x1 @ p1; . . . ; xn @ pn,

where
n∑

i=1

pi = 1, assigns to the variable x a new value xi with the corresponding

non-zero probability pi. Similarly to Hallerstede and Hoang, we can introduce
probabilistic choice only to replace the existing demonic one.

To illustrate the proposed extension, in Fig.5 we present a small example of a
probabilistic communication protocol implementing transmission over unreliable
channel. Since the channel is unreliable, sent messages may be lost. In the model
AM shown on the left-hand side, the occurrence of faults is modelled nonde-
terministically. Specifically, the variable msga is nondeterministically assigned
delivered or lost. In the model AM ′, the nondeterministic choice is replaced
by the probabilistic one, where the non-zero constant probabilities p and 1 − p
express how likely a message is getting delivered or lost. According to the theory
of probabilistic refinement [13], the machine AM ′ is a refinement of the machine
AM . The model refinement relation is denoted �.

Next we show how to define refinement between probabilistic systems mod-
elled in (extended) Event-B. In particular, our notion of model refinement can
be specialized to quantitatively demonstrate that the refined system is at least
as reliable as its more abstract counterpart.

4.2 Fully Probabilistic Systems

Let us first consider fully probabilistic systems, i.e., systems containing
only probabilistic nondeterminism. The quantitative information present in a

Towards Probabilistic Modelling in Event-B 281

Machine AM
Variables msga

Invariants
I : msga ∈ {delivered, lost}

Operational guards
Ja : msga
= lost

Events
Initialisation =̂

begin
msga := delivered

end
send =̂

begin
msga :∈ {delivered, lost}

end

�

Machine AM ′

Variables msga

Invariants
I : msga ∈ {delivered, lost}

Operational guards
Ja : msga
= lost

Events
Initialisation =̂

begin
msga := delivered

end
send =̂

begin
msga ⊕| delivered @ p; lost @ 1−p

end

Fig. 5. A simple communication protocol: introducing probabilities

probabilistic Event-B model requires lifting the notion of the system state to a
probabilistic distribution over it:

Definition 1 (Probabilistic distribution). For a system state space S, the
set of distributions over S is

S̄ =̂ {Δ : S → [0, 1] |
∑
s∈S

Δ.s = 1},

where Δ.s is the probability of reaching the state s.

Each iteration of a fully probabilistic system then maps some initial operational
state to a subset of S according to some probabilistic distribution, i.e., we can
define a single iteration PIM of a probabilistic cyclic system M as a partial
function of the type Sop → S̄.

There is a simple connection between iteration IM of a cyclic system M and
and its probabilistic counterpart PIM – some state is reachable by IM if and
only it is reachable by PIM with a non-zero probability:

∀s, s′ · s ∈ dom.IM ∧ s′ ∈ IM .s ⇔ s ∈ dom.PIM ∧ PIM .s.s′ > 0,

where dom is the function domain operator.
For example, it is straightforward to see that for our model AM of the com-

munication channel, the iteration function IAM is

IAM = {delivered �→ {delivered, lost}},

while the probabilistic iteration function PIAM ′ for the model AM ′ is

PIAM ′ = {delivered �→ {delivered �→ p, lost �→ (1−p)}}.

As it was mentioned before, all elements of system state are partitioned into
two disjoint classes of operational and non-operational states. For any state s ∈
Sop, its distribution Δ is defined by probabilistic choice statements (assignments)

282 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

presented in an Event-B machine. However, once the system fails, it stays in
the failed (non-operational) state. This means that, for any state s ∈ Snop, its
distribution Δ is such that Δ.s = 1 and Δ.s′ = 0, if s′ �= s.

Once we know the probabilistic state distribution Δ, we can quantitatively
assess the probability that the operational guard J is preserved by a single
iteration. However, our goal is to evaluate system reliability. In engineering,
reliability [24,17] is generally measured by the probability that an entity E can
perform a required function under given conditions for the time interval [0, t]:

R(t) = P{E not failed over time [0, t]}.

Hence reliability can be expressed as the probability that J remains true during
a certain number of iterations, i.e., the probability of system staying operational
for k iterations:

R(t) = P{�≤k J}.
Here we use the modal operator � borrowed from temporal logic (LTL or
(P)CTL, for instance). The formula (�≤k J) means that J holds globally for
the first k iterations. It is straightforward to see that this property corresponds
to the standard definition of reliability given above.

Let M and M ′ be probabilistic Event-Bmodels of cyclic systems. We strengthen
the notion of Event-B refinement by additionally requiring that the refined model
will execute more iterations before shutdown with a higher probability:

Definition 2 (Refinement for probabilistic cyclic systems)
For two probabilistic Event-B models M and M ′ of cyclic systems such that
M =̂ (Initialisation;doJ → E do) and M ′ =̂ (Initialisation′;do J ′ → E′ do),
we say that M ′ is a refinement of M , if and only if

1. M ′ is an Event-B refinement of M (M � M ′), and

2. ∀k ∈ N1 · P{�≤k J} ≤ P{�≤k J ′}.

Remark 1. If the second condition of Definition 2 holds not for all k, but for
some interval k ∈ 1..K, K ∈ N1, we say that M ′ is a partial refinement of M for
k ≤ K.

From the reliability point of view, a comparison of probabilistic distributions
corresponds to a comparison of how likely the system would fail in its next
iteration. This consideration allows us to define an order over the set S̄ of system
distributions:

Definition 3 (Ordering over distributions). For two distributions
Δ, Δ′ ∈ S̄ we define the ordering relation � as follows

Δ � Δ′ ⇔
∑

s∈Sop

Δ.s ≤
∑

s∈Sop

Δ′.s.

Towards Probabilistic Modelling in Event-B 283

It is easy to see that the ordering relation � defined in this way is reflexive and
transitive and hence is a total preorder on S. Let us note that the defined order
is not based on pointwise comparison between the corresponding single state
probabilities. Instead, we rely on the accumulated likelihood that the system
stays operational.

McIver and Morgan [13] have considered deterministic probabilistic programs
with possible nontermination. They have defined the set of (sub-)distributions
for terminating programs, with the order over distributions introduced as Δ �
Δ′ ⇔ (∀s ∈ S · Δ.s ≤ Δ′.s). Such a pointwise definition of an order is too
strong for our purposes. We focus on quantitative evaluation of system reliability,
treating all the operational states in system distributions as one class, i.e., we do
not distinguish between single operational states or their groups. In our future
work it would be interesting to consider a more fine-grained classification of
operational states, e.g., taking into account different classes of degraded states
of the system.

The order over final state distributions can be in turn used to define the order
over the associated initial states:

Definition 4 (Ordering over states). Let M be a probabilistic cyclic system.
Then, for its iteration PIM , any initial states si, sj ∈ Sop and distributions
Δi, Δj ∈ S̄ such that Δi = PIM .si and Δj = PIM .sj, we define the ordering
relation �M as

si �M sj ⇔ Δi � Δj

We can use this state ordering to represent the system state space S as an
ordered set {s1, . . . , sn}, where n ∈ N≥2 and (∀i ∈ 1..(n− 1) · Δi+1 � Δi).

Generally, all the non-operational states Snop can be treated as a singleton set,
since we do not usually care at which particular state the operational guard has
been violated. Therefore, by assuming that S = {s1, . . . , sn} and Snop = {sn},
it can be easily shown that sn is the least element (bottom) of S:

Δn.sn = 1 ⇒ ∀i ∈ 1..n · sn �M si

Now let us consider the behaviour of some cyclic system M in detail. We can
assume that the initial system state s1 belongs to the ordered set {s1, . . . , sn}.
This is a state where the system works “perfectly”. After its first iteration,
the system goes to some state si with the probability Δ1.si and si becomes
the current system state. At this point, if i = n, system shutdown is initiated.
Otherwise, the system starts a new iteration and, as a result, goes to some state
sj with the probability Δi.sj and so on. It is easy to see that this process is
completely defined by the following state transition matrix

PM =

⎛
⎜⎜⎜⎝

Δ1.s1 Δ1.s2 . . . Δ1.sn

Δ2.s1 Δ2.s2 . . . Δ2.sn

...
...

. . .
...

Δn.s1 Δn.s2 . . . Δn.sn

⎞
⎟⎟⎟⎠ ,

284 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

which in turn unambiguously defines the underlying Markov process (absorbing
discrete time Markov chain, to be precise).

Let us note that the state transition matrix of a Markov chain and its initial
state allow us to calculate the probability that the defined Markov process (after
k steps) will be in a state si (see [9] for example). Let assume that the operational
states of the system are ordered according to Definition 4 and initially a system
is in the state s1. Then we can rewrite the second condition of Definition 2 in
the following way:

Proposition 1. For two probabilistic Event-B models M and M ′ such that
M =̂ (Initialisation;doJ → E do) and M ′ =̂ (Initialisation′;do J ′ → E′ do),
the inequality

∀k ∈ N1 · P{�≤k J} ≤ P{�≤k J ′}
is equivalent to

∀k ∈ N1 · ((PM ′)k)1n′ ≤ ((PM)k)1n, (1)

where S = {s1, . . . , sn} and S′ = {s1, . . . , sn′} are the ordered system state spaces
of M and M ′ accordingly, and (. . .)1n is a (1n)-th element of a matrix.

Proof. Directly follows from our definition of the order on state distributions and
fundamental theorems of the Markov chains theory. �

In general, the initial system state is not necessarily the given state s1 but can
be defined by some initial state distribution Δ0. In this case the inequality (1)
should be replaced with

([Δ′
0] · P k

M ′)(n′) ≤ ([Δ0] · P k
M)(n),

where [Δ0] =

⎛
⎜⎝

Δ0.s1
...

Δ0.sn

⎞
⎟⎠, [Δ′

0] =

⎛
⎜⎝

Δ′
0.s1
...

Δ′
0.sn′

⎞
⎟⎠ and ([Δ0] · P k

M)(n) is the n-th

component of the column vector ([Δ0] · P k
M).

To illustrate our approach to refining fully probabilistic systems, let us revisit
our transmission protocol example. To increase reliability of transmission, we
refine the protocol to allow the sender to repeat message sending in case of
delivery failure. The maximal number of such attempts is given as the predefined
positive constant N . The resulting Event-B model CM is presented in Fig.6. Here
the variable att represents the current sending attempt. Moreover, the event
send is split to model the situations when the threshold N has been accordingly
reached and not reached.

The Event-B machine CM can be proved to be a probabilistic refinement
of its abstract probabilistic model (the machine AM ′ in Fig.5) according to
Definition 2.

In this section we focused on fully probabilistic systems. In the next section
we generalize our approach to the systems that also contain nondeterminism.

Towards Probabilistic Modelling in Event-B 285

Machine CM
Variables msgc, att
Invariants

I1 : msgc ∈ {delivered, try, lost}
I2 : att ∈ 1..N

Operational guards
Jc : msgc
= lost

Events
Initialisation =̂

begin
msgc := delivered
att := 1

end
start =̂

when
msgc = delivered

then
msgc := try

end
send1 =̂

when
msgc = try ∧ att < N

then
msgc, att ⊕| (delivered, 1) @ p; (try, att+1) @ 1−p

end
send2 =̂

when
msgc = try ∧ att = N

then
msgc, att ⊕| (delivered, 1) @ p; (lost, att) @ 1−p

end

Fig. 6. A simple communication protocol: probabilistic refinement

4.3 Probabilistic Systems with Nondeterminism

For a cyclic system M containing both probabilistic and demonic nondeter-
minism we define a single iteration as the partial function PIM of the type
Sop → P(S̄), i.e., as a mapping of the operational state into a set of distribu-
tions over S.

Nondeterminism has a demonic nature in Event-B. Hence such a model repre-
sent a worst case scenario, i.e., choosing the “worst” of operative sub-distributions
– the distributions with a domain restriction on Sop. From reliability perspective,
it means that while assessing reliability of such a system we obtain the lowest
bound estimate of reliability. In this case the notions of probabilistic system
refinement and the state ordering are defined as follows:

Definition 5 (Refinement for nondeterministic-probabilistic systems).
For two nondeterministic-probabilistic Event-B models M and M ′ of
cyclic systems such that M =̂ (Initialisation;doJ → E do) and M ′ =̂
(Initialisation′;doJ ′ → E′ do), we say that M ′ is a refinement of M , if and
only if

1. M ′ is an Event-B refinement of M (M � M ′);
2. ∀k ∈ N1 · Pmin{�≤k J} ≤ Pmin{�≤k J ′},

where Pmin{�≤k J} is the minimum probability that J remains true during the
first k iterations.

286 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

Remark 2. If the second refinement condition of the Definition 5 holds not for all
k, but for some interval k ∈ 1..K, K ∈ N1, we say that M ′ is a partial refinement
of M for k ≤ K.

Definition 6 (Ordering over distributions)
For two sets of distributions {Δil

| l ∈ 1..L} and {Δjk
| k ∈ 1..K} ∈ P(S̄), we

define the ordering relation � as

{Δil
| l ∈ 1..L} � {Δjk

| k ∈ 1..K} ⇔ min
l

(
∑
s∈S

Δil
.s) ≤ min

k
(
∑
s∈S

Δjk
.s).

As in the previous section, the order over final state distributions can be in turn
used to define the order over the associated initial states:

Definition 7 (Ordering over states). Let M be a nondeterministic-
probabilistic system. Then, for its iteration PIM , any initial states si, sj ∈ Sop

and sets of distributions {Δil
| l ∈ 1..L}, {Δjk

| k ∈ 1..K} ∈ P(S̄) such that
{Δil

| l ∈ 1..L} = PIM .si and {Δjk
| k ∈ 1..K} = PIM .sj, we define the

ordering relation �M as

si �M sj ⇔ {Δil
| l ∈ 1..L} � {Δjk

| k ∈ 1..K}

The underlying Markov process representing the behaviour of a nondeterminis-
tic-probabilistic cyclic system is a simple form of a Markov decision process.
For every i ∈ 1, . . . , (n − 1), let us define Δi = min

l
(
∑
s∈S

Δil
.s) and Δn = Δn.

Then, the state transition matrix that represents the worst-case scenario system
behaviour is defined in the following way:

PM =

⎛
⎜⎜⎜⎝

Δ1.s1 Δ1.s2 . . . Δ1.sn

Δ2.s1 Δ2.s2 . . . Δ2.sn

...
...

. . .
...

Δn.s1 Δn.s2 . . . Δn.sn

⎞
⎟⎟⎟⎠ ,

and the second refinement condition of Definition 5 can be rewritten as follows:

Proposition 2. For two nondeterministic-probabilistic Event-B models
M and M ′ such that M =̂ (Initialisation;doJ → E do) and M ′ =̂
(Initialisation′;doJ ′ → E′ do), the inequality

∀k ∈ N · P{�≤k J} ≤ P{�≤k J ′}
is equivalent to

∀k ∈ N1 · ((PM ′)k)1n′ ≤ ((PM)k)1n, (2)

where S = {s1, . . . , sn} and S′ = {s1, . . . , sn′} are the ordered system state spaces
of M and M ′ accordingly.

Towards Probabilistic Modelling in Event-B 287

Proof. This proof is the same as the proof for Proposition 1. �

Similarly as for fully-probabilistic systems, if the initial system state is not a
single state s1, but instead it is defined by some initial state distribution Δ0,
then the inequality (2) is replaced by

([Δ′
0] · P k

M ′)(n′) ≤ ([Δ0] · P k
M)(n).

4.4 Discussion

For fully probabilistic systems, we can often reduce the state space size using the
lumping technique [9] or equally probabilistic bisimulation [12]. For nondeter-
ministic probabilistic systems, a number of bisimulation techniques [8,22] have
been also developed.

For simple system models, deriving the set of state distributions S̄ and cal-
culating reliability probabilities P k

M for each refinement step can be done manu-
ally. However, for complex real-size systems this process can be extremely time
and effort consuming. Therefore, it is beneficial to have an automatic tool sup-
port for routine calculations. Development and verification of Event-B models
is supported by the Rodin Platform [19] – integrated extensible development
environment for Event-B. However, at the moment the support for quantita-
tive verification is sorely missing. To prove probabilistic refinement of Event-B
models according to Definition 2 and Definition 5, we need to extend the Rodin
platform with a dedicated plug-in or integrate some external tool.

One of the available automated techniques widely used for analysing systems
that exhibit probabilistic behaviour is probabilistic model checking [4,10]. In
particular, the probabilistic model checking frameworks like PRISM or MRMC
[18,16] provide good tool support for formal modelling and verification of discrete-
and continuous-time Markov processes. To enable the quantitative reliability
analysis of Event-B models, it would be advantageous to develop a Rodin plug-
in enabling automatic translation of Event-B models to existing probabilistic
model checking frameworks.

5 Related Work and Conclusions

5.1 Related Work

The Event-B framework has been extended by Hallerstede and Hoang [7] to take
into account model probabilistic behaviour. They introduce qualitative proba-
bilistic choice operator to reason about almost certain termination. This oper-
ator attempts to bound demonic nondeterminism that, for instance, allows us
to demonstrate convergence of certain protocols. However, this approach is not
suitable for reliability assessment since explicit quantitative representation of
reliability is not supported.

Several researches have already used quantitative model checking for de-
pendability evaluation. For instance, Kwiatkowska et al. [11] have proposed an

288 A. Tarasyuk, E. Troubitsyna, and L. Laibinis

approach to assessing dependability of control systems using continuous time
Markov chains. The general idea is similar to ours – to formulate reliability as
a system property to be verified. This approach differs from ours because it is
aims at assessing reliability of already developed systems. However, dependabil-
ity evaluation late at the development cycle can be perilous and, in case of poor
results, may lead to major system redevelopment causing significant financial
and time losses. In our approach reliability assessment proceeds hand-in-hand
with the system development by refinement. It allows us to assess dependability
of designed system on the early stages of development, for instance, every time
when we need to estimate impact of unreliable component on the system relia-
bility level. This allows a developer to make an informed decision about how to
guarantee a desired system reliability.

A similar topic in the context of refinement calculus has been explored by
Morgan et al. [14,13]. In this approach the probabilistic refinement has been
used to assess system dependability. Such an approach is much stronger than
the approach described in this paper. Probabilistic refinement allows the de-
velopers to obtain algebraic solutions even without pruning the system state
space. Meanwhile, probabilistic verification gives us only numeric solutions for
restricted system models. In a certain sense, our approach can be seen as a
property-wise refinement evaluation. Indeed, while evaluating dependability, we
essentially check that, for the same samples of system parameters, the probability
of system to hold a certain property is not decreased by refinement.

5.2 Conclusions

In this paper we proposed an approach to integrating probabilistic assessment of
reliability into Event-B modelling. We defined reliability of a cyclic system as the
probability of the system to stay in its operational state for a given number of
iterations. Our approach to augmenting Event B models with probabilities allows
us to give the semantic of a Markov process (or, in special cases, a Markov chain)
to augmented models. In turn, this allow us to algebraically compute reliability
by using any of numerous automated tools for reliability estimation.

In general, continuous-time Markov processes are more often used for depend-
ability evaluation. However, the theory of refinement of systems with continuous
behaviour has not reached maturity yet [3,15]. In this paper we showed that, by
restricting the shape of Event-B models and augmenting them with probabilities,
we can make a smooth transition to representing a cyclic system as a Markov
process. This allow us to rely on standard techniques for assessing reliability.

In our future work it would be interesting to explore continuous-time reason-
ing as well as generalise the notion of refinement to take into account several
dependability attributes.

Acknowledgments

This work is supported by IST FP7 DEPLOY Project. We also wish to thank
the anonymous reviewers for their helpful comments.

Towards Probabilistic Modelling in Event-B 289

References

1. Abrial, J.R.: Extending B without Changing it (for Developing Distributed Sys-

tems). In: Habiras, H. (ed.) First Conference on the B method, pp. 169–190. IRIN

Institut de recherche en informatique de Nantes (1996)

2. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University

Press, Cambridge (2005)

3. Back, R.J.R., Petre, L., Porres, I.: Generalizing Action Systems to Hybrid Sys-

tems. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 202–213. Springer,

Heidelberg (2000)

4. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge

(2008)

5. Craigen, D., Gerhart, S., Ralson, T.: Case study: Paris metro signaling system.

IEEE Software, 32–35 (1994)

6. EU-project DEPLOY, http://www.deploy-project.eu/
7. Hallerstede, S., Hoang, T.S.: Qualitative probabilistic modelling in Event-B. In:

Davies, J., Gibbons, J. (eds.) IFM 2007. LNCS, vol. 4591, pp. 293–312. Springer,

Heidelberg (2007)

8. Hansson, H.: Time and Probability in Formal Design of Distributed Systems. El-

sevier, Amsterdam (1995)

9. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. D. Van Nostrand Company (1960)

10. Kwiatkowska, M.: Quantitative verification: models techniques and tools. In:

ESEC/FSE 2007, pp. 449–458. ACM, New York (2007)

11. Kwiatkowska, M., Norman, G., Parker, D.: Controller dependability analysis by

probabilistic model checking. In: Control Engineering Practice, pp. 1427–1434

(2007)

12. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information

and Computation 94, 1–28 (1991)

13. McIver, A.K., Morgan, C.C.: Abstraction, Refinement and Proof for Probabilistic

Systems. Springer, Heidelberg (2005)

14. McIver, A.K., Morgan, C.C., Troubitsyna, E.: The probabilistic steam boiler: a

case study in probabilistic data refinement. In: Proc. International Refinement

Workshop, ANU, Canberra. Springer, Heidelberg (1998)

15. Meinicke, L., Smith, G.: A Stepwise Development Process for Reasoning about

the Reliability of Real-Time Systems. In: Davies, J., Gibbons, J. (eds.) IFM 2007.

LNCS, vol. 4591, pp. 439–458. Springer, Heidelberg (2007)

16. MRMC – Markov Reward Model Checker, http://www.mrmc-tool.org/
17. O’Connor, P.D.T.: Practical Reliability Engineering, 3rd edn. John Wiley & Sons,

Chichester (1995)

18. PRISM – Probabilistic Symbolic Model Checker,

http://www.prismmodelchecker.org/
19. Rigorous Open Development Environment for Complex Systems (RODIN): IST

FP6 STREP project, http://rodin.cs.ncl.ac.uk/
20. Rigorous Open Development Environment for Complex Systems (RODIN): Deliv-

erable D7, Event-B Language, http://rodin.cs.ncl.ac.uk/
21. RODIN. Event-B Platform, http://www.event-b.org/
22. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic

Journal of Computing 2(2), 250–273 (1995)

23. Storey, N.: Safety-Critical Computer Systems. Addison-Wesley, Reading (1996)

24. Villemeur, A.: Reliability, Availability, Maintainability and Safety Assessment.

John Wiley & Sons, Chichester (1995)

http://www.deploy-project.eu/
http://www.mrmc-tool.org/
http://www.prismmodelchecker.org/
http://rodin.cs.ncl.ac.uk/
http://rodin.cs.ncl.ac.uk/
http://www.event-b.org/

Safe Commits for Transactional Featherweight Java�

Thi Mai Thuong Tran and Martin Steffen

Department of Informatics, University of Oslo, Norway

Abstract. Transactions are a high-level alternative for low-level concurrency-
control mechanisms such as locks, semaphores, monitors. A recent proposal for
integrating transactional features into programming languages is Transactional
Featherweight Java (TFJ), extending Featherweight Java by adding transactions.
With support for nested and multi-threaded transactions, its transactional model
is rather expressive. In particular, the constructs governing transactions —to start
and to commit a transaction— can be used freely with a non-lexical scope. On
the downside, this flexibility also allows for an incorrect use of these constructs,
e.g., trying to perform a commit outside any transaction. To catch those kinds of
errors, we introduce a static type and effect system for the safe use of transactions
for TFJ. We prove the soundness of our type system by subject reduction.

1 Introduction

With CPU speeds and memory capacities ever increasing, and especially with the advent
of multiprocessor and multi-core architectures, effective parallel programming models
and suitable language support are in need to take full advantage of the architectural ad-
vances. Transactions, a well-known and successful concept originating from database
systems, have recently been proposed to be directly integrated into programming lan-
guages. As known from databases, transactions offer valuable safety and failure guar-
antees: atomicity, consistency, isolation, and durability, or ACID for short. Atomicity
means that the code inside a transaction is executed completely or not at all, consis-
tency that all transactions have the same “view” on shared data, isolation says that
when a transaction is running, other transactions cannot interfere, and durability states
successfully committed changes are persistent. One characteristic difference of transac-
tions compared to locks is a non-blocking behavior. All threads/transactions may run in
parallel provided that they guarantee the mentioned ACID properties. As a result, trans-
actional programming languages may make better use of parallelism and resources in
concurrent systems, and may avoid also deadlock situations.

As mechanism for concurrency control, they can be seen as a high-level, more ab-
stract, and more compositional alternative to more conventional means for concurrency
control, such as locks, semaphores, monitors, etc. How to syntactically capture transac-
tional programming in the language may vary. One option is lexical scoping, e.g., us-
ing an atomic keyword, similar to the synchronized keyword in Java for lock-handling.
More flexible is non-lexical scoping, where transactions can be started and finished (i.e.,

� The work has been partly supported by the EU-project FP7-231620 HATS (Highly Adaptable
and Trustworthy Software using Formal Methods).

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 290–304, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.cse.chalmers.se/research/hats/

Safe Commits for Transactional Featherweight Java 291

committed) freely. One proposal supporting non-lexical scoping of transaction handling
is Transactional Featherweight Java (TFJ) [15]. In the free use of the transactional con-
structs, it resembles also the way Java 5.0 allows for lock handling (using the lock and
unlock methods via the Lock-interface). The start of a transaction in TFJ programs is
marked by the onacid keyword and the end by the commit keyword. The transactional
model of TFJ is quite general and supports nested transactions which means a transac-
tion can contain one or more child transactions, which is very useful for composability
and partial rollback. Furthermore, TFJ supports multi-threaded transactions, i.e., one
transaction can contain internal concurrency. To commit an entire transaction, all child
transaction must have committed and the child threads and the thread itself must com-
mit at the same time. The flexibility of non-lexical use of onacid and commit comes
at a cost: not all usages of starting and committing transactions “make sense”. In par-
ticular, it is an error to perform a commit without being inside a transaction; we call
such an error a commit error. In this paper, we introduce a static type and effect system
to prevent these errors by keeping track of starting and committing transactions. The
static analysis is formulated as a type and effect system [18]. We concentrate on the
effect part, as the part dealing with the ordinary types works in a standard manner and
is straightforward. See [20] for details.

The paper is organized as follows. After Section 2, which recapitulates the syntax
and the operational semantics of the calculus, Section 3 defines the effect system to
prevent commit errors. The soundness of the type system relative to the given semantics
is shown in Section 4. Section 5 concludes with related and future work. In particular
we draw some parallel to the lock handling in Java 5.

2 An Object-Oriented Calculus with Transactions

Next we present the syntax and semantics of TFJ. It is, with some adaptations, taken
from [15] and a variant of Featherweight Java (FJ) [13] extended with transactions and
a construct for thread creation. The main adaptations are: we added standard constructs
such as sequential composition (in the form of the let-construct) and conditionals. Be-
sides that, we did not use evaluation-context based rules for the operational semantics.

2.1 Syntax

FJ is a core language originally introduced to study typing issues related to Java, such as
inheritance, subtype polymorphism, type casts. A number of extensions have been de-
veloped for other language features, so FJ is today a generic name for Java-related core
calculi. Following [15] we include imperative features such as destructive field updates,
further concurrency and support for transactions. Table 1 shows the abstract syntax
of TFJ. A program consists of a number of processes/threads t〈e〉 running in parallel,
where t is the thread’s identifier and e is the expression being executed.. The syntac-
tic category L captures class definitions. In absence of inheritance, a class class C{�f :
�T ;K; �M} consists of a name C, a list of fields �f with corresponding type declarations �T
(assuming that all fi’s are different), a constructor K, and a list �M of method definitions.
A constructor C(�f :�T){this.�f := �f } of the corresponding class C initializes the fields of

292 T.M.T. Tran and M. Steffen

Table 1. Abstract syntax

P ::= 0 | P ‖ P | t〈e〉 processes/threads
L ::= class C{�f : �T ;K; �M} class definitions
K ::= C(�f : �T){this.�f := �f } contructors
M ::= m(�x:�T){e} : T methods
e ::= v | v. f | v. f := v | if vtheneelse e | let x : T = e in e | v.m(�v) expressions
| new C(�v) | spawn e | onacid | commit

v ::= r | x | null values

instances of that class, these fields are mentioned as the formal parameters of the con-
structor. We assume that each class has exactly one constructor; i.e., we do not allow
constructor overloading. Similarly, we do not allow method overloading by assuming
that all methods defined in a class have a different name; likewise for fields. A method
definition m(�x:�T){e} : T consists of the name m of the method, the formal parameters
�x with their types �T , the method body e, and finally the return type T of the method.

In the syntax, v stands for values, i.e., expressions that can no longer be evaluated. In
the core calculus, we leave unspecified standard values like booleans, integers, . . . , so
values can be object references r, variables x or null. The expressions v. f and v1. f := v2

represent field access and field update respectively. Method calls are written v.m(�v) and
object instantiation is new C(�v). The next two expressions deal with the basic, sequen-
tial control structures: if v thene1 elsee2 represents conditions, and the let-construct
let x : T = e1 in e2 represents sequential composition: first e1 is evaluated, and after-
wards e2, where the eventual value of e1 is bound to the local variable x. Consequently,
standard sequential composition e1;e2 is syntactic sugar for let x : T = e1 in e2 where
the variable x does not occur free in e2. The language is multi-threaded: spawne starts
a new thread of activity which evaluates e in parallel with the spawning thread. Specific
for TFJ are the two constructs onacid and commit, two dual operations dealing with
transactions. The expression onacid starts a new transaction and executing commit suc-
cessfully terminates a transaction. The syntax is restricted concerning where to use
general expressions e. E.g., Table 1 does not allow field updates e1. f := e2, where the
object whose field is being updated and the value used in the right-hand side are repre-
sented by general expressions. It would be straightforward to relax the abstract syntax
that way. We have chosen this presentation, as it slightly simplifies the operational se-
mantics and the (presentation of the) type and effect system later. Of course, this is not
a real restriction in expressivity.

2.2 Semantics

This section describes the operational semantics of TFJ with some adaptations at two
different levels: a local and a global semantics. The local semantics is given in Table 2.
These local rules deal with the evaluation of one single expression/thread and reduce
configurations of the form E � e. Thus, local transitions are of the form E � e−→ E ′ � e′,
where e is one expression and E a local environment. At the local level, the relevant
commands only concern the current thread.

Safe Commits for Transactional Featherweight Java 293

Definition 1. A local environment E of type LEnv is a finite sequence of the form
l1:ρ1, . . . lk:ρk, i.e., of pairs of transaction labels li and a corresponding log ρi. We write
|E| for the size of the local environment (number of pairs l:ρ in the local environment).

Transactions are identified by labels l, and as transactions can be nested, a thread can
execute “inside” a number of transactions. So, the E in the above definition is ordered,
with e.g. lk to the right refers to the inner-most transaction, i.e., the one most recently
started and commiting removes bindings from right to left. The number |E| of a thread
represents the nesting depth of the thread, i.e., how many transactions the thread has
started but not yet committed. The corresponding logs ρi can, in a first approximation,
be thought of as “local copies” of the heap including bindings from references to ob-
jects. The log ρi keeps track of changes of the threads actions concerning transaction li.
The exact structure of such environments and the logs have no influence on our static
analysis, and indeed, the environments may be realized in different ways (e.g., [15]
gives two different flavors, a “pessimistic”, lock-based one and an “optimistic” one).
Relevant for our type and effect system will be only a number of abstract properties
of the environments, formulated in Definition 3 later. As the local rules in Table 2 are
pretty standard, and correspond to the ones of [15]. The first four rules deal straightfor-
wardly with the basic, sequential control flow. Unlike the first four rules, the remain-
ing ones do access the heap. Thus, the local environment E is consulted to look up
object references and then changed in the step. The access and update of E is given
abstractly by corresponding access functions read, write, and extend (which look-up a
reference on the heap, update a reference, resp. allocate an entry for a new reference
on the heap). The details can be found in [15] but note that also the read-function used
in the rules actually changes the environment from E to E ′ in the step. The reason is
that in a transaction-based implementation, read-access to a variable may be logged,
i.e., remembered appropriately, to be able to detect conflicts and to do a roll-back if
the transaction fails. This logging may change the local environment. The premises as-
sume the class table is given implicitly where fields(C) looks up fields of class C and
mbody(m,C) looks up the method m of class C. Otherwise, the rules for field lookup,
field update, method calls, and object instantiation are standard.

The five rules of the global semantics are given in Table 3. The semantics works on
configurations of the form Γ � P, where P is a program and Γ is a global environment.
Besides that, we need a special configuration error representing an error state. Basically,
a program P consists of a number of threads evaluated in parallel (cf. Table 1), where
each thread corresponds to one expression, whose evaluation is described by the local
rules. Now that we describe the behavior of a number of (labeled) threads t〈e〉, we need
one E for each thread t. This means, Γ is a “sequence” (or rather a set) of t:E bindings
where t is the name of a thread and E is its corresponding local environment.

Definition 2. A global environment Γ of type GEnv is a finite mapping, written as
t1:E1, . . . tk:Ek, from threads names ti to local environments Ei (the order of bindings
does not play a role, and each thread name can occur at most once).

So global steps are of the form Γ � P =⇒ Γ ′ � P′ or Γ � P =⇒ error. As for the local
rules, the formulation of the global steps makes use of a number of functions access-
ing and changing the (this time global) environment. As before, those functions are left

294 T.M.T. Tran and M. Steffen

abstract and only later we will formalize abstract properties that Γ and E considered
as abstract data types must satisfy. Rule G-PLAIN simply lifts a local step to the global
level, using the reflect-operation, which roughly makes local updates of a thread glob-
ally visible. Rule G-SPAWN deals with starting a thread. The next three rules treat the
two central commands of the calculus, those dealing directly with the transactions. The
first one G-TRANS covers onacid, which starts a transaction. The start function cre-
ates a new label l in the local environment E of thread t. The two rules G-COMM and
G-COMM-ERROR formalize the successful commit resp. the failed attempt to commit a
transaction. In G-COMM, the label of the transaction l to be committed is found (right-
most) in the local context E . Furthermore, the function intranse(l,Γ) finds the identities
t1 . . . tk of all concurrent threads in the transaction l and which all join in the commit.
In the erroneous case of G-COMM-ERROR, the local environment E is empty; i.e., the
thread executes outside of any transactions, which constitutes an error.

The next section continues with the effect system, as part of a “type and effect”
system. The underlying types T include names C of classes, basic types B (natural
numbers, booleans, etc.) and Void for typing side-effect-only expressions. The corre-
sponding type system for judgements of the form Γ � e : T (“under type assumptions
Γ , expression e has type T ”) is standard and omitted here (cf. the technical report [20]).

3 The Effect System

The effect system assures that starting and committing transactions is done “properly”,
in particular to avoid committing when outside a transaction, which we call commit
errors. To catch commit errors at compile time, the system keeps track of onacids and
commits; we refer to the number of onacids minus the number of commits as the bal-
ance. E.g., for an expression e = onacid; e1; commit; commit, the balance equals
1−2 =−1. An execution of a thread is balanced, if there are no pending transactions,
i.e., if the balance is 0. The situation gets slightly more involved when dealing with

Table 2. Semantics (local)

E � letx : T = v in e −→ E � e[v/x] R-RED

E � letx2 : T2 = (letx1 : T1 = e1 in e) in e′ −→ E � letx1 : T1 = e1 in (letx2 : T2 = e in e′) R-LET

E � letx : T = (if true then e1 else e2) in e −→ E � letx : T = e1 in e R-COND1

E � letx : T = (if false then e1 else e2) in e −→ E � letx : T = e2 in e R-COND2

read(r,E) = E ′,C(�u) fields(C) = �f
R-LOOKUP

E � letx:T = r. fi in e−→ E ′ � letx:T = ui in e

read(r,E) = E ′,C(�r) write(r �→C(�r) ↓r′
i ,E ′) = E ′′

R-UPD

E � letx:T = r. fi := r′ in e−→ E ′′ � letx:T = r′ in e

read(r,E) = E ′,C(�r) mbody(m,C) = (�x,e)
R-CALL

E � letx:T = r.m(�r) in e′ −→ E ′ � letx : T = e[�r/�x][r/this] in e′

r fresh E ′ = extend(r �→C(�null),E)
R-NEW

E � letx:T = newC() in e−→ E ′ � letx = r in e

Safe Commits for Transactional Featherweight Java 295

Table 3. Semantics (global)

E � e−→ E ′ � e′ Γ � t : E reflect(t,E ′,Γ) = Γ ′
G-PLAIN

Γ � P ‖ t〈e〉=⇒ Γ ′ � P ‖ t〈e′〉
t ′ fresh spawn(t,t ′,Γ) = Γ ′

G-SPAWN

Γ � P ‖ t〈letx : T = spawne1 in e2〉=⇒ Γ ′ � P ‖ t〈letx : T = null in e2〉 ‖ t ′〈e1〉
l fresh start(l,t,Γ) = Γ ′

G-TRANS

Γ � P ‖ t〈letx : T = onacid in e〉=⇒ Γ ′ � P ‖ t〈letx : T = null in e〉
Γ = Γ ′′,t:E E = E ′, l:ρ intranse(l,Γ) =�t = t1 . . . tk

commit(�t,�E,Γ) = Γ ′ t1:E1,t2:E2, . . . tk:Ek ∈ Γ �E = E1,E2, . . . ,Ek
G-COMM

Γ � P ‖ . . . ‖ ti〈letx : Ti = commit in ei〉 ‖ . . . =⇒ Γ ′ � P ‖ . . . ‖ ti〈letx : Ti = null in ei〉 ‖ . . .

Γ = Γ ′′,t:E E = /0
G-COMM-ERROR

Γ � P ‖ t〈letx : T = commit in e〉=⇒ error

l1

t1
t2

(a) Multi-threaded transaction

l1

t1 e′1
t2

(b) Sequential composition

Fig. 1. Transactions and multi-threading

multi-threading. TFJ supports not only nested transactions, but multi-threaded transac-
tions: inside one transaction there may be more than one thread active at a time. Due to
this internal concurrency, the effect of a transaction may be non-deterministic. Figure 1
shows a simple situation with two threads t1 and t2, where t1 starts a transaction with
the label l1 and spawns a new thread t2 inside the transaction. An example expression
resulting in the depicted behavior of Figure 1(b) is e1 = onacid;spawne2;e′1, where e1

is the expression evaluated by thread t1, and e2 by the freshly created t2. In TFJ’s con-
currency model, to terminate the parent transaction l1, both t1 and t2 must join via a
common commit. To keep track we must take into account that e2 and the rest e′1 of
the original thread are executed in parallel, and furthermore, that when executing e2

in the new thread t2, one onacid has already been executed by t1, namely before the
spawn-operation. Hence, we need to keep track of the balance not just for the thread
under consideration, but take into account the balance of the newly created threads, as
well. Even if a spawning thread and a spawned thread run in parallel, the situation wrt.
the analysis is not symmetric. Considering the balance for the left of onacid;spawne2,
the balance for both “threads” after execution amounts to +1, i.e., both threads are
executing inside one enclosing transaction. When calculating the combined effect for
onacid;spawne2;e′1, the balance value of onacid is treated differently from the one of

296 T.M.T. Tran and M. Steffen

e2, as the control flow of the sequential composition connects the trailing e′1 with onacid,
but not with the thread of e2

To sum up: to determine the effect in terms of the balance, we need to calculate the
balance for all threads potentially concerned, which means for the thread executing the
expression being analysed plus all threads (potentially) spawned during that execution.
From all threads, the one which carries the expression being evaluated plays a special
role, and is treated specially. Therefore, we choose a pair of an integer n and a (finite)
multi-set S of integers to represent the effect after evaluating an expression as follows:

n,S : Int× (Int→ Nat) . (1)

The integer n represents the balance of the thread of the given expression, the multi-set
the balance numbers for the threads potentially spawned by the expression. We write /0
for the empty multi-set, ∪ for the multi-set union. The multi-set can be seen as a func-
tion of type Int→ Nat (the multi-set’s characteristic function), and we write dom(S)
for the set of elements of S, ignoring their multiplicity. As an example: we use also
the set-like notation {−3,1,1,2} to represent the finite mapping−3 �→ 1,1 �→ 2,2 �→ 1
(and all other integers to 0). As a further operation, we use “addition” and “substrac-
tion” of such multisets and integers illustrated on a small example: {−3,1,1,2}+ 5
gives {2,6,6,7}. Based on S, we know how many newly created threads with their cor-
responding balances in the current expression, including threads with the same balance.
The judgements of the analysis are thus of the following form:

n1 � e :: n2,S , (2)

which reads as: starting with a balance of n1, executing e results in a balance of n2 and
the balances for new threads spawned by e are captured by S. The balance for the new
threads in S is calculated cumulatively; i.e., their balance includes n1, the contribution
of e before the thread is spawned, plus the contribution of the new thread itself.

The effect system is given in Table 4. For clarity, we do not integrate the effect
system with the underlying type system. Instead, we concentrate on the effects in iso-
lation. Variables, the null-expression, field lookup, and object creation have no effect
(cf. T-VAR, T-NULL, T-LOOKUP, and T-NEW in Table 4). A field update has no effect
(cf. T-UPD), as we require that the left- and the right-hand side of the assignment are
already evaluated. In contrast, the two dual commands of onacid and commit have the
expected effect: they simply increase, resp. decrease the balance by one (cf. T-ONACID

and T-COMMIT). A class declaration (cf. T-CLASS) has no effect and no newly cre-
ated threads, therefore the balance is zero and the multiset of balances equals /0. Rule
T-METH deals with method declarations. In this rule, we require that all spawned
threads in the method body must have the balance 0 after evaluating the expression
e, that the balance of the method itself has the form n1 → n2 where n1 is interpreted
as pre-condition, i.e., it is safe to call the method only in a state where the balance is
at least n1. The number n2 as the post-condition corresponds to the balance after exit-
ing the method, when called with balance n1 as pre-condition. The precondition n1 is
needed to assure that at the call-sites the method is only used where the execution of the
method body does not lead to a negative balance (see also the T-CALL-rules below).
Rule T-SUB captures a notion of subsumption where by S1 ≤ S2 we mean the subset

Safe Commits for Transactional Featherweight Java 297

Table 4. Effect system

T-VAR

n � x :: n, /0
T-NULL

n � null :: n, /0
T-LOOKUP

n � v. f :: n, /0
T-NEW

n � newC :: n, /0

n � v1 :: n, /0 n � v2 :: n, /0
T-UPD

n � v1. fi := v2 :: n, /0

T-ONACID

n � onacid :: n+1, /0

n≥ 1
T-COMMIT

n � commit :: n−1, /0

K = C(�f : �T){this.�f := �f } � �M :: �n1 →�n2,�S
T-CLASS

� class C{�f : �T ;K; �M} :: 0, /0

n1 � e :: n2,{0, . . .}
T-METH

� m(�x : �T){e} :: n1 → n2,{0, . . .}
n � e :: n′,S1 S1 ≤ S2

T-SUB

n � e :: n′,S2

n0 � e1 :: n1,S1 n1 � e2 :: n2,S2

T-LET

n0 � let x : T = e1 in e2 :: n2,S1 ∪S2

n � e :: n′,S
T-SPAWN

n � spawne :: n,S∪{n′}

n � v :: n, /0 n � e1 :: n′,S1 n � e2 :: n′,S2

T-COND

n � if v thene1 else e2 :: n′,S1 ∪S2

n � v :: n, /0 n � vi :: n, /0 mtype(C,m) :: n′1 → n′2,S n = n′1
T-CALL1

n � v.m(�v) :: n′2−n′1 +n,S−n′1 +n

n � v :: n, /0 n � vi :: n, /0 mtype(C,m) :: n′1 → n′2, /0 n > n′1
T-CALL2

n � v.m(�v) :: n′2−n′1 +n, /0

|E| � e :: 0,{0,0, . . .}
T-THREAD

t:E � t〈e〉 : ok

Γ1 � P1 : ok Γ2 � P2 : ok
T-PAR

Γ1,Γ2 � P1 ‖ P2 : ok

relation on multi-sets.1 In a let-expression (cf. T-LET), representing sequential compo-
sition, the effects are accumulated. Creating a new thread by executing spawne does not
change the balance of the executing thread (cf. T-SPAWN). The spawned expression e in
the new thread is analyzed starting with the same balance n in its pre-state. The result-
ing balance n′ of the new thread is given back in the conclusion as part of the balances
of the spawned threads, i.e., as part of the multi-set. For conditionals if v thene1 elsee2

(cf. T-COND), the boolean condition v does not change the balance, and the rule insists
that the two branches e1 and e2 agree on a balance n′.

For method calls, we distinguish two situations (cf. T-CALL1 and T-CALL2), de-
pending on whether the method being called creates new threads or not. In the latter
case, the multi-set of balances for method m in class C is required to be empty by the
third premise of the rule. In that situation, the precondition of the method can be in-
terpreted in a “loose” manner: the current balance n in the state before the call must
be at least as big as the pre-condition n′1. If, however, the method may spawn a new
thread (cf. T-CALL1), the pre-condition is interpreted strictly, i.e., we require n = n′1
(with this equality, T-CALL1 could be simplified; we chose this representation to stress
the connection with T-CALL2, where n > n′1). Allowing the loose interpretation also
in that situation would make the method callable in different levels of nestings at the
caller side; however, only exactly one level actually is appropriate, as with concurrent

1 The non-structural rule of subsumption makes the system non syntax-directed. To turn it to an
algorithm, one would have to disallow subsumption and derive a minimal multiset instead.

298 T.M.T. Tran and M. Steffen

threads inside a transaction, all threads must join in a commit to terminate the transac-
tion. A thread t〈e〉 is well-typed (cf. T-THREAD), if the expression has balance 0 after
termination, starting with a balance corresponding to the length |E| of the local environ-
ment E . We use ok to indicate that the thread is well-typed, i.e., without commit-error.
This balance in the pre-state corresponds to the level of nesting inside transactions, the
thread t〈e〉 currently executes in. A program is well typed, if all threads in the system
are well-typed (cf. T-PAR). We illustrate the system with the following two examples:

Example 1. The following derivation applies the effect system to the expression e1;
spawn(e2;spawne3); e4 :: n4,{n2,n3}, when starting with a balance of 0.

0 � e1 :: n′1,{}

n′1 � e2 :: n2,{}

n2 � e3 :: n3,{}

n2 � spawne3 :: n2,{n3}

n′1 � (e2;spawne3) :: n2,{n3}

n′1 � spawn(e2;spawne3) :: n′1,{n2 ,n3} n′1 � e4 :: n4,{}

n′1 � spawn(e2;spawne3);e4 :: n4,{n2 ,n3}

0 � e1;spawn(e2;spawne3);e4 :: n4,{n2 ,n3}
The derivation demonstrates sequential composition and thread creation with a starting
balance of 0 for simplicity. Remember that sequential composition e1;e2 is syntactic
sugar for letx:T = e1 in e2, where x does not occur free in e2; i.e., assume that the ex-
pressions e1,. . . e4 themselves have the following balances 0 � ei :: n′i,{}, which implies
n′1 � e2 :: n′1 +n′2 = n2,{}, n2 � e3 :: n2 +n′3 = n3,{}, and n′1 � e4 :: n′1 +n′4 = n4,{}. ��
Example 2. Assume the following code fragment:

. . .
vo id n (){ onacid ; m(1 0) ; }

vo id m(i){ commit ;
i f (i ≤ 0)
t h e n onacid ;
e l s e ; onacid ; t h i s .m(i −1); }

vo id main (){ n () ; commit ; }

First observe that the program shows no commit-errors during run-time. Method m
calls itself recursively and the two branches of the conditional in its body both execute
one onacid each. Especially, method m is called (in this fragment) only via method
n, especially after n has performed an onacid, i.e., m is called inside one transaction.
If m were called outside a transaction it would result in an error, as the body of m
starts by executing a commit-statement. In our effect system, method m can be declared
as of effect 1 → 1, which expresses not only that the body of m does not change the
balance, but that as a precondition, it must be called only from call-sites where the
balance is ≥ 1, as is the case in the body of n (cf. also T-METH and T-CALL). So the
declarations of the two shown methods are of the form n() : Void→ Void,0 → 1 and
m(i) : Int→ Void,1→ 1. For recursive calls, an effect like 1→ 1 can be interpreted as
loop invariant: the body of the method must not change the balance to be well-typed.
However, not every method needs to be balanced; the non-recursive method n is one
example which (together with the call to m) has a net-balance of 1. ��

Safe Commits for Transactional Featherweight Java 299

4 Soundness of the Type and Effect System

Next we prove that the type and effect system does what it is designed to do, namely
absence of commit errors.

Lemma 1 (Subject reduction (local)). Let n = |E|. If n� e :: n′,S′ and E � e−→E ′ � e′,
then |E ′|= n and n � e′ :: n′,S′.

Proof. By straightforward induction on the rules of Table 2, observing that by the prop-
erties of read, write, and extend, |E|= |E ′|. ��
The global semantics accesses and changes the global environments Γ . These manipu-
lations are captured in various functions, which are kept “abstract” in this semantics (as
in [15]). To perform the subject reduction proof, however, we need to impose certain
requirements on those functions:

Definition 3. The properties of the abstract functions are specified as follows:

1. The function reflect satisfies the following condition: if reflect(t,E,Γ) = Γ ′ and
Γ = t1:E1, . . . ,tk:Ek, then Γ ′ = t1:E ′1, . . . ,tk:E ′k with |Ei|= |E ′i | (for all i).

2. The function spawn satisfies the following condition: Assume Γ = t : E,Γ ′′ and
t ′ /∈ Γ and spawn(t,t ′,Γ) = Γ ′, then Γ ′ = Γ ,t ′:E ′ s.t. |E|= |E ′|.

3. The function start satisfies the following condition: if start(l, ti,Γ) = Γ ′ for a Γ =
t1:E1, . . . ,ti:Ei, . . . ,tk:Ek and for a fresh l, then Γ ′ = t1:E1, . . . ,ti:E ′i , . . . ,tk:Ek, with
|E ′i |= |Ei|+ 1.

4. The function intranse satisfies the following condition: Assume Γ = Γ ′′, t:E s.t.
E = E ′, l:ρ and intranse(l,Γ) =�t, then
(a) t ∈�t and
(b) for all ti ∈�t we have Γ = . . . ,ti : (E ′i , l:ρi),
(c) for all threads t ′ with t ′ /∈�t and where Γ = . . . ,t ′:(E ′, l′:ρ ′), . . ., we have l′ �= l.

5. The function commit satisfies the following condition: if commit(�t,�E,Γ) = Γ ′ for
a Γ = Γ ′′,t:(E, l:ρ) and for a�t = intranse(l,Γ) then Γ ′ = . . . ,t j:E ′j, . . . ,ti:E

′
i , . . .

where ti ∈�t, t j /∈�t, t j:E j ∈ Γ , with |E ′j|= |E j| and |E ′i |= |Ei|−1.

Lemma 2 (Subject reduction). If Γ � P : ok and Γ � P =⇒ Γ ′ � P′, then Γ ′ � P′ : ok.

Proof. Proceed by case analysis on the rules of the operational semantics from Table
3 (except rule G-COMMERROR for commit errors). For simplicity (and concentrating
on the effect, not the values of expressions) we use ; for sequential composition in the
proof, and not the more general let-construct.

Case: G-PLAIN

From the premises of the rule, we get for the form of the program that P = P′′ ‖ t〈e〉,
furthermore for t’s local environment Γ � t : E and E � e −→ E ′ � e′ as a local step.
Well-typedness Γ � P : ok implies n � e :: n′,S′ for some n′ and S′, where n = |E|. By
subject reduction for the local steps (Lemma 1) n � e′ :: n′,S′. By the properties of the
reflect-operation, |E ′|= n, so we derive for the thread t

n � e′ :: 0,{0, . . .}

Γ ′,t:E ′ � t〈e′〉 : ok

from which the result Γ ′ � P′′ ‖ t〈e′〉 : ok follows (using T-PAR and the properties of
reflect from Definition 3.1).

300 T.M.T. Tran and M. Steffen

Case: G-SPAWN

In this case, P = P′′ ‖ t〈spawne1;e2〉 and P′= P′′ ‖ t〈null;e2〉 ‖ t ′〈e1〉 (from the premises
of G-SPAWN). The well-typedness assumption Γ � P : ok implies the following sub-
derivation:

n � e1 : 0,S1

n � spawne1 : n,S1 ∪{0} n � e2 : 0,S2

n � spawne1;e2 : 0,{0, . . .}

t:E � t〈spawne1;e2〉 : ok

(3)

with S1 = {0, . . .} and S2 = {0, . . .}. By the properties of reflect, the global environment
Γ ′ after the reduction step is of the form Γ ,t ′:E ′ where t ′ is fresh and |E ′| = |E| (see
Definition 3.2). So we can derive

t:E � t〈null;e2〉 : ok

n � e1 : 0,{0, . . .}

t ′:E ′ � t ′〈e1〉 : ok

t:E,t ′:E ′ � t〈null;e2〉 ‖ t ′〈e1〉 : ok

The left sub-goal follows from T-THREAD,T-SEQ, T-NULL, and the right sub-goal of
the previous derivation (3). The right open sub-goal directly corresponds to the left
sub-goal of derivation (3).

Case: G-TRANS

In this case, P = P′′ ‖ t〈onacid;e〉 and P′ = P′′ ‖ t〈null;e〉. The well-typedness assump-
tion Γ � P : ok implies the following sub-derivation (assume that |E|= n):

n � onacid :: n+1, /0 n+1 � e :: 0,{0, . . .}

n � onacid;e :: 0,{0, . . .}

t:E � t〈onacid;e〉 : ok

(4)

For the global environment Γ ′ after the step, we are given Γ ′ = start(l,t,Γ) from the
premise of rule G-TRANS. By the properties of start from Definition 3.3, we have
Γ ′ = Γ ′′,t:E ′ with |E ′| = n + 1. So with the help of right sub-goal of the previous
derivation (4), we can derive for thread t after the step:

n+1 � e :: 0,{0, . . .}

t:E ′ � t〈e〉 : ok

Since furthermore the local environments of all other threads remain unchanged (cf.
again Definition 3.3), the required Γ ′ � P′ : ok can be derived, using T-PAR.

Case: G-COMM

In this case, P = P′′ ‖�t〈commit;�e〉 and P′ = P′′ ‖�t〈�e〉. The well-typedness assumption
Γ � P : ok implies the following sub-derivation for thread t:

n � commit :: n−1, /0 n−1 � ei : 0,{0, . . .}

n � commit;ei : 0,{0, . . .}

ti:Ei � ti〈commit;ei〉 : ok

(5)

Safe Commits for Transactional Featherweight Java 301

For the global environment Γ ′ after the step, we are given Γ ′ = commit(�t,�E,Γ) from
the premise of rule G-TRANS, where�t = intranse(l,Γ) and �E are the corresponding
local environments. By the properties of commit from Definition 3.5, we have for the
local environments �E ′ of threads �t after the step that |E ′i | = n− 1. So we obtain by
T-THREAD, using the right sub-goal of derivation (5):

n−1 � ei :: 0,{0, . . .}

ti:E
′
i � ti〈ei〉 : ok

For the threads t j〈e j〉 different from�t, according to the Definition 3.5, we have |E ′j| =
|E j| so t j:E ′j � t j〈e′j〉 : ok straightforwardly. As a result, we have Γ ′ � P′ : ok. ��
Lemma 3. If Γ � P : ok then it is not the case that Γ � P =⇒ error.

Proof. Let Γ � P : ok and assume for a contradiction that Γ � P −→ error. From the
rules of the operational semantics it follows that P = t〈commit;e〉 ‖ P′ for some thread
t, where the step Γ � P −→ error is done by t (executing the commit-command). Fur-
thermore, the local environment E for the thread t is empty:

E = /0
G-COMM

Γ ′,t:E � t〈commit;e〉 ‖ P′ −→ error

To be well-typed, i.e., for the judgment Γ � t〈commit;e〉 ‖ P′ : ok to be derivable, it is
easy to see that the derivation must contain Γ ′,t: /0 � t〈commit;e〉 : n,S as sub-derivation
(for some n and S). By inverting rule T-THREAD, we get that 0 � let commit in e :
0,{0,0, . . .} is derivable (since |E| = 0). This is a contradiction, as the balance after
commit would be negative (inverting rules T-LET and T-COMMIT). ��
Corollary 1 (Well-typed programs are commit-error free). If Γ � P : ok then it is
not the case that Γ � P =⇒∗ error,

Proof. A direct consequence of the subject reduction Lemma 2 and Lemma 3. ��

5 Conclusion

This work took the TFJ language design from [15] as starting point. That paper is not
concerned with static analysis, but develops and investigates two different operational
semantics for TFJ that assure transactional guarantees. As mentioned, however, the flex-
ibility of the language may lead to run-time errors when executing a commit outside
any transaction; we called such situations commit-errors. To statically prevent commit-
errors, we presented a static type and effect system, which keeps track of the commands
for starting and finishing transactions. We proved soundness of the type system.

A comparison with explicit locks of Java. The built-in support for concurrency control
in Java is lock-based; each object comes equipped with a (re-entrant) lock, which can
be used to specify synchronized blocks and, as a special case, synchronized methods.
The lock can achieve mutual exclusion between threads that compete for the lock before

302 T.M.T. Tran and M. Steffen

doing something critical. Thus, the built-in, lock-based (i.e., “pessimistic”) concurrency
control in Java offers lexically scoped protection based on mutual exclusion. While
offering basic concurrency control, the scheme has been criticized as too rigid, and
consequently, Java 5 now additionally supports explicit locks with non-lexical scope.
The ReentrantLock class and the Lock interface allow more freedom, offering explicit
lock and unlock operations. Locking and unlocking can be compared, to some extent,
to starting and committing a transaction, even if there are differences especially wrt.
failure and progress properties. See e.g., [3] for a discussion of such differences. Besides
the more behavioral differences, such as different progress guarantees or deadlocking
behavior, the lock handling in Java 5 and the transactional model of TFJ differ in the
following aspects, as relevant for the type analysis (cf. Table 5).

One basic difference is that we proposed a static scheme to catch commit errors,
whereas in Java, improper use of locking and unlocking is checked at run-time. Both
schemes, as mentioned, have all the flexibility of non-lexical scoping. The rest of Table
5 deals with the structure of protected areas (the transaction or the execution protected
by a lock) and the connection to the threading model. One difference is that locks have
an identity available at the program level, whereas transactions have not. Furthermore,
locks and monitors in Java are re-entrant, i.e., one particular thread holding a lock
can recursively re-enter a critical section or monitor. Re-entrance is not an issue in
TFJ: a thread leaves a transaction by committing it (which terminates the transaction),
hence re-entrance into the same transaction makes no sense. Transactions in TFJ can
be nested. Of course, in Java, a thread can hold more than one lock at a time; however,
the critical sections protected by locks do not follow a first-in-last-out discipline, and
the section are not nested as they are independent. For nested transactions in contrast,
a commit to a child transaction is propagated to the surrounding parent transaction,
but not immediately further, until that parent commits its changes in turn. Finally, TFJ
allows multi-threaded transactions, whereas monitors and locks in Java are meant to
ensure mutual exclusion. In particular, if an activity inside a monitor spawns a new
thread, the new thread starts executing outside any monitor, in other words, a new thread
holds no locks. In [17], we discuss the differences and similarities in more depth by
comparing the analysis developed here with a corresponding one that deals with the
safe use of a statically allocated number of locks.

Related work. There have been a number of further proposals for integrating transac-
tional features into programming languages. For transactional languages, lexical
scope for transactions, so called atomic blocks, have been proposed, using e.g., an

Table 5. Transactional Featherweight Java and explicit locks of Java

Java 5.0 TFJ
when? run-time compile time
non-lexical scope yes yes
program level identity yes no
re-entrance yes no
nested transactions/critical sections no yes
internal multi-threading no yes

Safe Commits for Transactional Featherweight Java 303

atomic-construct or similar. Examples are Atomos [4], the AME calculus [1], and many
proposals for software transactional memory [8,21], but none of them deals with assur-
ing statically proper use of the corresponding constructs. When dealing with concur-
rency, most static analyses focus on avoiding data races and deadlocks, especially for
multi-threaded Java programs. Static type systems have also been used to impose re-
strictions assuring transactional semantics, e.g. in [9,1,14]. A type system for atomicity
is presented in [7,6]. [2] develops a type system for statically assuring proper lock han-
dling for the JVM, i.e., on the level of byte code. Their system assures what is known
as structured locking, i.e., (in our terminology), each method body is balanced as far as
the locks are concerned, and at no point, the balance reaches below 0. Since the work
does not consider non-lexical locking as in Java 5, the conditions apply per method
only. Also the Rcc/Java type system tries to keep track of which locks are held (in an
approximate manner), noting which field is guarded by which lock, and which locks
must be held when calling a method. Especially safe lock analysis, supported e.g. by
the Indus tool [19] as part of Bandera, is a static analysis that checks whether a lock
is held indefinitely (in the context of multi-threaded Java). Software model checking
is a prominent, alternative way to assure quality of software. By using some form of
abstraction (typically ignoring data parts and working on an abstract, automata-based
representation), model checking can be used as a form of static analysis of concrete
programs, as well. The Blast analyzer [11] allows automatic verification for checking
temporal safety properties of C programs (using counter-example guided abstraction
refinement), and has been extended to deal with concurrent programs, as well [5]. Sim-
ilarly, Java PathFinder is an automatic, model-checking tool (based on Spin) to analyze
Java programs [10].

Future work. The work presented here can be extended to deal with more complex lan-
guage features, e.g. when dealing with higher-order functions. In that setting, the effect
part and its connection to the type system become more challenging. Furthermore, we
plan to adopt the results for a different language design, more precisely to the language
Creol [16], which is based on asynchronously communicating, active objects, in con-
trast to Java, whose concurrency is based on multi-threading. As discussed, there are
similarities between lock-handling in Java 5 and the transactions as treated here. We
plan to use similar techniques as explored here to give static guarantees for lock-based
concurrency, as well. Of practical relevance is to extend the system from type checking
to type inference, potentially along the lines [12].

Acknowledgements. We thank the anonymous reviewers for their helpful suggestions.

References

1. Abadi, M., Birell, A., Harris, T., Isard, M.: Semantics of transactional memory and automatic
mutual exclusion. In: Proceedings of POPL 2008. ACM, New York (2008)

2. Bigliardi, G., Laneve, C.: A type system for JVM threads. In: Proceedings of 3rd ACM
SIGPLAN Workshop on Types in Compilation (TIC 2000), p. 2003 (2000)

3. Blundell, C., Lewis, E.C., Martin, M.K.: Subtleties of transactional memory atomicity se-
mantics. IEEE Computer Architecture Letters 5(2) (2006)

304 T.M.T. Tran and M. Steffen

4. Carlstrom, B.D., McDonald, A., Chafi, H., Chung, J., Minh, C.C., Kozyrakis, C., Oluktun,
K.: The ATOMOΣ transactional programming language. In: ACM Conference on Program-
ming Language Design and Implementation, Ottawa, Ontario, Canada. ACM, New York
(2006)

5. Davare, A.: Concurrent BLAST, Internal Report, EECS Berkely. Mentors Rupak Majumdar
and Ranjit Jhala, Mentors (2003)

6. Flanagan, C., Freund, S.: Atomizer: A dynamic atomicity checker for multithreaded pro-
grams. In: Proceedings of POPL 2004, pp. 256–267. ACM, New York (2004)

7. Flanagan, C., Quadeer, S.: A type and effect system for atomicity. In: ACM Conference
on Programming Language Design and Implementation, San Diego, California. ACM, New
York (2003)

8. Harris, T., Fraser, K.: Language support for lightweight transactions. In: Eighteenth
OOPSLA 2003. SIGPLAN Notices. ACM, New York (2003)

9. Harris, T., Peyton Jones, S.M.S., Herlihy, M.: Composable memory transactions. In: PPoPP
2005: 10th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
pp. 48–60 (June 2005)

10. Havelund, K., Pressburger, T.: Model checking Java programs using Java PathFinder. Inter-
national Journal on Software Tools for Technology Transfer 2(4), 366–381 (2000)

11. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with BLAST.
In: Ball, T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 235–239. Springer,
Heidelberg (2003)

12. Igarashi, A., Kobayashi, N.: Resource usage analysis. ACM Transactions on Programming
Languages and Systems 27(2), 264–313 (2005)

13. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: A minimal core calculus for Java
and GJ. In: OOPSLA 1999. SIGPLAN Notices, pp. 132–146. ACM, New York (1999)

14. Isard, M., Birell, A.: Automatic mutual exclusion. In: Proceedings of the 11th Workshop on
Hot Topics in Operating Systems (2007)

15. Jagannathan, S., Vitek, J., Welc, A., Hosking, A.: A transactional object calculus. Science
of Computer Programming 57(2), 164–186 (2005)

16. Johnsen, E.B., Owe, O., Yu, I.C.: Creol: A type-safe object-oriented model for distributed
concurrent systems. Theoretical Computer Science 365(1-2), 23–66 (2006)

17. Tran, T.M.T., Owe, O., Steffen, M.: Safe typing for transactional vs. lock-based concur-
rency in multi-threaded Java. In: Proceedings of the Second International Conference on
Knowledge and Systems Engineering, KSE 2010 (accepted for publication 2010)

18. Nielson, F., Nielson, H.-R., Hankin, C.L.: Principles of Program Analysis. Springer, Hei-
delberg (1999)

19. Ranganath, V.P., Hatcliff, J.: Slicing concurrent Java programs using Indus and Kaveri. In-
ternational Journal of Software Tools and Technology Transfer 9(5), 489–504 (2007)

20. Steffen, M., Tran, T.M.T.: Safe commits for Transactional Featherweight Java. Technical
Report 392, University of Oslo, Dept. of Computer Science (October 2009)

21. Welc, A., Jagannathan, S., Hosking, A.: Transactional monitors for concurrent objects. In:
Odersky, M. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 518–541. Springer, Heidelberg (2004)

Certified Absence of Dangling Pointers in a
Language with Explicit Deallocation�

Javier de Dios, Manuel Montenegro, and Ricardo Peña

Departamento de Sistemas Informáticos y Computación

Universidad Complutense de Madrid

jdcastro@aventia.com, montenegro@fdi.ucm.es, ricardo@sip.ucm.es

Abstract. Safe is a first-order eager functional language with facilities

for programmer controlled destruction of data structures. It provides also

regions, i.e. disjoint parts of the heap, where the program allocates data

structures, so that the runtime system does not need a garbage collector.

A region is a collection of cells, each one big enough to allocate a data

constructor. Deallocating cells or regions may create dangling pointers.

The language is aimed at inferring and certifying memory safety proper-

ties in a Proof Carrying Code like environment. Some of its analyses have

been presented elsewhere. The one relevant to this paper is a type system

and a type inference algorithm guaranteeing that well-typed programs

will be free of dangling pointers at runtime.

Here we present how to generate formal certificates about the absence

of dangling pointers property inferred by the compiler. The certificates

are Isabelle/HOL proof scripts which can be proof-checked by this tool

when loaded with a database of previously proved theorems. The key

idea is proving an Isabelle/HOL theorem for each syntactic construction

of the language, relating the static types inferred by the compiler to the

dynamic properties about the heap that will be satisfied at runtime.

Keywords: Memory management, type-based analysis, formal certifi-

cates, proof assistants.

1 Introduction

Certifying program properties consists of providing mathematical evidence about
them. In a Proof Carrying Code (PCC) environment [14], these proofs should
be checked by an appropriate tool. The certified properties may be obtained
either manually, interactively, or automatically, but whatever is the effort needed
for generating them, the PCC paradigm insists on their checking to be fully
automatic.

In our setting, the certified property (absence of dangling pointers) is auto-
matically inferred as the product of several static analyses, so that the certificate
can be generated by the compiler without any human intervention. Certifying the
� Work supported by the projects TIN2008-06622-C03-01/TIN (STAMP), S2009/TIC-

1465 (PROMETIDOS), and MEC FPU grant AP2006-02154.

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 305–319, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

306 J. de Dios, M. Montenegro, and R. Peña

inferred property is needed in our case to convince a potential consumer that
the static analyses are sound and that they have been correctly implemented
in the compiler.

Our functional language Safe, described below, is equipped with type-based
analyses for inferring regions where data structures are located [13], and for
detecting when a program with explicit deallocation actions is free of dangling
pointers [12]. One may wonder why a functional language with explicit deallo-
cation may be useful and why not using a more conventional one such as e.g.
C. Explicit deallocation is a low-level facility which, when used without restric-
tions, may create complex heap structures and programs difficult or impossible
to analyse for pointer safety. On the contrary, functional languages have more
structure and the explicit deallocation can be confined to a small part of it (in
our case, to pattern matching), resulting in heap-safe programs most of the time
and, more importantly, amenable to a safety analysis in an automatic way.

Region inference was proved optimal in [13]: assigning data to regions min-
imises their lifetimes, subject to allocating/deallocating regions in a stack-based
way. On the other hand, explicit deallocation eliminates garbage before the re-
gion mechanism does, so memory leaks are not a major concern here.

The above analyses have been manually proved correct in [11], but we em-
barked on the certification task by several reasons:

– The proof in [11] was very much involved. There were some subtleties that
we wanted to have formally verified in a proof assistant.

– The implementation was also very involved. Generating and checking certifi-
cates is also a way of increasing our trust in the implementation.

– A certificate is a different matter than proving analyses correct, since the
proof it contains must be related to every specific compiled program.

In this paper we describe how to create a certificate from the type annotations
inferred by the analyses. The key idea is creating a database of theorems, proved
once forever, relating these static annotations to the dynamic properties the
compiled programs are expected to satisfy. There is a proof rule for each syntactic
construction of the language and a theorem proving its soundness. These proof-
rules generate proof obligations, which the generated certificate must discharge.
We have chosen the proof assistant Isabelle/HOL [16] both for constructing and
checking proofs. To the best of our knowledge, this is the first system certifying
absence of dangling pointers in an automatic way.

The certificates are produced at the intermediate language level called Core-
Safe, at which also the analyses are carried out. This deviates a bit from the
standard PCC paradigm where certificates are at the bytecode/assembly lan-
guage level, i.e. they certify properties satisfied by the executable code. We
chose instead to formally verify the compiler’s back-end: Core-Safe is translated
in two steps to the bytecode language of the Java Virtual Machine, and these
steps have been verified in Isabelle/HOL [7,6], so that the certified property is
preserved across compilation. This has saved us the (huge) effort of translating
Core-Safe certificates to the JVM level, while nothing essential is lost: a scenario

Certified Absence of Dangling Pointers in a Language 307

can be imagined where the Core-Safe code and its certificate are sent from the
producer to a consumer and, once validated, the consumer uses the certified
back-end for generating the executable code. On the other hand, our certificates
are smaller than the ones which could be obtained at the executable code level.

In the next section we describe the relevant aspects of Safe. In Sec. 3 a first
set of proof rules related to explicit deallocation is presented, while a second set
related to implicit region deallocation is explained in Sec. 4. Section 5 is devoted
to certificate generation and Sec. 6 presents related work and concludes.

2 The Language

Safe is a first-order eager language with a syntax similar to Haskell’s. Its runtime
system uses regions, i.e. disjoint parts of the heap where the program allocates
data structures. The smallest memory unit is the cell, a contiguous memory
space big enough to hold a data construction. A cell contains the mark of the
constructor and a representation of the free variables to which the constructor
is applied. These may consist either of basic values, or of pointers to other
constructions. Each cell is allocated at constructor application time. A region is
a collection of cells. It is created empty and it may grow and shrink while it is
active. Region deallocation frees all its cells. The allocation and deallocation of
regions is bound to function calls. A working region, denoted by self, is allocated
when entering the call and deallocated when exiting it. Inside the function, data
structures not belonging to the output may be built there. The region arguments
are explicit in the intermediate code but not in the source, since they are inferred
by the compiler [13]. The following list sorting function builds an intermediate
tree not needed in the output:

treesort xs = inorder (makeTree xs)

After region inference, the code is annotated with region arguments (those ocur-
ring after the @):

treesort xs @ r = inorder (makeTree xs @ self) @ r

so that the tree is created in treesort’s self region and deallocated upon termi-
nation of treesort.

Besides regions, destruction facilities are associated with pattern matching.
For instance, we show here a destructive function splitting a list into two:

unshuffle []! = ([],[])

unshuffle (x:xs)! = (x:xs2,xs1) where (xs1,xs2) = unshuffle xs

The ! mark is the way programmers indicate that the matched cell must be
deleted. The space consumption is reduced with respect to a conventional version
because, at each recursive call, a cell is deleted by the pattern matching. At
termination, the whole input list has been returned to the runtime system.

The Safe front-end desugars Full-Safe and produces a bare-bones functional
language called Core-Safe. The transformation starts with region inference and
continues with Hindley-Milner type inference, pattern matching desugaring, and

308 J. de Dios, M. Montenegro, and R. Peña

prog → data i
n
; decj

m
; e {Core-Safe program}

data → data T αi
n @ ρj

m = Ck tks
nk @ ρm

l {recursive, polymorphic data type}
dec → f xi

n @ rj
l = e {recursive, polymorphic function}

e → a {atom: literal c or variable x}
| x @ r {copy data structure x into region r}
| x! {reuse data structure x}
| a1 ⊕ a2 {primitive operator application}
| f ai

n @ rj
l {function application}

| let x1 = be in e {non-recursive, monomorphic}
| case x of alti

n {read-only case}
| case! x of alti

n {destructive case}
alt → C xi

n → e {case alternative}
be → C ai

n @ r {constructor application}
| e

Fig. 1. Core-Safe syntax

some other simplifications. In Fig. 1 we show the syntax of Core-Safe. A program
is a sequence of possibly recursive polymorphic data and function definitions
followed by a main expression e whose value is the program result. The over-line
abbreviation xi

n stands for x1 · · ·xn. case! expressions implement destructive
pattern matching, constructions are only allowed in let bindings, and atoms —or
just variables— are used in function applications, case/case! discriminant, copy
and reuse. Region arguments are explicit in constructor and function applications
and in copy expressions. As an example, we show the Core-Safe version of the
unshuffle function above:

unshuffle x34 @ r1 r2 r3 = case! x34 of

x49 : x50 -> let x40 = unshuffle x50 @ r2 r1 self in

let x15 = case x40 of (x45,x46) -> x45 in

let x16 = case x40 of (x47,x48) -> x48 in

let x38 = x49 : x16 @ r1 in

let x39 = (x38,x15) @ r3 in x39

[] -> let x36 = [] @ r1 in

let x35 = [] @ r2 in

let x37 = (x36,x35) @ r3 in x37

2.1 Operational Semantics

In Figure 2 we show the big-step operational semantics rules of the most relevant
core language expressions. We use v, vi, . . . to denote either heap pointers or
basic constants, p, pi, q, . . . to denote heap pointers, and a, ai, . . . to denote either
program variables or basic constants (atoms). The former are named x, xi, . . .
and the latter c, ci etc. Finally, we use r, ri, . . . to denote region arguments.

A judgement of the form E � (h, k), e ⇓ (h′, k), v states that expression e is
successfully reduced to normal form v under runtime environment E and heap h
with k+1 regions, ranging from 0 to k, and that a final heap h′ with k+1 regions
is produced as a side effect. Runtime environments E map program variables to

Certified Absence of Dangling Pointers in a Language 309

E � (h, k), c ⇓ (h, k), c [Lit] E[x �→ v] � (h, k), x ⇓ (h, k), v [Var1]

(f xi
n@ rj

m = e) ∈ Σ
[xi �→ E(ai)

n
, rj �→ E(r′j)

m
, self �→ k + 1] � (h, k + 1), e ⇓ (h′, k + 1), v

E � (h, k), f ai
n@ r′j

m ⇓ (h′ |k, k), v
[App]

E � (h, k), e1 ⇓ (h′, k), v1 E ∪ [x1 �→ v1] � (h′, k), e2 ⇓ (h′′, k), v

E � (h, k), let x1 = e1 in e2 ⇓ (h′′, k), v
[Let]

j ≤ k fresh(p) E ∪ [x1 �→ p] � (h � [p �→ (j, C vi
n)], k), e2 ⇓ (h′, k), v

E[r �→ j, ai �→ vi
n] � (h, k), let x1 = C ai

n@r in e2 ⇓ (h′, k), v
[LetC]

C = Cr E ∪ [xri �→ vi
nr] � (h, k), er ⇓ (h′, k), v

E[x �→ p] � (h[p �→ (j, C vi
nr)], k), case x of Ci xij

ni → ei
m ⇓ (h′, k), v

[Case]

C = Cr E ∪ [xri �→ vi
nr] � (h, k), er ⇓ (h′, k), v

E[x �→ p] � (h � [p �→ (j, C vi
nr)], k), case! x of Ci xij

ni → ei
m ⇓ (h′, k), v

[Case !]

Fig. 2. Operational semantics of Safe expressions

values and region variables to actual region numbers in the range {0 . . . k}. We
adopt the convention that for all E, if c is a constant, E(c) = c.

In a heap (h, k), h is a finite mapping from pointers p to construction cells w
of the form (j, C vi

n), where j ≤ k, meaning that the cell resides in a region j
in scope. By h[p �→ w] we denote a heap mapping h where the binding [p �→ w]
exists and is highlighted, h�[p �→ w] denotes the disjoint union of h and [p �→ w],
and (h |k, k) is the heap obtained by deleting from (h, k′) the bindings living in
regions greater than k.

The semantics of a program dec1; . . . ; decn; e is the semantics of the main
expression e in an environment Σ containing all the function declarations. We
only comment the rules related to allocation/deallocation, which may create
dangling pointers in the heap. The rest are the usual ones for an eager language.

Rule App shows when a new region is allocated. The formal identifier self
is bound to the newly created region k + 1 so that the function body may
create bindings in this region. Before returning, all cells created in region k + 1
are deleted. This action is a source of possible dangling pointers. Rule Case !
expresses what happens in a destructive pattern matching: the binding of the
discriminant variable disappears from the heap. This action is another source of
possible dangling pointers.

2.2 Safe Type System

We distinguish between functional and non-functional types. Non-functional al-
gebraic types may be safe types (internally marked as s), condemned types
(marked as d), or in-danger types (marked as r). In-danger types arise as an
intermediate step during typing and are useful to control the side-effects of de-
structions, but function arguments can only receive either safe or condemned
types. The intended semantics of these types is the following:

310 J. de Dios, M. Montenegro, and R. Peña

– Safe types (s): Data structures (DS) of this type can be read, copied or
used to build other DSs. They cannot be destroyed.

– Condemned types (d): A DS directly involved in a case! action. Its re-
cursive descendants inherit a condemned type. They cannot be used to build
other DSs, but they can be read/copied before being destroyed.

– In-danger types (r): A DS sharing a recursive descendant of a condemned
DS, so it can potentially contain dangling pointers.

Functional types can be polymorphic both in the Hindley-Milner sense and in
the region sense: they may contain polymorphic type variables (denoted ρ, ρ′ . . .)
representing regions. If a region type variable occurs several times in a type, then
the actual runtime regions of the corresponding arguments should be the same.
Constructor applications have one region argument r : ρ whose type occurs as
the outermost region in the resulting algebraic type T s @ ρm (i.e. ρm = ρ).
Constructors are given types forcing its recursive substructures and the whole
structure to live in the same region. For example, for lists and trees:

[] : ∀a ρ . ρ→ [a] @ ρ
(:) : ∀a ρ . a→ [a] @ ρ → ρ → [a] @ ρ
Empty : ∀a ρ . ρ→ BSTree a @ ρ
Node : ∀a ρ . BSTree a @ ρ → a → BSTree a @ ρ → ρ → BSTree a @ ρ

Function types may have zero or more region arguments. For instance, the type
inferred for unshuffle is:

∀a ρ1 ρ2 ρ3 ρ4 . [a]! @ ρ4 → ρ1 → ρ2 → ρ3 → ([a] @ ρ1, [a] @ ρ2) @ ρ3

where ! is the external mark of a condemned type (internal mark d). Types
without external marks are assumed to be safe.

The constructor types are collected in an environment Σ, easily built from
the data type declarations. In typing environments Γ we can find region type
assumptions r : ρ, variable type assumptions x : t, and polymorphic scheme
assumptions for function symbols f : ∀a∀ρ.t. The operators between typing
environments used in the typing rules are shown in Fig. 3. The usual operator
+ demands disjoint domains. Operators ⊗ and ⊕ are defined only if common
variables have the same type, which must be safe in the case of ⊕. Operator �L is
an asymmetric composition used to type let expressions. Predicate utype?(t, t′)
tells whether the underlying types (i.e. without marks) of t and t′ are the same,
while unsafe? is true for types with a mark r or d.

In Fig. 4 we show the most relevant rules of the type system, which illustrate
the use of the above environment operators. Function sharerec(x, e) is the result
of a sharing analysis and returns the set of free variables in the scope of expression
e which at runtime may share a recursive descendant of variable x. An important
consequence of having a sharing analysis is the unusual feature of our type system
that the typing environment may contain type assumptions for variables which
are not free in the typed expression.

Predicates inh and inh! restrict the types of the case/case! patterns according
to the type of the discriminant. The most important restriction is that the recur-
sive patterns of a condemned discriminant must also be condemned. Predicate

Certified Absence of Dangling Pointers in a Language 311

Operator Γ1 • Γ2 defined if Result of (Γ1 • Γ2)(x)

+ dom(Γ1) ∩ dom(Γ2) = ∅ Γ1(x) if x ∈ dom(Γ1)

Γ2(x) otherwise

⊗ ∀x ∈ dom(Γ1) ∩ dom(Γ2) . Γ1(x) = Γ2(x)
Γ1(x) if x ∈ dom(Γ1)

Γ2(x) otherwise

⊕ ∀x ∈ dom(Γ1) ∩ dom(Γ2) . Γ1(x) = Γ2(x)
∧ safe?(Γ1(x))

Γ1(x) if x ∈ dom(Γ1)

Γ2(x) otherwise

�L ∀x ∈ dom(Γ1) ∩ dom(Γ2). utype?(Γ1(x), Γ2(x))
∧ ∀x ∈ dom(Γ1). unsafe?(Γ1(x))→ x /∈ L

Γ2(x) if x /∈ dom(Γ1)∨
x ∈ dom(Γ1) ∩ dom(Γ2) ∧ safe?(Γ1(x))

Γ1(x) otherwise

Fig. 3. Operators on type environments

Γ1 � e1 : s1 Γ2 + [x1 : τ1] � e2 : s utype?(τ1, s1) ¬danger?(τ1)

Γ1 �fv(e2) Γ2 � let x1 = e1 in e2 : s
[LET]

ti
n → ρj

l → T @ρm � σ Γ = [f : σ] +
⊕l

j=1[rj : ρj] +
⊕n

i=1[ai : ti]

R =
⋃n

i=1{sharerec(ai, f ai
n@rj

l)− {ai} | cmd?(ti)} ΓR = {y : danger (type(y))| y ∈ R}
ΓR + Γ � f ai

n@ rj
l : T @ρm

[APP]

∀i ∈ {1..n}.Σ(Ci) = σi ∀i ∈ {1..n}.si
ni → ρ→ T @ρ� σi

Γ ≥case x of Ci xij
ni→ei

n [x : T@ρ] ∀i ∈ {1..n}.∀j ∈ {1..ni}.inh(τij , sij , Γ (x))

∀i ∈ {1..n}.Γ + [xij : τij]
ni � ei : s

Γ � case x of Ci xij
ni → ei

n
: s

[CASE]

(∀i ∈ {1..n}). Σ(Ci) = σi ∀i ∈ {1..n}. si
ni → ρ→ T @ρ� σi

R = sharerec(x, case! x of Ci xij
ni → ei

n
) ∀i ∈ {1..n}. ∀j ∈ {1..ni}.inh!(tij , sij , T !@ρ)

∀z ∈ R, i ∈ {1..n}.z /∈ fv(ei) ∀i ∈ {1..n}. Γ + [x : T #@ρ] + [xij : tij]
ni � ei : s

ΓR = {y : danger(type(y)) | y ∈ R− {x}}
ΓR ⊗ Γ + [x : T !@ρ] � case! x of Ci xij

ni → ei
n

: s
[CASE!]

Fig. 4. Some Safe typing rules for expressions

danger? is true for r-marked types, while function danger (t) attaches a mark r
to a safe type t. For a complete description, see [11]. An inference algorithm for
this type system has been developed in [12].

3 Cell Deallocation by Destructive Pattern Matching

The idea of the certificate is to ask the compiler to deliver some static infor-
mation inferred during the type inference phase, and then to use a database of
previously proved lemmas relating this information with the dynamic properties
the program is expected to satisfy at runtime. In this case, the static informa-
tion consists of a mark m ∈ {s, r, d} —respectively meaning safe, in-danger, and
condemned type— for every variable, and the dynamic property the certificate
must prove is that the heap remains closed during evaluation.

By fv (e) we denote the set of free variables of expression e, excluding function
names and region variables, and by dom(h) the set {p | [p �→ w] ∈ h}. A
static assertion has the form [[L, Γ]], where L ⊆ dom(Γ) is a set of program

312 J. de Dios, M. Montenegro, and R. Peña

variables and Γ a mark environment assigning a mark to each variable in L and
possibly to some other variables. We will write Γ [x] = m to indicate that x has
mark m ∈ {s, r, d} in Γ . We say that a Core-Safe expression e satisfies a static
assertion, denoted e : [[L, Γ]], if fv (e) ⊆ L and some semantic conditions below
hold. Our certificate for a given program consists of proving a static assertion
[[L, Γ]] for each Core-Safe expression e resulting from compiling the program.

If E is the runtime environment, the intuitive idea of a variable x being typed
with a safe mark s is that all the cells in the heap h reached at runtime by
E(x) do not contain dangling pointers and they are disjoint from unsafe cells.
The idea behind a condemned variable x is that the cell pointed to by E(x)
will be removed from the heap and all live cells reaching any of E(x)’s recursive
descendants by following a pointer chain are in danger. We use the following
definitions, formally specified in Isabelle/HOL:

closure (E,X, h) Set of locations reachable in heap h by {E(x) | x ∈ X}
closure (v, h) Set of locations reachable in h by location v
recReach (E,x, h) Set of recursive descendants of E(x) including itself

recReach (v, h) Set of recursive descendants of v in h including itself

closed (E,L, h) There are no dangling pointers in h, i.e. closure (E,L, h)⊆dom(h)
p→∗

h V There is a pointer path in h from p to a q ∈ V
By abuse of notation, we will write closure(E, x, h) and also closed(v, h). Now, we
define the following two sets, respectively denoting the safe and unsafe locations
of the live heap, as functions of L, Γ , E, and h:

SL,Γ,E,h
def
=

⋃
x∈L,Γ [x]=s{closure(E, x, h)}

RL,Γ,E,h
def
=

⋃
x∈L,Γ [x]=d{p ∈ closure(E,L, h) | p→∗

h recReach(E, x, h)}

Definition 1. Given the following properties
P1 ≡ E � (h, k), e ⇓ (h′, k), v
P2 ≡ dom(Γ) ⊆ dom(E)

P3 ≡ L ⊆ dom(Γ)

P4 ≡ fv(e) ⊆ L
P5 ≡ ∀x ∈ dom(E). ∀z ∈ L .

Γ [z] = d ∧ recReach(E, z, h) ∩ closure(E, x, h)
= ∅ → x ∈ dom(Γ) ∧ Γ [x]
= s
P6 ≡ ∀x ∈ dom(E) . closure (E, x, h)
≡ closure (E, x, h′)→ x ∈ dom(Γ) ∧ Γ [x]
= s
P7 ≡ SL,Γ,E,h ∩RL,Γ,E,h = ∅
P8 ≡ closed(E,L, h)
P9 ≡ closed(v, h′)

we say that expression e satisfies the static assertion [[L, Γ]], denoted e : [[L, Γ]],
if P3 ∧ P4 ∧ (∀E h k h′ v . P1 ∧ P2→ P5 ∧ P6 ∧ (P7 ∧ P8→ P9)).

A notion of satisfaction relative to the validity of a function environment ΣM ,
denoted e, ΣM : [[L, Γ]], is also defined.

Property P1 defines any runtime evaluation of e. Properties P2 to P4 just
guarantee that each free variable has a type and a value. Properties P5 to P7
formalise the dynamic meaning of safe and condemned types: if some variable

Certified Absence of Dangling Pointers in a Language 313

c, ΣM� (∅, ∅) LIT x,ΣM� ({x}, Γ + [x : s]) VAR1

e1
= C ai
n e1, ΣM� (L1, Γ1) x1
∈ L1 e2, ΣM� (L2, Γ

′
2 + [x1 : s]) def (Γ1 �

L2 Γ ′
2)

let x1 = e1 in e2, ΣM� (L1 ∪ (L2 − {x1}), Γ1 �
L2 Γ ′

2)
LET1

e1
= C ai
n e1, ΣM� (L1, Γ1) x1
∈ L1 e2, ΣM� (L2, Γ

′
2 + [x1 : d]) def (Γ1 �

L2 Γ ′
2)

let x1 = e1 in e2, ΣM� (L1 ∪ (L2 − {x1}), Γ1 �
L2 Γ ′

2)
LET2

L1 = {ai
n} Γ1 = [ai �→ sn] x1
∈ L1 e2, ΣM� (L2, Γ

′
2 + [x1 : s]) def (Γ1 �

L2 Γ ′
2)

let x1 = C ai
n@r in e2, ΣM� (L1 ∪ (L2 − {x1}), Γ1 �

L2 Γ ′
2)

LET1C

L1 = {ai
n} Γ1 = [ai �→ sn] x1
∈ L1 e2, ΣM� (L2, Γ2 + [x1 : d]) def (Γ1 �

L2 Γ ′
2)

let x1 = C ai
n@r in e2, ΣM� (L1 ∪ (L2 − {x1}), Γ1 �

L2 Γ ′
2)

LET2C

∀i . (ei, ΣM� (Li, Γi) ∀j.Γi[xij]
= d) Γ ⊇⊗
i(Γi\{xij}) x ∈ dom(Γ) L = {x} ∪ (

⋃
i(Li − {xij}))

case x of Cixij → ei, ΣM� (L, Γ)
CASE

∀i . (ei, ΣM� (Li, Γi) ∀j . Γi[xij] = d→ j ∈ RecPos(Ci))

L′ =
⋃

i(Li − {xij}) Γ ⊇ (
⊗

i Γi\({xij} ∪ {x})) + [x : d] ∀z ∈ dom(Γ) . Γ [z]
= s→ (∀i . z
∈ Li)

case! x of Cixij → ei, ΣM� (L′ ∪ {x}, Γ)
CASE !

ΣM (g) = mi
n L = {ai

n} Γ0 =
⊕n

i=1[ai : mi] defined Γ ⊇ Γ0

g ai
n@ r′j

m
, ΣM� (L, Γ)

APP

f xi
n@ rj

m = ef Lf = {xi
n} Γf = [xi �→ mi

n] ef , ΣM � [f �→ mi
n]� (Lf , Γf)

ef , ΣM� (Lf , Γf)
REC

Fig. 5. Proof rules for explicit deallocation

can share a recursive descendant of a condemned one, or its closure changes
during evaluation, it should occur as unsafe in the environment.

The key properties are P8 and P9. If they were proved for all the judgements
of any e’s derivation, they would guarantee that the live part of the heap would
remain closed, hence there would not be dangling pointers. We have proved that
P8 is an ‘upwards’ invariant in any derivation, while P9 is a ‘downwards’ one.
Formally:

Theorem 1 (closedness). Consider a derivation E � (h, k), e ⇓ (h′, k), v. If
e : [[L, Γ]], P2(Γ, E), P7(L, Γ, E, h) and P8(E, L, h) hold, then P8(Ei, Li, hi)
and P9(vi, h

′
i) hold for all judgements Ei � (hi, ki), ei ⇓ (h′

i, ki), vi belonging to
that derivation.

But P2, P7 and P8 trivially hold for the empty heap, empty environment Γ ,
and empty set L of free variables, which are the ones corresponding to the initial
expression, so P8 and P9 hold across the whole derivation of the program.

In Fig. 5 we show the proof rules related to this property. The following
soundness theorem (a lemma for each expression) has been interactively proved
by induction on the derivations obtained with these rules.

Theorem 2 (soundness). If e, ΣM � (L, Γ) then e, ΣM : [[L, Γ]].

When proving the soundness of the APP rule, the closedness of the heap be-
fore returning from g does not in principle guarantee that the heap will remain
closed after deallocating the heap topmost region. Proving this, needs a separate

314 J. de Dios, M. Montenegro, and R. Peña

collection of theorems showing that the value returned by g does not contain cells
in that region. This part of the problem is explained in Sec. 4.

For each expression e, the compiler generates a pair (L, Γ). According to
e’s syntax, the certificate chooses the appropriate proof rule, checks that its
premises are satisfied, and applies it in order to get the conclusion e, ΣM� (L, Γ).
For example, in an application expression g ai

n@ rj
m, the certificate access to

ΣM and checks that the given environment Γ contains the actual arguments ai

with these marks mi assigned. It also checks that operator
⊕

, requiring any
duplicated actual argument to be safe (see Fig. 3), is well-defined, and then it
applies the proof rule APP .

4 Region Deallocation

We present here the proof rules certifying that region deallocation does not create
dangling pointers. As before, the compiler delivers static information about the
region types used by the program variables and expressions, and a soundness
theorem relates this information to the runtime properties of the actual regions.

In an algebraic type T ti
m@ ρj

l, the last region type variable ρl of the list is
always the most external one, i.e. the region where the cell of the most external
constructor is allocated. By regions (t) we denote the set of region type variables
occurring in the type t. There is a reserved identifier ρf

self for every defined
function f , denoting the region type variable assigned to the working region self
of function f . We will assume that the expression e being certified belongs to
the body of a context function f or to the main expression.

By θ, θi, . . . we denote typing environments, i.e. mappings from program vari-
ables and region arguments to types. For region arguments, θ(r) = ρ means that
ρ is the type variable the compiler assigns to argument r.

In function or constructor applications, the set of generic region types used
in the signature of an applied function g (of a constructor C) must be related
to the actual region types used in the application. Also, some ordinary poly-
morphic type variables of the signature may become instantiated by algebraic
types introducing additional regions. Let us denote by μ the type instantiation
mapping used by the compiler. This mapping should correctly map the types of
the formal arguments to the types of the corresponding actual arguments.

Definition 2. Given the instantiated types ti
n, the instantiated region types

ρj
m, the arguments of the application ai

n, rj
m, and the typing mapping θ, we say

that the application is argument preserving, denoted argP (ti
n
, ρj

m, ai
n, rj

m, θ),
if: ∀i ∈ {1..n} . ti = θ(ai) ∧ ∀j ∈ {1..m} . ρj = θ(rj).

For functions, the certificate incrementally constructs a global environment ΣT

keeping the most general types of the functions already certified. For construc-
tors, the compiler provides a global environment ΓT giving its polymorphic most
general type. If ΓT (C) = ti

n → ρ → T tj
l@ ρi

m, the following property, satisfied
by the type system, is needed for proving the proof rules below:

Certified Absence of Dangling Pointers in a Language 315

Definition 3. Predicate wellT (ti
n
, ρ, T tj

l@ ρi
m), read well-typed, is defined

as ρm = ρ ∧ ⋃n
i=1 regions (ti) ⊆ regions (T tj

l@ ρi
m)

So far for the static concepts. We move now to the dynamic or runtime ones. By
η, ηi, . . . we denote region instantiation mappings from region type variables to
runtime regions identifiers in scope. Region identifiers k, ki, . . . are just natural
numbers denoting offsets of the actual regions from the bottom of the region
stack. If k if the topmost region in scope, then for all ρ, 0 ≤ η(ρ) ≤ k holds. The
intended meaning of k′ = η(ρ) is that, in a particular execution of the program,
the region type ρ has been instantiated to the actual region k′. Admissible region
instantiation mappings should map ρf

self to the topmost region, and other region
types to lower regions.

Definition 4. Assuming that k denotes the topmost region of a given heap, we
say that the mapping η is admissible, denoted admissible (η, k), if:

ρf
self ∈ dom(η) ∧ η(ρf

self) = k ∧ ∀ρ ∈ dom(η)− {ρf
self } . η(ρ) < k

The important notion is consistency between the static information θ and the
dynamic one E, η, h, h′. Essentially, it tells us that the static region types, its
runtime instantiation to actual regions, and the actual regions where the data
structures are stored in the heap, do not contradict each other.

Definition 5. We say that the mappings θ, η, the runtime environment E, and
the heap h are consistent, denoted consistent (θ, η, E, h), if:

1. ∀x ∈ dom(E) . consistent (θ(x), η, E(x), h) where:
consistent (B, η, c, h) = true -- B denotes a basic type
consistent (a, η, v, h) = true -- a denotes a type variable
consistent (T t′i

m
@ ρj

l, η, p, h) = ∃j C vk
n μ tkC

n
ρjC

l . h(p) = (j, C vk
n)

∧ ρl ∈ dom(η) ∧ η(ρl) = j

∧ ΓT (C) = tkC
n → ρlC → T t′iC

m
@ ρjC

l

∧ μ(T t′iC
m

@ ρjC
l) = T t′i

m
@ ρj

l

∧ ∀k ∈ {1..n} . consistent (μ(tkC), η, vk, h))
2. ∀r ∈ dom(E) . θ(r) ∈ dom(η) ∧ E(r) = (η · θ)(r)
3. self ∈ dom(E) ∧ θ(self) = ρf

self

We are ready to define the satisfaction of a static assertion relating the static
and dynamic properties referred to regions: A judgement of the form e : [[θ, t]]
defines that, if expression e is evaluated with an environment E, a heap (h, k),
and an admissible mapping η consistent with θ, then η, the final heap h′, and
the final value v are consistent with t. Formally:

Definition 6. An expression e satisfies the pair (θ, t), denoted e : [[θ, t]] if

∀E h k h′ v η . E � (h, k), e ⇓ (h′, k), v -- P1
∧ dom(E) ⊆ dom(θ) -- P2
∧ admissible (η, k) -- P3
∧ consistent (θ, η, E, h) -- P4
→ consistent (t, η, v, h′) -- P5

316 J. de Dios, M. Montenegro, and R. Peña

c,ΣT � θ � B
LIT

x,ΣT � θ � θ(x)
VAR1

e1, ΣT � θ � t1 e2, ΣT � θ � [x1 �→ t1] � t2

let x1 = e1 in e2, ΣT � θ � t2
LET

ΓT (C) = ti
n → ρ→ t wellT (ti

n
, ρ, t) e2, ΣT � θ � [x1 �→ μ(t)] � t2 argP (μ(ti)

n
, μ(ρ), ai

n, r, θ)

let x1 = C ai
n @ r in e2, ΣT � θ � t2

LETC

∀i. (ΓT (Ci) = tij
ni → ρ→ t wellT (tij

ni , ρ, t))

∀i. ei, ΣT � θ � [xij → μ(tij)
ni

] � t′ θ(x) = μ(t)

case x of Ci xij
ni → ei

n
, ΣT � θ � t′

CASE

∀i. (ΓT (Ci) = tij
ni → ρ→ t wellT (tij

ni , ρ, t))

∀i. ei, ΣT � θ � [xij → μ(tij)
ni

] � t′ θ(x) = μ(t)

case! x of Ci xij
ni → ei

n
, ΣT � θ � t′

CASE !

Σ(g) = ti
n→ ρj

m→ tg ρg
self
∈ regions (tg) argP (μ(ti)

n
, μ(ρj)

m
, ai

n, rj
m, θ) t = μ(tg)

g ai
n@ rj

m, ΣT � θ � t
APP

f xi
n@ rj

m = ef

θf = [xi �→ ti
n
, rj �→ ρj

m, self �→ ρself] ef , ΣT ∪ {f �→ ti
n → ρj

m → tf} � θf � tf

ef , ΣT � θf � tf
REC

Fig. 6. Proof rules for region deallocation

Theorem 3 (consistency). If e : [[θ, t]], E � (h, k), e ⇓ (h′, k), v, P2(E, θ),
P3(η, k), P4(θ, η, E, h) hold, then P3(ηi, ki), P4(θi, ηi, Ei, hi), P5(ti, ηi, vi, h

′
i)

hold for all judgements Ei � (hi, ki), ei ⇓ (h′
i, ki), vi belonging to that derivation.

But P2, P3 and P4 trivially hold for the empty heap h0, dom(E0) = dom(θ0)
= {self }, θ0(self) = ρmain

self , k0 = 0, and η0(ρmain
self) = E0(self) = 0, which are the

ones corresponding to the initial expression, so P3, P4 and P5 hold across the
whole program derivation. In Fig. 6 we show the proof rules related to regions.

Theorem 4 (soundness). If e, ΣT � θ � t then e, ΣT : [[θ, t]].

To prove it, there is a separate Isabelle/HOL theorem for each syntactic form. As
we have said, region allocation/deallocation takes place at function call/return.
The premise ρg

self �∈ regions (tg) in the APP rule, together with properties P3
and P5 guarantee that the data structure returned by the function has no cells
in the deallocated region corresponding to η(ρg

self). So, deallocating this region
cannot cause dangling pointers.

For each expression e, the compiler generates a pair (θ, t) (and a μ when
needed). According to e’s syntax, the certificate applies the corresponding proof
rule by previously discharging its premises, then deriving e � θ � t. For example,
in an application expression, we assume that the most general type of the called
function g is kept in the global environment ΣT . The certificate receives the
(θ, t, μ) for this particular application, gets g’s signature from ΣT , checks t =
μ(tg) and the rest of premises of the APP proof rule, and then applies it.

5 Certificate Generation

Given the above sets of already proved theorems, certificate generation for a given
program is a rather straightforward task. It consists of traversing the program’s
abstract syntax tree and producing the following information:

Certified Absence of Dangling Pointers in a Language 317

Expression L Γ

e1
def
= unshuffle x50 @ r2 r1 self {x50} [x50 : d, x34 : r]

e2
def
= x45 {x45} [x45 : s, x34 : r]

e3
def
= case x40 of (x45, x46)→ e2 {x40} [x40 : s, x34 : r]

e4
def
= x48 {x48} [x48 : s, x34 : r]

e5
def
= case x40 of (x47, x48)→ e4 {x40} [x40 : s, x34 : r]

e6
def
= x39 {x39} [x39 : s, x34 : r]

e7
def
= let x39 = (x38, x15) @ r3 in e6 {x15, x38} [x15 : s, x38 : s, x34 : r]

e8
def
= let x38 = x49 : x16 @ r1 in e7 {x15, x16, x49} [x15 : s, x16 : s, x49 : s, x34 : r]

e9
def
= let x16 = e5 in e4 {x15, x40, x49} [x15 : s, x40 : s, x49 : s, x34 : r]

e10
def
= let x15 = e3 in e2 {x40, x49} [x40 : s, x49 : s, x34 : r]

e11
def
= let x40 = e1 in e10 {x49, x50} [x49 : s, x50 : d, x34 : r]

e12
def
= x37 {x37} [x37 : s, x34 : r]

e13
def
= let x37 = (x36, x35) @ r3 in e12 {x35, x36} [x35 : s, x36 : s, x34 : r]

e14
def
= let x35 = [] @ r2 in e13 {x36} [x36 : s, x34 : r]

e15
def
= let x36 = [] @ r1 in e14 { } [x34 : r]

e16
def
= case! x34 of {x49 : x50 → e11; []→ e15} {x34} [x34 : d]

Fig. 7. Isabelle/HOL definitions of Core-Safe expressions, free variables, and mark

environments for unshuffle

– A definition in Isabelle/HOL of the abstract syntax tree.
– A set of Isabelle/HOL definitions for the static objects inferred by the anal-

yses: sets of free variables, mark environments, typing environments, type
instantiation mappings, etc.

– A set of Isabelle/HOL proof scripts proving a lemma for each expression,
consisting of first checking the premises of the proof-rule associated to the
syntactic form of the expression, and then applying the proof rule.

This strategy results in small certificates and short checking times as the total
amount of work is linear with program size. The heaviest part of the proof —the
database of proved proof rules— has been done in advance and is reused by each
certified program.

In Fig. 7 we show the Isabelle/HOL definitions for the elementary Core-Safe
expressions of the unshuffle function defined in Sec. 2, together with the compo-
nents L and Γ of the static assertions proving the absence of dangling pointers
for cell deallocation. They are arranged bottom-up, from simple to compound
expressions, because this is the order required by Isabelle/HOL for applying the
proof rules. In Fig. 8 we show (this time top-down for a better understanding)
the components θ, t, and μ of the static assertions for region deallocation for the
expressions e14, e15, and e16 of Fig. 7. We show also the most general types of
some constructors given by the global environment ΓT .

The Core-Safe text for unshuffle consists of about 50 lines, while the certifi-
cate for it is about 1000 lines long, 300 of which are devoted to definitions. This
expansion factor of 20 is approximately the same for all the examples we have
certified so far, so confirming that certificate size grows linearly with program

318 J. de Dios, M. Montenegro, and R. Peña

θ16
def
= [x34 : [a]@ρ4, r1 : ρ1, r2 : ρ2, r3 : ρ3, self : ρself] t16

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ15
def
= θ16 t15

def
= ([a]@ρ1, [a]@ρ2)@ρ3

θ14
def
= θ15 + [x36 : [a]@ρ1] t14

def
= ([a]@ρ1, [a]@ρ2)@ρ3

μ16
def
= {a �→ a, ρ1 �→ ρ4} ΓT ([]) = ρ1 → [a]@ρ1

μ15
def
= {a �→ a, ρ1 �→ ρ1} ΓT (:) = a→ [a]@ρ1 → ρ1 → [a]@ρ1

μ14
def
= {a �→ a, ρ1 �→ ρ2}

Fig. 8. Isabelle/HOL definitions of typing mappings, and types for unshuffle

size. There is room for optimisation by defining an Isabelle/HOL tactic for each
proof rule. This reduces both the size and the checking time of the certificate.
We have implemented this idea in the region deallocation part.

The Isabelle/HOL proof scripts for the cell deallocation proof-rules reach 8 000
lines, while the ones devoted to region deallocation tally up to 4 000 lines more.
Together they represent about 1.5 person-year effort. All the theories are avail-
able at http://dalila.sip.ucm.es/safe/certifdangling. There is also an on-line
version of the Safe compiler at http://dalila.sip.ucm.es/~safe where users may
remotely submit source files and browse all the generated intermediate files, in-
cluding certificates. An extended version of this paper with proof schemes avail-
able can be found at http://dalila.sip.ucm.es/safe.

6 Related Work and Conclusion

Introducing pointers in a Hoare-style assertion logic and using a proof assistant
for proving pointer programs goes back to the late seventies [9], where the Stan-
ford Pascal Program Verifier was used. A more recent reference is [5], using the
Jape proof editor. A formalisation of Bornat’s ideas in Isabelle/HOL was done
by Mehta and Nipkow in [10], where they add a complete soundness proof.

A type system allowing safe heap destruction was studied in [1] and [2]. In
[11] we made a detailed comparison with those works showing that our system
accepts as safe some programs that their system rejects. Another difference is
that we have developed a type inference algorithm [12] which they lack.

Connecting the results of a static analysis with the generation of certificates
was done from the beginning of the PCC paradigm (see for instance [15]). A
more recent work is [3].

Our work is more closely related to [4], where a resource consumption prop-
erty obtained by a special type system developed in [8] is transformed into a
certificate. The compiler is able to infer a linear upper bound on heap consump-
tion and to certify this property by emitting an Isabelle/HOL script proving it.
Our static assertions have been inspired by their derived assertions, used also
there to connect static with dynamic properties. However, their heap is simpler
to deal with than ours since it essentially consists of a free list of cells, and the
only data type available is the list. We must also deal with regions and with any
user-defined data type. This results in our complex notion of consistency.

Certified Absence of Dangling Pointers in a Language 319

Apart from the proofs themselves, our contribution has been defining the
appropriate functions, predicates and relations such as closure, recReach, closed,
consistent,. . . relating the static and the runtime information in such a way that
the proof-rules could be proved correct.

References

1. Aspinall, D., Hofmann, M.: Another Type System for In-Place Update. In: Le

Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 36–52. Springer, Heidelberg

(2002)

2. Aspinall, D., Hofmann, M., Konečný, M.: A Type System with Usage Aspects.

Journal of Functional Programming 18(2), 141–178 (2008)

3. Barthe, G., Grégoire, B., Kunz, C., Rezk, T.: Certificate Translation for Optimizing

Compilers. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 301–317. Springer,

Heidelberg (2006)

4. Beringer, L., Hofmann, M., Momigliano, A., Shkaravska, O.: Automatic Certifica-

tion of Heap Consumption. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS

(LNAI), vol. 3452, pp. 347–362. Springer, Heidelberg (2005)

5. Bornat, R.: Proving Pointer Programs in Hoare Logic. In: Backhouse, R., Oliveira,

J.N. (eds.) MPC 2000. LNCS, vol. 1837, pp. 102–126. Springer, Heidelberg (2000)

6. de Dios, J., Peña, R.: A Certified Implementation on top of the Java Virtual Ma-

chine. In: Alpuente, M. (ed.) FMICS 2009. LNCS, vol. 5825, pp. 181–196. Springer,

Heidelberg (2009)

7. de Dios, J., Peña, R.: Formal Certification of a Resource-Aware Language Imple-

mentation. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOL

2009. LNCS, vol. 5674, pp. 196–211. Springer, Heidelberg (2009)

8. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-

tional programs. In: Proc. 30th ACM Symp. on Principles of Programming Lan-

guages, POPL 2003, pp. 185–197. ACM Press, New York (2003)

9. Luckham, D.C., Suzuki, N.: Verification of array, record and pointer operations in

Pascal. ACM Trans. on Prog. Lang. and Systems 1(2), 226–244 (1979)

10. Mehta, F., Nipkow, T.: Proving Pointer Programs in Higher-Order Logic. In:

Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 121–135. Springer,

Heidelberg (2003)

11. Montenegro, M., Peña, R., Segura, C.: A Type System for Safe Memory Manage-

ment and its Proof of Correctness. In: ACM Principles and Practice of Declarative

Programming, PPDP 2008, Valencia, Spain, pp. 152–162 (July 2008)

12. Montenegro, M., Peña, R., Segura, C.: An Inference Algorithm for Guaranteeing

Safe Destruction. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp. 135–151.

Springer, Heidelberg (2009)

13. Montenegro, M., Peña, R., Segura, C.: A simple region inference algorithm for a

first-order functional language. In: Escobar, S. (ed.) WFLP 2009. LNCS, vol. 5979,

pp. 145–161. Springer, Heidelberg (2010)

14. Necula, G.C.: Proof-Carrying Code. In: ACM SIGPLAN-SIGACT Principles of

Programming Languages, POPL 1997, pp. 106–119. ACM Press, New York (1997)

15. Necula, G.C., Lee, P.: Safe Kernel Extensions Without Run-Time Checking. In:

Proceedings of the Second Symposium on Operating Systems Design and Imple-

mentation, Seattle, Washington, pp. 229–243 (October 1996)

16. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL. A Proof Assistant for Higher-

Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

Integrating Implicit Induction Proofs into
Certified Proof Environments

Sorin Stratulat

LITA, Université Paul Verlaine-Metz, 57000, France
LORIA, 54000, France

stratulat@univ-metz.fr

Abstract. We give evidence of the direct integration and automated
checking of implicit induction-based proofs inside certified reasoning en-
vironments, as that provided by the Coq proof assistant. This is the first
step of a long term project focused on 1) mechanically certifying im-
plicit induction proofs generated by automated provers like Spike, and
2) narrowing the gap between automated and interactive proof tech-
niques inside proof assistants such that multiple induction steps can be
executed completely automatically and mutual induction can be treated
more conveniently. Contrary to the current approaches of reconstructing
implicit induction proofs into scripts based on explicit induction tactics
that integrate the usual proof assistants, our checking methodology is
simpler and fits better for automation. The underlying implicit induc-
tion principles are separated and validated independently from the proof
scripts that consist in a bunch of one-to-one translations of implicit in-
duction proof steps. The translated steps can be checked independently,
too, so the validation process fits well for parallelisation and for the man-
agement of large proof scripts. Moreover, our approach is more general;
any kind of implicit induction proof can be considered because the limi-
tations imposed by the proof reconstruction techniques no longer exist.
An implementation that integrates automatic translators for generating
fully checkable Coq scripts from Spike proofs is reported.

1 Motivations

Implicit induction proof techniques allow for automated reasoning on inductive
properties of equational specifications. Up to now, implicit induction theorem
provers, as Spike [3], have been successfully used in treating non-trivial case
studies, for example, the validation of the JavaCard Platform [3] and the confor-
mance algorithm of a telecommunications protocol [19]. Spike proofs are highly
automated; in [3], almost half of the JavaCard bytecode instructions have been
checked completely automatically, i.e. do not require users to provide additional
lemmas, and done in a reasonable time. These proofs are shallow but large,
involving several induction, case analysis and rewriting steps. Even if the theo-
retical backgrounds of implicit induction proof techniques are widely accepted by
the scientific community, their implementation inside theorem provers is error-
prone and their certification still stands for a challenge. The most common and

D. Méry and S. Merz (Eds.): IFM 2010, LNCS 6396, pp. 320–335, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Integrating Implicit Induction Proofs into Certified Proof Environments 321

ancient validation technique is by human checking. It may work well when the
proof size is reasonable, but is not suited for checking many (even easy) inference
steps.

To the other extreme, the approach is to certify inference systems such that
any proof developed inside certified proof environments is guaranteed to be
sound. For example, the proofs done with the Coq proof assistant [24] are me-
chanically checked by the kernel of its inference system, which is small enough to
be human checked and reliable. However, the process for certifying complex soft-
ware systems is tedious [13], in the case of Spike it would require the validation
of thousands of OCaml code lines. The midway approach that we adopted would
therefore not consist in certifying inference systems, but in checking proofs that
would play the role of test cases for the unreliable systems. More precisely, the
Spike proofs are converted into Coq scripts checkable by the Coq kernel. During
the last decade, different reasoning tools successfully applied this approach by
developing conversion options for Coq [8,4].

The soundness of any implicit induction reasoning can be easily explained
using ‘proof-by-contradiction‘ arguments characterizing the ’Descente Infinie’
induction-based approaches [21]. For example, proving that a non-empty and
potentially infinite set of first-order ground formulas F is true requires: 1) (the
‘well-foundedness’ requirement) a well-founded induction ordering over the for-
mulas from F, i.e. there are no infinite strictly descending sequences of formu-
las, and 2) (the ‘counterexample non-minimality’ requirement) to prove that for
each false formula from F, called counterexample, there exists a smaller one. The
proof starts by assuming by contradiction that there is a counterexample in F.
Therefore, by 2), there is a smaller counterexample for which is an even smaller
counterexample by applying 2) again, and so on. In this way, one can build
an infinite strictly descending sequence of counterexamples (hence the name of
’Descente Infinie’), which contradicts 1).

An example of implicit induction proof. Implicit induction proofs as performed
by Spike can easily manipulate conjectures about specifications integrating mu-
tually defined functions. Let’s consider the universally quantified axioms that
mutually define the even, respectively the odd functions over the naturals:

even(0) = true (1)
odd(x) = true ⇒ even(S(x)) = true (2)

odd(x) = false⇒ even(S(x)) = false (3)

odd(0) = false (4)
even(x) = true ⇒ odd(S(x)) = true (5)

even(x) = false⇒ odd(S(x)) = false (6)

using the constructors 0 and successor S for the naturals. Let’s assume that we
want to prove the conjectures odd(S(plus(x, x))) = true and even(plus(y, y)) =
true, where plus is the addition function over the naturals, defined by the axioms

322 S. Stratulat

plus(0, x) = x and plus(S(x), y) = S(plus(x, y)). In addition, we assume the
lemma plus(x, S(y)) = S(plus(x, y)).

To prove that the conjectures are true (w.r.t the above axioms) using a ’De-
scente Infinie’ induction-based approach means to check the ‘well-foundedness’
and ‘counterexample non-minimality’ requirements. For example, the well-
founded induction ordering from the first requirement, denoted by ≺≺rpo, can be
defined as a multiset extension of the RPO ordering ≺rpo based on the prece-
dence 0 <F S <F plus <F even with multiset status for the defined functions,
where odd has the same precedence as even.1 The ≺rpo and ≺≺rpo orderings can
also be used to orient the above axioms from left to right into rewrite rules. In
general, the equality a = b ⇒ l = r is oriented into a = b ⇒ l → r if l is the
unique greatest term in the equality.

The rewrite rules are involved into rewrite operations that replace terms with
smaller ones, essential in the quest for smaller counterexamples during the real-
ization of the ‘counterexample non-minimality’ requirement. Let’s assume that
there is a counterexample in the first conjecture, c1 : odd(S(plus(n, n))) = true,
for some natural n. A smaller counterexample can be pointed out by performing a
case analysis on even(plus(n, n)): if it is false then odd(S(plus(n, n))) is false
according to (6), i.e. even(plus(n, n)) = false⇒ false = true; if it is true, then
we have the tautology c3 : even(plus(n, n)) = true ⇒ true = true, according
to (5). So, c4 : even(plus(n, n)) = false ⇒ false = true is a counterexample
smaller than odd(S(plus(n, n))) = true because we replaced odd(S(plus(n, n)))
by smaller terms. c4 can be rewritten with the second conjecture to get the
smaller instance c2 : even(plus(n, n)) = true. Since the rewritten equality,
c7 : true = false⇒ false = true, is a tautology, c2 is a counterexample.

We can go further and show that there exists at least one counterexample
smaller than c2. Since n is a natural, it can be either 0 or S(n′), for some
natural n′. If n is 0, plus(0, 0) is 0, so c6 : even(0) = true can be rewrit-
ten by (1) to c9 : true = true which is a tautology. Therefore, n should be
S(n′). Rewriting even(plus(S(n′), S(n′))) with the axiom plus(S(x), y) →
S(plus(x, y)) results c5 : even(S(plus(n′, S(n′)))) = true. By using the lemma
plus(x, S(y)) → S(plus(x, y)), we obtain the smaller counterexample c8 :
even(S(S(plus(n′, n′)))) = true. Another case analysis on odd(S(plus(n′, n′)))
yields two new equalities: i) c11 : odd(S(plus(n′, n′))) = true ⇒ true = true,
which is a tautology, and ii) the smaller counterexample c10 : odd(S(plus(n′, n′)))
= false ⇒ false = true. The instance of the first conjecture c′1 : odd(S(plus
(n′, n′))) = true is smaller and can be used to rewrite it into the tautology
c12 : true = false ⇒ false = true. Therefore, c′1 is a smaller counterexample.
To sum up, c′1 is smaller than the original counterexample c1. The quest for
smaller counterexamples can be similarly repeated ad infinitum, which contra-
dicts the ‘well-foundedness’ requirement. So, we conclude that the conjecture
odd(S(plus(x, x))) = true is true. For similar reasons, even(plus(x, x)) = true
is also true.

1 For more formal definitions, the reader may consult Section 2.

Integrating Implicit Induction Proofs into Certified Proof Environments 323

. . . ≺≺rpo c
′
1 ≺≺rpo c1

��		��
���

���
c2

	
		

		
		

	

��
c3 c4

��

��

c5

��

c6

��
c7 c8

��

c9

c10

��

��

c11

c12

Fig. 1. Example of simultaneous induction proof; the assumption of false initial conjec-
tures generates an infinite strictly descending sequence of counterexamples, as indicated
by the dotted arrows

The proof employs simultaneous induction, i.e. instances of the first conjecture
are used as induction hypotheses in the proof of the second, and viceversa, as
depicted by the proof graph from Fig. 1. The nodes are labelled with the names
of the ground equalities encountered during the proof. A branching node points
out a case analysis operation on the corresponding equality. The solid (resp.
dotted) arrows give pathways to tautologies (resp. smaller counterexamples).
Notice the infinite pathway of counterexamples which justifies the application of
the ’Descente Infinie’ induction principle.

Related approaches. Previous attempts to validate Spike proofs have been done
by Courant [9] and Kaliszyk [12] using the explicit induction tactics provided by
Coq. Their approaches are limited mainly because the explicit induction proof
methods require hierarchical manipulation of induction hypotheses; the proofs
have a tree-shape such that the exchange of information is forbidden between
different branches. Therefore, it is impossible to perform simultaneous induction
proofs.

Up to now, the current solution is to reconstruct implicit into explicit induc-
tion proofs. In [9], only the proofs done with restricted versions of the Spike
system (the K-systems) are considered. Their inference rules have to obey some
conditions that would allow proof representations under the form of a tree la-
belled with judgements. On the other hand, [12] identifies explicit induction
schemas from the proof steps that instantiate variables. More recently, Nahon
et al. [15] proposed a theoretical foundation based on deduction modulo that
permits automated construction of inductive proofs into the sequent calculus,
ready for insertion into proof assistants. As Brotherston has already shown in
his PhD thesis [6], the idea is to perform ’Descente Infinie’-style proofs using
an extension of the sequent calculus with explicit inductive schemas that define

324 S. Stratulat

conjectures in terms of induction hypotheses and conclusions linked by shared
variables. However, it is difficult to see how the Spike proofs can be reproduced
by this calculus since Spike does not assume variable sharing between different
conjectures.2 In our opinion, implicit and explicit induction are just two different
proof techniques; they can be even combined during the proof process, as shown
in [22].

Some proof assistants already integrate automatizing mechanisms for induc-
tion reasoning, for example Coq [25], Agda [14], IsaPlanner [10], NuPrl [16] and
Clam [7]. To the best of our knowledge, all of them use explicit inductive def-
inition schemas. On the other hand, there is no similar work w.r.t. the direct
integration of implicit induction techniques. The first successful but manual con-
version and checking operations of an implicit induction proof by Coq have been
reported in [23].

Structure of the paper. The main contribution of the paper is a methodology for
mechanically checking potentially any implicit induction proof. We will explain
in particular how the methodology works for validating Spike proofs with Coq.
After presenting the basic notions and notations in Section 2, we will detail
in Section 3 the implicit induction proof techniques, then introduce a simplified
version of the Spike inference system but strong enough to prove the introductory
example. Section 4 develops the idea of explicitly defining, then implementing the
underlying implicit induction principles. The first part will prove the soundness
of the ’Descente Infinie’ induction principle instantiated for a particular well-
founded induction ordering. The second part uses deductive reasoning based on
current techniques such as rewriting, case analysis and tautology elimination in
order to check the ’counterexample non-minimality’ requirement. In addition,
we will show and give examples using implementation details that one can build
a one-to-one translation of the Spike inference rules into Coq tactics, hence
the generality of our approach. The methodology is applied for automatically
translating and validating the Spike proof of the introductory example and other
non-trivial examples. The conclusions and future work are given in the last
section.

2 Basic Notions

Conditional specifications consist of axioms representing conditional equalities be-
tween terms built on an alphabet of (arity-fixed) function symbols F and (uni-
versally quantified) variables V . The axioms define some of the function symbols,
the other symbols are referred to as constructors. The specifications of interest
are many-sorted and we assume that for each sort s there exists at least one con-
structor of sort s. The conjectures are clauses representing disjunctions of literals,
where a literal is either an equality or a inequality between two terms. Sometimes,
clauses that have at most one equality are represented as implications.
2 For more details, the reader may consult the Spike proof of the introductory example

from Subsection 3.1.

Integrating Implicit Induction Proofs into Certified Proof Environments 325

The set of terms is denoted by T (F ,V) and the set of ground (or no variable)
terms by T (F). New terms (resp. clauses), called instances, can be built from
existing terms (resp. clauses) by replacing variables with terms. The mappings
from variables to terms are called substitutions. Two terms unify if there is a
substitution σ such that sσ and tσ are syntactically equal, denoted by sσ ≡ tσ.
A term s matches the term t if there exists a substitution σ such that sσ ≡ t.
The subterm t of a clause C is identified by its position p, denoted by C[t]p.

A quasi-ordering ≤ is a reflexive and transitive binary relation, consisting of
strict and equivalence parts. The strict part of a quasi-ordering is called ordering
and denoted by <. A quasi-ordering ≤ defined over the elements of a nonempty
set A is well-founded if there do not exist infinite strictly descending sequences
. . . < x2 < x1 of elements of A. A binary relation R is stable under substitutions if
whenever s R t then (sσ)R (tσ), for any substitution σ. A reduction ordering is a
transitive and irreflexive relation that is well-founded, stable under substitutions
and stable under contexts (i.e. s R t implies u[s] Ru[t]). An example of syntactic
reduction ordering over terms is ≺rpo from Section 1. ≺rpo is recursively defined
as follows. Given f ∈ F , a status function τ for F returns τ(f) ∈ {lex, mul},
foreach f ∈ F , where lex stands for lexicographic status and mul for multiset
status. Given <F an ordering over F , an ordering ≺rpo on T (F ,V) is defined as
follows: for all terms s, t ∈ T (F ,V), t ≺rpo s if s = f(s1, . . . , sm) and i) either
si = t or t ≺rpo si for some si, 1 ≤ i ≤ m, or ii) t = g(t1, . . . , tn), ti ≺rpo s for all
i, 1 ≤ i ≤ n and either a) g <F f , or b) f = g and (t1, . . . , tn) ≺τ(f)

rpo (s1, . . . , sn).
≺lex

rpo is the lexicographic extension of ≺rpo, i.e. (a1, . . . , an) ≺lex
rpo (b1, . . . , bn) if

either i) a1 ≺rpo b1 or ii) a1 = b1 and (a2, . . . , an) ≺lex
rpo (b2, . . . , bn). ≺mul

rpo , also
denoted by ≺≺rpo in the rest of the paper, is the multiset extension of ≺rpo.
Two terms s and t are equivalent if either a) s ≡ t, or b) s ≡ f(s1, . . . , sn),
t ≡ g(t1, . . . , tn), f and g have the same arity and precedence and, for the case
when f and g have multiset status, it exists (t′1, . . . , t

′
n) such that si is equivalent

with t′i, forall 1 ≤ i ≤ n, and (t′1, . . . , t
′
n) is a permutation of (t1, . . . , tn). The

relation ≺≺rpo is defined in the next paragraph.
(Conditional) equalities can be transformed into (conditional) rewrite rules of

the form a = b ⇒ l → r if l is greater than a, b and r. A rewrite systemR consists
of a set of rewrite rules. The rewrite relation→R denotes rewrite operations only
with rewrite rules from R. The reflexive transitive (resp. equivalence) closure
of →R is denoted by →∗

R (resp ∗↔R). Given a substitution σ, a rewrite rule
a = b ⇒ l → r and a clause C such that C[lσ]u, a rewrite operation replaces
C[lσ]u by aσ = bσ ⇒ C[rσ]u.3 Any clause can also be represented as the multiset
of its literals. A well-founded and stable under substitutions ordering over clauses
can be built as the multiset extension of a reduction ordering over terms, as
follows. Given two multisets of terms A1 and A2, we write A1 ≺≺rpo A2 if,
after the pairwise elimination of the equivalent terms from A1 and A2, ∀s ∈ A1,
∃t ∈ A2 such that s ≺rpo t. A1 and A2 are equivalent if both of them become
empty after the elimination process. Finally, Φ≺≺rpoC denotes the set {ψσ | ψ ∈

3 For details on term rewriting, the reader may consult [1].

326 S. Stratulat

Φ, σ a substitution and ψσ ≺≺rpo C} of instances of clauses from Φ that are
smaller than the clause C.

s = t is an inductive theorem of a set of axioms Ax orientable into a rewrite
system R if, for any of its ground instances sσ = tσ, we have sσ

∗↔R tσ. A
ground equality is a counterexample if it is not an inductive theorem. s = t is
false if it ‘contains’ (i.e. one of its instances is) a counterexample. Tautologies
are inductive theorems either of the form (e ⇒)t = t, where e is an unconditional
equality and t a term, or of the form e1 ⇒ e2, where e1 ≡ a = b and e2 ≡ a = b
(or b = a), and a, b are terms.

3 Implicit Induction Proofs with Spike

In the introductory part, we have shown how the ’Descente Infinie’ induction
principle can help to justify the soundness of implicit induction proofs. We can
give a more pragmatic application of this principle since well-founded orderings
guarantee the existence of minimal elements. The proof is done by contradiction,
by assuming that there is no such minimal element, as follows. We pick an
arbitrary element from the set. Since it is not minimal, there exists a smaller
one which is not minimal, and so on. In this way, an infinite strictly descending
sequence of elements can be built. This contradicts the fact that the ordering is
well-founded.

The implicit induction inference systems consist of inference rules that replace
a conjecture with a potentially empty set of new conjectures. Proof derivations
are built by the successive application of inference rules on an initial set of
conjectures. We say that an implicit induction inference system is sound if the
minimal counterexamples are preserved in the derivations, i.e. whenever an in-
ference rule replaces a conjecture containing a minimal counterexample, there is
a further state in the derivation, usually the next state, with a conjecture having
an equivalent (w.r.t. well-founded induction quasi-ordering) minimal counterex-
ample. The soundness property is interesting because we can state that the initial
set of conjectures are true whenever the derivations end with an empty set of
conjectures. Otherwise, assuming that there is a counterexample in the initial set
of conjectures, there exists a minimal counterexample in the set of conjectures
encountered in the derivation. Since any minimal counterexample is preserved,
it should be present in the last state of the derivation. On the other hand, this
is not possible because the last state is empty.

From a logical point of view, it is sufficient to show that the replaced minimal
counterexample is a consequence of the equivalent minimal counterexample from
the further state. The consequence relation is not affected if other true formulas
like the axioms and smaller conjectures from the derivation, or equivalent con-
jectures from further states are involved [20]. These conjectures play the role of
induction hypotheses.

Implicit induction proofs similar to that presented as example in Section 1 can
be highly automated if the quest for smaller or equivalent minimal counterexam-
ples is limited only to the conjectures from the next state. The trick is to store

Integrating Implicit Induction Proofs into Certified Proof Environments 327

in the current state previously replaced conjectures that do not contain minimal
counterexamples, called premises.4 In this case, the initial set of conjectures are
true for any derivation starting with an empty set of premises and finishing with
an empty set of conjectures.

3.1 The Spike Prover

Spike is an implicit induction prover that reasons on conditional specifications. In
the last decade, it has been successfully used in many real-size case studies from
different areas (telecommunications [19], programming language platforms [3],
collaborative editing systems [11], web services [18], etc).5

Specifications and properties. The conditional specifications are sorted and
consist in sets of axioms defining functions, represented as conditional equalities.
We assume that a reduction ordering exists such that it can orient the axioms into
rewrite rules. The specifications accepted by Spike should be coherent, i.e. any
formula and its negation cannot be simultaneously consequences of the axioms,
and complete, i.e. the functions are defined in any point of the domain.

A sufficient condition to achieve coherent conditional specifications is the
ground convergence, i.e. the rewriting process of any ground term terminates
and yields a unique result [5]. This property is easier to check for specifications
based on free constructors: the lhs of the rewrite rules defining a function symbol
f is basic, i.e. of the form f(

→
t) with

→
t≡ t1, . . . , tn a vector of n constructor

terms, and there is no equality relation between two constructors terms starting
with different constructor symbols.

Complete specifications may define only operational sufficiently complete func-
tion symbols f , i.e. for any ground basic term f(

→
s), i) there are matching axioms

ai = bi ⇒ li → ri such that f(
→
s) ≡ liσi, and ii)

∨
i aiσi = biσi is an inductive

theorem and any two matching substitutions are equivalent modulo renaming.
The test for inductive validity is generally undecidable, therefore we will re-
strict to the case when the specifications contain only conditional axioms with
conditions having the form a = b, where b is either true or false.

The inference system. The Spike inference system is made of inference rules
manipulating clauses, representing transitions between states (E, H) � (E′, H ′),
where E, E′ are conjectures, and H , H ′ premises. In Fig. 2, we introduce a
simplified version of it consisting only of 4 inference rules.

Generate applies on clauses having subterms that unify with some lhs of the
axioms, referred to as unifying axioms. The soundness of the system is preserved
if all the unifying axioms are considered [3]. Total Case Rewriting can apply
on clauses with subterms that are matched by some lhs of conditional axioms.
If the position of the subterm resides inside a maximal term of the treated
clause C, then C cannot have minimal counterexamples and is added to the set
4 Notice that the two notions of induction hypothesis and premise are different.
5 For a more detailed list of publications, see [17].

328 S. Stratulat

Generate: (E ∪ {C[t]p}, H) � (E ∪ (∪σEσ), H)

if Eσ is {aσ = bσ ⇒ Cσ[rσ]p} and a = b⇒ l→ r ∈ Ax s.t. tσ ≡ lσ.

Total Case Rewriting: (E ∪ {C[t]p}, H) � (E ∪E′, H ∪ {C})
if E′ is {a1σ1 = true⇒ C[r1σ1]p, a2σ2 = false⇒ C[r2σ2]p} and
a1 = true⇒ l1 → r1, a2 = false⇒ l2 → r2 ∈ Ax s.t. l1σ1 ≡ t and l2σ2 ≡ t.

(Unconditional) Rewriting: (E ∪ {C}, H) � (E ∪ {C′}, H)

if C →Ax∪L∪(H∪E)≺≺rpoC
C′.

Tautology: (E ∪ {C}, H) � (E, H)

if C is a tautology.

Fig. 2. A simplified version of the Spike inference system

of premises. Rewriting rewrites clauses with unconditional orientable axioms
Ax, lemmas L, and smaller instances of premises and conjectures. Tautology
deletes tautologies.

Proof example. The above inference system can prove e1 : even(plus(x, x)) =
true and e2 : odd(S(plus(y, y))) = true using the lemma plus(x, S(y)) =
S(plus(x, y)) and the ≺rpo, ≺≺rpo orderings from the introductory example.
The initial state of the proof is ({e1, e2}, ∅). Total Case Rewrite (TCR)
is applied on odd(S(plus(y, y))) of e2 with axioms (5) and (6) to yield e3 :
even(plus(y, y)) = true ⇒ true = true and e4 : even(plus(y, y)) = false ⇒
false = true. From the current state ({e1, e3, e4}, {e2}), e3 is deleted by Tau-
tology (T). Rewriting (R) simplifies e4 with the conjecture e1 to give the tau-
tology e5 : true = false⇒ false = true, which is deleted in the next step. Gen-
erate (G) can be applied on the remaining conjecture, e1. The term plus(x, x)
is unified with the lhs of the axioms defining plus, to yield e6 : even(0) = true
and e7 : even(S(plus(z, S(z)))) = true, where z is a new variable. e6 is re-
duced to the tautology e8 : true = true by Rewriting with axiom (1), then
deleted using Tautology. e7 is reduced to e9 : even(S(S(plus(z, z)))) = true by
Rewriting with the lemma. A second Total Case Rewriting on the term
even(S(S(plus(z, z)))) of e9 yields e10 : odd(S(plus(z, z))) = true ⇒ true =
true and e11 : odd(S(plus(z, z))) = false ⇒ false = true. From the new cur-
rent proof state ({e10, e11}, {e2, e9}), e10 is deleted by Tautology and e11 is
reduced to the tautology e12 : true = false ⇒ false = true by Rewriting
with the premise e2. The proof finishes after the application of Tautology on
the last conjecture e12.

The proof is schematised as follows: ({e1, e2}, ∅) �(TCR) ({e1, e3, e4}, {e2}) �(T)

({e1, e4}, {e2}) �(R) ({e1, e5}, {e2}) �(T) ({e1}, {e2}) �(G) ({e6, e7}, {e2}) �(R)

({e8, e7}, {e2}) �(T) ({e7}, {e2}) �(R) ({e9}, {e2}) �(TCR) ({e10, e11}, {e2, e9})
�(T) ({e11}, {e2, e9}) �(R) ({e12}, {e2, e9}) �(T) (∅, {e2, e9}). The underlined for-
mula from a proof state is the conjecture to which the corresponding inference rule
is applied.

Integrating Implicit Induction Proofs into Certified Proof Environments 329

4 Translating and Checking Spike Specifications

Spike specifications and proofs can be directly translated into Coq scripts. Each
Spike datatype and function definition is translated into an equivalent Coq rep-
resentation. In addition, the underlying ’Descente Infinie’ induction principle is
explicitly defined. In order to do this, Coq formulas have to be syntactically
represented and compared as Spike does. The idea is to use a term algebra that
abstracts the Coq datatypes and function symbols such that each Coq term
is weighted with an abstract term. In this way, comparing two Coq formulas
reduces to comparing the weights of their built-in terms.

The Coq scripts consist in the specification and proof parts. The specifica-
tion part defines the abstract term algebra and the RPO ordering built from
abstractions of Spike function symbols and their precedence. Then, the Coq
datatypes and functions are introduced, together with translation functions for
each datatype, which show how to abstract constructor terms. In the proof part,
firstly a weight is associated to each conjecture encountered in the Spike proof,
then lemmas about weight comparisons are defined. The ’Descente Infinie’ prin-
ciple is explicitly stated in the main lemma which proves that for each false
instance from the set of conjectures, there is another one with a smaller weight.
Another lemma states that all conjectures are true. The last lemma trivially
concludes that the initial conjectures are true, too.

Datatypes and the function definitions. The Coq datatypes, function defi-
nitions and translation functions have to be defined manually by the user. Spike
specifications can be annotated with Coq code that is inserted into the generated
Coq script during the translation process. As example, here is the code for the
introductory example, consisting of a set of computing functions :

Fixpoint model nat (v : nat): term :=
match v with
| O ⇒ (Term id 0 nil)
| S x ⇒ let r := model nat x in (Term
id S (r ::nil))
end.
Fixpoint model bool (v : bool): term
:=
match v with
| true ⇒ (Term id true nil)
| false ⇒ (Term id false nil)
end.

Fixpoint plus (x y:nat): nat :=
match x with
| O ⇒ y
| S x’ ⇒ S (plus x’ y)
end.

Fixpoint even (v :nat): bool :=
match v with
| 0 ⇒ true
| S x ⇒ match odd x with

| true ⇒ true
| false ⇒ false

end
end
with odd (v :nat): bool :=
match v with
| 0 ⇒ false
| S x ⇒ match even x with

| true ⇒ true
| false ⇒ false

end
end.

330 S. Stratulat

where id x is the abstraction of a function symbol x, model sort is the transla-
tion function for sort and term (recursively defined as Inductive term : Set :=
| Var : variable→ term | Term : symbol→ list term → term.) is the type
of the abstracted terms provided by COCCINELLE [8], a Coq library well suited
for modelling mathematical notions needed for rewriting, such as term algebras
and RPO. This is the checking step for the Spike specification and its proper-
ties, since any computing function written as a structurally recursive function
is guaranteed to be complete and ground convergent, if accepted by Coq. The
termination and ground confluence properties result from the fact that every re-
cursive call is executed on a structurally smaller argument and that the inserted
Coq script is based on free constructors, respectively.

The ordering over conditional equalities. An important part of the Coq
script concerns the implementation of the induction ordering involved in the
‘well-foundedness’ requirement. Its definition and the computation of compar-
isons between conjectures are based on computable functions and inductive pred-
icates provided by COCCINELLE. COCCINELLE formalises RPO in a generic
way using a precedence and a status (multiset/lexicographic) for each function
symbol. Spike automatically generates a term algebra starting from the abstract
function symbols which preserve the precedence of the original symbols. Then,
the algebra is applied as argument to the functor of the generic RPO module
which establishes fundamental properties about RPO orderings, for example,
any RPO ordering is a reduction ordering. Also, the well-foundedness of the
induction ordering, denoted below by less, is provided.

In order to deal with mutually recursive functions, the RPO definition from
the generic module has been extended to take into account precedence relations
with equivalent symbols. Also, even if many interesting properties about the
RPO orderings have been already provided by COCCINELLE, some about the
multiset extension of RPO were missing. A new function computing weight com-
parisons was defined and its equivalence with less was proved as a soundness
lemma. This guarantees that any terminating weight comparison operation is
sound. The termination property is ensured if the size of the terms is limited by
a global maximal value. For a given proof, it has to be greater than the double
of the maximal size of the terms encountered in the proof. The stability under
substitutions of less was also proved.

The ’Descente Infinie’ induction principle is implemented in three steps.
Firstly, the existence of minimal elements in any non-empty set of weights, rep-
resented as lists of abstract terms, is guaranteed:

∀ Y : P (list term), (∃ y, y ∈ Y) → ∃ n ∈Y, ∀m ∈ Y, ¬ (less m n).

Then, the ‘counterexample non-minimality’ requirement is implemented such
that, for any list of pairs (coq formula, weight), whenever a formula instance is
false there is another one with a smaller weight:

∀F ∈ F, ∀ →
x ,¬π1(F

→
x)→ (∃F1 ∈ F, ∃ →

x1,¬π1(F1
→
x1)∧ less π2(F1

→
x1) π2(F

→
x))

Integrating Implicit Induction Proofs into Certified Proof Environments 331

where π1 and π2 are the first and second projections of a pair, respectively. F is
the set of functors that associate a pair (formula, weight) to a vector of terms.

Finally, we prove that ∀F ∈ F, ∀ →x , π1(F
→x). The first and the third step

require classical reasoning. The third step is valid for any set F satisfying the
‘counterexample non-minimality’ requirement.

Satisfying the ‘counterexample non-minimality’ requirement. All crucial
information for satisfying this requirement can be extracted from the Spike proof,
in particular the set F, the conjectures containing smaller counterexamples and
the comparisons between the weights of the conjecture instances. For example,
the set F for validating the introductory example consists of functors associated
to each of the twelve conjectures e1 to e12: {(fun x => (even(plus x x) =
true, weighte1)), . . . , (fun => (true = false ⇒ false = true, weighte12))}.
The proof consists of a case analysis on the conjectures that may have counterex-
amples following the ‘quest for smaller counterexample’ reasoning represented in
Fig. 1. Each of the cases can be treated independently and in any order. For ex-
ample, if e1 has a counterexample, by performing a case analysis on x instantiated
with 0 and (S z), a smaller counterexample should exist either in e6 or e7.

An important part of the proof is spent on verifying weight comparisons. The
comparison proofs can be automatically generated and consist in i) the replace-
ment of all terms of the form (model sort x) with COCCINELLE abstraction
variables of the form (Var i), where i is a natural, ii) the use of the ‘stability
under substitutions’ property of less which allows to perform the comparison
tests on weights with abstraction variables instead of using the original weights,
iii) computing the comparison result of weights with abstraction variables, and
iv) validating the result using the soundness lemma. In order to perform iii) for
the case when the weights of two compared terms, weight1 and weight2, consist
of m and n abstracted terms, respectively, we have to check that the size of any
term from weight1 added with the size of any term from weight2 does not exceed
the maximal value. The total number of size comparisons is therefore m ∗ n.

One-to-one translation of Spike inference steps. Automatic translators
have been implemented for the inference rules from Fig. 2. Deductive steps like
rewriting, case analysis and tautology elimination operations are directly trans-
lated into Coq proof commands.

The variable instantiation schemas of Generate are controlled by Coq func-
tional schemas [2]. This is the checking step for complete instantiation schemas.
For example, to show that x from e1 is replaced by 0 and (S z), we define a
function f with all the instantiation cases:

Fixpoint f (x : nat) {struct x} : nat :=
match x with
| 0 ⇒ 0
| (S z) ⇒ 0
end.
Functional Scheme f ind := Induction for f Sort Prop.

332 S. Stratulat

The instances are generated by the Coq script pattern x, (f x). apply f ind.
The idea is that, for each instance HFabs, we choose the functor from F cor-
responding to the appropriate conjecture from the Spike proof script, and show
that HFabs is logically equivalent with a smaller instance. For the case when
x is 0, here is the generated Coq script: exists (fun ⇒ ((even 0) = true,
weighte6)). eexists. split. contradict HFabs. auto. apply less HFabs e6.
The first two commands instantiate e6, then the proof is split in two: the ‘logi-
cally equivalence’ and comparison parts consisting of the application of auto, a
tactic enough powerful to show the equivalence between plus 0 0 and 0, and of
the comparison lemma less HFabs e6, respectively.

The translation of Total Case Analysis is similar, excepting that the
case analysis on whether a condition a is either true or false is performed by
destruct a. This is the checking step for the inductive validity of the disjunc-
tion of rewrite rules conditions. This translation offers a better control of the
rewritten term than auto. For example, the fact that C[f(t)] is rewritten with a
rule of the form f(x)→ . . . can be simulated by pattern t. simpl f . cbv beta.
pattern t isolates t from C, simpl f rewrites f(t) and cbv beta puts back the
resulted term in C. Rewriting is translated using the same trick for rewriting.

There is no need to reduce or compare tautologies with other conjectures.
Tautologies can be eliminated by Coq using intros. auto. intros separates
the conditions from the conclusion of a conditional equality. auto checks either
that the conclusion is of the form t = t or that the conditions contain the
conclusion.

Experimental results. Table 1 displays some statistics about the execution
time and size of the Coq scripts generated with our implementation for sev-
eral Spike specifications and conjectures: properties about plus and different
definitions of even and odd (conjectures 1] to 10]), about other recursive data
structures like trees and lists (conjectures 11] and 12]) and conjectures stating
the soundness of a simple insertion sorting algorithm (conjectures 13] to 16]).

The third and fourth columns show the number of comparison lemmas and
the time needed for their validation, respectively. The fifth and sixth columns
display the cardinality of F and the validation time of the corresponding formu-
las, respectively. The last column gives the total execution time, including the
overhead time needed for checking the algebra and the ordering. The overhead
time for the first ten conjectures was 45.5s, for the next two conjectures was
1m10s and for the last conjectures 59.6s. The statistics for 5], 6] and 7] take
into account that 4] was executed before being used as lemma. On the other
hand, 16] requires a lemma whose proof in Spike needs arithmetic reasoning. In
Coq, the lemma was represented as a hypothesis. Finally, the execution time
of each of the Spike proofs and the translation operations lasted less than one
second.

The experiments have been done on a MacBook Air featuring a 1.6 GHz Intel
Core 2 Duo processor and 2 GB RAM.

Integrating Implicit Induction Proofs into Certified Proof Environments 333

Table 1. Statistics about the Coq validation process of some implicit induction proofs

conjecture(s) # less less time # F proof time total time
1] evenr(plus(x, y)) = true ∧ 27 3m15s 22 0m50.5s 4m51s

evenr(plus(y, z)) = true
⇒ evenr(plus(x, z)) = true

2] evenm(x) = evenr(x) 9 0m10s 8 0m00.5s 0m56s
3] plus(x, 0) = x 4 0m02s 3 0m02s 0m48s
4] plus(x,S(y)) = S(plus(x, y)) 7 0m01.5s 8 0m01.5s 0m56s
5] even(plus(x, x)) = true and 17 0m44s 20 0m06.5s 1m34s

odd(S(plus(x, x))) = true (needs 4])
6] plus(x, y) = plus(y, x) (needs 4]) 26 0m39s 24 0m05.5s 1m30s
7] evenm(plus(x,x)) = true and 21 1m13s 20 0m13.5s 2m12s

oddm(plus(x, x)) = false (needs 4])
8] evenr(S(x)) = true⇒ 11 0m49s 10 0m10.5s 1m45s

true = oddm(x)

9] oddc(x) = oddm(x) 19 1m09s 16 0m29.5s 2m24s
10] plus(x, plus(y, z)) = plus(plus(x, y), z) 7 0m46s 6 0m23.5s 1m55s
11] flat(ins(x, t)) = Cons(x, flat(t)) 14 0m53s 15 0m38.4s 2m21s
12] app(x,app(y, z)) = app(app(x,y), z) 8 0m46s 17 0m22.4s 1m58s
13] sorted(Cons(x, y)) = true⇒ 5 0m07s 6 0m30s 1m47s

sorted(y) = true

14] length(insert(x, y)) = S(length(y)) 9 0m28s 10 0m27s 2m05s
15] length(isort(x)) = length(x) 14 0m36s 16 0m32s 2m18s
16] sorted(isort(x)) = true (needs lemma) 5 0m02s 4 0m27s 1m39s

5 Conclusions and Future Work

We have proposed a methodology for directly checking potentially any implicit
induction proofs using certified proof environments. By the means of the Coq
proof assistant, the methodology was applied to check non-trivial proofs done
with a restricted version of the Spike system. The ’Descente Infinie’ induction
principle underlying the Spike proofs was explicitly defined and every single Spike
inference step has been translated into equivalent Coq script using automated
translators.

One of our long-term goals is to automatically check large Spike proofs. As
shown by the experimental results, the checking time is some orders of magnitude
longer than for producing a Spike proof, so the current implementation has
to be optimised. To meet this objective, the fixed part of the scripts (i.e. the
specification and the RPO ordering definition) can be validated in a separate
Coq module to be imported, instead of being (re)validated each time a new
conjecture is proved. Also, a lot of time is spent validating comparison lemmas.
Computing the size of all terms in advance would linearize the complexity of
comparison proofs. Last but not least, since the translated inference steps can
be performed independently, it would be interesting to check them concurrently.

334 S. Stratulat

Some other Spike proofs require more sophisticated inference rules to deal with
arithmetic reasoning, parametrized specifications and existential variables [3],
or more general versions of the presented inference rules, for example Total
Case Rewriting with conditional axioms having more complex conditions. A
challenge would be to implement automatic translators for each of these cases.

In other direction, we intend to define a tactic that performs implicit induc-
tion reasoning as an alternative to the existing explicit induction techniques for
validating inductive properties. In this way, Coq (and other similar proof as-
sistants) would be able to automatically execute multiple induction steps and
manage more conveniently mutually defined functions.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

2. Barthe, G., Courtieu, P.: Efficient reasoning about executable specifications in Coq.
In: Theorem Proving in Higher Order Logics, p. 64 (2002)

3. Barthe, G., Stratulat, S.: Validation of the JavaCard platform with implicit induc-
tion techniques. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 337–351.
Springer, Heidelberg (2003)

4. Bonichon, R., Delahaye, D., Doligez, D.: Zenon: An extensible automated theorem
prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) LPAR
2007. LNCS (LNAI), vol. 4790, pp. 151–165. Springer, Heidelberg (2007)

5. Bouhoula, A., Rusinowitch, M.: Implicit induction in conditional theories. Journal
of Automated Reasoning 14(2), 189–235 (1995)

6. Brotherston, J.: Sequent Calculus Proof Systems for Inductive Definitions. PhD
thesis, University of Edinburgh (November 2006)

7. Bundy, A., van Harmelen, F., Horn, C., Smaill, A.: The Oyster-Clam system. In:
Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp. 647–648. Springer, Heidelberg
(1990)

8. Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Certification of auto-
mated termination proofs. In: Frontiers of Combining Systems, pp. 148–162 (2007)

9. Courant, J.: Proof reconstruction. Research Report RR96-26, LIP, Preliminary
version (1996)

10. Dixon, L.: A Proof Planning Framework for Isabelle. PhD thesis, University of
Edinburgh (2005)

11. Imine, A., Rusinowitch, M., Oster, G., Molli, P.: Formal design and verification
of operational transformation algorithms for copies convergence. Theoretical Com-
puter Science 351(2), 167–183 (2006)

12. Kaliszyk, C.: Validation des preuves par récurrence implicite avec des outils basés
sur le calcul des constructions inductives. Master’s thesis, Université Paul Verlaine
- Metz (2005)

13. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H., Winwood,
S.: seL4: Formal verification of an operating-system kernel. Communications of the
ACM 53(6), 107–115 (2010)

14. Lindblad, F., Benke, M.: A tool for automated theorem proving in Agda. In: Fil-
liâtre, J.-C., Paulin-Mohring, C., Werner, B. (eds.) TYPES 2004. LNCS, vol. 3839,
pp. 154–169. Springer, Heidelberg (2006)

Integrating Implicit Induction Proofs into Certified Proof Environments 335

15. Nahon, F., Kirchner, C., Kirchner, H., Brauner, P.: Inductive proof search modulo.
Annals of Mathematics and Artificial Intelligence 55(1-2), 123–154 (2009)

16. Pientka, B., Kreitz, C.: Automating inductive specification proofs in NuPrL. Fun-
damenta Informaticae 1(2), 182–209 (1998)

17. The Spike prover, http://code.google.com/p/spike-prover
18. Rouached, M., Godart, C.: Reasoning about events to specify authorization policies

for web services composition. In: ICWS, IEEE International Conference on Web
Services, pp. 481–488. IEEE Computer Society, Los Alamitos (2007)

19. Rusinowitch, M., Stratulat, S., Klay, F.: Mechanical verification of an ideal incre-
mental ABR conformance algorithm. J. Autom. Reasoning 30(2), 53–177 (2003)

20. Stratulat, S.: A general framework to build contextual cover set induction provers.
J. Symb. Comput. 32(4), 403–445 (2001)

21. Stratulat, S.: Automatic ‘Descente Infinie’ induction reasoning. In: Beckert, B. (ed.)
TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 262–276. Springer, Heidelberg
(2005)

22. Stratulat, S.: Combining rewriting with Noetherian induction to reason on non-
orientable equalities. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 351–
365. Springer, Heidelberg (2008)

23. Stratulat, S., Demange, V.: Validating implicit induction proofs using certified
proof environments. In: Poster Session of 2010 Grande Region Security and Relia-
bility Day, Saarbrucken (March 2010)

24. The Coq Development Team. The Coq reference manual - version 8.2 (2009),
http://coq.inria.fr/doc

25. Wilson, S., Fleuriot, J., Smaill, A.: Inductive proof automation for Coq. In: Coq
Workshop (to appear 2010)

http://code.google.com/p/spike-prover
http://coq.inria.fr/doc

Author Index

Arenas, Alvaro E. 28

Asirelli, Patrizia 43

Autexier, Serge 59

Aziz, Benjamin 28

Baier, Christel 1

Beek, Maurice H. ter 43

Bicarregui, Juan 28

Boström, Pontus 74

Boucheneb, Hanifa 89

Daum, Matthias 105

Dimovski, Aleksandar 121

Dios, Javier de 305

Eggers, Andreas 168

Faber, Johannes 136, 152

Fantechi, Alessandro 43

Fitzgerald, John 12

Fränzle, Martin 168

Frappier, Marc 245

Gervais, Frédéric 245

Gnesi, Stefania 43

Hülsbusch, Mathias 183

Ihlemann, Carsten 152

Imine, Abdessamad 89

Jacobs, Swen 152

Joshi, Rajeev 27

Kolahdouz-Rahimi, Shekoufeh 199

König, Barbara 183

Laibinis, Linas 275

Laleau, Régine 245

Lano, Kevin 199

Larsen, Peter Gorm 12

Lüth, Christoph 59

Marrone, Stefano 215

Mateescu, Radu 229

Milhau, Jérémy 245

Montenegro, Manuel 305

Najem, Manal 89

Papa, Camilla 215

Peña, Ricardo 305

Pierce, Ken 12

Rensink, Arend 183

Salaün, Gwen 229

Schirmer, Norbert W. 105

Schmidt, Mareike 105

Schneider, Steve 260

Semenyak, Maria 183

Sofronie-Stokkermans, Viorica 152

Soltenborn, Christian 183

Steffen, Martin 290

Stratulat, Sorin 320

Tarasyuk, Anton 275

Teige, Tino 168

Tran, Thi Mai Thuong 290

Treharne, Helen 260

Troubitsyna, Elena 275

Verhoef, Marcel 12

Vittorini, Valeria 215

Wehrheim, Heike 183, 260

Wilson, Michael D. 28

Wolff, Sune 12

	Title
	Preface
	Organization
	Table of Contents
	On Model Checking Techniques for Randomized Distributed Systems
	References

	Collaborative Modelling and Co-simulation in the Development of Dependable Embedded Systems
	Introduction
	Collaborative Modelling and Design Space Exploration
	Co-modelling and Co-simulation in 20-Sim and VDM
	VDM
	20-Sim
	Basic Co-simulation in 20-Sim and VDM
	Modelling of Faults

	Towards the Exploration of Design Alternatives
	Concluding Remarks
	References

	Programming with Miracles
	References

	An Event-B Approach to Data Sharing Agreements
	Introduction
	An Overview of Data Sharing Agreements
	Main Components of Data Sharing Agreements

	Event-B with Obligations
	Introduction to Event-B
	Linear Temporal Logic in Event-B
	Modelling Obligations in Event-B

	Formal Modelling of Data Sharing Agreements in Event-B
	Defining System Domains
	Modelling System Variables
	Initial Modelling of Agreement Clauses
	Modelling Permission and Prohibition Clauses
	Modelling Obligations on the System
	Modelling Obligations on Users

	An Example of a DSA in Event-B
	The Agreement Clauses as Logic Formulae
	Initialising the System
	User Actions as Event-B Events
	System Obligations as Events
	User Obligations as Events
	Dealing with the Environment

	Formal Verification and Validation of DSA Properties
	Verifying DSA Properties
	Validating DSA Properties

	Related Work
	Conclusion and Future Work
	References

	A Logical Framework to Deal with Variability
	Introduction
	Running Example: Coffee Machine Product Family
	Product Families: Feature Diagrams and Feature Models
	Deontic Logic Applied to Feature Models
	A Deontic Characterisation of Feature Models

	Behavioural Models for Product Families
	Modal Transition Systems

	A Logical Framework for Modelling Variability
	Syntax of MHML
	Semantics of MHML
	Expressing Static and Behavioural Requirements

	Model-Checking Algorithms for MHML
	Towards the Derivation of Correct Products from a Family Description
	Conclusions and Future Work
	References

	Adding Change Impact Analysis to the Formal Verification of C Programs
	Introduction
	Generic Semantic Change Impact Analysis
	Formal Verification of C Programs
	Change Impact Analysis for the SAMS Environment
	Graph Model of the Documents
	Abstraction and Projection Rules
	Change Propagation Rules
	Change Impact Analysis

	Conclusions, Related and Future Work
	References

	Creating Sequential Programs from Event-B Models
	Introduction
	Event-B
	Events as Set Transformers
	Refinement

	Introduction of Control Flow by Scheduling Events
	The Scheduling Language
	Verification of Scheduling
	Scheduling Patterns
	Creation of Sequential Programs
	Example of Development of a Sequential Program

	Conclusions
	References

	Symbolic Model-Checking of Optimistic Replication Algorithms
	Introduction
	Operational Transformation Approach
	Background
	Operational Transformation Approach
	Inclusive Transformation Functions
	Integration Procedures
	Consistency Criteria

	Modeling Execution Environment of the OT Algorithms
	Difference Bound Matrices
	Our Symbolic Model
	Automaton Site
	Automaton Integration
	Symbolic Transformation
	Verification of TP1 and TP2

	Conclusion
	References

	From Operating-System Correctness to Pervasively Verified Applications
	Introduction
	Background
	On A Simple Real-Time Operating System
	Formally Specifying OLOS – The True Concurrent ECU Model
	On a Correct Compiler – The Sequential Language Stack

	Application Processes
	Process Semantics
	Specifying the Semantics for C0 and Assembly Processes
	Extending Compiler Correctness to Processes

	The Cooperative Concurrent Application Model
	Embedding Applications into the Overall ECU Model
	Reasoning about Applications – A Practical Example
	Conclusion
	References

	A Compositional Method for Deciding Equivalence and Termination of Nondeterministic Programs
	Introduction
	Programming Language
	Game Semantics
	CSP Representation
	Correctness and Formal Properties
	Applications
	Conclusion
	References

	Verification Architectures: Compositional Reasoning for Real-Time Systems
	Introduction
	Discussion of Related Work
	The Verification Architecture Approach

	CSP Processes with Data Constraints and Unknowns
	Verification of Architectures
	Correctness and Incompleteness of the Calculus

	Refinement of Verification Architectures
	Conclusion
	References

	Automatic Verification of Parametric Specifications with Complex Topologies
	Introduction
	Modular Specifications: CSP-OZ-DC
	Example: Systems of Trains on Linear Tracks

	Modular Verification
	Verification Problems
	Modularity in Automated Reasoning: Decision Procedures
	Examples of Local Theory Extensions
	Example: Verification of the Case Study

	Modular Verification for Complex Track Topologies
	From Specification to Verification
	Conclusion
	References

	Satisfaction Meets Expectations
	Introduction
	Conditional Expectations in SSMT
	Probabilistic Hybrid Automata with Costs
	Reducing CEMC to SSMT
	SSMT Algorithm for Conditional Expectation
	Practical Application to Networked Automation Systems
	Conclusion
	References

	Showing Full Semantics Preservation in Model Transformation – A Comparison of Techniques
	Background
	Definitions
	Graphs and Morphisms
	Graph Languages
	Rules and Rule Systems
	Language Semantics
	Semantics-Preserving Model Transformation

	Model Transformation
	Triple Graph Grammars
	In-Situ Transformation
	Comparison

	Proof Strategy 1
	Proof Strategy 2
	The Borrowed Context Technique
	Using Borrowed Contexts for Verification of Model Transformation
	Rules of the Mixed Semantics
	The In-Situ Transformation Preserves Weak Bisimilarity

	Discussion and Evaluation
	References

	Specification and Verification of Model Transformations Using UML-RSDS
	Introduction
	Specification Techniques for Model Transformations
	Verification Techniques for Model Transformations
	Case Study: UML to Relational Database Schemas
	Case Study: State Machine Slicing
	Case Study: Model Migration of Activity Diagrams from UML 1.4 to UML 2.2
	References

	Multiformalism and Transformation Inheritance for Dependability Analysis of Critical Systems
	Introduction
	Transformations in Hierarchies
	The Repairable Fault Trees Transformation
	Repairable Fault Trees
	FT-to-GSPN Model Transformation
	Inheriting RFT-to-GSPN
	Model-to-Text Transformation

	The Radio Block Centre Case Study
	Related Work
	Conclusions
	References

	Translating Pi-Calculus into LOTOS NT
	Introduction
	Pi-Calculus and LOTOS NT
	Translation from Pi-Calculus to LOTOS NT
	Tool Support: Pic2Lnt
	Case Study: A Dispatcher Web Service
	Related Work
	Conclusion and Future Work
	References
	Dispatcher Web Service Translated to LOTOS NT

	Systematic Translation Rules from astd to Event-B
	Introduction
	Event-B Background
	astd Background
	astd Operators
	An astd Case Study
	Motivations

	Translation
	Automata
	Sequence
	Choice
	Kleene Closure
	Synchronization Over a Set of Action Labels
	Quantified Interleaving
	Quantified Choice
	Guard
	Process Call

	Animation and Model Checking of the Case Study
	Limitations, Conclusion and Future Work
	References

	A CSP Approach to Control in Event-B
	Introduction
	Notation
	CSP
	Event-B
	Combining CSP and Event-B

	Motivating and Running Example
	Bridge with CSP Control
	Event-B Bridge with Control
	Abrial's Event-B Bridge

	Deadlock
	Refinement
	Conclusion
	References

	Towards Probabilistic Modelling in Event-B
	Introduction
	Introduction to Event-B
	Modelling of Cyclic Systems in Event-B
	Stochastic Modelling in Event-B
	Introducing Probabilistic Choice
	Fully Probabilistic Systems
	Probabilistic Systems with Nondeterminism
	Discussion

	Related Work and Conclusions
	Related Work
	Conclusions

	References

	Safe Commits for Transactional Featherweight Java
	Introduction
	An Object-Oriented Calculus with Transactions
	Syntax
	Semantics

	The Effect System
	Soundness of the Type and Effect System
	Conclusion
	References

	Certified Absence of Dangling Pointers in a Language with Explicit Deallocation
	Introduction
	The Language
	Operational Semantics
	Safe Type System

	Cell Deallocation by Destructive Pattern Matching
	Region Deallocation
	Certificate Generation
	Related Work and Conclusion
	References

	Integrating Implicit Induction Proofs into Certified Proof Environments
	Motivations
	BasicNotions
	Implicit Induction Proofs with Spike
	The Spike Prover

	Translating and Checking Spike Specifications
	Conclusions and Future Work
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

