

Lecture Notes in Computer Science 6397
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Christian G. Fermüller Andrei Voronkov (Eds.)

Logic for Programming,
Artificial Intelligence,
and Reasoning

17th International Conference, LPAR-17
Yogyakarta, Indonesia, October 10-15, 2010
Proceedings

13

Volume Editors

Christian G. Fermüller
TU Wien
Institut für Computersprachen 185.2
Theory and Logic Group
Favoritenstraße 9-11
A-1040 Vienna, Austria
E-mail: chrisf@logic.at

Andrei Voronkov
University of Manchester
School of Computer Science
Kilburn Building
Oxford Road
Manchester, M13 9PL, UK
E-mail: andrei.voronkov@manchester.ac.uk

Library of Congress Control Number: 2010935496

CR Subject Classification (1998): F.3, I.2, D.2, F.4.1, D.3, H.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-16241-X Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16241-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 06/3180 5 4 3 2 1 0

Preface

This volume contains the research papers presented at the 17th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR-17), held in Yogyakarta, Indonesia, October 10–15, 2010, accompanied
by the 8th International Workshop on the Implementation of Logic (IWIL-8,
organized by Eugenia Ternovska, Stephan Schulz, and Geoff Sutcliffe) and the
5th International Workshop on Analytic Proof Systems (APS-5, organized by
Matthias Baaz and Christian Fermüller).

The call for papers attracted 133 abstract submissions of which 105 mate-
rialized into full submissions, each of which was assigned for reviewing to at
least three Program Committee members; 41 papers were accepted after in-
tense discussions. Once more the EasyChair system provided an ideal platform
for submission, reviewing, discussions, and collecting final versions of accepted
papers.

The program included three invited talks by Krishnendu Chatterjee, Joseph
Halpern, and Michael Maher, as well as an invited tutorial by Norbert Preining.
They are documented by the corresponding papers and abstract, respectively,
in these proceedings, which this year appear for the first time in the ARCoSS
subline of the Lecture Notes in Computer Science.

Apart from the authors, invited speakers, Program Committee members,
and external reviewers, we would like to thank further people that made LPAR-
17 a success: the General Chair, Steffen Hölldobler, and his team at the In-
ternational Center for Computational Logic at TU Dresden; the Local Chairs,
Taufiq Hidayat, Yudi Prayudi, and Reza Pulungan; the Publicity Chair, Geoff
Sutcliffe; and the Workshop Chair, Laura Kovács. We also gratefully acknowl-
edge financial support by the Kurt Gödel Society.

August 2010 Christian G. Fermüller
Andrei Voronkov

Conference Organization

Program Chairs

Christian Fermüller
Andrei Voronkov

Program Committee

Franz Baader
Matthias Baaz
Michael Backes
Gilles Barthe
Peter Baumgartner
Nikolaj Bjørner
Agata Ciabattoni
Alessandro Cimatti
Thierry Coquand
Nachum Dershowitz
Thomas Eiter
Javier Esparza
Thom Frühwirth

Llúıs Godo
Georg Gottlob
Martin Grohe
John Harrison
Miki Hermann
Reiner Hähnle
Neil Immerman
Joxan Jaffar
Deepak Kapur
Claude Kirchner
Michael Kohlhase
Konstantin Korovin
Laura Kovacs

Aart Middeldorp
Dale Miller
Joachim Niehren
Michel Parigot
Frank Pfenning
Torsten Schaub
Natarajan Shankar
Geoff Sutcliffe
Wolfgang Thomas
Cesare Tinelli
Toby Walsh
Christoph Weidenbach
Frank Wolter

General Chair

Steffen Hölldobler

Local Chairs

Taufiq Hidayat
Yudi Prayudi
Reza Pulungan

Workshop Chair

Laura Kovács

Publicity Chair

Geoff Sutcliffe

VIII Conference Organization

External Reviewers

Andreas Abel
Babak Ahmadi
Martin Avanzini
Pavel Avgustinov
Chitta Baral
Hariolf Betz
Marc Bezem
Manuel Bodirsky
Julian Bradfield
Stéphane Bressan
Roberto Bruttomesso
Uwe Bubeck
Richard Bubel
Serena Cerrito
Kaustuv Chaudhuri
Taolue Chen
Jacek Chrza̧szcz
Frank Ciesinski
Hubert Comon-Lundh
Veronique Cortier
Juan Manuel Crespo
Pedro R. D’Argenio
Arnaud Durand
Bruno Dutertre
Roy Dyckhoff
Esra Erdem
Carsten Fuhs
Andrew Gacek
Peter Gacs
Vijay Ganesh
Paul Gastin
Martin Gebser
Birte Glimm
Guido Governatori
Alberto Griggio
Ashutosh Gupta
Yuri Gurevich
Dilian Gurov
Raúl Gutiérrez
Martin Henz
Matthias Horbach
Fulya Horozal
Clément Houtmann

Joe Hurd
Florent Jacquemard
Neil Jones
Roland Kaminski
Ioannis Kassios
George Katsirelos
Benjamin Kaufmann
Chantal Keller
Boris Konev
Martin Korp
Kersting Kristian
César Kunz
Roman Kuznets
Christoph Lange
Martin Lange
Christof Löding
Michel Ludwig
Michael Luttenberger
Stephen Magill
Stephan Merz
Georg Moser
Ben Moszkowski
Ralf Möller
Nina Narodytska
Jorge Navas
M.A. Hakim Newton
Dejan Nickovic
Vivek Nigam
Albert Oliveras
Federico Olmedo
Max Ostrowski
Friedrich Otto
Martin Otto
Joel Ouaknine
Pere Pardo
David Parker
Dirk Pattinson
David Pearce
Nicolas Peltier
Rafael Penaloza
Lee Pike
Luis Pinto
Frank Raiser

Christophe Ringeissen
Cody Roux
Luca Roversi
Pavel Rusnok
Vladislav Ryzhikov
Orkunt Sabuncu
Indranil Saha
Andrew Santosa
Christian Schallhart
Matthias Schmalz
Carsten Schuermann
Jan Schwinghammer
Frédéric Servais
Steven Shapiro
Laurent Simon
Christian Sternagel
Umberto Straccia
Aaron Stump
S.P. Suresh
Michael Thielscher
René Thiemann
Hans Tompits
Tarmo Uustalu
Jan Van den Bussche
Helmut Veith
Thomas Vetterlein
Razvan Voicu
Johannes Waldmann
Uwe Waldmann
Anduo Wang
Lena Wiese
Thomas Wilke
Sarah Winkler
Christoph Wintersteiger
Patrick Wischnewski
Stefan Woelfl
Stefan Woltran
Roland Yap
Fang Yu
Martin Zimmermann
Florian Zuleger

Table of Contents

The Complexity of Partial-Observation Parity Games (Invited Talk) . . . 1
Krishnendu Chatterjee and Laurent Doyen

Awareness in Games, Awareness in Logic (Invited Talk) 15
Joseph Y. Halpern

Human and Unhuman Commonsense Reasoning (Invited Talk) 16
Michael J. Maher

Gödel Logics – A Survey (Invited Tutorial) . 30
Norbert Preining

Tableau Calculus for the Logic of Comparative Similarity over
Arbitrary Distance Spaces . 52

Régis Alenda and Nicola Olivetti

Extended Computation Tree Logic . 67
Roland Axelsson, Matthew Hague, Stephan Kreutzer,
Martin Lange, and Markus Latte

Using Causal Relationships to Deal with the Ramification Problem in
Action Formalisms Based on Description Logics . 82

Franz Baader, Marcel Lippmann, and Hongkai Liu

SAT Encoding of Unification in EL . 97
Franz Baader and Barbara Morawska

Generating Combinatorial Test Cases by Efficient SAT Encodings
Suitable for CDCL SAT Solvers . 112

Mutsunori Banbara, Haruki Matsunaka, Naoyuki Tamura, and
Katsumi Inoue

Generating Counterexamples for Structural Inductions by Exploiting
Nonstandard Models . 127

Jasmin Christian Blanchette and Koen Claessen

Characterising Space Complexity Classes via Knuth-Bendix Orders 142
Guillaume Bonfante and Georg Moser

Focused Natural Deduction . 157
Taus Brock-Nannestad and Carsten Schürmann

How to Universally Close the Existential Rule . 172
Kai Brünnler

X Table of Contents

On the Complexity of the Bernays-Schönfinkel Class with Datalog 187
Witold Charatonik and Piotr Witkowski

Magically Constraining the Inverse Method Using Dynamic Polarity
Assignment . 202

Kaustuv Chaudhuri

Lazy Abstraction for Size-Change Termination . 217
Michael Codish, Carsten Fuhs, Jürgen Giesl, and
Peter Schneider-Kamp

A Syntactical Approach to Qualitative Constraint Networks Merging . . . 233
Jean-François Condotta, Souhila Kaci, Pierre Marquis, and
Nicolas Schwind

On the Satisfiability of Two-Variable Logic over Data Words 248
Claire David, Leonid Libkin, and Tony Tan

Generic Methods for Formalising Sequent Calculi Applied to Provability
Logic . 263

Jeremy E. Dawson and Rajeev Goré

Characterising Probabilistic Processes Logically
(Extended Abstract) . 278

Yuxin Deng and Rob van Glabbeek

fCube: An Efficient Prover for Intuitionistic Propositional Logic 294
Mauro Ferrari, Camillo Fiorentini, and Guido Fiorino

Superposition-Based Analysis of First-Order Probabilistic Timed
Automata . 302

Arnaud Fietzke, Holger Hermanns, and Christoph Weidenbach

A Nonmonotonic Extension of KLM Preferential Logic P 317
Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and
Gian Luca Pozzato

On Strong Normalization of the Calculus of Constructions with
Type-Based Termination . 333

Benjamin Grégoire and Jorge Luis Sacchini

Aligators for Arrays (Tool Paper) . 348
Thomas A. Henzinger, Thibaud Hottelier, Laura Kovács, and
Andrey Rybalchenko

Clause Elimination Procedures for CNF Formulas . 357
Marijn Heule, Matti Järvisalo, and Armin Biere

Partitioning SAT Instances for Distributed Solving 372
Antti E.J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä

Table of Contents XI

Infinite Families of Finite String Rewriting Systems and Their
Confluence . 387

Jean-Pierre Jouannaud and Benjamin Monate

Polite Theories Revisited . 402
Dejan Jovanović and Clark Barrett

Clausal Graph Tableaux for Hybrid Logic with Eventualities and
Difference . 417

Mark Kaminski and Gert Smolka

The Consistency of the CADIAG-2 Knowledge Base: A Probabilistic
Approach . 432

Pavel Klinov, Bijan Parsia, and David Picado-Muiño

On the Complexity of Model Expansion . 447
Antonina Kolokolova, Yongmei Liu, David Mitchell, and
Eugenia Ternovska

Labelled Unit Superposition Calculi for Instantiation-Based
Reasoning . 459

Konstantin Korovin and Christoph Sticksel

Boosting Local Search Thanks to CDCL . 474
Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and
Lakhdar Säıs

Interpolating Quantifier-Free Presburger Arithmetic 489
Daniel Kroening, Jérôme Leroux, and Philipp Rümmer

Variable Compression in ProbLog . 504
Theofrastos Mantadelis and Gerda Janssens

Improving Resource-Unaware SAT Solvers . 519
Steffen Hölldobler, Norbert Manthey, and Ari Saptawijaya

Expansion Nets: Proof-Nets for Propositional Classical Logic 535
Richard McKinley

Revisiting Matrix Interpretations for Polynomial Derivational
Complexity of Term Rewriting . 550

Friedrich Neurauter, Harald Zankl, and Aart Middeldorp

An Isabelle-Like Procedural Mode for HOL Light . 565
Petros Papapanagiotou and Jacques Fleuriot

Bottom-Up Tree Automata with Term Constraints 581
Andreas Reuß and Helmut Seidl

XII Table of Contents

Constructors, Sufficient Completeness, and Deadlock Freedom of
Rewrite Theories . 594

Camilo Rocha and José Meseguer

PBINT, A Logic for Modelling Search Problems Involving
Arithmetic . 610

Shahab Tasharrofi and Eugenia Ternovska

Resolution for Stochastic Boolean Satisfiability . 625
Tino Teige and Martin Fränzle

Symbolic Automata Constraint Solving . 640
Margus Veanes, Nikolaj Bjørner, and Leonardo de Moura

Author Index . 655

The Complexity of Partial-Observation Parity Games

Krishnendu Chatterjee1 and Laurent Doyen2

1 IST Austria (Institute of Science and Technology Austria)
2 LSV, ENS Cachan & CNRS, France

Abstract. We consider two-player zero-sum games on graphs. On the basis of
the information available to the players these games can be classified as follows:
(a) partial-observation (both players have partial view of the game); (b) one-sided
partial-observation (one player has partial-observation and the other player has
complete-observation); and (c) complete-observation (both players have com-
plete view of the game). We survey the complexity results for the problem of de-
ciding the winner in various classes of partial-observation games with ω-regular
winning conditions specified as parity objectives. We present a reduction from
the class of parity objectives that depend on sequence of states of the game to the
sub-class of parity objectives that only depend on the sequence of observations.
We also establish that partial-observation acyclic games are PSPACE-complete.

1 Introduction

Games on graphs. Games played on graphs provide the mathematical framework to
analyze several important problems in computer science as well as mathematics. In par-
ticular, when the vertices and edges of a graph represent the states and transitions of a
reactive system, then the synthesis problem (Church’s problem) asks for the construc-
tion of a winning strategy in a game played on a graph [5,21,20,18]. Game-theoretic
formulations have also proved useful for the verification [1], refinement [13], and com-
patibility checking [9] of reactive systems. Games played on graphs are dynamic games
that proceed for an infinite number of rounds. In each round, the players choose moves
which, together with the current state, determine the successor state. An outcome of the
game, called a play, consists of the infinite sequence of states that are visited.

Strategies and objectives. A strategy for a player is a recipe that describes how the
player chooses a move to extend a play. Strategies can be classified as follows: pure
strategies, which always deterministically choose a move to extend the play, and ran-
domized strategies, which may choose at a state a probability distribution over the avail-
able moves. Objectives are generally Borel measurable functions [17]: the objective for
a player is a Borel set B in the Cantor topology on Sω (where S is the set of states), and
the player satisfies the objective iff the outcome of the game is a member ofB. In verifi-
cation, objectives are usually ω-regular languages. The ω-regular languages generalize
the classical regular languages to infinite strings; they occur in the low levels of the
Borel hierarchy (they lie in Σ3 ∩Π3) and they form a robust and expressive language
for determining payoffs for commonly used specifications. We consider parity objec-
tives and its sub-classes that are canonical forms to express objectives in verification.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 1–14, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 K. Chatterjee and L. Doyen

Classification of games. Games played on graphs can be classified according to the
knowledge of the players about the state of the game. Accordingly, there are (a) partial-
observation games, where each player only has a partial or incomplete view about the
state and the moves of the other player; (b) one-sided partial-observation games, where
one player has partial knowledge and the other player has complete knowledge about
the state and moves of the other player; and (c) complete-observation games, where
each player has complete knowledge of the game.

Analysis. The analysis of games can be classified as qualitative and quantitative anal-
ysis. The qualitative analysis consists of the following questions: given an objective
and a state of the game, (a) can Player 1 ensure the objective with certainty against
all strategies of Player 2 (sure winning problem); (b) can Player 1 ensure the objective
with probability 1 against all strategies of Player 2 (almost-sure winning problem); and
(c) can Player 1 ensure the objective with probability arbitrarily close to 1 against all
strategies of Player 2 (limit-sure winning problem). Given an objective, a state of the
game, and a rational threshold ν, the quantitative analysis problem asks whether the
maximal probability with which Player 1 can ensure the objective against all Player 2
strategies is at least ν.

Organization. The paper is organized as follows: In Section 3 we show a new result
that presents a reduction of general parity objectives that depend on state sequences
to visible objectives that only depend on the sequence of observations (rather than
the sequence of states). In Section 4 we survey the complexity of solving the three
classes of partial-observation games with parity objectives and its sub-classes both for
qualitative and quantitative analysis. In Section 5 we show that for the special case of
acyclic games the qualitative analysis problem is PSPACE-complete both for one-sided
partial-observation and partial-observation games. The PSPACE-completeness result
for acyclic games is in contrast to general games where the complexities are EXPTIME-
complete, 2EXPTIME-complete, and undecidable (depending on the objective and the
specific qualitative analysis question).

2 Definitions

In this section we present the definition of partial-observation games and their sub-
classes, and the notions of strategies and objectives. A probability distribution on a
finite set A is a function κ : A → [0, 1] such that

∑
a∈A κ(a) = 1. We denote by D(A)

the set of probability distributions on A. We focus on partial-observation turn-based
games, where at each round one of the players is in charge of choosing the next action.

Partial-observation games. A partial-observation game (or simply a game) is a tuple
G = 〈S1 ∪ S2, A1, A2, δ1 ∪ δ2,O1,O2〉 with the following components:

1. (State space). S = S1 ∪ S2 is a finite set of states, where S1 ∩ S2 = ∅ (i.e., S1 and
S2 are disjoint), states in S1 are Player 1 states, and states in S2 are Player 2 states.

2. (Actions). Ai (i = 1, 2) is a finite set of actions for Player i.
3. (Transition function). For i ∈ {1, 2}, the transition function for Player i is the

function δi : Si × Ai → S3−i that maps a state si ∈ Si, and action ai ∈ Ai to the
successor state δi(si, ai) ∈ S3−i (i.e., games are alternating).

The Complexity of Partial-Observation Parity Games 3

4. (Observations).Oi ⊆ 2Si (i = 1, 2) is a finite set of observations for Player i that
partition the state space Si. These partitions uniquely define functions obsi : Si →
Oi (i = 1, 2) that map each Player i state to its observation such that s ∈ obsi(s)
for all s ∈ Si.

Special cases. We consider the following special cases of partial-observation games,
obtained by restrictions in the observations:

– (Observation restriction). The games with one-sided partial-observation are the
special case of games where O2 = {{s} | s ∈ S2} (Player 2 has complete
observation), i.e., only Player 1 has partial-observation. The games of complete-
observation are the special case of games where O1 = {{s} | s ∈ S1} and
O2 = {{s} | s ∈ S2}, i.e., every state is visible to each player and hence both
players have complete observation. If a player has complete observation we omit
the corresponding observation sets from the description of the game.

Classes of game graphs. We use the following abbreviations: Pa for partial-observation,
Os for one-sided complete-observation, Co for complete-observation. For C ∈
{Pa,Os,Co}, we denote by GC the set of all C games. Note that the following
strict inclusions hold: partial-observation (Pa) is more general than one-sided partial-
observation (Os) and Os is more general than complete-observation (Co).

Plays. In a game, in each turn, for i ∈ {1, 2}, if the current state s is in Si, then
Player i chooses an action a ∈ Ai, and the successor state is δi(s, a). A play in G is
an infinite sequence of states and actions ρ = s0a0s1a1 . . . such that for all j ≥ 0, if
sj ∈ Si, for i ∈ {1, 2}, then there exists aj ∈ Ai such that δi(sj , aj) = sj+1. The
prefix up to sn of the play ρ is denoted by ρ(n), its length is |ρ(n)| = n + 1 and its
last element is Last(ρ(n)) = sn. The set of plays in G is denoted by Plays(G), and
the set of corresponding finite prefixes is denoted Prefs(G). For i ∈ {1, 2}, we denote
by Prefsi(G) the set of finite prefixes in G that end in a state in Si. The observation
sequence of ρ = s0a0s1a1 . . . for Player i (i = 1, 2) is the unique infinite sequence of
observations and actions of Player i, i.e., obsi(ρ) ∈ (OiAi)ω defined as follows: (i) if
s0 ∈ Si, then obsi(ρ) = o0a0o2a2o4 . . . such that sj ∈ oj for all even j ≥ 0; (ii) if
s0 ∈ S3−i, then obsi(ρ) = o1a1o3a3o5 . . . such that sj ∈ oj for all odd j ≥ 1. The
observation sequence for finite sequences (prefix of plays) is defined analogously.

Strategies. A pure strategy in G for Player 1 is a function σ : Prefs1(G) → A1. A
randomized strategy in G for Player 1 is a function σ : Prefs1(G) → D(A1). A (pure
or randomized) strategy σ for Player 1 is observation-based if for all prefixes ρ, ρ′ ∈
Prefs(G), if obs1(ρ) = obs1(ρ′), then σ(ρ) = σ(ρ′). We omit analogous definitions
of strategies for Player 2. We denote by ΣG, ΣO

G , ΣP
G , ΠG, ΠO

G and ΠP
G the set of all

Player-1 strategies inG, the set of all observation-based Player-1 strategies, the set of all
pure Player-1 strategies, the set of all Player-2 strategies inG, the set of all observation-
based Player-2 strategies, and the set of all pure Player-2 strategies, respectively. Note
that if Player 1 has complete observation, then ΣO

G = ΣG.

Objectives. An objective for Player 1 inG is a set φ ⊆ Sω of infinite sequences of states.
A play ρ ∈ Plays(G) satisfies the objective φ, denoted ρ |= φ, if ρ ∈ φ. Objectives are
generally Borel measurable: a Borel objective is a Borel set in the Cantor topology on
Sω [15]. We specifically consider ω-regular objectives specified as parity objectives

4 K. Chatterjee and L. Doyen

(a canonical form to express all ω-regular objectives [25]). For a play ρ = s0a0s1a1 . . .
we denote by ρk the k-th state sk of the play and denote by Inf(ρ) the set of states that
occur infinitely often in ρ, that is, Inf(ρ) = {s | sj = s for infinitely many j’s}. We
consider the following classes of objectives.

1. Reachability and safety objectives. Given a set T ⊆ S of target states, the reacha-
bility objective Reach(T) requires that a state in T be visited at least once, that is,
Reach(T) = {ρ | ∃k ≥ 0 · ρk ∈ T }. Dually, the safety objective Safe(T) requires
that only states in T be visited. Formally, Safe(T) = {ρ | ∀k ≥ 0 · ρk ∈ T }.

2. Büchi and coBüchi objectives. The Büchi objective Buchi(T) requires that a state
in T be visited infinitely often, that is, Buchi(T) = {ρ | Inf(ρ) ∩ T �= ∅}. Dually,
the coBüchi objective coBuchi(T) requires that only states in T be visited infinitely
often. Formally, coBuchi(T) = {ρ | Inf(ρ) ⊆ T }.

3. Parity objectives. For d ∈ N, let p : S → {0, 1, . . . , d} be a priority function, which
maps each state to a nonnegative integer priority. The parity objective Parity(p) re-
quires that the minimum priority that occurs infinitely often be even. Formally,
Parity(p) = {ρ | min{p(s) | s ∈ Inf(ρ)} is even}. The Büchi and coBüchi objec-
tives are the special cases of parity objectives with two priorities, p : S → {0, 1}
and p : S → {1, 2}, respectively.

4. Visible objectives. We say that an objective φ is visible for Player i if for all ρ, ρ′ ∈
Sω, if ρ |= φ and obsi(ρ) = obsi(ρ′), then ρ′ |= φ. For example if the priority
function maps observations to priorities (i.e., p : Oi → {0, 1, . . . , d}), then the
parity objective is visible for Player i.

Outcomes. The outcome of two randomized strategies σ (for Player 1) and π (for
Player 2) from a state s in G is the set of plays ρ = s0s1 . . . ∈ Plays(G), with s0 = s,
where for all j ≥ 0, if sj ∈ S1 (resp. sj ∈ S2), then there exists an action aj ∈ A1 (resp.
aj ∈ A2), such that σ(ρ(j))(aj) > 0 (resp. π(ρ(j))(aj) > 0) and δ1(sj , aj) = sj+1
(resp. δ2(sj , aj) = sj+1). This set is denoted Outcome(G, s, σ, π). The outcome of
two pure strategies is defined analogously by viewing pure strategies as randomized
strategies that play their chosen action with probability one. The outcome set of the
pure (resp. randomized) strategy σ for Player 1 in G is the set Outcome1(G, s, σ) of
plays ρ such that there exists a pure (resp. randomized) strategy π for Player 2 with
ρ ∈ Outcome(G, s, σ, π). The outcome set Outcome2(G, s, π) for Player 2 is defined
symmetrically.

Sure winning, almost-sure winning, limit-sure winning and value function. An event is a
measurable set of plays, and given strategies σ and π for the two players, the probabili-
ties of events are uniquely defined [26]. For a Borel objective φ, we denote by Prσ,π

s (φ)
the probability that φ is satisfied by the play obtained from the starting state s when the
strategies σ and π are used. Given a game G, an objective φ, and a state s, we consider
the following winning modes: (1) an observation-based strategy σ for Player 1 is sure
winning for the objective φ from s if Outcome(G, s, σ, π) ⊆ φ for all observation-
based strategies π for Player 2; (2) an observation-based strategy σ for Player 1 is
almost-sure winning for the objective φ from s if Prσ,π

s (φ) = 1 for all observation-
based strategies π for Player 2; and (3) a family (σε)ε>0 of observation-based strate-
gies for Player 1 is limit-sure winning for the objective φ from s if Prσε,π

s (φ) ≥ 1 − ε,

The Complexity of Partial-Observation Parity Games 5

for all ε > 0 and all observation-based strategies π for Player 2. The value function
〈〈1〉〉Gval : S → R for objective φ for Player 1 assigns to every state the maximal proba-
bility with which Player 1 can guarantee the satisfaction of φ with an observation-based
strategy, against all observation-based strategies for Player 2. Formally we have

〈〈1〉〉Gval (φ)(s) = sup
σ∈ΣO

G

inf
π∈ΠO

G

Prσ,π
s (φ).

For ε ≥ 0, an observation-based strategy is ε-optimal for φ from s if we have
infπ∈ΠO

G
Prσ,π

s (φ) ≥ 〈〈1〉〉Gval (φ)(s) − ε. An optimal strategy is a 0-optimal strategy.
Given a rational value 0 ≤ ν ≤ 1 and a state s, the value decision problem asks
whether the value of the game at s is at least ν. The qualitative analysis consists of the
sure, almost-sure and limit-sure winning problems, and the quantitative analysis is the
value decision problem.

3 Reduction of Objectives to Visible Objectives

The complexity lower bounds in this paper are given for visible objectives, while upper
bounds are given for general objectives. In [23,7], algorithms based on a subset con-
struction are given for visible objective, establishing upper bounds (namely EXPTIME)
for visible objectives only.

We show that games with general parity objectives can be reduced to games with
visible parity objective with an exponential blow-up. However, this blow-up has no im-
pact on the complexity upper bounds because from a game G, the reduction constructs
a game G′ as the product of G with an exponentially large automaton M , such that the
further subset construction of [7] applied to G′ induces an exponential blow-up only
with respect to G (the subset construction forG′ has sizeO(2|G| · |M |) = O(2|G| ·2|G|)
which is simply exponential). This is because M is a deterministic automaton.

We give the idea of the construction. Assume that we have a game G with parity
objective given by the priority function p : S → {0, 1, . . . , d}. We construct a game
G′ with visible objective as a product G × M where M is a finite automaton with
parity condition that “synchronizes” with G on observations and actions of Player 1.
We construct M as the complement of the automaton M ′ that we define as follows.

The automaton M ′ has state space S1 and alphabet Σ = O1 × A1 that accepts the
observations of the plays that are losing for Player 1. An observation sequence is losing
if it is the observation of a losing play. The initial state of M ′ is the initial state of the
game (we assume w.l.o.g that the game starts in a Player 1 state). The transitions of
M ′ are (s, (obs1(s), a), s′′) for all s, s′′ ∈ S1 and a ∈ A1 such that δ1(s, a) = s′ and
δ2(s′, b) = s′′ for some s′ ∈ S2 and b ∈ A2. The priority assigned to this transition is
1+min{p(s), p(s′)}. Note thatM ′ has at most one run over each infinite word, and that
a run in M ′ corresponds to a play in G. The language of M ′ is the set of infinite words
over Σ = O1 × A1 that have a run in M ′ in which the least priority visited infinitely
often is even, i.e. such that the least priority (according to p) visited infinitely often is
odd (and thus the corresponding run violates the winning condition of the game G).
By complementing M ′, we get an exponentially larger automaton M that accepts the
winning observation sequences [24]. We can assume that M is deterministic and that

6 K. Chatterjee and L. Doyen

the states rather than the transitions are labeled by priorities and letters. The game G′

is obtained by a synchronized product of G and M in which Player 1 can see the state
of M (i.e., the observation of a state (s, u) where s is a state of G and u is a state of M
is (obs1(s), u)). The priority of a state (s, u) depends only on u and therefore defines
a visible parity objective. Transitions in G and M are synchronized on the obervations
and actions of Player 1.

Note that for reachability and safety objectives, there exists a reduction to a visible
objective in polynomial time. First, we can assume that the target states T defining the
objective are sink states (because once T is reached, the winner of the game is fixed).
Second, we make the sink states visible, which makes the objective vissible, and does
not change the winner of the game (observing the sink states is of no help since the
game is over when this happens).

Theorem 1. Given a game G ∈ GOs with parity objective, one can construct a game
G′ as a product of G with an exponentially large automaton M with a visible parity
objective such that the following assertions hold:

1. G and G′ have the same answer to the sure and the almost-sure winning problem;
2. the sure winning problem for G′ can be solved in time exponential in the size of G;

and
3. the almost-sure winning problem for G′ can be solved in time exponential in the

size of G for Büchi objectives.

4 Complexity of Partial-Observation Parity Games

In this section we present a complete picture of the complexity results for the three
different classes of partial-observation games, with different classes of parity objectives,
both for qualitative and quantitative analysis.

4.1 Complexity of Sure Winning

We first show that for sure winning, pure strategies are sufficient for all partial-
observation games.

Lemma 1 (Pure strategies suffice for sure winning). For all games G ∈ GPa and
all objectives φ, if there is a sure winning strategy, then there is a pure sure winning
strategy.

Proof. Consider a randomized strategy σ for Player 1, let σP be the pure strategy such
that for all ρ ∈ Prefs1(G), the strategy σP (ρ) chooses an action from Supp(σ(ρ)).
Then for all s we have Outcome1(G, s, σP) ⊆ Outcome1(G, s, σ), and thus, if σ is
sure winning, then so is σP . The result also holds for observation-based strategies.

Spoiling strategies. To spoil a strategy of Player 1 (for sure-winning), Player 2 does not
need the full memory of the history of the play, but only needs counting strategies [7].
We say that a pure strategy π : Prefs2(G) → A2 for Player 2 is counting if for all

The Complexity of Partial-Observation Parity Games 7

prefixes ρ, ρ′ ∈ Prefs2(G) such that |ρ| = |ρ′| and Last(ρ) = Last(ρ′), we have π(ρ) =
π(ρ′). Let ΠC

G be the set of counting strategies for Player 2. The memory needed by
a counting strategy is only the number of turns that have been played. This type of
strategy is sufficient to spoil the non-winning strategies of Player 1.

Lemma 2 (Counting spoiling strategies suffice). Let G be a partial-observation
game and φ be an objective. There exists a pure observation-based strategy σo ∈ ΣO

G

such that for all πo ∈ ΠO
G we have Outcome(G, s, σo, πo) ∈ φ if and only if there

exists a pure observation-based strategy σo ∈ ΣO
G such that for all counting strategies

πc ∈ ΠC
G we have Outcome(G, s, σo, πc) ∈ φ.

Proof. We prove the equivalent statement that: for all pure observation-based strate-
gies σo ∈ ΣO

G there exists πo ∈ ΠO
G such that Outcome(G, s, σo, πo) � φ iff

for all pure observation-based strategies σo ∈ ΣO
G there exists πc ∈ ΠC

G such
that Outcome(G, s, σo, πc) � φ. The right implication (←) is trivial. For the left
implication (→), let σo ∈ ΣO

G be an arbitrary pure observation-based strategy for
Player 1 in G. Let πo ∈ ΠO

G be a strategy for Player 2 such that there exists ρ∗ ∈
Outcome(G, s, σo, πo) and ρ∗ �∈ φ. Let ρ∗ = s0a0s1a1 . . . an−1snan . . . and define
a counting strategy πc for Player 2 such that for all ρ ∈ Prefs2(G) if Last(ρ) = sn−1
for n = |ρ|, then πc(ρ) = sn, and otherwise πc(ρ) is fixed arbitrarily. Clearly, πc is
a counting strategy and we have ρ∗ ∈ Outcome(G, s, σo, πo). Hence it follows that
Outcome(G, s, σo, πc) � φ, and we obtain the desired result.

Sure winning coincide for Pa and Os games. For all O2 partitions of a partial-
observation game, a counting strategy is an observation-based strategy. From Lemma 1
it follows that pure strategies suffice for sure winning, and Lemma 2 shows that counting
strategies suffice for spoiling pure strategies. Hence it follows that for spoiling strate-
gies in sure winning games, the observation for Player 2 does not matter, and hence for
sure winning, Pa and Os games coincide.

Lemma 3. For a partial-observation game G = 〈S1 ∪ S2, A1, A2, δ1 ∪ δ2,O1,O2〉
with an objective φ, consider the one-sided partial-observation game G′ = 〈S1 ∪
S2, A1, A2, δ1 ∪ δ2,O1,O′2〉 such that O′2 = {{s} | s ∈ S2}. The answer to the sure
winning questions in G and G′ coincide for objective φ.

Complexity of sure winning. The results for complete-observation games are as fol-
lows: (1) safety and reachability objectives can be solved in linear-time (this is alter-
nating reachability in AND-OR graphs) [14]; (2) Büchi and coBüchi objectives can
be solved in quadratic time [25]; and (3) parity objectives lie in NP ∩ coNP [10] and
no polynomial time algorithm is known. The results for one-sided partial-observation
games are as follows: (1) the EXPTIME-completeness for reachability objectives fol-
lows from the results of [22]; (2) the EXPTIME-completeness for safety objectives
follows from the results of [4]; and (3) the EXPTIME-upper bound for all parity objec-
tive follows from the results of [7] and hence it follows that for all Büchi, coBüchi and
parity objectives we have EXPTIME-complete bound. From Lemma 3 the results fol-
low for partial-observation games. The results are summarized in the following theorem
and shown in Table 1.

8 K. Chatterjee and L. Doyen

Table 1. Complexity of sure winning

Complete-observation One-sided Partial-observation
Safety Linear-time EXPTIME-complete EXPTIME-complete

Reachability Linear-time EXPTIME-complete EXPTIME-complete
Büchi Quadratic-time EXPTIME-complete EXPTIME-complete

coBüchi Quadratic-time EXPTIME-complete EXPTIME-complete
Parity NP ∩ coNP EXPTIME-complete EXPTIME-complete

Table 2. Complexity of almost-sure winning

Complete-observation One-sided Partial-observation
Safety Linear-time EXPTIME-complete EXPTIME-complete

Reachability Linear-time EXPTIME-complete 2EXPTIME-complete
Büchi Quadratic-time EXPTIME-complete 2EXPTIME-complete

coBüchi Quadratic-time Undecidable Undecidable
Parity NP ∩ coNP Undecidable Undecidable

Theorem 2 (Complexity of sure winning). The following assertions hold:

1. The sure winning problem for complete-observation games (i) with reachability
and safety objectives can be solved in linear time; (ii) with Büchi and coBüchi
objectives can be solved in quadratic time; and (iii) with parity objectives is in NP
∩ coNP.

2. The sure winning problem for partial-observation and one-sided partial-
observation games with reachability, safety, Büchi, coBüchi and parity objectives
are EXPTIME-complete.

4.2 Complexity of Almost-Sure Winning

In contrast to sure winning (Lemma 1), for almost-sure winning, randomized strate-
gies are more powerful than pure strategies (for example see [7]) for one-sided partial-
observation games. The celebrated determinacy result of Martin [16] shows that for
complete-observation games either there is a sure winning strategy for Player 1, or
there is a pure strategy for Player 2 that ensures against all Player 1 strategies the ob-
jective is not satisfied. It follows that for complete-observation games, the almost-sure,
limit-sure winning, and value decision problems coincide with the sure winning prob-
lem. For safety objectives, the counter-examples are always finite prefixes, and it can
be shown that for a given observation-based strategy for Player 1 if there is a strategy
for Player 2 to produce a finite counter-example, then the finite counter-example is pro-
duced with some constant positive probability. It follows that for partial-observation
games and one-sided partial-observation games with safety objectives, the almost-sure
and the limit-sure winning problems coincide with the sure winning problem.

Lemma 4. The following assertions hold:

1. For complete-observation games, the almost-sure, limit-sure winning, and value
decision problems coincide with the sure winning problem.

The Complexity of Partial-Observation Parity Games 9

2. For safety objectives, the almost-sure and the limit-sure winning problems coin-
cide with the sure winning problem for partial-observation and one-sided partial-
observation games.

Complexity of almost-sure winning. In view of Lemma 4 the almost-sure win-
ning analysis for complete-observation games with all classes of objectives follow
from Theorem 2. Similarly due to Lemma 4 the results for partial-observation games
and one-sided partial-observation games with safety objectives follow from Theo-
rem 2. The EXPTIME-completeness for almost-sure winning with reachability and
Büchi objectives for one-sided partial-observation games follows from [7]; and the
2EXPTIME-completeness for almost-sure winning with reachability and Büchi objec-
tives for partial-observation games follows from [3,12]. The undecidability result for
almost-sure winning for coBüchi objectives for one-sided partial-observation games is
obtained as follows: (i) in [2] it was shown that for probabilistic automata with coBüchi
conditions, the problem of deciding if there exists a word that is accepted with prob-
ability 1 is undecidable and from this it follows that for one-sided partial-observation
games with probabilistic transitions, the problem of deciding the existence of a pure
observation-based almost-sure winning strategy is undecidable; (ii) it was shown in [6]
that probabilistic transitions can be removed from the game graph, and the problem
remains undecidable under randomized observation-based strategies. The undecidabil-
ity for the more general parity objectives, and partial-observation games follows. This
gives us the results for almost-sure winning, and they are summarized in the theorem
below (see also Table 2).

Theorem 3 (Complexity of almost-sure winning). The following assertions hold:

1. The almost-sure winning problem for one-sided partial-observation games (i) with
safety, reachability and Büchi objectives are EXPTIME-complete, and (ii) is unde-
cidable for coBüchi and parity objectives.

2. The almost-sure winning problem for partial-observation games (i) with safety,
reachability and Büchi objectives are 2EXPTIME-complete, and (ii) is undecidable
for coBüchi and parity objectives.

4.3 Complexity of Limit-Sure Winning and Value Decision Problems

The complexity results for limit-sure winning and value decision problems are as follows.

Complexity of limit-sure winning. In view of Lemma 4 the results for (i) limit-sure
winning and value decision problem for complete-observation games with all classes
of objectives, and (ii) for partial-observation games and one-sided partial-observation
games with safety objectives with limit-sure winning, follow from Theorem 2. It fol-
lows from the results of [11] that the following question is undecidable for probabilistic
automata with reachability condition: for all ε > 0 is there a word wε that is accepted
with probability greater than 1 − ε? It follows that for one-sided partial-information
games with probabilistic transitions, the problem of deciding the existence of a fam-
ily of pure observation-based limit-sure winning strategies is undecidable; and again

10 K. Chatterjee and L. Doyen

Table 3. Complexity of limit-sure winning

Complete-observation One-sided Partial-observation
Safety Linear-time EXPTIME-complete EXPTIME-complete

Reachability Linear-time Undecidable Undecidable
Büchi Quadratic-time Undecidable Undecidable

coBüchi Quadratic-time Undecidable Undecidable
Parity NP ∩ coNP Undecidable Undecidable

it follows from [6] that the problem is undecidable by removing probabilistic transi-
tions from the game graph, and also for randomized observation-based strategies. Since
(i) reachability objectives are special cases of Büchi, coBüchi and parity objectives, and
(ii) one-sided partial-observation games are special cases of partial-observation games,
the undecidability results for the more general cases follow. This gives us the results for
limit-sure winning, and they are summarized in the theorem below (see also Table 3).

Theorem 4 (Complexity of limit-sure winning). The following assertions hold:

1. The limit-sure winning problem for one-sided partial-observation games (i) with
safety objectives are EXPTIME-complete, and (ii) with reachability, Büchi,
coBüchi, and parity objectives are undecidable.

2. The limit-sure winning problem for partial-observation games (i) with safety objec-
tives are EXPTIME-complete, and (ii) with reachability, Büchi, coBüchi, and parity
objectives are undecidable.

Complexity of the value decision problems. Since the limit-sure winning problem is
a special case of the value decision problem (with ν = 1), the undecidability results for
all objectives other than safety objectives follow from Theorem 4. The undecidability
of the value decision problem for probabilistic safety automata was shown in [8], and
from [6] the undecidability follows for the value decision problem of one-sided partial-
observation games with safety objectives. We summarize the results in Theorem 5 and
Table 4.

Table 4. Complexity of value decision

Complete-observation One-sided Partial-observation
Safety Linear-time Undecidable Undecidable

Reachability Linear-time Undecidable Undecidable
Büchi Quadratic-time Undecidable Undecidable

coBüchi Quadratic-time Undecidable Undecidable
Parity NP ∩ coNP Undecidable Undecidable

Theorem 5 (Complexity of value decision problems). The value decision problems
for partial-observation and one-sided partial-observation games with safety, reacha-
bility, Büchi, coBüchi, and parity objectives are undecidable.

The Complexity of Partial-Observation Parity Games 11

5 The Complexity of Acyclic Games

We show that partial-observation games with reachability and safety objective played
on acyclic graphs are PSPACE-complete. Note that for such games, the notion of sure-
winning, almost-sure winning, and limit-sure winning coincide, and that randomized
strategies are no more powerful than pure strategies.

A partial-observation game is acyclic if there are two distinguished sink states sacc

and srej (accepting and rejecting states) such that the transition relation is acyclic over
S \ {sacc, srej}. The objective is Reach({sacc}) or equivalently Safe(S \ {srej}).
Clearly the winner of an acyclic game is known after at most |S| rounds of playing. We
claim that the qualitative analysis of acyclic partial-observation games (with reachabil-
ity or safety objective) is PSPACE-complete. Since for acyclic games parity objectives
reduce to safety or reachability objectives, the PSPACE-completeness follows for all
parity objectives.

PSPACE upper bound. A PSPACE algorithm to solve acyclic games is as follows. Start-
ing from t0 = {s0}, we choose an action a ∈ A1 and we check that Player 1 is winning
from each set t1 = Posta(t0) ∩ o1 for each o1 ∈ O1 where Posta(t) = {s′′ | ∃s ∈
t, b ∈ A2 : δ2(δ1(s, a), b) = s′′}. For each observation o1 ∈ O1, we can reuse the space
used by previous checks. Since the number of rounds is at most |S1|, we can check if
Player 1 is winning using a recursive procedure that tries out all choices of actions (the
stack remains bounded by a polynomial in |S1|).
PSPACE lower bound. We prove PSPACE-hardness using a reduction from QBF, which
is the problem of evaluating a quantified boolean formula and is known to be PSPACE-
complete [19]. A formula is defined over a finite set X of boolean variables, and is of
the form ϕ ≡ Q1x1 . . .Qnxn

∧
i ci, where Qk ∈ {∃, ∀}, xk ∈ X (k = 1 . . .n) and

each clause ci is of the form u1 ∨ u2 ∨ u3 and uj are literals (i.e., either a variable
or the negation of a variable). We assume without loss of generality that all variables
occurring in ϕ are quantified. Given a formula ϕ, we construct an acyclic gameGϕ and
state sI such that Player 1 has a sure winning strategy in Gϕ from sI if and only if the
formula ϕ is true.

The idea of the construction is as follows. Let us call Player 1 the ∃player and
Player 2 the ∀player. In the gameGϕ, the ∀player chooses a valuation of the universally
quantified variables, and the ∃player chooses a valuation of the existentially quantified
variables. The choices are made in alternation, according to the structure of the for-
mula. Moreover, the ∀player (secretly) chooses one clause that he will monitor. Since
the ∃player does not know which clause is chosen by the ∀player, she has to ensure that
all clauses are satisfied by her choice of valuation.

To be fair, when the ∃player is asked to choose a value for an existentially quantified
variable x, the ∀player should have announced the value he has chosen for the variables
that are quantified before x in the formula. We use observations to simulate this.

Note that, having chosen a clause, the ∀player has a unique clever choice of the value
of the universally quantified variables (namely such that the corresponding literals in the
clause are all false). Indeed, for any other choice, the clause would be satisfied no matter
the ∃player’s choice, and there would be nothing to check.

12 K. Chatterjee and L. Doyen

sI

c1, x c1, y c1, z c1, t srej

sacc
c2, x

...

...

ck, x

. . .

. . .

0, 1

0, 1

0, 1

1 0 0, 1 0

0
1

1

Fig. 1. Reduction of QBF to acyclic games for ϕ = ∃x∀y ∃z ∀t (x ∨ ȳ ∨ t̄) ∧ . . . Circles are
states of ∃player, boxes are states of ∀player

The reduction is illustrated in Fig.1. We formally describe below the game
Gϕ. W.l.o.g. we assume that the quantifiers in ϕ are alternating, i.e. ϕ is of the
form ∃x1∀x2 . . .∃x2n−1∀x2n

∧
i ci. The set of actions in Gϕ is A1 = A2 =

{0, 1} and the state space is S1 ∪ S2 ∪ {sacc, srej} where S1 = {(c, x) |
c is a clause in ϕ and x is an existentially quantified variable } and S2 = {sI} ∪
{(c, x) | c is a clause in ϕ and x is a universally quantified variable }. The transitions
are as follows, for each clause c of ϕ:

– (sI , a, (c, x1)) for each a ∈ {0, 1}. Intuitively, Player 2 initially chooses which
clause he will track;

– ((c, xi), a, sacc) for all 1 ≤ i ≤ 2n if a = 0 and x̄i ∈ c, or if a = 1 and xi ∈ c.
Intuitively, the state sacc is reached if the assignment to variable xi makes the clause
c true;

– ((c, xi), a, (c, xi+1)) for all 1 ≤ i ≤ 2n if a = 0 and x̄i �∈ c, or if a = 1 and xi �∈ c
(and we assume that (c, x2n+1) denotes srej). Intuitively, the state srej is reached
if no literal in c is set to true by the players.

The set of observations for Player 1 is O1 = {init} ∪ {x = 0 | x ∈ X} ∪ {x = 1 |
x ∈ X}, and the observation function is defined by obs1(c, x1) = init for all clauses c

in ϕ, and obs1(c, xi) =
{
xi = 1 if xi−1 �∈ c
xi = 0 otherwise

for all clauses c in ϕ, and all 1 < i ≤ n.

Intuitively, the ∃player does not know which clause is monitored by the ∀player, but
knows the value assigned by the ∀player to the universally quantified variables.

The correctness of this construction is established as follows. First, assume that
∃player has a sure winning strategy in Gϕ. Since strategies are observation-based, the
action choice after a prefix of a play sIa0(c, x1)a1 . . . (c, xk) is independent of c and
depends only on the sequence of previous actions and observations which provide the
value of variables x1, . . . , xk−1 only. Therefore we can view the winning strategy as a
function that assigns to each existentially quantified variable a value that depends on
the value of the variables quantified earlier in the formula. This function is a witness for
showing that ϕ holds, since the state srej is avoided.

The Complexity of Partial-Observation Parity Games 13

Conversely, if ϕ holds, then there is a strategy to assign a value to the existentially
quantified variables given the value of the variables quantified earlier in the formula,
from which it is easy to construct a winning strategy in Gϕ to reach sacc.

Thus PSPACE-completeness follows for one-sided partial-observation games for
sure winning. Since sure, almost-sure, and limit-sure winning coincide for acyclic
games, and for sure winning partial-observation games coincide with one-sided partial-
observation games (Lemma 3), the PSPACE-completeness for all the qualitative analy-
sis problems follow.

Theorem 6 (Complexity of acyclic games). The sure, almost-sure, and limit-sure win-
ning problems for acyclic games of partial observation and one-sided partial observa-
tion with all parity objectives are PSPACE-complete.

References

1. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the
ACM 49, 672–713 (2002)

2. Baier, C., Bertrand, N., Größer, M.: On decision problems for probabilistic Büchi automata.
In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 287–301. Springer, Heidel-
berg (2008)

3. Bertrand, N., Genest, B., Gimbert, H.: Qualitative determinacy and decidability of stochastic
games with signals. In: LICS, pp. 319–328. IEEE Computer Society, Los Alamitos (2009)

4. Berwanger, D., Doyen, L.: On the power of imperfect information. In: FSTTCS, Dagstuhl
Seminar Proceedings 08004. Internationales Begegnungs- und Forschungszentrum fuer In-
formatik, IBFI (2008)

5. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans-
actions of the AMS 138, 295–311 (1969)

6. Chatterjee, K., Doyen, L., Gimbert, H., Henzinger, T.A.: Randomness for free. In: Hlineny,
P. (ed.) MFCS 2010. LNCS, vol. 6281, pp. 246–257. Springer, Heidelberg (2010)

7. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Algorithms for omega-regular
games of incomplete information. Logical Methods in Computer Science 3(3:4) (2007)

8. Chatterjee, K., Henzinger, T.A.: Probabilistic automata on infinite words: Decidability and
undecidability results. In: ATVA. Springer, Heidelberg (2010)

9. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design. In: Henzinger,
T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp. 148–165. Springer, Heidel-
berg (2001)

10. Emerson, E.A., Jutla, C.: Tree automata, mu-calculus and determinacy. In: FOCS, pp. 368–
377. IEEE, Los Alamitos (1991)

11. Gimbert, H., Oualhadj, Y.: Probabilistic automata on finite words: Decidable and undecid-
able problems. In: Gavoille, C. (ed.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 527–538.
Springer, Heidelberg (2010)

12. Gripon, V., Serre, O.: Qualitative concurrent stochastic games with imperfect information.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. LNCS, vol. 5556, pp. 200–211. Springer, Heidelberg (2009)

13. Henzinger, T.A., Kupferman, O., Rajamani, S.: Fair simulation. Information and Computa-
tion 173, 64–81 (2002)

14. Immerman, N.: Number of quantifiers is better than number of tape cells. Journal of Com-
puter and System Sciences 22, 384–406 (1981)

14 K. Chatterjee and L. Doyen

15. Kechris, A.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)
16. Martin, D.A.: Borel determinacy. Annals of Mathematics 102(2), 363–371 (1975)
17. Martin, D.A.: The determinacy of Blackwell games. The Journal of Symbolic Logic 63(4),

1565–1581 (1998)
18. McNaughton, R.: Infinite games played on finite graphs. Annals of Pure and Applied

Logic 65, 149–184 (1993)
19. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1993)
20. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL, pp. 179–190. ACM

Press, New York (1989)
21. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event processes.

SIAM Journal of Control and Optimization 25(1), 206–230 (1987)
22. Reif, J.H.: Universal games of incomplete information. In: STOC, pp. 288–308. ACM Press,

New York (1979)
23. Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Com-

puter and System Sciences 29(2), 274–301 (1984)
24. Safra, S.: On the complexity of ω-automata. In: FOCS, pp. 319–327. IEEE Computer Society

Press, Los Alamitos (1988)
25. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages, ch. 7,

vol. 3, Beyond Words, pp. 389–455. Springer, Heidelberg (1997)
26. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state systems. In:

FOCS, pp. 327–338. IEEE Computer Society Press, Los Alamitos (1985)

Awareness in Games, Awareness in Logic

Joseph Y. Halpern

Computer Science Department
Cornell University

Ithaca, NY 14853, USA
halpern@cs.cornell.edu

Standard game theory models implicitly assume that all significant aspects of a
game (payoffs, moves available, etc.) are common knowledge among the players.
There are well-known techniques going back to Harsanyi [4] for transforming
a game where some aspects are not common knowledge to one where they are
common knowledge. However, these techniques assume that players are at least
aware of all possible moves in the game. But this is not always a reasonable
assumption. For example, sleazy companies assume that consumers are not aware
that they can lodge complaints if there are problems; in a war setting, having
technology that an enemy is unaware of (and thus being able to make moves that
the enemy is unaware of) can be critical; in financial markets, some investors may
not be aware of certain investment strategies (complicated hedging strategies,
for example, or tax-avoidance strategies).

In the first part of this talk, I discuss an approach for modeling lack of aware-
ness in games, and what the appropriate solution concepts are in the presence
of lack of awareness. In the second part of the talk, I consider logics for reason-
ing about awareness, and awareness of unawareness. This is done in a standard
Kripke-style possible-worlds structure, using ideas that go back to [1]. However,
there are new subtleties that arise; in particular, it turns out that we need to
allow for different languages to be associated with different states of the world.
Both parts of the talk are based on joint work with Leandro Rêgo [2,3].

There has been a great deal of work in the economics literature and computer
science literature both on modeling awareness in games and on logics for reasoning
about awareness. An excellent bibliography can be found at http://www.econ.
ucdavis.edu/faculty/schipper/unaw.htm.

References

1. Fagin, R., Halpern, J.Y.: Belief, awareness, and limited reasoning. Artificial Intelli-
gence 34, 39–76 (1988)

2. Halpern, J.Y., Rêgo, L.C.: Extensive games with possibly unaware players. In:
Proc. Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 744–751 (2006) full version available at arxiv.org/abs/0704.2014

3. Halpern, J.Y., Rêgo, L.C.: Reasoning about knowledge of unawareness revisited.
In: Proc. Twelfth Conference on Theoretical Aspects of Rationality and Knowledge
(TARK 2009), pp. 166–173 (2009)

4. Harsanyi, J.: Games with incomplete information played by ‘Bayesian’ players, parts
I–III. Management Science 14, 159–182, 320–334, 486–502 (1968)

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, p. 15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Human and Unhuman Commonsense Reasoning

Michael J. Maher

NICTA and University of NSW
Sydney, Australia

Michael.Maher@nicta.com.au

Abstract. Ford has introduced a non-monotonic logic, System LS, inspired by
an empirical study of human non-monotonic reasoning. We define here a defea-
sible logic FDL based on Ford’s logic, and in doing so identify some similari-
ties and differences between Ford’s logic and existing defeasible logics. Several
technical results about FDL are established, including its inference strength in
relation to other defeasible logics.

1 Introduction

From its earliest years, logic has been used both to model human reasoning and to ex-
press an idealization of human reasoning 1. This work has focused largely on reasoning
based on definitive, or certain statements. For example, in the classic syllogism there is
no doubt that Socrates is a man, nor that, without exception, all men are mortal.

However, much of human language and reasoning involves statements that are not
certain but rather are generalities that admit exceptions. The prototypical example is:
“Birds fly”. An effort to reason formally and sensibly with such statements, inspired
by the human ability to reason with “common sense”, has grown within Artificial In-
telligence in the last 30 years. Human commonsense reasoning has been modelled and
idealized in various ways, leading to the development and study of non-monotonic and
defeasible reasoning.

There has been a proliferation of formalisms and a variety of semantics for them.
Even a relatively simple formalism, non-monotonic inheritance networks (also known
as inheritance networks with exceptions), has multiple interpretations based on clash-
ing intuitions of researchers [28]. However, relatively little empirical study of human
reasoning on such problems has been carried out.

Recent studies by Ford and Billington [13,11,12] of human reasoning on problems
that can be formulated as inheritance with exceptions have identified reasoning prin-
ciples that appear to underlie rational human reasoning about such problems. Out of
these studies, Ford formulated a logic System LS [10] reflecting the idealized human
reasoning that these principles represent.

This paper addresses the preliminary design of a defeasible logic FDL based on
Ford’s logic and the underlying principles she identified. The logic fits into the frame-
work for defeasible logics described in [4].

1 Interestingly, classical logic fails in some respects to model human reasoning or, to put it
differently, humans often fail to reason in this ideal way [9,20], and attempts continue to model
human language and reasoning in logics.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 16–29, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Human and Unhuman Commonsense Reasoning 17

In the next section, two defeasible reasoning formalisms are outlined: non-monotonic
inheritance networks and defeasible logic. Then, in Section 3, Ford’s logic LS and some
intuitions that lie behind it are presented. Section 4 defines the defeasible logic FDL
based on these ideas and Section 5 presents some properties of this logic.

2 Defeasible Reasoning

Defeasible reasoning concerns reasoning where a chain of reasoning can be defeated
(that is, not considered the basis of an inference) by another chain of reasoning (or,
perhaps, several chains of reasoning). Thus defeasible reasoning is very similar to argu-
mentation. In this section we discuss two formalisms for defeasible reasoning: defeasi-
ble logic and non-monotonic inheritance networks.

2.1 Defeasible Logic

The defeasible logics considered here are those considered in [1,4,7], developed from the
original formulation of Nute [26]. There are various analyses of the semantics of these
logics [16,17,22,25] but here we will stick to a straightforward proof-theoretic view.

Defeasible logics have a comparatively simple syntax. The basic building blocks
are literals (negated or unnegated atomic formulae) which may be arranged into rules.
Rules consist of a single literal in the head, an arrow, and a collection of literals forming
the body. Thus negation and arrows are the only syntactic operators, although we will
find it convenient at times to view the bodies of rules to be constructed by a binary
conjunction operator. We use ¬ as the negation symbol and ∼ for the complementary
operation which maps an atom to its negation and vice versa.

There are three different kinds of arrows, distinguishing three different kinds of rules.
The arrow → is used to denote definitive or strict rules: rules and inferences that are
absolutely, certainly, always valid. For example, we might write

emu(X) → bird(X)

denoting that we consider that every emu, without exception, is a bird.
The arrow ⇒ denotes a defeasible rule: rules that can be taken to be valid a lot

of the time, but for which there are exceptions. They correspond to statements in En-
glish that are modified by words such as “generally”, “usually”, “typically”, “normally”,
“mostly”, etc. For example,

bird(X) ⇒ f lier(X)

denotes that birds are usually able to fly, while recognising that some birds, such as
those covered in oil, might not fly.

The distinction between these two kinds of rules is common to several non-monotonic
formalisms. The third rule, however is more unusual. It represents a reluctance or,
stronger, an inability to allow some inferences. It cannot be used to make an inference
based on its own form, and only describes situations where conflicting inferences are
not allowed. The arrow is � and the rule is called a defeater. For example,

heavy(X) � ¬ f lier(X)

18 M.J. Maher

denotes that while we might consider that birds, in general, can fly (according to the
previous rule) we do not allow this inference when the bird is heavy. On the other hand,
we cannot use this rule for inference so we cannot conclude that something cannot fly
just because it is heavy.

Defeasible logic also includes a set of facts, that is, literals that specified to be true.
For example, we might have facts emu(tweety) and heavy(tweety).

In addition, to resolve competing rules there is an acyclic binary relation among rules
called the superiority relation and denoted by >. r2 > r1 expresses that whenever both
rules apply but have conflicting conclusions r2 should have priority over – or over-rule
– r1; we should not apply the inference associated with r1 and apply that associated
with r2 (provided r2 is not a defeater). For example,

r1 : bird(X) ⇒ f lier(X)
r2 : nest on ground(X),animal(X) ⇒ ¬ f lier(X)
r3 : bird(X) → animal(X)

r2 > r1

describes a situation where usually birds fly, and usually animals that nest on the ground
do not fly, and when we find a bird that nests on the ground we should conclude that it
does not fly, since r2 over-rides r1.

Thus a defeasible theory is a triple (F,R,>) where F is a set of facts, R is a set of
rules, and > is a superiority relation over R. Although rules are presented in a first-
order style, we assume that they are grounded so that the proof theory operates over
an essentially propositional language. A formal description of inference in a defeasible
logic is, in general, more complicated than the above informal introduction suggests.
We consider one deeply-studied defeasible logic DL [1] as an example. A proof is a
sequence of tagged literals, where tags describe the strength of proof under considera-
tion and whether the literal has been proved, or it has been established that the literal
cannot be proved. For example, +Δ p denotes that p can be proved using only the strict
rules and −Δq denotes that all possibilities for proving q using only strict rules have
been exhausted without proving q. Two other tags +∂ and −∂ refer to provability with
respect to all rules.

The inference rules for Δ , formulated as conditions on proofs, are given in Figure 1.
Rs refers to the strict rules of R, and Rs[q] is the strict rules with head q. We will later use
Rsd for the strict and defeasible rules of R, and Rdd for the defeasible rules and defeaters.
A(r) refers to the antecedent, or body, of rule r and P(i+1) (P[1..i]) refers to the i+1’th
tagged literal in the proof P (the initial segment of P of length i). The +Δ inference rule

+Δ) If P(i+ 1) = +Δq then either
.1) q ∈ F ; or
.2) ∃r ∈ Rs[q] ∀a ∈ A(r),+Δa ∈ P[1..i].

−Δ) If P(i+ 1) =−Δq then
.1) q /∈ F , and
.2) ∀r ∈ Rs[q] ∃a ∈ A(r),−Δa ∈ P[1..i].

Fig. 1. Inference rules for +Δ and −Δ

Human and Unhuman Commonsense Reasoning 19

is essentially modus ponens while the −Δ inference rule is the strong negation [4] of
the +Δ rule. The Δ inference rules are sometimes referred to as the monotonic part of
the defeasible logic, since defeasibility is not involved.

Notice that if D contains facts p and ¬p then we have both +Δ p and +Δ¬p as
consequences of D.

The inference rules for ∂ are substantially more complicated (see Figure 2). They
must take into account Δ inferences, all three kinds of rules and the superiority relation.
Roughly speaking, +∂q can be derived if either p can be proved monotonically, or (1)
there is a strict or defeasible rule for q, the body of which can be proved defeasibly;
(2) ∼ q cannot be proved monotonically; and (3) every rule for ∼ q that is applicable
is over-ruled by an applicable rule for q. This latter behaviour (3) is called team defeat:
the rules for q, as a team, over-rule the rules for∼ q, even though possibly no individual
rule for q over-rules all its competitors. For the simpler inferences where we require a
single rule to over-ride all its competitors, the symbol ∂ ∗ is used. Again, failure to prove
(−∂) is the strong negation of +∂ .

Defeasible logics other than DL use different tags and inference rules. We will later
refer to tags δ and

∫
, whose inference rules are defined in [17,7].

2.2 Non-monotonic Inheritance Networks

Inheritance hierarchies are used to represent a taxonomic-style division of classes into
subclasses. Thus they can describe a situation where, say, the class of emus inherits

+∂) If P(i+ 1) = +∂q then either
.1) +Δq ∈ P[1..i]; or
.2) The following three conditions all hold.

.1) ∃r ∈ Rsd[q] ∀a ∈ A(r),+∂a ∈ P[1..i], and

.2)−Δ∼q ∈ P[1..i], and

.3) ∀s ∈ R[∼q] either
.1) ∃a ∈ A(s),−∂a ∈ P[1..i]; or
.2) ∃t ∈ Rsd [q] such that

.1) ∀a ∈ A(t),+∂a ∈ P[1..i], and

.2) t > s.

−∂) If P(i+ 1) =−∂q then
.1)−Δq ∈ P[1..i], and
.2) either

.1) ∀r ∈ Rsd[q] ∃a ∈ A(r),−∂a ∈ P[1..i]; or

.2) +Δ∼q ∈ P[1..i]; or

.3) ∃s ∈ R[∼q] such that
.1) ∀a ∈ A(s),+∂a ∈ P[1..i], and
.2) ∀t ∈ Rsd [q] either

.1) ∃a ∈ A(t),−∂a ∈ P[1..i]; or

.2) not(t > s).

Fig. 2. Inference rules for +∂ and −∂

20 M.J. Maher

All emus are birds
Usually, birds fly
Usually, emus do not fly

Emu

����
��

��
��

� /���� ������ Flier

Bird

���
��

�
�

Fig. 3. Inheritance network for the Tweety problem

properties (such as having feathers) from the class of birds. Inheritance hierarchies
can be represented by simple implications employing unary predicates. For example
emu(X) → bird(X) represents that emu is a sub-class of bird.

However, emus are exceptional in the class of birds and to represent such situations
where properties are generally – but not universally – inherited by subclasses, a weaker
form of inheritance that admits exceptions is added.

An inheritance network can be described by a directed acyclic graph. Vertices of the
graph represent properties (or classes) such as emu or bird. A solid arrow represents
a strict (or definite, or certain) inference while a dashed arrow represents a defeasible
inference. An arrow with a slash represents an exception: an inference of the negation
of the target. For example, Figure 3 presents the well-known Tweety problem and an
inheritance network representing it.

Inheritance hierarchies can be represented by simple implications employing unary
predicates. For example emu(X) → bird(X) represents that emu is a sub-class of bird.
For weaker inheritance statements we can use a defeasible implication. Thus bird(X)⇒
f lier(X) represents that birds are generally fliers. Finally, exceptions can be expressed
as implications to a negated literal. For example, emu(X)⇒ ¬ f lier(X). Facts state that
constants are members of classes. For example, the fact emu(tweety) expresses that
Tweety is a member of the emu class.

Non-monotonic inheritance networks are one of the earliest formalisms for non-
monotonic reasoning, and perhaps the earliest formalism involving defeasible reason-
ing. Early in the development of defeasible logic it was recognised that defeasible logic
could be considered a generalization of non-monotonic inheritance networks [6]. Syn-
tactically, inheritance networks are a very small subset of defeasible theories: only unary
predicates are admitted, only one variable can be used in a rule, bodies of rules must
contain exactly one atomic formula, and heads must contain exactly one literal.

As mentioned in the Introduction, there are many different semantics for non-
monotonic inheritance networks. In the next section we will see a semantics for these
networks inspired by empirical study of human reasoning.

3 Ford’s Logic

Ford developed the logic LS from observation of human reasoning on inheritance prob-
lems and Gilio’s analysis [14] of a probabilistic interpretation of system P [21].

Ford’s logic is partly based on the recognition that chains of reasoning involving both
strict and defeasible arrows may have different strengths. Consider the chain (1) below.
If a typical A is a B, and every B is a C then it must be that all typical A’s are C’s, so we

Human and Unhuman Commonsense Reasoning 21

might be justified in drawing a defeasible arrow directly from A to C. In (2), however,
every A is a B and a typical B is a C but we have no assurance that any A is a typical B.
Thus following the chain from A to C makes an implicit and unsupported assumption
that a typical A is typically a typical B. There is a similar problem in chain (3).

(1) A ����� B �� C

(2) A �� B ����� C

(3) A ����� B ����� C

This distinction between (1) and (2–3) was used by some of Ford’s experimental
subjects [13,11] and is also implicitly recognised in the research literature in the study
of the Pennsylvania Dutch problem [19]. In terms of the inference rules discussed in
[21], Ford identifies the weakness of (2) and (3) with the weakness of the Monotonicity
and Transitivity rules.

LS is based on three tiers of defeasible inference, roughly characterized as follows
[10]:

α |∼1 β more than half of the α are β
α |∼2 β some α are β
α |∼3 β a relationship has been derived, but it is possible no α are β

The index on |∼ represents the “logical strength” of the relation, where smaller means
stronger.

Thus, if we associate typicality/normality with more than half a population (which
is in line with English usage), in chain (1) we feel justified in claiming A |∼1 C while in
chains (2) and (3) we can only claim A |∼3 C.

The intermediate tier of inference |∼2 is needed once conjunction is introduced. For
example, it may be that A’s are usually B’s and A’s are usually C’s, but we cannot con-
clude that A’s usually satisfy B∧C. This is because it might be that the the population
of A’s is largely polarized into individuals that are B’s but not C’s and individuals that
are C’s but not B’s, with only a small proportion satisfying B∧C. On the other hand, if
more than 75% of A’s are B’s and 75% of A’s are C’s then more than half of A’s satisfy
B∧C. Thus the use of the intermediate tier allows the logic to recognise the greater
strength of the inference of B∧C from A than the inference in (2) or (3) above.

The inference rules for LS are given in Figure 4. CM refers to Cautious Monotonic-
ity. Throughout Ford’s presentation of the logic, a collection of inheritance statements –
both strict and defeasible – is assumed to exist as a parameter to the inference. Presum-
ably, a statement |= α → β refers to a consequence of the strict inheritance statements.
Similarly, we presume that for every defeasible inheritance of α from β we can infer
β |∼1 α .

Ford leaves implicit inference rules that allow inferring α |∼m+1 β from α |∼m β for
m = 1,2. Without these, inference relation |∼2 is not contained in |∼3 as a result of (say)

22 M.J. Maher

Right Weakening
|= α → β γ |∼n α

γ |∼n β

Left Logical Equivalence
|= α ↔ β α |∼n γ

β |∼n γ

S
α ∧β |∼n γ

α |∼n β → γ

And (1)
α |∼1 β α |∼1 γ

α |∼2 β ∧ γ

And (2)
α |∼n β α |∼m γ

α |∼3 β ∧ γ

CM (1)
α |∼1 β α |∼1 γ

α ∧β |∼2 γ

CM (2)
α |∼m β α |∼n γ

α ∧β |∼3 γ

Cut (1)
α ∧β |∼m γ α |∼n β

α |∼2 γ

Cut (2)
α ∧β |∼m γ α |∼n β

α |∼3 γ

Or (1)
α |∼m γ β |∼n γ

α ∨β |∼2 γ

Or (2)
α |∼m γ β |∼n γ

α ∨β |∼3 γ

Monotonicity
|= α → β β |∼n γ

α |∼3 γ
Transitivity

α |∼m β β |∼n γ
α |∼3 γ

Some inference rules have side-conditions: And (2) and CM (2) require n≥ 2 or m≥ 2; Cut (1)
and Or (1) require 1≤ n≤ 2 and 1≤ m≤ 2; and Cut (2) and Or (2) require n = 3 or m = 3.

Fig. 4. Inference rules for LS

the restrictions on And(2). But it is clear that this presentation of inference rules like
And is used to focus on the strongest inference that is permitted by the logic, and is
not intended to exclude concluding α |∼3 β ∧ γ from α |∼1 β and α |∼1 γ . Similarly, a
Reflexivity axiom α |∼m α could be added to LS.

When conflicting inferences can be derived in LS, say both α |∼i β and α |∼ j¬β , the
conclusion that is drawn is based on the logical strengths of the two statements. If i< j
then we conclude α |∼β and if i> j then we conclude α |∼¬β . If i = j we cannot draw
any conclusion.

4 The Logic FDL

The defeasible logic derived from Ford’s logic will be called FDL. There are several
points of difference between Ford’s logic LS and existing defeasible logics:

1. LS admits a broader syntax than defeasible logics, including the connectives ∨ and
→.

2. LS infers defeasible implications whereas defeasible logics infer tagged literals.

Human and Unhuman Commonsense Reasoning 23

3. Defeasible logics may express priorities among rules using the superiority relation,
which is not available in LS.

4. LS supports three tiers of defeasible inference, whereas most defeasible logics sup-
port only one.

5. LS takes a meta-theoretic approach to the resolution of conflicting conclusions: if
we can derive α |∼1 β and α |∼2¬β then we conclude β defeasibly holds, based on
the relative strength of the two inference relations. In contrast, in every defeasible
logic investigated thus far, the resolution of conflicts is embedded in the inference
rules. For example, in the inference rule for +∂ , condition 2.2 ensures that there is
not a conflicting conclusion of greater strength.

6. LS does not express statements about literals that are not derivable, whereas defea-
sible logics provide inference rules for deriving such statements.

In FDL we will restrict the syntax of LS to the defeasible logic style to address the
first two points. FDL will not use the superiority relation, but new tags +∂1, +∂2, and
+∂3 are introduced in FDL to reflect the three tiers in LS. In place of the meta-logical
balancing of logical strength in LS we will incorporate the resolution of conflicts within
the inference rules, in the defeasible logic style. The end result is a defeasible logic that
is guided by the principles of human commonsense reasoning identified by Ford but
does not have the syntactic breadth of LS.

We now turn to the definition of FDL and motivation for some of the technical
decisions.

Ford’s logic, and the distinction between the three inference relations is partly based
on the relative weakness of some paths, compared to others. This weakness relies on
the loss of the presumption of typicality after the application of a rule. For example,
although Tweety is an emu, and all emus are birds, the presumption that Tweety is
a typical emu does not lead to a presumption that Tweety is a typical bird. Even if we
were given, separately, the fact that Tweety is a bird, which would carry the presumption
that Tweety is typical of birds, the existence of information that Tweety belongs to a
subclass of birds should lead us at least to question – and perhaps to invalidate – the
presumption.

Taking the latter approach, we must distinguish between facts that carry with them
a presumption of typicality and facts that carry no such presumption. This distinction
will be reflected in the tags we use. For facts that may or may not carry a presumption,
we can use the Δ tags, while for facts that carry a presumption we introduce a new tag
Φ . The inference rules for Φ are in Figure 5.

+Φ) If P(i+ 1) = +Φq then either
.1) q ∈ F ; and
.2) ∀r ∈ Rs[q] ∃a ∈ A(r),−Δa ∈ P[1..i].

−Φ) If P(i+ 1) =−Φq then
.1) q /∈ F , or
.2) ∃r ∈ Rs[q]∀a∈A(r),+Δa ∈ P[1..i].

Fig. 5. Inference rules for +Φ and −Φ

It is worthwhile noting that, as a result of this distinction, facts are not equivalent to
strict rules with no antecedent, as is true in DL. Hence, a simplification of [1] which
eliminates facts in DL is not valid for FDL.

24 M.J. Maher

To make matters simpler we will separate out inferring the status of conjunctions
from inference involved in the application of a rule. We introduce tags on conjunctions
for this purpose. Let p and q range over conjunctions of literals (including the trivial
conjunction consisting of a single literal). The positive inference rules for conjunction
are as follows.

If P(i+ 1) = +Δ(p∧q) then +Δ p ∈ P[1..i] and + Δq ∈ P[1..i]
If P(i+ 1) = +∂1(p∧q) then +Δ(p∧q) ∈ P[1..i]
If P(i+ 1) = +∂2(p∧q) then +∂1(p∧q) ∈ P[1..i] or

(+∂1 p ∈ P[1..i] and + ∂1q ∈ P[1..i])
If P(i+ 1) = +∂3(p∧q) then +∂2(p∧q) ∈ P[1..i] or

(+∂3 p ∈ P[1..i] and + ∂3q ∈ P[1..i])

The negative inference rules are the strong negations of these rules.
The inference rules explicitly allow a conjunction to receive a tag if it has received

a stronger tag. No conjunctions are tagged with +Φ; this follows from the intended
meaning of Φ to reflect that a fact emu(tweety) expresses a presumption that Tweety is
a typical emu. The first inference rule is simply a reflection of the conjunction implicitly
used in the inference rule for +Δ . The third inference rule reflects And(1) while the
fourth reflects And(2). Following the And rules, a conjunction can have tag +∂1 only if
the conjunction definitely holds (i.e. has tag +Δ).

If we view conjunction as an operation on tags, it is commutative but not associative.
For example, if +Δ p, +Δq, and +∂1r then we can infer +∂2((p∧q)∧ r) but only
infer +∂3(p∧ (q∧ r)). To extend conjunction to sets of literals we define the tag of
the conjunction to be the strongest tag achievable by any grouping and ordering of the
literals. This is equivalent to requiring that all Δ tagged literals are grouped together
before applying binary conjunctions.

We now turn to the inference rules for tagged literals based on the application of
rules. These rules are presented in Figure 6. As with the other tags we have used, the
inference rule for −∂i is the strong negation of the inference rules for +∂i, for each i.

There are several elements of the rules of interest. The conditions 1 in the inference
rules ensure that there is a hierarchy of inference strength, from Δ to ∂3. The condi-
tions 2.1 for strict rules reflect Right Weakening in LS. Condition 2.1 for ∂3 reflects
Monotonicity and Transitivity.

In drawing conclusions with Ford’s logic, a stronger inference overrides a conflicting
weaker inference, although this occurs at the meta level. A similar behaviour is ensured
in FDL from within the logic. Conditions 2.2 of the inference rules specify that to
infer +∂iq we must prove that ∼ q cannot be proved at a greater strength. Similarly,
the combination of conditions 2.1 and 2.3 (and 2.4 for ∂1) ensures that when we have
competing inferences of equal strength no positive conclusion can be drawn.

For inheritance networks we can view the tags as encoding information about paths
in the inheritance network. Φ represents the empty path, Δ paths consisting only of
strict rules, ∂1 paths of the form ⇒→∗, and ∂3 represents all paths. The motivation for
introducing |∼2 in LS was not related to paths and so its counterpart ∂2 in FDL encodes
no larger class of paths than ∂1.

Human and Unhuman Commonsense Reasoning 25

+∂1) If P(i+ 1) = +∂1q then either
.1) +Δq ∈ P[1..i]; or
.2) The following four conditions all hold.

.1) ∃r ∈ Rs[q],+∂1A(r) ∈ P[1..i] or
∃r ∈ Rd [q],+ΦA(r) ∈ P[1..i], and

.2)−Δ∼q ∈ P[1..i], and

.3) ∀s ∈ Rs[∼q],−∂1A(s) ∈ P[1..i], and

.4) ∀s ∈ Rdd [∼q],−ΦA(s) ∈ P[1..i]

+∂2) If P(i+ 1) = +∂2q then either
.1) +∂1q ∈ P[1..i]; or
.2) The following three conditions all hold.

.1) ∃r ∈ Rs[q], +∂2A(r) ∈ P[1..i], and

.2)−∂1∼q ∈ P[1..i], and

.3) ∀s ∈ Rs[∼q], −∂2A(s) ∈ P[1..i]

.4) ∀s ∈ Rdd [∼q], −ΦA(s) ∈ P[1..i]

+∂3) If P(i+ 1) = +∂3q then either
.1) +∂2q ∈ P[1..i]; or
.2) The following three conditions all hold.

.1) ∃r ∈ Rsd[q], +∂3A(r) ∈ P[1..i], and

.2)−∂2∼q ∈ P[1..i], and

.3) ∀s ∈ R[∼q], −∂3A(s) ∈ P[1..i]

Fig. 6. Inference rules for +∂i for i = 1,2,3

5 Properties of FDL

We now turn to investigate the properties of this logic. The fact that FDL can be seen as
an instance of the framework for defeasible logics [4] greatly simplifies the establish-
ment of these properties. The first property concerns the efficiency of inference in the
logic. In line with other defeasible logics [23,7], inference can be performed in linear
time. This is in contrast to many other non-monotonic logics, for which inference is
NP-hard.

Proposition 1. The set of all literals that can be inferred from a propositional FDL
theory D can be computed in O(N) time, where N is the size of D.

FDL is amenable to efficient implementation in the same way that other defeasible
logics are [3,23,24].

Coherence of a defeasible logic refers to the property that tagged literals obtained by
applying complementary tags to the same literal cannot both be inferred.

Definition 1. A defeasible logic is coherent if, for every defeasible theory D in the logic,
every tag d, and every literal q, we do not have both D �+dq and D � −dq.

26 M.J. Maher

It is this property that supports the intuition that +d represents a form of provability
while −d represents finite failure to prove: we can never both prove and be unable to
prove a proposition. As might be expected, FDL enjoys this property.

Proposition 2. FDL is coherent.

The monotonic part of a defeasible theory allows the inference of both a proposition
and its negation. Thus defeasible logics may be inconsistent in the usual sense, inde-
pendent of the defeasible inferences. Since the defeasible inferences are the main focus
of defeasible logics, consistency for defeasible theories refers to a guarantee that the
only contradictory information that is derived from a theory is already a consequence
of the monotonic part of the theory alone.

Definition 2. A defeasible logic is relatively consistent if, for every defeasible theory
D in the logic, for every tag d, and every proposition q, we do not have D � +dq and
D �+d¬q unless D �+Δq and D �+Δ¬q.

Again, this is a property that holds for FDL In this sense, the logic is paraconsistent:
beyond conflicting strict statements, no inconsistent inferences are made.

Proposition 3. FDL is relatively consistent.

Decisiveness insists that the proof theory determines the proof status of every tagged
literal. It is a form of inverse of coherence. A logic is decisive for a defeasible theory
D if, every tag d, and every literal q, either D � +dq or D � −dq. A propositional
defeasible theory D is acyclic if its dependency graph is acyclic. All non-monotonic
inheritance networks form acyclic defeasible theories. The following result shows that,
in particular, FDL is decisive on non-monotonic inheritance networks.

Proposition 4. If the defeasible theory D is acyclic then FDL is decisive for D.

Propositions 1–4 identify properties that FDL has in common with many other defeasi-
ble logics. We now look at inference strength, where we will see a difference between
FDL and DL.

When comparing inference strength we use the following notation. Let d1 and d2

be tags. We write d1 ⊆ d2 to say that, for any defeasible theory D, {p | D � +d1p} ⊆
{p | D �+d2 p} and {p | D � −d1 p} ⊇ {p | D �+d2 p}. That is, we can derive p with
d2 any time we can derive p with d1 and, conversely, we recognise that we cannot derive
p with d1 any time we recognise that we cannot derive p with d2.

Almost immediately from the definitions we have a hierarchy of inference strength
among the tags of FDL

Proposition 5
Φ ⊆ Δ ⊆ ∂1 ⊆ ∂2 ⊆ ∂3

It is easy to see that these containments are strict, that is, for every d ⊆ d′, there is a
defeasible theory D and literal q such that D �+dq but D ��+d′q and/or D � −d′q but
D �� −dq.

Human and Unhuman Commonsense Reasoning 27

FDL does not involve a superiority relation. In comparing with other defeasible log-
ics we consider only defeasible theories without a superiority relation. In that case, the
logics with and without team defeat are equivalent. That is, ∂ = ∂ ∗ and similarly δ = δ ∗
and
∫

=
∫ ∗. We now see that FDL and DL are incomparable in inference strength.

Proposition 6. ∂1, ∂3, and ∂3 are incomparable to ∂ . That is, ∂i �⊆ ∂ and ∂ �⊆ ∂i, for
i = 1, ...,3,

This result can be established using one simple defeasible theory. We will see that ∂1 �⊆
∂ and ∂ �⊆ ∂3. It follows immediately that ∂2 �⊆ ∂ and ∂3 �⊆ ∂ and, similarly, ∂ �⊆ ∂1 and
∂ �⊆ ∂2.

Consider a defeasible theory D consisting of facts p, r and s and rules

p ⇒ q
r ⇒ ¬q
s → r
q ⇒ t
r ⇒ ¬t

Then +Δ p and +Δr, and −Δ t. Consequently, in DL we have equal support for q and
¬q and hence we derive−∂q. As a result, we can derive +∂¬t.

On the other hand, in FDL we have +Φ p and +Φs but −Φr. Hence, condition 2.1
for +∂1q and condition 2.4 are both satisfied. Furthermore, there is no strict rule for ¬q,
so conditions 2.2 and 2.3 are satisfied. Thus we conclude +∂1q. This establishes that
∂1 �⊆ ∂ .

Considering the status of ¬t under FDL, we see that −∂1¬t because condition 2.1
is satisfied. Consequently also −∂2¬t by condition 2.1. Finally, by condition 2.3 of ∂3

we must conclude−∂3¬t, since the antecedent of the rule for t is q and we know +∂1q,
and hence +∂3q. This establishes that ∂ �⊆ ∂3.

Combining this result with results of [7] and some other results, we see the relation-
ship between inference in FDL and inference in other defeasible logics.

Proposition 7. Consider a defeasible theory D containing no superiority statements.
Then the following containments hold.

∂1 ⊆ ∂2 ⊆ ∂3

⊆ ⊆
Φ ⊆ Δ

∫
⊆ ⊆

δ ⊆ ∂

All of the containments in the above proposition are strict. Only the status of δ ⊆ ∂3 is
not known.

6 Conclusion

We have seen a logic FDL that provides a model of human “common sense” reasoning.
The logic is less expressive than Ford’s System LS in that it does not support connec-
tives ∨ and →, but it has a low complexity and is amenable to efficient implementation.

28 M.J. Maher

It satisfies several desirable properties and we have seen its relationship to other defea-
sible logics. FDL in general makes different inferences than DL and other defeasible
logics. There are even greater differences with logics and argumentation systems based
on stable semantics, which tend to make more positive inferences than DL.

A computational model of human “common sense” reasoning is useful for any rea-
soning system that interacts with people. For these systems there is a danger that there
is a mismatch between the logic it employs and the logic that people use or would ac-
cept as valid reasoning. For example, a formalization of regulations [5], business rules
[18], or contracts [27,15] as defeasible rules might lead to differences in interpretation
between the people who formulate the rules (and the people who must follow the rules)
and systems that enforce the rules. Similarly, if a software agent’s desired behaviour is
described with defeasible rules by a naive user [8] then there is a danger that the imple-
mented behaviour differs from the expected behaviour. Finally, for software agents that
interact directly with people, an accurate model of human reasoning is useful, simply
to understand the interaction properly.

There remains much more to do if we are to harmonise human and software reason-
ing. Although the design of FDL builds on LS, the formal relationship between the two
logics has not been addressed. Clarifying this relationship will be necessary. However,
there may be better models of human commonsense reasoning than LS and FDL and
there is great scope for experimental and theoretical work on this subject.

Acknowledgments

My thanks to Marilyn Ford for discussions and several drafts of her work developing
the logic LS, and to Grigoris Antoniou, David Billington, and Guido Governatori for
their collaboration on defeasible logic over many years. And thanks to Guido for his
comments on a rough draft.

NICTA is funded by the Australian Government as represented by the Department
of Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

References

1. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results for defea-
sible logic. ACM Transactions on Computational Logic 2, 255–287 (2001)

2. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Embedding Defeasible Logic
into Logic Programming. Theory and Practice of Logic Programming 6, 703–735 (2006)

3. Antoniou, G., Billington, D., Governatori, G., Maher, M.J., Rock, A.: A family of defeasible
reasoning logics and its implementation. In: Proc. 14th European Conference on Artificial
Intelligence (ECAI 2000), pp. 459–463. IOS Press, Amsterdam (2000)

4. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: A Flexible Framework for De-
feasible Logics. In: Proc. National Conference on Artificial Intelligence (AAAI 2000), pp.
405–410 (2000)

5. Antoniou, G., Billington, D., Maher, M.J.: On the analysis of regulations using defeasible
rules. In: Proc. 32nd Hawaii International Conference on Systems Science (1999)

6. Billington, D., de Coster, K., Nute, D.: A Modular Translation from Defeasible Nets to De-
feasible Logic. Journal of Experimental and Theoretical Artificial Intelligence 2, 151–177
(1990)

Human and Unhuman Commonsense Reasoning 29

7. Billington, D., Antoniou, G., Governatori, G., Maher, M.J.: An Inclusion Theorem for De-
feasible Logics. ACM Transactions on Computational Logic (to appear)

8. Dumas, M., Governatori, G., ter Hofstede, A., Oaks, P.: A formal approach to negotiating
agents development. Electronic Commerce Research and Applications 1, 193–207 (2002)

9. Evans, J.S.B.T.: Bias in Human Reasoning. Erlbaum, Mahwah (1989)
10. Ford, M.: System LS: A three-tiered nonmonotonic reasoning system. Computational Intel-

ligence 1, 89–107 (2004)
11. Ford, M.: Human nonmonotonic reasoning: The importance of seeing the logical strength of

arguments. Synthese 146(1&2), 71–92 (2005)
12. Ford, M.: On using human nonmonotonic reasoning to inform artificial systems. Psycholog-

ica Belgica 45(1), 57–70 (2005)
13. Ford, M., Billington, D.: Strategies in human commonsense reasoning. Computational Intel-

ligence 16, 446–468 (2000)
14. Gilio, A.: Probabilistic Reasoning Under Coherence in System P. Annals of Mathematics

and Artificial Intelligence 34(1-3), 5–34 (2002)
15. Governatori, G.: Representing business contracts in RuleML. International Journal of Coop-

erative Information Systems 14, 181–216 (2005)
16. Governatori, G., Maher, M.J.: An Argumentation-Theoretic Characterization of Defeasible

Logic. In: Proc. 14th European Conference on Artificial Intelligence (ECAI 2000), pp. 469–
474. IOS Press, Amsterdam (2000)

17. Governatori, G., Maher, M.J., Antoniou, G., Billington, D.: Argumentation Semantics for
Defeasible Logics. Journal of Logic and Computation 14, 675–702 (2004)

18. Grosof, B.N., Labrou, Y., Chan, H.Y.: A Declarative Approach to Business Rules in Con-
tracts: Courteous Logic Programs in XML. In: Proc. 1st ACM Conference on Electronic
Commerce (EC 1999). ACM Press, New York (1999)

19. Horty, J.F., Thomason, R.H.: Mixing Strict and Defeasible Inheritance. In: Proc. National
Conference on Artificial Intelligence (AAAI 1988), pp. 427–432 (1988)

20. Johnson-Laird, P.N., Byrne, R.M.J.: Deduction. Erlbaum, Mahwah (1991)
21. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and

cumulative logics. Artificial Intelligence 44, 167–207 (1990)
22. Maher, M.J.: A Denotational Semantics for Defeasible Logic. In: Palamidessi, C., Moniz

Pereira, L., Lloyd, J.W., Dahl, V., Furbach, U., Kerber, M., Lau, K.-K., Sagiv, Y., Stuckey,
P.J. (eds.) CL 2000. LNCS (LNAI), vol. 1861, pp. 209–222. Springer, Heidelberg (2000)

23. Maher, M.J.: Propositional Defeasible Logic has Linear Complexity. Theory and Practice of
Logic Programming 1, 691–711 (2001)

24. Maher, M.J., Rock, A., Antoniou, G., Billington, D., Miller, T.: Efficient Defeasible Reason-
ing Systems. International Journal on Artificial Intelligence Tools 10(4), 483–501 (2001)

25. Maher, M.J.: A Model-Theoretic Semantics for Defeasible Logic. In: Proc. Workshop on
Paraconsistent Computational Logic, pp. 67–80 (2002)

26. Nute, D.: Defeasible Logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Hand-
book of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 353–395. Oxford
University Press, Oxford (1994)

27. Reeves, D.M., Grosof, B.N., Wellman, M.P., Chan, H.Y.: Towards a Declarative Language
for Negotiating Executable Contracts. In: Proc. AAAI-99 Workshop on Artificial Intelligence
in Electronic Commerce (AIEC 1999). AAAI Press/MIT Press (1999)

28. Touretzky, D.D., Horty, J.F., Thomason, R.H.: A Clash of Intuitions: The Current State of
Nonmonotonic Multiple Inheritance Systems. In: Proc. 10th International Joint Conference
on Artificial Intelligence (IJCAI 1987), pp. 476–482. Morgan Kaufmann, San Francisco
(1987)

Gödel Logics – A Survey

Norbert Preining

Research Center of Integrated Science
Japan Advanced Institute of Science and Technology

Nomi-shi, Japan
preining@jaist.ac.jp

1 Introduction

The logics we present in this tutorial, Gödel logics, can be characterized in a
rough-and-ready way as follows: The language is standard, defined at different
levels: propositional, quantified-propositional, first-order. The logics are many-
valued, and the sets of truth values considered are (closed) subsets of [0, 1] which
contain both 0 and 1. 1 is the ‘designated value,’ i.e., a formula is valid if it
receives the value 1 in every interpretation. The truth functions of conjunction
and disjunction are minimum and maximum, respectively, and in the first-order
case quantifiers are defined by infimum and supremum over subsets of the set of
truth values. The characteristic operator of Gödel logics, the Gödel conditional,
is defined by a → b = 1 if a ≤ b and = b if a > b. Because the truth values are
ordered (indeed, in many cases, densely ordered), the semantics of Gödel logics
is suitable for formalizing comparisons with respect to degrees of truth. It is
related in this respect to a more widely known many-valued logic, �Lukasiewicz
logic – although the truth function of the �Lukasiewicz conditional is defined
not just using comparison, but also addition. In contrast to �Lukasiewicz logic,
which might be considered a logic of absolute or metric comparison, Gödel logics
are logics of relative comparison. This alone makes Gödel logics an interesting
subject for logical investigations.

Yet Gödel logics are also closely related to intuitionistic logic: they are the
logics of linearly-ordered Heyting algebras over [0, 1]. In the propositional case,
infinite-valued Gödel logic can be axiomatized by the intuitionistic propositional
calculus extended by the axiom schema (A → B) ∨ (B → A), a result by Dum-
mett [17]. Because of that infinite-valued propositional Gödel logics is also called
LC, or (Gödel-)Dummett-Logic. This connection extends also to Kripke seman-
tics for intuitionistic logic: Gödel logics can also be characterized as logics of
(classes of) linearly ordered and countable intuitionistic Kripke structures with
constant domains [15].

Let us present an observation of Gaisi Takeuti concerning implication condi-
tionals for many-valued logics, that spotlights why Gödel logics are gaining more
and more interest, and why in some cases they behave well in contrast to other
many-valued logics, namely that the truth function for the Gödel conditional
can be ‘deduced’ from simple properties of the evaluation and the entailment
relation.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 30–51, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Gödel Logics – A Survey 31

Lemma 1. Suppose we have a standard language containing a ‘conditional’ �
interpreted by a truth-function into [0, 1], and some standard entailment rela-
tion |=. Suppose further that

1. a conditional evaluates to 1 if the truth value of the antecedent is less or
equal to the truth value of the consequent, i.e., if I(A) ≤ I(B), then I(A �
B) = 1;

2. if Γ |= B, then I(Γ) ≤ I(B);
3. the deduction theorem holds, i.e., Γ ∪ {A} |= B ⇔ Γ |= A � B.

Then � is the Gödel conditional.

Proof. From (1), we have that I(A � B) = 1 if I(A) ≤ I(B). Since |= is
reflexive, B |= B. Since it is monotonic, B,A |= B. By the deduction theorem,
B |= A � B. By (2), I(B) ≤ I(A � B). From A � B |= A � B and the
deduction theorem, we get A � B,A |= B. By (2), min{I(A � B), I(A)} ≤
I(B). Thus, if I(A) > I(B), I(A � B) ≤ I(B). ��

Note that all usual conditionals (Gödel, �Lukasiewicz, product conditionals) sat-
isfy condition (1). So, in some sense, the Gödel conditional is the only many-
valued conditional which validates both directions of the deduction theorem for
|=. For instance, for the �Lukasiewicz conditional →�L given by I(A →�L B) =
min(1, 1 − I(A) + I(B)) the right-to-left direction fails: A →�L B |= A →�L B,
but A→�L B,A � B.

1.1 Syntax and Semantics for Propositional Gödel Logics

When considering propositional Gödel logics we fix a standard propositional lan-
guage L 0 with countably many propostional variables pi, and the connectives ∧,
∨, → and the constant ⊥ (for ‘false’); negation is introduced as an abbreviation:
we let ¬p ≡ (p → ⊥). For convenience, we also define � ≡ ⊥ → ⊥. We will
sometimes use the unary connective �, introduced in [2]. Furthermore we will
use p ≺ q as an abbreviation for p ≺ q ≡ (q → p) → q.

Definition 2. Let V ⊆ [0, 1] be some set of truth values which contains 0 and 1.
A propositional Gödel valuation I0 (short valuation) based on V is a function
from the set of propositional variables into V with I0(⊥) = 0. This valuation can
be extended to a function mapping formulas from Frm(L 0) into V as follows:

I0(p ∧ q) = min{I0(p), I0(q)} I0(p ∨ q) = max{I0(p), I0(q)}

I0(p→ q) =

{
I0(q) if I0(p) > I0(q)
1 if I0(p) ≤ I0(q).

I0(�p) =

{
1 I0(p) = 1
0 I0(p) < 1

A formula is called valid with respect to V if it is mapped to 1 for all valuations
based on V . The set of all formulas which are valid with respect to V will be
called the propositional Gödel logic based on V and will be denoted by G0

V . The
validity of a formula p with respect to V will be denoted by |=0

V p or |=G0
V
p.

32 N. Preining

Remark 3. The extension of the valuation I0 to formulas provides the following
truth functions:

I0(¬p) =

{
0 if I0(p) > 0
1 otherwise

I0(p ≺ q) =

{
1 if I0(p) < I0(q) or I0(p) = I0(q) = 1
I(q) otherwise

Thus, the intuition behind p ≺ q is that p is strictly less than q, or both are
equal to 1.

1.2 Syntax and Semantics for First-Order Gödel Logics

When considering first-order Gödel logics we fix a standard first-order lan-
guage L with finitely or countably many predicate symbols P and finitely or
countably many function symbols f for every finite arity k. In addition to the
connectives of propositional Gödel logics the two quantifiers ∀ and ∃ are used.

Gödel logics are usually defined using the single truth value set [0, 1]. For
propositional logic, any choice of an infinite subset of [0, 1] leads to the same
propositional logic (set of tautologies). In the first order case, where quantifiers
will be interpreted as infima and suprema, a closed subset of [0, 1] is necessary.

The semantics of Gödel logics, with respect to a fixed closed subset of [0, 1]
as set of truth values and a fixed language L of predicate logic, is defined using
the extended language L U , where U is the universe of the interpretation I. L U

is L extended with constant symbols for each element of U .

Definition 4 (Semantics of Gödel logic). Let {0, 1} ⊆ V ⊆ [0, 1] be closed.
An interpretation I into V , or a V -interpretation, consists of

1. a nonempty set U = UI, the ‘universe’ of I,
2. for each k-ary predicate symbol P , a function P I : Uk → V ,
3. for each k-ary function symbol f , a function fI : Uk → U .
4. for each variable v, a value vI ∈ U .

Given an interpretation I, we can naturally define a value tI for any term t and
a truth value I(A) for any formula A of L U . For a term t = f(u1, . . . , uk) we
define I(t) = fI(uI1 , . . . , uIk). For atomic formulas A ≡ P (t1, . . . , tn), we define
I(A) = P I(tI1 , . . . , t

I
n). For composite formulas A we extend the truth definitions

from the propositonal case for the new syntactic elements by:

I(∀xA(x)) = inf{I(A(u)) : u ∈ U}
I(∃xA(x)) = sup{I(A(u)) : u ∈ U}

(Here we use the fact that every Gödel set V is a closed subset of [0, 1] in order
to be able to interpret ∀ and ∃ as inf and sup in V .

If I(A) = 1, we say that I satisfies A, and write I |= A. If I(A) = 1 for every
V -interpretation I, we say A is valid in GV and write GV |= A.

If Γ is a set of sentences, we define I(Γ) = inf{I(A) : A ∈ Γ}.

Gödel Logics – A Survey 33

Abusing notation slightly, we will often define interpretations simply be defining
the truth values of atomic formulas in L U .

Definition 5. If Γ is a set of formulas (possibly infinite), we say that Γ entails
A in GV , Γ |=V A iff for all I into V , I(Γ) ≤ I(A).
Γ 1-entails A in GV , Γ �V A, iff, for all I into V , whenever I(B) = 1 for

all B ∈ Γ , then I(A) = 1.
We will write Γ |= A instead of Γ |=V A in case it is obvious which truth

value set V is meant.

Definition 6. For a Gödel set V we define the first order Gödel logic GV as
the set of all pairs (Γ,A) such that Γ |=V A.

One might wonder whether a different definition of the entailment relation in
Gödel logic might give different results. But as the following proposition shows,
the above two definitions yield the same result, allowing us to use the charac-
terization of |= or � as convenient.

Proposition 7. Π |=V A iff Π �V A

1.3 Axioms and Deduction Systems for Gödel Logics

In this section we introduce certain axioms and deduction systems for Gödel
logics, and we will show completeness of these deduction systems subsequently.

We will denote by IL any sound and complete Hilbert-style axiomatization
of Intuitionistic Logic. The following formulas will play an important rôle when
axiomatizing Gödel logics

qs ∀x(C(x) ∨A(x)) → (C(x) ∨ ∀xA(x)) lin (A→ B) ∨ (B → A)
iso0 ∀x¬¬A(x) → ¬¬∀xA(x) iso1 ∀x¬�A(x) → ¬�∃xA(x)

fin(n) (�→ p1) ∨ (p1 → p2) ∨ . . . ∨ (pn−2 → pn−1) ∨ (pn−1 → ⊥)

For the axiomatization of the�-operator we use the following group of axioms,
called �-axioms:

Δ1 �A ∨ ¬�A Δ2 �(A ∨B) → (�A ∨�B)
Δ3 �A→ A Δ4 �A→ ��A

Δ5 �(A → B) → (�A → �B) Δ6 A
�A

Definition 8. If A is an axiom system, we denote by A0 the propositional part
of A, i.e. all the axioms which do not contain quantifiers. With AΔ we denote
the axiom system obtained from A by adding the axioms and rules axΔ. With
An we denote the axiom system obtained from A by adding the axiom fin(n).
We denote by H the axiom system IL + qs + lin.

Example. IL0 is the same as IPL. H0 is the same as LC.

For all these axiom systems the general notion of deducability can be defined:

34 N. Preining

Definition 9. If a formula/sequent Γ can be deduced from an axiom system A
we denote this by �A Γ .

Theorem 10 (Soundness). Suppose Γ contains only closed formulas, and all
axioms of A are valid in GV . Then, if Γ �A A then Γ |=V A. In particular, H
is sound for |=V for any Gödel set V ; Hn is sound for |=V if |V | = n; and H0
is sound for |=V if 0 is isolated in V .

1.4 Topologic and Order

In the following we will recall some definitions and facts from topology and order
theory which will be used later on in many places. All the following notations,
lemmas, theorems are carried out within the framework of Polish spaces, which
are separable, completely metrizable topological spaces. For our discussion it is
only necessary to know that R and all its closed subsets are Polish spaces (hence,
every Gödel set is a Polish space). For a detailed exposition see [22,23].

Definition 11 (Limit point, perfect space, perfect set).A limit point of a
topological space is a point that is not isolated, i.e. for every open neighborhood U
of x there is a point y ∈ U with y �= x. A space is perfect if all its points are
limit points. A set P ⊆ R is perfect if it is closed and together with the topology
induced from R is a perfect space.

It is obvious that all (non-trivial) closed intervals are perfect sets, as well as
all countable unions of (non-trivial) intervals. But all these sets generated from
closed intervals have the property that they are ‘everywhere dense,’ i.e., con-
tained in the closure of their inner component. There is a well-known example
of a perfect set that is nowhere dense, the Cantor set D, which can be defined
as the set of all numbers in the unit interval which can be expressed in triadic
notation only by digits 0 and 2. This set has a lot of interesting properties, the
most important one for our purposes is that it is a perfect set:

Proposition 12. The Cantor set is perfect.

By embedding the Cauchy space into any perfect space one obtains

Proposition 13 ([22], Corollary 6.3). IfX is a nonempty perfect Polish space,
then |X | = 2ℵ0 . All nonempty perfect subsets of [0, 1] have cardinality 2ℵ0 .

It is possible to obtain the following characterization of perfect sets [30]:

Proposition 14 (Characterization of perfect sets in R). For any perfect
subset of R there is a unique partition of the real line into countably many inter-
vals such that the intersections of the perfect set with these intervals are either
empty, the full interval or isomorphic to the Cantor set.

So we see that intervals and Cantor sets are prototypical for perfect sets and the
basic building blocks of more complex perfect sets.

Every Polish space can be partitioned into a perfect kernel and a countable
rest. This is the well known Cantor-Bendixon Theorem:

Gödel Logics – A Survey 35

Theorem 15 (Cantor-Bendixon). Let X be a Polish space. Then X can be
uniquely written as X = P ∪ C, with P a perfect subset of X and C countable
and open. The subset P is called the perfect kernel of X (denoted by X∞).

As a corollary we obtain that any uncountable Polish space contains a perfect
set, and therefore, has cardinality 2ℵ0 .

2 Propositional Gödel Logics

As already mentioned Gödel introduced this family of logics on the propositional
level to analyze Intuitionistic logic. This allows the approach to Gödel logics via
restricting the possible accessibility relations of Kripke models of intuitionistic
logic. Two somehow reasonable restrictions of the Kripke structures are the
restriction to constant domains and the restriction that the Kripke worlds are
linearly ordered and of order type ω. One can now ask what sentences are valid in
this restricted class of Kripke models. This question has been settled by [17] for
the propositional case by adding to a complete axiomatization of intuitionistic
logic the axiom of linearity. The logic Dummett discussed, the logic of linearly
ordered Kripke frames of order type ω, can also be viewed as G0

↓ and therefore,
as a subcase of Gödel logics. Although the proof of Dummett is only for weak
completeness (as the entailment of the respective logic is not compact [12]), it is
of importance since with respect to validity all the infinitely valued propositional
Gödel logics coincide. Another interesting distinction between LC, which is G0

↓,
and other propositional Gödel logics is the fact that the entailment relation of
LC is not compact, while the one corresponding to G0

R
is.

2.1 Completeness of H0 for LC

Dummett [17] proved that a formula of propositional Gödel logic is valid in any
infinite truth value set if it is valid in one infinite truth value set. Moreover,
all the formulas valid in these sets are axiomatized by any axiomatization of
intuitionistic propositional logic extended with the linearity axiom scheme (p→
q) ∨ (q → p). It is interesting to note that p and q in the linearity scheme are
propositional formulas. It is not enough to add this axiom for atomic p and q.
For an axiom scheme only necessary for atomic formulas we have to use

((p→ q) → p) ∨ (p→ (p→ q))

to obtain completeness [11]. The proof given here is a simplified proof of the
completeness of H0 taken from [21].

Definition 16. An algebra P = 〈P, ·,+,→,0,1〉 is a Heyting algebra if the
reduct 〈P, ·,+,0,1〉 is a lattice with least element 0, largest element 1 and x·y ≤ z
iff x ≤ (y → z).

Definition 17. An L-algebra is a Heyting algebra in which

(x → y) + (y → x) = 1

is valid for all x, y.

36 N. Preining

It is obvious that if we take L-algebras as our reference models for completeness,
the proof of completeness is trivial. Generally, it is not very interesting to define
algebras fitting to logics like a second skin, and then proving completeness with
respect to this class (�L-algebras, . . .), without giving any connection to well
known algebraic structures or already accepted reference models. In our case we
want to show completeness with respect to the real interval [0, 1] or one of its
sub-orderings. More generally we aim at completeness with respect to chains,
which are special Heyting algebras:

Definition 18. A chain is a linearly ordered Heyting algebra.

Chains are exactly what we are looking for as every chain (with cardinality less
or equal to the continuum) is isomorphic to a sub-ordering of the [0, 1] interval,
and vice versa. Our aim is now to show completeness of the above axiomatization
with respect to chains. Furthermore we will exhibit that the length of the chains
for a specific formula can be bounded by the number of propositional variables
in the formula. More precisely:

Theorem 19. A formula α is provable in H0 = LC if and only if it is valid in
all chains with at most n + 2 elements, where n is the number of propositional
variables in α.

Proof. As usual we define the relation α ≤◦ β equivalent to � α→ β and α ≡ β
as α ≤◦ β and β ≤◦ α. It is easy to verify that ≡ is an equivalence relation.
We denote α/≡ with |α|. It is also easy to show that with |α| + |β| = |α ∨ β|,
|α| · |β| = |α ∧ β|, |α| → |β| = |α → β| the set F/≡ becomes a Heyting algebra,
and due to the linearity axiom it is also an L-algebra. Furthermore note that
|α| = 1 if and only if α is provable in H0 (1 = |p → p|, |α| = |p → p| gives
� (p→ p) → α which in turn gives � α).

If our aim would be completeness with respect to L-algebras the proof would
be finished here, but we aim at completeness with respect to chains, therefore,
we will take a close look at the structure of F/≡ as L-algebra. Assume that a
formula α is given, which is not provable, we want to give a chain where α is not
valid. We already have an L-algebra where α is not valid, but how to obtain a
chain?

We could use the general result from [21], Theorem 1.2, that a Heyting algebra
is an L-algebra if and only if it is a subalgebra of a direct product of chains,
but we will exhibit how to find explicitly a suitable chain. The idea is that the
L-algebra F/≡ describes all possible truth values for all possible orderings of the
propositional variables in α. We want to make this more explicit:

Definition 20. We denote with C(⊥, pi1 , . . . , pin ,�) the chain with these ele-
ments and the ordering ⊥ ≤ pi1 < . . . < pin ≤ �. If C is a chain we denote with
|α|C the evaluation of the formula in the chain C.
Lemma 21. The L-algebra F/≡ is a subalgebra of the following direct product
of chains

X =
n!∏

i=1

C(⊥, πi(p1, . . . , pn),�)

Gödel Logics – A Survey 37

where πi ranges over the set of permutations of n elements. We will denote
C(⊥, πi(p1, . . . , pn),�) with Ci.

Proof. Define φ : F/≡ → X as follows: φ(|α|) = (|α|C1 , . . . , |α|Cn!). We have to
show that φ is well defined, is a homomorphism and is injective. First assume
that β ∈ |α| but φ(|α|) �= φ(|β|), i.e. (|α|C1 , . . . , |α|Cn!) �= (|β|C1 , . . . , |β|Cn!) but
then there must be an i such that |α|Ci �= |β|Ci . Without loss of generality,
assume that |α|Ci < |β|Ci . From the fact that |α| = |β| we get � β → α. From
this we get that |β → α|Ci < 1 and from � β → α we get that |β → α|Ci = 1,
which is a contradiction. This proves the well-definedness.

To show that φ is a homomorphism we have to prove that

φ(|α| · |β|) = φ(|α|) · φ(|β|)
φ(|α| + |β|) = φ(|α|) + φ(|β|)
φ(|α|→ |β|) = φ(|α|) → φ(|β|).

This is a straightforward computation using |α ∧ β|C = φ(|α|C) · φ(|β|C).
Finally we have to prove that φ is injective. Assume that φ(|α|) = φ(|β|) and

that |α| �= |β|. From the former we obtain that |α|Ci = |β|Ci for all 1 ≤ i ≤ n!,
which means that ICi(α) = ICi(β) for all 1 ≤ i ≤ n!. On the other hand we
know from the latter that there is an interpretation I such that I(α) �= I(β).
Without loss of generality assume that ⊥ ≤ I(pi1) < . . . < I(pin) ≤ �. There is
an index k such that the Ck is exactly the above ordering with ICk

(α) �= ICk
(β),

this is a contradiction.
This completes the proof that F/≡ is a subalgebra of the given direct product

of chains. ��

Example. For n = 2 the chains are C(⊥, p, q,�) and C(⊥, q, p,�). The product of
these two chains looks as given in Figure 1, p. 38. The labels below the nodes are
the products, the formulas above the nodes are representatives for the class α/≡.

Now the proof of Theorem 19 is trivial since, if |α| �= 1, there is a chain Ci where
|α|Ci �= 1. ��

This yields the following theorem:

Theorem 22. A propositional formula is valid in any infinite chain iff it is
derivable in LC = H0.

Going on to finite truth value set we can give the following theorem:

Theorem 23. A formula is valid in any chain with at most n elements iff it is
provable in LCn.

As a simple consequence of these result the following corollaries settle the number
of propositional Gödel logics and their relation:

38 N. Preining

⊥,⊥
⊥

p,⊥ ⊥, q

q,⊥ ⊥, pp, q

p ∧ q

�,⊥ ⊥,�q, q

q

p, p

p

�, q

p → q

p,�
q → p

�, p

(p → q) ∨ q

q,�
(q → p) ∨ p

�,�
�

Fig. 1. L-algebra of C(⊥, p, q,�)×C(⊥, q, p,�). Labels below the nodes are the elements
of the direct product, formulas above the node are representatives for the class α/≡.

Corollary 24. The propositional Gödel logics G0
n and G0

R
are all different, thus

there are countable many different propositional Gödel logics, and⋂
n∈N

G0
n = G0

R

3 First Order Gödel Logics

Although standard first-order Gödel logic, the one based on the [0, 1]-intervall,
has been studied throughout the last decades as mentioned in the introduction
again and again, the study of general Gödel logics based on arbitrary truth value
sets started in the mid-nineties by [2, 6, 7] and the studies were continued over
the last years. We give a detailed proof of the axiomatizability of standard Gödel
logic, the on based on the full [0, 1] interval, and will only cite further results.

3.1 Preliminaries

We will be concerned below with the relationships between Gödel logics, here
considered as entailment relations. Note that GV |= A iff (∅, A) ∈ GV , so in
particular, showing that GV ⊆ GW also shows that every valid formula of GV

is also valid in GW . On the other hand, to show that GV � GW it suffices to
show that for some A, GV |= A but GW � A.

Remark 25. Whether or not a formula A evaluates to 1 under an interpretation I
depends only on the relative ordering of the truth values of the atomic formulas

Gödel Logics – A Survey 39

(in L I), and not directly on the set V or on the specific values of the atomic
formulas. If V ⊆W are both Gödel sets, and I is a V -interpretation, then I can
be seen also as a W -interpretation, and the values I(A), computed recursively
using (1)–(7), do not depend on whether we view I as a V -interpretation or a
W -interpretation. Consequently, if V ⊆ W , there are more interpretations into
W than into V . Hence, if Γ |=W A then also Γ |=V A and GW ⊆ GV .

This can be generalized to embeddings between Gödel sets other than inclusion.
First, we make precise which formulas are involved in the computation of the
truth-value of a formula A in an interpretation I:

Definition 26. The only subformula of an atomic formula A in L U is A itself.
The subformulas of A �B for � ∈ {→,∧,∨} are the subformulas of A and of B,
together with A � B itself. The subformulas of ∀xA(x) and ∃xA(x) with respect
to a universe U are all subformulas of all A(u) for u ∈ U , together with ∀xA(x)
(or, ∃xA(x), respectively) itself.

The set of truth-values of subformulas of A under a given interpretation I is
denoted by Val(I, A) = {I(B) : B subformula of A w.r.t. UI} ∪ {0, 1}. If Γ is a
set of formulas, then Val(I, Γ) =

⋃
{Val(I, A) : A ∈ Γ}.

Lemma 27. Let I be a V -interpretation, and let h : Val(I, Γ) → W be a map-
ping satisfying the following properties:

1. h(0) = 0, h(1) = 1;
2. h is strictly monotonic, i.e., if a < b, then h(a) < h(b);
3. for every X ⊆ Val(I, Γ), h(inf X) = inf h(X) and h(supX) = suph(X)

(provided inf X, supX ∈ Val(I, Γ)).

Then the W -interpretation Ih with universe UI, fIh = fI, and for atomic
B ∈ L I,

Ih(B) =

{
h(I(B)) if I(B) ∈ domh

1 otherwise

satisfies Ih(A) = h(I(A)) for all A ∈ Γ .

Proof. By induction on the complexity of A. If A ≡ ⊥, the claim follows from
(1). If A is atomic, it follows from the definition of Ih. For the propositional
connectives the claim follows from the strict monotonicity of h (2). For the
quantifiers, it follows from property (3). ��
Proposition 28 (Downward Löwenheim-Skolem). For any interpretation
I with UI infinite, there is an interpretation I ′ ≺ I with a countable uni-
verse UI

′
.

Lemma 29. Let I be an interpretation into V , w ∈ [0, 1], and let Iw be defined
by

Iw(B) =

{
I(B) if I(B) < w

1 otherwise

for atomic formulas B in L I. Then Iw is an interpretation into V . If w /∈
Val(I, A), then Iw(A) = I(A) if I(A) < w, and Iw(A) = 1 otherwise.

40 N. Preining

Proof. By induction on the complexity of formulas A in L I . The condition that
w /∈ Val(I, A) is needed to prove the case of A ≡ ∃xB(x), since if I(∃xB(x)) =
w and I(B(d)) < w for all d, we would have Iw(∃xB(x)) = w and not = 1. ��
The following lemma was originally proved in [25], where it was used to extend
the proof of recursive axiomatizability of the ‘standard’ Gödel logic GR to Gödel
logics with a truth value set containing a perfect set in the general case. The
following simpler proof is inspired by [14]:

Lemma 30. Suppose that M ⊆ [0, 1] is countable and P ⊆ [0, 1] is perfect.
Then there is a strictly monotone continuous map h : M → P (i.e., infima and
suprema already existing in M are preserved). Furthermore, if inf M ∈M , then
one can choose h such that h(inf M) = inf P .

Proof. See [10] ��
Corollary 31. A Gödel set V is uncountable iff it contains a non-trivial dense
linear subordering.

Proof. If: Every countable non-trivial dense linear order has order type η, 1+ η,
η + 1, or 1 + η + 1 [26, Corollary 2.9], where η is the order type of Q. The
completion of any ordering of order type η has order type λ, the order type of
R [26, Theorem 2.30], thus the truth value set must be uncountable. Only if: By
Theorem 15, V∞ is non-empty. Take M = Q∩ [0, 1] and P = V∞ in Lemma 30.
The image of M under h is a non-trivial dense linear subordering in V . ��
Theorem 32. Suppose V is a truth value set with non-empty perfect kernel P ,
and let W = V ∪ [inf P, 1]. Then Γ |=V A iff Γ |=W A, i.e., GV = GW .

Proof. As V ⊆W we have GW ⊆ GV (cf. Remark 25). Now assume that I is a
W -interpretation which shows that Γ |=W A does not hold, i.e., I(Γ) > I(A).
By Proposition 28, we may assume that UI is countable. The set Val(I, Γ ∪A)
has cardinality at most ℵ0, thus there is a w ∈ [0, 1] such that w /∈ Val(I, Γ ∪A)
and I(A) < w < 1. By Lemma 29, Iw(A) < w < 1. Now consider M =
Val(Iw, Γ ∪ A): these are all the truth values from W = V ∪ [inf P, 1] required
to compute Iw(A) and Iw(B) for all B ∈ Γ . We have to find some way to map
them to V so that the induced interpretation is a counterexample to Γ |=V A.

Let M0 = M ∩ [0, inf P) and M1 = (M ∩ [inf P,w]) ∪ {inf P}. By Lemma 30
there is a strictly monotone continuous (i.e. preserving all existing infima and
suprema) map h from M1 into P . Furthermore, we can choose h such that
h(inf M1) = inf P .

We define a function g from Val(Iw, Γ ∪A) to V as follows:

g(x) =

⎧⎪⎨⎪⎩
x 0 ≤ x ≤ inf P
h(x) inf P ≤ x ≤ w

1 x = 1

Note that there is no x ∈ Val(Iw, Γ∪A) withw < x < 1. This function has the fol-
lowing properties: g(0) = 0, g(1) = 1, g is strictly monotonic and preserves exist-
ing infima and suprema. Using Lemma 27 we obtain that Ig is a V -interpretation
with Ig(C) = g(Iw(C)) for all C ∈ Γ ∪A, thus also Ig(Γ) > Ig(A). ��

Gödel Logics – A Survey 41

3.2 Relationships between Gödel Logics

The relationships between finite and infinite valued propositional Gödel logics
are well understood. Any choice of an infinite set of truth-values results in the
same set of tautologies, viz., Dummett’s LC. LC was originally defined using
the set of truth-values V↓ (see below). Furthermore, we know that LC is the
intersection of all finite-valued propositional Gödel logics (Corollary 24), and
that it is axiomatized by intuitionistic propositional logic IPL plus the schema
(A ⊃ B) ∨ (B ⊃ A). IPL is contained in all Gödel logics.

In the first-order case, the relationships are somewhat more interesting. First
of all, let us note the following fact corresponding to the end of the previous
paragraph:

Proposition 33. Intuitionistic predicate logic IL is contained in all first-order
Gödel logics.

As a consequence of this proposition, we will be able to use any intuitionistically
sound rule and intuitionistically valid formula when working in any of the Gödel
logics.

We now establish some results regarding the relationships between various
first-order Gödel logics. For this, it is useful to consider several ‘prototypical’
Gödel sets.

VR = [0, 1] V0 = {0} ∪ [1/2, 1]
V↓ = {1/k : k ≥ 1} ∪ {0}
V↑ = {1− 1/k : k ≥ 1} ∪ {1}
Vn = {1− 1/k : 1 ≤ k ≤ m− 1} ∪ {1}

The corresponding Gödel logics are GR, G0, G↓, G↑, and Gn. GR is the standard
Gödel logic.

The logic G↓ also turns out to be closely related to some temporal logics
[6,8]. G↑ is the intersection of all finite-valued first-order Gödel logics as shown
in Theorem 36.

Proposition 34. GR =
⋂

V GV , where V ranges over all Gödel sets.

Proof. If Γ |=V A for every Gödel set V , then it does so in particular for V =
[0, 1]. Conversely, if Γ �V A for a Gödel set V , there is a V -interpretation I with
I(Γ) > I(A). Since I is also a [0, 1]-interpretation, Γ �R A. ��

Proposition 35. The following strict containment relationships hold: (1) Gn �
Gn+1, (2) Gn � G↑ � GR, (3) Gn � G↓ � GR, (4) G0 � GR.

Proof. The only non-trivial part is proving that the containments are strict. For
this note that fin(n) ≡ (A0 ⊃ A1) ∨ . . . ∨ (An−1 ⊃ An) is valid in Gn but not
in Gn+1. Furthermore, let C↑ = ∃x(A(x) ⊃ ∀y A(y)) and C↓ = ∃x(∃y A(y) ⊃
A(x)). C↓ is valid in all Gn and in G↑ and G↓; C↑ is valid in all Gn and in G↑,
but not in G↓; neither is valid in G0 or GR ([8], Corollary 2.9).

G0 |= iso0 but GR � iso0. ��

42 N. Preining

The formulas C↑ and C↓ are of some importance in the study of first-order
infinite-valued Gödel logics. C↑ expresses the fact that the infimum of any subset
of the set of truth values is contained in the subset (every infimum is a minimum),
and C↓ states that every supremum (except possibly 1) is a maximum. The
intuitionistically admissible quantifier shifting rules are given by the following
implications and equivalences:

(∀xA(x) ∧B) ↔ ∀x(A(x) ∧B) (1)
(∃xA(x) ∧B) ↔ ∃x(A(x) ∧B) (2)
(∀xA(x) ∨B) ⊃ ∀x(A(x) ∨B) (3)
(∃xA(x) ∨B) ↔ ∃x(A(x) ∨B) (4)
(B ⊃ ∀xA(x)) ↔ ∀x(B ⊃ A(x)) (5)
(B ⊃ ∃xA(x)) ⊂ ∃x(B ⊃ A(x)) (6)
(∀xA(x) ⊃ B) ⊂ ∃x(A(x) ⊃ B) (7)
(∃xA(x) ⊃ B) ↔ ∀x(A(x) ⊃ B) (8)

The remaining three are:

(∀xA(x) ∨B) ⊂ ∀x(A(x) ∨B) (S1)
(B ⊃ ∃xA(x)) ⊃ ∃x(B ⊃ A(x)) (S2)
(∀xA(x) ⊃ B) ⊃ ∃x(A(x) ⊃ B) (S3)

Of these, S1 is valid in any Gödel logic. S2 and S3 imply and are implied by C↓ and
C↑, respectively (take ∃y A(y) and ∀y A(y), respectively, for B). S2 and S3 are,
respectively, both valid in G↑, invalid and valid in G↓, and both invalid in GR.

Note that since we defined ¬A ≡ A→ ⊥, the quantifier shifts for → (7, 8, S3)
include the various directions of De Morgan’s laws as special cases. Specifically,
the only direction of De Morgan’s laws which is not valid in all Gödel logics
is the one corresponding to (S3), i.e., ¬∀xA(x) → ∃x¬A(x). This formula is
equivalent to iso0. For, GV |= ∀x¬¬A(x) ↔ ¬∃¬A(x) by (8). We get iso0 using
¬∃x¬A(x) → ¬¬∀xA(x), which is an instance of (S3).

We now also know that G↑ �= G↓. In fact, we have G↓ � G↑; this follows
from the following theorem.

Theorem 36 ([10], Theorem 23)

G↑ =
⋂
n≥2

Gn

Proof. The proof is a direct consequence of the following lemma.

Lemma 37. If all infima in the truth value set are minima or A contains no
universal quantifiers, and A evaluates to some v < 1 in I, then A also evaluates
to v in Iv where

Iv(P) =

{
1 if I(P) > v

I(P) otherwise

for P atomic sub-formula of A.

Gödel Logics – A Survey 43

Proof. We prove by induction on the complexity of formulas that any sub-
formula F of A with I(F) ≤ v has I ′(F) = I(F). This is clear for atomic
sub-formulas. We distinguish cases according to the logical form of F :
F ≡ D ∧ E. If I(F) ≤ v, then, without loss of generality, assume I(F) =

I(D) ≤ I(E). By induction hypothesis, I ′(D) = I(D) and I ′(E) ≥ I(E),
so I ′(F) = I(F). If I(F) > v, then I(D) > v and I(E) > v, by induction
hypothesis I ′(D) = I ′(E) = 1, thus, I ′(F) = 1.
F ≡ D ∨ E. If I(F) ≤ v, then, without loss of generality, assume I(F) =

I(D) ≥ I(E). By induction hypothesis, I ′(D) = I(D) and I ′(E) = I(E), so
I ′(F) = I(F). If I(F) > v, then, again without loss of generality, I(F) =
I(D) > v, by induction hypothesis I ′(D) = 1, thus, I ′(F) = 1.
F ≡ D ⊃ E. Since v < 1, we must have I(D) > I(E) = I(F). By induction

hypothesis, I ′(D) ≥ I(D) and I ′(E) = I(E), so I ′(F) = I(F). If I(F) > v,
then I(D) ≥ I(E) = I(F) > v, by induction hypothesis I ′(D) = I ′(E) =
I ′(F) = 1.
F ≡ ∃xD(x). First assume that I(F) ≤ v. Since D(c) evaluates to a value

less or equal to v in I and, by induction hypothesis, in I ′ also the supremum
of these values is less or equal to v in I ′, thus I ′(F) = I(F). If I(F) > v, then
there is a c such that I(D(c)) > v, by induction hypothesis I ′(D(c)) = 1, thus,
I ′(F) = 1.
F ≡ ∀xD(x). This is the crucial part. First assume that I(F) < v. Then

there is a witness c such that I(F) ≤ I(D(c)) < v and, by induction hypothesis,
also I ′(D(c)) < v and therefore, I ′(F) = I(F). For I(F) > v it is obvious that
I ′(F) = I(F) = 1. Finally assume that I(F) = v. If this infimum would be
proper, i.e. no minimum, then the value of all witnesses under I ′ would be 1,
but the value of F under I′ would be v, which would contradict the definition of
the semantic of the ∀ quantifier. Since all infima are minima, there is a witness c
such that I(D(c)) = v and therefore, also I ′(D(c)) = v and thus I ′(F) = I(F).

Corollary 38. Gn �
⋂

n Gn = G↑ � G↓ � GR

Note that also G↑ � G0 � GR by the above, and that neither G0 ⊆ G↓ nor G↓ ⊆
G0 (counterexamples are iso0 or ¬∀xA(x) → ∃¬A(x), and C↓, respectively).

As we will see later, the axioms fin(n) axiomatize exactly the finite-valued
Gödel logics. In these logics the quantifier shift axiom qs is not necessary. Fur-
thermore, all quantifier shift rules are valid in the finite valued logics. Since G↑
is the intersection of all the finite ones, all quantifier shift rules are valid in G↑.
Moreover, any infinite-valued Gödel logic other than G↑ is defined by some V
which either contains an infimum which is not a minimum, or a supremum (other
than 1) which is not a maximum. Hence, in V either C↑ or C↓ will be invalid,
and therewith either S3 or S2. We have:

Corollary 39. In GV all quantifier shift rules are valid iff there is a strictly
monotone and continuous embedding from V to V↑, i.e., V is either finite or
order isomorphic to V↑.

This means that it is in general not possible to transform formulas to equiva-
lent prenex formulas in the usual way. Moreover, in general there is not even

44 N. Preining

a recursive procedure for mapping formulas to equivalent, or even just validity-
equivalent formulas in prenex form, since for some V , GV is not r.e. whereas the
corresponding prenex fragment is r.e.

3.3 Axiomatizability

The following table gives a complete characterization of axiomatizability of first-
order Gödel logics:

V finite (n) Hn complete for the logic
V countable not recursively enumerable
V∞ �= ∅, 0 ∈ V∞ H complete for the logic
V∞ �= ∅, 0 isolated H + iso0 complete for the logic
V∞ �= ∅, 0 /∈ V∞, 0 not isolated not recursively enumerable
V finite (n) HΔn complete for the logic
0, 1 ∈ V∞ HΔ complete for the logic
0 ∈ V∞, 1 isolated HΔ+ iso1 complete for the logic
0 isolated, 1 ∈ V∞ HΔ+ iso0 complete for the logic
V∞ �= ∅, 0, 1 isolated HΔ+ iso0 + iso1 complete
V∞ �= ∅, 1 /∈ V∞, 1 not isolated not recursively enumerable

The results on being not recursively enumerable are based on Trakhtenbrodt’s
result on the classical first order logic of finite domains being undecidable and
hence not recursively enumerable [10].

On the other hand, if V is uncountable, and 0 is contained in V∞, then GV

is axiomatizable. Indeed, Theorem 32 showed that all such logics GV coincide.
Thus, it is only necessary to establish completeness of the axioms system H with
respect to GR. This result has been shown by several people over the years. We
give here a generalization of the proof of [27]. Alternative proofs can be found in
[20,21,29]. The proof of [21], however, does not give strong completeness, while
the proof of [29] is specific to the Gödel set [0, 1]. Our proof is self-contained and
applies to Gödel logics directly, making an extension of the result easier.

Theorem 40 ([27], [10] Theorem 37, Strong completeness). If Γ |=
R
A,

then Γ �H A.

Proof. Assume that Γ � A, we construct an interpretation I in which I(A) = 1
for all B ∈ Γ and I(A) < 1. Let y1, y2, . . . be a sequence of free variables
which do not occur in Γ ∪ �, let T be the set of all terms in the language of
Γ ∪Δ together with the new variables y1, y2, . . . , and let F = {F1, F2, . . .} be
an enumeration of the formulas in this language in which yi does not appear in
F1, . . . , Fi and in which each formula appears infinitely often.

If Δ is a set of formulas, we write Γ ⇒ Δ if for some A1, . . . , An ∈ Γ , and
some B1, . . . , Bm ∈ Δ, �H (A1∧. . .∧An) → (B1∨. . .∨Bm) (and � if this is not
the case). We define a sequence of sets of formulas Γn, Δn such that Γn � Δn

by induction. First, Γ0 = Γ and Δ0 = {A}. By the assumption of the theorem,
Γ0 � Δ0.

Gödel Logics – A Survey 45

If Γn ⇒ Δn ∪ {Fn}, then Γn+1 = Γn ∪ {Fn} and Δn+1 = Δn. In this case,
Γn+1 � Δn+1, since otherwise we would have Γn ⇒ Δn ∪ {Fn} and Γn ∪
{Fn}⇒ Δn. But then, we’d have that Γn ⇒ Δn, which contradicts the induction
hypothesis (note that �H (A→ B ∨ F) → ((A ∧ F → B) → (A → B))).

If Γn � Δn ∪ {Fn}, then Γn+1 = Γn and Δn+1 = Δn ∪ {Fn, B(yn)} if
Fn ≡ ∀xB(x), and Δn+1 = Δn∪{Fn} otherwise. In the latter case, it is obvious
that Γn+1 � Δn+1. In the former, observe that by I10 and qs, if Γn ⇒ Δn ∪
{∀xB(x), B(yn)} then also Γn ⇒ Δn ∪ {∀xB(x)} (note that yn does not occur
in Γn or Δn).

Let Γ ∗ =
⋃∞

i=0 Γi and Δ∗ =
⋃∞

i=0 Δi. We have:

1. Γ ∗ � Δ∗, for otherwise there would be a k so that Γk ⇒ Δk.
2. Γ ⊆ Γ ∗ and Δ ⊆ Δ∗ (by construction).
3. Γ ∗ = F \ Δ∗, since each Fn is either in Γn+1 or Δn+1, and if for some n,

Fn ∈ Γ ∗ ∩Δ∗, there would be a k so that Fn ∈ Γk ∩Δk, which is impossible
since Γk � Δk.

4. If Γ ∗ ⇒ B1 ∨ . . . ∨ Bn, then Bi ∈ Γ ∗ for some i. For suppose not, then for
i = 1, . . . , n, Bi /∈ Γ ∗, and hence, by (3), Bi ∈ Δ∗. But then Γ ∗ ⇒ Δ∗,
contradicting (1).

5. If B(t) ∈ Γ ∗ for every t ∈ T , then ∀xB(x) ∈ Γ ∗. Otherwise, by (3),
∀xB(x) ∈ Δ∗ and so there is some n so that ∀xB(x) = Fn and Δn+1
contains ∀xB(x) and B(yn). But, again by (3), then B(yn) /∈ Γ ∗.

6. Γ ∗ is closed under provable implication, since if Γ ∗ ⇒ A, then A /∈ Δ∗ and
so, again by (3), A ∈ Γ ∗. In particular, if �H A, then A ∈ Γ ∗.

Define relations ≤◦ and ≡ on F by

B ≤◦ C ⇔ B → C ∈ Γ ∗ and B ≡ C ⇔ B ≤◦ C ∧ C ≤◦ B.

Then ≤◦ is reflexive and transitive, since for every B, �H B → B and so B →
B ∈ Γ ∗, and if B → C ∈ Γ ∗ and C → D ∈ Γ ∗ then B → D ∈ Γ ∗, since
B → C,C → D ⇒ B → D (recall (6) above). Hence, ≡ is an equivalence
relation on F . For every B in F we let |B| be the equivalence class under ≡ to
which B belongs, and F/≡ the set of all equivalence classes. Next we define the
relation ≤ on F/≡ by

|B| ≤ |C|⇔ B ≤◦ C ⇔ B → C ∈ Γ ∗.

Obviously, ≤ is independent of the choice of representatives A, B.

Lemma 41. 〈F/≡,≤〉 is a countably linearly ordered structure with distinct
maximal element |�| and minimal element |⊥|.

Proof. Since F is countably infinite, F/≡ is countable. For every B and C, �H

(B → C)∨(C → B) by lin, and so either B → C ∈ Γ ∗ or C → B ∈ Γ ∗ (by (4)),
hence ≤ is linear. For every B, �H B → � and �H ⊥→ B, and so B → � ∈ Γ ∗
and ⊥ → B ∈ Γ ∗, hence |�| and |⊥| are the maximal and minimal elements,
respectively. Pick any A in Δ∗. Since � → ⊥ ⇒ A, and A /∈ Γ ∗, � → ⊥ /∈ Γ ∗,
so |�| �= |⊥|. ��

46 N. Preining

We abbreviate |�| by 1 and |⊥| by 0.

Lemma 42. The following properties hold in 〈F/≡,≤〉:

1. |B| = 1 ⇔ B ∈ Γ ∗.
2. |B ∧C| = min{|B|, |C|}.
3. |B ∨C| = max{|B|, |C|}.
4. |B → C| = 1 if |B| ≤ |C|, |B → C| = |C| otherwise.
5. |¬B| = 1 if |B| = 0; |¬B| = 0 otherwise.
6. |∃xB(x)| = sup{|B(t)| : t ∈ T }.
7. |∀xB(x)| = inf{|B(t)| : t ∈ T }.

Proof. (1) If |B| = 1, then � ⊃ B ∈ Γ ∗, and hence B ∈ Γ ∗. And if B ∈ Γ ∗,
then �→ B ∈ Γ ∗ since B ⇒ � ⊃ B. So |�| ≤ |B|. It follows that |�| = |B| as
also |B| ≤ |�|.

(2) From ⇒ B∧C → B, ⇒ B∧C → C and D → B,D → C ⇒ D → B∧C for
every D, it follows that |B ∧ C| = inf{|B|, |C|}, from which (2) follows since ≤
is linear. (3) is proved analogously.

(4) If |B| ≤ |C|, then B → C ∈ Γ ∗, and since � ∈ Γ ∗ as well, |B →
C| = 1. Now suppose that |B| � |C|. From B ∧ (B → C) ⇒ C it follows that
min{|B|, |B → C|} ≤ |C|. Because |B| � |C|, min{|B|, |B → C|} �= |B|, hence
|B → C| ≤ |C|. On the other hand, � C → (B → C), so |C| ≤ |B → C|.

(5) If |B| = 0, ¬B = B ⊃ ⊥ ∈ Γ ∗, and hence |¬B| = 1 by (1). Otherwise,
|B| � |⊥|, and so by (4), |¬B| = |B → ⊥| = 0.

(6) Since �H B(t) → ∃xB(x), |B(t)| ≤ |∃xB(x)| for every t ∈ T . On the
other hand, for every D without x free,

|B(t)| ≤ |D| for every t ∈ T
⇔ B(t) → D ∈ Γ ∗ for every t ∈ T
⇒ ∀x(B(x) → D) ∈ Γ ∗ by property (5) of Γ ∗

⇒ ∃xB(x) → D ∈ Γ ∗ since ∀x(B(x) → D) ⇒ ∃xB(x) → D

⇔ |∃xB(x)| ≤ |D|.

(7) is proved analogously. ��

〈F/≡,≤〉 is countable, let 0 = a0,1 = a1, a2, . . . be an enumeration. Define
h(0) = 0, h(1) = 1, and define h(an) inductively for n > 1: Let a−n = max{ai :
i < n and ai < an} and a+

n = min{ai : i < n and ai > an}, and define h(an) =
(h(a−n) + h(a+

n))/2 (thus, a−2 = 0 and a+
2 = 1 as 0 = a0 < a2 < a1 = 1,

hence h(a2) = 1
2). Then h : 〈F/≡,≤〉 → Q ∩ [0, 1] is a strictly monotone map

which preserves infs and sups. By Lemma 30 there exists a G-embedding h′

from Q ∩ [0, 1] into 〈[0, 1],≤〉 which is also strictly monotone and preserves infs
and sups. Put I(B) = h′(h(|B|)) for every atomic B ∈ F and we obtain a
VR-interpretation.

Note that for every B, I(B) = 1 iff |B| = 1 iff B ∈ Γ ∗. Hence, we have
I(B) = 1 for all B ∈ Γ while if A /∈ Γ ∗, then I(A) < 1, so Γ � A. Thus we have
proven that on the assumption that if Γ � A, then Γ � A. ��

Gödel Logics – A Survey 47

This completeness proof can be adapted to hypersequent calculi for Gödel logics
(Section 4.3, [4, 16]), even including the � projection operator [9].

As already mentioned we obtain from this completeness proof together with
the soundness theorem (Theorem 10) and Theorem 32 the characterization of
recursive axiomatizability:

Theorem 43 ([10], Theorem 40). Let V be a Gödel set with 0 contained in
the perfect kernel of V . Suppose that Γ is a set of closed formulas. Then Γ |=V A
iff Γ �H A.

Corollary 44 (Deduction theorem for Gödel logics). Suppose that Γ is a
set of formulas, and A is a closed formula. Then Γ,A �H B iff Γ �H A → B.

4 Further Topics

4.1 Relation to Kripke Frames

For propositional logic the truth value sets on which Gödel logics are based
can be considered as linear Heyting algebras (or pseudo-Boolean algebras). By
taking the prime filters of a Heyting algebra as the Kripke frame it is easy to
see that the induced logics coincide [18, 24]. This direct method does not work
for first order logics as the structure of the prime filters does not coincide with
the possible evaluations in the first order case.

[15] showed that the class of logics defined by countable linear Kripke frames
on constant domains and the class of all Gödel logics coincide. More precisely,
for every countable Kripke frame we will construct a truth value set such that
the logic induced by the Kripke frame and the one induced by the truth value
set coincide, and vice versa:

Theorem 45 ([15]). For every countable linear Kripke frame K there is a
Gödel set VK such that L(K) = GVK .

For every Gödel set V there is a countable linear Kripke frame KV such that
GV = L(KV).

4.2 Number of Different Gödel Logics

In many areas there is a very common dichotomy: When counting various ob-
jects, logics, often there are either uncountably many or finitely many. The case
that there are countably many is not that common. As an example take the class
of modal logics, or intermediate logics. Considering Gödel logics, there is a com-
mon basic logic, the logic of the full interval, which is included in all other Gödel
logics. There are still countably many extension principles but, surprisingly, in
total only countably many different logics. This has been proven recently by
formulating and solving a variant of a Fräıssé Conjecture [19] on the structure
of countable linear orderings w.r.t. continuous embeddability.

The following table lists all known results on the number of different types of
Gödel logics:

48 N. Preining

propositional logics countably many (folklore, [17])
propositional entailments uncountably many [12]
first order logics countably many [14]
quantified propositional logics uncountably many [11]

4.3 Proof Theory

The method of hypersequents for the axiomatization of non-classical logics was
pioneered by Avron [1]. Hypersequent calculi are especially suitable for logics
that are characterized semantically by linearly ordered structures, among them
Gödel logics. Hypersequent calculi for first-order Gödel logics can be found in
[4, 13]. [16] extended hypersequent calculi for first-order Gödel logic by rules for
� and studied their proof-theoretic properties.

Definition 46. If Γ and Δ are finite multisets of formulas, and |Δ| ≤ 1,
then Γ ⇒Δ is a sequent. A finite multiset of sequents is a hypersequent, e.g.,
Γ1 ⇒Δ1 | . . . | Γn ⇒Δn.

Definition 47. The hypersequent calculus HGIF is defined as follows:
Axioms:

A⇒A ⊥⇒

Internal and external structural rules:

G | Γ ⇒Δ

G | A,Γ ⇒Δ
iw⇒

G | Γ ⇒
G | Γ ⇒A

⇒ iw
G | A,A, Γ ⇒Δ

G | A,Γ ⇒Δ
ic⇒

G
G | Γ ⇒Δ

ew
G | Γ ⇒Δ | Γ ⇒Δ

G | Γ ⇒Δ
ec

Logical rules:

G | Γ ⇒A

G | ¬A,Γ ⇒
¬⇒ G | A,Γ ⇒

G | Γ ⇒¬A
⇒¬

G | A,Γ ⇒Δ G | B,Γ ⇒Δ

G | A ∨B,Γ ⇒Δ
∨⇒

G | Γ ⇒A G | Γ ⇒B

G | Γ ⇒A ∧B ⇒∧
G | Γ ⇒A

G | Γ ⇒A ∨B
⇒∨1

G | A,Γ ⇒Δ

G | A ∧B,Γ ⇒Δ
∧⇒1

G | Γ ⇒B

G | Γ ⇒A ∨B
⇒∨2

G | B,Γ ⇒Δ

G | A ∧B,Γ ⇒Δ
∧⇒2

G | Γ1 ⇒A G | B,Γ2 ⇒Δ

G | A ⊃ B,Γ1, Γ2 ⇒Δ
⊃⇒

G | A,Γ ⇒B

G | Γ ⇒A ⊃ B
⇒ ⊃

G | A(t), Γ ⇒Δ

G | (∀x)A(x), Γ ⇒Δ
∀⇒

G | Γ ⇒A(a)
G | Γ ⇒(∀x)A(x) ⇒ ∀

G | A(a), Γ ⇒Δ

G | (∃x)A(x), Γ ⇒Δ
∃⇒

G | Γ ⇒A(t)
G | Γ ⇒(∃x)A(x) ⇒ ∃

Gödel Logics – A Survey 49

Rules for �:

G | A,Γ ⇒Δ

G | �A,Γ ⇒Δ
�⇒

G | �Γ ⇒ A

G | �Γ ⇒�A ⇒�

G | �Γ, Γ ′⇒Δ

G | �Γ ⇒ | Γ ′⇒Δ
�cl

Cut and Communication:

G | Γ ⇒A G | A,Π⇒Λ

G | Γ,Π⇒Λ
cut

G | Γ1, Γ2 ⇒Δ G | Γ1, Γ2 ⇒Δ′

G | Γ1 ⇒Δ | Γ2 ⇒Δ′
cm

The rules (⇒ ∀) and (∃⇒) are subject to eigenvariable conditions: the free vari-
able a must not occur in the lower hypersequent.

Theorem 48 ([13]). HIF is sound and complete for first-order Gödel logic.

Theorem 49 (Cut-elimination, [3]). If a hypersequent S is derivable in HIF
then S is derivable in HIF without using the cut rule.

As is well known, already Gentzen showed that in LK — as a consequence
of cut-elimination — a separation between propositional and quantificational
inferences can be achieved in deriving a prenex sequent (see, e.g., [28]). This
result, that does not hold for LJ, was extended in [13] to Gödel logic, as follows:

Theorem 50 (Mid-hypersequent). Any HIF-derivation π of a prenex hyper-
sequent H can be transformed into one in which no propositional rule is applied
below any application of a quantifier rule.

A corollaries to the above we obtain

Corollary 51. The prenex fragment of standard first order Gödel logics has a
Herbrand Theorem, and admit skolemization.

For a semantic argument concerning the prenex fragment see [5].

References

1. Avron, A.: Hypersequents, logical consequence and intermediate logics for concur-
rency. Ann. Math. Artificial Intelligence 4, 225–248 (1991)

2. Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. In:
Hájek, P. (ed.) Proc. Gödel 1996, Logic Foundations of Mathematics, Computer
Science and Physics – Kurt Gödel’s Legacy. Lecture Notes in Logic, vol. 6, pp.
23–33. Springer, Heidelberg (1996)

3. Baaz, M., Ciabattoni, A.: A Schütte-Tait style cut-elimination proof for first-order
Gödel logic. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI),
vol. 2381, pp. 24–38. Springer, Heidelberg (2002)

50 N. Preining

4. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent calculi for Gödel logics—a
survey. Journal of Logic and Computation 13, 835–861 (2003)

5. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Herbrand’s theorem for prenex Gödel
logic and its consequences for theorem proving. In: Nieuwenhuis, R., Voronkov,
A. (eds.) LPAR 2001. LNCS (LNAI), vol. 2250, pp. 201–216. Springer, Heidelberg
(2001)

6. Baaz, M., Leitsch, A., Zach, R.: Completeness of a first-order temporal logic with
time-gaps. Theoretetical Computer Science 160(1-2), 241–270 (1996)

7. Baaz, M., Leitsch, A., Zach, R.: Incompleteness of a first-order Gödel logic and some
temporal logics of programs. In: Büning, H.K. (ed.) CSL 1995. LNCS, vol. 1092,
pp. 1–15. Springer, Heidelberg (1996)

8. Baaz, M., Leitsch, A., Zach, R.: Incompleteness of an infinite-valued first-order
Gödel logic and of some temporal logics of programs. In: Börger, E. (ed.)
CSL 1995. LNCS, vol. 1092, pp. 1–15. Springer, Heidelberg (1996)

9. Baaz, M., Preining, N., Zach, R.: Completeness of a hypersequent calculus for some
first-order Gödel logics with delta. In: Proceedings of 36th International Sympo-
sium on Multiple-valued Logic, Singapore. IEEE Press, Los Alamitos (May 2006)

10. Baaz, M., Preining, N., Zach, R.: First-order Gödel logics. Annals of Pure and
Applied Logic 147, 23–47 (2007)

11. Baaz, M., Veith, H.: An axiomatization of quantified propositional Gödel logic using
the Takeuti-Titani rule. In: Buss, S., Hájek, P., Pudlák, P. (eds.) Proceedings of
the Logic Colloquium 1998, Prague. LNL, vol. 13, pp. 74–87. ASL (2000)

12. Baaz, M., Zach, R.: Compact propositional Gödel logics. In: Proceedings of 28th
International Symposium on Multiple-valued Logic, Fukuoka, Japan, pp. 108–113.
IEEE Press, Los Alamitos (May 1998)

13. Baaz, M., Zach, R.: Hypersequents and the proof theory of intuitionistic fuzzy
logic. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp.
187–201. Springer, Heidelberg (2000)

14. Beckmann, A., Goldstern, M., Preining, N.: Continuous Fräıssé conjecture. Or-
der 25(4), 281–298 (2008)

15. Beckmann, A., Preining, N.: Linear Kripke frames and Gödel logics. Journal of
Symbolic Logic 71(1), 26–44 (2007)

16. Ciabattoni, A.: A proof-theoretical investigation of global intuitionistic (fuzzy)
logic. Archive of Mathematical Logic 44, 435–457 (2005)

17. Dummett, M.: A propositional logic with denumerable matrix. Journal of Symbolic
Logic 24, 96–107 (1959)

18. Fitting, M.C.: Intuitionistic logic, model theory and forcing. Studies in Logic and
the Foundation of Mathematics. North-Holland Publishing Company, Amsterdam
(1969)

19. Fräıssé, R.: Sur la comparaison des types d’ordres. C. R. Acad. Sci. Paris 226,
1330–1331 (1948)

20. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)
21. Horn, A.: Logic with truth values in a linearly ordered Heyting algebra. Journal of

Symbolic Logic 34(3), 395–409 (1969)
22. Kechris, A.S.: Classical Descriptive Set Theory. Springer, Heidelberg (1995)
23. Moschovakis, Y.N.: Descriptive set theory. Studies in Logic and the Foundations

of Mathematics, vol. 100. North-Holland, Amsterdam (1980)
24. Ono, H.: Kripke models and intermediate logics. Publ. Res. Inst. Math. Sci., Kyoto

Univ. 6, 461–476 (1971)
25. Preining, N.: Complete Recursive Axiomatizability of Gödel Logics. PhD thesis,

Vienna University of Technology, Austria (2003)

Gödel Logics – A Survey 51

26. Rosenstein, J.G.: Linear Orderings. Academic Press, London (1982)
27. Takano, M.: Another proof of the strong completeness of the intuitionistic fuzzy

logic. Tsukuba Journal of Mathematics 11(1), 101–105 (1987)
28. Takeuti, G.: Proof Theory, 2nd edn. North-Holland, Amsterdam (1987)
29. Takeuti, G., Titani, S.: Intuitionistic fuzzy logic and intuitionistic fuzzy set theory.

Journal of Symbolic Logic 49, 851–866 (1984)
30. Winkler, R.: How much must an order theorist forget to become a topologist?

In: Proc. of the Vienna Conference Contributions of General Algebra, Klagenfurt,
Austria, vol. 12, pp. 420–433. Verlag Johannes Heyn (1999)

Tableau Calculus for the Logic of Comparative
Similarity over Arbitrary Distance Spaces

Régis Alenda and Nicola Olivetti

LSIS - UMR CNRS 6168
Domaine Universitaire de Saint-Jérôme, Avenue Escadrille Normandie-Niemen,

13397 MARSEILLE CEDEX 20, France
regis.alenda@lsis.org, nicola.olivetti@univ-cezanne.fr

Abstract. The logic CSL (first introduced by Sheremet, Tishkovsky,
Wolter and Zakharyaschev in 2005) allows one to reason about distance
comparison and similarity comparison within a modal language. The
logic can express assertions of the kind ”A is closer/more similar to B
than to C” and has a natural application to spatial reasoning, as well
as to reasoning about concept similarity in ontologies. The semantics of
CSL is defined in terms of models based on different classes of distance
spaces and it generalizes the logic S4u of topological spaces. In this paper
we consider CSL defined over arbitrary distance spaces. The logic com-
prises a binary modality to represent comparative similarity and a unary
modality to express the existence of the minimum of a set of distances.
We first show that the semantics of CSL can be equivalently defined in
terms of preferential models. As a consequence we obtain the finite model
property of the logic with respect to its preferential semantic, a property
that does not hold with respect to the original distance-space semantics.
Next we present an analytic tableau calculus based on its preferential
semantics. The calculus provides a decision procedure for the logic, its
termination is obtained by imposing suitable blocking restrictions.

1 Introduction

In a series of papers [8,6,9,10], Sheremet, Tishkovsky, Wolter and Zakharyaschev
have presented several modal logics to reason about distance comparisons and
topological properties. The logic QML, investigated in [10], is perhaps the most
general one and provides a modal framework to capture several logics of topo-
logical and metric spaces. QML can be indeed considered as a kind of ”‘super
logic”’ to reason about distances and topological relations. The logic comprises
a set of quantified distance modalities, where the quantifiers range on the reals.
In this logic we can define sets like: ”the set of objects w for which there is a
positive real x such that all objects within distance x from w are in A”’ (repre-
sented by ∃x∀≤xA). This set corresponds to the interior, in a topological sense,
of a set A. The logic QML covers a wide range of logics of metric spaces; some
of these systems or fragments thereof have been used to provide suitable logics
for spatial reasoning in AI (see [10]). For instance it includes the well-known

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 52–66, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Tableau Calculus for the Logic of Comparative Similarity 53

logic S4u, which contains the mentioned interior operator �A = ∃x(∀≤xA) as
well as the universal modality ∀A = ∀x(∀≤xA)1.

A striking result shown in [10] is that the logic QML can be reduced to
a modal logic whose language abstracts away completely distance quantifiers
and reals (although the reduction entails an exponential blowup). This logic,
called CSL, can be seen as a logic of qualitative distance comparison, or a logic
of comparative similarity between objects. The logic CSL comprises only two
primitive notions, whence modal operators: one to express distance comparisons,
and one to express that the distance of an element to an (infinite) set is realized
by some element of the set. The first modality is the (binary) operator ⇔: a
formula A ⇔ B denotes the set of objects x that are closer to A than to B, that
is to say such that d(x,A) < d(x,B), where the distance d(x,A) of an object
x to a set A is defined as the infimum of the distances of x to any object in
A. The latter one is the (unary) operator r©, the so-called realization modality,
r©A denotes the set of elements whose distance to A is realized, that is such that
d(x,A) is the minimum of the distances of x to every object in A. By means of
its reduction to CSL, the authors have obtained an axiomatization of QML over
different classes of distance models2 as well as an ExpTime-completeness result
for decidability in all cases. Finally the authors have shown that CSL (whence
QML) interpreted over (subspaces of) the reals is undecidable.

The logic CSL without the realization operator, let us call it CSL−, has been
previously investigated in itself: it has been proposed as a logic of qualitative
similarity comparisons with possible applications in ontologies [9]. The logic
CSL− can express qualitative comparisons of the form: ”Renault Clio is more
similar to Peugeot 207 than to VW Golf”. For a further example [8] the color
”Reddish ” may be defined as a color which is more similar to a prototypical
”‘Red”’ than to any other color. In CSL− the above examples can be encoded
(using a description logic notation and nominals) by:

(1) Reddish ≡ {Red}⇔ {Green, . . . , black}
(2) Clio (Peugeot207 ⇔ Ferrari430)

In previous work, the analysis of CSL− has concentrated on an important class of
distance spaces models where the infimum of a set of distances is their minimum,
the so-called minspaces. The minspace property entails the restriction to spaces
where the distance function is discrete, a restriction that may by acceptable
for qualitative reasoning about similarity comparisons, whereas it is not very
reasonable for spatial reasoning. Observe that over minspaces, the distance from
a point to any non-empty set of points is always realized so that the operator r©
collapse to the S5-existential modality which can be defined by r©A ≡ (A ⇔ ⊥),
whence CSL and CSL− are actually the same logic.

1 More precisely in QML the real quantifier ∃x (and its dual ∀x) can be applied to
any boolean combination of formulas beginning with distance quantifiers like ∀≤xA
(we refer to [10] for the formal details).

2 More precisely: arbitrary distance and symmetric distance models, metric space mod-
els, and distance models with triangular inequality.

54 R. Alenda and N. Olivetti

When interpreted over minspaces, the logic CSL turns out to be strongly
related to conditional logics, whose semantics is often expressed in terms of
preferential structures; the latter being a set equipped by a family of binary
relations indexed by the objects of the set, or a ternary relation. The relation
x ≤y z can be interpreted intuitively as ’y is at least as similar/close to x
than z’. Such a semantics was originally proposed by Lewis [7] to give a formal
account of counterfactual conditionals and related notions. The relation x ≤y z
satisfies some further properties, notably (i) it is a total preorder, (ii) minimal
≤x elements of a non-empty set always exist (limit assumption) and (iii) x is
the unique smallest element wrt. ≤x (strong centering).

In [2] it is shown that the semantics of CSL over minspaces can be equivalently
restated in terms or preferential structures. This correspondence has been used to
find an axiomatization of CSL overminspaces and a decision procedure in the form
of a tableau calculus. In this case the correspondence is clear, as a distance space is
readily transformed into a preferential model by defining x <y z if d(y, x) < d(y, z)
(of course the truth conditions must be restated in a suitable way). More recently
[3], the correspondence with the preferential semantics has been extended to CSL
interpreted over symmetric minspace models [3], and a tableau-based decision pro-
cedure based on this correspondence has also been proposed.

Beyond the intrinsic theoretical interest, we believe that it is worthwhile to
study the relations between the preferential semantic and the distance space
semantic. The former, being closer to the semantics of traditional modal logics,
allows a simpler analysis of logical properties (finite model property, complexity
bounds, etc.) and it makes easier to develop proof systems.

In this paper we contribute to automated deduction of CSL and of CSL−
over arbitrary distance spaces (whence symmetric distance spaces [10]). The
first question we answer: can we give a preferential semantics to CSL and to
CSL− over arbitrary distance spaces? In this case the simple correspondence
mentioned above cannot work. However, rather unexpectedly, the answer is pos-
itive and simple for both CSL− and CSL. By a filtration technique, we show that
the distance model semantics is equivalent to the preferential semantics, in the
sense that the sets of valid formulas under the two semantics coincide. While for
CSL− no extra ingredient is required, for CSL, preferential models are equipped
by an additional binary accessibility relation needed interpret the r© operator.
Technically, we can observe that preferential model corresponding to arbitrary
distance spaces do still satisfy limit assumption, but they do no longer satisfy
strong centering (there might be several smallest elements with respect ≤x).

As a byproduct of the correspondence between the two semantics, we obtain a
finite model property for both CSL− and CSL with respect to their preferential
semantics, which also gives an alternative proof (with respect to [10]) of their
decidability. Observe in contrast that the finite model property with respect to
the distance base semantics does not hold, neither for CSL, nor for CSL−.

We next define an analytic tableau calculus for checking satisfiability of CSL
formulas based on the preferential semantics of this logic. The rules of the
calculus encode directly the semantics of the logic over preferential models. Its

Tableau Calculus for the Logic of Comparative Similarity 55

termination is obtained by imposing a suitable subset blocking condition. To the
best of our knowledge, the one presented is this paper is the first implementable
decision procedure for this logic. In light of the encoding mentioned above, it gives
also a decision procedure for QML.

2 Syntax and Semantics

The language LCSL of CSL is generated from a (countable) set of propositional
variables V1, V2, . . . ∈ Vp by ordinary propositional connectives together with the
two operators ⇔ and r©:

A,B ::= ⊥ | pi | ¬A | A �B | A ⇔ B | r©A (where pi ∈ Vp).
The language LCSL− of the logic CSL− is defined as the sub-language of LCSL
comprising only the operators ¬,� and ⇔.

The semantics of CSL introduced in [10] is based on distance spaces. A dis-
tance space is a pair (Δ, d) where Δ is a non-empty set, and d : Δ×Δ → �

≥0

is a distance function satisfying the following condition3:

(ID) ∀x, y ∈ Δ, d(x, y) = 0 iff x = y .

The distance between an object w and a non-empty subset X of Δ is defined by
d(w,X) = inf{d(w, x) | x ∈ X}. If X = ∅, then d(w,X) = ∞. If there exists a
point x ∈ X such that d(w,X) = d(w, x), we say that the distance from w to X
is realized (by the point x). In this case d(w,X) = min{d(w, x) | x ∈ X}.

We next define CSL-distance models as a kind of Kripke models based on
distance spaces:

Definition 1 (CSL-distance model). A CSL-distance model I is a triple
I = 〈ΔI , dI , .I〉 where:
– (ΔI , dI) is a distance space.
– .I is the evaluation function defined as usual on propositional variables and

boolean connectives, and as follows for ⇔ and r©:
(A ⇔ B)I def= {x ∈ ΔI | d(x,AI) < d(x,BI)}.

(r©A)I def= {x ∈ ΔI | d(x,AI) is realized}.
As explained in introduction, we are interested in providing an alternative

purely relational semantics, in terms of a preferential structure.

Definition 2. A preferential space is a pair (Δ, (≤w)w∈Δ) where Δ is a non-
empty countable set and (≤w)w∈Δ is a family of total pre-orders, each one sat-
isfying the following properties:

For all C ⊆ Δ,C �= ∅ implies min
≤w

(C) �= ∅.(limit assumption)

For all x,w ≤w x.(WKCT)

where min≤w(X) = {x ∈ X |∀y((y ∈ X and y ≤w x) → x ≤w y)}.

3 To other properties of distance function are usually assumed: symmetry and triangu-
lar inequality; the logic is insensitive to the assumption of symmetry alone, whereas
triangle inequality does matter [10]. However none of them will be considered here.

56 R. Alenda and N. Olivetti

((A ⇔ B) (B ⇔ C))→ (A ⇔ C) (¬(A ⇔ B) ¬(B ⇔ C))→ ¬(A ⇔ C)

¬((A � B) ⇔ A)→ ¬((A � B) ⇔ B) ¬(¬(A→ B) ⇔ ⊥)→ ¬(A ⇔ B)

r©(A � B)→ r©A � r©B (r©(A � B) (A ⇔ B))→ r©A

(r©A ¬(B ⇔ A))→ r©(A � B) ¬(¬(A↔ B) ⇔ ⊥)→ (r©A↔ r©B)

(A↔ r©A ¬(�⇔ A)) �⇔ ⊥
¬ r©⊥ (¬(A ⇔ ⊥) ⇔ ⊥)→ ¬((A ⇔ ⊥) ⇔ ⊥)

Fig. 1. Axiomatization of CSL over arbitrary distance spaces [10]

We define <w as x ≤w y and y �≤w x. We are now ready to restate the distance
semantics in terms of preferential structures. We first consider the case of CSL−:

Definition 3 (CSL− preferential model). A CSL-preferential I model is a
triple 〈ΔI , (≤Iw)w∈ΔI , .I〉 where:
– (ΔI , (≤Iw)w∈ΔI) is a preferential space (Definition 2).
– .I is the evaluation function defined as usual for propositional variables and

boolean operators, and as follows for ⇔:
(A ⇔ B)I def=

{
w
∣∣∃x ∈ AI such that ∀y ∈ BI , x <Iw y

}
In order to interpret r©, we need to introduce a further ingredient in preferential
models: a binary relation denoted by ρ. The technical meaning of it, and its
link with the preferential relations by the relation (RCT) will be clear after
Theorem 6, which shows the correspondence between the distance semantics
and the preferential one.

Definition 4 (CSL preferential model). A CSL-preferential I model is a
four-tuple 〈ΔI , (≤Iw)w∈ΔI , ρI , .I〉 where:
– 〈ΔI , (≤Iw)w∈ΔI , .I〉 is a CSL−-preferential model.
– ρI is a reflexive binary relation over Δ, and satisfies the following property:

(RCT) (w, x) ∈ ρI ∧ x ≤w w → x = w.

– The interpretation of the r© operator is defined as follows:
(r©A)I def=

{
w
∣∣∃x ∈ min≤w(AI) such that (w, x) ∈ ρI

}
.

In the minspace case, we can directly transform a distance model into an equiv-
alent preferential model based on the same domain by taking:

(1) x ≤w y iff d(w, x) ≤ d(w, y).

The next example show that this correspondence is not possible for the general
case.

Example 5. Consider the two (infinite) CSL-distance models I and J defined on
the same set ΔI = ΔJ = {x, y0, y1, y2, . . .}. Let, for all i ∈ N, dI(x, yi) = 1

1+i ,
dJ (x, yi) = 1 + 1

1+i . For all the others cases, we let dI(u, v) = dJ (u, v). We let
pI = pJ = {x} and qI = qJ = {y0, y1, y2, . . .}. It is clear that dI(x, pI) = 0
while dJ (x, pJ) = 1, and thus x ∈ (p ⇔ q)J while x /∈ (p ⇔ q)J .

Tableau Calculus for the Logic of Comparative Similarity 57

We now build two preferential models I ′ and J ′ based on the same set (i.e.
we let ΔI

′
= ΔJ

′
= ΔI = ΔJ) using (1): u ≤I′w v iff dI(w, u) ≤ dI(w, v), and

u ≤J ′
w v iff dJ (w, u) ≤ dJ (w, v). It is then easy to show that:

For all w, v, u ∈ ΔI′ = ΔJ
′
: u ≤I′w v iff u ≤J ′

w v.

So that we have I ′ = J ′. Therefore it is impossible to define preferential mod-
els as in Definition 3 for CSL− over general distance spaces by means of the
correspondence (1).

Nonetheless, we can show that the set of satisfiable formulas under the two
semantics coincides.

Theorem 6. A formula C ∈ LCSL is satisfiable in a CSL-distance model iff it
is satisfiable in a CSL-preferential model.

Proof (Theorem 6). As usual, sub(C) denotes the set of sub-formulas of C. Given
a model I and an object x ∈ ΔI , the type of x in I wrt. to a formula C is noted
τIC(x) and defined as follows: τIC(x) def=

{
A
∣∣A ∈ sub(C) and x ∈ AI

}
.

Two objects x, y are C-equivalent in I (noted x ∼IC y) if τIC(x) = τIC(y). The
equivalence class of x with respect to the relation ∼IC is denoted by [x]IC .

When the context is clear, ie. when I and C are not ambiguous, we simply
write τ(x), x ∼ y, and [x] instead of τIC(x), x ∼IC and [x]IC .

(⇒) Let a formula C be satisfiable in a CSL-distance model I. We construct
a CSL-preferential model based on the set of equivalences classes of objects of
ΔI with respect to the relation ∼: ΔJ =

{
[x]
∣∣x ∈ ΔI} .

To define the preferential relations, we use a choice function f : ΔJ → ΔI

which selects an arbitrary element from each equivalence class: f([x]) ∈ [x].
Note that by definition of the equivalence classes, for all formulas D ∈ sub(C),
if f([x]) ∈ DJ , then for all x′ ∈ [x], x′ ∈ DJ . We can now define the CSL-
preferential model J by taking:
– [x] ≤J[w] [y] iff dI(f([w]), [x]) ≤ dI(f([w]), [y]).
– ([x], [y]) ∈ ρJ iff d(f([x]), [y]) is realized.
– [x] ∈ pJ iff f([x]) ∈ pI , for all propositional variable p.

It is easy to check that J satisfies all the properties of Definition 4. For (RCT),
note that if [x] ≤J[w] [w], then dI(f([w]), [x]) = 0. Since ([w], [x]) ∈ ρJ , the
distance dI(f([x]), [x]) is realized, and thus, by (ID), f([w]) ∈ [x]. Therefore,
[w] = [x].

Fact 7. For all formulas D ∈ sub(C), w ∈ DI iff [w] ∈ DJ .

From Fact 7, and since C ∈ sub(C), we conclude that if CI �= ∅, then CJ �= ∅.

(⇐) Let J = 〈ΔJ , (≤Jw)w∈ΔJ , ρJ , .J 〉 be a CSL-preferential model. Since Δ
is countable, we can represent each total preorder ≤Jw by a ranking function
rw : ΔJ → R such that x ≤Jw y iff rw(x) ≤ rw(y). Since w is minimal for
≤w, whence for rw, we do not loose in generality by imposing rw(w) = 0 (as a
consequence, for all x, rw(x) ≥ 0). We now define the CSL-distance model I as
follows:

58 R. Alenda and N. Olivetti

– ΔI = ΔJ × N.
– For all (x, i), (y, j) ∈ ΔI :

dI((x, i), (y, j)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if x = y and i = j,

1 if x = y and i �= j,

rx(y) if x �= y and (x, y) ∈ ρJ ,
rx(y) + 1

j+1 if x �= y and (x, y) /∈ ρJ .

– For all (x, i) ∈ ΔI , (x, i) ∈ pI iff x ∈ pJ , for any propositional variable p.

Fact 8. I = 〈ΔI , dI , .I〉 is a CSL-distance model.

We denote by αx the set {(x, i)|i ∈ N}. By the definition of dI , we obtain:

Fact 9. For all (x, i) ∈ ΔI and for all y ∈ ΔJ , dI((x, i), αy) = rx(y).

We then conclude by the following fact:

Fact 10. For all formulas D ∈ sub(C), w ∈ DJ iff αw ⊆ DI . ��

We can give a similar theorem for CSL− by ignoring ρ in the proofs:

Theorem 11. A formula C ∈ LCSL− is satisfiable in a CSL-distance model iff
it is satisfiable in a CSL−-preferential model.

Observe that the direction from distance models to preferential models makes
use of a filtration construction. Moreover, if n is the length of the initial formula
C, there cannot be more than 2n different types; thus the preferential model J
obtained by this construction is finite and we have Card(ΔJ) ≤ 2n; therefore we
obtain the following corollary:

Corollary 12. If a CSL-formula is satisfiable, then it is satisfiable in a finite
CSL-preferential model.

Looking at the proof of Theorem 6 we see that ρ connects pairs of elements in the
filtrated model, corresponding to sets of elements of the distance model whose
distance is realized. Intuitively, the relation ρ reflects the realization relation of
the original distance model in the filtrated model where elements are replaced by
equivalence classes (set of elements). To make a connection with the minspace
models ρ becomes universal and (RCT) becomes strong centering, namely:

x ≤w w → x = w.

This result may seem puzzling at the first sight; in the case of minspace models
[2] the transformation between models is direct and we have that the minspace
semantics is equivalent to the preferential semantics with limit assumption and
strong centering. In particular, the limit assumption corresponds to the minspace
property. In contrast, the above result shows that the limit assumption does not
entail in itself the minspace property. To get the correspondence of Theorem 6,
it is the strong centering property that has to be relaxed.

Tableau Calculus for the Logic of Comparative Similarity 59

3 A Labeled Tableau Calculus

In this section we present a decision procedure for CSL over general distance
spaces based on a labeled tableau calculus. Tableau rules act on sets of tableau
formulas, defined next. These sets of formulas are denoted by Γ,Δ, . . ., and are
called tableau sets. As usual, we use the notation Γ,Δ for the set union Γ ∪Δ.
Given an enumerable set Lab = {x1, x2, . . . , xn, . . .} of objects called labels, a
tableau formula has the form i) x : C where x is a label and C is a CSL-formula.
ii) w ≤w y or x <w y where w, x, y are labels. iii) z : f(x,C) where x, y are
labels and C is a CSL-formula. iv) ρ(x, y) or ¬ρ(x, y) where x, y are labels.

As expected, labels represent the objects of the domain, so that i) states that
x ∈ CI , and ii) encode the preferential relations. Note that the calculus uses both
strict and non strict relations. The intuitive meaning of iii) is z ∈ min≤x(CI),
and iv) encode the binary relation ρ.

A tableau derivation (or simply a derivation) for C (the input formula) is a
tree whose root node is the tableau set {x : C}, and where successors of any
node are obtained by the application of a tableau rule. A tableau rule has the
form Γ [X]/Γ1 | · · · | Γm, where Γ, Γ1, . . . , Γm are tableau sets. The meaning is
that, given a tableau set Γ in a derivation, if X ⊆ Γ , then we can apply the rule
to it and create m successors Γ1, . . . , Γm. The denominator can be the empty set,
in which case the rule is a closure rule and is usually written Γ [X]/⊥. Closure
rules detect tableau sets which contain a contradiction.

We give two calculi: one for the logic CSL− whose rules are given in figure 2,
and one for CSL, obtained by adding the rules of figure 3. The rules are grounded
on the preferential semantics. Observe that the rules (T1⇔), (F1⇔) and (Tf)
comprise a case analysis in the form of analytic cut (the rule (Tf) is only needed
in case of (¬) r© formulas.), which is needed for technical reasons (to ensure that
the subset blocking will work properly). The semantic conditions for (¬) ⇔ are
captured by the rules (T2⇔) and (T3⇔) (resp. (F2⇔) and (F3⇔)). For instance
the rule (F2⇔) introduces an element z ∈ miny(BI), whenever A is non-empty
and the rule (F3⇔) states that no A-element y can be closer to x than z. The
rule (Tf) states that x is w-minimal element for A (i.e. a minimal element of A
for the relation ≤w.). The rule (T r©) create an x-minimal element z such that
(x, z) ∈ ρ. The rules for x : ¬ r©A are more complex: the rule (F1 r©) first perform
an analytic cut on A. If no label satisfies A, then x : ¬ r©A is trivially satisfied.
If a label satisfy A, then the rule (F2 r©) creates an x-minimal element z for A.
Note that if there is a y such that y : A and y ≤x z are in the tableau set,
then y is also an x-minimal element for A. The rules (F3 r©) states that in order
to satisfy the formula x : ¬ r©A, we must have (x, y) /∈ ρ for each x-minimal
element y of A. In the (CTρ) rule, which encodes the RCT condition, we denote
by Γs[x,y] the tableau set obtained by replacing either y by x or x by y in every
tableau formula of Γ .

A rule is dynamic if it introduces a new label, and static if it does not. Here,
the dynamic rules are (T2⇔), (F2⇔), (T r©) and (F2 r©). The others are static.
Let us call dynamic formula of type x : (¬)(A ⇔ B) or x : (¬) r©A, that is the
ones to which a dynamic rule can be applied.

60 R. Alenda and N. Olivetti

(¬¬):
Γ [x : ¬¬A]

Γ, x : A
(�):

Γ [x : A � B]
Γ, x : A | Γ, x : B

(¬�):
Γ [x : ¬(A � B)]

Γ, x : ¬A, x : ¬B

():
Γ [x : A B)]
Γ, x : A, x : B

(¬):
Γ [x : ¬(A B)]

Γ, x : ¬A | Γ, x : ¬B

(T1⇔):
Γ [x : A ⇔ B, y : C]
Γ, y : ¬B | Γ, y : B

(F1⇔):
Γ [x : ¬(A ⇔ B), y : C]

Γ, y : A | Γ, y : ¬A

(T2⇔):
Γ [x : A ⇔ B]

Γ, z : f(x, A), z : A
(∗) (F2⇔):

Γ [x : ¬(A ⇔ B), y : A]
Γ, z : f(x, B), z : B

(∗)

(T3⇔):
Γ [x : A ⇔ B, z : f(x, A), y : B]

Γ, z <x y
(F3⇔):

Γ [x : ¬(A ⇔ B), z : f(x, B), y : A]
Γ, z ≤x y

(cnt):
Γ [x : A, y : B]

Γ, x ≤x y, y ≤y x
(asm):

Γ [x <w y]
Γ, x ≤w y

(tr≤):
Γ [x ≤w y, y ≤w z]

Γ, x ≤w z

(tr<):
Γ [x <w y, y <w z]

Γ, x <w z
(r⊥):

Γ [x <w y, y ≤w x]
⊥

(⊥):
Γ [x : A, x : ¬A]

⊥

(*) z is a label not occurring in the current branch.

Fig. 2. Rules for tableau calculus TCSL− for CSL−

(T r©):
Γ [x : r©A]

Γ, z : f(x, A), z : A, ρ(x, z)
(∗) (ρ⊥):

Γ [¬ρ(x, x)]
⊥

(F2 r©):
Γ [x : ¬ r©A, y : A]

Γ, z : f(x, A), z : A
(∗)

(Tf):
Γ [x : f(w, A), w : (¬) r©A, y : C]

Γ, y : ¬A | Γ, y : A, x ≤w y
(F3 r©):

Γ [x : ¬ r©A, z : f(x, A), y ≤x z, y : A]
Γ, ¬ρ(x, y)

(CTρ):
Γ [ρ(x, y), y ≤x x]

Γs[x,y]
(F1 r©):

Γ [x : ¬ r©A, y : C]
Γ, y : A | Γ, y : ¬A

(¬ρ⊥):
Γ [ρ(x, y), ¬ρ(x, y)]

⊥

(*) z is a label not occurring in the current branch.

Fig. 3. Additional rules for the tableau calculus TCSL for CSL

This calculus does not provide a decision procedure, since the interplay be-
tween dynamic rules (introducing new labels) and static rules (adding new formu-
las to which the dynamic rules could be applied) can lead to infinite derivations.
In order to make our calculus terminating, we introduce in Definition 13 some
restrictions on the application of the rules. Note that to ensure termination we
do not need any other assumption on the rule application strategy.

Given a derivation branch B and two labels x and y occurring in it, we say
that x is older than y if x has been introduced before y in the branch4. Note that
this older relation is well founded. We also define LabΓ as the set of all labels
occurring in a tableau set Γ , and ΠΓ (x) = {A|A ∈ LCSL and x : A ∈ Γ}.

Definition 13 (Termination restrictions)
Irredundancy restriction 1. Do not apply a static rule Γ/Γ1 | . . . | Γn to a

tableau set Γ if for some 1 ≤ i ≤ n, Γi = Γ .
2. Do not apply the rule (T2⇔) to some formula x : A ⇔ B in Γ if there

exists some label z such that z : f(x,A) and z : A are in Γ .

4 From a practical point of view, the order of introduction of the labels can be stored
locally within a tableau set and does not require to inspect a whole derivation branch.

Tableau Calculus for the Logic of Comparative Similarity 61

3. Do not apply the rule (F2⇔) to some formulas x : ¬(A ⇔ B), y : A if
there exists some label z such that z : f(x,B) and z : B are in Γ .

4. Do not apply the rule (T r©) to some formula x : r©A if there exists some
label z such that z : f(x,A), z : A, and ρ(x, z) are in Γ .

5. Do not apply the rule (F2 r©) to some formulas x : ¬ r©A, y : A if there
exists some label z such that z : f(x,B), z : B, and ¬ρ(x, z) are in Γ .

Subset blocking. Do not apply the rule (T2⇔) to a formula x : A ⇔ B, or
the rule (F2⇔) to some formulas x : ¬(A ⇔ B), y : B, or the rule (T r©) to
some formula x : r©A, or the rule (F2 r©) to some formulas x : ¬ r©A, y : A
if there exists some label u older than x and such that ΠΓ (x) ⊆ ΠΓ (u).

Substitution restriction. When performing a substitution Γs[x,y] in the rule
(CTρ), always replace the younger label by the older.

The purpose of the termination restrictions is to prevent unnecessary applica-
tions of the rules that could lead to infinite derivations, as we prove in the next
section. The subset blocking condition is similar to dynamic blocking [5].

A rule R is applicable to a tableau set Γ under termination restrictions if it
respects all termination restrictions (Definition 13). A derivation is under termi-
nation restrictions if all rule applications respects the termination restrictions.
From now on, we only consider derivations under termination restrictions.

Since termination restrictions prevent the application of some rules we have to
define whenever a tableau is open or closed, thereby witnessing the satisfiability
(or unsatisfiability) of the input formula.

Definition 14 (Finished/Closed/Open tableau sets, Finished/Closed/
Open derivation). A tableau set is finished if no rule is applicable to it. A
tableau set Γ in a derivation is closed if a closure rule is applicable to it, and it
is open otherwise. A derivation is finished if all its leaf nodes are either finished
or closed; it is closed if all its leaf nodes are closed, and it is open if it contains
a finished tableau set.

In the next section, we prove the termination, soundness and completeness of
the calculus for CSL. Since the calculus TCSL− is a special case of TCSL, the
corresponding property also holds.

Example 15. Let C = A � ¬B � r©A → (A ⇔ B) is valid. In order to check
whether C is valid, we try to build a closed tableau for ¬C (meaning that ¬C
is unsatisfiable). One possible derivation is presented in figure 4.

On the contrary, we show that the formula C′ = A � ¬B → (A ⇔ B), which
is an axiom in the minspace case [2], is not valid in the general distance case:
an open derivation for ¬C′ is presented in figure 5, giving a counter-model for
C′. By applying the construction of Theorem 6, we obtain a distance model I
as follows: ΔI = {xi, yi|i ∈ N}; for all i ∈ N, xi ∈ AI , xi /∈ BI and yi ∈ BI ; for
all i, j ∈ N, d(xi, yj) = 1

1+j . Thus for all i ∈ N, d(xi, B
I) = 0 and therefore xi is

in (A � ¬B � ¬(A ⇔ B))I .

62 R. Alenda and N. Olivetti

Γ0

{x : A, x : ¬B, x : r©B,

x : ¬(A ⇔ B)}

Γ1

Γ0∪
{y : B, y : f(x, B), ρ(x, y)}

(T r©)[x : r©B]

Γ2

Γ1∪
{y ≤x x}

(F3⇔)[x : ¬(A ⇔ B),

y : f(x, B), x : A]

Γ3

{x : A, x : ¬B, x : r©B,

x : ¬(A ⇔ B), x : B, x ≤x x,

x : f(x, B), ρ(x, x)}

(CTρ) [ρ(x, y), y ≤x x]

Γ4 ⊥

(⊥)[x : B, x : ¬B]

Fig. 4. Closed derivation for A �¬B �
r©A � ¬(A ⇔ B)

Γ0

{x : A, x : ¬B,

x : ¬(A ⇔ B)}

Γ1

Γ0∪
{y : B, y : f(x, B)}

(F2 ⇔)[x : ¬(A ⇔ B), x : A]

Γ2

Γ1∪
{y ≤x x}

(F3 ⇔)[x : ¬(A ⇔ B),

y : f(x, B), x : A]

Γ3

Γ2∪
{x ≤x y, y ≤y x}

(cnt)[x, y]

(F1 ⇔)[x : ¬(A ⇔ B), y : B]

Γ4

Γ3∪
{y : ¬A}

Γ3∪
{y : A} Γ5

Γ5∪
{y ≤x y} Γ6

(F3 ⇔)[x : ¬(A ⇔ B),

y : f(x, B), y : A]

Fig. 5. Open derivation for A � ¬B �
¬(A ⇔ B)

3.1 Termination

To prove termination we need some technical definitions. We define, for any
tableau derivation T , Π(T) as the set of all CSL-formulas occurring in T :

Π(T) def= {A | A ∈ LCSL and x : A ∈ Γ for some Γ from T }.

Given a node Γ in a branch B, and x occurring in Γ or in any of its ancestors,
we also define σ∗(Γ, x) = x if x occurs in Γ , or σ∗(Γ, x) = y where y is the label
which finally replaces x in Γ along a sequence of (CTρ) substitutions applied
on the path between Γ and its closest ancestor in which x occurs. Observe that
this label y is unique, and is older than x (due to the centering restriction).

Proposition 16 (Monotonicity). Let Γ be a tableau set in a derivation T ,
and Γ ′ be any descendant of Γ in T . Let x : A be in Γ . Then: (i) ΠΓ (x) ⊆
ΠΓ ′(σ∗(Γ ′, x)). (ii) if x : A is blocked for a rule R in Γ by the irredundancy
restriction, then also σ∗(Γ ′, x) : A is blocked in Γ ′ for the rule R by the irredun-
dancy restriction.

Theorem 17. Any derivation of TCSL under the termination restrictions is finite.

Proof (Theorem 17). Let T be a derivation for C. By absurd, suppose that T
contains an infinite branch B = (Γi)i∈�. We can then prove the following:

Fact 18. There exists a dynamic formula D, a subsequence (Θn)n∈� of B, and
a sequence (xn)n∈� of labels such that: (i) For all n, xn : D ∈ Γn. (ii) For all
n, Θn is a node corresponding to the application of the corresponding dynamic
dynamic rule to the formula xn : D. (iii) There exists a label x∗ such that x∗

occurs in each Γn and for all n, ΠΘn(xn) ⊆ ΠΘn(x∗).

Tableau Calculus for the Logic of Comparative Similarity 63

By the previous Facts, we have that (i) for all n, xn must be older than x∗, as if
it were younger no dynamic rule could be applied to xn : D, due to the subset
blocking. (ii) for all n,m, if n �= m then xn �= xm, since the irredundancy restric-
tion prevents multiple application of the same rule to the same formulas, due
to Proposition 16. Therefore we have an infinite sequence of labels, all different
and older than x∗, which is impossible as the relation older is well founded. ��
A simple argument (see [3]) show that the size of any branch is exponentially
bounded by the size of the initial formula C, so that TCSL runs in NExpTime.

3.2 Soundness

We first need the following definitions:

Definition 19 (CSL-mapping). Let Γ be a tableau set and I be a CSL-pre-
ferential model. A CSL-mapping m from Γ to I is a function m : LabΓ →
ΔI such that: a) if x ≤w y ∈ Γ (x <w y ∈ Γ), then m(x) ≤Im(w) m(y)
(m(x) <Im(w) m(y)). b) if ρ(w, x) ∈ Γ (¬ρ(w, x) ∈ Γ), then (m(w),m(x)) ∈ ρI

((m(w),m(x)) /∈ ρI).
We say that a CSL-mapping m is a min-mapping if it satisfies the following

additional property: if z : f(w,A) ∈ Γ , then m(z) ∈ min≤m(w)(A
I).

Definition 20 (Satisfiability). A tableau set Γ is satisfiable in a CSL-prefe-
rential model I under a CSL-mapping m iff: if x : A ∈ Γ , then m(x) ∈ AI .

A tableau set Γ is satisfiable if it is satisfiable in some model I under some
CSL-mapping5 m.

As usual, we will prove the soundness of the calculus by showing that the rules
preserve satisfiability of tableau sets.

Proposition 21 (Soundness of the rules). Let Γ be a tableau set satisfiable
under some min-mapping, and let Γ/Γ1 | . . . | Γn be an instance of any rule.
Then there is an i such that Γi is satisfiable under some min-mapping.

Observe that if a CSL-formula C is satisfiable, the tableau set {x : C}, which is
the root of any derivation for C, is satisfiable under a min-mapping. Moreover a
tableau set to which a closure rule can be applied is unsatisfiable. Therefore, by
the previous proposition no derivation for a satisfiable formula C can be closed.

Theorem 22. If C is a satisfiable CSL-formula, then any tableau derivation
for C is open.

3.3 Completeness

As usual, we first define the saturation of a tableau set. Intuitively, a tableau set
is saturated if it is saturated under applications of all rules.

Definition 23 (Saturated tableau set). A tableau set Γ is saturated if it
satisfies the following conditions: (i) Γ satisfies the usual boolean saturation
conditions. (ii) if x : A ⇔ B, or x : ¬(B ⇔ A), or x : r©B, is in Γ , then for

5 Note that a min-mapping is also a CSL-mapping.

64 R. Alenda and N. Olivetti

all y, either y : B or y : ¬B is in Γ . (iii) if x : A ⇔ B ∈ Γ , then there exists
a z such that z : A and z : f(x,A) are in Γ , and for all y such that y : B ∈ Γ ,
z <x y is in Γ . (iv) if x : ¬(A ⇔ B) ∈ Γ , then either a) y : ¬A is in Γ for all
y occuring in Γ , or (b) there exists a z such that z : B, z : f(x,B) are in Γ ,
and for all y such that y : A ∈ Γ , z ≤x y is in Γ . (v) if x : r©A ∈ Γ , then there
exists a z such that z : f(x,A), z : A and ρ(x, z) are in Γ . (vi) if x : ¬ r©A ∈ Γ ,
then either (a) y : ¬A is in Γ for all y occuring in Γ , or (b) there exists a z
such that z : f(x,A), z : A are in Γ , and for all y, if y : A and y ≤x z are in
Γ , then ¬ρ(x, y) is in Γ . (vii) if w : (¬) r©A and x : f(w,A) are in Γ , then for
all y, either y : ¬A is in Γ , or y : A and x ≤w y are in Γ . (viii) if x ≤w w and
ρ(w, x) are in Γ , then x = w. (ix) for all x, y occuring in Γ , x ≤x y and y ≤y x
are in Γ . (x) if x <w y ∈ Γ , then x ≤w y is in Γ . (xi) if x <w y and y <w z
(resp. x ≤w y and y ≤w z) are in Γ , then x <w z (resp. x ≤w z) is in Γ .

Lemma 24. Any open and saturated tableau set is satisfiable.

Proof (Lemma 24). As usual, we prove the lemma by building a canonical model
MC from an open saturated tableau set Γ . The main issue is that the preferential
relations in Γ are not total preorders, and thus we need to complete them.
Let w ∈ LabΓ . We first define a relation =w as follows: for all x, y ∈ LabΓ ,
x =w y iff x ≤w y and y ≤w x are in Γ (note that reflexivity of =w comes
from saturation condition ix with x = y). Given a label x ∈ LabΓ , we denote
by [x] its equivalence class modulo =w. The relation ≤w in Γ induces a relation
<e

w over the equivalence classes: [x] <e
w [y] iff exists x′ ∈ [x] and y′ ∈ [y] such

that x′ ≤w y′ ∈ Γ . One can check that <e
w is a strict partial order (irreflexive,

asymmetric, and transitive).

Fact 25. 1. If x <w y ∈ Γ , then [x] <e
w [y].

2. If x ≤w y ∈ Γ , and y ≤w x /∈ Γ , then [x] <e
w [y].

We denote by <∗w any linear extension of <e
w. We are now ready to define the

canonical model MC as follows:

– ΔMC = LabΓ .
– For all x, y ∈ ΔMC , x ≤MC

w y iff either (i) [x] = [y], or (ii) [x] <∗w [y].
– For all x, y ∈ ΔMC , (x, y) ∈ ρMC iff ρ(x, y) ∈ Γ .
– For any propositional variable p, pMC = {x|x : p ∈ Γ}.

It is easy to check that the relations ≤MC
w are total pre-orders, and that MC

satisfies the properties (WKCT) and (RCT) of Definition 4 (due to saturation
condition ix and viii), so that MC is a well-defined CSL-preferential model.

Fact 26. Γ is satisfiable in MC under the identity mapping id : x → x. ��
Due to the blocking conditions (subset blocking) it is not true that every open
and finished tableau set is saturated; however we can show that we can always
extend an open and finished tableau set to a saturated one.

Lemma 27. If Γ is a finished tableau set, then there exists an open and satu-
rated tableau set Γ ′ such that for every CSL-formula A and every label x ∈ LabΓ :
if x : A ∈ Γ , then x : A ∈ Γ ′.

Tableau Calculus for the Logic of Comparative Similarity 65

Proof (Lemma 27). We say that a label w is blocked by a label u if u is older
than w and ΠΓ (w) ⊆ ΠΓ (u). To saturate Γ , we will apply the following proce-
dure for every blocked label w, where u is the oldest label blocking w:

1. We delete every formula of the kind x : f(w,A), ρ(w, x), ¬ρ(w, x), x ≤w y,
x <w y, for every labels x, y and CSL-formula A.

2. For every tableau formula x : f(u,A), ρ(u, x), ¬ρ(u, x), x ≤u y, x <w y
(with x and y different from u and w) occurring in Γ , we add x : f(w,A),
ρ(w, x), ¬ρ(w, x), x ≤w y, x <w y respectively.

3. For every formula w : f(u,A) in Γ , we add u : f(w,A).
4. For every formula w ≤u x, x ≤u w, w <u x, x <u w in Γ (with x �= u), we

add u ≤w x, x ≤w u, x <w u, u <w x (respectively).
5. If u <u w, we add w <w u.
6. We add w ≤w u.
7. If ρ(u,w) or ¬ρ(u,w) is in Γ , we add ρ(w, u) or ¬ρ(w, u) (respectively).
8. We add ρ(w,w).

We call Γ ′ the resulting tableau set. We then have the following fact.

Fact 28. Γ ′ is open and saturated. ��

Since an open derivation contains a finished tableau set, by Lemmas 24 and 27,
we finally obtain:

Theorem 29. If there exist an open derivation for C, then C is satisfiable.

4 Conclusion

In this work we have contributed to the study of automated deduction for the
logic of comparative similarity CSL and its pure comparative fragment CSL−
interpreted arbitrary distance spaces. Our first result is that the distance space
semantics is equivalent to preferential model semantics. As a consequence, we
have obtained a proof of the finite model property for CSL with respect to
its preferential semantics. Then we have presented a labeled tableau calculus
which gives a practically implementable decision procedure for this logic. Our
calculus gives a NExpTime decision procedure for satisfiability of CSL formulas,
which however is not optimal in the light of the known ExpTime upper bound.
Despite its non-optimality, we believe that the interest of a tableau calculus like
the one we have presented lies in its pure declarative meaning: it is just a set of
rules, independent from any algorithmic detail. Of course a battery of techniques
might be applied to make it more efficient, first of all to control rules comprising
analytic cut. To match the known ExpTime upper bound, we intend also to
investigate whether our tableau method can be reformulated as a global caching
algorithm [4], which usually provides optimal decision procedures.

In [2] a labeled tableau calculus for CSL− over non symmetric minspaces is
presented, implemented in a theorem prover [1]. This calculus is similar to the
one introduced in this work for CSL− as they are both based on the preferential

66 R. Alenda and N. Olivetti

semantics. However, it makes use of a family of modalities indexed on labels/objects
and needs specific rules for handling them. Moreover termination is obtained by
imposing more complex blocking restrictions. In [3], tableau calculi are provided
for both CSL− interpreted on both symmetric and non-symmetric minspaces. The
calculus for CSL− over non-symmetric minspaces is very similar to the one pre-
sented here in terms of rules; however the interpretation of the overall construction
is significantly different: in TCSL− a blocked finished tableau set provides a model
of the right type, in contrast in the calculus presented in [3] a blocked finished
tableau set is disregarded as it represents a potentially infinite model violating
the minspace property. Finally, in [11], a tableau algorithm is proposed to han-
dle a subset of QML comprising distance quantifiers of the form ∃≤a, where a is
positive integer (together with an interior and a closure operator). The method
proposed in [11] makes use of an elegant relational translation to handle distance
quantifiers with fixed parameters. However, it is not clear if a similar method can
be adapted to full QML and its modal counterpart CSL.

In further research we shall investigate if we can extend the semantic char-
acterization of CSL in terms of preferential models to other classes of models,
notably based on metric spaces. These results could be the starting point to
develop corresponding tableaux calculi.

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: Csl-lean: A theorem-prover for the logic of
comparative concept similarity. ENTCS 262, 3–16 (2010)

2. Alenda, R., Olivetti, N., Schwind, C.: Comparative concept similarity over
minspaces: Axiomatisation and tableaux calculus. In: Giese, M., Waaler, A. (eds.)
TABLEAUX 2009. LNCS, vol. 5607, pp. 17–31. Springer, Heidelberg (2009)

3. Alenda, R., Olivetti, N., Schwind, C., Tishkovsky, D.: Tableau calculi for csl over
minspaces. In: Proc. CSL 2010. LNCS. Springer, Heidelberg (to appear, 2010)

4. Goré, R., Nguyen, L.A.: Exptime tableaux with global caching for description log-
ics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.)
TABLEAUX2007.LNCS(LNAI),vol. 4548,pp.133–148.Springer,Heidelberg(2007)

5. Horrocks, I., Sattler, U.: A description logic with transitive and inverse roles and
role hierarchies. J. Logic Computation 9(3), 385–410 (1999)

6. Kurucz, A., Wolter, F., Zakharyaschev, M.: Modal logics for metric spaces: Open
problems. In: We Will Show Them!, vol. (2), pp. 193–108. College Publ. (2005)

7. Lewis, D.: Counterfactuals. Basil Blackwell Ltd., Malden (1973)
8. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: Comparative similar-

ity, tree automata, and diophantine equations. In: Sutcliffe, G., Voronkov, A. (eds.)
LPAR 2005. LNCS (LNAI), vol. 3835, pp. 651–665. Springer, Heidelberg (2005)

9. Sheremet, M., Tishkovsky, D., Wolter, F., Zakharyaschev, M.: A logic for concepts
and similarity. J. Log. Comput. 17(3), 415–452 (2007)

10. Sheremet, M., Wolter, F., Zakharyaschev, M.: A modal logic framework for rea-
soning about comparative distances and topology. Annals of Pure and Applied
Logic 161(4), 534–559 (2010)

11. Wolter, F., Zakharyaschev, M.: Reasoning about distances. In: Proceedings of IJ-
CAI 2003, pp. 1275–1280. Morgan Kaufmann, San Francisco (2003)

Extended Computation Tree Logic

Roland Axelsson1, Matthew Hague2, Stephan Kreutzer2,
Martin Lange3, and Markus Latte1

1 Department of Computer Science, Ludwig-Maximilians-Universität Munich
{roland.axelsson,markus.latte}@ifi.lmu.de

2 Oxford University Computing Laboratory
{Matthew.Hague,stephan.kreutzer}@comlab.ox.ac.uk

3 Department of Elect. Engineering and Computer Science, University of Kassel, Germany
martin.lange@uni-kassel.de

Abstract. We introduce a generic extension of the popular branching-time logic
CTL which refines the temporal until and release operators with formal languages.
For instance, a language may determine the moments along a path that an until
property may be fulfilled. We consider several classes of languages leading to
logics with different expressive power and complexity, whose importance is mo-
tivated by their use in model checking, synthesis, abstract interpretation, etc. We
show that even with context-free languages on the until operator the logic still
allows for polynomial time model-checking despite the significant increase in ex-
pressive power. This makes the logic a promising candidate for applications in
verification. In addition, we analyse the complexity of satisfiability and compare
the expressive power of these logics to CTL∗ and extensions of PDL.

1 Introduction

Computation Tree Logic (CTL) is one of the main logical formalisms for program spec-
ification and verification. It appeals because of its intuitive syntax and its very reason-
able complexities: model checking is PTIME-complete [9] and satisfiability checking is
EXPTIME-complete [12]. However, its expressive power is low.

CTL can be embedded into richer formalisms like CTL∗ [13] or the modalμ-calculus
Lμ [22]. This transition comes at a price. For CTL∗ the model checking problem in-
creases to PSPACE-complete [30] and satisfiability to 2EXPTIME-complete [14,33]. Fur-
thermore, CTL∗ cannot express regular properties like “something holds after an even
number of steps”. The modal μ-calculus is capable of doing so, and its complexities
compare reasonably to CTL: satisfiability is also EXPTIME-complete, and model check-
ing sits between PTIME and NP∩coNP. However, it is much worse from a pragmatic
perspective since its syntax is notoriously unintuitive.

Common to all these (and many other) formalisms is a restriction of their expressive
power to at most regular properties. This follows since they can be embedded into (the
bisimulation-invariant) fragment of monadic second-order logic on graphs. This restric-
tion yields some nice properties — like the finite model property and decidability —
but implies that these logics cannot be used for certain specification purposes.

For example, specifying the correctness of a communication protocol that uses a
buffer requires a non-underflow property: an item cannot be removed when the buffer is

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 67–81, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

68 R. Axelsson et al.

empty. The specification language must therefore be able to track the buffer’s size. If the
buffer is unbounded, as is usual in software, this property is non-regular and a regular
logic is unsuitable. If the buffer is bounded, the property is regular but depends on the
actual buffer capacity, requiring a different formula for each size. This is unnatural for
verification purposes. The formulas are also likely to be complex as they essentially have
to hard-code numbers up to the buffer length. To express such properties naturally one
has to step beyond regularity and consider logics of corresponding expressive power.

Also, consider program synthesis where, instead of verifying a program, one wants to
automatically generate a correct program (skeleton) from the specification. This prob-
lem is very much linked to satisfiability checking, except, if a model exists, one is
created and transformed into a program. This is known as controller synthesis and has
been done mainly based on satisfiability checking for the modal μ-calculus [4]. The
finite model property restricts the synthesization to finite state programs, i.e. hardware
and controllers, etc. In order to automatically synthesize software (e.g. recursive func-
tions) one has to consider non-regular logics.

Finally, consider the problem of verifying programs with infinite or very large state
spaces. A standard technique is to abstract the large state space into a smaller one [10].
This usually results in spurious traces which then have to be excluded in universal path
quantification on the small system. If the original system was infinite then the language
of spurious traces is typically non-regular and, again, a logic of suitable expressive
power is needed to increase precision [25].

In this paper we introduce a generic extension of CTL which provides a specification
formalism for such purposes. We refine the usual until operator (and its dual, the release
operator) with a formal language defining the moments at which the until property can
be fulfilled. This leads to a family of logics parametrised by a class of formal languages.
CTL is an ideal base logic because of its wide-spread use in actual verification appli-
cations. Since automata easily allow for an unambiguous measure of input size, we
present the precise definition of our logics in terms of classes of automata instead of
formal languages. However, we do not promote the use of automata in temporal formu-
las. For pragmatic considerations it may be sensible to allow more intuitive descriptions
of formal languages such as Backus-Naur-Form or regular expressions.

As a main result we extend CTL using context-free languages, significantly increas-
ing expressive power, while retaining polynomial time model-checking. Hence, we ob-
tain a good balance between expressiveness — as non-regular properties become ex-
pressible — and low model-checking complexity, which makes this logic very promis-
ing for applications in verification. We also study model-checking for the new logics
against infinite state systems represented by (visibly) pushdown automata, as they arise
in software model-checking, and obtain tractability results for these. For satisfiability
testing, equipping the path quantifiers with visibly pushdown languages retains decid-
ability. However, the complexity increases from EXPTIME for CTL to 3EXPTIME for this
new logic.

The paper is organised as follows. We formally introduce the logics and give an
example demonstrating their expressive power in Section 2. Section 3 discusses related
formalisms. Section 4 presents results on the expressive power of these logics, and
Section 5 and 6 contain results on the complexities of satisfiability and model checking.

Extended Computation Tree Logic 69

Finally, Section 7 concludes with remarks on further work. Due to space restrictions this
paper contains no detailed proofs in its main part. A full version with all proof details
is available online at http://arxiv.org/abs/1006.3709.

2 Extended Computation Tree Logic

Let P = {p, q, . . .} be a countably infinite set of propositions and Σ be a finite set of
action names. A labeled transition system (LTS) is a T = (S,−→, �), where S is a set of
states,−→ ⊆ S×Σ×S and � : S → 2P . We usually write s a−→ t instead of (s, a, t) ∈ −→.
A path is a maximal sequence of alternating states and actions π = s0, a1, s1, a2, s2, . . .,
s.t. si

ai+1−−−→ si+1 for all i ∈ N. We also write a path as s0
a1−−→ s1

a2−−→ s2 Maximal-
ity means that the path is either infinite or it ends in a state sn s.t. there are no a ∈ Σ
and t ∈ S with sn

a−→ t. In the latter case, the domain dom(π) of π is {0, . . . , n}. And
otherwise dom(π):=N.

We focus on automata classes between deterministic finite automata (DFA) and non-
deterministic pushdown automata (PDA), with the classes of nondeterministic finite
automata (NFA), (non-)deterministic visibly pushdown automata (DVPA/VPA) [2] and
deterministic pushdown automata (DPDA) in between. Beyond PDA one is often faced
with undecidability. Note that some of these automata classes define the same class of
languages. However, translations from nondeterministic to deterministic automata usu-
ally involve an exponential blow-up. For complexity estimations it is therefore advisable
to consider such classes separately.

We call a class A of automata reasonable if it contains automata recognising Σ and
Σ∗ and is closed under equivalences, i.e. if A ∈ A and L(A) = L(B) and B is of the
same type then B ∈ A. L(A) denotes the language accepted byA.

Let A,B be two reasonable classes of finite-word automata over the alphabet Σ.
Formulas of Extended Computation Tree Logic over A and B (CTL[A,B]) are given
by the following grammar, where A ∈ A, B ∈ B and q ∈ P .

ϕ ::= q | ϕ ∨ ϕ | ¬ϕ | E(ϕUAϕ) | E(ϕRBϕ)

Formulas are interpreted over states of a transition system T = (S,−→, �) in the follow-
ing way.

– T , s |= q iff q ∈ �(s)
– T , s |= ϕ ∨ ψ iff T , s |= ϕ or T , s |= ψ
– T , s |= ¬ϕ iff T , s �|= ϕ
– T , s |= E(ϕUAψ) iff there exists a path π = s0, a1, s1, . . . with s0 = s and ∃n ∈

dom(π) s.t. a1 . . . an ∈ L(A) and T , sn |= ψ and ∀i < n : T , si |= ϕ.
– T , s |= E(ϕRAψ) iff there exists a path π = s0, a1, s1, . . . with s0 = s and for all
n ∈ dom(π): a1 . . . an �∈ L(A) or T , sn |= ψ or ∃i < n s.th. T , si |= ϕ.

As usual, further syntactical constructs, like other boolean operators, are introduced as
abbreviations. We define A(ϕUAψ) := ¬E(¬ϕRA¬ψ), A(ϕRAψ) := ¬E(¬ϕUA¬ψ), as
well as QFAϕ := Q(ttUAϕ), QGAϕ := Q(ffRAϕ) for Q ∈ {E, A}. For presentation,
we also use languages L instead of automata in the temporal operators. For instance,

http://arxiv.org/abs/1006.3709

70 R. Axelsson et al.

EGLϕ is EGAϕ for someAwith L(A) = L. This also allows us to easily define the orig-
inal CTL operators:QXϕ := QFΣϕ, Q(ϕUψ) := Q(ϕUΣ∗

ψ), Q(ϕRψ) := Q(ϕRΣ∗
ψ),

etc. The size of a formula ϕ is the number of its unique subformulas plus the sum of the
sizes of all automata in ϕ, with the usual measure of size of an automaton.

The distinction between A and B is motivated by the complexity analysis. For instance,
when model checking E(ϕUAψ) the existential quantifications over system paths and
runs ofA commute and we can guess a path and an accepting run in a step-wise fashion.
On the other hand, when checking E(ϕRAψ) the existential quantification on paths and
universal quantification on runs (by R — “on all prefixes . . . ”) does not commute unless
we determiniseA, which is not always possible or may lead to exponential costs.

However, A and B can also be the same and in this case we denote the logic by
CTL[A]. Equally, by EF[A], resp. EG[B] we denote the fragments of CTL[A,B] built
from atomic propositions, boolean operators and the temporal operators EFAϕ, resp.
EGBϕ only. Since the expressive power of the logic only depends on its class of lan-
guages rather than automata, we will write CTL[REG], CTL[VPL], CTL[CFL], etc.
to denote the logic over regular, visibly pushdown, and context-free languages, repre-
sented by any type of automaton. We close this section with a CTL[VPL] example
which demonstrates the buffer-underflow property discussed in the introduction.

Example. Consider a concurrent producer/consumer scenario over a shared buffer. If
the buffer is empty, the consumer process requests a new resource and halts until the
producer delivers a new one. Any parallel execution of these processes should obey
a non-underflow property (NBU): at any moment, the number of produce actions is
sufficient for the number of consumes.

If the buffer is realised in software it is reasonable to assume that it is unbounded,
and thus, the NBU property becomes non-regular. Let Σ = {p, c, r}, where p stands
for production of a buffer object, c for consume and r for request. Consider the VPL
L = {w ∈ Σ∗ | |w|c = |w|p and |v|c ≤ |v|p for all v ! w}, where ! denotes the
prefix relation. We express the requirements in CTL[VPL].

1. AGEXptt : “at any time it is possible to produce an object”
2. AGL(AXcff ∧ EXrtt): “whenever the buffer is empty, it is impossible to consume

and possible to request”
3. AGL(EXctt ∧ AXrff): “whenever the buffer is non-empty it is possible to consume

and impossible to request”
4. EFEGc∗ff: “at some point there is a consume-only path”

Combining the first three properties yields a specification of the scenario described
above and states that a request can only be made if the buffer is empty. For the third
properly, recall that VPL are closed under complement [2]. Every satisfying model
gives a raw implementation of the main characteristics of the system. Note that if it is
always possible to produce and possible to consume iff the buffer is not empty, then
a straight-forward model with self-loops p, c and r does not satisfy the specification.
Instead, we require a model with infinitely many different p transitions. If we strengthen
the specification by adding the fourth formula, it becomes unsatisfiable.

Extended Computation Tree Logic 71

3 Related Formalisms

Several suggestions to integrate formal languages into temporal logics have been made
so far. The goal is usually to extend the expressive power of a logic whilst retaining its
intuitive syntax. The most classic example is Propositional Dynamic Logic (PDL) [17]
which extends Modal Logic with regular expressions.

Similar extensions — sometimes using finite automata instead of regular expressions
— of Temporal Logics have been investigated a long time ago. The main purpose has
usually been the aim to increase the expressive power of seemingly weak specifica-
tion formalisms in order to obtain at least ω-regular expressivity, but no efforts have
been made at that point in order to go beyond that. This also explains why such exten-
sions were mainly based on LTL [37,34,23,20], i.e. not leaving the world of linear-time
formalisms.

The need for extensions beyond the use of pure temporal operators is also witnessed
by the industry-standard Property Specification Language (PSL) [1] and its predecessor
ForSpec [3]. However, ForSpec is a linear-time formalism and here we are concerned
with branching-time. PSL does contain branching-time operators but they have been
introduced for backwards-compatibility only.

On the other hand, some effort has been made with regards to extensions of branch-
ing-time logics like CTL [5,7,27]. These all refine the temporal operators of this logic
with regular languages in some form.

Thus, while much effort has been put into regular extensions of standard temporal
logics, little is known about extensions using richer classes of formal languages. We are
only aware of extensions of PDL by context-free languages [19] or visibly pushdown
languages [26]. The main yardstick for measuring the expressive power of CTL[A,B]
will be therefore be PDL and one of its variants, namely PDL with the Δ-construct and
tests, ΔPDL?[A], [17,31]. Note: for a class A of automata, CTL[A] is a logic using
such automata on finite words only, whereas ΔPDL?[A] uses those and their Büchi-
variants on infinite words. In the following we will use some of the known results about
ΔPDL?[A]. For a detailed technical definition of its syntax and semantics, we refer to
the literature on this logic [18].

There are also temporal logics which obtain higher expressive power through other
means. These are usually extensions ofLμ like the Modal Iteration Calculus [11] which
uses inflationary fixpoint constructs or Higher-Order Fixpoint Logic [35] which uses
higher-order predicate transformers. While most regular extensions of standard tempo-
ral logics like CTL and LTL can easily be embedded into Lμ, little is known about the
relationship between richer extensions of these logics.

4 Expressivity and Model Theory

We write L ≤f L′ with f ∈ {lin, exp} to state that for every formula ϕ ∈ L there is an
equivalent ψ ∈ L′ with at most a linear or exponential (respectively) blow up in size.
We use L
f L′ to denote that such a translation exists, but there are formulas of L′
which are not equivalent to any formula in L. Also, we write L ≡f L′ if L ≤f L′ and
L′ ≤f L. We will drop the index if a potential blow-up is of no concern.

72 R. Axelsson et al.

CTL∗

ΔPDL?[REG]

ΔPDL?[VPL]

ΔPDL?[DCFL]

PDL[REG]

PDL[VPL]

PDL[CFL]

PDL[DCFL]

EF[REG]

EF[VPL]

EF[CFL]

EF[DCFL]

EF

CTL[REG]

CTL[VPL]

CTL[CFL]

CTL[DCFL]

CTL

EG[REG]

EG[VPL]

EG[CFL]

EG[DCFL]

EG

Lμ

ΔPDL?[CFL]

Fig. 1. The expressive power of Extended Computation Tree Logic

A detailed picture of the expressivity results regarding the most important CTL[A]
logics is given in Fig. 1. A (dashed) line moving upwards indicates (strict) inclusion
w.r.t. expressive power. A horizontal continuous line states expressive equivalence. The
following proposition collects some simple observations.

Proposition 4.1. 1. For all A,B: CTL
lin CTL[A,B].
2. For all A,A′,B,B′: if A ≤ A′ and B ≤ B′ then CTL[A,B] ≤ CTL[A’,B’].

CTL[A] extends PDL[A] since the latter is just a syntactic variation of the EF[A] frag-
ment. On the other hand, CTL[A] can — in certain cases — be embedded into PDL[A]’s
extensionΔPDL?[A]. This, however, requires a transformation from automata on finite
words to automata on infinite words which shows that these two formalisms are concep-
tually different.

Theorem 4.2. 1. For all A: PDL[A] ≡lin EF[A].
2. For all A,B: EF[A]
lin CTL[A,B].
3. For all A,B: CTL[A,B] ≤lin ΔPDL?[A ∪ B], if B is a class of deterministic

automata.
4. ΔPDL?[PDA] ≡lin ΔPDL?[DPDA].

Note that CFL does not admit deterministic automata. Hence, part 3 is not applicable
in that case. If for some classes A,B the inclusion in part 3 holds, then it must be
strict. This is because fairness is not expressible in CTL[A] regardless of what A is, as
demonstrated by the following.

Theorem 4.3. The CTL∗-formula EGFq expressing fairness is not equivalent to any
CTL[A, B] formula, for any A, B.

Fairness can be expressed by ΔAfair, whereAfair is the standard Büchi automaton over
some alphabet containing a test predicate q? that recognises the language of all infinite
paths on which infinitely many states satisfy q.

Extended Computation Tree Logic 73

Corollary 4.4. 1. For all A,B: CTL∗ �≤ CTL[A,B].
2. There are no A,B such that any CTL[A,B] is equivalent to the ΔPDL?[REG]

formula ΔAfair.

At least in the case of CFLs, the premise to part 3 of Thm. 4.2 cannot be dropped.
Indeed, the formula EGLp is not expressible as a ΔPDL?[CFL]-formula where L is the
language of palindromes.

Theorem 4.5. CTL[CFL] �≤ ΔPDL?[CFL].

Finally, we provide some model-theoretic results which will also allow us to sepa-
rate some of the logics with respect to expressive power. Not surprisingly, CTL[REG]
has the finite model property which is a consequence of its embedding into the logic
ΔPDL?[REG]. It is not hard to bound the size of such a model given thatΔPDL?[REG]
has the small model property of exponential size.

Proposition 4.6. Every satisfiable CTL[REG] formula has a finite model. In fact, ev-
ery satisfiable CTL[NFA,DFA], resp. CTL[NFA,NFA] formula has a model of at most
exponential, resp. double exponential size.

We show now that the bound for CTL[NFA] cannot be improved.

Theorem 4.7. There is a sequence of satisfiable CTL[NFA]-formulas (ψn)n∈N such
that the size of any model of ψn is at least doubly exponential in |ψn|.
The next theorem provides information about the type of models we can expect. This is
useful for synthesis purposes.

Theorem 4.8. 1. There is a satisfiable CTL[VPL] formula which does not have a
finite model.

2. There is a satisfiable CTL[DCFL] formula which has no pushdown system as a
model.

3. Every satisfiable CTL[VPL] formula has a visibly pushdown system as a model.

Proof (Sketch of Part 3). The satisfiability problem for CTL[VPL] can be translated
into that of a non-deterministic Büchi visibly pushdown tree automaton (VPTA). An
unrolling of this automaton does not necessarily lead to the claimed visibly pushdown
system. First, such a system might admit paths which violate the Büchi condition.
And secondly, the lack of determinism combines successors of different transitions
undesirably. However, Thm. 4.2 Part 3 states that CTL[VPL] can be translated into
ΔPDL?[VPL] whose satisfiability problem reduces to the emptiness problem for stair-
parity VPTA [26]. There exists an exponential reduction from stair-parity VPTA to
parity tree automata (PTA) which preserves satisfiability. The emptiness test is con-
structive in the sense that for every PTA accepting a non-empty language there exists a
finite transition system which satisfies this PTA. This system can be translated back into
a visibly pushdown system satisfying the given CTL[VPL]- or ΔPDL?[VPL]-formula.
Implementing this idea, however, requires some care and is technically involved. ��
Putting Thm. 4.5, Prop. 4.6 and Thm. 4.8 together we obtain the following separations.
Note that the first three inequalities of the corollary can also be obtained from language
theoretical observations.

Corollary 4.9. CTL[REG]
 CTL[VPL]
 CTL[DCFL]
 CTL[CFL].

74 R. Axelsson et al.

5 Satisfiability

In this section we study the complexity of the satisfiability problem for a variety of
CTL[A,B] logics. The presented lower and upper bounds, as shown in Fig. 2, also
yield sharp bounds for EF[] and CTL[].

Theorem 5.1. The satisfiability problems for CTL[DPDA,] and for CTL[, DPDA]
are undecidable.

Proof. Harel et al. [19] show that PDL over regular programs with the one additional
language L:={anban | n ∈ N} is undecidable. Since L ∈ DCFL ⊇ REG, the logic
EF[DPDA] is undecidable and hence so is CTL[DPDA,]. As for the second claim, the
undecidable intersection problem of two DPDA, say A and B, can be reduced to the
satisfiability problem of the CTL[, DPDA]-formula AFAAXff ∧ AFBAXff. Note that
a single state with no outgoing transitions still has outgoing paths labeled with ε. This
formula is therefore only satisfiable if L(A) ∩ L(B) �= ∅. ��

Theorem 5.2. The upper bounds for the satisfiability problem are as in Fig. 2.

Proof. By Thm. 4.2(3), CTL[A, B] can be translated into ΔPDL?[A∪B] with a blow-
up that is determined by the worst-case complexity of transforming an arbitrary A-
automaton into a deterministic one. The claim follows using that REG ⊆ VPL and that
the satisfiability problem for ΔPDL?[REG] is in EXPTIME [15] and for ΔPDL?[VPL]
is in 2EXPTIME [26]. ��

The hardness results are more technically involved.

Theorem 5.3. 1. CTL[DFA, NFA] and CTL[, DVPA] are 2EXPTIME-hard.
2. CTL[DVPA, NFA] and CTL[, DVPA ∪ NFA] are 3EXPTIME-hard.

Corollary 5.4. The lower bounds for the satisfiability problem are as in Fig. 2.

Proof. As CTL is EXPTIME-hard [12], so is CTL[,]. The 2EXPTIME lower bound for
PDL[DVPA] [26] is also a lower bound for CTL[DVPA,] due to Thm. 4.2. Finally,
Thm. 5.3 and Prop. 4.1(2) complete the picture. ��

In the remaining part of this section we sketch the proof of Thm. 5.3. For each of the
four lower bounds, we reduce from the word problem of an alternating Turing machine
T with an exponentially or doubly exponentially, resp., space bound. These problems
are 2EXPTIME-hard and 3EXPTIME-hard [8], respectively.

A run of such a machine can be depicted as a tree. Every node stands for a con-
figuration — that is, for simplicity, a bounded sequence of cells. An universal choice
corresponds to a binary branching node, and an existential choice to an unary node. We
aim to construct a CTL[,]-formula ϕ such that each of its tree-like models resembles
a tree expressing a successful run of T on a given input. Thereto, the configurations are
linearized — an edge becomes a chain of edges, in the intended model, and a node rep-
resents a single cell. The content of each cell is encoded as a proposition. However, the
linearization separates neighboring cells of consecutive configurations. Between these
cells, certain constraints have to hold. So, the actual challenge for the reduction is that ϕ

Extended Computation Tree Logic 75

DFA NFA DVPA VPA DPDA, PDA

DFA, NFA EXPTIME 2EXPTIME 2EXPTIME 3EXPTIME undec.
DVPA, VPA 2EXPTIME 3EXPTIME 2EXPTIME 3EXPTIME undec.
DPDA, PDA undec. undec. undec. undec. undec.

Fig. 2. The time complexities of checking satisfiability for a CTL[A,B] formula. Entries denote
completeness results. The rows contain different values for A as the results are independent of
whether or not the automata from this class are deterministic.

must bridge this exponential or doubly exponential, resp., gap while be of a polynomial
size in n, i.e. in the input size to T .

We sketch the construction for CTL[DFA, NFA]. The exponential space bound can
be controlled by a binary counter. Hence, the constraint applies only to consecutive
positions with the same counter value. To bridge between two such positions, we use a
proof obligation of the form AUA for a NFA A. In a tree model, we say that a node has
a proof obligation for an AU-formula iff that formula is forced to hold at an ancestor but
is not yet satisfied along the path to the said node. The key idea is that we can replace
A by an equivalent automaton D without changing the models of ϕ. In our setting, D
is the deterministic automaton resulting from the powerset-construction [28]. In other
words, we simulate an exponentially sized automaton. Here, the mentioned obligation
reflects the value of the counter and the expected content of a cell.

One of the building blocks of ϕ programs the obligation with the current value
of the counter. Thereto, we encode the counter as a chain of labels in the model, say
(bitbi

i)1≤i≤n where bi ∈ B is the value of the ith bit. The automaton A contains
states qb

i for all 1 ≤ i ≤ n and b ∈ B. Initially, it is ensured that D is in the state
{qb

i | 1 ≤ i ≤ n, b ∈ B}. Informally, this set holds all possibilities for the values of
each bit. In A, any qb

i has self-loops for any label except for bit¬b
i . Hence, a traver-

sal of a chain eliminates invalid bit assignments from the subset and brings D into the
state {qbi

i | 1 ≤ i ≤ n} which characterizes the counter for which the chain stands.
Finally for matching, a similar construction separates proof obligations depending on
whether or not they match the counter: unmatched obligations will be satisfied trivially,
and matching ones are ensured to be satisfied only if the expected cell is the current one.

For the other parts involving DVPA, again, the constructed formula ϕ shall imitate
a successful tree of T on the input. The space bound can be controlled by a counter
with appropriate domain. The constraints between cells of consecutive configurations,
however, are implemented differently. We use a deterministic VPA to push all cells
along the whole branch of the run on the stack — configuration by configuration. At
the end, we successively take the cells from the stack and branch. Along each branch,
we use the counter to remove exponential or doubly exponential, resp., many elements
from stack to access the cell at the same position in the previous configuration. So, as
a main component of ϕ we use either AUAAXff or AGAff for some VPA A. In the case
of a doubly exponential counter, the technique explained for CTL[DFA, NFA] can be
applied. But this time, a proof obligation expresses a bit number and its value.

76 R. Axelsson et al.

6 Model Checking

In this section we consider model-checking of CTL[A, B] against finite and infinite
transition systems, obtained as the transition graphs of (visibly) pushdown automata.
Note that undecidability is quickly obtained beyond that. For instance model checking
the genuine CTL fragment EF is undecidable over the class of Petri nets, and for EG
model checking becomes undecidable of the class of Very Basic Parallel Processes [16].

6.1 Finite State Systems

The following table summarises the complexities of model checking CTL[A,B] in finite
transition systems in terms of completeness. Surprisingly, despite its greatly increased
expressive power compared to CTL, CTL[PDA,DPDA] remains in PTIME. In general, it
is the class B which determines the complexity. The table therefore only contains one
row (A) and several columns (B). Note that PDA covers everything down to DFA while
DPDA covers DVPA and DFA.

DPDA NFA VPA PDA

PDA PTIME PSPACE EXPTIME undec.

Theorem 6.1. Model checking of finite state systems against CTL[PDA,DPDA] is in
PTIME, CTL[PDA,VPA] is in EXPTIME, and CTL[PDA,NFA] is in PSPACE.

Proof (Sketch). To obtain a PTIME algorithm for CTL[PDA,DPDA] we observe that —
as for plain CTL — we can model check a CTL[A,B] formula bottom-up for any A
and B. Starting with the atomic propositions one computes for all subformulas the set
of satisfying states, then regards the subformula as a proposition. Hence, it suffices to
give algorithms for E(xUAy) and E(xRBy) for propositions x and y.

We prove the case for E(xUAy) by reduction to non-emptiness of PDA which is well-
known to be solvable in PTIME. Let T =(S,−→, �) be an LTS andA=(Q,Σ, Γ, δ, q0, F).
We construct for every s ∈ S a PDA AT=(Q× S, Σ, Γ, δ′, (q0, s), F ′), where

F ′:={(q, s) | q ∈ F and y ∈ �(s)} and

δ′((q, s), a, γ):={(q′, s′) | q′ ∈ δ(q, a, γ) and s a−→ s′ and x ∈ �(s)}.

Clearly, if L(AT) �= ∅ then there exist simultaneously a word w ∈ L(A) and a path π
in T starting at s and labeled with w, s.t. x holds everywhere along π except for the last
state in which y holds. Note that this takes time O(|S| · |A| · |T |).

The same upper bound can be achieved for ER-formulas. However, they require the
automaton to be deterministic. This is due to the quantifier alternation in the release
operator, as discussed in Sect. 2.

We show containment in PTIME by a reduction to the problem of model checking
a fixed LTL formula on a PDS. Let T and A be defined as above except that A is
deterministic. We construct a PDS TA = (Q × S ∪ {g, b}, Γ,Δ, �′), where �′ extends
� by �′(b) = dead for a fresh proposition dead. Intuitively, g represents “good” and

Extended Computation Tree Logic 77

b “bad” states, i.e. dead-end states, in which E(xRAy) has been fulfilled or violated,
respectively. Furthermore,Δ contains the following transition rules:

((q, s), γ) ↪→

⎧⎪⎪⎨⎪⎪⎩
(g, ε) if x ∈ �′(s) and (q ∈ F implies y ∈ �′(s))
(b, ε) if q ∈ F and y /∈ �′(s)
((q′, s′), w) if none of the above match and there ex. a ∈ Σ, s.t.

s a−→ s′ and (q′, w) ∈ δ(q, a, γ) for some γ ∈ Γ,w ∈ Γ ∗

Note that |TA| = O(|T | · |A|). Now consider the LTL formula Fdead. It is not hard
to show that s �|=T E(xRAy) iff ((q0, s), ε) |=TA Fdead. The fact that model checking
a fixed LTL formula over a PDS is in PTIME [6] completes the proof.

To show that CTL[PDA,NFA] is in PSPACE we reduce E(xRBy) to the problem of
checking a fixed LTL formula against a determinisation of the NFA B. This is a repeated
reachability problem over the product of a Büchi automaton and a determinisation of
the NFA. Since we can determinise by a subset construction, we can use Savitch’s
algorithm [29] and an on-the-fly computation of the edge relation. Because Savitch’s
algorithm requires logarithmic space over an exponential graph, the complete algorithm
runs in PSPACE.

Using the fact that every VPA can be determinised at a possibly exponentially cost [2],
we obtain an algorithm for CTL[PDA,VPA]. ��

We now consider the lower bounds.

Theorem 6.2. For fixed finite state transition systems of size 1, model checking for
EF[VPA] is PTIME-hard, EG[NFA] is PSPACE-hard, EG[VPA] is EXPTIME-hard, and
EG[PDA] is undecidable.

Proof (Sketch). It is known that model checking CTL is PTIME-complete. Thus, the
model checking problems for all logics between CTL and CTL[CFL] are PTIME-hard.
However, for EF[VPL] it is already possible to strengthen the result and prove PTIME-
hardness of the expression complexity, i.e. the complexity of model checking on a fixed
transition system. The key ingredient is the fact that the emptiness problem for VPA is
PTIME-hard.1

Model checking the fragment EG[A] is harder, namely PSPACE-hard for the class
REG already. The proof is by a reduction from the n-tiling problem [32] resembling
the halting problem of a nondeterministic linear-space bounded Turing Machine. Two
aspects are worth noting. First, this result — as opposed to the one for the fragment
EF[A] — heavily depends on the fact that A is a class of nondeterministic automata.
For A = DFA for instance, there is no such lower bound unless PSPACE = PTIME. The
other aspect is that the formulas constructed in this reduction are of the form EGAff,
no boolean operators, no multiple temporal operators, and no atomic propositions are
needed.

The principle is that tilings can be represented by infinite words over the alphabet
of all tiles. Unsuccessful tilings must have a finite prefix that cannot be extended to be-
come successful. We construct an automatonA which recognises unsuccessful prefixes.

1 This can be proved in just the same way as PTIME-hardness of the emptiness problem for PDA.

78 R. Axelsson et al.

Every possible tiling is represented by a path in a one-state transition system with uni-
versal transition relation. This state satisfies the formula EGAff iff a successful tiling is
possible.

However, if we increase the language class to CFL we are able to encode an undecid-
able tiling problem. The octant tiling problem asks for a successful tiling of the plane
which has successively longer rows [32]. Since the length of the rows is unbounded, we
need non-determinism and the unbounded memory of a PDA to recognise unsuccessful
prefixes.

The situation is better for VPA. When used in EF-operators, visibly pushdown lan-
guages are not worse than regular languages, even for nondeterministic automata. This
even extends to the whole of all context-free languages.

In EG-operators VPA increase the complexity of the model checking problem even
further in comparison to NFA to EXPTIME. We reduce from the halting problem for
alternating linear-space bounded Turing machines. An accepting computation of the
machine can be considered a finite tree. We encode a depth-first search of the tree as a
word and construct a VPA A accepting all the words that do not represent an accepting
computation. As in previous proofs, one then takes a one-state transition system with
universal transition relation and formula EGAff. ��

6.2 Visibly Pushdown Systems

We consider model checking over an infinite transition system represented by a visibly
pushdown automaton. The following summarises the complexity results in terms of
completeness.

DFA,DVPA NFA,VPA DPDA

DFA . . . VPA EXPTIME 2EXPTIME undec.

Theorem 6.3. Model checking visibly pushdown systems against CTL[VPA,DVPA] is
in EXPTIME, whereas against CTL[VPA,VPA] it is in 2EXPTIME.

Proof (sketch). To obtain the first result, we follow the game approach hinted at in
Section 2 (hence the restriction to DVPA). We reduce the model checking problem
to a Büchi game played over a PDS, which is essentially the product of the formula
(including its automata) and the model. That is, for example, from a state (s, ϕ1 ∧ ϕ2)
the opponent can move to (s, ϕ1) or (s, ϕ2) — the strategy is to pick the subformula
that is not satisfied. The stack alphabet is also a product of the model stack and the
formula VPA stack. For a temporal operator augmented with a VPA, the formula VPA
component is set to ⊥ to mark its bottom of stack. Then the automaton is simulated
step-wise with the model. At each step the appropriate player can decide whether to
attempt to satisfy a subformula, or continue simulating a path and run. Since deciding
these games is EXPTIME [36], we get the required result. The second result follows by
determinisation of the VPA. ��

Theorem 6.4. Model checking visibly pushdown systems against CTL[DFA] is hard
for EXPTIME, EG[NFA] is hard for 2EXPTIME, and EF[DPDA] and EG[DPDA] are un-
decidable.

Extended Computation Tree Logic 79

Proof (sketch). EXPTIME-hardness follows immediately from the EXPTIME-hardness of
CTL over pushdown systems [21] and that CTL is insensitive to the transition labels.

2EXPTIME-hardness is similar to Bozzelli’s 2EXPTIME-hardness for CTL∗ [24]. This
is an intricate encoding of the runs of an alternating EXPSPACE Turing machine. The
difficulty lies in checking the consistency of a guessed work tape of exponential length.
We are able to replace the required CTL∗ subformula with a formula of the form EGA,
giving us the result.

The undecidability results are via encodings of a two counter machine. Intuitively,
the visibly pushdown system simulates the machine, keeping one counter in its stack. It
outputs the operations on the second counter (appropriately marked to meet the visibly
condition) and the DPDA checks for consistency. In this way we can simulate two
counters. ��

6.3 Pushdown Systems

For pushdown systems we have the following complexity-theoretic completeness re-
sults.

DFA NFA DVPA

DFA/ NFA EXPTIME 2EXPTIME undec.

Theorem 6.5. Model checking pushdown systems against CTL[NFA,DFA] is in EXP-

TIME, against CTL[NFA,NFA] it is in 2EXPTIME, against EF[DVPA] and EG[DVPA] it
is undecidable.

Proof (sketch). The decidability results are similar to the case of visibly pushdown
systems; we simply drop the visibly restriction. The lower bounds which do not follow
from the results on VPA can be obtained by a reduction from two counter machines. ��

7 Conclusion and Further Work

To the best of our knowledge, this is the first work considering a parametric extension
of CTL by arbitrary classes of formal languages characterising the complexities of satis-
fiability and model checking as well as the expressive power and model-theoretic prop-
erties of the resulting logics in accordance to the classes of languages. The results show
that some of the logics, in particular CTL[VPL] may be useful in program verification
because of the combination of an intuitive syntax with reasonably low complexities of
the corresponding decision problems.

Some questions still remain to be answered. First, it is open whether the relationships
are strict between logics which are connected by solid vertical lines in Fig. 1. Moreover,
the presented separations are rather coarse. Hence, it is desirable to have a generic
approach to separate logics, e.g. CTL[A]
 CTL[B] whenever A is a “reasonable”
subset of B.

It is an obvious task for further work to consider CTL∗ or CTL+ as the base for
similar extensions, and to characterise the expressive power and the complexities of the
resulting logics.

80 R. Axelsson et al.

References

1. Inc. Accellera Organization. Formal semantics of Accellera property specification language.
In: Appendix B (2004), http://www.eda.org/vfv/docs/PSL-v1.1.pdf

2. Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proc. 36th Ann. ACM Symp. on
Theory of Computing, STOC 2004, pp. 202–211 (2004)

3. Armoni, R., Fix, L., Flaisher, A., Gerth, R., Ginsburg, B., Kanza, T., Landver, A., Mador-
Haim, S., Singerman, E., Tiemeyer, A., Vardi, M.Y., Zbar, Y.: The ForSpec temporal logic:
A new temporal property specification language. In: Katoen, J.-P., Stevens, P. (eds.) TACAS
2002. LNCS, vol. 2280, pp. 296–311. Springer, Heidelberg (2002)

4. Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with partial
observation. Theor. Comput. Sci. 303(1), 7–34 (2003)

5. Beer, I., Ben-David, S., Landver, A.: On-the-fly model checking of RCTL formulas. In: Y.
Vardi, M. (ed.) CAV 1998. LNCS, vol. 1427, pp. 184–194. Springer, Heidelberg (1998)

6. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Applica-
tion to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS,
vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

7. Brázdil, T., Cerná, I.: Model checking of regCTL. Computers and Artificial Intelligence 25(1)
(2006)

8. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM 28(1), 114–
133 (1981)

9. Clarke, E.M., Emerson, E.A.: Synthesis of synchronization skeletons for branching time tem-
poral logic. In: Kozen, D. (ed.) Logic of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer,
Heidelberg (1982)

10. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. Journal of the ACM 50(5), 752–794 (2003)

11. Dawar, A., Grädel, E., Kreutzer, S.: Inflationary fixed points in modal logics. ACM Transac-
tions on Computational Logic 5(2), 282–315 (2004)

12. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic
of branching time. Journal of Computer and System Sciences 30, 1–24 (1985)

13. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branching versus
linear time temporal logic. Journal of the ACM 33(1), 151–178 (1986)

14. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. SIAM
Journal on Computing 29(1), 132–158 (2000)

15. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs. In:
Annual IEEE Symposium on Foundations of Computer Science, pp. 328–337 (1988)

16. Esparza, J.: Decidability of model-checking for infinite-state concurrent systems. Acta Infor-
matica 34, 85–107 (1997)

17. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences 18(2), 194–211 (1979)

18. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
19. Harel, D., Pnueli, A., Stavi, J.: Propositional dynamic logic of nonregular programs. Journal

of Computer and System Sciences 26(2), 222–243 (1983)
20. Henriksen, J.G., Thiagarajan, P.S.: Dynamic linear time temporal logic. Annals of Pure and

Applied Logic 96(1-3), 187–207 (1999)
21. Walukiewicz, I.: Model checking CTL properties of pushdown systems. In: Kapoor, S.,

Prasad, S. (eds.) FSTTCS 2000. LNCS, vol. 1974, pp. 127–138. Springer, Heidelberg (2000)
22. Kozen, D.: Results on the propositional μ-calculus. TCS 27, 333–354 (1983)
23. Kupferman, O., Piterman, N., Vardi, M.Y.: Extended temporal logic revisited. In: Larsen,

K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 519–535. Springer, Heidel-
berg (2001)

http://www.eda.org/vfv/docs/PSL-v1.1.pdf

Extended Computation Tree Logic 81

24. Bozzelli, L.: Complexity results on branching-time pushdown model checking. Theor. Com-
put. Sci. 379(1-2), 286–297 (2007)

25. Lange, M., Latte, M.: A CTL-based logic for program abstractions. In: de Queiroz, R. (ed.)
WoLLIC 2010. LNCS (LNAI), vol. 6188, pp. 19–33. Springer, Heidelberg (2010)

26. Löding, C., Lutz, C., Serre, O.: Propositional dynamic logic with recursive programs. J. Log.
Algebr. Program. 73(1-2), 51–69 (2007)

27. Mateescu, R., Monteiro, P.T., Dumas, E., de Jong, H.: Computation tree regular logic for
genetic regulatory networks. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M.
(eds.) ATVA 2008. LNCS, vol. 5311, pp. 48–63. Springer, Heidelberg (2008)

28. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal 2(3), 115–
125 (1959)

29. Savitch, W.J.: Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences 4, 177–192 (1970)

30. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. Journal of
the Association for Computing Machinery 32(3), 733–749 (1985)

31. Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable.
Information and Control 54(1/2), 121–141 (1982)

32. van Emde Boas, P.: The convenience of tilings. In: Sorbi, A. (ed.) Complexity, Logic, and
Recursion Theory. Lecture notes in pure and applied mathematics, vol. 187, pp. 331–363.
Marcel Dekker, Inc., New York (1997)

33. Vardi, M.Y., Stockmeyer, L.: Improved upper and lower bounds for modal logics of programs.
In: Proc. 17th Symp. on Theory of Computing, STOC 1985, Baltimore, USA, pp. 240–251.
ACM, New York (1985)

34. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and Computa-
tion 115(1), 1–37 (1994)

35. Viswanathan, M., Viswanathan, R.: A higher order modal fixed point logic. In: Gardner, P.,
Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 512–528. Springer, Heidelberg
(2004)

36. Walukiewicz, I.: Pushdown processes: Games and model-checking. Information and Compu-
tation 164(2), 234–263 (2001)

37. Wolper, P.: Temporal logic can be more expressive. In: SFCS 1981: Proceedings of the 22nd
Annual Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 340–
348. IEEE Computer Society, Los Alamitos (1981)

Using Causal Relationships to Deal with the
Ramification Problem in Action Formalisms

Based on Description Logics

Franz Baader, Marcel Lippmann, and Hongkai Liu

Theoretical Computer Science, TU Dresden
lastname@tcs.inf.tu-dresden.de

Abstract. In the reasoning about actions community, causal relation-
ships have been proposed as a possible approach for solving the ramifi-
cation problem, i.e., the problem of how to deal with indirect effects of
actions. In this paper, we show that causal relationships can be added to
action formalisms based on Description Logics (DLs) without destroying
the decidability of the consistency and the projection problem. We in-
vestigate the complexity of these decision problems based on which DL
is used as base logic for the action formalism.

1 Introduction

For action theories represented in the situation or fluent calculus [13,16], impor-
tant inference problems such as the projection problem are in general undecid-
able since these calculi encompass full first-order logic (FOL). One possibility
for avoiding this source of undecidability is to restrict the underlying logic from
FOL to a decidable Description Logic [1]. The main argument for using DLs in
this setting is that they offer considerable expressive power, going far beyond
propositional logic, while reasoning is still decidable. An action formalism based
on DLs was first introduced in [3], and it was shown that important reason-
ing problems such as the projection problem become decidable in this restricted
formalism.

An action theory basically consists of three components: (i) a (possibly incom-
plete) description of the initial state; (ii) a description of the possible actions,
which specifies the pre-conditions that need to be satisfied for an action to be
applicable as well as the post-conditions, i.e., the changes to the current state
that its application causes; and (iii) domain constraints, which formulate gen-
eral knowledge about the functioning of the domain in which the actions are
executed, and thus restrict the possible states. In a DL-based action formalism,
the initial state is (incompletely) described by an ABox, pre-conditions are ABox
assertions that must hold, post-conditions are ABox assertions that are added or
removed, and domain constraints are specified using TBox axioms. Given a finite
sequence of actions α1 . . .αn, an incomplete description A0 of the initial state,

� Supported by DFG under grant BA 1122/13-1.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 82–96, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Using Causal Relationships to Deal with the Ramification Problem 83

and a formula ϕ specifying a (desired or unwanted) property of states, projection
[13] is the inference problem that asks whether ϕ holds in all states that can be
reached from a possible initial state (i.e., a state satisfying A0) by applying this
sequence of actions. The formula ϕ may, for example, be the prerequisite of an
action α to be applied after the last action of the sequence, or a condition used
in the control structure of an agent’s program. In [3], it was shown that the
projection problem is decidable in action theories based on DLs between ALC
and ALCQIO. However, this paper did not deal with the so-called ramification
problem [8,15].

The ramification problem is caused by the interaction of the post-conditions
of an action with the domain constraints. To be more precise, when applying an
action, it may not be enough to make only those changes to the current state
that are explicitly required by its post-conditions (direct effects) since it might
happen that the resulting state does not satisfy the domain constraints, in which
case one needs to make additional changes in order to satisfy these constraints
(indirect effects). For example, assume that we have a hiring action, which has
the direct effect that the person that is hired is then an employee, and that
we have a domain constraint that says that any employee must have a health
insurance. If John does not have health insurance, then just applying the hiring
action for John would result in a state that violates the health insurance domain
constraint.

One approach for solving the ramification problem is trying to find a seman-
tics for action theories that automatically deals with such indirect effects, i.e.,
somehow makes additional changes to the state in order to satisfy the domain
constraints, while taking care that only “necessary” changes are made. An exam-
ple of such an attempt is the possible models approach (PMA) [18,7]. However,
without additional restrictions, the PMA and all the other approaches in this
direction can lead to unintuitive results. It is not clear how to construct a general
semantics that does not suffer from this problem. In our example, assume that
there are only two insurance companies that offer health insurance: AOK and
TK. In order to satisfy the health insurance domain constraint, John must get
insured by one of them, but how should a general semantic framework be able
to decide which one to pick.

A second approach is to avoid rather than solve the issues raised by the rami-
fication problem. This is actually what is done in [3]: the domain constraints are
given by an acyclic TBox and post-conditions of actions are restricted such that
only primitive concepts and roles are changed. Since, w.r.t. an acyclic TBox,
the interpretations of the primitive concepts and roles uniquely determine the
interpretations of the defined concepts, it is then clear what indirect effects such
a change has. The semantics obtained this way can be seen as an instance of the
PMA. It is shown in [3] that the use of the PMA in a less restrictive setting (use
of more general TBoxes as domain constraints or of non-primitive concepts in
post-conditions) leads to unintuitive results.

A third approach is to let the user rather than a general semantic machinery
decide which are the implicit effects of an action. In our example, assume that

84 F. Baader, M. Lippmann, and H. Liu

employers actually are required to enroll new employees with AOK in case they
do not already have a health insurance. One can now try to extend the action
formalism such that it allows the user to add such information to the action the-
ory. For DL-based action formalisms, this approach was first used in [9], where
the formalism for describing the actions is extended such that the user can make
complex statements about the changes to the interpretations of concepts and
roles that can be caused by a given action. It is shown in [9] that important
inference problems such as the projection problem stay decidable in this set-
ting, but that the consistency1 problem for actions becomes undecidable. In the
present paper, we realize this third approach in a different way, by adapting a
method for addressing the ramification problem that has already been employed
in the reasoning about actions community [8,15,17,6]. Instead of changing the
formalism for defining actions, we introduce so-called causal relationships as an
additional component of action theories. In our example, such a causal relation-
ship would state that, whenever someone becomes a new employee, this person
is then insured by AOK, unless (s)he already had a health insurance.

In this paper, we formally introduce DL-based action theories with causal
relationships. The semantics we define for such theories is an adaptation of the
one introduced in [17,6] in a more general setting, and it inherits the advantages
and disadvantages of this approach. The main thrust of this work is not to
invent a new solution of the ramification problem and discuss its appropriateness,
but to show that adding a well-accepted existing solution from the reasoning
about actions community [17,6] to DL-based action theories leaves important
inference problems such as the consistency problem and the projection problem
decidable. More precisely, we provide not only decidability results, but detailed
results on the complexity of these two problems depending on which DL is used
as base logic. With a few exceptions, these results show that adding causal
relationships to DL-based action formalisms does not increase the complexity of
these inference problems.

Using causal relationships has two advantages over the formalism for handling
the ramification problem introduced in [9]. First, the formalism in [9] requires
the user to deal with the ramification problem within every action description. In
our formalism, causal relationships are defined independently of a specific action,
stating general facts about causation. The semantics then takes care of how these
relationships are translated into indirect effects of actions. A second, and more
tangible, advantage is that, in our formalism, consistency of actions is decidable.
Basically, an action is consistent if, whenever it is applicable in a state, there is
a well-defined successor state that can be obtained by applying it. We believe
that, in the context of the third approach, where the user is supposed to deal
with the ramification problem (in our formalism by defining appropriate causal
relationships), testing consistency helps the user to check whether (s)he got it
right. For instance, consider our health insurance example. If the user does not
specify any causal relationships, then the hiring action is inconsistent since its
application may result in a state that does not satisfy the domain constraints,

1 In [9], this is actually called strong consistency.

Using Causal Relationships to Deal with the Ramification Problem 85

Table 1. Syntax and semantics of ALCO

Name Syntax Semantics

negation ¬C ΔI \ CI

conjunction C � D CI ∩ DI

disjunction C D CI ∪ DI

nominal {a} {aI}
value restriction ∀r.C {x | ∀y. ((x, y) ∈ rI → y ∈ CI)}
existential restriction ∃r.C {x | ∃y. ((x, y) ∈ rI ∧ y ∈ CI)}

general concept inclusion C � D CI ⊆ DI

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI

negated role assertion ¬r(a, b) (aI , bI) �∈ rI

and thus is not well-defined. If (s)he adds the causal relationship mentioned
above, then the action becomes consistent.

Due to space constraints, we cannot give complete proofs of all our results
here. They can be found in the accompanying technical report [2].

2 DL-Based Action Formalisms and Causal Relationships

We assume that the reader is familiar with the basic notions from Description
Logics, which can, for example, be found in [1]. In principle, our action formal-
ism can be parameterized with any DL. In this paper, we restrict the detailed
presentation to the DL ALCO, and only list the results that we have obtained
for other DLs in Section 5. The DL ALCO extends the smallest propositionally
closed DL ALC with so-called nominals. In ALC, one can build complex concept
descriptions from atomic concepts (concept names) using the Boolean construc-
tors (�, �, ¬) as well as value restrictions (∀r.C) and existential restrictions
(∃r.C), where r is a role name. In ALCO, one can additionally use individual
names a to build nominal concepts {a}, which are interpreted as singleton sets.

An ABox is a finite set of concept assertions C(a) and role assertions r(a, b),
and negated role assertions ¬r(a, b), where C is a concept description, r is a
role name, and a, b are individual names. An ABox is simple if all its concept
assertions are of the form A(a) or ¬A(a), where A is a concept name. We will
call the concept and (negated) role assertions that may occur in simple ABoxes
literals. Literals of the form A(a) and r(a, b) (¬A(a) and ¬r(a, b)) are called
positive (negative). Given a literal L, its negation ¬̇L is ¬L if L is positive, and
it is L′ if L = ¬L′ is negative. A TBox is a finite set of general concept inclusions
(GCIs) of the form C D, where C,D are concept descriptions.

Example 2.1. Coming back to the health insurance example from the introduc-
tion, the following GCIs express that all employees must be insured by a health
insurance company, and that AOK and TK are health insurance companies:

86 F. Baader, M. Lippmann, and H. Liu

Employee ∃insuredBy.HealthInsuranceCompany

{AOK} � {TK} HealthInsuranceCompany

The assertion ¬Employee(JOHN) says that John is not an employee.

The semantics of ALCO is defined in terms of an interpretation I = (ΔI , ·I),
where ΔI , the domain, is a non-empty set, and ·I , the interpretation function,
maps each concept name A to a subset AI ⊆ ΔI , each role name r to a binary
relation rI ⊆ ΔI ×ΔI , and each individual name a to an element aI ∈ ΔI . The
extension of ·I to complex concept descriptions is defined inductively, as shown
in the semantics column of Table 1. The interpretation I satisfies a GCI or
assertion ϕ (written I |= ϕ) if the condition in the semantics column of Table 1
is satisfied. If I satisfies all the assertions of the ABox A (GCIs of the TBox T),
then we say that I is a model of A (T), and write I |= A (I |= T). The ABox
A is consistent w.r.t. T if there exists an interpretation that is a model of A
and T . We say that the assertion ϕ (the TBox T ′) is a logical consequence of
the ABox A and the TBox T , denoted with A ∪ T |= ϕ (A ∪ T |= T ′) iff every
interpretation that is a model of A and T is also a model of ϕ (T ′).

The following definition recalls the notion of a DL action without occlusions,
which has first been introduced in [3].2 At the moment, we do not allow for
occlusions in our framework since it is not yet clear how to handle them algo-
rithmically in the presence of causal relationships.

Definition 2.2. An action is a pair α = (pre, post), where pre is a finite set
of assertions, the pre-conditions, and post is a finite set of conditional post-
conditions of the form ϕ/ψ, where ϕ is an assertion and ψ is a literal. Such an
action is called unconditional if all its post-conditions are of the form true/ψ,
where “true” stands for an assertion that is satisfied in every interpretation. We
write such unconditional post-conditions simply as ψ rather than true/ψ.

Basically, an action is applicable in an interpretation if its pre-conditions are
satisfied. The conditional post-condition ϕ/ψ requires that ψ must hold after
the application of the action if ϕ was satisfied before the application. According
to the semantics of DL actions defined in [3], nothing should change that is not
explicitly required to change by some post-condition. As already discussed in
the introduction, this semantics is not appropriate if the domain constraints are
given by a TBox containing arbitrary GCIs.

For examples, consider the TBox T consisting of the GCIs of Example 2.1
and the action HireJohn = (∅, {Employee(JOHN)}), which has no pre-conditions
and a single unconditional post-condition. Assume that I is a model of T with
I �|= Employee(JOHN) and I �|= ∃insuredBy.HealthInsuranceCompany(JOHN) (ob-
viously, such models exist). If we apply the semantics of DL actions introduced
in [3], then I is transformed into an interpretation I ′, whose only difference to I
is that now John is an employee, i.e., I ′ |= Employee(JOHN). Since nothing else
2 Intuitively, occlusions describe parts of the domain that can change arbitrarily when

the action is applied. More details about occlusions can be found in [3] and in
Section 7 of [2].

Using Causal Relationships to Deal with the Ramification Problem 87

changes, we still have I ′ �|= ∃insuredBy.HealthInsuranceCompany(JOHN), which
shows that I ′ is not a model of T . Consequently, although the action HireJohn is
applicable to I (since the empty set of pre-conditions does not impose any appli-
cability condition), its application does not result in an interpretation satisfying
the domain constraints in T . We will call an action where this kind of problem
can occur an inconsistent action. In our example, consistency can be achieved
by complementing the action HireJohn with an appropriate causal relationship.

Definition 2.3. A causal relationship is of the form A1 −→B A2, where A1,A2
are simple ABoxes and B is an ABox.

Such a causal relationship can be read as “A1 causes A2 if B holds.” To be
more precise, it says the following:3 if B is satisfied before4 the application of an
action and A1 is newly satisfied by its application (i.e., was not satisfied before,
but is satisfied after the application), then A2 must also be satisfied after the
application. In our health insurance example, the causal relationship

{Employee(JOHN)} −→{¬∃insuredBy.HealthInsuranceCompany(JOHN)} {insuredBy(JOHN, AOK)}

adds the following indirect effect to the direct effect of the HireJohn action: (i) if
John becomes newly employed (i.e., was not an employee before) and did not
have a health insurance before the application of the action, then he is newly
insured with AOK after its application; (ii) if he becomes newly employed, but
already has a health insurance, then he keeps his old health insurance and is not
newly insured with AOK. In both cases, the GCIs of Example 2.1 stay satisfied.

In order to define the semantics of DL actions in the presence of causal re-
lationships formally, we consider an action α = (pre, post), a finite set of causal
relationships CR, and an interpretation I to which the action is supposed to be
applied. The actions and causal relationships introduced above can only effect
changes to the membership of named individuals (pairs of named individuals)
in atomic concepts (roles). Consequently, such effects can be described in an
obvious way using literals. For this reason, we will sometimes call a simple ABox
a set of effects.

Using the semantics of actions introduced in [3], the set of direct effects of α
given I is defined as

Dir(α, I) := {ψ | ϕ/ψ ∈ post ∧ I |= ϕ}.

Direct effects of an action may cause indirect effects specified by causal relation-
ships, and these indirect effects may again cause indirect effects, etc. Thus, the
overall effects of an action are obtained by iteratively adding indirect effects to
the direct ones until no new indirect effects can be added.

3 Actually, there are different ways of defining the meaning of causal relationships.
Here, we follow the approach used in [17,6] rather than the one employed by [8,15].

4 In the semantics of causal relationship introduced in [8,15], this “before” would need
to be replaced by “after.”

88 F. Baader, M. Lippmann, and H. Liu

To be more precise, we start the iteration by defining E0 := Dir(α, I). Assum-
ing that Ei (i ≥ 0) is already defined, we define Ei+1 := Ei ∪ Indi+1, where

Indi+1 := {ψ | ∃A1 −→B A2 ∈ CR such that
(i) ψ ∈ A2, (ii) I |= B, (iii) I �|= A1, and

(iv) ∀ϕ ∈ A1. (ϕ ∈ Ei ∨ (I |= ϕ ∧ ¬̇ϕ �∈ Ei))} .

Thus, we add the indirect effect ψ to our set of effects if (i) it is in the consequence
set A2 of a causal relationship A1 −→B A2 for which (ii) the condition B is
satisfied in I (i.e., before applying the action), and (iii)+(iv) the trigger A1 is
newly satisfied, i.e., (iii) A1 is not satisfied in I, but (iv) it is satisfied according
to the current effect set, i.e., every assertion ϕ ∈ A1 is a (direct or indirect)
effect, or it is satisfied in I and this is not changed by an effect.

By definition, we have E0 ⊆ E1 ⊆ E2 · · · . Since we only add literals that belong
to the consequence set of a causal relationship in the finite set CR, there is an n
such that En = En+1 = En+2 = · · · . We define

E(α, I,CR) := En .

This set of literals represents the effects of applying the action α to the inter-
pretation I w.r.t. the causal relationships in CR. It could happen, however, that
this set is contradictory, and thus cannot lead to a well-defined successor inter-
pretation: we say that E(α, I,CR) is contradictory if there is a literal L such that
{L, ¬̇L} ⊆ E(α, I,CR).

Now, we are ready to introduce our semantics of actions in the presence of
causal relationships.

Definition 2.4. Let α be an action, CR a finite set of causal relationships, T
a TBox, and I, I ′ two interpretations. We say that α may transform I to I ′
w.r.t. T and CR (denoted by I =⇒T ,CR

α I ′) if

– ΔI = ΔI
′
and aI = aI

′
for every individual name a,

– I |= T and I ′ |= T ,
– E(α, I,CR) is not contradictory,
– for all concept names A we have AI

′
= (AI ∪ {aI | A(a) ∈ E(α, I,CR)}) \

{aI | ¬A(a) ∈ E(α, I,CR)}, and
– for all role names r we have rI

′
= (rI ∪ {(aI , bI) | r(a, b) ∈ E(α, I,CR)}) \

{(aI , bI) | ¬r(a, b) ∈ E(α, I,CR)}.

The sequence of actions α1, . . . , αn may transform I to I ′ w.r.t. T and CR
(denoted by I =⇒T ,CR

α1,...,αn
I ′) iff there are interpretations I0, . . . , In such that

I = I0, In = I ′, and Ii−1 =⇒T ,CR
αi

Ii for all i, 1 ≤ i ≤ n.

If T and CR are empty, then this semantics coincides with the one given in [3] for
actions without occlusions. Note that our actions are deterministic in the sense
that, for every model I of T , there exists at most one interpretation I′ such that
I =⇒T ,CR

α I ′. However, sometimes there may not exist any such interpretation
I ′, either because E(α, I,CR) is contradictory, or because the new interpretation

Using Causal Relationships to Deal with the Ramification Problem 89

induced by E(α, I,CR) is not a model of T . If this happens in the case where
α = (pre, post) is actually applicable to I (i.e., I |= pre), then this indicates a
modeling error. In fact, the correct modeling of an action theory should ensure
that, whenever an action is applicable, there is a well-defined successor state.

Definition 2.5. The action α is consistent w.r.t. the TBox T and the finite set
CR of causal relationships iff, for every model I of T with I |= pre, there exists
an interpretation I ′ with I =⇒T ,CR

α I ′.

As argued above, the action HireJohn is not consistent w.r.t. the TBox con-
sisting of the GCIs of Example 2.1 and the empty set of causal relationships,
but it becomes consistent if we add the causal relationship introduced below
Definition 2.3.

The projection problem is one of the most basic reasoning problems for ac-
tion theories [13]. Given a (possibly incomplete) description of the initial world
(interpretation), it asks whether a certain property is guaranteed to hold after
the execution of a sequence of actions. Our formal definition of this problems is
taken from [3], with the only difference that we use the “may transform” rela-
tion introduced in Definition 2.4, which takes causal relationships into account,
instead of the one employed in [3].

Definition 2.6 (Projection problem). Let α1, . . . , αn be a sequence of ac-
tions such that, for all i, 1 ≤ i ≤ n, the action αi is consistent w.r.t. T and CR.
The assertion ϕ is a consequence of applying α1, . . . , αn to A w.r.t. T and CR
iff, for all I and I ′, if I |= A and I =⇒T ,CR

α1,...,αn
I ′, then I ′ |= ϕ.

Note that we consider only consistent actions in our definition of the projec-
tion problem. In fact, if an action is inconsistent, then there is something wrong
with the action theory, and this problem should be solved before starting to
ask projection questions. Another interesting inference problem for action the-
ories is executability: Are all pre-conditions guaranteed to be satisfied during
the execution of a sequence of actions? As shown in [3], the projection and the
executability problem can be reduced to each other in polynomial time. For this
reason, we restrict our attention to the consistency and the projection problem.

3 Deciding Consistency

First, we develop a solution for the restricted case where the TBox is empty, and
then we show how this solution can be extended to the general case.

3.1 Consistency w.r.t. the Empty TBox

We will show that, in this case, testing consistency of an action w.r.t. a set of
causal relationships has the same complexity as the (in)consistency problem of an
ABox. Given an action α and a finite set of causal relationships CR, we basically
consider all the possible situations that the action could encounter when it is
applied to an interpretation.

90 F. Baader, M. Lippmann, and H. Liu

Definition 3.1. Let α = (pre, post) be an action and CR a finite set of causal
relationships. The ABox A(α,CR) is defined as follows:

A(α,CR) := {ϕ,¬ϕ | ϕ/ψ ∈ post or ϕ ∈ A1 ∪ B for some A1 −→B A2 ∈ CR}.

A diagram D for α and CR is a maximal, consistent subset of A(α,CR). We
denote the set of all diagrams for α and CR by D(α,CR).

For a given interpretation I, there is exactly one diagram D such that I |= D. It
is sufficient to know this diagram to determine what are the direct and indirect
effects of applying α to I w.r.t. CR. Given a diagram D, we will now define a set
Ê(α,D,CR) such that Ê(α,D,CR) = E(α, I,CR) for every interpretation I with
I |= D. The definition of the direct effects of an action can easily be adapted to
the diagram case: D̂ir(α,D) := {ψ | ϕ/ψ ∈ post ∧ ϕ ∈ D}.

The same is true for the sets Ei. We start the iteration by defining Ê0 :=
D̂ir(α,D). Assuming that Êi (i ≥ 0) is already defined, we define Êi+1 := Êi ∪
Îndi+1, where

Îndi+1 := {ψ | ∃A1 −→B A2 ∈ CR such that
(i) ψ ∈ A2, (ii) B ⊆ D, (iii) A1 �⊆ D, and

(iv) ∀ϕ ∈ A1. (ϕ ∈ Êi ∨ (ϕ ∈ D ∧ ¬̇ϕ �∈ Êi))} .

Again, there exists an n ≥ 0 such that Ên = Ên+1 = Ên+2 = · · · , and we define
Ê(α,D,CR) := Ên. This set is contradictory if there is a literal L such that
{L, ¬̇L} ⊆ Ê(α,D,CR).

Checking which of the sets Ê(α,D,CR) for D ∈ D(α,CR) are contradictory
is sufficient for deciding the consistency problem in the case where the TBox is
assumed to be empty. In fact, in this case the only reason for an interpretation
not to have a successor interpretation w.r.t. α is that the set of effects is con-
tradictory. Since we require the existence of a successor interpretation only for
interpretations that satisfy the precondition set pre of α, it is enough to consider
diagrams D that are consistent with pre.

Lemma 3.2. The action α = (pre, post) is consistent w.r.t. CR iff Ê(α,D,CR)
is not contradictory for all D ∈ D(α,CR) for which D ∪ pre is consistent.

This lemma yields a PSpace decision procedure for deciding consistency of an
action w.r.t. a finite set of causal relationships. In order to check whether α is
inconsistent, we first guess5 a diagram D ∈ D(α,CR), and then check whether
D∪pre is consistent using the PSpace decision procedure for ABox consistency in
ALCO [14]. If D∪pre is consistent, we compute the set Ê(α,D,CR). This can be
realized in polynomial time by performing the iteration used in the definition of
Ê(α,D,CR). Checking whether this set is contradictory is obviously also possible
in polynomial time.

5 Recall that PSpace = NPSpace according to Savitch’s theorem.

Using Causal Relationships to Deal with the Ramification Problem 91

This PSpace upper bound is optimal since the ABox inconsistency problem
in ALCO, which is known to be PSpace-complete [14], can be reduced to our
action consistency problem: for every ABox A, we have that A is inconsistent
iff (A, {A(a),¬A(a)}) is consistent w.r.t. the empty set of causal relationships,
where A is an arbitrary concept name and a is an arbitrary individual name.

Theorem 3.3. The problem of deciding consistency of an action w.r.t. a finite
set of causal relationships is PSpace-complete for ALCO.

3.2 The General Case

If T is not empty, then there is an additional possible reason for an action to be
inconsistent: the successor interpretation induced by a non-contradictory set of
effects may not be a model of T . Thus, given a non-contradictory set of effects
Ê(α,D,CR), we must check whether, for any model I of T and D that satisfies
the preconditions of α, the interpretation I ′ obtained from I by applying the
effects in Ê(α,D,CR) (see Definition 2.4) is a model of T . To this purpose, we
first define an unconditional action βα,CR,D that, applied to models of D, has
the same effect as α w.r.t. CR. Then, we adapt the approach for solving the
projection problem introduced in [3] to the problem of checking whether βα,CR,D
transforms models of T into models of T .

Definition 3.4. Let α = (pre, post) be an action, CR a finite set of causal re-
lationships, and D ∈ D(α,CR). The action βα,CR,D has pre ∪ D as set of pre-
conditions and Ê(α,D,CR) as set of (unconditional) post-conditions.

The following lemma is an easy consequence of the definition of Ê(α,D,CR) and
the semantics of actions (Definition 2.4).

Lemma 3.5. For all D ∈ D(α,CR), all models I of D, and all interpretations
I ′, we have I =⇒∅,CR

α I ′ iff I =⇒∅,∅βα,CR,D I
′.

The approach for solving the projection problem introduced in [3] considers a
finite sequence of actions β1, . . . , βn. In the present section, we are only interested
in the special case where n = 1. However, since we will adopt this approach also
in the next section, where we consider the case n ≥ 1, we recall the relevant
notions and results for the general case. In this approach, time-stamped copies
r(i) (0 ≤ i ≤ n) for all relevant role names and new time-stamped concept
names T (i)

C (0 ≤ i ≤ n) for all relevant concept descriptions are introduced.
In our setting, the relevant role names (concept descriptions) will be the ones
occurring in the input of the consistency or projection algorithm (see [2] for
details). For every ABox assertion ϕ built using a relevant concept description
C or a relevant role name r (called relevant assertion in the following) and every
i, 0 ≤ i ≤ n, we can then define a time-stamped variant ϕ(i) as follows:

C(a)(i) := T
(i)
C (a), r(a, b)(i) := r(i)(a, b), ¬r(a, b)(i) := ¬r(i)(a, b).

92 F. Baader, M. Lippmann, and H. Liu

Given a set of relevant assertions A, we define its time-stamped copy as A(i) :=
{ϕ(i) | ϕ ∈ A}. Given a set of GCIs T built from relevant concept descriptions,
we define its time-stamped copy as T (i) := {T (i)

C T
(i)
D | C D ∈ T }.

Intuitively, given an initial interpretation I0, the application of β1 to I0 yields
a successor interpretation I1, the application of β2 to I1 yields a successor inter-
pretation I2, etc. Using the time-stamped copies of the relevant role names and
concept descriptions, we can encode the sequence of interpretations I0, I1, . . . , In

into a single interpretation J such that the relevant assertion ϕ holds in Ii iff its
time-stamped variant ϕ(i) holds in J . In order to enforce that J really encodes
a sequence of interpretations induced by the application of the action sequence
β1, . . . , βn, we require it to be a model of the (acyclic) TBox Tred and the ABox
Ared. Due to the space constraints, we cannot describe the construction of Tred

and Ared here. This construction is very similar to the one introduced in [4],
and it is described in detail in [2].6 Here, we only recall the pertinent properties
of Tred and Ared in the next lemma (whose proof is very similar to the one of
Theorem 14 in [4]). It should be noted that our results actually do not depend
on how the TBox Tred and the ABox Ared are exactly constructed. Any TBox
and ABox satisfying the properties stated in the lemma can be used in our
approach.

Lemma 3.6. Let β1, . . . , βn be a sequence of ALCO actions, and R a set of rele-
vant role names and concept descriptions such that R contains all the role names
and concept descriptions occurring in β1, . . . , βn. Then, there are an ALCO
ABox Ared and an (acyclic) ALCO TBox Tred of size polynomial in the size
of β1, . . . , βn and R, such that the following properties (a) and (b) hold:

(a) For all interpretations I0, . . . , In such that Ii =⇒∅,∅βi
Ii+1 for every i, 0 ≤

i < n, there exists an interpretation J such that J |= Ared, J |= Tred, and
(i) for all i, 0 ≤ i ≤ n and for all relevant assertions ψ: Ii |= ψ iff J |= ψ(i);
(ii) for all i, 0 ≤ i ≤ n and all relevant concept descriptions C, we have

CIi = (T (i)
C)J .

(b) For all interpretations J such that J |= Ared and J |= Tred, there exist
interpretations I0, . . . , In such that Ii =⇒∅,∅βi

Ii+1 for every i, 0 ≤ i < n,
and (i) and (ii) of (a) hold.

Now, we can come back to the consistency problem for actions. Let α = (pre, post)
be an action, CR a finite set of causal relationships, and T a TBox. The set R of
relevant role names and concept descriptions consists of the ones occurring in α,
CR, or T . Given a diagramD ∈ D(α,CR), we can compute the set Ê(α,D,CR), and
check whether this set is non-contradictory. If this is the case, then we consider the
action βα,CR,D, and test whether an application of this action transforms models
of T satisfying pre and D into models of T . This test can be realized using the
ABox Ared and the (acyclic) TBox Tred of Lemma 3.6.

Lemma 3.7. The action α is consistent w.r.t. T and CR iff the following holds
for all D ∈ D(α,CR): if D ∪ pre is consistent w.r.t. T , then
6 Note that this construction makes use of nominals.

Using Causal Relationships to Deal with the Ramification Problem 93

– Ê(α,D,CR) is non-contradictory, and
– Ared ∪ Tred ∪D(0) ∪ pre(0) ∪ T (0) |= T (1), where Ared and Tred are constructed

using βα,CR,D and R.

This lemma shows that consistency of an action w.r.t. a TBox and a finite set
of causal relationships can be tested by considering the exponentially many ele-
ments of D(α,CR). For each element D ∈ D(α,CR), consistency of D∪pre w.r.t.
T can be tested in exponential time since reasoning in ALCO w.r.t. (general)
TBoxes is ExpTime-complete [5]. For a given diagram D, the set Ê(α,D,CR)
as well as βα,CR,D and R can be computed in polynomial time, and the same is
true for the construction of the ABox Ared and the TBox Tred using βα,CR,D and
R. Checking whether Ê(α,D,CR) is contradictory or not can also be realized in
polynomial time. Finally, testing whether Ared∪Tred∪D(0)∪pre(0)∪T (0) |= T (1)

is again a reasoning problem for ALCO, which can be solved in exponential time.
Overall, we have seen that Lemma 3.7 yields a consistency test that requires at
most exponentially many calls to ExpTime reasoning procedures. This yields
an ExpTime upper bound for the complexity of the consistency problem. Exp-

Time-hardness can be shown similarly to our proof of PSpace-hardness for the
case with an empty TBox.

Theorem 3.8. The problem of deciding consistency of an action w.r.t. a TBox
and a finite set of causal relationships is ExpTime-complete for ALCO.

4 Deciding Projection

The projection problem considers a sequence of actions α1, . . . , αn, together
with a TBox T , a finite set of causal relationships CR, an initial ABox A, and an
assertion ϕ. By definition, ϕ is a consequence of applying α1, . . . , αn to A w.r.t.
T and CR iff, for all interpretations I0, . . . , In−1, In, if I0 |= A and I0 =⇒T ,CR

α1

I1 =⇒T ,CR
α2

· · · In−1 =⇒T ,CR
αn

In , then In |= ϕ.
Our solution of the projection problem w.r.t. T and CR uses the same ideas

as the solution of the consistency sketched in Section 3. First, instead of con-
sidering interpretations I0, . . . , In−1, we consider diagrams D0, . . . ,Dn−1, where
Di ∈ D(αi+1,CR) for i = 0, . . . , n− 1.7 Second, we use the original sequence of
actions α1, . . . , αn and the diagrams D0, . . . ,Dn−1 to build the corresponding
sequence of actions βα1,CR,D0 , . . . , βαn,CR,Dn−1 . Lemma 3.5 then tells us that, for
all models Ii−1 of Di−1 and all interpretations Ii we have Ii−1 =⇒∅,CR

αi
Ii iff

Ii−1 =⇒∅,∅βαi,CR,Di−1
Ii. Third, we use the sequence βα1,CR,D0 , . . . , βαn,CR,Dn−1 and

the set of relevant role names and concept descriptions R to construct an ABox
Ared and (acyclic) a TBox Tred such that the properties (a) and (b) of Lemma 3.6
hold. These properties can be used to express that the initial interpretation I0
must be a model of A and that we only consider interpretations Ii that are
models of T . In addition, we can then check, whether all this implies that the
7 Note that it is enough to consider diagrams D0, . . . ,Dn−1 for I0, . . . , In−1 since no

action is applied to In.

94 F. Baader, M. Lippmann, and H. Liu

final interpretation In is a model of ϕ. To be more precise, we can show that
the following characterization of the projection problem holds:

Lemma 4.1. Let α1, . . . , αn be a sequence of actions, T a TBox, CR a finite
set of causal relationships, A an initial ABox, and ϕ an assertion. Then, ϕ is
a consequence of applying α1, . . . , αn to A w.r.t. T and CR iff for all diagrams
D0, . . . ,Dn−1 such that Di ∈ D(αi+1,CR) for i = 0, . . . , n− 1, we have

n−1⋃
i=0

D(i)
i ∪

n⋃
i=0

T (i) ∪ A(0) ∪ Ared ∪ Tred |= ϕ(n), (1)

where Ared and Tred are constructed from βα1,CR,D0 , . . . , βαn,CR,Dn−1 and R.

It is easy to see that this lemma yields an ExpTime decision procedure for
the projection problem in ALCO. In fact, one needs to consider exponentially
many sequences of diagrams D0, . . . ,Dn−1. For each such sequence, the actions
βα1,CR,D0, . . . , βαn,CR,Dn−1, and thus also Ared and Tred, can be constructed in
polynomial time. Thus, the inference problem (1) is of polynomial size, and it
can be solved in exponential time since reasoning in ALCO w.r.t. a (general)
TBox is ExpTime-complete. ExpTime-hardness of the projection problem can
easily be shown by a reduction of concept satisfiability w.r.t. a TBox in ALCO.

Theorem 4.2. The projection problem w.r.t. a TBox and a finite set of causal
relationships for ALCO is ExpTime-complete.

For the special case of an empty TBox, the decision procedure derived from
Lemma 4.1 actually needs only polynomial space. In fact, the exponentially
many sequences of diagrams D0, . . . ,Dn−1 can be enumerated within polynomial
space, and for T = ∅, the inference problem (1) contains no GCIs since TBox
Tred is acyclic. Thus, it can be solved within PSpace. PSpace-hardness of the
projection problem is again easy to show.

Corollary 4.3. The projection problem w.r.t. the empty TBox and a finite set
of causal relationships is PSpace-complete for ALCO.

5 Additional Results and Future Work

Our approach for deciding the consistency and the projection problem works
not only for ALCO, but also for all the other DLs considered in [3]. Basically,
we can use the same algorithms. What differs from DL to DL is the complexity
of the basic inference problems in the respective DL (extended with nominals).
Except for two cases (consistency of actions in ALCQI and ALCQIO in the
case where the TBox is non-empty), we get the matching hardness results by a
reduction from such a basic inference problem. The complexity results obtained
this way are listed in Table 2. They are proved in detail in [2]. The table shows
that (with the two exceptions mentioned above) the projection problem and the
consistency problem in DL-based action formalisms with causal relationships is
not harder than reasoning in the underlying DL (extended with nominals).

Using Causal Relationships to Deal with the Ramification Problem 95

Table 2. The complexity of the consistency and the projection problem. PSp is short
for PSpace-complete, Exp for ExpTime-complete, cNE for co-NExpTime-complete,
PNE for in PTime

NExpTime.

TBox
?

AL
C

AL
CO

AL
CQ

AL
CI

AL
CQ

O

AL
CQ

I

AL
CI
O

AL
CQ

IO

Consistency T = ∅ PSp PSp PSp PSp PSp PSp Exp cNE

T �= ∅ Exp Exp Exp Exp Exp PNE Exp PNE

Projection T = ∅ PSp PSp PSp Exp PSp cNE Exp cNE

T �= ∅ Exp Exp Exp Exp Exp cNE Exp cNE

Regarding future work, one interesting question is whether our approach for
deciding the consistency and the projection problem can be extended to actions
with occlusions. Note that such actions are non-deterministic, i.e., their appli-
cation to an interpretation may yield several possible successor interpretations.
Consequently, such an action may still be consistent although some of the suc-
cessors interpretations are not models of the TBox. Thus, consistency can no
longer be characterized by an analog of Lemma 3.7.

When defining our semantics for actions in the presence of causal relation-
ships, we followed the approach used in [17,6] rather than the one employed by
[8,15]. In our health insurance example, this was actually the appropriate se-
mantics, but there may also be examples where it would be better to use the
other semantics. Thus, it would be interesting to see whether our approach for
deciding the consistency and the projection problem can be adapted to deal with
the semantics of [8,15].

Instead of trying to decide the projection problem directly, one can also follow
the progression approach: given an action and a (possibly incomplete) descrip-
tion of the current state, this approach tries to compute a description of the
possible successor states. Projection then boils down to computing consequences
of this successor description. For DL-based action theories, progression has been
investigated in [10]. It would be interesting to see whether the results obtained
there can be extended to the DL-based action theories with causal relationships
considered in the present paper.

This paper follows the approach for obtaining decidability results for action
theories introduced in [3], which is based on the idea of restricting the base logic
to a decidable DL. In the literature, other ways of restricting the base logic to
achieve this goal have been considered. For example, in [11] the authors consider
so-called local effect actions8 and restrict the base logic to so-called “proper+

knowledge bases” [12]. They show that, in this setting, progression is efficiently
computable, which implies that the projection problem is efficiently decidable.
It would be interesting to see whether this result can be extended to actions
theories with causal relationships.

8 Note that our DL-based actions are local effect actions.

96 F. Baader, M. Lippmann, and H. Liu

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

2. Baader, F., Lippmann, M., Liu, H.: Adding causal relationships to DL-based action
formalisms. LTCS-Report 10-01, Chair of Automata Theory, Technische Univer-
sität Dresden (2010), http://lat.inf.tu-dresden.de/research/reports.html

3. Baader, F., Lutz, C., Miličić, M., Sattler, U., Wolter, F.: Integrating description
logics and action formalisms: First results. In: Proceedings of AAAI-2005 and
IAAI-2005, pp. 572–577. AAAI Press/The MIT Press (2005) Short version of [4]

4. Baader, F., Miličić, M., Lutz, C., Sattler, U., Wolter, F.: Integrating description
logics and action formalisms for reasoning about web services. LTCS-Report 05-02,
Chair of Automata Theory, Technische Universität Dresden (2005), Long version
of [3], http://lat.inf.tu-dresden.de/research/reports.html

5. De Giacomo, G.: Decidability of Class-Based Knowledge Representation For-
malisms. PhD thesis, Università di Roma “La Sapienza” (1995)

6. Denecker, M., Theseider-Dupré, D., van Belleghem, K.: An inductive definition
approach to ramifications. Linkoping Electronic Articles in Computer and Infor-
mation Science 3(7), 1–43 (1998)

7. Herzig, A.: The PMA revisited. In: Proceedings of KR-1996, pp. 40–50 (1996)
8. Lin, F.: Embracing causality in specifying the indirect effects of actions. In: Pro-

ceedings of IJCAI-1995, pp. 1985–1993 (1995)
9. Liu, H., Lutz, C., Miličić, M., Wolter, F.: Reasoning about actions using description

logics with general TBoxes. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa,
A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 266–279. Springer, Heidelberg
(2006)

10. Liu, H., Lutz, C., Miličić, M., Wolter, F.: Updating description logic ABoxes. In:
Proceedings of KR-2006, pp. 46–56. AAAI Press, Menlo Park (2006)

11. Liu, Y., Lakemeyer, G.: On first-order definability and computability of progression
for local-effect actions and beyond. In: Proceedings of IJCAI-2009, pp. 860–866
(2009)

12. Liu, Y., Levesque, H.J.: Tractable reasoning in first-order knowledge bases with
disjunctive information. In: Proceedings of AAAI-2005 and IAAI-2005, pp. 639–
644. AAAI Press/The MIT Press (2005)

13. Reiter, R.: Knowledge in Action: Logical Foundations for Describing and Imple-
menting Dynamical Systems. The MIT Press, Bradford Books (2001)

14. Schaerf, A.: Reasoning with individuals in concept languages. Data Knowledge
Engineering 13(2), 141–176 (1994)

15. Thielscher, M.: Ramification and causality. AIJ 89(1–2), 317–364 (1997)
16. Thielscher, M.: Reasoning Robots: The Art and Science of Programming Robotic

Agents. Applied Logic Series, vol. 33. Springer, Netherlands (2005)
17. van Belleghem, K., Denecker, M., Theseider-Dupré, D.: A constructive approach

to the ramification problem. In: Proceedings of ESSLLI-1998, pp. 1–17 (1998)
18. Winslett, M.: Reasoning about action using a possible models approach. In: Pro-

ceedings of AAAI-1988, pp. 89–93 (1988)

http://lat.inf.tu-dresden.de/research/reports.html
http://lat.inf.tu-dresden.de/research/reports.html

SAT Encoding of Unification in EL

Franz Baader and Barbara Morawska

Theoretical Computer Science, TU Dresden, Germany
{baader,morawska}@tcs.inf.tu-dresden.de

Abstract. Unification in Description Logics has been proposed as a
novel inference service that can, for example, be used to detect redun-
dancies in ontologies. In a recent paper, we have shown that unification
in EL is NP-complete, and thus of a complexity that is considerably
lower than in other Description Logics of comparably restricted expres-
sive power. In this paper, we introduce a new NP-algorithm for solving
unification problems in EL, which is based on a reduction to satisfiabil-
ity in propositional logic (SAT). The advantage of this new algorithm
is, on the one hand, that it allows us to employ highly optimized state-
of-the-art SAT solvers when implementing an EL-unification algorithm.
On the other hand, this reduction provides us with a proof of the fact
that EL-unification is in NP that is much simpler than the one given in
our previous paper on EL-unification.

1 Introduction

Description logics (DLs) [3] are a well-investigated family of logic-based knowl-
edge representation formalisms. They can be used to represent the relevant con-
cepts of an application domain using concept terms, which are built from concept
names and role names using certain concept constructors. The DL EL offers the
constructors conjunction (�), existential restriction (∃r.C), and the top concept
(�). This description logic has recently drawn considerable attention since, on
the one hand, important inference problems such as the subsumption problem
are polynomial in EL [1,2]. On the other hand, though quite inexpressive, EL
can be used to define biomedical ontologies. For example, both the large medical
ontology Snomed CT and the Gene Ontology1 can be expressed in EL.

Unification in description logics has been proposed in [6] as a novel inference
service that can, for example, be used to detect redundancies in ontologies.
There, it was shown that, for the DL FL0, which differs from EL by offering
value restrictions (∀r.C) in place of existential restrictions, deciding unifiability
is an ExpTime-complete problem. In [4], we were able to show that unification
in EL is of considerably lower complexity: the decision problem is “only” NP-
complete. However, the unification algorithm introduced in [4] to establish the
NP upper bound is a brutal “guess and then test” NP-algorithm, and thus it is
unlikely that a direct implementation of it will perform well in practice.
� Supported by DFG under grant BA 1122/14-1
1 See http://www.ihtsdo.org/snomed-ct/ and http://www.geneontology.org/

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 97–111, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

98 F. Baader and B. Morawska

In this report, we present a new decision procedure for EL-unification that
takes a given EL-unification problem Γ and translates it into a set of proposi-
tional clauses C(Γ) such that (i) the size of C(Γ) is polynomial in the size of
Γ , and (ii) Γ is unifiable iff C(Γ) is satisfiable. This allows us to use a highly-
optimized SAT-solver such as MiniSat2 to decide solvability of EL-unification
problems. Our SAT-translation is inspired by Kapur and Narendran’s transla-
tion of ACIU-unification problems into satisfiability in propositional Horn logic
(HornSAT) [9]. The connection between EL-unification and ACIU-unification is
due to the fact that (modulo equivalence) the conjunction constructor in EL is
associative, commutative, and idempotent, and has the top concept � as a unit.
Existential restrictions are similar to free unary functions symbols in ACIU, with
the difference that existential restrictions are monotonic w.r.t. subsumption.

It should be noted that the proof of correctness of our translation into SAT
does not depend on the results in [4]. Consequently, this translation provides us
with a new proof of the fact that EL-unification is in NP. This proof is much
simpler than the original proof of this fact in [4].

2 Unification in EL

Starting with a set Ncon of concept names and a set Nrole of role names, EL-
concept terms are built using the following concept constructors: the nullary
constructor top-concept (�), the binary constructor conjunction (C�D), and for
every role name r ∈ Nrole , the unary constructor existential restriction (∃r.C).
The semantics of EL is defined in the usual way, using the notion of an in-
terpretation I = (DI , ·I), which consists of a nonempty domain DI and an
interpretation function ·I that assigns binary relations on DI to role names and
subsets of DI to concept terms, as shown in the semantics column of Table 1.

Table 1. Syntax and semantics of EL

Name Syntax Semantics

concept name A AI ⊆ DI
role name r rI ⊆ DI ×DI
top-concept � �I = DI
conjunction C � D (C � D)I = CI ∩ DI

existential restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
subsumption C � D CI ⊆ DI

equivalence C ≡ D CI = DI

The concept term C is subsumed by the concept term D (written C D)
iff CI ⊆ DI holds for all interpretations I. We say that C is equivalent to
D (written C ≡ D) iff C D and D C, i.e., iff CI = DI holds for all
interpretations I.
2 http://minisat.se/

SAT Encoding of Unification in EL 99

The following lemma provides us with a useful characterization of subsumption
in EL [4].

Lemma 1. Let C,D be EL-concept terms such that

C = A1 � . . . �Ak � ∃r1.C1 � . . . � ∃rm.Cm,
D = B1 � . . . �B� � ∃s1.D1 � . . . � ∃sn.Dn,

where A1, . . . , Ak, B1, . . . , B� are concept names. Then C D iff

– {B1, . . . , B�} ⊆ {A1, . . . , Ak} and
– for every j, 1 ≤ j ≤ n, there exists i, 1 ≤ i ≤ m, s.t. ri = sj and Ci Dj.

When defining unification in EL, we assume that the set of concepts names
is partitioned into a set Nv of concept variables (which may be replaced by
substitutions) and a set Nc of concept constants (which must not be replaced
by substitutions). A substitution σ is a mapping from Nv into the set of all EL-
concept terms. This mapping is extended to concept terms in the usual way, i.e.,
by replacing all occurrences of variables in the term by their σ-images.

A substitution σ induces the following binary relation >σ on variables:

X >σ Y iff there are n ≥ 1 role names r1, . . . , rn ∈ Nrole such that

σ(X) σ(∃r1. · · · ∃rn.Y).

The following lemma is an easy consequence of Lemma 1.

Lemma 2. The relation >σ is a strict partial order.

Unification tries to make concept terms equivalent by applying a substitution.

Definition 1. An EL-unification problem is of the form Γ = {C1 ≡? D1, . . . ,
Cn ≡? Dn}, where C1, D1, . . .Cn, Dn are EL-concept terms. The substitution σ
is a unifier (or solution) of Γ iff σ(Ci) ≡ σ(Di) for i = 1, . . . , n. In this case, Γ
is called solvable or unifiable.

Note that Lemma 2 implies that the variable X cannot unify with the concept
term ∃r1. · · · ∃rn.X (n≥1), i.e., the EL-unification problem {X≡?∃r1. · · · ∃rn.X}
does not have a solution. This means that an EL-unification algorithm has to
realize a kind of occurs check.

We will assume without loss of generality that our EL-unification problems are
flattened in the sense that they do not contain nested existential restrictions. To
define this notion in more detail, we need to introduce the notion of an atom. An
EL-concept term is called an atom iff it is a concept name (i.e., concept constant
or concept variable) or an existential restriction ∃r.D. A non-variable atom is an
atom that is not a concept variable. The set of atoms of an EL-concept term C
consists of all the subterms of C that are atoms. For example, A�∃r.(B �∃r.�)
has the atom set {A, ∃r.(B � ∃r.�), B, ∃r.�}.

Obviously, any EL-concept term is (equivalent to) a conjunction of atoms,
where the empty conjunction is �. The following lemma is an easy consequence
of Lemma 1.

100 F. Baader and B. Morawska

Lemma 3. Let C,D be EL-concept terms such that C = C1 � . . . � Cm and
D = D1 � . . . � Dn, where D1, . . . , Dn are atoms. Then C D iff for every
j, 1 ≤ j ≤ n, there exists an i, 1 ≤ i ≤ m, such that Ci Dj.

In our reduction, we will restrict the attention (without loss of generality) to
unification problems that are built from atoms without nested existential re-
strictions. To be more precise, concept names and existential restrictions ∃r.D
where D is a concept name are called flat atoms. An EL-concept term is flat
iff it is a conjunction of flat atoms (where the empty conjunction is �). The
EL-unification problem Γ is flat iff it consists of equations between flat EL-
concept terms. By introducing new concept variables and eliminating �, any
EL-unification problem Γ can be transformed in polynomial time into a flat
EL-unification problem Γ ′ such that Γ is solvable iff Γ ′ is solvable. Thus, we
may assume without loss of generality that our input EL-unification problems
are flat. Given a flat EL-unification problem Γ = {C1 ≡? D1, . . . , Cn ≡? Dn},
we call the atoms of C1, D1, . . . , Cn, Dn the atoms of Γ .

3 The SAT Encoding

In the following, let Γ be a flat EL-unification problem. We show how to translate
Γ into a set of propositional clauses C(Γ) such that (i) the size of C(Γ) is
polynomial in the size of Γ , and (ii) Γ is unifiable iff C(Γ) is satisfiable. The
main idea underlying this translation is that we want to guess, for every pair of
atoms A,B of the flat unification problem Γ , whether or not A is subsumed by
B after the application of the unifier σ to be computed. In addition, we need
to guess a strict partial order > on the variables of Γ , which corresponds to (a
subset of) the strict partial order >σ induced by σ.

Thus, we use the following propositional variables:

– [A� B] for every pair A,B of atoms of Γ ;
– [X>Y] for every pair of variables occurring in Γ .

Note that we use non-subsumption rather than subsumption for the propositional
variables of the first kind since this will allow us to translate the equations of the
unification problem into Horn clauses (à la Kapur and Narendran [9]). However,
we will have to “pay” for this since expressing transitivity of subsumption then
requires the use of non-Horn clauses.

Given a flat EL-unification problem Γ , the set C(Γ) consists of the following
clauses:

(1) Translation of the equations of Γ . For every equation A1 � · · · � Am ≡?

B1 � · · · � Bn of Γ , we create the following Horn clauses, which express that
any atom that occurs as a top-level conjunct on one side of an equivalence must
subsume a top-level conjunct on the other side:3

3 See Lemma 3.

SAT Encoding of Unification in EL 101

1. For every non-variable atom C ∈ {A1, . . . , Am}:
[B1 � C] ∧ . . . ∧ [Bn � C] →

2. For every non-variable atom C ∈ {B1, . . . , Bn}:
[A1 � C] ∧ . . . ∧ [Am � C] →

3. For every non-variable atom C of Γ s.t. C �∈ {A1, . . . , Am, B1, . . . , Bn}:
[A1 � C] ∧ . . . ∧ [Am � C] → [Bj � C] for j = 1, . . . , n
[B1 � C] ∧ . . . ∧ [Bn � C] → [Ai � C] for i = 1, . . . ,m

(2) Translation of the relevant properties of subsumption in EL.

1. For every pair of distinct concept constants A,B occurring in Γ , we say that
A cannot be subsumed by B:
→ [A� B]

2. For every pair of distinct role names r, s and atoms ∃r.A, ∃s.B of Γ , we say
that ∃r.A cannot be subsumed by ∃s.B:
→ [∃r.A� ∃s.B]

3. For every pair ∃r.A, ∃r.B of atoms of Γ , we say that ∃r.A can only be
subsumed by ∃r.B if A is already subsumed by B:
[A� B] → [∃r.A� ∃r.B]

4. For every concept constant A and every atom ∃r.B of Γ , we say that A and
∃r.B are not in a subsumption relationship
→ [A� ∃r.B] and → [∃r.B � A]

5. Transitivity of subsumption is expressed using the non-Horn clauses:
[C1 � C3] → [C1 � C2] ∨ [C2 � C3] where C1, C2, C3 are atoms of Γ .

Note that there are further properties that hold for subsumption in EL (e.g.,
the fact that A B implies ∃r.A ∃r.B), but that are not needed to ensure
soundness of our translation.

(3) Translation of the relevant properties of >.

1. Transitivity and irreflexivity of > can be expressed using the Horn clauses:
[X>X] → and [X>Y] ∧ [Y >Z] → [X>Z],
where X,Y, Z are concept variables occurring in Γ .

2. The connection between this order and the order >σ is expressed using the
non-Horn clauses:
→ [X>Y] ∨ [X � ∃r.Y],
where X,Y are concept variables occurring in Γ and ∃r.Y is an atom of Γ .

Since the number of atoms of Γ is linear in the size of Γ , it is easy to see
that C(Γ) is of size polynomial in the size of Γ , and that it can be computed
in polynomial time. Note, however, that without additional optimizations, the
polynomial can be quite big. If the size of Γ is n, then the number of atoms of Γ
is in O(n). The number of possible propositional variables is thus in O(n2). The
size of C(Γ) is dominated by the number of clauses expressing the transitivity
of subsumption and the transitivity of the order on variables. Thus, the size of
C(Γ) is in O((n2)3) = O(n6).

102 F. Baader and B. Morawska

Example 1. It is easy to see that the EL-unification problem Γ := {X�∃r.X ≡?

X} does not have a solution. The set of clauses C(Γ) has the following elements:

(1) The only clause created in (1) is: [X � ∃r.X] → .
(2) Among the clauses introduced in (2) is the following:

5. [∃r.X � ∃r.X] → [∃r.X � X] ∨ [X � ∃r.X]
(3) The following clauses are created in (3):

1. [X>X] →
2. → [X>X] ∨ [X � ∃r.X].

This set of clauses is unsatisfiable. In fact, [X � ∃r.X] needs to be assigned the
truth value 0 because of (1). Consequently, (3)2. implies that [X>X] needs to
be assigned the truth value 1, which then falsifies (3)1.

The next example considers an equation where the right-hand side is the top
concept, which is the empty conjunction of flat atoms.

Example 2. The EL-unification problem Γ := {A �B ≡? �} has no solution.
In (1)1. we need to construct clauses for the atoms A and B on the left-hand

side. Since the right-hand side of the equation is the empty conjunction (i.e.,
n = 0), the left-hand sides of the implications generated this way are empty, i.e.,
both atoms yield the implication → , in which both the left-hand side and the
right-hand side is empty. An empty left-hand side is read as true (1), whereas an
empty right-hand side is read as false (0). Thus, this implication is unsatisfiable.

Theorem 1 (Soundness and completeness). Let Γ be a flat EL-unification
problem. Then, Γ is solvable iff C(Γ) is satisfiable.

We prove this theorem in the next two subsections, one devoted to the proof of
soundness and the other to the proof of completeness. After the formal proof,
we will also explain the reduction on a more intuitive level. Since our translation
into SAT is polynomial and SAT is in NP, Theorem 1 shows that EL-unification
is in NP. NP-hardness follows from the fact that EL-matching is known to be
NP-hard [10]: in fact, matching problems are special unification problems where
the terms on the right-hand sides of the equations do not contain variables.

Corollary 1. EL-unification is NP-complete.

3.1 Soundness

To prove soundness, we assume that C(Γ) is satisfiable. We must show that this
implies that Γ is solvable. In order to define a unifier of Γ , we take a propositional
valuation τ that satisfies C(Γ), and use τ to define an assignment of sets SX of
non-variable atoms of Γ to the variables X of Γ :

SX := {C | C non-variable atom of Γ s.t. τ([X � C]) = 0}.

Given this assignment of sets of non-variable atoms to the variables in Γ , we say
that the variable X directly depends on the variable Y if Y occurs in an atom of
SX . Let depends on be the transitive closure of directly depends on. We define
the binary relation >d on variables as X >d Y iff X depends on Y.

SAT Encoding of Unification in EL 103

Lemma 4. Let X,Y be variables occurring in Γ .

1. If X >d Y , then τ([X>Y]) = 1.
2. The relation >d is irreflexive, i.e., X �>d X.

Proof. (1) If X directly depends on the variable Y , then Y appears in a non-
variable atom of SX . This atom must be of the form ∃r.Y . By the construction
of SX , ∃r.Y ∈ SX can only be the case if τ([X � ∃r.Y]) = 0. Since C(Γ) contains
the clause → [X>Y] ∨ [X � ∃r.Y], this implies τ([X>Y]) = 1.

Since the transitivity clauses introduced in (3)1. are satisfied by τ , we also
have that τ([X>Y]) = 1 whenever X depends on the variable Y .

(2) If X depends on itself, then τ([X>X]) = 1 by the first part of this lemma.
This is, however, impossible since τ satisfies the clause [X>X] → . ��

The second part of this lemma shows that the relation >d, which is transitive
by definition, is a strict partial order. We can now use the sets SX to define a
substitution σ along the strict partial order >d:4

– If X is a minimal variable w.r.t. >d, then σ(X) is the conjunction of the
elements of SX , where the empty conjunction is �.

– Assume that σ(Y) is already defined for all variables Y such that X >d Y ,
and let SX = {D1, . . . , Dn}. We define σ(X) := σ(D1) � . . . � σ(Dn), where
again the empty conjunction (in case n = 0) is �.

Note that the substitution σ defined this way is actually a ground substitution,
i.e., for all variables X occurring in Γ we have that σ(X) does not contain
variables. In the following, we will say that this substitution is induced by the
valuation τ . Before we can show that σ is a unifier of Γ , we must first prove the
following lemma.

Lemma 5. Let C1, C2 be atoms of Γ . If τ([C1 � C2]) = 0, then σ(C1) σ(C2).

Proof. Assume that τ([C1 � C2]) = 0. First, consider the case where C1 is a
variable. If C2 is not a variable, then (by the construction of σ) τ([C1 � C2]) = 0
implies that σ(C2) is a conjunct of σ(C1), and hence σ(C1) σ(C2). If C2
is a variable, then τ([C1 � C2]) = 0, together with the transitivity clauses of
(2)5., implies that every conjunct of σ(C2) is also a conjunct of σ(C1), which
again yields σ(C1) σ(C2). Second, consider the case where σ(C2) = �. Then
σ(C1) σ(C2) obviously holds.

Hence, it remains to prove the lemma for the cases when C1 is not a variable
(i.e., it is a concept constant or an existential restriction) and σ(C2) is not �.
We use induction on the role depth of σ(C1)�σ(C2), where the role depth of an
EL-concept term is the maximal nesting of existential restrictions in this term.
To be more precise, if D1, D2, C1, C2 are atoms of Γ , then we define (D1, D2) "
(C1, C2) iff the role depth of σ(D1) � σ(D2) is greater than the role depth of
σ(C1) � σ(C2).

4 >d is well-founded since Γ contains only finitely many variables.

104 F. Baader and B. Morawska

We prove the lemma by induction on ". The base case for this induction is
the case where σ(C1) and σ(C2) have role depth 0, i.e., both are conjunctions of
concept constants. Since C1 is not a variable, this implies that C1 is a concept
constant. The atom C2 is either a concept constant or a concept variable. We
consider these two cases:

– Let C2 be a concept constant (and thus C2 = σ(C2)). Since τ([C1 � C2]) = 0
and the clauses introduced in (2)1. of the translation to SAT are satisfied by
τ , we have C2 = C1, and thus σ(C1) σ(C2).

– Assume that C2 is a variable. Since the role depth of σ(C2) is 0 and σ(C2) is
not �, σ(C2) is a non-empty conjunction of concept constants, i.e., σ(C2) =
B1 � · · · �Bn for n ≥ 1 constants B1, . . . , Bn such that τ([C2 � Bi]) = 0 for
i = {1, . . . , n}. Then, since τ satisfies the transitivity clauses introduced in
(2)5. of the translation to SAT, τ([C1 � Bi]) = 0 for i = {1, . . . , n}. Since τ
satisfies the clauses introduced in (2)1. of the translation to SAT, Bi must
be identical to C1 for i = {1, . . . , n}. Hence, σ(C2) = B1 � · · · �Bn ≡ C1 =
σ(C1), which implies σ(C1) σ(C2).

Now we assume by induction that the statement of the lemma holds for all pairs
of atoms D1, D2 such that (C1, C2) " (D1, D2). Notice that, if C1 is a constant,
then σ(C2) cannot contain an atom of the form ∃r.D as a top-level conjunct.
In fact, this could only be the case if either C2 is an existential restriction, or
C2 is a variable and SC2 contains an existential restriction. In the first case,
τ([C1 � C2]) = 0 would then imply that one of the clauses introduced in (2)4. is
not satisfied by τ . In the second case, τ would either need to violate one of the
transitivity clauses introduced in (2)5. or one of the clauses introduced in (2)4.
Thus, σ(C2) cannot contain an atom of the form ∃r.D as a top-level conjunct.
This implies that σ(C1)� σ(C2) has role depth 0, which actually means that we
are in the base case. Therefore, we can assume that C1 is not a constant.

Since C1 is not a variable, we have only one case to consider: C1 is of the
form C1 = ∃r.C. Then, because of the clauses in (2)4. and the transitivity
clauses in (2)5., σ(C2) cannot contain a constant as a conjunct. If C2 is an
existential restriction C2 = ∃s.D, then τ([C1 � C2]) = 0, together with the clauses
in (2)2. yields r = s. Consequently, τ([C1 � C2]) = 0, together with the clauses
in (2)3., yields τ([C � D] = 0. By induction, this implies σ(C) σ(D), and thus
σ(C1) = ∃r.σ(C) ∃r.σ(D) = σ(C2).

If C2 is a variable, then (by the construction of σ and the clauses in (2)4.)
σ(C2) must be a conjunction of atoms of the form ∃r1.σ(D1), . . . , ∃rn.σ(Dn),
where τ([C2 � ∃ri.Di]) = 0 for i = 1, . . . , n. The transitivity clauses in (2)5. yield
τ([∃r.C � ∃r1.D1]) = . . . = τ([∃r.C � ∃rn.Dn]) = 0, and the clauses in (2)2. yield
r1 = · · · = rn = r. Using the clauses in (2)3., we thus obtain τ([C � D1]) = . . . =
τ([C � Dn]) = 0. Induction yields σ(C) σ(D1), . . . , σ(C) σ(Dn), which in
turn implies σ(C1) = ∃r.σ(C) ∃r1.σ(D1) � · · · � ∃rn.σ(Dn) = σ(C2). ��

Now we can easily prove the soundness of the translation.

Proposition 1 (Soundness). The substitution σ induced by a satisfying valu-
ation of C(Γ) is a unifier of Γ .

SAT Encoding of Unification in EL 105

Proof. We have to show, for each equation A1 � . . .�Am ≡? B1 � . . .�Bn in Γ ,
that σ(A1) � . . . � σ(Am) ≡ σ(B1) � . . . � σ(Bn). Both sides of this equivalence
are conjunctions of ground atoms, i.e., σ(A1) � . . . � σ(Am) = E1 � . . . �El and
σ(B1)�. . .�σ(Bn) = F1�. . .�Fk. By Lemma 3, we can prove that the equivalence
holds by showing that, for each Fi, there is an Aj such that σ(Aj) Fi, and for
each Ej , there is a Bi such that σ(Bi) Ej . Here we show only the first part
since the other one can be shown in the same way.

First, assume that Fi = σ(Bν) for a non-variable atom Bν ∈ {B1, . . . , Bn}.
Since the clauses introduced in (1)2. of the translation are satisfied by τ , there is
an Aj such that τ([Aj � Bν]) = 0. By Lemma 5, this implies σ(Aj) σ(Bν) = Fi.

If there is no non-variable atom Bν ∈ {B1, . . . , Bn} such that σ(Bν) = Fi,
then there is a variable Bν such that the atom Fi is a conjunct of σ(Bν). By the
construction of σ, we know that there is a non-variable atom C of Γ such that
Fi = σ(C) and τ([Bν � C]) = 0. By our assumption, C is not in {B1, . . . , Bn}.
Since the clauses created in (1)3. are satisfied by τ , there is an Aj such that
τ([Aj � C]) = 0. By Lemma 5, this implies σ(Aj) σ(C) = Fi. ��

3.2 Completeness

To show completeness, assume that Γ is solvable, and let γ be a unifier Γ . We
must show that there is a propositional valuation τ satisfying all the clauses in
C(Γ). We define the propositional valuation τ as follows:

– for all atoms C,D of Γ , we define τ([C � D]) := 1 if γ(C) � γ(D); and
τ([C � D]) := 0 if γ(C) γ(D).

– for all variables X,Y occurring in Γ , we define τ([X>Y]) := 1 if X >γ Y ;
and τ([X>Y]) := 0 otherwise.

In the following, we call τ the valuation induced by γ. We show that τ satisfies
all the clauses that are created by our translation:

(1) In (1) of the translation we create three types of Horn clauses for each
equation A1 � · · · �Am ≡? B1 � · · · �Bn.
1. If C ∈ {A1, . . . , Am} is a non-variable atom, then C(Γ) contains the

clause [B1 � C] ∧ · · · ∧ [Bn � C] → .
The fact that C is a non-variable atom (i.e., a concept constant or

an existential restriction) implies that γ(C) is also a concept constant or
an existential restriction. Since γ is a unifier of the equation, Lemma 3
implies there must be an atom Bi such that γ(Bi) γ(C). Therefore
τ([Bi � C]) = 0, and the clause is satisfied by τ .

2. The clauses generated in (1)2. of the translation can be treated similarly.
3. If C is a non-variable atom of Γ that does not belong to {A1, . . . , Am,

B1, . . . , Bn}, then C(Γ) contains the clause [A1 � C] ∧ · · · ∧ [Am � C] →
[Bk � C] for k = 1, . . . , n. (The symmetric clauses also introduced in (1)3.
can be treated similarly.)

To show that this clause is satisfied by τ , assume that τ([Bk � C]) = 0,
i.e., γ(Bk) γ(C). We must show that this implies τ([Aj � C]) = 0 for
some j.

106 F. Baader and B. Morawska

Now, γ(A1) � · · · � γ(Am) ≡ γ(B1) � · · · � γ(Bn) γ(Bk) γ(C)
implies that there is an Aj such that γ(Aj) γ(C), by Lemma 3. Thus,
or definition of τ yields τ([Aj � C]) = 0.

(2) Now we look at the clauses introduced in (2). Since two constants cannot be
in a subsumption relationship, the clauses in (2)1. are satisfied by τ . Simi-
larly, the clauses in (2)2. are satisfied by τ since no existential restriction can
subsume another one built using a different role name. The clauses in (2)3.
are satisfied because γ(∃r.A) γ(∃r.B) implies γ(A) γ(B), by Lemma 1.
In a similar way we can show that all clauses in (2)4. and (2)5. are satisfied
by our valuation τ . Indeed, these clauses just describe valid properties of the
subsumption relation in EL.

(3) The clauses introduced in (3) all describe valid properties of the strict partial
order >γ ; hence they are satisfied by τ .

Proposition 2 (Completeness). The valuation τ induced by a unifier of Γ
satisfies C(Γ).

3.3 Some Comments Regarding the Reduction

We have shown above that our SAT reduction is sound and complete in the sense
that the (flat) EL-unification problem Γ is solvable iff its translation C(Γ) into
a SAT problem is satisfiable. This proof is, of course, a formal justification of
our definition of this translation. Here, we want to explain some aspects of this
translation on a more intuitive level.

Basically, the clauses generated in (1) enforce that “enough” subsumption
relationships hold to have a unifier, i.e., solve each equation. What “enough”
means is based on Lemma 3: once we have applied the unifier, every atom on
one side of the (instantiated) equation must subsume an (instantiated) conjunct
on the other side. Such an atom can either be an instance of a non-variable atom
(i.e., an existential restriction or a concept constant) occurring on this side of the
equation, or it is introduced by the instantiation of a variable. The first case is
dealt with by the clauses in (1)1. and (1)2. whereas the second case is dealt with
by (1)3. A valuation of the propositional variables of the form [A� B] guesses
such subsumptions, and the clauses generated in (1) ensure that enough of them
are guessed for solving all equations. However, it is not sufficient to guess enough
subsumptions. We also must make sure that these subsumptions can really be
made to hold by applying an appropriate substitution. This is the role of the
clauses introduced in (2). Basically, they say that two existential restrictions can
only subsume each other if they are built using the same role name, and their
direct subterms subsume each other. Two concept constants subsume each other
iff they are equal, and there cannot be a subsumption relation between a concept
constant and an existential restriction. To ensure that all such consequences of
the guessed subsumptions are really taken into account, transitivity of subsump-
tion is needed. Otherwise, we would, for example, not detect the conflict caused
by guessing that [A� X] and [X � B] should be evaluated to 0, i.e., that (for the
unifier σ to be constructed) we have σ(A) σ(X) σ(B) for distinct concept

SAT Encoding of Unification in EL 107

constants A,B. These kinds of conflicts correspond to what is called a clash
failure in syntactic unification [8].

Example 3. To see the clauses generated in (1) and (2) of the translation at
work, let us consider a simple example, where we assume that A,B are distinct
concept constants and X,Y are distinct concept variables. Consider the equation

∃r.X ≡? ∃r.Y, (1)

which in (1)1. and (1)2. yields the clauses

[∃r.Y � ∃r.X] → and [∃r.X � ∃r.Y] → (2)

These clauses state that, for any unifier σ of the equation (1) we must have
σ(∃r.Y) σ(∃r.X) and σ(∃r.X) σ(∃r.Y). However, stating just these two
clauses is not sufficient: we must also ensure that the assignments for the vari-
ables X and Y really realize these subsumptions. To see this, assume that we
have the additional equation

X � Y ≡? A �B, (3)

which yields the clauses

[X � A] ∧ [Y � A] → and [X � B] ∧ [Y � B] → (4)

One possible way of satisfying these two clauses is to set

τ([X � A]) = 0 = τ([Y � B]) and τ([X � B]) = 1 = τ([Y � A]). (5)

The substitution σ induced by this valuation replaces X by A and Y by B,
and thus clearly does not satisfy the subsumptions σ(∃r.Y) σ(∃r.X) and
σ(∃r.X) σ(∃r.Y). Choosing the incorrect valuation (5) is prevented by the
clauses introduced in (2) of the translation. In fact, in (2)3. we introduce the
clauses

[X � Y] → [∃r.X � ∃r.Y] and [Y � X] → [∃r.Y � ∃r.X] (6)

Together with the clauses (2), these clauses can be used to deduce the clauses

[X � Y] → and [Y � X] → (7)

Together with the transitivity clauses introduced in (2)5.:

[X � B] → [X � Y] ∨ [Y � B] and [Y � A] → [Y � X] ∨ [X � A] (8)

the clauses (7) prevent the valuation (5).

This example illustrates, among other things, why the clauses introduced in
(2)3. of the translation are needed. In fact, without the clauses (6), the incorrect
valuation (5) could not have been prevented.

One may wonder why we only construct the implications in (2)3., but not the
implications in the other direction:

[∃r.A� ∃r.B] → [A� B]

The reason is that these implications are not needed to ensure soundness.

108 F. Baader and B. Morawska

Example 4. Consider the unification problem

{X ≡? A, Y ≡? ∃r.X, Z ≡? ∃r.A},

which produces the clauses [X � A] → , [Y � ∃r.X] → , [Z � ∃r.A] → .
The clause [X � A] → states that, in any unifier σ of the first equation, we

must have σ(X) σ(A). Though this does imply that σ(∃r.X) σ(∃r.A), there
is no need to state this with the clause [∃r.X � ∃r.A] → since this subsumption
is not needed to solve the equation. Thus, it actually does not hurt if a valua-
tion evaluates [∃r.X � ∃r.A] with 1. In fact, this decision does not influence the
substitution for X that is computed from the valuation.

Expressed on a more technical level, the crucial tool for proving soundness is
Lemma 5, which says that τ([C1 � C2]) = 0 implies σ(C1) σ(C2) for the sub-
stitution σ induced by τ . This lemma does not state, and our proof of soundness
does not need, the implication in the other direction. As illustrated in the above
example, it may well be the case that σ(C1) σ(C2) although the satisfying
valuation τ evaluates [C1 � C2] to 1. The proof of Lemma 5 is by induction on
the role depth, and thus reduces the problem of showing a subsumption rela-
tionship for terms of a higher role depth to the problem of showing subsumption
relationships for terms of a lower role depth. This is exactly what the clauses in
(2)3. allow us to do. The implications in the other direction are not required for
this. They would be needed for proving the other direction of the lemma, but
this is not necessary for proving soundness.

Until now, we have not mentioned the clauses generated in (3). Intuitively,
they are there to detect what are called occurs check failures in the terminology
of syntactic unification [8]. To be more precise, the variables of the form [X>Y]
together with the clauses generated in (3)1. are used to guess a strict partial order
on the variables occurring in the unification problem. The clauses generated in
(3)2. are used to enforce that only variables Y smaller than X can occur in the
set SX defined by a satisfying valuation. This makes it possible to use the sets
SX to define a substitution σ by induction on the strict partial order. Thus, this
order realizes what is called a constant restriction in the literature on combining
unification algorithms [7]. We have already seen the clauses generated in (3) at
work in Example 1.

4 Connection to the Original “in NP” Proof

It should be noted that, in the present paper, we give a proof of the fact that
EL-unification is in NP that is independent of the proof in [4]. The only result
from [4] that we have used is the characterization of subsumption (Lemma 1),
which is an easy consequence of known results for EL [10]. In [4], the “in NP”
result is basically shown as follows:

1. define a well-founded partial order " on substitutions and use this to show
that any solvable EL-unification problem has a ground unifier that is minimal
w.r.t. this order;

SAT Encoding of Unification in EL 109

2. show that minimal ground unifiers are local in the sense that they are built
from atoms of Γ ;

3. use the locality of minimal ground unifiers to devise a “guess and then test”
NP-algorithm for generating a minimal ground unifier.

The proof of 2., which shows that a non-local unifier cannot be minimal, is quite
involved. Compared to that proof, the proof of soundness and completeness given
in the present paper is much simpler.

In order to give a closer comparison between the approach used in [4] and
the one employed in the present paper, let us recall some of the definitions and
results from [4] in more detail:

Definition 2. Let Γ be a flat EL-unification problem, and γ be a ground unifier
of Γ . Then γ is called local if, for each variable X in Γ , there are n ≥ 0 non-
variable atoms D1, . . . , Dn of Γ such that γ(X) = γ(D1) � · · · � γ(Dn), where
the empty conjunction is �.

The “guess and then test” algorithm in [4] crucially depends on the fact that any
solvable EL-unification problem has a local unifier. This result can be obtained
as an easy consequence of our proof of soundness and completeness.

Corollary 2. Let Γ be a flat EL-unification problem that is solvable. Then Γ
has a local unifier.

Proof. Since Γ is solvable, our completeness result implies that C(Γ) is satis-
fiable. Let τ be a valuation that satisfies C(Γ), and let σ be the unifier of Γ
induced by τ in our proof of soundness. Locality of σ is an immediate conse-
quence of the definition of σ. ��

This shows that one does not really need the notion of minimality, and the
quite involved proof that minimal unifiers are local given in [4], to justify the
completeness of the “guess and then test” algorithm from [4]. However, in [4]
minimal unifiers are also used to show a stronger completeness result for the
“guess and then test” algorithm: it is shown that (up to equivalence) every
minimal ground unifier is computed by the algorithm. In the following, we show
that this is also the case for the unification algorithm obtained through our
reduction.

Definition 3. Let σ and γ be substitutions, and Γ be an EL-unification problem.
We define

– γ # σ if, for each variable X in Γ , we have γ(X) σ(X);
– γ ≡ σ if γ # σ and σ # γ, and γ " σ if γ # σ and σ �≡ γ;
– γ is a minimal unifier of Γ if there is no unifier σ of Γ such that γ " σ.

As a corollary to our soundness and completeness proof, we can show that any
minimal ground unifier σ of Γ is computed by our reduction, in the sense that
it is induced by a satisfying valuation of C(Γ).

110 F. Baader and B. Morawska

Corollary 3. Let Γ be a flat EL-unification problem. If γ is a minimal ground
unifier of Γ , then there is a unifier σ, induced by a satisfying valuation τ of
C(Γ), such that σ ≡ γ.

Proof. Let γ be a minimal ground unifier of Γ , and τ the satisfying valuation
of C(Γ) induced by γ. We show that the unifier σ of Γ induced by τ satisfies
γ # σ. Minimality of γ then implies γ ≡ σ.

We must show that, for each variableX occurring in Γ , we have γ(X) σ(X).
We prove this by well-founded induction on the strict partial order > defined as
X > Y iff τ([X>Y]) = 1.5

Let X be a minimal variable with respect to this order. Since τ satisfies the
clauses in (3)2., the set SX induced by τ (see the proof of soundness) contains
only ground atoms. Let SX = {C1, . . . , Cn} for n ≥ 0 ground atoms. If n = 0,
then σ(X) = �, and thus γ(X) σ(X) is trivially satisfied. Otherwise, we have
σ(X) = σ(C1)�. . .�σ(Cn) = C1�. . .�Cn, and we know, for each i ∈ {1, . . . , n},
that τ([X � Ci]) = 0 by the definition of SX . Since τ is the valuation induced
by the unifier γ, this implies that γ(X) γ(Ci) = Ci. Consequently, we have
shown that γ(X) C1 � . . . � Cn = σ(X).

Now we assume, by induction, that we have γ(Y) σ(Y) for all variables
Y such that X > Y . Let SX = {C1, . . . , Cn} for n ≥ 0 non-variable atoms
of Γ . If n = 0, then σ(X) = �, and thus γ(X) σ(X) is again trivially
satisfied. Otherwise, we have σ(X) = σ(C1) � · · · � σ(Cn), and we know, for
each i ∈ {1, . . . , n}, that τ([X � Ci]) = 0 by the definition of SX . Since τ is the
valuation induced by the unifier γ, this implies that γ(X) γ(Ci). for each
i ∈ {1, . . . , n}. Since all variables occurring in C1, . . . , Cn are smaller than X
and since the concept constructors of EL are monotonic w.r.t. subsumption, we
have by induction that γ(Ci) σ(Ci) for each i ∈ {1, . . . , n}. Consequently, we
have γ(X) γ(C1) � . . . � γ(Cn) σ(C1) � · · · � σ(Cn) = σ(X). ��

Table 2. Experimental Results

Size #InVars(#FlatVars) #Atoms #PropVars #Clauses OverallTime MiniSatTime
10 2(5) 10 125 895 58 ms 0 ms
10 2(5) 11 146 1 184 79 ms 4 ms
22 2(10) 24 676 13 539 204 ms 4 ms
22 2(10) 25 725 15 254 202 ms 8 ms
22 2(10) 25 725 15 254 211 ms 8 ms
22 3(11) 26 797 17 358 222 ms 8 ms

5 Conclusion

The results presented in this paper are of interest both from a theoretical and
a practical point of view. From the theoretical point of view, this paper gives a
new proof of the fact that EL-unification is in NP, which is considerably simpler
5 The clauses in C(Γ) make sure that this is indeed a strict partial order. It is trivially

well-founded since Γ contains only finitely many variables.

SAT Encoding of Unification in EL 111

than the original proof given in [4]. We have also shown that the stronger com-
pleteness result for the “guess and then test” NP algorithm of [4] (all minimal
ground unifiers are computed) holds as well for the new algorithm presented in
this paper. From the practical point of view, the translation into propositional
satisfiability allows us to employ highly optimized state of the art SAT solvers
when implementing an EL-unification algorithm.

We have actually implemented the SAT translation described in this paper in
Java, and have used MiniSat for the satisfiability check. Until now, we have not
yet optimized the translation, and we have tested the algorithm only on rela-
tively small (solvable) unification problems extracted from Snomed CT. Table 1
shows the first experimental results obtained for these problems. The first col-
umn counts the size of the input problem (number of occurrences of concept and
role names); the second column the number of concept variables before and after
flattening; the third column the number of atoms in the flattened unification
problem; the fourth column the number of propositional variables introduced
by our translation; the fifth column the number of clauses introduced by our
translation; the sixth column the overall run-time (in milliseconds) for decid-
ing whether a unifier exists; and the seventh column the time (in milliseconds)
needed by MiniSat for deciding the satisfiability of the generated clause set.

In [5] we have introduced a more goal-oriented variant of the brutal “guess
and then test” algorithm of [4], which tries to transform a given flat unification
problem into solved form. However, without any smart backtracking strategies, a
first implementation of this algorithm cannot compete with the SAT translation
presented in this paper.

References

1. Baader, F.: Terminological cycles in a description logic with existential restrictions.
In: Proc. IJCAI 2003. Morgan Kaufmann, Los Altos (2003)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. IJCAI 2005.
Morgan Kaufmann, Los Altos (2005)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, Cambridge (2003)

4. Baader, F., Morawska, B.: Unification in the description logic EL. In: Treinen, R.
(ed.) RTA 2009. LNCS, vol. 5595, pp. 350–364. Springer, Heidelberg (2009)

5. Baader, F., Morawska, B.: Unification in the description logic EL. In: Logical Meth-
ods in Computer Science (to appear, 2010)

6. Baader, F., Narendran, P.: Unification of concepts terms in description logics. J.
of Symbolic Computation 31(3), 277–305 (2001)

7. Baader, F., Schulz, K.: Unification in the union of disjoint equational theories:
Combining decision procedures. J. of Symbolic Computation 21(2), 211–243 (1996)

8. Baader, F., Snyder, W.: Unification theory. In: Handbook of Automated Reasoning,
vol. I. Elsevier Science Publishers, Amsterdam (2001)

9. Kapur, D., Narendran, P.: Complexity of unification problems with associative-
commutative operators. J. Automated Reasoning 9, 261–288 (1992)

10. Küsters, R. (ed.): Non-Standard Inferences in Description Logics. LNCS (LNAI),
vol. 2100, p. 33. Springer, Heidelberg (2001)

Generating Combinatorial Test Cases by
Efficient SAT Encodings Suitable

for CDCL SAT Solvers

Mutsunori Banbara1, Haruki Matsunaka2,
Naoyuki Tamura1, and Katsumi Inoue3

1 Information Science and Technology Center, Kobe University, Japan
{banbara,tamura}@kobe-u.ac.jp

2 Graduate School of System Informatics, Kobe University, Japan
matsunaka@stu.kobe-u.ac.jp

3 National Institute of Informatics, Japan
ki@nii.ac.jp

Abstract. Generating test cases for combinatorial testing is to find a
covering array in Combinatorial Designs. In this paper, we consider the
problem of finding optimal covering arrays by SAT encoding. We present
two encodings suitable for modern CDCL SAT solvers. One is based on
the order encoding that is efficient in the sense that unit propagation
achieves the bounds consistency in CSPs. Another one is based on a
combination of the order encoding and Hnich’s encoding. CDCL SAT
solvers have an important role in the latest SAT technology. The effective
use of them is essential for enhancing efficiency. In our experiments,
we found solutions that can be competitive with the previously known
results for the arrays of strength two to six with small to moderate size
of components and symbols. Moreover, we succeeded either in proving
the optimality of known bounds or in improving known lower bounds for
some arrays.

1 Introduction

Propositional Satisfiability (SAT) is fundamental in solving many application
problems in Artificial Intelligence and Computer Science: logic synthesis, plan-
ning, theorem proving, hardware/software verification, and Constraint Satisfac-
tion Problems (CSPs). Remarkable improvements in the efficiency of SAT solvers
have been made over the last decade. Such improvements encourage researchers
to solve CSPs by encoding them into SAT (i.e. “SAT encoding”). A number
of SAT encoding methods have been therefore proposed: direct encoding [1, 2],
support encoding [3, 4], multivalued encoding [5], log encoding [6, 7], order en-
coding [8, 9], and log-support encoding [10].

Hardware/software testing plays an important role in enhancing the reliabil-
ity of products. However, it has become one of the most expensive tasks in the
product development process in recent years. Combinatorial testing is an effec-
tive black-box testing method to detect elusive failures of hardware/software.
The basic idea is based on the observations that most failures are caused by

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 112–126, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Generating Combinatorial Test Cases by Efficient SAT Encodings 113

interactions of multiple components. The number of test cases is therefore much
smaller than exhaustive testing. Generating test cases for combinatorial testing
is to find a Covering Array (CA) in Combinatorial Designs. A covering array
provides a set of test cases, where each row of the array can be regarded as a set
of component symbols for an individual test case.

Since the usefulness of covering arrays for combinatorial testing was shown,
there has been a great deal of work for finding covering arrays with as small
number of rows as possible [11–21]. From the perspective of SAT, Hnich et
al. proposed a SAT encoding designed for incomplete SAT solvers based on
stochastic local search algorithms [20, 21]. A non-clausal encoding on incomplete
SAT solvers was studied in [22]. Myra B. Cohen et al. proposed algorithms that
synergistically integrate SAT with greedy methods [23]. However, there is very
little literature on SAT encoding of this problem suitable for modern Conflict-
Driven Clause Learning (CDCL) SAT solvers.

In this paper, we consider the problem of finding optimal covering arrays
by SAT encoding. We present two encodings suitable for modern CDCL SAT
solvers. One is based on the order encoding which an award-winning SAT-based
CSP solver Sugar 1 adopted. The order encoding is efficient in the sense that unit
propagation keeps the bounds consistency in CSPs [24]. Another one is based
on a combination of the order encoding and Hnich’s encoding. It is designed to
reduce the number of clauses required, compared with the order encoding. CDCL
SAT solvers have an important role in the latest SAT technology. The effective
use of them is essential for enhancing efficiency. Our two encodings are based
on the idea of order encoding, and the practical effectiveness of a combination
of the order encoding and CDCL SAT solvers has been shown by the fact that
Sugar became an award-winning system in the Fourth International CSP Solver
Competition for the past two years.

In our experiments, we found solutions that can be competitive with the
previously known results obtained by orthogonal arrays, theoretical works, and
several computational search methods for the arrays of strength two to six with
small to moderate size of components and symbols. Moreover, we succeeded
either in proving the optimality of known bounds or in improving known lower
bounds for some arrays. Our results include a solution to an open problem listed
in Handbook of Satisfiability [25] published in 2009.

The rest of this paper is organized as follows. Section 2 presents the basic
definitions of covering arrays and related work, especially Hnich’s constraint
programming model. Section 3 presents Hnich’s SAT encoding. Our encodings
are presented in Section 4 and 5. Section 6 shows comparison results of differ-
ent encodings. Section 7 shows experimental results of finding optimal covering
arrays. The paper is concluded in Section 8.

2 Covering Arrays and Related Work

The following definitions are based on Colbourn [26].
1 http://bach.istc.kobe-u.ac.jp/sugar/

114 M. Banbara et al.

1 2 3 4 5
0 0 0 0 0
0 1 1 2 2
0 2 2 1 1
1 0 1 1 1
1 1 0 1 2
1 2 1 2 0
1 2 2 0 2
2 0 2 2 2
2 1 1 0 1
2 1 2 1 0
2 2 0 2 1

Fig. 1. An optimal cover-
ing array of CA(11; 2, 5, 3)

(1,2) (1,3) (1,4) (1,5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5)
0 0 0 0 0 0 0 0 0 0
1 1 2 2 4 5 5 5 5 8
2 2 1 1 8 7 7 7 7 4
3 4 4 4 1 1 1 4 4 4
4 3 4 5 3 4 5 1 2 5
5 4 5 3 7 8 6 5 3 6
5 5 3 5 8 6 8 6 8 2
6 8 8 8 2 2 2 8 8 8
7 7 6 7 4 3 4 3 4 1
7 8 7 6 5 4 3 7 6 3
8 6 8 7 6 8 7 2 1 7

Fig. 2. An alternative matrix of CA(11; 2, 5, 3)
shown in Fig. 1

Definition 1. A covering array CA(b; t, k, g) is a b × k array (b rows and k
columns) such that every b × t sub-array contains all t-tuples from g symbols
at least once. The parameter t is the strength of the array, k is the number of
components, and g is the number of symbols for each component.

Definition 2. The covering array number CAN(t, k, g) is the smallest b for
which a CA(b; t, k, g) exists.

Definition 3. A covering array CA(b; t, k, g) is optimal if CAN(t, k, g) = b.

For example, Fig. 1 shows an example of CA(11; 2, 5, 3), a covering array of
strength two (t = 2) with five components (k = 5) having three symbols (g = 3)
each. It is an optimal covering array which has eleven rows (b = 11). We highlight
the different 2-tuples from three symbols in the first 11 × 2 sub-array to show
all possible 2-tuples occur at least once. This property holds for all sub-arrays.

In the case of t = g = 2, finding optimal covering arrays was solved in 1970s
(see [27] for details). However, in general, the problem of finding optimal cover-
ing arrays is NP-complete [28]. To determine CAN(t, k, g), the following basic
properties are useful and will be used on Table 4 in Section 7.

Theorem 1 (Chateauneuf and Kreher [12] and Zhang [25]).

1. gt ≤ CAN(t, k, g) ≤ gk

2. CAN(t, k − 1, g) ≤ CAN(t, k, g)
3. CAN(t, k, g − 1) ≤ CAN(t, k, g)
4. g · CAN(t− 1, k − 1, g) ≤ CAN(t, k, g)

Table. 1 shows a list of current bounds on the covering array numberCAN(3, k, g)
with small to moderate size of k and g. This table is based on Colbourn’s CA ta-
bles [29] and the papers [12, 25]. The (k, g)-entry is either nwhenCAN(t, k, g) = n
or (n�, nu) when n� ≤ CAN(t, k, g) ≤ nu.

In this paper, we define two kinds of problems to make our approach more
understandable. For a given tuple 〈t, k, g, b〉, CA decision problem is the prob-
lem to decide whether a CA(b; t, k, g) exists or not, and find it if exists. For a

Generating Combinatorial Test Cases by Efficient SAT Encodings 115

Table 1. Current bounds on CAN(3, k, g)

k\g 2 3 4 5 6 7 8
4 8 27 64 125 216 343 512
5 10 28,33 64 125 222,240 343 512
6 12 33 64 125 222,258 343 512
7 12 36,40 76,88 125,180 222,293 343 512
8 12 36,42 76,88 145,185 222,304 343 512
9 12 36,45 76,112 145,185 234,379 343,472 512
10 12 36,45 76,112 145,185 234,393 364,479 512
11 12 36,45 76,121 145,225 234,463 364,637 536,960
12 14,15 36,45 76,121 145,225 234,463 364,637 536,960
13 14,16 36,51 76,124 145,245 234,503 364,637 536,960
14 14,16 36,51 76,124 145,245 234,503 364,637 536,960
15 14,17 36,57 76,124 145,245 234,514 364,637 536,960
16 14,17 36,60 76,124 145,245 234,514 364,637 536,960

given tuple 〈t, k, g〉, CA optimization problem is the problem to find an optimal
covering array CA(b; t, k, g).

Hnich et al. proposed three different CSP representations for solving the CA
decision problems: näıve matrix model, alternative matrix model, and integrated
matrix model [20, 21]. In these models, the fact a CA exists is equivalent to
its CSP representation being satisfiable. It can be easily applied to the CA
optimization problems. The CSPs of CA decision problems with varying the
value of b contain both satisfiable and unsatisfiable problems, and the optimal
solution exists on the boundary. The integrated matrix model consists of two
matrices and two kinds of constraints.

Original matrix is a b×kmatrix of integer variables xr,i (1 ≤ r ≤ b, 1 ≤ i ≤ k).
The domain of each variable is {0, 1, 2, . . . , g − 1}. This matrix identifies a
covering array itself.

Alternative matrix is a b×
(
k
t

)
matrix of integer variables yr,i′(1 ≤ r ≤ b, 1 ≤

i′ ≤
(
k
t

)
). Each column expresses one of the possible t-tuple of columns

in the original matrix. Each variable expresses a t-tuple of variables in the
original matrix (called compound variables). The domain of each variable is
{0, 1, 2, . . . , gt − 1}.

Coverage constraints specify the condition that all possible t-tuples from g
symbols must occur at least once for all b × t sub-arrays. In the alternative
matrix, the coverage constraints can be expressed by using Global Cardinality
Constraints (GCC) [30]. That is, for every column (i.e. every sub-array in
the original matrix), one GCC is enforced to ensure that every number in
the range 0 to gt − 1 occurs at least once and at most b− gt + 1 times.

Channelling constraints associate each compound variable in the alternative
matrix with the t-tuples of corresponding variables in the original matrix.
Let 1 ≤ ci

′
1 ≤ ci

′
2 ≤ · · · ≤ ci

′
t ≤ k be t distinct columns in the original matrix,

which correspond to the column i′ in the alternative matrix. The channelling
constraints can be intensionally expressed as yr,i′ =

∑t
�=1 g

t−�xr,ci′
�
.

116 M. Banbara et al.

For example, the channelling constraints of CA(11; 2, 5, 3) can be intensionally
expressed as yr,(i,j) = 3xr,i + xr,j , or extensionally as follows:

(yr,(i,j), xr,i, xr,j) ∈ {(0, 0, 0), (1, 0, 1), (2, 0, 2), (3, 1, 0),
(4, 1, 1), (5, 1, 2), (6, 2, 0), (7, 2, 1), (8, 2, 2)}.

Fig. 2 shows an alternative matrix that corresponds to the array of CA(11; 2, 5, 3)
shown in Fig. 1.

The integrated matrix model uses the idea of compound variables, and the
coverage constraints can be elegantly expressed by the global constraints. In this
paper, we solve the CA optimization problems by encoding this constraint model
into SAT. Before showing our encodings, we present an existing encoding.

3 Hnich’s SAT Encoding

Since we are working in SAT encoding, the integrated matrix model needs to be
expressed as a propositional formula in Conjunctive Normal Form (CNF).

In Hnich’s SAT encoding [20, 21], the propositional variables for CA(b; t, k, g)
are p (xr,i = v) and p (yr,i′ = w) with 1 ≤ r ≤ b, 1 ≤ i ≤ k, 0 ≤ v ≤ g − 1,
1 ≤ i′ ≤

(
k
t

)
, and 0 ≤ w ≤ gt − 1. The variable p (xr,i = v) and p (yr,i′ = w) are

intended to denote xr,i = v in the original matrix and yr,i′ = w in the alternative
matrix respectively. The formula for CA(b; t, k, g) are defined to be∨

v

p (xr,i = v) (1)

¬p (xr,i = v) ∨ ¬p (xr,i = v′) (2)∨
w

p (yr,i′ = w) (3)

¬p (yr,i′ = w) ∨ ¬p (yr,i′ = w′) (4)∨
r

p (yr,i′ = w) (5)

¬p (yr,i′ = w) ∨ p (xr,i = v) (6)

where 1 ≤ r ≤ b, 1 ≤ i ≤ k, 0 ≤ v < v′ ≤ g − 1, 1 ≤ i′ ≤
(
k
t

)
, and 0 ≤ w < w′ ≤

gt − 1; the clauses (6) are defined for all r,i,i′,v, and w such that yr,i′ = w and
xr,i = v are permitted by the channelling constraints between yr,i′ and xr,i.

The clauses (1,3) express the condition that each CSP variable is assigned
to at least one domain value. The clauses (2,4) express the condition that each
CSP variable is assigned to at most one domain value. The clauses (5) express
the lower bound on the coverage constraints that every number in the range 0
to gt − 1 occurs at least once in every column of the alternative matrix. There
are no clauses for the upper bound on the coverage constraints since it is an
implied constraint and can be omitted. The clauses (6) express the channelling
constraints. Note that the clauses (1,3,4) can be omitted (see [20, 21] for details).

Generating Combinatorial Test Cases by Efficient SAT Encodings 117

Hnich’s SAT encoding, with the use of a stochastic local search algorithm,
found many solutions that are competitive with the previously known results for
the arrays of strength 2 ≤ t ≤ 4 with small to moderate size of k and g. It also
found an improved solution for a large array CA(40; 3, 7, 3).

However, a good encoding for backtrack search is not necessarily the same as
that for local search. We thus propose two encodings suitable for modern CDCL
SAT solvers.

4 Order Encoding

4.1 Overview of Order Encoding

The order encoding [8, 9] is a method that encodes a finite linear CSP into SAT.
In order encoding, we introduce one propositional variable p (x ≤ i) for each CSP
variable x and each integer constant i (�(x) − 1 ≤ i ≤ u(x)), where �(x) and
u(x) are the lower and upper bounds of x respectively2. The variable p (x ≤ i)
is intended to indicate x ≤ i. The key feature of this encoding is the natural
representation of the order structure on integers.

For each CSP variable x, we require the following clauses as axioms expressing
the bounds and the order relation, where �(x) ≤ i ≤ u(x).

¬p (x ≤ �(x)− 1) p (x ≤ u(x)) ¬p (x ≤ i− 1) ∨ p (x ≤ i)

Constraints are encoded into clauses expressing conflict regions instead of conflict
points. When all points (x1, . . . , xn) in the region i1 < x1 ≤ j1, . . . , in < xn ≤
jn violate the constraint, the following clause is added.

p (x1 ≤ i1) ∨ ¬p (x1 ≤ j1) ∨ · · · ∨ p (xn ≤ in) ∨ ¬p (xn ≤ jn)

Any finite linear comparison
∑n

i=1 ai xi ≤ c can be encoded into the following
CNF formula, where ai’s are non-zero integer constants, c is an integer constant,
and xi’s are mutually distinct integer variables.∧

∑
n
i=1 bi=c−n+1

∨
i

(ai xi ≤ bi)#

The parameters bi’s range over integers satisfying
∑n

i=1 bi = c − n + 1 and
�(aixi) − 1 ≤ bi ≤ u(aixi) for all i where functions � and u give the lower and
upper bounds of the given expression respectively. The translation ()# is defined
as follows.

(a x ≤ b)# ≡

⎧⎪⎪⎨⎪⎪⎩
p

(
x ≤
⌊
b

a

⌋)
(a > 0)

¬p
(
x ≤
⌈
b

a

⌉
− 1
)

(a < 0)

2 The variables p (x ≤ �(x) − 1) and p (x ≤ u(x)) are redundant because they are al-
ways false and true respectively. However, we use them for simplicity of explanation.

118 M. Banbara et al.

Let us consider an example of encoding x+y ≤ 7 with x, y ∈ {2, 3, 4, 5, 6}. First,
we introduce the following twelve variables.

p (x ≤ 1) p (x ≤ 2) p (x ≤ 3) p (x ≤ 4) p (x ≤ 5) p (x ≤ 6)
p (y ≤ 1) p (y ≤ 2) p (y ≤ 3) p (y ≤ 4) p (y ≤ 5) p (y ≤ 6)

Second, we require the following fourteen axiom clauses for encoding the integer
variables x and y.

¬p (x ≤ 1) p (x ≤ 6)
¬p (x ≤ 1) ∨ p (x ≤ 2) ¬p (x ≤ 2) ∨ p (x ≤ 3)

¬p (x ≤ 3) ∨ p (x ≤ 4) ¬p (x ≤ 4) ∨ p (x ≤ 5) ¬p (x ≤ 5) ∨ p (x ≤ 6)

(Similar clauses for y)

Finally, the constraint x+ y ≤ 7 is encoded into the following five clauses.

p (x ≤ 1) ∨ p (y ≤ 5) p (x ≤ 2) ∨ p (y ≤ 4)
p (x ≤ 3) ∨ p (y ≤ 3) p (x ≤ 4) ∨ p (y ≤ 2) p (x ≤ 5) ∨ p (y ≤ 1)

4.2 An Order Encoding of CA

Now, we present an order encoding of the integrated matrix model. We introduce
the variables p (xr,i ≤ v) and p (yr,i′ ≤ w) with 1 ≤ r ≤ b, 1 ≤ i ≤ k, −1 ≤ v ≤
g − 1, 1 ≤ i′ ≤

(
k
t

)
, and −1 ≤ w ≤ gt − 1. The formula for CA(b; t, k, g) are

defined as follows except for the channelling constraints:

¬p (xr,i ≤ −1) (7)
p (xr,i ≤ g − 1) (8)
¬p (xr,i ≤ v − 1) ∨ p (xr,i ≤ v) (9)
¬p (yr,i′ ≤ −1) (10)
p
(
yr,i′ ≤ gt − 1

)
(11)

¬p (yr,i′ ≤ w − 1) ∨ p (yr,i′ ≤ w) (12)∨
r

(¬p (yr,i′ ≤ w − 1) ∧ p (yr,i′ ≤ w)) (13)

where 1 ≤ r ≤ b, 1 ≤ i ≤ k, 0 ≤ v ≤ g − 1, 1 ≤ i′ ≤
(
k
t

)
, and 0 ≤ w ≤ gt − 1.

The clauses (7,8,9) and (10,11,12) are axiom clauses expressing the bounds
and the order relation of integer variables in the original and alternative matrices
respectively. Obviously, the formula (13) is not clausal form. We thus translate
it into equi-satisfiable CNF formula by using the well-known Tseitin transfor-
mation with introducing new additional b variables.

Each channelling constraint yr,i′ =
∑t

�=1 g
t−�xr,ci′

�
in the integrated matrix

model is first replaced with the following conjunction of two linear comparisons:(
yr,i′ ≤

t∑
�=1

gt−�xr,ci′
�

)
∧
(
yr,i′ ≥

t∑
�=1

gt−�xr,ci′
�

)
.

Generating Combinatorial Test Cases by Efficient SAT Encodings 119

And then each linear comparison is encoded into SAT in the same way as∑n
i=1 ai xi ≤ c, as described in previous subsection.
The drawback of this encoding is the number of clauses required for the cover-

age constraints. We need in total O(b
(
k
t

)
gt) clauses since additional O(b) clauses

are required for each of (13). To avoid this problem, we propose another encod-
ing, called mixed encoding.

5 Mixed Encoding

The mixed encoding is based on a combination of the order encoding and Hnich’s
encoding. It is designed to slightly reduce the number of clauses required com-
pared with the order encoding. The basic idea is that the original matrix is
encoded by the order encoding, and the alternative matrix by Hnich’s encoding.

In the mixed encoding, we introduce the variables p (xr,i ≤ v) and p (yr,i′ = w)
with 1 ≤ r ≤ b, 1 ≤ i ≤ k, −1 ≤ v ≤ g − 1, 1 ≤ i′ ≤

(
k
t

)
, and 0 ≤ w ≤ gt − 1.

The formula for CA(b; t, k, g) are defined as follows:

¬p (xr,i ≤ −1) (14)
p (xr,i ≤ g − 1) (15)
¬p (xr,i ≤ v − 1) ∨ p (xr,i ≤ v) (16)∨
w

p (yr,i′ = w) (17)

¬p (yr,i′ = w) ∨ ¬p (yr,i′ = w′) (18)∨
r

p (yr,i′ = w) (19)

¬p (yr,i′ = w) ∨ ¬p (xr,i ≤ v − 1) (20)
¬p (yr,i′ = w) ∨ p (xr,i ≤ v) (21)

where 1 ≤ r ≤ b, 1 ≤ i ≤ k, 0 ≤ v ≤ g−1, 1 ≤ i′ ≤
(
k
t

)
, 0 ≤ w < w′ ≤ gt−1; the

clauses (20,21) are defined for all r,i,i′,v, and w such that yr,i′ = w and xr,i = v
(i.e. xr,i ≥ v ∧ xr,i ≤ v) are permitted by the channelling constraints between
yr,i′ and xr,i.

The clauses (14,15,16) are the same as (7,8,9) of our order encoding. The
clauses (17,18,19) are the same as (3,4,5) of Hnich’s encoding. The channelling
constraints are expressed by the clauses (20,21) that are slightly modified to
adjust the order encoding variables compared with (6) of Hnich’s encoding.

In SAT encoding, it is often effective to keep the number of clauses rela-
tively small with respect to the size of problems. In this sense, we can omit
(18) since these clauses can be derived from (16,20,21) by the resolution princi-
ple. For example, in the case of CA(11; 2, 5, 3), ¬p

(
yr,(i,j) = 0

)
∨¬p
(
yr,(i,j) = 2

)
is derived from ¬p (xr,j ≤ 0) ∨ p (xr,j ≤ 1), ¬p

(
yr,(i,j) = 0

)
∨ p (xr,j ≤ 0), and

¬p
(
yr,(i,j) = 2

)
∨ ¬p (xr,j ≤ 1). We can also omit (17) since it can happen that

some of the entries of the array are not needed in order to cover all t-tuples.

120 M. Banbara et al.

Table 2. Comparison of different encodings for CA(b; t, k, g)

Hnich’s encoding Order encoding Mixed encoding
Original matrix {bk} + bk

(
g
2

)
bk(g − 1) bk(g − 1)

Alternative matrix
{

b
(

k
t

)
+ b
(

k
t

)(
gt

2

)}
b
(

k
t

)
(gt − 1)

{
b
(

k
t

)
+ b
(

k
t

)(
gt

2

)}
Coverage constraints

(
k
t

)
gt O(b

(
k
t

)
gt)

(
k
t

)
gt

Channelling constraints b
(

k
t

)
gtt O(b

(
k
t

)
gt) O(b

(
k
t

)
gtt)

Even if the clauses (17,18) may be omitted, we can still get a CSP solution
by decoding a SAT solution. For any SAT solutions, the clauses (19) ensure that
every number in the range 0 to gt−1 occurs at least once in every column of the
alternative matrix. For each of such occurrences, the corresponding entries of the
original matrix (i.e. a t-tuple from g symbols) is derived from the clauses (20,21).
The condition that each entry is assigned to exactly one domain value is ensured
by the axiom clauses (14,15,16).

6 Comparison and Symmetry
We compare the number of clauses required for CA(b; t, k, g) of three different
encodings. Table 2 3 shows the comparison results between Hnich’s encoding, the
order encoding, and the mixed encoding. The bracket “{}” means the bracketed
number of clauses can be omitted. As a result, each encoding has strength and
weakness. Without omitting any clauses, the order encoding is the best except
for the coverage constraints. In contrast, for the reduced number of clauses, the
mixed encoding is better than the order encoding except for the channelling
constraints. The length of each clause for the channelling constraints is two in
the mixed and Hnich’s encodings, but t+ 1 in the order encoding.

On the other hand, it is common that symmetry breaking techniques can
considerably reduce complete backtrack search. A covering array is highly sym-
metric, and we treat two kinds of symmetries in this paper.

One is the row and column symmetry [31]. For given a covering array, any row
and/or column can be permuted with any other row and/or column. Hnich et al.
reduce this symmetry by using lexicographic ordering constraints in their matrix
models. In the integrated matrix model, they break the column symmetry by
ordering adjacent pairs of columns of the original matrix lexicographically, and
the row symmetry by ordering adjacent pairs of rows of either the original or
the alternative matrix lexicographically. Alternatively, we can use an incomplete
symmetry breaking method called snake lex [32].

Another one is the value symmetry. For given a covering array, the symbols in
any column of the array can be swapped. Hnich et al. proposed two methods for
breaking this symmetry. Let fi,v be the frequency of occurrences of the symbol v
(0 ≤ v ≤ g − 1) in the column i (1 ≤ i ≤ k) of the original matrix. They impose
3 In our two encodings, the number of some redundant clauses including literals such

as p (xr,i ≤ −1), p (xr,i ≤ g − 1), p (yr,i′ ≤ −1), and p
(
yr,i′ ≤ gt − 1

)
are omitted.

Generating Combinatorial Test Cases by Efficient SAT Encodings 121

the constraints such that fi,0 ≤ fi,1 ≤ . . . ≤ fi,g−1 for all i. Alternatively, when
g = 2, they constrain every symbol in the first (or the last) row of the original
matrix to be 0 (or 1). Yan and Zhang proposed another method called LNH
(Least Number Heuristic) for breaking this symmetry [33].

In our experiments, we use the same constraints as Hnich’s methods for break-
ing two symmetries mentioned above. We note that applying these constraints
does not lose any solutions.

7 Experiments

To evaluate the effectiveness of our encodings, we solve CA optimization prob-
lems (97 problems in total) of strength 2 ≤ t ≤ 6 with small to moderate size of
k and g. We then compare our two encodings with Hnich’s encoding.

For each problem, we encode multiple CA decision problems of CA(b; t, k, g)
with varying the value of b into SAT. Such SAT-encoded problems contain both
satisfiable and unsatisfiable problems and the optimal solution exists on the
boundary. For every encoding, we add the clauses for breaking the row and
column symmetry and value symmetry as discussed in the previous section. We
omit the clause (17,18) in the mixed encoding and (3,4) in Hnich’s encoding.

We use the MiniSat solver [34] as a high-performance CDCL SAT solver. More
precisely, we use two implementations of the MiniSat solver: MiniSat 2.0 (simp) and
the preview version of MiniSat 2.2 (simp). Main differences of MiniSat 2.2 (simp)
are rapid restart, phase saving, blocking literals, and robust CNF-simplification.

First, Table 3 shows CPU time of the MiniSat solver in seconds for solving SAT-
encoded CA(b; t, k, g). We only shows our best lower and/or upper bounds of b for
each CA optimization problem. We use the symbol “∗” to indicate that the value
of b is optimal. Each CPU time is better one of MiniSat 2.0 (simp) and MiniSat 2.2
(simp). We highlight the best time of different encodings for each problem. The
column “Result” indicates whether it is satisfiable (SAT) or unsatisfiable (UNSAT).
The columns “H.E.”, “O.E.”, and “M.E.” indicate Hnich’s encoding, the order
encoding, and the mixed encoding respectively. All times were collected on a Linux
machine with Intel Xeon 3.00GHz and 8GB memory. We set a timeout (T .O) for
the MiniSat solver to 1800 seconds for each SAT-encodedCA(b; t, k, g), except that
the timeout of CA(14; 3, 12, 2) is set to 12 hours.

Each of our encodings reproduced and re-proved 47 previously known optimal
solutions, rather than 29 by Hnich’s encoding. Moreover, our encodings found
and proved the optimality of previously known upper bounds for CAN(3, 12, 2)
and CAN(6, 8, 2). The previously known bound of CAN(3, 12, 2) was 14 ≤
CAN(3, 12, 2) ≤ 15. We found and proved CAN(3, 12, 2) = 15 since there is
no solution to CA(14; 3, 12, 2) as can be seen in Table 3. CAN(3, 12, 2) = 15 is
the solution for an open problem listed in Handbook of Satisfiability [25]4. We
also improved on previously known lower bounds [12] for some arrays. Table 4
shows the summary of our newly obtained results to the best of our knowledge.

4 We found and proved CAN(3, 5, 3) = 33. It is also the solution for an open problem
listed in the same Handbook, but that was already closed in [19].

122 M. Banbara et al.

Table 3. Benchmark results of different encodings for CA(b; t, k, g)

t k g b Result H.E. O.E. M.E.
2 3 3 9∗ SAT 0.00 0.01 0.00
2 4 3 9∗ SAT 0.01 0.00 0.01
2 5 3 10 UNSAT 0.59 0.02 0.02
2 5 3 11∗ SAT 0.03 0.03 0.01
2 6 3 11 UNSAT 7.55 0.04 0.05
2 6 3 12∗ SAT 0.03 0.02 0.03
2 7 3 12∗ SAT 0.05 0.38 0.32
2 8 3 13 SAT 4.22 1263.58 263.76
2 9 3 13 SAT 760.05 228.39 T.O
2 10 3 14 SAT 518.18 79.75 14.60
2 11 3 15 SAT 0.15 0.77 0.13
2 12 3 15 SAT 1.31 0.49 0.21
2 13 3 15 SAT 16.40 18.53 30.60
2 14 3 15 SAT 372.95 192.93 373.64
2 15 3 16 SAT 155.21 31.71 30.80
2 16 3 16 SAT 743.74 1674.69 390.72
2 3 4 16∗ SAT 0.02 0.01 0.01
2 4 4 16∗ SAT 0.04 0.04 0.02
2 5 4 16∗ SAT 0.05 0.05 0.04
2 6 4 18 UNSAT T.O 4.31 9.90
2 6 4 19∗ SAT 21.28 0.87 3.14
2 7 4 19 UNSAT T.O 177.23 174.89
2 7 4 22 SAT 71.18 20.71 4.66
2 8 4 23 SAT 550.61 22.89 3.39
2 9 4 24 SAT T.O 230.44 469.66
2 10 4 25 SAT T.O 440.30 254.51
2 11 4 26 SAT T.O T.O 884.22
2 3 5 25∗ SAT 0.08 0.05 0.06
2 4 5 25∗ SAT 0.26 0.18 0.14
2 5 5 25∗ SAT 0.47 0.46 0.15
2 6 5 25∗ SAT 3.21 0.51 0.76
2 7 5 29 SAT T.O 394.38 90.50
2 8 5 36 SAT T.O 654.95 T.O
2 9 5 38 SAT T.O 914.78 279.84
2 10 5 41 SAT T.O T.O 386.87
2 11 5 42 SAT T.O 1330.56 T.O
2 3 6 36∗ SAT 0.46 0.16 0.14
2 4 6 37 SAT 22.72 4.19 4.24
2 5 6 40 SAT T.O 627.67 T.O
2 6 6 45 SAT T.O 614.53 T.O
2 7 6 50 SAT T.O 1765.78 1110.20
2 8 6 52 SAT T.O T.O 1236.90
2 9 6 57 SAT T.O T.O 773.33
2 10 6 62 SAT T.O T.O 407.40
2 11 6 63 SAT T.O T.O 1287.25
2 3 7 49∗ SAT 1.67 0.64 0.66
2 4 7 49∗ SAT 460.07 98.10 171.55
2 5 7 57 SAT T.O T.O 570.96
2 6 7 65 SAT T.O 1513.01 T.O
2 7 7 68 SAT T.O T.O 1446.27
2 8 7 72 SAT T.O T.O 1362.44
2 9 7 81 SAT T.O T.O 1098.09
2 10 7 88 SAT T.O T.O 442.81
2 11 7 93 SAT T.O T.O 449.59

t k g b Result H.E. O.E. M.E.
3 4 2 8∗ SAT 0.00 0.00 0.00
3 5 2 9 UNSAT 0.01 0.01 0.01
3 5 2 10∗ SAT 0.00 0.00 0.00
3 6 2 11 UNSAT 0.30 0.02 0.01
3 6 2 12∗ SAT 0.02 0.01 0.00
3 7 2 12∗ SAT 0.02 0.03 0.01
3 8 2 12∗ SAT 0.03 0.04 0.01
3 9 2 12∗ SAT 0.05 0.07 0.03
3 10 2 12∗ SAT 0.08 0.12 0.05
3 11 2 12∗ SAT 0.13 0.15 0.05
3 12 2 14 UNSAT T.O 5607.25 6228.16
3 12 2 15∗ SAT 0.61 0.89 0.44
3 13 2 16 SAT 24.91 7.57 4.24
3 14 2 16 SAT T.O 15.09 23.68
3 15 2 17 SAT T.O 435.35 1.97
3 16 2 17 SAT T.O 86.07 14.93
3 17 2 20 SAT T.O 62.40 125.27
3 18 2 21 SAT 2.46 44.99 35.62
3 19 2 22 SAT 1.54 176.79 4.16
3 4 3 27∗ SAT 0.07 0.05 0.04
3 5 3 32 UNSAT T.O 16.07 27.85
3 5 3 33∗ SAT 632.27 2.81 16.85
3 6 3 33∗ SAT T.O 15.46 12.44
3 7 3 46 SAT T.O 1180.95 T.O
3 8 3 52 SAT 407.37 1148.09 T.O
3 9 3 56 SAT T.O T.O 202.78
3 4 4 64∗ SAT 9.00 0.68 0.56
3 5 4 64∗ SAT T.O 2.01 1.35
3 6 4 64∗ SAT T.O 3.13 1.54
3 4 5 125∗ SAT T.O 6.13 6.99
3 5 5 125∗ SAT T.O 86.51 54.96
3 6 5 125∗ SAT T.O 177.13 59.09
4 5 2 16∗ SAT 0.02 0.01 0.01
4 6 2 20 UNSAT T.O 0.07 0.05
4 6 2 21∗ SAT 0.36 0.08 0.03
4 7 2 23 UNSAT T.O 0.35 0.32
4 7 2 24∗ SAT 529.12 0.68 0.37
4 8 2 24∗ SAT 107.13 0.79 0.63
4 9 2 24∗ SAT 399.55 1.13 1.20
4 10 2 24∗ SAT 279.46 6.47 0.96
4 11 2 24∗ SAT 26.20 4.66 1.92
4 12 2 24∗ SAT 1573.40 11.28 2.12
4 13 2 36 SAT T.O 372.87 734.72
4 5 3 81∗ SAT 840.28 1.13 1.52
4 5 4 256∗ SAT T.O 105.37 104.00
5 6 2 32∗ SAT 4.66 0.13 0.11
5 7 2 41 UNSAT T.O 1.53 1.10
5 7 2 42∗ SAT 849.79 1.41 1.24
5 8 2 52 SAT T.O 95.01 134.37
5 9 2 49 UNSAT T.O 344.65 521.59
5 9 2 54 SAT T.O 1431.35 1097.27
5 10 2 60 SAT T.O 550.67 T.O
5 6 3 243∗ SAT T.O 156.64 197.40
6 7 2 64∗ SAT 922.29 2.97 3.42
6 8 2 84 UNSAT T.O 86.91 52.94
6 8 2 85∗ SAT T.O 76.28 48.49

Generating Combinatorial Test Cases by Efficient SAT Encodings 123

Table 4. New results found and proved by our encodings. We note that 80 ≤
CAN(3, 8, 4) and 15 ≤ CAN(3, k, 2) with k ≥ 13 were proved by our experimental
results 20 ≤ CAN(2, 7, 4) and CAN(3, 12, 2) = 15 with the help of Theorem 1 of (4)
and (2) respectively.

New results Previously known results
20 ≤ CAN(2, 7, 4) ≤ 21 19 ≤ CAN(2, 7, 4) ≤ 21
80 ≤ CAN(3, 8, 4) ≤ 88 76 ≤ CAN(3, 8, 4) ≤ 88

CAN(3, 12, 2) = 15 14 ≤ CAN(3, 12, 2) ≤ 15
15 ≤ CAN(3, k, 2) (k ≥ 13) 14 ≤ CAN(3, k, 2) (k ≥ 13)

50 ≤ CAN(5, 9, 2) ≤ 54 48 ≤ CAN(5, 9, 2) ≤ 54
CAN(6, 8, 2) = 85 84 ≤ CAN(6, 8, 2) ≤ 85

Second, Table 5 shows the comparison results of different approaches on the
best known upper bounds of CAN(t, k, g). Our comparison includes our two
encodings with MiniSat (“O.E. & M.E.”), Hnich’s encoding with a new variant
of the walksat [21] (“HEW”), and the integrated matrix model with the ILOG
solver [21] (“CSP”). We also include Colbourn’s CA tables [29] (“CAT”). These
tables include a list of current upper bounds on CAN(t, k, g) for (2 ≤ t ≤ 6).
Their results have been obtained from orthogonal arrays, several theoretical
works, and computational search methods such as greedy methods, tabu search,
hill-climbing, simulated annealing, and so on. We highlight the best value of
different approaches for each CAN(t, k, g). The symbol “-” is used to indicate
that the result is not available in published literature.

Our encodings with MiniSat were able to produce competitive bounds with
those in Colbourn’s CA tables for CAN(t, k, g) of strength 2 ≤ t ≤ 6 with small
to moderate size of k and g. Although not able to match Hnich’s encoding for
some CAN(2, k, g) and CAN(3, k, 3), our encodings were able to give a greater
number of bounds than the integrated matrix model with ILOG and Hnich’s
encoding with walksat.

Finally, we discuss some details of our experimental results. Both of our en-
codings found and proved optimal solutions for the same number of problems
(49 problems) including two open problems. The main difference between both
encodings in Table 3 is that the mixed encoding gave approximate solutions for
some arrays of strength two not solved in timeout by the order encoding. Com-
pared to MiniSat 2.0 (simp), MiniSat 2.2 (simp) was better especially for the arrays
of strength two. For example, our best approximate solutions for CA(b; 2, k, 6)
with 5 ≤ k ≤ 11 and CA(b; 2, k, 7) with 6 ≤ k ≤ 11 were obtained by only Min-
iSat 2.2 (simp). As mentioned in Section 5, the clauses (17,18) can be omitted
in the mixed encoding. In the case of CA(15; 3, 12, 2) with symmetry breaking,
when we omit those clauses, the mixed encoding requires 77,442 clauses, but it
requires 175,826 clauses when do not omit any clauses. For breaking the row
and column symmetry, we applied double lex to the original matrix by encoding
it into SAT. This greatly reduced the search space and execution time. Using
snake lex [32] instead of double lex was less effective in our further experiments
not presented in this paper.

124 M. Banbara et al.

Table 5. Comparison results of different approaches on the best known upper bounds
of CAN(t, k, g)

t k g O.E.& HEW CAT
M.E. [21] [29]

2 3 3 9 9 9
2 4 3 9 9 9
2 5 3 11 11 11
2 6 3 12 12 12
2 7 3 12 12 12
2 8 3 13 14 13
2 9 3 13 13 13
2 10 3 14 14 14
2 11 3 15 15 15
2 12 3 15 − 15
2 13 3 15 − 15
2 14 3 15 − 15
2 15 3 16 − 15
2 16 3 16 − 15
2 3 4 16 16 16
2 4 4 16 16 16
2 5 4 16 16 16
2 6 4 19 19 19
2 7 4 22 21 21
2 8 4 23 23 22
2 9 4 24 24 23
2 10 4 25 25 24
2 11 4 26 25 24
2 3 5 25 25 25
2 4 5 25 25 25
2 5 5 25 25 25
2 6 5 25 25 25
2 7 5 29 29 29
2 8 5 36 34 33
2 9 5 38 35 35
2 10 5 41 38 36
2 11 5 42 39 38
2 3 6 36 36 36
2 4 6 37 37 37
2 5 6 40 39 39
2 6 6 45 42 41
2 7 6 50 45 42
2 8 6 52 48 42
2 9 6 57 51 46
2 10 6 62 53 49
2 11 6 63 55 52
2 3 7 49 49 49
2 4 7 49 49 49
2 5 7 57 52 49
2 6 7 65 58 49
2 7 7 68 61 49
2 8 7 72 63 49
2 9 7 81 66 59
2 10 7 88 71 61
2 11 7 93 73 67

t k g O.E.& CSP HEW CAT
M.E. [21] [21] [29]

3 4 2 8 8 − 8
3 5 2 10 10 − 10
3 6 2 12 12 − 12
3 7 2 12 12 − 12
3 8 2 12 12 − 12
3 9 2 12 12 12 12
3 10 2 12 12 12 12
3 11 2 12 12 12 12
3 12 2 15 − 15 15
3 13 2 16 − 16 16
3 14 2 16 − 17 16
3 15 2 17 − 18 17
3 16 2 17 − 18 17
3 17 2 20 − 18 18
3 18 2 21 − 20 18
3 19 2 22 − − 18
3 4 3 27 − − 27
3 5 3 33 − 33 33
3 6 3 33 − 33 33
3 7 3 46 − 40 40
3 8 3 52 − 46 42
3 9 3 56 − 51 45
3 4 4 64 − − 64
3 5 4 64 − − 64
3 6 4 64 − − 64
3 4 5 125 − − 125
3 5 5 125 − − 125
3 6 5 125 − − 125
4 5 2 16 16 − 16
4 6 2 21 21 − 21
4 7 2 24 − 24 24
4 8 2 24 − 24 24
4 9 2 24 − 24 24
4 10 2 24 − 24 24
4 11 2 24 − − 24
4 12 2 24 − − 24
4 13 2 36 − − 32
4 5 3 81 − 81 81
4 5 4 256 − − 256
5 6 2 32 − − 32
5 7 2 42 − − 42
5 8 2 52 − − 52
5 9 2 54 − − 54
5 10 2 60 − − 56
5 6 3 243 − − 243
6 7 2 64 − − 64
6 8 2 85 − − 85

8 Conclusion

In this paper, we considered the problem of finding optimal covering arrays
by SAT encoding. We presented two encodings suitable for modern CDCL SAT
solvers. To evaluate the effectiveness of our encodings, we solved CA optimization
problems (97 problems in total) of strength 2 ≤ t ≤ 6 with small to moderate
size of components k and symbols g. Each of our encodings found and proved 49

Generating Combinatorial Test Cases by Efficient SAT Encodings 125

optimal solutions including two previously unknown results and also improved
known lower bounds for some arrays, as shown in Table 4.

CDCL SAT solvers have an essential role in enhancing efficiency. We inves-
tigated a SAT-based approach to generate test cases for combinatorial testing.
Our approach is based on an effective combination of the order encoding (or
the mixed encoding) and CDCL SAT solvers. There are several future topics for
making our approach scalable to large problems. Among them, it is very impor-
tant to encode the upper bound of the coverage constraints into SAT with as
small number of clauses as possible.

References

1. de Kleer, J.: A comparison of ATMS and CSP techniques. In: Proceedings of the
11th International Joint Conference on Artificial Intelligence (IJCAI 1989), pp.
290–296 (1989)

2. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–
456. Springer, Heidelberg (2000)

3. Kasif, S.: On the parallel complexity of discrete relaxation in constraint satisfaction
networks. Artificial Intelligence 45(3), 275–286 (1990)

4. Gent, I.P.: Arc consistency in SAT. In: Proceedings of the 15th European Confer-
ence on Artificial Intelligence (ECAI 2002), pp. 121–125 (2002)

5. Selman, B., Levesque, H.J., Mitchell, D.G.: A new method for solving hard sat-
isfiability problems. In: Proceedings of the 10th National Conference on Artificial
Intelligence (AAAI 1992), pp. 440–446 (1992)

6. Iwama, K., Miyazaki, S.: SAT-variable complexity of hard combinatorial problems.
In: Proceedings of the IFIP 13th World Computer Congress, pp. 253–258 (1994)

7. Gelder, A.V.: Another look at graph coloring via propositional satisfiability. Dis-
crete Applied Mathematics 156(2), 230–243 (2008)

8. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 590–603. Springer,
Heidelberg (2006)

9. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into
SAT. Constraints 14(2), 254–272 (2009)

10. Gavanelli, M.: The log-support encoding of CSP into SAT. In: Bessière, C. (ed.)
CP 2007. LNCS, vol. 4741, pp. 815–822. Springer, Heidelberg (2007)

11. Williams, A.W.: Determination of test configurations for pair-wise interaction cov-
erage. In: Proceedings of 13th International Conference on Testing Communicating
Systems (TestCom 2000), pp. 59–74 (2000)

12. Chateauneuf, M.A., Kreher, D.L.: On the state of strength-three covering arrays.
Journal of Combinatorial Designs 10(4), 217–238 (2002)

13. Hartman, A., Raskin, L.: Problems and algorithms for covering arrays. Discrete
Mathematics 284(1-3), 149–156 (2004)

14. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: An
approach to testing based on combinatiorial design. IEEE Transactions on Software
Engineering 23(7), 437–444 (1997)

15. Lei, Y., Tai, K.C.: In-parameter-order: A test generation strategy for pairwise
testing. In: Proceedings of 3rd IEEE International Symposium on High-Assurance
Systems Engineering (HASE 1998), pp. 254–261 (1998)

126 M. Banbara et al.

16. Nurmela, K.J.: Upper bounds for covering arrays by tabu search. Discrete Applied
Mathematics 138(1-2), 143–152 (2004)

17. Cohen, M.B., Gibbons, P.B., Mugridge, W.B., Colbourn, C.J.: Constructing test
suites for interaction testing. In: Proceedings of the 25th International Conference
on Software Engineering (ICSE 2003), pp. 38–48 (2003)

18. Shiba, T., Tsuchiya, T., Kikuno, T.: Using artificial life techniques to generate test
cases for combinatorial testing. In: Proceedings of 28th International Computer
Software and Applications Conference (COMPSAC 2004), pp. 72–77 (2004)

19. Bulutoglu, D., Margot, F.: Classification of orthogonal arrays by integer program-
ming. Journal of Statistical Planning and Inference 138, 654–666 (2008)

20. Hnich, B., Prestwich, S.D., Selensky, E.: Constraint-based approaches to the cov-
ering test problem. In: Faltings, B.V., Petcu, A., Fages, F., Rossi, F. (eds.)
CSCLP 2004. LNCS (LNAI), vol. 3419, pp. 172–186. Springer, Heidelberg (2005)

21. Hnich, B., Prestwich, S.D., Selensky, E., Smith, B.M.: Constraint models for the
covering test problem. Constraints 11(2-3), 199–219 (2006)

22. Lopez-Escogido, D., Torres-Jimenez, J., Rodriguez-Tello, E., Rangel-Valdez, N.:
Strength two covering arrays construction using a sat representation. In: Gelbukh,
A., Morales, E.F. (eds.) MICAI 2008. LNCS (LNAI), vol. 5317, pp. 44–53. Springer,
Heidelberg (2008)

23. Cohen, M.B., Dwyer, M.B., Shi, J.: Constructing interaction test suites for highly-
configurable systems in the presence of constraints: A greedy approach. IEEE
Trans. Software Eng. 34(5), 633–650 (2008)

24. Drescher, C., Walsh, T.: A translational approach to constraint answer set solving.
TPLP 10(4-6), 465–480 (2010)

25. Zhang, H.: Combinatorial designs by sat solvers. In: Handbook of Satisfiability, pp.
533–568. IOS Press, Amsterdam (2009)

26. Colbourn, C.J.: Strength two covering arrays: Existence tables and projection.
Discrete Mathematics 308(5-6), 772–786 (2008)

27. Sloane, N.J.A.: Covering arrays and intersecting codes. Journal of Combinatorial
Designs 1, 51–63 (1993)

28. Seroussi, G., Bshouty, N.H.: Vector sets for exhaustive testing of logic circuits.
IEEE Transactions on Information Theory 34(3), 513–522 (1988)

29. Colbourn, C.J.: Covering array tables (2010),
http://www.public.asu.edu/~ccolbou/src/tabby/catable.html (Last Ac-
cessed on April 26, 2010)

30. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Pro-
ceedings of the 13th National Conference on Artificial Intelligence (AAAI 1996),
vol. 1, pp. 209–215 (1996)

31. Flener, P., Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking row and column symmetries in matrix models. In: Van Hentenryck, P.
(ed.) CP 2002. LNCS, vol. 2470, pp. 462–476. Springer, Heidelberg (2002)

32. Grayland, A., Miguel, I., Roney-Dougal, C.M.: Snake lex: An alternative to dou-
ble lex. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 391–399. Springer,
Heidelberg (2009)

33. Yan, J., Zhang, J.: A backtracking search tool for constructing combinatorial test
suites. Journal of Systems and Software 81(10), 1681–1693 (2008)

34. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

http://www.public.asu.edu/~ccolbou/src/tabby/catable.html

Generating Counterexamples for Structural Inductions
by Exploiting Nonstandard Models�

Jasmin Christian Blanchette1 and Koen Claessen2

1 Institut für Informatik, Technische Universität München, Germany
2 Dept. of CSE, Chalmers University of Technology, Gothenburg, Sweden

Abstract. Induction proofs often fail because the stated theorem is noninductive,
in which case the user must strengthen the theorem or prove auxiliary properties
before performing the induction step. (Counter)model finders are useful for de-
tecting non-theorems, but they will not find any counterexamples for noninduc-
tive theorems. We explain how to apply a well-known concept from first-order
logic, nonstandard models, to the detection of noninductive invariants. Our work
was done in the context of the proof assistant Isabelle/HOL and the counter-
example generator Nitpick.

1 Introduction

Much of theorem proving in higher-order logics, whether interactive or automatic, is
concerned with induction proofs: rule induction over inductive predicates, structural
induction over inductive datatypes (which includes mathematical induction over nat-
ural numbers as a special case), and recursion induction over well-founded recursive
functions. Inductive properties are difficult to prove because the failure to perform an
induction step can mean any of the following:

1. The property is not a theorem.
2. The property is a theorem but is too weak to support the induction step.
3. The property is a theorem and is inductive, although no proof has been found yet.

Depending on which of the above scenarios applies, the prover (human or machine)
would take the appropriate course of action:

1. Repair the property’s statement or its underlying specification so that it becomes a
theorem.

2. Generalize the property and/or prove auxiliary properties.
3. Work harder on a proof.

How can we distinguish these three cases? Counterexample generators can often detect
scenario 1, and automatic proof methods sometimes handle scenario 3, but what can we
do when we have neither a proof nor a counterexample?

This paper introduces a method for detecting noninductive properties of datatypes
(properties that cannot be proved without structural induction) using a model finder, in-
spired by previous work involving the second author to detect noninductive invariants of

� Research supported by the DFG grant Ni 491/11-1.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 127–141, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

128 J.C. Blanchette and K. Claessen

state transition systems [8]. The basic idea is to weaken the higher-order axiomatization
of datatypes to allow nonstandard models (Section 4). The existence of a nonstandard
countermodel for a theorem means that it cannot be proved without structural induction.
If the theorem is an induction step, we have identified scenario 2.

A concrete nonstandard model can also help the prover to figure out how the induc-
tion needs to be strengthened for the proof to go through, in the same way that a standard
counterexample helps locate mistakes in a conjecture. Our examples (Sections 3 and 5)
illustrate how this might be done.

We have implemented the approach in the counterexample generator Nitpick for the
proof assistant Isabelle/HOL, which we employed for the examples and the evaluation
(Section 6). When Nitpick finds no standard countermodel to an induction step, it asks
permission to run again, this time looking for nonstandard countermodels.

2 Background

2.1 Isabelle/HOL

Isabelle [13] is a generic theorem prover whose built-in metalogic is an intuitionistic
fragment of higher-order logic [7, 9]. The metalogical operators include implication,
written ϕ=⇒ψ, and universal quantification, written

∧
x. ϕ. Isabelle’s HOL object logic

provides a more elaborate version of higher-order logic, complete with the familiar
connectives and quantifiers (¬,∧,∨,−→, ←→, ∀, ∃). Isabelle proofs are usually written
in the human-readable Isar format inspired by Mizar [18]. This paper will show some
proofs written in Isar. We do not expect readers to understand every detail of the proofs,
and will explain any necessary Isar syntax in context.

The term language consists of simply-typed λ-terms augmented with constants and
weak polymorphism. We adopt the convention that italicized Latin letters with optional
subscripts denote variables, whereas longer names denote constants. Function appli-
cation expects no parentheses around the argument list and no commas between the
arguments, as in f x y. Syntactic sugar provides an infix syntax for common operators,
such as x = y and x + y. Variables may range over functions and predicates. Types are
usually implicit but can be specified using a constraint :: τ.

HOL’s standard semantics interprets the Boolean type bool and the function space
σ → τ. The function arrow associates to the right, reflecting the left-associativity of
application. HOL identifies sets with unary predicates and provides syntactic sugar for
set-theoretic notations. Additional types can be declared as uninterpreted types or as
isomorphic to a subset of another type. Alternatively, inductive datatypes can be de-
clared by specifying the constructors and the types of their arguments. For example,
Isabelle’s type α list of finite lists over the type variable α is declared as follows:

datatype α list = Nil | Cons α (α list) (infixr “·”)

The type is generated freely from Nil ::α list and Cons ::α→ α list → α list. The infixr
tag declares the infix syntax x ·xs as an abbreviation for Cons x xs. Since lists are so
common, Isabelle also supports the traditional notation [x1, . . . , xn].

Generating Counterexamples for Structural Inductions 129

Constants can be introduced axiomatically or definitionally. Isabelle also provides
high-level definitional mechanisms for defining inductive sets and predicates as well as
recursive functions. For example, the hd ::α list → α and tl ::α list → α list functions
that return the head and tail of a list are specified by hd (x·xs) = x and tl (x·xs) = xs.

2.2 Nitpick

Nitpick [5] is a counterexample generator for Isabelle/HOL based on Kodkod [17], a
finite model finder for first-order relational logic that in turn relies on SAT solving.
Given a conjecture, Nitpick determines which axioms and definitions are needed and
searches for a standard set-theoretic model that satisfies the axioms and falsifies the
conjecture.

The basic translation from HOL to Kodkod’s relational logic is straightforward, but
common HOL idioms such as inductive predicates, inductive datatypes, and recursive
functions necessitate a translation scheme tailored for SAT solving. In particular, infinite
datatypes are (soundly) approximated by finite subterm-closed subsets [4].

The following example shows Nitpick in action on a conjecture about list reversal:

theorem REV_CONS_REV: rev (x · rev xs) = x · xs
nitpick [show_datatypes]

Nitpick found a counterexample for |α| = 5:

Free variables: x = a1 xs = [a2]
Datatype: α list = {[], [a1], [a1,a2], [a2], [a2,a1], . . .}

(The output is shown in a slanted font to distinguish it from the user’s proof text and
interactive commands.) We see that it sufficed to consider the subset α list = {[], [a1],
[a1,a2], [a2], [a2,a1], . . .} of all lists over {a1, . . . ,a5} to falsify the conjecture.

3 Introductory Examples

Our approach is best explained by demonstrating it on a few examples before looking
at the technicalities. The first example focuses on rule induction: We define a set in-
ductively and attempt to prove properties about it by following the introduction rules.
Although rule induction is not our main topic, the example is instructive in its own right
and serves as a stepping stone for the application of our method to structural induction
proofs. The second example illustrates a failed structural induction on binary trees.

3.1 Rule Induction

Properties about inductively defined sets and predicates can be proved by rule induction.
The following specification of the scoring of tennis games will serve as illustration:

datatype player = Serv | Recv
datatype score = Points nat nat (infix “$”) | Adv player | Game player

130 J.C. Blanchette and K. Claessen

inductive_set legal :: score list → bool where
LOVE_ALL: [0$0] ∈ legal

SERV_15: 0$n · xs ∈ legal =⇒ 15$n · 0$n · xs ∈ legal
SERV_30: 15$n · xs ∈ legal =⇒ 30$n · 15$n · xs ∈ legal

...
RECV_GAME: n$40 · xs ∈ legal =⇒ n �= 40 =⇒ Game Recv · n$40 · xs ∈ legal
DEUCE_ADV: 40$40 · xs ∈ legal =⇒ Adv p · 40$40 · xs ∈ legal
ADV_DEUCE: Adv p · xs ∈ legal =⇒ 40$40 ·Adv p · xs ∈ legal
ADV_GAME: Adv p · xs ∈ legal =⇒ Game p ·Adv p · xs ∈ legal

A game is a trace [sn, . . . , s1] of successive scores listed in reverse order. The inductively
defined set legal is the set of all legal (complete or incomplete) games, starting from the
score 0$0. For example, [15$15, 15$0, 0$0] and [Game Recv, 0$40, 0$30, 0$15, 0$0]
are legal games, but [15$0] is not.

By manually inspecting the rules, it is easy to persuade ourselves that no player can
reach more than 40 points. Nitpick is also convinced:

theorem LE_40: g ∈ legal =⇒ a$b ∈ g−→ max a b≤ 40
nitpick

Nitpick found no counterexample.

(The symbol ‘∈’ is overloaded to denote list membership as well as set membership.)
Let us try to prove the above property by rule induction:

proof (induct set: legal)
case LOVE_ALL thus ?case by simp

The first line of the proof script tells Isabelle that we want to perform a proof by rule
induction over the set legal. The second line selects the proof obligation associated with
the LOVE_ALL rule from legal’s definition and discharges it using the simp method,
which performs equational reasoning.

case (SERV_15 n xs) thus ?case

The next line selects the proof obligation associated with the SERV_15 rule. At this
point, the induction hypothesis is

a$b ∈ 0$n · xs −→ max a b≤ 40, (IH)

and we must prove

a$b ∈ 15$n · 0$n · xs −→ max a b≤ 40. (G)

We may also assume
0$n · xs ∈ legal, (R)

since it occurs as a hypothesis in SERV_15. Observe that the hypothesis R involves
legal, which is precisely the set on which we are performing rule induction. If we stated

Generating Counterexamples for Structural Inductions 131

our theorem “strongly enough,” it should be sufficient to use the induction hypothesis
IH to prove the goal G , without reasoning about legal directly. (There is certainly
nothing wrong with reasoning about legal, but this would mean performing a nested
induction proof or invoking a lemma that we would then prove by induction. We want
to avoid this if we can.)

Can we prove IH =⇒ G without R ? None of Isabelle’s automatic tactics appear to
work, and if we tell Nitpick to ignore R , it finds the following counterexample:

Free variables: a = 15 b = 41 n = 41 xs = []

Indeed, the induction hypothesis is not applicable, because 15$41 /∈ [0$41]; and the
goal is falsifiable, because 15$41 ∈ [15$41] and max 15 41 �≤ 40. The counterexample
disappears if we reintroduce R , since [0$41] is not a legal game. This suggests that the
stated theorem is correct, but that it is not general enough to support the induction step.

The countermodel tells us additional information that we can use to guide our search
for a proof. First, notice that the counterexample falsifies a$b ∈ 0$n · xs, and so the
induction hypothesis is useless. On closer inspection, instantiating a with 15 in the
induction hypothesis is odd; it would make more sense to let a be 0. Then IH becomes
0$41 ∈ [0$41]−→ max 0 41 ≤ 40, which is false—and the countermodel disappears
because IH =⇒ G is true. If we can eradicate all countermodels, it is likely that the
formula will become provable.

This instantiation of a would have been possible if a had been universally quantified
in IH . This can be achieved by explicitly quantifying over a in the statement of the
theorem. We do the same for b. The proof is now within the auto tactic’s reach:

theorem LE_40: g ∈ legal =⇒ ∀a b. a$b ∈ g−→ max a b≤ 40
by (induct set: legal) auto

Explicit universal quantification is a standard proof heuristic [13, pp. 33–36]. An equally
valid approach would have been to precisely characterize the possible scores in a legal
game and then use that characterization to prove the desired property:

theorem ALL_LEGAL:
g ∈ legal =⇒ ∀s ∈ g. s ∈ {m$n | {m,n}⊆ {0,15,30,40}}

∪ range Adv ∪ range Game
by (induct set: legal) auto

theorem LE_40: g ∈ legal =⇒ a$b ∈ g−→ max a b≤ 40
by (frule ALL_LEGAL [THEN BALL_E, where x = “a$b”]) auto

What can we learn from this example? In general, proofs by rule induction give rise
to subgoals of the form R ∧ IH ∧ SC =⇒ G , where R represents the recursive an-
tecedents of the rule, IH represents the induction hypotheses, and SC is the rule’s side
condition. When we claim that an induction hypothesis is “strong enough,” we usually
mean that we can carry out the proof without invoking R . If IH ∧ SC =⇒ G admits a
counterexample, the induction hypothesis is too weak: We must strengthen the formula
we want to prove or exploit R in some way.

This issue arises whenever we perform induction proofs over inductively defined
“legal” values or “reachable” states. In the next section, we will carry this idea over to
structural induction.

132 J.C. Blanchette and K. Claessen

3.2 Structural Induction

As an example, consider the following mini-formalization of full binary trees:

datatype α btree = Lf α | Br (α btree) (α btree)

fun labels :: α btree → α→ bool where
labels (Lf a) = {a}
labels (Br t1 t2) = labels t1 ∪ labels t2

fun swap :: α btree → α→ α→ α btree where
swap (Lf c) a b = Lf (if c = a then b else if c = b then a else c)
swap (Br t1 t2) a b = Br (swap t1 a b) (swap t2 a b)

A tree is either a labeled leaf (Lf) or an unlabeled inner node (Br) with a left and right
child. The labels function returns the set of labels that occur on a tree’s leaves, and swap
simultaneously substitutes two labels for each other. Intuitively, if two labels a and b
occur in a tree t, they should also occur in the tree obtained by swapping a and b:

theorem LABELS_SWAP: {a,b}⊆ labels t −→ labels (swap t a b) = labels t

Nitpick cannot disprove this, so we proceed with structural induction on the tree t:

proof (induct t)
case LF thus ?case by simp
case (BR t1 t2) thus ?case

The induction hypotheses are

{a,b}⊆ labels t1 −→ labels (swap t1 a b) = labels t1 (IH 1)

{a,b}⊆ labels t2 −→ labels (swap t2 a b) = labels t2 (IH 2)

and the goal is

{a,b}⊆ labels (Br t1 t2)−→ labels (swap (Br t1 t2) a b) = labels (Br t1 t2). (G)

Nitpick cannot find any counterexample to IH 1 ∧ IH 2 =⇒ G , but thanks to the tech-
nique we present in this paper it now makes the following suggestion:

Hint: To check that the induction hypothesis is general enough, try this command:
nitpick [non_std, show_all].

If we follow the hint, we get the output below.

Nitpick found a nonstandard counterexample for |α| = 3:

Free variables: a = a1 b = a2 t1 = ξ1 t2 = ξ2

Datatype: α btree = {ξ1 = Br ξ1 ξ1, ξ2 = Br ξ2 ξ2, Br ξ1 ξ2}
Constants: labels = (λx. ?)(ξ1 	→ {a2, a3}, ξ2 	→ {a1},

Br ξ1 ξ2 	→ {a1, a2, a3})
λx. swap x a b = (λx. ?)(ξ1 	→ ξ2, ξ2 	→ ξ2, Br ξ1 ξ2 	→ ξ2)

The existence of a nonstandard model suggests that the induction hypothesis is
not general enough or may even be wrong. See the Nitpick manual’s “Inductive
Properties” section for details.

Generating Counterexamples for Structural Inductions 133

(a) abstract view (b) concrete view

Fig. 1. A nonstandard tree

What is happening here? The non_std option told the tool to look for nonstandard mod-
els of binary trees, which means that new nonstandard trees ξ1, ξ2, . . . , are now al-
lowed in addition to the standard trees generated by Lf and Br. Unlike standard trees,
these new trees contain cycles: The “Datatype” section of Nitpick’s output tells us that
ξ1 = Br ξ1 ξ1 and ξ2 = Br ξ2 ξ2. Although this may seem counterintuitive, every prop-
erty of acyclic objects that can be proved without using induction also holds for cyclic
objects. Hence, if Nitpick finds a counterexample with cyclic objects in it (a nonstan-
dard countermodel), the property cannot be proved without using induction.

Here the tool found the nonstandard trees t1 = ξ1 and t2 = ξ2 such that a /∈ labels t1,
b ∈ labels t1, a ∈ labels t2, and b /∈ labels t2. The situation is depicted in Figure 1.
Because neither subtree contains both a and b, the induction hypothesis tells us nothing
about the labels of swap t1 a b and swap t2 a b. Thus, the model finder can assign
arbitrary values to the results of labels and swap for the nonstandard trees, as long as
the equations defining those functions are respected. The theorem is “falsified” because
labels (swap t1 a b) = {b,a3} but labels t1 = {a}. This could never happen for a
standard tree t1, but we need induction to prove this.

We can repair the proof of the theorem by ensuring that we always know what the
labels of the subtrees are in the induction step, by also covering the cases where a
and/or b is not in t:

theorem LABELS_SWAP:
labels (swap t a b) = (if a ∈ labels t then

if b ∈ labels t then labels t else (labels t− {a}) ∪ {b}
else

if b ∈ labels t then (labels t− {b}) ∪ {a} else labels t)

This time Nitpick will not find any nonstandard counterexample, and we can prove the
induction step using the auto tactic.

134 J.C. Blanchette and K. Claessen

4 The Approach

The previous section offered a black-box view of our approach to debugging structural
induction steps. Let us now take a look inside the box.

4.1 Description

Our approach consists in weakening the datatype axioms so that the induction principle
no longer holds. As a result, properties that can only be proved by induction are no
longer valid and admit countermodels. To illustrate this, we restrict our attention to the
type nat of natural numbers generated from 0::nat and Suc ::nat→ nat. It is axiomatized
as follows [3]:

DISTINCT: 0 �= Suc n
INJECT: Suc m = Suc n ←→ m = n

INDUCT: P 0 =⇒
(∧

n. P n =⇒ P (Suc n)
)

=⇒ P n

When we declare a datatype, Isabelle constructs a set-theoretic definition for the
type, derives characteristic theorems from the definition, and derives other useful the-
orems that follow from the characteristic theorems. From the user’s point of view, the
characteristic theorems axiomatize the datatype, and the underlying set-theoretic defi-
nition can be ignored. Accordingly, we will allow ourselves to write “axioms” instead
of “characteristic theorems.”1

The following theorem is a consequence of INDUCT:

NCHOTOMY: n = 0 ∨ (∃m. n = Suc m)

A well-known result from first-order logic is that if we consider only the DISTINCT

and INJECT axioms and leave out INDUCT (which is second-order), nonstandard models
of natural numbers are allowed alongside the standard model [15]. In these nonstandard
models, we still have distinct values for 0, Suc 0, Suc (Suc 0), . . . , but also additional
values (“junk”) that cannot be reached starting from 0 by applying Suc a finite number
of times. For example, the domain

|M |= {0,1,2, . . .} ∪ {0̃, 1̃, 2̃, . . .} ∪ {a,b,c}

with

0M = 0 SucM (0) = 1 SucM (0̃) = 1̃ SucM (a) = a

SucM (1) = 2 SucM (1̃) = 2̃ SucM (b) = c
...

... SucM (c) = b

is a nonstandard model of natural numbers (Figure 2). If we introduce NCHOTOMY as
an axiom, the above is no longer a model, because 0̃ is neither zero nor the successor
of some number. In contrast, |M ′| = {0,1,2, . . .} ∪ {a,b,c} is a model, with 0M ′

and
SucM ′

defined as for M .
1 Isabelle’s definitional approach stands in contrast to the axiomatic approach adopted by PVS

and other provers, where the datatype axioms’ consistency must be trusted [14]. Here, we take
a PVS view of Isabelle.

Generating Counterexamples for Structural Inductions 135

Fig. 2. A nonstandard model of the natural numbers

Our method relies on the following key observation: If a property P is “general
enough,” the induction step P n =⇒ P (Suc n) can be proved without using the INDUCT

axiom and hence it admits no countermodel even if we substitute NCHOTOMY for IN-
DUCT. It makes sense to add NCHOTOMY because users normally do not think of case
distinction as a form of induction; NCHOTOMY is first-order and easy to apply.

The method was illustrated on natural numbers but is easy to generalize to all re-
cursive datatypes. Self-recursive datatypes such as α list and α btree are handled in the
same way. Mutually recursive datatypes share their INDUCT axiom, but each type has its
own NCHOTOMY theorem; we simply replace INDUCT by the NCHOTOMY theorems.

4.2 Theoretical Properties

The soundness of our method follows directly from the definition.

Definition 1 (Nonstandard Models). Let τ̄ be some datatypes, C be a formula, and
A the set of relevant axioms to C . A τ̄-nonstandard model of C with respect to A
is a model of Ã � C , where Ã is constructed from A by replacing INDUCT with
NCHOTOMY for all types τ̄.

Theorem 1 (Soundness). If there exists a τ̄-nonstandard countermodel to C , then C
cannot be proved using only the DISTINCT, INJECT, and NCHOTOMY properties of τ̄.

Proof. This follows directly from the definition of nonstandard models and the sound-
ness of the proof system. ��

The converse to Theorem 1, completeness, does not hold, because the HOL proof sys-
tem is incomplete with respect to standard models, and because model finders such as
Nitpick must necessarily miss some infinite models or be unsound.

4.3 Implementation

The implementation in Nitpick deviates from the above description, because it has its
own axiomatization of datatypes based on selectors, directly encoded in Kodkod’s rela-
tional logic [4]. The type nat would be axiomatized as follows:

DISJ: no zero ∩ sucs UNIQ0: lone zero

EXHAUST: zero ∪ sucs = nat UNIQSuc: lone prec−1(n)

SELECTprec: if n ∈ sucs then one prec(n)
else no prec(n)

ACYCL: (n,n) /∈ prec+.

136 J.C. Blanchette and K. Claessen

In Kodkod’s logic, terms denote relations; for example, prec(n) denotes the set (or
unary relation) of all m such that (n,m) belongs to the binary relation prec. Free vari-
ables denote singletons. The constraint no r expresses that r is the empty relation, one r
expresses that r is a singleton, and lone r ⇐⇒ no r ∨ one r.

Users can instruct Nitpick to generate nonstandard models by specifying the non_std
option, in which case the ACYCL axiom is omitted. For finite model finding, the ACYCL

axiom, together with EXHAUST, is equivalent to INDUCT, but it can be expressed com-
fortably in Kodkod’s logic.

Cyclic objects are displayed as ξ1, ξ2, . . . , and their internal structure is shown under
the “Datatypes” heading. For the benefit of users who have not read the manual, Nitpick
detects structural induction steps and gives a hint to the user, as we saw in Section 3.2.

5 A More Advanced Example

The next example is taken from the Isabelle tutorial [13, pp. 9–15]. We want to prove
that reversing a list twice yields the original list:

theorem REV_REV: rev (rev ys) = ys

The rev function is defined in terms of the append operator (@). Their equational spec-
ifications follow:

rev [] = [] [] @ ys = ys

rev (x·xs) = rev xs @ [x] (x·xs) @ ys = x · (xs @ ys).

The base case of the induction proof of REV_REV is easy to discharge using the simp
method. For the induction step, we may assume

rev (rev zs) = zs (IH)

and the goal is
rev (rev (z·zs)) = z·zs. (G)

Applying simp rewrites the goal to

rev (rev zs @ [z]) = z·zs (G ′)

using the equational specification of rev. If we run Nitpick at this point, it does not find
any standard countermodel, suggesting that IH =⇒ G ′ is valid. And if we instruct it to
look for nonstandard countermodels, it quickly finds one:

Free variables: z = a1 zs = ξ1

Datatype: α list = {[], [a1], ξ1 = a1 ·ξ2, ξ2 = a1 ·ξ1, . . .}
Constants: rev = (λx. ?)([] 	→ [], [a1] 	→ [a1], ξ1 	→ ξ1, ξ2 	→ ξ1)

op @ = (λx. ?) (([], []) 	→ [], ([], [a1]) 	→ [a1], ([], ξ1) 	→ ξ1,

([], ξ2) 	→ ξ2, ([a1], []) 	→ [a1], ([a1], ξ1) 	→ ξ2,

([a1], ξ2) 	→ ξ1, (ξ1, [a1]) 	→ ξ1, (ξ2, [a1]) 	→ ξ2)

Generating Counterexamples for Structural Inductions 137

Fig. 3. Two nonstandard lists

The existence of the countermodel tells us that we must provide additional proper-
ties of rev, @, or both. It turns out the countermodel can provide some insight as to
how to proceed. The model contains two distinct nonstandard lists, ξ1 and ξ2, that fal-
sify the conjecture: rev (rev ξ2) = ξ1. The function table for @ contains the following
information about them:

ξ1 @ [a1] = ξ1 [a1] @ ξ1 = ξ2

ξ2 @ [a1] = ξ2 [a1] @ ξ2 = ξ1.

The left column of the function table implies that both ξ1 and ξ2 represent infinite lists,
because appending elements does not change them. The right column is depicted in
Figure 3. Both lists ξ1 and ξ2 seem to only consist of the element a1 repeated infinitely
([a1,a1, . . .]), and yet ξ1 �= ξ2.

A striking property of the function table of @ is that the left and right columns are
not symmetric. For standard finite lists, appending and prepending an element should
be symmetric. We can involve the function rev to make this relationship explicit: Ap-
pending an element and reversing the resulting list should construct the same list as
reversing the list first and prepending the element. This clearly does not hold for the
nonstandard model: rev (ξ1 @ [a1]) = ξ1 but [a1] @ rev ξ1 = ξ2.

We thus add and prove the following lemma.

theorem REV_SNOC: rev (xs @ [x]) = [x] @ rev xs
by (induct xs) auto

Equipped with this lemma, the induction step of rev (rev ys) = ys is now straightforward
to prove:

case (CONS y ys) note IH = this
have rev (rev (y·ys)) = rev (rev ys @ [y]) by simp
moreover have . . . = y · rev (rev ys) using REV_SNOC .
moreover have . . . = y · ys using IH by simp
ultimately show ?case by simp

138 J.C. Blanchette and K. Claessen

Admittedly, some imagination is required to come up with the REV_SNOC lemma.
However, it is the same kind of reasoning (building an intuition and then generalizing)
that is needed to repair non-theorems on the basis of standard counterexamples.

6 Evaluation

Evaluating our method directly would require observing Isabelle users and estimating
how much time they saved (or wasted) thanks to it. We chose instead to benchmark our
core procedure: finding nonstandard models to properties that require structural induc-
tion. To achieve this, we took all the theories from the Archive of Formal Proofs [10]
that are based on Isabelle’s HOL theory and that contain at least 5 theorems proved by
structural induction. We assumed that every theorem that was proved by structural in-
duction needed it (but took out a few obviously needless inductions). For every theorem,
we invoked Nitpick with the non_std option and a time limit of 30 seconds.

The table below summarizes the results per theory.

THEORY FOUND SUCCESS

Comp.-Except.-Correctly 8/8 100.0%
Huffman 27/28 96.4%
FOL-Fitting 31/38 81.6%
POPLmark-deBruijn 90/112 80.4%
RSAPSS 33/47 70.2%
HotelKeyCards 16/23 69.6%
Presburger-Automata 12/19 63.2%
SATSolverVerification 106/172 61.6%
AVL-Trees 8/13 61.5%
Collections 33/58 56.9%
FeatherweightJava 9/16 56.2%
BytecodeLogicJmlTypes 10/18 55.6%
Flyspeck-Tame 92/166 55.4%
Tree-Automata 32/64 50.0%
MuchAdoAboutTwo 4/8 50.0%
Verified-Prover 4/8 50.0%
VolpanoSmith 3/6 50.0%
NormByEval 16/41 39.0%

THEORY FOUND SUCCESS

Prog.-Conflict-Analysis 20/53 37.7%
Simpl 38/109 34.9%
Completeness 15/44 34.1%
CoreC++ 17/60 28.3%
Group-Ring-Module 41/151 27.2%
SIFPL 6/23 26.1%
BinarySearchTree 5/22 22.7%
Functional-Automata 9/41 22.0%
Fermat3_4 2/12 16.7%
Recursion-Theory-I 5/31 16.1%
Cauchy 1/9 11.1%
Coinductive 4/53 7.5%
Lazy-Lists-II 1/25 4.0%
MiniML 0/98 0.0%
Ordinal 0/20 0.0%
Integration 0/8 0.0%
Topology 0/5 0.0%

An entry m/n indicates that Nitpick found a nonstandard model for m of n theorems
proved by induction. The last column expresses the same result as a percentage.

The success rates vary greatly from theory to theory. Nitpick performed best on theo-
ries involving lists, trees, and terms (Compiling-Exceptions-Correctly, Huffman, POPL-
mark-deBruijn). It performed poorly on theories involving arithmetic (Cauchy, Integra-
tion), complex set-theoretic constructions (Lazy-List-II, Ordinal), a large state space
(CoreC++, SIFPL, Recursion-Theory-I), or nondefinitional axioms (MiniML). This is
consistent with previous experience with Nitpick for finding standard models [5].

The main reason for the failures of our method is the inherent limitations of model
finding in general, rather than our definition of nonstandard models. Our tool Nitpick is
essentially a finite model finder, so only finite (fragments of) nonstandard models can

Generating Counterexamples for Structural Inductions 139

be found. Nonstandard models are slightly easier to find than standard models because
they have fewer axioms to fulfill, but they otherwise present the same challenges to
Nitpick. Users who are determined to employ Nitpick can customize its behavior using
various options, adapt their theories to avoid difficult idioms, or run it in an unsound
mode that finds more genuine countermodels but also some spurious ones.

At first glance, the theory BinarySearchTrees seemed perfectly suited to our method,
so we were surprised by the very low success rate. It turns out BinarySearchTree uses
the type int to label its leaf nodes. In Isabelle, int is not defined as a datatype, and
Nitpick handles it specially. Hence, proofs by induction on the structure or height of
the trees could be avoided by applying an induction-like principle on int. Replacing int
with nat for the labels increased the theory’s score to 16/22 (72.7%).

7 Discussion and Related Work

Interpretation of Nonstandard Models. Our method presents the user with a counter-
model whenever it detects that a property is noninductive. In some cases, the user must
understand the cyclic structure of the nonstandard values ξi and see how they interfere
with the induction step; in other cases, it is better to ignore the cyclic structures. Either
way, it is usually difficult to isolate the relevant parts of the model and infer which prop-
erties were violated by the model and any other countermodel. The traditional approach
of studying the form of the current goal to determine how to proceed always remains
an alternative. Even then, the concrete nonstandard countermodel we compute provides
added value, because we can use it to validate any assumption we want to add.

Inductiveness Modulo Theories. Arguably, users rarely want to know whether the step
IH =⇒G can be performed without induction; rather, they have already proved various
theorems T and want to know whether IH ∧ T =⇒G can be proved without induction.
The theorems T could be all the theorems available in Isabelle’s database (numbering in
the thousands), or perhaps those that are known to Isabelle’s automatic proof methods.
Some users may also want to specify the set T themselves.

The main difficulty here is that these theorems are generally free-form universally
quantified formulas and would occur on the left-hand side of an implication: If any
of the universal variables range over an infinite type, Nitpick gives up immediately
and enters an unsound mode in which the quantifiers are artificially bounded. Counter-
examples are then marked as “potential.” Infinite universal quantification is problematic
for any finite model finder. We have yet to try infinite (deductive) model finding [6] on
this type of problem.

On the other hand, users can instantiate the relevant theorems and add them as as-
sumptions. This requires guessing the proper instantiations for the theorem’s universal
variables. Nitpick can be quite helpful when trying different instantiations.

Possible Application to First-Order Proof Search. Isabelle includes a tool called
Sledgehammer that translates the current HOL goal to first-order logic and dispatches
it to automatic theorem provers (ATPs) [11,12]. The tool heuristically selects theorems
from Isabelle’s database and encodes these along with the goal. Using nonstandard
model finding, it should sometimes be possible to determine that no first-order proof of
a goal exists and use this information to guide the theorem selection. Unfortunately, this
suffers from the same limitations as “inductiveness modulo theories” described above.

140 J.C. Blanchette and K. Claessen

Alternative Approach: A Junk Constructor. Our first attempt at detecting noninductive
properties was also rooted in the world of nonstandard models, but instead of allowing
cyclic values we added an extra constructor Junk ::σ→ τ to each datatype τ, where σ
is a fresh type. The values constructed with Junk were displayed as ξ1, ξ2, . . . , to the
user. For many examples the results are essentially the same as with the “cyclic value”
approach, but the approaches behave differently for two classes of properties: (1) For
properties that can be proved with case distinction alone, the “extra constructor” ap-
proach leads to spurious countermodels. (2) For properties that follow from the acyclic-
ity of constructors, the “extra constructor” approach fails to exhibit counterexamples.
An example of such a property is Suc n �= n, which can only be falsified by a cyclic n.

The “extra constructor” approach also has its merits: It relieves the user from having
to reason about cyclic structures, and it is easier to implement in counterexample gen-
erators such as Quickcheck [2] that translate HOL datatypes directly to ML datatypes.

More Related Work. There are two pieces of related work that have directly inspired the
ideas behind this paper. The first is work by Claessen and Svensson on different kinds of
counterexample generation in the context of reachability [8]; the rule induction example
presented in Section 3.1 is a direct adaptation of their approach. The second inspiration
is work by Ahrendt on counterexample generation in the context of specifications of
datatypes [1]. Ahrendt finds finite (and thus “nonstandard”) counterexamples by weak-
ening the specifications, which would otherwise only admit infinite models. Ahrendt’s
work was not done in the context of induction, and his notion of nonstandard models is
thus very different from ours.

There exists a lot of prior work on automating induction proofs. For example, us-
ing rippling [16], failed proof attempts are analyzed and may lead to candidates for
generalized induction hypotheses or new lemmas. Work in this area has the same gen-
eral aim as ours: providing useful feedback to provers (humans or machines) who get
stuck in induction proofs. Our approach differs most notably with this work in that it
provides definite feedback to the prover about the inadequacy of the used induction
technique. When our method generates a counterexample, it is certain that more induc-
tion is needed to proceed with the proof, if the conjecture is provable at all. Another
difference is that we focus on counterexamples rather than on failed proof attempts.
However, our longer-term hope is to exploit the nonstandard counterexamples in an
automatic induction prover. This remains future work.

8 Conclusion

We described a procedure for automatically detecting that a structural induction hypoth-
esis is too weak to support the induction step when proving a theorem, and explained
how we modified the model finder Nitpick for Isabelle/HOL to support it. The procedure
is based on the concept of nonstandard models of datatypes. The tight integration with
a model finder allows for precise feedback in the form of a concrete counterexample
that indicates why the induction step fails.

Although our focus is on interactive theorem proving, our approach is also applicable
to automatic inductive theorem provers. In particular, the nonstandard models produced
by the method contain a wealth of information that could be used to guide the search

Generating Counterexamples for Structural Inductions 141

for an induction proof. An exciting direction for future work would be to see how to
exploit this information automatically.

Acknowledgment. We want to thank Tobias Nipkow for sponsoring this collaboration
between Gothenburg and Munich, Sascha Böhme for helping with the implementation,
and Alexander Krauss, Mark Summerfield, and the anonymous reviewers for suggesting
textual improvements.

References

1. Ahrendt, W.: Deductive search for errors in free data type specifications using model gener-
ation. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 211–225. Springer,
Heidelberg (2002)

2. Berghofer, S., Nipkow, T.: Random testing in Isabelle/HOL. In: Cuellar, J., Liu, Z. (eds.)
SEFM 2004, pp. 230–239. IEEE C.S., Los Alamitos (2004)

3. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL—lessons learned in formal-logic
engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999)

4. Blanchette, J.C.: Relational analysis of (co)inductive predicates (co)inductive datatypes, and
(co)recursive functions. In: Fraser, G., Gargantini, A. (eds.) TAP 2010. LNCS, vol. 6143, pp.
117–134. Springer, Heidelberg (2010)

5. Blanchette, J.C., Nipkow, T.: Nitpick: A counterexample generator for higher-order logic
based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS,
vol. 6172, pp. 131–146. Springer, Heidelberg (2010)

6. Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building. Applied Logic, vol. 31.
Springer, Heidelberg (2004)

7. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)
8. Claessen, K., Svensson, H.: Finding counter examples in induction proofs. In: Beckert, B.,

Hähnle, R. (eds.) TAP 2008. LNCS, vol. 4966, pp. 48–65. Springer, Heidelberg (2008)
9. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A Theorem Proving Environment

for Higher Order Logic. Cambridge University Press, Cambridge (1993)
10. Klein, G., Nipkow, T., Paulson, L.: The archive of formal proofs, http://afp.sf.net/
11. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. J. Auto.

Reas. 40(1), 35–60 (2008)
12. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated resolution

problems. J. Applied Logic 7(1), 41–57 (2009)
13. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-

berg (2002)
14. Owre, S., Shankar, N.: Abstract datatypes in PVS. Technical report, SRI (1993)
15. Skolem, T.: Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder ab-

zählbar unendlich vieler Aussagen mit ausschließlich Zahlenvariablen. Fundam. Math. 23,
150–161 (1934)

16. Stark, J., Ireland, A.: Invariant discovery via failed proof attempts. In: Flener, P. (ed.)
LOPSTR 1998. LNCS, vol. 1559, pp. 271–288. Springer, Heidelberg (1999)

17. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grumberg, O., Huth, M. (eds.)
TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007)

18. Wenzel, M., Wiedijk, F.: A comparison of the mathematical proof languages Mizar and Isar.
J. Auto. Reas. 29(3–4), 389–411 (2002)

http://afp.sf.net/

Characterising Space Complexity Classes via
Knuth-Bendix Orders�

Guillaume Bonfante1 and Georg Moser2

1 INRIA-LORIA, Nancy, France
guillaume.bonfante@loria.fr

2 Institute of Computer Science, University of Innsbruck, Austria
georg.moser@uibk.ac.at

Abstract. We study three different space complexity classes: LINSPACE,
PSPACE, and ESPACE and give complete characterisations for these
classes. We employ rewrite systems, whose termination can be shown by
Knuth Bendix orders. To capture LINSPACE, we consider positively
weighted Knuth Bendix orders. To capture PSPACE, we consider unary
rewrite systems, compatible with a Knuth Bendix order, where we allow
for padding of the input. And to capture ESPACE, we make use of a non-
standard generalisation of the Knuth Bendix order.

1 Introduction

Term rewriting is a conceptually simple, but powerful abstract model of compu-
tation with applications in automated theorem proving, compiler optimisation,
and declarative programming, to name a few. The derivational complexity of a
term rewrite system (TRS for short) measures the complexity of a given TRS
R by linking the maximal height of a given derivation over R to the size of
the initial term. This notion was suggested by Hofbauer and Lautemann in [8].
Based on investigations of termination techniques, like simplification orders or
the dependency pair method, a considerable number of results establish upper-
bounds on the growth rate of the derivational complexity function. See for exam-
ple [7,18,12,14,10,16,15] for a collection of results in this direction. We exemplary
mention a result on the Knuth Bendix order (KBO for short). In [12] it is shown
that KBO induced a tight 2-recursive upper bound on the derivational complex-
ity. Note that this high upper bound on the complexity depends on the fact
that we consider arbitrary TRSs. For unary TRS, Hofbauer has shown that the
derivational complexity is bounded by an exponential function, cf. [6].

We are concerned here with a complementary point of view. The theme of our
investigations is that of implicit characterisations of complexity classes: given a
terminating TRS R, can the information on the termination proof be applied to
estimate the computational complexity of the functions computed byR? For such
investigations it is often possible to utilise results on the derivational complex-
ity of a TRS. In particular in [4] the first author together with Cichon, Marion
� This research is partly supported by FWF (Austrian Science Fund) project P20133.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 142–156, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Characterising Space Complexity Classes via Knuth-Bendix Orders 143

and Touzet established for example complete characterisations of the complex-
ity classes PTIME and ETIME, together with their nondeterministic analogues.
These results were obtained by a fine analysis of polynomially terminating TRS.
In a similar vein [13,5,1,2] establish the characterisations of various time and space
complexity classes like LOGSPACE, PTIME, LINSPACE, and PSPACE. In this pa-
per we focus on the space complexity classes LINSPACE, PSPACE, and ESPACE.
In order to capture these classes we employ variants of KBO. More precisely we
obtain the following results (all definitions will be given below):

- First, we completely capture LINSPACE through positively weighted KBOs
on confluent TRS.

- Second, we completely capture PSPACE on unary TRS, compatible with
KBO.

- Third, we completely capture ESPACE on unary TRS, compatible with en-
riched KBOs.

Moreover, we obtain similar characterisation of the nondeterministic analogues
of these complexity classes, if the condition on confluence is dropped. Apart
from the technical contribution these results are also of conceptional interest.
On one hand they shows the versatility of KBO. On the other these results show
how results on the derivational complexity of TRS (a measure on the length of
derivations) are applicable to capture space complexity classes.

The paper is organised as follows. In Section 2 we recall basic notions form
rewriting and the theory of computations. In Section 3 we define the notion of
a relation computed by a rewrite systems, while in Section 4 we link this to the
more standard notions of computation by a Turing machine. In Section 5, we
recall the definition of KBO. Our main results are given in Section 6–8. Finally,
we conclude in Section 9.

2 Preliminaries

We consider two ways of computing, the first one uses rewriting, the second one
uses Turing machines. We assume familiarity with the basics of rewriting [3,17],
and with the basics of the theory of computation [11]. In this section we recall
the central definitions for these areas.

Let V denote a countably infinite set of variables and F a signature. A signa-
ture is called unary if F consists of constants and unary function symbols only.
The set of terms over F and V is denoted as T (F ,V). Var(t) denotes the set of
variables occurring in a term t and |t|x denotes the number of occurrences of the
variable x in t. A term t such that Var(t) = ∅ is called ground. The size |t| of a
term is defined as the number of symbols in t.

A term rewrite system (TRS for short) R over T (F ,V) is a finite set of
rewrite rules l → r, such that l /∈ V and Var(l) ⊇ Var(r). The induced rewrite
relation is denoted by →R. The transitive closure of →R is denoted by →+

R,
and its transitive and reflexive closure by →∗R. A term s ∈ T (F ,V) is called a
normal form if there is no t ∈ T (F ,V) such that s →R t. We write s →!

R t if

144 G. Bonfante and G. Moser

s →∗R t and t is in normal forms with respect to →R. If no confusion can arise
from this, we simply write → (→∗, →+) instead of →R (→∗R, →+

R). We call a
TRS terminating if no infinite rewrite sequence exists. Let s and t be terms. If
exactly n steps are performed to rewrite s to t we write s→n t. A TRS is called
confluent if for all s, t1, t2 ∈ T (F ,V) with s →∗ t1 and s →∗ t2 there exists
a term t3 such that t1 →∗ t3 and t2 →∗ t3. A TRS R is said to be unary if
R is based on a unary signature. The derivation height of a terminating term
s (with respect to R) is defined as dh(s) := max{n | ∃ t such that s→n

R t}.
The derivational complexity function (with respect to R) is defined as follows:
dcR(n) = max{dh(t) | |t| � n}. A proper order is a transitive and irreflexive
relation and a preorder is a transitive and reflexive relation. A proper order "
is well-founded if there is no infinite decreasing sequence t1 " t2 " t3 · · · .

Notation. Let F be a unary signature. In the sequel of the paper, we sometimes
confuse the notation of elements of T (F ,V) as terms or strings. For example,
for F = {f, g, •}, where f, g are unary and • is a constant, we may denote the
ground term f(g(f(•))) as the string fgf. We may even mix both representations,
for example, we may write f(gg), instead of f(g(g(•))). No confusion will arise
from this.

We fix the representation of Turing machines (TMs for short). A deterministic
one-tape Turing machine is a 9-tuple M = (Q,Σ, Γ, �,�, δ, s, t, r) such that Q is a
finite set of states, Σ is a finite input alphabet, Γ is a finite tape alphabet, Σ ⊆ Γ ,
� ∈ Γ is the blank symbol, � ∈ Γ is the left endmarker, δ : Q×Γ → Q×Γ×{L,R}
is the transition function, and s, t, r ∈ Q are the start state, the accept state,
and the reject state, respectively. (As usual, we demand t �= r.) We assert that
the left endmarker � is never overwritten and the machine never moves off the
left tape. Moreover, we require that once the machine enters an accept (reject)
state, it must neither leave this state nor modify the tape. In order to define
nondeterministic TMs, we replace the transition function δ by a relation Δ. We
say a TM halts if it either reaches the accepting state t, or the rejecting state r.

A configuration of a TM M is given by a triple (q, v�∞, n) with q ∈ Q being
the current state of the machine, v ∈ Γ ∗ being the current content of the tape
and n denotes the position of the head on the tape. (Here �∞ denotes an infi-
nite number of blanks.) The start configuration on input w ∈ Σ∗ is defined as
(s, �w�∞, 1). The next configuration relation of M is denoted as M−→ .

Let M∗
−→ denote the reflexive and transitive closure of the next configuration

relation M−→. We say M accepts its input w if (s, �w�∞, 1) M∗
−→ (t, v, n) for some

v ∈ Γ ∗, n ∈ N. The language of M, that is the set of words it accepts, is
denoted as L(M). We say M decides a language L if L = L(M) and M halts on
all inputs. Furthermore M is said to decide a binary relation R if M decides the
language L = {(w, v) | (w, v) ∈ R}. Finally, let R be a binary relation such that
R(w, v) can be decided by a (nondeterministic) TM. Then the function problem
associated with R (denoted as FR) is the problem to find a string v such that
R(w, v) holds, given the string w. Or reject, if no such v exists. For a complexity
class C, we write FC to denote the function problems associated with this class.

Characterising Space Complexity Classes via Knuth-Bendix Orders 145

We recall the definition of the complexity classes considered in the sequel. We
say that a TM runs in space S(n) or is S(n) space-bounded, if on all but finitely
many inputs w, no computation path uses more than S(|w|) tape cells.

For any bounding function S : N → N, such that S(n) = Ω(n), we de-
fine: DSPACE(S(n)) := {L(M) | M is a S(n) space-bounded deterministic TM}.
The following definitions are well-known: LINSPACE :=

⋃
k>0 DSPACE(k · n),

PSPACE :=
⋃

k>0 DSPACE(nk), ESPACE :=
⋃

k>0 DSPACE(2k·n). NLINSPACE,
NPSPACE, and NESPACE, respectively, denote the corresponding nondetermin-
istic complexity classes. Recall the following equalities: PSPACE = NPSPACE,
ESPACE = NESPACE, see [11].

3 Computation by Rewriting

In this section we introduce what is meant by the relation (or function) computed
by a (confluent) TRS. We essentially follow the approach in [4].

Let Σ be a fixed finite alphabet and let ε denote the empty string. We define
the signature F(Σ) corresponding to Σ as follows: for all a ∈ Σ let α(a) ∈ F(Σ)
denote a unary function symbol. In addition F(Σ) contains a unique constant
symbol •. The mapping α is lifted to a function α between strings Σ∗ and
T (F ,V) as follows: (i) α(ε) := •, (ii) α(av) := α(a)(α(v)). The mapping α is
called translation from Σ to F(Σ). The translation between F(Σ) and Σ, that
is, the reversal of the mapping α, is defined analogously.

Definition 1. Let Σ be an alphabet and let F(Σ) denote the signature corre-
sponding to Σ. Suppose R is a terminating TRS over signature F ⊇ F(Σ). Let
No ⊆ T (F ,V) be a finite set of non-accepting terms. A relation R ⊆ Σ∗ ×Σ∗

is computable by R if there exists a function symbol f ∈ F such that for all
w ∈ Σ∗: R(w, out(t)) if and only if f(inp(w)) →!

R t such that t �∈ No. Here inp,
out denote translation from Σ and into Σ, respectively. To sum up, we say that
R is computed by the 7-tuple (Σ,F , inp, out, f,R,No) or shorter by R when the
other components are clear from the context.

Suppose R is confluent and computes a relation R. For this case, we also say
that R computes the (partial) function induced by the relation R. Note that the
requirement t �∈ No is a technical one and serves only to characterise an accepting
run of a TRS R. A typical example of its use would be to set No = {undef}
if the TRS contains a rule of the form l → undef and undef is not part of the
relation to be defined. If No is clear from context, we will not speak about it.

In the sequel of the section, we provide several examples of (unary) TRS to-
gether with the binary relation computed. Given a word w on some alphabet Σ∪
{b}, rem(b, w) denotes the wordw where the letter b has been removed. We define:
(i) rem(b, ε) := ε, (ii) rem(b, bw) := rem(b, w), (iii) rem(b, aw) := a rem(b, w), if
a �= b. By extension, rem({b1, . . . , bk}, w) = rem(b1, rem(b2, . . . , rem(bk, w) · · ·)).
Given a finite alphabet Σ and an extra letter b �∈ Σ, the TRS R←b defined in
the next example, re-orders the symbols of a word by shifting the letter b on the
left of the word. More precisely, (Σ ∪ {b},F(Σ ∪ {b}), inp, out, f←b,R←b,No)

146 G. Bonfante and G. Moser

computes the relation S ⊆ (Σ ∪ {b})∗ × (Σ ∪ {b})∗ containing all (w,w′) ∈
(Σ ∪ {b})∗ × (Σ ∪ {b})∗ such that w′ = bkrem(b, w) with k � 0 and |w| = |w′|.

Example 2. Let inp(b) = b and let F = F(Σ) ∪ {b, �b, �b, f, f←b}, where all
function symbols but • ∈ F(Σ) are unary. Consider the TRS R←b defined as
follows:

f←b(x) → �b(f(x)) g(b(x)) → b(g(x)) �b(b(x)) → b(�b(x))
f(h(x)) → h(f(x)) g(�b(x)) → �b(g(x)) �b(�b(x)) → x

f(•) → �b(•) ,

where g ∈ F(Σ), h ∈ F(Σ ∪{b}). Let inp = out : d ∈ Σ ∪{b} 	→ d and No = ∅.
It is not difficult to see that the TRS R←b is confluent.

Some comments about this system: �b, �b serve respectively as the left and the
right end markers of the symbol b. Along the computation, any occurrence of the
symbol b is at the left of �b and any symbol g ∈ F(Σ) is at the right of �b. At any
step of a derivation f←b(inp(w)) →+ t, we have: (i) rem({�b, �b, f}, t) = w, and
(ii) either t = bk(�b(v)) for some k � 0 and some term v, or t does not contain �b

and t is the normal form with respect to R←b. That is, t = bkrem(b, w) with k
suitable such that |t| = |w|. Let #(b, w) denote the number of occurrence of b in
w. Due to these two invariants, in the second clause, when t = bk(�b(v)), we can
state that k � #(b, w). In other words, all along the computation, the prefix in
front of �b is a prefix of the normal form. Similar invariants and considerations
can be applied to show that the TRS R→b, defined in the next example, operates
as claimed.

Example 3. Let F = F(Σ) ∪ {b, �Σ, �Σ, f, f→b}. In an analogous way, the TRS
R→b shifts the symbols b to the right.

f→b(x) → �Σ(f(x)) b(g(x)) → g(b(x)) �Σ(g(x)) → g(�Σ(x))
f(h(x)) → h(f(x)) b(�Σ(x)) → �Σ(b(x)) �Σ(�Σ(x)) → x

f(•) → �Σ(•) ,

where g ∈ F(Σ), h ∈ F(Σ ∪ {b}).

We end the section with a more liberal notion of computability by rewriting,
computations up-to a padding function.

Definition 4. Let Σ,F(Σ),R and No be as in Definition 1. Furthermore, we
suppose the signature F ⊃ F(Σ) contains a fresh padding symbol, denoted by �.
Let F : N → N be a function. A relation R ⊆ Σ∗×Σ∗ is computable by R up-to
the padding function F , if there exists a function symbol f ∈ F such that for all
w ∈ Σ∗: R(w, out(t)) if and only if f(inp(w) �F (|x|)) →!

R t, such that t �∈ No.
Here inp, out denote translations from Σ and into Σ as above.

We say that a relation R is computable up-to F -padding, if it is computable by
some R up-to the padding function F .

Characterising Space Complexity Classes via Knuth-Bendix Orders 147

Example 5. Consider an alphabet Σ of unary symbols and a symbol b �∈ Σ. On
(Σ ∪ {b})∗, we define a relation R as follows: R(w, v) if and only if v = b|w| w,
such that w does not contain b. Consider the TRS R, obtained by adding the
following rules to the TRS R←b:

g′(x) → f←b(ver(x)) ver(g(x)) → g(ver(x)) h(undef) → undef

ver(�(x)) → b(ver(x)) ver(b(x)) → undef ver(•) → • ,

where g ∈ F(Σ), h ∈ F \ {•}. Then R is computable by R by padding up-to the
polynomial λx.x.

4 Turing Machines and Rewriting

In this section, we introduce a simulation of Turing machines by rewriting.
Let M = (Q,Σ, Γ, �,�, Δ, s, t, r) denote a (nondeterminstic) TM. We define

the signature F(M) corresponding to M as follows. For each a ∈ Γ , there
exists a unary function symbol a ∈ F(M). Moreover define Q(F) := {qa |
q ∈ Q and a ∈ Γ} and suppose Q(F) ⊆ F(M). Finally we have •, 0, 1 ∈ F(M).

It is well-known that TMs can be encoded as unary TRSs or even string rewrite
systems, cf. [17]. In the following encoding, we make use of the fact that all here
considered TMs are space bounded by some bounding function S. Thus we need
only consider a finite part of the tape of M. In particular any configuration α of
M becomes representable as a triple (q, �v�m, �) for m ∈ N. This is employed in
the definition given belows. To represent the running time of M, we add a time
point to the representation of the configuration. It is well-known that a halting
machine working in space S(n) runs in time 2k·S(n) for some k > 0 (see for
example [11]). Thus, the running time can be represented in binary by a word
of length k · S(n). Let w be a word of length n = |w|; we write wi (1 � i � n)
to denote the ith letter in w.

Definition 6. Let w be a word over Σ and let n = |w|. Suppose M is a (non-
deterministic) TM running on input w in space S(n) such that S(n) = Ω(n).
Further let α = (q, �v�m, �) be a configuration of M at time t such that |v|+m �
S(n). Then α is represented as: γt,q,v,� := t � v1v2 . . . v�−1qv�

v�+1v�+2 . . . v|v|�m.
The time point t is represented as a string of length k · S(n), making use of the
extra symbols 0, 1 ∈ F(M).

Lemma 7 (Step by step simulation of a TM). Let S be a bounding func-
tion such that S(n) = Ω(n). Suppose we are given a nondeterminstic TM M =
(Q,Σ, Γ, �,�, Δ, s, t, r) running with input w in space S(|w|). Then there exists a
unary TRS R, simulating this machine step by step, starting with γt0,s,w,1, where

t0 = 0S(|w|). More precisely: if (p, w,m) M−→ (q, v, n), then γt,p,w,m →∗R γt+1,q,v,n

for t � 0.

Proof. We add the extra symbol 0′ to the signature to manage the clock (see
the rules below). Let F be a signature that extends the signature F(M) so that
{a′ | a ∈ Γ} ∪ {0′} ⊆ F .

148 G. Bonfante and G. Moser

Consider the following (schematic) TRS R1 over F . EssentiallyR1 computes the
binary successor and in addition marks letters. In conjunction with rules that
express each transition of M it will be used to update the configuration.

0(f(x)) → 1(f ′(x)) 1(f(x)) → 0′(f ′(x)) f ′(g(x)) → f(g′(x))
0(0′(x)) → 1(0(x)) 1(0′(x)) → 0′(0(x)) ,

where f, g ∈ F and f ′, g′ denote marked copies of f , g, respectively. The next
(schematic) rules represent the transition relation Δ of M.

a′(pb(x)) → qa(c(x)) if (q, c, L) ∈ Δ(p, b)
a′(pb(d(x))) → a(c(qd(x))) if (q, c, R) ∈ Δ(p, b)

Here a, a′, c, d ∈ F . These rules are collected in the TRS R2. Finally, we define
R := R1 ∪R2. It is not difficult to see that R fulfils the conditions given in the
lemma. Note that this simulation takes square time. More precisely, if M works
in T (n) (nondeterministic) steps, the derivation length of the rewriting system
will be O(T (n)2). ��

5 The Knuth Bendix Order

In this section we recall the definition of the Knuth Bendix order. We follow the
presentation in [3] closely.

Let " be a proper order on signature F , called precedence. A weight function
for F is a pair (w, w0) consisting of a function w : F → N and a minimal weight
w0 ∈ N, w0 > 0 such that w(c) � w0 if c is a constant. A weight function (w, w0)
is called admissible for a precedence " if the existence of f ∈ F , such that f
is unary and w(f) = 0 entails that f " g for all g ∈ F , g �= f . The symbol f
is necessarily unique, it is qualified as special. We sometimes identify the pair
(w, w0) with the function w : F → N and simply call the latter a weight function.
The weight of a term t, denoted as weight(t) is defined inductively. Assume t is
a variable, then set weight(t) := w0, otherwise if t = f(t1, . . . , tn), we define
weight(t) := w(f) + weight(t1) + · · ·+ weight(tn).

Definition 8. Let " denote a precedence and (w, w0) an admissible weight func-
tion. The Knuth Bendix order (KBO for short) "kbo on T (F ,V) is inductively
defined as follows: for all terms s, t we have s "kbo t if |s|x � |t|x for all x ∈ V
and either

1) weight(s) > weight(t), or
2) weight(s) = weight(t), and one of the following alternatives holds:

(a) t is a variable, s = fn(t), where f is the special symbol, and n > 0,
(b) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and there exists i ∈ {i, . . . , n} such

that sj = tj for all 1 � j < i and si "kbo ti, or
(c) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f " g.

Let �kbo denote the quasi-order induced by "kbo.

Characterising Space Complexity Classes via Knuth-Bendix Orders 149

We say a TRS R is compatible with a KBO "kbo if R ⊆ "kbo, that is for all rules
l → r: l "kbo r. It is well-known that KBO is a simplification order, in particular
if R is compatible with "kbo, then R terminates. A KBO induced by a weight
function w : F → N \ {0} is said to be positively weighted.

Example 9. Recall Example 2. Let w(f) = 1 for all symbols in the TRS R←b,
with the exception of f←b, where we set w(f←b) = 3. Consider a precedence
" defined as follows: f " �b " F(Σ) " b " �b " •, where �b " F(Σ) " b
abbreviates that for any function symbol g ∈ F(Σ), �b " g " b, and " is defined
arbitrary on F(Σ). It is easy to see that the KBO induced by the (admissible)
weight function w and " is compatible with R←b. Now, consider the TRS R→b

defined in Example 3. Let w(f) := 1 for all symbols in the TRS R←b, with the
exception of f→b, where we set w(f→b) := 3. Consider a precedence " defined
as follows: we assert f " �Σ " b, together with b " F(Σ) " �Σ " •. Then
R→b ⊆ "kbo, for the induced KBO "kbo.

The next example clarifies that the simulating TRS R defined in the proof of
Lemma 7 is KBO terminating.

Example 10. Consider the TRS R over F defined in the proof of Lemma 7. Let
w(f) := 1 for all f ∈ F . For the precedence " we assert 0 " 1 " 0′ and for all
a, a′ ∈ F and all q ∈ Q set a′ " a, a′ " qb, where b ∈ Σ. It is easy to see that
R is compatible with the KBO induced by the given weight function and the
precedence.

In the next sections, we discuss a variety of variants of KBO in order to clas-
sify their computational content precisely. For that we introduce the following
technical definition. The σ-size of a term t measures the number of non-special
non-constant function symbols occurring in t: (i) |t|σ := 0, if t is a constant; (ii)
|t|σ := |t′|σ, if t = f(t′), f special; (iii) |t|σ := 1 +

∑n
1 |ti|σ, if t = f(t1, . . . , tn).

Lemma 11. Let w denote a weight function and weight the induced weight func-
tion on terms. For all terms t, the following hold: (i) |t|σ = O(weight(t)) and
(ii) weight(t) = O(|t|).

In concluding this section, we show how a function f computed by a TM running
in space S(n), where S is at least linear, is computed (up to S) by a TRS R,
whose termination can be shown via KBO.

Suppose S(n) = k · n + l and let R be computed by the 7-tuple (Σ,F ∪
{�}, inp, out, g,R,No) up-to the padding function S(n). In the following we
define the 7-tuple (Σ,F ′, inp′, out, g′,R′,No).

DefineR→ as in Example 3, so that the symbol b is specialised to the padding
symbol � ∈ F . Set F0 = {f→, f, �Σ, �Σ}. Without loss of generality, we assert
that F0 and F are disjoint. Let F1 = {g′, cpy3} be disjoint with F and let Σ
denote a copy of the alphabet Σ. Consider the auxiliary TRS Rcpy over the
signature F1 ∪ F(Σ) ∪ F(Σ).

g′(x) → g(f→(cpy3(x))) cpy3(•) → �l(•) cpy3(f(x)) → f(�k(cpy3(x))) ,

150 G. Bonfante and G. Moser

where f ∈ F(Σ) and f ∈ F(Σ) its copy. Define F ′ = (F \{�})∪F0∪F1∪F(Σ)
and let R′ be defined over F ′ as follows: R′ := R∪R→ ∪Rcpy . The translation
inp′ from Σ is defined as follows:

inp′ : a ∈ Σ 	→ a ∈ F(Σ) .

This completes the definition of the 7-tuple (Σ,F ′, inp′, out, g′,R′,No).

Lemma 12. LetR be computed by the 7-tuple (Σ,F∪{�}, inp, out, g,R,No) up-
to the padding function λx.k · x + l, using the padding symbol �. Then, R is also
computed by the 7-tuple (Σ,F ′, inp′, out, g′,R′,No) defined above. Moreover, ifR
is compatible with a positively weighted KBO, the same holds with respect to R′.
Theorem 13. Let R(w, v) be a binary relation, let n = |w| and let M be a
(nondeterministic) TM that solves the function problem associated with relation
R(w, v) in space S(n) = Ω(n) and time 2S(n). Then the relation R is computable
by R up-to S-padding using the padding symbol �. Moreover R is unary and
compatible with a positively weighted KBO.

Proof. In proof, we assume M is nondeterminstic and we utilise the step by
step simulation of a nondeterminstic TM M = (Q,Σ, Γ, �,�, Δ, s, t, r) as seen
in Lemma 7. The main issue is to properly prepare the “data”, that is, the
initial configuration, so that one can apply the lemma. Let the TRS RM over
the signature F be defined as in the proof of Lemma 7. Furthermore define R←0

as in Example 2, such that the symbol b is specialised to the clock symbol 0 ∈ F .
Moreover consider the following auxiliary TRS Rbuild:

build(x) → �′(f←0(cpy1(x))) cpy1(f(x)) → f(cpy1(x))
cpy1(�(x)) → 0(�(cpy1(x))) cpy1(•) → •
�′(0(x)) → 0(�′(x)) �′(g(x)) → �(sg(x)) ,

where f, g ∈ F(Σ). Finally, we set R := RM ∪R←0 ∪Rbuild. It is not difficult to
see that R computes the relation R up-to S-padding.

We extend the definitions of weight and precedence as given in Example 10
for RM and in Example 9 for R←0. Let FM denote the signature of RM and let
w(f) := 1 for all f ∈ FM. Moreover, let F0 = {�0, �0, f, f←0} and note that the
signature of R←0 amounts to F(Σ)∪F0∪{0}. Observe that F(Σ)∪{0}} ⊆ FM,
that is, those weights have already been assigned. Set w(�0) = w(�0) = w(f) := 1
and w(f←0) = 2. Finally consider the new symbols in (the signature) of Rbuild

and set w(�) := 2, w(�′) = w(cpy1) = 1, and w(build) := 4. This completes the
definition of w for the signature of R. Moreover extend the precedence " by
build " �′ " f←0 " cpy1 " F(Σ) and cpy1 " 0. It is not difficult to see that the
KBO "kbo thus induced is compatible with KBO; furthermore "kbo is positively
weighted. ��

6 Characterising Linear Space via KBO

In this section, we show how to capture the complexity classes LINSPACE and
its nondeterministic variant NLINSPACE with the help of a restriction of the
Knuth-Bendix order.

Characterising Space Complexity Classes via Knuth-Bendix Orders 151

Lemma 14. Let F be a signature and w be a weight function over F such that
for all f ∈ F , w(f) > 0. Then there exists a constant M such that for all terms
t: |t| � w(t) � M · |t|.

We specialise the definition of function problems given in Section 2 to the present
context. Let R(w, v) denote a binary relation that can be decided by a (nonde-
terministic) TM M. We say the function problem FR associated with R can be
solved in linear space, if it can be solved in space linear in |w|.

Theorem 15. Let R be a TRS, let R be compatible with a positively weighted
KBO, and let R denote the relation computed by R. Then the function problem
FR can be solved on a (nondeterministic) TM in linear space. Moreover if R is
confluent then the function computed by R can be computed in linear space on
a deterministic TM.

Proof. Assume R is computed by the 7-tuple (Σ,F , inp, out, f,R,No). Note that
any rewrite step can be simulated (in linear space) on a TM. Indeed, pattern
matching, binary subtraction, binary addition, character erasing, and character
replacements can be done in linear space. The translation out provides a map-
ping from terms to the alphabet Σ. Thus it is easy to see how to define a suitable
(nondeterministic) TM M = (Q,Σ, Γ, �,�, Δ, s, t, r) such that any derivation
over R can be simulated by M. Let s, t be terms such that s→∗ t. By definition
of KBO, weight(s) � weight(t) and thus due to Lemma 14 weight(t) = O(|s|).
Without loss of generality we can assume that the mapping out is linear in
the size, that is, for any term t we have |out(t)| = O(|t|). Thus the mentioned
simulation can be performed by a TM running in space O(|out(s)|). Hence the
function problem FR is computable by a TM in linear space. If in addition R is
confluent, M is deterministic. ��

Theorem 16. Let M be a (nondeterministic) TM that solves in linear space
the function problem associated with relation R. Then R is computable by a
TRS R that is compatible with a positively weighted KBO. Moreover if M is
deterministic, the TRS R is confluent.

Proof. Without loss of generality we can assume that M runs in space k ·n+ l on
input w, when n = |w|. Set S(n) = k ·n+l. By assumption M decides the relation
R, hence it halts on any input. Thus we can assume M runs in time 2S(n). Due to
Theorem 13 there exists a TRSR′ that computes the relationR up-to S-padding.
Furthermore, as S is an affine function, Lemma 12 is applicable to transform R′
to a TRS R that computes R (without padding). Moreover Theorem 13 and
Lemma 12 guarantee that R is compatible with a positively weighted KBO. ��

By Theorem 15 and 16 we obtain that positively weighted Knuth-Bendix orders
characterises precisely the class of function problems FNLINSPACE on arbitrary
TRS and the class FLINSPACE on confluent TRS. More precisely, if we restrict
our attention to languages, positively weighted Knuth Bendix orders exactly
captures (LINSPACE) NLINSPACE on (confluent) TRSs.

152 G. Bonfante and G. Moser

7 Characterising Polynomial Space via KBO

In this section, we establish a complete characterisation of the complexity class
PSPACE. For that it suffices to consider unary TRS. However, we have to make
use of a more liberal use of padding function than in Section 6 above.

Our results rely on the insight that KBO induces exactly exponential deriva-
tional complexity on unary TRS. This is due to Hofbauer (compare [8,6]).

Proposition 17. For all unary TRS R compatible with KBO dcR(n) = 2O(n)

holds. Furthermore there exists a unary TRS R compatible with KBO such that
2Ω(n) = dcR(n).

Let R(w, v) denote a binary relation that can be decided by a (nondeterministic)
TM M. We say the function problem FR associated with R can be solved in
polynomial space, if it can be solved in space polynomial in |w|.

Theorem 18. Let R be a unary TRS, let R be compatible with a KBO, and
let R denote the relation computed by R up-to polynomial padding. Then the
function problem FR is solvable on a (nondeterministic) TM in polynomial space.
Moreover if R is confluent then the function computed by R can be computed in
polynomial space on a deterministic TM.

Proof. Assume R(w, v) is computed by the 7-tuple (Σ,F , inp, out, f,R,No) up-
to the padding function P , where P is a polynomial. Without loss of generality
we assume that the translations inp, out are linear in size. Let s, t be terms.
Consider a derivation D : s →∗ t, such that dh(s) = n. Due to Proposition 17,
there is a constant c > 2 such that s →n t implies that n � 2c·(|s|+1). Define
d = max(2,max(|r| : l → r ∈ R)). By assumption R is compatible with a KBO.
Hence R is non-duplicating. Thus each rewrite step increases the size by at most
by d. We obtain:

|t| � |s|+ d · 2c·(|s|+1) � 2|s|+2 + 2c·(|s|+1)+d � 2(c+d+2)(|s|+1) .

In the first inequality, we apply the definition of the constant d and in the
third, we make use of the inequalities 2 � |s| + 2 and 2 � d + c · (|s| + 1). We
set e = c + d + 2 and obtain |t| � 2e·(|s|+1). Let i denote the special symbol.
We decompose the term t as follows: t = ij0g1i

j1g2i
j2 · · · gim ijm , where for all

k: gk ∈ F \ {i} and thus m is precisely |t|σ. By the above estimation on the
size of t, we conclude that jk � 2e·(|s|+1) for all k (0 � k � m). In order to
simulate the derivation D on a TM we need to make sure that we can encode
each term succinctly. For that we represent expressions ijk by (jk)2, where the
latter denotes the binary representation of the number jk. Hence we define �t� of
t as follows: �t� := (j0)2g1(j1)2g2(j2)2 · · · gim(jm)2. First, observe that |(jk)2| �
log2(2

e·(|s|+1)) = e · (|s|+ 1). Second, due to Lemma 11, there exist constants �,
�′, such that m = |t|σ � � · weight(t) � � · weight(s) � �′ · |s|. (Recall that we
have s→∗ t). In summary, we obtain the following estimate for the size of �t�:

|�t�| � m+ (m+ 1) · (e · (|s|+ 1))
� (m+ 1) · (e · (|s|+ 2)) � (�′ · |s|+ 1) · (e · (|s|+ 2)) .

Characterising Space Complexity Classes via Knuth-Bendix Orders 153

Set Q(n) := (�′ · n + 1) · (e · n + 2), which is a quadratic polynomial in n.
Consider now some word w in the alphabet Σ. The initial term f(inp(w) �P (|w|))
has size P (|w|) + |w| + 2, which is a polynomial in |w|. Applying the above
equations we see that for all t such that f(inp(w) �P (|x|)) →∗ t, the size of �t�
is bounded by Q(P (|w|) + |w|+ 2), that is, polynomially bounded. As indicated
above, each rewrite step can be simulated in linear space. Thus, any derivation
f(inp(w) �P (|w|)) →∗ t can be simulated on a (nondeterministic) TM in space
polynomial in |w|.

Hence the function problem FR is computable by a TM in polynomial space.
If in addition R is confluent, M can be assumed to be deterministic. ��

Theorem 19. Let M be a (nondeterministic) TM that solves in polynomial
space the function problem associated with relation R. Then R is computable
up-to polynomial padding by a unary TRS R such that R is compatible with a
KBO. Moreover if M is deterministic, the TRS R is confluent.

Proof. Observe that given such a machine M, there is a polynomial P such
that M works in space P (n) and time 2P (n). Then the theorem follows by a
straightforward application of Theorem 13. ��

As a consequence of Theorem 18 and 19 we obtain that Knuth Bendix orders
characterises precisely the class of function problems FPSPACE on unary TRS if
computation up-to polynomial padding is considered. For languages, we conclude
that KBO over unary TRS exactly captures PSPACE if polynomial padding is
allowed. Observe that it is insignificant, whether the considered TRS is confluent
or not.

8 Characterising Exponential Space via KBO

In this section, we establish a complete characterisation of the complexity class
ESPACE.

Below we introduce a (non-standard) extension of Knuth Bendix orders. Re-
call the restriction to admissible weight functions in Definition 8. The following
examples shows that we cannot dispense with this restriction (compare [9]).

Example 20. Let � denote the binary relation induced by Definition 8 induced
by a non-admissible weight function and precedence ". Let f, g ∈ F such that
w(f) = w(g) = 0 and f " g. Then � gives rise to the following infinite decent:
f(x) � g(f(x)) � g(g(f(x))) � g(g(g(f(x)))) . . .

Let t be a term, let f1, . . . , fk ∈ F denote function symbols of equal arity n. Sup-
pose g is a fresh function symbol of arity n not in F . We write t[g ← f1, . . . , fk]
to denote the result of replacing all occurrences of fi in t by g.

Definition 21. Let w a (not necessarily admissible) weight function, " a prece-
dence and "kbo be the order induced by w and " according to Definition 8 but
using only Cases 1, 2b, and 2c. Let f1, . . . , fk ∈ F be unary symbols such that

154 G. Bonfante and G. Moser

w(fi) = 0 and let w(g) = 0 for a fresh symbol g. Suppose g " h for any
h ∈ F \ {f1, . . . , fk}. Then "kbo is said to be an enriched Knuth Bendix order
if in addition for any terms s and t, s "kbo t implies that s[g ← f1, . . . , fk] �kbo

t[g ← f1, . . . , fk] (Property (†)). Here �kbo denote the quasi-order induced by
"kbo. The equivalence relation induced by �kbo is denoted as %kbo.

It is easy to see that an enriched KBO "kbo is closed under context and sub-
stitutions. For the later it is essential, that Case 2a in the standard definition
of KBO is omitted. Moreover, the property (†) in Definition 21 guarantees that
"kbo is well-founded. Let R be a TRS. We say R is compatible with an enriched
KBO "kbo. if R ⊆"kbo. Note that compatibility of R with an enriched KBO
implies termination of R.

Remark 22. It is perhaps important to emphasise that "kbo does not admit the
subterm property. Hence an enriched KBO is not a simplification order.

We obtain the following generalisation of Proposition 11 to enriched KBOs.

Lemma 23. Let R be a TRS over a signature F that consists only of nullary or
unary function symbols and let R be compatible to "kbo as defined above. Then
dcR(n) = 22O(n)

. Furthermore, the size of any term of a derivation is bounded
by 2O(n).

Let R(w, v) denote a binary relation that can be decided by a (nondeterministic)
TM M. We say the function problem FR associated with R can be solved in
exponential space, if it can be solved in space 2O(|w|). The next theorem follows
directly from Lemma 23.

Theorem 24. Let R be a unary TRS, let R be compatible with an enriched
KBO, and let R denote the relation computed by R. Then the function prob-
lem FR associated with R is solvable on a (nondeterministic) TM in exponential
space. Moreover if R is confluent then the function computed by R can be com-
puted in polynomial space on a deterministic TM.

Theorem 25. Let M be a (nondeterministic) TM that solves the function prob-
lem FR associated with relation R in exponential space. Then R is computable
by a unary TRS R such that R is compatible with an enriched KBO. Moreover
if M is deterministic, the TRS R is confluent.

Proof. Let S(n) = 2k·n denote the bounding function of M. In proof, we assume
M is nondeterminstic and we utilise the step by step simulation of a nondeter-
minstic TM M = (Q,Σ, Γ, �,�, Δ, s, t, r) as seen in Lemma 7. In the following
we define a 7-tuple (Σ,F , inp′, out, h,R,No) that computes R. Essentially R
will extend the simulating TRS RM as define in Lemma 7, but we need to pre-
pare the input suitably. Let Σ denotes a (disjoint) copy of the alphabet Σ. We
define two translations inp, inp′ from Σ to F(Σ) and F(Σ), respectively. Set
inp : a ∈ Σ 	→ a ∈ F(Σ) and inp′ : a ∈ Σ 	→ a ∈ F(Σ). Consider the following

Characterising Space Complexity Classes via Knuth-Bendix Orders 155

auxiliary TRS Rdec that implements the binary decrement, where �, ⊥ denotes
1 and 0, respectively.

�(•) → ⊥(0 � (•)) ⊥(•) → �′(0 � (•))
⊥(�′(x)) → �′(�(x)) �(0(x)) → ⊥(0 � (0(x)))
⊥(0(x)) → �′(0 � (0(x))) �(�′(x)) → ⊥(�(x))

init(0(x)) → 0(x) init(�′(x)) → init(x) .

An inductive argument shows that init(�n(•)) →∗ (0�)2
n−1(•) holds for all

n � 1. Furthermore we make use of the following TRS R′cpy:

cpy2(•) → • cpy2(f(x)) → f(�k(cpy2(x)))
�′(0(x)) → 0(�′(x)) �′(g(x)) → �(sg(x))

h(x) → �′(f←0(init(f→�(cpy2(x))))) init(h(x)) → h(init(x))

where f ∈ F(Σ), f ∈ F(Σ) its copy, g, h ∈ F(Σ), and the symbols f←0, f→�
are defined as in Examples 2, 3. Let w be a word over Σ, let n = |w|, and
let inp(w) = g1g2 · · · gn. Then it is not difficult to see that any derivation over
Rdec ∪R′cpy has the following shape:

h(inp′(w)) →∗ �′(f←0(inp(w)init(�k·n)))

→∗ �′(02k·n−1inp(w)�2k·n−1))

→∗ 02k·n−1 � sg1g2 · · · gn �2k·n−1 .

We set R := Rdec∪R′cpy∪Rf→�∪Rf←0 . It follows from Lemma 7 that the 7-tuple
(Σ,F , inp′, out, h,R,No) computes the relation R. Finally, it is not difficult to
see how to define a suitable enriched KBO "kbo, such that R ⊆ "kbo. ��

As a consequence of Theorem 24 and 25 we obtain that enriched Knuth Bendix
orders characterises precisely the class of function problems FESPACE on unary
TRS. For languages, we conclude that enriched KBO over unary TRS exactly
captures ESPACE. Observe that it is insignificant, whether the considered TRS
is confluent or not.

9 Conclusion

In this paper we study three different space complexity classes: LINSPACE,
PSPACE, and ESPACE, which are commonly believed to be distinct. We give
complete characterisations of these classes exploiting TRSs, compatible with
KBOs. To capture LINSPACE, we consider confluent, positively weighted KBOs.
To capture PSPACE, we consider unary TRS, where we allow for padding of the
input. And to capture ESPACE, we make use of enriched KBO. For all considered
complexity classes, we show similar results for the corresponding nondetermin-
istic classes. In this case the TRS R need no longer be confluent.

156 G. Bonfante and G. Moser

Furthermore we have also characterised the associated classes of function prob-
lems for the (nondeterministic) space complexity classes considered. This (tech-
nical) result is of some importance as it overcomes the problem that complexity
classes are languages, while TRSs compute functions.

References

1. Avanzini, M., Moser, G.: Complexity Analysis by Rewriting. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 130–146. Springer,
Heidelberg (2008)

2. Avanzini, M., Moser, G.: Dependency pairs and polynomial path orders. In:
Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 48–62. Springer, Heidelberg
(2009)

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

4. Bonfante, G., Cichon, A., Marion, J.Y., Touzet, H.: Algorithms with polynomial
interpretation termination proof. JFP 11(1), 33–53 (2001)

5. Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-interpretations and small space
bounds. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 150–164. Springer,
Heidelberg (2005)

6. Hofbauer, D.: Termination Proofs and Derivation Lengths in Term Rewriting Sys-
tems. Ph.D. thesis, Technische Universität Berlin (1992)

7. Hofbauer, D.: Termination proofs with multiset path orderings imply primitive
recursive derivation lengths. TCS 105(1), 129–140 (1992)

8. Hofbauer, D., Lautemann, C.: Termination Proofs and the Length of Derivation. In:
Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp. 167–177. Springer, Heidelberg
(1989)

9. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational problems in abstract algebra. Pergamon, Oxford (1970)

10. Koprowski, A., Waldmann, J.: Arctic Termination . . . Below Zero. In: Voronkov,
A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 202–216. Springer, Heidelberg (2008)

11. Kozen, D.: Theory of Computation. Springer, Heidelberg (2006)
12. Lepper, I.: Derivation lengths and order types of Knuth-Bendix orders. TCS 269,

433–450 (2001)
13. Marion, J.Y.: Analysing the Implicit Complexity of Programs. IC 183, 2–18 (2003)
14. Moser, G.: Derivational complexity of Knuth Bendix orders revisited. In: Hermann,

M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 75–89. Springer,
Heidelberg (2006)

15. Moser, G., Schnabl, A.: The Derivational Complexity Induced by the Dependency
Pair Method. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 255–260.
Springer, Heidelberg (2009)

16. Moser, G., Schnabl, A., Waldmann, J.: Complexity Analysis of Term Rewriting
Based on Matrix and Context Dependent Interpretations. In: Proc. of 28th FST-
TICS, pp. 304–315. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany
(2008)

17. TeReSe: Term Rewriting Systems, Cambridge Tracks in Theoretical Computer
Science, vol. 55. Cambridge University Press, Cambridge (2003)

18. Weiermann, A.: Termination proofs by lexicographic path orderings yield multiply
recursive derivation lengths. Theoretical Computer Science 139(1), 355–362 (1995)

Focused Natural Deduction�

Taus Brock-Nannestad and Carsten Schürmann

IT University of Copenhagen
{tbro,carsten}@itu.dk

Abstract. Natural deduction for intuitionistic linear logic is known to
be full of non-deterministic choices. In order to control these choices, we
combine ideas from intercalation and focusing to arrive at the calculus
of focused natural deduction. The calculus is shown to be sound and
complete with respect to first-order intuitionistic linear natural deduction
and the backward linear focusing calculus.

1 Introduction

The idea of focusing goes back to Andreoli [1] and gives an answer to the question
on how to control non-determinism in proof search for the classical sequent
calculus for fragments of linear logic. It removes the “bureaucracy” that arises
due to the permutability of inference rules. Historically, the idea of focusing
has influenced a great deal of research [2,3,5], all centered around sequent style
systems. There is one area, however, which has been suspiciously neglected in
all of this: natural deduction. In our view, there are two explanations.

First, for various reasons we don’t want to get into here, most theorem proving
systems are based on the sequent calculus. Therefore it is not surprising that
most of the effort has gone into the study of sequent calculi as evidenced by
results in uniform derivations [8] and of course focusing itself.

Second, it is possible to characterize the set of more “normalized” proofs for
natural deduction in intuitionistic logic. Many such characterizations have been
given in the past, for example, the intercalation calculus [9,10]. Backward chaining
from the conclusion will only use introduction rules until only atomic formulas are
leftover, and similarly, forward chaining will only use elimination rules.

Theorem provers for natural deduction, implementations of logical frameworks
and bi-directional type checkers are all inspired by this idea of intercalation. One
of its advantages is that the aforementioned “bureaucracy” never arises in part
because the book-keeping regarding hypotheses is done externally and not within
the formal system. In this paper we refine intercalation by ideas from focusing,
resulting in a calculus with an even stricter notion of proof. This is useful when
searching for and working with natural deduction derivations.

The hallmark characteristic of focusing is its two phases. First, invertible rules
are applied eagerly, until both context and goal are non-invertible. This phase
� This work was in part supported by NABITT grant 2106-07-0019 of the Danish

Strategic Research Council.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 157–171, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

158 T. Brock-Nannestad and C. Schürmann

is called the inversion or asynchronous phase. Second, a single formula taken
from the context or the goal is selected and focused upon, applying a maximal
sequence of non-invertible rules to this formula and its subformulas. This is
known as the focusing or synchronous phase. The central idea of focusing is to
polarize connectives into two groups. A connective is flagged negative when the
respective introduction rule is invertible but the elimination rule(s) are not, and
it is considered positive in the opposite case. Each connective of linear logic is
either positive or negative, the polarity of atoms is uncommitted.

The main motivation for our work is to explore how proof theory, natural
deduction in particular, can be used to explain concurrent systems. In that our
goals are similar to those of the concurrent logical framework research project
CLF [11]. Pragmatically speaking, in this paper, we remove all bureaucratic
non-determinism from logical natural deduction derivations (as described by
focusing), so that we can, in future work, use the remaining non-determinism to
characterize concurrent systems. That the resulting focused natural deduction
calculus is complete is perhaps the most important contribution of the paper.

Consider for example the judgment a, a � 1 	 1 ⊕ b ⇑, for which we would
like to find a derivation in the intercalation calculus. The judgment should be
read as find a canonical proof of 1⊕ b from the linear assumptions a and a � 1.
As nothing is known about b, one might hope (at least intuitively) for one unique
derivation. However, there are two, which we will next inspect in turn.

hyp
a � 1 	 a � 1 ⇓

hyp
a 	 a ⇓

⇓⇑
a 	 a ⇑

� E
a, a � 1 	 1 ⇓

1I
· 	 1 ⇑

1E
a, a � 1 	 1 ⇑

⊕ I1
a, a � 1 	 1⊕ b ⇑

The experienced eye might have already spotted, that this derivation is negatively
focused, because the two upper rules in the left-most chain of inference rules hyp
and �E form a focus. However, it is not positively focused. The rule ⊕ I1 and
the rule 1I ought to form a focus (both are positively polarized), but the 1E rule
breaks it. This rule is the only inversion rule in this derivation, and hence it is
maximally inverted.

hyp
a � 1 	 a � 1 ⇓

hyp
a 	 a ⇓

⇓⇑
a 	 a ⇑

� E
a, a � 1 	 1 ⇓

1I
· 	 1 ⇑

⊕ I1
· 	 1⊕ b ⇑

1E
a, a � 1 	 1⊕ b ⇑

By permuting 1E and ⊕ I1 we can restore the focus, and again, the inversion
phase of this derivation (1E) is maximal. In summary, for intuitionistic linear
logic, the intercalation calculus does not rule out as many derivations as it should.

Focused Natural Deduction 159

In the remainder of this paper, we define and discuss the calculus of focused
natural deductions. It is a simple, yet deep, generalization of the intercalation
formulation. Among the two derivations above only the second one is derivable in
focused natural deduction. The main idea behind this calculus is to distinguish
negative from positive connectives and to make the related coercions explicit
as connectives ↑P and ↓N . We call these connectives delay connectives, because
they effectively delay positive and negative focusing phases. To ensure maxi-
mal asynchronous phases, we use a generalization of the patterns introduced by
Zeilberger in [12].

The paper is organized as follows. In Section 2 we introduce the focused
natural deduction calculus. Next, we show soundness and completeness with
respect to first-order intuitionistic linear natural deduction in Section 3 and
with respect to the backward linear focusing calculus of Pfenning, Chaudhuri
and Price [4] in Section 4. We conclude and assess results in Section 5.

2 Natural Deduction for Intuitionistic Linear Logic

First we give the definition of the intercalation calculus. The syntax of linear
logic is standard.

A,B,C ::= a | A⊗B | 1 | A⊕B | 0 | ∃x.A | A&B | � | A � B | !A | ∀x.A

As for the judgment, we use a two zone formulation with a turnstile with double
bars, Γ ;Δ 	 A ⇑, which reads as there is a canonical proof of A from intuitionis-
tic assumptions Γ and linear assumptions Δ. Conversely, we define Γ ;Δ 	 A ⇓
for atomic derivation of A. The inference rules are standard and depicted in
Figure 1.

2.1 Focused Natural Deduction

We split the connectives of linear logic into two disjoint groups based on their
inversion properties. Connectives that are invertible on the right of the turnstile
and non-invertible on the left become negative connectives. Conversely, con-
nectives that are invertible on the left and non-invertible on the right become
positive connectives. This gives us the following syntax of polarized formulas:

P,Q ::= a+ | P ⊗Q | 1 | P ⊕Q | 0 | ∃x.P | !N | ↓N
N,M ::= a− | N &M | � | P � N | ∀x.N | ↑P

We use P,Q for positive propositions, andN,M for negative propositions. We use
A,B for propositions where the polarity does not matter. The syntax is similar
to the ones presented in [2,7]. Additionally we use the following shorthand:

γ+ ::= ↑P | a−, γ− ::= ↓N | a+

160 T. Brock-Nannestad and C. Schürmann

Γ ; Δ 	 a ⇓
⇓⇑

Γ ; Δ 	 a ⇑
hyp

Γ ; A 	 A ⇓
uhyp

Γ, A; · 	 A ⇓

1I
Γ ; · 	 1 ⇑

Γ ; Δ1 	 1 ⇓ Γ ; Δ2 	 C ⇑
1E

Γ ; Δ1, Δ2 	 C ⇑
�I

Γ ; Δ 	 � ⇑
Γ ; Δ1 	 0 ⇓

0E
Γ ; Δ1, Δ2 	 C ⇑

Γ ; Δ1 	 A ⇑ Γ ; Δ2 	 B ⇑
⊗ I

Γ ; Δ1, Δ2 	 A ⊗ B ⇑

Γ ; Δ1 	 A ⊗ B ⇓ Γ ; Δ2, A, B 	 C ⇑
⊗E

Γ ; Δ1, Δ2 	 C ⇑
Γ ; Δ 	 Ai ⇑

⊕ Ii

Γ ; Δ 	 A1 ⊕ A2 ⇑

Γ ; Δ1 	 A ⊕ B ⇓ Γ ; Δ2, A 	 C ⇑ Γ ; Δ2, B 	 C ⇑
⊕E

Γ ; Δ1, Δ2 	 C ⇑
Γ ; Δ 	 A ⇑ Γ ; Δ 	 B ⇑

&I
Γ ; Δ 	 A & B ⇑

Γ ; Δ 	 A1 & A2 ⇓
&Ei

Γ ; Δ 	 Ai ⇓
Γ ; Δ 	 [a/x]A ⇑

∀Ia

Γ ; Δ 	 ∀x.A ⇑

Γ ; Δ 	 ∀x.A ⇓
∀E

Γ ; Δ 	 [t/x]A ⇓
Γ ; Δ, A 	 B ⇑

� I
Γ ; Δ 	 A � B ⇑

Γ ; Δ1 	 A � B ⇓ Γ ; Δ2 	 A ⇑
� E

Γ ; Δ1, Δ2 	 B ⇓
Γ ; · 	 A ⇑

!I
Γ ; · 	 !A ⇑

Γ ; Δ1 	 !A ⇓ Γ, A; Δ2 	 C ⇑
!E

Γ ; Δ1, Δ2 	 C ⇑
Γ ; Δ 	 [t/x]A ⇑

∃I
Γ ; Δ 	 ∃x.A ⇑

Γ ; Δ1 	 ∃x.A ⇓ Γ ; Δ2, [a/x]A 	 C ⇑
∃Ea

Γ ; Δ1, Δ2 	 C ⇑

Fig. 1. Linear natural deduction (in intercalation notation)

Patterns. We use the concept of patterns, as seen in [6,12], to capture the decom-
position of formulas that takes place during the asynchronous phase of focusing.
The previous notion of patterns is extended to work with unrestricted hypotheses
and quantifiers.

Pattern judgments have the form Γ ;Δ
 P and Γ ;Δ
 N > γ+, the latter
of which corresponds to decomposing N into γ+ using only negative elimination
rules. These judgments are derived using the inference rules given in Figure 2.

We require that the variable a in the judgments concerning the quantifiers
satisfies the eigenvariable condition, and does not appear below the rule that
mentions said variable.

Note that pattern derivations Γ ;Δ
 P and Γ ;Δ
 N > γ+ are entirely
driven by the structure of P and N . In particular, this means that when we
quantify over all patterns Γ ;Δ
 P � N > γ+ for a given formula P � N , this
is equivalent to quantifying over all patterns Γ1;Δ1
 P and Γ2;Δ2
 N > γ+.

A crucial part of the definition of this system, is that there are only finitely
many patterns for any given polarized formula. For this reason, we treat the
unrestricted context in the patterns as a multiset of formulas. This also means
that we need to treat two patterns as equal if they only differ in the choice
of eigenvariables in the pattern rules for the quantifiers. This is a reasonable
decision, as the eigenvariable condition ensures that the variables are fresh, hence
the actual names of the variables are irrelevant. With these conditions in place,

Focused Natural Deduction 161

·; γ−
 γ− ·; ·
 1

Γ1; Δ1
 P Γ2; Δ2
 Q

Γ1, Γ2; Δ1, Δ2
 P ⊗ Q

Γ ;Δ
 Pi

Γ ;Δ
 P1 ⊕ P2
N ; ·
 !N

Γ ;Δ
 [a/x]P

Γ ;Δ
 ∃x.P

·; ·
 γ+ > γ+

Γ ; Δ
 Ni > γ+

Γ ;Δ
 N1 & N2 > γ+

Γ1; Δ1
 P Γ2; Δ2
 N > γ+

Γ1, Γ2; Δ1, Δ2
 P � N > γ+

Γ ; Δ
 [a/x]N > γ+

Γ ; Δ
 ∀x.N > γ+

Fig. 2. Positive and negative pattern judgments

it is straightforward to prove that for any given formula, there are only finitely
many patterns for said formula.

Inference rules. For the judgments in the polarized system, we use a turnstile
with a single vertical bar. The inference rules can be seen in Figure 3.

The quantification used in the ↑E and ↓I rules is merely a notational conve-
nience to ease the formulation of the rules. It is a shorthand for the finitely
many premises corresponding to the patterns of the principal formula. Thus,
the number of premises for these rules may vary depending on the principal
formula. This does not, however, pose a problem when checking that a rule has
been applied properly, as we can reconstruct the necessary subgoals from the
formulas ↑P and ↓N . As usual, we require that the eigenvariables introduced by
the patterns must be fresh, i.e. may not occur further down in the derivation.

As an example, we show the only possible proof of the statement given in the
introduction. We have chosen to polarize both atoms positively, and elided the
empty intuitionistic context.

hyp↓(a � ↑1) � ↓(a � ↑1) ⇓ ↓E↓(a � ↑1) � a � ↑1 ⇓

hyp
a � a ⇓

⇓⇑
a � a ⇑

�E
a, ↓(a � ↑1) � ↑1 ⇓

1I
· � 1 ⇑

⊕ I1· � 1⊕ b ⇑
↑I

· � ↑(1⊕ b) ⇑
↑E

a, ↓(a � ↑1) � ↑(1⊕ b) ⇑

Note that the pattern judgment for 1 does not appear in this derivation. Indeed,
the pattern judgments are only used to specify which premises should be present
in a valid application of the ↑E and ↓I rules.

The use of patterns in the ↑E and ↓I rules collapses the positive and negative
asynchronous phases into a single rule application. Thus we equate proofs that
only differ in the order in which the negative introduction and positive elimina-
tion rules are applied. For instance, the assumption (A⊗ B) ⊗ (C ⊗D) can be
eliminated two ways:

162 T. Brock-Nannestad and C. Schürmann

Γ ;Δ � a ⇓
⇓⇑

Γ ;Δ � a ⇑
hyp

Γ ; P � P ⇓
uhyp

Γ, N ; · � N ⇓
1I

Γ ; · � 1 ⇑

Γ ; Δ1 � P ⇑ Γ ; Δ2 � Q ⇑
⊗ I

Γ ; Δ1, Δ2 � P ⊗ Q ⇑

Γ ; Δ � Pi ⇑
⊕ Ii

Γ ;Δ � P1 ⊕ P2 ⇑

Γ ; Δ � [t/x]P ⇑
∃I

Γ ; Δ � ∃x.P ⇑
Γ ; · � ↓N ⇑

!I
Γ ; · � !N ⇑

Γ ;Δ � N1 & N2 ⇓
&Ei

Γ ;Δ � Ni ⇓

Γ ; Δ � ∀x.N ⇓
∀E

Γ ; Δ � [t/x]N ⇓
Γ ; Δ1 � P � N ⇓ Γ ; Δ2 � P ⇑

� E
Γ ; Δ1, Δ2 � N ⇓

Γ ; Δ � P ⇑ ↑I
Γ ; Δ � ↑P ⇑

Γ ; Δ1 � ↑P ⇓
for all ΓP ; ΔP
 P

Γ, ΓP ; Δ2, ΔP � γ+ ⇑ ↑E
Γ1; Δ1, Δ2 � γ+ ⇓

Γ ; Δ � ↓N ⇓ ↓E
Γ ; Δ � N ⇓

for all ΓN ; ΔN
 N > γ+

Γ, ΓN ; Δ, ΔN � γ+ ⇑ ↓I
Γ ; Δ � ↓N ⇑

Fig. 3. Focused linear natural deduction

(A⊗B)⊗ (C ⊗D) � A⊗B,C ⊗D � A,B,C ⊗D � A,B,C,D

(A⊗B)⊗ (C ⊗D) � A⊗B,C ⊗D � A⊗B,C,D � A,B,C,D

corresponding to which assumptions act as the principal formula for the ⊗E rule.
By using patterns, this unnecessary distinction is avoided, as there is only one
pattern for (A⊗B)⊗ (C ⊗D), specifically the pattern ·;A,B,C,D.

Note that the rules �I and 0E are captured by the above rules, as there are
no patterns of the form Γ ;Δ
 0 and Γ ;Δ
 � > γ+.

The polarity restrictions on the hyp and uhyp rules are justified by noting
that � is the internalized version of the linear hypothetical judgments. In par-
ticular, this means that the linear context can only contain positive formulas;
any negative formulas must be in delayed form ↓N . Unrestricted formulas, on the
other hand, are not delayed, as choosing whether or not to use an unrestricted
resource is always a non-deterministic (hence synchronous) choice.

By inspecting the polarized rules, we may observe the following:

1. In a derivation of the judgment Γ ;Δ � A ⇑ where A is positive (e.g. A =
P⊗Q), the final rule must be the positive introduction rule corresponding to
A, or ⇓⇑ if A is an atom. This follows from the fact that positive eliminations
are only applicable when the succedent is negative.

2. The only rule applicable to the judgment Γ ;Δ � A ⇓ where A is negative
(e.g. A = P � N), is the appropriate elimination rule for A, or ⇓⇑ if A is
an atom.

Focused Natural Deduction 163

Based on the above observations, we define the following synchronous phases
based on the polarity of the succedent and whether it is atomic or canonical.

Γ ;Δ � P ⇑ Positive focusing, initiated by ↑I

Γ ;Δ � N ⇓ Negative focusing, initiated by ↓E

By our use of patterns, we collapse the asynchronous phases, which would oth-
erwise have corresponded to the judgments Γ ;Δ � P ⇓ and Γ ;Δ � N ⇑.

The positive focusing phase proceeds in a bottom-up fashion, and is initi-
ated by using the ↑I rule to remove the positive shift in front of the formula to
be focused. The focused formula is then decomposed by a sequence of positive
introduction rules. This phase ends when the succedent becomes negative or
atomic.

The negative focusing phase proceeds in a top-down fashion, and is initiated
by choosing a negative or delayed negative formula in either the linear or un-
restricted context, and applying a sequence of negative elimination rules to the
judgment Γ ; ↓N � ↓N ⇓ or Γ,N ; · � N ⇓, given by either the hyp rule or the
uhyp rule. The phase terminates when the succedent is either positive or atomic.
In the former case, the subderivation must end in the ↑E rule, and in the latter
case in the ⇓⇑ rule.

Note that because the positive elimination rules restrict the succedent of the
conclusion to be of the form γ+, it is not possible to apply the ↑E rule inside
a positive focusing phase. As negative focusing ends in positive elimination or
coercion, it is not possible to perform negative focusing inside a positive focusing
phase. Likewise, the negative focusing phase cannot be interrupted.

It is in this sense the above system is maximally focused — once a formula
is chosen for focusing, it must be decomposed fully (i.e. keep the focus) before
other formulas can be focused or otherwise eliminated.

3 Soundness and Completeness

A note on notation. To formulate the soundness and completeness theorems, we
need to be able to talk about when the entire linear context is covered by some
pattern. This is done using the judgment Γ ′;Δ′
 Δ. The following inference
rules define this judgment:

·; ·
 ·
Γ ′;Δ′
 Δ ΓP ;ΔP
 P

Γ ′, ΓP ;Δ′, ΔP
 Δ,P

We will tacitly use the fact that this judgment is well-behaved with regard to
splitting the context Δ. In other words, that Γ ′;Δ′
 Δ1, Δ2 if and only if
Γ ′ = Γ ′1, Γ

′
2 and Δ′ = Δ′1, Δ

′
2 where Γ ′i ;Δ

′
i
 Δi for i = 1, 2.

Soundness. To prove soundness, we define a function from polarized formulas
to regular formulas. This is simply the function (−)e that erases all occurrences
of the positive and negative shifts, i.e. (↑P)e = P e and (↓N)e = Ne, whilst
(P � N)e = P e � Ne and (∀x.N)e = ∀x.Ne and so on.

164 T. Brock-Nannestad and C. Schürmann

Theorem 1 (Soundness of polarized derivations). The following proper-
ties hold:

1. If Γ ;Δ � A ⇑ then Γ e;Δe 	 Ae ⇑.
2. If Γ ;Δ � A ⇓ then Γ e;Δe 	 Ae ⇓.
3. If for all Γ ′;Δ′
 Ω and ΓA;ΔA
 A > γ+ we have Γ, Γ ′, ΓA;Δ,Δ′, ΔA �

γ+ ⇑, then Γ e;Δe, Ωe 	 Ae ⇑.
Proof. The first two claims are proved by induction on the structure of the given
derivations. In the case of the ↑E and ↓I rules, we reconstruct the asynchronous
phases, hence the third hypothesis is needed.

We prove the third claim by an induction on the number of connectives in Ω
and A. This is needed when reconstructing a tensor, as Ω will then grow in size.
The base case for this induction is when all formulas in Ω are of the form γ−

and A is of the form γ+. In this case, we appeal to the first induction hypothesis.
We show a few representative cases here:

Case A = P � N : By inversion on ΓA;ΔA
 A > γ+, we get ΓA = ΓP , ΓN

and ΔA = ΔP , ΔN such that ΓP ;ΔP
 P and ΓN ;ΔN
 N > γ+, hence
Γ ′, ΓP ;Δ′, ΔP
 Ω,P and by the induction hypothesis Γ e;Δe, Ωe, P e 	
Ne ⇑, hence by applying � I we get the desired derivation of Γ e;Δe, Ωe 	
(P � N)e ⇑.

Case Ω = Ω1, P ⊗Q,Ω2: By assumption, Γ ′1, ΓPQ, Γ
′
2;Δ

′
1, ΔPQ, Δ

′
2
 Ω1, P ⊗

Q,Ω2, hence by inversion we have ΓPQ = ΓP , ΓQ and ΔPQ = ΔP , ΔQ such
that ΓP ;ΔP
 P and ΓQ;ΔQ
 Q. Then Γ ′1, ΓP , ΓQ, Γ

′
2;Δ

′
1, ΔP , ΔQ, Δ

′
2

Ω1, P,Q,Ω2, hence by the induction hypothesis Γ e;Δe, Ωe
1 , P

e, Qe, Ωe
2 	

Ce ⇑. Applying ⊗E to this judgment and the hypothesis judgment Γ e; (P ⊗
Q)e 	 P e⊗Qe ⇓, we get the desired derivation of Γ e;Δe, Ωe

1 , (P ⊗Q)e, Ωe
2 	

Ce ⇑. ��

Polarizing formulae. To prove that the polarized system is complete with regard
to the natural deduction calculus depicted in Figure 1, we first need to find a
way of converting regular propositions into polarized propositions. To do this,
we define the following two mutually recursive functions, (−)p and (−)n, by
structural induction on the syntax of unpolarized formulas.

1p = 1 0p = 0 �n = �
(A⊗B)p = Ap ⊗Bp (A⊕B)p = Ap ⊕Bp (!A)p = !An

(A&B)n = An &Bn (A � B)n = Ap � Bn

(∃x.A)p = ∃x.Ap (∀x.A)n = ∀x.An

The above definitions handle the cases where the polarity of the formula inside
the parentheses matches the polarizing function that is applied, i.e. cases of the
form Nn and P p. All that remains is to handle the cases where the polarity does
not match, which we do with the following definition:

An = ↑Ap when A is positive

Ap = ↓An when A is negative

Focused Natural Deduction 165

In the case of atoms we assume that there is some fixed assignment of polarity
to atoms, and define ap = a for positive atoms and an = a for negative atoms.
Atoms with the wrong polarity, e.g. an for a positive atom a are handled by
the Pn case above, i.e. an = ↑ap = ↑a for positive atoms, and conversely for the
negative atoms.

In short, whenever a subformula of positive polarity appears in a place where
negative polarity is expected, we add a positive shift to account for this fact,
and vice versa. Thus, a formula such as (a& b) � (c⊗ d) is mapped by (−)n to
↓(↑a&b) � ↑(c⊗↓d), when a, c are positive, and b, d are negative. These functions
are extended in the obvious way to contexts, in the sense that Δp means applying
the function (−)p to each formula in Δ.

Of course, this is not the only way of polarizing a given formula, as we may
always add redundant shifts ↑↓N and ↓↑P inside our formulas. The above pro-
cedure gives a minimal polarization in that there are no redundant negative or
positive shifts. Note that (Ap)e = (An)e = A for all unpolarized formulae A,
and (P e)p = P and (Ne)n = N for minimally polarized formulae P and N .

Completeness. Before we can prove completeness, we must prove a series of
lemmas. First of all, we need the usual substitution properties.

Lemma 1 (Substituting properties for linear resources). The following
substitution properties hold:

1. If Γ ;Δ1 � N ⇓ and Γ ;Δ2,
↓N � C ⇑ then Γ ;Δ1, Δ2 � C ⇑

2. If Γ ;Δ1 � N ⇓ and Γ ;Δ2,
↓N � C ⇓ and the latter derivation is not an

instance of the hyp rule then Γ ;Δ1, Δ2 � C ⇓.

Proof. We proceed by mutual induction on the derivations of Γ ;Δ2,
↑N � C ⇓

and Γ ;Δ2,
↑N � C ⇑. In all cases, we proceed by applying the induction hypoth-

esis to the premise which contains the formula ↑N , and then reapply the appro-
priate rule. This is possible if the premise is not a derivation of Γ ; ↓N � ↓N ⇓
using the hyp rule. This can only happen in the case of the ↓E rule, in which
case, C = N and Δ2 is empty. Hence we may then apply the following reduction:

hyp
Γ ; ↓N � ↓N ⇓

↓E
Γ ; ↓N � N ⇓

�
···

Γ ;Δ1 � N ⇓

��

Corollary 1. If Γ ;Δ1 � An ⇓ and for all patterns ΓA;ΔA
 Ap we have
Γ, ΓA;Δ2, ΔA � γ+ ⇑ then Γ ;Δ1, Δ2 � γ+ ⇑.

Proof. If A is positive, then An = ↑Ap, and the result follows by applying the
↑E rule. If A is negative, then Ap = ↓An, hence there is only one pattern for Ap,
specifically ·; ↓An
 ↓An and the result follows from Lemma 1. ��

For the synchronous rules, we need to capture the fact that we may push pos-
itive elimination rules below positive introduction rules. To formulate this, we

166 T. Brock-Nannestad and C. Schürmann

introduce a new function (−)d that always produces a delayed formula. Thus,
we define Ad = ↑Ap when A is positive, and Ad = ↓An when A is negative. We
first note the following

Lemma 2. If for all ΓA;ΔA
 An > γ+ we have Γ, ΓA;Δ,ΔA � γ+ ⇑, then
Γ ;Δ � Ad ⇑.

Proof. By case analysis on the polarity of A. If A is positive then An = ↑Ap,
hence ·; ·
 ↑Ap > ↑Ap is a pattern for An. Thus, Γ ;Δ � ↑Ap ⇑ as desired.

If A is negative, then Ad = ↓An, hence by the rule ↓I, we get the desired
result. ��

We are now able to prove that under certain circumstances we can change a
positively polarized canonical premise to the corresponding delayed canonical
premise.

Lemma 3. For any admissible rule of the form

Γ ;Δ � Ap ⇑
Σ

Γ ;Δ,Δ′ � γ+ ⇑

the following rule is admissible

Γ ;Δ � Ad ⇑
Σd

Γ ;Δ,Δ′ � γ+ ⇑

Proof. By case analysis on the polarity of A and induction on the derivation
of Γ ;Δ � Ad ⇑. If A is negative, Ad = ↓An = Ap, hence the result follows
immediately by applying Σ. If A is positive, Ad = ↑Ap, hence the final rule of
the derivation is either ↑I or ↑E. If the derivation ends in ↑I, the result again by
applying Σ to the premise of this rule. If the derivation ends in ↑E, we apply the
induction hypothesis to the second premise, and reapply the ↑E rule. ��

The above argument easily extends to admissible rules with multiple premises,
hence we get the following

Corollary 2. The following rules are admissible:

Γ ;Δ1 � Ad ⇑ Γ ;Δ2 � Bd ⇑
⊗dI

Γ ;Δ1, Δ2 � (A⊗B)n ⇑
Γ ;Δ � Ad

i ⇑ ⊕d
i I

Γ ;Δ � (A1 ⊕A2)n ⇑

Γ ;Δ � ([t/x]A)d ⇑
∃dI

Γ ;Δ � (∃x.A)n ⇑

Also, if Γ ;Δ1 � Ad ⇓ and for all ΓB;ΔB
 Bp we have Γ, ΓB;Δ2, ΔB � γ+ ⇑,
then Γ ;Δ1, Δ2, (A � B)p � γ+ ⇑.

Focused Natural Deduction 167

Proof. The first few rules are easy applications of the previous lemma to the
positive introduction rules. The property holds by using the lemma on the fol-
lowing argument: If Γ ;Δ1 � Ap ⇑, then Γ ;Δ1, (A � B)p � Bn ⇑ by �E, ↓E
and hyp on (A � B)p. With the additional assumption that Γ, ΓB ;Δ2, ΔB � γ+

for all patterns ΓB;ΔB
 Bp, by applying Lemma 1, we get the desired result
Γ ;Δ1, Δ2, (A � B)p � γ+ ⇑. ��

Before we formulate the completeness theorem, we have to decide which polar-
izing function to apply to the hypotheses and the conclusion. We would like
translate a derivation of Γ ;Δ 	 A ⇑ into a derivation Γ x;Δy � Az ⇑, where
each of x, y and z is one of the above functions. In the case of x and y, the
nature of the uhyp and hyp rules force us to choose x = n and y = p. If z = p,
we should be able to derive ·; (a⊗ b)p � ap ⊗ bp ⇑, as this is clearly derivable in
the unpolarized system. In the polarized system, however, we are forced to enter
a focusing phase prematurely requiring us to split a single element context into
two parts. None of the resulting subgoals are provable. Therefore z = n. Thus,
as far as the canonical judgments are concerned, the completeness theorem will
take derivations of Γ ;Δ 	 A ⇑ to derivations of Γn;Δp � An ⇑.

As for atomic derivations, these cannot in general be transferred to atomic
derivations in the focused system. The reader may verify this by checking that
·; (a ⊗ b), (a ⊗ b) � c 	 c ⇓ is derivable in the unpolarized system, whereas
·; (a⊗ b), ↓((a⊗ b) � c) � c ⇓ is not derivable in the polarized system. Thus, we
need to generalize the induction hypothesis in the completeness theorem.

Theorem 2 (Completeness). The following properties hold:

1. Given Γ ;Δ 	 A ⇑ and patterns Γ ′;Δ′
 Δp and ΓA;ΔA
 An > γ+, then
Γn, Γ ′, ΓA;Δ′, ΔA � γ+ ⇑.

2. If Γ1;Δ1 	 A ⇓ and Γ ′;Δ′
 Δp
1 and for all ΓA;ΔA
 Ap, then we have

Γ2, ΓA;Δ2, ΔA � γ+ ⇑ then Γn
1 , Γ2, Γ

′;Δ1, Δ2, Δ
′ � γ+ ⇑.

Proof. By induction on the derivations of Γ ;Δ 	 A ⇑ and Γ ;Δ 	 A ⇓. We give
a few representative cases.

Case ⊗E:
D

Γ ;Δ1 	 A⊗B ⇓
E

Γ ;Δ2, A,B 	 C ⇑
⊗E

Γ ;Δ1, Δ2 	 C ⇑

Γ ′1, Γ
′
2;Δ

′
1, Δ

′
2
 Δp

1, Δ
p
2 Assumption.(1)

ΓC ;ΔC
 Cn > γ+ Assumption.(2)
ΓA, ΓB;ΔA, ΔB
 Ap, Bp Assumption.(3)
Γ ′2, ΓA, ΓB;Δ′1, Δ

′
2, ΔA, ΔB
 Δp

2, A
p, Bp By (1) and (3).(4)

Γn, Γ ′2, ΓA, ΓB, ΓC ;Δ′2, ΔA, ΔB, ΔC � γ+ ⇑ By i.h.1 on E , (2), (4).(5)
ΓA, ΓB;ΔA, ΔB
 Ap ⊗Bp By the pattern rule for ⊗.

168 T. Brock-Nannestad and C. Schürmann

ΓA, ΓB;ΔA, ΔB
 (A⊗B)p By the defn. of (−)p.

Γn, Γ ′1, Γ
′
2, ΓC ;Δ′1, Δ

′
2, ΔC � γ+ ⇑ By i.h. 2 on D and (5).

Case � I:
D

Γ ;Δ,A 	 B ⇑
� I

Γ ;Δ 	 A � B ⇑

Γ ′;Δ′
 Δp Assumption.(1)
ΓAB;ΔAB
 (A � B)n Assumption.
ΓAB;ΔAB
 Ap � Bn By defn. of (−)n.
ΓAB = ΓA, ΓB and ΔAB = ΔA, ΔB such that(2)
ΓA;ΔA
 Ap,(3)

ΓB;ΔB
 Bn > γ+ By inversion.

Γn, Γ ′, ΓA, ΓB;Δ′, ΔA, ΔB � γ+ ⇑ By i.h. 1 on D, (1) and (3).

Γn, Γ ′, ΓAB;Δ′, ΔAB � γ+ ⇑ By (2).

Case !I:
D

Γ ; · 	 A ⇑
!I

Γ ; · 	 !A ⇑

Γ ′;Δ′
 · Assumption.
Γ ′ = Δ′ = · By inversion.

ΓA;ΔA
 (!A)n > γ+ Assumption.

ΓA = ΔA = ·, γ+ = ↑(!An) By inversion.

Γ ′A;Δ′A
 An > γ+ Assumption(1)

Γn, Γ ′A;Δ′A � γ+ ⇑ By i.h. 1 on D and (1).

∀(Γ ′A;Δ′A
 An > γ+) : Γn, Γ ′A;Δ′A � γ+ ⇑ By discharging (1).

Γn; · � ↓An ⇑ By ↓I.
Γn; · � !An By !I.

Γn; · � ↑(!An) By ↑I.

Case ⊗ I:
D

Γ ;Δ1 	 A ⇑
E

Γ ;Δ2 	 B ⇑
⊗ I

Γ ;Δ1, Δ2 	 A⊗B ⇑

Γ ′1, Γ
′
2;Δ

′
1, Δ

′
2
 Δp

1, Δ
p
2 Assumption.

Focused Natural Deduction 169

ΓAB;ΔAB
 (A⊗B)n > γ+ Assumption.

ΓAB = ΔAB = ·, γ+ = (A⊗B)n By inversion.
Γn, Γ ′1;Δ

′
1 � An ⇑ By i.h. 1 on D.

Γn, Γ ′2;Δ
′
2 � Bn ⇑ By i.h. 1 on E .

Γn, Γ ′1, Γ
′
2;Δ

′
1, Δ

′
2 � (A⊗B)n ⇑ By ⊗dI. ��

As the mapping of derivations that is implicit in the proof of the soundness
theorem preserves (maximal) synchronous phases and reconstructs (maximal)
asynchronous phases, one may prove the following corollary.

Corollary 3. For any proof of a judgment Γ ;Δ 	 A ⇑ there exists a proof of
the same judgment with maximal focusing and inversion phases.

4 Relation to the Backward Linear Focusing Calculus

In this section we consider the connection between our system of focused lin-
ear natural deduction, and the backward linear focusing calculus of Pfenning,
Chaudhuri and Price [4]. The main result of this section is a very direct sound-
ness and completeness result between these two systems. The syntax of formulas
in the sequent system is the same as the unpolarized system in Section 2. The
same distinction between positive and negative connectives is made, but no shifts
are present to move from positive to negative and vice versa. Additionally, the
shorthand P− and N+ is used in a similar fashion to our γ− and γ+.

The judgments of their system have either two or three contexts of the fol-
lowing form: Γ is a context of unrestricted hypotheses, Δ is a linear context of
hypotheses of the form N+. A third context Ω which is both linear and ordered
may also be present. This context may contain formulas of any polarity.

There are four different kinds of sequents:

Γ ;Δ* A right-focal sequent with A under focus.

Γ ;Δ;A+ Q− left-focal sequent with A under focus.

Γ ;Δ;Ω =⇒ ·;Q−

Γ ;Δ;Ω =⇒ C; · Active sequents

The focal sequents correspond to the synchronous phases where a positive or
negative formula is decomposed maximally. Conversely, the active sequents cor-
respond to the asynchronous phase where non-focal formulas in Ω and the for-
mula C may be decomposed asynchronously. The goal ·;Q− signifies that Q−

has been inverted maximally, and is no longer active.

Theorem 3 (Soundness w.r.t. backward linear focusing calculus).
The following properties hold:

1. If Γ ;Δ � P ⇑ then Γ e;Δe * P e.
2. If Γ ;Δ � N ⇓ and Γ e;Δ′;Ne + Q− then Γ e;Δe, Δ′; · =⇒ ·;Q−.

170 T. Brock-Nannestad and C. Schürmann

3. If Γ ′;ΓC ;Δ,Δ′, ΔC � γ+ ⇑ for all Γ ′;Δ′
 Ω and ΓC ;ΔC
 C > γ+, then
Γ e;Δe;Ωe =⇒ Ce; ·.

4. If Γ ;Γ ′;Δ,Δ′ � γ+ ⇑ for all Γ ′;Δ′
 Ω, then Γ e;Δe;Ωe =⇒ ·; (γ+)e.

Theorem 4 (Completeness w.r.t. backward linear focusing calculus).
The following properties hold:

1. If Γ ;Δ* A then Γn;Δp � Ap ⇑.
2. If Γ ;Δ;A+ Q− and Γn;Δ′ � An ⇓ then Γn;Δp, Δ′ � (Q−)n ⇑.
3. If Γ ;Δ;Ω =⇒ C; · then Γn, Γ ′, ΓC ;Δp, Δ′, ΔC � γ+ ⇑ for all Γ ′;Δ′
 Ωp

and ΓC ;ΔC
 Cn > γ+.
4. If Γ ;Δ;Ω =⇒ ·;Q− then Γn, Γ ′;Δp, Δ′ � (Q−)n ⇑ for all Γ ′;Δ′
 Ωp.

The proofs of the above theorems may be seen as a way of transferring proofs
between the two systems, and its action may be summarized as follows:

– The soundness proof maps synchronous to synchronous phases, and recon-
structs inversion phases from the principal formulas in the ↑E and ↓I rules.

– The completeness proof takes synchronous phases to synchronous phases,
and collapses asynchronous phases into ↑E and ↓I rules.

In particular, this leads to the following

Corollary 4. The mapping of proofs induced by the soundness theorem is in-
jective on proofs of judgments of the form Γ ;Δ � A ⇑ where Γ , Δ and A are
minimally polarized.

Consequently, if we consider proofs of minimally polarized judgments, the current
system has the same number or fewer proofs of that judgment than the backward
focused sequent calculus has proofs of the corresponding sequent.

5 Conclusion and Related Work

Using the concepts of focusing and patterns, we have presented a natural deduc-
tion formulation of first-order intuitionistic linear logic that ensures the maxi-
mality of both synchronous and asynchronous phases. This removes a large part
of the bureaucracy and unnecessary choices that were present in the previous
formulation.

In [4], completeness with regard to the unfocused linear sequent calculus is
established by proving focused versions of cut admissibility and identity. Because
of the four different kinds of sequents and the three contexts, the proof of cut
admissibility consists of more than 20 different kinds of cuts, all connected in
an intricate induction order. In contrast, the proofs of the soundness and com-
pleteness results we have established are relatively straightforward. This is in
part because we only have two judgments, and also because the intercalation
formulation of linear natural deduction is already negatively focused.

From Corollary 4, it follows that our system, when restricted to minimally
polarized formulas, has the same number or fewer proofs than the backward

Focused Natural Deduction 171

linear focusing calculus. This is only the case if we consider minimally polar-
ized formulas, however. In particular this opens the possibility of using different
polarization strategies to capture different classes of proofs.

In our formulation, we have chosen to use patterns only as a means of ensuring
maximal asynchronous phases. It is possible to extend the use of patterns to the
synchronous phases as well, but there are several reasons why we have chosen
not to do this. The first and most compelling reason is that it is not necessary to
ensure maximal synchronous phases. The restrictions on the succedent of the ↑E
rule suffices to ensure the maximality of the synchronous phases. Second, the use
of patterns for the asynchronous phase extends easily to the case of quantifiers
because the actual choice of eigenvariables does not matter — only freshness is
important. Interpreting the pattern rules for quantifiers in a synchronous setting,
we would need to substitute appropriately chosen terms for these variables, to
capture the behavior of the ∀E and ∃I rules. This would complicate the system
considerably.

References

1. Andreoli, J.: Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation 2(3), 297 (1992)

2. Chaudhuri, K.: Focusing strategies in the sequent calculus of synthetic connec-
tives. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI),
vol. 5330, pp. 467–481. Springer, Heidelberg (2008)

3. Chaudhuri, K., Miller, D., Saurin, A.: Canonical sequent proofs via multi-focusing.
In: Fifth International Conference on Theoretical Computer Science, vol. 273, pp.
383–396. Springer, Heidelberg (2008)

4. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and
backward chaining in the inverse method. Journal of Automated Reasoning 40(2),
133–177 (2008)

5. Krishnaswami, N.R.: Focusing on pattern matching. In: Proceedings of the 36th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pp. 366–378. ACM, New York (2009)

6. Licata, D.R., Zeilberger, N., Harper, R.: Focusing on binding and computation. In:
LICS, pp. 241–252. IEEE Computer Society, Los Alamitos (2008)

7. McLaughlin, S., Pfenning, F.: Efficient intuitionistic theorem proving with the
polarized inverse method. In: Proceedings of the 22nd International Conference on
Automated Deduction, p. 244. Springer, Heidelberg (2009)

8. Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation
for logic programming. Ann. Pure Appl. Logic 51(1-2), 125–157 (1991)

9. Prawitz, D.: Natural Deduction. Almquist & Wiksell, Stockholm (1965)
10. Sieg, W., Byrnes, J.: Normal natural deduction proofs (in classical logic). Studia

Logica 60(1), 67–106 (1998)
11. Watkins, K., Cervesato, I., Pfenning, F., Walker, D.: A concurrent logical frame-

work: The propositional fragment. In: Berardi, S., Coppo, M., Damiani, F. (eds.)
TYPES 2003. LNCS, vol. 3085, pp. 355–377. Springer, Heidelberg (2004)

12. Zeilberger, N.: Focusing and higher-order abstract syntax. In: Necula, G.C.,
Wadler, P. (eds.) POPL, pp. 359–369. ACM, New York (2008)

How to Universally Close the Existential Rule

Kai Brünnler

Institut für angewandte Mathematik und Informatik
Universität Bern, Neubrückstr. 10, CH – 3012 Bern, Switzerland

http://www.iam.unibe.ch/~kai/

Abstract. This paper introduces a nested sequent system for predicate
logic. The system features a structural universal quantifier and a univer-
sally closed existential rule. One nice consequence of this is that proofs of
sentences cannot contain free variables. Another nice consequence is that
the assumption of a non-empty domain is isolated in a single inference
rule. This rule can be removed or added at will, leading to a system for
free logic or classical predicate logic, respectively. The system for free
logic is interesting because it has no need for an existence predicate.
We see syntactic cut-elimination and completeness results for these two
systems as well as two standard applications: Herbrand’s Theorem and
interpolation.

1 Introduction

The mismatch. Traditional analytic proof systems like Gentzen’s sequent cal-
culus often cannot capture non-classical logics. Various formalisms have been
designed to overcome this problem. The most prominent ones seem to be hy-
persequents [1], the display calculus [3], labelled systems [18], the calculus of
structures [12], and nested sequents [5,6]. All these formalisms work by enrich-
ing the structural level of proofs. We can thus see the problem of the traditional
sequent calculus as a mismatch between the logic and the structural level of
proofs, and we can see these formalisms as ways of repairing it. See also the note
[11] by Guglielmi for an exposition of this mismatch.

The mismatch in predicate logic. Our proposition here is that the mismatch
even affects sequent systems for classical predicate logic. Technically, there is
obviously no match between structural and logical connectives, in particular
there is no structural counterpart for quantification. The question is whether
that is a problem. It turns out that it is if we either want to extend the logic,
such as to modal predicate logic, or to slightly weaken the logic, such as by
admitting models with an empty domain.

It is a well-known problem in modal predicate logic that combining a tradi-
tional sequent system for modal logic with one for predicate logic results in a
system which forces the provability of the converse Barcan formula. The exis-
tential (right) rule is responsible for that. As it happens, the same existential
rule forces the provability of the formula ∀xA ⊃ ∃xA and thus restricts us to
non-empty domains.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 172–186, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.iam.unibe.ch/~kai/

How to Universally Close the Existential Rule 173

Repairing the mismatch. We now take a quick look at Hilbert-style axiom
systems, because there these two problems also occur, but have an elegant solu-
tion. The analogue of the existential rule, and equally problematic, is the axiom
of instantiation. It typically has the form:

∀xA ⊃A[x := y] ,

where it suffices to have a variable y instead of an arbitrary term because we
have no function symbols. This axiom can be universally closed as follows:

∀y(∀xA ⊃A[x := y]) .

And indeed, this closed form of instantiation leads to an axiomatisation for
modal predicate logic which does not force the converse Barcan formula and is
thus modular in the sense that we can add or remove the converse Barcan formula
at will. It also leads to an axiomatisation for predicate logic which does not force
non-empty domains, so we can add or remove the non-emptyness requirement
at will. This trick of universally closing the instantiation axiom is attributed
to Kripke in the context of modal predicate logic in [8] and to Lambert in the
context of free logic in [4]. The purpose of the present work is essentially to bring
this trick to cut-free systems.

Nested sequents. To that end, we use nested sequents. Compared to usual
sequents, nested sequents simply add more structural counterparts for logical
connectives. In modal logic, for example, in addition to having the comma (on
the right) as a structural counterpart for disjunction, one also has a structural
connective for the modality. Since in the present work we are concerned with
predicate logic, we have a structural counterpart for universal quantification.

The first use of nested sequents under that name seems to be by Kashima in
[13] for tense logics. However, the concept is very natural, and it has been used
independently many times in different places. The earliest references I am aware
of are from the seventies, by Dunn [7] and by Mints [14], on proof systems for
relevance logics. More recent uses for modal logics can be found in the work by
the author [5], by Goré, Tiu and Postniece [10], by Dyckhoff and Sadrzadeh [16],
or by Poggiolesi [15].

Why repair the mismatch? For now, repairing the mismatch gives us a proof
system in which the assumption of a non-empty domain is isolated in a single
inference rule. This rule can be removed or added at will, leading to a system for
free logic or classical predicate logic, respectively. This is of course not possible
in the standard sequent calculus. The system for free logic is interesting because
it does not rely on a so-called existence predicate, contrary to traditional se-
quent systems for free logic. This allows for a syntactic proof of an interpolation
theorem, which is slightly stronger than what can be (easily) obtained from the
traditional systems: the existence predicate does not occur in the interpolant.
However, this is just for now. I think that repairing the mismatch becomes more
fruitful the further we move away from classical logic. I am currently working on
proof systems for modal predicate logic, in which both the Barcan and converse
Barcan formula can be added in a modular fashion. I also think that nested se-
quents can provide proof systems for logics which currently do not seem to have

174 K. Brünnler

cut-free systems such as (first-order) Gödel-logic without constant domains, see
for example [2].

Outline. The outline of this paper is as follows. In Section 2 we introduce our
two nested sequent systems: System Q for predicate logic and a subsystem of
it, called System FQ, for free logic. In Section 3 we show some basic properties
such as invertibility and some admissible rules. Section 4 relates System Q to a
traditional system for predicate logic, and Section 5 relates System FQ to tradi-
tional proof systems for free logic. In Section 6 we prove cut-elimination. Finally,
in Section 7 we show two simple consequences of cut-admissibility: Herbrand’s
Theorem and interpolation.

2 The Sequent Systems

Formulas. We assume given an infinite set of predicate symbols for each arity
n ≥ 0 and an infinite set of variables. Predicate symbols are denoted by P ,
variables by x, y, z. A proposition, denoted by p, is an expression P (x1, . . . , xn)
where P is a predicate symbol of arity n and x1, . . . , xn are variables. Formulas,
denoted by A,B,C,D are given by the grammar

A ::= p | p̄ | (A ∨A) | (A ∧A) | ∃xA | ∀xA .

Propositions p and their negations p̄ are called atoms. Given a formula A, its
negation Ā is defined as usual using the double negation law and the De Morgan
laws, A ⊃ B is defined as Ā ∨ B and both � and ⊥ are respectively defined as
p∨ p̄ and p∧ p̄ for some proposition p. The binary connectives are left-associative,
and we drop parentheses whenever possible, so for example A ∨ B ∨ C denotes
((A ∨B) ∨ C).

Nested sequents. A nested sequent is defined inductively as one of the fol-
lowing: 1) a finite multiset of formulas, 2) the singleton multiset containing the
expression ∀x[Γ] where Γ is a nested sequent, or 3) the multiset union of two
nested sequents. The expression ∀x[] in ∀x[Γ] is called the structural univer-
sal quantifier: the intention is that it relates to the universal quantifier just
like comma relates to disjunction. It binds variables in the same way as usual
quantifiers, these variables are then called structurally bound. We will often save
brackets and write ∀xΓ instead of ∀x[Γ] and ∀xyΓ instead of ∀x∀yΓ if it does
not lead to confusion. In the following, a sequent is a nested sequent. Sequents
are denoted by Γ andΔ. We adopt the usual notational conventions for sequents,
in particular the comma in the expression Γ,Δ is multiset union. A sequent Γ
is always of the form

A1, . . . , Am, ∀x1[Δ1], . . . , ∀xn[Δn] .

The corresponding formula Γ
F

of the above sequent is

A1 ∨ . . . ∨ Am ∨ ∀x1Δ1
F
∨ . . . ∨ ∀xnΔn

F
,

where an empty disjunction is ⊥ and both the shown formulas and the shown
variables are ordered according to some fixed total order.

How to Universally Close the Existential Rule 175

Structural α-equivalence. Two sequents are structurally α-equivalent if they
are equal up to the naming of structurally bound variables. This is a weaker
equivalence than the usual notion of α-equivalence, which identifies formulas and
sequents up to the naming of all bound variables. In particular, given different
variables x and y, the sequents ∀x[A] and ∀y[A[x := y]] are structurally α-
equivalent while the sequents ∀xA and ∀yA[x := y] are not. Our inference rules
will apply modulo structural α-equivalence.

Sequent contexts. Informally, a context is a sequent with holes. We will mostly
encounter sequents with just one hole. A unary context is a sequent with exactly
one occurrence of the symbol { }, the hole, which does not occur inside formulas.
Such contexts are denoted by Γ{ }, Δ{ }, and so on. The hole is also called the
empty context. The sequent Γ{Δ} is obtained by replacing { } inside Γ{ } by Δ.
For example, if Γ{ } = A, ∀x[B, { }] and Δ = C,D then Γ{Δ} = A, ∀x[B,C,D].
More generally, a context is a sequent with n ≥ 0 occurrences of { }, which do
not occur inside formulas, and which are linearly ordered. A context with n holes
is denoted by Γ { } . . . { }︸ ︷︷ ︸

n−times

.

Holes can be filled with sequents, or contexts, in general. For example, if
Γ{ }{ } = A, ∀x[B, { }], { } and Δ{ } = C, { } then

Γ{Δ{ }}{ } = A, ∀x[B,C, { }], { } ,

where in all contexts the holes are ordered from left to right as shown.
Inference rules, derivations, and proofs. Inference rules are of the form

Γ1 . . . Γn
ρ −−−−−−−−−−−

Γ
,

where the Γ(i) are schematic sequents and ρ is the name of the rule. We sometimes
write ρn to denote n instances of ρ and ρ∗ to denote an unspecified number of
instances of ρ. A system, denoted by S, is a set of inference rules. A derivation
in a system S is a finite tree which is built in the usual way from instances
of inference rules from S, which are applied modulo structural α-equivalence.
The sequent at the root is the conclusion and the sequents at the leaves are the
premises of the derivation. An axiom is a rule without premises. A proof of a
sequent Γ in a system is a derivation in this system with conclusion Γ where
each premise is an instances of an axiom. Derivations are denoted by D and
proofs are denoted by P . A derivation D in system S with premises Γ1 . . .Γn

and conclusion Γ and a proof P in system S of Γ are respectively denoted as

Γ1 . . . Γn

D S

Γ

and P S

Γ

.

176 K. Brünnler

id −−−−−−−−−
Γ{p, p̄}

Γ{A} Γ{B}
∧ −−−−−−−−−−−−−−−−−

Γ{A ∧ B}
Γ{A, B}

∨ −−−−−−−−−−−−
Γ{A ∨ B}

Γ{∀x[A]}
∀ −−−−−−−−−−−−

Γ{∀xA}
∀x[Γ{Δ}]

scp −−−−−−−−−−−− where x does not
occur in Γ{ }Γ{∀x[Δ]}

Γ{∃xA,A[x := y]}
∃c1 −−−−−−−−−−−−−−−−−−−−−−− where Γ{ }

binds yΓ{∃xA}
Γ{∃xA,∀x[A]}

∃c2 −−−−−−−−−−−−−−−−−−
Γ{∃xA}

Fig. 1. System Q

id −−
∀xz[∀y[P (z), P (y), P (x), P (z)]]

scp −−−
∀xz[∀y[P (z), P (y)] , P (x), P (z)]

∨,∀ −−
∀xz[∀y(P (z) ⊃ P (y)) , P (x), P (z)]

∃1 −−−
∀x z [∃x∀y(P (x) ⊃ P (y)) , P (x), P (z)]

= −−
∀x y [∃x∀y(P (x) ⊃ P (y)), P (x), P (y)]

scp
2 −−−
∃x∀y(P (x) ⊃ P (y)), ∀x[∀y[P (x), P (y)]]

∨,∀ −−
∃x∀y(P (x) ⊃ P (y)),∀x[∀y(P (x) ⊃ P (y))]

∃c2 −−
∃x∀y(P (x) ⊃ P (y))

Fig. 2. A proof of the drinker’s formula

Systems Q and FQ. We say that a unary context binds y if it is of the form
Γ1{∀y[Γ2{ }]}. Figure 1 shows System Q, the set of rules {id, ∧, ∨, ∀, scp, ∃c1,
∃c2}. The id-rule is also called the identity axiom and the scp-rule is also called
the scope rule. Notice how the existential rule is closed, and how the system thus
has the free variable property: all free variables that occur in a proof occur in its
conclusion. The ∃c2-rule postulates that the domain is non-empty. Removing it
from System Q gives us System FQ, our system for free logic.

Provisos modulo renaming. Note that, since rules apply modulo structural α-
equivalence, so do their provisos. In particular, the following is a valid instance
of the scp-rule:

∀x[P (x), ∀xQ(x)]
scp −−−−−−−−−−−−−−−−−−−−
∀x[P (x)], ∀xQ(x)

.

A proof of the drinker’s formula. Figure 2 shows a proof of the drinker’s
formula: there is a man such that when he drinks, everyone drinks. The proof
makes use of the ∃1-rule, which is just the ∃c1-rule without built-in contraction
and will be shown to be admissible in the next section. The notation scp2 denotes

How to Universally Close the Existential Rule 177

two instances of the scope rule and the notation ∨, ∀ denotes an instance of the ∨-
rule followed by an instance of the ∀-rule. Note also that implication is a defined
connective.

The drinker’s formula is not provable in System FQ. Notice also that this is
very easy to see: the ∃c1-rule does not apply because of its proviso and thus no
rule at all is applicable to the formula.

System Q is complete for sentences only. System Q does not prove all valid
sequents. In particular it is easy to see that it does not prove the valid se-
quent ∃xP (x), P (y). It only proves its universal closure ∀y[∃xP (x), P (y)]. This
is by design: the non-closed sequent is not valid in varying domain semantics for
modal predicate logic. Note that, thanks to the free variable property, restricting
ourselves to sentences is less problematic than in the usual sequent calculus.

Why structural α-equivalence? Without α-renaming our system would not be
complete even for sentences. The closed valid sequent ∀y[∃x∃yP (x), P (y)] would
not be provable. Of course this situation is well-known. Many systems handle it
by treating formulas modulo α-equivalence. In System Q it is sufficient to allow
for structural α-renaming. The intention here is that a connective should be free
while its corresponding structural connective is subject to some equations. We
have disjunction and its corresponding comma (with associativity and commu-
tativity) and similarly we have the universal quantifier and its corresponding
structural universal quantifier (with α-renaming).

3 Admissible Rules and Invertibility

Figure 3 show some rules which are admissible for System Q. Their names are:
general identity, weakening, contraction, instantiation, generalisation, permuta-
tion, vacuous quantification, cut, first existential and second existential. To show
their admissibility we first need some definitions of standard notions.

Cut rank. The depth of a formula A, denoted depth(A), is defined as usual,
the depth of possibly negated propositions being zero. Given an instance of the
cut-rule as shown in Figure 3, its cut formula is A and its cut rank is one plus
the depth of its cut formula. For r ≥ 0 we define the cutr-rule which is cut with
at most rank r. The cut rank of a derivation is the supremum of the cut ranks
of its cuts.

Admissibility and derivability. An inference rule ρ is (depth-preserving) ad-
missible for a system S if for each proof in S ∪ {ρ} there is a proof in S with
the same conclusion (and with at most the same depth). An inference rule ρ is
derivable for a system S if for each instance of ρ there is a derivation D in S with
the same conclusion and the same set of premises. A rule is cut-rank (and depth-)
preserving admissible for a system S if for all r ≥ 0 the rule is (depth-preserving)
admissible for S + cutr.

Invertibility. For each rule ρ there is its inverse, denoted by ρ−1, which is ob-
tained by exchanging premise and conclusion. The inverse of a two-premise-rule
allows each premise as a conclusion. An inference rule ρ is (depth-preserving) in-
vertible for a system S if ρ−1 is (depth-preserving) admissible for S. An

178 K. Brünnler

gid −−−−−−−−−−
Γ{A, Ā}

Γ{∅}
wk −−−−−−−

Γ{Δ}
Γ{Δ, Δ}

ctr −−−−−−−−−−−
Γ{Δ}

Γ{∀x[Δ]}
ins −−−−−−−−−−−−−−−− where Γ{ }

binds yΓ{Δ[x := y]}

Γ
gen −−−−−−

∀x[Γ]

Γ{∀x[∀y[Δ]]}
per −−−−−−−−−−−−−−−−−

Γ{∀y[∀x[Δ]]}
Γ{∀x[Δ]}

vac −−−−−−−−−−−− where x does
not occur in ΔΓ{Δ}

Γ{A} Γ{Ā}
cut −−−−−−−−−−−−−−−−−

Γ{∅}
Γ{A[x := y]}

∃1 −−−−−−−−−−−−−−−− where Γ{ }
binds yΓ{∃xA}

Γ{∀x[A]}
∃2 −−−−−−−−−−−−

Γ{∃xA}

Fig. 3. Admissible rules

inference rule ρ is cut-rank (and depth-) preserving invertible for a system S
if ρ−1 is cut-rank (and depth-) preserving admissible for S.

We are now ready to state our lemma on admissibility and invertibility. Its
proof is a lengthy but unproblematic list of rule permutations, which has been
left out for space reasons.

Lemma 1 (Admissibility and Invertibility).
(i) For each system S ∈ {FQ,Q}, each rule of S is cut-rank and depth-preserving
invertible for S.
(ii) For each system S ∈ {FQ,Q}, each of the first six rules from Figure 3 is
cut-rank and depth-preserving admissible for S.
(iii) The vacuous quantification rule is depth-preserving admissible for System Q.

Note that the vacuous quantification rule is not admissible for System FQ: the
sequent ∀x[∃y(p ∨ p̄)] is provable, but not the sequent ∃y(p ∨ p̄).

By the ∀- and ∨-rules and their invertibility we get the following corollary.

Corollary 2. Each system from {FQ,Q} proves a sequent iff it proves its corre-
sponding formula.

By weakening admissibility we also get the following corollary.

Corollary 3. The ∃1-rule is admissible for each system from {FQ,Q}. The ∃2-
rule is admissible for System Q.

4 Relation between System Q and the Usual Sequent Calculus

We now see how to embed System Q into a standard sequent system and vice
versa. The specific standard system we use is a variant of System GS1 from [17].
We call this variant System LK1 and the only difference between LK1 and GS1 is
that LK1 does not treat formulas modulo α-equivalence. Instead it requires that

How to Universally Close the Existential Rule 179

free and bound variables come from disjoint sets, just like in Gentzen’s original
System LK [9]. So an LK1-sequent is a multiset of formulas for which the set of
free variables and the set of bound variables are disjoint.

We denote sets of variables by �x and write �x, y for �x ∪ {y}. Given a set
of variables �x, the corresponding sequence of structural universal quantifiers is
written as ∀�x[], where variables are ordered according to the fixed total order.
The universal closure of a sequent Γ is the sequent ∀�x[Γ] where �x is the set of
free variables of Γ .

Theorem 4 (Embedding System LK1 into System Q). If System LK1 proves an
LK1-sequent then System Q proves its universal closure.

Proof. We proceed by induction on the depth of the given proof in LK1. The
identity axiom and the rules for disjunction and conjunction are trivial, so we
just show the cases for the quantifier rules. For the universal rule there are two
cases. Here is the first, where x occurs free in A (and thus y occurs free in
the premise of the ∀-rule). Note that the proviso of the scope rule and of the
renaming below it are fulfilled because of the proviso of the ∀-rule:

Γ,A[x := y]
∀ −−−−−−−−−−−−−

where y does
not occur in
conclusionΓ, ∀xA

�
∀�x, y[Γ,A[x := y]]

per∗ −−−−−−−−−−−−−−−−−−−−−
∀y∀�x[Γ,A[x := y]]

scp −−−−−−−−−−−−−−−−−−−−−−−
∀�x[Γ, ∀y[A[x := y]]]

= −−−−−−−−−−−−−−−−−−−−−−−
∀�x[Γ, ∀x[A]]
∀ −−−−−−−−−−−−−−
∀�x[Γ, ∀xA]

.

In the second case, where x does not occur free in A, the translation is almost
the same, just the instances of the permutation rule are replaced by an instance
of generalisation.

For the existential rule, there are three cases. Here is the first, where y is free
in the conclusion:

Γ,A[x := y]
∃ −−−−−−−−−−−−−

Γ, ∃xA
� ∀�x, y[Γ,A[x := y]]

∃1 −−−−−−−−−−−−−−−−−−−−−∀�x, y[Γ, ∃xA]
.

The second case, where y is free in the premise of the ∃-rule but not in the
conclusion is as follows. Note that here the proviso in the scope rule is fulfilled
because free and bound variables are disjoint in LK1-proofs:

Γ,A[x := y]
∃ −−−−−−−−−−−−−

Γ, ∃xA
�

∀�x, y[Γ,A[x := y]]
per∗ −−−−−−−−−−−−−−−−−−−−−

∀y∀�x[Γ,A[x := y]]
scp −−−−−−−−−−−−−−−−−−−−−−−
∀�x[Γ, ∀y[A[x := y]]]

= −−−−−−−−−−−−−−−−−−−−−−−
∀�x[Γ, ∀x[A]]

∃2 −−−−−−−−−−−−−−∀�x[Γ, ∃xA]

.

The third case, where y is neither free in premise nor conclusion is similar to
the second case, with the instances of permutation replaced by one instance of
generalisation. ��

180 K. Brünnler

We now see the reverse direction, that is, we embed System Q into System LK1.
We first need some definitions. Define formula contexts in analogy to sequent
contexts. Let a restricted formula context be one where the hole occurs in the
scope of at most disjunction and universal quantification. The glue rules are
shown in Figure 4, where F{ } is a restricted formula context. They are just a
technical device useful for embedding System Q into System LK1.

Lemma 5 (Glue for LK1). The glue rules are admissible for System LK1.

Proof. By an induction on the depth of F{ } and using invertibility of the ∀-
rule and of a G3-style ∨-rule, we can reduce the admissibility of each glue rule
to the admissibility of its restriction to an empty formula context F{ }. The
admissibility of the restricted glue rules is easy to see. ��
Theorem 6. If System Q proves a sequent, then System LK1 proves its corre-
sponding formula.

Proof. Since by the previous lemma the {gc, ga, gα}-rules are admissible for LK1
we assume in the following equiprovability of sequents that only differ mod-
ulo commutativity and associativity of disjunction and renaming of universally
bound variables. We proceed by induction on the depth of the given proof in
System Q. The propositional rules are just translated to the corresponding glue
rules which are admissible for LK1 by the previous lemma. The case for the scope
rule is as follows:

P Q

∀xΓ{Δ}
scp −−−−−−−−−− where x does not

occur in Γ{ }Γ{∀xΔ}

�
IH(P) LK1

∀xΓ{Δ}
∀−1 −−−−−−−−−−−−−−−−

Γ{Δ}[x := y]
= −−−−−−−−−−−−−−−−
Γ{Δ[x := y]}

g∀ −−−−−−−−−−−−−−−−
Γ{∀xΔ}

,

where on the right y is a fresh variable, the equality is justified by the proviso of
the scope rule, and we have just written sequents to denote their corresponding
formulas. The case for the ∃c1 is handled easily by splitting it into an instance
of ∃1 and contraction and using the corresponding glue rules. The case for the
∃c2-rule is also handled splitting it into ∃2 and contraction, and translating ∃2
as follows:

P Q

Γ{∀x[A]}
∃2 −−−−−−−−−−−

Γ{∃xA}

�
P Q

Γ{∀x[A]}
ins −−−−−−−−−−−

Γ{A}
IH −−−−−−−
Γ{A}

F
g∃ −−−−−−−−−−
Γ{∃xA}

F

,

How to Universally Close the Existential Rule 181

Γ, F{A ∨ B}
gc −−−−−−−−−−−−−−−

Γ, F{B ∨ A}
Γ, F{(A ∨ B) ∨ C}

ga −−−−−−−−−−−−−−−−−−−−−−
Γ, F{A ∨ (B ∨ C)}

Γ, F{∀xA}
gα −−−−−−−−−−−−−−−−−−−−−−−

Γ, F{∀yA[x := y]}

gid −−−−−−−−−−−−−
Γ, F{p ∨ p̄}

Γ, F{A} Γ, F{B}
g∧ −−−−−−−−−−−−−−−−−−−−−−−

Γ, F{A ∧ B}
Γ, F{A ∨ A}

gctr −−−−−−−−−−−−−−−
Γ, F{A}

Γ, F{A[x := y]}
g∀ −−−−−−−−−−−−−−−−−−−

where y does
not occur in

the conclusion
Γ, F{∀xA}

Γ, F{A[x := y]}
g∃ −−−−−−−−−−−−−−−−−−−

Γ, F{∃xA}

Fig. 4. Some glue for embedding System Q into System LK1

(Tautology) a propositional tautology
(Distributivity) ∀x(A ⊃ B) ⊃ (∀xA ⊃ ∀xB)
(Vacuous) A ⊃ ∀xA where x does not occur free in A
(Instantiation) ∀y(∀xA ⊃ A[x := y])
(Permutation) ∀x∀yA ⊃ ∀y∀xA

Fig. 5. Axioms of System FQC

where on the right ins is depth-preserving admissible for Q and IH denotes ap-
plying the induction hypothesis to the proof above. ��

By soundness and completeness of LK1 our embeddings give us soundness and
completeness for System Q.

Theorem 7 (System Q is sound and complete). System Q proves a sentence iff
it is valid (for the standard notion of validity in classical predicate logic).

5 Relation between System FQ and Free Logic

We will now see that System FQ is sound and complete with respect to free logic.
For completeness we embed a Hilbert-style system for free logic into System
FQ + cut and then use cut elimination for System FQ, which is proved in the
next section. The specific Hilbert-system we use is System FQC from Bencivenga
[4], which consists of modus ponens and all generalisations of instances of the
axioms shown in Figure 5. As usual, a generalisation of a formula is obtained by
prefixing it with any sequence of universal quantifiers.

It is easy to see that the axioms of FQC are provable in System FQ and that
modus pones is admissible for System FQ+cut, so we have the following theorem.

Theorem 8 (Embedding System FQC into System FQ + cut). If a formula is
provable in System FQC then it is provable in System FQ + cut.

182 K. Brünnler

To show soundness of System FQ we embed it into a sequent system for free logic,
a variant of a system from Bencivenga [4]. System FLK1 is System LK1 with the
quantifier rules replaced by the ones shown in Figure 6, where E, the existence
predicate, is a fixed unary predicate symbol, which is not used in formulas.

The proof of the following lemma is standard.

Lemma 9 (Invertibility for FLK1). All rules of System FLK1 are depth-preserving
invertible for System FLK1.

The free glue rules are shown in Figure 7, where F{ } is a restricted formula
context. The proof of the following lemma follows the lines of the corresponding
proof for LK1 and makes use of the invertibility of rules in FLK1.

Lemma 10 (Glue for FLK1). The rules {gc, ga, gα, gid, g∧, gctr} and the free glue
rules are admissible for System FLK1.

We can now embed FQ into FLK1.

Theorem 11 (Embedding System FQ into System FLK1). If System FQ proves
a sequent, then System FLK1 proves its corresponding formula.

Proof. The proof is similar to the embedding of System Q into System LK1. The
difference is in the translation of the scope rule and the ∃c1-rule, and, of course,
the fact that we do not need to translate the ∃c2-rule. Here is the case for the
scope rule:

∀xΓ{Δ}
scp −−−−−−−−−− where x does not

occur in Γ{ }Γ{∀xΔ}
�

∀xΓ{Δ}
∀−1

F
−−−−−−−−−−−−−−−−−−−−−−−
Γ{Δ}[x := y], E(y)

= −−−−−−−−−−−−−−−−−−−−−−−
Γ{Δ[x := y]}, E(y)

g∀F
−−−−−−−−−−−−−−−−−−−−−−−

Γ{∀xΔ}

,

where on the right y is a fresh variable, the equality is justified by the proviso of
the scope rule, and we have just written sequents to denote their corresponding
formulas.

For simplicity we just show ∃1 since ∃c1 is derivable for ∃1 and contraction:

Γ{A[x := y]}
∃1 −−−−−−−−−−−−−−− where Γ{ }

binds yΓ{∃xA}
�

Γ{A[x := y]}

id −−−−−−−−−−−−
E(z), E(z)

∀F −−−−−−−−−−−−∀yE(y)
∀∗F ,∨∗,wk∗ −−−−−−−−−−

Γ{E(y)}
g∃F
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∃xA}

,

��
By soundness of FLK1 and completeness of FQC with respect to free logic, our
embeddings, and cut-elimination for FQ we obtain soundness and completeness
for System FQ with respect to free logic.

Theorem 12 (System FQ is sound and complete). System FQ proves a formula
iff it is a theorem of free logic.

How to Universally Close the Existential Rule 183

Γ, A[x := y], E(y)
∀F −−−−−−−−−−−−−−−−−−−−−−

where y does
not occur in the

conclusion
Γ, ∀xA

Γ, A[x := y] Γ, E(y)
∃F −−−−−−−−−−−−−−−−−−−−−−−−−−

Γ,∃xA

Fig. 6. Quantifier rules of System FLK1

Γ, F{A[x := y]}, E(y)
g∀F

−−−−−−−−−−−−−−−−−−−−−−−−−−−
where y does

not occur in the
conclusionΓ, F{∀xA}

Γ, F{A[x := y]} Γ, F{E(y)}
g∃F

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Γ, F{∃xA}

Fig. 7. Glue for FLK1

6 Syntactic Cut-Elimination

We now turn to cut-elimination. As usual, the reduction lemma is the centerpiece
of the cut elimination argument.

Lemma 13 (Reduction Lemma). Let S ∈ {FQ,Q + vac}. If there is a proof as
shown on the left, then there is a proof as shown on the right:

P1 S+cutr

Γ{A}

P2 S+cutr

Γ{Ā}
cutr+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

� P S+cutr

Γ{∅}
.

Proof. We first prove the lemma for System FQ. We proceed as usual, by an
induction on the sum of the depths of P1 and P2 and by a case analysis on
their lowermost rules. All passive cases (that is, those where the lowermost rule
does not apply to the cut-formula) are handled using invertibility, and using
contraction admissibility in the passive conjunction case. Note that scope can
only be passive. The active cases for the axiom and the propositional connectives
are as usual. We now look at the only interesting case, namely ∀ vs. ∃c1, which
is handled as follows:

P1

Γ{∀x[A]}
∀ −−−−−−−−−−−
Γ{∀xA}

P2

Γ{∃xĀ, Ā[x := y]}
∃c1 −−−−−−−−−−−−−−−−−−−−−−

Γ{∃xĀ}
cutr+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

184 K. Brünnler

� P1

Γ{∀x[A]}
ins −−−−−−−−−−−−−−−
Γ{A[x := y]}

P1

Γ{∀x[A]}
wk −−−−−−−−−−−−−−−−−−−−−−−
Γ{Ā[x := y], ∀x[A]}
∀ −−−−−−−−−−−−−−−−−−−−−−−
Γ{Ā[x := y], ∀xA}

P2

Γ{∃xĀ, Ā[x := y]}
cut −−−

Γ{Ā[x := y]}
cut −−

Γ{∅}

,

where the proviso of the ins-rule is fulfilled because of the proviso of the ∃c1-rule.
This concludes the proof for System FQ. The proof for System Q + vac is the
same, but with the additional case ∀ vs. ∃c2:

P1

Γ{∀x[A]}
∀ −−−−−−−−−−−
Γ{∀xA}

P2

Γ{∃xĀ, ∀x[Ā]}
∃c2 −−−−−−−−−−−−−−−−−

Γ{∃xĀ}
cutr+1 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∅}

�
P1

Γ{∀x[A]}

P1

Γ{∀x[A]}
wk −−−−−−−−−−−−−−−−−−−
Γ{∀x[A], ∀x[Ā]}
∀ −−−−−−−−−−−−−−−−−−−
Γ{∀xA, ∀x[Ā]}

P2

Γ{∃xĀ, ∀x[Ā]}
cut −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ{∀x[Ā]}
cut −−−

Γ{∀x[∅]}
vac −−−−−−−−−−−

Γ{∅}
��

Cut-elimination for System FQ now follows from a routine induction on the cut-
rank of the given proof with a subinduction on the depth of the proof, using the
reduction lemma in the case of a maximal-rank cut. To get cut-elimination for
System Q we first prove it for System Q+vac, in the same way as we did for FQ,
and then use the admissibility of the vac-rule. So we have the following theorem.

Theorem 14 (Cut-Elimination). Let S ∈ {FQ,Q}. If a sequent is provable in
System S + cut then it is provable in System S.

7 Herbrand’s Theorem and Interpolation

We now see two simple applications of our cut-free system: Herbrand’s Theorem
and interpolation, both for classical predicate logic and free logic. The point here

How to Universally Close the Existential Rule 185

is of course not that these results are new, the point is that our cut-free systems
are useful enough to easily provide them. That said, in the case of free logic the
syntactic proof of interpolation seems to be new: it is not easy to see how to get
it from System FLK1 without allowing the existence predicate to occur in the
interpolant.

Theorem 15 (Mid-Sequent Theorem). Let S ∈ {FQ,Q} and let Γ contain only
prenex formulas. If there is a proof of Γ in System S then there is a sequent Γ ′

provable in {id, ∧, ∨} and a derivation from Γ ′ to Γ in S − {id, ∧, ∨}.

Proof. We first establish the claim that each rule in {∀, scp, ∃c1, ∃c2} is depth-
preserving invertible for System {id, ∧, ∨}.

To prove the decomposition theorem we now proceed by induction on the
depth of the given proof and a case analysis on the lowermost rule. Consider
the case when that is the ∧-rule, which is the only interesting case. We first
decompose the left subproof by induction hypothesis. Then we permute all the
quantifier rules we obtained down below the ∧-rule, using invertibility to compen-
sate on its right premise. Note that the depth of the right subproof is preserved.
Now we decompose the right subproof by induction hypothesis. Then we per-
mute all the quantifier rules that we obtained down below the ∧-rule, using the
claim to compensate on its left premise. We have now obtained a proof of the
desired form. ��

The mid-sequent Γ ′ may still contain formulas with quantifiers as well as struc-
tural universal quantifiers. However, since its proof contains only propositional
rules, both can be easily removed. So we have the following corollary.

Corollary 16 (Herbrand’s Theorem). Let S ∈ {FQ,Q} and let A be a prenex
formula which is provable in System S. Then there is a sequent which 1) con-
sists only of substitution instances of the matrix of A and 2) is propositionally
provable.

We also easily obtain the following interpolation theorem, by a standard induc-
tion on the depth of the given proof.

Theorem 17 (Interpolation). Let S ∈ {FQ,Q}. If S proves the sequent ∀�z[Γ,Δ]
then there is a formula C, called interpolant, such that 1) each predicate symbol
and each free variable in C occurs both in Γ and in Δ, and 2) system S proves
both the sequent ∀�z[Γ,C] and the sequent ∀�z[C̄,Δ].

References

1. Avron, A.: The method of hypersequents in the proof theory of propositional non-
classical logics. In: Hodges, W., Hyland, M., Steinhorn, C., Truss, J. (eds.) Logic:
from foundations to applications. Proc. Logic Colloquium, Keele, UK, 1993, pp.
1–32. Oxford University Press, New York (1996)

2. Baaz, M., Ciabattoni, A., Fermüller, C.G.: Hypersequent calculi for Gödel logics:
a survey. Journal of Logic and Computation 13, 1–27 (2003)

186 K. Brünnler

3. Belnap Jr., N.D.: Display logic. Journal of Philosophical Logic 11, 375–417 (1982)
4. Bencivenga, E.: Free logics. In: Gabbay, D., Guenthner, F. (eds.) Handbook of

Philosophical Logic: Volume III: Alternatives to Classical Logic, pp. 373–426. Rei-
del, Dordrecht (1986)

5. Brünnler, K.: Deep sequent systems for modal logic. Archive for Mathematical
Logic 48(6), 551–577 (2009),
http://www.iam.unibe.ch/~kai/Papers/2009dssml.pdf

6. Brünnler, K., Straßburger, L.: Modular sequent systems for modal logic. In: Giese,
M., Waaler, A. (eds.) TABLEAUX 2009. LNCS, vol. 5607, pp. 152–166. Springer,
Heidelberg (2009)

7. Michael Dunn, J.: A ‘Gentzen’ system for positive relevant implication. The Journal
of Symbolic Logic 38, 356–357 (1974) (Abstract)

8. Fitting, M., Mendelsohn, R.L.: First-order Modal Logic. Synthese library, vol. 277.
Kluwer, Dordrecht (1998)

9. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Col-
lected Papers of Gerhard Gentzen, pp. 68–131. North-Holland Publishing Co., Am-
sterdam (1969)

10. Goré, R., Postniece, L., Tiu, A.: Taming displayed tense logics using nested se-
quents with deep inference. In: Giese, M., Waaler, A. (eds.) TABLEAUX 2009.
LNCS, vol. 5607, pp. 189–204. Springer, Heidelberg (2009)

11. Guglielmi, A.: Mismatch (2003), http://cs.bath.ac.uk/ag/p/AG9.pdf
12. Guglielmi, A.: A system of interaction and structure. ACM Transactions on Com-

putational Logic 8(1), 1–64 (2007)
13. Kashima, R.: Cut-free sequent calculi for some tense logics. Studia Logica 53, 119–

135 (1994)
14. Mints, G.: Cut-elimination theorem in relevant logics. The Journal of Soviet Math-

ematics 6, 422–428 (1976)
15. Poggiolesi, F.: The tree-hypersequent method for modal propositional logic. In: Ma-

linowski, J., Makinson, D., Wansing, H. (eds.) Towards Mathematical Philosophy.
Trends in Logic, pp. 9–30. Springer, Heidelberg (2009)

16. Sadrzadeh, M., Dyckhoff, R.: Positive logic with adjoint modalities: Proof theory,
semantics and reasoning about information. Review of Symbolic Logic (to appear,
2010)

17. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory. Cambridge University
Press, Cambridge (1996)

18. Viganò, L.: Labelled Non-Classical Logics. Kluwer Academic Publishers, Dordrecht
(2000)

http://www.iam.unibe.ch/~kai/Papers/2009dssml.pdf
http://cs.bath.ac.uk/ag/p/AG9.pdf

On the Complexity of the Bernays-Schönfinkel Class
with Datalog

Witold Charatonik and Piotr Witkowski

Institute of Computer Science
University of Wrocław

{wch,pwit}@ii.uni.wroc.pl

Abstract. The Bernays-Schönfinkel class with Datalog is a 2-variable fragment
of the Bernays-Schönfinkel class extended with least fixed points expressible by
certain monadic Datalog programs. It was used in a bounded model checking
procedure for programs manipulating dynamically allocated pointer structures,
where the bounded model checking problem was reduced to the satisfiability of
formulas in this logic. The best known upper bound on the complexity of the
satisfiability problem for this logic was 2NEXPTIME.

In this paper we extend the Bernays-Schönfinkel class with Datalog to a more
expressive logic — a fragment of two-variable logic with counting quantifiers
extended with the same kind of fixed points. We prove that both satisfiability and
entailment for the new logic are decidable in NEXPTIME and we give a matching
lower bound for the original logic, which establishes NEXPTIME-completeness
of the satisfiability and entailment problems for both of them. Our algorithm is
based on a translation to 2-variable logic with counting quantifiers.

1 Introduction

Automated verification of programs manipulating dynamically allocated pointer struc-
tures is a challenging task. The reachable state space of such programs is infinite and
the verification problem is undecidable. Moreover, to reason about sets of nodes reach-
able from a program variable one often wants to be able to compute transitive closure or
least fixed points of some operators. Unfortunately, even quite simple logics like two-
variable fragments of first-order logic or even two-variable fragments of the Bernays-
Schönfinkel class extended with either transitive closure or least fixed points quickly
become undecidable [7,9].

In [4] the authors proposed a bounded model checking procedure for imperative pro-
grams that manipulate dynamically allocated pointer structures on the heap. Although
in this procedure an explicit bound is assumed on the length of the program execution,
the size of the initial data structure is not bounded. Therefore, such programs form infi-
nite and infinitely branching transition systems. The procedure is based on the following
four observations. First, error conditions like dereference of a dangling pointer, are ex-
pressible in the two-variable fragment of the Bernays-Schönfinkel class with equality.
Second, the fragment is closed under weakest preconditions wrt. finite paths. Third,
data structures like trees, lists (singly or doubly linked, or even circular) are expressible
in a fragment of monadic Datalog. Finally, the combination of the Bernays-Schönfinkel

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 187–201, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

188 W. Charatonik and P. Witkowski

fragment with Datalog fragment is decidable. The bounded model checking problem
for pointer programs is then reduced to the satisfiability of formulas in the Bernays-
Schönfinkel class with Datalog. The authors gave an algorithm solving the satisfiability
problem in 2NEXPTIME.

In this paper, we improve the logic from [4] in terms of both expressibility and com-
plexity. The two-variable fragment of the Bernays-Schönfinkel class (BS2 for short) is
simply a fragment of first-order logic restricted to two universally quantified variables.
In the new logic, we are able to use both universal and existential quantifiers and addi-
tionally we may use counting in quantifiers. Moreover, the logic in [4] has additional
semantic restrictions, some of which we are able to drop here. This gives us an increase
of expressibility.

We give an algorithm for testing satisfiability of our logic that runs in NEXPTIME.
The algorithm is based on a translation to 2-variable logic with counting quantifiers.
Since our logic subsumes the the Bernays-Schönfinkel class with Datalog (further called
BS2+Datalog), we improve the previous complexity upper bound. We also give a match-
ing lower bound and establish NEXPTIME-completeness of both logics. Finally, we
also solve the entailment problem, which was left open in [4] and has further conse-
quences for the applicability of the logic in verification.

The paper is organized as follows. The main results on satisfiability and entailment
are proved in Section 3. Section 4 gives the corresponding lower bound. In Section 5
we show that dropping one of the restrictions on sharing data that forbids us to model
directed acyclic graphs leads to a very complex logic. The main part of the paper is
finished with the discussion on related and future work. For missing proofs we refer the
reader to full version of the paper [5].

2 Preliminaries

Let ΣE (extensional database vocabulary) be a vocabulary containing relational symbols
of arity at most 2 and functional symbols of arity 0 (that is, constants). Let ΣI (inten-
sional database vocabulary) be a relational vocabulary containing only unary symbols
and let ΣP be a set containing some of ΣE binary predicates. Assume in addition that a
countably infinite set of variables V is available. ΣE is a vocabulary of some (to be pre-
cised later) two-variable logic formula,ΣI defines symbols that occur in heads of clauses
from Datalog programs and ΣP — binary symbols used in their bodies. Following [4],
we are interested in monadic tree-automaton like Datalog programs, which are Datalog
programs whose clauses are similar to transitions in edge-labeled tree automata.

Definition 1. A monadic tree-automaton like Datalog program over ΣI ,ΣE and ΣP is
a conjunction of clauses of the form

p(u)← B, r1 (u, v1) , q1(v1), . . . , rl(u, vl), ql(vl)

where

– B is a conjunction of ΣE-literals containing constants and possibly the variable u,
– p, q1, . . . , ql are ΣI -predicates,

On the Complexity of the Bernays-Schönfinkel Class with Datalog 189

– r1, . . . , rl are distinct ΣP-predicates,
– l ≥ 0 and u, v1, . . . , vl are distinct variables from V.

Monadic tree-automaton like Datalog programs are further called (monadic, t.a. like)
Datalog programs for short.

Example 1. A binary tree with left and right pointers, whose leaves point to constant
NULL is defined by Datalog program

tree(x)← x = NULL; tree(x)← left(x, y), tree(y), right(x, z), tree(z).

Let P be a monadic Datalog program. Given a ΣE-structure M, the least extension of M
wrt. P is the least (ΣE ∪ΣI)-structure that is a model of the clause set P. More formally,
we have the following definition.

Definition 2 (Least extension). Let M be a relational structure over ΣE and let P be
a monadic Datalog program over ΣI ,ΣP and ΣE whose variables come from V. Let
FM = {p(e) | p(·) ∈ ΣI ∧ e ∈ M}. The direct consequence operator T M

P is a function
from 2FM → 2FM

defined as follows.

T M
P (I) = I ∪ {p(e) | ∃[p(x)← body] ∈ P.∃Θ ∈ V → M. Θ(x) = e ∧ M ∪ I |= (bodyΘ)}

Let T M
P =

⋃∞
i=1(T M

P)i(∅). Then the least extension of M with respect to P is a structure
MP over ΣE ∪ ΣI , such that MP = M ∪ T M

P .

Definition 3 (Sliced Datalog program). A monadic tree-automaton like Datalog pro-
gram P over ΣI , ΣE and ΣP is called sliced if, for some natural k, P =

∧k
i=1 Pi where

– each Pi is a monadic tree-automaton like Datalog program over vocabularies Σi
I ,

Σi
P and ΣE ,

– Σi
I ∩ Σ j

I = ∅ and Σi
P ∩ Σ j

P = ∅ for i � j, 1 ≤ i, j ≤ k,
–
⋃k

i=1 Σ
i
I = ΣI and

⋃k
i=1 Σ

i
P = ΣP.

We sometimes write {P1, . . . , Pk} instead of
∧k

i=1 Pi. In the following, we will use sliced
programs in two ways. The first is to control if some data structures are allowed or are
forbidden to share substructures (see the bounded-sharing restriction below). The sec-
ond way is to solve the entailment problem, where we have to assure that the structures
defined by the two formulas may interfere.

The two-variable fragment of the Bernays-Schönfinkel class (BS2 for short) is the set
of all formulas of the form ∀x∀y φ, where φ is a quantifier-free first-order formula over
ΣE . We specify reachability predicates via sliced Datalog programs.

Definition 4 (BS2+Datalog). A formula of the Bernays-Schönfinkel class with Datalog
is a conjunction φ ∧ P ∧ Q where

– φ is a BS2 formula over ΣE,
– P = {P1, . . . , Pk} is a sliced monadic tree-automaton like Datalog program
– Q is a conjunction (called a query) of constant positive atoms

∧
i pi(ci) (where

pi ∈ ΣI and ci ∈ ΣE) and BS2 formulas over ΣE ∪ΣI with only negative occurrences
of atoms pi(x) (where pi ∈ ΣI and x is a variable).

190 W. Charatonik and P. Witkowski

Example 2. A tree rooted in a constant root whose nodes have a backward link r to root
is specified by the BS2+Datalog formula φ∧P∧Q, where Q is tree(root)∧∀x tree(x)→
(x = NULL∨r(x, root)), P is the Datalog program from Example 1 (with only one slice)
and φ is simply true.

For a given ΣE -formula φ and a query Q, we say that ΣE-structure M satisfies φ ∧
P ∧ Q, denoted by M |= φ ∧ P ∧ Q, if MP is a model of φ ∧ Q, where MP is the
least extension of M wrt. P. However, this still does not define the semantics of the
Bernays-Schönfinkel class with Datalog. The logic was designed to model heaps of
pointer programs, therefore we are not interested in general satisfiability of formulas in
this class, but we impose two additional restrictions on models.

Functionality. We require that all binary relations are functional, i. e., for all predi-
cates r in ΣE , the structure M (and thus also MP must be a model of ∀u, v1, v2

(
r(u, v1)∧

r(u, v2) → v1 = v2
)
. This ensures that every pointer at any given moment points to at

most one heap cell.
Bounded-Sharing. We require that the binary relations occurring in each slice Pi

of the Datalog program P = {P1, . . . , Pk} represent pointers in data structures that do
not share memory with other data structures defined by Pi. That is, the structure MP

must be a model of all sentences of the form ∀u1, u2, v
(
s1(u1, v)∧ s1(u2, v)∧u1 � u2 →

const(v)
)

and ∀u1, u2, v
(
s1(u1, v)∧s2(u2, v)→ const(v)

)
, where s1 and s2 are two distinct

predicates occurring in Σi
P and const(v) is a shorthand for the disjunction

∨
c∈ΣE

v = c.
Note that the bounded-sharing restriction is not imposed on all binary predicates but
just on the ones occurring in the Datalog program P.

As an example consider two programs defining lists

list1(x)← x = NULL; list1(x)← next1(x, y), list1(y).
list2(x)← x = NULL; list2(x)← next2(x, y), list2(y).

together with a formula ∀x ¬next1(NULL, x) ∧ ¬next2(NULL, x). If the two programs
are in the same slice then, with the exception of constants, they are not allowed to have
common nodes. On the other hand, if they are in different slices, they may freely share
nodes.

The functionality and bounded-sharing restrictions are expressible in the Bernays-
Schönfinkel class with equality, but they require more than two variables, so we can-
not add them to the formula φ. Each Datalog slice Pi can define multiple structures.
Constant elements are intended to model nodes pointed to by program variables. Such
nodes are allowed to be pointed to by elements of different structures, even from the
same slice.

Definition 5 (Semantics of the Bernays-Schönfinkel class with Datalog). Let ϕ =
φ ∧ P ∧ Q and M be a finite structure over ΣE such that

– Structure MP, that is the least extension of M wrt. P, obeys functionality and
bounded-sharing restrictions,

– MP |= φ ∧ Q,

Then M is said to satisfy ϕ, in symbols M |= ϕ.

On the Complexity of the Bernays-Schönfinkel Class with Datalog 191

Remark 1. Contrary to our definition of ΣE , in [4] the vocabulary of φ does not contain
unary relational symbols. One can however get rid of them by introducing additional
constant (say d) and replacing each occurrence of an atom r(x) by r′(x, d), where r′
is a fresh binary symbol. Thus presence of unary symbols in ΣE incurs no increase
in asymptotic complexity of the satisfiability problem. Furthermore, in [4] queries Q
are limited to be conjunctions of constant positive atoms, only one-sliced Datalog pro-
grams are allowed and admissible models obey additional semantic restriction called
intersection-freeness. We removed here this last restriction since it is expressible as a
query

∧
p(·)∈ΣI

∧
q(·)∈ΣI ,q�p ∀v(p(v) ∧ q(v)→ const(v)). These extensions do not however

increase the asymptotic complexity of satisfiability and entailment problems compared
to [4]. Lower bound proof from section 4 holds as is for the logic defined in [4].

Definition 6 (Derivation). Let M be a structure over the signature ΣE satisfying the
bounded-sharing restriction, let P be a monadic sliced t.a. like Datalog program, let
p ∈ ΣI and e ∈ M. A derivation deriv(p(e)) is a tree labeled with atoms of the form q(a)
with q ∈ ΣI and a ∈ M such that

– the root of deriv(p(e)) is labeled with p(e),
– if a leaf of deriv(p(e)) is labeled with q(a) then there exists a clause [q(x)← B] ∈ P

and a valuation Θ such that Θ(x) = a and M |= BΘ,
– for every inner node of deriv(p(e)) labeled with q(a) there exists a clause [q(u) ←

B ∧∧k
i=1(ri(u, vi) ∧ qi(vi))] ∈ P and a valuation Θ, such that Θ(u) = a, M |= BΘ ∧

∧k
i=1 ri(a, Θ(vi)) and the children of q(a) are roots of derivations deriv(qi(Θ(vi)) for

all 1 ≤ i ≤ k.

Note that since vocabularies of different slices are disjoint, the whole tree deriv(p(e))
contains only symbols from one slice.

A constant atom is an atom of the form p(c) where c is an element interpreting a
constant symbol. A constant derivation is a derivation of a constant atom. A minimal
derivation is a derivation whose all subderivations have the minimal possible height.
Unless otherwise specified, all derivations we consider are minimal.

Remark 2. Without loss of generality we assume that all leaves in derivations are con-
stant atoms, that is, for all clauses of the form p(u) ← B in P there exists a constant
c ∈ ΣE such that u = c is a conjunct in B. If p(u)← B does not satisfy this requirement,
then it is replaced by p(u) ← B, c(u, y), c(y) and c(x) ← x = c, where c, c(·) and c(·, ·)
are fresh constant, fresh unary ΣI-predicate and fresh binary ΣP-predicate, respectively.
By the definition of vocabularies c(·, ·) is then also a fresh ΣE -predicate.

Definition 7 (p(e)-tree). A p(e)-tree is a maximal subtree of a derivation deriv(p(e))
with root labeled p(e) and no inner nodes labeled with constant atoms.

By remark 2 leaves of each finite derivation are labeled by constant atoms, so are leaves
of any p(e)-tree. The least extension (Definition 2) gives a model-theoretic semantics of
Datalog programs over ΣE-structures; derivations (Definition 6) gives a proof-theoretic
semantics. By a simple inductive proof it is not difficult to see that they are equivalent.

Proposition 1. Let M be a finite structure satisfying the bounded-sharing restriction.
There exists a finite derivation of p(e) if and only if p(e) ∈ T P

M .

192 W. Charatonik and P. Witkowski

3 NEXPTIME Upper Bound

In this section we prove that the satisfiability and entailment problems for the Bernays-
Schönfinkel class with Datalog are decidable in NEXPTIME. This is done by a satis-
fiability (respectively, entailment) preserving polynomial translation from the Bernays-
Schönfinkel class with Datalog to the two-variable logic with counting quantifiers.

The two variable logic with counting (C2) is a fragment of first order logic containing
formulas whose all subformulas have at most two free variables, but these formulas may
contain counting quantifiers ∃≤k,∃≥k,∃=k. Decidability of the satisfiability problem was
discovered independently in [8] and [16]. First NEXPTIME results for C2, under unary
encoding of counts, were obtained in [16,17] and under binary coding in [18]. While C2

does not enjoy the finite model property it is natural to ask for finite satisfiability. This
question was positively answered in [8], NEXPTIME complexity was established by [18]
even under the binary encoding. The (finite) satisfiability of C2 is NEXPTIME-hard as a
consequence of NEXPTIME-hardness of the two variable fragment of first-order logic.

Our translation is done in two steps. First we translate the input formula to an in-
termediate logic C2

r + Datalog + bsr (restricted C2 with Datalog and bounded-sharing
restriction), and then we translate the resulting formula to C2. The reason to introduce
this intermediate logic is that it is more expressive than the Bernays-Schönfinkel class
with Datalog and may be of its own interest. In this logic the Bernays-Schönfinkel part
of the formula (that is, the φ conjunct in a formula of the form φ ∧ P ∧ Q) is relaxed to
use arbitrary quantifiers (not only the ∀ quantifier), even with counting; the query Q is
incorporated into the conjunct φ and relaxed to be arbitrary formula with constant atoms
and restricted occurrences of non-constantΣI -atoms. This is a good step forward in abil-
ity to express more complicated verification conditions of pointer programs. Moreover,
we skip one out of two semantic restrictions on models, namely functionality which
is expressible in C2. The bounded-sharing restriction could not be dropped — it is the
restriction that allows to keep the complexity of Datalog programs under control. In
Section 5 we show that the complexity of unrestricted C2

r with Datalog is much worse
than NEXPTIME.

Let φ be a C2 formula over ΣE ∪ ΣI and let φ′ be its negation normal form. We say
that a ΣI-atom p(x) has a restricted occurrence in φ if either p(x) occurs positively in
φ′ and only in the scope of existential quantifiers or p(x) occurs negatively in φ′ and
only in the scope of universal quantifiers. For example p(x) has a restricted occurrence
in formulas ∀x p(x) → ψ, ∀x (p(x) ∧ q(x)) → ψ, ∃x p(x) ∧ ψ or ∃x p(x) ∧ q(x) ∧ ψ,
where ψ is some C2 formula with one free variable x and q(·) is some ΣI-predicate. The
occurrence of the atom p(x) in the formula ∀y∃x p(x)∧ψ is not restricted, because p(x)
occurs here positively and in the scope of a universal quantifier.

Definition 8 (Syntax of C2
r + Datalog + bsr). A formula of C2

r + Datalog + bsr is a
conjunction of the form φ ∧ P such that

– φ is a formula of the two-variable logic with counting quantifiers over the signature
ΣE ∪ ΣI ,

– all ΣI -literals occurring in φ are either constant literals or have only restricted
occurrences in φ, and

– P is a sliced monadic tree-automaton like Datalog program.

On the Complexity of the Bernays-Schönfinkel Class with Datalog 193

Definition 9 (Semantics of C2
r + Datalog + bsr). Let ϕ = φ ∧ P be a formula of C2

r +

Datalog + bsr and let M be a finite structure over ΣE such that the structure MP, that is
the least extension of M wrt. P, obeys bounded-sharing restriction, and MP |= φ. Then
M is said to satisfy ϕ, in symbols M |= ϕ.

The following proposition reduces the satisfiability problem for BS2 + Datalog to the
satisfiability for C2

r + Datalog + bsr.

Proposition 2. For every formula ϕ = φ∧ P∧Q in the Bernays-Schönfinkel class with
Datalog there exists an equivalent formula ψ of C2

r + Datalog + bsr of size polynomial
in the size of ϕ.

Proof. Let ψ be the conjunction of the following formulas

1. φ ∧ Q,
2.
∧

r(·,·)∈ΣE
∀u∃≤1v r(u, v),

3. P.

Then ψ is a formula of C2
r +Datalog + bsr, because φ is a BS2 formula and all ΣI−atoms

in φ∧Q are either constant atoms or have only restricted occurrences. Furthermore, the
conjunct number 2 expresses the functionality restriction, so ψ is equivalent to ϕ. ��
We say that a formula ϕ entails a formula ϕ′ (in symbols ϕ |= ϕ′) if for all structures
M we have that M |= ϕ implies M |= ϕ′. Below we show that the entailment prob-
lem of BS2 + Datalog is reducible to the satisfiability of C2

r + Datalog + bsr. We start
with an observation that names of predicates defined by Datalog programs may be arbi-
trarily changed. By a renaming function we mean here any bijection between different
vocabularies.

Lemma 1. Let ϕ = φ∧ P∧Q be a BS2 +Datalog formula, where P is a sliced Datalog
program over ΣI and ΣP. Let ϕren be a formula ϕ where ΣI -predicates were arbitrarily
renamed. Then M |= ϕ if and only if M |= ϕren.

Proposition 3 (entailment). For all formulas ϕ = φ ∧ P ∧ Q and ϕ′ = φ′ ∧ P′ ∧ Q′ in
the BS2+Datalog class there exists a formula ψ of C2

r +Datalog + bsr of size polynomial
in the size of ϕ and ϕ′, such that ϕ |= ϕ′ if and only if ψ is unsatisfiable.

Proof. Let ΣI ,ΣP be vocabularies of sliced monadic t.a. like Datalog program P, let
ΣI′ ,ΣP′ be vocabularies of P′. By previous lemma it may be w.l.o.g assumed, that ΣI ∩
ΣI′ = ∅. Furthermore if r(·, ·) ∈ ΣP ∩ ΣP′ then replacing each occurrence of r(·, ·) in
P by a fresh predicate r′(·, ·) and adding a conjunct ∀x∀y r(x, y) ⇐⇒ r′(x, y) to φ
decreases cardinality of ΣP ∩ ΣP′ while preserving entailment. By iteratively applying
this procedure it can be ensured, that also ΣP ∩ ΣP′ = ∅. Let P = {P1, . . . , Pk} and P′ =
{P′1, . . . , P

′
l}. It follows that {P1, . . . , Pk, P

′
1, . . . , P

′
l} is also a sliced monadic Datalog

program. Formula ψ is defined to be (φ ∧ Q ∧ ¬(φ′ ∧ Q)) ∧ {P1, . . . , Pk, P
′
1, . . . , P

′
l}.

Notice also, that by the definition of BS2 + Datalog formulas, all ΣI−atoms in ¬(φ′ ∧
Q′) are either constant atoms or have restricted occurrences, so ψ is a correct C2

r +

Datalog + bsr formula. We now prove, that ϕ |= ϕ′ if and only if ψ is unsatisfiable.
Let Σ be a dictionary of formulas φ and φ′ (in particular ΣP ∪ ΣP′ ⊆ Σ). Let M be an

194 W. Charatonik and P. Witkowski

arbitrary structure over Σ. Then M |= φ ∧ P ∧ Q if and only if the least extension of
M wrt. P models φ ∧ P, that is, MP |= φ ∧ Q. Since ΣP ∩ ΣP′ = ∅, this is equivalent to
MP∧P′ |= φ∧Q. Similarly, M |= φ′ ∧P′∧Q′ is equivalent to MP∧P′ |= φ′ ∧Q′. Therefore,
by definition of entailment, φ∧P∧Q �|= φ′ ∧P′ ∧Q′ if and only if there exists a structure
M, such that MP∧P′ |= φ∧Q and MP∧P′ �|= φ′ ∧Q′, that is, if (φ∧Q∧¬(φ′ ∧Q))∧(P∧P′)
is satisfiable. ��

We now give a polynomial translation from satisfiability of C2
r +Datalog + bsr to finite

satisfiability of C2. We start by removing positive occurrences of non-constant ΣI−
atoms.

Proposition 4. Let ϕ = φ ∧ P be a C2
r + Datalog + bsr formula. Then there exists C2

r +

Datalog + bsr formula ϕ′ = φ′∧P, such that ϕ′ is satisfiable if and only if ϕ is satisfiable
and no atom of the form p(x) (for a variable x and p(·) ∈ ΣI) occurs positively in φ′.

Proof. Assume w.l.o.g. that φ is in negation normal form. By the definition of C2
r +

Datalog + bsr, each positive occurrence of an atom p(x) is in the scope of ∃ quantifiers
only. In particular, the variable x is existentially quantified, so it can be skolemized.
This process replaces x by a fresh constant. By iteration a required formula φ′ can be
obtained. ��

Definition 10 (Translation from C2
r +Datalog + bsr to C2). Let ϕ = φ∧P be a formula

of C2
r + Datalog + bsr over the vocabulary ΣE ∪ ΣI , such that no atom of the form p(x)

(p(·) ∈ ΣI and x is a variable) occurs positively in φ. Let ΣP be the set of binary relations
from P = {P1, . . . , Pk} and let Σ be a vocabulary containing ΣE ∪ ΣI and predicates
const(·), {p(c)-nodeq(·), p(c)-edgeq(·, ·), p(c)-leafq(·) | p, q ∈ ΣI , c ∈ ΣE}. The translation
τ(ϕ) of ϕ to C2 over Σ is the conjunction of the following formulas.

1. φ
2. ∀x const(x)↔ ∨c∈ΣE

x = c
3.

k∧

i=1

∀v (¬const(v)→ ∃≤1u(
∨

r(·,·)∈Σ i
P

r(u, v)))

where Σ1
P, . . . , Σ

k
P are vocabularies of binary symbols used by clauses from slices

P1, . . . , Pk respectively,
4.

k∧

i=1

∧

r(·,·)∈Σ i
P

∧

s(·,·)∈Σ i
P,s�r

∀u∀v (r(u, v) ∧ s(u, v)→ const(v))

5.

∀u p(u)←
l∧

i=1

∃v(ri(u, v) ∧ qi(v)) ∧ B(u)

for all Datalog clauses p(u)← B(u), r1 (u, v1) , q1(v1), . . . , rl(u, vl), ql(vl) from P,

On the Complexity of the Bernays-Schönfinkel Class with Datalog 195

6.

(q(c)→
m∨

j=1

(
l j∧

i=1

∃v(r j
i (c, v) ∧ q j

i (v) ∧ p(c)-edgeqj (c, v)) ∧ B j(c)))

and

∀u (q(u) ∧ ¬const(u)∧p(c)-nodeq(u)→
∨m

j=1(
∧l j

i=1 ∃v(r j
i (u, v) ∧ q j

i (v) ∧ p(c)-edgeqj (u, v)) ∧ B j(u)))

for all q ∈ ΣI , all c ∈ ΣE and all p ∈ ΣI where {q(u) ← B j(u) ∧ ∧l j

i=1(r j
i (u, vi) ∧

q j
i (vi))}mj=1 is the set of all clauses from P defining the predicate q,

7.
∀x∀y p(c)-edgeq(x, y) ∧ ¬const(y)→ p(c)-nodeq(y)

for all p(·), q(·) ∈ ΣI and all c ∈ ΣE

8.
∀x p(c)-edgeq(x, d)→ p(c)-leafq(d)

for all p(·), q(·) ∈ ΣI and all c, d ∈ ΣE,
9.

p(c)-leafq(d) ∧ q(d)-leafr(e)→ p(c)-leafr(e)

for all p(·), q(·), r(·) ∈ ΣI and all c, d, e ∈ ΣE

10.
¬p(c)-leafp(c)

for all p(·) ∈ ΣI and all c ∈ ΣE.

The intuition behind this translation is the following. First, observe that the conjuncts 3
and 4 express the bounded-sharing restriction. Then we want to rewrite Datalog clauses
to implications (conjunct 5), but we need also the reverse directions of these impli-
cations — this is done with conjunct 6, separately for elements interpreting and not
interpreting constants. Now we are almost done, but this construction possibly leads to
cyclic structures (that would correspond to infinite derivations). Thanks to the bounded-
sharing restriction it is possible to forbid cycles containing constant elements, which
is enough for correctness since only formulas from Cr are allowed. Let M |= τ(ϕ).
Then for any given p(c), such that M |= p(c), the set {p(c)-nodeq(e) | q ∈ ΣI ∧
M |= p(c)-nodeq(e)} forms a superset of non-constant nodes of a p(c) − tree, the set
{p(c)-edgeq(e1, e2) | q ∈ ΣI ∧ M |= p(c)-edgeq(e1, e2)} a superset of its edges and finally
the set {p(c)-leafq(d) | q ∈ ΣI ∧ M |= p(c)-leafq(d)} is a superset of its leaves. This is
enforced by conjuncts 6–8. Irreflexivity (conjunct 10) of transitive closure (conjunct 9)
of “being a leaf of” relation assures inexistence of cycles. More formally, we have the
following proposition.

Proposition 5. Let ϕ = φ ∧ P be a C2
r + Datalog + bsr formula. Then ϕ is satisfiable if

and only if the C2 formula τ(ϕ) is finitely satisfiable.

Observe that the size of τ(ϕ) is polynomial in the size of ϕ, which together with Propo-
sition 4 gives us the following corollary.

196 W. Charatonik and P. Witkowski

Corollary 1. The satisfiability problem for C2
r + Datalog + bsr is in NEXPTIME.

Together with Proposition 2 and Proposition 3 this gives us our main theorem.

Theorem 1. The satisfiability and entailment problems for the Bernays-Schönfinkel
class with Datalog are in NEXPTIME.

4 NEXPTIME Lower Bound

In this section we show that the satisfiability problem for the Bernays-Schönfinkel class
with Datalog is NEXPTIME-hard. This is done by a reduction from the following ver-
sion of a tiling problem, which is known [6] to be NEXPTIME-complete.

Definition 11 (Tiling problem).
Instance: a tuple 〈T,H,V, k〉 where T is a finite set of tile colors, H,V ⊆ T × T are
binary relations and k is a positive integer encoded in binary (on �log k� bits).
Question: does there exist a tiling of k × k square by 1 × 1 tiles such that colors of
each pair of horizontally adjacent tiles satisfy the relation H and colors of each pair of
vertically adjacent tiles satisfy V?

If the question in the tiling problem has a positive answer then we say that the instance
〈T,H,V, k〉 has a solution or that there exists a good tiling for this instance. In the follow-
ing, for a given instance 〈T,H,V, k〉 we define a formula ϕ of the Bernays-Schönfinkel
class with Datalog such that ϕ is satisfiable if and only if there exists an appropriate
tiling.

The idea is that any model of the formula describes a good tiling and any such tiling
defines a model of ϕ. The size of the formula is polynomial in |T | + |H| + |V | + �log k�.
Using simple Datalog program and simulating two counters by BS2 formulas it is en-
forced that any model of ϕ has k × k square as a substructure. Is is then enough to
constrain pairs of adjacent nodes according to H and V . Conversely any good tiling can
be labelled by ΣE predicates to form model of ϕ. A detailed description can be found in
the full version of the paper.

The constructed monadic Datalog program has only one slice and its query Q is
simply a constant ΣI -atom. There are also no two distinct ΣI-predicates. Hence, this
reduction also establishes NEXPTIME lower bound for the satisfiability and entailment
problems for the logic defined in [4].

Theorem 2. The satisfiability problem for the Bernays-Schönfinkel class with Datalog
is NEXPTIME-hard.

5 Hardness of C2
r + Datalog

In Section 3 we have shown that the logic C2
r + Datalog + bsr is decidable in NEXP-

TIME. In this section we show that if we skip the bounded-sharing restriction then the
obtained logic C2

r + Datalog becomes much harder. Dropping this restriction is quite
tempting, because it would allow to reason about data structures that do share substruc-
tures, like DAG representations of trees. Here we prove that with the possibility to share

On the Complexity of the Bernays-Schönfinkel Class with Datalog 197

structure, the logic becomes powerful enough to express vector addition systems (VAS).
The reduction in Section 3 relied on the fact that in order to conform with the least fixed
point semantics of Datalog we have to keep cycles on the heap under control, and with
the bounded-sharing restriction we have to worry only about cycles with occurrences
of constants. Without this restriction we would have to additionally handle cycles that
avoid constants, which is out of scope of the C2 logic.

Vector addition systems [15] is a very simple formalism equivalent to Petri Nets. It is
known that its reachability problem is decidable [10,14,12] and EXPSPACE-hard [13],
but precise complexity is not known, and after almost 40 years of research it is even not
known if the problem is elementary. Below we give an exponential reduction from the
reachability problem for VAS to the satisfiability problem for C2

r + Datalog. Although
we believe that C2

r + Datalog is decidable, it is very unlikely that it has an elemen-
tary decision algorithm since existence of such an algorithm implies existence of an
elementary algorithm for VAS reachability.

Now we recall definitions from [15]. An n-dimensional vector addition system is an
ordered pair 〈v,W〉where v is an n-tuple of non-negative integers and W is a finite set of
n-tuples of integers. Given two n-tuples x = 〈x1, . . . , xn〉 and y = 〈y1, . . . , yn〉 we write
x ≤ y if xi ≤ yi for all i = 1, . . . , n and we define x+y to be the tuple 〈x1+y1, . . . , xn+yn〉.
The reachability problem for VAS is the problem whether for a given VAS 〈v,W〉 there
exists a finite sequence w1, . . . ,wm such that

– wi ∈ W for all i = 1, . . . ,m,
– v + w1 + . . . + wi ≥ 0 for all i = 1, . . . ,m, and
– v + w1 + . . . + wm = 0

where 0 is the n-tuple 〈0, . . . , 0〉.
To reduce the VAS reachability problem to the satisfiability in C2

r + Datalog we first
represent solutions to the reachability problem as directed acyclic graphs and then write
a formula that describes such graphs.

Definition 12 (Transition sequence dag). Let 〈v,W〉 be an n-dimensional VAS. A tran-
sition sequence dag for 〈v,W〉 is a directed acyclic multigraph G such that

– nodes of G are n0, n1, . . . , nm for some positive integer m,
– node n0 corresponds to vector v, each node ni for i = 1, . . . ,m corresponds to some

vector in W,
– edges of G are colored with colors numbered from 1 to n (the dimension of the VAS)
– if an edge of G starts in ni and ends in n j then i < j,
– if v = 〈v1, . . . , vn〉 then for all i = 1, . . . , n there are vi edges of color i starting in

n0,
– if a node n corresponds to a vector w = 〈w1, . . . ,wn〉 and wi ≥ 0 then there are wi

edges of color i starting in n, and there are no edges of color i ending in n,
– if a node n corresponds to a vector w = 〈w1, . . . ,wn〉 and wi ≤ 0 then there are wi

edges of color i ending in n, and there are no edges of color i starting in n.

Figure 1 shows an example of a transition sequence dag for the vector addition system
〈〈4, 4〉, {〈−1,−2〉, 〈−1, 2〉}〉. Edges of color 1 are drawn with solid arrows while edges of

198 W. Charatonik and P. Witkowski

n0 n1 n2 n3 n4

Fig. 1. Transition sequence dag for the vector addition system 〈〈4, 4〉, {〈−1,−2〉, 〈−1, 2〉}〉

color 2 are drawn with dotted arrows. Nodes n1, n3 and n4 correspond to vector 〈−1,−2〉;
node n2 corresponds to vector 〈−1, 2〉.

It is not difficult to see that the following lemma holds.

Lemma 2. The reachability problem for a vector addition system 〈v,W〉 has a solution
if and only if there exists a transition sequence dag for 〈v,W〉.
Now we are ready to give the reduction. Let 〈v,W〉 be an n-dimensional vector addition
system. We construct a C2

r +Datalog formula ϕ = φ ∧ P as follows. The vocabulary ΣE

is {ei(·, ·) | 1 ≤ i ≤ n} ∪ {ei, j(·, ·) | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ max j} ∪ {tosink(·, ·), src, sink}. We
use the predicate ei for edges of color i. Additionally, to capture multiple edges of the
same color starting in the same node we shall use touches of colors: the predicate ei, j

is used for touch j of color i. Here j ranges from 1 to the maximum number occurring
in a vector in W ∪ {v} as i-th component, denoted maxi. The constant src is used to
model the starting node of a transition sequence dag. To have exactly one ending node
we introduce additional sink node and connect all nodes of outdegree 0 to it.

The vocabulary ΣI is {nodew(·) | w ∈ W} ∪ {colori(·) | 1 ≤ i ≤ n} ∪ {start(·), end(·)}.
First we give Datalog program P. It consists of the following clauses.

1.

start(x)← x = src ∧
n∧

i=1

vi∧

j=1

ei, j(x, yi, j) ∧ colori(yi, j)

where v = 〈v1, . . . , vn〉,
2. colori(x)← ei(x, y), nodew(y) for all w ∈ W,
3.

nodew(x)← x � src ∧
∧

k:wk>0

wk∧

j=1

ek, j(x, yk, j) ∧ colork(yk, j)

for all w ∈ W such that {k | wk > 0} � ∅
4.

nodew(x)← x � src ∧ tosink(x, y), end(y)

for all w ∈ W such that {k | wk > 0} = ∅
5. end(x)← x = sink.

To define the formula φ we use two macro-definitions: forbid-out(x, S) is an abbrevi-
ation for ∀y (

∧
r(·,·)∈S ¬r(x, y)) and forbid-in(S , x) is ∀y (

∧
r(·,·)∈S ¬r(y, x)). Then φ is

defined as the conjunction of

On the Complexity of the Bernays-Schönfinkel Class with Datalog 199

1. Functionality restriction and intersection freeness (expressed as in the proof of
Proposition 2 in Section 3 and as in Remark 1 in Section 2 respectively),

2.
∀x nodew(x)→ forbid-out(x, ΣE \ {ei, j(·, ·) | wi > 0 ∧ j ≤ wi}),

∀x nodew(x)→ forbid-in(ΣE \ {ei(·, ·) | wi < 0}, x)

∀x nodew(x)→ (
∧

i:wi<0

(∃=−wiy ei(y, x)))

for all w ∈ W
3. ∀y colori(y)→ ∃=1x (

∨maxi
j=1 (ei, j(x, y)∧ forbid-in(ΣE \ {ei, j}, y))) and ∀y colori(x)→

forbid-out(x, ΣE \ {ei})
4. ∀y end(y)→ forbid-out(x, ΣE) ∧ forbid-in(ΣE \ {tosink}, y)
5. ∀x start(x) → forbid-in(ΣE , x) ∧ forbid-out(x, ΣE \ {ei, j(·, ·) | vi > 0 ∧ j ≤ vi})

where v = 〈v1, . . . , vn〉
6. start(src).

Proposition 6. Let 〈v,W〉 be an n-dimensional vector addition system and let ϕ be
the C2

r + Datalog formula constructed above. The reachability problem for 〈v,W〉 has
a solution if and only if ϕ is satisfiable.

Proof (sketch). (⇒) Assume that 〈v,W〉 has a solution. Let G be a transition sequence
dag for 〈v,W〉. For every edge e = 〈ni, n j〉 of color k in G introduce an intermediate node
ne; label the node ne and the edge 〈ne, n j〉 with color k; if e was the l-th edge of color
k starting in the node ni then label the edge 〈ni, ne〉 with touch l of color k. Remove e
from G. Add a new node sink to the graph and connect all nodes that have no successors
in G to it via edges labeled tosink. Label node n0 by constant src. Compute the least
extension of the constructed structure wrt P. The obtained graph is a model of ϕ.

(⇐) Take a model of ϕ. By clauses 3 and 4 each element labeled nodew has at least
required by the vector w number of successors of each color, by conjuncts 2 in φ it has
exactly required number of successors and predecessors. Clause 2 of P together with
conjuncts 3 of φ ensures that all elements labeled colori are intermediate elements on
edges of color i. By removing these intermediate elements and the element interpreting
the sink constant we obtain some graph G. Since G comes from a model of a Datalog
program, it is acyclic. A topological sorting of this graph shows that it is a transition
sequence dag for 〈v,W〉, so 〈v,W〉 has a solution. ��

6 Related Work

We refer the reader to [4] for a discussion of relations between our approach and work
based on abstract interpretation and shape analysis, fragments of first-order logic with
transitive closure or least fixed point, reachability logic, monadic second order logic,
graph logics based on C2, separation logic and bounded model checking. More recent
work includes [1,19,11,2,3]. The last three papers focus on reasoning about lists and
cannot express properties like reachability in a tree between a pair of program vari-
ables. In [1] the authors are able to analyze trees without sharing by simulating them

200 W. Charatonik and P. Witkowski

by a set of converging lists. They then apply abstraction refinement framework and
verify a finite-state over-approximation of the input program. In contrast, we allow
bounded sharing and in our bounded-model-checking application we check properties
of an under-approximation (due to a bounded execution of a program) of an infinite-
state system. It seems that in terms of expressibility the logic most related to ours is
the one from [19]. The exact difference in expressive power needs to be investigated,
but the two logics differ in terms of complexity and underlying decision procedures.
The satisfiability problem for the logic in [19] has NEXPTIME lower bound and ele-
mentary upper bound and it is based on a translation to monadic second-order logic on
trees (the authors say that they have another doubly-exponential procedure, but it is not
published).

7 Conclusion and Future Work

We extended the work from [4] on bounded model checking of imperative programs
that manipulate dynamically allocated pointer structures on the heap. We improved the
complexity of this method and increased the expressibility of the logic. We solved the
entailment problem which opens the possibilities to use the logic not only in bounded
model checking but also in verification.

Our algorithms are based on a translation to two-variable logic with counting quan-
tifiers (C2). One may ask why we do not use directly this logic. The most important
reason is that in Datalog it is relatively easy to express common data structures; the
semantics based on least fixed points allows to control in a simple way (a)cyclicity of
these structures. Trying to express it in C2 leads to formulas like our translation, which
is of course too complicated to be used. Foe example, the translation of the specification
of a tree from Example 1 heavily depends on the context (in particular, used variables)
of the source program and may have hundreds of conjuncts.

There are several possibilities for future work. An obvious one is to implement the
method. Another one is investigation of applications in verification. Still another one is
further extension of the expressibility. Although we have relaxed some restrictions from
[4] (now we are able to express lists that may share some nodes or that are forbidden to
share nodes), we are still not able to express DAG representations of trees. In a separate
work (not published) we have developed a direct algorithm (not based on a translation
to C2) for satisfiability of the Bernays-Schönfinkel class with Datalog; we believe that it
will be more suitable for implementation and that it will allow us to express quantitative
properties like a tree being balanced.

References

1. Balaban, I., Pnueli, A., Zuck, L.D.: Shape analysis of single-parent heaps. In: Cook, B.,
Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 91–105. Springer, Heidelberg (2007)

2. Bansal, K., Brochenin, R., Lozes, E.: Beyond shapes: Lists with ordered data. In: Castagna,
G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 425–439. Springer, Heidelberg (2009)

3. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: A logic-based framework for reason-
ing about composite data structures. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009 -
Concurrency Theory. LNCS, vol. 5710, pp. 178–195. Springer, Heidelberg (2009)

On the Complexity of the Bernays-Schönfinkel Class with Datalog 201

4. Charatonik, W., Georgieva, L., Maier, P.: Bounded model checking of pointer programs. In:
Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 397–412. Springer, Heidelberg (2005)

5. Charatonik, W., Witkowski, P.: On the complexity of the Bernays-Schönfinkel class with
datalog. Full version, http://www.ii.uni.wroc.pl/˜pwit/BSD-full.pdf

6. Fürer, M.: The computational complexity of the unconstrained limited domino problem (with
implications for logical decision problems). In: Proceedings of the Symposium ”Rekursive
Kombinatorik” on Logic and Machines: Decision Problems and Complexity, London, UK,
pp. 312–319. Springer, London (1984)

7. Grädel, E., Otto, M., Rosen, E.: Undecidability results on two-variable logics. In: Reischuk,
R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200, pp. 249–260. Springer, Heidelberg
(1997)

8. Graedel, E., Otto, M., Rosen, E.: Two-variable logic with counting is decidable. In:
LICS 1997: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Sci-
ence, Washington, DC, USA, p. 306. IEEE Computer Society, Los Alamitos (1997)

9. Immerman, N., Rabinovich, A., Reps, T., Sagiv, M., Yorsh, G.: The boundary between de-
cidability and undecidability for transitive-closure logics. In: Marcinkowski, J., Tarlecki, A.
(eds.) CSL 2004. LNCS, vol. 3210, pp. 160–174. Springer, Heidelberg (2004)

10. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary version).
In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp.
267–281 (1982)

11. Lahiri, S., Qadeer, S.: Back to the future: revisiting precise program verification using smt
solvers. In: POPL 2008: Proceedings of the 35th annual ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pp. 171–182. ACM Press, New York (2008)

12. Leroux, J.: The general vector addition system reachability problem by presburger induc-
tive invariants. In: Proceedings of the 24th Annual IEEE Symposium on Logic in Computer
Science, pp. 4–13 (2009)

13. Lipton, R.J.: The Reachability Problem Requires Exponential Space, Technical Report 62,
Yale University, Department of Computer Science (January 1976)

14. Mayr, E.W.: An algorithm for the general petri net reachability problem. SIAM J. Com-
put. 13(3), 441–460 (1984)

15. Nas, B.O.: Reachability problems in vector addition systems. The American Mathematical
Monthly 80(3), 292–295 (1973)

16. Pacholski, L., Szwast, W., Tendera, L.: Complexity of two-variable logic with counting. In:
LICS 1997: Proceedings of the 12th Annual IEEE Symposium on Logic in Computer Sci-
ence, Washington, DC, USA, p. 318. IEEE Computer Society, Los Alamitos (1997)

17. Pacholski, L., Szwast, W., Tendera, L.: Complexity results for first-order two-variable logic
with counting. SIAM J. Comput. 29(4), 1083–1117 (2000)

18. Pratt-Hartmann, I.: Complexity of the two-variable fragment with counting quantifiers. J. of
Logic, Lang. and Inf. 14(3), 369–395 (2005)

19. Yorsh, G., Rabinovich, A., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reachable patterns
in linked data-structures. Journal of Logic and Algebraic Programming 73(1-2), 111–142
(2007)

http://www.ii.uni.wroc.pl/~pwit/BSD-full.pdf

Magically Constraining the Inverse Method
Using Dynamic Polarity Assignment

Kaustuv Chaudhuri

INRIA Saclay, France
���������	��
	�����������

Abstract. Given a logic program that is terminating and mode-correct in an
idealised Prolog interpreter (i.e., in a top-down logic programming engine), a
bottom-up logic programming engine can be used to compute exactly the same
set of answers as the top-down engine for a given mode-correct query by rewrit-
ing the program and the query using the Magic Sets Transformation (MST). In
previous work, we have shown that focusing can logically characterise the stan-
dard notion of bottom-up logic programming if atomic formulas are statically
given a certain polarity assignment. In an analogous manner, dynamically assign-
ing polarities can characterise the e�ect of MST without needing to transform
the program or the query. This gives us a new proof of the completeness of MST
in purely logical terms, by using the general completeness theorem for focusing.
As the dynamic assignment is done in a general logic, the essence of MST can
potentially be generalised to larger fragments of logic.

1 Introduction

It is now well established that two operational “dialects” of logic programming—top-
down (also known as backward chaining or goal-directed) in the style of Prolog, and
bottom-up (or forward chaining or program-directed) in the style of hyperresolution—
can be expressed in the uniform lexicon of polarity and focusing in the cut-free sequent
calculus for a general logic such as intuitionistic logic [8]. The di�erence in these dia-
metrically opposite styles of logic programming amounts to a static and global polarity
assignment to the atomic formulas. Such a logical characterisation allows a general the-
orem proving strategy for the sequent calculus, which might be backward (goal sequent
to axioms) as in tableau methods or forward (axioms to goal sequent) like in the inverse
method, to implement either forward or backward chaining (or any combination) for
logic programs by selecting the polarities for the atoms appropriately. Focused inverse
method provers have been built for linear logic [4], intuitionistic logic [16], bunched
logic [10] and several modal logics [11] in recent years.

The crucial ingredient for the characterisation is that polarities and focusing are suf-
ficiently general that all static polarity assignments are complete [8,1]. The two assign-
ments may be freely mixed for di�erent atoms, which will produce hybrid strategies.
The proofs are very di�erent: in a standard example with Fibonacci numbers, one as-
signment admits exponentially sized derivations, while the other has only the linear
proofs. Even more importantly, the search space for proofs is wildly di�erent for dif-
ferent assignments. Which static assignment to pick is not always obvious and very
diÆcult to perform automatically, as was noted in the experiments in [8,16].

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 202–216, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

Magically Constraining the Inverse Method 203

In this paper, we propose to look at dynamic polarity assignment as a means to do
better than static assignment for certain well-known classes of problems. To our knowl-
edge, dynamic assignment of polarities has been investigated only once before [17];
however, the notion of assignment there is a means of incorporating tables into proof
objects using new atomic cut rules with asymmetric assignments to the cut atoms. Our
proposal, in contrast, retains the same inference rules as ordinary focusing, but dynam-
ically specialises them based on polarity assignments performed at runtime; this lets
us reuse the strong proof-theoretic results about focusing. Note that “dynamic polarity
assignment” is not a particular algorithm but a general class of approaches for control-
ling search behaviour. It is useful to think of it by analogy with ordering strategies in
resolution theorem proving.

In particular, we give a dynamic assignment strategy that implements the e�ect of the
so-called magic sets transformation [3,19,15], which is a program transformation that
constrains forward chaining to have the same set of answers as backward chaining. It is
diÆcult to show that the transformation has this intended property. Moreover, since it is
a global transformation on the program, that might even (in the general case) depend on
the query, it is not modular and compositional. Our proposal reconstructs magic sets and
not only avoids the transformation but also gives a characterises them in the common
lexicon of focusing and polarities. That is, the magic sets approach is just a special
case of dynamic polarity assignment, in much the same way as forward and backward
chaining for Horn clauses are just special cases of static polarity assignment.

We limit our attention in this paper to the focused inverse method [4] as the partic-
ular general search strategy for the sequent calculus. Intuitively (but not precisely; see
sec. 3), this method “compiles” a clause into an inference rule as follows:

��� �� �� � �� �� �� ��� � � �� ��
� ��� x y z

� ��� (� x) y (� z)

When this inference rule is read from premise to conclusion, the interpretation is of
forward chaining on the corresponding clause. Such rules can be repeatedly applied to
produce an infinite number of new sequents di�ering only in the number of �s, which
prevents saturation even for queries with a finite backward chaining search space. With
such clauses, forward chaining cannot appeal to negation by failure, unlike backward
chaining. We show how to use dynamic polarity assignment to instead produce a new
side condition on such inference rules: the conclusion (��� (� x) y (� z)) must be neg-
atively polarised for the rule to be applicable. The atoms are polarised negatively by
carefully selecting only those atoms that are in the base of the logic program.

One important feature of this re-examination of the magic sets approach is that, be-
cause it is performed in a more general setting, we can potentially generalise it to larger
fragments of logic such as the uniform fragment. As it does not change the underlying
proof system, it can potentially co-exist with other strategies. For example, if the dy-
namic assignment algorithm gets stuck, the remaining atoms can be polarised in some
other fashion and the inverse method resumed without losing completeness.

The rest of this paper is organised as follows. In sec. 2 the magic sets transformation
is sketched by way of example. Section 3 then summarises the design of the focused
inverse method and static polarity assignment. Section 4 introduces dynamic polarity
assignment and shows how to use it to implement the magic sets restriction (sec. 4.2).

204 K. Chaudhuri

Finally, sec. 5 discusses the conclusions and scope of future work on dynamic polarity
assignment.

2 Magic Sets Transformation

This section contains a quick overview of the magic sets transformation for logic pro-
grams. We use the “core” version presented in [15], which is less general than some
other designs in the literature [3,19] but also easier to explain and reason about. The
logic programs we will consider are made up of Horn clauses and satisfy a global well-
modedness criterion.

Definition 1 (abstract syntax of Horn clauses). A Horn clause is an iterated implica-
tion of atomic formulas that is implicitly universally closed over all its variables. That
is, Horn clauses (C� D� � � �) satisfy the following grammar:

C� D� � � �� a �t
��� a �t � C t� s� � � �� x

��� f �t

where a ranges over predicate symbols, f over function symbols, and x over variables.
The notation �t stands for a list, possibly empty, of terms.

Note that the clause � �� �� ���� � in a Prolog-like concrete syntax would be writ-
ten as � � � � � � � � � in the above abstract syntax that is, the order of the clauses
in the body is reversed. Many extensions of this definition of Horn clauses exist in the
literature, but they are all generally equivalent to this fragment. A logic program is an
unordered collection of Horn clauses where each predicate and function symbol has a
unique arity. (We do not consider particular orderings of the clauses because we are not
interested in the operational semantics of a particular logic programming language.)

Definition 2 (moding). Every predicate symbol of arity n can be assigned a mode,
which is a string of length n composed of the characters � and �, which are mnemonics
for “input” and “output” respectively. A mode assignment to all predicates in a logic
program is called a moding. The inputs of a predicate with respect to a mode are those
arguments corresponding to the occurrences of � in the mode; likewise, the outputs are
the arguments corresponding to � in the mode.

Definition 3 (well-modedness). All the following are with respect to a given moding:

– A goal query is well-moded i� its inputs are ground.
– A clause a1 �t1 � � � � � an �tn � b �s is well-moded i� for all i � 1��n, the variables

in the inputs of ai �ti are contained in the union of the variables in the outputs of
a j �t j for i � j � n and of the variables in the inputs of b �s .

– A logic program is well-moded i� every clause in it is well-moded.

The definition of well-modedness for non-unit clauses intuitively states that, in a right-
to-left reading of the clause, the inputs of an atomic formula must be defined by the
outputs of earlier atomic formulas and the inputs of the head. Given a well-moded
program and query, every derivation of an instance of the query from the program will
be ground (for the proof, see [2]).

Consider the motivating example from [15]: computing the sum of the elements of a
list of natural numbers. The clauses of the program are as follows in Prolog style.

Magically Constraining the Inverse Method 205

�� ��
� ���� � �� ��

���� �� ��

���� �� �� �� �� ���� � !" ��� � ! � �� ��
� ��� � ��� ��

��� � � ��

��� �� �� � �� �� �� ��� � � ��

This program is well-moded because the outputs flow into the inputs from left to right
in the body of the clauses. A query such as 	�
��� �� �� �� � is well-moded
because the input is ground, while a query such as 	�
��� � �� is not well-moded.

To prove a well-moded query, the backward chaining or top-down logic program-
ming approach matches the goal with the heads of the clauses in the program, and for
each successful match, replaces the goal with the matched instance of the body of the
clause as new subgoals. A well-moded program is said to be terminating if there are no
infinite backward chaining derivations for a well-moded query.

The forward chaining or bottom-up logic programming strategy starts from the unit
clauses in the program, matches the body of a clause with these clauses, and adds the
most general instance of the matched head as a new clause. This is iterated until (a
generalisation of) the goal query is derived. This direction is not quite as obviously
goal-directed as backward chaining, but it has many fundamental merits. It builds a
database of computed facts that are all mutually non-interfering, and therefore requires
no backtracking or global, stateful updates. Moreover, facts and therefore derivations
are implicitly shared, so the loop detection issue that plagues backward chaining does
not apply here.

However, forward chaining su�ers from the obvious problem that it over-
approximates the query, performing a lot of wasteful search. Fortunately, it is possi-
ble to constrain forward chaining for a given program and query such that the algorithm
will saturate, i.e., reach a state where no new facts can be generated, i� the query ter-
minates in backward chaining. This is achieved by rewriting the program and the query
so that the forward algorithm approximates backward search.

The common element of the approaches to constrain forward chaining is the notion
of a magic set, which is an abstract representation of the base of the program [15].
We shall illustrate it here with the example above. For each predicate a, a new magic
predicate a� is added that has the same arity as the input arity of the original predicate.
Then, each clause of the program is transformed to depend on the magic predicate
applied to the inputs of the head. That is, we obtain the following rewritten clauses:

���� �� � �� ����# ���

���� �� �� �� �� ����# �� �� ��" ���� � !" ��� � ! �

��� � � � �� ���# � ��

��� �� �� � �� �� �� ���# �� �� �" ��� � � ��

As there are no longer any unit clauses, forward chaining cannot begin without some
additional input. This is provided in the form of the magic version of the goal query as
a new unit clause:
���� �� �� ��. Finally, clauses are added for the magic pred-
icates to propagate information about the base. For each non-unit clause, there is one
propagation rule for each predicate in the body of the clause. In this example, they are:

206 K. Chaudhuri

����# � �� ����# �� �� ���

���# � ! �� ����# �� �� ��" ���� � !�

���# � � �� ���# �� �� ��

Forward chaining on this transformed program will compute the same instances of the
query as backward chaining on the original program and query.

The correctness of this magic sets transformation is generally quite diÆcult to prove.
One of the most readable proofs was provided by Mascellani et al [15]; that paper also
contains a fully formal definition of the transformation and a number of other examples.
However, all transformational approaches su�er from the same problems outlined in the
introduction: they are not modular and compositional. In the rest of the paper we will
give a di�erent explanation of the magic sets transformation that does not su�er from
these problems, and is moreover manifestly correct because of general proof theoretic
properties of focused sequent calculi.

3 The Focused Inverse Method

In this section we review the focused inverse method for intuitionistic logic. Most of
the material of this section has already appeared in in [4,8,16,9] and in references there-
from. Like other recent accounts of intuitionistic focusing [16,6], we adopt a polarised
syntax for formulas. Intuitively, positive formulas (i.e., formulas of the positive polar-
ity) are those formulas whose left sequent rules are invertible and negative formulas are
those whose right rules are invertible. Every polarised logical connective is unambigu-
ously in one of these two classes. In order to prevent an overlap, we also assign the
atomic formulas individually to one of the two classes. Any polarity assignment for the
atoms is complete [8].

Definition 4 (syntax). We follow this grammar:

P� Q � p
��� P � Q

��� 1
��� P � Q

��� 0
��� �x� P

��� �N N� M � n
��� N & M

��� �
��� P� N

��� 	x� N
���
P

p �
�
a �t ��

�
n �

�
a �t ��

�
P�

� P
��� n N�

� N
��� p

– Formulas (A� B� � � �) are either positive (P� Q� � � �) or negative (N� M� � � �).
– Atomic formulas (or atoms) (p� q� n� m� � � �) are also polarised. Each atom consists

of an atomic predicate (a� b� � � �) applied to a (possibly empty) list of terms, and a
polarity. We shall generally abuse notation and write

�
a �t ��

�
as a� �t , even though

it is the atom and not the predicate that carries the polarity.
– Left passive formulas (N�� M�� � � �) and right passive formulas (P�� Q�� � � �) are

used to simplify the presentation of rules.

We use connectives from polarised linear logic instead of the more usual intuitionistic
connectives to make the polarities explicit. The polarity switching connectives � and
� are only bureaucratic and do not change the truth value of their operands. Both �
and & have the same truth value as the usual intuitionistic conjunction 	—that is, A �
B
 A & B if we ignore polarities and omit the switching connectives � and �—just
di�erent inference rules. In other formulations of polarised intuitionistic logic these
two polarisations of conjunction are sometimes written as 	� or 	� [14], but we prefer

Magically Constraining the Inverse Method 207

the familiar notation from linear logic. Likewise, � has the same truth value as � and
� the same truth value as �.

The inference system for this logic will be given in the form of focused sequent
calculus rules [1,16]. We have the following kinds of sequents:

� � [P] right-focus on P � ; [N] � Q� left-focus on N

� ; � �

�
���
���

N ; �

� ; Q�

� 	
 �
�

left-active on � and right-active on N

where: � � �
��� �� N� is called the passive context and � � �

��� �� P is the active
context. Both contexts are interpreted as multisets (admits only exchange). We adopt
the usual convention of denoting multiset union with commas. It will turn out that the
passive context is also a set, but this is an admissible principle and does not depend on
primitive weakening and contraction rules. Note therefore that �1� �2 is not the same as
�1 �2; if the latter interpretation is needed, it will be written explicitly.

(active)

� ; � � � ; n
� ; � � n ; �

��

� ; � � � ; P
� ; � �
P ; �

�
� ; � � N ; � � ; � � M ; �

� ; � � N & M ; �
&�

� ; � � � ; �
��

� ; �� P � N ; �
� ; � � P� N ; �

��

� ; � � N[a�x] ; �
� ; � � 	x� N ; �

	�a

�� p �t ; � � �

� ; �� p �t � �
��

�� N ; � � �

� ; �� �N � �
��

� ; �� P� Q � �

� ; �� P � Q � �
��

� ; � � �

� ; �� 1 � �
1�

� ; �� P � � � ; �� Q � �

� ; �� P � Q � �
��

� ; �� 0 � �
0�

� ; �� N[a�x] � �

� ; ���x� N � �
��a

(right focus)

�� p �
�
p
 ��

� ; � � N ; �
� � [�N]

��

� � [P] � � [Q]
� � [P � Q]

��
� � [1]

1�
� � [Pi]

� � [P1 � P2]
��i

� ; [P[t�x]]
� � [�x� P]

��

(left focus)

� ; [n] � n
��

� ; P � � ; Q�

� ; [
P] � Q�

�

� ; [Ni] � Q�

� ; [N1 & N2] � Q�
&�i

� � [P] � ; [N] � Q�

� ; [P� N] � Q�
��

� ; [N[t�x]] � Q�

� ; [x� N] � Q�
	�

(decision)
� � [P]

� ; � � � ; P
��

�� N ; [N] � Q�

�� N ; � � � ; Q�
��

Fig. 1. Focused sequent calculus for polarised first-order intuitionistic logic. In the rules ��a and
	�a the parameter a is not free in the conclusion.

208 K. Chaudhuri

The focused sequent calculus will be presented in a stylistic variant of Andreoli’s
original formulation [1]. The full set of rules is in fig. 1. It has an intensional reading
in terms of phases. At the boundaries of phases are sequents of the form � ; � � � ; Q�,
which are known as neutral sequents. Proofs of neutral sequents proceed (reading from
conclusion to premises) as follows:

1. Decision: a focus is selected from a neutral sequent, either from the passive context
or from the right. This focused formula is moved to its corresponding focused zone
using one of the rules �� or �� (� � “decision”, and ��� � “right”�“left”). The left
rule copies the focused formula.

2. Focused phase: for a left or a right focused sequent, left or right focus rules are
applied to the formula under focus. These focused rules are all non-invertible in
the (unfocused) sequent calculus—that is, they can fail to apply—and therefore
depend on essential choices made in the proof. This is familiar from focusing for
linear logic [1,8].

3. Active phase: once the switch rules �� and �� are applied, the sequents become
active and active rules are applied. The order of the active rules is immaterial as
all orderings will produce the same list of neutral sequent premises. In Andreoli’s
system the irrelevant non-determinism in the order of these rules was removed by
treating the active context � as ordered; however, we do not fix any particular
ordering.

The soundness of this calculus with respect to an unfocused sequent calculus, such as
Gentzen’s LJ, is obvious. For completeness, we refer the interested reader to a number
of published proofs in the literature [8,13,18,12].

The purpose of starting with a polarised syntax and a focused calculus is that we are
able to look at derived inference rules for neutral sequents as the basic unit of steps. For
instance, one of the derived inference rules for the formula N � p � q� m & (�l� n)
in the passive context is given in fig. 2. The instance of �� above forces p to be in the
passive context because that is the only rule that can be applied to contruct a sequent
of the form � �

�
p
�
. Likewise, the �� rule forces the right hand side of the conclusion

sequent to be the same as the left focused atom n. Finally, the �� rule requires N to
already be present in the passive context.

As we observe, focusing compiles formulas such as N above, which may be clauses
in a program, into (derived) inference rules. Focusing can also produce new facts, which

�� N� p �
�
p
 ��

�� N� p �
�
p � q

�� N� p ; � � � ; l
�� N� p ; � � l ; �
�� N� p � [�l] �� N� p ; [n] � n

��

�� N� p ; [�l� n] � n

�� N� p ; [m & (�l� n)] � n
&�2

�� N� p ; [N] � n
�� N� p ; � � � ; n

�� i.e.,
�� N� p ; � � � ; l
�� N� p ; � � � ; n

Fig. 2. One derived inference rule for N

Magically Constraining the Inverse Method 209

are neutral sequents that have no open premises after applying a derived inference rule.
An example would be the case for the derivation above where, instead of &�2 we were
to use &�1. In this case we would obtain the fact �� N� p ; � � � ; m. If the goal were of
this form, we would be done.

This property of focusing can be exploited to give a purely proof-theoretic expla-
nation for certain dialects of proofs. For Horn clauses, consider the case where all the
atoms are negative, i.e.clauses are of the form ��x � �m1� � � �� �m j� n. If clause were
named N, then its derived inference rule is:

�� N ; � � � ; m1[�t ��x] � � � �� N ; � � � ; mj[�t ��x]

�� N ; � � � ; n[�t ��x]

Since the context is the same in all premises and the conclusion, we need only look
at the right hand side. If we read the rule from conclusion to premises, then this rule
implements back-chaining from an instance of the head of this Horn clause to the cor-
responding instances of the body of the clause, where the neutral sequents represent the
current list of sub-goals. Thus, the general top-down logic programming strategy (or
backward chaining) consists of performing goal-directed focused proof search on Horn
clauses with negative atoms. If the atoms were all assigned positive polarity instead,
then the same goal-directed focused proof search would perform a kind of bottom-up
logic programming (or forward chaining). Static polarity assignment for the atoms is
therefore a logical characterisation of forward and backward chaining strategies. In-
deed, if the atoms were not uniformly given the same polarities, then the focused proofs
would be a mixture of forward and backward chaining.

3.1 Forward Reasoning and the Inverse Method

An important property of the (cut-free) sequent calculus of fig. 1 is that there is a struc-
tural cut-elimination algorithm [8]; as a consequence, the calculus enjoys the subfor-
mula property. Indeed, it is possible to state the subformula property in a very strong
form that also respects the sign of the subformula (i.e., whether it is principal on the left
or the right of the sequent) and the parametricity of instances (i.e., the subformulas of a
right � or a left � can be restricted to generic instances). We omit a detailed definition
and proof here because it is a standard result; see e.g. [7] for the definition.

With the strong subformula property, we can restrict the rules of fig. 1 to subformu-
las of a given fixed goal sequent. It then becomes possibile to apply the inference rules
in a forward manner, from premises to conclusion. The inputs of such a forward rea-
soning strategy would be the facts that correspond to focusing on the passive formulas
and operands of the switch connectives in the goal sequent, subject to the subformula
restriction. That is, the initial sequents (in the rules �� and ��) correspond to atomic
formulas that are both a left and a right signed subformula of the goal sequent. From
these initial sequents we apply the (subformula-restricted) inference rules forward until
we derive (a generalisation of) the goal sequent. In order to implement the calculus, the
axiomatic rules such as 1� are refined to omit the passive context; the additive rules are
turned into multiplicative rules and an explicit rule of factoring added; and the calculus
is lifted to free variables with identity replaced with unifiability, and only most general

210 K. Chaudhuri

instances are considered. This core “recipe” is outlined in the Handbook article on the
inverse method [9] and is not repeated here.

One optimisation not mentioned in [9] but implemented in many inverse method
provers [4,16] is globalisation: the forward version of the �� rule is specialized into the
following two forms:

� ; [N] � Q� N � �0

�� N ; � � � ; Q�

���1
� ; [N] � Q� N � �0

� ; � � � ; Q�

���2

where �0 is the passive context of the goal sequent. This context is present in every
sequent in the backward proof, so there is no need to mention it explicitly in the forward
direction. For logic programs, �0 will contain the clauses of the program and it is not
important to distinguish between two computed sequents that di�er only in the used
clauses of the program.

Let us revisit the static polarity assignment question in the forward direction. The
forward derived rule for the Horn clause ��x � �m1 � � � �� �m j � n � �0, after lifting
to free variables, is:

�1 ; � � � ; m�

1 � � � � j ; � � � ; m�

j � � mgu(m1� � � � �mj�� m�

1� � � � �m�

j�)

(�1� � � � ��n ; � � � ; n)[�]

For unit clauses, which provide the initial sequents, the passive context � is empty
(because there are no premises remaining after globalisation). Therefore, all neutral
sequents computed by forward reasoning will have empty passive contexts, giving us
the rule:

� ; � � � ; m�

1 � � � � ; � � � ; m�

j � � mgu(m1� � � � �mj�� m�

1� � � � �m�

j�)

(� ; � � � ; n)[�]

Thus, this derived inference rule implements forward chaining for this clause. This sit-
uation is dual to the backward reading of the rules of fig. 1 where a static negative
assignment to the atoms implemented backward chaining. As expected, a static pos-
itive polarity assignment to the atoms implements backward chaining in the forward
calculus. The technical details of operational adequacy can be found in [8].

4 Dynamic Polarity Assignment

The previous section demonstrates that we can implement forward chaining (or bottom
up logic programming) using the vocabulary of focusing and polarity assignment. For
the rest of this paper we shall limit or attention to forward reasoning as the global
strategy, with negative polarity assignment for the atoms as our means of implementing
forward chaining.

Obviously the benefit of polarity assignment is that completeness is a trivial conse-
quence of the completeness of focusing with respect to any arbitrary, even heteroge-
neous, polarity assignment for the atoms. Moreover, the completeness of the inverse
method merely requires that the rule application strategy be fair. This minimal require-
ment of fairness does not force us to assign the polarity of all atoms statically, as long
as we can guarantee that every atom that is relevant to the proof is eventually assigned

Magically Constraining the Inverse Method 211

a polarity (and that the rest of the inverse method engine is fair). Can we do better
than static assignment with dynamic assignment? This section will answer this question
aÆrmatively.

4.1 The Mechanism of Dynamic Polarity Assignment

Let us write unpolarised atoms (i.e., atoms that haven’t been assigned a polarity) simply
in the form a �t, and allow them to be used as both positive and negative formulas in the
syntax. That is, we extend the syntax as follows:

P� Q� � � �� a �t
��� p

��� P � Q
��� 1

��� P � Q
��� 0

��� �x� P
��� �N

N� M� � � �� a �t
��� n

��� N & M
��� �

��� P� N
��� 	x� N

���
P

For example, A Horn clause with unpolarised atoms have the syntax ��x� a1 �t1 � � � ��

a j �t j � b �s where the �x are the variables that occur in the terms �t1� � � � � �t j� �s.
Consider a variant of the focused inverse method where we allow two kinds of se-

quents as premises for inference rules: neutral sequents, as before, and sequents that
have a focus on an unpolarised atom which we call proto sequents. An inference rule
with proto sequent premises will be called a proto rule.

Definition 5. Environments (��� � � � �) are given by the following grammar:

�� � � �� �
��� �

���� � � �� �
��� � � Q

��� P � �
��� � � Q

��� P � �
��� �x��

��� ��

� ��� � � �� �
���� & M

��� N &�
��� �� N

��� P��
��� �x��

��� ��

We write �(A) for the formula formed by replacing the � in � with A, assuming it is
syntactically valid. An environment � is called positive (resp. negative) if �(p) (resp.
�(n)) is syntactically valid for any positive atom p (resp. negative atom n).

Definition 6 (polarity assignment). We write A[a �t � �] (resp. A[a �t � �]) to stand
for the positive (resp. negative) polarity assignment to the unpolarised atom a �t in the
formula A. It has the following recursive definition:

– If the unpolarised atom a �t does not occur in A, then A[a �t � �] � A.
– If A � �(a �t) and � is positive, then

A[a �t � �] � (�(a� �t))[a �t � �]

A[a �t � �] � (�(�a� �t))[a �t � �]

– If A � �(a �t) and � is negative, then

A[a �t � �] � (�(
a� �t))[a �t � �]

A[a �t � �] � (�(a� �t))[a �t � �]

This definition is extended in the natural way to contexts, (proto) sequents, and (proto)
rules.

212 K. Chaudhuri

Polarity assignment on proto rules generally has the e�ect of instantiating certain
schematic meta-variables. For instance, consider the following proto-rule that corre-
sponds to a left focus on the unpolarised Horn clause C � �x� y� a x� b y� c x y:

��C � [a s] ��C � [b t] ��C ; [c s t] � Q�

��C ; � � � ; Q�

All the premises of this rule are proto sequents. Suppose we assign a positive polarity
to a s; this will change the proto rule to:

��C � [a�s] ��C � [b t] ��C ; [c s t] � Q�

��C ; � � � ; Q�

(where C� is C[a s � �]). This proto rule actually corresponds to:

��C�� a�s � [b t] ��C�� a�s ; [c s t] � Q�

��C�� a�s ; � � � ; Q�

because the only way to proceed further on the first premise is with the �� rule. This
instantiates � with �� a�s. If we now assign a negative polarity to c s t, we would obtain
the rule:

��C��� a� s � [b t]
��C��� a�s ; � � � ; c�s t

(where C�� � C�[c s t � �]) which instantiates Q� to c�s t. Finally, if we assign a
negative polarity to b t, we would obtain the ordinary (non-proto) inference rule with
neutral premise and conclusion:

��C���� a�s ; � � � ; b�t
��C���� a� s ; � � � ; c�s t

(where C��� � C��[b t � �]).

4.2 Implementing Magic Sets with Dynamic Polarity Assignment

This sub-section contains the main algorithm of this paper – a dynamic polarity assign-
ment strategy that implements magic sets in the inverse method. The key feature of the
algorithm is that it involves no global rewriting of the program clauses, so soundness
is a trivial property. Completeness is obtained by showing that the algorithm together
with the inverse method performs fairly on well-moded logic programs and queries.

The algorithm consists of dynamically assigning negative polarity to unpolarised
atoms. Initially, all atoms in the program are unpolarised and the atom in the goal query
is negatively polarised. It maintains the following lists:

– Seeds, which is a collection of the negatively polarised atoms;
– Facts, which is a list of computed facts which are ordinary neutral sequents;
– Rules, which is a list of partially applied, possibly proto, rules.

Whenever a fact is examined by the inner loop of the inverse method, new facts and
partially applied (possibly proto) rules are generated. After the inner loop ends (i.e.,
after all subsumption checks and indexing), the following seeding step is repeatedly
performed until quiescence.

Magically Constraining the Inverse Method 213

Definition 7 (seeding step). For every right-focused proto-sequent in the premise of
every proto rule, if the focused atom is mode correct—that is, if the input arguments of
the atom are ground—then all instances of that atom for arbitrary outputs are assigned
a negative polarity. These new negatively polarised atoms are added to the Seeds.

For example, if the unpolarised atom ��� 3 4 (f (x)) has a right focus in a proto rule
and ��� has mode ���, then all atoms of the form ��� 3 4 _ are assigned negative
polarity. The seeding step will generate new facts or partially applied rules, which are
then handled as usual by the inverse method.

4.3 Example

Let us revisit the example of sec. 2. Let�0 be the collection of unpolarised Horn clauses
representing the program, i.e.:

�0 � ���� [] 0� (C1)
	x� y� j� k� ���� y j� ��� x j k� ���� (x :: y) k� (C2)
	x� ��� 0 x x� (C3)
	x� y� z� ��� x y z� ��� (� x) y (� z) (C4)

As before, let the modes be �� for
��� and ��� for ���. The above program is termi-
nating and mode-correct for this moding. Consider the query 	��� [1� 2� 3] X, i.e., we
are proving the goal sequent:

�0�	x� ���� [1� 2� 3] x� �
� 	
 �

�0

; � � � ; �

Since there are no switched subformulas, the only available rules will be for clauses in
�0 and the goal
. Using the subformula restriction and globalisation, we would then
obtain the following derived proto rules:

� ; [���� [] 0] � Q�

� ; � � � ; Q�
(C1)

�1 ;
�
���� (x :: y) k

� Q� �2 �

�
���� y j

�3 �

�
��� x j k

�1��2��3 ; � � � ; Q�
(C2)

� ; [��� 0 x x] � Q�

� ; � � � ; Q�
(C3)

�1 ;
�
��� (� x) y (� z)

� Q� �2 �

�
��� x y z

�1��2 ; � � � ; Q�
(C4)

�1 ; [�] � Q� �2 � [���� [1� 2� 3] x]
�1��2 ; � � � ; Q�

(�)

There are no initial sequents, so we perform some seeding steps. The initial polarity
assignment is negative for the goal
; this produces the following instance of (
):

�2 � [���� [1� 2� 3] x]
� ; � � � ; ��

(��)

Now we have a right focus on a well-moded unpolarised atom, viz. 	��� [1� 2� 3] x, so
we add 	���� [1� 2� 3] _ to the Seeds. This produces two instances of the proto rule (C2)
depending on the two ways in which the seed can match the proto premises.

214 K. Chaudhuri

�1 �
�
���� [2� 3] j

�2 �

�
��� 1 j k

�1��2 ; � � � ; ����� [1� 2� 3] k
(C21)

�1 ; [���� (x :: [1� 2� 3]) k] � Q� �2 ; � � � ; ����� [1� 2� 3] j �3 �
�
��� x j k

�1��2��3 ; � � � ; Q�
(C22)

The first premise in (C21) is well-moded and will produce further seeds. However, (C22)
produces no seeds as there are no proto premises with a right focus on a well-moded
unpolarised atom. Continuing the seeding steps for (C21) we produce the following new
useful proto rules:

�1 �
�
���� [2] j

�2 �

�
��� 2 j k

�1��2 ; � � � ; ����� [2� 3] k
(C211)

�1 �
�
���� [] j

�2 �

�
��� 3 j k

�1��2 ; � � � ; ����� [3] k
(C2111)

The rule (C2111) produces a seed 	���� [] _ that matches the premise of (C1) to produce
our first fact: � ; � � � ; 	���� [] 0. This can now be applied in the premise of (C2111) by
the inverse method loop to produce the following partially applied instance:

� � [��� 3 0 k]
� ; � � � ; ����� [3] k

(C5)

This finally gives us our first seed for ���, viz. ���� 3 0 _. This seed will, in turn
produce seeds ���� 2 0 _, ���� 1 0 _, and ���� 0 0 _ from instances of the rule (C4).
The last of these seeds will instantiate (C3) to give our second fact, � ; � � � ; ���� 0 0 0.
The inverse method will then be able to use this rule to partially apply the instances of
the (C3) rule to produce, eventually, � ; � � � ; ���� 3 0 3, which can be matched to (the
instance of) (C5) to give our second derived fact about 	���, viz. � ; � � � ; 	���� [3] 3.
These steps repeat twice more until we eventually derive � ; � � � ; 	����[1� 2� 3] 6,
which finally lets us derive the goal sequent using (the instance of) (
).

4.4 Correctness

Crucially, no further inferences are possible in the example of the previous section.
There will never be any facts generated about 	���� [5� 1� 2� 3� 4] x, for instance, be-
cause there is never a seed of that form. Thus, as long as there is a well-founded measure
on the seeds that is strictly decreasing for every new seed, this implementation of the
inverse method will saturate.

Lemma 8 (seeding lemma). All atoms occurring to the right of sequents in the Facts
list are instances of atoms in the Seeds.

Proof. Since the only polarity assignment is to assign an unpolarised atom the negative
polarity, the only e�ect it has on proto inference rules is to finish left-focused proto
sequent premises with ��, and turn right-focused proto sequent premises into neutral
sequent premises. Finishing the left-focused premises has the side e�ect of instantiat-
ing the right hand side with the newly negatively polarised atom. If there are no neutral
premises as a result of this assignment, then the newly generated fact satisfies the re-
quired criterion. Otherwise, when the conclusion is eventually generated by applying
the rule in the inverse method, the right hand side will be an instance of the negatively
polarised atom. ��

Magically Constraining the Inverse Method 215

The main result of this paper is a simple corollary.

Corollary 9 (saturation). Given a well-moded logic program that terminates on all
well-moded queries—i.e., all derivations of a well-moded query are finite—the inverse
method with the dynamic polarity assignment algorithm of sec. 4.1 saturates for all
well-moded queries.

Proof (Sketch). Instead of giving a fully formal proof, which is doable in the style
of [15], we give only the intuition for the proof. Note that if the logic program is ter-
minating for all well-moded queries, then there is a bounded measure � � that is strictly
decreasing from head to body of all clauses in the program. We use this measure to
build a measure on the Seeds collection as follows:

– For each atom in Seeds, pick the element with the smallest � �-measure.
– For each atom not in Seeds, pick greatest lower bound of the � �-measure.
– Pick a strict but arbitrary ordering of all the predicate symbols and arrange the

measures selected in the previous two steps in a tuple according to this ordering.
This tuple will be the measure of Seeds.

It is easy to see that this measure on Seeds has a lower bound according to the lexico-
graphic ordering. Therefore, all we need to show is that this measure is decreasing on
Seeds for every seeding step and then we can use lem. 8 to guarantee saturation. But
this is easily shown because the � �-measure decreases when going from the conclusion
to the premises of every derived inference rule for the clauses of the logic program (see
the example in sec. 4.3). ��

The completeness of the dynamic polarity assignment algorithm follows from the com-
pleteness of focusing with (arbitrary) polarity assignment, the completeness of the in-
verse method given a fair strategy, and the observation that Seeds contains a superset of
all predicates that can appear as subgoals in a top-down search of the given logic program.

5 Conclusion

We have shown how to implement the magic sets constraint on a focused forward search
strategy by dynamically assigning polarities to unpolarised atoms. As one immediate
consequence, our forward engine can respond with the same answer set as traditional
back-chaining for well-moded and terminating programs. The notion of dynamic po-
larity assignment is novel to this work and the last word on it is far from written. The
obvious next step is to see how it generalises to fragments larger than Horn theories.
More fundamentally, while fairness in the inverse method gives a general external crite-
rion for completeness, an internal criterion for judging when a given dynamic polarity
assignment strategy will be complete is currently missing.

Acknowledgement. We thank Brigitte Pientka for several useful discussions about magic
sets and polarity assignment.

216 K. Chaudhuri

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. of Logic and
Computation 2(3), 297–347 (1992)

2. Apt, K.R., Marchiori, E.: Reasoning about prolog programs from modes through types to
assertions. Formal Aspects of Computing 6(A), 743–764 (1994)

3. Beeri, C., Ramakrishnan, R.: On the power of magic. J. of Logic Programming 10(1�2�3&4),
255–299 (1991)

4. Chaudhuri, K.: The Focused Inverse Method for Linear Logic. PhD thesis, Carnegie Mellon
University, Technical report CMU-CS-06-162 (2006)

5. Chaudhuri, K.: Focusing strategies in the sequent calculus of synthetic connectives. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 467–
481. Springer, Heidelberg (2008)

6. Chaudhuri, K.: Classical and intuitionistic subexponential logics are equally expressive. In:
Veith, H. (ed.) CSL 2010. LNCS, vol. 6247, pp. 185–199. Springer, Heidelberg (2010)

7. Chaudhuri, K., Pfenning, F.: A focusing inverse method theorem prover for first-order linear
logic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 69–83. Springer,
Heidelberg (2005)

8. Chaudhuri, K., Pfenning, F., Price, G.: A logical characterization of forward and backward
chaining in the inverse method. J. of Automated Reasoning 40(2-3), 133–177 (2008)

9. Degtyarev, A., Voronkov, A.: The inverse method. In: Handbook of Automated Reasoning,
pp. 179–272. Elsevier and MIT Press (2001)

10. Donnelly, K., Gibson, T., Krishnaswami, N., Magill, S., Park, S.: The inverse method for
the logic of bunched implications. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS
(LNAI), vol. 3452, pp. 466–480. Springer, Heidelberg (2005)

11. Heilala, S., Pientka, B.: Bidirectional decision procedures for the intuitionistic propositional
modal logic IS4. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 116–131.
Springer, Heidelberg (2007)

12. Howe, J.M.: Proof Search Issues in Some Non-Classical Logics. PhD thesis, U. of St An-
drews, Research Report CS�99�1 (1998)

13. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and classical logics.
Theoretical Computer Science 410(46), 4747–4768 (2009)

14. Liang, C., Miller, D.: A unified sequent calculus for focused proofs. In: LICS 24, pp. 355–
364 (2009)

15. Mascellani, P., Pedreschi, D.: The declarative side of magic. In: Kakas, A.C., Sadri, F. (eds.)
Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 83–
108. Springer, Heidelberg (2002)

16. McLaughlin, S., Pfenning, F.: Imogen: Focusing the polarized focused inverse method for
intuitionistic propositional logic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008.
LNCS (LNAI), vol. 5330, pp. 174–181. Springer, Heidelberg (2008)

17. Miller, D., Nigam, V.: Incorporating tables into proofs. In: Duparc, J., Henzinger, T.A. (eds.)
CSL 2007. LNCS, vol. 4646, pp. 466–480. Springer, Heidelberg (2007)

18. Miller, D., Saurin, A.: From proofs to focused proofs: a modular proof of focalization in
linear logic. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 405–
419. Springer, Heidelberg (2007)

19. Ullman, J.D.: Principles of Database and Knowledge-base Systems, Volume II: The New
Techniques. In: Principles of Computer Science. Computer Science Press, Rockville (1989)

Lazy Abstraction for Size-Change Termination�

Michael Codish1, Carsten Fuhs2, Jürgen Giesl2, and Peter Schneider-Kamp3

1 Department of Computer Science, Ben-Gurion University, Israel
2 LuFG Informatik 2, RWTH Aachen University, Germany

3 IMADA, University of Southern Denmark, Odense, Denmark

Abstract. Size-change termination is a widely used means of proving
termination where source programs are first abstracted to size-change
graphs which are then analyzed to determine if they satisfy the size-
change termination property. Here, the choice of the abstraction is crucial
to the success of the method, and it is an open problem how to choose
an abstraction such that no critical loss of precision occurs. This paper
shows how to couple the search for a suitable abstraction and the test for
size-change termination via an encoding to a single SAT instance. In this
way, the problem of choosing the right abstraction is solved en passant
by a SAT solver. We show that for the setting of term rewriting, the
integration of this approach into the dependency pair framework works
smoothly and gives rise to a new class of size-change reduction pairs.
We implemented size-change reduction pairs in the termination prover
AProVE and evaluated their usefulness in extensive experiments.

1 Introduction

Proving termination is a fundamental problem in verification. The challenge of
termination analysis is to design a program abstraction that captures the prop-
erties needed to prove termination as often as possible, while providing a de-
cidable sufficient criterion for termination. The size-change termination method
(SCT) [21] is one such technique where programs are abstracted to size-change
graphs which describe how the sizes of program data are affected by the tran-
sitions made in a computation. Size is measured by a well-founded base order.
A set of size-change graphs has the SCT property iff for every path through
any infinite concatenation of these graphs, a value would descend infinitely often
w.r.t. the base order. This contradicts the well-foundedness of the base order,
which implies termination of the original program. Lee et al. prove in [21] that
the problem to determine if a set of size-change graphs has the SCT property is
PSPACE-complete. The size-change termination method has been successfully
applied in a variety of different application areas [2,7,19,25,28,29].

Another approach emerges from the term rewriting community where termi-
nation proofs are performed by identifying suitable orders on terms and showing
that every transition in a computation leads to a reduction w.r.t. the order. This
� Supported by the G.I.F. grant 966-116.6, the DFG grant GI 274/5-3, and the Danish

Natural Science Research Council.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 217–232, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

218 M. Codish et al.

approach provides a decidable sufficient termination criterion for a given class of
orders and can be considered as a program abstraction because terms are viewed
modulo the order. Tools based on these techniques have been successfully applied
to prove termination automatically for a wide range of different programming
languages (e.g., Prolog [23,27], Haskell [17], and Java Bytecode [24]).

A major bottleneck when applying SCT is due to the fact that it is a 2-phase
process: First, a suitable program abstraction must be found, and then, the
resulting size-change graphs are checked for termination. It is an open problem
how to choose an abstraction such that no critical loss of precision occurs. Thus,
our aim is to couple the search for a suitable abstraction with the test for size-
change termination. To this end we model the search for an abstraction as the
search for an order on terms (like in term rewriting). Then we can encode both
the abstraction and the test for the SCT property into a single SAT instance.

Using a SAT-based search for orders to prove termination is well established
by now. For instance [8,9,13,26,30] describe encodings for RPO, polynomial or-
ders, or KBO. However, there is one major obstacle when using SAT for SCT.
SCT is PSPACE-complete and hence (unless NP = PSPACE), there is no polyno-
mial-size encoding of SCT to SAT. Thus, we focus on a subset of SCT which is in
NP and can therefore be effectively encoded to SAT. This subset, called SCNP,
is introduced by Ben-Amram and Codish in [5] where experimental evidence
indicates that the restriction to this subset of SCT hardly makes any difference
in practice. We illustrate our approach in the context of term rewrite systems
(TRSs). The basic idea is to give a SAT encoding for the following question:

For a given TRS (and a class of base orders such as RPO), is there a base
order such that the resulting size-change graphs have the SCT property?

In [29], Thiemann and Giesl also apply the SCT method to TRSs and show how
to couple it with the dependency pair (DP) method [1]. However, they take the
2-phase approach, first (manually) choosing a base order, and then checking if
the induced size-change graphs satisfy the SCT property. Otherwise, one might
try a different order. The implementation of [29] in the tool AProVE [15] only
uses the (weak) embedding order in combination with argument filters [1] as base
order. It performs a naive search which enumerates all argument filters. The new
approach in this paper leads to a significantly more powerful implementation.

Using SCNP instead of SCT has an additional benefit. SCNP can be directly
simulated by a new class of orders which can be used for reduction pairs in the
DP framework. Thus, the techniques (or “processors”) of the DP framework do
not have to be modified at all for the combination with SCNP. This makes the
integration of the size-change method with DPs much smoother than in [29] and
it also allows to use this integration directly in arbitrary (future) extensions of
the DP framework. The orders simulating SCNP are novel in the rewriting area.

The paper is structured as follows: Sect. 2 and 3 briefly present the DP frame-
work and the SCT method for DPs. Sect. 4 adapts the SCNP approach to term
rewriting. Sect. 5 shows how to encode the search for a base order which satisfies
the SCNP property into a single SAT problem. Sect. 6 presents our experimental
evaluation in the AProVE tool [15]. We conclude in Sect. 7.

Lazy Abstraction for Size-Change Termination 219

2 Term Rewrite Systems and Dependency Pairs
We assume familiarity with term rewriting [3] and briefly introduce the main
ideas of the DP method. The basic idea is (i) to describe all (finitely many)
paths in the program from one function call to the next by special rewrite rules,
called dependency pairs. Then (ii) one has to prove that these paths cannot
follow each other infinitely often in a computation.

To represent a path from a function call of f with arguments s1, . . . , sn to a
function call of g with arguments t1, . . . , tm, we extend the signature by two new
tuple symbols F and G. Then a function call is represented by a tuple term, i.e.,
by a term rooted by a tuple symbol, but where no tuple symbols occur below
the root. The DP for this path is the rule F (s1, . . . , sn) → G(t1, . . . , tm).

The DP framework operates on DP problems (P ,R), which are pairs of two
TRSs. Here, for all s → t ∈ P , both s and t are tuple terms, whereas for all
l → r ∈ R, both l and r are base terms, i.e., they do not contain tuple symbols. In
the initial DP problem (P ,R), P contains all DPs and R contains all rules of the
TRS. Then, to show that this problem does not allow infinite chains of function
calls, there is a large number of processors for analyzing and simplifying such
DP problems. We refer to [1,14,16,18] for further details on the DP framework.

The most common processor for simplifying DP problems is the reduction
pair processor. In a reduction pair (�,"), � is a stable monotonic1 quasi-order
comparing either two tuple terms or two base terms. Moreover, " is a stable
well-founded order on terms, where � and " are compatible (i.e., " ◦ � ⊆ "
and � ◦ " ⊆ "). Given such a reduction pair and a DP problem (P ,R), if we
can show a weak decrease (i.e., a decrease w.r.t. �) for all rules from R and all
DPs from P , we can delete all those DPs from P that are strictly decreasing (i.e.,
that decrease w.r.t. "). In other words, we are asking the following question:

For a given DP problem (P ,R), is there a reduction pair that orients all
rules of R and P weakly and at least one of the rules of P strictly?

If we can delete all DPs by repeatedly applying this processor, then the initial
DP problem does not allow infinite chains of function calls. Consequently, there
is no infinite reduction with the original TRS R, i.e., R is terminating.

3 Size-Change Termination and Dependency Pairs

Size-change termination [21] is a program abstraction where termination is de-
cidable. As mentioned in the introduction, an abstract program is a finite set of
size-change graphs which describe, in terms of size-change, the possible transi-
tions between consecutive function calls in the original program.

Size-change termination and the DP framework have some similarities: (i)
size-change graphs provide a representation of the paths from one function call
to the next, and (ii) in a second stage we show that these graphs do not allow
infinite descent. So these steps correspond to steps (i) and (ii) in the DP method.

The main difference between SCT and the DP method is the stage when the
undecidable termination problem is abstracted to a decidable one. For SCT, we
1 If monotonicity of � is not required, we speak of a non-monotonic reduction pair.

220 M. Codish et al.

(a) F1
��

���
�

�
� F1

F2 F2

F1

���
�

�
� F1

F2

���������
F2

(b) F1
��

���
��

��
��

F1

F2 F2

F1 F1

F2
��

���������
F2

F1
�� F1

F2
�� F2

Fig. 1. Size-change graphs from Ex. 2

use a base order to obtain the finite representation of the paths by size-change
graphs. For DPs, no such abstraction is performed and, indeed, the termination
of a DP problem is undecidable. Here, the abstraction step is only the second
stage where typically a decidable class of base orders is used.

The SCT method can be used with any base order. It only requires the infor-
mation which arguments of a function call become (strictly or weakly) smaller
w.r.t. the base order. To prove termination, the base order has to be well-founded.
For the adaptation to TRSs we will use a reduction pair (�,") for this purpose
and introduce the notion of a size-change graph directly for dependency pairs.

If the TRS has a DP F (s1, . . . , sn) → G(t1, . . . , tm), then the corresponding
size-change graph has nodes {F1, . . . , Fn, G1, . . . , Gm} representing the argument
positions of F andG. The labeled edges in the size-change graph indicate whether
there is a strict or weak decrease between these arguments.

Definition 1 (size-change graphs). Let (�,") be a (possibly non-monotonic)
reduction pair on base terms, and let F (s1, . . . , sn) → G(t1, . . . , tm) be a DP. The
size-change graph resulting from this DP and from (�,") is the graph (Vs, Vt, E)
with source vertices Vs = {F1, . . . , Fn}, target vertices Vt = {G1, . . . , Gm}, and
labeled edges E = {(Fi, Gj ,") | si " tj} ∪ {(Fi, Gj ,�) | si � tj}.

Size-change graphs are depicted as in Fig. 1. Each graph consists of source ver-
tices, on the left, target vertices, on the right, and edges drawn as full and dashed
arrows to indicate strict and weak decrease (i.e., corresponding to “"” and “�”,
respectively). We introduce the main ideas underlying SCT by example.

Example 2. Consider the TRS {(1), (2)}. It has the DPs (3) and (4).

f(s(x), y) → f(x, s(x)) (1)
f(x, s(y)) → f(y, x) (2)

F(s(x), y) → F(x, s(x)) (3)
F(x, s(y)) → F(y, x) (4)

We use a reduction pair based on the embedding order where s(x) " x, s(y) " y,
s(x) � s(x), s(y) � s(y). Then we get the size-change graphs in Fig. 1(a). Be-
tween consecutive function calls, the first argument decreases in size or becomes
smaller than the original second argument. In both cases, the second argument
weakly decreases compared to the original first argument. By repeated compo-
sition of the size-change graphs, we obtain the three “idempotent” graphs in
Fig. 1(b). All of them exhibit in situ decrease (at F1 in the first graph, at F2 in
the second graph, and at both F1 and F2 in the third graph). This means that
the original size-change graphs from Fig. 1(a) satisfy the SCT property.

Lazy Abstraction for Size-Change Termination 221

Earlier work [29] shows how to combine SCT with term rewriting. Let R be a
TRS and (�,") a reduction pair such that if s " t (or s � t), then t contains no
defined symbols of R, i.e., no root symbols of left-hand sides of rules from R.2

Let G be the set of size-change graphs resulting from all DPs with (�,"). In [29]
the authors prove that if G satisfies SCT then R is innermost terminating.

Example 3. If one restricts the reduction pair in Ex. 2 to just terms without
defined symbols, then one still obtains the same size-change graphs. Since these
graphs satisfy the SCT property, one can conclude that the TRS is indeed in-
nermost terminating. Note that to show termination without SCT, an order like
RPO would fail (since the first rule requires a lexicographic comparison and
the second requires a multiset comparison). While termination could be proved
by polynomial orders, as in [29] one could unite these rules with the rules for
the Ackermann function. Then SCT with the embedding order would still work,
whereas a direct application of RPO or polynomial orders fails.

So our example illustrates a major strength of SCT. A proof of termination is
obtained by using just a simple base order and by considering each idempotent
graph in the closure under composition afterwards. In contrast, without SCT,
one would need more complex termination arguments.

In [29] the authors show that when constructing the size-change graphs from
the DPs, one can even use arbitrary reduction pairs as base orders, provided
that all rules of the TRS are weakly decreasing. In other words, this previous
work essentially addresses the following question for any DP problem (P ,R):

For a given base order where R is weakly decreasing, do all idempotent
size-change graphs, under composition closure, exhibit in situ decrease?

Note that in [29], the base order is always given and the only way to search for
a base order automatically would be a hopeless generate-and-test approach.

4 Approximating SCT in NP

In [5] the authors identify a subset of SCT, called SCNP, that is powerful enough
for practical use and is in NP. For SCNP just as for SCT, programs are abstracted
to sets of size-change graphs. But instead of checking SCT by the closure under
composition, one identifies a suitable ranking function to certify the termination
of programs described by the set of graphs. Ranking functions map “program
states” to elements of a well-founded domain and one has to show that they
(strictly) decrease on all program transitions described by the size-change graphs.

In the rewriting context, program states are terms. Here, instead of a ranking
function one can use an arbitrary stable well-founded order �. Let (Vs, Vt, E) be
a size-change graph with source vertices Vs = {F1, . . . , Fn}, target vertices Vt =
{G1, . . . , Gm}, and let (�,") be the reduction pair on base terms which was
used for the construction of the graph. Now the goal is to extend the order " to
a well-founded order � which can also compare tuple terms and which satisfies
2 Strictly speaking, this is not a reduction pair, since it is only stable under substitu-

tions which do not introduce defined symbols.

222 M. Codish et al.

the size-change graph (i.e., F (s1, . . . , sn) � G(t1, . . . , tm)). Similarly, we say that
� satisfies a set of size-change graphs iff it satisfies all the graphs in the set.

If the size-change graphs describe the transitions of a program, then the ex-
istence of a corresponding ranking function obviously implies termination of the
program. As in [29], to ensure that the size-change graphs really describe the
transitions of the TRS correctly, one has to impose suitable restrictions on the re-
duction pair (e.g., by demanding that all rules of the TRS are weakly decreasing
w.r.t. �). Then one can indeed conclude termination of the TRS.

In [22], a class of ranking functions is identified which can simulate SCT. So
if a set of size-change graphs has the SCT property, then there is a ranking
function of that class satisfying these size-change graphs. However, this class is
typically exponential in size [22]. To obtain a subset of SCT in NP, [5] considers
a restricted class of ranking functions. A set of size-change graphs has the SCNP
property iff it is satisfied by a ranking function from this restricted class.

Our goal is to adapt this class of ranking functions to term rewriting. The
main motivation is to facilitate the simultaneous search for a ranking function
on the size-change graphs and for the base order which is used to derive the size-
change graphs from a TRS. It means that we are searching both for a program
abstraction to size-change graphs, and also for the ranking function which proves
that these graphs have the SCNP (and hence also the SCT) property.

This is different from [5], where the concrete structure of the program has al-
ready been abstracted away to size-change graphs that must be given as inputs. It
is also different from the earlier adaption of SCT to term rewriting in [29], where
the base order was fixed. As shown by the experiments with [29] in Sect. 6, fixing
the base order for the size-change graphs leads to severe limitations in power.

The following example illustrates the SCNP property and presents a ranking
function (resp. a well-founded order �) satisfying a set of size-change graphs.

Example 4. Consider the TRS from Ex. 2 and its size-change graphs in Fig. 1(a).
Here, the base order is the reduction pair (�,") resulting from the embedding
order. We now extend " to an order � which can also compare tuple terms and
which satisfies the size-change graphs in this example. To compare tuple terms
F(s1, s2) and F(t1, t2), we first map them to the multisets { 〈s1, 1〉, 〈s2, 0〉 } and
{ 〈t1, 1〉, 〈t2, 0〉 } of tagged terms (where a tagged term is a pair of a term and a
number). Now a multiset S of tagged terms is greater than a multiset T iff for
every 〈t,m〉 ∈ T there is an 〈s, n〉 ∈ S where s " t or both s � t and n > m.

For the first graph, we have s1 " t1 and s1 � t2 and hence the multiset
{ 〈s1, 1〉, 〈s2, 0〉 } is greater than { 〈t1, 1〉, 〈t2, 0〉 }. For the second graph, s1 � t2
and s2 " t1 also implies that the multiset { 〈s1, 1〉, 〈s2, 0〉 } is greater than
{ 〈t1, 1〉, 〈t2, 0〉 }. Thus, if we define our well-founded order � in this way, then
it indeed satisfies both size-change graphs of the example. Since this order �
belongs to the class of ranking functions defined in [5], this shows that the size-
change graphs in Fig. 1(a) have the SCNP property.

In term rewriting, size-change graphs correspond to DPs and the arcs of the size-
change graphs are built by only comparing the arguments of the DPs (which are
base terms). The ranking function then corresponds to a well-founded order on

Lazy Abstraction for Size-Change Termination 223

tuple terms. We now reformulate the class of ranking functions of [5] in the
term rewriting context by defining SCNP reduction pairs. The advantage of this
reformulation is that it allows us to integrate the SCNP approach directly into
the DP framework and that it allows a SAT encoding of both the search for
suitable base orders and of the test for the SCNP property. In [5], the class of
ranking functions for SCNP is defined incrementally. We follow this, but adapt
the definitions of [5] to the term rewriting setting and prove that the resulting
orders always constitute reduction pairs. More precisely, we proceed as follows:
step one: (�,") is an arbitrary reduction pair on base terms that we start with
(e.g., based on RPO and argument filters or on polynomial orders). The main
observation that can be drawn from the SCNP approach is that it is helpful
to compare base terms and tuple terms in a different way. Thus, our goal is to
extend (�,") appropriately to a reduction pair (-,�) that can also compare
tuple terms. By defining (-,�) in the same way as the ranking functions of [5],
it can simulate the SCNP approach.
step two: (�N,"N) is a reduction pair on tagged base terms, i.e., on pairs
〈t, n〉, where t is a base term and n ∈ N. Essentially, (�N,"N) is a lexicographic
combination of the reduction pair (�,") with the usual order on N.
step three: (�N,μ,"N,μ) extends (�N,"N) to compare multisets of tagged base
terms. The status μ determines how (�N,"N) is extended to multisets.
step four: (�μ,�,"μ,�) is a full reduction pair (i.e., it is the reduction pair
(-,�) we were looking for). The level mapping � determines which arguments
of a tuple term are selected and tagged, resulting in a multiset of tagged base
terms. On tuple terms, (�μ,�,"μ,�) behaves according to (�N,μ,"N,μ) on the
multisets as determined by �, and on base terms, it behaves like (�,").

Thus, we start with extending a reduction pair (�,") on base terms to a
reduction pair (�N,"N) on tagged base terms. We compare tagged terms lexi-
cographically by (�,") and by the standard orders ≥ and > on numbers.

Definition 5 (comparing tagged terms). Let (�,") be a reduction pair on
terms. We define the corresponding reduction pair (�N,"N) on tagged terms:

– 〈t1, n1〉 �N 〈t2, n2〉 ⇔ t1 " t2 ∨ (t1 � t2 ∧ n1 ≥ n2).

– 〈t1, n1〉 "N 〈t2, n2〉 ⇔ t1 " t2 ∨ (t1 � t2 ∧ n1 > n2).

The motivation for tagged terms is that we will use different tags (i.e., numbers)
for the different argument positions of a function symbol. For instance, when
comparing the terms s = F(s(x), y) and t = F(x, s(x)) as in Ex. 4, one can assign
the tags 1 and 0 to the first and second argument position of F, respectively.
Then, if (�,") is the reduction pair based on the embedding order, we have
〈s(x), 1〉 "N 〈x, 1〉 and 〈s(x), 1〉 "N 〈s(x), 0〉. In other words, the first argument
of s is greater than both the first and the second argument of t.

The following lemma states that if (�,") is a reduction pair on terms, then
(�N,"N) is a reduction pair on tagged terms (where we do not require mono-
tonicity, since monotonicity is not defined for tagged terms). This lemma will be
needed for our main theorem (Thm. 12) which proves that the reduction pair
defined to simulate SCNP is really a reduction pair.

224 M. Codish et al.

Lemma 6 (reduction pairs on tagged terms). Let (�,") be a reduction
pair. Then (�N,"N) is a non-monotonic reduction pair on tagged terms.3

The next step is to introduce a “reduction pair” (�N,μ,"N,μ) on multisets of
tagged base terms, where μ is a status which determines how (�N,"N) is ex-
tended to multisets. Of course, there are many possibilities for such an extension.
In Def. 7, we present the four extensions which correspond to the ranking func-
tions defining SCNP in [5]. The main difference to the definitions in [5] is that
we do not restrict ourselves to total base orders. Hence, the notions of maximum
and minimum of a multiset of terms are not defined in the same way as in [5].

Definition 7 (multiset extensions of reduction pairs). Let (�,") be a
reduction pair on (tagged) terms. We define an extended reduction pair (�μ,"μ)
on multisets of (tagged) terms, for μ ∈ {max,min,ms, dms}. Let S and T be
multisets of (tagged) terms.

1. (max order) S �max T holds iff ∀t∈T . ∃s∈S. s � t.
S "max T holds iff S �= ∅ and ∀t∈T . ∃s∈S. s " t.

2. (min order) S �min T holds iff ∀s∈S. ∃t∈T . s � t.
S "min T holds iff T �= ∅ and ∀s∈S. ∃t∈T . s " t.

3. (multiset order [10]) S "ms T holds iff S = Sstrict .
{
s1, . . . , sk

}
, T =

Tstrict .
{
t1, . . . , tk

}
, Sstrict "max Tstrict, and si � ti for 1 ≤ i ≤ k.

S �ms T holds iff S = Sstrict .
{
s1, . . . , sk

}
, T = Tstrict .

{
t1, . . . , tk

}
,

either Sstrict "max Tstrict or Sstrict = Tstrict = ∅, and si � ti for 1 ≤ i ≤ k.
4. (dual multiset order [4]) S "dms T holds iff S = Sstrict .

{
s1, . . . , sk

}
,

T = Tstrict .
{
t1, . . . , tk

}
, Sstrict "min Tstrict, and si � ti for 1 ≤ i ≤ k.

S �dms T holds iff S = Sstrict .
{
s1, . . . , sk

}
, T = Tstrict .

{
t1, . . . , tk

}
,

either Sstrict "min Tstrict or Sstrict = Tstrict = ∅, and si � ti for 1 ≤ i ≤ k.

Here "ms is to the standard multiset extension of an order " as used, e.g., for
the classical definition of RPO. However, our use of tagged terms as elements of
the multiset introduces a lexicographic aspect that is missing in RPO.

Example 8. Consider again the TRS from Ex. 2 with the reduction pair based
on the embedding order. We have {s(x), y} �max {x, s(x)}, since for both terms
in {x, s(x)} there is an element in {s(x), y} which is weakly greater (w.r.t. �).
Similarly, {x, s(y)} �max {y, x}. However, {x, s(y)} �"max {y, x}, since not ev-
ery element from {y, x} has a strictly greater one in {x, s(y)}. We also have
{x, s(y)} �min {y, x}, but {s(x), y} ��min {x, s(x)}, since for y in {s(x), y}, there
is no term in {x, s(x)} which is weakly smaller.

We have {s(x), y} �"ms {x, s(x)}, since even if we take {s(x)} "max {x}, we
still do not have y � s(x). Moreover, also {s(x), y} ��ms {x, s(x)}. Otherwise,
for every element of {x, s(x)} there would have to be a different weakly greater
element in {s(x), y}. In contrast, we have {x, s(y)} "ms {y, x}. The element s(y)
is replaced by the strictly smaller element y and for the remaining element x on
the right-hand side there is a weakly greater one on the left-hand side. Similarly,
we also have {s(x), y} ��dms {x, s(x)} and{x, s(y)} "dms {y, x}.
3 All proofs can be found in [6].

Lazy Abstraction for Size-Change Termination 225

So there is no μ such that the multiset of arguments strictly decreases in some
DP and weakly decreases in the other DP. We can only achieve a weak decrease
for all DPs. To obtain a strict decrease in such cases, one can add tags.

We want to define a reduction pair (�μ,�,"μ,�) which is like (�N,μ,"N,μ) on
tuple terms and like (�,") on base terms. Here, we use a level mapping � to
map tuple terms F (s1, . . . , sn) to multisets of tagged base terms.

Definition 9 (level mapping). For each tuple symbol F of arity n, let π(F) ⊆{
1, . . . , n

}
× N such that for each 1 ≤ j ≤ n there is at most one m ∈ N with

〈j,m〉 ∈ π(F). Then �(F (s1, . . . , sn)) =
{
〈si, ni〉

∣∣ 〈i, ni〉 ∈ π(F)
}
.

Example 10. Consider again the TRS from Ex. 2 with the reduction pair based
on the embedding order. Let π be a status function with π(F) =

{
〈1, 1〉, 〈2, 0〉

}
.

So π selects both arguments of terms rooted with F for comparison and associates
the tag 1 with the first argument and the tag 0 with the second argument. This
means that it puts “more weight” on the first than on the second argument. The
level mapping � defined by π transforms the tuple terms from the DPs of our
TRS into the following multisets of tagged terms:

�(F(s(x), y)) =
{
〈s(x), 1〉, 〈y, 0〉

}
�(F(x, s(x))) =

{
〈x, 1〉, 〈s(x), 0〉

}
�(F(x, s(y))) =

{
〈x, 1〉, 〈s(y), 0〉

}
�(F(y, x)) =

{
〈y, 1〉, 〈x, 0〉

}
Now we observe that for the multisets of the tagged terms above, we have

�(F(s(x), y)) "N,max �(F(x, s(x))) �(F(x, s(y))) "N,max �(F(y, x))

So due to the tagging now we can find an order such that both DPs are strictly
decreasing. This order corresponds to the ranking function given in Ex. 4.

Finally we define the class of reduction pairs which corresponds to the class of
ranking functions considered for SCNP in [5].

Definition 11 (SCNP reduction pair). Let (�,") be a reduction pair on
base terms and let � be a level mapping. For μ ∈ {max,min,ms, dms}, we define
the SCNP reduction pair (�μ,�,"μ,�). For base terms l, r we define l (�)

μ,� r ⇔
l (�) r and for tuple terms s and t we define s (�)

μ,� t ⇔ �(s) (�)

N,μ �(t).

So we have s "max,� t for the DPs s → t in Ex. 2 and the level mapping � in
Ex. 10. Thm. 12 states that SCNP reduction pairs actually are reduction pairs.

Theorem 12. For μ ∈ {max,min,ms, dms}, (�μ,�,"μ,�) is a reduction pair.

We now automate the SCNP criterion of [5]. For a DP problem (P ,R) with the
DPs P and the TRS R, we have to find a suitable base order (�,") to con-
struct the size-change graphs G corresponding to the DPs in P . So every graph
(Vs, Vt, E) from G with source vertices Vs = {F1, . . . , Fn} and target vertices Vt =
{G1, . . . , Gm} corresponds to a DP F (s1, . . . , sn) → G(t1, . . . , tm). Moreover, we
have an edge (Fi, Gj ,") ∈ E iff si " tj and (Fi, Gj ,�) ∈ E iff si � tj .

In our example, if we use the reduction pair (�,") based on the embedding
order, then G are the size-change graphs from Fig. 1(a). For instance, the first
size-change graph results from the DP (3).

226 M. Codish et al.

For SCNP, we have to extend " to a well-founded order � which can also
compare tuple terms and which satisfies all size-change graphs in G. For �,
we could take any order "μ,� from an SCNP reduction pair (�μ,�,"μ,�). To
show that � satisfies the size-change graphs from G, one then has to prove
F (s1, . . . , sn) "μ,� G(t1, . . . , tm) for every DP F (s1, . . . , sn) → G(t1, . . . , tm).
Moreover, to ensure that the size-change graphs correctly describe the transitions
of the TRS-program R, one also has to require that all rules of the TRS R are
weakly decreasing w.r.t. � (cf. the remarks at the beginning of Sect. 4). Of
course, as in [29], this requirement can be weakened (e.g., by only regarding
usable rules) when proving innermost termination.

As in [5], we define � as a lexicographic combination of several orders of the
form "μ,�. We define the lexicographic combination of two reduction pairs as
(�1,"1) × (�2,"2) = (�1×2,"1×2). Here, s �1×2 t holds iff both s �1 t and
s �2 t. Moreover, s "1×2 t holds iff s "1 t or both s �1 t and s "2 t. It is clear
that (�1×2,"1×2) is again a reduction pair.

A suitable well-founded order � is now constructed automatically as follows.
The pair of orders (-,�) is initialized by defining - to be the relation where
only t - t holds for two tuple or base terms t and where � is the empty relation.
As long as the set of size-change graphs G is not empty, a status μ and a level
mapping � are synthesized such that (�μ,�,"μ,�) orients all DPs weakly and
at least one DP strictly. In other words, the corresponding ranking function
satisfies one size-change graph and “weakly satisfies” the others. Then the strictly
oriented DPs (resp. the strictly satisfied size-change graphs) are removed, and
(-,�) := (-,�)× (�μ,�,"μ,�) is updated. In this way, the SCNP approach can
be simulated by a repeated application of the reduction pair processor in the DP
framework, using the special class of SCNP reduction pairs.

So in our example, we could first look for a μ1 and �1 where the first DP (3)
decreases strictly (w.r.t. "μ1,�1) and the second decreases weakly (w.r.t. �μ1,�1).
Then we would remove the first DP and could now search for a μ2 and �2 such
that the remaining second DP (4) decreases strictly (w.r.t. "μ2,�2). The resulting
reduction pair would be (-,�) = (�μ1,�1 ,"μ1,�1)× (�μ2,�2 ,"μ2,�2).

While in [5], the set of size-change graphs remains fixed throughout the whole
termination proof, the DP framework allows to use a lexicographic combination
of SCNP reduction pairs which are constructed from different reduction pairs
(�,") on base terms. In other words, after a base order and a ranking function
satisfying one size-change graph and weakly satisfying all others have been found,
the satisfied size-change graph (resp. the corresponding DP) is removed, and one
can synthesize a possibly different ranking function and also a possibly different
base order for the remaining DPs (i.e., different abstractions to different size-
change graphs can be used in one and the same termination proof).

Example 13. We add a third rule to the TRS from Ex. 2: f(c(x), y) → f(x, s(x)).
Now no SCNP reduction pair based only on the embedding order can orient all
DPs strictly at the same time anymore, even if one permits combinations with
arbitrary argument filters. However, we can first apply an SCNP reduction pair
that sets all tags to 0 and uses the embedding order together with an argument

Lazy Abstraction for Size-Change Termination 227

filter to collapse the symbol s to its argument. Then the DP for the newly added
rule is oriented strictly and all other DPs are oriented weakly. After removing
the new DP, the SCNP reduction pair that we already used for the DPs of Ex. 2
again orients all DPs strictly. Note that the base order for this second SCNP
reduction pair is the embedding order without argument filters, i.e., it differs
from the base order used in the first SCNP reduction pair.

By representing the SCNP method via SCNP reduction pairs, we can now benefit
from the flexibility of the DP framework. Thus, we can use other termination
methods in addition to SCNP. More precisely, as usual in the DP framework, we
can apply arbitrary processors one after another in a modular way. This allows
us to interleave arbitrary other termination techniques with termination proof
steps based on size-change termination, whereas in [29], size-change proofs could
only be used as a final step in a termination proof.

5 Automation by SAT Encoding

Recently, the search problem for many common base orders has been reduced
successfully to SAT problems [8,9,13,26,30]. In this section, we build on this
earlier work and use these encodings as components for a SAT encoding of SCNP
reduction pairs. The corresponding decision problem is stated as follows:

For a DP problem (P ,R) and a given class of base orders, is there a
status μ, a level mapping �, and a concrete base reduction pair (�,")
such that the SCNP reduction pair (�μ,�,"μ,�) orients all rules of R and
P weakly and at least one of P strictly?

We assume a given base SAT encoding �.�base which maps base term constraints
of the form s (�)t to propositional formulas. Every satisfying assignment for the
formula �s (�)t�base corresponds to a particular order where s (�)t holds.

We also assume a given encoding for partial orders (on tags), cf. [9]. The
function �.�po maps partial order constraints of the form n1 ≥ n2 or n1 > n2
where n1 and n2 represent natural numbers (in some fixed number of bits) to
corresponding propositional formulas on the bit representations for the numbers.

For brevity, we only show the encoding for SCNP reduction pairs (�μ,�,"μ,�)
where μ = max. The encodings for the other cases are similar: The encoding for
the min comparison is completely analogous. To encode (dual) multiset compar-
ison one can adapt previous approaches to encode multiset orders [26].

First, for each tuple symbol F of arity n, we introduce natural number vari-
ables denoted tagF

i for 1 ≤ i ≤ n. These encode the tags associated with the
argument positions of F by representing them in a fixed number of bits. In our
case, it suffices to consider tag values which are less than the sum of the arities
of the tuple symbols. In this way, every argument position of every tuple symbol
could get a different tag, i.e., this suffices to represent all possible level mappings.

Now consider a size-change graph corresponding to a DP δ = s → t with
s = F (s1, . . . , sn) and t = G(t1, . . . , tm). The edges of the size-change graph are

228 M. Codish et al.

determined by the base order, which is not fixed. For any 1 ≤ i ≤ n and 1 ≤
j ≤ m, we define a propositional formula weak δ

i,j which is true iff 〈s, tagF
i 〉 �N

〈t, tagG
j 〉. Similarly, strictδ

i,j is true iff 〈s, tagF
i 〉 "N 〈t, tagG

j 〉. The definition of
weak δ

i,j and strictδ
i,j corresponds directly to Def. 5. It is based on the encodings

�.�base and �.�po for the base order and for the tags, respectively.

weak δ
i,j = �si " tj�base ∨ (�si � tj�base ∧ �tagF

i ≥ tagG
j �po)

strictδ
i,j = �si " tj�base ∨ (�si � tj�base ∧ �tagF

i > tagG
j �po)

To facilitate the search for level mappings, for each tuple symbol F of arity
n we introduce propositional variables regF

i for 1 ≤ i ≤ n. Here, regF
i is true

iff the i-th argument position of F is regarded for comparison. The formulas
�s �max,� t� and �s "max,� t� then encode that the DP s → t can be oriented
weakly or strictly, respectively. By this encoding, one can simultaneously search
for a base order that gives rise to the edges in the size-change graph and for a
level mapping that satisfies this size-change graph.

�s �max,� t� =
∧

1≤j≤m

(regG
j →
∨

1≤i≤n

(regF
i ∧ weak δ

i,j))

�s "max,� t� =
∧

1≤j≤m

(regG
j →
∨

1≤i≤n

(regF
i ∧ strictδ

i,j)) ∧
∨

1≤i≤n

regF
i

For any DP problem (P ,R) we can now generate a propositional formula which
ensures that the corresponding SCNP reduction pair orients all rules from R
and P weakly and at least one rule from P strictly:∧

l→r∈R
�l � r�base ∧

∧
s→t∈P

�s �max,� t� ∧
∨

s→t∈P
�s "max,� t�

Similar to [8,30], our approach is easily extended to refinements of the DP
method where one only regards the usable rules of R and where these usable
rules can also depend on the (explicit or implicit) argument filter of the order.

6 Implementation and Experiments

We implemented our contributions in the automated termination prover AProVE
[15]. To assess their impact, we compared three configurations of AProVE. In
the first, we use SCNP reduction pairs in the reduction pair processor of the DP
framework. This configuration is parameterized by the choice whether we allow
just max comparisons of multisets or all four multiset extensions from Def. 7.
Moreover, the configuration is also parameterized by the choice whether we use
classical size-change graphs or extended size-change graphs as in [29]. In an ex-
tended size-change graph, to compare s = F (s1, . . . , sn) with t = G(t1, . . . , tm),
the source and target vertices {s1, . . . , sn} and {t1, . . . , tm} are extended by ad-
ditional vertices s and t, respectively. Now an edge from s to tj indicates that
the whole term s is greater (or equal) to tj , etc. So these additional vertices

Lazy Abstraction for Size-Change Termination 229

Table 1. Comparison of SCNP reduction pairs to SCT and direct reduction pairs

order SCNP fast SCNP max SCNP all reduction pairs SCT [29]
EMB proved 346 346 347 325 341

runtime 2882.6 3306.4 3628.5 2891.3 10065.4
LPO proved 500 530 527 505 385

runtime 3093.7 5985.5 7739.2 3698.4 10015.5
RPO proved 501 531 531 527 385

runtime 3222.2 6384.1 8118.0 4027.5 10053.4
POLO proved 477 514 514 511 378

runtime 3153.6 5273.6 7124.4 2941.7 9974.0

also allow us to compare the whole terms s and t. By adding these vertices,
size-change termination incorporates the standard comparison of terms as well.

In the second configuration, we use the base orders directly in the reduction
pair processor (i.e., here we disregard SCNP reduction pairs). In the third config-
uration, we use the implementation of the SCT method as described in [29]. For
a fair comparison, we updated that old implementation from the DP approach to
the modular DP framework and used SAT encodings for the base orders. (While
this approach only uses the embedding order and argument filters as the base
order for the construction of size-change graphs, it uses more complex orders
(containing the base order) to weakly orient the rules from the TRS.)

We considered all 1381 examples from the standard TRS category of the Ter-
mination Problem Data Base (TPDB version 7.0.2) as used in the International
Termination Competition 2009.4 The experiments were run on a 2.66 GHz Intel
Core 2 Quad and we used a time limit of 60 seconds per example. We applied
SAT4J [20] to transform propositional formulas to conjunctive normal form and
the SAT solver MiniSAT2 [11] to check the satisfiability of the resulting formulas.

Table 1 compares the power and runtimes of the three configurations depend-
ing on the base order. The column “order” indicates the base order: embed-
ding order with argument filters (EMB), lexicographic path order with arbitrary
permutations and argument filters (LPO), recursive path order with argument
filters (RPO), and linear polynomial interpretations with coefficients from {0, 1}
(POLO). For the first configuration, we used three different settings: full SCNP
reduction pairs with extended size-change graphs (“SCNP all”), SCNP reduction
pairs restricted to max-comparisons with extended size-change graphs (“SCNP
max”), and SCNP reduction pairs restricted to max comparisons and non-
extended size-change graphs (“SCNP fast”). The second and third configuration
are called “reduction pairs” and “SCT [29]”, respectively. For each experiment,
we give the number of TRSs which could be proved terminating (“proved”) and
the analysis time in seconds for running AProVE on all 1381 TRSs (“runtime”).
The “best” numbers are always printed in bold. For further details on the exper-
iments, we refer to http://aprove.informatik.rwth-aachen.de/eval/SCNP.
The table allows the following observations:

4 http://www.termination-portal.org/wiki/Termination_Competition/

http://aprove.informatik.rwth-aachen.de/eval/SCNP
http://www.termination-portal.org/wiki/Termination_Competition/

230 M. Codish et al.

(1) Our SCNP reduction pairs are much more powerful and significantly faster
than the implementation of [29]. By integrating the search for the base order
with SCNP, our new implementation can use a much larger class of base orders
and thus, SCNP reduction pairs can prove significantly more examples. The
reason for the relatively low speed of [29] is that this approach iterates through
argument filters and then generates and analyzes size-change graphs for each of
these argument filters. (So the low speed is not due to the repeated composition
of size-change graphs in the SCT criterion.)
(2) Our new implementation of SCNP reduction pairs is more powerful than
using the reduction pairs directly. Note that when using extended size-change
graphs, every reduction pair can be simulated by an SCNP reduction pair.
(3) SCNP reduction pairs add significant power when used for simple orders like
EMB and LPO. The difference is less dramatic for RPO and POLO. Intuitively,
the reason is that SCNP allows for multiset comparisons which are lacking in
EMB and LPO, while RPO contains multiset comparisons and POLO can often
simulate them. Nevertheless, SCNP also adds some power to RPO and POLO,
e.g., by extending them by a concept like “maximum”. This even holds for more
powerful base orders like matrix orders [12]. In [6], we present a TRS where
all existing termination tools fail, but where termination can easily be proved
automatically by an SCNP reduction pair with a matrix base order.

7 Conclusion

We show that the practically relevant part of size-change termination (SCNP)
can be formulated as a reduction pair. Thus, SCNP can be applied in the DP
framework, which is used in virtually all termination tools for term rewriting.

Moreover, by combining the search for the base order and for the SCNP level
mapping into one search problem, we can automatically find the right base order
for constructing size-change graphs. Thus, we now generate program abstractions
automatically such that termination of the abstracted programs can be shown.

The implementation in AProVE confirms the usefulness of our contribution.
Our experiments indicate that the automation of our technique is more powerful
than both the direct use of reduction pairs and the SCT adaptation from [29].

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theo-
retical Computer Science 236, 133–178 (2000)

2. Avery, J.: Size-change termination and bound analysis. In: Hagiya, M., Wadler, P.
(eds.) FLOPS 2006. LNCS, vol. 3945, pp. 192–207. Springer, Heidelberg (2006)

3. Baader, F., Nipkow, T.: Term Rewriting and All That, Cambridge (1998)
4. Ben-Amram, A.M., Lee, C.S.: Size-change termination in polynomial time. ACM

Transactions on Programming Languages and Systems 29(1) (2007)
5. Ben-Amram, A.M., Codish, M.: A SAT-based approach to size change termi-

nation with global ranking functions. In: Ramakrishnan, C.R., Rehof, J. (eds.)
TACAS 2008. LNCS, vol. 4963, pp. 218–232. Springer, Heidelberg (2008)

Lazy Abstraction for Size-Change Termination 231

6. Codish, M., Fuhs, C., Giesl, J., Schneider-Kamp, P.: Lazy abstraction for size-
change termination. Technical Report AIB-2010-14, RWTH Aachen University
(2010), http://aib.informatik.rwth-aachen.de

7. Codish, M., Taboch, C.: A semantic basis for termination analysis of logic pro-
grams. Journal of Logic Programming 41(1), 103–123 (1999)

8. Codish, M., Schneider-Kamp, P., Lagoon, V., Thiemann, R., Giesl, J.: SAT solving
for argument filterings. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS
(LNAI), vol. 4246, pp. 30–44. Springer, Heidelberg (2006)

9. Codish, M., Lagoon, V., Stuckey, P.: Solving partial order constraints for LPO ter-
mination. J. Satisfiability, Boolean Modeling and Computation 5, 193–215 (2008)

10. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commu-
nications of the ACM 22(8), 465–476 (1979)

11. Eén, N., Sörensson, N.: MiniSAT, http://minisat.se
12. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-

mination of term rewriting. J. Automated Reasoning 40(2-3), 195–220 (2008)
13. Fuhs, C., Giesl, J., Middeldorp, A., Thiemann, R., Schneider-Kamp, P., Zankl, H.:

SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 340–354. Springer,
Heidelberg (2007)

14. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:
Combining techniques for automated termination proofs. In: Baader, F., Voronkov,
A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3542, pp. 301–331. Springer, Heidelberg
(2005)

15. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)

16. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)

17. Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., Thiemann, R.: Au-
tomated termination proofs for Haskell by term rewriting. ACM Transactions on
Programming Languages and Systems (to appear, 2010); Preliminary version ap-
peared in Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 297–312. Springer,
Heidelberg (2006)

18. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Informa-
tion and Computation 199(1,2), 172–199 (2005)

19. Jones, N.D., Bohr, N.: Termination analysis of the untyped lambda calculus. In:
van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 1–23. Springer, Heidelberg
(2004)

20. Le Berre, D., Parrain, A.: SAT4J, http://www.sat4j.org
21. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program

termination. In: Proc. POPL 2001, pp. 81–92 (2001)
22. Lee, C.S.: Ranking functions for size-change termination. ACM Transactions on

Programming Languages and Systems 31(3), 1–42 (2009)
23. Nguyen, M.T., De Schreye, D., Giesl, J., Schneider-Kamp, P.: Polytool: Polynomial

interpretations as a basis for termination analysis of logic programs. In: Theory
and Practice of Logic Programming (to appear, 2010)

24. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination anal-
ysis of Java Bytecode by term rewriting. In: Proc. RTA 2010. LIPIcs, vol. 6, pp.
259–276 (2010)

25. Podelski, A., Rybalchenko, A.: Transition Invariants. In: Proc. 19th LICS, pp.
32–41. IEEE, Los Alamitos (2004)

http://aib.informatik.rwth-aachen.de
http://minisat.se
http://www.sat4j.org

232 M. Codish et al.

26. Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.: Proving ter-
mination using recursive path orders and SAT solving. In: Konev, B., Wolter, F.
(eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 267–282. Springer, Heidelberg
(2007)

27. Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated termina-
tion proofs for logic programs by term rewriting. ACM Transactions on Computa-
tional Logic 11(1), 1–52 (2009)

28. Sereni, D., Jones, N.D.: Termination analysis of higher-order functional programs.
In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 281–297. Springer, Heidelberg
(2005)

29. Thiemann, R., Giesl, J.: The size-change principle and dependency pairs for termi-
nation of term rewriting. Applicable Algebra in Engineering, Communication and
Computing 16(4), 229–270 (2005)

30. Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. Journal of Automated
Reasoning 43(2), 173–201 (2009)

A Syntactical Approach to Qualitative
Constraint Networks Merging

Jean-François Condotta, Souhila Kaci, Pierre Marquis, and Nicolas Schwind

Université Lille-Nord de France, Artois, F-62307 Lens
CRIL, F-62307 Lens

CNRS UMR 8188, F-62307 Lens
{condotta,kaci,marquis,schwind}@cril.univ-artois.fr

Abstract. We address the problem of merging qualitative constraint
networks (QCNs) representing agents local preferences or beliefs on the
relative position of spatial or temporal entities. Two classes of merging
operators which, given a set of input QCNs defined on the same qualita-
tive formalism, return a set of qualitative configurations representing a
global view of these QCNs, are pointed out. These operators are based on
local distances and aggregation functions. In contrast to QCN merging
operators recently proposed in the literature, they take account for each
constraint from the input QCNs within the merging process. Doing so,
inconsistent QCNs do not need to be discarded at start, hence agents re-
porting locally consistent, yet globally inconsistent pieces of information
(due to limited rationality) can be taken into consideration.

1 Introduction

Qualitative representation of time and space arises in many domains of Artificial
Intelligence such as language processing, computer vision, planning. One needs to
take advantage of a qualitative formalism when the available information about a
set of spatial or temporal entities is expressed in terms of non-numerical relation-
ships between these entities (e.g., when information comes primarily from natural
language sentence). Starting from Allen’s formalism [1] basically used to repre-
sent relative positions of temporal intervals, many other qualitative formalisms
have been put forward in the literature these last three decades [24,19,15,2,8,20].
Besides temporal and spatial aspects, these formalisms also constitute powerful
representation settings for a number of applications of Artificial Intelligence,
such as reasoning about preferences [9] or multiple taxonomies [23].

When we are asked to express a set of preferred or believed relationships be-
tween entities, we are generally more willing to provide local relations about
a small number of entities from which the underlying set of preferred or pos-
sible configurations about the whole set of entities can be deduced. Consider
for example a student, William, who expresses his preferences on the schedule
of four courses (Operating Systems, Algebra, Analysis, Programming). William
prefers to learn Analysis after Algebra. Assume William would also like to learn
Programming after Analysis and wants to start learning Programming before Al-
gebra finishes. Then no schedule can satisfy all his preferences, since satisfying

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 233–247, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

234 J.-F. Condotta et al.

two of his wishes implies the third one to be discarded. Obviously, conflicts can
also arise in the case when several students are asked to express their preferences
on a common schedule.

In this paper we address the problem where several agents express their prefer-
ences / beliefs on relative positions of (spatial or temporal) entities. This informa-
tion is represented, for each agent, by means of a qualitative constraint network
(QCN). A procedure for merging QCN has been proposed in [6], directly adapted
from a “model-based” method for merging propositional knowledge bases [13,14].
This procedure is generic in the sense that it does not depend on a specific qualita-
tive formalism. It consists in defining a merging operator which associates with a
finite set of QCNs a set of consistent (spatial or temporal) information represent-
ing a global view of the input QCNs. While this method represents a starting point
in the problem of merging QCNs, it has however some limitations. First, a QCN to
be merged is reduced to its global possible configurations; therefore inconsistent
QCNs are discarded. As we will show in the paper, even if a QCN is inconsistent,
it may however contain relevant information which deserves to be considered in
the merging process. Secondly, this approach is expensive from a computational
point of view as it requires the computation of all possible configurations about
the whole set of entities. This paper aims at overcoming the above limitations.
We propose a syntactical approach for merging QCNs in which each constraint
from the input QCNs participates in the merging process. We define two classes of
QCN merging operators, where each operator associates with a finite set of QCNs
defined on the same qualitative formalism and the same set of entities a set of
consistent qualitative configurations representing a global view of the input set
of QCNs. Each operator is based on distances between relations of the underlying
qualitative formalism and on two aggregation functions.

The rest of the paper is organized as follows. The next section recalls necessary
preliminaries on qualitative constraint networks, distances between relations of
a qualitative formalim and aggregation functions. In Section 3, we address the
problem of dealing with conflicting QCNs. We introduce a running example and
give some postulates that QCN merging operators are expected to satisfy. In
Section 4, we define the two proposed classes of QCN merging operators and
discuss their logical properties. We give some hints to choose a QCN merging
operator in Section 5, and also give some comparisons with related works. We
conclude in the last section and present some perspectives for further research.
For space reasons, proofs are not provided; they are available in the longer version
of the paper, http://www.cril.univ-artois.fr/∼marquis/lpar2010longversion.pdf.

2 Preliminaries

2.1 Qualitative Formalisms and Qualitative Constraint Networks

A qualitative formalism considers a finite set B of basic binary relations defined
on a domain D. The elements of D represent the considered (spatial or tempo-
ral) entities. Each basic relation b ∈ B represents a particular relative position
between two elements of D. The set B is required to be a partition scheme [16],

A Syntactical Approach to Qualitative Constraint Networks Merging 235

i.e., it satisfies the following properties: (i) B forms a partition of D×D, namely
any pair of D×D satisfies one and only one basic relation of B; (ii) the identity
relation on D, denoted by eq, belongs to B; lastly, (iii) if b is a basic relation of
B, then its converse, denoted by b−1, also belongs to B.

For illustration we consider a well-known qualitative formalism introduced
by Allen, called Interval Algebra [1]. This formalism considers a set Bint of
thirteen basic relations defined on the domain of non-punctual (durative) in-
tervals over the rational numbers: Dint = {(x−, x+) ∈ Q×Q : x− < x+}.
An interval typically represents a temporal entity. The basic relations of Bint =
{eq, p, pi,m,mi, o, oi, s, si, d, di, f, fi} are depicted in Figure 1. Each one of them
represents a particular situation between two intervals. For example, the relation
m = {((x−, x+), (y−, y+)) ∈ Dint×Dint : x+ = y−} represents the case where the
upper bound of the first interval and the lower bound of the second one coincide.

Illustration

precedes

meets

overlaps

starts

during

finishes

equals

m

o

s

d

f

eq

mi

oi

si

di

fi

eq

X

X
Y

X

X

X

X

Y

Y

Y

Y

Y

X

Y

p pi

SymbolRelation Inverse

Fig. 1. The basic relations of Interval Algebra

Given a set B of basic relations, a complex relation is the union of basic
relations and is represented by the set of the basic relations it contains. In the
following we omit the qualifier “complex”. For instance, considering Interval
Algebra, the set {m, d} represents the union of the basic relations m and d. The
set of all relations is denoted by 2B.

Pieces of information about the relative positions of a set of (spatial or tem-
poral) entities can be represented by means of qualitative constraint networks
(QCNs for short). Formally, a QCN (on B) is defined as follows:

Definition 1 (Qualitative constraint network). A QCN N is a pair (V,C)
where:

– V = {v1, . . . , vn} is a finite set of variables representing the entities,
– C is a mapping which associates with each pair of variables (vi, vj) a relation
N [i, j] of 2B. C is such that N [i, i] = {eq} and N [i, j] = N [j, i]−1 for every
pair of variables vi, vj ∈ V .

236 J.-F. Condotta et al.

Given a QCN N = (V,C), a consistent instantiation of N over V ′ ⊆ V is a map-
ping α from V ′ to D such that for every pair (vi, vj) ∈ V ′×V ′, (α(vi), α(vj)) satis-
fiesN [i, j], i.e., there exists a basic relation b ∈ N [i, j] such that (α(vi), α(vj)) ∈ b
for every vi, vj ∈ V ′. A solution of N is a consistent instantiation of N over V .
N is consistent iff it admits a solution. A sub-network N ′ of N is a QCN (V,C′)
such that N ′[i, j] ⊆ N [i, j], for every pair of variables vi, vj . A scenario σ is a
QCN such that each constraint is defined by a singleton relation of 2B, i.e., a rela-
tion containing exactly one basic relation. Let σ be a scenario, the basic relation
specifying the constraint between two variables vi and vj is denoted by σij . A
scenario σ of N is a sub-network of N . In the rest of this paper, 〈N〉 denotes the
set of scenarios of N and [N] the set of its consistent scenarios. Two QCNs N and
N ′ are said to be equivalent, denoted by N ≡ N ′, iff [N] = [N ′]. NV

All denotes the
QCN on V such that for each pair of variables (vi, vj), NV

All[i, j] = {eq} if vi = vj ,
NV

All[i, j] = B otherwise. NV
All represents the complete lack of information about

the relative positions of the variables.
Figures 2(a), 2(b) and 2(c) represent respectively a QCN N of Interval Algebra

defined on the set V = {v1, v2, v3, v4}, an inconsistent scenario σ of N and a
consistent scenario σ′ of N . A solution α of σ′ is represented in Figure 2(d).
In order to alleviate the figures, for each pair of variables (vi, vj), we do not
represent the constraint N [i, j] when N [i, j] = B, when N [j, i] is represented or
when i = j.

v3

v1

v4

v2

{p, m, o}

{d, f}{p}
{p, m}

(a) N

v3

v1

v4

v2

{m}

{f}

{p}

{m} {p}

{p}

(b) σ

v3

v1

v4

v2

{f}

{p}

{p}

{p}

{pi}

{m}

(c) σ′

v1 v2

v4

v3

(d) α

Fig. 2. A QCN N , an inconsistent scenario σ of N , a consistent scenario σ′ of N and
a solution α of σ′

2.2 Basic Distances and Aggregation Functions

In the following, we consider two classes of QCN merging operators parameter-
ized by a distance between basic relations of B called basic distance, and by
aggregation functions.

Basic distances. A basic distance associates with a pair of basic relations of B a
positive number representing their degree of closeness [6].

A Syntactical Approach to Qualitative Constraint Networks Merging 237

Definition 2 (Basic distance). A basic distance dB is a pseudo-distance, i.e.,
a mapping from B× B to R+

0 such that ∀b, b′ ∈ B, we have:⎧⎨⎩dB(b, b′) = dB(b′, b) (symmetry)
dB(b, b′) = 0 iff b = b′ (identity of indiscernibles)
dB(b, b′) = dB(b−1, (b′)−1).

For instance, the drastic distance dD is equal to 1 for every pair of distinct basic
relations, 0 otherwise.

In the context of qualitative algebras, two distinct basic relations can be more
or less close from each other. This intuition takes its source in works of Freksa [7]
who defined different notions of conceptual neighborhood between basic relations
of Interval Algebra. By generalizing his definition, it is natural to state that two
basic relations b, b′ ∈ B are conceptually neighbors if a continuous transformation
on the elements of the domain leads to two entities which satisfy the basic relation
b and also directly satisfy the basic relation b′ without satisfying any other basic
relation. A conceptual neighborhood defines a binary relation on elements of B.
This relation can be represented by an undirected connected graph in which every
vertice is an element of B. In such a graph, called conceptual neighborhood graph,
two vertices connected by an edge are conceptual neighbors. For example, in a
context where a continuous transformation between two intervals corresponds to
moving only one of the four possible bounds, we get the conceptual neighborhood
graph GBint depicted in Figure 3.

p m o

fi

di

eq

si

oi mi pi

f

d

s

Fig. 3. The conceptual neighborhood graph GBint of Interval Algebra

Using conceptual neighborhood graphs a specific basic distance has been de-
fined in the context of QCNs in [6]. The so-called conceptual neighborhood dis-
tance is formally defined as follows:

Definition 3 (Conceptual neighborhood distance). Let GB be a conceptual
neighborhood graph on B. The conceptual neighborhood distance dGB(a, b) between
two basic relations a, b ∈ B is the length of the shortest chain leading from a to
b in GB.

In the following examples, we will use the conceptual neighborhood distance
dGBint defined from the graph GBint. For instance, dGBint(m, di) = 4. Notice that
dGBint is a basic distance in the sense of Definition 2.

238 J.-F. Condotta et al.

Aggregation functions. An aggregation function [18,11,12] typically combines in
a given manner several numerical values into a single one.

Definition 4 (Aggregation function). An aggregation function f associates
with a vector of non-negative real numbers a non-negative real number verifying
the following properties:⎧⎨⎩

if x1 ≤ x′1, . . . , xp ≤ x′p,
then f(x1, . . . , xp) ≤ f(x′1, . . . , x

′
p) (non-decreasingness)

x1 = · · · = xp = 0 iff f(x1, . . . , xp) = 0 (minimality).

Many aggregation functions have been considered so far in various contexts. For
instance,

∑
(sum), Max (maximum), Leximax1 are often considered in the

belief merging setting [17,21,13,11,14]. We give some additional properties on
aggregation functions.

Definition 5 (Properties on aggregation functions). Let f and g be two
aggregation functions.

– f is symmetric iff for every permutation τ from Rp
0 to Rp

0, p being a positive
integer, f(x1, . . . , xp) = f(τ(x1), . . . , τ(xp)).

– f is associative iff

f(f(x1, . . . , xp), f(y1, . . . , yp′)) = f(x1, . . . , xp, y1, . . . , yp′).

– f is strictly non-decreasing iff if x1 ≤ x′1, . . . , xp ≤ x′p and ∃i ∈ {1, . . . , p},
xi < x′i, then f(x1, . . . , xp) < f(x′1, . . . , x

′
p).

– f commutes with g (or f and g are commuting aggregation functions)
iff f(g(x1,1, . . . , x1,q), . . . , g(xp,1, . . . , xp,q)) = g(f(x1,1, . . . , xp,1), . . . ,

f(x1,q, . . . , xp,q)).

For example, the aggregation function
∑

is symmetric and associative, hence it
commutes with itself, as well as the aggregation function Max. Symmetry means
that the order of the aggregated values does not affect the result, associativity
means that the aggregation of values can be factorized into partial aggrega-
tions. In the following, aggregation functions are supposed to be symmetric,
i.e., they aggregate multi-sets of numbers instead of vectors of numbers. In [22],
the authors focus on commuting aggregation functions since such functions play
a significant role in any two-step merging process for which the result should
not depend on the order of the aggregation processes. In the end of Section
4.2 we stress the influence of commuting aggregation functions in our merging
procedures.

1 Stricto sensu the Leximax function returns the input vector sorted decreasingly
w.r.t the standard lexicographic ordering; it turns out that we can associate to
Leximax an aggregation function in the sense of Definition 4, leading to the same
vector ordering as Leximax (see [11], Definition 5.1); for this reason, slightly abusing
words, we also call this function “Leximax”.

A Syntactical Approach to Qualitative Constraint Networks Merging 239

3 The Merging Issue

3.1 Problem and Example

Let V = {v1, . . . , vn} be a set of variables and N = {N1, . . . , Nm} be a multiset
of QCNs defined over V . N is called a profile. Every input QCN Nk ∈ N stems
from a particular agent k providing her own preferences or beliefs about the
relative configurations over V . Every constraint Nk[i, j] corresponds to the set
of basic relations that agent k considers as possibly satisfied by (vi, vj). In such
a setting, two kinds of inconsistency are likely to appear. On the one hand, a
QCN Nk may be inconsistent since the agent expresses local preferences over
pairs of variables. Therefore an inconsistency may arise without the agent being
necessarily aware of that. On the other hand, the multiplicity of sources makes
that the underlying QCNs are generally conflicting when combined. For example,
in case of preferences representation, a single conflict of interest between two
agents about the same pair of variables is sufficient to introduce inconsistency.

Consider a group of three students expressing their preferences about the
schedule of fours common courses: Operating Systems (OS), Algebra, Analysis
and Programming. Every student of the group provides a set of binary relations
between these courses. The variables we consider here are four temporal entities
v1, v2, v3, v4 that respectively correspond to OS, Algebra, Analysis, Programming
and that form the set V . We consider Interval Algebra to model qualitative
relations between these courses. For exemple, the first student prefers to start
learning OS before the beginning of Algebra and to finish studying OS before
the end of Algebra. This can be expressed by the relation v1 {p,m, o} v2. The
three students provide the QCNs N1, N2, N3 depicted in Figure 4 and forming
the profile N . Notice that the conflict occurring in the example sketched in the
introduction is represented in the QCN N3, indeed there does not exist any
consistent instantiation of N3 over {v2, v3, v4}.

3.2 Rationality Postulates for QCN Merging Operators

Given a profile N = {N1, . . . , Nm} defined on V representing local preferences
or beliefs of a set of agents, we want to get as result of the merging opera-
tion a non-empty set of consistent information representing N in a global way.
Formally, this calls for a notion of merging operator. In [5] a set of rationality
postulates has been proposed for QCN merging operators. These postulates are

v3

v1

v4

v2
{p}

{p, m, o}

{p, m} {d, f}

(a) N1

v3

v1

v4

v2

{eq, si}

{p} {m}

{p, pi}

(b) N2

v3

v1

v4

v2

{di}

{p, m}

{s, eq, di}

{p, m}

{m, o}

(c) N3

Fig. 4. Three QCNs N1, N2 and N3 to be merged

240 J.-F. Condotta et al.

the direct counterparts in the QCN setting of the postulates from [13] charac-
terizing merging operators for propositional logic. We separate these postulates
into two classes: the first one defines the QCN merging operators, the second
one provides additional properties that QCN merging operators should satisfy
to exhibit a rational behaviour.

Definition 6 (QCN merging operator). An operator Δ is a mapping which
associates with a profile N a set Δ(N) of consistent scenarios. Let N be a profile.
Δ is a QCN merging operator iff it satisfies the following postulates:

(N1) Δ(N) �= ∅.
(N2) If

⋂
{[Nk] | Nk ∈ N} �= ∅, then Δ(N) =

⋂
{[Nk] | Nk ∈ N}.

(N1) ensures that the result of the merging is non-trivial; (N2) requires Δ(N)
to be the set of consistent scenarios shared by all Nk ∈ N , when this set is
non-empty.

Before giving the additional postulates, we need to define the notion of equiv-
alence between profiles. Two profilesN andN ′ are said to be equivalent, denoted
by N ≡ N ′, iff there exists a one-to-one correspondence f between N and N ′
such that ∀Nk ∈ N , f(Nk) ≡ Nk. We use � to denote the union operator for
multisets.

Definition 7 (postulates (N3) - (N6)). Let N ,N1 and N2 be three profiles,
and let N , N ′ be two consistent QCNs.

(N3) If N1 ≡ N2, then Δ(N1) = Δ(N2).
(N4) If Δ({N,N ′}) ∩ [N] �= ∅, then Δ({N,N ′}) ∩ [N ′] �= ∅.
(N5) Δ(N1) ∩Δ(N2) ⊆ Δ(N1 � N2).
(N6) If Δ(N1) ∩Δ(N2) �= ∅, then Δ(N1 � N2) ⊆ Δ(N1) ∩Δ(N2).

(N3) is the syntax-irrelevance principle for QCNs. It states that if two profiles
are equivalent, then merging independently each profile should lead to the same
result. (N4) is an equity postulate, it requires the QCN merging operator not to
exploit any hidden preference between two QCNs to be merged. (N5) and (N6)
together ensure that when merging independently two profiles leads both results
to share a non-empty set of consistent scenarios, let us say E, then merging the
joint profiles should return E as result.

4 Two Classes of QCN Merging Operators

In this section, we define two classes of QCN merging operators. Operators from
the first and second class are respectively denoted byΔ1 andΔ2. These operators
associate with a profile N a set of consistent scenarios that are the “closest” ones
to N in terms of “distance”. The difference between Δ1 and Δ2 is inherent to
the definition of such a distance.

For i ∈ {1, 2}, a QCN merging operator Δi is characterized by a triple
(dB, fi, gi) where dB is a basic distance on B and fi and gi are two symmet-
ric aggregation functions. Δi is then denoted by ΔdB,fi,gi

i . The set of consistent
scenarios ΔdB,fi,gi

i (N) is the result of a two-step process.

A Syntactical Approach to Qualitative Constraint Networks Merging 241

4.1 Δ1 Operators

The first step consists in computing a local distance df1 between every consistent
scenario on V , i.e., every element of [NV

All] and each QCN of the profile N . For
this purpose, the basic distance dB and the aggregation function f1 are used to
define the distance df1 between two scenarios σ and σ′ of NV

All, as follows:

df1(σ, σ
′) = f1{dB(σij , σ

′
ij) | vi, vj ∈ V, i < j}.

Therefore the distance between two scenarios results from the aggregation of dis-
tances at the constraints level. The definition of df1 is extended in order to compute
a distance between a consistent scenario σ ofNV

All and a QCN Nk ofN as follows:

df1(σ,N
k) = min{df1(σ, σ

′) | σ′ ∈ 〈Nk〉}.

Therefore the distance between a scenario σ and a QCN Nk is the minimal
distance (w.r.t. df1) between σ and a scenario of Nk.

The choice of the aggregation function f1 depends on the context. For exam-
ple, f1 = Max is appropriate when only the greatest distance over all constraints
between a scenario and a QCN is important, whatever their number. However,
by instantiating f1 =

∑
, the distances dB over all constraints are summed up,

thus all of them are taken into account.

Example (continued). For the sake of conciseness, we represent a scenario as the
list of its constraints following the lexicographical order over (vi, vj), i < j. For
instance, the consistent scenario σ1 depicted in Figure 5(a) is specified by the
list ({fi}, {m}, {p}, {m}, {p}, {m}). Let σ′′ be the (inconsistent) scenario of N1

(see Figure 4(a)) defined by ({o}, {m}, {p}, {p}, {d}, {m}). We use here the basic
distance dGBint and will do so for the next examples. We consider f1 =

∑
. Then

we have:

d∑ (σ1, N
1) = min{d∑ (σ1, σ

′) | σ′ ∈ 〈N1〉} = d∑ (σ1, σ
′′)

=
∑
{dGBint(fi, o), dGBint(m,m), dGBint(p, p),
dGBint(m, p), dGBint(p, d), dGBint(m,m)}

= 1 + 0 + 0 + 1 + 4 + 0 = 6.

Similarly we get d∑ (σ1, N
2) = 1 and d∑ (σ1, N

3) = 4.
The second step of the merging process consists in taking advantage of the

aggregation function g1 to aggregate the local distances df1(σ,Nk) for every QCN
Nk ∈ N ; the resulting value can be viewed as a global distance dg1 between σ
and the profile N . This distance is defined as follows:

dg1(σ,N) = g1{df1(σ,N
k) | Nk ∈ N}.

For the arbitration function g1 = Max, the global distance represents a consen-
sual value w.r.t. all sources [21]; with g1 =

∑
, it reflects the majority point of

view of the sources [17].

Example (continued). Consider here g1 = Max. We have :

dMax(σ1,N) = max{d∑ (σ1, N
k) | Nk ∈ N} = max{6, 1, 4} = 6.

242 J.-F. Condotta et al.

v3

v1

v4

v2

{fi}

{p}

{m}

{p} {m}

{m}

(a) σ1

v1

v2

v3

v4

(b) α1

v3

v1

v4

v2

{o}

{o}

{o}

{p} {o}

{o}

(c) σ2

v1 v4

v3

v2

(d) α2

Fig. 5. Two consistent scenarios σ1 and σ2 of NV
All, and two consistent instantiations

α1 and α2 of σ1 and σ2

The set ΔdB,f1,g1
1 (N) is the set of the consistent scenarios of NV

All having a
minimal global distance dg1 . Formally,

ΔdB,f1,g1
1 (N) = {σ ∈ [NV

All] | �σ′ ∈ [NV
All], dg1(σ

′,N) < dg1 (σ,N)}.

Example (continued). Consider the consistent scenario σ2 depicted in Figure
5(c). We can compute its global distance similarly as for σ1. We then have
dMax(σ2,N) = 5. Since dMax(σ2,N) < dMax(σ1,N), we can conclude that the
consistent scenario σ1 does not belong to the set Δ

dGBint
,
∑

,Max

1 (N).

Proposition 1. ΔdB,f1,g1
1 is a QCN merging operator in the sense of Definition

6, i.e., it satisfies postulates (N1) and (N2). Moreover, if g1 is an associative
aggregation function, then ΔdB,f1,g1

1 satisfies (N5), and if g1 is an associative
and strictly non-decreasing aggregation function, then ΔdB,f1,g1

1 satisfies (N6). It
does not satisfy (N3) and (N4).

4.2 Δ2 Operators

An operator from the Δ2 family is defined in two steps as follows. The first step
consists in computing a local distance df2 between every basic relation of B and
the multiset N [i, j] = {Nk[i, j] | Nk ∈ N}, for every pair (vi, vj), i < j. The
definition of the basic distance dB between two basic relations of B is extended to
the basic distance between a basic relation b ∈ B and a relation R ∈ 2B, R �= ∅.
It corresponds to the minimal basic distance between b and every basic relation
of R. Formally we write:

dB(b, R) = min{dB(b, b′) | b′ ∈ R}.

A Syntactical Approach to Qualitative Constraint Networks Merging 243

The aggregation function f2 is used to compute the local distance between
every basic relation of B and the multiset of constraintsN [i, j] = {Nk[i, j] |Nk ∈
N} as follows:

df2(b,N [i, j]) = f2{dB(b,Nk[i, j]) | Nk[i, j] ∈ N [i, j]}.

The choice of f2 is motivated in the same way as that of g1 for Δ1 operators.
Depending on the context, we opt for a majority function

∑
[17], or for an

arbitration function Max [21]. Here the aggregation step relates the constraints
Nk[i, j] of the QCNs Nk ∈ N , for a given pair of variables (vi, vj), i < j.

Example (continued). Consider the multiset N [1, 2] = {{p,m, o}, {eq, si}, {di}}
(see Figure 4). We consider dGBint as the basic distance and f2 = Max. The
distance between the basic relation fi and the multiset N [1, 2] is defined as
follows:

dMax(fi,N [1, 2]) = max{dGBint(fi, {p,m, o}),
dGBint(fi, {eq, si}), dGBint(fi, {di})}

= max{dGBint(fi, o), dGBint(fi, eq), dGBint(fi, di)}
= max{1, 1, 1} = 1.

The second step consists in aggregating the local distances computed in the
previous step for all pairs (vi, vj), i < j, in order to compute a global distance
dg2 between a scenario σ of NV

All and the profile N . This distance is computed
using the aggregation function g2 as follows:

dg2(σ,N) = g2{df2(σij ,N [i, j]) | vi, vj ∈ V, i < j}.

The choice of g2 is motivated in the same way as the aggregation function f1 for
Δ1 operators.

Example (continued). Consider again the consistent scenario σ1 (see Figure 5(a))
and choose g2 =

∑
. We get:

d∑ (σ1,N) =
∑
{dMax(σ1(1, 2),N [1, 2]), . . . , dMax(σ1(3, 4),N [3, 4])}

= 1 + 2 + 0 + 1 + 4 + 0 = 8.

Similarly to Δ1 operators, the result of the merging process over the profile
N using ΔdB,f2,g2

2 corresponds to the set of consistent scenarios of NV
All that

minimize the global distance dg2 . Formally,

ΔdB,f2,g2
2 (N) = {σ ∈ [NV

All] | �σ′ ∈ [NV
All], dg2(σ

′,N) < dg2 (σ,N)}.

Example (continued). Consider again the consistent scenario σ2 depicted in Fig-
ure 5(c). Its global distance to N , computed similarly to the one of σ1, is
d∑ (σ2,N) = 8. Notice that the consistent scenarios σ1 and σ2 have the same

global distance to N . We can then conclude that σ1 ∈ Δ
dGBint

,Max,
∑

2 (N) iff
σ2 ∈ Δ

dGBint
,Max,

∑
2 (N).

One can prove that Δ2 operators typically satisfies less expected postulates than
the Δ1 ones:

244 J.-F. Condotta et al.

Proposition 2. ΔdB,f2,g2
2 is a QCN merging operator in the sense of Definition

6, i.e., it satisfies the postulates (N1) and (N2). The postulates (N3) - (N6) are
not satisfied.

That Δ1 and Δ2 are syntactical operators is reflected by the fact that they do
not satisfy the syntax-independence postulate (N3) (see Propositions 1 and 2).
Similarly in [10] several syntax-sensitive propositional merging operators have
been investigated, none of them satisfying the counterpart of (N3) in the propo-
sitional setting. We give some conditions under which Δ1 and Δ2 operators are
equivalent.

Proposition 3. If f1 = g2, f2 = g1 and f1 and f2 are commuting aggregation
functions, then ΔdB,f1,g1

1 (N) = ΔdB,f2,g2
2 (N).

Consequently, when f1 = g2, f2 = g1 and for instance when (f1, f2) ∈ {(
∑
,
∑

),
(Max,Max)}, then choosing a Δ1 operator rather than a Δ2 one (or conversely)
has no impact on the result. However,

∑
and Max are not commuting aggrega-

tion functions, so for such choices using Δ1 or Δ2 can lead to different results.

4.3 Computational Complexity

Beyond logical postulates, complexity considerations can be used as choice cri-
teria for a QCN merging operator. Clearly enough, the merging result may be of
exponential size in the worst case, just like representation of the merging result
in the propositional case [3,11,12]. As discussed in [6], a set of consistent scenar-
ios cannot always be represented by a single QCN. In [6] a basic construction of
a QCN NS is given from a set S of consistent scenarios leading to S = [NS] when
possible. Nevertheless, computing explicitly the merging result (as a set of con-
sistent scenarios in our setting, as a propositional formula in the propositional
framework) is not mandatory to reason with [3,11,12]; often it is enough to be
able to determine whether a given scenario belongs to it. This is why we focus
on the following MEMBERSHIP problem (MS for short): given i ∈ {1, 2}, dB a
basic distance, fi, gi two aggregation functions, N a profile and σ∗ a scenario,
does σ∗ belong to ΔdB,fi,gi

i (N) ? The following proposition provides an upper
bound of complexity for the MS problem.

Proposition 4. If fi, gi are computed in polynomial time, then MS ∈ coNP.

Interestingly, usual aggregation functions like
∑

or Max can be computed in
polynomial time. For the merging procedure proposed in [6], MS is likely harder,
i.e., falls to a complexity class above coNP in the polynomial hierarchy. Indeed
for both Δ1 and Δ2 operators, the global distance between a scenario and a
profile is computed in polynomial time. In comparison, for the merging operator
proposed in [6], computing the global distance between a scenario and a profile
requires the computation of all consistent scenarios of every QCN of the profile,
which are exponentially many in the worst case.

A Syntactical Approach to Qualitative Constraint Networks Merging 245

5 Comparison between Δ1, Δ2 and Related Works

5.1 When to Choose a Δ1 Operator

Given a profile N , opting for an operator Δ1 is appropriate when the sources
are independent of one another, i.e., when information provided by each QCN
of the profile should be treated independently. Indeed the first aggregation step
is “local” to a particular QCN, while the second one is an “inter-source” ag-
gregation. In this respect, Δ1 operators are close to QCN merging operators Θ
proposed in [6] and propositional merging operators DA2 studied in [11,12]. In
[6] the QCN merging operators Θ consider like Δ1 operators a profile N as input
and return a set of consistent scenarios following a similar two-step process, with
only f1 =

∑
. However, while Δ1 operators consider the sets of scenarios of the

QCNs of N in the computation of the local distance df1 , Θ operators consider
the sets of their consistent scenarios. Doing so, neither inconsistent QCNs of N
are taken into account by Θ operators, nor the basic relations of the constraints
of the QCNs which do not participate in any consistent scenario of this QCN. In
[11,12] the authors define a class DA2 of propositional knowledge bases merg-
ing operators, based on a distance between interpretations and two aggregation
functions. A profile corresponds in this case to a multiset of knowledge bases,
each one expressed as a finite set of propositional formulas. A first step consists
in computing a local distance between an interpretation ω and a knowledge base
K through the aggregation of the distances between ω and every propositional
formula of K. A second step then consists in aggregating the local distances to
combine all knowledge bases of the profile. In the context of QCN merging, the
Δ1 operators typically follow the same merging principle.

5.2 When to Choose a Δ2 Operator

Δ2 operators are suited to the context when a global decision should be made
a priori for every pair of variables (vi, vj). In this case every pair of variables
is considered as a “criterion’ or “topic” on which a mutual agreement has to
be found as a first step. The second step then can be viewed as a relaxation of
the independence criteria which are combined in order to find consistent global
configurations. Δ2 operators consider a local distance df2 which coincides with
the one proposed in [4]. In this work, the authors use this local distance df2 to
define a constraint merging operator. Such an operator associates with a multi-
set R of relations the set of basic relations for which the distance df2 to R is
minimal. In this framework, a QCN merging operator, denoted by Ω, associates
with a profile N a single QCN Ω(N). Similarly to Δ2 operators, Ω operators
take into consideration inconsistent QCNs and consider every basic relation of all
constraints of the input QCNs as a relevant piece of information in the merging
process. However, Ω operators require to be given a fixed total ordering <V on
the pairs of variables (vi, vj). Following this ordering, the constraint of the QCN
Ω(N) bearing on (vi, vj) is affected using the constraint merging operator on

246 J.-F. Condotta et al.

the constraints of the QCNs of N bearing on (vi, vj). At each step, Ω(N) is kept
consistent. Though the computation of Ω(N) is efficient, the choice of <V leads
to specific results, while Δ2 operators - which do not require <V to be specified -
do not suffer from this drawback.

6 Conclusion

In this paper, we have defined two classes Δ1 and Δ2 of operators for merging
qualitative constraint networks (QCNs) defined on the same qualitative formal-
ism. We have studied their logical properties and we have also considered the
problem of deciding whether a given scenario belongs to the result of the merging.
From a methodology point of view, we have addressed the problem of choosing
such a merging operator. Compared with previous merging operators, Δ1 and
Δ2 operators achieve a good compromise to QCN merging. Indeed, (i) they take
into account fine-grained information provided by the input sources in the sense
that each constraint from the input QCNs participates in the merging process
(in particular inconsistent scenarios are not excluded); (ii) the computational
complexity of query answering for those operators is not very high; (iii) they
are QCN merging operators since rationality postulates (N1) and (N2) hold. In-
terestingly, our operators do not trivialize when applied to a single inconsistent
QCN; as such, they can also be viewed as consistency restoring operators.

As a matter for further research, we plan to investigate in depth the com-
plexity issues for all classes of operators defined so far.

References

1. Allen, J.-F.: An interval-based representation of temporal knowledge. In: Proc. of
IJCAI 1981, pp. 221–226 (1981)

2. Balbiani, P., Condotta, J.-F., Fariñas del Cerro, L.: A new tractable subclass of
the rectangle algebra. In: Proc. of IJCAI 1999, pp. 442–447 (1999)

3. Cadoli, M., Donini, F.M., Liberatore, P., Schaerf, M.: The size of a revised knowl-
edge base. Artificial Intelligence 115(1), 25–64 (1999)

4. Condotta, J.-F., Kaci, S., Marquis, P., Schwind, N.: Merging qualitative constraint
networks in a piecewise fashion. In: Proc. of ICTAI 2009, pp. 605–608 (2009)

5. Condotta, J.-F., Kaci, S., Marquis, P., Schwind, N.: Merging qualitative con-
straints networks using propositional logic. In: Sossai, C., Chemello, G. (eds.)
ECSQARU 2009. LNCS, vol. 5590, pp. 347–358. Springer, Heidelberg (2009)

6. Condotta, J.-F., Kaci, S., Schwind, N.: A Framework for Merging Qualitative Con-
straints Networks. In: Proc. of FLAIRS 2008, pp. 586–591 (2008)

7. Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelli-
gence 54(1), 199–227 (1992)

8. Gerevini, A., Renz, J.: Combining topological and size information for spatial rea-
soning. Artificial Intelligence 137(1-2), 1–42 (2002)

9. Kaci, S., Piette, C.: Looking for the best and the worst. In: Colloque sur
l’Optimisation et les Systèmes d’Information, COSI (2009)

10. Konieczny, S.: On the difference between merging knowledge bases and combining
them. In: Proc. of KR 2000, pp. 135–144 (2000)

A Syntactical Approach to Qualitative Constraint Networks Merging 247

11. Konieczny, S., Lang, J., Marquis, P.: Distance-based merging: a general framework
and some complexity results. In: Proc. of KR 2002, pp. 97–108 (2002)

12. Konieczny, S., Lang, J., Marquis, P.: DA2 merging operators. Artificial Intelli-
gence 157(1-2), 49–79 (2004)

13. Konieczny, S., Pino Pérez, R.: On the logic of merging. In: Proc. of KR 1998, pp.
488–498 (1998)

14. Konieczny, S., Pino Prez, R.: Merging information under constraints: a logical
framework. Journal of Logic and Computation 12(5), 773–808 (2002)

15. Ligozat, G.: Reasoning about cardinal directions. Journal of Visual Languages and
Computing 9(1), 23–44 (1998)

16. Ligozat, G., Renz, J.: What Is a Qualitative Calculus? A General Framework.
In: Zhang, C., W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI),
vol. 3157, pp. 53–64. Springer, Heidelberg (2004)

17. Lin, J.: Integration of weighted knowledge bases. Artificial Intelligence 83(2), 363–
378 (1996)

18. Marichal, J.-L.: Aggregation Operators for Multicriteria Decision Aid. PhD thesis,
Institute of Mathematics, University of Liège, Liège, Belgium (1998)

19. Randell, D.-A., Cui, Z., Cohn, A.: A spatial logic based on regions and connection.
In: Proc. of KR 1992, pp. 165–176 (1992)

20. Renz, J., Mitra, D.: Qualitative direction calculi with arbitrary granularity. In:
Zhang, C., W. Guesgen, H., Yeap, W.-K. (eds.) PRICAI 2004. LNCS (LNAI),
vol. 3157, pp. 65–74. Springer, Heidelberg (2004)

21. Revesz, P.Z.: On the Semantics of Arbitration. Journal of Algebra and Computa-
tion 7(2), 133–160 (1997)

22. Saminger-Platz, S., Mesiar, R., Dubois, D.: Aggregation operators and commuting.
IEEE T. Fuzzy Systems 15(6), 1032–1045 (2007)

23. Thau, D., Bowers, S., Ludäscher, B.: Merging taxonomies under RCC-5 algebraic
articulations. In: Proc. of ONISW 2008, pp. 47–54 (2008)

24. van Beek, P.: Reasoning about qualitative temporal information. In: Proc. of AAAI
1990, pp. 728–734 (1990)

On the Satisfiability of Two-Variable Logic over
Data Words

Claire David, Leonid Libkin, and Tony Tan

School of Informatics, University of Edinburgh

Abstract. Data trees and data words have been studied extensively
in connection with XML reasoning. These are trees or words that, in
addition to labels from a finite alphabet, carry labels from an infinite
alphabet (data). While in general logics such as MSO or FO are unde-
cidable for such extensions, decidablity results for their fragments have
been obtained recently, most notably for the two-variable fragments of
FO and existential MSO. The proofs, however, are very long and non-
trivial, and some of them come with no complexity guarantees. Here we
give a much simplified proof of the decidability of two-variable logics for
data words with the successor and data-equality predicates. In addition,
the new proof provides several new fragments of lower complexity. The
proof mixes database-inspired constraints with encodings in Presburger
arithmetic.

1 Introduction

The classical theory of automata and formal languages deals primarily with finite
alphabets. Nonetheless, there are several models of formal languages, regular or
context free, that permit an infinite alphabet, e.g., [4,7,15,18,25,26]. Most of the
models, however, lack the usual nice decidability properties of automata over
finite alphabets, unless strongs restrictions are imposed.

Recently the subject of languages over infinite alphabets received much atten-
tion due to its connection with the problems of reasoning about XML [3,5,6,9,10].
The structure of XML documents is usually modeled by labeled unranked trees
[16,22,28], and thus standard automata techniques can be used to reason about
the structure of XML documents. However, XML documents carry data, which is
typically modeled as labeling nodes by letters from a different, infinite alphabet.

Thus, one needs to look for decidable formalisms in the presence of a second,
infinite alphabet. Such formalisms are hard to come by, and tend to be of very
high complexity. Nonetheless, some significant progress has been made recently
[5]. Namely, it was shown that the restriction of first-order logic to its two-
variable fragment, FO2, remains decidable over trees with labels coming from
an infinite alphabet (we refer to them as data trees). This is the best possible
restriction in terms of the number of variables: the three-variable fragment FO3

is undecidable [5].

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 248–262, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On the Satisfiability of Two-Variable Logic over Data Words 249

The result is true even if the sentence is preceded by a sequence of existential
monadic second-order quantifiers, i.e., for logic ∃MSO2. The proof of this decid-
ability result, however, was very nontrivial relying on a complicated automaton
model, and gave no insight into the complexity of fragments nor the possibility
of extending it to more expressive logics.

However, we do want to have tools to reason about languages over infinite
alphabets, so there is a search for easier tools. One direction is to look for re-
strictions, both in terms of structures and logics [3,11]. As for restrictions, the
most natural idea appears to be to look for tools over words, rather than trees.
This has been done in [6,9], which provided decidable formalisms for data words,
i.e., words labeled by both a finite and an infinite alphabet. In fact, [6] showed
that the two-variable logic is decidable. Specifically, it showed that in the pres-
ence of both ordering and successor relations on the domain, the logic ∃MSO2

is decidable; no upper bound on the complexity is known, however. The proof,
however, is again highly nontrivial and not particularly modular.

Our main goal is to give a much simpler and completely self-contained proof
of the decidability of satisfiability of the two-variable logic over data words. We
do it for the case when the successor relation is available on the domain (as with
the successor relation, the logic ∃MSO2 can already define all regular languages).
The proof relies on two key ideas: reducing the problem to resoning about some
specific constraints (similar to those used in database theory [2]), and using tools
based on Presburger arithmetic to reason about those.

Organization. In Section 2 we give the key definitions of data words and logics
on them and state the main result. In Section 3 we provide additional definitions
and notations. In Section 4 we provide the machinery needed for the main proof.
In Section 5 we present the proof of the decidability result. In conclusion, we
analyse the complexity of the our decision procedures.

2 Data Words and the Main Result

2.1 Data Words

Let Σ be a finite alphabet and D be an infinite set of data values. To be concrete,
we assume that D contains N, the set of natural numbers. A data word is simply
an element of (Σ×D)∗. We usually write w =

(
a1
d1

)
· · ·
(
an

dn

)
for data words, where

ai ∈ Σ and di ∈ D. We define the Σ projection of w as Proj(w) = a1 · · · an.
An a-position is a position labeled with the symbol a. The set of data values

found in a-positions of a data word w is denoted by Vw(a), while the number of
a-positions in w is denoted by #w(a).

The following notion is used throughout the paper. For a set S ⊆ Σ,

[S]w =
⋂
a∈S

Vw(a) ∩
⋂
b/∈S

Vw(b).

That is, [S]w is the set of data values that are found in a-positions for all a ∈ S
but are not found in any b-position for b �∈ S. Note that the sets [S]w’s are
disjoint, and that Vw(a) =

⋃
a∈S [S]w for each a ∈ Σ.

250 C. David, L. Libkin, and T. Tan

We say that a data word is locally different, if every position has a different
data value than its left- and right-neighbors.

2.2 Logics over Data Words

For the purpose of logical definability, we view data words of length n as structures

w = 〈{1, . . . , n},+1, {a(·)}a∈Σ,∼〉, (1)

where {1, . . . , n} is the domain of positions, +1 is the successor relation (i.e.,
+1(i, j) iff i + 1 = j), the a(·)’s are the labeling predicates, and i ∼ j holds iff
positions i and j have the same data value.

We let FO stand for first-order logic, MSO for monadic second-order logic
(which extends FO with quantification over sets of positions), and ∃MSO for ex-
istential monadic second order logic, i.e., sentences of the form ∃X1 . . . ∃Xm ψ,
where ψ is an FO formula over the vocabulary extended with the unary predi-
cates X1, . . . , Xm. We let FO2 stand for FO with two variables, i.e., the set of
FO formulae that only use two variables x and y. The set of all sentences of the
form ∃X1 . . . ∃Xm ψ, where ψ is an FO2 formula is denoted by ∃MSO2.

To emphasize that we are talking about a logic over data words we
write (+1,∼) after the logic: e.g., FO2(+1,∼) and ∃MSO2(∼,+1). Note that
∃MSO2(+1) is equivalent in expressive power to MSO over the usual (not data)
words, i.e., it defines precisely the regular languages [27].

It was shown in [6] that ∃MSO2(+1, <,∼) is decidable over data words. In
terms of complexity, the satisfiability of this logic is shown to be at least as hard
as reachability in Petri nets. Without the +1 relation, the complexity drops to
Nexptime-complete; however, without +1 the logic is not sufficiently expressive
to capture regular relations on the data-free part of the word.

Our main goal is to give a transparent and self-contained proof of the following:

Theorem 1. The satisfiability problem is decidable for ∃MSO2(∼,+1) over data
words. Moreover, the complexity of the decision procedure is elementary.

The result itself can already be infered from the decidability proof of the logic
with local navigation over data trees given in [5], which yields a 4-exponential
complexity bound. However this proof does not give any hints in understanding
the difficulty of the problem. Our proof yields a 5-exponential bound.

Neither of these bounds are of course even remotely practical. The primary
goal of these results is to delineate the boundary of decidability, so that later
we could search for efficient subclasses of decidable classes of formulae. And
for such a search, it is crucial to have simple and well-defined tools for prov-
ing decidability; providing such tools is precisely our goal here. Indeed a few
fragments of lower complexity are already provided here. Furthermore, in [10] a
fragment whose satisfiability is decidable in NP is obtained. 1 With our proof
we gain some insight on how the complexity “moves up continuously” from NP
to 5-exponential.
1 This fragment is context free languages with the constraints on the data values of

the forms: ∀x∀y a(x) ∧ a(y) ∧ x ∼ y → x = y, and ∀x∃y a(x)→ b(y) ∧ x ∼ y.

On the Satisfiability of Two-Variable Logic over Data Words 251

3 Additional Notations

3.1 Disjunctive Constraints for Data Words

We consider two types of constraints on data words, which are slight generaliza-
tions of keys and inclusion constraints used in relational databases [2]. They are
defined as the following logical sentences.

1. A disjunctive key constraint (dk) is a sentence of the form:

∀x ∀y
((∨

a∈Σ′
a(x) ∧

∨
a∈Σ′

a(y) ∧ x ∼ y
)
→ x = y

)
,

where Σ′ ⊆ Σ. We denote such sentence by V (Σ′) 	→ Σ′.
2. A disjunctive inclusion constraint (dic) is as sentence of the form:

∀x ∃y
(∨

a∈Σ1

a(x) →
∨

b∈Σ2

b(y) ∧ x ∼ y
)
,

where Σ1, Σ2 ⊆ Σ. We denote such sentence by V (Σ1) ⊆ V (Σ2).

For a set C of dk’s and dic’s, the data word w satisfies C, written as w |= C, if w
satisfies all sentences in C.

In [10] the constraints considered are when all the cardinalities |Σ′|, |Σ1|, |Σ2|
are one, which are simply known as key and inclusion constraint.

3.2 Existential Presburger Formulae

Atomic Presburger formulae are of the form: x1 + x2 + · · ·xn ≤ y1 + · · · + ym,
or x1 + · · ·xn ≤ K, or x1 + · · ·xn ≥ K, for some constant K ∈ N. Existential
Presburger formulae are Presburger formulae of the form ∃x̄ ϕ, where ϕ is a
Boolean combination of atomic Presburger formulae.

We shall be using Presburger formulae defining Parikh images of words. Let
Σ = {a1, . . . , ak}, and let v ∈ Σ∗. By Parikh(v) we mean the Parikh image of v,
i.e., (#v(a1), . . . ,#v(ak)), i.e., k-tuple of integers (n1, . . . , nk) so that ni is the
number of occurrences of ai in v.

With alphabet letters, we associate variables xa1 , . . . , xak
. Given a Presburger

formula ϕ(xa1 , . . . , xak
), we say that a word v ∈ Σ∗ satisfies it, written as

v |= ϕ(xa1 , . . . , xak
) if and only if ϕ(Parikh(v)) holds. It is well-known that for

every regular language L, one can construct an existential Presburger formula
ϕL(xa1 , . . . , xak

) so that a word v satisfies it iff it belongs to L [21]; moreover,
the formula can be constructed in polynomial time [24].

3.3 Presburger Automata

A Presburger automaton is a pair (A, ϕ), where A is a finite state automaton and
ϕ is an existential Presburger formula. A word w is accepted by (A, ϕ), denoted
by L(A, ϕ), if w ∈ L(A) (the language of A) and ϕ(Parikh(w)) holds.

Theorem 2. [24] The emptiness problem for presburger automata is decidable
in NP.

252 C. David, L. Libkin, and T. Tan

3.4 Profile Automata for Data Words

Given a data word w =
(
a1
d1

)
· · ·
(
an

dn

)
, the profile word of w, denoted by Profile(w),

is the word

Profile(w) = (a1, L1, R1), . . . , (an, Ln, Rn) ∈ (Σ × {∗,�,⊥}× {∗,�,⊥})∗

such that for each position i = 1, . . . , n, the values of Li and Ri are either �,
or ⊥, or ∗. If Li = � and i > 1, it means that the position on the left, i − 1,
has the same data value as position i; otherwise Li = ⊥. If i = 1 (i.e., there is
no position on the left), then Li = ∗. The meaning of the Ri’s is similar with
respect to positions on the right of i.

Definition 1. A profile automaton A is a finite state automaton over the alpha-
bet Σ×{∗,�,⊥}×{∗,�,⊥}. It defines a set Ldata(A) of data words as follows:
w ∈ Ldata(A) if and only if A accepts Profile(w) in the standard sense.

A profile automaton A and a set C of disjunctive constraints define a set of data
words as follows.

L(A, C) = {w | w ∈ Ldata(A) and w |= C}.

3.5 A Normal Form for ∃MSO2(∼, +1)

Decidability proofs for two-variable logics typically follow this pattern: first,
in an easy step, a syntact normal form is established; then the hard part is
combinatorial, where decidability is proved for that normal form (by establishing
the finite-model property, or by automata techniques, for example).

A normal form for ∃MSO2(∼,+1) was already given in [5], and we shall use
it with just a small modification. In [5] it was shown that every ∃MSO2(∼,+1)
formula over data words is equivalent to a formula

∃X1 . . . ∃Xk(χ ∧
∧
i

ϕi ∧
∧
j

ψj)

where

1. χ describes the behavior of a profile automaton (i.e., it can be viewed as an
FO2(+1) formula over the extended alphabet Σ × {∗,�,⊥}× {∗,�,⊥});

2. each ϕi is of the form ∀x∀y(α(x) ∧ α(y) ∧ x ∼ y → x = y), where α is a
conjunction of labeling predicates, Xk’s, and their negations; and

3. each ψj is of the form ∀x∃y α(x) → (x ∼ y ∧α′(y)), with α, α′ as in item 2.

The number of the unary predicates X ’s is single exponential in the size of the
original input sentence.

If we extend the alphabet to Σ×2k so that each label also specifies the family
of the Xi’s the node belongs to, then formulae in items 2 and 3 can be encoded
by disjunctive constraints: formulae in item 2 become dk’s V (Σ′) 	→ Σ′, and
formulae in item 3 become dic’s V (Σ1) ⊆ V (Σ2), where Σ′, Σ1, Σ2 ⊆ Σ × 2k.

On the Satisfiability of Two-Variable Logic over Data Words 253

Indeed, consider, for example, the constraint ∀x∀y(α(x)∧α(y)∧x ∼ y → x =
y). Let Σ′ be the set of all symbols (a, b̄) ∈ Σ × 2k consistent with α. That is,
a is the labeling symbol used in α (if α uses one) or an arbitrary letter (if α
does not use a labeling predicate), and the Boolean vector b̄ has 1 in positions
of the Xis used positively in α and 0 in positions of Xj’s used negatively in α.
Then the original constraint is equivalent to V (Σ′) 	→ Σ′. The transformation
of type-2 constraints into dic’s is the same. The details of this straightforward
construction can be found in the Appendix in [1].

Hence, [5] and the above, imply the following. LetSAT-profilebe the problem:

Problem: SAT-profile

Input: a profile automaton A and
a collection C of disjunctive constraints

Question: is there a data word w ∈ Ldata(A) such that w |= C?

Then:

Lemma 1. Given an ∃MSO2(∼,+1) sentence ϕ, one can construct, in triple
exponential time, an instance (A, C) of SAT-profile over a new alphabet Σ so
that SAT-profile(A, C) returns true iff ϕ is satisfiable. However, the size of
(A, C) and Σ is double exponential in the size of ϕ.

Thus, our main goal now is to prove:

Theorem 3. SAT-profile is decidable with elementary complexity.

The main result, Theorem 1, is an immediate consequence of Theorem 3 and
Lemma 1.

4 Some Preliminary Results

Proposition 1. For every data word w, the following holds.

1. w |= V (Σ′) 	→ Σ′ if and only if #w(a) = |Vw(a)| for each a ∈ Σ′ and
[S]w = ∅, whenever |S ∩Σ′| ≥ 2.

2. w |= V (Σ1) ⊆ V (Σ2) if and only if [S]w = ∅, for all S such that S ∩Σ1 �= ∅
and S ∩Σ2 = ∅.

Proof. Part 1 is trivial. For part 2, note that
⋃

a∈Σ1
Vw(a) ⊆

⋃
b∈Σ2

Vw(b) if
and only if

(⋃
a∈Σ1

Vw(a)
)
∩
⋂

b∈Σ2
Vw(b) = ∅, which, of course, is equivalent to

[S]w = ∅, whenever S ∩Σ1 �= ∅ and S ∩Σ2 = ∅. �

Lemma 2. For every set C of disjunctive constraints, one can construct, in
single-exponential time, a Presburger formula ϕC(xa1 , . . . , xak

) such that for ev-
ery data word w, we have w |= C if and only if ϕC(Parikh(Proj(w))) holds.

Proof. Let S1, . . . , Sm be the enumeration of non-empty subsets of Σ, where
m = 2|Σ| − 1. The formula ϕC is of the form ∃zS1 · · · ∃zSm ψ, where ψ is the
conjunction of the following quantifier-free formulas:

254 C. David, L. Libkin, and T. Tan

P1. xa ≥
∑

S�a zS , for every a ∈ Σ;
P2. if V (Σ′) 	→ Σ′ ∈ C, we have the conjunction:∧

|S∩Σ′|≥2

zS = 0 ∧
∧

a∈Σ′
xa =
∑
a∈S

zS

P3. if V (Σ1) ⊆ Σ2 ∈ C, we have the conjunction:∧
S∩Σ1 �=∅ and S∩Σ2=∅

zS = 0

We claim that for every data word w, w |= C if and only if ϕC(Parikh(Proj(w)))
holds.

Let w be a data word such that w |= C. We need to show that
ϕC(Parikh(Proj(w))) holds. As witnesses for zS, for each S ⊆ Σ, we pick
zS = |[S]w|. Now we need to show that all the conjuctions P1–P3 above are sat-
isfied. P1 is definitely satisfied, as for each a ∈ Σ,

∑
S�a zS = |Vw(a)| ≤ #w(a).

P2 and P3 follow from Proposition 1.

– If w |= V (Σ′) 	→ Σ′, then #w(a) = |Vw(a)| for each a ∈ Σ and [S]w = ∅,
whenever |S ∩Σ′| ≥ 2. So, P2 is automatically satisfied.

– If w |= V (Σ1) ⊆ V (Σ2), then [S]w = ∅, for all S such that S ∩ Σ1 �= ∅ and
S ∩Σ2 = ∅. Obviously then P3 is satisfied.

Now suppose that v is a word such that ϕC(Parikh(v)) holds. We can assign data
values to v such that the resulting data word w satisfies every constraints in C.
Let zS = mS be some witnesses of that ϕC(Parikh(v)) holds. Let K =

∑
S mS .

We are going to assign the data values {1, . . . ,K} to v as follows. Define a
function

ξ : {1, . . . ,K}→ 2Σ − {∅},
such that |ξ−1(S)| = mS . We then assign the a-positions in v with the data
values

⋃
a∈S ξ

−1(S), for each a ∈ Σ, resulting in a data word w. Such assign-
ment is possible since

∑
a∈S |ξ−1(S)| =

∑
a∈S mS ≤ #v(a). By definition of the

function ξ, we obtain that [S]w = ξ−1(S). That w |= C follows immediately from
Proposition 1. �

Lemma 2 immediately implies the decidability of a slightly simpler version of
SAT-profile. Consider the following problem:

Problem: SAT-automaton

Input: a finite state automaton A and
a collection C of disjunctive constraints

Question: is there a data word w such that Proj(w) ∈ L(A) and w |= C?

By Lemma 2, we can construct in exponential time a Presburger formula ϕC of
exponential size such that for all data words w we have, w |= C if and only if
ϕC(Parikh(Proj(w))). Combining it with Theorem 2, we immediately obtain the
decidability of the above problem:

On the Satisfiability of Two-Variable Logic over Data Words 255

Corollary 1. SAT-automaton is decidable with elementary complexity.

The following lemma is crucial in our proof of Theorem 3.

Lemma 3. Let v be a word over Σ. Suppose that for each a ∈ Σ, we are given
a set Va of data values such that

– if Va = ∅, then #v(a) = 0; and
– #v(a) ≥ |Va| ≥ |Σ|+ 3 otherwise.

Then we can assign a data value to each position in v such that the resulting
data word w is locally different and for each a ∈ Σ, Va = Vw(a).

Proof. Let v = a1 · · · an. First we assign data values in the following manner:
Let a ∈ Σ. Assign each of the data values from Va in |Va| number of a-positions
in v. One position gets one data value. Since #a(v) ≥ |Va|, such assignment is
possible, and moreover, if #a(v) > |Va|, then some a-positions are without data
values. We do this for each a ∈ Σ.

Let w =
(
a1
d1

)
· · ·
(
an

dn

)
be the resulting data word, where we write di = " to

denote that position i is still without data value. In the data word w, for each
a ∈ Σ, we already have Vw(a) = Va.

However, by assigning data values just like that, the data word w may not
be locally different. There may exist i ∈ {1, . . . , n− 1} such that di = di+1 and
di, di+1 �= ". We call such a position a conflict position. Now, we show that we
can always rearrange the data values in w such that the resulting data word has
no conflict positions. Suppose position i is a conflict position labeled a. Since
there are only |Σ| symbols, the data value di can only occur at most |Σ| times
in w. Since |Va| ≥ |Σ|+ 3 > |Σ|, there exists a position j such that

– aj = a and dj �= ";
– dj−1, dj+1 �= di.

Now there are ≥ |Σ|+ 3− |Σ| = 3 such positions. From all such positions, pick
one position j whose data value dj �= di−1, di+1. We can then swap the data
values di and dj , resulting in less number of conflict positions inside w. We can
repeat this process until there is no more conflict positions inside w.

The final step is to assign data values for the positions in w which do not have
data value. This is easy. Since for each a ∈ Σ, |Va| ≥ |Σ| + 3 ≥ 3, if the data
value di = ", then we can choose one data value from Vai which is different from
its left- and right-neighbors. This still ensures that we get a locally different data
word at the end. This completes the proof. �

5 Proof of Theorem 3

For the sake presentation, we divide it into a few subsections. In Subsection 5.1,
we present our algorithm for deciding SAT-profile over locally different data
words. Then, we explain how our algorithm can be extended to the general case
in Subsection 5.2.

256 C. David, L. Libkin, and T. Tan

5.1 Satisfiability over Locally Different Data Words

In this subsection we give elementary algorithm to decide the problem SAT-

locally-different defined below. This problem is still a more restricted ver-
sion of SAT-profile, but more general than SAT-automaton.

Problem: SAT-locally-different

Input: a finite state automaton A and
a collection C of disjunctive constraints

Question: is there a locally different data word w such that
Proj(w) ∈ L(A) and w |= C?

We further divide the proof for satisfiability SAT-locally-different into
two cases:

– First, we show how to decide SAT-locally-different over data words
with “many” data values.

– Second, we settle SAT-locally-different in the general case.

We say that a data word w has “many” data values if for all S ⊆ Σ, the
cardinality |[S]w| is either 0 or ≥ |Σ|+3. Notice that if a data word w has many
data values, then either |Vw(a)| = 0 or |Vw(a)| ≥ |Σ|+ 3 for all a ∈ Σ.

The case of data words with many data values. By Lemma 2, we can
construct a Presburger formula ϕC such that for every data word w,

w |= C if and only if ϕC(Parikh(Proj(w))) holds.

So, for every data word w, w ∈ L(A, C) if and only if Proj(w) ∈ L(A, ϕC).
Recall that the formula ϕC is of the form: ∃zS1 · · · ∃zSm ψC, where S1, . . . , Sm

is the enumeration of non-empty subsets of Σ and the intention of each zSi is to
represent |[Si]w| for data words w for which ϕC(Parikh(Proj(w))) holds.

The idea is as follows: given a set F ⊆ 2Σ − {∅}, we can decide the existence
of a locally different data word w ∈ L(A, C) such that |[S]w| = 0, if S ∈ F and
|[S]w| ≥ |Σ|+ 3, if S /∈ F .

Now, to decide the existence of a locally different data word with many data
values in L(A, C), we do the following.

1. Guess a set F ⊆ 2Σ − {∅}.
2. Construct the formula ϕC from C according to Lemma 2.

Let ϕC be in the form of ∃zS1 · · · ∃zSm ψC.
3. Define the formula ϕC,F as:

∃zS1 · · · ∃zSm

(
ψC ∧
∧

Si∈F

zSi = 0 ∧
∧

Si /∈F

zSi ≥ |Σ|+ 3
)

4. Test the emptiness of L(A, ϕC,F).

To show that such algorithm is correct, we claim the following.

On the Satisfiability of Two-Variable Logic over Data Words 257

Claim 4. For every word v ∈ Σ∗, v ∈ L(A, ϕC,F) for some F ⊆ 2Σ if and only
if there exists a locally different data word w ∈ L(A, C) with many data values
such that Proj(w) = v.

Proof. If v ∈ L(A, ϕC,F) for some F , then there exist witnesses zSi = mSi such
that ϕC,F(Parikh(v)) holds. By the construction of ϕC,F , we have mSi = 0, if
Si ∈ F and mSi ≥ |Σ|+3, if Si /∈ F . As in the proof of Lemma 2, we can assign
data values to each position of v, resulting in a data word w such that for each
S ⊆ Σ, |[S]w| = mS which is either ≥ |Σ| + 3 or 0. This means that |Vw(a)|
is either ≥ |Σ| + 3 or 0. (If |Vw(a)| = 0, it means that the symbol a does not
appear in v.) By Lemma 3, we can rearrange the data values in w to obtain a
locally different data word. This data word is in L(A, C).

The converse is straightforward. if w ∈ L(A, C) has many data values, then
v = Proj(w) immediately satisfies ϕC,F , where F = {Si | |[Si]w| = 0}. Thus,
v ∈ L(A, ϕC,F). �

The general case of SAT-locally-different. The algorithm is more or less
the same as above. The only extra care needed is to consider the case if there
exists a locally different data word w ∈ L(A, C) such that |[S]w| ≤ |Σ| + 2, for
some S ⊆ Σ.

As before, the idea is to decide, given a set F ⊆ 2Σ−{∅}, whether there exists
a locally different data word w ∈ L(A, C) such that |[S]w| ≤ |Σ| + 2, if S ∈ F
and ≥ |Σ| + 3, otherwise. Again, we reduce the problem to the emptiness of a
Presburger automaton.

The main difference is the way to deal with the S ∈ F , as S ∈ F does not always
imply that [S]w is empty but only that its cardinality is bounded by the constant
|Σ|+2. For all these S ∈ F , we can assume that the data [S]w consists of constant
symbols, since |[S]w| ≤ |Σ| + 2. We denote such sets of constant symbols by ΓS ,
for all S ∈ F . Then we embed those constant symbols into the finite alphabet Σ
and extend the automaton A to handle the constraints on them.

The details of the algorithm are as follows. It consists of four main steps.

1. The guessing of the set F and the constants ΓS’s.
a) Guess a set F ⊆ 2Σ − {∅}.
b) For each S ∈ F , guess an integer mS ≤ |Σ|+2 according to the following

rule.
– If V (Σ′) 	→ Σ′ ∈ C, then mS = 0, if |S ∩Σ′| ≥ 2.
– If V (Σ1) ⊆ V (Σ2) ∈ C, then mS = 0, if S ∩Σ1 �= ∅ and S ∩Σ2 = ∅.

c) For each S ∈ F , fix a set ΓS = {αS
1 , . . . , α

S
mS
} of constants such that

ΓS ’s are disjoint, and ΓS ∩ N = ∅. Let ΓF =
⋃

S∈F ΓS .
2. Embedding the constants of ΓS’s into A.

Construct a finite state automaton A′ (from the automaton A) over the
alphabet Σ ∪ Σ × ΓF as follows. A′ accepts the word v = b1 · · · bn over
Σ ∪Σ × ΓF if and only if the following holds.

258 C. David, L. Libkin, and T. Tan

– A symbol (a, d) ∈ Σ × ΓF can appear in v if and only if a ∈ S and
d ∈ ΓS .

– Let u = a1 · · · an be a word over Σ such that

ai =
{
bi if bi ∈ Σ,
c if bi = (c, d) ∈ Σ × ΓF

Then, u ∈ L(A).
– For i = 1, . . . , n− 1, if bi = (ai, di) ∈ Σ × ΓF and bi+1 = (ai+1, di+1) ∈
ΓF , then di �= di+1.

– If V (Σ′) 	→ Σ′ is in C, then for each a ∈ Σ′ and α ∈ ΓS , where a ∈ S,
the symbol (a, αS) appears exactly once in v.

Note that A′ is defined from A with the parameters: F and {ΓS | S ∈ F}.
The construction is straightforward and can be found in Appendix in [1].

3. Constructing the Presburger formula for C.
a) Construct the formula ϕC from C according to Lemma 2.

Let ϕC be in the form of ∃zS1 · · · ∃zSm ψC.
b) Denote by ϕC,F the formula:

∃zS1 · · · ∃zSm

(
ψC ∧
∧

Si∈F

zSi = 0 ∧
∧

Si /∈F

zSi ≥ |Σ|+ 3
)

4. The decision step. Test the emptiness of L(A′, ϕC,F).

The correctness of the algorithm follows from Claim 5 below.

Claim 5. There exists a locally different data word w ∈ L(A, C) if and only
if there exist a set F ⊆ 2Σ and {ΓS | S ∈ F and |ΓS | ≤ |Σ| + 2} such that
L(A′, ϕC,F) �= ∅, where A′ and ϕC,F are as defined in our algorithm and the
constants ΓS’s respect Step 1.b) above.

Proof. We prove “only if” part first. Let w ∈ L(A, C) be a locally different data
word. The set F is defined as follows.

– S ∈ F , if the cardinality |[S]w| ≤ |Σ|+ 2.
– S /∈ F , if the cardinality |[S]w| ≥ |Σ|+ 3.

Without loss of generality, we assume that [S]w = ΓS , for S ∈ F . Let w =(
a1
d1

)
· · ·
(
an

dn

)
. We construct the word v = b1 · · · bn as follows. For each i = 1, . . . , n,

bi = (ai, di), if di is in some ΓS , otherwise bi = ai.
The rest of data values are in [S]w, for some S /∈ F . So, zS = |[S]w| ≥ |Σ|+3

serves as witnesses for S /∈ F , and zS = 0, for S ∈ F . Thus, v ∈ L(A′, ϕC,F).
Now we prove the “if” part. Suppose there exist some ΓS ’s and a word v over

the alphabet Σ ∪ (Σ ×
⋃

S∈S ΓS) such that v ∈ L(A′, ϕC,F).
Let v = b1 · · · bn. If bi = (a, α) ∈ Σ × ΓS , then we simply view α as the data

value in that position. For the other positions, where bi = a ∈ Σ, we assign the
data values as before in Lemma 2.

Let zS = mS be the witnesses that v ∈ L(A′, ϕC,F) holds. Let K =
∑

S mS .
Define the following function:

On the Satisfiability of Two-Variable Logic over Data Words 259

ξ : {1, . . . ,K}→ 2Σ − {∅},
where |ξ−1(S)| = mS .

For each a ∈ Σ, we assign the a-positions in v with the data values from⋃
a∈S ξ

−1(S). If necessary, we can apply Lemma 3 to obtain a locally different
data word. The data values from ΓS does not prevent us from applying Lemma 3,
since ΓF ∩ {1, . . . ,K} = ∅. �

5.2 Satisfiability over General Data Words

Now we extend our idea above to prove Theorem 3. For that we need some
auxiliary terms. Let w =

(
a1
d1

)
· · ·
(
an

dn

)
be a data word overΣ. A zone is a maximal

interval [i, j] with the same data values, i.e. di = di+1 = · · · = dj and di−1 �= di

(if i > 1) and dj �= dj+1 (if j < n). Obviously each two consecutive zones have
different data values. The zone [i, j] is called an S-zone, if S is the set of labels
occuring in the zone.

The zonal partition of w is a sequence (k1, . . . , kl), where 1 ≤ k1 < k2 < · · · <
kl ≤ n such that [1, k1], [k1 + 1, k2], . . . , [kl + 1, n] are the zones in w. Let the
zone [1, k1] be an S1-zone, [k1 + 1, k2] an S2-zone, [k2 + 1..k3] an S3-zone, and
so on. The zonal word of w is a data word over Σ ∪ 2Σ defined as follows.

Zonal(w) = a1 · · · ak1

(
S1

dk1

)
ak1+1 · · · ak2

(
S2

dk2

)
· · · akl+1 · · · an

(
Sl

dn

)
.

That is, the zonal word of a data word is a word in which each zone is succeeded
by a label S ∈ 2Σ , if the zone is an S-zone.

Moreover, it is sufficient to assume that only the positions labeled with sym-
bols from 2Σ carry data values, i.e., data values of their respective zones. Since
two consecutive zones have different data values, two consecutive positions (in
Zonal(w)) labeled with symbols from 2Σ also have different data values.

Furthermore, if w is a data word over Σ, then for each a ∈ Σ,

Vw(a) =
⋃
a∈S

VZonal(w)(S).

Proposition 2 below shows that disjunctive constraints for data words over the
alphabetΣ can be converted into disjunctive constraints for the zonal data words
over the alphabet Σ ∪ 2Σ.

Proposition 2. For every data word w over Σ, the following holds.

– For Σ′ ⊆ Σ, w |= V (Σ′) 	→ Σ′ if and only if
K1. Zonal(w) |= V (Q) 	→ Q, where Q = {S | S ∩Σ′ �= ∅};
K2. in Zonal(w) every zone contains at most one symbol from Σ′.

(By a zone in Zonal(w), we mean a maximal interval in which every
positions are labeled with symbols from Σ.)

– For Σ1, Σ2 ⊆ Σ, w |= V (Σ1) ⊆ V (Σ2) if and only if Zonal(w) |= V (Q1) ⊆
V (Q2), where Q1 = {S | S ∩Σ1 �= ∅} and Q2 = {S | S ∩Σ2 �= ∅}.

260 C. David, L. Libkin, and T. Tan

Now, given a profile automaton A over the alphabet Σ, we can construct effec-
tively an automaton Azonal such that for all data word w,

Profile(w) ∈ L(A) if and only if Proj(Zonal(w)) ∈ L(Azonal).

Such an automaton Azonal is called a zonal automaton of A. Moreover, if the dk
V (Σ′) 	→ Σ′ ∈ C, we can impose the condition K2 in Proposition 2 inside the
automaton Azonal.

This together with Proposition 2 imply that the instance (A, C) of SAT-

profile can be reduced to an instance of the following problem.

Problem: SAT-locally-different-for-zonal-words

Input: • a zonal automaton Azonal

• a collection Czonal of disjunctive constraints over the alphabet 2Σ

Question: is there a zonal word w such that
• Proj(w) ∈ L(Azonal) and w |= Czonal and
• in which two consecutive positions labeled with symbols from 2Σ

have different data values?

The proof in the previous subsection can then be easily adapted to SAT-

locally-different-for-zonal-words. The details can be found in the Ap-
pendix in [1].

6 Analysis of the Complexity

As a conclusion, we provide the complexity of our algorithms.

SAT-automaton : NExpTime

NP(if the alphabet Σ is fixed)
SAT-locally-different : NExpTime

NP(if the alphabet Σ is fixed)
SAT-profile : 2-NExpTime

NP(if the alphabet Σ is fixed)

In our algorithms, all three problems are reduced to the emptiness problem for
Presburger automata which is decidable in NP(Theorem 2).

In SAT-automaton the exponential blow-up occurs when reducing the dk’s
and dic’s in C to the existential Presburger formula ϕC (Lemma 2). This formula
ϕC has exponentially many variables zS , for every S ⊆ Σ. Of course, if the
alphabetΣ is fixed, then the reduction is polynomial, hence, the NP-membership
for SAT-automaton. It is the same complexity for SAT-locally-different.

For SAT-profile the additional exponential blow-up occurs when translating
the dk’s and dic’s over the alphabet Σ to the dk’s and dic’s over the alphabet 2Σ .
Now combining this with Lemma 1, we obtain the 4-NExpTime upper bound
for the satisfaction of ∃MSO2(∼,+1).

On the Satisfiability of Two-Variable Logic over Data Words 261

Acknowledgement. We acknowledge the financial support of the Future and
Emerging Technologies (FET) programme within the Seventh Framework Pro-
gramme for Research of the European Commission, under the FET-Open grant
agreement FOX, number FP7- ICT-233599.

References

1. http://homepages.inf.ed.ac.uk/ttan/publications/2010/sdw-lpar10.pdf

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

3. Björklund, H., Bojanczyk, M.: Bounded depth data trees. In: Arge, L., Cachin,
C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 862–874.
Springer, Heidelberg (2007)

4. Boasson, L.: Some applications of CFL’s over infinte alphabets. In: Deussen, P.
(ed.) GI-TCS 1981. LNCS, vol. 104, pp. 146–151. Springer, Heidelberg (1981)

5. Bojanczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. J. ACM 56(3) (2009)

6. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on words with data. In: LICS 2006, pp. 7–16 (2006)

7. Bouyer, P., Petit, A., Thérien, D.: An algebraic characterization of data and timed
languages. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 248–261. Springer, Heidelberg (2001)

8. Dal-Zilio, S., Lugiez, D., Meyssonnier, C.: A logic you can count on. In:
POPL 2004, pp. 135–146 (2004)

9. Demri, S., Lazic, R.: LTL with the freeze quantifier and register automata. ACM
TOCL 10(3) (2009)

10. Fan, W., Libkin, L.: On XML integrity constraints in the presence of DTDs. J.
ACM 49(3), 368–406 (2002)

11. Figueira, D.: Satisfiability of downward XPath with data equality tests. In:
PODS 2009, pp. 197–206 (2009)

12. Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pa-
cific J. Math. 16, 285–296 (1966)

13. Grädel, E., Kolaitis, P., Vardi, M.: On the decision problem for two-variable first-
order logic. BSL 3(1), 53–69 (1997)

14. Jurdzinski, M., Lazic, R.: Alternation-free modal mu-calculus for data trees. In:
LICS 2007, pp. 131–140 (2007)

15. Kaminski, M., Tan, T.: Tree automata over infinite alphabets. In: Avron, A., Der-
showitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800,
pp. 386–423. Springer, Heidelberg (2008)

16. Libkin, L.: Logics for unranked trees: an overview. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
35–50. Springer, Heidelberg (2005)

17. Neven, F.: Automata, logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002 and
EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)

18. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM TOCL 5(3), 403–435 (2004)

19. Otto, M.: Two variable first-order logic over ordered domains. J. Symb. Log. 66(2),
685–702 (2001)

http://homepages.inf.ed.ac.uk/ttan/publications/2010/sdw-lpar10.pdf

262 C. David, L. Libkin, and T. Tan

20. Papadimitriou, C.: On the complexity of integer programming. J. ACM 28(4),
765–768 (1981)

21. Parikh, R.: On context-free languages. J. ACM 13(4), 570–581 (1966)
22. Schwentick, T.: Automata for XML – a survey. JCSS 73, 289–315 (2007)
23. Seidl, H., Schwentick, T., Muscholl, A.: Numerical document queries. In:

PODS 2003, pp. 155–166 (2003)
24. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for free.

In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, pp. 1136–1149. Springer, Heidelberg (2004)

25. Tan, T.: Graph reachability and pebble automata over infinite alphabets. In: LICS
2009, pp. 157–166 (2009)

26. Tan, T.: On pebble automata for data languages with decidable emptiness problem.
In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 712–723.
Springer, Heidelberg (2009)

27. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages,
vol. 3, pp. 389–455. Springer, Heidelberg (1997)

28. Vianu, V.: A web Odyssey: from Codd to XML. In: PODS 2001, pp. 1–15 (2001)

Generic Methods for Formalising Sequent
Calculi Applied to Provability Logic

Jeremy E. Dawson and Rajeev Goré

Logic and Computation Group, School of Computer Science
The Australian National University, Canberra ACT 0200, Australia

http://users.rsise.anu.edu.au/~jeremy/,
http://users.rsise.anu.edu.au/~rpg/

Abstract. We describe generic methods for reasoning about multiset-
based sequent calculi which allow us to combine shallow and deep em-
beddings as desired. Our methods are modular, permit explicit structural
rules, and are widely applicable to many sequent systems, even to other
styles of calculi like natural deduction and term rewriting systems. We
describe new axiomatic type classes which enable simplification of multi-
set or sequent expressions using existing algebraic manipulation facilities.
We demonstrate the benefits of our combined approach by formalising
in Isabelle/HOL a variant of a recent, non-trivial, pen-and-paper proof
of cut-admissibility for the provability logic GL, where we abstract a
large part of the proof in a way which is immediately applicable to other
calculi. Our work also provides a machine-checked proof to settle the
controversy surrounding the proof of cut-admissibility for GL.

Keywords: provability logic, cut admissibility, interactive theorem prov-
ing, proof theory.

1 Introduction

Sequent calculi provide a rigorous basis for meta-theoretic studies of various
logics. The central theorem is cut-elimination/admissibility, which states that
detours through lemmata can be avoided, since it can help to show many im-
portant logical properties like consistency, interpolation, and Beth definability.
Cut-free sequent calculi are also used for automated deduction, for nonclassical
extensions of logic programming, and for studying the connection between nor-
malising lambda calculi and functional programming. Sequent calculi, and their
extensions, therefore play an important role in logic and computation.

Meta-theoretic reasoning about sequent calculi is error-prone because it in-
volves checking many combinatorial cases, some being very difficult, but many
being similar. Invariably, authors resort to expressions like “the other cases are
similar”, or “we omit details”. The literature contains many examples of meta-
theoretic proofs containing serious and subtle errors in the original pencil-and-
paper proofs. For example, the cut-elimination theorem for the modal “provabil-
ity logic” GL, where �ϕ can be read as “ϕ is provable in Peano Arithmetic”,
has a long and chequered history which has only recently been resolved [5].

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 263–277, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://users.rsise.anu.edu.au/~jeremy/
http://users.rsise.anu.edu.au/~rpg/

264 J.E. Dawson and R. Goré

When reasoning about sequent calculi using proof assistants, we have to repre-
sent proof-theoretical concepts like “sequents”, “derivations” and “derivability”
in the meta-logic of the given proof assistant. The granularity of the representa-
tion plays a critical role in determining the versatility of the representation. At
one extreme, we have “deep” embeddings in which a sequent and a derivation
are represented explicitly as terms of the meta-logic, as espoused in our previ-
ous work on display calculi [2]. The advantage of this approach is that it allows
us to encode fine-grained notions like “each structure variable appears at most
once in the conclusion of a rule”. The disadvantage of this approach is that it
requires a lot of ancillary low-level work to capture essential notions like “rule
instance”. At the other extreme, we have “shallow” embeddings like the one in
the Isabelle/Sequents package, which allows us to derive sequents, but does not
allow us to reason about the derivations or derivability. Most practitioners [8,9,3]
choose an approach somewhere between these extremes, which then limits their
ability to generalise their work to other calculi or to handle arbitrary structural
rules for example.

Here, we describe general methods for reasoning in Isabelle/HOL about the
proof-theory of traditional, propositional, multiset-based sequent calculi. Our
methods are modular in allowing an arbitrary set of rules, permit explicit struc-
tural rules, and are widely applicable to many sequent systems, even to other
styles of calculi like natural deduction and term rewriting systems. They ad-
vance the “state of the art” in that they allow us to “mix and match” shallow
and deep embeddings where appropriate, which, as far as we know, has not been
done before. We then show how we used them to formalise a highly non-trivial
proof of cut-admissibility for GL based on, but different from, that of [5].

In Section 2, we briefly describe traditional sequent calculi, discuss the need
for multisets, and describe the controversy surrounding the cut-elimination theo-
rem for the set-based sequent system GLS for provability logic GL . In Section 3
we describe general deep and shallow techniques and functions we have defined
for reasoning about derivations and derivability, independently of the rules of
a particular sequent system. We give very general induction principles which
are useful beyond the application to GLS. We show how we formalise formulae,
sequents and rules, and then show some of the GL sequent rules as examples. In
Section 4 we describe an Isabelle axiomatic type class which we developed to fa-
cilitate reasoning about multisets of formulae, and sequents based on them. This
development explores the interaction between lattice (∧, ∨, ≤) and “arithmetic”
(+, −, 0, ≤) operations. In Section 5 we discuss how we made our Isabelle proofs
as general as possible, and how they are useful for proving cut-elimination and
other results in arbitrary sequent calculi which meet the associated precondi-
tions. In Section 6 we describe the cut-admissibility proof for GLS.

We assume the reader is familiar with basic proof-theory, ML and Isabelle/HOL.
In the paper we show some Isabelle code, edited to use mathematical symbols.
The Appendix gives the actual Isabelle text of many definitions and theorems.
Our Isabelle code can be found at http://users.rsise.anu.edu.au/~jeremy/
isabelle/200x/seqms/. Some of this work was reported informally in [4].

http://users.rsise.anu.edu.au/~jeremy/isabelle/200x/seqms/
http://users.rsise.anu.edu.au/~jeremy/isabelle/200x/seqms/

Generic Methods for Formalising Sequent Calculi Applied 265

2 Sequents, Multisets, Sets and Provability Logic

Proof-theorists typically work with sequents Γ � Δ where Γ and Δ are “collec-
tions” of formulae. The “collections” found in the literature increase in complex-
ity from simple sets for classical logic, to multisets for linear logic, to ordered lists
for substructural logics, to complex tree structures for display logics. A sequent
rule typically has a rule name, a (finite) number of premises, a side-condition
and a conclusion. Rules are read top-down as “if all the premises hold then the
conclusion holds”. A derivation of the judgement Γ � Δ is typically a finite
tree of judgements with root Γ � Δ where parents are obtained from children
by “applying a rule”. We use “derivation” to refer to a proof within a calculus,
reserving “proof” for a meta-theoretic proof of a theorem about the calculus.

Provability logic GL is obtained by adding Löb’s axiom �(�A → A) → �A
to propositional normal modal logic K. Its Kripke semantics is based on rooted
transitive Kripke frames without infinite forward chains. It rose to prominence
when Solovay showed that �A could be interpreted as “A is provable in Peano
Arithmetic” [10]. An initial proof-theoretic account was given by Leivant in 1981
when he “proved” cut-elimination for a set-based sequent calculus for GL [6]. But
Valentini in 1983 found a simple counter-example and gave a new cut-elimination
proof [11]. In 2001, Moen [7] claimed that Valentini’s transformations don’t ter-
minate if the sequents Γ � Δ are based on multisets. There is of course no a
priori reason why a proof based on sets should not carry over with some modi-
fication to a proof based on multisets. The issue was recently resolved by Goré
and Ramanayake [5] who gave a pen-and-paper proof that Moen is incorrect,
and that Valentini’s proof using multisets is mostly okay.

The sequent system GLS for the logic GL as given by Goré and Ramanayake
in [5], like Valentini’s, contains explicit weakening and contraction rules and,
modulo these, a typical (additive) set of rules for the classical logical connectives
¬,∧,∨,→. The axiom A � A does not require atomic A. Since GLS admits axiom
extension, it could have been formulated using p � p, for p atomic. In fact the
general result Theorem 2 doesn’t depend on the axiom or on axiom extension.

The one additional rule GLR which characterises GL is shown below:

�X,X,�B � B
GLR or GLR(B) or GLR(X,B)

�X � �B

The rule is unusual since the principal formula �B changes polarity from con-
clusion to premise. To identify the principal formula involved, or all the formulae,
we refer to it as GLR(B), or GLR(X,B). The full set of rules of GLS is shown
in [5], but note that our formalisation does not regard the cut or multicut rules
shown below as being part of the system.

We show a context-sharing cut rule and a context-splitting multicut rule.
Given the contraction and weakening rules, the context-sharing and context-
splitting versions are equivalent; our formal proofs show the admissibility of a
context-splitting multicut rule where A is not contained in Γ ′′ or Δ′′.

Γ � A,Δ Γ,A � Δ
(cut)

Γ � Δ
Γ ′ � An, Δ′ Γ ′′, Am � Δ′′

(multicut)
Γ ′, Γ ′′ � Δ′, Δ′′

266 J.E. Dawson and R. Goré

Thus our results will be lemmata of the form: if Γ � A,Δ and Γ,A � Δ are
derivable then Γ � Δ is derivable, where “derivable” means without using (cut).

3 Reasoning about Derivations and Derivability

3.1 Deep and Shallow Embeddings

In [2] we proved cut admissibility for δRA, the display calculus for relation
algebras. The proof was based on a proof of Belnap, which applied generally to
display calculi whose inference rules satisfied certain properties. In that paper
we described the formalisation as a “deep embedding”. We now believe that to
describe a particular formalisation as either a “deep embedding” or a “shallow
embedding” over-simplifies the issue as we now discuss.

In [2], we modelled an explicit derivation tree in HOL as a recursive structure
which consists of a root sequent (which should be the conclusion of some rule),
and an associated list of (sub)trees (each of which should derive a premise of that
rule). This is expressed in the following recursive Isabelle datatype declaration:

datatype ’a dertree = Der ’a (’a dertree list)
| Unf ’a (* unfinished leaf which remains unproved *)

We then had to express the property of such a tree, that it is in fact correctly
based on the given rules, and so represents a valid derivation. We modelled a
sequent rule as an object in HOL consisting of a list of premises and a con-
clusion, each of which was a sequent in the language of the logic (of relation
algebras). Notably, our language of formulae included “variables” which could
be instantiated with formulae, so we defined functions for such substitutions.
This was necessary because we had to express conditions on the rules such as
that a variable appearing in the premises also appears in the conclusion. It is
much more common to let the variables in a rule be the variables of the theo-
rem prover, and for the theorem prover to do the substitution. Thus it is more
accurate to say that in [2], we used a deep embedding for derivations, rules and
variables, since we modelled each of these features of the proof-theory explicitly
rather than identifying them with analogous features of Isabelle.

In alternative (“shallow derivations”) approaches to work of this type, the set
of derivable sequents can be modelled as an inductively defined set, and there
is no term representing the derivation tree as such, although the steps used in
proving that a specific sequent is derivable could be written in the form of a
derivation tree. That is, derivability in the sequent calculus studied equates to
derivability in Isabelle, giving a shallow embedding of derivations.

We now briefly describe the functions we used to describe derivability. More
details are in Appendix A.1, and a more expository account is given in [4].

types ’a psc = "’a list * ’a" (* single step inference *)
consts
derl, adm :: "’a psc set => ’a psc set"
derrec :: "’a psc set => ’a set => ’a set"

Generic Methods for Formalising Sequent Calculi Applied 267

An inference rule of type ’a psc is a list of premises and a conclusion. Then
derl rls is the set of rules derivable from the rule set rls, adm rls is the
set of admissible rules of the rule set rls, and derrec rls prems is the set of
sequents derivable using rules rls from the set prems of premises. These were
defined separately using Isabelle’s package for inductively defined sets as below.
Thus, using shallow derivations, the rules of the sequent calculus can either be
encoded explicitly as in derrec or they can be encoded in the clauses for the
inductive definition of the set of derivable sequents as in ders.

Shallow Embedding of Derivations and Deep Embedding of Rules:

({Γ � P, Γ � Q}, Γ � P ∧Q) ∈ rules (etc for other rules)

c ∈ prems =⇒ c ∈ derrec rules prems

[| (ps, c) ∈ rules ; ps ⊆ derrec rules prems |] =⇒ c ∈ derrec rules prems

Shallow Embedding of Derivations and Shallow Embedding of Rules:

c ∈ prems =⇒ c ∈ ders prems

[| Γ � P ∈ ders prems ; Γ � Q ∈ ders prems |] =⇒ Γ � P ∧Q ∈ ders prems

The first clause for derrec says that each premise c in prems is derivable from
prems, and the second says that a sequent c “obtained” from a set of derivable
sequents ps by a rule (ps, c) is itself derivable. The set of rules rules is a param-
eter. The first clause for ders also says that each premise c in prems is derivable
from prems. The rules however are no longer a parameter but are hard-coded as
clauses in the definition of ders itself.

Thus, with a shallow embedding of derivations, we have a choice of either a
deep or a shallow embedding of rules. It would also be possible to combine our
deep embedding of derivations (dertree) with a shallow embedding of rules by
encoding the rules in the function which checks whether a derivation tree is valid.
Note however, that when we use a deep embedding of derivations in Lemma 3,
our definition of validity is parameterised over the set of rules.

Our framework is generic in that a rule merely consists of “premises” and
a “conclusion”, and is independent of whether the things derived are formulae,
sequents, or other constructs, but we will refer to them as sequents.

Our experience is that shallow embeddings generally permit easier proofs, but
sometimes they are inadequate to express a desired concept. For example, with
a deep embedding of rules it is easy to express that one set of rules is a subset
of another set, but with a shallow embedding this is not possible. With a deep
embedding of derivation trees it is easy to express that one property of derivation
trees is the conjunction of two other properties, or that a derivation tree has a
particular height, since each such tree has an explicit representation as a term,
whereas to express such things using ders or derrec (as above), one would have
to redefine these predicates incorporating the particular properties of interest.
Indeed, in this work (see §6) we discuss how we found a shallow embedding of
derivability inadequate, and we describe there how we “mix and match” the
various styles as required.

268 J.E. Dawson and R. Goré

3.2 Properties of Our Generic Derivability Predicates

We obtained the expected results linking derl and derrec, and a number of
results expressing transitivity of derivation and the results of derivation using
derived rules, of which the most elegant are:

derl_deriv_eq : "derl (derl ?rls) = derl ?rls" derrec_trans_eq :
"derrec ?rls (derrec ?rls ?prems)

= derrec ?rls ?prems"

derl deriv eq states that derivability using derived rules implies derivability
using the original rules

derrec trans eq states that derivability from derivable sequents implies deriv-
ability from the original premises.

A simplified version of the induction principle generated by the definition of the
inductive set derrec is as follows:

x ∈ derrec rls prems ∀c ∈ prems.P c ∀(ps, c) ∈ rls.(∀p in ps.P p) ⇒ P c

P x

The principle says that if each rule preserves the property P from its premises to
its conclusion, then so does the whole derivation, even though there is no explicit
derivation as such. We contrast this principle with induction on the height of
derivations where it is possible, and sometimes necessary, to transform a sub-
tree in some height-preserving (or height-reducing) way, and assume that the
transformed tree has property P . Such transformations are not available when
using the induction principle above.

Where we have a property of two derivations, such as cut-admissibility, we
need a more complex induction principle Ind which we derived, though, again,
there are no explicit representations of derivation trees:

cl ∈ derrec rlsl {} cr ∈ derrec rlsr {}
∀(lps, lc) ∈ rlsl.∀(rps, rc) ∈ rlsr.

(∀lp ∈ lps.P lp rc) ∧ (∀rp ∈ rps.P lc rp) ⇒ P lc rc
P cl cr

Ind: Suppose cl and cr are the conclusions of the left and right subderivations.
Assume that for every rule pair (lps, lc) and (rps, rc), if each premise lp in lps
satisfies P lp rc, and each premise rp in rps satisfies P lc rp, then P lc rc holds.
Then we can conclude that P cl cr holds.

Finally, (ps, c) is an admissible rule iff: if all premises in ps are derivable, then
c is too: (ps, c) ∈ adm rls ⇐⇒ (ps ⊆ derrec rls {} ⇒ c ∈ derrec rls {}).

We obtained the following four results, which were surprisingly tricky because
adm is not monotonic (since any rule with a premise is in adm {}). For example,
the last of these says that a derived rule, derived from the admissible rules, is
itself admissible.

"derl ?rls <= adm ?rls" "adm (adm ?rls) = adm ?rls"
"adm (derl ?rls) = adm ?rls" "derl (adm ?rls) = adm ?rls"

Generic Methods for Formalising Sequent Calculi Applied 269

3.3 Sequents, Formulae and the GLS Rules

We define a language of formula connectives, formula variables and primitive
(atomic) propositions:

datatype formula = FC string (formula list) (* formula connective *)

| FV string (* formula variable *)

| PP string (* primitive proposition *)

Although the formula connectives are fixed for each logic, the datatype is more
general, using a single constructor FC for all formula connectives. We then define
(for example) P ∧Q as FC ’’Btimes’’ [P, Q]. A sequent is a pair of multisets
of formulae, written Γ � Δ.

Given a rule such as (� ∧) in the two forms below,

Cs =
� A � B
� A ∧B Ce =

X � Y,A X � Y,B
X � Y,A ∧B

we call Ce an extension of Cs, and we define functions pscmap and extend, where
pscmap f applies f to premises and conclusion, so, using + for multiset union,

extend (X � Y) (U � V) = (X + U) � (Y + V)
Ce = pscmap (extend (X � Y)) Cs

Then we define glss, the set of rules of GLS by defining:

glil and glir: the unextended left and right introduction rules, like Cs above;
wkrls and ctrrls A: the unextended weakening and contraction (on A) rules;
glne: all of the above;
glr B: the GLR(B) rule;
glss: the axiom A � A (not requiring A to be atomic), the GLR(B) rule for all

B, and all extensions of all rules in glne.

The Isabelle definitions are given in Appendix A.2. Note that in the GLR rule,
X is a multiset, and �X is informal notation for applying � to each member
of X ; this is formalised as mset map, used in the formalised GLR rule. Using
a similar notation we write �Bk for (�B)k, the multiset containing n copies
of �B. Development of mset map and relevant lemmas is in the source files
Multiset no le.{thy,ML}. Our results there also show multisets form a monad,
see Appendix A.3 for details.

Our treatment of sequents and formulae amounts to a deep embedding of
sequents and formulae which is independent of the set of rules. The implementa-
tion in [8] is a shallow embedding of sequents, which automatically implies the
admissiblity of certain structural rules like contraction and weakening.

4 An Axiomatic Type Class for Multisets and Sequents

Isabelle provides a theory of finite multisets with an ordering which we did not
use; we defined a different ordering ≤ analogous to ⊆ for sets: N ≤M if, for all
x, N contains no more occurrences of x than does M .

270 J.E. Dawson and R. Goré

An axiomatic type class in Isabelle is characterised by a number of axioms,
which hold for all members of a type in the type class. The multiset operators ≤,
+, − and 0 have several useful properties, which are described by the axiomatic
type classes pm0 and pm ge0. For any type in class pm0, the operations + and 0
form a commutative monoid and the following two properties hold.

A+B −A = B A−B − C = A− (B + C)

We then define a class pm ge0 which also has an ≤ operator and a smallest
element 0, in which the axioms of pm0 and the following hold.

0 ≤ A B ≤ A⇒ B + (A−B) = A

m ≤ n⇔ m− n = 0 x < y ⇔ x ≤ y ∧ x �= y a b⇔ a ≤ b

The last three axioms could be given as definitions, except for a type where ≤,
< or are already defined. We define as a synonym for ≤, because Isabelle’s
lattice type class uses as the order operator.

Lemma 1. Multisets are in pm0 and pm ge0 using our definition of ≤, and, if
Γ and Δ are of any type in the classes pm0 or pm ge0, then so is sequent Γ � Δ.

Isabelle has “simplification procedures”, which will (for example) simplify a −
b+ c+ b to a+ c for integers, or a+ b+ c− b to a+ c for integers or naturals. The
naturals obey the axioms above. We have been able to apply the simplification
procedures for naturals, other than those involving the successor function Suc,
to types of the classes pm0 and pm ge0. This was a very great help in doing the
proofs discussed in §6, especially since X � Y can be derived from X ′ � Y ′ by
weakening if and only if X � Y ≤ X ′ � Y ′.

It is easy to show that, in the obvious way, multisets form a lattice. In fact
we found the interesting result that the axioms of pm ge0 are sufficient to give
a lattice (with as the order operator, defined as a b iff a ≤ b), so we have:

Lemma 2. Any type of class pm ge0 forms a lattice, using the definitions

c ∧ d = c− (c− d) c ∨ d = c+ (d− c)

From these definitions it is possible (at some length) to prove the axioms for a
lattice and so any type in the class pm ge0 is also in Isabelle’s class lattice.
The source files for this development are pmg*.{thy,ML}.

5 Capturing the Core of Cut-Admissibility Proofs

Many cut-elimination proofs proceed via two main phases. The first phase trans-
forms the given derivations using several “parametric” steps until the cut-formula
is the principal formula of the final rule in the resulting sub-derivations above
the cut. (In the diagram for Ce above, for example, a parametric formula in the
rule application is one within the X or Y , but A ∧B is principal; a parametric
step is used when the cut-formula is parametric in the bottom rule application of

Generic Methods for Formalising Sequent Calculi Applied 271

a sub-derivation above the cut). The “principal cut” is then “reduced” into cuts
which are “smaller” in some well-founded ordering such as size of cut-formula.
We describe how we captured this two-phase structure of cut-elimination proofs,
and present a widely applicable result that a parametric step is possible under
certain conditions.

In §3.2 we mentioned the induction principle Ind used for deriving cut-
admissibility, or indeed any property P of pairs of subtrees. In the diagram below,
to prove P (Cl, Cr), the induction hypothesis is that P (Pli, Cr) and P (Cl,Prj) hold
for all i and j:

Pl1 . . .Pln ρlCl

Pr1 . . .Prm ρrCr. (cut ?)
?

A proof of P (Cl, Cr) using this induction hypothesis inevitably proceeds by cases
on the actual rules ρl and ρr, and for a cut-formula A, on whether it is principal
in either or both of ρl and ρr. But we also use induction on the size of the cut-
formula, or, more generally, on some well-founded relation on formulae. So we
actually consider a property P of a (cut) formula A and (left and right subtree
conclusion) sequents (Cl, Cr). In proving P A (Cl, Cr), in addition to the inductive
hypothesis above, we assume that P A′ (Dl,Dr) holds generally for A′ smaller
than A and all “rls-derivable” sequents Dl and Dr: i.e. derivable from the empty
set of premises using rules from rls. These intuitions give the following definition
gen step2ssr of a condition which permits one step of the inductive proof. See
Appendix A.5 for reference to related more complex predicates and theorems.

Definition 1 (gen step2ssr). For a formula A, a property P , a subformula
relation sub, a set of rules rls, inference rule instances Rl = (Pl1 . . .Pln, Cl)
and Rr = (Pr1 . . .Prm, Cr), gen step2ssr P A sub rls (Rl,Rr) means:

if forall A′ such that (A′, A) ∈ sub and all rls-derivable sequents Dl and Dr,
P A′ (Dl,Dr) holds

and for each Pli in Pl1 . . .Pln, P A (Pli, Cr) holds
and for each Prj in Pr1 . . .Prm, P A (Cl,Prj) holds

then P A (Cl, Cr) holds.

The main theorem gen step2ssr lem below for proving an arbitrary property
P states that if the step of the inductive proof is possible for all cases of final
rule instances Rl and Rr on each side, then P holds in all cases.

Theorem 1 (gen step2ssr lem). If

– A is in the well-founded part of the subformula relation sub,
– sequents Sl and Sr are rls-derivable, and
– for all formulae A′, and all rules Rl and Rr, our induction step condition

gen step2ssr P A′ sub rls (Rl,Rr) holds

then P A (Sl,Sr) holds.

272 J.E. Dawson and R. Goré

μ

{
Πl

�X,X,�B � B
GLR(B)

�X � �B

Πr ρ
�Bk, Y � Z. (multicut ?)

�X,Y � Z

Fig. 1. A multicut on cut formula �B where �B is left-principal via GLR

This enables us to split up an inductive proof, by showing, separately, that
gen step2ssr holds for particular cases of the final rules (Pl, Cl) and (Pr, Cr) on
each side. For example, the inductive step for the case where the cut-formula A
is parametric, not principal, on the left is encapsulated in the following theorem
where prop2 mar erls A (Cl, Cr) means that the conclusion of a multicut on A
whose premises are Cl and Cr is derivable using rules erls.

Theorem 2 (lmg gen steps). For any relation sub and any rule set rls, given
an instance of multicut with left and right subtrees ending with rules Rl and Rr:

if weakening is admissible for the rule set erls,
and all extensions of some rule (P , X � Y) are in the rule set erls,
and Rl is an extension of (P , X � Y),
and the cut-formula A is not in Y (meaning that A is parametric on the left)

then gen step2ssr (prop2 mar erls) A sub rls (Rl,Rr) holds.

Theorem 2 codifies multi-cut elimination for parametric cut-formulae, and ap-
plies generally to many different calculi since it holds independently of the values
of sub and rls. Of course, for a system with explicit weakening rules, such as
GLS, weakening is a fortiori admissible. As we note later, the proof for GLS
involves one really difficult case and a lot of fairly routine cases. In dealing with
the routine cases, automated theorem proving has the benefit of ensuring that
no detail is overlooked. Moreover, as in this example, we often have more general
theorems that apply directly to a set of rules such as GLS.

Notice that all of this section has used a shallow embedding of derivations
since no explicit derivation trees were required.

6 The Proof of Cut-Admissibility for GLS

Valentini’s proof of cut-admissibility for GLS uses a triple induction on the size
of the cut-formula, the heights of the derivations of the left and right premises
of cut, and a third parameter which he called the “width”. Roughly speaking,
the width of a cut-instance is the number of GLR rule instances above that
cut which contain a parametric ancestor of the cut-formula in their conclusion.
The Goré and Ramanayake [5] pen-and-paper proof follows Valentini but gives
a constructive way to calculate the width of a cut by inspecting the branches of
the left and right sub-derivations of a cut rule instance.

As usual, the proof of cut-admissibility for GLS proceeds by considering
whether the cut-formula is principal in the left or right premise of the cut, or

Generic Methods for Formalising Sequent Calculi Applied 273

principal in both. The crux of the proof is a “reduction” when the cut-formula
is of the form �B and is principal in both the left and right premises of the cut.
The solution is to replace this cut on �B by cuts which are “smaller” either
because their cut-formula is smaller, or because their width is smaller. In reality,
most of the work involves a cut instance which is only left-principal as shown in
Figure 1, and most of this section is devoted to show how we utilised our general
methods to formalise these “reductions” as given by Goré and Ramanayake [5].
But there are some important differences which we now explain.

As explained in §3.2, our general methods do not model derivation trees ex-
plicitly, since we use a shallow embedding. So our proof uses induction on the
size of the cut-formula and on the fact of derivation, rather than on the size of
the cut-formula and the height of derivation trees. Also, we actually proved the
admissibility of “multicut”: that is, if Γ ′ � An, Δ′ and Γ ′′, Am � Δ′′ are both
cut-free derivable, then so is Γ ′, Γ ′′ � Δ′, Δ′′. This avoids problems in the cases
where these sequents are derived using contraction on A.

In all other aspects, our proof of cut-admissibility for GLS is based on that
given by Goré and Ramanayake [5]. In particular, although we do not actually
require [5, Lemma 19], we use the construction in that lemma, which is funda-
mental to overcoming the difficulties of adapting standard proofs to GLS, as we
explain shortly. Consequently, our proof uses the idea of induction on the width
as defined in [5], although as we shall see, our proof is expressed in terms of
del0, which approximates to the ∂0 of [5], not width per se.

To cater for width/∂0, we could have altered our shallow embedding, derrec,
but that destroys the modularity of our approach. Instead, we defined our del0
by using the datatype dertree from §3.1 to represent explicit derivation tree
objects. These trees, and the general lemmas about them, are similar to the
trees of [2]. Thus we “mix and match” a deep embedding of derivation trees
with a shallow embedding of inductively defined sets of derivable sequents.

To ensure the correctness of our “mixing and matching” we needed the fol-
lowing relationship between our definitions of derivability according to the two
embeddings. A valid tree is one whose inferences are in the set of rules and which
as a whole has no premises.

Lemma 3. SequentX � Y is derivable, shallowly, from the empty set of premises
using rules rls (ie, is in derrec rls {}) iff some explicit derivation tree dt is valid
wrt. rls and has a conclusion X � Y .

"(?a : derrec ?rls {}) = (EX dt. valid ?rls dt & conclDT dt = ?a)"

We now define a function del0 which is closely related to ∂0 and the width of a
cut of [5], although we can avoid using the annotated derivations of [5].

Definition 2 (del0). For derivation tree dt and formula B, define del0 B dt:

– if the bottom rule of dt is GLR(Y,A) (for any Y,A), then del0 B dt is 1
(0) if �B is (is not) in the antecedent of the conclusion of dt

– if the bottom rule of dt is not GLR, then del0 B dt is obtained by summing
del0 B dt’ over all premise subtrees dt’ of dt.

274 J.E. Dawson and R. Goré

Thus, the calculation of del0 traces up each branch of an explicit derivation
tree until an instance of the GLR rule is found: it then counts 1 if �B is in
the antecedent, meaning that B is in the X of the statement of GLR. Where
the derivation tree branches below any GLR rule, the value is summed over the
branches. (When we use del0, its argument will be the sub-tree μ of Figure 1.)

We now give a sequence of lemmata which eventually give the “reduction” for
left-and-right GLR-principal occurrences of a cut-formula of the form �B.

Lemma 4 (gr19e). If μ is a valid derivation tree with conclusion �X,X,�B �
B, and del0 B μ = 0, then �X,X � B is derivable.

Proof. By applying the GLR rule to the conclusion, we can derive �X � �B.
Tracing �B upwards in μ, it is parametric in each inference, except possibly
weakening, contraction or the axiom �B � �B. That is, since del0 B μ = 0,
when we meet a GLR inference as we trace upwards, �B must have already
disappeared (through weakening). So, tracing upwards, we can change each in-
stance of �B to �X in the usual way. The axiom �B � �B is changed to
�X � �B, which is derivable. Contraction is not problematic since we use, as
the inductive hypothesis, that all occurrences of �B can be replaced by �X . /

To abbreviate the statement of several lemmas, we define a function muxbn, based
on Figure 1, which is from [5]. It concerns a multicut on a cut-formula �B which
is left-principal because the bottom rule on the left is GLR(B).

Definition 3 (muxbn). muxbn B n holds iff: for all instances of Figure 1 (for
fixed B) such that del0 B μ ≤ n, the multicut in Figure 1 is admissible.

The next lemma says that multicut admissibility on B implies muxbn B 0.

Lemma 5 (del0 ca’, caB muxbn’). If μ is a valid derivation tree with con-
clusion �X,X,�B � B, and del0 B μ = 0, and multicut on B is admissible,
and �Bk, Y � Z is derivable, then �X,Y � Z is derivable.

That is, if multicut on B is admissible, then muxbn B 0 holds.

Proof. �X � �B is derivable from �X,X,�B � B via GLR(X,B). By Lemma 4,
�X,X � B is derivable. The rest of the proof is by induction on the derivation
of �Bk, Y � Z, in effect, by tracing relevant occurrences of �B up that deriv-
ation. Weakening and contraction involving �B are not problematic, and the
axiom �B � �B is changed to �X � �B, which is derivable. Suppose an in-
ference GLR(Y,C) is encountered, where B is in Y . This inference, allowing for
multiple copies of B, is as shown below left where Z is Y with B deleted:

�Bk, Bk,�Z,Z,�C � C
GLR(Y,C)

�Bk,�Z � �C

Lemma 4
�X,X � B �X,Bk,�Z,Z,�C � C

mcut(B)
�X,�X,X,�Z,Z,�C � C

ctr
�X,X,�Z,Z,�C � C

GLR(C)
�X,�Z � �C

Generic Methods for Formalising Sequent Calculi Applied 275

By induction, we have �X,Bk,�Z,Z,�C � C is derivable. From there we have
the derivation shown above right. As the machine-checking process showed us,
additional weakening steps are necessary if �B is in Z or if B is in �Z. /
This construction is like that of case 2(a)(ii) in the proof of Theorem 20 of [5].
Having shown, in Lemma 5, that muxbn B 0 holds, we now use the construction
of [5, Lemma 19] to show that muxbnB n holds for all n: except that our inductive
assumptions and results involve admissibility of multicut, not cut. Again we use
induction: we assume that muxbn B n, and show that muxbn B (n+ 1) holds.

So suppose a derivation tree μ/�X � �B has a bottom inference GLR(X,B),
as shown in Figure 1, and del0 B μ = n + 1. We follow the construction of [5,
Lemma 19] to obtain a derivation μ′ of �X,X,�B � B, where del0 B μ′ ≤ n.

Since del0 B μ > 0, the tree μ/�X � �B is as shown below left (with other
branches not shown). We first delete the topmost application of GLR(A) leaving
a tree μ−. Then adjoin �A to each antecedent of μ− obtaining the tree on the
right (call it μA/�A,�X � �B), whose topmost sequent is now a weakened
axiom, and which requires us to weaken in an occurrence of A just above the
final GLR-rule instance:

�G,G,�Bk, Bk,�A � A
GLR(A)

�G,�Bk � �A

...

�X,X,�B � B
GLR(X,B)

�X � �B

�A,�G,�Bk � �A

...

�A,�X,X,�B � B
(weakening)

�A,A,�X,X,�B � B
GLR(B)

�A,�X � �B

Now del0 B μ > del0 B μA, and so μA/�A,�X � �B can be used as the left
branch of an admissible (i.e. “smaller”) multicut. We do this twice, the right
branches being derivations of �X,X,�B � B and �G,G,�Bk, Bk,�A � A re-
spectively; which after contractions, give derivations of �A,�X,X � B and
�G,G,�X,Bk,�A � A. These two are cuts 1 and 2 of the description in [5,
Lemma 19], producing derivations which are cut-free equivalents of Λ11 and Λ12
from [5, Lemma 19]. The result gr19a in the Isabelle code gives the existence of
these two derivations; it uses the result add Box ant which permits adding �A
to the antecedent of each sequent of a derivation tree.

We combine these derivations of �A,�X,X � B and �G,G,�X,Bk,�A � A
using an admissible (“smaller”) multicut on B, and then use contraction to
obtain �G,G,�A,�X,X � A. This is cut 3 of [5, Lemma 19]. Then the GLR
rule gives �G,�X � �A. This is derivation Λ2 of [5, Lemma 19]. Because of this
GLR rule at this point, we do not need to worry about the del0 B values of
any of the subtrees mentioned above, whose existence is given by the inductive
assumptions of multicut-admissibility. We now weaken the conclusion of this
tree to �X,�G,�Bk � �A, giving (a counterpart of) the derivation Λ3 of [5,
Lemma 19].

Returning to μ−, as below left, we this time adjoin �X in the antecedent,
giving the tree below right, but we can now use Λ3 as a derivation for its leaf:

276 J.E. Dawson and R. Goré

That is, we have replaced a given derivation μ of �X,X,�B � B where del0
B μ = n+ 1, with a derivation μ′ of �X,X,�B � B where del0 B μ′ = n.

�G,�Bk � �A

...

�X,X,�B � B
GLR(X,B)

�X � �B

Λ3

�X,�G,�Bk � �A

...
�X,�X,X,�B � B

(contraction)
�X,X,�B � B

GLR
�X � �B

We record this as the result as Lemma 6(a) (gr19b) below, however, we do
not use this result directly. Instead, we obtain Lemma 6(b) (gr19c’) below by
referring to Figure 1 and noting that we have replaced μ by μ′.

Lemma 6 (gr19b, gr19c’). Assume that multicut-admissibility holds for cut-
formula B, and that muxbn B n holds.
(a) If μ is a derivation of �X,X,�B � B, where del0 B μ = n+ 1, then there

exists another derivation μ′ of �X,X,�B � B with del0 B μ′ ≤ n.
(b) muxbn B (n+ 1) holds.

Proof. The proof of the first part is the construction described above. For the
second part, we are given an instance of Figure 1, where μ has del0 B μ = n+1.
Using the first part, we can transform μ to μ′, with del0 B μ′ = n. Since muxbn
B n holds, the multicut on �B where the left premise derivation is μ′/�X � �B
is admissible. Hence the conclusion �X,Y � Z of Figure 1 is derivable. /
The next result, which we do not use directly, approximates to [5, Lemma 19].

Lemma 7 (gr19d). If multicut-admissibility holds for cut-formula B, muxbn

B 0 holds, and �X,X,�B � B is derivable, then �X,X � B is derivable.

Proof. By using Lemma 6(b) repeatedly, muxbn B n holds for any n. /
Lemma 8 (caB muxbn, cut glr). If multicut-admissibility holds for cut-
formula B, then it holds for cut-formula �B for the case where the left premise
derivation ends with a GLR(B) rule. That is, muxbn B n holds for any n.

Proof. By combining Lemma 5 with repeated use of Lemma 6(b). /
We now have the admissibility of principal multicuts on �B, which we indicated
was the crux of the cut-admissibility for GL. For the other cases, the usual proofs
hold. Although there is no particular difficulty in showing this, many details need
to be checked: this takes almost 3 pages of [5], even with “omitting details”, and
citing “standard transformations”. The value of automated theorem proving at
this point is simply to ensure that all the necessary details have been checked.
The proof uses techniques described in §5, which means that a relatively small
amount of the proofs remaining for this theorem are peculiar to the GLS calculus.
Consequently, we get:

Theorem 3 (glss ca). Multicut is admissible in GLS.

Generic Methods for Formalising Sequent Calculi Applied 277

7 Conclusions

We have described a formalised proof in the Isabelle theorem prover of cut ad-
missibility for the sequent calculus GLS for the provability logic GL. The proof
is based on the one from [5], particularly the construction in [5, Lemma 19],
though we use it in a slightly different way. The Isabelle proof moves to and fro
between our deep embedding of explicit trees (dertree) and our shallow embed-
ding using derrec, so our proof has demonstrated the technique of combining
use of a shallow embedding where adequate with a deep embedding where nec-
essary. The work in §5, while complex, succeeds in extracting those parts of the
cut elimination proof which follow a common pattern, and expressing them in a
way which will be useful beyond the particular sequent system GLS.

We have made considerable use of definitions and theorems which are useful
beyond this particular sequent system, or, indeed, beyond proofs about sequent
systems. We have developed axiomatic type classes based on properties of +, −,
0 and ≤ for multisets, and shown how a rather small set of axioms about these
operators is sufficient for defining a lattice. Multiset sequents (pairs of multisets)
also belong to this type class. We have applied relevant simplification procedures
to this type class, which was useful in our proofs. We have described extensive
definitions and theorems relating to abstract derivability, which we have used in
several different metalogical theories and proofs, and we have discussed the issue
of deep versus shallow embeddings in the light of this and previous work.

References
1. Dawson, J.E., Goré, R.: Embedding display calculi into logical frameworks: Com-

paring Twelf and Isabelle. ENTCS, vol. 42, pp. 89–103
2. Dawson, J.E., Goré, R.: Formalised Cut Admissibility for Display Logic. In:

Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410,
pp. 131–147. Springer, Heidelberg (2002)

3. Gacek, A.: The Abella interactive theorem prover (system description). In: Ar-
mando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 154–161. Springer, Heidelberg (2008)

4. Goré,R.:MachineCheckingProofTheory:AnApplicationofLogictoLogic.In:Invited
talk, Third Indian Conference on Logic and Applications, Chennai (January 2009)

5. Goré, R., Ramanayake, R.: Valentini’s Cut-elimination for Provability Logic Re-
solved. In: Proc. AiML 2008, pp. 67–86. College Publications (2008),
http://users.rsise.anu.edu.au/~rpg/publications.html

6. Leivant, D.: On the Proof Theory of the Modal Logic for Arithmetic Provability.
Journal of Symbolic Logic 46, 531–538 (1981)

7. Moen, A.: The proposed algorithms for eliminating cuts in the provability calculus
GLS do not terminate. In: NWPT 2001, Norwegian Computing Center (2001-12-10),
http://publ.nr.no/3411

8. Pfenning, F.: Structural cut elimination. In: Proc. LICS 1994 (1994)
9. Pfenning, F., Schürmann, C.: System description: Twelf a meta-logical frame-

work for deductive systems. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI),
vol. 1632, pp. 202–206. Springer, Heidelberg (1999)

10. Solovay, R.M.: Provability Interpretations of Modal Logic. Israel Journal of Math-
ematics 25, 287–304 (1976)

11. Valentini, S.: The Modal Logic of Provability: Cut-elimination. Journal of Philo-
sophical Logic 12, 471–476 (1983)

http://users.rsise.anu.edu.au/~rpg/publications.html
http://publ.nr.no/3411

Characterising Probabilistic Processes Logically
(Extended Abstract)

Yuxin Deng1,2, and Rob van Glabbeek3,4

1Dept. Comp. Sci. & Eng. and MOE-Microsoft Key Lab for Intell. Comp. & Syst.,
Shanghai Jiao Tong University, China

2 State Key Lab of Comp. Sci., Inst. of Software, Chinese Academy of Sciences
3 NICTA, Australia

4 University of New South Wales, Australia

Abstract. In this paper we work on (bi)simulation semantics of pro-
cesses that exhibit both nondeterministic and probabilistic behaviour.
We propose a probabilistic extension of the modal mu-calculus and show
how to derive characteristic formulae for various simulation-like preorders
over finite-state processes without divergence. In addition, we show that
even without the fixpoint operators this probabilistic mu-calculus can
be used to characterise these behavioural relations in the sense that two
states are equivalent if and only if they satisfy the same set of formulae.

1 Introduction

In concurrency theory, behavioural relations such as equivalences and refine-
ment preorders form a basis for establishing system correctness. Usually both
specifications and implementations are expressed as processes within the same
framework, in which a specification describes some high-level behaviour and an
implementation gives the technical details for achieving the behaviour. Then one
chooses an equivalence or preorder to verify that the implementation realises the
behaviour required by the specification.

A great many behavioural relations are defined on top of labelled transition
systems, which offer an operational model of systems. For finitary (i.e. finite-state
and finitely branching) systems, these behavioural relations can be computed in
a mechanical way, and thus may be incorporated into automatic verification
tools. In recent years, probabilistic constructs have been proven useful for giv-
ing quantitative specifications of system behaviour. The first papers on proba-
bilistic concurrency theory [12,2,20] proceed by replacing nondeterministic with
probabilistic constructs. The reconciliation of nondeterministic and probabilistic
constructs starts with [13] and has received a lot of attention in the literature
[35,31,21,30,16,22,1,18,25,3,34,23,9,7,4]. We shall also work in a framework that
features the co-existence of probability and nondeterminism.

� Deng was supported by the National Natural Science Foundation of China
(60703033).

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 278–293, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Characterising Probabilistic Processes Logically 279

Among the behavioural relations that have proven useful in probabilistic con-
currency theory are various types of simulation and bisimulation relations. Ax-
iomatisations for bisimulations have been investigated in [1,10]. Logical char-
acterisations of bisimulations and simulations have been studied in [31,27]. For
example, in [31] the probabilistic computation tree logic (PCTL) [14] is used and
it turns out that two states are bisimilar if and only if they satisfy the same set
of PCTL formulae.

In the nonprobabilistic setting, there is a line of research on characteristic
formulae. The goal is to seek a particular formula ϕs for a given state s such
that a necessary and sufficient condition for any state t being bisimilar to s is
to satisfy ϕs [32]. This is a very strong property in the sense that to check if t
is bisimilar to s it suffices to consider the single formula ϕs and see if it can be
satisfied by t. It offers a convenient method for equivalence or preorder checking.

In this paper we partially extend the results of [32] to a probabilistic setting
that admits both probabilistic and nondeterministic choice; to make the main
ideas neat we do not consider divergence. We present a probabilistic extension
of the modal mu-calculus [19] (pMu), where a formula is interpreted as the set
of probability distributions satisfying it. This is in contrast to the probabilistic
semantics of the mu-calculus as studied in [16,22,23] where formulae denote
lower bounds of probabilistic evidence of properties, and the semantics of the
generalised probabilistic logic of [3] where a mu-calculus formula is interpreted
as a set of deterministic trees that satisfy it.

We shall provide characteristic formulae for strong and weak probabilistic
(bi)simulation as introduced in [31,30], as well as forward simulation [30] and
failure simulation [7]. The results are obtained in two phases, which we illustrate
by taking strong probabilistic bisimilarity ∼ as an example. Given a finite-state
probabilistic labelled transition system with state space {s1, ..., sn}, we first con-
struct an equation system E of modal formulae in pMu.

E : Xs1 = ϕs1...
Xsn = ϕsn

A solution of the equation system is a function ρ that assigns to each variable
Xsi a set of distributions ρ(Xsi). The greatest solution of the equation system,
denoted by νE , has the property that si ∼ sj if and only if the point distribution
sj is an element of νE(Xsi). In the second phase, we apply three transformation
rules upon E in order to obtain a pMu formula ϕ∼si

whose meaning [[ϕ∼si
]] is exactly

captured by νE(Xsi). As a consequence, we derive a characteristic formula for
si such that si ∼ sj if and only if sj ∈ [[ϕ∼si

]].
Without the fixpoint operators pMu gives rise to a probabilistic extension

of the Hennessy-Milner logic [15]. In analogy to the nonprobabilistic setting, it
characterises (bi)simulations in the sense that s ∼ t if and only if the two states
s, t satisfy the same set of formulae.

The paper is organised as follows. In Section 2 we recall the definitions of
several (bi)simulations defined over probabilistic labelled transition systems. In
Section 3 we introduce the syntax and semantics of pMu. In Section 4 we build

280 Y. Deng and R. van Glabbeek

characteristic equation systems and derive from them characteristic formulae
for all our (bi)simulations. In Section 5 we consider the fixpoint-free fragment of
pMu which characterises a state by the class of formulae it satisfies.

In this extended abstract many proofs are omitted; they can be found in [6].

2 Probabilistic (Bi)simulations

In this section we recall several probabilistic extensions of simulation and bisim-
ulation [24] that appeared in the literature.

We begin with some notation concerning probability distributions. A (dis-
crete) probability distribution over a set S is a function Δ : S → [0, 1] with∑

s∈SΔ(s) = 1; the support of Δ is given by 0Δ1 = { s ∈ S | Δ(s) > 0 }.
We write D(S), ranged over by Δ,Θ, for the set of all distributions over S.
We also write s to denote the point distribution assigning probability 1 to s
and 0 to all others, so that 0s1 = {s}. If pi ≥ 0 and Δi is a distribution for
each i in some index set I, and

∑
i∈I pi = 1, then the probability distribution∑

i∈I pi · Δi ∈ D(S) is given by (
∑

i∈I pi · Δi)(s) =
∑

i∈I pi · Δi(s); we will
sometimes write it as p1 ·Δ1 + . . . + pn ·Δn when I = {1, . . . , n}.

Definition 1. A finite state probabilistic labelled transition system (pLTS) is a
triple 〈S,Actτ ,→〉, where

1. S is a finite set of states
2. Actτ is a set of external actions Act augmented with an internal action τ �∈Act
3. → ⊆ S × Actτ ×D(S).

We usually write s a−→ Δ for (s, a,Δ)∈→, s a−→ for ∃Δ : s a−→ Δ, and s �a−→ for
the negation of s a−→. We write s �A−→ with A ⊆ Act when ∀a ∈ A ∪ {τ} : s �a−→,
and Δ �A−→ when ∀s ∈ 0Δ1 : s �A−→. A pLTS is finitely branching if, for each state
s, the set {(a,Δ) | s a−→ Δ} is finite. A pLTS is finitary if it is finite-state and
finitely branching.

To define probabilistic (bi)simulations, it is often necessary to lift a relation
over states to one over distributions.

Definition 2. Given two sets S and T and a relation R ⊆ S×T . We lift R to
a relation R† ⊆ D(S)×D(T) by letting Δ R† Θ whenever

1. Δ =
∑

i∈I pi · si, where I is a countable index set and
∑

i∈I pi = 1
2. for each i ∈ I there is a state ti such that si R ti
3. Θ =

∑
i∈I pi · ti.

Note that in the decomposition of Δ, the states si are not necessarily dis-
tinct: that is, the decomposition is not in general unique, and similarly for
the decomposition of Θ. For example, if R = {(s1, t1), (s1, t2), (s2, t3), (s3, t3)},
Δ = 1

2s1 + 1
4s2 + 1

4s3, and Θ = 1
3 t1 + 1

6 t2 + 1
2 t3, then Δ R† Θ holds because of

the decompositions Δ = 1
3s1 + 1

6s1 + 1
4s2 + 1

4s3 and Θ = 1
3 t1 + 1

6 t2 + 1
4 t3 + 1

4 t3.
From the above definition, the next two properties follow [5]. In fact, they are

sometimes used as alternative methods of lifting relations (see e.g. [31,20]).

Characterising Probabilistic Processes Logically 281

Proposition 1. 1. Let Δ and Θ be distributions over S and T , respectively.
Then Δ R† Θ iff there exists a weight function w : S × T → [0, 1] such that
(a) ∀s ∈ S :

∑
t∈T w(s, t) = Δ(s)

(b) ∀t ∈ T :
∑

s∈S w(s, t) = Θ(t)
(c) ∀(s, t) ∈ S × T : w(s, t) > 0 ⇒ s R t.

2. Let Δ,Θ be distributions over S and R be an equivalence relation. Then
Δ R† Θ iff Δ(C) = Θ(C) for all equivalence classes C ∈ S/R, where Δ(C)
stands for the accumulated probability

∑
s∈C Δ(s). ��

In a similar way, following [9], we can lift a relation R ⊆ S ×D(T) to a relation
R† ⊆ D(S)×D(T), by letting Δ R† Θ whenever

1. Δ =
∑

i∈I pi · si, where I is a countable index set and
∑

i∈I pi = 1
2. for each i ∈ I there is a distribution Θi such that si R Θi

3. Θ =
∑

i∈I pi ·Θi.

The above lifting constructions satisfy the following two useful properties.

Proposition 2. Suppose R ⊆ S × S or S×D(S) and
∑

i∈I pi = 1. Then

1. Δi R† Θi for all i∈ I implies (
∑

i∈I pi ·Δi) R† (
∑

i∈I pi ·Θi).
2. If (
∑

i∈I pi ·Δi) R† Θ then Θ =
∑

i∈I pi ·Θi for some set of distributions
Θi such that Δi R† Θi for all i∈ I. ��

We write s
τ̂−→ Δ if either s τ−→ Δ or Δ = s, and s

â−→ Δ iff s
a−→ Δ for

a ∈ Act. For any a ∈ Actτ , we know that â−→ ⊆ S×D(S), so we can lift it to be
a transition relation between distributions. With a slight abuse of notation we
simply write Δ â−→ Θ for Δ (â−→)† Θ. Then we define weak transitions â=⇒ by
letting τ̂=⇒ be the reflexive and transitive closure of τ̂−→ and writing Δ

â=⇒ Θ
for a∈Act whenever Δ τ̂=⇒ â−→ τ̂=⇒ Θ.

Definition 3. A divergence is a sequence of states si and distributions Δi with
si

τ−→ Δi and si+1 ∈0Δi1 for i ≥ 0.

The above definition of â=⇒ is sensible only in the absence of divergence. In
general, one would need a more complicated notion of â=⇒, such as proposed in
[8]. Therefore, from here on we restrict attention to divergence-free pLTSs.

Definition 4. A relation R ⊆ S×S is a strong probabilistic simulation if s R t
and a∈Actτ implies

– if s a−→ Δ then there exists some Θ such that t a−→ Θ and Δ R† Θ

If both R andR−1 are strong probabilistic simulations, then R is a strong proba-
bilistic bisimulation. A state s is related to another state t via strong probabilistic
similarity (resp. bisimilarity), denoted s ≺ t (resp. s ∼ t), if there exists a strong
probabilistic simulation (resp. bisimulation) R such that s R t. Weak probabilis-
tic similarity () and weak probabilistic bisimilarity (≈) are defined in the same
manner just by using t â=⇒ Θ in place of t a−→ Θ.

282 Y. Deng and R. van Glabbeek

All four (bi)simulations above stem from [31,30]. There they were proposed as
improvements over the strong bisimulation of [13] and the strong simulation
of [17], both of which can be defined as the strong probabilistic (bi)simulation
above, but using t

a−→ Θ in place of t a−→ Θ. Logical characterisations for
strong (bi)simulations are similar to those contributed here for strong probabilis-
tic (bi)simulations, but require a state-based interpretation of the modalities 〈a〉
and [a]; see [6] for details. Other definitions of simulation have also appeared in
the literature. Here we consider two typical ones: forward simulation [30] and
failure simulation [7].

Definition 5. A relation R ⊆ S ×D(S) is a failure simulation if s R Θ implies
1. if s a−→ Δ with a∈Actτ then ∃Θ′ such that Θ â=⇒ Θ′ and Δ R† Θ′;
2. if s �A−→ with A ⊆ Act then ∃Θ′ such that Θ τ̂=⇒ Θ′ and Θ′ �A−→.

We write s �
FS
Θ if there is some failure simulation R such that s R Θ.

Similarly, we define a forward simulation and s �S Θ by dropping the second
clause in Definition 5.

3 The Probabilistic Modal mu-Calculus

Let Var be a countable set of variables. We define a class Lraw of modal formulae
by the following grammar:

ϕ :=
∧
i∈I

ϕi |
∨
i∈I

ϕi | ¬ϕ | 〈a〉ϕ | [a]ϕ |
⊕
i∈I

ϕi |
⊕
i∈I

pi · ϕi | ↓ϕ | X | μX.ϕ | νX.ϕ

where I is an index set, a ∈ Actτ and
∑

i∈I pi = 1. The probabilistic modal mu-
calculus (pMu) is given by the subclass L, obtained by imposing the syntactic
condition that in μX.ϕ and νX.ϕ the variable X may occur in ϕ only within the
scope of an even number of negations. The above syntax is obtained by adding
a variant of the probabilistic construct

⊕
i∈I pi · ϕi, introduced in [7] in the

context of a less expressive logic without fixpoint operators, as well as the novel
modalities

⊕
i∈I ϕi and ↓ϕ, to the syntax of the non-probabilistic mu-calculus

[19]. As usual, one has
∧

i∈∅ ϕi = true and
∨

i∈∅ ϕi = false.
The two fixpoint operators μX and νX bind the respective variable X . We

apply the usual terminology of free and bound variables in a formula and write
fv(ϕ) for the set of free variables in ϕ. A formula ϕ is closed if fv (ϕ) = ∅.

For any set Ω, write P(Ω) for the power set of Ω. We use environments, which
bind free variables to sets of distributions, in order to give semantics to formulae.
Let

Env = { ρ | ρ : Var → P(D(S)) }
be the set of all environments and ranged over by ρ. For a set V ⊆ D(S) and a
variable X ∈ Var, we write ρ[X 	→ V] for the environment that maps X to V
and Y to ρ(Y) for all Y �= X .

The semantics of a formula ϕ in an environment ρ is given as the set of
distributions [[ϕ]]ρ satisfying it. This leads to a semantic functional [[]] : L →

Characterising Probabilistic Processes Logically 283

Table 1. Strong and weak semantics of the probabilistic modal mu-calculus

[[
∧

i∈I ϕi]]ρ =
⋂

i∈I [[ϕi]]ρ so [[true]]ρ = D(S)
[[
∨

i∈I ϕi]]ρ =
⋃

i∈I [[ϕi]]ρ so [[false]]ρ = ∅
[[¬ϕ]]ρ = D(S) \ [[ϕ]]ρ

[[〈a〉ϕ]]ρ = {Δ ∈ D(S) | ∃Δ′ : Δ
a−→ Δ′ ∧ Δ′ ∈ [[ϕ]]ρ }

[[[a]ϕ]]ρ = {Δ ∈ D(S) | ∀Δ′ : Δ
a−→ Δ′ ⇒ Δ′ ∈ [[ϕ]]ρ }

[[
⊕

i∈I ϕi]]ρ = {Δ ∈ D(S) | Δ =
∑

i∈I pi ·Δi for some pi with
∑

I∈I pi = 1
∧ ∀i∈ I : Δi ∈ [[ϕi]]ρ }

[[
⊕

i∈I pi · ϕi]]ρ = {Δ ∈ D(S) | Δ =
∑

i∈I pi ·Δi ∧ ∀i ∈ I : Δi ∈ [[ϕi]]ρ }
[[↓ϕ]]ρ = {Δ ∈ D(S) | ∀s ∈ �Δ� : s ∈ [[ϕ]]ρ }
[[X]]ρ = ρ(X)

[[μX.ϕ]]ρ =
⋂
{V ⊆ D(S) | [[ϕ]]ρ[X →V] ⊆ V }

[[νX.ϕ]]ρ =
⋃
{V ⊆ D(S) | [[ϕ]]ρ[X →V] ⊇ V }

[[〈a〉ϕ]]ρ = {Δ ∈ D(S) | ∃Δ′ : Δ
â=⇒ Δ′ ∧ Δ′ ∈ [[ϕ]]ρ }

[[[a]ϕ]]ρ = {Δ ∈ D(S) | ∀Δ′ : Δ
â=⇒ Δ′ ⇒ Δ′ ∈ [[ϕ]]ρ }

Env → P(D(S)) defined inductively in Table 1. As the meaning of a closed
formula ϕ does not depend on the environment, one writes [[ϕ]] for [[ϕ]]ρ where ρ
is an arbitrary environment. In that case one also writes Δ |= ϕ for Δ ∈ [[ϕ]].

Following [19,29] we give a strong and a weak semantics of the probabilis-
tic modal mu-calculus. Both are the same as those of the modal mu-calculus
[19,29] except that distributions of states are taking the roles of states. The
power set of D(S), P(D(S)), may be viewed as the complete lattice (P(D(S)),
D(S), ∅,⊆,∪,∩). Intuitively, we identify a formula with the set of distributions
that make it true. For example, true holds for all distributions and dually false
holds for no distribution. Conjunction and disjunction are interpreted by inter-
section and union of sets, and negation by complement. The formula 〈a〉ϕ holds
for a distribution Δ if there is a distribution Δ′ that can be reached after an
a-transition and that satisfies ϕ. Dually, [a]ϕ holds forΔ if all distributions reach-
able from Δ by an a-transition satisfy ϕ. The formulas

⊕
i∈I ϕi and

⊕
i∈I pi ·ϕi

hold for Δ if the distribution can be decomposed into a convex combination of
some distributions Δi and each of them satisfies the corresponding sub-formula
ϕi; the first of these modalities allows any convex combination, whereas the sec-
ond one specifies a particular one. The formula ↓ϕ holds for Δ if all states in its
support satisfy ϕ. The characterisation of the least fixpoint formula μX.ϕ and
the greatest fixpoint formula νX.ϕ follows from the well-known Knaster-Tarski
fixpoint theorem [33].

The weak semantics reflects the unobservable nature of internal actions; it
differs from the strong semantics only in the use of the relations â=⇒ instead of

a−→ in the interpretation of the modalities 〈a〉 and [a].
Note that there is some redundancy in the syntax of pMu: each of the con-

structs
∧

i∈I , 〈a〉 and μ can be expressed in terms of its dual
∨

i∈I , [a] and ν
with the aid of negation. However, negation may not be redundant, as the dual of⊕

i∈I pi ·ϕi does not appear to be expressible without using negation; moreover
this dual lacks the intuitive appeal for introducing it as a new primitive.

284 Y. Deng and R. van Glabbeek

We shall consider (closed) equation systems of formulae of the form

E : X1 = ϕ1
...

Xn = ϕn

where X1, ..., Xn are mutually distinct variables and ϕ1, ..., ϕn are formulae hav-
ing at most X1, ..., Xn as free variables.

Table 2. Transformation rules

– Rule 1: E → F
– Rule 2: E → G
– Rule 3: E → H if Xn �∈ fv(ϕ1, ..., ϕn)

E : X1 = ϕ1 F : X1 = ϕ1 G : X1 = ϕ1[ϕn/Xn] H : X1 = ϕ1

...
...

...
...

Xn−1 = ϕn−1 Xn−1 = ϕn−1 Xn−1 = ϕn−1[ϕn/Xn] Xn−1 = ϕn−1

Xn = ϕn Xn = νXn.ϕn Xn = ϕn

Here E can be viewed as a function E : Var → L defined by E(Xi) = ϕi for
i = 1, ..., n and E(Y) = Y for other variables Y ∈ Var.

An environment ρ is a solution of an equation system E if its assignment to
Xi coincides with the interpretation of ϕi in the environment, that is,

∀i : ρ(Xi) = [[ϕi]]ρ.

The existence of solutions for an equation system can be seen from the following
arguments. The set Env, which includes all candidates for solutions, together
with the partial order defined by

ρ ρ′ iff ∀X ∈ Var : ρ(X) ⊆ ρ′(X)

forms a complete lattice. The equation functional FE : Env → Env given in the
notation of the λ-calculus by

FE := λρ.λX.[[E(X)]]ρ

is monotonic, which can be shown by induction on the structure of E(X). Thus,
the Knaster-Tarski fixpoint theorem guarantees existence of solutions, and the
greatest solution

νE :=
⊔
{ ρ | ρ FE(ρ) } (1)

is the supremum of the set of all post-fixpoints of FE .
An expression νE(X), with X one of the variables used in E, denotes a set

of distributions. Below we will use such expressions as if they were valid syn-
tax in our probabilistic mu-calculus, with [[νE(X)]]ρ := νE(X). This amounts to

Characterising Probabilistic Processes Logically 285

extending the greatest fixpoint operator ν to apply to finite sets of fixpoint equa-
tions, instead of single equations; the expression νX.ϕ amounts to the special
case νE(X) in which E consists of the single equation X = ϕ.

The use of expressions νE(X) is justified because they can be seen as syntactic
sugar for authentic pMu expressions. As explained in [26], the three transfor-
mation rules in Table 2 can be used to obtain from an equation system E a
pMu formula whose interpretation coincides with the interpretation of X1 in the
greatest solution of E.

Theorem 1. Given a finite equation system E that uses the variable X, there
is a pMu formula ϕ such that νE(X) = [[ϕ]]. ��

4 Characteristic Equation Systems

Following [32], the behaviour of a finite-state process can be characterised by an
equation system of modal formulae. In the current section we show that this idea
also applies in the probabilistic setting. For each behavioural relation R over a
finite state space, ranging over the various simulation preorders and bisimulation
equivalences reviewed in Section 2, we establish an equation system E of modal
formulae in pMu.

E : Xs1 = ϕs1

...
Xsn = ϕsn

There is exactly one such equation for each state si, and the formulae ϕsi do not
contain fixpoint operators. This equation system is guaranteed to have a greatest
solution νE which has the nice property that, for any states s, t in the state space
in question, s is related to t via R if and only if the point distribution t belongs
to the set of distributions assigned to the variable Xs by νE . Thus νE(Xs) is a
characteristic formula for s w.r.t. R in the sense that s R t iff t satisfies νE(Xs).

Strong probabilistic bisimulation. The key ingredient for the modal charac-
terisation of strong probabilistic bisimulation is to construct an equation system
that captures all the transitions of a pLTS. For each state s we build an equation
Xs = ϕs, where Xs is a variable and ϕs is of the form ϕ′s∧ϕ′′s with ϕ′s a formula
describing the actions enabled by s and ϕ′′s a formula describing the consequences
of performing these actions. Intuitively, if state s is related to state t in a bisim-
ulation game, then ϕ′s expresses the transitions that should be matched up by t
and ϕ′′s expresses the capability of s to match up the transitions initiated by t.
More specifically, the equation system is given by the following definition.

Definition 6. Given a pLTS, its characteristic equation system for strong prob-
abilistic bisimulation consists of one equationXs = ϕs for each state s∈S, where

ϕs := (
∧

s
a−→Δ

〈a〉XΔ) ∧ (
∧

a∈Actτ

[a]
⊕

s
a−→Δ

XΔ) 1 (2)

with XΔ :=
⊕

s∈�Δ�Δ(s) · ↓Xs.

286 Y. Deng and R. van Glabbeek

The equation system thus constructed, interpreted according to the strong se-
mantics of pMu, has the required property, as stated by the theorem below.

Theorem 2. Let E be the characteristic equation system for strong probabilistic
bisimulation on a given pLTS. Then, for all states s and t,
1. s R t for some strong probabilistic bisimulation R if and only if t ∈ ρ(Xs)

for some post-fixpoint ρ of FE.
2. In particular, s ∼ t if and only if t ∈ [[νE(Xs)]], i.e., νE(Xs) is a character-

istic formula for s w.r.t. strong probabilistic bisimilarity.

Proof. Let E be the characteristic equation system for strong probabilistic bisim-
ulation on a given pLTS. We only consider the first statement, from which the
second statement follow immediately.

(⇐) For this direction, assuming a post-fixpoint ρ of FE , we construct a
probabilistic bisimulation relation that includes all state pairs (s, t) satisfying
t ∈ ρ(Xs). Let R= { (s, t) | t ∈ ρ(Xs) }. We first show that

Θ ∈ [[XΔ]]ρ implies Δ R† Θ. (3)

Let XΔ =
⊕

i∈I pi · ↓Xsi , so that Δ =
∑

i∈I pi · si. Suppose Θ ∈ [[XΔ]]ρ. We
have that Θ =

∑
i∈I pi ·Θi and, for all i∈ I and all t∈0Θi1, that t ∈ [[Xsi]]ρ, i.e.

si R t. It follows that si R† Θi and thus Δ R† Θ, using Proposition 2(1).
Now we show that R is a probabilistic bisimulation.

1. Suppose s R t and s a−→ Δ. Then t ∈ ρ(Xs) ⊆ [[ϕs]]ρ. It follows from (2) that
t ∈ [[〈a〉XΔ]]ρ. So there exists some Θ such that t a−→ Θ and Θ ∈ [[XΔ]]ρ.
Now we apply (3).

2. Suppose s R t and t a−→ Θ. Then t ∈ ρ(Xs) ⊆ [[ϕs]]ρ. It follows from (2) that
t ∈ [[[a]

∨
s

a−→Δ
XΔ]]. Notice that it must be the case that s a−→, otherwise,

t ∈ [[[a]false]]ρ and thus t �a−→, in contradiction with the assumption t a−→ Θ.
Therefore, Θ ∈ [[

∨
s

a−→Δ XΔ]]ρ, which implies Θ ∈ [[XΔ]]ρ for some Δ with
s

a−→ Δ. Now we apply (3).

(⇒) Given a strong probabilistic bisimulation R, we construct a post-fixpoint
of FE such that whenever s R t then t falls into the set of distributions assigned
to Xs by that post-fixpoint. We define the environment ρR by

ρR(Xs) := { t | s R t }

and show that ρR is a post-fixpoint of FE , i.e.

ρR FE(ρR). (4)
1 The subformula

⊕
s

a−→Δ
XΔ is equivalent to

∨
s

a−→Δ
XΔ, and this is the form that

we use to prove Theorem 2. If the given pLTS has nondeterministic choices among
different transitions labelled with the same action, this disjunction is infinite. For
example, if s

a−→ si for i = 1, 2, then s
a−→ Δp, where Δp = p ·s1+(1−p) ·s2, for any

p ∈ [0, 1]. The set {Δp | p ∈ [0, 1]} is uncountable, though it is finitely generable, as
the convex closure of the two-element set {Δ0, Δ1}. The formula

⊕
s

a−→Δ
XΔ exploits

that fact to bypass the infinite disjunction; this formula is finite if the underlying
pLTS is finitary.

Characterising Probabilistic Processes Logically 287

We first show that

Δ R† Θ implies Θ ∈ [[XΔ]]ρR . (5)

Suppose Δ R† Θ, we have that (i) Δ =
∑

i∈I pi · si, (ii) Θ =
∑

i∈I pi · ti, (iii)
si R ti for all i ∈ I. We know from (iii) that ti ∈ [[Xsi]]ρR and thus ti ∈ [[↓Xsi]]ρR .
Using (ii) we have that Θ ∈ [[

⊕
i∈I pi ·↓Xsi]]ρR . Using (i) we obtain Θ ∈ [[XΔ]]ρR .

Now we are in a position to show (4). Suppose t ∈ ρR(Xs). We must prove
that t ∈ [[ϕs]]ρR , i.e.

t ∈ (
⋂

s
a−→Δ

[[〈a〉XΔ]]ρR) ∩ (
⋂

a∈Actτ

[[[a]
∨

s
a−→Δ

XΔ]]ρR)

by (2). This can be done by showing that t belongs to each of the two parts of
the outermost intersection.

1. Assume that s a−→ Δ for some a ∈ Actτ and Δ ∈ D(S). Since s R t, there
exists some Θ such that t a−→ Θ and Δ R† Θ. By (5), we get Θ ∈ [[XΔ]]ρR .
It follows that t ∈ [[〈a〉XΔ]]ρR .

2. Let a∈Actτ . Whenever t a−→ Θ, then by s R t there must be some Δ
such that s a−→ Δ and Δ R† Θ. By (5), we get Θ ∈ [[XΔ]]ρR and thus
Θ ∈ [[
∨

s
a−→ΔXΔ]]ρR . As a consequence, t ∈ [[[a]

∨
s

a−→Δ XΔ]]ρR . ��

Strong probabilistic simulation. In a simulation game, if state s is related
to state t, we only need to check that all transitions initiated by s should be
matched up by transitions from t, and we do not care about the inverse direction:
the capability of s to simulate t. Therefore, it is not surprising that characteristic
equation systems for strong probabilistic simulation are defined as in Definition 6
except that we drop the second part of the conjunction in (2), so ϕs takes the
form

ϕs :=
∧

s
a−→Δ

〈a〉XΔ (6)

With this modification, we have the expected property for strong probabilistic
simulation, which can be shown by using the ideas in the proof of Theorem 2,
but with fewer cases to analyse.

Weak probabilistic bisimulation. Characteristic equation systems for weak
probabilistic bisimulation are defined as in Definition 6 except that the weak
semantics of pMu is employed and ϕs takes the form

ϕs := (
∧

s
a−→Δ

〈a〉XΔ) ∧ (
∧

a∈Actτ

[a]
∨

s
â=⇒Δ

XΔ) 2 (7)

2 Using results from Markov Decision Processes [28], in a finitary pLTS also this
infinite disjunction can be expressed as finite convex combination; however, we will
not elaborate this here.

288 Y. Deng and R. van Glabbeek

Weak probabilistic simulation. Characteristic equation systems for weak
probabilistic simulation are in exactly the same form as characteristic equation
systems for strong probabilistic simulation (cf. (6)), but using the weak semantics
of pMu.

Forward simulation. Characteristic equation systems for forward simulation
are in the same form as characteristic equation systems for weak probabilistic
simulation, but with XΔ :=

⊕
s∈�Δ�Δ(s) ·Xs, i.e. dropping the ↓.

Failure simulation. To give a modal characterisations for failure simulation we
need to add modal formulae of the form ref(A) with A ⊆ Act, first introduced
in [7], to pMu, with the meaning given by

[[ref (A)]]ρ = {Δ ∈ D(S) | ∃Δ′ : Δ τ̂=⇒ Δ′ ∧ Δ′ �A−→ }

The formula ref(A) holds for Δ if by doing internal actions only Δ can evolve
into a distribution such that no state in its support can perform an action from
A ∪ {τ}. This time ϕs takes the form

ϕs :=
{∧

s
a−→Δ〈a〉XΔ if s τ−→

(
∧

s
a−→Δ〈a〉XΔ) ∧ ref ({ a | s �a−→ }) otherwise (8)

with XΔ :=
⊕

s∈�Δ�Δ(s) · Xs. Inspired by [7], here we distinguish two cases,
depending on the possibility of making an internal transition from s.

With the above modifications, we have the counterpart of Theorem 2, with a
similar proof.

Theorem 3. Let E≺ be the characteristic equation system for strong probabilis-
tic simulation on a given pLTS. Let E≈ (E�, E�S

, E�FS
, respectively) be the

characteristic equation system for weak probabilistic bisimulation (weak prob-
abilistic simulation, forward simulation, failure simulation, respectively) on a
given divergence-free pLTS. Then, for all states s, t and distributions Θ,

1. s R t for some strong probabilistic simulation (weak probabilistic bisimula-
tion, weak probabilistic simulation, respectively) R if and only if t ∈ ρ(Xs)
for some post-fixpoint ρ of FE≺ (FE≈ , FE� , respectively).

2. s R Θ for some forward simulation (failure simulation) R if and only if
Θ ∈ ρ(Xs) for some post-fixpoint ρ of FE�S

(FE�FS
).

3. In particular,
(a) s ≺ t if and only if t ∈ [[νE≺(Xs)]].
(b) s ≈ t if and only if t ∈ [[νE≈(Xs)]].
(c) s t if and only if t ∈ [[νE�(Xs)]].
(d) s �

FS
Θ if and only if Θ ∈ [[νE�S

(Xs)]].
(e) s �

FS
Θ if and only if Θ ∈ [[νE�FS

(Xs)]]. ��

We can also consider the strong case for �
S
and �

FS
by treating τ as an external

action, and give characteristic equation systems. In the strong case for �
FS

only
the “otherwise” in (8) applies, with ref(A) represented as

∧
a∈A[a]false.

Characterising Probabilistic Processes Logically 289

5 Modal Characterisations

In the previous sections we have pursued logical characterisations for various
behavioural relations by characteristic formulae. A weaker form of characterisa-
tion, which is commonly called a modal characterisation of a behavioural rela-
tion, consists of isolating a class of formulae with the property that two states
are equivalent if and only if they satisfy the same formulae from that class.

Definition 7. Let Lμ
∼ be simply the class L of modal formulae defined in Sec-

tion 3, equipped with the strong semantics of Table 1. With Lμ
≺ we denote the

fragment of this class obtained by skipping the modalities ¬ and [a]. The classes
Lμ
≈ and Lμ

� are defined likewise, but equipped with the weak semantics. More-
over, Lμ

�S
is the fragment of Lμ

� obtained by skipping ↓, and Lμ
�FS

is obtained
from Lμ

�S
by addition of the modality ref (A).

In all cases, dropping the superscript μ denotes the subclass obtained by
dropping the variables and fixpoint operators.

For R∈{∼,≺,≈,,�
S
,�

FS
} we write Δ μ

R Θ just when Δ∈[[ϕ]] ⇒ Θ ∈[[ϕ]]
for all closed ϕ ∈ Lμ

R, and Δ R Θ just when Δ∈[[ϕ]] ⇒ Θ∈[[ϕ]] for all ϕ ∈ LR.

Note that the relations μ
∼, μ

≈, ∼ and ≈ are symmetric. For this reason we
will employ the symbol ≡ instead of when referring to them.

We have the following modal characterisation for strong probabilistic bisimi-
larity, strong probabilistic similarity, weak probabilistic bisimilarity, weak prob-
abilistic similarity, forward similarity, and failure similarity.

Theorem 4 (Modal characterisation)
Let s and t be states in a divergence-free pLTS.
1. s ∼ t iff s ≡μ

∼ t iff s ≡∼ t.
2. s ≺ t iff s μ

≺ t iff s ≺ t.
3. s ≈ t iff s ≡μ

≈ t iff s ≡≈ t.
4. s t iff s μ

� t iff s � t.
5. s �S Θ iff s μ

�S
Θ iff s �S

Θ.
6. s �

FS
Θ iff s μ

�FS
Θ iff s �FS

Θ.

Note that s ≡μ
∼ t ⇒ s ∼ t is an immediate consequence of Theorem 2: From

s ∼ s we obtain s ∈ [[νE(Xs)]]. Together with s ≡μ
∼ t this yields t ∈ [[νE(Xs)]],

hence s ∼ t.

Proof. We only prove the first statement; the others can be shown analogously.
In fact we establish the more general result that

Δ ∼† Θ ⇔ Δ ≡μ
∼ Θ ⇔ Δ ≡∼ Θ

from which statement 1 of Theorem 4 follows immediately. The implication
Δ ∼† Θ ⇒ Δ ≡μ

∼ Θ expresses the soundness of the logic Lμ
∼ w.r.t. the rela-

tion ∼†, whereas the implication Δ ≡∼ Θ ⇒ Δ ∼† Θ expresses the completeness
of L∼ w.r.t. ∼†. The implication Δ ≡μ

∼ Θ ⇒ Δ ≡∼ Θ is trivial.

290 Y. Deng and R. van Glabbeek

(Soundness) An environment ρ : Var → P(D(S)) is called compatible with ∼†
if for all X ∈ Var we have that

Δ ∼† Θ ⇒ (Δ ∈ ρ(X) ⇒ Θ ∈ ρ(X)).

We will show by structural induction on ϕ that

Δ ∼† Θ ⇒ (Δ ∈ [[ϕ]]ρ ⇒ Θ ∈ [[ϕ]]ρ)

for any environment ρ that is compatible with ∼†. By restricting attention to
closed ϕ this implies the soundness of Lμ

∼ w.r.t. ∼†. We consider a few interesting
cases.

– Let Δ ∼† Θ and Δ ∈ [[〈a〉ϕ]]ρ. Then Δ
a−→ Δ′ and Δ′ ∈ [[ϕ]]ρ for some Δ′.

It follows that there is some Θ′ with Θ
a−→ Θ′ and Δ′ ∼† Θ′. By induction

we have Θ′ ∈ [[ϕ]]ρ, thus Θ |= 〈a〉ϕ.
– Let Δ ∼† Θ and Δ ∈ [[[a]ϕ]]ρ. Suppose Θ a−→ Θ′. It can be seen that there is

a Δ′ with Δ a−→ Δ′ and Δ′ ∼† Θ′. As Δ ∈ [[[a]ϕ]]ρ it must be that Δ′ ∈ [[ϕ]]ρ,
and by induction we have Θ′ ∈ [[ϕ]]ρ. Thus Θ ∈ [[[a]ϕ]]ρ.

– Let Δ ∼† Θ and Δ ∈ [[
⊕

i∈I pi ·ϕi]]ρ. So Δ =
∑

i∈i pi ·Δi and for all i ∈ I we
have Δi ∈ [[ϕi]]ρ. Since Δ ∼† Θ, by Proposition 2(2) we have Θ =

∑
i∈I pi ·Θi

and Δi ∼† Θi. So by induction we have Θi ∈[[ϕi]]ρ for all i∈ I. Therefore,
Θ ∈ [[
⊕

i∈I pi · ϕi]]ρ. The case Δ ∈ [[
⊕

i∈I ϕi]]ρ goes likewise.
– Let Δ ∼† Θ and Δ ∈ [[↓ϕ]]ρ. So for all s ∈ 0Δ1 we have s ∈ [[ϕ]]ρ. From
Δ ∼† Θ it follows that for each t∈0Θ1 there is an s∈0Δ1 with s ∼ t, thus
s ∼† t. So by induction we have t∈[[ϕ]]ρ for all t∈0Θ1. Therefore, Θ ∈ [[↓ϕ]]ρ.

– Suppose Δ ∼† Θ and Θ �∈ [[μX.ϕ]]ρ. Then ∃V ⊆ D(S) with Θ �∈ V and
[[ϕ]]ρ[X #→V] ⊆ V . Let V ′ := {Δ′ | ∀Θ′.(Δ′ ∼† Θ′ ⇒ Θ′ ∈ V)}. Then Δ �∈ V ′.
It remains to show that [[ϕ]]ρ[X #→V ′] ⊆ V ′, because this implies Δ �∈ [[μX.ϕ]]ρ,
which has to be shown.

So letΔ′ ∈ [[ϕ]]ρ[X #→V ′]. Take any Θ′ withΔ′ ∼† Θ′. By construction of V ′,
the environment ρ[X 	→ V ′] is compatible with ∼†. Therefore, the induction
hypothesis yields Θ′ ∈ [[ϕ]]ρ[X #→V ′]. We have V ′ ⊆ V , and as [[]] is monotonic
we obtain Θ′ ∈ [[ϕ]]ρ[X #→V ′] ⊆ [[ϕ]]ρ[X #→V] ⊆ V . It follows that Δ′ ∈ V ′.

– Suppose Δ ∼† Θ and Δ ∈ [[νX.ϕ]]ρ. Then ∃V ⊆ D(S) with Δ ∈ V and
[[ϕ]]ρ[X #→V] ⊇ V . Let V ′ := {Θ′ | ∃Δ′ ∈V. Δ′ ∼† Θ′}. Then Θ ∈ V ′. It
remains to show that [[ϕ]]ρ[X #→V ′] ⊇ V ′, because this implies Θ ∈ [[νX.ϕ]]ρ,
which has to be shown.

So let Θ′ �∈ [[ϕ]]ρ[X #→V ′]. Take any Δ′ with Δ′ ∼† Θ′. By construction of V ′,
the environment ρ[X 	→ V ′] is compatible with ∼†. Therefore, the induction
hypothesis yields Δ′ �∈ [[ϕ]]ρ[X #→V ′]. We have V ′ ⊇ V , and as [[]] is monotonic
we obtain Δ′ �∈ [[ϕ]]ρ[X #→V ′] ⊇ [[ϕ]]ρ[X #→V] ⊇ V . It follows that Θ′ �∈ V ′.

(Completeness) Let R = {(s, t) | s ≡∼ t}. We show that R is a strong proba-
bilistic bisimulation. Suppose s R t and s

a−→ Δ. We have to show that there is
some Θ with t

a−→ Θ and Δ R† Θ. Consider the set

T := {Θ | t a−→ Θ ∧Θ =
∑

s′∈�Δ�
Δ(s′) ·Θs′ ∧ ∃s′ ∈ 0Δ1, ∃t′ ∈ 0Θs′1 : s′ �≡∼ t′}

Characterising Probabilistic Processes Logically 291

For each Θ ∈ T there must be some s′Θ ∈ 0Δ1 and t′Θ ∈ 0Θs′
Θ
1 and a formula ϕΘ

with s′Θ |= ϕΘ but t′Θ �|= ϕΘ. So s′ |=
∧
{Θ∈T |s′

Θ=s′} ϕΘ for each s′ ∈ 0Δ1, and for

each Θ ∈ T with s′Θ = s′ there is some t′Θ ∈ 0Θs′1 with t′Θ �|=
∧
{Θ∈T |s′

Θ=s′} ϕΘ.
Let

ϕ := 〈a〉
⊕

s′∈�Δ�
Δ(s′) · ↓

∧
{Θ∈T |s′

Θ=s′}
ϕΘ.

It is clear that s |= ϕ, hence t |= ϕ by sRt. It follows that there must be a
Θ∗ with t

a−→ Θ∗, Θ∗ =
∑

s′∈�Δ�Δ(s′) · Θ∗s′ and for each s′ ∈0Δ1, t′ ∈0Θ∗s′1
we have t′ |=

∧
{Θ∈T |s′

Θ=s′} ϕΘ. This means that Θ∗ �∈ T and hence for each
s′ ∈0Δ1, t′ ∈0Θ∗s′1 we have s′ ≡∼ t′, i.e. s′Rt′. Consequently, we obtain Δ R† Θ∗.
By symmetry all transitions of t can be matched up by transitions of s. ��

Modal characterisation of strong and weak probabilistic bisimulation has been
studied in [27]. It is also based on a probabilistic extension of the Hennessy-
Milner logic. Instead of our modalities

⊕
and ↓ they use a modality [·]p. Intu-

itively, a distribution Δ satisfies the formula [ϕ]p when the set of states satisfying
ϕ is measured by Δ with probability at least p. So the formula [ϕ]p can be ex-
pressed by our logics in terms of the probabilistic choice

⊕
i∈I pi · ϕi by setting

I = {1, 2}, p1 = p, p2 = 1−p, ϕ1 = ↓ϕ, and ϕ2 = true. Furthermore, instead of
our modality 〈a〉, they use a modality ·♦a that can be expressed in our logic
by ·♦aϕ = 〈a〉↓ϕ. We conjecture that our modalities 〈a〉 and

⊕
cannot be ex-

pressed in terms of the logic of [27], and that a logic of that type is unsuitable
for characterising forward simulation or failure simulation.

When restricted to deterministic pLTSs (i.e., for each state and for each action,
there exists at most one outgoing transition), probabilistic bisimulations can be
characterised by simpler forms of logics, as observed in [20,11,27].

References

1. Bandini, E., Segala, R.: Axiomatizations for Probabilistic Bisimulation. In: Orejas,
F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–
381. Springer, Heidelberg (2001)

2. Christoff, I.: Testing equivalences and fully abstract models for probabilistic pro-
cesses. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp.
126–140. Springer, Heidelberg (1990)

3. Cleaveland, R., Purushothaman Iyer, S., Narasimha, M.: Probabilistic temporal
logics via the modal mu-calculus. Theoretical Computer Science 342(2-3), 316–350
(2005)

4. D’Argenio, P.R., Wolovick, N., Terraf, P.S., Celayes, P.: Nondeterministic La-
beled Markov Processes: Bisimulations and Logical Characterization. In: Proc.
QEST 2009, pp. 11–20. IEEE Computer Society, Los Alamitos (2009)

5. Deng, Y., Du, W.: A Local Algorithm for Checking Probabilistic Bisimilarity. In:
Proc. FCST 2009, pp. 401–407. IEEE Computer Society, Los Alamitos (2009)

6. Deng, Y., van Glabbeek, R.J.: Characterising Probabilistic Processes Logically,
http://arxiv.org/abs/1007.5188, Full version of this paper

http://arxiv.org/abs/1007.5188

292 Y. Deng and R. van Glabbeek

7. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Characterising Test-
ing Preorders for Finite Probabilistic Processes. Logical Methods in Computer
Science 4(4), 4 (2008)

8. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C.: Testing Finitary Prob-
abilistic Processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009 - Concur-
rency Theory. LNCS, vol. 5710, pp. 274–288. Springer, Heidelberg (2009)

9. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.C., Zhang, C.: Remarks
on Testing Probabilistic Processes. ENTCS 172, 359–397 (2007)

10. Deng, Y., Palamidessi, C.: Axiomatizations for probabilistic finite-state behaviors.
Theoretical Computer Science 373(1-2), 92–114 (2007)

11. Desharnais, J., Edalat, A., Panangaden, P.: A logical characterization of bisim-
ulation for labelled Markov processes. In: Proc. LICS 1998, pp. 478–489. IEEE
Computer Society, Los Alamitos (1998)

12. Giacalone, A., Jou, C.-C., Smolka, S.A.: Algebraic reasoning for probabilistic con-
current systems. In: Proc. IFIP TC 2 Working Conference on Programming Con-
cepts and Methods, pp. 443–458 (1990)

13. Hansson, H., Jonsson, B.: A Calculus for Communicating Systems with Time and
Probabilities. In: Proc. RTSS 1990, pp. 278–287. IEEE Computer Society, Los
Alamitos (1990)

14. Hansson, H., Jonsson, B.: A Logic for Reasoning about Time and Reliability. For-
mal Aspects of Computing 6(5), 512–535 (1994)

15. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32(1), 137–161 (1985)

16. Huth, M., Kwiatkowska, M.: Quantitative analysis and model checking. In: Proc.
LICS 1997, pp. 111–122. IEEE Computer Society, Los Alamitos (1997)

17. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: Proc. LICS 1991, pp. 266–277. Computer Society Press (1991)

18. Jonsson, B., Wang, Y.: Testing preorders for probabilistic processes can be char-
acterized by simulations. Theoretical Computer Science 282(1), 33–51 (2002)

19. Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer Sci-
ence 27, 333–354 (1983)

20. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94(1), 1–28 (1991)

21. Lowe, G.: Probabilistic and Prioritized Models of Timed CSP. Theoretical Com-
puter Science 138, 315–352 (1995)

22. McIver, A.K., Morgan, C.C.: An expectation-based model for probabilistic tempo-
ral logic. Technical Report PRG-TR-13-97, Oxford University Computing Labora-
tory (1997)

23. McIver, A.K., Morgan, C.C.: Results on the Quantitative Mu-Calculus. ACM
Transactions on Computational Logic 8(1) (2007)

24. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

25. Mislove, M.W., Ouaknine, J., Worrell, J.: Axioms for Probability and Non-
determinism. ENTCS 96, 7–28 (2004)

26. Müller-Olm, M.: Derivation of Characteristic Formulae. ENTCS 18, 159–170 (1998)
27. Parma, A., Segala, R.: Logical Characterizations of Bisimulations for Discrete

Probabilistic Systems. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp.
287–301. Springer, Heidelberg (2007)

28. Puterman, M.L.: Markov Decision Processes. Wiley, Chichester (1994)

Characterising Probabilistic Processes Logically 293

29. Ramakrishna, Y.S., Smolka, S.A.: Partial-order reduction in the weak modal mu-
calculus. In: Mazurkiewicz, A., Winkowski, J. (eds.) LFCS 1997. LNCS, vol. 1234,
pp. 5–24. Springer, Heidelberg (1997)

30. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. Technical Report MIT/LCS/TR-676, PhD thesis, MIT, Dept. of EECS
(1995)

31. Segala, R., Lynch, N.A.: Probabilistic Simulations for Probabilistic Processes. In:
Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 481–496.
Springer, Heidelberg (1994)

32. Steffen, B., Ingólfsdóttir, A.: Characteristic Formulae for Processes with Diver-
gence. Information and Computation 110, 149–163 (1994)

33. Tarski, A.: A lattice-theoretical fixpoint theorem and its application. Pacific Jour-
nal of Mathematics 5(2), 285–309 (1955)

34. Tix, R., Keimel, K., Plotkin, G.D.: Semantic Domains for Combining Probability
and Non-Determinism. ENTCS 129, 1–104 (2005)

35. Wang, Y., Larsen, K.G.: Testing Probabilistic and Nondeterministic Processes. In:
Proc. IFIP TC6/WG6.1 PSTV’92, C-8, North-Holland, pp. 47–61 (1992)

fCube: An Efficient Prover for Intuitionistic
Propositional Logic

Mauro Ferrari1, Camillo Fiorentini2, and Guido Fiorino3

1 DICOM, Univ. degli Studi dell’Insubria, Via Mazzini 5, 21100, Varese, Italy
2 DSI, Univ. degli Studi di Milano, Via Comelico, 39, 20135 Milano, Italy

3 DIMEQUANT, Univ. degli Studi di Milano-Bicocca
P.zza dell’Ateneo Nuovo 1, 20126 Milano, Italy

Abstract. We present fCube, a theorem prover for Intuitionistic propo-
sitional logic based on a tableau calculus. The main novelty of fCube is
that it implements several optimization techniques that allow to prune
the search space acting on different aspects of proof-search. We tested
the efficiency of our techniques by comparing fCube with other theo-
rem provers. We found that our prover outperforms the other provers on
several interesting families of formulas.

1 Introduction

fCube
1 is a theorem prover for Intuitionistic propositional logic based on a

tableau calculus. The main topic of this paper is the description of the strategy
and the main optimizations on which fCube relies. Here, speaking of optimiza-
tion we mean a family of techniques that allow us to reduce the search space
acting on different aspects of proof search. In particular fCube implements sim-
plification techniques, which reduce the size of the formulas treated by the prover
so to avoid inessential branching and backtracking.

Unlike what happened for classical logic, where optimization techniques of
the above kind have been investigated from the very beginning (see, e.g., [3,6]),
in the case of tableau calculi for Intuitionistic and non classical logics very little
work has been done in this direction. As far as we know, the only works that
address these issues in the context of tableau calculi are [5,7] that essentially
refer to classical and modal logics, and [4] which addresses the case of Intuition-
istic tableau calculi. The optimization rules implemented in fCube are those
presented in [4]. We remark that fCube is a prototype Prolog implementation
of the above techniques and we did very little work to “optimize the implemen-
tation”; e.g., fCube is based on a very rough implementation of the relevant
data structures. In spite of this, as discussed in Section 5, fCube outperforms
other provers on several interesting families of formulas. The above considera-
tions suggest that the study of optimization techniques is a promising line of
research to improve the performances of Intuitionistic theorem provers.

1 Available at http://web-nuovo.dimequant.unimib.it/~guidofiorino/fcube.jsp

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 294–301, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

fCube: An Efficient Prover for Intuitionistic Propositional Logic 295

2 Preliminaries and Tableau Calculus

We consider the languageL based on a denumerable set of propositional variables
PV, the logical connectives ¬, ∧, ∨, → and the logical constants � and ⊥.

We recall the main definitions about Kripke semantics (see, e.g., [2] for more
details). A Kripke model for L is a structure K = 〈P,≤, ρ, V 〉, where 〈P,≤, ρ〉 is
a poset with minimum ρ and V is a monotone function (the valuation function)
mapping every α ∈ P to a subset of PV. The forcing relation 	⊆ P × L is
defined as follows:

– α 	 �, α � ⊥ and, for p ∈ PV , α 	 p iff p ∈ V (α);
– α 	 A ∧B iff α 	 A and α 	 B;
– α 	 A ∨B iff α 	 A or α 	 B;
– α 	 A→ B iff, for every β ∈ P such that α ≤ β, β 	 A implies β 	 B;
– α 	 ¬A iff, for every α ≤ β, β � A (i.e., β 	 A does not hold).

Monotonicity property holds for arbitrary formulas, i.e., α 	 A and α ≤ β imply
β 	 A. A formula A is valid in K iff ρ 	 A. Intuitionistic propositional logic Int
coincides with the set of formulas valid in all Kripke models [2].

The calculus implemented in fCube treats signed formulas of the kind TA
or FA, where A ∈ L The semantics of formulas extends to signed formulas as
follows. Given a Kripke model K = 〈P,≤, ρ, V 〉, α ∈ P and a signed formula H ,
α realizes H in K (K,α�H) iff:

– H ≡ TA and α 	 A;
– H ≡ FA and α � A.

We say that K realizes H (K � H) iff K, ρ � H ; H is realizable iff K � H for
some Kripke model K. The above definitions extend in the obvious way to sets
Δ of signed formulas; for instance, K,α � Δ means that K,α � H , for every
H ∈ Δ. By definition, A ∈ Int iff FA is not realizable. We remark that, by
the monotonicity property, T-signed formulas are upward persistent (K,α�TA
and α ≤ β imply K,β � TA), while F-signed formulas are downward persistent
(K,α� FA and β ≤ α imply K,β � FA).

fCube is based on the tableau calculus Tab of Fig.12. In the formulation of
the rules we use the notation Δ,H as a shorthand for Δ ∪ {H}. In the premise
of a rule, writing Δ,H we assume that H �∈ Δ. Every rule applies to a set of
signed formulas, but only acts on the signed formula H explicitly indicated in
the premise; we call H the major premise of the rule, whereas we call all the
other signed formulas minor premises of the rule. A rule r is invertible iff r
is sound and, for every set Δ in the consequent, the realizability of Δ implies
the realizability of the premise. A set Δ is contradictory iff either T⊥ ∈ Δ or
F� ∈ Δ or, for some A ∈ L, {FA,TA} ⊆ Δ. A proof-table τ for Δ is defined as
usual; when all the leaves of τ are contradictory, we say that τ is closed and Δ
is provable.

As proved in [1], Tab is a complete for Int, that is A ∈ Int iff FA is provable
in Tab. The decision procedure described in Section 4 is inspired by [1].
2 Tab essentially corresponds to the calculus of [1], the only difference is the absence

of the sign Fc. Here FcA is replaced by the equivalent signed formula T¬A.

296 M. Ferrari, C. Fiorentini, and G. Fiorino

Δ,T(A ∧B)

Δ, TA,TB
T∧

Δ,F(A ∧B)

Δ,FA | Δ,FB
F∧

Δ, T¬(A ∧B)

ΔT,T¬A | ΔT,T¬B
T¬∧

Δ,T(A ∨B)

Δ,TA | Δ,TB
T∨

Δ,F(A ∨ B)

Δ,FA,FB
F∨

Δ, T¬(A ∨B)

Δ,T¬A,T¬B
T¬∨

Δ,TA,T(A→ B)

Δ,TA,TB
MP

ΔT,T(A→ B)

ΔT,T¬A | ΔT,TB
T→-special

Δ,F(A→ B)

ΔT,TA,FB
F→

Δ,T¬(A → B)

ΔT,TA,T¬B
T¬→

Δ,F¬A

ΔT,TA
F¬

Δ,T¬¬A

ΔT, TA
T¬¬

Δ,T((A ∧B)→ C)

Δ,T(A→ (B → C))
T→∧

Δ,T(¬A → B)

ΔT,TA |Δ,TB
T→¬

Δ,T((A ∨B)→ C)

Δ,T(A→ p),T(B → p),T(p→ C)
T→∨ with p a new atom

Δ,T((A→ B)→ C)

ΔT,TA,Fp,T(p→ C),T(B → p) |Δ, TC
T→→ with p a new atom

where ΔT = {TA | TA ∈ Δ}

Fig. 1. The Tab calculus

3 Simplification Rules

In this section we describe the simplification rules implemented in fCube. The
aim of these rules is to reduce the size of the formulas to be analyzed as much
as possible before applying a rule of Fig. 1.

The first kind of simplification implemented in fCube exploits the well-known
boolean simplification rules [4,7]. These rules simplify formulas containing the
constants � and ⊥ using Intuitionistic equivalences; e.g., (A ∨�) ∧B simplifies
to B, by the equivalences A ∨ � ≡ � and B ∧ � ≡ B.

The other simplification rules used by fCube have been introduced in [4] and
are described in Fig. 2. Given a signed formula H , H [B/A] denotes the signed
formula obtained by replacing every occurrence of A with B in H . Now, let
Z, A and B be formulas; Z{B/A} denotes the partial substitution of A with
B in Z defined as follows: if Z = A then Z{B/A} = B; if Z = (X 4 Y) and
4 ∈ {∧,∨} then Z{B/A} = X{B/A} 4 Y {B/A}; if Z = X → Y , Z = ¬X
or Z ∈ PV and Z �= A, then Z{B/A} = Z. Note that partial substitutions
do not act on subformulas under the scope of → or ¬. Given a signed formula
H = SZ, H{B/A} = S(Z{B/A}). For a set of signed formulas Δ, Δ[B/A]
(resp. Δ{B/A}) is the set of signed formulas H [B/A] (resp. H{B/A}) such that

fCube: An Efficient Prover for Intuitionistic Propositional Logic 297

Δ, TA

Δ[�/A], TA
Replace-T

Δ,T¬A

Δ[⊥/A],T¬A
Replace-T¬

Δ,FA

Δ{⊥/A}, FA
Replace-F

Δ

Δ[�/p]
T-perm if p�+ Δ

Δ

Δ[⊥/p]
T¬-perm if p�− Δ

Δ

Δ{⊥/p}
F-perm if p�−

w Δ

– p�− Fp and p�+ Tp
– p�l S� and p�l S⊥
– p�l Sq, where q ∈ PV and q �= p
– p�l S(A�B) iff p�l SA and p�l SB,

where � ∈ {∧,∨}
– p�l F(A→ B) iff p�l TA and p�l FB
– p�l T(A→ B) iff p�l FA and p�l TB
– p�l F¬A iff p�l TA
– p�l T¬A iff p�l FA.

– p�−
w S� and p�−

w S⊥
– p�−

w FA and p�−
w T¬A for every

A
– p�−

w Tq, where q ∈ PV and q �= p
– p�−

w T(A � B) iff p�−
w TA and

p�−
w TB, where � ∈ {∧,∨}

– p�−
w T(A→ B) iff p�−

w TB.

where S ∈ {T,F} and l ∈ {+,−}
Given a set of signed formulas Δ and �∈ {�+ ,�− ,�−

w }, p � Δ iff, for every
H ∈ Δ, p � H .

Fig. 2. Simplification rules and polarities

H ∈ Δ. The rules in the second line of Fig. 2 enable the substitution of p ∈ PV
occurring with constant polarity in a set Δ (see the definition of p!+H , p!−H
and p!−w H) with � or ⊥. In [4] it is proved that:

Theorem 1. The rules of Fig.2 are invertible. ��

Thus, simplification rules do not require backtracking.

4 fCube Strategy

Here we describe the main function f of fCube which implements the proof-
search strategy (see Fig. 3). Let Δ be a set of signed formulas; f(Δ) returns
either a proof for Δ or a countermodel K for Δ, namely a Kripke model K such
that K�Δ. We introduce some notations. Given H ∈ Δ, RH(Δ) is the instance
of the rule of Tab having H as major premise and Δ \ {H} as minor premises.
By ΔF we denote the set of F-signed formulas of Δ. A local formula is a signed
formula FL such that:

L ::= p | L ∨ L | L ∧A | A ∧ L where p ∈ PV and A is any formula

LF is the set of local formulas. An important property of LF is stated by the
following theorem:

Theorem 2. Let K = 〈P,≤, ρ, V 〉 be a Kripke model, α ∈ P and FL ∈ LF . If
α � p for every p occurring in L, then α � L. ��

298 M. Ferrari, C. Fiorentini, and G. Fiorino

Function f(Δ)

1. Apply to Δ the rules of Fig. 2 and boolean simplification rules as long as possible.
2. If Δ is a contradictory set, then return the proof π = Δ.
3. If there exists H ∈ Δ such that H �∈ LF and one of the rules T∧, T¬¬, MP ,

T→ ∧, T→ ∨ and F∨ applies to H , let RH(Δ) =
Δ

Δ′ r and π′ = f(Δ′).

If π′ is a proof, then return the proof
Δ

π′ r, else return the model π′.

4. If there exists H ∈ Δ such that H �∈ LF and one of the rules T∨, F∧, T→ −special

applies to H , let RH(Δ) = Δ

Δ′ | Δ′′ r, π′ = f(Δ′) and π′′ = f(Δ′′).

If there is a model τ ∈ {π′, π′′} then return τ , else return the proof
Δ

π′|π′′ r.

5. Let Γ1 = {H ∈ Δ | H = F(A → B) or H = F¬A }.
Let Γ2 = {K ∈ Δ | K = T((A→ B)→ C) or K = T(¬A→ B) }.
If Γ1 ∪ Γ2 �= ∅ then

Let M = ∅ (M is a set of Kripke models)
For each H ∈ Γ1 do

Let RH(Δ) = Δ

Δ′ r and π′ = f(Δ′).

If π′ is a proof then return the proof
Δ

π′ r

else if Real(π′, ΔF) then return π′ else M =M∪ {π′}.
For each K ∈ Γ2 do

Let RK(Δ) =
Δ

Δ′ | Δ′′ r, π′ = f(Δ′) and π′′ = f(Δ′′).

If π′′ is a model then return π′′

else if both π′ and π′′ are proofs, then return the proof
Δ

π′|π′′ r

else if Real(π′, ΔF) then return π′, else M =M∪ {π′}.
Return the model Cm(Δ,M).

6. If there exists H ∈ Δ such that one of the rules T¬ →, T¬¬ applies to H ,

let RH(Δ) =
Δ

Δ′ r and π′ = f(Δ′).

If π′ is a proof then return the proof
Δ

π′ r, else return Cm(Δ, {π}).

7. If H = T¬(A ∧B) ∈ Δ, let RH(Δ) = Δ

Δ′ | Δ′′ T¬∧, π′ = f(Δ′) and π′′ = f(Δ′′).

If there is a model τ ∈ {π′, π′′} then return Cm(Δ, {τ}), else return
Δ

π′|π′′ T¬∧.

8. Return Cm(Δ, ∅).

Function Cm(Δ,M)
Let M = {K1, . . . , Kn}, with Ki = 〈Pi,≤i, ρi, Vi〉.
Let ρ �∈

⋃
1≤i≤n Pi.

Return K = 〈P,≤, ρ, V 〉 where:
P = {ρ} ∪

⋃
1≤i≤n Pi

≤ = { (ρ, α) | α ∈ P } ∪
⋃

1≤i≤n ≤i

V = { (ρ, p) | Tp ∈ Δ } ∪
⋃

1≤i≤n Vi

...................

...................

Kn

ρn

K1

ρ

ρ1

The model Cm(Δ,M)

Fig. 3. The functions f(Δ) and Cm(Δ,M)

fCube: An Efficient Prover for Intuitionistic Propositional Logic 299

We also exploit the functions Cm and Real defined as follows:

– The function Cm (see Fig. 3) takes as input a set of signed formulas Δ and
a (possibly empty) set of Kripke models M and builds a countermodel K for
Δ using a standard technique to glue the models in M (see, e.g,. [2]).

– The function Real takes as input a Kripke model K = 〈P,≤, ρ, V 〉 and a set
of signed formulas Δ and returns true only if ρ realizes Δ, i.e. if K, ρ�Δ. In
our strategy Real is applied when the realizability of Δ can be decided only
considering the valuation V (ρ) (that is, without considering elements α > ρ).
In this case the test requires time linear in the size of Δ.

A high-level definition of f is given in Fig. 3. In the computation of f(Δ), we
firstly try to reduce Δ by applying the simplification rules described in Section 3.
Note that this step can reduce the search space; for instance in Step 4, if the set
Δ∪ {T(A∨B)} simplifies to Δ∪ {TB}, we avoid the call f(Δ∪ {TA}). Apply-
ing Tab rules, f gives precedence to invertible rules and, among them, single-
conclusion rules are applied first. We point out that LF-formulas are treated as
atomic formulas since they are never decomposed by the Tab rules (they can
be treated only by simplification rules), and this avoids useless computation.
Finally, we remark that if one of the tests Real(π′, ΔF) in Step 5 successes, the
iteration terminates and f returns the model π′.

We briefly account on the correctness of f. It is easy to check, by induction
on Δ, that whenever f(Δ) returns a proof π, π is actually a proof of Δ. Let us
assume that f(Δ) returns a Kripke model K = 〈P,≤, ρ, V 〉; we have to prove
that (*) K, ρ�Δ. If K is returned in Step 3 or 4, (*) immediately follows. Let
us consider Step 5. Suppose that K = π′ is returned inside one of the for-each
loops. By induction hypothesis K, ρ� Δ′, which implies K, ρ �ΔT. Moreover,
being Real(K ′, ΔF) true, we also have K, ρ � ΔF, hence (*) holds. Suppose
now that K = Cm(Δ,M). Then, (*) follows by construction of K and the
induction hypothesis. We only show that K, ρ � FA, for every FA ∈ Δ. Let
FA = F(B → C). Since FA ∈ Γ1, there is K ′ = 〈P ′,≤′, ρ′, V ′〉 ∈ M such that
K′, ρ′ � TB and K ′, ρ′ � FC. Since ρ < ρ′ in K, we have K, ρ� F(B → C). If
A ∈ PV , then TA �∈ Δ (Step 2 guarantees that Δ is not contradictory), hence
K, ρ� FA. It only remains to consider the case FA ∈ LF . Note that in Step 1
all the p ∈ PV such that Tp ∈ Δ have been replaced by �, hence for every
p occurring in A, we have K, ρ � Fp. By Theorem 2 we get K, ρ � FA. This
concludes the proof of (*). The discussion about steps 6–8 is similar. Note that
in Step 8 the set Δ only contains formulas of the kind T�, F⊥, Tp, Fp, with
p ∈ PV, T(p → A), with Tp �∈ Δ, and LF-formulas; in this case the returned
model Cm(Δ, ∅) is a classical model for Δ.

The termination of f follows from the fact that at each recursive call the size
of Δ strictly decreases.

5 Evaluation and Conclusions

We have performed some experiments to compare fCube to Imogen [8], which is
the fastest among the provers tested on the formulas of the ILTP Library [9], and

300 M. Ferrari, C. Fiorentini, and G. Fiorino

Formula Imogen fCube Basic +BackT +Branch
SYJ201+1.018 11.32 14.46 timeout timeout 16.16
SYJ201+1.019 16.28 17.84 timeout timeout 20.72
SYJ201+1.020 17.00 22.34 timeout timeout 26.00
SYJ202+1.006 timeout 6.18 timeout timeout 7.08
SYJ202+1.007 timeout 52.98 timeout timeout 61.18
SYJ202+1.008 timeout 529.36 timeout timeout 570.88
SYJ206+1.018 2.26 0.00 0.00 0.00 0.00
SYJ206+1.019 2.12 0.00 0.00 0.00 0.01
SYJ206+1.020 2.14 0.00 0.01 0.01 0.01
SYJ207+1.018 77.02 4.72 timeout 5.53 timeout
SYJ207+1.019 104.38 6.08 timeout 7.15 timeout
SYJ207+1.020 143.32 7.44 timeout 8.94 timeout
SYJ208+1.015 timeout 174.22 220.71 209.98 187.78
SYJ208+1.016 timeout 286.56 351.73 349.72 312.99
SYJ208+1.017 timeout 472.07 570.48 569.66 541.81
SYJ209+1.018 0.20 0.08 timeout 0.07 timeout
SYJ209+1.019 0.024 0.09 timeout 0.09 timeout
SYJ209+1.020 0.028 0.09 timeout 0.10 timeout
Nishimura.011 8.2 0.02 0.02 0.02 0.02
Nishimura.012 132 0.04 0.03 0.04 0.04
Nishimura.013 timeout 0.07 0.06 0.07 0.07

Fig. 4. Timings on ILTP library

to check how our optimizations affect the performances of fCube itself. In the ex-
periments we considered formulas of the ILTP Library and some axiom-formulas
characterizing intermediate logics. In Fig. 4, the second and third column de-
scribe the timings of Imogen and fCube, respectively. Times are expressed in
seconds and the timeout is 600s3. We notice that fCube outperforms Imogen on
the families SYJ202, SYJ206, SYJ207, SYJ208 and Nishimura. Imogen is slightly
faster than fCube on the families SYJ201 and SYJ209. As regards the perfor-
mances of fCube on the SYJ201 family, we emphasize that fCube strategy relies
on PITP strategy [1] and PITP decides the formula SYJ201.20 in 0.01s. In this
case the timings of fCube essentially depend on its rough data structures that
do not handle efficiently multiple occurrences of the same formula. This highly
affects the performances on formulas like SYJ201.20 ((∧40

i=0
(
pi ≡ p(i+1) mod 41 →

∧40
j=0pj

)
) → ∧40

j=0pj) where ∧40
j=0pj occurs 42-times. Indeed rewriting SYJ201.20

as ((q ≡ ∧40
j=0pj ∧ ∧40

i=0

(
pi ≡ p(i+1) mod 41 → q

)
) → q) fCube solves it in

2.23s while Imogen requires 33s. We also remark that the proof table for the
latter formula contains 250 nodes, whereas the proof table for the original for-
mula contains 246 nodes. This is a further clue that the lack of advanced data
structures penalizes the strategy. According to these considerations we expect
that the above techniques can highly improve the performances of provers using
advanced data structures.

3 Experiments performed on a Intel(R) Xeon(TM) CPU 3.00GHz, Linux OS.

fCube: An Efficient Prover for Intuitionistic Propositional Logic 301

The last three columns of Fig. 4 analyze how the various optimizations affect
fCube performances. Here we denote with Basic the version of fCube in which
the only optimizations applied are those performed in Step 1; hence in steps 3
and 4 LF-formulas are decomposed according to tableau rules and in Step 5
the test Real is omitted. +Branch is Basic with the special treatment of LF
formulas and +BackT is Basic with the Real test. Note that the decomposition
of LF-formulas according to tableau rules increase the branch degree of a proof
and the lack of the Real-test increases the backtrack degree of proof-search. The
timings show that Basic cannot decide the families SYJ201, SYJ202, SYJ207,
SYJ209. +Branch decides the families SYJ201, SYJ202. +BackT decides the
families SYJ207, SYJ209. The simplification rules of Fig. 2 also have a deep
impact on the proof strategy as we showed in [4].

To conclude, fCube is a Prolog theorem prover for Intuitionistic proposi-
tional logic implementing some optimization techniques. In this paper we have
briefly discussed the optimization techniques and we have shown how such op-
timizations can highly improve the performances of a tableau-based prover for
Intuitionistic propositional logic. As a future work we aim to study further opti-
mization techniques, their application to modal logics and the extension to the
first-order case.

References

1. Avellone, A., Fiorino, G., Moscato, U.: Optimization techniques for propositional
intuitionistic logic and their implementation. Theoretical Computer Science 409(1),
41–58 (2008)

2. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, Oxford
(1997)

3. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Communications of the ACM 5, 394–397 (1962)

4. Ferrari, M., Fiorentini, C., Fiorino, G.: Towards the use of simplification rules in
intuitionistic tableaux. In: Gavanelli, M., Riguzzi, F. (eds.) CILC 2009: 24-esimo
Convegno Italiano di Logica Computazionale (2009)

5. Hustadt, U., Schmidt, R.A.: Simplification and backjumping in modal tableau. In: de
Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 187–201. Springer,
Heidelberg (1998)

6. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7, 201–215 (1960)

7. Massacci, F.: Simplification: A general constraint propagation technique for proposi-
tional and modal tableaux. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI),
vol. 1397, pp. 217–231. Springer, Heidelberg (1998)

8. McLaughlin, S., Pfenning, F.: Imogen: Focusing the polarized inverse method for
intuitionistic propositional logic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.)
LPAR 2008. LNCS (LNAI), vol. 5330, pp. 174–181. Springer, Heidelberg (2008)

9. Raths, T., Otten, J., Kreitz, C.: The ILTP problem library for intuitionistic logic.
Journal of Automated Reasoning 31, 261–271 (2007)

Superposition-Based Analysis of First-Order
Probabilistic Timed Automata�

Arnaud Fietzke1,2, Holger Hermanns2,3, and Christoph Weidenbach1,2

1Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Saarland University – Computer Science, Saarbrücken, Germany

3 INRIA Grenoble – Rhône-Alpes, France

Abstract. This paper discusses the analysis of first-order probabilis-
tic timed automata (FPTA) by a combination of hierarchic first-order
superposition-based theorem proving and probabilistic model checking.
We develop the overall semantics of FPTAs and prove soundness and
completeness of our method for reachability properties. Basically, we de-
compose FPTAs into their time plus first-order logic aspects on the one
hand, and their probabilistic aspects on the other hand. Then we ex-
ploit the time plus first-order behavior by hierarchic superposition over
linear arithmetic. The result of this analysis is the basis for the construc-
tion of a reachability equivalent (to the original FPTA) probabilistic
timed automaton to which probabilistic model checking is finally ap-
plied. The hierarchic superposition calculus required for the analysis is
sound and complete on the first-order formulas generated from FPTAs.
It even works well in practice. We illustrate the potential behind it with
a real-life DHCP protocol example, which we analyze by means of tool
chain support.

1 Introduction

Probabilistic timed automata (PTA) [15] combine discrete probabilistic choice,
real time and nondeterminism. They arise as the natural orthogonal combination
of probabilistic [18] and timed [2] automata. This paper explores another dimen-
sion of expressiveness, apart from time and probability. In addition to time and
probability, when developing more realistic models of systems, their behavior
on (complex) data needs to be considered as well. For example, for systems in
the context of real-life concurrent networking, one faces sophisticated protocol
features such as dynamic message routing, message loss recovery mechanisms,
message splitting and merging, different base-modulations, carrier sensing and
collision avoidance mechanisms. All this is common practice in DHCP, WLAN,
Bluetooth, or ZigBee, as well as in higher level protocols such as Pastry or skype.

However, such intricate protocol features can barely be analyzed in the for-
mal PTA setting, as the most expressive logic available together with PTA is
currently propositional logic [15,14,12].
� This work has been partly supported by the German Transregional Collaborative

Research Center SFB/TR 14 AVACS.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 302–316, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Superposition-Based Analysis of First-Order Probabilistic Timed Automata 303

In this paper, we enrich the PTA model with a first-order logic background
theory and first-order state variables and transition guards, as a powerful for-
malism to model complex data of real world systems. This allows us to express
all the above features directly. It leads to the model of First-Order Probabilistic
Timed Automata (FPTA), a proper generalization of PTA, of first-order logic,
and of linear arithmetic. This paper provides the theoretical basis of FPTA (Sec-
tion 3), including a notion of parallel composition, and a relevant example of its
automatic analysis (Section 5).

Technically, we base the analysis on the hierarchical extension [3] of linear
arithmetic with first-order logic, called FOL(LA), and the implementation of the
corresponding superposition calculus SUP(LA) in Spass(LA) [1]. While first-
order logic theorem-hood is semi-decidable, theorem-hood in FOL(LA) is not
even recursively enumerable, in general. Nevertheless, in the past we have al-
ready shown the combination to be complete for a number of cases [1] and also
terminating on relevant examples. For FOL(LA) theories generated from FPTAs
this is the case as well: the hierarchic superposition calculus is complete for this
class (Theorem 1) and the DHCP example we present enjoys termination of the
superposition calculus and is therefore amenable to automatic analysis.

The basic analysis idea is as follows. We first build the symbolic composition
of a set of concurrent interacting FPTA. The resulting model is then translated
into a labelled version of first-order logic over linear arithmetic, where proba-
bilistic branching is replaced by labelled non-determinism and the control and
structural aspects of the FPTA are encoded using special predicates. The ad-
vance of time is represented using linear arithmetic. Then we use first-order
saturation-based theorem proving to obtain finite representations of the reach-
able states of the encoding. The underlying calculus is a labelled extension of
the hierarchic calculus SUP(LA). In case a proof attempt yields a result after
a finite period of time, it can be analyzed and the probabilistic aspects can be
effectively regained via the introduced labels. By enumerating all proofs, a PTA
can be reconstructed that is reachability-equivalent to the original FPTA. We
submit this PTA to the tool mcpta [8], which in turn uses the PRISM model
checker [11] to compute timed reachability properties.

For FPTA, reachability properties are not decidable, and of course, this means
that the tool chain we provide is not effective in general: proof attempts may fail,
enumeration of proofs may not terminate, the input model might be too large,
and so on. Nevertheless, we present a reasoning pipeline for proofs over FPTA,
already with tool support, that can automatically prove (not model check) non-
trivial properties of FPTA for interesting cases, including (infinite families of)
infinite state systems. We exemplify the pipeline on aspects of a real-life DHCP
protocol run taking care of message loss. For the given DHCP example we are
able to calculate that, e.g., the probability of successfully obtaining a DHCP
lease is 0.996, assuming a message loss probability of 0.1, and maximum two
retransmissions per involved communication.

In summary, our contributions are (i) a new notion of First-Order PTA, prop-
erly generalizing PTA, including parallel composition, (ii) a sound and complete

304 A. Fietzke, H. Hermanns, and C. Weidenbach

reasoning approach for the analysis of reachability properties of FPTA involving
hierarchic superposition and model checking, (iii) a first tool chain supporting
the approach, and (iv) a non-trivial DHCP protocol analysis example showing
its potential. One of the most challenging parts of our work is the development of
a label discipline for the LSUP(LA) calculus (Section 4.2) that, on the one hand,
still enables termination of superposition for interesting classes of examples and,
on the other hand, yields proofs covering every relevant path through the FPTA
to some set of target states (Theorem 2).

The paper is organized as follows: in Section 2, we review basic notions of
first-order logic and hierarchic superposition over linear arithmetic, and give
the main definitions related to probabilistic timed automata and their seman-
tics. Section 3 introduces FPTAs, their parallel composition and semantics. In
Section 4, we define the encoding of FPTA reachability into labelled first-order
clauses, we introduce the labelled superposition calculus LSUP(LA), and we
show how to construct a reachability-equivalent VPTA from an FPTA and a
set of labelled reachability proofs. The application of our method to the DHCP
protocol example is discussed in Section 5. The paper ends with discussion of
the achieved results and an overview of future directions of research (Section 6).
A detailed account of the DHCP example and proofs of the theorems given in
this paper can be found in a technical report [6].

2 Preliminaries

2.1 First-Order Logic, Hierarchic Superposition, SUP(LA)

We base our treatment of first-order reasoning on the framework of hierarchic su-
perposition introduced in [3], and in particular on the case of a linear arithmetic
base specification [1]: a signature is a pair (S,F) where S is a set of sorts and
F is a set of operator symbols. An F-algebra A consists of an S-sorted family of
non-empty carrier sets {SA}S∈S , and of a function fA : (S1)A×· · ·×(Sn)A → SA
for every f : S1 . . .Sn → S in F . An algebra A is called term-generated if every
element of any SA is the interpretation of some ground term of sort S. A specifi-
cation is a triple Sp = (S,F , C) where C is a class of term-generated F -algebras,
called models of the specification. If C is the set of all F -models of a certain
set of F -axioms Ax, then we write (S,F , Ax) instead of (S,F , C). A hierarchic
specification is a pair (Sp, Sp′) of specifications, where Sp = (S,F , C) is called
the base specification and Sp′ = (S′,F ′, Ax′) with S′ ⊆ S and F ′ ⊆ F . The
operator symbols in F ′ \ F and the axioms Ax′ are called the enrichment.

The base specification we are interested in has the rationals Q as the only
sort, the operator symbols +,,≤, <,≈, >,≥ together with numerals to represent
fractions (which we will just write as decimal numbers), and their standard
interpretation over Q as model (actually, C is the set of all algebras isomorphic
to the standard model). For our purposes, a first-order theory T over a signature
(S,F) will be a set of F -formulas, to be understood as an enrichment of the base
specification. The models of T are those models of the formulas of T that extend
the standard model.

Superposition-Based Analysis of First-Order Probabilistic Timed Automata 305

In [1], an instantiation of the hierarchical superposition calculus to the linear
arithmetic case, called SUP(LA), is presented, together with effective redun-
dancy criteria. In SUP(LA), clauses appear in purified form Λ ||Γ → Δ, where
Λ is a sequence of base specification (i.e. linear arithmetic) literals, called the
clause constraint. The sequences Γ , Δ of first-order atoms only contain signature
symbols from the free first-order theory, and all parts share universally quanti-
fied variables. A constrained empty clause Λ ||� represents a contradiction if the
constraint Λ is satisfiable in the theory of linear arithmetic.

Finally, we introduce the following notation: for a formula ϕ and a set of
variables Y , varsY (ϕ) = vars(ϕ) ∩ Y . For a first-order formula ϕ, we denote by
�ϕ�T the set of vars(ϕ)-valuations satisfying ϕ in T , omitting the subscript if
it is clear from the context. Similarly, for a linear arithmetic expression C, we
write �C� for the set of vars(C)-valuations satisfying C.

2.2 Probabilistic Timed Automata

Distributions. A discrete probability distribution over a countable set Q is a
function μ : Q → [0, 1] such that

∑
q∈Q μ(q) = 1. By Dist(Q) we denote the

set of discrete probability distributions over Q. The support of a distribution μ,
written support(μ), is the largest set Q′ ⊆ Q such that μ(q) > 0 for all q ∈ Q′.
We call μ ∈ Dist(Q) finite if support(μ) is finite. If its support is a singleton
set, i.e., support(μ) = {q}, μ is the point distribution for q, denoted by D(q).

Probabilistic Timed Automata with Discrete Variables. We follow the notation
in [13,8]. Let T denote the time domain (in our case Q). The set CF(X) of
constraint formulas over a set of variables X is the smallest set closed under
negation and disjunction and contains � (truth), ⊥ (falsity) as well as all terms
of the form x ≤ t, t ≤ x, x1 − x2 ≤ t, t ≤ x1 − x2, where x, x1, x2 ∈ X
and t ∈ T. In timed automata [2] and all formalisms stemming from them, the
passage of time is modeled by clocks, which are variables whose value, taken
from T, increases at a fixed rate. We assume a finite set S of sorts, where each
variable x has an associated sort Sx ∈ S which is at the same time the domain,
i.e. x takes values from Sx. The sort of all clock variables is T. We will refer
to all non-clock variables as discrete variables. A ground valuation v is a total
function on variables such that v(x) ∈ Sx. We denote by Valg the set of all
ground valuations. A ground assignment A is a partial function on variables
such that A(x) ∈ Sx, and A(x) = 0 whenever x is a clock variable for which
A(x) is defined. Given a ground valuation v, we denote by v + t the ground
valuation that agrees with v on all discrete variables, and assigns v(x)+ t to any
clock variable x. For ground valuation v and ground assignment A, we denote by
vA the composition of v and A, i.e. vA(x) = A(x) if x ∈ dom(A), vA(x) = v(x)
otherwise. A probabilistic timed automaton with discrete variables (VPTA) is a
tuple (L, L0, X,Σ, inv, prob) with L a finite set of locations, including the initial
location L0, X a finite set of state variables, partitioned into subsets XC of clock
variables and XD = X \XC of discrete variables, and Σ finite set of actions. The
function inv : L → CF(X) assigns invariants to all locations. The automaton

306 A. Fietzke, H. Hermanns, and C. Weidenbach

may stay in a given location as long as the state variables satisfy the location’s
invariant. Finally prob ⊆fin L×CF(X)×Σ×Dist(Asgng ×L) is the probabilistic
edge relation. A transition (l, g, a, ν) ∈ prob consists of an originating location
l, a guard g that determines whether the transition is enabled, an action label a
and a target distribution giving the probability to move to some other location
while applying the assignment. A VPTA can be transformed into a standard
probabilistic timed automaton (PTA) [13] by encoding the values of the non-
clock variables in the locations. The PTA corresponding to a VPTA P is finite
iff P is finite and Sx is finite for all x ∈ XD.

Timed Probabilistic Update Systems. The formal semantics of VPTA is given in
terms of a timed probabilistic system (TPS) [13], which is an unfolding of the
VPTA starting in the initial location, with some initial valuation assigning zero
to all clock variables. This semantics, however, is too coarse for our purposes. We
therefore introduce the notion of a timed probabilistic update system, following
an approach similar to [9]. A timed probabilistic update system (TPUS) is a tuple
(S, s0, Act, U,→) where S is a set of states with initial state s0 ∈ S, Act is a set
of actions and U is a set of update labels. The probabilistic transition relation is
→⊆ S× (Act∪T)×Dist((U .{time})×S). For every (s, a, μ) ∈→, if a ∈ T, then
μ = D(time, s′), where s′ is obtained from s by letting time pass; if a ∈ Act, then
for all (u, s′) ∈ support(μ): u ∈ U . A probabilistic transition is made from a state
s ∈ S by first nondeterministically selecting an action-distribution or duration-
distribution pair (a, μ) such that (s, a, μ) ∈→, and second by making a proba-
bilistic choice of update label u and target state s′ according to the distribution
μ, such that μ(u, s′) > 0. In the case of a duration-distribution pair, the update
label is time and the target state is obtained from s by letting the given time pass.
A finite path of a TPUS is a sequence (s0, a0, u0, μ0)(s1, a1, u1, μ1) . . . sn of steps,
such that (si, ai, μi) ∈→, and (ui, si+1) ∈ support(μi) for all i = 0, . . . , n−1. An
infinite path is a sequence (s0, a0, u0, μ0)(s1, a1, u1, μ1) . . . sn with (si, ai, μi) ∈→,
and (ui, si+1) ∈ support(μi) for all i ≥ 0. Step i is a discrete step if ai ∈ Act, a
time step if ai ∈ T. Dropping the update labels induces a standard TPS (see [9]).
Quantitative properties (see [13] for an overview) of TPS can be lifted to TPUS
in a straightforward way: for instance, the maximum reachability probability of
some state in a TPUS is the maximum reachability probability of that state in
the induced TPS.

Semantics of VPTA. The semantics of a VPTA P = (L, L0, X,Σ, inv, prob) is
the TPUS �P � with states S = {(L, v) ∈ L × Valg | v |= inv(L)}, s0 = (L0, v0),
U = Asgng, and → being the smallest relation satisfying

time
s = (L, v) v + t′ |= inv(L) for all 0 ≤ t′ ≤ t s′ = (L, v + t)

(s, t,D((time, s′))) ∈→

act
s = (L, v) (L, g, a, ν) ∈ prob v |= g

(s, a, μ) ∈→

Superposition-Based Analysis of First-Order Probabilistic Timed Automata 307

where μ(A, (L′, v′)) =

{
ν(A,L′) if v′ = vA

0 otherwise.

Generalized VPTA. Finally, we introduce the concept of generalized VPTA
(GenVPTA), which will provide the semantics for the first-order PTA introduced
in the next section. A generalized VPTA is a tuple (L, L0, X,Σ, inv, prob), dif-
ferent from a VPTA only in the fourth and last components: Σ is not restricted
to be finite, and prob ⊆ L×P(Valg(X))×Σ ×Dist(Asgn(X)×L). The seman-
tics of GenVPTA is defined analogously to that of VPTA, except that rule act
is changed to

act
s = (L, v) p = (L,V , a, ν) ∈ prob v ∈ V

(s, a, μ) ∈→

Clearly, a generalized VPTA is equivalent to a finite VPTA (and can thus be
encoded into finite PTA) if (i) Σ is finite, (ii) prob is finite, and (iii) for every
(L,V , a, ν) ∈ prob, there exists C ∈ CF(X) that characterizes V . By a path of a
(generalized) VPTA, we mean a path of the underlying TPUS.

3 First-Order Probabilistic Timed Automata

Let (S,F) be a signature. For a set X of variables, T (X) denotes the set of F -
terms over X , G(X) denotes the set of F -formulas of positive polarity over X ,
and the set CCF(X) of convex constraint formulas over X is the convex subset
of CF(X). Furthermore, we assume a denumerable set X of S-sorted variables
with a subset Z of auxiliary variables. The set Asgn of assignments consists
of all substitutions X → T (X), such that clock variables are mapped to either
themselves or to zero.

Definition 1 (FPTA). A First-Order Probabilistic Timed Automaton (FPTA)
is a tuple P = (T ,L, L0, X,Σ, inv, prob) with

– T a consistent, sorted first-order Horn theory, sufficiently complete extension
of Q,

– L finite set of locations, including the initial location L0,
– X ⊂ (X \ Z) finite set of state variables, partitioned into subsets XC of

clock variables and XD = X \XC of discrete variables,
– Σ finite set of actions,
– inv : L→ CCF(X) are location invariants,
– prob ⊆fin L× G(X) ×Σ ×Dist(Asgn×L)

If, for every (L,ϕ, a, ν) ∈ prob, it holds that vars(ϕ) ⊆ X ∪ Z, and for every
(A,L′) ∈ support(ν), it holds that vars(cdom(A)) \X ⊆ vars(ϕ), then we call P
variable-closed. We call the elements of prob branches, and the tuples (p,A, L)
with p ∈ prob, (A,L) ∈ support(νp) edges of the FPTA. Given p = (L,ϕ, a, ν),
we write ϕp for ϕ etc. Edge (p,A, L) is associated with branch p. Given e =
(p,A, L), we also write pe, Ae and Le for p, A and L, respectively.

308 A. Fietzke, H. Hermanns, and C. Weidenbach

We restrict ourselves to convex invariants to keep the encoding of time-
reachability (Section 4.1) sufficiently complete: without the assumption of con-
vexity, an additional quantifier would be required on the left hand side of the
implication (for all t′ such that 0 ≤ t′ ≤ t). Transforming such a formula into
clause normal form introduces Skolem functions ranging into the arithmetic sort.

Example 1. The purpose of auxiliary variables in guards is to allow binding:
assume an FPTA with a single (discrete) state variable x, and let cons be an
operator symbol representing a list constructor. A transition with guard x ≈
cons(z, z′) with z, z′ ∈ Z, followed by an assignment x 	→ z′, describes the
operation of removing the head from list x, and storing the tail in x.

We define parallel composition for FPTAs via synchronization on shared actions
[10], allowing automata to communicate by reading each other’s state variables
(in the style of [11]):

Definition 2 (Parallel composition of FPTA). Let P1, P2 be two FPTAs
with X1 ∩ X2 = ∅, and such that T1 ∪ T2 is a consistent, sufficiently complete
extension of Q. Furthermore, assume that for any two guards ϕ1, ϕ2 of P1, P2
(respectively) varsZ(ϕ1)∩varsZ(ϕ2) = ∅. Then we define the parallel composition
of P1 and P2 as

P1 | P2 = (T1 ∪ T2,L1 × L2, (L1
0, L

2
0), X1 ∪X2, Σ1 ∪Σ2, inv, prob)

where inv(L1, L2) = inv1(L1) ∧ inv2(L2) and ((L1, L2), ϕ, a, ν) ∈ prob iff one of
the following conditions holds:

– a ∈ Σ1 \Σ2 and there is (L1, ϕ, a, ν1) ∈ prob1 such that ν = ν1 · D(Id, L2);
– a ∈ Σ2 \Σ1 and there is (L2, ϕ, a, ν2) ∈ prob2 such that ν = D(Id, L1) · ν2;
– a ∈ Σ2 ∩ Σ1 and there is (L1, ϕ1, a, ν1) ∈ prob1 and (L2, ϕ2, a, ν2) ∈ prob2

such that ϕ = ϕ1 ∧ ϕ2 and ν = ν1 · ν2,

where · is the product operation on probability distributions [13,8].

Note that P1 | P2 can be variable-closed even if P1, P2 are not, in case the
unbound variables in guards and assignments of P1 are state variables of P2
(and vice versa).

Example 2. Figure 1 shows an FPTA which models a simple DHCP server pro-
cess. In Section 5, we will apply our analysis techniques to the parallel com-
position of the server process with FPTAs modelling a DHCP client, faulty
networks and resend mechanisms. The server automaton has only nondetermin-
istic branching. It synchronizes with the other automata via the actions csend
and smsg. It has state variables vsmsg which is used for communication, being
read by the other automata; vsloip and vslomac which store the IP- and MAC-
address for which a DHCP offer has been sent; svlaip and vslamac which store
the IP- and MAC-address for which a DHCP acknowledgement has been sent.
The variable vsmsg is used both for sending and receiving messages: when the

Superposition-Based Analysis of First-Order Probabilistic Timed Automata 309

Fig. 1. An FPTA modelling a DHCP server process

action csend is initiated by the client’s network, the server copies the message
from the client network (variable vcnmsg) into vsmsg. The guard ϕ1 checks
whether the received message is a DHCP discover message, and whether the
IP address vscip (an auxiliary variable) is free for lease. If it is, the associated
assignment A1 creates the DHCP offer message, containing, among other things,
the free IP address.

3.1 Semantics of FPTA

A valuation over X maps every x ∈ X to a ground F -term of sort Sx. We denote
the set of all valuations over X by Val(X). Note that any ground term of sort
Q corresponds to a rational number, and any rational number is representable
as a ground term. Hence we can talk about the value of a variable of sort Q
under a valuation v, and we can perform arithmetic operations on valuations.
For an assignment A and a valuation v, we denote by Av the assignment such
that Av(x) is the instantiation of A(x) by v if x ∈ dom(A), and v(x) otherwise.
For v ∈ Val(X) and Y ⊆ X , we write v|Y for the valuation in Val(Y) that agrees
with v on Y . We write v ∼Y v′ iff v|Y = v′|Y , and we denote by V|Y the set
{ v|Y | v ∈ V }, for V ⊆ Val(X).

Let P = (T ,L, L0, X,Σ, inv, prob) be an FPTA. The semantics of P is the
generalized VPTA G(P) = (L, L0, X,ΣG, inv, probG) where ΣG = {av | a ∈ Σ,

310 A. Fietzke, H. Hermanns, and C. Weidenbach

v ∈ Val(Z)}, and for every p = (L,ϕ, a, ν) ∈ prob, for every ∼Z-equivalence
class V of �ϕ�, there is pv ∈ probG with

pv = (L,V|X , av, νv)
νv(Av,L) = ν(A,L)

where v ∈ Val(varsZ(ϕp)) is the common Z-part of all valuations in V , i.e.,
V|Z = {v}. The instantiation of the FPTA branches according to ∼Z-equivalence
classes is is necessary because auxiliary variables occurring in guards can also
occur in edge assignments (see Example 1), hence a unique valuation of auxiliary
variables has to be fixed for each branch. This means that auxiliary variables
introduce additional nondeterminism (implicit in P , explicit in G(P)): different
target states will be reachable depending on the choice of instantiation for the
auxiliary variables in the guard. The definition of ΣG ensures that G(P) is
action-deterministic if P is, which makes (p, v) 	→ pv injective. This is just
to make the proofs nicer, but not essential for correctness. Furthermore, we
introduce a dummy variable xA �∈ X and assume that FPTA assignments are in
Asgn(X .{xA}) such that A(xA) �= A′(xA) for any A �= A′ in the support of an
FPTA branch. This ensures that assignments are not collapsed when going from
FPTA to (generalized) VPTA, hence the definition νv(Av,L) = ν(A,L) above
is welldefined, i.e., A 	→ Av is injective. By a path of an FPTA, we mean a path
of the underlying TPUS.

4 Reachability Analysis in FOL

When analyzing timed probabilistic systems, one is typically interested in quanti-
tative properties such as probabilistic and expected-time reachability [13]. Prob-
abilistic reachability refers to the probability of reaching a set of states. Since
FPTAs are nondeterministic, there is a minimum and a maximum reachability
probability, depending on how the nondeterminism is resolved. Expected-time
reachability refers to the expected time needed to reach a set of states. To com-
pute these measures, the set of all paths reaching the set of target states has to
be known. For VPTAs, effective algorithms are known and implemented [8,12].
Our goal is therefore to construct a VPTA that has the same probabilistic and
expected-time reachability properties as the original FPTA, with respect to some
set of target states. To this end, we represent the reachability relation of P as
a first-order theory over linear arithmetic, treating probabilistic choice in the
same way as nondeterministic choice. In order to cover all paths, the derivation
of logical consequences from the theory must be combined with the aggregation
of path information. To achieve this, clauses will be augmented with a label
carrying structural information. The label will be a set of special atoms sharing
variables with the clause. We translate FPTAs to FOL(LA) theories preserving
the path property, i.e., paths in the FPTA correspond to reachability proofs of
the SUP(LA) calculus extended by labels (see Section 4.2) in the generated (see
Section 4.1) FOL(LA) theories (Theorem 2).

For the rest of the paper, let P = (T ,L, L0, X,Σ, inv, prob) be an arbitrary,
fixed FPTA, and F a set of target states of P .

Superposition-Based Analysis of First-Order Probabilistic Timed Automata 311

4.1 From FPTA to FOL(LA)

We encode reachability into FOL(LA) in the style of [17] and [19]. We introduce
the following predicate symbols, distinct from any symbols of T : for every L ∈ L,
a symbol L of arity |X |, using L to refer both to the location name and the
associated predicate; for every edge e of P , we also use e as a predicate symbol
of arity |X |+ | varsZ(ϕe)|.

The reachability theory RP is given by the following labelled clauses (all vari-
ables are universally quantified):

1. for every L ∈ L:

∅ : L(��x) ∧ t ≥ 0 ∧ inv(L)[��x + t/ ��x] → L(��x + t)

2. for every edge e of P :

{ e(��x, ��z) } : L(��x) ∧ ϕe[��x, ��z] ∧ inv(L′)[Ae(��x)/ ��x] → L′(Ae(��x))

3. for the initial state:
∅ : → L0(��v0)

We write RP,F for the theory obtained from RP by also adding

4. for every L(��v) ∈ F :
∅ : L(��v) →

4.2 Extending SUP(LA) with Labels

Any clausal resolution calculus can be extended to operate on labelled clauses
(see for instance [16,7]). An inference rule with premises C1 . . .Cn and conclusion
Cσ is extended to a labelled rule:

I α1 : C1 . . . αn : Cn

(α1 ∪ · · · ∪ αn : C)σ

We extend the hierarchic SUP(LA) calculus [1] which combines first-order su-
perposition with linear arithmetic.

Redundancy. Redundancy elimination, which removes logically redundant
clauses from the search space, is a key ingredient to efficient theorem prov-
ing and also makes termination of saturation possible in many cases [20]. In our
case, redundancy elimination has to be relaxed to make sure that clauses are not
removed if they are required for path coverage.

Redundancy of labelled clauses is defined as follows (we consider here only
the case of subsumption): for clause C, let Loc(C) denote the location literals
and Nloc(C) the non-location literals of C. Then α : C is subsumed by β : D if
there exists a substitution σ such that

312 A. Fietzke, H. Hermanns, and C. Weidenbach

1. α = βσ, and
2. Loc(C) = Loc(D)σ, and
3. Nloc(D)σ ⊆ Nloc(C).

Note that this definition of subsumption is a proper generalization of the usual
definition, since the only additional requirements we impose concern labels and
location atoms. Furthermore, we assume a search strategy where all non-location
literals are selected [21]. We call the resulting calculus LSUP(LA).

Theorem 1. Let P be an FPTA, RP its reachability theory and T its first-order
background theory. Then LSUP(LA) is sound and complete on T ∪ RP .

Proof. The theorem holds by construction: the added label discipline in
LSUP(LA) has no effect on the semantics and on the inference rules of the
SUP(LA) calculus. Only the redundancy notion in LSUP(LA) is more restric-
tive as it imposes further restrictions on the involved labels. So LSUP(LA) is
complete on a set of clauses iff SUP(LA) is. The reachability theory RP is suf-
ficiently complete because it does not introduce any new function symbols. The
background theory T is assumed to be sufficiently complete (Definition 1), hence
the union of T and RP is sufficiently complete as well.

4.3 From FOL(LA) to VPTA

An edge constraint is a tuple (e,Con), where e is an edge and Con a linear
arithmetic constraint. We say that (e,Con) is associated with branch p if e is.
From a labelled constrained clause

α : Λ ||C

with α = { e1(. . .), . . . , en(. . .) }, we obtain set of edge constraints

Con(α,Λ) = { (e1,Con1), . . . , (en,Conn) }

where Coni is the constraint corresponding to Λ and ei(. . .):
for ei(s1, . . . , sk, t1, . . . , tm), Coni = Λ ∪ {xi ≈ si | si �= xi} ∪ {zi ≈ ti | ti �= zi}.
Let E be the set of edge constraints of all labelled empty clauses in the saturation
of T ∪ RP,F with LSUP(LA), and assume that E is finite. We denote by Ep the
set of edge constraints in E associated with branch p. For every p ∈ prob and
v ∈ Val(varsZ(ϕp)), let

Conp,v =
∨

(e, Con) ∈ Ep,
Con(v) satisfiable

Con(v)

where Con(v) denotes the instantiation of Con by v.

Definition 3. The VPTA Sup(P, F) is (L, L0, X,ΣG, inv, probE), where for ev-
ery Conp,v �= ⊥, probE contains pEv with

pEv = (L,Conp,v, a, ν
E
v)

νEv (Av,L) = ν(A,L).

Superposition-Based Analysis of First-Order Probabilistic Timed Automata 313

The idea of the construction is to partition the constraints in Ep into equivalence
classes based on the values they assign to the auxiliary variables, as in the FPTA
semantics (Section 3.1). The VPTA Sup(P, F) contains an instance pEv of the
FPTA branch p for every equivalence class, as represented by v. In general,
there may be infinitely many such equivalence classes for a given constraint. We
therefore limit our approach to cases where auxiliary variables appear only in
equations of the form z ≈ t, where t is a ground term. In this case, there is
one equivalence class for each equation. The restriction can be relaxed to handle
inequalities over auxiliary variables, for instance if they are of integer sort and
the inequalities describe a finite interval.

Path coverage. Given a path (s0, a0, u0, μ0)(s1, a1, u1, μ1) . . . of P , we say that
an edge constraint (e,Con) covers step i if there exists v ∈ Val(varsZ(ϕe)) such
that Con(v) is satisfiable, and

1. ai = av

2. ui = Ae(v) and
3. vi |= Con(v)

where vi is valuation of state si, and a is the action associated with edge e. A
set E of edge constraints covers path ω if every discrete step of ω is covered by
some edge constraint in E .

Theorem 2. Let P be an FPTA, and F be a set of states of P , such that
T ∪ RP,F can be finitely saturated by LSUP(LA). Then the set of paths of P
reaching F is identical to the set of paths of Sup(P, F) reaching F .

Proof (Sketch). By Theorem 1, SUP(LA) is complete for T ∪RP,F . The relaxed
definition of redundancy ensures that also LSUP(LA) is complete with respect
to path coverage: the saturation of T ∪ RP,F with LSUP(LA) contains labelled
empty clauses whose constraints together cover all possible paths of P that reach
F . By construction of Sup(P, F), (i) any path of Sup(P, F) is a path of P , and
(ii) any path of P covered by edge constraints from the saturation of T ∪RP,F

is a path of Sup(P, F).

Corollary 1. The FPTA P and the VPTA Sup(P, F) have the same minimum
and maximum reachability probability and the same expected-time reachability
with respect to F .

5 Analyzing DHCP

We exemplify our results and tool chain on a simple model of a DHCP [5] dialog
between a client and a server over a faulty network. The first-order structures
of the FPTA represent messages as terms starting from the IP-layer. We omit
detailed modeling of IP-addresses and the needed masking operations in order
to keep the model small and to focus on timing and probability aspects. Our
model could be extended that way (see the first-order LAN model available

314 A. Fietzke, H. Hermanns, and C. Weidenbach

at http://www.spass-prover.org/prototypes/). Nevertheless, the term structure
enables a reasonably detailed model of the network stack. The IP-address lease
data base of the server is modeled in form of first-order atoms. For each partici-
pant (client, server) the model contains three layers – in the form of FPTA: the
DHCP protocol layer, a resend mechanism, and the respective connected faulty
networks. The networks have a fixed latency and message loss probability. A
detailed description of the model can be found in [6].

The FPTA on the protocol layer closely follow the steps of the DHCP protocol
from the init state to a bound state on the client side and the respective steps on
the server side. The resend and network automata are identical for both server
and client. The resend automaton tries two resends with a time out of 0.3 time
units to the network before it gives up. The network forwards a message with
probability 0.9 and causes a latency delay of 0.1 time units.

The composition of FPTAs (Definition 2), the translation from FPTA to
FOL(LA) (Section 4.1) and the construction of the final VPTA (Section 4.3)
have been produced manually. We are currently working on an extension to
Spass(LA) that will perform all these steps fully automatically. The saturation
of the FOL(LA) translation and the probabilistic analysis were performed au-
tomatically by the Spass(LA) theorem prover and the mcpta model checker,
respectively. The corresponding input files are available from the Spass home-
page (http://www.spass-prover.org/prototypes/). Note that the computa-
tionally most involved, crucial part is the actual reasoning on the FOL(LA)
translation where proving reachability is undecidable, in general. All other parts
of the analysis are decidable.

For the concrete example, we computed the probability of a successful client
acquisition of a DHCP lease. Spass(LA) takes about 1 hour (on recent Linux
driven Xeon X5460 hardware) to saturate the translated FPTA composition, i.e.,
find all proofs of a bound state of the client. To this end Spass(LA) generated
about 10k clauses. From the proofs we manually built the VPTA. It involves
4 active clocks and 22 locations. We manually translated this into Modest [4],
the input of the mcpta model checker for probabilistic timed automata [8]. This
checker applies an integral time semantics, and then uses the probabilistic model
checker PRISM [11] as a back-end, which finally needs to build and analyze a
(probabilistic automata) model comprising 255 states. As an example quantities,
we are able to calculate that the probability of successfully obtaining a DHCP
lease within 0.4 time units (meaning no message is lost) is 0.656, and the prob-
ability of obtaining one after 3.6 time units (allowing for message loss at every
stage of the protocol) is 0.996.

6 Conclusion

This paper has presented an extension of probabilistic timed automata with
first order formulas, and it has laid out the algorithmic foundation for analyz-
ing reachability properties. The model is rich enough to express – apart from
real time and probability – intricate protocol features such as message routing,

http://www.spass-prover.org/prototypes/

Superposition-Based Analysis of First-Order Probabilistic Timed Automata 315

message splitting and merging, different base-modulations, carrier sensing and
collision avoidance mechanisms. We illustrated the potential behind it with
a DHCP example, which we analyze by means of tool support. It involves
Spass(LA) for the time plus first-order analysis eventually yielding a VPTA
that is then analyzed by the model checker mcpta [8], using PRISM [11] as a
backend.

Our tool chain has the following property: given an FPTA P and reachability
problem F where the FOL(LA) translation for P ensures finite saturation with
respect to finitely many FOL ground instances, we can effectively construct a
finite VPTA Sup(P, F) that captures precisely the reachability probabilities of
P with respect to F and hence enables effective computation of those via PTA
model checkers.

This work offers more research potential. Although the FOL(LA) reachability
part is undecidable in general, the SUP(LA) calculus is strong enough to gen-
erate proofs corresponding to infinite discrete-state VPTA. The question arises
whether there is an extension of VPTA that can represent this infinity but still
offers decidable reachability probability computation. Another dimension would
be the inclusion of parameters. In our example, message latency, the number
of resends and the waiting time were modeled by arithmetic constants. On the
SUP(LA) side we know how this can be replaced by arithmetic parameters. An
open question is the respective extension of the resulting VPTA theory.

Moreover, we are working on a formalization of message passing that will allow
a more compositional approach to both the translation to FOL(LA) and the
VPTA construction. The goal is to avoid the explicit construction of the parallel
composition on the FPTA level, and to obtain component VPTAs corresponding
to the initial component FPTAs.

Finally, we want to go beyond reachability: the superposition framework with
its powerful redundancy elimination mechanisms often yields finite saturations
even for infinite models. Based on a finite saturation of the reachability theory
RP , more complex properties of the FPTA could be computed, such as nested
PCTL formulas.

References

1. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic
SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp.
84–99. Springer, Heidelberg (2009)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Applicable Algebra in Engineering, Communication
and Computing, AAECC 5(3/4), 193–212 (1994)

4. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.-P.: MoDeST: A
compositional modeling formalism for hard and softly timed systems. IEEE Trans-
actions on Software Engineering 32(10), 812–830 (2006)

316 A. Fietzke, H. Hermanns, and C. Weidenbach

5. Droms, R.: Rfc 2131: Dynamic host configuration protocol. In: The Internet En-
gineering Task Force, IETF (1997), Obsoletes RFC 1541. Status: DRAFT STAN-
DARD

6. Fietzke, A., Hermanns, H., Weidenbach, C.: Superposition-based analysis of first-
order probabilistic timed automata. Reports of SFB/TR 14 AVACS 59, SFB/TR
14 AVACS (2010)

7. Fietzke, A., Weidenbach, C.: Labelled splitting. Ann. Math. Artif. Intell. 55(1-2),
3–34 (2009)

8. Hartmanns, A., Hermanns, H.: A modest approach to checking probabilistic timed
automata. In: QEST, pp. 187–196. IEEE Computer Society, Los Alamitos (2009)

9. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: Gupta, A., Malik,
S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 162–175. Springer, Heidelberg (2008)

10. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

11. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic Symbolic Model Checking
with PRISM: A Hybrid Approach. International Journal on Software Tools for
Technology Transfer (STTT) 6(2), 128–142 (2004)

12. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic games for verification of
probabilistic timed automata. In: Ouaknine, J., Vaandrager, F.W. (eds.) FOR-
MATS 2009. LNCS, vol. 5813, pp. 212–227. Springer, Heidelberg (2009)

13. Kwiatkowska, M., Norman, G., Parker, D., Sproston, J.: Performance analysis of
probabilistic timed automata using digital clocks. Formal Methods in System De-
sign 29(1), 33–78 (2006)

14. Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of dead-
line properties in the IEEE 1934 FireWire root contention protocol. Formal Aspects
of Computing 14(3), 295–318 (2003)

15. Kwiatkowska, M.Z., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Information and Computation 205(7), 1027–1077
(2007)

16. Lev-Ami, T., Weidenbach, C., Reps, T.W., Sagiv, M.: Labelled clauses. In: Pfen-
ning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 311–327. Springer, Hei-
delberg (2007)

17. Nonnengart, A.: Hybrid systems verification by location elimination. In: Lynch,
N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 352–365. Springer,
Heidelberg (2000)

18. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, University of Birmingham (2002)

19. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order
logic. In: Ganzinger, H. (ed.) CADE 1999. LNCS (LNAI), vol. 1632, pp. 314–328.
Springer, Heidelberg (1999)

20. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 27, vol. 2, pp. 1965–
2012. Elsevier, Amsterdam (2001)

21. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski,
P.: Spass version 3.5. In: Schmidt, R.A. (ed.) Automated Deduction – CADE-22.
LNCS, vol. 5663, pp. 140–145. Springer, Heidelberg (2009)

A Nonmonotonic Extension of
KLM Preferential Logic P

Laura Giordano1, Valentina Gliozzi2, Nicola Olivetti3, and Gian Luca Pozzato2

1Dip. di Informatica - U. Piemonte O. - Alessandria - Italy
laura@mfn.unipmn.it

2 Dip. Informatica - Univ. di Torino - Italy
{gliozzi,pozzato}@di.unito.it

3 LSIS-UMR CNRS 6168 - Marseille - France
nicola.olivetti@univ-cezanne.fr

Abstract. In this paper, we propose the logic Pmin , which is a non-
monotonic extension of Preferential logic P defined by Kraus, Lehmann
and Magidor (KLM). In order to perform nonmonotonic inferences, we
define a “minimal model” semantics. Given a modal interpretation of a
minimal A-world as A ∧ �¬A, the intuition is that preferred, or mini-
mal models are those that minimize the number of worlds where ¬�¬A
holds, that is of A-worlds which are not minimal. We also present a
tableau calculus for deciding entailment in Pmin .

1 Introduction

In the early 90s [1] Kraus, Lehmann and Magidor (from now on KLM) pro-
posed a formalization of nonmonotonic reasoning that was early recognized as
a landmark. Their work led to a classification of nonmonotonic consequence re-
lations, determining a hierarchy of stronger and stronger systems. The so called
KLM properties have been widely accepted as the “conservative core” of default
reasoning: they are properties that any concrete reasoning mechanism should
satisfy. In KLM framework, defeasible knowledge is represented by a (finite) set
of nonmonotonic conditionals or assertions of the form A |∼ B, whose reading is -
depending on the context - typically, As are Bs or normally, if A is true, also B is
true. By using a conditional, we can therefore express sentences as artists are typ-
ically not rich or normally, if students work, they pass the exams. The operator
“|∼” is nonmonotonic, in the sense that A |∼ B does not imply A∧C |∼ B. By us-
ing the operator |∼, one can consistently represent information that would be in-
consistent, if interpreted in classical terms. For instance, a knowledge base Γ may
consistently contain the conditionals: artist |∼ ¬rich , artist ∧ successful |∼ rich ,
expressing the fact that typically artists are not rich, except if they are success-
ful, in which case they are rich. Observe that if |∼ were interpreted as classical
(or intuitionistic) implication, the knowledge base would be consistent only in
case successful artists did not exist, which is clearly an unwanted condition.

In KLM framework, one can derive new conditional assertions from the knowl-
edge base by means of a set of inference rules. The set of adopted rules defines

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 317–332, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

318 L. Giordano et al.

some fundamental types of inference systems. The two systems that had the
biggest echo in the literature are Preferential P and Rational R ([2,3,4,5,6,7],
for a broader bibliography see [8]). Halpern and Friedman [9] have shown that
P and R are natural and general systems: P (likewise R) is complete with re-
spect to a wide spectrum of semantics, from ranked models, to parametrized
probabilistic structures, ε-semantics and possibilistic structures. As an exam-
ple of inference, from the knowledge base Γ above, in P one would derive that
artist |∼ ¬successful, i.e. typically artists are not successful (successful artists
being an exception).

From a semantic point of view, to each logic corresponds a kind of models,
namely a class of possible-world structures equipped with a preference relation
among worlds. More precisely, for P we have models with a preference relation
< (an irreflexive and transitive relation) on worlds. For the stronger R the
preference relation is further assumed to be modular. In both cases, the meaning
of a conditional assertionA |∼ B is that B holds in the most preferred (or minimal
or typical) worlds where A holds.

The main weakness of KLM systems is that they are monotonic: what can be
inferred from a set of conditional assertions Γ can still be inferred from any set
of assertions Γ ′ that includes Γ . In contrast, nonmonotonic inferences allow to
draw a conclusion from a knowledge base Γ in the absence of information to the
contrary, and to possibly withdraw the conclusion on the basis of more complete
information. In the example above, if we knew that typically art students are
artists, and indeed non successful artists, a nonmonotonic mechanism would
allow us to conclude that they are not rich, similarly to typical artists. And it
would allow us to make this conclusion in a nonmonotonic way, thus leaving us
the freedom to withdraw our conclusion in case we learned that art students
are atypical artists and are indeed rich. In order to make this kind of inference,
the core set of KLM properties must be enriched with nonmonotonic inference
mechanisms. This is the purpose of this paper.

Here, we take Preferential logic P as the underlying monotonic system in KLM
framework. The choice of considering P rather than the stronger R is motivated
by the exigence of avoiding some counterintuitive inferences supported by R
as highlighted in [10]. This choice is also one of the main differences between
our approach and existing nonmonotonic extensions of KLM systems, such as
rational closure [4] and 1-entailment [3] that are based on the system R.

In this paper, we present the logic Pmin that results from the addition to the
system P of a nonmonotonic inference mechanism. Pmin is based on a minimal
model approach, based on the idea of restricting one’s attention to models that
contain as little as possible of non typical (or non minimal) worlds. The minimal
models associated with a given knowledge base Γ being independent from the
minimal models associated to Γ ′ for Γ ⊆ Γ ′, Pmin allows for nonmonotonic
inferences. In the example above, in Pmin , we would derive that typically, art
students are not rich (art students |∼ ¬rich). Moreover, we would no longer
make the inference, should we discover that indeed art students |∼ rich.

A Nonmonotonic Extension of KLM Preferential Logic P 319

We provide a decision procedure for checking satisfiability and validity in Pmin .
Our decision procedure has the form of a tableaux calculus, with a two-step con-
struction: the idea is that the top level construction generates open branches that
are candidates to represent models, whereas the auxiliary construction checks
whether a candidate branch represents a minimal model. Our procedure can be
used to determine constructively an upper bound of the complexity of Pmin .
Namely, we obtain that checking entailment for Pmin is in Π2, thus it has the
same complexity as standard nonmonotonic (skeptical) mechanisms.

2 KLM Preferential Logic P

In this section, we recall the axiomatizations and semantics of the KLM logic P.
For a complete picture of KLM systems, see [1,4]. The language of KLM logics
consists just of conditional assertions A |∼ B. We consider here a richer language
allowing boolean combinations of assertions and propositional formulas. As a
consequence, we can have in our knowledge base negated conditionals, and we
can handle more complex inferences than what can be done within the original
KLM framework. Our language L is defined from a set of propositional variables
ATM , the boolean connectives and the conditional operator |∼. We use A,B,C, ...
to denote propositional formulas (that do not contain conditional formulas),
whereas F,G, ... are used to denote all formulas (including conditionals); Γ,Δ, ...
represent sets of formulas. The formulas of L are defined as follows: if A is a
propositional formula, A ∈ L; if A and B are propositional formulas, A |∼ B ∈ L;
if F is a boolean combination of formulas of L, F ∈ L.

The axiomatization of P consists of all axioms and rules of propositional
calculus together with the following axioms and rules. We use �PC to denote
provability in the propositional calculus, and � to denote provability in P:

– REF. A |∼ A (reflexivity)
– LLE. If �PC A↔ B, then � (A |∼ C) → (B |∼ C) (left logical equivalence)
– RW. If �PC A→ B, then � (C |∼ A) → (C |∼ B) (right weakening)
– CM. ((A |∼ B) ∧ (A |∼ C)) → (A ∧B |∼ C) (cautious monotonicity)
– AND. ((A |∼ B) ∧ (A |∼ C)) → (A |∼ B ∧ C)
– OR. ((A |∼ C) ∧ (B |∼ C)) → (A ∨B |∼ C)

REF states that A is always a default conclusion of A. LLE states that the syn-
tactic form of the antecedent of a conditional formula is irrelevant. RW describes
a similar property of the consequent. This allows to combine default and logical
reasoning [9]. CM states that if B and C are two default conclusions of A, then
adding one of the two conclusions to A will not cause the retraction of the other
conclusion. AND states that it is possible to combine two default conclusions.
OR states that it is allowed to reason by cases: if C is the default conclusion of
two premises A and B, then it is also the default conclusion of their disjunction.

The semantics of P is defined by considering possible world structures with a
preference relation w < w′ among worlds, whose meaning is that w is preferred
to (or more typical than) w′. A |∼ B holds in a modelM if B holds in all minimal
worlds (with respect to the relation <) where A holds.

320 L. Giordano et al.

Definition 1 (Preferential models). A preferential model is a triple M =
〈W , <, V 〉, where W is a non-empty set of items that we call worlds or individu-
als, according to the kind of knowledge we want to model, < is an irreflexive and
transitive relation on W, and V is a function V : W 	−→ 2ATM , which assigns
to every world w the set of atoms holding in that world.

Starting from V , we define the evaluation function |=P for all formulas. |=P is
defined in the standard way for boolean combinations of formulas. Furthermore,
for A propositional, we define Min<(A) = {w ∈ W | M, w |=P A and ∀w′,
w′ < w implies M, w′ �|=P A}. We define: M, w |=P A |∼ B if for all w′, if
w′ ∈Min<(A) then M, w′ |=P B.

The relation < is assumed to satisfy the smoothness condition: ifM, w |=P A,
then w ∈Min<(A) or ∃w′ ∈Min<(A) s.t. w′ < w.

A formula is valid in a model M (M |=P F) if it is satisfied by all worlds in
M, and it is simply valid if it is valid in every model. A formula is satisfiable if
its negation is not valid. M is a model of a set of formulas Γ (M |=P Γ) if all
formulas in Γ are valid in M.

Observe that the above definition of preferential model extends the definition by
KLM in order to cope with boolean combinations of formulas. Notice also that
the truth conditions for conditional formulas are given with respect to individual
possible worlds for uniformity sake. Since the truth value of a conditional only
depends on global properties of M, we have that: M, w |=P A |∼ B iff M |=P

A |∼ B. Moreover, by the smoothness condition, we have that Min<(A) = ∅
implies that no world in M satisfy A. Thus the logic can represent genuine
S5-existential and universal modalities, given respectively by ¬(A |∼ ⊥) and
¬A |∼ ⊥. Finally:

Definition 2 (Entailment in P). A formula F is entailed in P by Γ (Γ |=P

F) if it is valid in all models of Γ .

In this paper, we consider a special kind of preferential models, based on multi-
linear frames, that is to say structures where worlds are ordered in several linear
chains. As shown in [8], the restriction to this kind of special models is fully
legitimate, as they validate the same formulas as general models as defined in
Definition 1 above. This restriction is partially motivated by algorithmic and
efficiency considerations, as our tableaux calculus is based on them.

Definition 3 (Preferential multi-linear model). A finite preferential model
M = (W , <, V) is multi-linear if the set of worlds W can be partitioned into a
set of components Wi for i = 1, . . . , n, that is W = W1 ∪ . . . ∪ Wn and 1) the
relation < is a total order on each Wi; 2) elements in two different components
Wi and Wj are incomparable w.r.t. <.

Theorem 1 (Theorem 2.5 in [8]). Let Γ be a set of formulas, if Γ is satis-
fiable with respect to the logic P, then it has a multi-linear model.

From now on, we shall refer to this definition of preferential model P.

A Nonmonotonic Extension of KLM Preferential Logic P 321

For the purpose of the calculus, we consider an extension LP of the language
L by formulas of the form �A, where A is propositional, whose intuitive meaning
is that �A holds in a world w if A holds in all the worlds preferred to w (i.e.
in all w′ such that w′ < w). This language corresponds to the language of the
tableaux calculus for KLM logics introduced in [8]. We extend the notion of
preferential model to provide an evaluation of boxed formulas as follows:

Definition 4 (Truth condition of modality �). M, w |=P �A if, for every
w′ ∈ W, if w′ < w then M, w′ |=P A.

From definition of Min<(A), it follows that for any formula A, we have that
w ∈Min<(A) iff M, w |=P A ∧�¬A.

3 The Logic Pmin

Pmin is a nonmonotonic extension of P, based on the idea of considering only
P models that, roughly speaking, minimize the non-typical objects (or the non
typical worlds). Given a set of formulas Γ , we consider a finite set L� of formulas:
these are the formulas whose non typical instances we want to minimize, when
considering which inferences we can draw from Γ . We assume that the set L�
contains at least all formulas A such that the conditional A |∼ B occurs in Γ .
We have seen that, in a model M, w is a minimal (typical) A-world, i.e. w ∈
Min<(A), when w is an A−world (i.e., M, w |=P A) and it is minimal (typical),
i.e., M, w |=P �¬A. Minimizing non typical (non minimal) worlds w.r.t. L�
therefore amounts to minimizing worlds satisfying ¬�¬A for A ∈ L�. We define
the set M�−

L�
of negated boxed formulas holding in a model, relative to the

formulas in L�. Given a model M = 〈W , <, V 〉, we let: M�−
L�

= {(w,¬�¬A) |
M, w |=P ¬�¬A, with w ∈ W , A ∈ L�}.

Definition 5 (Preferred and minimal models). Given a model M = 〈WM,
<M, VM〉 of a given set of formulas Γ and a model N = 〈WN , <N , VN 〉 of Γ ,
we say that M is preferred to N with respect to L�, and we write M <L� N ,
if: WM = WN , and M�−

L�
⊂ N�−

L�
.

A model M is a minimal model for Γ (with respect to L�) if it is a model of
Γ and there is no a model M′ of Γ such that M′ <L� M.

We can now define entailment in Pmin as follows:

Definition 6 (Minimal Entailment in Pmin). A formula F is minimally
entailed in Pmin by a set of formulas Γ with respect to L� if it is valid in all
models satisfying Γ that are minimal with respect to L�. We write Γ |=L�

min F .

It can be easily verified that this notion of entailment is nonmonotonic, as op-
posed to entailment in P that was monotonic. Indeed, in Pmin the formulas
minimally entailed by Γ might no longer be entailed by Γ ′: Γ ⊂ Γ ′. Some signif-
icant properties of Pmin are expressed in the next propositions. In the following,
|=PC is entailment in classical logic.

322 L. Giordano et al.

Proposition 1. Take a set of formulas Γ and a formula F . (i) If Γ has a
model, then Γ has a minimal model with respect to any L�. (ii) Let us replace
all formulas of the form A |∼ B in Γ with A → B, and call Γ ′ the resulting set
of formulas. Similarly let F ′ be obtained from F by replacing conditional |∼ by
classical implication →. If Γ |=L�

min F then Γ ′ |=PC F ′.

Proof. (i) immediately follows from the finite model property of the logic P:
given a finite model M of Γ the set of models M′ <L� M is finite thus there
exists a minimal model. Concerning (ii) let v be a classical model of Γ ′ (a propo-
sitional evaluation), define the trivial multi-linear model M = 〈WM, <M, VM〉,
where WM = {xv}, <M= ∅, VM(xv) = {P |v(P) = 1}. Observe that for every
propositional formula G, Min<(G) = {xv} if v(G) = 1 and Min<(G) = ∅ oth-
erwise. For every A |∼ B ∈ Γ , we know that v(A→ B) = 1; thus trivially for all
w′ ∈ Min<(A), M, w′ |=P B, that is M, xv |=P A |∼ B. Moreover, M�−

L�
= ∅.

Thus M is a P-minimal model of Γ . Now we just apply the hypothesis and we
obtain that M, xv |=P F , whence v(F) = 1. �

The proposition (ii) states a kind of coherence with respect to classical logic:
the inferences we make according to Pmin are always a subset of inferences that
we would make classically by interpreting |∼ as classical implication. Obviously,
the converse of (ii) is generally false. However, when Γ is just a set of positive
conditionals, and F is a positive conditional, the converse of (ii) also holds.

Proposition 2. Let Γ be a set of positive conditionals and let us denote by Γ ′

its classical counterpart as in the previous proposition. (i) if Γ ′ is inconsistent
then also Γ is inconsistent. (ii) if Γ ′ |=PC A → B then Γ |=L�

min A |∼ B.

Proof. (i) We proceed by contrapositive. Suppose Γ has a P model M = 〈WM,
<M, VM〉. Take any world x ∈ W that is minimal wrt. < (thus it has no prede-
cessors); for every formula C we have M, x |=P �¬C. Thus for every formula C,
x ∈ Min<(C) iff M, x |=P C. Since M |=P Γ , for every C |∼ D ∈ Γ , for every
w ∈ W , if w ∈ Min<(C) then M, w |=P D. Therefore, if M, x |=P C, since
x ∈ Min<(C), we obtain M, x |=P D, that is M, x |=P C → D. Thus x (as a
propositional evaluation) satisfies every implication in Γ ′, and Γ ′ is consistent.

(ii) Suppose Γ ′ |=PC A → B. By (i) we can assume that Γ ′ is consistent,
otherwise by (i) also Γ is inconsistent, and the result trivially follows. Therefore
let v0 be a propositional evaluation that satisfies Γ ′. Let now M = 〈WM, <M,
VM〉 be any Pmin -minimal model of Γ . Define M′ = 〈WM, <′, V ′〉, where <′

is the empty relation and for all w ∈ WM, V ′(w) = {P | v0(P) = 1}. We have
that for all w ∈ WM and for every C → D ∈ Γ ′, M′, w |=P C → D. Thus every
implication of Γ ′ is valid in M′. But, for every formula C M′, w |=P �¬C,
so that w ∈ MinM

′
< (C) iff M′, w |=P C. We can conclude that M′ |=P Γ .

Furthermore, by minimality of M we cannot have M′ <L� M. Thus for every
formula C, we have also M, w |=P �¬C. By reasoning as above, we infer that
w ∈ MinM< (C) iff M, w |=P C. Since M |=P Γ , this entails that M |=P Γ ′.
From this, we conclude that M |=P A → B, so that finally M |=P A |∼ B. �

A Nonmonotonic Extension of KLM Preferential Logic P 323

The above properties entail that Pmin behaves essentially as classical logic (and
in particular |∼ collapses to classical implication) for knowledge bases that are
just a set of positive conditionals. As a consequence, Pmin behaves monotonically
for this restricted kind of knowledge bases, with respect to the addition of positive
conditionals. Of course this is a very special case.

For all these reasons, the logic Pmin turns out to be quite strong. If we consider
the knowledge base of the Introduction, namely: Γ = {artist |∼ ¬rich , artist
∧successful |∼ rich}, Pmin would entail that (artist∧successful) |∼⊥: typically,
successful artists do not exist. This inference is meaningful if we consider that
Pmin minimizes the existence of non-typical elements of a model, and successful
artists are non typical artists. As a difference with respect to classical logic,
though, this is a nonmonotonic inference, since we can consistently add to the
knowledge base the information that indeed successful artists exist. Observe that
this fact would be expressed by a negative conditional.

In any case, it is true that in the meaning of a sentence like “typically, suc-
cessful artists are rich”, it is somewhat entailed that successful artists exist. For
this reason, from now on we restrict our attentions to knowledge bases that ex-
plicitly include the information that there are typical As for all As such that the
sentence “typically As are Bs” (A |∼ B) is in the knowledge base. This leads us
to propose the following working definition:

Definition 7. A well-behaved knowledge base Γ has the form {Ai |∼ Bi,¬(Ai |∼
⊥) | i = 1, . . . , n}.

Therefore, the above knowledge base is transformed into the following
one: Γ ′ = {artist |∼ ¬rich , artist ∧ successful |∼ rich ,¬(artist |∼⊥),
¬(artist ∧ successful |∼⊥)}. In the following, we we will consider well-behaved
knowledge bases, although in principle one is free to use a knowledge base as
Γ above (and to make the kind of strong inferences we mentioned). Obviously,
a knowledge base may contain any formula of L. In particular, it may contain
negative conditionals, such as ¬(artist |∼ french), saying that it is not true that
typically artists are French. In the next section, we shall see that if we have these
formulas, the choice of P rather than R as starting system makes a significant
difference.

Example 1. Consider the example of art students mentioned in the In-
troduction. If we add to the previous knowledge base the information
that typically, art students are non successful artists (and they do exist),
we obtain the following knowledge base: Γ ′′ = Γ ′ ∪ {art student |∼
artist ∧ ¬successful ,¬(art student |∼⊥)}. It can be seen that art student |∼
¬rich is minimally entailed by Γ ′′.

3.1 Relations between Pmin and 1-Entailment and Rational Closure

This is not the first nonmonotonic extension of KLM systems with a nonmono-
tonic inference mechanism. Lehmann and Magidor [4] propose the well-known ra-
tional closure that is a nonmonotonic mechanism built over the KLM system R.

324 L. Giordano et al.

Pearl in [3] proposes 1-entailment that is equivalent to rational closure. The
first difference between our work and both 1-entailment and rational closure is
that we start from KLM system P (and add a nonmonotonic mechanism to it),
whereas they start from the stronger system R.

P versus R as the starting KLM system. Our choice of starting from P
rather than from R is motivated by the fact that R is controversial, and enforces
counterintuitive inferences, as outlined in [10]. To give some evidence, consider
the example above of typical artists not being rich. If we knew that there is a
typical American who is an artist but who is rich, and is therefore not a typical
artist (i.e. if we added ¬(american |∼ (¬artist∨¬rich)) to the knowledge base),
if we adopt system R, we are forced to conclude that artist |∼ ¬american,
saying that there are no typical artists who are American. The problem here is
that in R we conclude something about all typical artists from what we know
about a single (non typical) artist. What is most important is that in system
R, we are forced to make this conclusion in a monotonic way: the addition of
¬(artist |∼ ¬american), saying that indeed there are typical artists who are
American, would lead to an inconsistent knowledge base.

Expressive power and strength of Pmin , compared to 1-entailment and
rational closure. Further differences between our approach and both rational
closure and 1-entailment lie both in expressivity, that is the kind of assertions
that can be handled, and in the inferences’ strength. First of all, it is not clear
how 1-entailment can deal with negated conditionals, whence how it can rep-
resent assertions of the type “not all typical Americans have a given feature”.
In contrast, we have seen that negated conditionals are part of the language of
Pmin . Secondly, the inferences that can be done in Pmin and in 1-entailment
are quite different. For instance, take the classical example of penguins, also
considered by Pearl in [3]. In Pmin , from penguin |∼ bird, bird |∼ fly, penguin |∼
¬fly, penguin |∼ arctic (typically, penguins are birds, birds fly but penguins do
not fly and penguins live in the arctic), we would nonmonotonically derive that
(penguin∧¬arctic) |∼⊥: in the absence of information to the contrary, there are
no penguins that do not live in the arctic. The inference holds both if we start
from the given knowledge base, and if we consider its well-behaved extension. On
the contrary, the inference does not hold in 1-entailment, nor in rational closure:
in neither of the two one can derive a conditional of the form A |∼ ⊥ from a con-
sistent knowledge base. On the other hand, in 1-entailment (and rational closure)
from the above knowledge base one derives that bird∧white |∼ fly, whereas this
is not derivable in Pmin in case we consider the well-behaved extension of the
knowledge base (whereas it holds if we consider the knowledge base as it is).
Therefore, Pmin is significantly different from 1-entailment and rational closure
as it can handle a richer language, and support different (sometime stronger)
inferences. Indeed, we can prove that:

Proposition 3. Let Γ be a set of positive conditionals.(i) Pmin is strictly
stronger than 1-entailment (for inferring positive conditionals); (ii) let Γ ′ be

A Nonmonotonic Extension of KLM Preferential Logic P 325

the well-behaved extension of Γ . Pmin and 1-entailment inferences from Γ ′ are
incomparable (for inferring positive conditionals).

Notice that these differences would remain even if we chose R as the underlying
monotonic system: the obtained logic would still be different from 1-entailment
and rational closure.

4 A Tableaux Calculus for Pmin

In this section we present a tableau calculus for deciding whether a formula
F is minimally entailed by a given set of formulas Γ . We introduce a labelled
tableau calculus called TABP

min, which allows to reason about minimal models.
TABP

min performs a two-phase computation in order to check whether Γ |=LT

min

F . In particular, the procedure tries to build an open branch representing a
minimal model satisfying Γ ∪{¬F}. In the first phase, a tableau calculus, called
TABP

PH1, simply verifies whether Γ ∪ {¬F} is satisfiable in a P model, building
candidate models. In the second phase another tableau calculus, called TABP

PH2,
checks whether the candidate models found in the first phase are minimal models
of Γ , i.e. for each open branch of the first phase, TABP

PH2 tries to build a
“smaller” model of Γ , i.e. a model whose individuals satisfy less formulas ¬�¬A
than the corresponding candidate model. Therefore, F is minimally entailed
by Γ if there is no open branch in the tableau built by TABP

PH1 (therefore,
there are no Preferential models satisfying Γ and ¬F) or for each open branch
built by TABP

PH1, there is an open branch built by TABP
PH2 (therefore, the

model corresponding to the branch of TABP
PH1 is not minimal, and there is a

more preferred one corresponding to the open branch by TABP
PH2). The whole

procedure TABP
min is described at the end of this section (Definition 10).

The calculus TABP
min makes use of labels to represent worlds. We consider

a language LP and a denumerable alphabet of labels A, whose elements are
denoted by x, y, z,

4.1 Phase 1: The Calculus TABP
P H1

A tableau of TABP
PH1 is a tree whose nodes are sets of labelled formulas of

the form x : A or x : A |∼ BL. L is a list of labels used in order to ensure
the termination of the calculus. A branch is a sequence of nodes Γ1, Γ2, . . . , Γn,
where each node Γi is obtained from its immediate predecessor Γi−1 by applying
a rule of TABP

PH1, having Γi−1 as the premise and Γi as one of its conclusions. A
branch is closed if one of its nodes is an instance of (AX), otherwise it is open.
A tableau is closed if all its branches are closed.

Definition 8 (Truth conditions of labelled formulas of TABP
PH1). Given

a model M = 〈W , <, V 〉 and a label alphabet A, we consider a mapping I : A 	→
W. Given a formula α of the calculus TABP

min, we define M |=PI x : F iff
M, I(x) |=P F . We say that a set of labelled formulas Γ is satisfiable if, for all
α ∈ Γ , we have that M |=PI α, for some model M and some mapping I.

326 L. Giordano et al.

(AX) Γ, x : P, x : ¬P with P ∈ ATM (∧+)
Γ, x : F ∧ G

Γ, x : F, x : G
(∧−)

Γ, x : ¬(F ∧ G)

Γ, x : ¬F Γ, x : ¬G

Γ, x : ¬¬F

Γ, x : F
(¬)

(|∼+)

(|∼−)
Γ, u : ¬(A |∼ B)

Γ, x : A, x : �¬A, x : ¬B

(�−)

x new

Γ, u : A |∼ BL

x occurs in Γ,

Γ, u : A |∼ BL,x, x : ¬A Γ, u : A |∼ BL,x, x : ¬�¬A Γ, u : A |∼ BL,x, x : B

x �∈ L

Γ, yn : A, yn : �¬A, yn : ¬BΓ, y2 : A, y2 : �¬A, y2 : ¬BΓ, y1 : A, y1 : �¬A, y1 : ¬B

for each yi occurring in Γ

. . .

Γ, u : ¬�¬A

Γ,ΓM
u→x, x : A, x : �¬A Γ,ΓM

u→y1
, y1 : A, y1 : �¬A Γ,ΓM

u→y2
, y2 : A, y2 : �¬A Γ,ΓM

u→yn
, yn : A, yn : �¬A. . .

x new
for each yi occurring in Γ

A ∈ L�

(cut)
Γ, x : ¬�¬AΓ, x : �¬A

Γ

x occurs in Γ,

, u �= yi

Fig. 1. The calculus TABP
PH1. To save space, we omit the standard rules for ∨ and →.

In order to verify that a set of formulas Γ is unsatisfiable, we label all the
formulas in Γ with a new label x, and verify that the resulting set of labelled
formulas has a closed tableau. To this purpose, the rules of the calculus TABP

PH1
are applied until either a contradiction is generated (AX) or a model satisfying
Γ can be obtained from the resulting open branch. For each conditional formulas
A |∼ B ∈ Γ , we consider x : A |∼ B∅.

The rules of TABP
PH1 are shown in Figure 1. We define ΓM

u→x = {x : ¬A, x :
�¬A | u : �¬A ∈ Γ}. Rules (|∼−) and (�−) are called dynamic since they
introduce a new variable in their conclusions. The other rules are called static.
We do not need any extra rule for the positive occurrences of the � operator,
since these are taken into account by the computation of ΓM

u→x. The (cut) rule
ensures that, given any formula A ∈ L�, an open branch built by TABP

PH1
contains either x : �¬A or x : ¬�¬A for each label x: this is needed in order to
allow TABP

PH2 to check the minimality of the model corresponding to the open
branch, as we will discuss later.

The calculus TABP
PH1 adopts the following standard strategy: the application

of the (�−) rule is postponed to the application of all propositional rules and to
the test of whether Γ is an instance of (AX) or not. The calculus so obtained is
sound and complete with respect to the semantics in Definition 3.

Theorem 2 (Soundness and Completeness of TABP
PH1). Given a set of

formulas Γ , it is unsatisfiable iff it has a closed tableau in TABP
PH1.

We can show that the calculus TABP
PH1 always terminates, i.e. every tableau

built by TABP
PH1 is finite. Similarly to the calculus for R introduced in [8], it is

easy to observe that it is useless to apply the rule (|∼+) on the same conditional
formula more than once in the same world, i.e. by using the same label x. We
prevent redundant applications of (|∼+) by keeping track of labels in which a
conditional u : A |∼ B has already been applied in the current branch. To this
purpose, we add to each positive conditional the above mentioned list of used
labels L; we then restrict the application of (|∼+) only to labels not occurring in
the corresponding list L. Moreover, the rule (|∼−) can be applied only once for

A Nonmonotonic Extension of KLM Preferential Logic P 327

each negated conditional Γ . By virtue of the properties of �, no other additional
machinery is required to ensure termination. The generation of infinite branches
due to the interplay between rules (|∼+) and (�−) cannot occur. Indeed, each
application of (�−) to a formula x : ¬�¬A (introduced by (|∼+)) adds the
formula y : �¬A to the conclusion, so that (|∼+) can no longer consistently
introduce y : ¬�¬A. This is due to the properties of � (no infinite descending
chains of < are allowed). Finally, the (cut) rule does not affect termination, since
it is applied only to the finitely many formulas belonging to L�.

Theorem 3 (Termination of TABP
PH1). Let Γ be a set of labelled formulas,

then any tableau generated by TABP
PH1 for Γ is finite.

Let us now conclude this section by refining the calculus TABP
PH1 in order to

obtain a systematic procedure that allows the satisfiability problem of a set of
formulas Γ to be decided in nondeterministic polynomial time. Let n be the size
of the starting set Γ of which we want to verify the satisfiability. The number
of applications of the rules is proportional to the number of labels introduced in
the tableau. In turn, this is O(2n) due to the interplay between the rules (|∼+)
and (�−). Hence, the complexity of TABP

PH1 is exponential in n.
Similarly to what done in [8], in order to obtain an NP procedure we take

advantage of the following facts:
1. Negated conditionals do not interact among themselves, thus they can be

handled separately and eliminated always as a first step;
2. We can replace the (�−) by a stronger rule (�−)s which allows to build

mutlilinear models, as defined in Definition 3.
Regarding (2), we can adopt the following strengthened version of (�−). We

use Γ−i�
u→x to denote {x : ¬�¬Aj ∨Aj | u : ¬�¬Aj ∈ Γ ∧ j �= i}.

Γ, u : ¬�¬A1, u : ¬�¬A2, . . . , u : ¬�¬Am

(�−
s)

Γ, x : Ak, x : �¬Ak, Γ M
u→x, Γ−k�

u→x . . . Γ, yi : Ak, yi : �¬Ak, Γ M
u→yi

, Γ−k�
u→yk

where x is a new label, for each yi occuring in Γ and for all k = 1, 2, . . . ,m.
Rule (�−s) contains: - m branches, one for each u : ¬�¬Ak in Γ , where a new
minimal world x is created for Ak (i.e. x : Ak and x : �¬Ak are added), and for
all other u : ¬�¬Aj , either x : Aj holds in that world or the formula x : ¬�¬Aj

is recorded; - other m× l branches, where l is the number of labels occurring in
Γ , one for each label yi and for each u : ¬�¬Ak in Γ ; in these branches, a given
yi is chosen as a minimal world for Ak, that is to say yi : Ak and yi : �¬Ak are
added, and for all other u : ¬�¬Aj , either yi : Aj holds in that world or the
formula yi : ¬�¬Aj is recorded.

The rule (�−s) is sound with respect to multilinear models. The advantage
of this rule over the original (�−) rule is that all the negated box formulas
labelled by u are treated in one step, introducing only a new label x in (some
of) the conclusions, at the price of building an exponential number of branches.
Instead, the original rule (�−), introduces one new world for each u : ¬�¬Ak

and, appliedm times on all of them, m new worlds are introduced in each branch.

328 L. Giordano et al.

In the following, we describe a rule application’s strategy that allows us to
decide the satisfiability of a set of formulas Γ in non-deterministic polynomial
time. As a first step, the strategy applies the boolean rules as long as possible.
In case of branching rules, this operation nondeterministically selects (guesses)
one of the conclusions of the rules. For each negated conditional, the strategy
applies the rule (|∼−) to it, generating a set Γ ′ that does not contain any negated
conditional. On this node, the strategy applies the static rules as far as possible,
then it iterates the following steps until either the current node contains an
axiom or it does not contain negated boxed formulas u : ¬�¬A: 1. apply the
(�−s) rule by guessing a branch; 2. apply the static rules as far as possible to the
obtained node. If the final node does not contain an axiom, then we conclude
that Γ ′ is satisfiable.

The overall complexity of the strategy can be estimated as follows. Consider
that n =| Γ |. There are at most O(n) negated conditionals, therefore the initial
application of (|∼−) introduces O(n) labels in the obtained node Γ ′. The number
of different negated box formulas is at most O(n), too. The strategy builds a
tableau branch for Γ ′ by alternating applications of (�−s) and of static rules (to
saturate the obtained nodes). In case of branching rules, this saturation non-
deterministically selects (guesses) one of the conclusions of the rules. Consider
{u : ¬�¬A1, u : ¬�¬A2, . . . , u : ¬�¬Am} ⊆ Γ ′, and consider a branch gener-
ated by the application of the (�−s) rule. In the worst case, a new label x1 is
introduced. Suppose also that the branch under consideration is the one con-
taining x1 : A1 and x1 : �¬A1. The (�−s) rule can then be applied to formulas
x1 : ¬�¬Ak, introducing also a further new label x2. However, by the presence
of x1 : �¬A1, the rule (�−s) can no longer consistently introduce x2 : ¬�¬A1,
since x2 : �¬A1 ∈ ΓM

x1→x2
. Therefore, if (�−s) can be applied (at most) n times

in x1 (one for each different negated boxed formula), then the rule can be applied
(at most) n− 1 times in x2, and so on. Therefore, at most O(n) new labels are
introduced by (�−s) in each branch.

As the number of different subformulas of Γ is at most O(n), in all steps
involving the application of static rules, there are at most O(n) applications of
these rules. Therefore, the length of the tableau branch built by the strategy is
O(n2). Finally, we observe that all the nodes of the tableau contain a number
of formulas which is polynomial in n, therefore to test that a node contains an
axiom has at most complexity polynomial in n. The above strategy allows to
prove that:

Theorem 4 (Complexity of Phase 1). The problem of deciding the satisfia-
bility of a set of formulas Γ is in NP.

Notice that the above strategy is able to build branches of polynomial length
thanks to the presence of the rule (cut). Indeed, the key point is that, when the
rule (�−s) building multilinear models is applied to a given label u, all negated
boxed formulas u : ¬�¬Ak belong to current set of formulas. It could be the case
that, after an application of (�−s) by using u, the same label u is used in one of
the conclusions of another application of (�−s), say to some xi. Therefore, the
application of static rules could introduce u : ¬�¬A, and a further application

A Nonmonotonic Extension of KLM Preferential Logic P 329

(∧+) (∧−)

(¬)

(|∼+)

(|∼−)
. . .

(cut)

(AX�−) 〈Γ, u : ¬�¬P | K〉(AX) 〈Γ, x : P, x : ¬P | K〉 (AX∅) 〈Γ | ∅〉
u : ¬�¬A �∈ KP ∈ ATM

〈Γ, x : F, x : G | K〉
〈Γ, x : F ∧ G | K〉

〈Γ, x : F | K〉
〈Γ, x : ¬¬F | K〉

〈Γ, x : ¬F | K〉 〈Γ, x : ¬G | K〉
〈Γ, x : ¬(F ∧ G) | K〉

〈Γ, x : �¬A | K〉 〈Γ, x : ¬�¬A | K〉
〈Γ | K〉

if x : ¬�¬A �∈ Γ and x : �¬A �∈ Γ
A ∈ L�x ∈ D(B),

, u �= yi

〈Γ, u : A |∼ BL | K〉
〈Γ, u : A |∼ BL,x, x : B | K〉〈Γ, u : A |∼ BL,x, x : ¬�¬A | K〉〈Γ, u : A |∼ BL,x, x : ¬A | K〉

x ∈ D(B) and x �∈ L

for all yi ∈ D(B)

〈Γ, y1 : A, y1 : �¬A, y1 : ¬B | K〉 〈Γ, y2 : A, y2 : �¬A, y2 : ¬B | K〉
〈Γ, u : ¬(A |∼ B) | K〉

〈Γ, yn : A, yn : �¬A, yn : ¬B | K〉
for all yi ∈ D(B)

. . .〈Γ,ΓM
u→yi

, yi : A1, yi : �¬A1,Γ−1�
u→yi

| K〉 〈Γ,ΓM
u→yi

, yi : A2, yi : �¬A2,Γ−2�
u→yi

| K〉 〈Γ,ΓM
u→yi

, yi : Am, yi : �¬Am,Γ−m�
u→yi

| K〉
〈Γ, u : ¬�¬A1, u : ¬�¬A2, . . . , u : ¬�¬Am | K, u : ¬�¬A1, u : ¬�¬A2, . . . , u : ¬�¬Am〉(�−

s)

Fig. 2. The calculus TABP
PH2

of (�−s) could be needed. However, since (cut) is a static rule, and since A ∈
L� because A is the antecedent of (at least) the conditional formula A |∼ B
generating ¬�¬A, either u : ¬�¬A or u : �¬A have already been introduced in
the branch before the second application of (�−s), which is a dynamic rule.

4.2 Phase 2: The Calculus TABP
P H2

Let us now describe the calculus TABP
PH2 which, for each open branch B built

by TABP
PH1, verifies if it is a minimal model of the initial set of formulas Γ .

Definition 9. Given an open branch B of a tableau built from TABP
PH1, we

define: (i) D(B) as the set of labels occurring on B; (ii) B�−
= {x : ¬�¬A | x :

¬�¬A occurs in B}.

A tableau of TABP
PH2 is a tree whose nodes are pairs of the form 〈Γ | K〉, where

Γ is a set of labelled formulas of LP, whereas Γ contains formulas of the form
x : ¬�¬A, with A ∈ L�.

The basic idea of TABP
PH2 is as follows. Given an open branch B built by

TABP
PH1 and corresponding to a model MB of Γ ∪ {¬F}, TABP

PH2 checks
whether MB is a minimal model of Γ by trying to build a model of Γ which
is preferred to MB. Obviously, since the calculus TABP

PH1 and the strategy on
its application build multilinear models, the calculus TABP

PH2 also adopts the
same strategy on the order of application of the rules and the refined rule (�−s)
in order to build only such multilinear models.

Checking (un)satisfiability of 〈Γ |B�−〉 allows to verify whether the candidate
model MB is minimal. More in detail, TABP

PH2 tries to build an open branch
containing all the objects appearing on B, i.e. those in D(B). To this aim,
the dynamic rules use labels in D(B) instead of introducing new ones in their

330 L. Giordano et al.

conclusions. The additional set Γ of a tableau node, initialized with B�−
, is

used in order to ensure that any branch B’ built by TABP
PH2 is preferred to B,

that is B’ only contains negated boxed formulas occurring in B and there exists
at least one x : ¬�¬A that occurs in B and does not occur in B’. The rules of
TABP

PH2 are shown in Figure 2.
More in detail, the rule (|∼−) is applied to a set of formulas containing a

formula u : ¬(A |∼ B); it introduces y : A, y : �¬A and y : ¬B, where y ∈ D(B),
instead of y being a new label. The choice of the label y introduces a branching in
the tableau construction. The rule (|∼+) is applied in the same way as in TABP

PH1
to all the labels of D(B) (and not only to those appearing in the branch). The
rule (�−s) is applied to a node 〈Γ, u : ¬�¬A1, u : ¬�¬A2, . . . , u : ¬�¬Am | K〉,
when {u : ¬�¬A1, u : ¬�¬A2, . . . , u : ¬�¬Am} ⊆ K, i.e. when all the formulas
u : ¬�¬A1, u : ¬�¬A2, . . . , u : ¬�¬Am also belong to the open branch B. In
this case, the rule introduces a branch on the choice of the individual yi ∈ D(B)
which is preferred to u and is such that Ak and �¬Ak hold in yi, recording, for all
the other formulas ¬�¬Aj , that either yi : Aj or yi : ¬�¬Aj holds. Notice that,
as a difference with the rule (�−s) reformulated for TABP

PH1 in Phase 1, here the
branches generating a new label x for each negated boxed formula u : ¬�¬Ak

are no longer introduced.
In case a tableau node has the form 〈Γ, u : ¬�¬A | K〉, and u : ¬�¬A �∈

K, then TABP
PH2 detects an inconsistency, called (AX)�− : this corresponds to

the situation in which u : ¬�¬A does not belong to B, while Γ, u : ¬�¬A is
satisfiable in a model M only if M contains u : ¬�¬A, and hence only if M is
not preferred to the model represented by B.

The calculus TABP
PH2 also contains the closing condition (AX)∅. Since each

application of (�−s) removes the principal formula u : ¬�¬A from the set Γ ,
when Γ is empty all the negated boxed formulas occurring in B also belong to
the current branch. In this case, the model built by TABP

PH2 satisfies the same
set of negated boxed formulas (for all labels) as B and, thus, it is not preferred
to the one represented by B.

Theorem 5 (Soundness and completeness of TABP
PH2). Given a set of

labelled formulas Γ and a formula F , an open branch B built by TABP
PH1 for

Γ ∪ {¬F} is satisfiable by an injective mapping in a minimal model of Γ iff the
tableau in TABP

PH2 for 〈Γ | B�−〉 is closed.

TABP
PH2 always terminates. Indeed, only a finite number of labels can occur on

the branch (only those in D(B) which is finite). Moreover, the side conditions on
the application of the rules copying their principal formulas in their conclusion(s)
prevent the uncontrolled application of the same rules.

The overall procedure TABP
min is defined as follows:

Definition 10. Given a set of formulas Γ and a formula F , the calculus
TABP

min checks whether Γ |=L�
min F by means of the following procedure: (phase

1) the calculus TABP
PH1 is applied to Γ ∪ {¬F}; if, for each branch B built by

TABP
PH1, either (i) B is closed or (ii) (phase 2) the tableau built by the calculus

TABP
PH2 for 〈Γ | B�−〉 is open, then Γ |=L�

min F , otherwise Γ �|=L�
min F .

A Nonmonotonic Extension of KLM Preferential Logic P 331

TABP
min is a sound and complete decision procedure for verifying if a formula F

can be minimally entailed from a set of formulas Γ . It can be shown that:

Theorem 6 (Complexity of Phase 2). The problem of verifying that a
branch B represents a minimal model for Γ in TABP

PH2 is in NP in the size
of B.

By Theorems 4 and 6, we can prove that:

Theorem 7 (Complexity of TABP
min). The problem of deciding whether

Γ |=L�
min F is in Π2.

Example 2. As an example, let Γ = {artist |∼ ¬rich ,¬(artist |∼ ⊥)}. We show
that Γ |=L�

min artist ∧ blond |∼ ¬rich by means of the calculus TABP
min. To

save space, we write A for artist , R for rich and B for blond . We consider
L� = {A,A ∧ B}. The tableau TABP

PH1 starts by two applications of (|∼−) on
the initial set Γ ∪ {¬(A ∧ B |∼ ¬R)}, obtaining the node {x : A, x : �¬A, x :
¬⊥, y : A ∧ B, y : �¬(A ∧ B), y : ¬¬R}. We apply (|∼+), (¬), (∧+), and (cut).
Disregarding the nodes that are instances of (AX), the only left branch contains
Γ = {x : A, x : �¬A, x : ¬⊥, x : ¬R, x : �¬(A∧B), y : A, y : B, y : �¬(A∧B), y :
R, y : ¬�¬A}. Now we can apply the rule (�−s), obtaining two conclusions. The
first one adds to Γ the formulas z : A, z : �¬A, z : ¬(A ∧ B), z : �¬(A ∧ B)
where z is a new label, the other one intoduces the same formulas labelled
by x itself. We then apply the rules (|∼+) and (∧−). Disregarding branches
containing axioms, the only two open branches, say B1 and B2, contain Γ1 =
Γ ∪ {z : A, z : �¬A, z : ¬(A ∧ B), z : �¬(A ∧ B), z : ¬B, z : ¬R} and
Γ2 = Γ ∪ {x : ¬(A ∧ B), x : �¬(A ∧ B), x : ¬B}, respectively, and their
nodes cannot be further expanded. We now apply the calculus TABP

PH2 to both
B1 and B2. Let us start with the latter one. The tableau starts with 〈A |∼
¬R,¬(A |∼ ⊥) | y : ¬�¬A〉. Applications of (|∼−), (|∼+) and (cut) lead to an
open branch containing x : A, x : �¬A, x : ¬R, x : �¬(A ∧ B), y : ¬A, y :
�¬A, y : �¬(A∧B), z : ¬A, z : �¬A, z : �¬(A∧B). Similarly for B1. Since the
tableaux in TABP

PH2 for B1 and B2 are open, these two branches are closed.
Thus the whole procedure TABP

min verifies that Γ |=L�
min A ∧B |∼ ¬R.

5 Conclusion

In this paper, we have proposed the logic Pmin , which is a nonmonotonic ex-
tension of the KLM system P. Our choice of starting from P rather than from
the stronger R is that P avoids the unwanted inferences that R entails, and
that are outlined in [10]. The system Pmin turns out to be both more expres-
sive and stronger, when compared to both 1-entailment and rational closure. We
have also provided a two-phase tableau calculus for checking entailment in Pmin .
Our procedure can be used to determine constructively an upper bound of the
complexity of Pmin , namely that checking entailment is in Π2.

Acknowledgements. The work has been supported by Project “MIUR PRIN08
LoDeN: Logiche Descrittive Nonmonotone: Complessità e implementazioni”.

332 L. Giordano et al.

References

1. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

2. Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects
and possibility theory. Artificial Intelligence 92(1-2), 259–276 (1997)

3. Pearl, J.: System Z: A natural ordering of defaults with tractable applications to
nonmonotonic reasoning. In: Proceedings of TARK, pp. 121–135 (1990)

4. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Arti-
ficial Intelligence 55(1), 1–60 (1992)

5. Arieli, O., Avron, A.: General patterns for nonmonotonic reasoning: From basic
entailments to plausible relations. Logic Journal of the IGPL 8(2), 119–148 (2000)

6. Dubois, D., Fargier, H., Perny, P.: Qualitative decision theory with preference
relations and comparative uncertainty: An axiomatic approach. Artificial Intel-
ligence 148(1-2), 219–260 (2003)

7. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Reasoning About Typicality
in Preferential Description Logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.)
JELIA 2008. LNCS (LNAI), vol. 5293, pp. 192–205. Springer, Heidelberg (2008)

8. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic Tableaux Calculi
for KLM Logics of Nonmonotonic Reasoning. ACM ToCL 10(3) (2009)

9. Friedman, N., Halpern, J.Y.: Plausibility measures and default reasoning. Journal
of the ACM 48(4), 648–685 (2001)

10. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Preferential vs Rational
Description Logics: which one for Reasoning About Typicality?. To appear in
Proceedings of ECAI 2010 (2010)

On Strong Normalization of the Calculus of
Constructions with Type-Based Termination

Benjamin Grégoire and Jorge Luis Sacchini

INRIA Sophia Antipolis - Méditerranée, France
{Benjamin.Gregoire,Jorge-Luis.Sacchini}@inria.fr

Abstract. Termination of recursive functions is an important property
in proof assistants based on dependent type theories; it implies con-
sistency and decidability of type checking. Type-based termination is
a mechanism for ensuring termination that uses types annotated with
size information to check that recursive calls are performed on smaller
arguments. Our long-term goal is to extend the Calculus of Inductive
Constructions with a type-based termination mechanism and prove its
logical consistency. In this paper, we present an extension of the Calcu-
lus of Constructions (including universes and impredicativity) with sized
natural numbers, and prove strong normalization and logical consistency.
Moreover, the proof can be easily adapted to include other inductive
types.

1 Introduction

Termination of recursive functions is an important property in proof assistants
based on dependent type theory; it implies consistency of the logic, and decid-
ability of type checking. In current implementations, it is common to use syn-
tactic criteria (called guard predicates) to ensure termination. Guard predicates
are applied to the body of recursive functions to check that recursive calls are
performed on structurally smaller arguments. However, these criteria are often
difficult to understand and implement.

An alternative approach is type-based termination. The basic idea is the use of
sized types, i.e., types decorated with size information. Termination is ensured
by typing constraints, restricting recursive calls to smaller arguments. Compared
to guard predicates, type-based termination provides a simple yet expressive
mechanism for ensuring termination.

In previous work by the first author [4], the Calculus of Inductive Construc-
tions (CIC) was extended with a type-based termination mechanism. The ob-
tained system, called CIC ,̂ has many desirable metatheoretical properties, in-
cluding complete size inference. However, the logical consistency of CIĈ is de-
rived from a conjecture stating strong normalization of well-typed terms.

Our long-term goal is to define a type-based termination mechanism for CIC
that is proved consistent. This paper is a step in that direction. We present a
simplified version of CIĈ , called CIC−̂ (Sect. 3).

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 333–347, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

334 B. Grégoire and J.L. Sacchini

Our main contribution is a proof of strong normalization (SN) and logical
consistency for CIĈ− restricted to one inductive type, namely natural numbers
(Sect. 4). The interpretation of natural numbers is done in a generic way, and
can be extended to other inductive types.

For lack of space, most of the proofs are omitted. The interested reader can
find them in the long version of this paper [7].

2 A Primer on Type-Based Termination

Before giving the details of CIĈ−, this section introduces briefly the main ideas
of sized types and type-based termination. Consider the type of natural numbers,
defined by

nat : Type := O : nat | S : nat → nat .

With sized types, this defines a family of types of the form nats, where s is a
size (or stage) expression. Size information is used to type recursive functions,
as shown in the following (simplified) typing rule for fixpoint construction:

Γ (f : natı → U) �M : nat̂ı → U [ı := ı̂]
Γ � (fix f : nat → U := M) : nats → U [ı := s]

where ı is a stage variable, and ·̂ is the successor function on stages. Intuitively,
natı and nat̂ı denote the type of natural numbers whose size is smaller than ı
and ı + 1, respectively. This intuition is reflected in the subtyping rule, stating
that natı ≤ nat̂ı ≤ nat∞, where nat∞ denotes the usual type of natural numbers.

In the typing rule above, the body of the fixpoint, M , is a function that takes
an argument of type nat̂ı. The recursive calls to f in M are only allowed on terms
of type natı, that is, smaller than the size of the argument. This ensures that
recursion terminates. Note that the variable ı can appear (positively) in U , which
allows to write size-preserving functions. A typical example is the subtraction of
natural numbers, which has type nats → nat∞ → nats, for any s. We can then
write the division of natural numbers as1:

fix div : nat → nat → nat :=
λ m n : nat. case mnat(̂ı) of

| O ⇒ Onat(̂ı)
| S m′

nat(ı) ⇒ S (div (minus m′ n)nat(ı) n)nat(ı)

The type annotations are given for clarification only, and are not written in the
actual syntax. Since minus has type nats → nat∞ → nats, the recursive call in
div is well-typed. The function div also has type nats → nat∞ → nats.

Note in the case expression that m has type nat̂ı, while the recursive argument
m′ has a smaller type natı. This mechanism ensures that we can make recursive
calls on the recursive arguments of an inductive type. However, it is more pow-
erful than guard predicates, thanks to the possibility of typing size-preserving

1 div m n computes
⌈

m
n+1

⌉
.

On Strong Normalization of the CC with Type-Based Termination 335

functions. For example, extending the system with sized lists, typical functions
can be given more precise types:

map : Π(A B : Type).(A→ B) → listı A→ listı B

filter : Π(A : Type).(A→ bool) → listı A→ listı A× listı A

These functions allow to type programs that are not structurally recursive such
as quicksort:

fix qsort : listA→ listA :=
λl : listA. case llist(̂ı) of

| nil ⇒ nil
| cons h tlist(ı) ⇒ let (s, g) = filter (<h) tlist(ı) in

append (qsort slist(ı)) (cons h (qsort glist(ı)))

Note that the precise typing of filter allows the recursive calls in the above
definition. However, in this case, qsort has type list∞A → list∞A. For further
examples and references, we refer the reader to [4].

3 System CIC−̂

CIC−̂ is an extension of CIC with a type-based termination mechanism. In this
section we introduce the syntax and typing rules.

In order to treat impredicativity in the proof of SN, terms carry more type an-
notations in the case of abstraction and application [2,11]. However, the system
we intend to use has a more traditional presentation. In the traditional presen-
tation, abstractions have the form λx : T ◦.M and applications have the form
M N . We give here the annotated presentation we use in the proof of SN. The
reduction rules and typing rules are adapted to the traditional presentation in
the obvious way. Note that as a consequence of SN, we can prove the equivalence
between both presentations [7].

Syntax. We consider a predicative hierarchy of sorts Typei, for i ∈ N, and an
impredicative sort Prop. The set of sorts is denoted U . We assume a denumerable
set X of term variables. We use u to denote sorts, and f , x, y to denote term
variables. Inductive types are annotated with stage expressions.

Definition 1 (Stages). The syntax of stages is given by the following grammar,
where XS denotes a denumerable set of stage variables.

S ::= XS | Ŝ | ∞

We use ı, j to denote stage variables, and s, r to denote stages. The base of
a stage expression is defined by �ı	 = ı and �ŝ	 = �s	 (the base of a stage
containing ∞ is not defined).

336 B. Grégoire and J.L. Sacchini

The syntax features three classes of terms, whose difference lies in the type of
annotations that inductive types carry. (This helps to ensure subject reduction
and efficient type inference [4].) Bare terms carry no annotation. Position terms
carry either no annotation, or a �, which is used to indicate recursive positions
in fixpoint functions. Finally, sized terms carry a stage expression.

Definition 2 (Terms). The generic set of terms over the set a is defined by
the grammar:

T [a] ::= X | U | λX :T ◦.T ◦T [a] | appX :T ◦.T ◦(T [a], T [a]) | ΠX : T [a].T [a]
| nata | O | S(T [a])
caseT ◦ X := T [a] of T [a], T [a] | fix X (X : nat�) : T � := T [a]

The set of bare terms, position terms and sized terms are defined by T ◦ ::= T [ε],
T � ::= T [{ε, �}], and T ::= T [S], respectively. We use C, F , M , N , P , T , U to
denote terms. Bare terms are usually denoted with a superscript ◦ and position
terms with a superscript �, as in M◦ and M�.

To deal with the different classes of terms, we use two erasure functions: the
function |.| : T � ∪ T → T ◦ removes all annotations from a term; the function
|.|ı : T → T � replaces all stage annotations s with � if �s	 = ı, or by ε otherwise.
Given a term M , we write M∞ to denote the term M where all size annotations
are replaced with ∞, and SV(M) to denote the set of stage variables appearing
in M .

Definition 3. Reduction → is defined as the compatible closure of β-reduction,
ι-reduction and μ-reduction:

appx:T◦.U◦(λx:T◦.U◦M,N) →β M [x := N]
caseT◦ x := O of N0, N1 →ι N0

caseT◦ x := S(M) of N0, N1 →ι appy:nat.T◦[x:=S(y)](N1,M)
appx:nat.|U�|(F,C) →μ appx:nat.|U�|(M [f := F], C)

where F ≡ fix f(x : nat�) : U� := M and C is a term in constructor form (i.e.,
O or S(M) for some term M). We write ←, →∗, ≈ and ↓ for the inverse rela-
tion, the reflexive transitive closure, the equivalence closure and the associated
joinability relation of →, respectively. (M ↓ N if M →∗ P and N →∗ P for
some P .)

The reduction relation defined above, usually called tight reduction, is not con-
fluent (on pseudoterms). However, is it confluent for well-typed terms (this is a
consequence of SN). (Note that the reduction in the traditional presentation is
confluent.)

Subtyping. We consider a subtyping relation derived from a partial order on
stages.

Definition 4 (Substage). The substage relation, � ⊆ S ×S, is defined as the
reflexive transitive closure of the relation containing s � ŝ and s � ∞, for all
s ∈ S.

On Strong Normalization of the CC with Type-Based Termination 337

Definition 5 (Subtyping). The subtyping relation, ≤ ⊆ T × T , is defined by
following rules:

T ↓ U
T ≤ U

T →∗ nats U →∗ natr s � r

T ≤ U

T →∗ Πx : T1.T2 U →∗ Πx : U1.U2 U1 ≤ T1 T2 ≤ U2

T ≤ U

We define a notion of positivity with respect to a stage variable. It is used in the
typing rules to restrict the types valid for recursion.

Definition 6. We say that ı is positive in T , written ı pos T , if for every pair
of stages s, r, such that s � r, T [ı := s] ≤ T [ı := r].

Remark: In the traditional presentation, the subtyping relation is defined in a
more standard way, as the reflexive transitive closure of the following rules:

T ≈ U

T ≤ U

U1 ≤ T1 T2 ≤ U2

Πx : T1.T2 ≤ Πx : U1.U2

s � r

nats ≤ natr

We cannot use this definition in the annotated presentation, since reduction is
not confluent.

Typing. In the typing rules, we restrict the use of size variables appearing in
types. Intuitively, we only allow types that reduce to a term of the form

Πx1 : T1.Πx2 : T2. . . . Πxn : Tn.Tn+1, (*)

where each Ti is of the form (*), or is of the form nats, or satisfies SV(Ti) = ∅.
We call these types “simple”. Formally, we define a predicate simple with the
following clauses:

SV(T) = ∅
simple(T) simple(nats)

simple(T1) simple(T2)
simple(Πx : T1.T2)

Contexts and judgments. A context is a sequence of the form (x1 : T1)(x2 :
T2) . . . (xn : Tn), where x1, x2, . . . , xn are distinct variables and T1, T2, . . . , Tn

are sized terms. We use Γ , Δ, Θ to denote contexts and [] to denote the empty
context.

We define two typing judgments: WF(Γ) means that context Γ is well formed;
Γ �M : T means that the term M has type T in Γ . The typing rules are given
in Fig. 1. The side conditions in some of the rules ensure that we restrict to
simple types. If we remove these side conditions, the resulting system is that of
CIC .̂ In rule (fix) the condition ı /∈ SV(Γ,M) is therefore redundant, but we
keep it to emphasize the difference with CIC .̂

Most of the rules are similar to that of CIĈ , with exception of the added type
annotations. Note in rules (zero) and (succ) that constructors have a successor

338 B. Grégoire and J.L. Sacchini

stage as type. In rule (case), as we mentioned in Sect. 2, the argument has type
nat with a successor stage, allowing the recursive arguments to have smaller size.
Note that, because of subtyping, any term of type nat can be given a successor
size. In rule (fix) we introduce a fresh size variable for recursion. Not every type
is valid for recursion, since it might lead to inconsistencies [1]. In our case, we
require the size variable used for recursion to appear positively in the return type.
The body, M , has a product type (function) with domain nat̂ı, while recursive
calls to f can only be performed on terms of type natı.

Simple metatheory. Usual metatheoretic results such as weakening, substitution
and subject reduction can be proved for CIĈ− in the same way as for CIC .̂
These properties are stated in Fig. 2.

4 Strong Normalization

In this section we prove the main results of the paper: strong normalization of
CIC−̂, and logical consistency (Theorem 1). The proof is based on Λ-sets as
introduced by Altenkirch in his PhD thesis [2], and later used by Melliès and
Werner [11] to prove strong normalization for Pure Type Systems.

A Λ-set X is a pair (X◦, |=), where X◦ is a set, and |= ⊆ SN×X◦ is a realiz-
ability relation2 (SN denotes the set of strongly normalizing terms). Intuitively,
we define a set-theoretical interpretation (products are interpreted by function
spaces, abstractions by functions and applications by function application), de-
noted [·], corresponding to the set part of a Λ-set.

We prove that the interpretation is sound: if Γ � M : T , then [M] ∈
[T] (Lemma 4). We can then prove that every term realizes its interpretation
(Lemma 5), i.e. M |= [M]. Strong normalization (Corollary 1) follows from the
fact that every realizers is strongly normalizing by definition.

In the case of CIC−̂, the interpretation given above does not take size infor-
mation into account. We therefore define a second (relational) interpretation to
show that terms respect the size information given in the type (Sect. 4.3).

4.1 Preliminary Definitions

In this section we give the concepts necessary to define the interpretation of
terms. Namely, saturated sets, Λ-sets, and inaccessible cardinals.

Saturated sets. We define saturated sets in terms of elimination contexts:

E[] ::= [] | appX :T ◦.T ◦(E[], T) | caseT ◦ X := E[] of T , T
| appX :T ◦.T ◦(fix X (X : nat�) : T � := T , E[])

A term is atomic if it is of the form E[x]. We denote the set of atomic terms
with AT, and the set of strongly normalizing terms with SN. Weak-head reduc-
tion is defined as E[M] →wh E[N] iff M →βιμ N .
2 Actually, for technical reasons, our definition is slightly different.

On Strong Normalization of the CC with Type-Based Termination 339

(empty)
WF([])

(cons)
WF(Γ) Γ � T : u

WF(Γ (x : T))
simple(T)

(var)
WF(Γ) Γ (x) = T

Γ � x : T

(type)
WF(Γ)

Γ � Typei : Typei+1

(prop)
WF(Γ)

Γ � Prop : Type0

(Π-type)
Γ � T : u Γ (x : T) � U : Typej

Γ � Πx : T.U : max(u, Typej)

(Π-prop)
Γ � T : u Γ (x : T) � U : Prop

Γ � Πx : T.U : Prop

(abs)
Γ (x : T) �M : U

Γ � λx:|T |.|U|M : Πx : T.U
SV(M) = ∅

(app)
Γ � M : Πx : T.U Γ � N : T

Γ � appx:|T |.|U|(M, N) : U [x := N]
SV(N) = ∅

(nat)
WF(Γ)

Γ � nats : Type0

(zero)
WF(Γ)

Γ � O : natŝ
(succ)

Γ �M : nats

Γ � S(M) : natŝ

(case)

Γ �M : natŝ Γ (x : natŝ) � P : u
Γ � N0 : P [x := O] Γ � N1 : Πy : nats.P [x := S(y)]

Γ � case|P | x := M of N0, N1 : P [x := M]
SV(M) = ∅

(fix)

T ≡ Π(x : natı).U ı pos U ı /∈ SV(Γ, M)
Γ � T : u Γ (f : T) �M : T [ı := ı̂]

Γ � fix f(x : nat�) : |U |ı := M : T [ı := s]
SV(M) = ∅

(conv)
Γ �M : T Γ � U : u T ≤ U

Γ �M : U
simple(U)

Fig. 1. Typing rules of CIĈ−

Weakening: Γ � M : T ∧WF(ΓΔ) ⇒ ΓΔ �M : T

Substitution:

Γ (x : T)Δ �M : U

Γ � N : T

SV(N) = ∅

⎫⎪⎬⎪⎭ ⇒ ΓΔ [x := N] � M [x := N] : U [x := N]

Stage Substitution: Γ �M : T ⇒ Γ [ı := s] �M [ı := s] : T [ı := s]

Subject Reduction: Γ �M : T ∧ M → M ′ ⇒ Γ �M ′ : T

Type validity: Γ �M : T ⇒ Γ � T : u ∧ simple(T)

Fig. 2. Simple metatheory of CIĈ−

340 B. Grégoire and J.L. Sacchini

Definition 7 (Saturated set). A set of terms X ⊆ SN is saturated iff it
satisfies the following conditions:

(S1) AT ∩ SN ⊆ X;
(S2) if M ∈ SN and M →wh M ′ and M ′ ∈ X, then M ∈ X.

Λ-sets. As mentioned above, we use Λ-sets [2,11] in the proof. However, our
definition is slightly different, as explained below.

Definition 8 (Λ-set). A Λ-set is a triple X = (X◦, |=X ,⊥X) where X◦ is a
non-empty set, witnessed by ⊥X ∈ X◦, and |=X ⊆ T ×X◦.

X◦ is the carrier-set and the elements of X◦ are called the carriers of X . The
terms M such that M |=X α for some α ∈ X◦ are called the realizers of α. The
element ⊥X is called the atomic element of X . We write α ∈ X for α ∈ X◦. A
Λ-set X is included in a Λ-set Y , written X ⊆ Y , if X◦ ⊆ Y◦, |=X ⊆ |=Y , and
⊥X = ⊥Y .

Definition 9 (Saturated Λ-set). A Λ-set X is said to be saturated if

1. every realizer is strongly normalizable;
2. the atomic element ⊥X is realized by any atomic strongly normalizable term;
3. for every α ∈ X◦, if N |=X α, and M →wh N with M ∈ SN, then M |=X α

(i.e., the set of realizers is closed under weak-head expansion).

The difference between the definition in [2,11] and ours is that the atomic element
of a Λ-set is explicit in the definition. The use of the atomic element will be
evident in the definition of the interpretation of terms. However, the difference
in the definition is not essential in our proof.

We define some operations on Λ-sets.

Definition 10 (Product). Let X be a Λ-set and {Yα}α∈X◦ a X◦-indexed fam-
ily of Λ-sets. We define the Λ-set Π(X,Y) by:

– Π(X,Y)◦ = {f ∈ X◦ →
⋃

α∈X◦ (Yα)◦ : ∀α ∈ X◦.f(α) ∈ (Yα)◦};
– M |=Π(X,Y) f ⇐⇒ ∀α ∈ X◦. T

◦, U◦ ∈ SN.
N |=X α⇒ appx:T◦.U◦(M,N) |=Yα f(α);

– ⊥Π(X,Y) = α ∈ X◦ �→ ⊥Yα.

Lemma 1. If X and every {Yα}α∈X◦ are saturated Λ-sets, so is Π(X,Y).

Definition 11 (Cartesian product). Let X, Y be Λ-sets. We define the Λ-set
X × Y by: (X × Y)◦ = X◦ × Y◦; M |=X×Y (α, β) ⇐⇒ M |=X α ∧ M |=Y β;
and ⊥X×Y = (⊥X ,⊥Y).

We write X2 for X ×X.

Lemma 2. If X and Y are saturated Λ-sets, so is X × Y .

Definition 12 (Λ-iso). Let X and Y be Λ-sets. A Λ-iso f from X to Y is a
one-to-one function f : X◦ → Y◦ such that M |=X α ⇐⇒ M |=Y f(α), and
f(⊥X) = ⊥Y .

On Strong Normalization of the CC with Type-Based Termination 341

Inaccessible cardinals. We assume an increasing sequence of inaccessible cardi-
nals {λi}i∈N. Let Vα be the cumulative hierarchy of sets. We define Ui to be the
set of saturated Λ-set whose carrier-set are in Vλi . The set Ui can be viewed as a
Λ-set (Ui, SN×Ui, {∅})3. Following [10], we interpret the predicative sorts using
large universes.

4.2 The Interpretation

Stages. Stages are interpreted by ordinals. We use a, b, . . . to denote ordinals.
Since we have only natural numbers as a sized type, we can safely interpret stages
with the smallest infinite ordinal, ω. If we include higher-order sized types (such
as well-founded trees), we need to interpret stages using higher ordinals.

Definition 13 (Stage interpretation). A stage assignment π is a function
from XS to ω. Given a stage assignment π, the interpretation of a stage s under
π, written �s�π, is defined by:

�ı�π = π(ı), �∞�π = ω, �ŝ�π = �s�π +̂ 1

where a +̂ 1 = a + 1 if a < ω, and ω +̂ 1 = ω.
We use ∞ to denote the stage assignment such that ∞(ı) = ω for all ı.

Inductive types. Inductive types are interpreted as the least fixed point of a
monotone operator. For our case, we define a function FN , such that if X is a
Λ-set, FN (X) is also a Λ-set defined by:

– FN (X)◦ = {∅} ∪ {(0, ∅)} ∪ {(1, α) : α ∈ X◦};
– M |=FN (X) α, with M ∈ SN, iff one the following conditions holds:

• α = ∅ and M →wh
∗ N ∈ AT;

• α = (0, ∅) and M →wh
∗ O; or

• α = (1, α′) and M →wh
∗ S(M ′) with M ′ |=X α′.

– ⊥FN (X) = ∅,

It is clear that if X is a saturated Λ-set, then FN (X) is also a saturated Λ-set.
Note that FN is monotone, in the sense that if X ⊆ Y , then FN (X) ⊆ FN (Y).
We write Fk

N to mean function FN iterated k times.
Consider the Λ-set⊥ = ({∅}, SN∩AT×{∅}, ∅). A fixpoint of FN (X) is reached

by iterating ω times, starting from ⊥. Let N = Fω
N (⊥).

Impredicativity. Following [11], we interpret the impredicative universe as the
set of degenerated Λ-sets.

Definition 14. A Λ-set X is degenerated, if the carrier-set X◦ is a singleton
{A}, where A is a saturated set, M |=X A iff M ∈ A, and ⊥X = A.

We write A for the degenerated Λ-set corresponding to a saturated set A.

3 We choose {∅} as atomic element, but any element of Ui will do.

342 B. Grégoire and J.L. Sacchini

A proposition, i.e. a term T of type Prop, is represented by a degenerated Λ-set,
whose only carrier represents a (possible) canonical proof.

Given a Λ-set X and a function Y such that for each α ∈ X◦, Yα is a degen-
erated Λ-set (with carrier yα), the carrier-set of Π(X,Y) is a singleton (the only
element being α ∈ X◦ �→ yα). The canonical representation of Π(X,Y) is given
by the degenerated Λ-set corresponding to the saturated set

↓(X,Y) = {M ∈ SN : N |=X α⇒ appx:T◦.U◦(M,N) |=Yα yα} .

Note that there is a Λ-iso p(X,Y) : Π(X,Y) → ↓(X,Y).
In the interpretation, we need to convert between the interpretation of a proof

term as an element of Π(X,Y) (if it needs to be applied), or as the canonical
proof ↓(X,Y). For this, we use the isomorphism p(X,Y).

We define the functions ΠΓ�T , ↓Γ�T , ↑Γ�T that give the interpretation of
products, abstractions, and applications (respectively), depending if the type
T is a proposition or not. In the case of proposition, these functions convert
between Π(X,Y) and the canonical representation ↓(X,Y). Otherwise, there is
no conversion needed. Their definition is given by:

– if Γ∞ � T∞ : Prop, then ΠΓ�T (X,Y) = ↓(X,Y), ↓Γ�T (X,Y) = p(X,Y),
and ↑Γ�T (X,Y) = p−1(X,Y);

– otherwise, ΠΓ�T (X,Y) = Π(X,Y), ↓Γ�T (X,Y) = idΠ(X,Y), and ↑Γ�T

(X,Y) = idΠ(X,Y).

Terms and contexts. The interpretation of an erased context Γ is denoted [Γ]
(an erased context is a context formed by erased terms). Assume a stage assign-
ment π. Given an erased context Γ , a term M and a sequence of values γ, the
interpretation of M under Γ is denoted [Γ �M]πγ .

We define the interpretation by induction on the structure of terms and con-
texts. In the case of fixpoint construction we use Hilbert’s choice operator.

Definition 15 (Interpretation of terms and contexts)

[[]] = {∅}
[Γ (x : T)] = {(γ, α) : γ ∈ [Γ] ∧ α ∈ [Γ � T∞]∞γ }

[Γ � Typei]
π
γ = Ui

[Γ � Prop]πγ = {X : X is a degenerated Λ-set}
[Γ � x]πγ = γ(x)

[Γ � Πx : T.U]πγ = ΠΓ�Πx:T.U ([Γ � T]πγ , [Γ (x : T) � U]πγ,)

[Γ � λx:T◦.U◦M]πγ = ↓Γ�Πx:T◦.U◦([Γ (x : T∞) �M]πγ,)

[Γ � appx:T◦.U◦(M,N)]πγ = ↑Γ�Πx:T◦.U◦([Γ �M]πγ)([Γ � N]πγ)

[Γ � nats]πγ = F �s�π

N (⊥)

[Γ � O]πγ = (0, ∅)
[Γ � S(N)]πγ = (1, [Γ � N]πγ)

On Strong Normalization of the CC with Type-Based Termination 343

[Γ � caseP◦ x := M of N0, N1]πγ =

⎧⎪⎨⎪⎩
⊥[Γ (x : nat) � P∞]πγ,⊥ if [Γ �M]πγ = ∅;
[Γ � N0]πγ if [Γ �M]πγ = (0, ∅);
↑Γ�T ([Γ � N1]πγ)(α) if [Γ �M]πγ = (1, α)

where T ≡ Πy : nat.P ◦ [x := S(y)]
[Γ � fix f(x : nat�) : U� := M]πγ = ε(F, P)

where F ∈ [Γ � Πx : nat∞.U∞]πγ , P is the conjunction of the following proper-
ties:

↑(F)∅ = ⊥[Γ (x : nat) � U∞]πγ,∅ ; (1)

↑(F)(0, ∅) = ↑([Γ (f : |T |) �M]πγ,F)(0, ∅); (2)

↑(F)(1, α) = ↑([Γ (f : |T |) �M]πγ,F)(1, α), for all (1, α) ∈ N (3)

and we write |T | for Πx : nat.|U | and ↑ for ↑Γ�|T |.
We write [Γ (x : T) �M]πγ, as a short hand for

α ∈ [Γ � T]πγ �→ [Γ (x : |T |) �M]πγ,α .

The conditions imposed on the interpretation of fixpoint construction ensure
the stability under μ-reductions. In the main soundness theorem, we prove that
the typing rules for fixpoint ensure the existence of a unique function F satisfying
the above conditions.

4.3 Interpretation of Simple Types

We define a second (relational) interpretation for simple types. The intention of
this second interpretation is to cope with the lack of size annotations in types.
Consider the following derivation:

Γ (x : nats) �M : natr

Γ � λx : nat.M : nats → natr

Note that s and r above could be any size expression. But this size information is
not present in the term λx : nat.M . The interpretation of this term is a function
in the set N → N, specifically α ∈ N �→ [M]α. To show that the term respects
the sizes s and r, we use the relational interpretation of the type. In the case of
nats → natr, the relational interpretation, denoted �·�, is

�nats → natr� = {(f1, f2) ∈ N → N : α < [s] ⇒ f1α = f2α < [r]}

Then, the interpretation satisfies ([λx : nat.M], [λx : nat.M]) ∈ �nats → natr�.
The relational interpretation can be extended to simple types. Intuitively, the
soundness judgment says that if Γ �M : T , then ([M], [M]) ∈ �T �.

The relational interpretation also satisfies the contravariance rule. Consider a
stage s′ � s; the relational interpretation of nats

′ → natr gives

�nats
′ → natr� = {(f1, f2) ∈ N → N : α < [s′] ⇒ f1α = f2α < [r]}

Since [s′] ≤ [s], we have �nats → natr� ⊆ �nats
′ → natr�.

344 B. Grégoire and J.L. Sacchini

Definition. Let T be a simple type such that [Γ � T∞]πγ1
, [Γ � T∞]πγ2

, [Γ � T]πγ1
,

and [Γ � T]πγ2
are Λ-sets and that [Γ � T]πγ1

= [Γ � T]πγ2
. The relational inter-

pretation of T , denoted �Γ � T �π
γ1,γ2

, is a Λ-set with a carrier-set included in

[Γ � T∞]πγ1
× [Γ � T∞]πγ2

.

It is defined as follows: if Γ∞ � T∞ : Prop, then

�Γ � T �π
γ1,γ2

= [Γ � T]πγ1
× [Γ � T]πγ2

;

otherwise, it is defined by induction on the structure of T :

– if T ≡ Πx : T1.T2 and simple(T1) and simple(T2). Assume �Γ � T1�π
γ1,γ2

is a
defined Λ-set (denoted by �T1�), and for every (α1, α2) ∈ �T1�, �Γ (x : |T1|) �
T2�π

(γ1,α1),(γ2,α2) is a defined Λ-set (denoted by �T2�(α1, α2)).
We define �Γ � T �π

γ1,γ2
= (X, |=,⊥), where

X = {(f1, f2) ∈ [Γ � T∞]πγ1
× [Γ � T∞]πγ2

:

(α1, α2) ∈ �T1� ⇒ (f1(α1), f2(α2)) ∈ �T2�(α1, α2)};
(4)

M |= (f1, f2) ⇐⇒ N |=�T1� (α1, α2) ⇒
appx:T◦.U◦(M,N) |=�T2�(α1,α2) (f1(α1), f2(α2))

(5)

⊥ = (⊥[Γ � T∞]πγ1
,⊥[Γ � T∞]πγ2

); (6)

– if T ≡ nats, we define �Γ � nats�π
γ1,γ2

= ([Γ � nats]πγ1
)2;

– otherwise, SV(T) = ∅ and we define �Γ � T �π
γ1,γ2

= ([Γ � T]πγ1
)2 .

Note that, intuitively, α1 and α2 are related in �nats�π if they are equal, and the
“height” of α1 is less than �s�π .

Given a simple type T , such that SV(T) = ∅, there might be more than one
clause of the above definition that applies. The following lemma states that the
definition does not depend on which clause we use.

Lemma 3. Let T be a term such that simple(T) and SV(T) = ∅. If �Γ � T �π
γ1,γ2

is defined, then �Γ � T �π
γ1,γ2

= ([Γ � T]πγ1
)2.

Figure 3 sums up some properties of the interpretation: stability under weak-
ening, substitution (of stages and terms), and reduction, monotonicity of stage
substitution, and soundness of subtyping. We use ·= to denote Kleene equality:
a

·= b iff a and b are both defined and equal, or if both are undefined.

4.4 Soundness

We extend the relational interpretation of types to contexts in the following way:

�[]�π = {(∅, ∅)}
�Γ (x : T)�π = {((γ1, α1), (γ2, α2)) : (γ1, γ2) ∈ �Γ �π ∧ (α1, α2) ∈ �Γ � T �π

γ1,γ2
}

Below is the main soundness theorem. In the following, we write [Γ �M]πγ1,γ2

to mean ([Γ �M]πγ1
, [Γ �M]πγ2

).

On Strong Normalization of the CC with Type-Based Termination 345

Term interpretation

Weakening: [ΓΔ � M]πγ,δ
·= [Γ (z : T)Δ �M]πγ,α,δ

Substitution: [Γ �M [ı := s]]πγ
·= [Γ � M]π(ı:=�s�π)

γ

[Γ, Δ [x := N] �M [x := N]]πγ,δ
·= [Γ (x : T)Δ �M]πγ,[Γ � N]πγ ,δ

Reduction: M → N ⇒ [Γ � M]πγ
·= [Γ � N]πγ

Relational interpretation

Weakening: �ΓΔ � U�π
(γ1,δ1),(γ2,δ2)

·= �Γ (z : T)Δ � U�π
(γ1 ,α1,δ1),(γ2,α2,δ2)

Substitution: �Γ � T [ı := s]�π
γ1,γ2

·= �Γ � T �
π(ı:=�s�π)
γ1,γ2

�ΓΔ [x := N] � T [x := N]�π
(γ1,δ1),(γ2,δ2)

·= �Γ (x : U)Δ � T �π
(γ1,ν1,δ1),(γ2,ν2,δ2)

where ν1 ≡ [Γ � N]πγ1

ν2 ≡ [Γ � N]πγ2

Monotony: s � r ∧ ı pos T ⇒ �Γ � T �
π(ı:=s)
γ1,γ2 ⊆ �Γ � T �

π(ı:=r)
γ1,γ2

Subtyping: T ≤ U ⇒ �Γ � T �π
γ1,γ2 ⊆ �Γ � U�π

γ1,γ2

Fig. 3. Properties of the interpretation

Lemma 4 (Soundness)

1. If Γ �M : T and (γ1, γ2) ∈ �Γ �π, then [Γ �M]πγ1,γ2
, �Γ � T �π

γ1,γ2
are defined

and
[Γ �M]πγ1,γ2

∈ �Γ � T �π
γ1,γ2

.

2. If Γ � T : u, simple(T), and (γ1, γ2) ∈ �Γ �π, then �Γ � T �π
γ1,γ2

is a defined
Λ-set.

3. If WF(Γ) and (γ1, γ2) ∈ �Γ �π, then (γ1, γ1) ∈ �Γ �π and (γ1, γ1) ∈ �Γ �∞.

4.5 Strong Normalization

In this section we prove our main result: strong normalization of CIC−̂.
A substitution is a mapping θ from variables to terms, such that θ(x) �= x

for a finite number of variables x. We use θ to denote substitutions, and ε to
denote the identity substitution. We write θ(x �→ M) for the substitution that
gives M when applied to x and θ(y) when applied to y �= x. We write Mθ for
the capture-avoiding substitution of the free variables of M with θ.

Definition 16. Let (γ1, γ2) ∈ �Γ �π. We define θ |=Γ
π (γ1, γ2) by the following

clauses:

ε |=Γ
π []

θ |=Γ
π (γ1, γ2) M |=�Γ�T �π

γ1,γ2
(α1, α2)

θ(x �→M) |=Γ (x:T)
π (γ1, α1), (γ2, α2)

Lemma 5. If Γ �M : T and (γ1, γ2) ∈ �Γ �π and θ |=Γ
π (γ1, γ2), then

Mθ |=�Γ�T �π
γ1,γ2

[Γ �M]πγ1,γ2

346 B. Grégoire and J.L. Sacchini

Corollary 1. If Γ �M : T then M is strongly normalizing.

Proof. It is not difficult to see that ε |=Γ
π ⊥Γ , where ⊥Γ is the sequence of atomic

elements of relational interpretation the types of Γ . The result follows from the
previous lemma, and the fact that realizers are strongly normalizing. ��

As a consequence of soundness and strong normalization, we can easily derive
logical consistency.

Theorem 1. There is no term M such that �M : Πx : Prop.x.

5 Related Work

The idea of using sized types to ensure termination and productivity was initi-
ated by Hughes, Pareto and Sabry [8]. Abel [1] extended system Fω with sized
(co-)inductive types. In turn, CIĈ− is derived from CIĈ [4]. We refer to these
papers for further information and examples, and focus on work related to strong
normalization.

Our proof of strong normalization closely follows the work of Melliès and
Werner [11]. The authors use Λ-sets to develop a generic proof of strong normal-
ization for Pure Type Systems. They avoid the use of inaccessible cardinals, but
it is unlikely that the same can be achieved in the presence of inductive types.

Λ-sets were introduced by Altenkirch in [2]. He develops a generic model for
the Calculus of Constructions (CC), that can be instantiated with Λ-sets to
obtain a proof of strong normalization. He also extends the proof to include one
inductive type (trees) at the impredicative level.

There are in the literature several proofs of strong normalization for (non-
dependent) typed lambda calculi extended with sized types. We refer the reader
to [1,4] for further references.

On dependent types, an extension with type-based termination was first con-
sidered by Giménez [6]. However, stages are not explicitly represented, which
complicates the definition of mutually recursive functions.

Barras [3] has formalized in Coq a proof of consistency CCω extended with
natural numbers. Termination of recursive functions is ensured by a restricted
form of sized types, inspired by the work of Giménez. However, it is not possible
to express size-preserving functions, which prevents the typing of quicksort.

Blanqui [5] uses sized types to ensure termination of CC extended with higher-
order rewrite rules. In our case, we use just fix/case instead of rewrite rules.
However, he makes some assumptions on the confluence and subject reduction
of the combination of rewriting and β-reduction. Nevertheless, it is of interest
to see if these techniques can be extended to CIC−̂.

Finally, let us mention the work of Wahlstedt [12]. He proves weak normaliza-
tion of a predicative type theory in the style of Martin-Löf type theory. Termi-
nation is ensured using the size-change principle [9]. While this principle is very
powerful, his system cannot express size-preserving functions.

On Strong Normalization of the CC with Type-Based Termination 347

6 Conclusions

We presented CIC−̂, an extension of CIC with a type-based termination mech-
anism. We have restricted to one inductive type, namely natural numbers, and
we have proved that the system is strongly normalizing and logically consistent.
The interpretation can be extended to other (positive) inductive types (in the
predicative universes). This is a intermediate result towards our goal of prov-
ing logical consistency of an extension of CIC with a type-based termination
mechanism.

There are some issues related with CIĈ that are present in CIĈ− and have not
been addressed in this work, namely, global definitions and mutually recursive
functions. We have preliminary results in this direction.

Acknowledgments. The authors would like to thank Bruno Barras, Hugo
Herbelin, and Benjamin Werner for many discussions on strong normalization
and type-based termination.

References

1. Abel, A.: A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD
thesis, Ludwig-Maximilians-Universität München (2006)

2. Altenkirch, T.: Constructions, Inductive Types and Strong Normalization. PhD
thesis, University of Edinburgh (November 1993)

3. Barras, B.: Sets in coq, coq in sets. In: 1st Coq Workshop (August 2009)
4. Barthe, G., Grégoire, B., Pastawski, F.: CIĈ : Type-based termination of recursive

definitions in the Calculus of Inductive Constructions. In: Hermann, M., Voronkov,
A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 257–271. Springer, Heidelberg
(2006)

5. Blanqui, F.: A type-based termination criterion for dependently-typed higher-order
rewrite systems. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 24–39.
Springer, Heidelberg (2004)

6. Giménez, E.: Structural recursive definitions in type theory. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 397–408. Springer,
Heidelberg (1998)

7. Grgoire, B., Sacchini, J.L.: On strong normalization of the Calculus of Construc-
tions with type-based termination (2010),
http://www-sop.inria.fr/members/Jorge-Luis.Sacchini/papers/sn.pdf

8. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: POPL, pp. 410–423 (1996)

9. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: POPL, pp. 81–92 (2001)

10. Luo, Z.: Computation and reasoning: a type theory for computer science. Oxford
University Press, Inc., New York (1994)

11. Melliès, P.-A., Werner, B.: A generic normalisation proof for pure type systems. In:
Giménez, E. (ed.) TYPES 1996. LNCS, vol. 1512, pp. 254–276. Springer, Heidelberg
(1998)

12. Wahlstedt, D.: Dependent Type Theory with Parameterized First-Order Data
Types and Well-Founded Recursion. PhD thesis, Chalmers University of Tech-
nology (2007) ISBN 978-91-7291-979-2

http://www-sop.inria.fr/members/Jorge-Luis.Sacchini/papers/sn.pdf

Aligators for Arrays�

(Tool Paper)

Thomas A. Henzinger1, Thibaud Hottelier2,
Laura Kovács3, and Andrey Rybalchenko4

1 IST Austria
2 UC Berkeley
3 TU Vienna

4 TUM

Abstract. This paper presents Aligators, a tool for the generation of universally
quantified array invariants. Aligators leverages recurrence solving and algebraic
techniques to carry out inductive reasoning over array content. The Aligators’
loop extraction module allows treatment of multi-path loops by exploiting their
commutativity and serializability properties. Our experience in applying Aliga-
tors on a collection of loops from open source software projects indicates the
applicability of recurrence and algebraic solving techniques for reasoning about
arrays.

1 Introduction

Loop invariants build a basis for reasoning about programs and their automatic dis-
covery is a major challenge. Construction of invariant equalities over numeric scalar
variables can be efficiently automated using recurrence solving and computer algebra
techniques [15]. A combination of quantifier elimination techniques together with a pro-
gram instrumentation using an auxiliary loop counter variable generalizes the method
of [15] to the construction of invariant inequalities [12]. While the methods of [15,12]
are restricted to reasoning over scalars, recurrence solving and algebraic techniques
can provide a basis for computing invariants over vector data types, e.g., arrays. For a
restricted class of loops that do not contain any branching statements and under non-
deterministic treatment of the loop condition, we can compute universally quantified
array invariants by using recurrence solving over the loop body [13].

In this paper we eliminate the restrictions of [15,12,13], and present the Aligators
tool for generating quantified array invariants for loops containing conditional state-
ments that takes loop conditions into account. Quantified loop invariants are inferred
by Aligators based on recurrence solving over array indexes. The obtained invariants
are derived without using pre- and post conditions; the specification of the loop can
be subsequently used further. The invariant inference engine of Aligators relies on two
steps (Section 3.2): (i) it applies full power of inductive reasoning provided by recur-
rence solving over scalar variables and derives the most precise inductive content over

� This research was partly supported by the Swiss NSF. The third author is supported by an FWF
Hertha Firnberg Research grant (T425-N23).

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 348–356, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Aligators for Arrays 349

Program
Code

Fixed-point
abstraction

Serializability
check

Commutativity
check

Simplified
loops

ALIGATORS Quantified
invariants

Loop extraction

Fig. 1. The overall workflow of Aligators

scalars, (ii) it combines recurrence solving and algebraic techniques with the theory
of uninterpreted functions to derive invariant properties over arrays. Due to the exact
computations of the algebraic techniques, Aligators only supports loops with restricted
branching control-flow (Section 3.1).

To make Aligators amenable for practical software verification, we built and inter-
faced Aligators with a loop extraction module (Section 4.1). This module takes as input
a large code, and applies path analysis heuristics to turn loops into the format required
by Aligators.

The overall workflow of Aligators is illustrated in Figure 1.

Implementation and Experiments. Aligators is implemented in Mathematica 5.2 [19],
whereas the loop extraction module interfaced with Aligators is written in OCaml [5].
Aligators can be downloaded from

http://mtc.epfl.ch/software-tools/Aligators/

We have successfully applied Aligators on interesting examples involving arithmetic
and array reasoning (Section 4), as well as on a large number of loops extracted from
the Netlib repository (www.netlib.org). The invariants returned by Aligators were
generated in essentially no time, on a machine with a 2.0GHz CPU and 2GB of RAM.

Related Work. Universally quantified invariants are crucial in the verification process
of programs with unbounded data structures – see e.g. [7,14,9,18,10,16].

In [14,9,18] quantified invariants are inferred by deploying predicate abstraction over
a set of a priori defined predicates. Alternatively, in [10] quantified invariants are de-
rived by using constraint solving over the unknown coefficients of an a priori fixed in-
variant template. Unlike these works, Aligators requires no user guidance in providing
predicates or templates, but it can be applied to loops with a restricted control-flow.

Based on interval-based abstract interpretation, in [7,11] quantified invariants are
also generated with no user guidance. Unlike these approaches, we do not use abstract
interpretation, and apply simple path analysis to translate multi-path loops into simple
ones. In [16] invariants with quantifier alternations are obtained using a first-order the-
orem prover. Contrarily to [16], we combine uninterpreted functions with recurrence
solving over array indexes, but can only infer universally quantified invariants.

350 T.A. Henzinger et al.

Table 1. Aligators results on benchmarks from [7,14,9]

Benchmark Program Quantified invariant

Copy [7]

i:=0;
while (i < N) do
B[i]:=A[i]; i:=i + 1

end do

∀k. 0 ≤ k<i =⇒ (B[k] = A[k]∧k < N)

Copy Prop [14]

i:=0;
while (i < N) do
A[i]:=0; i:=i + 1

end do;
i:=0;
while (i < N) do
B[i]:=A[i]; i:=i + 1

end do

(∀k. 0 ≤ k<i =⇒ (A[k] = 0∧k < N))
∧
(∀k. 0 ≤ k<N =⇒ (B[k] = A[k]∧k < N))

Init [14]

i:=0;
while (i < N) do
A[i]:=0; i:=i + 1

end do

∀k. 0 ≤ k<i =⇒ (A[k] = 0∧k < N)

Partition [9]

i:=0; j1:=0; j2:=0;
while (i < N) do
if (A[i]≥0)
then C[j1]:=A[i]; j1:=j1 + 1
elseB[j2]:=A[i]; j2:=j2 + 1 end if;
i:=i + 1

end do

(∀k. 0 ≤ k<j1 =⇒ (k < N∧C[k]≥0))
∧
(∀k. 0 ≤ k<j2 =⇒ (k < N∧B[k] < 0))

Part Init1 [14]

i:=0; j:=0;
while (i < N) do
if (A[i]≥0)
thenB[j]:=i; j:=j + 1 end if;
i:=i + 1end do

∀k. 0 ≤ k<j =⇒ (B[k] < N∧A[B[k]]≥0)

Part Init2 [7]

i:=0; j:=0;
while (i < N) do
if (A[i] = B[i])
then C[j]:=i; j:=j + 1end if;
i:=i + 1

end do

∀k. 0 ≤ k<j =⇒ (C[k] < N∧A[C[k]]=B[C[k]])

Permutation

i:=0;
while (i < N) do
B[σ(i)]:=A[i]; ; i:=i + 1

end do

∀k. 0 ≤ k<i =⇒ (B[σ(k)] = A[k]∧k < N)

Vararg [14]

i:=0;
while (A[i] �=0) do
i:=i + 1;

end do

∀k. 0 ≤ k<i =⇒ (A[k] < 0∨A[k] > 0)

2 Aligators in Action

To invoke Aligators, one uses the following command.

Command 2.1 : Aligators[Loop, IniVal → list of assignments]

Input: Loop1 and, optionally, a list of assignments specifying initial values of scalars
Output: Loop invariant φVar ∧ φArrs , where φVar is a scalar invariant and φArrs is a
quantified invariant over arrays

EXAMPLE 2.1: Consider the Partition program [9] given in Table 1. The loop copies
the non-negative (resp. negative) elements of an array A into an array B (resp. into an
array C). The invariant returned by Aligators is listed below.

1 Inputs to Aligators are while-loops as in (1).

Aligators for Arrays 351

Input: Aligators[while (i < N) do
Aligators[if (A[i] ≥ 0) then C[j1]:=A[i]; j1:=j1 + 1
Aligators[else B[j2]:=A[i]; j2:=j2 + 1 end if;
Aligators[i:=i + 1 end do,
Aligators[IniVal→ {i:=0; j1:=0; j2:=0}]

Output: (i = j1 + j2) ∧ (N > 0 =⇒ i ≤ N) ∧
(∀k)
(
0 ≤ k < j1 =⇒ (k < N ∧ C[k] ≥ 0)

)
∧

(∀k)
(
0 ≤ k < j2 =⇒ (k < N ∧ B[k] < 0)

)
The above invariant is composed of (i) two quantifier-free linear properties over the
scalars i, j1, and j2, and (ii) two quantified properties over the arrays B and C. Let us
note that the scalar invariant generation method of [15,12] would fail deriving such a
complex invariant, as first-order reasoning over the arrays B and C would be required.
Moreover, due to the presence of conditional statements in the loop body, the technique
of [13] could not be either applied for quantified invariant generation.

3 Invariant Generation with Aligators

Aligators offers software support for automated invariant generation by algebraic tech-
niques over the rationals and arrays.

3.1 Programming Model

Notations. In what follows, K denotes the domain of values of scalar variables (e.g.
integers Z). Throughout this paper, the set of scalar and array variables will respectively
be denoted by Var and Arrs, where Arrs = RArrs ∪WArrs is a disjoint union of the
sets RArrs of read-only and WArrs of write-only array variables.

Expressions. The language of expressions of Aligators’ input contains constants from
K, variables from Var ∪Arrs, logical variables, and some function and predicate sym-
bols. We only consider the arithmetical function symbols +, −, and · as interpreted,
all other function symbols are uninterpreted. Similarly, only the arithmetical predicate
symbols =, �=, ≤, ≥, < and > are interpreted, all other predicate symbols are treated
as uninterpreted. For an array variable A and expression e, we will write A[e] to mean
the element of A at position e.

Inputs to Aligators. The syntax of Aligators inputs is given below.

while (b0) do
if (b1) then α11; . . . ;α1s1

else . . . else if (bd) αd1; . . . ;αdsd
end if

end do

(1)

where b0, . . . , bd are boolean expressions, andαkl are assignment statements over Var∪
Arrs. For simplicity, we represent (1) by an equivalent collection of guarded assign-
ments [3], as given below.

G1 → α11; . . . ;α1s1

· · ·
Gd → αd1; . . . ;αdsd

, (2)

352 T.A. Henzinger et al.

where formulas Gk are called the guards of the guarded assignments. The loop (2) is a
multi-path loop if d > 1. If d = 1, the loop (2) is called a simple-loop.

Similarly to [13], the following conditions on (2) are imposed:

1. For all k, l ∈ {1, . . . , d}, if k �= l then the formula Gk ∧Gl is unsatisfiable.
2. If some αku updates an array variable Au ∈ WArrs, and some αkv for u �= v in

the same guarded assignment updates an array variable Av ∈ WArrs, then Au and
Av are different arrays.

3. The assignments αku’s have one of the following forms:

(a) Array assignments: A[e] := f(Var∪RArrs), (3)

whereA ∈ WArrs, e is an expression over Var , and f(Var∪RArrs) is an arbitrary
expression over Var∪RArrs, but contains no write-arrays.

(b) Scalar assignments: x := poly(Var), (4)

where x ∈ Var , and poly(Var) is a polynomial expression in K[Var] over Var
such that the total degree of any monomial in x from poly(Var) is exactly 1.

4. If some αku updates a variable v ∈ Var ∪ Arrs, and some αlv with l �= k updates
the same variable v, then αku is syntactically the same as αlv . That is, variable v is
modified in the same way in the kth and lth guarded assignments.

In what follows, a variable v ∈ Var∪Arrs satisfying condition 4 above will be called
a commutable variable. Note that a commutable variable is modified in the same way in
all guarded assignments of (2). That is, updates to a commutable variable are described
by only one polynomial expression as given in (4). Reasoning over commutable vari-
ables requires thus no case distinctions between various behaviors on different guarded
assignments of (2). The guarded assignments2 of (2) are called commutable if their
common variables are commutable.

3.2 Invariant Inference with Aligators

Invariant Generation over Scalars. Invariant properties over scalars variables are in-
ferred as presented in [15,12]. Namely, (i) assignments over scalars are modeled by
recurrence equations over the loop counter n; (ii) closed forms of variables as func-
tions of n are derived by recurrence solving; (iii) (all) scalar invariant equalities are
inferred by eliminating n from the closed forms of variables; and (iv) scalar invariant
inequalities over commutable variable are obtained using quantifier elimination over n.

Invariant Generation over Arrays. In our process of quantified invariant generation,
(i) we first rewrite (1) into (2), (ii) generate quantified invariants over non-commutable
array variables for each simple-loop given by a guarded assignment of (2), and (iii) take
conjunction of the quantified invariants to obtain a quantified invariant of (1).
(i) Input loops (1) to Aligators satisfy3 the restrictions 1-4 given on page 352. Hence,
guards are disjoint, and branches are commutable. Internally, Aligators rewrites an input

2 Respectively, conditional branches of (1).
3 Aligators checks whether an input loop satisfies the restrictions of Section 3.1. If this is not the

case, Aligators returns an error messages about the violated restriction.

Aligators for Arrays 353

loop (1) into (2) (as illustrated in Example 3.2), and proceeds with generating invariants
for the simple-loops of (2).
(ii) Aligators next infers quantified invariants for the following simple-loop of (2):

G → α1; . . . ;αs. (5)

W.l.o.g., we assume that (5) contains only one array update, as below:

A[i] := f(Var∪RArrs), where i ∈ Var and A ∈ WArrs are non-commutable. (6)

Based on the programming model given on page 352, since variables i and A are non-
commutable, changes to i and A can only happen on the guarded assignment (5). Re-
currence solving thus can be applied to derive exact closed form representation of i
and A.

Let us denote by n ≥ 0 the loop counter. We write x(n) to mean the value of x ∈ Var
at iteration n. As array updates satisfy the restrictions of Section 3.1, we write A[x(n)]
instead of A(n)[x(n)] to speak about the value of the xth element of A at iteration n of
the loop.

Based on (5) and (6), at iteration n of (5) the following property holds:

G(n) ∧A[i(n+1)] = f(Var (n+1) ∪ RArrs), (7)

where Var (n+1) = {x(n+1) | x ∈ Var}, and G(n) is the formula obtained by substi-
tuting variables x with x(n) in G. Formula (7) holds at any iteration k upto n. Hence:

(∀k)0 ≤ k ≤ n =⇒ G(k) ∧A[i(k+1)] = f(Var (k+1) ∪RArrs) (8)

We further eliminate n from (8), as follows. (i) If the closed forms of loop variables is
a linear system in n, linear algebra methods are used to express n as a linear function
p(V ar) ∈ K[V ar]. (ii) Otherwise, Gröbner basis computation [1] is used to compute n
as a polynomial function p(V ar) ∈ K[V ar]. We thus obtain the quantified invariant:

(∀k)0 ≤ k ≤ p(Var) =⇒ G(k) ∧A[i(k+1)] = f(Var (k+1) ∪ RArrs) (9)

EXAMPLE 3.1: Consider i < N ∧A[i] > 0 → C[j1] := A[i]; j1 := j1 + 1; i := i + 1.
Let n ≥ 0 denote its loop counter. Following (8), we have:

i(n) < N ∧A[i(n)] > 0 ∧ C[j(n+1)
1 − 1] = A[i(n+1) − 1],

where j
(n+1)
1 = j

(n)
1 + 1 and i(n+1) = i(n) + 1. Using recurrence solving and replacing

the (final) value j(n+1)
1 by j1, we obtain n = j1 − 1− j

(0)
1 . It thus follows:

(∀k)0 ≤ k ≤ j1 − 1− j
(0)
1 =⇒ k < N ∧A[k] > 0 ∧ C[k] = A[k].

(iii) To turn (9) into a quantified invariant of (2), we finally make sure that:
- when eliminating n from (8), n is computed as a polynomial function over only non-
commutable scalar variables;
- formula (9) is simplified to contain only non-commutable scalar and array variables.

The quantified invariant of (1) is given by the conjunction of the quantified invariants
without commutable variables of each simple-loop of (2).

354 T.A. Henzinger et al.

EXAMPLE 3.2: The main steps for quantified invariant generations with Aligators are
illustrated on the Partition program of Table 1. The initial values of both i and j1 are 0.

(i) Guarded assignments: (ii) Quantified invariants
with commutable variables: without commutable variables:

i < N ∧ A[i] ≥ 0 (∀k)0 ≤ k < j1 =⇒ (∀k)0 ≤ k < j1 =⇒
→ C[j1]:=A[i]; k < N ∧A[k] ≥ 0 ∧A[k] = C[k] k < N ∧ C[k] ≥ 0
→ j1:=j1 + 1; i:=i + 1

i < N ∧ A[i] < 0 (∀k)0 ≤ k < j2 =⇒ (∀k)0 ≤ k < j2 =⇒
→ B[j2]:=A[i]; k < N ∧A[k] < 0 ∧B[k] = A[k] k < N ∧ B[k] < 0
→ j2:=j2 + 1; i:=i + 1

The final invariant of the Partition program is given in Example 2.1.

4 Experimental Results

We report on our experimental results with Aligators, obtained on a machine with
2.0GHz CPU and 2GB of RAM.

Aligators on benchmark examples. We ran Aligators on a collection of benchmark
examples taken from [7,14,9]. Our results are summarized in Table 1.

4.1 Loop Extraction for Aligators

Aligators supports modular reasoning by analyzing one loop at a time. To run Aligators
on large programs with more than one loop, we built and interfaced Aligators with
a loop extraction module written in OCaml [5]. This module extracts and translates
loops from large C programs into the shape of (1). For doing so, the loop extraction
module takes one complex C program as input, and outputs one or more loops that can
be further fed into Aligators. To this end, three main techniques4 are applied: (i) fixed
point abstraction, (ii) serializability check, and (iii) commutativity check.

Fixed Point Abstraction. Given a loop, the goal of this step is to find the largest se-
quence of loop assignments satisfying the restrictions given in Section 3.1. To this end,
we abstract away all loop assignments that either violate the input requirements of Ali-
gators, or depend on variables whose assignments do not satisfy Section 3.1. For ab-
stracting assignment away, we check if the assignment is side-effect free. If yes, the
assignment can be soundly approximated by an uninterpreted function. We recursively
repeat the previous steps, until a fixed point is reached. As a result, we either obtain an
empty loop body which means that the loop does not fit into our programming model,
or a sequence of assignments that is a sound approximation of the original loop.

Serializability check. Let us denote by ρi the guarded assignment Gi → αi1; . . .;αisi

from (2). The role of the serialization check is to turn, if possible, a multi-path loop (2)
into an equivalent collection of simple-loops.

4 The loop extraction module performs other small steps as well – e.g. for-loops are rewritten in
their while-loop format.

Aligators for Arrays 355

Table 2. The first column is the name of the program analyzed. The second and third columns
give respectively the lines of code and the total number of loops. The fourth column contains the
number of loops that fall into our programming model. The fifth column presents the number of
loops for which invariants were inferred by Aligators, whereas the last column gives the number
of those invariants which describe one or more array content.

Program LoC Loops Analyzable Loops Invariants Array Invariants
Gzip 8607 201 100 62 39
Bzip2 6698 260 106 75 35
OggEnc 58413 680 464 185 11

Using regular expression-like notation, we check whether the set of all possible loop
executions is included in the set L = {ρ∗i1 ; . . . ; ρ

∗
id
| (ρi1 , . . . , ρid

) is a permutation of
(ρ1, . . . , ρd)}. Solving this query involves reasoning in the combined quantifier-free
theory of integers, arrays, and uninterpreted functions, which can be efficiently solved
using SMT solvers. To this end, we make use of the SMT solver Z3 [2].

Note that the serializability check requires the construction of all permutations of
length d over (ρ1, . . . , ρd). Our experimental results show that the number d of loop
paths in practice is small. For the programs we analyzed, more than 80% of the loops
have less than 3 branches, and 5% of the loops have been simplified with the serializ-
ability check.

EXAMPLE 4.1: Consider the loop given below.

i:=1;
for(i:=1; i≤n; i++) do
if (i≤a) then A[i]:=B[i] else A[i]:=0 end if
end do

The result of serializability check on the above loop is a collection of two simple-loops,
as follows.

i := 1 i:=a + 1
while(i≤a) do while(i≤n) do

A[i]:=B[i]; i := i + 1 A[i]:=0; i := i + 1
end do end do

Commutativity check. The goal of this step is to collapse multi-path loops (2) with
only commutable variables into a simple-loop. To this end, we check whether the as-
signments of variables are syntactically the same in all branches.

Aligator on large programs. We ran Aligators on two file-compression tools, Gzip
[6] and Bzip2 [17], and on the MP3 encoder OggEnc [4]. The results are presented
in Table 2. The array invariants inferred by Aligators express copy/permutation/shift/
initialization relations between two arrays. Our results suggests that Aligators generated
invariants for over 25% of the extracted loops. The second column of Table 2 shows that
roughly half of the loops fits into our programming model. The obtained invariants were
generated by Aligators in essentially no time; Aligators can analyze and reason about
50 loops per second.

356 T.A. Henzinger et al.

5 Conclusion

We describe Aligators, an automated tool for quantified invariant generation for pro-
grams over arrays. Our tool requires no user guidance, it applies recurrence solving to
arrays, and has been successfully applied to generate invariants for loops extracted from
large, non-trivial programs. Further work includes integrating control-flow refinement
techniques, such as [8], into Aligators, and using our tool in conjunction with other
approaches, such as [10,16], to invariant generation.

References

1. Buchberger, B.: An Algorithm for Finding the Basis Elements of the Residue Class Ring of
a Zero Dimensional Polynomial Ideal. J. of Symbolic Computation 41(3-4), 475–511 (2006)

2. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

3. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs (1976)
4. Smith, M., et al.: The OggEnc Home Page (1994), http://www.xiph.org/
5. Leroy, X., et al.: The Objective Caml system - release 3.11. INRIA (2008)
6. Gailly, J., Adler, M.: The Gzip Home Page (1991), http://www.gzip.org/
7. Gopan, D., Reps, T.W., Sagiv, S.: A Framework for Numeric Analysis of Array Operations.

In: Proc. of POPL, pp. 338–350 (2005)
8. Gulwani, S., Jain, S., Koskinen, E.: Control-flow Refinement and Progress Invariants for

Bound Analysis. In: Proc. of PLDI, pp. 375–385 (2009)
9. Gulwani, S., Tiwari, A.: Combining Abstract Interpreters. In: Proc. of PLDI, pp. 376–386

(2006)
10. Gupta, A., Rybalchenko, A.: InvGen: An Efficient Invariant Generator. In: Bouajjani, A.,

Maler, O. (eds.) Computer Aided Verification. LNCS, vol. 5643, pp. 634–640. Springer, Hei-
delberg (2009)

11. Halbwachs, N., Péron, M.: Discovering Properties about Arrays in Simple Programs. In:
Proc. of PLDI, pp. 339–348 (2008)

12. Henzinger, T.A., Hottelier, T., Kovács, L.: Valigator: A Verification Tool with Bound and
Invariant Generation. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 333–342. Springer, Heidelberg (2008)

13. Henzinger, T.A., Hottelier, T., Kovács, L., Voronkov, A.: Invariant and Type Inference for
Matrices. In: Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 163–
179. Springer, Heidelberg (2010)

14. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: Damm, W., Hermanns, H.
(eds.) CAV 2007. LNCS, vol. 4590, pp. 193–206. Springer, Heidelberg (2007)

15. Kovács, L.: Reasoning Algebraically About P-Solvable Loops. In: Ramakrishnan, C.R., Re-
hof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 249–264. Springer, Heidelberg (2008)

16. Kovács, L., Voronkov, A.: Finding Loop Invariants for Programs over Arrays Using a Theo-
rem Prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 470–485.
Springer, Heidelberg (2009)

17. Seward, J.: The Bzip2 Home Page (1996), http://www.bzip.org/
18. Srivastava, S., Gulwani, S.: Program Verification using Templates over Predicate Abstraction.

In: Proc. of PLDI, pp. 223–234 (2009)
19. Wolfram, S.: The Mathematica Book. Version 5.0. Wolfram Media (2003)

http://www.xiph.org/
http://www.gzip.org/
http://www.bzip.org/

Clause Elimination Procedures for CNF Formulas�

Marijn Heule1, Matti Järvisalo2, and Armin Biere3

1 Department of Software Technology, Delft University of Technology, The Netherlands
2 Department of Computer Science, University of Helsinki, Finland

3 Institute for Formal Models and Verification, Johannes Kepler University Linz, Austria

Abstract. We develop and analyze clause elimination procedures, a specific fam-
ily of simplification techniques for conjunctive normal form (CNF) formulas. Ex-
tending known procedures such as tautology, subsumption, and blocked clause
elimination, we introduce novel elimination procedures based on hidden and
asymmetric variants of these techniques. We analyze the resulting nine (including
five new) clause elimination procedures from various perspectives: size reduc-
tion, BCP-preservance, confluence, and logical equivalence. For the variants not
preserving logical equivalence, we show how to reconstruct solutions to original
CNFs from satisfying assignments to simplified CNFs. We also identify a clause
elimination procedure that does a transitive reduction of the binary implication
graph underlying any CNF formula purely on the CNF level.

1 Introduction

Simplification techniques applied both before (i.e., in preprocessing) and during search
have proven integral in enabling efficient conjunctive normal form (CNF) level Boolean
satisfiability (SAT) solving for real-world application domains. Indeed, there is a large
body of work on preprocessing CNF formulas (see [1–11] for examples), based on
e.g. variable elimination and equivalence reasoning. Further, while many SAT solvers
rely mainly on Boolean constraint propagation (i.e., unit propagation) during search,
it is possible to improve solving efficiency by applying additional simplification tech-
niques also during search, as witnessed e.g. by PrecoSAT (http://fmv.jku.at/
precosat)—one of the most successful SAT solvers in the 2009 SAT Competition.
Noticeably, when scheduling combinations of simplification techniques during search,
even quite simply ideas, such as removal of subsumed clauses, can bring additional
gains by enabling further simplifications by other techniques.

This work is motivated on one hand by the possibilities of lifting SAT solving effi-
ciency further by integrating additional simplification techniques to the solving process
before and/or during search, and on the other by understanding the relationships be-
tween different simplification techniques. In this paper, we concentrate on developing
and analyzing clause elimination procedures, a specific family of simplification tech-
niques for CNF formulas. Prior examples of such procedures are (explicit) tautology
elimination (removing all tautologies from a CNF), subsumption elimination [7] (re-
moving all subsumed clauses), and blocked clause elimination [11] (removing blocked

� The first author is supported by Dutch Organization for Scientific Research under grant
617.023.611, and the second author by Academy of Finland under grant #132812.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 357–371, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://fmv.jku.at/precosat
http://fmv.jku.at/precosat

358 M. Heule, M. Järvisalo, and A. Biere

clauses [12]). As extensions of these procedures we introduce novel elimination proce-
dures based on hidden and asymmetric variants of the techniques.

We analyze the resulting nine clause elimination procedures from various perspec-
tives. One property is effectiveness (or size reduction), i.e., the ability to remove clauses
and thus reduce the size of the CNF formula. Another orthogonal and practically rel-
evant property is BCP-preservance, i.e, the ability to preserve all possible Boolean
constraint propagations (i.e., unit propagations) that can also be done on the original
CNF. The third property, confluence, implies that a procedure has a unique fixpoint.
The fourth is logical equivalence w.r.t. the original CNF, i.e. preserving the set of sat-
isfying assignments. For the variants that do not preserve logical equivalence, we show
how to efficiently reconstruct solutions to original CNFs from satisfying assignments
to simplified CNFs; this is important since in many application scenarios one needs to
extract a satisfying assignment (witness) to the original SAT instances. Furthermore,
we develop an extension of hidden tautology elimination that does a transitive reduc-
tion [13] (a structural property) of the binary implication graph underlying any CNF
formula purely on the CNF level. We also evaluate the practical effectiveness of selected
procedures, investigating both the CNF size reduction and resulting solving times.

This paper is organized as follows. After preliminaries (Sect. 2), we present an
overview of the results on the properties of clause elimination procedures (Sect. 3). Then
detailed analysis is presented (Sect. 4–6), followed by a section on solution reconstruc-
tion (Sect. 7). Then, before concluding, experimental results are presented (Sect. 8).

2 Preliminaries

CNF. For a Boolean variable x, there are two literals, the positive literal, denoted by
x, and the negative literal, denoted by x̄. A clause is a disjunction of literals and a CNF
formula a conjunction of clauses. A clause can be seen as a finite set of literals and
a CNF formula as a finite set of clauses. A unit clause contains exactly one literal. A
clause is a tautology if it contains both x and x̄ for some x. A truth assignment for a
CNF formula F is a function τ that maps variables in F to {t, f}. If τ(x) = v, then
τ(x̄) = ¬v, where ¬t = f and ¬f = t. A clause C is satisfied by τ if τ(l) = t for some
l ∈ C. An assignment τ satisfies F if it satisfies every clause in F . The set of literals
occurring in a CNF formula F is denoted by lits(F). Formulas are logically equivalent
if they have the same set of satisfying assignments over the common variables.

BCP and Failed Literals. For a CNF formula F , Boolean constraint propagation
(BCP) (or unit propagation) propagates all unit clauses, i.e. repeats the following until
fixpoint: if there is a unit clause (l) ∈ F , remove from F \ {(l)} all clauses that contain
the literal l, and remove the literal l̄ from all clauses in F . The resulting formula is re-
ferred to as BCP(F). If (l) ∈ BCP(F) for some unit clause (l) /∈ F , we say that BCP
assigns the literal l to t (and the literal l̄ to f). If (l), (l̄) ∈ BCP(F) for some literal
l /∈ F (or, equivalently, ∅ ∈ BCP(F)), we say that BCP derives a conflict.

For a partial assignment τ over the variables in F , let BCP(F, τ) := BCP(F ∪Tτ ∪
Fτ), where Tτ = {(x) | τ(x) = t} and Fτ = {(x̄) | τ(x) = f}. It is easy to see that
BCP has a unique fixpoint for any CNF formula, i.e., BCP is confluent.

Clause Elimination Procedures for CNF Formulas 359

A literal l is a failed literal if BCP(F ∪{(l)}) contains the empty clause ∅, implying
that F is logically equivalent to BCP(F ∪ {(l̄)}). For a formula F , failed literal elimi-
nation [1–3] (FLE) repeats the following until fixpoint: if there is a failed literal l in F ,
let F := BCP(F ∪ {(l̄)}). We denote the formula resulting from applying failed literal
elimination on F by FLE(F). Since BCP is confluent, so is FLE, too.

Binary Implication Graphs and Equivalent Literal Substitution. Given a CNF for-
mula F , we denote in the following by F2 the set of binary clauses contained in F . For
any F , one can associate with F2 a unique directed binary implication graph (or simply
BIG(F)) with the node set lits(F2) and edge relation {〈l̄, l′〉, 〈l̄′, l〉 | (l ∨ l′) ∈ F2}.
In other words, for each binary clause (l ∨ l′) in F , the two implications l̄ → l′ and
l̄′ → l, represented by the binary clause, occur as edges in BIG(F). The strongly con-
nected components (SCCs) of BIG(F) describe equivalent classes of literals (or simply
equivalent literals) in F2. Equivalent literal substitution (ELS) refers to substituting in
F , for each SCC G of BIG(F), all occurrences of the literals occurring in G with the
representative literal of G. Similar definitions occur in [8]. Notice that ELS is confluent
modulo variable renaming.

3 Overview of Contributions

Before more detailed analysis, we now give an overview of the main results of this pa-
per. We focus on nine different clause elimination procedures that are based on three
variants (explicit, hidden, and asymmetric) of clause elimination techniques that re-
move tautological, subsumed, and blocked clauses. For (explicit) tautology elimination
(TE), we have the variants hidden tautology elimination (HTE) and asymmetric tautol-
ogy elimination (ATE). For (explicit) subsumption elimination (SE), we introduce the
hidden and asymmetric variant HSE and ASE, respectively, and for (explicit) blocked
clause elimination (BCE), the hidden and asymmetric variants HBCE and ABCE, resp.

A relevant aspect of simplification techniques is the question of how much a specific
technique reduces the size of CNF formulas. In this paper we analyze the relative effec-
tiveness of the considered clause elimination procedures based on the clauses removed
by the procedures. For this we apply the following natural definition of effectiveness.

Definition 1. Assume two clause elimination procedures S1 and S2 that take as input
an arbitrary CNF formula F and each outputs a CNF formula that consists of a subset
of F that is satisfiability-equivalent to F . Procedure S1 is at least as effective as S2 if,
for any F and any output S1(F) and S2(F) of S1 and S2 on input F , respectively, we
have that S1(F) ⊆ S2(F); S2 is not as effective as S1 if there is an F for which there
are outputs S1(F) and S2(F) of S1 and S2, respectively, such that S1(F) ⊂ S2(F);
and S1 is more effective than S2 if (i) S1 is at least as effective as S2, and (ii) S2 is not
as effective as S1.

Our definition of relative effectiveness takes into account non-confluent elimination
procedures, i.e., procedures that do not generally have a unique fixpoint and that may
thus have more than one possible output for a given input. The result of a non-confluent
simplification procedure can be very unpredictable due to the non-uniqueness of results.

360 M. Heule, M. Järvisalo, and A. Biere

ATE

HTE

TE

ASE

HSE

SE BCE

HBCE

ABCE

logically
equivalent

satisfiability
equivalent

Fig. 1. Relative effectiveness hierarchy of clause elimination procedures. An edge from X to
Y means that X is more effective than Y. A missing edge from X to Y means that X is not as
effective as Y. However, notice that transitive edges are missing from the figure for clarity.

Our analysis on relative effectiveness results in an effectiveness hierarchy (Fig. 1)
for the considered elimination procedures. For example, we show that for each of the
known explicit techniques, the hidden and asymmetric variants are more effective, the
latter of which being the most effective one of the three. In this sense, the novel variants
are proper generalizations of the known explicit techniques. It also turns out that the
most effective technique is the asymmetric variant of blocked clause elimination.

The further analysis presented in this paper considers the properties listed in Table 1.
While each of the techniques preserves satisfiability (and are thus sound), it turns out
that the variants of blocked clause elimination do not preserve logical equivalence; this
is the motivation for demonstrating in Sect. 7 how one can efficiently reconstruct origi-
nal solutions based on satisfying assignments for CNFs simplified using these variants.
A further property of simplification techniques is BCP-preservance, which implies that
relevant unit propagation (restricted to the remaining variables in the simplified CNF
formula) possible in the original CNF is also possible in the simplified CNF under any
partial assignment. This property is solver-related and very much practically relevant,
since BCP is an integral part of a vast majority of SAT solvers today.

Definition 2. For a formula F , a preprocessing procedure S preserves BCP on F if
under any partial assignment τ over the variables in F and for any formula S(F)
resulting from applying S on F , we have that (i) for any literal l occurring in S(F),
(l) ∈ BCP(F, τ) implies (l) ∈ BCP(S(F), τ), and (ii) ∅ ∈ BCP(F, τ) implies ∅ ∈
BCP(S(F), τ) (the empty clause is obtained, i.e., BCP derives a conflict). S is BCP-
preserving if S preserves BCP on every CNF formula.

Notice that our definition is similar to deductive power as defined in [10]. Also notice
that BCP-preservance implies that logical equivalence is also preserved.

Interestingly, in turns out that BCP-preservance is quite a strict property, as only
the basic SE and TE have it. However, by naturally combining HTE with a restricted
version of FLE and ELS, we identify extended hidden tautology elimination (eHTE)
which is both BCP-preserving and confluent (denoted in Table 1 with ∗), using con-
ditions under which HTE does a transitive reduction [13] on the binary implication
graphs underlying CNF formulas.

We proceed by giving detailed analysis of each of the variants of tautology, subsump-
tion, and blocked clause based elimination procedures.

Clause Elimination Procedures for CNF Formulas 361

Table 1. Properties of clause elimination procedures

SE HSE ASE TE HTE ATE BCE HBCE ABCE
satisfiability-equivalent yes yes yes yes yes yes yes yes yes
logically equivalent yes yes yes yes yes yes no no no
BCP-preserving yes no no yes no / yes* no no no no
confluent yes no no yes no / yes* no yes no no

4 Tautology-Based Clause Elimination Procedures

We begin by considering tautology elimination, introducing its hidden and asymmetric
variants, and analyzing these procedures in more detail. For a given formula F , tautol-
ogy elimination (TE) repeats the following until fixpoint: if there is a tautological clause
C ∈ F , let F := F \ {C}. We refer to the reduced formula after applying tautology
elimination on F as TE(F). It is easy to see that TE is confluent and BCP-preserving,
and also that for any CNF formula F , TE(F) is logically equivalent to F .

4.1 Hidden Tautology Elimination

For a given clause C and a CNF formula F , we denote by (hidden literal addition)
HLA(F,C) the unique clause resulting from repeating the following clause extension
steps until fixpoint: if there is a literal l0 ∈ C such that there is a clause (l0 ∨ l) ∈
F2 \ {C} for some literal l, let C := C ∪ {l̄}. Notice that HLA(F,C) = HLA(F2, C).
Furthermore, notice that for any l ∈ HLA(F,C)\C, there is for some l0 ∈ C a chain of
binary clauses (l0∨l̄1), (l1∨l̄2), . . . , (lk−1∨l̄k) with l = lk, equivalent to the implication
chains l̄0 → l̄1, l̄1 → l̄2, . . . , l̄k−1 → l̄k and lk → lk−1, lk−1 → lk−2, . . . , l1 → l0, in
F2 (equivalently, paths in BIG(F)).

Lemma 1. For any CNF formula F and clause C ∈ F , (F \ {C}) ∪ {HLA(F,C)} is
logically equivalent to F .

Proof. For any literal l ∈ HLA(F,C) \ C, by the definition of HLA(F,C), there is a
i ≥ 0 such that l → li, . . . , l1 → l0 with l0 ∈ C. Hence (l0) ∈ BCP((F \{C})∪{(l)}),
which implies that for any satisfying assignment τ for (F \ {C}) and HLA(F,C), if
τ(l) = t then τ(l0) = t. Thus τ satisfies C and therefore also F . �

Alternatively, observe that each extension step in computing HLA is an application of
self-subsuming resolution [7] in reverse order.

For a given CNF formula F , a clause C ∈ F is a hidden tautology if and only if
HLA(F,C) is a tautology. Hidden tautology elimination repeats the following until
fixpoint: if there is a clause C such that HLA(F,C) is a tautology, let F := F \ {C}.
A formula resulting from this procedure is denoted by HTE(F).

Lemma 2. HTE is more effective than TE.

Proof. HTE is at least as effective as TE due to C ⊆ HLA(F,C): if C is a tautology,
so is HLA(F,C). Moreover, let F = (a∨b)∧(b̄∨c)∧(a∨c). Since HLA(F, (a∨c)) =
(a ∨ ā ∨ b ∨ b̄ ∨ c ∨ c̄), HTE can remove (a ∨ c) from F , in contrast to TE. �

362 M. Heule, M. Järvisalo, and A. Biere

Proposition 1. HTE is not confluent.

Proof. Consider the formula F = (ā ∨ b) ∧ (ā ∨ c) ∧ (a ∨ c̄) ∧ (b̄ ∨ c) ∧ (b ∨ c̄). Now,
HLA(F, (ā ∨ b)) = HLA(F, (ā ∨ c)) = HLA(F, (b ∨ c̄)) = (a ∨ ā ∨ b ∨ b̄ ∨ c ∨ c̄).
HTE can remove either (ā ∨ b) or both (ā ∨ c), (b ∨ c̄). �
Proposition 2. For any CNF formula F , any HTE(F) is logically equivalent to F .

Proof. Follows from the fact that TE preserves logical equivalence and Lemma 1. �
Proposition 3. HTE is not BCP-preserving.

Proof. Consider the formula F = (a ∨ b) ∧ (b ∨ c) ∧ (b ∨ c̄). HTE can remove clause
(a∨ b). Consider the assignment τ which assigns τ(a) = f. We have (b) ∈ BCP(F, τ).
However, (b) /∈ BCP(F \ {(a ∨ b)}, τ). �
Although HTE is not confluent and does not preserve BCP in general, we identify
eHTE, a natural variant of HTE which is both BCP-preserving and confluent.

For some intuition, consider again the formula F = (a ∨ b) ∧ (b ∨ c) ∧ (b ∨ c̄).
Notice that b̄ ∈ HLA(F, (b)) = (ā ∨ b ∨ b̄ ∨ c ∨ c̄). Recall that HTE can only remove
(a ∨ b) from F . However, since b̄ ∈ HLA(F, (b)), b̄ is a failed literal. Consequently,
we can remove (all) clauses containing the literal b from F and add a unit clause (b). In
general, we have the following.

Lemma 3. Given a CNF formula F , for any literal l it holds that l is a failed literal in
F2 if and only if l̄ ∈ HLA(F2, (l)).

Proof. There is a path from l to l̄ in BIG(F) if and only if l̄ ∈ HLA(F2, (l)). �
Based on this observation, given a CNF formulaF , binary-clause restricted failed literal
elimination FLE2 repeats the following until fixpoint: if there is a literal l ∈ lits(F2)
with l̄ ∈ HLA(F2, (l)), let F := BCP(F ∪{(l)}). Since FLE is confluent, so is FLE2.
Refer to [8] for algorithmic aspects in computing FLE2.

It turns out that for any CNF formula it holds that after applying FLE2, HTE does the
equivalent of a transitive reduction1 of the binary implication graph BIG(FLE2(F)).

Lemma 4. Given a CNF formula F , let F ′ := FLE2(F). Let F ′
HTE stand for any for-

mula resulting from applying HTE on F ′. It then holds that BIG(F ′
HTE) is a transitive

reduction of BIG(F ′).

Proof. Since BIG(F ′) is only influenced by F ′
2, we focus on binary clauses removed

from F ′ by HTE. For such a binary clause C = (l ∨ l′), there are the edges l̄ → l′ and
l̄′ → l in BIG(F ′). Since neither l nor l′ is a failed literal in F ′, there are also two paths
l̄ → . . . → c and l̄′ → . . . → c̄ in BIG(F ′ \ C) such that c, c̄ ∈ HLA(F ′, C). Hence
there are also the paths l̄ → . . . → c → . . . → l′ and l̄′ → . . . → c̄ → . . . → l, and
hence both l̄ → l′ and l̄′ → l are transitive edges in BIG(F ′). This shows that HTE only
removes transitive edges of BIG(F ′). Applying HTE until fixpoint, all such transitive
edges are removed from BIG(F ′), since any such C = (l ∨ l′), such that there are the
paths l̄ → . . .→ c→ . . .→ l′ and l̄′ → . . .→ c̄→ . . .→ l, is a hidden tautology. �

1 A directed graph G′ is a transitive reduction [13] of the directed graph G provided that (i) G′

has a directed path from node u to node v if and only if G has a directed path from node u to
node v, and (ii) there is no graph with fewer edges than G′ satisfying condition (i).

Clause Elimination Procedures for CNF Formulas 363

Notice that for every formula F such that BIG(F) is acyclic, it holds that BIG(F) has a
unique transitive reduction, since the transitive reduction of any directed acyclic graph
is unique [13]. In this case, there are no non-trivial SCCs in BIG(F). Furthermore,
even for directed graph with cycles, the transitive reduction is unique modulo node
equivalence classes [13]. This implies that applying the combination of FLE2(F) and
ELS before HTE, i.e., additionally substituting equivalent literals with the representa-
tives of the literal equivalence classes (non-trivial strongly connected components) in
BIG(FLE2(F)), a unique transitive reduction (module variable renaming) is obtained.

With this intuition, for a formula F , extended hidden tautology elimination (eHTE)
does the following two steps:

1. Repeat until fixpoint: (1a) Let F :=FLE2(F). (1b) Let F := ELS(F).
2. Apply HTE on F .

By the discussion above, eHTE is confluent.

Theorem 1. eHTE is confluent.

Furthermore, it turns out that by applying HTE on FLE2(F), BCP is preserved in
general; that is, even without applying equivalent literal substitution (Step 1b), we have
a BCP-preserving variant of HTE.

Lemma 5. For any CNF formula F , HTE preserves BCP on FLE2(F) w.r.t. F .

Proof. Consider an arbitrary CNF formula F , and let F := FLE2(F). Assume that
HTE removes a clause C = (l1 ∨ · · · ∨ lk) ∈ F from F ; hence C is a hidden tautology
in F , i.e., HLA(F,C) is a tautology.

Due to first applying FLE2, C can not be a unit clause (l1): otherwise, (l1) would be
a failed literal in F . The only way for BCP on all clauses of F to use C is that we have
an assignment τ with τ(l1) = · · · = τ(lk−1) = f, in which case BCP on F can derive
the unit clause (lk), i.e., assign lk to t; hence the case that C is a tautology is trivial.
If C is a binary clause (l1 ∨ l2), then by Lemma 4 the implications representing C are
transitive edges in BIG(F \ {C}), and hence there are alternative implication chains
between li+1

1 and li+1
2 in F which preserve BCP over C.

Now assume that C contains at least three literals and HLA(F,C) contains the
opposite literals l and l̄. Due to FLE2, by assigning only a single li for some i ∈
{1, . . . , k−1} to f, BCP on binary clauses F2 only, can not derive a conflict, and hence
can not derive the unit clauses (l) and (l̄). Otherwise l̄i would be a failed literal. There-
fore there are two distinct literals l′, l′′ ∈ C, based on which l̄ and l are included in
HLA(F,C), and BIG(F) contains two implication chains l̄′ → l̄′1, l̄

′
1 → l̄′2, . . . , l̄

′
k′ → l

and l̄′′ → l̄′′1 , l̄
′′
1 → l̄′′2 , . . . , l̄

′′
k′′ → l̄. Now there are two cases:

1. l′, l′′ ∈ C \ {lk}. Since τ(l′) = τ(l′′) = f, it follows that (l), (l̄) ∈ BCP(F \
{C}, τ), i.e., BCP derives a conflict without using C.

2. l′ ∈ C \ {lk} and l′′ = lk. Then τ(l′) = f, and it follows that (l) ∈ BCP(F \
{C}, τ). Hence l is assigned to t by BCP under τ . Furthermore, since l′′ = lk and
the implication chain l̄k → l̄′′1 , l̄

′′
1 → l̄′′2 , . . . , l̄

′′
k′′ → l̄ can be seen in the reversed

order as l → l′′k′′ , l′′k′′ → l′′k′′−1, . . . , l
′′
1 → lk, after assigning l to t it follows that

(lk) ∈ BCP(F \ {C}, τ). Hence BCP assigns lk to t without using C. �

364 M. Heule, M. Järvisalo, and A. Biere

Furthermore, since ELS only does variable renaming by substituting equivalent literals,
it can not interfere with BCP, and we have the following.

Theorem 2. eHTE is BCP-preserving.

Moreover, the following lemma follows the intuition on failed literals in HLA.

Lemma 6. eHTE is more effective than HTE.

In fact, here Step 1b of eHTE can again be omitted without affecting this result.

4.2 Asymmetric Tautology Elimination

For a clause C and a CNF formulaF , (asymmetric literal addition) ALA(F,C) denotes
the unique clause resulting from repeating the following until fixpoint: if l1, . . . , lk ∈ C
and there is a clause (l1 ∨ . . . ∨ lk ∨ l) ∈ F \ {C} for some literal l, let C := C ∪ {l̄}.
A clause C is called an asymmetric tautology if and only if ALA(F,C) is a tautology.

Given a formula F , asymmetric tautology elimination (ATE) repeats the following
until fixpoint: if there is an asymmetric tautological clause C ∈ F , let F := F \ {C}.

Lemma 7. ALA(F,C) is a tautology if and only if BCP on (F \ {C}) ∪
⋃

l∈C{(l̄)})
derives a conflict.

As can be seen from Lemma 7, ATE performs what could be called asymmetric branch-
ing on clauses, which is used, e.g., in the technique of clause distillation [9].

The example in the proof of Proposition 1 implies the following.

Proposition 4. ATE is not confluent.

Proposition 5. For any CNF formula F , ATE(F) is logically equivalent to F .

Proof. For any clause C removed by ATE, (F \ {C}) ∪
⋃

l∈C{(l̄)} is unsatisfiable.
This implies that F \ {C} |= C, i.e., F \ {C} logically entails C. �

Proposition 6. ATE is not BCP-preserving.

Proof. Consider the following translation of x = If-Then-Else(c, t, e) into CNF:

(x̄ ∨ c̄ ∨ t) ∧ (x ∨ c̄ ∨ t̄) ∧ (x̄ ∨ c ∨ e) ∧ (x ∨ c ∨ ē) ∧ (x ∨ ē ∨ t̄) ∧ (x̄ ∨ e ∨ t)

Notice that ATE can remove (x ∨ ē ∨ t̄) and (x̄ ∨ e ∨ t). However, after removal, for
truth assignment τ(e) = τ(t) = f, BCP will no longer assign x to t. Also, for truth
assignment τ(e) = τ(t) = t, BCP will no longer assign x to f. �

The fact that HLA(F,C) = ALA(F2, C) implies the following.

Lemma 8. For any CNF formula F and clause C ∈ F , HLA(F,C) ⊆ ALA(F,C).

Lemma 9. ATE is more effective than HTE.

Proof. ATE is at least as effective as HTE due to HLA(F,C) ⊆ ALA(F,C): if
HLA(F,C) is a tautology, then ALA(F,C) is a tautology. Moreover, consider the for-
mula F = (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (a ∨ c ∨ d̄). ATE will remove (a ∨ b ∨ c) from
F , while HTE removes none of the clauses. �

Clause Elimination Procedures for CNF Formulas 365

5 Subsumption-Based Clause Elimination Procedures

We now turn to the explicit, hidden, and asymmetric variants of the procedures that
eliminate subsumed clauses. Given a CNF formula F , a clause C1 ∈ F subsumes
(another) clause C2 ∈ F in F if and only if C1 ⊂ C2, and then C2 is subsumed
by C1. Any assignment that satisfies C1 will also satisfy C2. For a given formula F ,
subsumption elimination (SE) repeats the following until fixpoint: if there is a subsumed
clause C ∈ F , let F := F \ {C}. We refer to the reduced formula after applying
subsumption elimination on F as SE(F). It is easy to see that SE is confluent and
BCP-preserving, and that for any CNF formula F , SE(F) is logically equivalent to F .

5.1 Hidden Subsumption Elimination

For a given formula F , hidden subsumption elimination (HSE) repeats the following
until fixpoint: if there is a clause C ∈ F for which HLA(F,C) is subsumed in F , let
F := F \ {C}.

By replacing HTE with HSE in the proof of Proposition 1 we have the following.

Proposition 7. HSE is not confluent.

Lemma 10. For any CNF formula F , HSE(F) is logically equivalent to F .

Proof. Follows from Lemma 1 and the fact that SE preserves logical equivalence. �

Proposition 8. HSE is not BCP-preserving.

Proof. Let F = (a ∨ b ∨ c) ∧ (a ∨ b ∨ d) ∧ (b ∨ c̄). HSE can remove (a ∨ b ∨ d),
because HLA(F, (a∨ b∨d)) = (a∨ b∨ c∨d) is subsumed by (a∨ b∨ c). Consider the
assignment τ which assigns τ(a) = τ(d) = f. We have (b) ∈ BCP(F, τ). However,
(b) /∈ BCP(F \ {(a ∨ b ∨ d)}, τ). �

Notice that the above proof also holds after F is simplified by FLE.

Lemma 11. HSE is more effective than SE.

Proof. HSE is at least as effective as SE since for any CNF formula F , (i) for every
clause C ∈ F , C ⊆ HLA(F,C), and (ii) if C is subsumed then any clause C′ ⊇ C is
subsumed. Moreover, let F = (a∨ b∨ c)∧ (a∨ b∨ d)∧ (b∨ c̄)∧ (ā∨ d∨ d̄). HSE can
remove (a∨ b∨d) because HLA(F, (a∨ b∨d)) = (a∨ b∨ c∨d), in contrast to SE. �

Also notice that, given two identical clauses C1 and C2 (i.e., C1 ⊆ C2 and C2 ⊆ C1),
HSE can remove either C1 or C2, while SE cannot.

Lemma 12. It holds that (i) HSE is not as effective as HTE, and that (ii) HTE is not
as effective as HSE.

Proof. Consider the formula FHSE. HTE can remove the tautology (ā ∨ d ∨ d̄), but no
other clauses. HSE can remove (a ∨ b ∨ d), but no other clauses. �

366 M. Heule, M. Järvisalo, and A. Biere

5.2 Asymmetric Subsumption Elimination

For a given formula F , asymmetric subsumption elimination (ASE) repeats the follow-
ing until fixpoint: if there is a clause C ∈ F for which ALA(F,C) is subsumed in F ,
let F := F \ {C}.

By replacing ATE with ASE in the proof of Lemma 6 we have the following.

Proposition 9. ASE is not BCP-preserving.

Lemma 13. ASE is more effective than HSE.

Proof. ASE is at least as effective as HSE since (i) for every clause C ∈ F we have
HLA(F,C) ⊆ ALA(F,C) (Lemma 8), and (ii) if C is subsumed then any clause C′ ⊇
C is subsumed. Moreover, consider the formulaF = (a∨b∨c)∧(a∨b∨d)∧(a∨c∨ d̄).
ASE will remove (a ∨ b ∨ c) from F , while HSE removes no clauses from F . �

Lemma 14. ATE is more effective than ASE.

Proof. To see that ATE is at least as effective as ASE, consider the following. If there is
a clause C ∈ F for which ALA(F,C) is subsumed by C′ ∈ F \{C}, then ALA(F,C)
is a tautology: say ALA(F,C) is subsumed by C′ = (l1 ∨ . . . ∨ lk). Due to the update
rule of ALA, l̄1, . . . , l̄k ∈ ALA(F,C). Moreover, consider the formula F = (a ∨ ā).
ASE will not remove this tautology, in contrast to ATE. �

6 Clause Elimination Procedures Based on Blocked Clauses

As the final family of clause elimination procedures considered in this paper, we now
introduce and analyze procedures that eliminate blocked clauses [12].

The resolution rule states that, given two clauses C1 = {l, a1, . . . , an} and C2 =
{l̄, b2, . . . , bm}, the implied clause C = {a1, . . . , an, b1, . . . , bm}, called the resolvent
of C1 and C2, can be inferred by resolving on the literal l, and write C = C1 ⊗l C2.

Given a CNF formula F , a clause C and a literal l ∈ C, the literal l blocks C w.r.t. F
if (i) for each clause C′ ∈ F with l̄ ∈ C′, C ⊗l C

′ is a tautology, or (ii) l̄ ∈ C, i.e., C is
itself a tautology2. Given a CNF formula F , a clause C is blocked w.r.t. F if there is a
literal that blocks C w.r.t. F . Removal of blocked clauses preserves satisfiability [12].

For a CNF formula F , blocked clause elimination (BCE) repeats the following until
fixpoint: if there is a blocked clause C ∈ F w.r.t. F , let F := F \ {C}. The CNF
formula resulting from applying BCE on F is denoted by BCE(F).

Proposition 10. For some CNF formula F , BCE(F) is not logically equivalent to F .

Proof. Consider the following CNF formula, having a structure that is often observed
in CNF encodings of graph coloring problems.

FBCE = (a ∨ b ∨ c) ∧ (d ∨ e ∨ f) ∧ (ā ∨ d̄) ∧ (b̄ ∨ ē) ∧ (c̄ ∨ f̄) ∧
(ā ∨ b̄) ∧ (ā ∨ c̄) ∧ (b̄ ∨ c̄) ∧ (d̄ ∨ ē) ∧ (d̄ ∨ f̄) ∧ (ē ∨ f̄).

2 Here l̄ ∈ C is included in order to handle the special case that for any tautological binary
clause (l ∨ l̄), both l and l̄ block the clause. Notice that, even without this addition, every
non-binary tautological clause contains at least one literal that blocks the clause.

Clause Elimination Procedures for CNF Formulas 367

BCE can remove the last six binary clauses (the second row) in FBCE. Consider the
truth assignment τ with τ(a) = τ(b) = τ(f) = t and τ(c) = τ(d) = τ(e) = f.
Although τ satisfies BCE(FBCE), the clause (ā ∨ b̄) in FBCE is falsified by τ . �

6.1 Hidden Blocked Clause Elimination

For a given CNF formula F , a clause C ∈ F is called hidden blocked if HLA(F,C)
is blocked w.r.t. F . Hidden blocked clause elimination (HBCE) repeats the following
until fixpoint: if there is a hidden blocked clause C ∈ F , remove C from F .

Lemma 15. Removal of an arbitrary hidden blocked clause preserves satisfiability.

Proof. Follows from the facts thatF is logically equivalent to (F\{C})∪{HLA(F,C)}
and that BCE preserves satisfiability. �

Proposition 11. HBCE is not confluent.

Proof. Let F = (ā ∨ b) ∧ (ā ∨ c) ∧ (a ∨ d̄) ∧ (b̄ ∨ d) ∧ (c̄ ∨ d). F contains four
hidden blocked clauses: HLA(F, (ā ∨ b)) = (ā ∨ b ∨ c̄ ∨ d̄) with blocking literal b,
HLA(F, (ā∨c)) = (ā∨b̄∨c∨d̄) with blocking literal c, HLA(F, (b̄∨d)) = (a∨b̄∨c∨d)
with blocking literal b̄, and HLA(F, (c̄ ∨ d)) = (a ∨ b ∨ c̄ ∨ d) with blocking literal c̄.
HBCE removes either (ā ∨ b) and (b̄ ∨ d), or (ā ∨ c) and (c̄ ∨ d). �

Replacing BCE with HBCE in the proof of Proposition 10, we have the following.

Proposition 12. For some CNF formula F , HBCE(F) is not logically equivalent to F .

Lemma 16. HBCE is more effective than BCE and HTE.

Proof. HBCE is at least as effective as BCE due to C ⊆ HLA(F,C) and that each
blocking literal l ∈ C is also blocking HLA(F,C). HBCE is at least as effective as
HTE since tautologies are blocked clauses. Moreover, let F = (a∨ c)∧ (ā∨ d) ∧ (b̄∨
c) ∧ (b ∨ d) ∧ (c̄ ∨ d̄). Now HLA(F, (a ∨ c)) = (a ∨ b∨ c ∨ d̄) with blocking literal a,
and HLA(F, (ā ∨ d)) = (ā ∨ b̄∨ c̄ ∨ d) with blocking literal ā. Hence HBCE removes
both (a ∨ c) and (ā ∨ d), while neither BCE nor HTE can remove any clause of F . �

6.2 Asymmetric Blocked Clause Elimination

For a given CNF formulaF , a clause C∈F is called asymmetric blocked if ALA(F,C)
is blocked w.r.t. F . Asymmetric blocked clause elimination (ABCE) repeats the follow-
ing until fixpoint: if there is an asymmetric blocked clause C ∈ F , let F := F \ {C}.

Lemma 17. Removal of an asymmetric blocked clause preserves satisfiability.

Proof. Follows from the facts that F is logically equivalent to (F\{C})∪{ALA(F,C)}
and that BCE preserves satisfiability. �

Proposition 13. ABCE is not confluent.

Proof. Let F = (ā ∨ b) ∧ (ā ∨ c) ∧ (a ∨ d̄) ∧ (b̄ ∨ d) ∧ (c̄ ∨ d). F contains four
asymmetric blocked clauses: ALA(F, (ā∨ b)) = (ā∨ b∨ c̄∨ d̄) with blocking literal b,

368 M. Heule, M. Järvisalo, and A. Biere

ALA(F, (ā∨c)) = (ā∨b̄∨c∨d̄) with blocking literal c, ALA(F, (b̄∨d)) = (a∨b̄∨c∨d)
with blocking literal b̄, and ALA(F, (c̄ ∨ d)) = (a ∨ b ∨ c̄ ∨ d) with blocking literal c̄.
ABCE removes either (ā ∨ b) and (b̄ ∨ d), or (ā ∨ c) or (c̄ ∨ d) from F . �
Replacing BCE with ABCE in the proof of Proposition 10, we have the following.

Proposition 14. For some CNF formula F , ABCE(F) is not logically equivalent to F .

Lemma 18. ABCE is more effective than HBCE and ATE.

Proof. ABCE is at least as effective as HBCE due to HLA(F,C) ⊆ ALA(F,C)
(recall Lemma 8): if HLA(F,C) is a tautology, then ALA(F,C) is a tautology. ABCE
is at least as effective as ATE since tautologies are blocked clauses. Moreover, consider
the formula FABCE = (ā ∨ b ∨ c) ∧ (b ∨ c ∨ d̄) ∧ (a ∨ d) ∧ (b̄ ∨ d̄) ∧ (c̄ ∨ d̄). Now
ALA(FABCE, (ā∨b∨c)) = (ā∨b∨c∨d) in which b and c are blocking literals. Hence
ABCE can remove (ā ∨ b ∨ c) (and in fact all clauses in FABCE). Neither HBCE nor
ATE can remove any clause from FABCE. �

7 Reconstructing Solutions After HBCE and ABCE

Since the elimination procedures based on blocked clauses do not preserve logical
equivalence, a truth assignment τ satisfying BCE(F) may not satisfy F . However,
a satisfying assignment for F can be constructed based on τ as follows [14]. Add the
clauses C ∈ F \ BCE(F) back in the opposite order of their elimination. In case C is
satisfied by τ , do nothing. Otherwise, assuming that l ∈ C is blocking C, flip the truth
value of l in τ to t. After all clauses have been added, the modified τ satisfies F .

We now show that this procedure can be used to reconstruct solutions for formulas
simplified using HBCE or ABCE. The lemmas will focus on ALA, but because HLA
is a restricted version of ALA, all lemmas also hold when ALA is replaced by HLA.

Lemma 19. Given a clause C ∈ F , if ALA(F,C) is blocked and not a tautology, then
there is a literal l ∈ C blocking it.

Proof. By construction, for each literal l ∈ ALA(F,C) \ C, here is a clause C′ ∈ F
that contains l̄ and C′ \ {l̄} ⊆ ALA(F,C). Therefore, because ALA(F,C) is not a
tautology, C′ ⊗l ALA(F,C) = ALA(F,C) \ {l} is not a tautology either. Hence l is
not blocking ALA(F,C). �
Lemma 20. Given a CNF formula F and a truth assignment τ satisfying F , if C /∈ F
is falsified by τ , then ALA(F,C) is falsified by τ .

Proof. From Lemma 7 follows that F ∪ {ALA(F,C)} is logically equivalent to F ∪
{C}. Therefore, ALA(F,C) is satisfied by τ if and only if τ satisfies C. �
Lemma 21. Given a CNF formula F and a truth assignment τ satisfying F , if C /∈ F
is falsified by τ and ALA(F,C) is blocked w.r.t. F with blocking literal l ∈ C, then τ
satisfies at least two literals in each clause C′ ∈ F with l̄ ∈ C′.

Proof. First, such C′ ∈ F contain a literal l̄ which is satisfied by τ . Second, because l is
blocking, each clause C′ must contain one more literal l′ �= l̄ such that l̄′ ∈ ALA(F,C).
Since all literals in ALA(F,C) are falsified by τ , l′ must be satisfied by τ . �

Clause Elimination Procedures for CNF Formulas 369

Combining these three lemmas, we can reconstruct a solution for F if we have a
satisfying assignment τ for any ABCE(F) (and also any HBCE(F)). The clauses
C ∈ F \ ABCE(F) are added back in reverse order of elimination to ensure that
ALA(F,C) is blocked. If C is satisfied by F do nothing. Otherwise, we know that
there is a literal l ∈ C blocking ALA(F,C); recall Lemma 19. Furthermore, all literals
in ALA(F,C) are falsified; recall Lemma 20. However, any C′ ∈ F containing l̄ has
two satisfied literals; recall Lemma 21. Therefore, by flipping the truth assignment for
l to t, C becomes satisfied, while no such C′ becomes falsified.

Theorem 3. The following holds for an arbitrary CNF formula F and truth assignment
τ satisfying F . For any clause C /∈ F for which C, HLA(F,C), or ALA(F,C) is
blocked w.r.t. F with blocking literal l, either (i) τ satisfies F ∪ {C}, or (ii) τ ′, which is
a copy of τ except for τ ′(l) = t, satisfies F ∪ {C}.

The reconstruction proof provides several useful elements that can be used to imple-
ment HBCE and ABCE more efficiently. First, since only original literals l ∈ C can
be blocking HLA(F,C) or ALA(F,C), we can avoid a blocking literal check for all
literals l ∈ HLA(F,C) \ C or l ∈ ALA(F,C) \ C. Second, it is enough to save
each removed original clause C. None of the additional literals in the extended clause
HLA(F,C) (or ALA(F,C), resp.) not occurring in C have to be flipped.

8 Experimental Evaluation

We shortly present initial experiments results on the effectiveness of selected clause
elimination procedures, focusing on the current implementations of HTE and HBCE.
The benchmarks set used consists of the 2009 SAT Competition application instances
(292 in total), with each instance processed beforehand with BCP. A comparison of
the effectiveness of BCE, HTE, and HBCE (all until fixpoint) is shown on the left
in Fig. 2, illustrating the percentage of clauses remaining after applying the individual
techniques (with original number of clauses 100%). Here data for each plot is sorted
according to the reduction percentage, with the percentages of clauses remaining on the
y-axis. We include BCE due to recent encouraging results presented in [11]. In line
with our analysis (recall Fig. 1), HBCE is clearly the most effective technique. There is
not that clear a winner between BCE and HTE, although HTE does prevail in the end.

The hidden clause elimination procedures are probably the most interesting novel
techniques in practice, because they can be implemented efficiently. In particular, eHTE
is expected to be useful, since it also preserves BCP. Since we have no efficient im-
plementation of FLE2 and ELS at this time, the experiments on practical use focus on
HTE instead.

As can be seen on the right in Fig. 2 (time as a function of number of instances
solved), HTE gives gains w.r.t. solution times for MiniSAT 2.0. Here we used the ver-
sion of MiniSAT without the built-in preprocessor to see the effect of HTE on its own.
Notice that we also conducted an additional experiment in which we first preprocessed
all instances using SatELite [7]; this resulted in similar performance gains.

For most benchmarks in the SAT 2009 application suit, the cost of applying HTE is
less then a second. However, on instances in which BIG(F) contains large SCCs, the

370 M. Heule, M. Järvisalo, and A. Biere

0%

20%

40%

60%

80%

100%

100 200

HBCE ��

HTE +

BCE ��

�� �� ��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� ��

�� �� �� �� �� ��

��

��

��

�� ��

�� �� �� ��

�� �� �� �� ��

�� ��

�� �� �� ��

�� �� ��

�� ��

��

��

�� �� �� ��

�� �� ��

�� ��

��

�� ��

�� ��

�� ��

�� �� ��

��

�� �� �� ��

��

�� �� ��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�� ��

�� �� �� ��

��

�� �� ��

�� �� �� �� ��

��

��

�� �� �� ��

�� ��

�� ��

��

�� �� ��

�� �� ��

�� ��

�� �� �� �� �� �� ��

�� ��

�� ��

�� �� ��

�� ��

�� ��

��

�� ��

��

�� ��

�� ��

�� �� ��

��

�� ��

��

�� ��

�� �� �� ��

�� ��

��

��

��

�� ��

��

�� ��

�� ��

��

��

��

��

��

��

��

��

�� ��

�� �� �� ��

�� ��

��

�� ��

��

��

��

��

��

��

��

�� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

��

��

��

�� ��

�� ��

��

�� ��

�� ��

��

�� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

��

��

��

�� ��

+ +

+ + + + + + + + + + + + + + + + + + +

+ + + + +

+ + + + + + + + + + + + + + + +

+ + + + + +

+ + + + + + + + + +

+ +

+

+ + +

+ + + + + + + + + +

+ + +

+ + + +

+ + +

+ +

+ + + + + + + + +

+ +

+ +

+

+

+ + +

+ + +

+

+ + + +

+ + +

+ +

+ +

+

+ + +

+

+

+

+

+ +

+

+

+

+

+ + +

+ +

+ + +

+

+

+

+

+ +

+

+

+ +

+

+

+

+ +

+ +

+

+ + +

+

+ +

+

+

+ +

+ +

+

+

+

+

+

+

+

+ +

+

+

+

+ +

+ +

+ +

+

+ +

+ + + + + + +

+

+

+

+ + +

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+ +

+ +

�� ��

�� � � ��

�� �� ��

�� ��

�� �� ��

�� ��

��

��

�� �� �� �� �� �� �� �� ��

�� �� �� �� �� ��

�� ��

�� ��

��

�� ��

��

��

��

�� ��

�� ��

��

�� ��

��

��

�� �� �� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

�� ��

�� ��

��

��

��

��

�� �� ��

�� �� �� ��

�� �� �� �� ��

��

��

�� ��

��

��

��

��

��

��

��

��

��

��

��

�� ��

��

��

��

�� ��

��

��

��

��

��

�� ��

��

��

��

��

��

��

��

0

200

400

600

800

50 100

w/o HTE

�� ��

�� ��

�� �� ��

�� ��

�� ��

�� ��

��

��

��

��

��

��

��

��

�� ��

��

��

�� �� ��

��

�� ��

�� ��

��

��

��

�� ��

��

��

��

��

��

�� ��

��

��

��

��

��

��

��

�� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

with HTE

+ +

+ + + +

+ + + + +

+ +

+

+ +

+ +

+

+

+

+ + +

+

+ +

+

+

+

+

+

+ +

+ +

+

+

+

+ +

+

+

+

+

+ +

+

+

+

+ +

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Fig. 2. Comparison of the effectiveness of various clause elimination procedures on the size of
SAT 2009 benchmark instances (left). Also, the number of instances solved in less than t seconds
by MiniSAT 2.0 without and with HTE as preprocessing step (right).

computational cost is on average 60 seconds. We expect that by combining HTE with
ELS, as in eHTE, HTE will be quite efficient also for these instances.

Applying any of the asymmetric clause elimination procedures until fixpoint will
hardly be useful in practice. The most important reason is that all these procedures
are very costly. Also, because they do not preserve BCP, for several instances they can
decrease performance even in case these costs are neglected. However, the asymmetric
procedures will probably be of practical use when they are restricted. For instance, by
only applying them on long clauses or for a short time (i.e., not until fixpoint).

Our implementation of HTE does not explicitly compute HLA(F,C) for each C ∈
F . Instead, for each literal l ∈ lits(F), we compute HLA(F, (l)). Elimination of clauses
is realized as follows: First, mark each literal l′ for which l̄′ ∈ HLA(F, (l)) with label l.
Second, for all clauses C with l ∈ C we check whether there is a literal l′′ ∈ C marked
with label l. If there is, then C is a hidden tautology. In order to make this procedure
sound, we need to add a unit clause (l) in case l̄ ∈ HLA(F, (l)). Notice that this ‘trick’
cannot be used for HBCE. So, HLA(F,C) needs to be explicitly computed to check
whether HLA(F,C) is a hidden blocked clause. This makes our current implementa-
tion of HBCE much more costly (compared to HTE). Also, while performing HBCE,
some clauses can become hidden blocked clauses. Therefore, when run until fixpoint,
multiple loops through the clauses are required (in contrast to HTE). As a result of this,
our current implementation of HBCE is on average ten times as slow as the implemen-
tation of HTE, making HBCE at the moment impractical. However, as stated above,
the cost of HTE and HBCE can be reduced by first applying ELS.

9 Conclusions

We introduced novel clause elimination procedures as hidden and asymmetric vari-
ants of the known techniques of tautology, subsumption, and blocked clause elimina-
tion. We analyzed all of the variants from various perspectives—relative effectiveness,

Clause Elimination Procedures for CNF Formulas 371

BCP-preservance, confluence, logical equivalence—highlighting intricate differences
between the procedures. This also resulted in a relative effectiveness hierarchy, in which
the asymmetric variant of blocked clause elimination dominates all other procedures.

As one of the most interesting results, we developed eHTE, a variant of hidden
tautology elimination, that is both BCP-preserving and confluent, and at the same time
more effective than the other procedures (tautology and subsumption elimination) that
have both of these properties. In fact, eHTE does a transitive reduction (a structural
property) of the binary implication graph underlying any CNF formula purely on the
CNF level. Furthermore, we showed how to reconstruct solutions for the procedures,
and presented experimental results on the practical effectiveness of selected procedures.

Efficient implementations of the introduced procedures and integration of the most
practical ones with other simplification techniques remains as important further work.

References

1. Freeman, J.: Improvements to propositional satisfiability search algorithms. PhD thesis, Uni-
versity of Pennsylvania (1995)

2. Le Berre, D.: Exploiting the real power of unit propagation lookahead. Electronic Notes in
Discrete Mathematics 9, 59–80 (2001)

3. Lynce, I., Marques-Silva, J.: The interaction between simplification and search in proposi-
tional satisfiability. In: CP 2001 Workshop on Modeling and Problem Formulation (2001)

4. Bacchus, F.: Enhancing Davis Putnam with extended binary clause reasoning. In:
Proc. AAAI, pp. 613–619. AAAI Press, Menlo Park (2002)

5. Subbarayan, S., Pradhan, D.K.: NiVER: Non-increasing variable elimination resolution
for preprocessing SAT instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS,
vol. 3542, pp. 276–291. Springer, Heidelberg (2005)

6. Gershman, R., Strichman, O.: Cost-effective hyper-resolution for preprocessing CNF formu-
las. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 423–429. Springer,
Heidelberg (2005)

7. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidel-
berg (2005)

8. Gelder, A.V.: Toward leaner binary-clause reasoning in a satisfiability solver. Annals of
Mathematics and Artificial Intelligence 43(1), 239–253 (2005)

9. Jin, H., Somenzi, F.: An incremental algorithm to check satisfiability for bounded model
checking. Electronic Notes in Theoretical Computer Science 119(2), 51–65 (2005)

10. Han, H., Somenzi, F.: Alembic: An efficient algorithm for CNF preprocessing. In:
Proc. DAC, pp. 582–587. IEEE, Los Alamitos (2007)

11. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar,
R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)

12. Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathemat-
ics 96–97, 149–176 (1999)

13. Aho, A., Garey, M., Ullman, J.: The transitive reduction of a directed graph. SIAM Journal
on Computing 1(2), 131–137 (1972)

14. Järvisalo, M., Biere, A.: Reconstructing solutions after blocked clause elimination. In: Strich-
man, O., Szeider, S. (eds.) Theory and Applications of Satisfiability Testing – SAT 2010.
LNCS, vol. 6175, pp. 340–345. Springer, Heidelberg (2010)

Partitioning SAT Instances for Distributed Solving

Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä

Aalto University
Department of Information and Computer Science

P.O. Box 15400, FI-00076 AALTO, Finland
{Antti.Hyvarinen,Tommi.Junttila,Ilkka.Niemela}@tkk.fi

Abstract. In this paper we study the problem of solving hard propositional sat-
isfiability problem (SAT) instances in a computing grid or cloud, where run times
and communication between parallel running computations are limited. We study
analytically an approach where the instance is partitioned iteratively into a tree of
subproblems and each node in the tree is solved in parallel. We present new meth-
ods for constructing partitions which combine clause learning and lookahead.
The methods are incorporated into the iterative approach and its performance is
demonstrated with an extensive comparison against the best sequential solvers in
the SAT competition 2009 as well as against two efficient parallel solvers.

1 Introduction

This paper1 develops novel techniques for solving hard instances of the propositional
satisfiability (SAT) problem in widely distributed computing environments such as
computing grids or clouds. An example of this kind of an environment is NorduGrid
(http://www.nordugrid.org/) that we use in some of the experiments of this
paper. NorduGrid provides a high number of readily available, high-end, heterogeneous
computing facilities cost-efficiently, suggesting that this type of computing is an inter-
esting target for applications such as SAT solving. The distributed environments in this
work differ in some significant aspects from some other common distributed computing
environments, such as multi-core workstations, and even local parallel environments,
such as computing clusters: once a computation or a job is submitted to a grid or a
cloud, the execution of the job is not immediate, as it is delayed by an amount of time
depending on the availability of the computing resources; the executing jobs have lim-
ited communication capabilities restricted by the site security policies; and the jobs are
only allowed to use a predetermined amount of CPU time and memory during their
execution.

The goal of this work is to develop distributed SAT solving for such environments
using the best available SAT solvers as black-box subroutines with minimal modifi-
cations. The goal can be straightforwardly achieved by exploiting the randomized na-
ture of current state-of-the-art SAT solvers with the simple distribution (SD) approach,
where one just runs a randomized solver a number of times independently. This leads
to surprisingly good speed-ups even in a grid environment with substantial communica-
tion and other delays [1]. The approach could be extended by applying particular restart

1 A full version of the paper is available via http://users.ics.tkk.fi/aehyvari/.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 372–386, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.nordugrid.org/
http://users.ics.tkk.fi/aehyvari/

Partitioning SAT Instances for Distributed Solving 373

strategies [2,3] or employing an algorithm portfolio scheme [4,5]. Another key feature
in modern SAT solvers is the use of conflict driven clause learning techniques. Extend-
ing the simple distribution approach with this feature leads to a powerful SAT solving
technique [6,7].

While the SD approach has led to surprisingly good performance, it provides no
mechanism for splitting the search into more manageable portions which can be treated
in parallel. A partition function maps a SAT instance to a set of derived instances by
constraining the instance so that the original instance is satisfiable if and only if at least
one of the derived instances is. We call plain partitioning an approach where a parti-
tion function is used once and each resulting instance is solved in parallel. A typical
approach to splitting the search space is to use guiding path or semantic decomposition
based techniques [8,9,10,11,12,13]. However, these techniques impose constraints on
the underlying solver technology and are not ideal for grids and clouds since they re-
quire relatively frequent communication between jobs. Furthermore, an improper parti-
tion function can produce derived instances as difficult to solve as the original instance.
In such cases plain partitioning leads to a detrimental speed-up anomaly, where an in-
crease in parallelism results in an increase in expected run time even if the delays in the
environment are ignored [14]. In an environment with run time limitations this results
in a decrease of the probability of solving the instance.

This work differs from solvers based on partitioning (e.g., [13]) and simple distri-
bution (e.g., [7]) by studying an approach for distributed SAT solving with partition
trees [15]. The approach can be seen as a generalization of nagging [16]. The partition
tree approach aims at combining the strengths of partitioning and simple distribution,
has modest communication requirements and can use any SAT solver as a black-box
subroutine. The basic idea in the partition tree approach is straightforward: jobs con-
sisting of a solver and a SAT instance run in the distributed environment. A partition
function is used to construct the SAT instances, which are organized as a tree. The
first job, consisting of the original instance, will be the root of the tree; the subsequent
child jobs are constructed by applying the partition function to the original instance,
and later recursively to the derived instances. The resulting tree is expanded until a so-
lution can be determined or all available parallel resources are in use. In the latter case,
the resource limits guarantee that jobs will eventually terminate and more constrained,
hopefully easier to solve, jobs can be submitted to the environment. The contributions
of this work include the following:

– We study analytically the performance of the partition tree approach, extending the
results in [14].

– We present two new partition functions which use unit propagation lookahead, and
develop a novel method for exploiting a clause learning conflict analysis technique
in lookahead computation. We also improve the partition function presented in [15].

– We perform an exhaustive experimental analysis on application instances unsolved
in SAT competition 2009 by comparing the partition tree approach against state-of-
the-art parallel and sequential SAT solvers.

To the best of our knowledge, this work is the first to show that the combination of
partitioning and simple distribution is in practice able to solve many instances that could
not be solved with the current state-of-the-art SAT solvers.

374 A.E. J. Hyvärinen, T. Junttila, and I. Niemelä

2 Preliminaries

A literal l is a propositional variable x or its negation ¬x; as usual, we define that
¬¬x = x. A clause is a disjunction of literals and a (CNF) formula is a conjunction of
clauses. A clause is unit if it only contains one literal. Whenever convenient, we may
interpret a formula as a set of clauses and a clause as a set of literals. For instance, the
formula φ = (x) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬x ∨ z) ∧ (x ∨ y) can be represented as a set
{{x}, {¬x,¬y}, {y,¬x, z}, {x, y}}. Let vars(φ) denote the set of variables occurring
in φ and lits(φ) = {x,¬x | x ∈ vars(φ)}. A truth assignment τ for a formula φ is a
subset of lits(φ); τ is (i) inconsistent if both x ∈ τ and ¬x ∈ τ for some variable x,
(ii) consistent if it is not inconsistent, and (iii) complete for φ if either x ∈ τ or ¬x ∈ τ
for each x ∈ vars(φ). A literal l is assigned to true by τ if l ∈ τ and to false if ¬l ∈ τ ;
if it is assigned to either, it is called assigned by τ . For any truth assignment or other
set of literals τ , we write φ ∧ τ to denote the formula φ ∧

∧
l∈τ (l). A consistent truth

assignment satisfies the formula φ if it includes at least one literal of each clause in φ;
if such a satisfying assignment exists, φ is satisfiable and unsatisfiable otherwise.

Given a formula φ and a truth assignment τ for it, we use up(φ, τ) to denote the set
of literals implied by unit propagation on φ under τ ; formally, up(φ, τ) is the smallest
set U of literals satisfying (i) τ ⊆ U , and (ii) if a clause (l1 ∨ ... ∨ ln) is in φ and
{¬l1, ...,¬li−1,¬li+1, ...,¬ln} ⊆ U , then li ∈ U . Note that if φ contains a unit clause
(l), then l ∈ up(φ, τ) for all truth assignments τ . Obviously, if up(φ, τ) is inconsistent,
then the formula φ ∧ τ is unsatisfiable.

3 Approaches to Distributed Solving

This section reviews and studies three approaches to distributed solving: the simple
distribution, the plain partitioning (also studied in, e.g., [1,14]), and the partition tree
approach originally presented in [15]. In the analysis we first ignore the run time limi-
tations typically imposed by a grid on the individual executions of jobs, and then use an
example to illustrate how they affect the results. The central assumption in the discus-
sion is that given a SAT instance and a solver, the run time of the solver obeys a random
distribution. The assumption is especially realistic for SAT solving, since most modern
sequential solvers already employ some form of randomization, for example taking as
input a seed used to initialize the pseudo random number generator of the solver.

Simple Distribution. In simple distribution SAT solvers are run in parallel and the solu-
tion is obtained from the first solver that finishes and finds the instance either satisfiable
or unsatisfiable. This approach has an obvious drawback, since minimum run time of
the instance limits the obtainable speed-up.

Plain Partitioning. The simple distribution approach can be strengthened by forcing
constraints on the overlap of the work of independent SAT solvers. The constraints
result in smaller search spaces for the solvers and, hopefully, executions which can
be finished in shorter time than the original execution. In this work, we use parti-
tion functions to constrain the overlap. A partition function P maps a SAT instance

Partitioning SAT Instances for Distributed Solving 375

φ and an integer n ≥ 2 to a set P(φ, n) = {φ1, . . . , φn} of derived instances such that
(i) φ ≡ (φ1 ∨ . . . ∨ φn), and (ii) φi ∧ φj is unsatisfiable for i �= j. From (i) it follows
that the instance φ is satisfiable if and only if at least one derived instance is satisfiable.

The plain partitioning works by applying a partition function P to an instance φ
and solving the derived instances φ1, . . . , φn in parallel. The plain partitioning ap-
proach bears close resemblance to the guiding path approach [10,17], and, provided
that the derived instances always have lower run time than the original instance, the
plain partitioning approach can solve arbitrarily difficult problems given a sufficiently
large n [14]. However, the plain partitioning has some fundamental problems which
prevent it from being a practical solving method in distributed environments as such.
Firstly, it is, of course, problematic to determine the value for n. Secondly, a more
subtle problem is that if no guarantees can be given on the run times of the derived
instances and the instance to be solved is unsatisfiable, increasing n arbitrarily may in
fact increase the expected run time. We call a badly working partition function, which
results in derived instances with run times equal to that of the original instance, a void
partition function2. Void partition functions are especially harmful for proving unsatis-
fiability, since it is not possible to obtain any speedup with a void partition function in
the plain partitioning [14]:

Proposition 1. Let φ be an unsatisfiable instance andP a void partition function. Then
the expected run time of the plain partitioning approach is at least as large when using
the partition function P(φ, n) as when using P(φ, n− 1).

The Partition Tree Approach. To overcome these difficulties, we can instead use P to
construct a partition tree and attempt the solving of the nodes in the tree in parallel. A
partition tree of a formula φ is a tree rooted at φ, where nodes are propositional for-
mulas, all except the leaves having n children constructed with a partition function. A
SAT instance can be shown satisfiable by showing any node of the partition tree satis-
fiable, and unsatisfiable by solving at least one instance on every path from the root to
the leaves. See Fig. 1(b) for an example of a partition tree and such a set of instances
(illustrated by the shaded area). This approach has the advantage over the plain parti-
tioning that the expected run time of the approach cannot be higher than that of solving
φ with a sequential SAT solver: since φ is in the root of the partition tree, showing it
unsatisfiable suffices to prove unsatisfiability. We prove the following stronger claim for
the partition tree approach, which intuitively states that if more parallel resources are
used, the expected time required to solve the instance φ will not increase. We formalize
this assuming that all leaves of the tree have the same amount k of ancestors (i.e., the
height of the tree is k), and all instances in the tree are executed simultaneously with
no delay.

Proposition 2. Let φ be an unsatisfiable instance, Tk and Tm be two partition trees of
height k and m, respectively, constructed with a void partition function, and k < m.
Then the expected run time of the partition tree approach is at most as large when using
Tm as when using Tk.

2 A partition function can be void, for example, when the SAT instance consists of an unsatisfi-
able and a satisfiable part sharing no variables, the partitioning constrains only the satisfiable
part but a solver searches on the unsatisfiable part.

376 A.E. J. Hyvärinen, T. Junttila, and I. Niemelä

unsattimeoutunsat unsat unsatunsat unsat
φ1 φ2 φ3 φ4 φ5 φ6 φ7

φ

unsat timeout

unsat

timeout

unsatunsattimeout
φ′

1,2 φ′
2,1 φ2,2

φ

φ′
1 φ′

2

φ′
1,1

(a) (b)

Fig. 1. An example of solving an unsatisfiable SAT instance φ with (a) the plain partitioning to
seven derived instances, and (b) the partition tree approach.

The comparison between the plain partitioning and the partition tree approach is
similar when the environment limits the run times of individual executions of the nodes,
but in this case it is also possible that the instance cannot be solved. Figure 1 shows an
example where an instance φ is solved using a randomized SAT solver in a distributed
environment with (a) the plain partitioning and (b) the partition tree approach. Since the
run time of the solver on an instance obeys a random distribution, solving the instance
depends on the “luck” of the solver. Let the partition function be void, meaning that
all the derived instances are as difficult as the original instance. Suppose that the plain
partitioning approach uses 7 CPUs to run the instances φ1, φ2, . . . , φ7 in parallel. The
plain partitioning approach is “unlucky” and fails to find a solution since the instance
φ2 is terminated unsuccessfully when the run time limit of the corresponding execution
is exceeded. On the other hand, suppose that the partition tree approach uses 7 CPUs to
run the instances φ, φ′

1, φ
′
2, φ

′
1,1, φ

′
1,2, φ

′
2,1, φ

′
2,2 in parallel and is even more unlucky,

failing to find solutions for the three instances φ, φ′
1,1 and φ′

2. In the partition tree
approach, however, the instance φ′

1 is solved and therefore the subtree rooted at φ′
1 can

be determined unsatisfiable even though φ′
1,1 times out. And the subtree rooted at φ′

2 is
determined unsatisfiable even though φ′

2 times out since φ′
2,1 and φ′

2,2 are solved. Thus,
the original instance φ is also determined unsatisfiable in the partition tree approach.
Note that the same scenario is possible even if the partition function is not void.

In practice the computing environment (grid or cloud) places some limitations on
the partition tree approach. Most notably, the number of obtainable parallel computing
resources is limited and therefore only a subset of the instances in an arbitrary partition
tree can be executed simultaneously. Since the executions times of the solvers running in
parallel and trying to solve these instances are also bounded, the resources will always
become available again. Therefore the partition tree can be constructed iteratively on-
the-fly. In our experiments, we construct the partition tree in breadth first order. That
is, the original instance φ is first submitted for solving and, while it is being solved,
the partition function is applied to it locally to produce its children in the tree; the
children are then in turn submitted for solving whenever resources are available and
iteratively repartitioned. Once a subtree is shown unsatisfiable, it is no longer expanded,
and therefore it is not necessary to determine the height of the tree in advance.

Partitioning SAT Instances for Distributed Solving 377

4 DPLL-Based Partitioning with Lookahead

Our first new partition function utilizes and extends the ideas applied in traditional,
chronologically backtracking and non-learning, DPLL-based SAT solvers employing
unit propagation lookahead (see e.g. [18]) such as SATZ [19] and MARCH EQ [20].
Given a formula φ, such solvers basically try to iteratively build a satisfying truth as-
signment τ by heuristically selecting a currently unassigned literal l and then consider-
ing two branches: one for the truth assignment up(φ, τ ∪ {¬l}) and one for up(φ, τ ∪
{l}). If the considered truth assignment is inconsistent, the branch is closed and the
solver backtracks chronologically. In order to prune the resulting search tree, these
solvers also apply the so-called one-step unit propagation lookahead (or simply looka-
head) to extend truth assignments in a satisfiability preserving way and, thus, also to
detect inconsistencies and close unsuccessful branches earlier. As the truth assignments
in the search tree nodes k steps below the root are mutually exclusive and cover all sat-
isfying truth assignments, our core idea here is to use these assignments as partitioning
constraints when we want to partition a formula into 2k derived formulas.

We next review the lookahead procedure (Sect. 4.1) and formally describe the par-
tition function (Sect. 4.2). In addition, we give a novel technique for speeding up the
computation of lookahead (Sect. 4.3) and, for the sake of analyzing the results in forth-
coming sections, evaluate the efficiency of the lookahead procedure when applied as a
preprocessing technique for formula simplification (Sect. 4.4).

4.1 One-Step Unit Propagation Lookahead

The lookahead is based on the so-called failed literal rule. Given a formula φ and a truth
assignment τ for it, a literal l ∈ lits(φ) is a failed literal under φ∧ τ if up(φ, τ ∪{l}) is
inconsistent. As a consequence, if l is a failed literal under φ ∧ τ , then φ ∧ (τ ∪ {l}) is
unsatisfiable, implying that φ∧τ is satisfiable iff φ∧(τ∪{¬l}) is. The failed literal rule
states that if l is a failed literal underφ∧τ , then one can extend τ with¬l when searching
for the satisfying truth assignments for φ ∧ τ . As an example, assume a formula φ =
(¬x4 ∨ ¬x7 ∨ x15)∧(¬x15 ∨ ¬x3 ∨ x21)∧(¬x21∨x5∨x17)∧(¬x17 ∨ ¬x60 ∨ x89)∧
(¬x17 ∨ ¬x89) ∧ ... and a truth assignment τ = {x7, x3,¬x5, x60}. Now x4 is a failed
literal under φ∧ τ as up(φ, τ ∪ {x4}) is inconsistent: x4 and x7 imply x15, x15 and x3
imply x21, x21 and ¬x5 imply x17, x17 and x60 imply x89 and x17 implies ¬x89. Thus
φ ∧ τ is satisfiable iff φ ∧ (τ ∪ {¬x4}) is.

The lookahead procedure then applies the failed literal rule until there are no more
failed literals unassigned by the truth assignment τ . Formally, the result of applying
lookahead on a formula φ and truth assignment τ , denoted by lookahead(φ, τ), is
the smallest set U of literals including τ and closed under the failed literal rule: if a
literal l ∈ lits(φ) is a failed literal under φ ∧ U , then ¬l ∈ U . Observe that (i) if
lookahead(φ, τ) is inconsistent, then φ ∧ τ is unsatisfiable, and (ii) φ ∧ τ is satisfiable
iff φ ∧ lookahead(φ, τ) is.

Note that computing the lookahead can very time consuming: the best currently
known techniques require in the worst case at least cubic time in the number of variables
in the formula. Thus, solvers such as SATZ and MARCH EQ do not usually compute the
full lookahead but only try to apply the failed literal rule to a subset of the unassigned

378 A.E. J. Hyvärinen, T. Junttila, and I. Niemelä

variables. Naturally, many heuristics have been developed to speedup lookahead com-
putation (see e.g. [18] for existing ones and Sect. 4.3 below for a new one). In addition
to the failed literal rule, there are also other search tree pruning rules such as the “nec-
essary assignments” and “double lookahead” rules (see e.g. [18,21]); evaluation of the
efficiency of these rules in the context of partitioning is left for future work.

4.2 The Partition Function

As mentioned above, the proposed partition function uses the (up to) 2k nodes at depth
k in the search tree of a non-learning, DPLL-based lookahead SAT solver to partition
the formula φ. The pseudo-code for the function is shown in Fig. 4(a); to obtain a
partitioning, it is invoked with dpll-la-partition(φ, ∅, 0, k).

In the pseudo-code, the function lookahead(φ, τ ′) computes both the lookahead
set τ ′′ = lookahead(φ, τ ′) and a variable selection heuristic function h associating
a value to each variable x not assigned by τ ′′. In our experiments, we use the fol-
lowing lookahead balancing heuristics function (adopted from the SMODELS stable
models solver [22]) that tries to estimate the worst case search tree size after selecting
x. As x is not assigned by τ ′′, we define the “remaining search tree size estimates”
h−

φ,τ (x) = 2|vars(φ)|−|up(φ,τ∪{¬x})| and h+
φ,τ (x) = 2|vars(φ)|−|up(φ,τ∪{x})|, i.e. the

numbers of unassigned variables after branching on ¬x and x, respectively, and per-
forming unit propagation. To estimate the remaining search tree size on both branches,
we define the heuristic function h to be

hφ,τ (x) = max
{
h−

φ,τ (x), h+
φ,τ (x)
}

and select a variable that minimizes the function (ties are broken, e.g., randomly). Ob-
serve that this heuristic function is obtained practically as a side product when com-
puting the lookahead. The computation of the lookahead and the heuristic function h
is very important for obtaining small search trees (and, thus, good partitionings); there-
fore, whenever a time limit is imposed on the partition function, we try to divide the
available time evenly between the lookahead functions in the search tree nodes.

4.3 Exploiting Unique Implication Points

We now show how to apply the conflict analysis technique [23,24] used in modern
clause learning SAT solvers to enhance the failed literal rule in a way that allows it
sometimes to detect multiple failed literals at the same time.

Assume a formula φ, a consistent truth assignment τ for φ that is closed under unit
propagation (meaning that up(φ, τ) = τ), and a literal l� ∈ lits(φ) that is not assigned
by τ . We now want to check whether l� is a failed literal under φ ∧ τ , i.e. whether
up(φ, τ ∪ {l�}) is inconsistent. To do this, we start from the assignment τ ∪ {l�} and
apply unit propagation until no new literals can be deduced or an inconsistency is found.
We now assume that up(φ, τ ∪ {l�}) is inconsistent. Assuming that the computation
of up(φ, τ ∪ {l�}) is terminated as soon as an inconsistency is detected, it can be
characterized by the corresponding conflict graph, which is a directed acyclic graph
Gφ,τ,l� = 〈V , E〉 with a vertex set V ⊆ lits(φ) ∪ {λ} for a special symbol λ /∈ vars(φ)
and fulfilling the following conditions:

Partitioning SAT Instances for Distributed Solving 379

1. If l ∈ V , l �= λ, and l ∈ τ ∪ {l�}, then l does not have any incoming edges.
2. If l ∈ V , l �= λ, and l /∈ τ ∪ {l�}, then l has a non-empty set of incoming edges

originating from the vertices l1,...,lk and the clause (¬l1 ∨ ... ∨ ¬lk ∨ l) is in φ.
3. There is exactly one variable x ∈ vars(φ) such that both x,¬x ∈ V . The special

symbol λ is a vertex that has incoming edges from these vertices x and ¬x only.

A vertex l′ �= λ such that ¬l′ /∈ τ is a unique implication point in the conflict graph if all
the paths from the vertex l� to the vertex λ go through l′ (observe that, by definition, the
vertex l� is a unique implication point). As the edges incoming to a vertex describe one
application of the unit propagation rule, we have the following result. Take any unique
implication point l′ and the sub-graph of Gφ,τ,l� induced by the vertex set consisting the
vertex l′ and the vertices having a path to λ not visiting l′. Now this sub-graph is the
conflict graph corresponding to a computation of up(φ, τ ∪ {l′}) and, thus, up(φ, τ ∪
{l′}) is inconsistent and l′ is a failed literal under φ ∧ τ .

As an example, assume a formula φ = (¬x4 ∨ ¬x7 ∨ x15) ∧ (¬x15 ∨ ¬x3 ∨ x21) ∧
(¬x21 ∨ x5 ∨ x17) ∧ (¬x17 ∨ ¬x60 ∨ x89) ∧ (¬x17 ∨ ¬x89) ∧ ... and a truth assign-
ment τ = {x7, x3,¬x5, x60} closed under unit propagation. Now x4 is a failed lit-
eral under φ ∧ τ as up(φ, τ ∪ {x4}) is conflicting; the conflict graph correspond-
ing to a sequence of unit propagation rule applications is shown in Fig. 2. Now
the nodes x4, x15, x21 and
x17 are all unique implica-
tion points and, thus, the lit-
erals x4, x15, x21 and x17 are
all failed literals under φ∧ τ .
Observe that ¬x15, ¬x21 and
¬x17 do not necessarily be-

x89

x17

¬x89

x21x4

x7 x3 x60

x15 λ

¬x5

Fig. 2. A conflict graph

long to the set up(φ, τ ∪ {¬x4}) and, thus, this unique implication point exploitation
method is able to derive truly additional failed literals.

We have experimentally evaluated the efficiency of this technique by implementing
a lookahead procedure including it on top of the MINISAT solver [25] (version 1.14)
and computing the lookahead set lookahead(φ, ∅) for all the 887 formulas φ in the
“crafted”, “industrial”, and “random” categories of the SAT-COMP 2007 solver compe-
tition benchmark set (see http://www.satcompetition.org/). The lookahead
computation time was limited to 300 seconds: of the 887 formulas, the lookahead com-
putation finished within 300 seconds on 853/855 formulas (without/with unique impli-
cation point exploitation) while for the others possibly only a subset of lookahead(φ, ∅)
was computed. The computation time results in Fig. 3(a) show that on a number of prob-
lems it is definitely worthwhile to find and use the unique implication points as a 2–4
times speedup can be obtained. Furthermore, the results also show that the computation
of unique implication points is not computationally too expensive when compared to the
rest of the lookahead computation; thus when the unique implication point technique
does not help, it does not significantly slow down the lookahead computation, either.

4.4 Lookahead as a Preprocessing Technique

One may now think that applying lookahead as a preprocessing step might make the
formula significantly easier to solve. That is, given a formula φ, if we compute the

http://www.satcompetition.org/

380 A.E. J. Hyvärinen, T. Junttila, and I. Niemelä

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

U
IP

 o
pt

im
iz

at
io

n

no UIP optimization

 1

 10

 100

 1000

 0 50 100 150 200 250 300

tim
e

t (
in

 s
ec

on
ds

)

number of problems solved within t seconds

original
lookahead-simplified

(a) comparing lookahead computation
times (in seconds)

(b) the effect of applying lookahead as a
preprocessing technique

Fig. 3. Some experimental results on computing and applying lookahead

lookahead lookahead(φ, ∅) and add the unit clauses found to φ, then the resulting for-
mula φ ∧ lookahead(φ, ∅) would be much easier to solve than φ. Unfortunately, this
is not the case, at least when considering the 573 formulas in the “crafted” and “ap-
plication” categories of the SAT-COMP 2009 solver competition (see http://www.
satcompetition.org/). Figure 3(b) shows a digest of the run times of MINI-
SAT on the original 573 formulas as well as on the corresponding lookahead-simplified
formulas. The lookahead computation time, which was limited to 300 seconds, is not
included in the “lookahead-simplified” plot; of the 573 formulas, the lookahead com-
putation finished within 300 seconds on 516 formulas. The results clearly show that
performing lookahead-based formula simplification does not give substantial run time
benefits on these instances. And if the lookahead computation time was included in the
“lookahead-simplified” plot, the result be would slightly worse than the “original” plot.

We have included this negative result as it shows that the positive results we obtain
later in this paper, when applying lookahead for partitioning SAT formulas, are not
caused by the fact that simply applying lookahead to the original formula would have
produced as good results.

5 Partitioning with Scattering

The partition function presented in Sect. 4 can be contrasted to the scattering approach
presented in [15]. The approach is a generalization of DPLL-based partitioning, in a
sense that not only literals but also longer clauses are conjoined with the original in-
stance. More formally, given an input formula φ, the derived instances are of the form

φi =

⎧⎨⎩
φ ∧ c1 when i = 1,
φ ∧ ¬c1 ∧ . . . ∧ ¬ci−1 ∧ ci when 1 < i < n, and
φ ∧ ¬c1 ∧ . . . ∧ ¬cn−1 when i = n,

where ci = x1 ∧ . . . ∧ xdi conjoins literals and ¬ci = ¬x1 ∨ . . . ∨ ¬xdi is a clause.

http://www.satcompetition.org/
http://www.satcompetition.org/

Partitioning SAT Instances for Distributed Solving 381

dpll-la-partition(φ,τ ,i,k):
1 let τ ′ := up(φ, τ)
2 let 〈τ ′′, h〉 := lookahead (φ, τ ′)
3 if τ ′′ is inconsistent
4 return
5 if τ ′′ satisfies φ or i = k
6 Output the derived formula φ ∧ τ ′′

7 return
8 let x be h-best and unassigned by τ ′′

9 call dpll-la-partition(φ,τ ′′ ∪ {x},i+1,k)
10 call dpll-la-partition(φ,τ ′′ ∪ {¬x},i+1,k)

(a) DPLL-based partitioning with lookahead

cdcl-partition (φ, d1, . . . , dn):
1 let τ := ∅, dl := 0, and i := 1
2 while true
3 let τ ′ := up(φ, τ)
4 let 〈τ ′′, h〉 := lookahead (φ, τ ′)
5 if τ ′′ is inconsistent
6 let dl := analyze ()
7 if dl = −1 return done
8 else backtrack (dl)
9 else if dl = di

10 Output the derived formula φ ∧ τ ′′

11 if i = n return done
12 let φ := φ ∧ (¬x1 ∨ . . . ∨ ¬xdi)
13 let i := i + 1
14 backtrack (0)
15 else
16 let dl := dl + 1
17 let xdl be h-best and unassigned by τ ′′

18 if xdl = None return sat
19 let τ := τ ∪ τ ′′ ∪ {xdl}
(b) Scattering-based lookahead partitioning

Fig. 4. Algorithms for partitioning

Fig. 4(b) presents the cdcl-partition algorithm for scattering. The algorithm takes
as input an instance φ and an integral sequence d1, . . . , dn determining the number of
literals in the constraints c1, . . . , cn−1 such that the derived instances have search spaces
of roughly equal size. The algorithm is based on the conflict-driven clause learning
(CDCL) solver search, altered so that once a sufficient amount of decision literals is
chosen, the literals are used to produce a partition, the solver backtracks to the topmost
decision level, inserts a clause consisting of the negation of the decision literals, and
continues the partitioning on the altered instance on lines 10–14.

We extend the algorithm described in [15] by a lookahead-type call similar to the
one described in Sect. 4 by computing not only the unit propagation up(φ, τ) but also
lookahead(φ, τ), effectively implementing a CDCL solver with lookahead. In contrast
to the dpll-la-partition() algorithm in Fig. 4(a), we use the first unique implication point
(1-UIP), as in most CDCL solvers, to guide the backtracking.

The algorithm proves an instance unsatisfiable on line 7, if it has not altered the in-
stance on line 12. Hence, the algorithm can be used for sequential SAT solving by dis-
abling the partition construction on lines 10–14. We implemented the algorithm on top
of MINISAT version 1.14, and compared its performance against the unaltered MINI-
SAT v1.14 implementation on a randomly selected set of instances consisting of approx-
imately half of the crafted and applications categories of the SAT-COMP 2009 solver
competition. The lookahead-implementation could solve less than half of the instances
solved by MINISAT; similar results are independently obtained in [26]. However, looka-
head turns out to be a useful approach to producing partitions, as shown below.

382 A.E. J. Hyvärinen, T. Junttila, and I. Niemelä

6 Benchmarking Partition Functions

The experiments in this section demonstrate differences between the following partition
functions, also used in the main experiments presented in the next section:

– DPLL-based partitioning with lookahead, described in Sect. 4,
– Scattering-based partitioning with lookahead, described in Sect. 5, and
– Scattering-based partitioning with the VSIDS heuristic. This function is originally

described in [15], but is completely re-implemented for this work and performs
search not only initially but also between every derived instances.

To compare the performances of the partition functions, we used all three partition func-
tions to partition an instance once and then solved the derived instances using MINISAT.
As benchmarks we chose all the 573 instances in the crafted and application categories
of the 2009 SAT competition.

The results are reported in Fig. 5. Each
instance was partitioned into eight derived
instances using scattering-based partition-
ing with lookahead (LA scatter) and VSIDS
heuristic (VSIDS scatter), and the DPLL-
based partitioning with lookahead function
(LA DPLL). The time-out for each parti-
tion function was 300 seconds, and the de-
rived instances were solved using a standard
SAT solver (MINISAT v1.14) and 3600 s
time-out. The figure shows the run time of
the plain partitioning approach, that is, the
shortest run time of the satisfiable derived
instances for a satisfiable instance, and the
longest run time of the derived instances of

 0.1

 1

 10

 100

 1000

 50 100 150 200 250 300

tim
e

t (
in

 s
ec

on
ds

)

number of problems solved within t seconds

minisat
LA scatter

VSIDS scatter
LA DPLL

Fig. 5. Comparing plain MINISAT, VSIDS
scattering, lookahead scattering and DPLL-
based lookahead partitioning

an unsatisfiable instance. For comparison, the figure also provides the run time of the
standard SAT solver on the original instances with no partitioning (minisat). The fig-
ure reports zero solving time for some instances for the scattering-based partitioning
with VSIDS heuristic, as some instances were solved with this method already in the
partition phase.

The DPLL-based partitioning with lookahead solves most instances from the bench-
mark set. This is a surprising result, since in principle, the greater freedom of the scat-
tering approach in choosing the literals should increase the solving performance. More
confirmation for this conclusion will be given in the next section, where the DPLL-
based lookahead partitioning is especially efficient in instances that are relatively easy
to solve. The scattering-based partition function with VSIDS heuristic also slightly out-
performs the scattering-based partition function with lookahead heuristic.

7 Experiments on the Partition Tree Approach

The main experiments of the work, presented in this section, concentrate on solving
challenging SAT instances, mainly those that were either solved by no solver in the
SAT competition 2009, or whose solving consumed much time.

Partitioning SAT Instances for Distributed Solving 383

Table 1. Wall-clock solving times in seconds for instances from the applications category not
solved in SAT competition 2009

Name Type LA DPLL LA scatter VSIDS scatter SD 64 MANYSAT PLINGELING

9dlx vliw at b iq8 UNSAT — — — — — 3256.41
9dlx vliw at b iq9 UNSAT — — — — — 5164.00
AProVE07-25 UNSAT 8992.60 9176.91 11347.42 — — —
dated-5-19-u UNSAT 16557.82 20155.96 4124.62 — — 4465.00
eq.atree.braun.12.unsat UNSAT 3157.19 2357.55 3006.19 20797.60 15338.00 —
eq.atree.braun.13.unsat UNSAT 7117.39 8504.50 8158.85 — — —
gss-24-s100 SAT 1977.19 3449.55 2271.24 968.23 13190.00 2929.92
gss-26-s100 SAT 10844.22 — 6057.80 — — 18173.00
gss-32-s100 SAT — 16412.40 — — — —
gus-md5-14 UNSAT 14779.03 16264.37 16098.04 — — —
ndhf xits 09 UNSAT UNSAT — — 14793.78 — — —
rpoc xits 09 UNSAT UNSAT — — 12388.32 — — —
sortnet-8-ipc5-h19-sat SAT — — — — — 2699.62
total-10-17-u UNSAT 4431.21 7198.23 5099.73 — 10216.00 3672.00

The partition trees were constructed in breadth-first order, and the approach was
allowed to simultaneously use 64 CPUs from the NorduGrid computing grid3. Three
time outs were used in the solving process: the time outs for the partition functions, for
the computing in the nodes, and for the full approach. Each partition function invocation
was allowed to run for at most 5 minutes, after which it had to produce the derived
instances. Solving of each tree node was attempted until a time out ranging from 60
to 90 minutes was reached4 or the node was solved. The solving was allowed to use
at most 1 gigabyte of memory. Finally, the partition tree approach was terminated if it
did not succeed in solving the instance in its own time out of 6 hours wall clock time.
Hence the maximum CPU time consumed in the grid while solving any instance was
6× 64 = 384 hours, or 16 days.

The partition tree approach was used first on solving all 63 instances of the applica-
tion category solved in the SAT competition 2009 by no solver. The approach solved
11 such instances, shown in Table 1. The wall clock times for DPLL-based lookahead,
scattering-based lookahead and scattering-based VSIDS partition functions are shown
in columns LA DPLL, LA scatter, and VSIDS scatter, respectively. The times include
all communication delays. While the result is good as such, it can be argued that com-
paring the solver against only the SAT competition results is unfair for at least three rea-
sons. The time-out in the SAT competition was 10000 seconds, which is approximately
only three hours, the computers used in the competition might be dramatically different
from those we have available, and only sequential solvers are compared. To compensate
this, we tried three alternate parallel solvers again on all the 63 instances, one based on
running the original MINISAT v1.14 in parallel using different random seeds as in the
simple distribution approach (column SD 64), one using the publicly available version
1.0 of the MANYSAT parallel SAT solver [7] (column MANYSAT), and one using the
PLINGELING version 276 parallel SAT solver [27] (column PLINGELING). The simple

3 http://www.nordugrid.org/
4 The time limit is not constant to avoid a decrease in performance caused by simultaneous

finishing of a large number of jobs.

http://www.nordugrid.org/

384 A.E. J. Hyvärinen, T. Junttila, and I. Niemelä

distribution approach memory limit was again one gigabyte per solver, and each solver
had a time limit of 6 hours, whereas MANYSAT and PLINGELING had the same time
limit and a 32 gigabytes memory limit. The solvers were run with 12 threads and cores.

The results show that the partition tree approach performs best when used with
the scattering-based partition function with VSIDS heuristic, solving 10 unsolved in-
stances. The DPLL-based partition function, on the other hand, seems to solve many of
the easier instances faster than the other two functions.

In all the instances of the benchmark set, with the exception of one satisfiable in-
stance, the partition tree approach performs better than the simple distribution approach,
even though the delays in the partition tree approach are significantly higher. In partic-
ular, the simple distribution approach and did not solve any of the 52 instances the
partition tree approach did not solve.

Since the instances in the benchmark set provide little evidence on the scalability of
the partition tree approach, we also attempted to solve all 15 instances from the crafted
and applications categories of SAT competition 2009 that were solved by at least one
solver but the best run time was over 1 hour. The results are reported in Table 2. For
comparison the table reports the best sequential competition result in column COMP.

In these easier instances, it seems that the DPLL-based partition function with looka-
head (column LA DPLL) produces usually the best results in the partition tree approach.
In two cases the SD 64 approach is better than either the scattering-based VSIDS or
lookahead approach. The average run time of MINISAT seems to be for both instances
much higher than the minimum reported in the SD 64 column.

The table also reports a number of instances where the result of at least one solver
in SAT competition 2009 was better than any of the partition tree results. In these
cases also the MINISAT solver could not find a solution before the timeout. We could

Table 2. Wall-clock times in seconds for the partition tree approaches, simple distribution and
MANYSAT as well as the SAT-COMP results

Name Type LA DPLL LA scatter VSIDS scatter SD 64 COMP MANYSAT PLINGELING

9dlx vliw at b iq7 UNSAT — — — — 6836.20 7665.00 1576.08
AProVE07-01 UNSAT 1465.22 1322.04 2451.36 20230.30 6816.94 13219.00 21144.00
dated-5-13-u UNSAT 3881.60 4745.52 4563.15 — 8005.27 15818.00 2524.05
gss-22-s100 SAT 830.77 1151.13 4246.25 2280.82 4326.83 — 1136.39
gss-27-s100 SAT — — 9156.71 — 7132.69 — 18013.00
gus-md5-11 UNSAT 1190.28 2077.99 2092.54 5057.39 4518.06 20184.00 —
maxor128 UNSAT — — — — 7131.52 — 2227.07
maxxor064 UNSAT — — — — 5162.75 2837.28 9346.00
minandmaxor128 UNSAT — — — — 5143.44 4228.00 3737.00
mod4block 3vars 7gates UNSAT 1740.17 1755.47 2326.02 — 4109.89 — 5048.00
new-difficult-26-243-24-70 SAT 3260.86 8887.61 5087.98 3311.62 4440.72 13343.00 0.17
rbcl xits 08 UNSAT UNSAT 4557.86 2390.50 3695.97 — 3892.92 10136.00 4783.00
sgen1-unsat-109-100 UNSAT 1363.14 3000.48 4196.36 14675.60 4045.49 — —
UR-20-10p1 SAT 4463.24 — — — 8766.23 8164.00 3598.17
UTI-20-10p1 SAT — 7097.74 — — 6289.06 750.76 892.84

Challenge instances for MINISAT

countbitsarray02 32 UNSAT 1746.29 3003.50 997.84 2504.93 834.519 969.67 258.60
simon-s02b-k2f-gr-rcs-w8 UNSAT 3816.20 3106.70 14756.10 — 6.40 153.59 5.01
vange-col-abb313GPIA-9-c SAT — — — — 445.09 — 520.95
velev-pipe-uns-1.0-8 UNSAT — — — — 307.48 337.94 202.54
vmpc 34 SAT 12452.59 1350.17 1479.62 2796.19 35.347 490.71 4064.00

Partitioning SAT Instances for Distributed Solving 385

experimentally find some more instances which turned out to be relatively easy for
some SAT solver in the competition but extremely challenging for our approach which
is based on MINISAT. These instances are presented in the bottom part of Table 2.

The partition tree approach solves several instances which were not solved in the
SAT-COMP 2009 solver competition. While we could find other instances that were
solved in the competition and we failed to solve, our results suggest that also the simple
distribution approach fails to solve these instances. We conclude that the partition tree
approach genuinely improves the efficiency of MINISAT, and similar results cannot
be achieved simply by running randomized MINISAT in parallel. The results raise an
interesting future question on how other solvers would benefit from the approach.

8 Conclusions

This work studies approaches to distributed solving of propositional satisfiability prob-
lem (SAT) instances. We justify analytically that the partition tree approach, first de-
scribed in [15], can perform well in situations where two commonly used approaches,
simple distribution and plain partitioning [14], perform badly. We develop two novel
partition functions which use unit propagation lookahead, and benchmark their effi-
ciency against an improved version of a previously presented partition function. Finally,
we study the efficiency of the partition tree approach together with the three partition
functions in practice by attempting the solving of all unsolved application instances of
the SAT competition 2009.

The results show that the partition tree approach is much more powerful than the
initial results in [15] suggest. The approach could solve many of the unsolved instances
which could not be solved even in our extensive experiments with two well-performing
parallel solvers.

Acknowledgments. The authors are grateful for the financial support of the Academy
of Finland (project 122399), Helsinki Graduate School in Computer Science and Engi-
neering, Jenny and Antti Wihuri Foundation, Finnish Foundation for Technology Pro-
motion, Emil Aaltosen Säätiö, the Nokia Foundation, and Technology Industries of
Finland Centennial Foundation.

References

1. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Strategies for solving SAT in Grids by random-
ized search. In: Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.)
AISC 2008, Calculemus 2008, and MKM 2008. LNCS (LNAI), vol. 5144, pp. 125–140.
Springer, Heidelberg (2008)

2. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. Informa-
tion Processing Letters 47(4), 173–180 (1993)

3. Luby, M., Ertel, W.: Optimal parallelization of Las Vegas algorithms. In: Enjalbert, P., Mayr,
E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 463–474. Springer, Heidelberg
(1994)

4. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard computational
problems. Science 275(5296), 51–54 (1997)

5. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1–2), 43–62
(2001)

386 A.E. J. Hyvärinen, T. Junttila, and I. Niemelä

6. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Incorporating clause learning in grid-based ran-
domized SAT solving. Journal on Satisfiability, Boolean Modeling and Computation 6, 223–
244 (2009)

7. Hamadi, Y., Jabbour, S., Saı̈s, L.: ManySAT: a parallel SAT solver. Journal on Satisfiability,
Boolean Modeling and Computation 6, 245–262 (2009)

8. Speckenmeyer, E., Monien, B., Vornberger, O.: Superlinear speedup for parallel backtrack-
ing. In: Houstis, E.N., Polychronopoulos, C.D., Papatheodorou, T.S. (eds.) ICS 1987. LNCS,
vol. 297, pp. 985–993. Springer, Heidelberg (1988)

9. Böhm, M., Speckenmeyer, E.: A fast parallel SAT-solver: Efficient workload balancing. An-
nals of Mathematics and Artificial Intelligence 17(4–3), 381–400 (1996)

10. Zhang, H., Bonacina, M., Hsiang, J.: PSATO: A distributed propositional prover and its ap-
plication to quasigroup problems. Journal of Symbolic Computation 21(4), 543–560 (1996)

11. Jurkowiak, B., Li, C., Utard, G.: A parallelization scheme based on work stealing for a class
of SAT solvers. Journal of Automated Reasoning 34(1), 73–101 (2005)

12. Michel, L., See, A., van Hentenryck, P.: Parallelizing constraint programs transparently. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 514–528. Springer, Heidelberg (2007)

13. Chrabakh, W., Wolski, R.: GridSAT: a system for solving satisfiability problems using a
computational grid. Parallel Computing 32(9), 660–687

14. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: Partitioning the search space of a randomized
search. In: Serra, R. (ed.) AI*IA 2009. LNCS (LNAI), vol. 5883, pp. 243–252. Springer,
Heidelberg (2009)

15. Hyvärinen, A.E.J., Junttila, T., Niemelä, I.: A distribution method for solving SAT in grids.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 430–435. Springer, Hei-
delberg (2006)

16. Segre, A.M., Forman, S.L., Resta, G., Wildenberg, A.: Nagging: A scalable fault-tolerant
paradigm for distributed search. Artificial Intelligence 140(1/2), 71–106 (2002)

17. Blochinger, W., Sinz, C., Küchlin, W.: Parallel propositional satisfiability checking with dis-
tributed dynamic learning. Parallel Computing 29(7), 969–994 (2003)

18. Heule, M., van Maaren, H.: Look-ahead based SAT solvers. In: Handbook of Satisfiabil-
ity. Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 155–184. IOS Press,
Amsterdam (2009)

19. Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In: Smolka,
G. (ed.) CP 1997. LNCS, vol. 1330, pp. 341–355. Springer, Heidelberg (1997)

20. Heule, M., Dufour, M., van Zwieten, J., van Maaren, H.: March eq: Implementing additional
reasoning into an efficient look-ahead SAT solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT
2004. LNCS, vol. 3542, pp. 345–359. Springer, Heidelberg (2005)

21. Le Berre, D.: Exploiting the real power of unit propagation lookahead. In: Proc. SAT 2001.
Electronic Notes in Discrete Mathematics, vol. 9, pp. 59–80. Elsevier, Amsterdam (2001)

22. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

23. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfia-
bility. IEEE Transactions on Computers 48(5), 506–521 (1999)

24. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in
boolean satisfiability solver. In: Proc. ICCAD 2001, pp. 279–285. ACM, New York (2001)

25. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

26. Giunchiglia, E., Maratea, M., Tacchella, A.: (In)Effectiveness of look-ahead techniques in a
modern SAT solver. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 842–846. Springer,
Heidelberg (2003)

27. Biere, A.: Lingeling, Plingeling, PicoSAT and PrecoSAT at SAT race 2010. Technical Report
10/1, Institute for Formal Models and Verification, Johannes Kepler University (2010)

Infinite Families of Finite String Rewriting Systems and
Their Confluence

Jean-Pierre Jouannaud and Benjamin Monate

INRIA-LIAMA and Tsinghua University
CEA, LIST

Abstract. We introduce parameterized rewrite systems for describing infinite
families of finite string rewrite systems depending upon non-negative integer pa-
rameters, as well as ways to reason uniformly over these families. Unlike previous
work, the vocabulary on which a rewrite system in the family is built depends it-
self on the integer parameters. Rewriting makes use of a toolkit for parameterized
words which allows to describe a rewrite step made independently by all systems
in an infinite family by a single, effective parameterized rewrite step. The main
result is a confluence test for all systems in a family at once, based on a critical
pair lemma classically based on computing finitely many overlaps between left-
hand sides of parameterized rules and then checking for their joinability (which
decidability is not garanteed).

1 Introduction

Consider a family of groups {SN}N∈N with generators a1, . . . , aN satisfying:

a2
i = ε | 1 ≤ i ≤ N, aiaj = ajai | i > j + 1 ∧ 1 ≤ i, j ≤ N

This axiomatization depends upon the parameter N ∈ N in four essential ways: there is
one finite set of axioms for each value of the parameterN ; and in each set, the number of
equations depends on N ; the vocabulary depends on N ; words in the equations depend
on N via integer variables i, j satisfying arithmetic constraints in which N occurs.

The methodology for proving properties of SN for a given N by machine is well-
known: it requires the computation of a complete (confluent and terminating) string
rewriting system for SN . This can be achieved for each given N ∈ N by using Knuth-
Bendix completion or one of its variants. The study by machine of various finite groups
has been carried out in the non-parameterized case, in particular by Le Chenadec [7,8].

Much apparatus has later been developed to describe and reason about infinite lan-
guages of terms by using tailored unification algorithms [2,10,5,9]. Such languages
arise for example in Knuth-Bendix completion when the process diverges.

However, all formalisms we know of, whether mentioned or not, allow one to repre-
sent terms on a given fixed vocabulary and specify and reason about a single algebraic
structure, which does not fit at all our purpose here.

In this paper we show how to deal at once with the infinite family {SN }N∈N, with-
out instantiating the parameter N . To achieve this goal, we define an extension of the
notions of (families of) words, equations and rewrite rules in case the alphabet itself
depends on the parameter N . We then show how to mechanize termination proofs and

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 387–401, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

388 J.-P. Jouannaud and B. Monate

reduce local confluence of such systems to the joinability of finitely many critical pairs.
As a result, the above infinite family SN can be directly presented as the complete
parameterized string rewriting system:

a2
i → ε | 1 ≤ i ≤ N, aiaj → ajai | i > j + 1 ∧ 1 ≤ i, j ≤ N

We stress that our ultimate goal is not the study of parameterized groups, which should
be seen as an example illustrating techniques which we believe to be of general interest.
In this respect, the framework we develop, and the methodology used to lift results
from plain rewriting to parameterized rewriting is more important to us than the actual
technical results, whatever difficult they indeed are.

We define parameterized words in Section 3, show how to decide equality and factor
out parameterized words in Section 4, and introduce parameterized rewriting in Sec-
tion 5 before we investigate termination and confluence in this setting. An application
to dihedral groups is carried out in Section 5 with the rewriting toolkit CiME2 [3], im-
plemented in part by the second author for his PhD thesis, which results are generalized
in the present work.

2 Preliminaries

We assume given an infinite alphabet of constant symbols A = {ai}i∈N called gener-
ators or letters.

Our formalism relies heavily on the existential fragment of Presburger Arithmetic
(PrA) using 0, s,+ as operations for defining terms, =, >,<,≥,≤ as predicates for
defining formulas, and two disjoint sets of arithmetic variables: a set P of parameters
denoted by capital letters, and a set I of dependent variables denoted by lower-case
letters. Values of variables in I depend upon values of parameters via a Presburger
constraint, hence their name. We call solution of ϕ an assignment which satisfies ϕ. We
use ψ |=PrA ϕ for entailment in PrA, meaning that any solution of ψ is a solution of ϕ.
We use %,⊥ for the logical constants true and false respectively, Var(e) for the set
of free variables of an expression e of any kind, VarI(e) for Var(e) ∩ I and VarP(e)
for Var(e) ∩ P . We refer to [4,1,6] for missing notations and definitions.

3 Parameterized Words

3.1 Syntax

Definition 1. Parameterized words are pairs written w | ψ made of:
– a word-expression w defined by the following grammar of axiom W :

W := ε | afW | (F)eW
F := af | afF

{
where e, f denote arithmetic
variables or constants in N.

– a quantifier-free formula ψ of PrA s.t. VarP(ψ) = {Ni}i∈[1..n], Var(w)⊆Var(ψ),
and ∀k1 . . . kn ∈ Nn, the formula ψ ∧

∧
i∈[1..n] Ni = ki has finitely many solutions.

A word-expression is: reduced if all exponents are variables; constant if Var(w) =
∅; flat if it has no exponent; a word if it is constant and flat. In (w)e, w is a non-empty
flat word-expression with exponent e. In af , f is the index of the letter a.

Infinite Families of Finite String Rewriting Systems and Their Confluence 389

Limitations: the grammar forbids nesting of exponents: aij is not a parameterized
word. This restriction is also compulsory for terms with integer exponents as defined in
[2]: nesting allows for easy encodings of Peano arithmetic. All variables are arithmetic:
variables standing for words are out of scope of this paper. There is no theoretical reason
for restricting PrA to its existential fragment, apart from its lower complexity. All other
syntactic restrictions are for convenience.

Lexicography: we use ϕ, ψ, θ for Presburger constraints, s, t, u, v, w for arbitrary
word-expressions, x, y, z for flat ones, a for the letter a1 and b for a2 in examples, and
write n for sn(0) and n + u for sn(u).

We use bold letters p,q to stress constant exponents in word-expressions like (x)p.

Conventions: we sometimes write ai instead of (a)i and , xp instead of (x)p; word-
expressions can be easily expanded into reduced ones; we also identify constant word-
expressions with words; for convenience, we allow us to write p∗n for the sum p-times
of n when p is a constant in N.

3.2 Semantics

Terms with integer exponents [2], or of a primal grammar [5] denote sets of terms. Be-
cause we distinguish local dependent variables constrained by a formula of PrA from
global parameters which can take arbitrary values in N, a parameterized word w | ϕ
denotes an N|P|-indexed family of sets of words, and words in each set are obtained by
replacing in w the variables in I by the natural numbers satisfying the constraint ϕ for
the considered value of the parameters in P . An arithmetic valuation is an application
from P ∪ I to N|P∪I| which we split into two, ν for the parameters, and μ for the de-
pendent variables. Given an expression e, we write ν(e) (resp. μ(e)) for the expression
obtained by replacing the variables in P (resp. I) by their value and possibly eliminat-
ing constant exponents. Note that μ(ν(w)) is a constant word-expression if w | ϕ is a
parameterized word, and that μ(ν(ϕ)) is a formula without arithmetic variable, hence
evaluates to % or ⊥ in PrA. We call instance of w | ϕ a word μ(ν(w)) such that μν
satisfies ϕ. We use a bracketed notation for the semantics of expressions of any kind.

Definition 2. We define successively the interpretation of a parameterized word u | ψ
and of a constant word-expression:

[[u | ψ]] = {[[u | ψ]]ν}ν∈P�→N|P|

[[u | ψ]]ν = {[[μ(ν(u))]] | μ ∈ I �→ N|I| such that μ |=PrA ν(ψ)}
[[ε]] = ε [[anx]] = an [[x]] [[(x)ny]] = x · · ·x︸ ︷︷ ︸

n times

[[y]]

Consider for example the parameterized word (aN
i | 0 < i < N). Then,

-
[[
aN

i | 0 < i < N
]]

N=0 = ∅ since the formula 0 < i < 0 is unsatisfiable;
-
[[
aN

i | 0 < i < N
]]

N=1 = ∅ since the formula 0 < i < 1 is unsatisfiable;
-
[[
aN

i | 0 < i < N
]]

N=2 = {a1a1}, since 0 < i < 2 implies i = 1;
-
[[
aN

i | 0 < i < N
]]

N=3 = {a1a1a1, a2a2a2}, since 0 < i < 3 implies i ∈ {1, 2}.

Therefore,
[[
(aN

i | 0 < i < N)
]]

= {{}, {}, {a1a1}, {a1a1a1, a2a2a2}, . . .}. We see
that separating arithmetic variables in two sets is used in the semantics to stratify the
interpretation of a parameterized word into an infinite family of finite sets of words.

390 J.-P. Jouannaud and B. Monate

It is convenient to consider conjunctive parameterized words (u | ϕ) ∧ (v | ψ)
and disjunctive parameterized words (u | ϕ) ∨ (v | ψ), interpreting conjunction and
disjunction as set intersection and set union at the set level of interpretation. Conjunctive
and disjunctive words do not allow for any more expressivity: we shall give an algorithm
replacing conjunctive words by disjunctive ones (Intersection, page 8), and can always
move disjunctions from words to PrA formulas by systematizing the following trick:
{aib | i ≤ N} ∨ {bia | i ≤ N} = {aibj | i ≤ N ∧ j = 1} ∨ {bkal | k ≤ N ∧ l =
1} = {aibjbkal | (i ≤ N ∧ j = 1 ∧ k = l = 0) ∨ (k ≤ N ∧ l = 1 ∧ i = j = 0)}.

4 The Rewriting Toolkit for Parameterized Words

To rewrite a parameterized word, we need to factor it out via a lefthand side of rule.
To test for confluence, we need to check equality of parameterized words, which shall
require computing their intersection. To compute critical pairs, we need to compute
overlaps of parameterized words. Verifying equality, computing factors and overlaps are
the main algorithmic difficulties of this framework. We choose to present the rewriting
toolkit first, before to introduce parameterized rewriting itself. For lack of space, we
treat in details factorization, and then sketch how intersection, equality and overlaps
can be derived. Examples are shown for factorization and equality. These algorithms
have a non-polynomial complexity, but in our practice rules have usually a small size.

4.1 Auxiliary Algorithms

All our algorithms, factorization, equality checking and computing overlaps, use as
basic building blocks two auxiliary algorithms, for computing common divisors and
non-empty common repeated prefixes of two terms. We start with these two algorithms,
taking advantage of their relative simplicity to sketch their description.

gcd takes two non-empty flat word-expressions x, y and returns a possibly empty finite
set of solutions {(zi,ki, li | θi)}i with zi ∈ A+;ki, li ∈ N+; θi �|=PrA ⊥ satisfying:

(i) soundness: ∀μν such that μν |=PrA θi, μν(x)=μν(zki

i) and μν(y)=μν(zli
i) ;

(ii) completeness: ∀μν such that μν(x) = μν(zk) and μν(y) = μν(zl) for some
triple (z,k, l), there exists (zi,ki, li | θi) such that μν |=PrA θi.

Consider for example x = akal, y = aiajaiaj . Then {(akal, 1, 2 | k = i ∧ l = j)}
is a solution of gcd(x, y). The solution (ak, 2, 4 | i = j = k = l) is indeed an instance
of the previous one, since i = j = k = l |=PrA k = i ∧ l = j.

Let now x = aiajakalaman and y = aiajakalamanaiajakalaman. There are two
incomparable solutions, (aiaj , 3, 6 | i = k = m ∧ j = l = n) and (aiajak, 2, 4 | i =
l ∧ j = m ∧ k = n) which must both be returned by gcd for sake of completeness.
An initial constraint ϕ can be accomodated by returning {(zi �= ε,ki, li | ϕ ∧ θi)}i.

There is an easy guess and check algorithm for gcd, in which the only needed guesses
are the triples of natural numbers p, k, l such that |x| = p × k and |y| = p × l. The
constraint θ under which x = zk and y = zl is then obtained by equating the respective
indices of all flat word-expressions to be equated. An initial constraintϕ is accomodated
by returning {(zi �= ε,ki, li | ϕ ∧ θi)}i. One may of course be willing to pay the price
for filtering out redundant guesses. The answer set is empty iff factoring is impossible.

Infinite Families of Finite String Rewriting Systems and Their Confluence 391

gpref takes two non-empty flat word-expressions x, y with |x| < |y| and returns a
(possibly empty) finite complete set of triples written {(pi �= 0, ti �= ε | θi)}i such that:

(i) soundness: ∀μν.μν |=PrA θi, μν(y) = μν((x)pi ti) and μν(x) is not prefix of
μν(ti);

(ii) completeness: ∀μν such that μν(y) = (μν(x))pμν(t) for some pair (p, t), there
exists (pi, ti | θi) such that μν |=PrA θi.

Let for example x = aiaj and y = aiajakalajai. Then gpref(x, y) = {(aiaj , 1, 1,
akalajai | i �= k ∨ j �= l), (aiaj , 1, 2, ajai | i = k ∧ j = l ∧ i �= j)}, which can be
obtained by a guess and check algorithm as before.

4.2 Factoring

We address now the problem of factoring a parameterized word into one or several
quadruples made of a prefix, a given non-empty factor, a suffix and a constraint char-
acterizing under which additional condition this decomposition holds. Traditionally,
factors are associated with positions. Here, the notion of position is not at all clear: in
aNbaN the position N + 1 of b depends on the parameter, but the first position of a to
the right of b is N + 2 if N > 0 and is not defined if N = 0. This makes it difficult to
reduce factoring to equality by first non-deterministically guessing a prefix and a suffix
position and then checking the delimited factor for equality.

Let us first look whether the word aba is a factor of the parameterized word aNbaN |
N > 0. There is a unique possibility to decompose aNbaN so as to obtain the fac-
tor aba, namely : aNbaN = aN−1ababN−1. We can therefore write informally that
(aNbaN | N > 0) = (aN−1, aba, bN−1 | N > 0).

Consider now whether (ba)jb | j < N is a factor of (ab)i | i ≤ N . This time, we can
write (ab)i | i ≤ N = ((ab)la, (ba)jb, ε | i ≤ N ∧ j < N ∧ i = l+j+k+1)∨((ab)i |
i ≤ N ∧ j < N ∧ i �= l + j + k + 1). Factoring here is partial, the constraint of the
factorized term being strengthened.

Let us finally check if aNbaN is a factor in aba, obtaining this time a disjunction of
two possible decompositions: aba = (ε, aNbaN , ε | N = 1) ∨ (a, aNbaN , a | N = 0),
that do not cover all possible values of N : factoring is again partial, the constraint of
the factoring term being strengthened this time.

Factoring requires searching where a given factor starts in a given parameterized
word. To answer this need, our algorithm is organized in two steps. First, the search for
a prefix, from which point on an equality check can start. This search is exhaustive, we
then need to check equality of the factor with a prefix of the other parameterized word
in the second phase. The suffix is of course obtained at the end of this second phase
when successful.

Consider the factorization of the parameterized word w0 | ϕ by the parameterized
word s0 | ψ. We aim at a representation of all solutions as a parameterized factorization.
To this end, our rules operate on quintuples (u, v, w, s, ϕ), written as (u, v, w, s | ϕ), by
maintaining two invariants: uvw = w0 and vs = s0. The word-expression v is therefore
both a factor ofw0 and a prefix of s0. To control the enumeration of all potential prefixes
u, we use a special symbol ” ” to block the rules checking for a factor until it is replaced
by ε from which point on the prefix u is frozen. A factorization is obtained when s = ε
and v = s0, the word-expression w being then the suffix of that factorization.

392 J.-P. Jouannaud and B. Monate

[Factorization.] Input: two parameterized words w0 �= ε | ϕ and s0 | ψ;
Output: a factorization ∨i(ui, vi, wi | ψi) such that ψi �|=PrA ⊥

(Start)
w0 | ϕ, s0 | ψ

ε, , w0, s0 | ϕ ∧ ψ
(Elim)

(u, v, w, s | ϕ) ∨ P

P
(Out)

∨
i(ui, vi, wi, ε | ϕi)∨
i(ui, vi, wi | ϕi)

if ϕ |=PrA ⊥

FindPref: (1)
u, , ε, s | ϕ
u, ε, ε, s | ϕ (2)

u, , aiw, s | ϕ
(u, ε, aiw, s | ϕ) ∨ (uai, , w, s | ϕ)

(3)
u, , (x)nw, s | ϕ

(
∨

x=yz u(x)iy, ε, z(x)jw, s | ϕ ∧ n = i + j + 1) ∨ (u(x)n, , w, s)

Finish: (1)
u, ε, ε, ais | ϕ

⊥ (2)
u, ε, ε, (x)ns | ϕ

u, ε, ε, s | ϕ ∧ n = 0

CheckFactor: (1)
u, v, aiw, ajs | ϕ

u, vai, w, s | ϕ ∧ i = j

(2)
u, v, aiw, (ajy)ns | ϕ

(u, v, aiw, s | ϕ ∧ n = 0) ∨ (u, vai, w, (yaj)kys | ϕ ∧ n = k + 1 ∧ i = j)

(3)
u, v, (aix)mw, ajs | ϕ

(u, v, w, ajs | ϕ ∧ m = 0) ∨ (u, vai, (xaj)kxw, s | ϕ ∧ m = k + 1 ∧ i = j)

(4)
u, v, (x)mw, (y)ns | ϕ

[u, v, (x)mw, s | ϕ ∧ n = 0] ∨ [u, v, w, (y)ns | ϕ ∧ m = 0]
∨
∨

(z,p,q|θ)∈gcd(x,y)
[u, v(z)j, (z)iw, s | ϕ ∧ θ ∧ j = q ∗ n ∧ i + j = p ∗m ∧ i ≥ 0 ∧ n �= 0]∨
[u, v(z)i, w, (z)js | ϕ ∧ θ ∧ i = p ∗m ∧ j + i = q ∗ n ∧ j > 0 ∧ m �= 0]
∨
∨

(p,z|θ)∈gpref(x,y)

∨
q∈[1..p][u, vx

q, w, xp−qz(y)ls | ϕ ∧ θ ∧ n = l + 1]
∨
∨

(p,z|θ)∈gpref(y,x)

∨
q∈[1..p][u, vx

q, xp−qz(x)lw, s | ϕ ∧ θ ∧ m = l + 1]

FindPref (3) is slightly redundant to maintain a one line formulation. In CheckFactor
(4), the word-expressions w, s are maintained in reduced form: xq and xp−q stand for
(expanded) words. Note that j = q∗n ∧ i+j = p∗m ∧ i ≥ 0 ∧ n �= 0 implies m �= 0.
Fresh dependent variables appear in conclusions, making termination non-trivial.

We now illustrate Factoring with the simple example of the word-expression w =
aNbaN with the word s = aba. We describe the transformations in a rewriting style,
starting with the search for a prefix. The arrow rewriting symbol may use a shortened
rule name in index and a disjunct number in exponent to ease the reading. Non-modified
disjuncts are replaced by dots:

Infinite Families of Finite String Rewriting Systems and Their Confluence 393

(aNbaN , aba) ⇒Start (ε, , aNbaN , aba) ⇒FP (3)
(ai, ε, aajbaN , aba | N = i + j + 1) ∨ (aia, ε, ajbaN , aba | N = i + j + 1)∨

(aN , , baN , aba) ⇒3
FP (2)

. . . (aN , ε, baN , aba) ∨ (aNb, , aN , aba) ⇒4
FP (3)

. . . (aNbai, ε, aaj , aba | N = i + j + 1) ∨ (aNbaia, ε, aj , aba | N = i + j + 1)∨
(aNbaN , , ε, aba) ⇒6

FP (1)
. . . (aNbaN , ε, ε, aba) ⇒6

Finish(1)
(ai, ε, aajbaN , aba | N = i + j + 1) ∨ (aia, ε, ajbaN , aba | N = i + j + 1)∨
(aN , ε, baN , aba)∨
(aN bai, ε, aaj, aba | N = i + j + 1) ∨ (aN baia, ε, aj, aba | N = i + j + 1) ⇒3

CF (1)
(ai, ε, aajbaN , aba | N = i + j + 1) ∨ (aia, ε, ajbaN , aba | N = i + j + 1)∨
(aN bai, ε, aaj, aba | N = i + j + 1) ∨ (aN baia, ε, aj, aba | N = i + j + 1)

The last two disjuncts fail quickly. We proceed with the successful first two. Disjuncts
resulting in immediate failure are abbreviated by dots and eliminated on the fly:

(ai, ε, aajbaN , aba | N = i + j + 1) ⇒CF (1) (ai, a, ajbaN , ba, | N = i + j + 1)
⇒CF (3) (ai, a, baN , ba | N = i + j + 1 ∧ j = 0) ∨ (... | ⊥) ⇒2

Elim⇒CF (1)
(ai, ab, aN , a | N = i + j + 1 ∧ j = 0) ⇒CF (3)
(ai, aba, ε, a | ⊥) ∨ (ai, aba, ai, ε | N = i + j + 1 ∧ j = 0 ∧ N = i + 1)
⇒1

Elim⇒O (ai, aba, ai | N = i + 1)

(aia, ε, ajbaN , aba | N = i + j + 1) ⇒CF (3)
(aia, ε, baN , aba | N = i + j + 1 ∧ j = 0)∨

(aia, a, akbaN , ba | N = i + j + 1 ∧ j = k + 1) ⇒1
CF (1)⇒1

Elim

(aia, a, akbaN , ba | N = i + j + 1 ∧ j = k + 1) ⇒CF (3)
(... | ⊥) ∨ (aia, a, baN , ba | N = i+j+1 ∧ j = k + 1 ∧ k = 0) ⇒1

Elim⇒CF (1)
(aia, ab, aN , a | N = i + j + 1 ∧ j = k + 1 ∧ k = 0) ⇒CF (3)
(... | ⊥) ∨ (aia, aba, al, ε | N = i + j + 1 ∧ j = k + 1 ∧ k = 0 ∧ N = l + 1)
⇒1

Elim⇒O (aia, aba, al | N = i + 2 ∧ N = l + 1)

The final result is therefore the redundant factorization
(ai, aba, ai | N = i + 1) ∨ (aia, aba, al | N = i + 2 ∧ N = l + 1)
This redundancy originates in our formulation of FindPref (3), which can be fixed.

We are left indeed showing that our algorithm factors out parameterized words.

Definition 3. A triple of words (u, v, w) is a solution of the factorization problem of
a parameterized word s | ψ by a parameterized word t | ϕ such that VarI(ϕ) ∩
VarI(ψ) = ∅, if there exist a valuation μν of the arithmetic variables such that
μν |=PrA ϕ ∧ ψ, μν(v) = μν(t) and μν(uvw) = μν(s).

Definition 4. Given two parameterized words s | ϕ and v | ψ such that VarI(ϕ) ∩
VarI(ψ) = ∅,

∨
i(ui, vi, wi | θi) is a complete factorization of s | ϕ by v | ψ (each

disjunct being one particular factorization) iff
(i)[soundness] for each valuationμν such thatμν |=PrA θi, the triple (μν(ui, vi, wi))

is a solution of the factorization problem of s | ϕ by v | ψ ;
(ii)[completeness] For each valuation μν such that μν |=PrA (ϕ ∧ ψ), either ∃i

such that μν |=PrA θi, or μν(v) is not a factor of μν(s).

394 J.-P. Jouannaud and B. Monate

Theorem 1. Given two parameterized words v | ψ and s | ϕ in this order, Factorization
returns a finite (possibly empty), complete factorization of s | ϕ by v | ψ.

Proof. (sketch) Termination; we interpret a disjunction of factorization formulas
by the multiset of the interpretations of its disjuncts. The interpretation of a disjunct
(u, v, w, s | ϕ), where w, s are assumed w.l.o.g. to be reduced word-expressions, is
defined as the pair (k + l,m + n) of natural numbers, compared lexicographically, in
which: k, l are the number of factors of the form (x)i, with i a dependent variable, in
w, s respectively, while m,n are the lengths of the longuest flat word prefix of w, s
respectively. It is easy to see that Finish and CheckFactor (4,5) decrease k+ l, Check-
Factor (1,2,3) maintain k+ l and decrease m+n, while other rules can be easily taken
care of separately. This shows termination, hence finiteness of the set of answers.

Soundness: it is implied by the two invariants maintained by the rules.
Completeness: first, there is one rule for each possible kind of word-expression for

w and s. We justify CheckFactor (4), which is the most difficult rule. The first disjunct
assumes m = 0 or n = 0, so we can then assume both m �= 0 and n �= 0. We reason of
course (implicitely) on the instances of (u, v, (x)mw, (y)ns | ϕ), since the algorithms
gcd and grpef will compute them for us. By assumption, |x| ≤ |y|, hence x is a prefix
of y. There are then two cases: either x and y share a common “divisor” z (yielding two
possibilities for eliminating one of them), or x “divides” y (p times with a non-empty
reminder t), in which case it is only possible to eliminate x. ��

Note that the factorizations rules do not treat parameters differently from dependent
variables. So far, the difference between both is only in the semantics. This suggests
that the framework should scale to trees using existing toolboxes or variants.

4.3 Intersection, Equality and Left-Overlaps

All these operations can be derived from the previous algorithm.

Intersection. Intersection is a stepping stone for deciding equality. The problem is to
compute a description of the words which are common instances of two given param-
eterized words u | ϕ and v | ψ. The difference with factorization is that the prefix
and the suffix must be both empty. It therefore suffices to modify the Start rule, which
conclusion should be (ε, ε, w0, s0 | ϕ ∧ ψ) (therefore eliminating the need for the
FindPref rules, the Finish (2) rule which should output ⊥ as Finish (1), and the Out
rule in which ui and vi should be ε, and the conclusion the disjunction

∨
i ϕi. It is then

immediate to see that we can simplify the format of formulas in this case, keeping only
a triple (w, s | ϕ), which we can of course write as (w = s | ϕ).

Equality. We need to decide whether two disjunctive parameterized words
u0 | ϕ0 ∨ . . . um | ϕm and v0 | ϕ0 ∨ . . . vn | ϕn have exactly the same set of instances.
We assume wlog that for all pairs (i, j), ui | ϕi and vi | ϕj have different sets of de-
pendent variables. In the case of two parameterized words, we can apply Intersection
to (u0 | ϕ0) and (v0 | ψ0), and check the equivalence in PrA of the obtained formula
with the starting one ϕ0 ∧ ψ0. In the case of a disjunction of parameterized words, we
can apply Intersection to the (n + 1) × (m + 1) equality problems ui | ϕi, vj | ψj ,

Infinite Families of Finite String Rewriting Systems and Their Confluence 395

resulting in (m + 1) × (n + 1) constraints θi,j , and then check that
∧

i,j ϕi ∧ ψj is
equivalent in PrA to

∧
i(
∨

j θ(i,j)) ∧
∧

j(
∨

i θ(i,j)).
Consider the two words a(ba)i | i ≤ N and (ab)ja | j ≤ N . We explain the use of

the rules in words, and in cases of disjunctions, treat the disjuncts in turn.

– Initial formula: a(ba)i = (ab)ja | i ≤ N ∧ j ≤ N ;
– We split on j = 0, using CheckFactor (2); in the branch j > 0, we simplify the

head occurrence of a and permute the word under exponent, yielding the result:
(a(ba)i = a | j = 0 ∧ i ≤ N ∧ j ≤ N) ∨ ((ba)i = (ba)j−1ba | j > 0 ∧ . . .);

– Second, we simplify a in the obtained first disjunct, and get:
((ba)i = ε | j = 0 ∧ i ≤ N ∧ j ≤ N) ∨ ((ba)i = (ba)j−1ba | j > 0 ∧ . . .;

– Applied to the first disjunct, the rule Finish (2) forces the value i = 0, yielding:
(ε = ε | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ ((ba)i = (ba)j−1ba | j > 0 ∧ i ≤ N ∧ j ≤ N ;

– We now apply the rule CheckFactor (4) to the second disjunct (using gcd):
(ε = ε | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ ε = (ba)j−1−iba | j − 1− i ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N
∨ (ba)i−j+1 = ba | i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– The second disjunct now simplifies away by using Finish (1), then Elim, yielding:
(ε = ε | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ (ba)i−j+1 = ba | i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– CheckFactor (3) now applies, hence we get:
(ε = ε | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ ε = ba | i− j + 1 = 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N
∨ (ab)i−ja = a | i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– Using now Finish (2), this simplifies to:
(ε = ε | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ (ab)i−ja = a | i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– CheckFactor (3) now applies again resulting in:
(ε = ε | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ a = a | i = j ∧ i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N
∨ (ba)i−j−1ba = ε | i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– The third disjunct now simplifies away by using Finish (1), then Elim, yielding:
(ε = ε | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ a = a | i = j ∧ i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– Using CheckFactor (1), we finally get:
(ε = ε | i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ ε = ε | i = j ∧ i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N ;

– which yields the result by using Output:
(i = 0 ∧ j = 0 ∧ i ≤ N ∧ j ≤ N)
∨ i = j ∧ i− j ≥ 0 ∧ i− j + 1 ≥ 0 ∧ j > 0 ∧ i ≤ N ∧ j ≤ N .

The above formula is equivalent to i = j ∧ j ≤ N ∧ i ≤ N in PrA, which expresses
the precise relationship between the instances of the equal parameterized words.

396 J.-P. Jouannaud and B. Monate

Left-overlaps. A left-overlap of the word s over the word t is any triple (u, v, w) such
that s = uv and t = vw. Complete sets of overlaps are then disjunctions of quadruples
(ui, vi, wi | θi) satisfying an induced soundness and completeness condition as before.

The algorithm for computing a complete set of left-overlaps of w0 | ϕ over s0 |
ψ is very similar to the one for computing a complete factorization, using the same
quadruples (u, v, w, s), the same initialization phase, the same search for a prefix u of
w0 before to start the comparison between the obtained suffix w of w0 and s0, the same
rules for computing the common part v, and maintaining the same invariants s0 = uvw
and vs = w0. The only difference is that the ”suffix” w must be empty in the end. The
corresponding modifications of the Finish rules is left to the reader.

5 Parameterized Rewriting

We are now ready for investigating properties of parameterized rewrite systems.

Definition 1. A parameterized rewrite rule is a triple l → r | ϕ made of a lefthand side
word-expression l, a righthand side word-expression r and a constraint ϕ such that
l | ϕ and r | ϕ are parameterized words and Var(l, r) ⊆ Var(ϕ).

A parameterized rewrite system is a set of parameterized rewrite rules {li → ri |
ϕi}i.

We shall assume w.l.o.g. that for all i ∈ [1..n], VarP(ϕi) = P .

A parameterized rewrite system R denotes an infinite family of finite word rewrite
systems {[[Rν]]}ν∈P→N|P| defined as follows:

[[R]] = {[[Rν]] | ν ∈ P → N|P|}
Rν = {(ν(l) → ν(r) | ν(ϕ)) | l → r | ϕ ∈ R}

[[Rν]] = {μ(ν(l)) → μ(ν(r)) | l → r | ϕ ∈ R, and μ ∈ I → N|I| s.t. μ |=PrA ν(ϕ)}
The rewrite system [[Rν]] is called an instance of R.

Consider the parameterized rewrite systems R = {ai
i → aj | 0 ≤ i < j ≤ N} and

R′ = {(uiuj)N → ujui | i− j ≥ 2 ∧ i, j < N}. We have:

RN=2 = {ai
i → aj | 0 ≤ i < j ≤ 2} [[RN=2]] = {ε→ a1; ε→ a2; a1 → a2}
R′

N=5 = {(uiuj)5 → ujui | i− j ≥ 2 ∧ i, j < 5}

[[R′
N=5]] =

⎧⎨⎩u3u1u3u1u3u1u3u1u3u1 → u1u3,
u4u1u4u1u4u1u4u1u4u1 → u1u4,
u4u2u4u2u4u2u4u2u4u2 → u2u4

⎫⎬⎭
There are three ways to understand R: as a set of parameterized rewrite rules operating
on parameterized words ; and for each value ν of the parameters, either as a set of
parameterized rules Rν with dependent variables only depending on integer values,
or as a set [[Rν]] of rules on words. Rewriting can then be defined at several levels:
on words with rules (both having possibly exponents), on parameterized words with
rules, on words with parameterized rules, etc. These definitions need be consistent at all
levels, that is, be related by commutation lemmas in order to capture families of critical
pairs in [[Rν]] and their joinability by critical pairs in Rν and their joinability, and the
latter by critical pairs in R and their joinability. This requires a careful definition of
parameterized rewriting, as shown by the coming example.

Infinite Families of Finite String Rewriting Systems and Their Confluence 397

Consider the parameterized rewrite system R = {aibai → aibi | i ≤ N, aba → ε}.
The parameterized word aibai | i ≤ N can be seen as the disjunction (b | i = 0) ∨
(ai−1abaai−1 | i > 0 ∧ i ≤ N), and therefore aba is a factor of aibai | i ≤ N
subjected to the additional constraint i > 0: we can rewrite the word aibai with the rule
aba → ε if i > 0, but we cannot if i = 0. The parameterized word aibai | i ≤ N can
therefore be rewritten with the rule aba → ε into the disjunctive parameterized word
(aibai | i ≤ N ∧ i = 0) ∨ (ai−1ai−1 | i ≤ N ∧ i > 0), that is (b | i = 0) ∨ (aiai |
0 < i ≤ N), hence capturing both cases at once.

Definition 5. Given a parameterized word s | ϕ and a parameterized rewrite rule
l → r | ψ such that (i) VarP(ψ) ⊆ VarP(ϕ) and (ii) ∨i(ui, vi, wi | θi) is a complete,
non-empty factorization of s | ϕ by l | ψ, then s | ϕ rewrites with l → r | ψ to
the parameterized disjunctive word

∨
i(uirwi | θi) ∨ (s | ϕ ∧

∧
i(¬θi)), written

s | ϕ−→l→r|ψ(
∨

i(uirwi | θi) ∨ (s | ϕ ∧
∧

i(¬θi)).
The formulas

∨
i(uirwi | θi) and

∧
i(¬θi) characterize respectively the positive

and negative parts of the rewrite.
A rewriting step is called uniform if the righthand side is a (single) parameterized

word, i.e., the factorization of s | ϕ by l | ψ has the form (u, l, w | θ) with ϕ |=PrA θ.
Rewriting by a set of parameterized rules is defined as expected.

Note that we do not allow rewriting with an empty factorization, which would result in
a trivial rewrite step. In general, the result of rewriting a parameterized word by a pa-
rameterized rule is a disjunction of parameterized words by definition of factorization:
first, l does not appear exponentiated in the factorization of s | ϕ by l | ψ; second, the
finite number of possible interpretations for the dependent variables, given a value of
the parameter variables, is of course maintained as a result of the factorization process.

Further, by definition of a factorization, θi �|=PrA ⊥ and therefore the word uirwi | θi

has a non-empty interpretation. On the other hand, it is quite possible that θ and ϕ are
equivalent in Presburger arithmetic in case of a uniform rewrite step, in which case the
rewriting result is the single parameterized word urw | θ.

We now relate parameterized rewriting with R operating on a parameterized word
u | ϕ with rewriting the corresponding instances of u | ϕ with [[Rν]]. We therefore
skip the intermediate level of rewriting with Rν . This relationship is expressed by the
following key lemma, which will be a main tool in our study of parameterized rewriting:

Lemma 1 (Lifting). Let s | ϕ be a parameterized word. Then, μ(ν(s))−→[[Rν]] t for
some rule instance μ(ν(l)) → μ(ν(r)) of l → r | ψ ∈ R iff (

∨
i ui, l, wi | θi) is a

complete factorization of s | ϕ by l | ψ, μν |=PrA θi for some i, and t = μ(ν(uirwi)).

Proof. Follows easily from Definitions 4 and 5: ��

Lifting takes care of positive rewrites. A negative rewrite is nothing but an artefact
which reduces the set of instances of a parameterized word without changing the word
itself. Negative rewrites play a central role for derivations, since they allow us to capture
at once all possible derivations on words by derivations on parameterized words.

We write t | ϕ−→∗
R s | ψ for the reflexive, transitive closure of −→R, called a

derivation, and t | ϕ←→∗
R s | ψ for its reflexive, symmetric transitive closure, called a

conversion, for which R is as usual interpreted as a set of equations.

398 J.-P. Jouannaud and B. Monate

5.1 Termination of Parameterized Rewriting

Unfortunately, termination of parameterized rewriting does not characterize termination
of its instances, as shown by the coming example of a (plain) rewrite system which
terminates trivially on words, but does not on parameterized words. Let R = {ab→ ε}.
We have:

(ab)i | i ≤ N −→ab→ε(ab)
k(ab)l | i > 0 ∧ i = k + l + 1 ∧ i ≤ N = (ab)j | i >

0 ∧ i = j+1 ∧ i ≤ N −→ab→ε(ab)
m(ab)n | i > 0 ∧ j > 0 ∧ j = m+n+1 ∧ i >

0 ∧ i = j + 1 ∧ i ≤ N −→ab→ε . . .

We cannot therefore expect a parameterized system to be terminating on parameter-
ized words in general (actually in most cases), but we are indeed only interested in
the termination of its instances on words. In the above case, we can trivially show that
ab → ε terminates on words. Yet, it may be difficult for parameterized rules. A simple
remark shows however that automation is at reach. Consider the two rewrite systems
R = {ai → ε | i ≤ n} and S = {ai → ε | 1 ≤ i ≤ n} which describe the same
set of instances on words except for the non-terminating instance ε → ε of R which
is not an instance of S. As long as the parameterized rule ai → ε does not degenerate
(here, into the rule ε → ε), it can be seen as a terminating rule over word-expressions
built from the alphabet, concatenation, and exponentiation. The degenerated cases can
easily be computed by solving equations of the form (x)i = ε for x a non-empty word,
therefore adding i = 0 to the constraint of the considered rule. In the previous two
examples, we get the parameterized rule instances {ε → ε | i ≤ n ∧ i = 0} and
{ε→ ε | 1 ≤ i ≤ n ∧ i = 0}, but the second disappears. More generally,

Theorem 2. Let R a parameterized rewriting system and C(R) be obtained as follows:
C(R ∪ {l → r | θ}) = C(R) ∪C(l → r | θ)
C(l=x1(y1)i1 . . . (yn)inxn+1→r | θ)={(l↓→r | θ ∧

∧
j∈J ij �=0 | J ⊆ [1 : n]}

where l↓ is obtained from l by replacing ik by 0 in l for k ∈ [1..n] \ J , then (yk)0 by ε
and finally eliminating superflous ε’s.

Then, all instances of R terminate on words if there exists a well-founded rewrite
ordering ' on word-expressions such that:

(i) s' t implies μν(usv)'μν(utv) for all word-expressions u, v and valuationsμν ;
(ii) x'y implies μν((x)i)'μν((y)i) for all valuations μν such that μν |=PrA i �=0 ;
(iii) l ' r for all rules (l → r | θ) ∈ C(R) for which θ �|=PrA ⊥.

Proof. (sketch). First, an arbitrary derivation on words with some rewrite system [[Rν]]
is also a derivation with [[C(R)ν]], which can be seen as a parameterized derivation with
C(R) by using the Lifting Lemma. Condition (iii) then allows us to make it an ordered
sequence on parameterized-words. Conditions (i,ii) allow finally to move the ordering
on parameterized-words back to the original sequence of words. ��
Existing techniques apply directly provided they satisfy conditions (i,ii), which is nor-
mally the case since exponents cannot be instantiated by 0 in a rule of C(R). The use
of exponential interpretations would be a natural choice by allowing to interpret expo-
nentiation on words by arithmetic exponentiation. Polynomial interpretations also do.

In the previous two examples, we ended up checking the pairs ai ' ε, ε ' ε which
fails for any interpretation, and ai ' ε which succeeds, using for example as interpre-
tation the number of letters in a parameterized-word.

Infinite Families of Finite String Rewriting Systems and Their Confluence 399

5.2 Confluence of Parameterized Rewriting

Confluence raises other difficulties. For an example, let R = {ac → ε, def → ε}.
R is confluent on words, since it is terminating and has no critical pairs. But positive
rewriting (stressed by using =⇒) with R is not confluent on parameterized-words:
abicdeif | i ≤ N =⇒ac→ε df | i = 0 ∧ i ≤ N and
abicdeif | i ≤ N =⇒def→ε abc | i = 1 ∧ i ≤ N , two words which cannot be joined.
Observe however that the factorization constraints i = 0 and i = 1 are incompatible:
the word abicdeif does not have instances rewritable by both rules. And indeed, the
problem disappears when positive and negative rewriting are carried along together:
abicdeif | i ≤ N −→ac→ε(df | i = 0 ∧ i ≤ N) ∨ (abicdeif | i �= 0 ∧ i ≤ N), and
abicdeif | i ≤ N −→def→ε(abc | i = 1 ∧ i ≤ N) ∨ (abicdeif | i �= 1 ∧ i ≤ N),
and since these rewrites are sort of orthogonal, they both rewrite to a word equal to
(df | i=0 ∧ i ≤ N) ∨ (abc | i=1 ∧ i ≤ N)
∨ (abicdeif | i �= 0 ∧ i �= 1 ∧ i ≤ N).

Theorem 3. The instances of a parameterized rewrite system R are confluent (resp.
locally confluent) on words iff parameterized rewriting with R is confluent (resp. locally
confluent) on parameterized words.

Proof. Follows from the lifting Lemma 1. ��
We now turn our attention to a critical pair analysis of local confluence. Consider the
parameterized rewrite system R = {aibai → aibi | i ≤ N, aba → ε}. Since aba is a
factor of aibai → aibi | i ≤ N under the additional constraint i > 0, the lefthand side
of the first rule can be rewritten by the second rule. And since aibai → aibi | i ≤ N is
a factor of aba under the additional constraint i = 0, the lefthand side of the second can
be rewritten by the first. We can indeed describe all critical pairs of each rewrite system
[[R]]ν by computing factorizations and left-overlaps.

Consider the parameterized system R = {aNai → aN | 0 < i < N}, which all
instances are critical pair-free. Let aNai → aN | 0 < i < N and aNaj → aN | 0 <
j < N be two arbitrary rules in R. Their instances belong to the same system [[Rn]]
provided they share the same parameter N , while the dependent variable is renamed
(otherwise, we would have the same rule). It is easy to see that aNai and aNaj cannot
overlap unless i = j, in which case we have a trivial critical pair. On the other hand,
rules of different systems [[Rn]] and [[Rm]] do overlap and yield non-joinable critical
pairs. This example shows the practical need of the two kinds of variables in our model.

Definition 2. Let l → r | ϕ and g → d | ψ be two rules of a parameterized rewriting
system R such that VarI(ϕ) ∩ VarI(ψ) = ∅.

(i) Let ∨i(ui, gi, vi | θi) be a complete factorization of l | ϕ by g | ψ. The pair
(r |
∨

i θi,
∨

i uidvi | θi) is called a critical pair of g → d | ψ on l → r | ϕ;
(ii) Let (

∨
i(ui, vi, wi | θi) be a complete left-overlap of l | ϕ on g | ψ. The pair

(
∨

i uir |θi,
∨

i dwi | θi) is called a critical overlapping pair of l → r |ϕ on g → d |ψ.

Lemma 2. For each valuation ν, the set of critical pairs in [[Rν]] is the set of corre-
sponding instances of the critical and overlapping pairs in R.

Proof. Follows again from the lifting Lemma 1. ��

400 J.-P. Jouannaud and B. Monate

Lemma 3. Parameterized rewriting with R is locally confluent iff all critical and over-
lapping pairs of R are joinable by parameterized rewriting.

Proof. (sketch). The only if direction is straightforward, but the converse is more subtle.
Let s | ϕ−→(u | θ) ∨ (s | ϕ ∧ ¬θ), and s | ϕ−→(v | γ) ∨ (s | ϕ ∧ ¬γ). Then,
(u | θ) ∨ (s | ϕ ∧ ¬θ) =
(u | θ ∧ γ) ∨ (u | θ ∧ ¬γ) ∨ (s | ϕ ∧ ¬θ ∧ γ) ∨ (s | ϕ ∧ ¬θ ∧ ¬γ) =
(u | θ ∧ γ) ∨ (u | θ ∧ ¬γ) ∨ (s | ¬θ ∧ γ) ∨ (s | ϕ ∧ ¬θ ∧ ¬γ).
Similarly (but we change the order of disjuncts), (v | γ) ∨ (s | ϕ ∧ ¬γ) =
(v | θ ∧ γ) ∨ (s | θ ∧ ¬γ) ∨ (v | ¬θ ∧ γ) ∨ (s | ϕ ∧ ¬θ ∧ ¬γ).

We see that the first disjuncts of both expressions are joinable by a critical pair analysis;
the second disjuncts are joinable by a rewrite step with g → d | ψ; the third disjuncts
are joinable by a rewrite step with l → r | ϕ; and the fourth disjuncts are equal. ��

Using Lemmas 2, 3 and Newman’s lemma, we get the main practical result of this work:

Theorem 4. Assume the rewrite systems [[Rν]] on words are terminating. Then, they are
confluent iff all critical and overlapping pairs of R are joinable.

Unfortunately, this does not imply the decidability of confluence or local-confluence
even under our termination assumption since parameterized rewriting may be non-
terminating, and therefore the usual joinability check may not terminate for some pairs.
We don’t know, however, whether joinability is decidable or undecidable in our model
of parameterized rewriting. This problem is left open.

5.3 Implementation and Example

As an example, consider the presentation of dihedral groups of order N > 1 by RN =
{s2 → ε; sr → rN−1; rN → ε}, which we input to the tool CiME2[3] in the format:

let N = parameters "N";
let S = pword_signature N "s | {N>=2}; r | {N>=2}" ;
let R = psrs S "s s -> | {N>=2};

s r -> rˆ{N-1} s | {N>=2} ;
rˆ{N} -> | {N>=2};"

;
let Rnorm = psrs S "s rˆ{k} -> rˆ{N-k} s |{N>=2 /\

1<=k<=N-1 };";
pconfluent_ext R Rnorm;

The procedure Rnorm iterates the second rule, allowing us to overcome some limita-
tions of the current implementation to uniform rewrite proofs introduced in definition 5.
CiME2 computes 13 overlapping pairs joinable immediately while 4 others need a few
(uniform) rewrite steps. In case N = 1, the lefthand side sr of the second rule becomes
reducible by the third rule r2 → ε, while this is not the case if N > 1: the restriction
N > 1 present in the CiME2 specification allows one to comply with the restriction to
uniform rewrite proofs: CiME2 is not able to show the joinability of all critical pairs if
N > 1 is changed to N > 0.

Infinite Families of Finite String Rewriting Systems and Their Confluence 401

6 Conclusion

We have defined a framework of parameterized rewrite systems operating on parameter-
ized words for describing infinite families of rewriting systems on words and mechanize
their study, using a sophisticated rewriting toolkit for parameterized words.

We have given a method for showing termination of all instances of a parameterized
system R by using an adequate ordering for checking the rules of a transformed system
C(R), therefore allowing to reuse existing tools.

We have reduced confluence of all instances of a parameterized rewriting system to
the joinability of its finitely many critical or overlapping pairs under termination of the
instances. Whether joinability can be decided in this context merits further investigations.

We could have made the choice of a more abstract framework based on parameter-
ized structures for representing infinite families of rewriting systems on that structure,
assuming the necessary toolkit for the parameterized structure, and then apply the ab-
stract results to parameterized words as described here or parameterized trees as de-
scribed in [2,5]. We indeed conjecture (but have not checked) that our approach scales up,
opening up interesting applications for example to multicore hardware modelisations.

Formalisms for representing families of terms, equations or rules fall in two cate-
gories: tree automata and term schematizations. Our formalism of parameterized words
belongs to the second but its strong closure properties suggest to blend it with automata
in the line of [9], a recent bridge between both kinds of worlds.

Acknowledgments. To Evelyne Contejean and Claude Marché for discussions with the
second author and to the several anonymous referees who helped shaping this paper.

References

1. Book, R.V., Otto, F.: String Rewriting Systems. In: Text and monographs in Computer Sci-
ence. Springer, Berlin (1993)

2. Comon, H.: On unification of terms with integer exponents. Math. Systems Theory 28, 67–88
(1995)

3. Contejean, E., Marché, C., Monate, B., Urbain, X.: Cime version 2. Technical report, Uni-
versité Paris-Sud (2000)

4. Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, vol. B, pp. 243–309. North-Holland, Amsterdam (1990)

5. Hermann, M., Galbavý, R.: Unification of infinite sets of terms schematized by primal gram-
mars. Theoretical Computer Science 176(1–2), 111–158 (1997)

6. Klop, J.W., et al.: Term rewriting systems. In: Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press, Cambridge (2003)

7. Le Chenadec, P.: Canonical forms in finitely presented algebras. Pitman, London (1986)
8. Le Chenadec, P.: Analysis of dehn’s algorithm by critical pairs. Theoretical Computer Sci-

ence 51(1-2), 27–52 (1987)
9. Peltier, N.: A unified view of tree automata and term schematisations. In: Ausiello, G.,

Karhumäki, J., Mauri, G., Luke Ong, C.-H. (eds.) IFIP TCS. IFIP, vol. 273, pp. 491–505.
Springer, Heidelberg (2008)

10. Salzer, G.: On unification of infinite sets of terms and its applications. In: Voronkov, A. (ed.)
LPAR 1992. LNCS, vol. 624, pp. 409–421. Springer, Heidelberg (1992)

Polite Theories Revisited�

Dejan Jovanović and Clark Barrett

New York University
{dejan,barrett}@cs.nyu.edu

Abstract. The classic method of Nelson and Oppen for combining deci-
sion procedures requires the theories to be stably-infinite. Unfortunately,
some important theories do not fall into this category (e.g. the theory
of bit-vectors). To remedy this problem, previous work introduced the
notion of polite theories. Polite theories can be combined with any other
theory using an extension of the Nelson-Oppen approach. In this paper
we revisit the notion of polite theories, fixing a subtle flaw in the original
definition. We give a new combination theorem which specifies the degree
to which politeness is preserved when combining polite theories. We also
give conditions under which politeness is preserved when instantiating
theories by identifying two sorts. These results lead to a more general
variant of the theorem for combining multiple polite theories.

1 Introduction

The seminal paper of Nelson and Oppen [5] introduced a general combination
framework that allows the creation of a decision procedure for the combination
of two first-order theories in a modular fashion. Using the Nelson-Oppen frame-
work, decision procedures for two individual theories can be used as black boxes
to create a decision procedure for the combined theory.

Although very general and widely-used in practice, the Nelson-Oppen ap-
proach is not applicable to all theories encountered in practical applications.
A significant restriction of Nelson-Oppen is the requirement that theories be
stably-infinite. While many important theories are stably-infinite, some are not,
including those with inherently finite domains such as the theory of bit-vectors.
As bit-precise reasoning about both programs and hardware is becoming more
important and more feasible, it is desirable to find ways of overcoming this
restriction.

As a possible remedy for this problem, the notion of shiny theories and an
appropriate combination algorithm was introduced in [13]. The requirements on
a shiny theory are stronger than just stable-infiniteness, but this allows it to
be combined with an arbitrary other (possibly non-stably-infinite) theory. The
main drawback to this approach is the requirement that a shiny theory T has to
be equipped with a function mincardT . This function, given a set of constraints,
must be able to compute the minimal cardinality of a T -interpretation that
satisfies the constraints.
� This work was funded in part by SRC contract 2008-TJ-1850.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 402–416, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Polite Theories Revisited 403

A related approach for combining theories is presented in [4]. The authors
start from a framework of parametrically polymorphic logics to devise a Nelson-
Oppen-style combination procedure for theories that are flexible. Flexibility is a
property similar to the ability to move to a bigger or a smaller (infinite) model
via the Löwenheim-Skolem theorem in first-order logic. Most commonly-used
theories can be represented in this framework and are shown to be flexible. Rea-
soning about cardinality also plays a major role in this approach–a solver for
a parametric theory (called a strong solver) is required to process not only the
formula being checked, but also a set of cardinality constraints over the domain
sizes. Although this direction is promising, particularly because of the advan-
tages of parametricity, the approach as developed thus far would be cumbersome
to implement in a practical system. In particular, while reasoning about cardinal-
ities is possible for a wide class of important theories, it can be computationally
expensive, and theory decision procedures are typically not designed with this
additional requirement in mind.

An alternative approach uses the notion of polite theories introduced in [8]. Po-
lite theories can also be combined with an arbitrary other theory. However, this
approach does not require the computation of the mincard function. Instead,
a decision procedure for a polite theory must be able to generate explicitly a
witness formula that enumerates any required domain elements using additional
variables. The authors show that many commonly-used theories are polite (in-
cluding theories of lists, arrays, sets, and multi-sets). This approach seems more
practical than those that require reasoning about cardinalities explicitly. And,
while proving that a theory is polite can be difficult and needs to be done on
a per-theory basis, once this is done, the combination method can be easily
implemented.

In this paper, we revisit and extend the results on polite theories from [8].
Section 2 gives definitions and background on many-sorted logic and theory
combination. Section 3 begins by introducing polite theories, making a small
but needed modification to the definition of finite witnessability (one of the
two properties that make up politeness), and then goes on to show that when
combining polite theories, the resulting theory is also polite (with respect to
a possibly reduced set of sorts). Section 4 addresses theory instantiation, the
construction of a new theory by identifying two sorts in an existing theory; we
prove that instantiation preserves politeness. Finally, Section 3.4 discusses the
combination of multiple polite theories, culminating in a combination result that
is more general than the ones presented in [8].

Due to space limitations, proofs of the results in this paper are omitted. The
full paper with proofs is available from the authors as a technical report [3].

2 Preliminaries

2.1 Many-Sorted First-Order Logic

We start with a brief overview of the syntax and semantics of many-sorted first-
order logic. For a more detailed exposition, we refer the reader to [2,11].

404 D. Jovanović and C. Barrett

Syntax. A signature Σ is a triple (S, F, P) where S is a set of sorts, F is a
set of function symbols, and P is a set of predicate symbols. For a signature
Σ = (S, F, P), we write ΣS for the set S of sorts, ΣF for the set F of function
symbols, and ΣP for the set P of predicates. Each predicate and function symbol
is associated with an arity, a tuple constructed from the sorts in S. We write
Σ1∪Σ2 = (S1∪S2, F1∪F2, P1∪P2) for the union1 of signatures Σ1 = (S1, F1, P1)
and Σ2 = (S2, F2, P2). Additionally, we write Σ1 ⊆ Σ2 if S1 ⊆ S2, F1 ⊆ F2,
P1 ⊆ P2, and the symbols of Σ1 have the same arity as those in Σ2.

For a signature Σ, we assume the logic (but not the signature) includes an
equality symbol =σ, for each sort σ ∈ ΣS. We will frequently omit the sub-
script on equality when the sort of the equation is not relevant to the discus-
sion. We assume the standard notions of a Σ-term, Σ-literal, and Σ-formula.
In the following, we assume that all formulas are quantifier-free, if not explic-
itly stated otherwise. A literal is called flat if it is of the form x = y, x �= y,
x = f(y1, . . . , yn), p(y1, . . . , yn), or ¬p(y1, . . . , yn), where x, y, y1, . . . , yn are vari-
ables, f is a function symbol, and p is a predicate symbol.

If φ is a term or a formula, we will denote by varsσ(φ) the set of variables of
sort σ that occur (free) in φ. We overload this function in the usual way, varsS(φ)
denoting variables in φ of the sorts in S, and vars(φ) denoting all variables in φ.
We also sometimes refer to a set Φ of formulas as if it were a single formula, in
which case the intended meaning is the conjunction

∧
Φ of the formulas in the

set.

Semantics. Let Σ be a signature, and let X be a set of variables whose sorts are
in ΣS. A Σ-interpretation A over X is a map that interprets: each sort σ ∈ ΣS

as a non-empty domain Aσ,2 each variable x ∈ X of sort σ as an element
xA ∈ Aσ, each function symbol f ∈ ΣF of arity σ1 × · · · × σn × τ as a function
fA : Aσ1 × · · · ×Aσn → Aτ , each predicate symbol p ∈ ΣP of arity σ1 × · · · × σn

as a subset pA of Aσ1 × · · · ×Aσn . A Σ-structure is a Σ-interpretation over an
empty set of variables. As usual, the interpretations of terms and formulas in
an interpretation A are defined inductively over their structure (with equality,
Boolean operations, and quantifiers interpreted as usual). For a term t, we denote
with tA the evaluation of t under the interpretation A. Likewise, for a formula
φ, we denote with φA the truth-value (true or false) of φ under interpretation
A. A Σ-formula φ is satisfiable iff it evaluates to true in some Σ-interpretation
over vars(φ).

Given a Σ-interpretation A, a vector of variables −→x , and a vector of domain
elements of A, −→a , we denote by A{−→x ← −→a } the Σ-interpretation with the same
domains as A that interprets each variable in −→x as the corresponding element
1 In this paper, when combining two signatures, we always assume that function and

predicate symbols from the signatures do not overlap, so that the union operation
is well-defined. On the other hand, the signatures are allowed to have non-disjoint
sets of sorts.

2 In the rest of the paper we will use the calligraphic letters A, B, . . . to denote
interpretations, and the corresponding subscripted Roman letters Aσ, Bσ, . . . to
denote the domains of the interpretations.

Polite Theories Revisited 405

in −→a and all other symbols as in A (note that to be well-defined, we require that
for each corresponding pair (xi, ai) in −→x and −→a , we must have ai ∈ Aσi where
σi is the sort of xi).

Let A be an Ω-interpretation over some set V of variables. For a signature
Σ ⊆ Ω, and a set of variables U ⊆ V , we denote with AΣ,U the interpretation
obtained from A by restricting it to interpret only the symbols in Σ and the
variables in U .

Theories. We will use the definition of theories as classes of structures, rather
than sets of sentences. We define a theory formally as follows (see e.g. [12] and
Definition 2 in [8]).

Definition 1 (Theory). Given a set of Σ-sentences Ax a Σ-theory TAx is a
pair (Σ,A) where Σ is a signature and A is the class of Σ-structures that satisfy
Ax.

Given a theory T = (Σ,A), a T -interpretation is a Σ-interpretation A such
that AΣ,∅ ∈ A. A Σ-formula φ is T -satisfiable iff it is satisfiable in some T -
interpretation A. This is denoted as A �T φ, or just A � φ if the theory is clear
from the context. Given a Σ-theory T , two Σ-formulas φ and ψ are T -equivalent
if they evaluate to the same truth value in every T -interpretation.

2.2 Combination of Theories

As theories in our formalism are represented by classes of structures, a combi-
nation of two theories is represented by those structures that can interpret both
theories (Definition 3 in [8]).

Definition 2 (Combination). Let T1 = (Σ1,A1) and T2 = (Σ2,A2) be two
theories. The combination of T1 and T2 is the theory T1 ⊕ T2 = (Σ,A) where
Σ = Σ1 ∪Σ2 and A = {Σ-structures A | AΣ1,∅ ∈ A1 and AΣ2,∅ ∈ A2}.

The set of Σ-structures resulting from the combination of two theories is indeed
a theory in the sense of Definition 1. If Ax1 is the set of sentences defining
theory T1, and Ax2 is the set of sentences defining theory T2, then A is the set
of Σ-structures that satisfy the set Ax = Ax1 ∪Ax2 (see Proposition 4 in [8]).

Given decision procedures for the satisfiability of formulas in theories T1 and
T2, we are interested in constructing a decision procedure for satisfiability in
T1 ⊕ T2 using as black boxes the known procedures for T1 and T2. The Nelson-
Oppen combination method [5,10,11] gives a general mechanism for doing this.
Given a formula φ over the combined signature Σ1∪Σ2, the first step is to purify
φ by constructing an equisatisfiable set of formulas φ1 ∪ φ2 such that each φi

consists of only Σi-formulas. This can easily be done by finding a pure (i.e. Σi-
for some i) subterm t, replacing it with a new variable v, adding the equation
v = t, and then repeating this process until all formulas are pure. The next step
is to force the decision procedures for the individual theories to agree on whether
variables appearing in both φ1 and φ2 (called shared variables) are equal. This
is done by introducing an arrangement over the shared variables [8,10].

406 D. Jovanović and C. Barrett

Definition 3 (Arrangement). Given a set of variables V over a set of sorts S,
with Vσ = varsσ(V) so that V =

⋃
σ∈S Vσ, we call a formula δV an arrangement

of V if there exists a family of equivalence relations E = { Eσ ⊆ Vσ × Vσ | σ ∈
S }, such that the equivalence relations induce δV , i.e. δV =

∧
σ∈S δσ, where

each δσ is determined by Eσ as follows:

δσ =
∧

(x,y)∈Eσ

(x = y) ∧
∧

(x,y)∈Eσ

(x �= y) .

In the above definition, Eσ denotes the complement of the equivalence relation
Eσ, i.e. Vσ ×Vσ \Eσ. When the family of equivalence relations is not clear from
the context, we will denote the arrangement as δV (E).

The Nelson-Oppen method is only complete when the theories satisfy certain
conditions. Sufficient conditions for completeness are signature-disjointness and
stable-infiniteness. Stable-infiniteness was originally introduced in a single-sorted
setting [6]. In the many-sorted setting, stable-infiniteness is defined with respect
to a subset of the signature sorts (Definition 6 from [11]).

Definition 4 (Stable-Infiniteness). Let Σ be a signature, let S ⊆ ΣS be a
set of sorts, and let T be a Σ-theory. We say that T is stably-infinite with
respect to S if for every T -satisfiable quantifier-free Σ-formula φ, there exists a
T -interpretation A satisfying φ, such that Aσ is infinite for each sort σ ∈ S.

The Nelson-Oppen combination theorem states that, given two theories T1 and
T2, stably-infinite over (at least) the set of common sorts ΣS

1 ∩ ΣS
2 , and whose

signatures are otherwise disjoint, φ is satisfiable in T1 ⊕ T2 iff there exists an
arrangement δV of the shared variables V = vars(φ1)∩vars(φ2) such that φi∪δV

is satisfiable in Ti, for i = 1, 2.
It is interesting to note that stable-infiniteness is preserved when combining

theories, a fact that follows easily from known results.

Proposition 1. Let Σ1 and Σ2 be signatures. If

– T1 is a Σ1-theory stably-infinite with respect to S1 ⊆ ΣS
1 ,

– T2 is a Σ2-theory stably-infinite with respect to S2 ⊆ ΣS
2 ,

– ΣS
1 ∩ΣS

2 = S1 ∩ S2,

then T1 ⊕ T2 is a (Σ1 ∪Σ2)-theory and is stably-infinite with respect to S1 ∪ S2.

Although many interesting theories are stably-infinite, some important theories
are not. For example, the theory of fixed-size bit-vectors contains sorts whose
domains are all finite. Hence, this theory cannot be stably-infinite. The Nelson-
Oppen method may be incomplete for combinations involving this theory as
shown by the following example.

Example 1. Consider the theory of arrays Tarray where both indices and elements
are of the same sort bv, so that the sorts of Tarray are {array, bv}, and a theory
Tbv that requires the sort bv to be interpreted as bit-vectors of size 1. Both

Polite Theories Revisited 407

theories are decidable and we would like to decide the combination theory in a
Nelson-Oppen-like framework. Let a1, . . . , a5 be array variables and consider the
following constraints:

ai �= aj , for 1 ≤ i < j ≤ 5 .

These constraints are entirely within the language of Tarray (i.e. no purification is
necessary), there are no shared variables, and there are no constraints over bit-
vectors. Thus, the array theory decision procedure is given all of the constraints
and the bit-vector decision procedure is given an empty set of constraints. Any
decision procedure for the theory of arrays will tell us that these constraints are
satisfiable. But, there are only four possible different arrays with elements and
indices over bit-vectors of size 1, so this set of constraints is unsatisfiable.

The notion of politeness, which we define in the following section allows us to
overcome this problem.

3 Polite Theories

Polite theories were introduced in [8] to extend the Nelson-Oppen method to
allow combinations with non-stably-infinite theories. A theory can be combined
with any other theory (with no common function or predicate symbols) if it is
polite with respect to the set of shared sorts. The notion of politeness depends
on two other important properties: smoothness and finite witnessability. In this
section, we define these terms, noting that our definition of finite witnessability
differs slightly from that given in [8] in order to fix a correctness problem in
that paper (as we explain below). We then give a new theorem showing that
the combination of two theories preserves politeness with respect to some of the
sorts.

3.1 Definitions

First we define the smoothness property of a theory (Definition 7 from [8]).

Definition 5 (Smoothness). Let Σ be a signature, let S ⊆ ΣS be a set of
sorts, and let T be a Σ-theory. We say that T is smooth with respect to S if:

– for every T -satisfiable quantifier-free Σ-formula φ,
– for every T -interpretation A satisfying φ,
– for all choices of cardinal numbers κσ, such that κσ ≥ |Aσ| for all σ ∈ S,

there exists a T -interpretation B satisfying φ such that |Bσ| = κσ, for all σ ∈ S.

Recall that when a theory T is stably-infinite with respect to a sort σ and a T -
interpretation exists, we can always find another T -interpretation in which the
domain of σ is infinite. On the other hand, if T is smooth with respect to σ and
we have a T -interpretation, then there exist interpretations in which the domain
of σ can be chosen to be any larger size. Hence every theory that is smooth with
respect to a set of sorts S is also stably-infinite with respect to S.

408 D. Jovanović and C. Barrett

Being able to combine two interpretations from different theories mainly de-
pends on the ability to bring the domains of the shared sorts to the same size.
This is where stable-infiniteness helps in the Nelson-Oppen framework: it ensures
that the domains of the shared sorts can have the same infinite cardinalities.
Since we are interested in combining theories that may require finite domains,
we need more flexibility than that afforded by stable-infiniteness. Smoothness
gives us more flexibility in resizing structures upwards. This is not quite enough
as we also need to ensure that the structures are small enough. Rather than
attempting to resize structures downwards, we rely on the notion of finite wit-
nessability which allows us to find a kind of “minimal” structure for a theory.

Definition 6 (Finite Witnessability). Let Σ be a signature, let S ⊆ ΣS be
a set of sorts, and let T be a Σ-theory. We say that T is finitely witnessable
with respect to S if there exists a computable function, witness, which, for every
quantifier-free Σ-formula φ, returns a quantifier-free Σ-formula ψ = witness(φ)
such that

– φ and (∃−→w)ψ are T -equivalent, where −→w = vars(ψ) \ vars(φ) are fresh vari-
ables;

– if ψ∧δV is T -satisfiable, for an arrangement δV , where V is a set of variables
of sorts in S, then there exists a T -interpretation A satisfying ψ ∧ δV such
that Aσ = [varsσ(ψ ∧ δV)]A, for all σ ∈ S,

where the notation [U]A indicates the set { vA | v ∈ U }.

Both of the definitions above use an arbitrary quantifier-free formula φ in the
definition. As shown by Proposition 11 and Proposition 12 in [7], it is enough
to restrict ourselves to conjunctions of flat literals in the definitions. This fol-
lows in a straightforward fashion from the fact that we can always construct an
equisatisfiable formula in disjunctive normal form over flat literals.

It is important to note that our definition of finite witnessability differs from
the definition given in [8]. Their definition is equivalent to ours except that there
is no mention of an arrangement (i.e. the formula ψ appears alone everywhere
ψ ∧ δV appears in the definition above). The reason for this is explained and
illustrated in Section 3.2 below.

Finally, a theory that is both smooth and finitely witnessable is polite (Defi-
nition 9 in [8]).

Definition 7 (Politeness). Let Σ be a signature, let S ⊆ ΣS be a set of sorts,
and let T be a Σ-theory. We say that T is polite with respect to S if it is both
smooth and finitely witnessable with respect to S.

Note that any theory is polite (stably-infinite, smooth, finitely witnessable) with
respect to an empty set of sorts.

Example 2. The extensional theory of arrays Tarray has a signature Σarray that
contains a sort elem for elements, a sort index for indices, and a sort array for
arrays, as well as the two function symbols read : array × index �→ elem and

Polite Theories Revisited 409

write : array× index× elem �→ array. Semantics of the array function symbols can
be axiomatized as usual, and we refer the reader to [9] for more detail.

It is not hard to see that Tarray is smooth with respect to the sorts {index, elem}
– any interpretation satisfying a quantifier-free formula φ can be extended to
arbitrary cardinalities over indices and elements by adding as many additional
indices and elements as we need while keeping the satisfiability of φ.

As for finite witnessability, it is enough to use a witness transformation that
works over conjunctions of flat literals and replaces each array disequality a �= b
with the conjunction of literals e1 = read(a, i) ∧ e2 = read(b, i) ∧ e1 �= e2, where
i is a fresh variable of sort index and e1, e2 are fresh variables of sort elem. The
witness function creates a fresh witness index i, to witness the position where
a and b are different, and names those different elements e1 and e2. For the
detailed proof of politeness for the theory Tarray we refer the reader to [8].

3.2 Finite Witnessability Revisited

A main result of [8] is a combination method for two theories, one of which is
polite over the shared sorts.

Proposition 2 (Proposition 12 of [8]). Let Ti be a Σi-theory for i = 1, 2
such that the two theories have no function or predicate symbols in common.
Assume that T2 is polite with respect to S = ΣS

1 ∩ΣS
2 . Also, let Γi be a set of Σi

literals for i = 1, 2, and let ψ2 = witnessT2(Γ2). Finally, let Vσ = varsσ(ψ2), for
each σ ∈ S, and let V =

⋃
σ∈S Vσ. Then the following are equivalent:

1. Γ1 ∪ Γ2 is (T1 ⊕ T2)-satisfiable;
2. There exists an arrangement δV such that Γ1∪δV is T1-satisfiable and {ψ2}∪

δV is T2-satisfiable.

Proposition 2 differs from the standard Nelson-Oppen theorem in its application
of the witness function to Γ2 and in that the arrangement is over all the variables
with shared sorts in ψ2 rather than just over the shared variables.

As mentioned above, our definition of finite witnessability (Definition 6 above)
differs from the definition given in [8]. Without the change, Proposition 2 does
not hold, as demonstrated by the following example.

Example 3. Let Σ be a signature containing no function or predicate symbols
and a single sort σ. Let T1 be a Σ-theory containing all structures such that the
domain of σ has exactly one element (i.e. the structures of T1 are those satisfying
∀x y. x = y). Similarly, let T2 be a Σ-theory over the same sort σ containing all
structures such that the domain of σ has at least two elements (i.e. axiomatized
by ∃x y. x �= y). Note that the combination of these two theories contains no
structures, and hence no formula is satisfiable in T1 ⊕ T2.

Theory T2 is clearly smooth with respect to σ. To be polite, T2 must also be
finitely witnessable with respect to σ. Consider the following candidate witness
function:

witness(φ) � φ ∧ w1 = w1 ∧w2 = w2 ,

where w1 and w2 are fresh variables of sort σ not appearing in φ.

410 D. Jovanović and C. Barrett

Let φ be a conjunction of flat Σ-literals, let ψ = witness(φ), and let V =
vars(ψ). It is easy to see that the first condition for finite witnessability holds:
φ is satisfied in a T2 model iff ∃w1w2. ψ is. Now, consider the second condition
according to [8] (i.e. without the arrangement). We must show that if ψ is T2-
satisfiable (in interpretation B, say), then there exists a T2-interpretation A
satisfying ψ such that Aσ = [V]A. The obvious candidate for A is obtained
by setting Aσ = [V]B and by letting A interpret only those variables in V

(interpreting them as in B). Clearly A satisfies ψ. However, if [V]B contains
only one element, then A is not a T2-interpretation. But in this case, we can
always first modify the way variables are interpreted in B to ensure that wB

2
is different from wB

1 (B is a T2-interpretation, so Bσ must contain at least two
different elements). Since w2 does not appear in φ, this change cannot affect the
satisfiability of ψ in B. After making this change, [V]B is guaranteed to contain at
least two elements, so we can always construct A as described above. Thus, the
second condition for finite witnessability is satisfied and the candidate witness
function is indeed a witness function according to [8].

As we will see below, however, this witness function leads to problems. Notice
that according to the definition of finite witnessability in this paper, the candi-
date witness function is not acceptable. To see why, consider again the second
condition. Let δV be an arrangement of V . According to our definition, we must
show that if ψ ∧ δV is satisfied by T2-interpretation B, then there exists a T2-
interpretation A satisfying ψ ∧ δV such that Aσ = [V]A. We can consider the
same construction as above, but this time, the case when [V]B contains only one
element cannot be handled as before. This is because δV requires A to preserve
equalities and disequalities in V . In particular, δV may include w1 = w2. In this
case, there is no way to construct an appropriate interpretation A.

Now, we show what happens if the candidate witness function given above is
allowed. Consider using Proposition 2 to check the satisfiability of x = x (where
x is a variable of sort σ). Although this is trivially satisfiable in any theory
that has at least one structure, it is not satisfiable in T1 ⊕ T2 since there are no
structures to satisfy it. To apply the proposition we let Γ1 = ∅, Γ2 = {x = x},

ψ2 = witness(Γ2) = (x = x ∧ w1 = w1 ∧ w2 = w2) ,

and V = vars(ψ2) = {x,w1, w2}. Proposition 2 allows us to choose an arrange-
ment over the variables of V . Let δV = {x = w1, x = w2, w1 = w2} be an
arrangement over the variables in V . It is easy to see that Γ1 ∪ δV is satisfiable
in a T1-interpretation A and ψ2∪δV is satisfiable in a T2-interpretation B, where
A and B interpret the domains and variables as follows:

σA = {a1}, σB = {b1, b2}, xA = wA
1 = wA

2 = a1, x
B = wB

1 = wB
2 = b1 .

Thus, according to Proposition 2, Γ1 ∪ Γ2 should be T1 ⊕ T2-satisfiable, but we
know that this is impossible. Finally, consider what happens if we use a witness
function for T2 that is acceptable according to our new definition:

witness(φ) � φ ∧ w1 �= w2 .

Polite Theories Revisited 411

If we look at the same example using this witness function, we can verify that
for every arrangement δV , either w1 �= w2 ∈ δV , in which case Γ1 ∪ δV is not
T1-satisfiable, or else w1 = w2 ∈ δV , in which case witness(Γ2) ∪ δV is not
T2-satisfiable.

As shown by the example above, the definition of finite witnessability in [8] is
not strong enough. It allows witness functions that can falsify Proposition 2.
The changes in Definition 6 remedy the problem.

In the same paper, the authors also prove that a number of theories are polite.
We are confident that the proofs of politeness for the theories of equality, arrays,
sets, and multi-sets are still correct, given the new definition. Other results in
the paper (in particular the proof of politeness for the theory of lists and the
proof that shiny theories are polite) have some problems in their current form.
We hope to address these in future work.

3.3 A New Combination Theorem for Polite Theories

Proposition 2 shows how to combine two theories, one of which is polite. How-
ever, the theorem tells us nothing about the politeness of the resulting (com-
bined) theory. In particular, if we want to combine more than two theories by
iterating the combination method, we cannot assume that the result of applying
Proposition 2 is a theory that is polite with respect to any (non-empty) set of
sorts.

In this section, we show that the combination described in Proposition 2 does
preserve politeness over some of the sorts. This lays the foundation for the more
general combination theorem described in Section 3.4.

Theorem 1. Let Σ1 and Σ2 be signatures and let S = ΣS
1 ∩ΣS

2 . If

1. T1 is a Σ1-theory polite with respect to S1 ⊆ ΣS
1 ,

2. T2 is a Σ2-theory polite with respect to S2 ⊆ ΣS
2 ,

3. S ⊆ S2,

then T1 ⊕ T2 is polite with respect to S∗ = S1 ∪
(
S2 \ΣS

1
)
.

We illustrate the application of the theorem with an example using two theories
of arrays.

Fig. 1. Diagram for Theorem 1

412 D. Jovanović and C. Barrett

Example 4. Let Tarray,1 and Tarray,2 be two theories of arrays over the sets of sorts
S1 = {array1, index1, elem1} and S2 = {array2, index2, array1} respectively. These
two theories together model two-dimensional arrays with indices in index1 and
index2, and elements in elem1.

We know that the theory Tarray,1 is polite with respect to S∗
1 = {index1, elem1},

and the theory Tarray,2 is polite with respect to S∗
2 = {index2, array1}. Using

Theorem 1, we know that we can combine them into a theory Tarray that is polite
with respect to the set S∗

1 ∪ (S∗
2 \ {array1}) = {index1, index2, elem1}. This means

that we can combine the theory of two-dimensional arrays with any other theories
that operate over the elements and indices, even if they are not stably-infinite
(such as bit-vectors for example).

An interesting corollary of Theorem 1 is that, if both theories are polite with
respect to the shared sorts then, analogously to Proposition 1, we get a theory
that is polite with respect to the union of the sorts.

Corollary 1. Let Σ1 and Σ2 be signatures. If

– T1 is a Σ1-theory polite with respect to S1 ⊆ ΣS
1 ,

– T2 is a Σ2-theory polite with respect to S2 ⊆ ΣS
2 ,

– ΣS
1 ∩ΣS

2 = S1 ∩ S2,

then T1 ⊕ T2 is polite with respect to S1 ∪ S2.

3.4 Combining Multiple Polite Theories

Now we give a general theorem for combining multiple theories in a sequential
manner.

Theorem 2. Let Ti be a Σi-theory, for 1 ≤ i ≤ n. Assume that

– theories Ti have no function or predicate symbols in common;
– the quantifier-free satisfiability problem of Ti is decidable, for 1 ≤ i ≤ n;
– Ti is polite with respect to Si, for 1 ≤ i ≤ n;
– ΣS

i ∩ΣS
j ⊆ Sj, for 1 ≤ i < j ≤ n.

Then the quantifier-free satisfiability problem for T = T1⊕ · · · ⊕Tn is decidable.
Moreover, the resulting theory T is polite with respect to the set of sorts S =
∪n

j=1(Sj \ (∪i<jΣ
S
i)).

Example 5. Assume we have a theory of arrays Tarray,1 over the sorts ΣS
array,1 =

{array1, index1, elem}, as well as theories of arrays Tarray,k over the sorts ΣS

array,k =
{arrayk, indexk, arrayk−1}, for k ≥ 2. These theories represent different layers
in the theory of n-dimensional arrays. The theories satisfy the assumption of
Theorem 2 and thus we can combine them into the full theory Tarray = Tarray,1 ⊕
· · · ⊕ Tarray,n. This theory is polite with respect to the union of all indices and
elements S = {index1, index2, . . . , indexn, elem}.

Polite Theories Revisited 413

Note that, although we are combining theories in a straightforward fashion, we
could not have used Theorem 14 from [7] to achieve this combination, since
the common intersection of the polite sets of sorts is empty, and the pairwise
intersection of sorts is not. More importantly, we are able to easily deduce the
politeness of the resulting theory. We finish this section with a theorem that
gives an easy complete method for checking whether we can combine a set of
theories in the framework of multiple polite theories.

Theorem 3. Let T1, T2, . . . , Tn be pairwise signature-disjoint theories such that
individual quantifier-free Ti-satisfiability problems are decidable. The quantifier-
free satisfiability problem of T = T1⊕ · · · ⊕Tn is decidable by iterating the polite
combination method for two theories if and only if there is a reordering of the
theories Ti that satisfies the conditions of Theorem 2.

4 Theory Instantiations

The way theories are defined in Definition 1 is meant to be general, i.e. the sorts
can be interpreted in any domain. But, sometimes we are interested in a variant
of a theory obtained by identifying some of the sorts. For example, consider a
theory of arrays with elements and indices, i.e. ΣS

array = {array, elem, index}. In
practice, we often deal with a closely related theory of arrays in which the indices
and the elements are from the same sort. Note that these two theories are indeed
different – in the general theory of arrays, the well-sortedness prevents us from
comparing indices with elements (the term read(a, i) �= i is not well-sorted, for
example). We will call this merging of sorts theory instantiation by sort equality.

Definition 8 (Signature Instantiation). Let Σ = (S, F, P) be a signature.
We call Σσ1=σ2

s = (S′, F ′, P ′) a signature instantiation by sort equality σ1 = σ2,
for sorts σ1, σ2 ∈ S and s /∈ S, if the following holds:

– S′ = (S \ {σ1, σ2}) ∪ {s};
– F ′ contains the same function symbols as F except that we replace σ1 and

σ2 with s in every arity;
– P ′ contains the same predicate symbols as P except that we replace σ1 and

σ2 with s in every arity.

To enable the translation of formulas from the instantiated signature to the orig-
inal signature and vice versa, we will use the satisfiability-preserving syntactic
formula transformation α that maps conjunctions of flat Σσ1=σ2

s -literals into
formulas from the signature Σ. Given such a conjunction φ =

∧
1≤k≤m lk, with

varss(φ) = {v1, v2, . . . , vn}, we first introduce fresh variables vσ1
i of sort σ1, and

vσ2
i of sort σ2, for i = 1, . . . , n. The function α transforms the formula φ into

α(φ) �
∧

1≤k≤m

αl(lk) ∧
∧

1≤i<j≤n

(
vσ1

i =σ1 vσ1
j ↔ vσ2

i =σ2 vσ2
j

)
,

414 D. Jovanović and C. Barrett

The transformation αl acts on the individual literals as follows:

– Literals of the form x =σ y and x �=σ y, where σ �= s, are left unchanged.
– Literals of the form x =s y and x �=s y are transformed into xσ1 =σ1 yσ1

and xσ1 �=σ1 yσ1 respectively.3

– Literals of the form x =σ f(y1, . . . , yn), where σ �= s, are transformed into
x =σ f(y∗1 , . . . , y

∗
n). The variables y∗i are taken to comply with the original

arity of f in Σ, i.e.

y∗i =

⎧⎪⎨⎪⎩
yσ1

i if yi should be of sort σ1 in the arity of f in Σ,
yσ2

i if yi should be of sort σ2 in the arity of f in Σ,
yi otherwise.

– Literals of the form x =s f(y1, . . . , yn) are transformed into either xσ1 =σ1

f(y∗1 , . . . , y
∗
n) or xσ2 =σ2 f(y∗1 , . . . , y

∗
n), depending on the sort of the co-

domain of f in Σ.
– Literals of the form p(y1, . . . , yn) and ¬p(y1, . . . , yn) are transformed in a

similar manner.

In the other direction, we define a transformation γV , where V is a set of variables
of sort s, from Σ-formulas to Σσ1=σ2

s -formulas, as follows

γV (φ) = φ ∧
∧

v∈V

(vσ1 = v ∧ vσ2 = v) .

In the new formula variables formerly of sort σ1 or σ2 are now of sort s.

Definition 9 (Theory Instantiation). Let Σ be a signature and T = (Σ,A)
be a Σ-theory. We call a theory T σ1=σ2

s = (Σσ1=σ2
s ,B) the theory instantiated

by sort equality σ1 = σ2, for sorts σ1, σ2 ∈ ΣS and s /∈ ΣS, when B ∈ B iff

– there exists an A ∈ A such that Bs = Aσ1 = Aσ2 , and Bσ = Aσ for σ �= s;
and

– all the predicate and function symbols in Σσ1=σ2
s are interpreted in B exactly

the same as they are interpreted in A.

The above definition simply restricts the original theory structures to those in
which the sorts σ1 and σ2 are interpreted by the same domain. The lemma below
shows that the result, T σ1=σ2

s , is indeed a theory.

Lemma 1. Let T and B be as in Definition 9, and let Ax be the set of closed
Σ-formulas that defines T . The class B is exactly the set of Σσ1=σ2

s -structures
that satisfies the set of formulas γ∅(Ax) = {γ∅(φ) | φ ∈ Ax}.

3 The choice of σ1 over σ2 is arbitrary, as the right part of α(φ) will force the same
on the dual variables.

Polite Theories Revisited 415

Our motivating example is the theory of arrays where we restrict the sorts elem
and index to be equal to each other and to bv, i.e. we are interested in the theory
T bv

array = (Tarray)
elem=index
bv . We know that Tarray is polite with respect to the sorts

elem and index. We want to know whether it is also the case that T bv
array is polite

with respect to the sort bv.
The main result of this section is to show that by merging two sorts σ1 and

σ2 in a theory, we preserve the politeness of the theory: the new theory will
be polite with respect to the same set of sorts as the original theory, modulo
renaming of the instantiated sorts σ1 and σ2.

Theorem 4. Let Σ be a signature, σ1, σ2 ∈ ΣS, and s /∈ ΣS. If Σ-theory T is
polite with respect to S, where σ1, σ2 ∈ S and s /∈ S, then T σ1=σ2

s is polite with
respect to S′ = S \ {σ1, σ2} ∪ {s}. Furthermore, if witness is a witness function
for theory T , then an acceptable witness function for T σ1=σ2

s is

witnessσ1=σ2
s (φ) = (γvarss(φ) ◦ witness ◦ α)(φ) .

Example 6. Consider again example 5, i.e. we have a theory of arrays Tarray that
operates over the sorts ΣS = {array1, . . . , arrayn, index1, . . . indexn, elem1} and is
polite with respect to the index and element sorts ΣS ={index1, . . . indexn, elem1}.
Using Theorem 4, we can now safely replace the sorts index1, index2 and elem1
with the sort of bit-vectors bv, obtaining a theory Tarray(bv) of n-dimensional
arrays where the elements and the indices are of the same bit-vector sort. This
theory Tarray(bv) of arrays over bit-vectors is polite with respect to the sort bv,
and therefore we can safely combine it with the theory of bit-vectors Tbv.

Using the combination method for polite theories, we can therefore get a sound
and complete decision procedure for deciding the theory of n-dimensional arrays
over bit-vectors, given a decision procedure and witness function for the theory
of arrays Tarray and a decision procedure for the theory of bit-vectors Tbv.

5 Conclusion

One of the crucial issues in the development of verification systems is the prob-
lem of combining decision procedures. Nelson and Oppen laid the foundation
for the most commonly used framework, but their approach is limited by the
requirement that the theories involved be stably-infinite. In this paper we re-
visited the problem of modular combination of non-stably-infinite theories in a
many-sorted setting, using the previously introduced [8] notion of polite theo-
ries. We corrected the definition of polite theories that made the combination
method incomplete. Then we gave several new results that can be used to con-
struct new polite theories from existing ones. These results led to a general
combination result for multiple polite theories. Our result is not only applicable
to a broader class of theories, but also precisely describes the politeness of the
resulting theory. In future work, we plan to investigate the politeness of other
common theories including general theories of inductive data-types [1]. We also
are interested in finding efficient witness functions that minimize the number of
variables that need to be considered in the arrangement shared by all theories.

416 D. Jovanović and C. Barrett

Acknowledgments. We would like to thank the anonymous reviewers as well as
Cesare Tinelli who provided valuable feedback on this work.

References

1. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for a theory
of inductive data types. Journal on Satisfiability, Boolean Modeling and Compu-
tation 3, 21–46 (2007)

2. Enderton, H.B.: A mathematical introduction to logic. Academic Press, New York
(1972)

3. Jovanović, D., Barrett, C.: Polite theories revisited. Technical Report TR2010-922,
Department of Computer Science, New York University (January 2010)

4. Krstić, S., Goel, A., Grundy, J., Tinelli, C.: Combined Satisfiability Modulo Para-
metric Theories. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 602–617. Springer, Heidelberg (2007)

5. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

6. Oppen, D.C.: Complexity, convexity and combinations of theories. Theoretical
Computer Science 12(3), 291–302 (1980)

7. Ranise, S., Ringeissen, C., Zarba, C.: Combining Data Structures with Nonsta-
bly Infinite Theories using Many-Sorted Logic. Research Report RR-5678, INRIA
(2005)

8. Ranise, S., Ringeissen, C., Zarba, C.G.: Combining Data Structures with Nonstably
Infinite Theories Using Many-Sorted Logic. In: Gramlich, B. (ed.) FroCos 2005.
LNCS (LNAI), vol. 3717, pp. 48–64. Springer, Heidelberg (2005)

9. Stump, A., Dill, D.L., Barrett, C.W., Levitt, J.: A decision procedure for an ex-
tensional theory of arrays. In: Proceedings of the 16th IEEE Symposium on Logic
in Computer Science (LICS 2001), June 2001, pp. 29–37. IEEE Computer Society,
Boston (June 2001)

10. Tinelli, C., Harandi, M.T.: A new correctness proof of the Nelson–Oppen combina-
tion procedure. In: Frontiers of Combining Systems. Applied Logic, pp. 103–120.
Kluwer Academic Publishers, Dordrecht (1996)

11. Tinelli, C., Zarba, C.: Combining decision procedures for sorted theories. In:
Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 641–653.
Springer, Heidelberg (2004)

12. Tinelli, C., Zarba, C.: Combining decision procedures for theories in sorted logics.
Technical Report 04-01, Department of Computer Science, The University of Iowa
(February 2004)

13. Tinelli, C., Zarba, C.G.: Combining nonstably infinite theories. Journal of Auto-
mated Reasoning 34(3), 209–238 (2005)

Clausal Graph Tableaux for
Hybrid Logic with Eventualities and Difference

Mark Kaminski and Gert Smolka

Saarland University, Saarbrücken, Germany

Abstract. We introduce the method of clausal graph tableaux at the
example of hybrid logic with difference and star modalities. Clausal graph
tableaux are prefix-free and terminate by construction. They provide
an abstract method of establishing the small model property of modal
logics. In contrast to the filtration method, clausal graph tableaux result
in goal-directed decision procedures. Until now no goal-directed decision
procedure for the logic considered in this paper was known. There is
the promise that clausal graph tableaux lead to a new class of effective
decision procedures.

1 Introduction

For modal logic there exist two basic kinds of tableau decision procedures.
The more traditional kind, dating back to Kripke [21] and further developed
by Fitting [9], Massacci [24] and others, sees tableaux as rooted trees labeled
with formulas and, sometimes, auxiliary meta-level information. The formulas
on an individual tableau branch are interpreted conjunctively while the different
branches are interpreted disjunctively. Tableau calculi are designed so that the
set of all branches of a tableau represents an exhaustive enumeration of ways to
satisfy the formula at the root of the tableau. A typical decision procedure for
satisfiability based on tree tableaux will explore the tableau branch by branch
until it finds an evident branch. An evident branch is a satisfiable branch that
syntactically describes a model of all of its formulas, in particular of the root
formula. Most modern tree tableau calculi model possible worlds and the acces-
sibility relation between them by prefixes (either at the meta level [24] or at the
object level [3]). Prefixed tableaux usually allow for straightforward complete-
ness arguments but often require complicated blocking mechanisms [21,16] for
termination.

An alternative view of tableaux was developed by Pratt [27] and elaborated
by Goré et al. [12,14] for PDL. There, tableaux are seen as possibly cyclic graphs.
Given a graph tableau, a corresponding (typically infinite) tree tableau can be
obtained by a tree unfolding of the graph. A decision procedure based on graph
tableaux conceptually consists of two stages. First, given an input formula s, the
procedure constructs the tableau (graph) for s. Then, the procedure checks if the
constructed graph contains an evident subtableau that contains s. While being
presented as two successive steps in [27], the two stages are interleaved in [12,14]

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 417–431, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

418 M. Kaminski and G. Smolka

for performance reasons. For temporal logics, the graph tableau approach is
adopted by Manna and Wolper [23] and by Kesten et al. [20] (there also exist
decision procedures for alternation-free μ-calculi based on graph tableaux [30]
that are, however, not incremental in the sense of [20]). Graph tableaux are
usually set up in a way that makes termination obvious, often allowing to obtain
worst-case optimal decision procedures for expressive logics [27,12,14].

In this paper we propose a uniform treatment of a family of modal and hybrid
logics by graph tableaux. To abstract away from propositional reasoning, we
employ a clausal form developed for tree tableaux in our previous work [19]
(note that our clausal form is different from the normal form by the same name
used in [25,13]). Our present investigations focus on graph tableaux as a way
of establishing the small model property and decidability of modal logics, a
role that has traditionally been filled by filtration. Filtration [5] was invented
by Lemmon and Scott [22] and further developed by Segerberg [29] and, in a
somewhat different form, by Gabbay [10]. Fischer and Ladner [8] were the first
to apply filtration to a logic with eventualities. While being similarly elegant
to filtration, graph tableaux offer an important advantage. Rather than just
providing an upper bound on the size of a minimal model of a satisfiable formula,
they provide a way of constructing such a model in a goal-directed way.

We demonstrate clausal graph tableaux on H∗
D, which is modal logic extended

with nominals, eventualities and the difference operator. Nominals are formu-
las of the form x that hold exactly for the state x. Eventualities are formulas
of the form ♦∗s that hold for a state if it can reach in n ≥ 0 steps a state
satisfying the formula s. A difference formula Ds holds for a state if there is a
different state satisfying s. Nominals and the difference operator D equip modal
logic with equality, a characteristic feature of hybrid logic [5,2]. Eventualities
extend modal logic with reflexive transitive closure and are an essential feature
of PDL [8,15] and temporal logics [26,6,7]. One can see H∗

D either as hybrid logic
extended with eventualities or as stripped-down PDL extended with nominals
and D. Due to the inductive nature of eventualities, H∗

D is not compact (consider
♦∗¬p, p, �p, ��p, . . .). The EXPTIME-hardness of H∗

D follows from Fischer
and Ladner’s proof for PDL [8] (see Blackburn et al. [5], Theorem 6.52). The
method in this paper yields a NEXPTIME upper bound for H∗

D. This seems to
be the first upper bound established for H∗

D.
In [19], we develop a clausal tree tableau calculus for H∗ (modal logic with

nominals and eventualities). While it is easy to give clausal tree tableaux for
hybrid logic with D, we found it difficult to give an elegant clausal treatment
of logics containing both eventualities and difference (such as H∗

D and HPDLD)
using tree tableaux. Moreover, the graph tableau approach has not been applied
so far to logics with nominals. By adapting the clausal approach and the solutions
developed for nominals in [19] to graph tableaux, we are able to give a satisfactory
treatment of both eventualities and D within a single framework. Unlike the
approach in [19], which works on a single branch of a tree tableau at a time, the
present approach is fully deterministic, representing all possible choices within a
single graph tableau. This allows us to share the computational costs necessary to

Clausal Graph Tableaux for Hybrid Logic with Eventualities and Difference 419

deal with D across the tableau instead of paying them on every branch. Another
advantage of graph tableaux over the approach in [19] is a significantly simpler
soundness argument. The soundness of the calculus in [19] relies on an invariant
of tableau branches, called straightness. To maintain the invariant, a technique
reminiscent of blocking is used. The present approach does not rely on any such
invariants for soundness. We believe that following the ideas in [18] the present
approach scales to HPDLD (PDL extended with nominals and D).

We see the main contribution of the present paper in extending the graph
tableau approach to hybrid logic with eventualities and difference, while at the
same time giving the first goal-directed decision procedure for this logic. The
use of a clausal form allows for an elegant presentation and simple, modular
correctness arguments.

The paper is organized as follows. First, we introduce the approach on the
basic modal logic with eventualities. Then we show how graph tableaux adapt
to basic hybrid logic and hybrid logic with difference. Finally, we combine the
treatment of eventualities with that of nominals and the difference operator.

Due to lack of space, many proofs are omitted. For full proofs, we refer to [17].

2 Hybrid Logic with Eventualities and Difference

We define the syntax and semantics of the basic hybrid logic with eventualities
and difference. We assume that two kind of names, called nominals and predi-
cates, are given. Nominals (written x, y) denote states and predicates (written
p, q) denote sets of states. Formulas are defined as follows:

s ::= x | p | ¬s | s ∧ s | ♦s | ♦∗s | Ds

For simplicity we employ only a single transition relation. The extension of the
approach to multimodal logic is straightforward. Formulas prefixed with the
diamond operators ♦ and ♦∗ are called diamond formulas and formulas prefixed
with the difference operator D are called difference formulas.

An interpretation I consists of the following components:

– A nonempty set |I| of states.
– A transition relation →I⊆ |I| × |I|.
– A state Ix ∈ |I| for every nominal x.
– A set Ip ⊆ |I| for every predicate p.

The satisfaction relation I, X |= s between interpretations I, states X ∈ |I|,
and formulas s is defined by induction on s:

I, X |= x ⇐⇒ X = Ix I, X |= s ∧ t ⇐⇒ I, X |= s and I, X |= t

I, X |= p ⇐⇒ X ∈ Ip I, X |= ♦s ⇐⇒ ∃Y : X →I Y and I, Y |= s

I, X |= ¬s ⇐⇒ not I, X |= s I, X |= ♦∗s ⇐⇒ ∃Y : X →∗
I Y and I, Y |= s

I, X |= Ds ⇐⇒ ∃Y : X �= Y and I, Y |= s

→∗
I denotes the reflexive transitive closure of →I

420 M. Kaminski and G. Smolka

Given a set A of formulas, we write I, X |= A if I, X |= s for all formulas
s ∈ A. An interpretation I satisfies (or is a model of) a formula s or a set A of
formulas if there is a state X ∈ |I| such that I, X |= s or, respectively, I, X |= A.
A formula s (a set A) is satisfiable if s (A) has a model.

The complement ∼ of a formula s is t if s = ¬t and ¬s otherwise. Note that
∼∼s = s if s is not a double negation. We use the notations s∨ t := ¬(∼s∧∼t),
�s := ¬♦∼s, �∗s := ¬♦∗∼s, and D̄s := ¬D∼s. Note that ∼♦p = �¬p and
∼♦¬p = �p. Moreover, we define ♦+s := ♦♦∗s and �+s := ��∗s (note that
�+s = ��∗s = ¬♦∼¬♦∗∼s = ¬♦♦∗∼s = ¬♦+∼s). An eventuality is a formula
of the form ♦∗s or ♦+s. All other diamond formulas are called simple.

We write H∗
D for the full logic and define several sublogics:

K p | ¬s | s ∧ s | ♦s
K∗ K extended with ♦∗s
H K extended with x
HD H extended with Ds
H∗ H extended with ♦∗s (or K∗ extended with x)
H∗

D HD extended with ♦∗s (or H∗ extended with Ds)

3 Clausal Form

We define a clausal form for our logic. The clausal form allows us to abstract
from propositional reasoning and to focus on modal reasoning. Rather than com-
mitting to a particular clausal form, we make explicit the abstract properties of
the clausal form that we need for our results. This makes our results more widely
applicable since the abstract properties are general enough to allow for differ-
ent clausal forms, in particular for clausal forms compatible with propositional
optimizations like semantic branching [31]. A naive computable clausal form is
then suggested in the proof of Proposition 3.3.

A basic formula is a formula of the form x, p, ♦s, or Ds. A literal is a basic
formula or the complement of a basic formula. A clause (denoted by C, D) is a
finite set of literals that contains no complementary pair. Note that since clauses
contain no complementary literals, for every finite set A of basic formulas there
are 3|A| clauses C such that C ⊆ A∪{¬s | s ∈ A }. Clauses are interpreted con-
junctively. Satisfaction of clauses (i.e., I, X |= C) is a special case of satisfaction
of sets of formulas (i.e., I, X |= A), which was defined in §2. For instance, the
clause {♦p, �(¬p ∧ q)} is unsatisfiable. Note that every clause not containing
literals of the form ♦s or Ds is satisfiable.

To deal with the difference operator, our approach assumes an injective func-
tion that assigns to every literal Ds a nominal xDs. Intuitively, a nominal xDs

is supposed to denote a state that satisfies s, provided such a state exists. If it
does, all states that are different from the one denoted by xDs satisfy Ds. A base
is a set A of basic formulas such that:
1. If s ∈ A and t is a basic subformula of s, then t ∈ A.
2. If s ∈ A and ♦∗t is a subformula of s, then ♦+t ∈ A.
3. If Ds ∈ A, then xDs ∈ A.

Clausal Graph Tableaux for Hybrid Logic with Eventualities and Difference 421

While conditions (1) and (2) are required for all extensions of K∗, (3) is only
needed for the difference operator. A set A is called a base of a formula s if A is a
base, contains every basic subformula of s and, additionally, ♦+t ∈ A whenever
♦∗t is a subformula of s. Note that in particular we have that every base of a
formula �∗s (i.e., ¬♦∗∼s) is also a base of �+s (i.e., ¬♦+∼s). Intuitively, a
base of a formula s contains all basic formulas that need to be evaluated (not
necessarily all at the same state) to determine the truth value of s. A set A is
a base of a set of formulas B if A is a base of every s ∈ B. Let A be a set of
formulas. We write BA for the least base of A. It can be shown that BA is finite
if A is finite, and that the size of BA is linear in the size of A, i.e., the sum of the
sizes of the formulas occurring as elements of A (except for the nominals xDs,
Bs is a subset of the Fischer-Ladner closure of s; cf. [8,15]).

The support relation C � s between clauses C and formulas s is defined by
induction on s:

C � s ⇐⇒ s ∈ C if s is a literal C � ¬¬s ⇐⇒ C � s

C � s ∧ t ⇐⇒ C � s and C � t C � s ∨ t ⇐⇒ C � s or C � t

C � ♦∗s ⇐⇒ C � s or C � ♦+s C � �∗s ⇐⇒ C � s and C � �+s

We say C supports s if C � s. We write C � A and say C supports A if C � s for
every s ∈ A. Note that C � D ⇐⇒ D ⊆ C if C and D are clauses.

Proposition 3.1. If C � A and C ⊆ D and B ⊆ A, then D � B.

Proposition 3.2. If I, X |= C and C � A, then I, X |= A.

A DNF (disjunctive normal form) is a function D that maps every finite set A
of formulas to a finite set of clauses such that:

1. I, X |= A ⇐⇒ ∃D ∈ DA : I, X |= D.
2. C � A ⇐⇒ ∃D ∈ DA : D ⊆ C.
3. If C ∈ DA, then C ⊆ BA ∪ {¬s | s ∈ BA }.

Note that the third property of DNFs may equivalently be stated as follows:
If C ∈ DA, then BC ⊆ BA. Note further that, restricted to propositional
logic, our notion of a DNF reduces to the common notion of a propositional
DNF. Consider, for instance, a function D such that D{p1 ∧ (¬p2 ∨ p3)} =
{{p1, ¬p2}, {p1, p3}}. Clearly, D is a DNF according to the above definition. By
interpreting {{p1, ¬p2}, {p1, p3}} as (p1 ∧¬p2)∨ (p1 ∧ p3) we see that D indeed
computes a DNF of p1 ∧ (¬p2 ∨ p3).

Proposition 3.3. There is a computable DNF.

Proof. The definition of the support relation can be seen as a tableau-style de-
composition procedure for formulas. The clauses of a DNF can be obtained with
the literals the decomposition produces. The direction “⇐” of property (1) of
DNFs follows with Proposition 3.2. Properties (2) and (3) of DNFs easily fol-
low, respectively, from the definitions of the support relation and the base of a
formula. ��

422 M. Kaminski and G. Smolka

For the rest of the paper, we fix some computable DNF D. In our examples, in
particular in Examples 4.1 and 5.1, we assume that D is defined as suggested
in the proof of Proposition 3.3. In particular, we assume that DC = {C} for all
clauses C, and D{s∧ t} = {{s, t}} for every two non-complementary literals s, t.

The request of a clause C is RC := { t | �t ∈ C }.

Proposition 3.4. If I, X |= C and X →I Y , then I, Y |= RC.

4 Tableaux for K∗

To demonstrate the basic ideas of the graph tableau approach, we begin with a
tableau system for K∗, the basic modal logic with eventualities. Hence, for the
rest of the section, we restrict formulas to be of the form:

s ::= p | ¬s | s ∧ s | ♦s | ♦∗s

Basic formulas, literals and clauses are restricted accordingly.
A claim is a pair C♦s such that ♦s ∈ C. Given a formula s and a set A, we

write A ; s for the set A ∪ {s}. A link is a triple C♦sD such that C♦s is a claim
and either

1. ♦s is not an eventuality and D ∈ D(RC ; s), or
2. s = ♦∗t and D ∈ D(RC ; t) ∪ D(RC ; ♦s).

A tableau is a finite non-empty set T of clauses and links such that C,D ∈ T
whenever CsD ∈ T . A tableau T is complete if C♦sD ∈ T whenever ♦s ∈ C ∈ T
and C♦sD is a link. Given a tableau T , we define BT as the least set A that is
a base of all C ∈ T . It is easily seen that BT =

⋃
{ BC | C ∈ T }.

The architecture of a decision procedure based on graph tableaux is as follows.
Given a clause C, we construct a tableau T that contains C and satisfies certain
completeness criteria. The size of T will be exponentially bounded in the size of
the base of C. If C is satisfiable, T will contain a subtableau that syntactically
describes a model of C. We call such subtableaux evident. The existence of
evident subtableaux is decidable since T is finite. Given the decision procedure
for clauses, a procedure for formulas is immediate by property (1) of DNFs.

Proposition 4.1. If CsD is a link, then BD ⊆ BC.

For every clause C, we can construct a complete tableau T containing C by
closing the initial tableau {C} under the following completion rule:

D

E, D♦sE
♦s ∈ D, D♦sE link

The closure is finite since for all clauses D added by the construction we have
BD ⊆ BC (follows by Proposition 4.1). Hence, the number of clauses in T is
bounded by 3|BC|. The number of links in T is then bounded by |BC| · 9|BC|.
Clearly, C ∈ T and BT = BC.

Clausal Graph Tableaux for Hybrid Logic with Eventualities and Difference 423

Proposition 4.2. For every clause C there is a complete tableau T such that
C ∈ T , BT = BC, and |T | = 3|BC| + |BC| · 9|BC|.

A run for C♦+s in T is a sequence of clauses C1 . . . Cn such that:

1. C1 = C.
2. ∀i ∈ [1, n− 1] : Ci

♦+sCi+1 ∈ T .
3. Cn � s.

We call a tableau evident if every claim has an outgoing link and every claim of
the form C♦+s has a run. More precisely: A tableau T is evident if:

1. ∀♦s ∈ C ∈ T ∃D : C♦sD ∈ T .
2. T has a run for C♦+s whenever ♦+s ∈ C ∈ T .

An interpretation satisfies (or is a model of) a tableau if it satisfies all of its
clauses.

Example 4.1. Consider the complete tableau T for the clause C0 = {♦+p, ♦♦p,
�¬p, ¬p} obtained with the above completion rule.

♦+p, ♦♦p, �¬p, ¬p

♦+p, ¬p ♦p, ¬p

♦+p p

Links of the form CsD are represented graphically by arrows going from the
formula s in the clause C to the clause D. Consider the claim C0

♦+p. Since
♦+p is an eventuality and RC0 = {¬p}, a triple C0

♦+pD is a link if and only
if D ∈ D{p, ¬p} ∪ D{♦+p, ¬p} = ∅ ∪ {{♦+p, ¬p}} = {{♦+p, ¬p}}. Hence,
{♦+p, ¬p} is the only clause and C0

♦+p{♦+p, ¬p} the only link that is added
by the completion rule for the claim C0

♦+p. Note that T is evident since every
claim has at least one outgoing link and the clause {p} is reachable from every
diamond ♦+p. In particular, {♦+p, ¬p}{♦+p}{p} is a run for {♦+p, ¬p}♦+p in T .

Theorem 4.1 (Model Existence). Evident tableaux have finite models.

Proof. Let T be an evident tableau. We choose an interpretation I such that:

– |I| = {C | C ∈ T }
– C →I D ⇐⇒ ∃s : C♦sD ∈ T
– C ∈ Ip ⇐⇒ p ∈ C

Clearly, |I| is finite since T is finite.
We show ∀s ∀C ∈ T : C � s =⇒ I, C |= s by induction on s. Let C ∈ T

and C � s. We show I, C |= s by case analysis. The argument is straightforward
except possibly for the cases s = ♦∗t and s = �∗t.

424 M. Kaminski and G. Smolka

Let s = ♦∗t. Since C �s, we have either C �t or C �♦+t. If C �t, then I, C |= t
by the inductive hypothesis, and the claim follows. Otherwise, let C �♦+t. Then
♦+t ∈ C ∈ T . By the second evidence condition we know that there is a run for
C♦+t in T . Thus C →∗

I D and D � t for some clause D ∈ Γ . Hence I, D |= t by
the inductive hypothesis. The claim follows.

Let s = �∗t. Let C = C1 →I . . . →I Cn. We show I, Cn |= t by induction
on n. If n = 1, we have Cn |= s by assumption. Hence Cn |= t and the claim
follows by the outer inductive hypothesis. If n > 1, we have s ∈ RC1 since
�s ∈ C1 since C1 � �s since C1 � s. Thus C2 � s and the claim follows by the
inner inductive hypothesis. ��
A tableau T ′ is a subtableau of a tableau T if T ′ ⊆ T .

Theorem 4.2 (Evidence). Let T be a complete tableau and C ∈ T . If C is
satisfiable, then there is an evident subtableau of T containing C.

Proof (Sketch). Let T and C be as required, and let I be a model of C. We
define U to consist of the clauses of T that are satisfied by I, and the edges
DsE ∈ T such that {D, E} ⊆ U . It is easily seen that U is a subtableau of
T and that C ∈ U , so it remains to show that U is evident. Showing evidence
condition (1) is straightforward. As for condition (2), observe that whenever
we have I, X0 |= ♦+s, this means that there is a sequence of states X1 . . . Xn

(n ≥ 1) such that, for all i ∈ [1, n], Xi−1 →I Xi, and I, Xn |= s. Now, to show
condition (2), we show that, given a claim C0

♦+s and assuming I, X0 |= C0, the
sequence X1 . . . Xn can be “projected” onto clauses C1 . . . Cn of U such that, for
all i ∈ [1, n], we have (a) I, Xi |= Ci, (b) Xi−1 →I Xi implies Ci−1

♦+sCi ∈ U ,
and (c) Cn � s. Clearly, this implies that C0C1 . . . Cn is a run for C0

♦+s, which
suffices for the claim. ��

5 Tableaux for HD

Before we proceed to the full logic, let us develop graph tableaux for HD. This
will allow us to introduce the machinery needed for nominals without the com-
plications that are added by eventualities. To account for nominals, we will allow
links to clauses that are larger than those given by the DNF of the diamond for-
mula and the request of the source clause. To reduce redundancy in complete
graph tableaux, we will introduce the notion of a link closure and require a com-
plete tableau to contain an evident subtableau in its link closure. We will point
out which parts of the construction are needed for hybrid logic in general and
which are there specifically to account for the difference operator. The formulas
of HD look as follows:

s ::= x | p | ¬s | s ∧ s | ♦s | Ds

To deal with nominals, we need to adapt the definition of links. A link is a triple
C♦sD such that C♦s is a claim and D �RC ; s. A link C♦sD is called minimal
if D ∈ D(RC ; s) (i.e., minimal links are precisely the special kind of links used
in § 4). Proposition 4.1 adapts as follows:

Clausal Graph Tableaux for Hybrid Logic with Eventualities and Difference 425

Proposition 5.1. If CsD is a minimal link, then BD ⊆ BC.

Given the new definition of links, tableaux are defined as before. A tableau T is
complete if:

1. If ♦s ∈ C ∈ T and C♦sD is a minimal link, then C♦sD ∈ T .
2. If C ∈ T and x ∈ BC, then {x} ∈ T .
3. If C,D ∈ T , x ∈ C ∩D, and C ∪D is a clause, then C ∪D ∈ T .
4. If Ds ∈ C ∈ T , xDs /∈ C, and D ∈ D{xDs, s}, then D ∈ T .
5. If Ds ∈ C ∈ T , xDs ∈ C, and D ∈ D{¬xDs, s}, then D ∈ T .
6. If D̄s ∈ C ∈ T , D ∈ T , D s, and C ∪D is a clause, then C ∪D ∈ T .
7. If D̄s ∈ C ∈ T , D ∈ T , D s, and E ∈ D(D ; s), then E ∈ T .

Note that to obtain a complete system for H, only the first three of the com-
pleteness criteria are needed. The last four criteria are there exclusively to deal
with D and its dual. Recall that the idea behind the completion rules is to gen-
erate enough clauses so that we can select an evident subset. Criterion (1) is
the obvious adaptation of the completeness criterion from § 4. Criteria (2) and
(3) are motivated by the semantics of nominals. Every nominal x has to denote
some state that, obviously, satisfies {x}. Moreover, if two clauses are satisfied
by the same model and have a nominal in common, then they hold in the same
state of the model, and hence their union is also satisfiable. For (4) and (5),
recall that a nominal xDs is assumed to denote a state that satisfies s (provided
such a state exists). So, if Ds is satisfiable anywhere in a model, then {xDs, s} is
satisfiable, and if {Ds, xDs} is satisfiable, then so is {¬xDs, s}. Criteria (6) and
(7) are motivated as follows. If D̄s holds in a state X , then every state that is
distinct from X satisfies s. So, every given state Y must either be equal to X
(cf. (6)) or satisfy s (cf. (7)).

Note that, analogously to the above tableau construction rule in § 4, the
above completeness criteria can be interpreted as tableau rules (called com-
pletion rules). So, for instance, criterion (1) and (3) translate to, respectively:

1)
D

E, D♦sE
♦s ∈ D, D♦sE minimal link 3)

D, E

C ∪ E
D ∪E clause, ∃x : x ∈ D ∩E

Analogously to the argument in § 4, we obtain:

Proposition 5.2. For every clause C there is a complete tableau T such that
C ∈ T , BT = BC, and |T | = 3|BC| + |BC| · 9|BC|.

We define AT := A ∪ { s | ∃x ∈ A ∃C ∈ T : x ∈ C and s ∈ C }. A tableau T is
evident if:

1. ∀♦s ∈ C ∈ T ∃D : C♦sD ∈ T .
2. If C ∈ T and x ∈ BC, then there is some D ∈ T such that x ∈ D.
3. If C ∈ T , then C = CT .
4. If Ds ∈ C ∈ T , then there is some D ∈ T such that D �= C and D � s.
5. If D̄s ∈ C ∈ T , then, for all D ∈ T such that D �= C, we have D � s.

426 M. Kaminski and G. Smolka

Again, for hybrid logic without D we only need the first three conditions.
In the presence of nominals and D, clauses introduced by the rule for criterion

(1) may be too small to be included in the evident tableau (because of evidence
condition (3) or (5)). While criteria (3), (6) and (7) will ensure that the complete
tableau contains the larger clauses that are needed, they will add no links to the
new clauses. Instead, we add the required links in a uniform way by defining the
link closure T̂ of a tableau T as T̂ := T ∪ {CsD | ∃E : E ⊆ D and CsE ∈ T }.

Example 5.1. Consider the following complete tableau T for the unsatisfiable
clause {♦(y ∧ Dy)}.

♦(y ∧ Dy)
1

y, Dy
2

xDy, y
3

¬xDy, y
5

xDy, y, Dy
4

¬xDy, y, Dy
6

y
7

The numbers indicate in which order the clauses are introduced by the com-
pletion rules. So, clause (2) is derived from (1) by the rule corresponding to
completeness criterion (1), clause (3) follows from (2) by the rule for criterion
(4), clause (4) follows from (2) and (3) by the rule for criterion (3), clause (5)
follows from (4) by the rule for criterion (5), clause (6) follows from (2) and (5)
by the rule for criterion (3), and clause (7) follows by the rule for criterion (2)
applied to any of the preceding clauses. Note that the rule for criterion (3) does
not apply to clauses (4) and (5) since their union is not a clause. The dashed
arrows stand for the additional links in the link closure T̂ .

The tableau T̂ contains no evident subtableau that contains {♦(y∧Dy)} (i.e.,
clause (1)). By evidence condition (1), an evident subtableau of T̂ containing
clause (1) would also have to contain either (2), (4) or (6), all of which contain the
nominal y and the formula Dy. Then, by evidence condition (4), the subtableau
would have to contain a second clause containing y. However, having two distinct
clauses that contain the same nominal contradicts evidence condition (3).

As before for K∗, one of our goals will be showing that complete tableaux for
satisfiable clauses have evident subtableaux (now modulo link closure). This
also explains why we introduce nominals xDs. We need them to ensure that
subtableaux of a complete tableau satisfy evidence condition (4). Assume we
simplified completeness criteria (4) and (5) to:

If Ds ∈ C ∈ T and D ∈ D{s}, then D ∈ T .

Then T := {{D̄Dp, Dp, ¬p}, {Dp, p}, {p}} would be a complete tableau.
Moreover, T̂ = T . Although all clauses of T are satisfiable, T contains no evident
subtableau containing {D̄Dp, Dp, ¬p}.

Theorem 5.1 (Model Existence). Evident tableaux have finite models.

Proof. Let T be an evident tableau. By evidence conditions (2) and (3), for
every x ∈ BT we have a unique clause C ∈ T such that x ∈ C. We choose
an interpretation I as in the proof of Theorem 4.1 such that additionally, for

Clausal Graph Tableaux for Hybrid Logic with Eventualities and Difference 427

all x ∈ BT , Ix = C ⇐⇒ x ∈ C. Again, |I| is finite as so is T . We show
∀s ∀C ∈ T : C � s =⇒ I, C |= s by induction on s. The verification of the
individual cases is straightforward. ��
Theorem 5.2 (Evidence). Let T be a complete tableau and let C ∈ T be such
that, for all t ∈ C and Ds ∈ BT , xDs does not occur in t. If C is satisfiable, then
there is an evident subtableau U of T̂ and a clause D ∈ U such that C ⊆ D.

Proof (Sketch). Let T and C be as required, and let I be a model of C (with some
additional constraints). We define U to consist of the maximal clauses among
all clauses of T that are satisfied by I. As the edges of U we take all DsE ∈ T̂
such that {D, E} ⊆ U . One can show that U has the desired properties. ��

6 Tableaux for H∗ and H∗
D

Now that we know how graph tableaux look for eventualities and nominals in
isolation, let us approach their combinations, H∗ and H∗

D. The addition of D to
H turns out to be particularly straightforward since the cases for D in the proofs
of evidence and model existence for HD can be treated orthogonally from the
rest of the respective arguments. For H∗, this is no longer the case. While model
existence is still straightforward, given a meaningful definition of an evident
tableau, D significantly complicates the evidence proof when combined with
eventualities.

Links and minimal links are now defined as follows. A link is a triple C♦sD
such that C♦s is a claim and either

1. ♦s is not an eventuality and D �RC ; s, or
2. s = ♦∗t and D �RC ; t or D �RC ; ♦s.

A link C♦sD is called minimal if

1. ♦s is not an eventuality and D ∈ D(RC ; s), or
2. s = ♦∗t and D ∈ D(RC ; t) ∪ D(RC ; ♦s).

Given the new definitions, tableaux are defined as in § 4. The completeness cri-
teria, completion rules and the link closure for H∗

D (resp., H∗) look exactly the
same as for HD (resp., H). Also, Propositions 5.1 and 5.2 are easy to re-prove
for the new definitions.

As it turns out, taking maximal clauses to obtain evidence in the presence of
nominals, as it is done in the proof of Theorem 5.2, may destroy runs that are
necessary for evidence in the presence of eventualities. Consider the following
tableau (a):

(a)

♦+p, �¬p, ¬p

♦+p, ¬p

♦+p p

(b)
♦+p, �¬p, ¬p

p

428 M. Kaminski and G. Smolka

The tableau (a) is complete and satisfies the evidence conditions for K∗. All
clauses of (a) are satisfiable. However, the maximal clauses construction in the
proof of Theorem 5.2 produces the tableau (b), which does not satisfy evidence
condition (2) for K∗. In the absence of D we can solve the problem by adapting
the construction from [19] to graph tableaux. To cope with D, however, the
approach needs considerable refinement.

The evidence conditions for H∗
D are obtained by taking the union of the con-

ditions for K∗ and HD. A tableau T is evident if:

1. ∀♦s ∈ C ∈ T ∃D : C♦sD ∈ T .
2. T has a run for C♦+s whenever ♦+s ∈ C ∈ T .
3. If C ∈ T and x ∈ BC, then there is some D ∈ T such that x ∈ D.
4. If C ∈ T , then C = CT .
5. If Ds ∈ C ∈ T , then there is some D ∈ T such that D �= C and D � s.
6. If D̄s ∈ C ∈ T , then, for all D ∈ T such that D �= C, we have D � s.

Theorem 6.1 (Model Existence). Evident tableaux have finite models.

Proof. Let T be an evident tableau. We choose I as in the proof of Theorem 5.1
and show ∀s ∀C ∈ T : C�s =⇒ I, C |= s by induction on s. The case distinction
on the shape of s proceeds as in the proofs of Theorems 4.1 and 5.1. All cases
but s = ♦∗t and s = �∗t proceed exactly as in the proof of Theorem 5.1. The
cases s = ♦∗t and s = �∗t that are not covered by the proof of Theorem 5.1
proceed as in the proof of Theorem 4.1. ��

As for evidence, let us begin with with an outline of the proof for H∗.

Theorem 6.2 (Evidence for H∗). Let T be a complete tableau for H∗ and let
C ∈ T . If C is satisfiable, then there is an evident subtableau U of T̂ and a
clause D ∈ U such that C ⊆ D.

Proof. Let T and C be as required, and let I be a model of C. Let T ′ :=
{E ∈ T | I satisfies E }. We define U such that:

1. D ∈ U :⇐⇒ D ∈ T ′ and D = DT ′
.

2. D♦sE ∈ U :⇐⇒ D♦sE ∈ T̂ and {D, E} ⊆ U .

It is straightforward to verify that U is an evident subtableau of T̂ that contains
a superclause of C. ��

Unfortunately, the construction in the proof of Theorem 6.2 for selecting an
evident subtableau does not work in the presence of D. The problem is caused
by the evidence condition for formulas D̄s (condition (6)). Consider the com-
plete tableau T := {{D̄p}, {p}, {D̄p, p}}. Let I be an interpretation such
that |I| = Ip = {X}. Clearly, I satisfies all clauses of T . Since T contains no
nominals, the construction in the proof of Theorem 6.2 for I yields U = T .
However, T does not satisfy evidence condition (6) since D̄p ∈ {D̄p, p} ∈ T but
also {D̄p} ∈ T (clearly, {D̄p} p). Note that although U is not evident, it still
contains evident subtableaux ({{D̄p}}, {{D̄p, p}} and {{p}, {D̄p, p}}). As we

Clausal Graph Tableaux for Hybrid Logic with Eventualities and Difference 429

noted in the beginning of the section, it is now not possible to take the maximal
clauses of U since this will in general destroy the evidence of eventualities (con-
dition (2)). In the following, we will demonstrate how we can select an evident
subtableau of U while preserving condition (2).

A key observation is that for every formula D̄s that holds in some state X ∈
|I|, we either have that s holds everywhere in I, or that X is the unique state
satisfying D̄s and all other states satisfy s. Hence, for every formula D̄s for
which evidence condition (6) is violated (in a tableau T satisfied by I), we can
establish (6) by removing all clauses that do not support s (if s holds everywhere)
or all such clauses except one (otherwise). In the latter case, we can select the
remaining clause to be the largest clause containing D̄s. Since I satisfies T and
X is the unique state in I satisfying D̄s, none of the clauses supporting s will
contain D̄s, which guarantees that (6) is satisfied in the resulting tableau.

Lemma 6.1. Let T be a complete tableau and I an interpretation. Let

T ′ := {C ∈ T | I satisfies C }
Let D̄s1 . . . D̄sn be an injective enumeration of the set { D̄s | D̄s ∈ C ∈ T ′ }. Let
T ′

0 := {C ∈ T ′ | C = CT ′ }. For all i ∈ [1, n] we construct a set T ′
i from T ′

i−1 as
follows:

– If ∀X ∈ |I| : I, X |= si, then T ′
i := {C ∈ T ′

i−1 | C � si }.
– Otherwise, T ′

i := {C ∈ T ′
i−1 | C � si } ;

⋃
{C ∈ T ′

i−1 | D̄si ∈ C }.
Then, for all i ∈ [1, n]:

1. If C ∈ T ′
i−1 ∩ T ′

i , D ∈ T ′
i−1, and C ⊆ D, then D ∈ T ′

i .
2. If C ∈ T ′

i−1 and I, X |= C, then C ⊆ D for some D ∈ T ′
i such that

I, X |= D.
3. T ′

i ⊆ T ′
i−1.

4. If C ∈ T ′
i , then C = CT ′

i (i.e., T ′
i satisfies evidence condition (4)).

5. Let j ∈ [1, i], D̄sj ∈ C ∈ T ′
i , and D ∈ T ′

i such that D �= C. Then D�sj (i.e.,
T ′

i satisfies evidence condition (6) restricted to D̄s1, . . . , D̄si).

Theorem 6.3 (Evidence). Let T be a complete tableau and let C ∈ T be such
that, for all t ∈ C and Ds ∈ BT , xDs does not occur in t. If C is satisfiable, then
there is an evident subtableau U of T̂ and a clause D ∈ U such that C ⊆ D.

Proof (Sketch). Let T and C be as required, and let I be a model of C (with some
additional constraints). Let T ′, Ds1 . . .Dsn, T ′

1, . . . , T
′
n be defined from T and I

as in Lemma 6.1. We define U := T ′
n ∪ {DsE ∈ T̂ | {D, E} ⊆ T ′

n }. Evidence
conditions (4) and (6) hold by Lemma 6.1 (4,5). To show condition (2), we use
the same basic technique as for K∗ (see the proof of Theorem 4.2). The argument
is now more complex since not every clause from T that is satisfied by some state
in I is still there in U . To show that we can still match every “witness sequence”
X0 . . .Xn by a run C0 . . . Cn, Lemma 6.1 (2) plays a crucial role. Lemma 6.1 (2)
implies that for every satisfiable clause C in T there exists a superclause D in
U that holds in the same state as C. Together with Lemma 6.1 (3), asserting
that U is a subset of T with respect to clauses, Lemma 6.1 (2) is also central for
showing evidence conditions (1), (3) and (5). ��

430 M. Kaminski and G. Smolka

7 Conclusion

The paper presents the first goal-directed decision procedure for hybrid logic with
eventualities and difference. A naive two-phase implementation of the procedure
seems straightforward. Given an input clause C, we first compute a complete
tableau containing C. This step takes at most deterministic exponential time in
the size of the input (more precisely, in the size of the base of the input). To
determine whether C is satisfiable, it then remains to check for the existence
of an evident subtableau containing C. Naively, this can be done by repeatedly
guessing candidate subtableaux and then checking their evidence. While the
non-deterministic running time for the second phase is polynomial in the size
of the complete tableau, because of the guessing, the deterministic algorithm
is exponential. Hence, the combined procedure is in NEXPTIME, allowing for
implementations with doubly exponential complexity. Based on results for re-
lated logics [1,28], we conjecture H∗

D to be EXPTIME-complete. To reduce the
complexity of our procedure to EXPTIME, provided this is possible at all, more
work is needed. A promising direction is developing a polynomial algorithm for
the second phase of the procedure, possibly following the ideas of [27]. The main
complication here is that the procedure in [27] relies on the assumption that
for every satisfiable formula s there exists a unique largest evident subtableau
containing s. In our case, this assumption does not hold. In the presence of
nominals, a complete tableau may contain several evident subtableaux whose
union is not evident. Following [12,14], one could also interleave the first and
the second phase of the procedure so as to allow early pruning of unsatisfiable
clauses. Compared to interleaved procedures for nominal-free logics [12,14], such
a procedure would have to deal with an additional difficulty, namely the link
closure, which can contain considerably more links than the complete tableau.

References
1. Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid

temporal logics. L. J. IGPL 8(5), 653–679 (2000)
2. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, et al. (eds.) [4], pp. 821–868
3. Blackburn, P.: Internalizing labelled deduction. J. Log. Comput. 10(1), 137–168

(2000)
4. Blackburn, P., van Benthem, J., Wolter, F. (eds.): Handbook of Modal Logic,

Studies in Logic and Practical Reasoning, vol. 3. Elsevier, Amsterdam (2007)
5. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,

Cambridge (2001)
6. Emerson, E.A., Clarke, E.M.: Using branching time temporal logic to synthesize

synchronization skeletons. Sci. Comput. Programming 2(3), 241–266 (1982)
7. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: On branch-

ing versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)
8. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.

Comput. System Sci. 194–211 (1979)
9. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht

(1983)
10. Gabbay, D.M.: Selective filtration in modal logic, Part A. Semantic tableaux

method. Theoria 36(3), 323–330 (1970)

Clausal Graph Tableaux for Hybrid Logic with Eventualities and Difference 431

11. Giesl, J., Hähnle, R. (eds.): IJCAR 2010. LNCS(LNAI), vol. 6173. Springer, Hei-
delberg (2010)

12. Goré, R., Nguyen, L.A.: EXPTIME tableaux with global caching for description
logics with transitive roles, inverse roles and role hierarchies. In: Olivetti, N. (ed.)
TABLEAUX 2007. LNCS (LNAI), vol. 4548, pp. 133–148. Springer, Heidelberg
(2007)

13. Goré, R., Nguyen, L.A.: Clausal tableaux for multimodal logics of belief. Fund.
Inform. 94(1), 21–40 (2009)

14. Goré, R., Widmann, F.: Optimal tableaux for propositional dynamic logic with
converse. In: Giesl, Hähnle (eds.) [11], pp. 225–239

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge (2000)
16. Horrocks, I., Hustadt, U., Sattler, U., Schmidt, R.: Computational modal logic. In:

Blackburn, et al. (eds.) [4], pp. 181–245
17. Kaminski, M., Smolka, G.: Clausal graph tableaux for hybrid logic with eventual-

ities and difference. Technical report, Saarland University (2010),
http://www.ps.uni-saarland.de/Publications/details/

KaminskiSmolka:2010:ClausalGraph.html

18. Kaminski, M., Smolka, G.: Clausal tableaux for hybrid PDL. Technical report,
Saarland University (2010), http://www.ps.uni-saarland.de/Publications/
details/KaminskiSmolka:2010:HPDL.html

19. Kaminski, M., Smolka, G.: Terminating tableaux for hybrid logic with eventualities.
In: Giesl, Hähnle (eds.) [11], pp. 240–254

20. Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: A decision algorithm for full
propositional temporal logic. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697,
pp. 97–109. Springer, Heidelberg (1993)

21. Kripke, S.A.: Semantical analysis of modal logic I: Normal modal propositional
calculi. Z. Math. Logik Grundlagen Math. 9, 67–96 (1963)

22. Lemmon, E.J., Scott, D.: The ‘Lemmon Notes’: An Introduction to Modal Logic.
Blackwell, Malden (1977)

23. Manna, Z., Wolper, P.: Synthesis of communicating processes from temporal logic
specifications. ACM TOPLAS 6(1), 68–93 (1984)

24. Massacci, F.: Single step tableaux for modal logics. J. Autom. Reasoning 24(3),
319–364 (2000)

25. Nguyen, L.A.: A new space bound for the modal logics K4, KD4 and S4. In:
Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS, vol. 1672,
pp. 321–331. Springer, Heidelberg (1999)

26. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Annual Symp. on Foun-
dations of Computer Science (FOCS 1977), pp. 46–57. IEEE Computer Society
Press, Los Alamitos (1977)

27. Pratt, V.R.: A near-optimal method for reasoning about action. J. Comput. System
Sci. 20(2), 231–254 (1980)

28. Sattler,U.,Vardi,M.Y.:Thehybridμ-calculus. In:Goré,R.P.,Leitsch,A.,Nipkow,T.
(eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 76–91. Springer, Heidelberg (2001)

29. Segerberg, K.: An Essay in Classical Modal Logic. No. 13 in Filosofiska Studier.
University of Uppsala (1971)

30. Tanabe, Y., Takahashi, K., Hagiya, M.: A decision procedure for alternation-free
modal μ-calculi. In: Areces, C., Goldblatt, R. (eds.) Advances in Modal Logic,
vol. 7, pp. 341–362. College Publications (2008)

31. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reason-
ing for expressive description logics. J. Autom. Reasoning 39(3), 277–316 (2007)

http://www.ps.uni-saarland.de/Publications/details/KaminskiSmolka:2010:ClausalGraph.html
http://www.ps.uni-saarland.de/Publications/details/KaminskiSmolka:2010:ClausalGraph.html

The Consistency of the CADIAG-2 Knowledge
Base: A Probabilistic Approach

Pavel Klinov1, Bijan Parsia1, and David Picado-Muiño2

1 University of Manchester
Oxford Road, Manchester M13 9PL, UK
{pklinov,bparsia}@cs.man.ac.uk

2 Institut für Diskrete Mathematik und Geometrie
Wiedner Hauptstrasse 8 / 104. A-1040 Vienna, Austria

picado@logic.at

Abstract. The paper presents the methodology and the results of check-
ing consistency of the knowledge base of CADIAG-2, a large-scale med-
ical expert system. Such knowledge base consists of a large collection of
rules representing knowledge about various medical entities (symptoms,
signs, diseases...) and relationships between them. The major portion of
the rules are uncertain, i.e., they specify to what degree a medical entity
is confirmed by another medical entity or a combination of them. Given
the size of the system and the uncertainty it has been challenging to vali-
date its consistency. Recent attempts to partially formalise CADIAG-2’s
knowledge base into decidable Gödel logics have shown that, on that for-
malisation, CADIAG-2 is inconsistent. In this paper we verify this result
with an alternative, more expressive formalisation of CADIAG-2 as a
set of probabilistic conditional statements and apply a state-of-the-art
probabilistic logic solver to determine satisfiability of the knowledge base
and to extract conflicting sets of rules. As CADIAG-2 is too large to be
handled out of the box we describe an approach to split the knowledge
base into fragments that can be tested independently and prove that
such methodology is complete (i.e., is guaranteed to find all conflicts).
With this approach we are able to determine that CADIAG-2 contains
numerous sets of conflicting rules and compute all of them for a slightly
relaxed version of the knowledge base.

1 Introduction

CADIAG-2 (Computer Assisted DIAGnosis) is a well-known rule-based expert
system aimed at providing support in diagnostic decision making in the field of
internal medicine. Its design and construction was initiated in the early 80’s at
the Medical University of Vienna by K.P. Adlassnig – see [1], [2], [3] or [4] for
more on the origins and design of CADIAG-2.

CADIAG-2 consists of two fundamental pieces: the inference engine and the
knowledge base. The inference engine — see [5] or [6] for alternative formalisa-
tions and analyses of CADIAG-2’s inference — is based on methods of approxi-
mate reasoning in fuzzy set theory, in the sense of [7] and [8]. In fact CADIAG-2

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 432–446, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Consistency of the CADIAG-2 Knowledge Base 433

is presented in some monographs as an example of a fuzzy expert system — see
[9], [10]. The knowledge base consists of a set of IF-THEN rules — known in
the literature as production rules — intended to represent relationships between
distinct medical entities: symptoms, findings, signs and test results on the one
hand and diseases and therapies on the other. The vast majority of them are bi-
nary (i.e., they relate single medical entities) and only such rules are considered
in this paper. The one that follows is an example of a binary rule of CADIAG-2
(taken from [3]):

IF suspicion of liver metastases by liver palpation
THEN pancreatic cancer
with degree of confirmation 0.3

The degree of confirmation refers, intuitively, to the degree to which the an-
tecedent (i.e., ’suspicion of liver metastases by liver palpation’ in the example
above) confirms the consequent (i.e., ’pancreatic cancer ’ above).

In this paper we present a formalisation of a coded version of the binary
fragment of CADIAG-2’s knowledge base (i.e., that contains only codes for the
identification of the distinct medical entities) as a probabilistic logic theory.
We then check the satisfiability of that formalisation with Pronto, our proba-
bilistic Description Logic (DL) reasoner, which we briefly introduce. We find
that CADIAG-2 is highly unsatisfiable (confirming the results of an alternative,
weaker formalisation, [11]) and analyse the sources of unsatisfiability.

To our knowledge, the probabilistic version of CADIAG-2 is the largest PSAT
(Probabilistic SATisfiability) problem to be solved by an automated reasoner and
is certainly the largest non-artificial one. This is, perhaps, a bit misleading as it is
comparatively easy to detect unsatisfiability by first heuristically detecting small
but likely unsatisfiable fragments, and then performing a satisfiability check on
each fragment. While this might suffice to validate that the knowledge base
is unsatisfiable it is not sufficient, without further qualification, to detect all
conflicting sets of rules, nor can it ensure that a satisfiable fragment is so in the
context of the entire knowledge base. As CADIAG-2 is too large (the number of
rules in the binary fragment we are concerned with is over 18000) we describe
an approach to split the knowledge base into comparatively large fragments
that can be tested independently and prove that such methodology is complete
(i.e., is guaranteed to find all conflict sets). With this methodology we are able
to determine that CADIAG-2 contains numerous sets of conflicting rules and
compute all of them for a slightly relaxed interpretation of the knowledge base.

2 Notation and Preliminary Definitions

Throughout we will be working with a finite set L = S ∪ D = {P1, ..., Pn} of
unary predicates in a first-order language, for some n ∈ N. L is intended to
represent the set of medical entities occurring in the inference rules of the expert
system CADIAG-2, with S the set of symptoms, findings, signs and test results
(to which we will commonly refer as symptoms) and D the set of therapies and
diseases (to which we will commonly refer as diseases).

434 P. Klinov, B. Parsia, and D. Picado-Muiño

Definition 1. An interpretation I of L is a pair (DI , V I), where DI is a finite,
non-empty set and V I is a map from L ×DI to [0, 1].

An interpretation I is said to be classical if V I(P, a) ∈ {0, 1} for all (P, a) ∈
L×DI . It is said to be rational if V I(P, a) ∈ [0, 1] ∩Q for all (P, a) ∈ L×DI .

Given an interpretation I of L, we will refer to the elements in DI by latin
characters a, b, c... and to the elements in L by uppercase latin characters P,Q...
(possibly with suffices).

Let L = {p1, ..., pn} be a finite propositional language, for n ∈ N, and SL its
closure under boolean connectives.

Definition 2. Let w : SL −→ [0, 1]. We say that w is a probability function on
L if the following two conditions hold, for all θ, φ ∈ SL:

– If |= θ then w(θ) = 1.
– If |= ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ).1

We can restrict probability functions on L to values in [0, 1] ∩ Q. We will call
such probability functions rational.

A probability distribution w on L can be characterized by the values it assigns
to the expressions of the form ±p1 ∧ ... ∧ ±pn, which we call states or worlds,
where +p and −p stand for p and ¬p respectively. We denote the set of states
in L by W and define, for φ ∈ SL, Wφ as follows:

Wφ = {s ∈ W | s |= φ}.

We define conditional probability from the notion of unconditional probability
on conditional statements in L in the conventional way.

3 The Knowledge Base in CADIAG-2

We can classify CADIAG-2’s binary rules (ΦCB) into three different types: rules
in which both antecedent and consequent are medical entities in S (symptom-
symptom, ΦS|S), rules in which both antecedent and consequent are medical
entities in D (disease-disease, ΦD|D) and those in which the antecedent is a
medical entity in S and the consequent an entity in D (symptom-disease, ΦD|S).2

The degree of confirmation in a rule of the first two types is a value in the set
{0, 1} and it is in this sense that we say that rules of these types are classical.

Let 〈P,Q, η〉 ∈ ΦCB be a rule in CADIAG-2’s binary knowledge base, with
P,Q ∈ L and η ∈ [0, 1] ∩ Q. The value η is intended to quantify the degree to
which P (the antecedent) confirms Q (the consequent) and claimed in most of

1 Here (and throughout) |= is classical entailment.
2 CADIAG-2’s knowledge base formally contains values for conditional relations with

a medical entity in D as the antecedent and a medical entity in S as the consequent.
However, such rules are not used by CADIAG-2’s inference mechanism and therefore
are not taken into account in this paper.

The Consistency of the CADIAG-2 Knowledge Base 435

the literature on CADIAG-2 (see, for example, [2] or [3]) to have been calculated
from a certain database or interpretation I as follows:3∑

a∈DI min{V I(P, a), V I(Q, a)}∑
a∈DI V I(P, a)

= η (1)

Notice that this expression generalises the concept of conditional probability
or frequency that one gets when restricting the model to classical interpretations.
Under such a restriction η becomes a probability (in the sense of frequency) and
its meaning is intuitive and formally well understood. However, when allowing
in (1) valuations other than classical the intuitive meaning of η is lost. Certainly,
(1) would benefit from a serious attempt to clarify its meaning when allowing
valuations other than classical but it is not the purpose of this paper to do
so. As we will see later, whether the interpretation of (1) is assumed in terms
of any valuations or in terms of only classical valuations (i.e., a probabilistic
interpretation) will be indifferent to our satisfiability-checking purposes.

Throughout we will use the expression Q/IP = η to abbreviate (1). Some-
times, in order to generalise results, we will be considering an interval, say
Ω ⊆ [0, 1], instead of a single value (i.e., η in (1)) and we will be using the
expression Q/IP ∈ Ω to abbreviate the corresponding modification of (1). Such
modification is motivated by the possibility of alternative, suitable interpreta-
tions of the rules in ΦCB that one could consider interesting in the view of some
theoretical or practical aspects. Among these alternative interpretations we con-
sider replacing η in equation (1) by the interval [η, 1] (i.e., consider η a lower
bound for the degrees of confirmation instead of a precise one) or replacing η
whenever η ∈ (0, 1) by an interval of the form [η − ε, η + ε], for ε small (i.e., a
slightly relaxed interpretation of ΦCB).

We will denote the collection of real intervals in [0, 1] by I. We will normally
refer to intervals of the form [η, η] ∈ I by η itself.

For the next definition and proposition let I be an interpretation of L and
Φ ⊆ RL, for

RL = {〈P,Q,Ω〉 | P,Q ∈ L, Ω ∈ I}.

Definition 3. We say that I is a model of Φ (denoted |=I Φ) if Q/IP ∈ Ω for
all 〈P,Q,Ω〉 ∈ Φ.

Proposition 1. Φ has a classical model if and only if it has a rational model.

Proof. The right implication follows trivially from the fact that every classical
interpretation is also rational. In order to prove the left implication let us assume
that I = (DI , V I) is a rational interpretation such that |=I Φ.

Let C be the set given by the values V I(P, a), for (P, a) ∈ L × DI . It is
assumed that all the values in C are rational. Let us consider the minimum
3 We say in most of the literature. There are some references in which the interpre-

tation suggested for η in 〈P, Q, η〉 is different. For example in [1] it is claimed that
η can be interpreted as a frequency and thus 〈P, Q, η〉 as a probabilistic conditional
statement.

436 P. Klinov, B. Parsia, and D. Picado-Muiño

common multiple of the denominators of all the elements of C, say q ∈ N. We
next construct a new interpretation J from I such that |=J Φ.4

We first define DJ from DI . For each element a ∈ DI we set q elements in
the domain DJ , labelled as follows: {a1, ..., aq}. Let us consider now P ∈ L and
a ∈ DI and assume that V I(P, a) = p

q . We define V J on L ×DJ from V I as
follows, for i ∈ {1, ..., q}:

V J (P, ai) =
{

1 if i ≤ p
0 otherwise

It is easy to see that J thus defined is such that |=J Φ.

For what follows we will be considering the collection of intervals I∗ in the set
[0, 1]. I∗ differs from I in that an interval Ω ∈ I∗ needs to have its maximum
and/or minimum in Q, provided it has a maximum and/or a minimum.

We define
R∗

L = {〈P,Q,Ω〉 | P,Q ∈ L, Ω ∈ I∗}
and consider Φ ⊆ R∗

L for the next proposition.

Proposition 2. If Φ has a model then it has a rational model.

Proof. Let I be an interpretation such that |=I Φ. We then have that, for all
〈P,Q,Ω〉 in Φ, Q/IP ∈ Ω.

For each Q/IP ∈ Ω we consider the inequalities∑
a∈DI

η1 V I(P, a) <
∑

a∈DI
min{V I(P, a), V I(Q, a)} <

∑
a∈DI

η2 V I(P, a),

where Ω is assumed to be of the form (η1, η2) ∈ I∗ (for Ω ∈ I∗ of any other
form we replace ’<’ in the inequalities above by ’≤’ as required) and with

min{V I(P, a), V I(Q, a)}

replaced by V I(P, a) or V I(Q, a) accordingly.
Let us also consider, for each Q/IP ∈ Ω, the inequalities

0 ≤ V I(P, a), V I(Q, a) ≤ 1,∑
a∈DI

V I(P, a) > 0

and, for V I(P, a) greater than V I(Q, a), the inequality V I(Q, a) ≤ V I(P, a)
(the inequality V I(Q, a) ≥ V I(P, a) otherwise).

The solution set of the linear system above with unknown values V I(P, a),
V I(Q, a) is not empty (I is assumed to be a solution of the system) and needs
to contain rational solutions (due to the form of the intervals in I∗). Therefore,
there has to exist a rational interpretation of L that models Φ.
4 It is worth stressing here again that the predicates in L, and thus the predicates

involved in (1), are atomic predicates.

The Consistency of the CADIAG-2 Knowledge Base 437

Corollary 1. Φ has a model if and only if it has a classical model.

By Corollary 1 we have that ΦCB will have a model if and only if it has a classical
model.

For the next definition let w be a probability function on L, where L here is
regarded as a propositional language, and 〈P,Q,Ω〉 a triple in RL, with P,Q ∈ L
and Ω ∈ I.

Definition 4. We say that the probability function w on L satisfies 〈P,Q,Ω〉
(denoted |=w 〈P,Q,Ω〉) if w(P) > 0 and

w(P ∧Q)
w(P)

∈ Ω.

In that sense we say that 〈P,Q,Ω〉 is satisfiable (or consistent)5 if there exists
a probability function w on L that satisfies 〈P,Q,Ω〉. We extend the notion of
satisfiability for sets of rules in RL in the trivial way.

For the next proposition let Φ ⊆ R∗
L.

Proposition 3. Φ is satisfiable if and only if it has a model.

Proof. That Φ has a model if and only if it is satisfied by a rational probability
function is clear. On the other hand, one can prove that if a probability function
satisfies Φ then there exists a rational probability function that satisfies Φ by
an argument similar to that of the proof of Proposition 2 by considering the
corresponding system of linear inequalities with variables the worlds in L.

Proposition 3 implies that ΦCB can be regarded, for consistency-checking pur-
poses, as a knowledge base formalised in propositional probabilistic logic (or
PPL).

For the last definition of this section let Φ ⊆ RL.

Definition 5. We say that Φ is a minimal unsatisfiable set (or minimal incon-
sistent set) if it is not satisfiable and, for all Φ∗ ⊂ Φ, Φ∗ is satisfiable.

4 Checking Satisfiability of CADIAG-2

Our main goals are to solve the PSAT problem (Probabilistic SATisfiability) for
ΦCB and, provided ΦCB is unsatisfiable (which turns out to be the case), to
figure out the minimal sets of conflicting rules (see Definition 5). Despite the fact
that ΦCB is formalised as a propositional knowledge base and that there exist
several propositional PSAT solvers, we use Pronto (see [12]), our probabilistic
Description Logic reasoner, for several reasons.

The first reason is that, unlike propositional solvers, it treats classical (i.e.,
certain) and probabilistic knowledge separately and scales perfectly with respect
to the amount of the former. ΦCB contains many classical formulas (for example,
5 We use both terms indistinctively throughout.

438 P. Klinov, B. Parsia, and D. Picado-Muiño

the number of rules in ΦD|D is over 200) and so, given the scalability limits of
PPL solvers (about 1000 formulas), they are likely to be unable to handle a
sufficient number of uncertain symptom-disease rules in addition to ΦD|D and
(a fragment of) ΦS|S .

The second reason is that Pronto has pinpointing capabilities for finding all
minimal sets of conflicting formulas in an unsatisfiable knowledge base. This
feature is critical in the context of this work given the size of CADIAG-2 and,
as we will see shortly, the number of potentially overlapping inconsistencies. It
must be noted that finding all minimal inconsistencies is by no means a trivial
extension of the PSAT algorithm (for example, its naive implementation using
a PSAT solver as a black-box reasoner is not practical due to the hardness of
PSAT). Even with our implementation, the number of conflicts in most fragments
results in a significant slowdown of reasoning.

Finally, we are interested in evaluating our algorithms (see the next section)
on a large and naturally occurring knowledge base such as ΦCB.

4.1 Algorithms

In this section we briefly sketch the PSAT and conflict-finding algorithms im-
plemented in Pronto within the frame of classical propositional logic (since for
ΦCB a formalisation in terms of the probabilistic DL language is not necessary).

Probabilistic satisfiability algorithm. For the sake of clarity and brevity we
will consider the case of PSAT for sets of probabilistic conditional statements of
the form 〈%, φ, η〉 on L (a finite propositional language), with φ ∈ SL, where ’%’
abbreviates ’always true’ (a tautology in SL) and η represents the probability
assigned to it (i.e., all probabilistic statements considered are unconditional and
assigned point-valued probabilities. It is straightforward, but technically awk-
ward and space consuming, to generalise the procedure to handle conditional
interval statements, see [12]).

We say that a collection of probabilistic conditional statements of such form,
say Φ, is satisfiable if and only if the objective value of the following linear
program is equal to 1:

max
∑
s∈W

xs

s.t.
∑

s∈Wφ

xs = η ×
∑
s∈W

xs, for each 〈%, φ, η〉 ∈ Φ (2)

∑
s∈W

xs ≤ 1 and all xs ≥ 0

where xs is the assignment to the possible world s ∈W .
Let A denote the matrix of linear coefficients in (2). At every step of the

simplex algorithm, A is represented as a combination (B,N) where B and N
are the submatrices of the basic and non-basic variables, respectively. Values of

The Consistency of the CADIAG-2 Knowledge Base 439

non-basic variables are fixed to zero and the solver proceeds by replacing one
basic variable (i.e., column in A) by a non-basic one until the optimal solution is
found. As the size of A is exponential in the size of our language L, one should
determine the entering column without representing A explicitly. This is done
using the column generation technique in which entering columns are computed
by optimizing a subproblem (sometimes referred to as the pricing-out problem).
Observe that the above system of linear inequalities always admits a solution,
e.g. all xs = 0 even if Φ is unsatisfiable, which facilitates the column generation
process. Note, however, that the actual linear programs solved in Pronto are
considerably more involved, in particular, they include stabilization variables to
improve convergence.

The critical step is to formulate linear constraints for the pricing-out problem
such that every solution (a column) corresponds to a possible world in W . In
the propositional case this can be done by employing a well-known formulation
of SAT as a mixed-integer linear program [13]. In the case of an expressive
language, such as Description Logic [14], there appears to be no easy way of
determining a set of constraints H for the pricing-out problem such that its set
of solutions is in one-to-one correspondence with W . Pronto implements a novel
hybrid procedure to compute H iteratively via interaction with a DL reasoner.

The main idea of the algorithm is that every column produced as a solution
to the pricing-out problem is converted to a DL concept expression which is then
checked for satisfiability by the DL reasoner. If the expression is satisfiable, it
means that the column corresponds to a possible world (W in our context) and
can be added to (2). Otherwise, the justifications of unsatisfiability (see [15]) are
converted into linear constraints and added to the pricing-out problem, which is
then re-optimized. Finally, either an entering column is found or the pricing-out
problem becomes infeasible, which implies that the system (2) is optimal.

A detailed description of the PSAT algorithm is beyond the scope of this
paper and is left as the core of a future paper.

Conflict finding algorithm. A satisfiability algorithm is not sufficient for a
comprehensive analysis of an inconsistent knowledge base. Typically users need
to identify those fragments of the knowledge base which cause the inconsistency
in order to repair them. Such fragments are also required to be minimal so that
the user can choose a repair strategy with minimal impact on the rest of the
knowledge base.

We are interested in determining the minimal unsatisfiable subsets of a certain
collection of probabilistic conditional statements in L, say Φ.

We apply the classical approach to finding minimal unsatisfiable sets based
on hitting sets which dates back to Reiter (see [16]). Reiter’s hitting set tree
(HST) algorithm requires, as a subroutine, a satisfiability procedure which can
extract one minimal unsatisfiable set from the knowledge base. It then system-
atically removes each axiom from that minimal unsatisfiable set and applies the
satisfiability procedure again to generate a new minimal unsatisfiable set. By
being systematic in the “repairs”, the procedure finds all minimal unsatisfiable
sets in the knowledge base. We reduce the problem of finding a single minimal

440 P. Klinov, B. Parsia, and D. Picado-Muiño

unsatisfiable subset of Φ to the problem of finding a minimal infeasible subset
of inequalities in the corresponding linear system of the form (2) above. Such
subsets are known as irreducible infeasible systems(IIS) in the LP literature [17].
However, given that the system (2) is never represented in its full version the
application of the Ryan and Parker’s algorithm is far from straightforward.6 If
the optimal value of the system (2) is less than 1 then some inequalities have
non-zero dual values. Such inequalities correspond to conflicting constraints in Φ
but are not guaranteed to be minimal (though is typically quite small and close
to the minimal set). We then do a brute force trial and error search to remove
all superfluous constraints.

4.2 Decomposition of CADIAG-2

To our knowledge, none of the existing probabilistic solvers can solve PSAT
for ΦCB taken as a whole within reasonable amount of time (see Table 1 for
a precise account of the size of ΦCB). However, ΦCB has a certain structure
that allows splitting it into fragments that can be examined independently. A
crucial property of our probabilistic formalisation of CADIAG-2 is that ΦCB is
satisfiable if and only if all of the fragments are individually satisfiable, as we
show below.

Table 1. Characteristics of CADIAG-2

Number of distinct symptoms 1761
Number of distinct disease 341

Number of symptom-symptom rules 720
(size of ΦS|S)

Number of disease-disease rules 218
(size of ΦD|D)

Number of symptom-disease rules 17573
(size of ΦD|S)

We can regard ΦCB as a directed graph where the nodes are the medical
entities in L and the edges are given by the rules in ΦCB (i.e., a rule of the form
〈P,Q, η〉 in ΦCB would correspond to an edge directed from P to Q).

Let P ∈ L. We denote by ΦP ⊆ ΦCB the set of rules that yield a directed
edge in a path from P to any other medical entity in L or a directed edge in a
path from any medical entity in L to P .

For the next two results let us consider two medical entities P1, P2 ∈ S and
assume that there is no path from P1 to P2 in ΦCB or vice versa and that there
is no medical entity P ∈ L from which there exists a path both to P1 and P2.

Proposition 4. If ΦP1 and ΦP2 are satisfiable then ΦP1 ∪ ΦP2 is satisfiable.
6 We leave it for future research to investigate how multiple irreducible infeasible

systems can be generated at once when the linear system is constructed through
column generation.

The Consistency of the CADIAG-2 Knowledge Base 441

Proof. Let I1 and I2 be interpretations that satisfy ΦP1 and ΦP2 respectively.
We can assume without loss of generality that DI1 ∩DI2 = ∅. We can construct
an interpretation I from I1 and I2 that satisfies ΦP1 ∪ ΦP2 in a pretty trivial
way by setting DI = DI1 ∪DI2 and V I(P, a) = 1 if and only if V I1(P, a) = 1
or V I2(P, a) = 1 and 0 otherwise, for all (P, a) ∈ L ×DI . In can be easily seen
that I thus defined satisfies ΦP1 ∪ ΦP2 .

Corollary 2. If Φ is a minimal unsatisfiable set of rules in ΦP1 ∪ ΦP2 then Φ
needs to be contained in ΦP1 or ΦP2 .

Proof. It follows trivially from Proposition 4. Notice that if Φ were a minimal
inconsistent set in ΦP1 ∪ΦP2 and that it were neither contained in ΦP1 nor in ΦP2

then we could define satisfiable subsets from ΦP1 and ΦP2 of the same structure
(possibly by removing rules from other minimal inconsistent subsets of ΦP1 and
ΦP2 , but none from Φ).

Although trivial, it is worth mentioning that the previous propositions also hold
for any alternative interpretation of the rules in terms of probabilistic intervals
(i.e., by taking certain real intervals in place of precise probabilities).

ΦCB has the following properties which will enable us to decompose it into a
set of fragments:

P1. All formulas contain only atomic medical entities (i.e., entities in L).
P2. All probabilistic formulas in ΦD|S condition only on symptoms (uncertain

rules are unidirectional).
P3. The graph of ΦS|S contains many disconnected subgraphs.

We split ΦCB into a set of fragments of the form ΦP , where P ∈ S is a
symptom such that there is no rule in ΦCB of the form 〈Q,P, η〉. For simplicity
we include the entire ΦD|D in each fragment since it is decomposable to a much
less extent than ΦS|S . The largest fragments have around 200 probabilistic
formulas that normally relate two or three connected symptoms to diseases.

Corollary 2 guarantees that all minimal unsatisfiable sets of formulas in ΦCB

can be found by computing such sets for each fragment. Thus, our methodology
is simply a systematic analysis of the fragments of the form ΦP , which involves a
PSAT test and, if the fragment is unsatisfiable, the computation of all minimal
unsatisfiable sets in it (see the algorithms in the two previous subsections).

5 Results

We present here results concerning the consistency check of ΦCB when consid-
ering a slightly relaxed interpretation of ΦCB by replacing each rule of type
symptom-disease of the form 〈P,Q, η〉 ∈ ΦCB, for some P,Q ∈ L and η ∈
(0, 1) ∩Q, by 〈P,Q,Ωη〉, with

Ωη = [η − 0.01, η + 0.01] = [η−, η+].7

7 The degrees of confirmation of the rules in ΦCB are all of the form k
100

, for some
k ∈ {0, 1, ..., 100} ⊂ Z. Thus Ωη is well defined.

442 P. Klinov, B. Parsia, and D. Picado-Muiño

We have opted for checking consistency of this slightly relaxed interpretation
of the rules in ΦCB against a precise interpretation (i.e., the standard inter-
pretation with precise values) because of time constraints. The implementation
of our algorithms for the relaxed interpretation of ΦCB completes the task of
finding all minimal unsatisfiable subsets in a reasonable amount of time (around
one hour). It is a well-known fact in model-diagnosis theory that computing all
minimal unsatisfiable subsets of a certain knowledge base requires a number of
satisfiability tests (in our case, PSAT tests) that is exponential in the number of
unsatisfiable subsets. Our relaxed interpretation of ΦCB already contains a high
number of unsatisfiable sets (as we will just see) and a precise interpretation
adds up more. Furthermore, some of the unsatisfiable sets that are present in
the precise interpretation and not in our relaxed one are relatively large (some
contain 7 rules) and do not overlap with other unsatisfiable sets. Such facts bring
the algorithm’s running time closer to its worst case.

An example of a type of minimal unsatisfiable set detected under a precise
interpretation of the rules but not under our relaxed version is the one that
follows:

〈P1, Q1, η1〉, 〈P1, Q2, η2〉 〈P2, Q1, η3〉 〈P2, Q3, η4〉,
〈Q1, Q3, 1〉 〈Q2, Q3, 1〉 〈P1, P2, 1〉,

for P1, P2 ∈ S, Q1, Q2, Q3 ∈ D, η1, η2, η3, η4 ∈ [0, 1], with η3 = η4 and η1 < η2.
Notice that the rules 〈P2, Q1, η3〉 and 〈P2, Q3, η4〉 along with 〈Q1, Q3, 1〉 intu-
itively claim that the set of patients with symptom P2 and disease Q2 coincides
with the set of patients with symptom P2 and disease Q3 when assuming η3 = η4.
Under such an assumption the rules 〈P1, Q1, η1〉 and 〈P1, Q2, η2〉 along with the
remaining classical rules generate an inconsistency whenever η1 < η2. Notice also
that, for example, for η3 < η4 the set would not be unsatisfiable and thus our re-
laxed interval intepretation would yield this set consistent (assuming η3, η4 < 1).

For the sake of simplicity we will adopt the same notation for the rules of type
symptom-disease of the form 〈P,Q, η〉, with η ∈ {0, 1}. We will write 〈P,Q,Ωη〉,
with Ωη = [η, η] = [η−, η+].

We list the different types of minimal unsatisfiable sets encountered in ΦCB

under this relaxed interpretation of the rules:

Type 1. Our first type of minimal unsatisfiable set in ΦCB is given by a collection
of rules of the form

〈P,Q1, Ωη〉, 〈P,Q2, Ωζ〉, 〈Q1, Q2, 1〉,
for P ∈ S, Q1, Q2 ∈ D, η, ζ ∈ [0, 1] and ζ+ < η−.

By ζ+ < η− we are intuitively assuming that the number of patients that
have both symptom P and disease Q1 is greater than the number of patients
with both symptom P and disease Q2, which contradicts 〈Q1, Q2, 1〉 (i.e., the
assumption that all patients that have disease Q1 have also disease Q2).

Type 2. Our second type of minimal unsatisfiable set in ΦCB is given by a set
of rules of the form

〈P,Q1, Ωη〉, 〈P,Q2, Ωζ〉, 〈Q1, Q2, 0〉,

The Consistency of the CADIAG-2 Knowledge Base 443

for P ∈ S, Q1, Q2 ∈ D, η, ζ ∈ [0, 1] and η− + ζ− > 1.
Notice that the rule 〈Q1, Q2, 0〉 assumes disjointness between Q1 and Q2

(intuitively, there cannot be a patient with both disease Q1 and Q2), which
rules out the possibility of consistency whenever η− + ζ− > 1.

Type 3. The third type of minimal conflict set in ΦCB is given by a set of the
form

〈P1, Q,Ωη〉, 〈P2, Q,Ω1〉, 〈P1, P2, 1〉,
for P1, P2 ∈ S, Q ∈ D, η ∈ [0, 1] and η+ < 1.

Intuitively, the rule 〈P1, P2, 1〉 says that all patients with symptom P1 also
have symptom P2. The rule 〈P2, Q,Ω1〉 intuitively says that all patients with
symptom P2 have disease Q. These two facts together imply that patients with
symptom P1 should all have disease Q (i.e., η+ = 1).

Type 4. The fourth and last type of minimal unsatisfiable set is given by a
collection of rules of the form

〈P,Q1, Ωη〉, 〈P,Q2, Ωζ〉, 〈P,Q3, Ωλ〉 〈Q1, Q3, 1〉, 〈Q2, Q3, 1〉, 〈Q1, Q2, 0〉,

with P ∈ S, Q1, Q2, Q3 ∈ D, η, ζ, λ ∈ [0, 1], λ+ < η− + ζ− ≤ 1 and ζ−, η− ≤ λ+

(to guarantee minimality).
Intuitively, assuming 〈P,Q1, Ωη〉, 〈P,Q2, Ωζ〉 and 〈Q1, Q2, 0〉, the proportion

of patients that, having symptom P , have either disease Q1 or Q2 is at least
η− + ζ−. On the other hand, assuming 〈Q1, Q3, 1〉 and 〈Q2, Q3, 1〉, we have that
all patients with disease either Q1 or Q2 have also disease Q3. Thus, under such
assumptions, satisfiability requires that λ+ ≥ η− + ζ−.

A thorough analysis of these types of inconsistencies in connection with the
whole knowledge base and with possible repair strategies and in relation to
other sets of inconsistencies obtained under alternative interpretations of ΦCB

(as briefly pointed above, under the standard interpretation of the rules or when
regarding η in 〈P,Q, η〉 ∈ ΦCB as a lower-bound threshold) is being done at
present.

Table 2. Number of minimal unsatisfiable sets in ΦCB and size (relaxed interpretation)

Type of minimal unsatisfiable set Amount Number of rules involved
Type 1 420 3
Type 2 5 3
Type 3 1 3
Type 4 269 6

6 Related Work

Consistency-checking methods and algorithms for large-scale databases have long
been of relevance in scientific computational research. In relation to expert sys-
tems and in particular to CADIAG-2 it is worth referring to [18] as an example

444 P. Klinov, B. Parsia, and D. Picado-Muiño

of research of this nature. In this paper, a classical first-order logic theorem
prover was used to analyze the predecessor of CADIAG-2 (CADIAG-1), which
did not contain any uncertain rules, and that helped to detect some inconsistent
sets of rules. Consistency-checking in CADIAG-2 by means of formal methods is
harder mostly because one has to use an appropriate formalism for representing
degrees of confirmation in rules (in particular in symptom-disease rules). Very
recently the first such attempt (see [11]) was made using a specific fragment of
monadic infinite-valued Gödel logic G (denoted by G∼) extended with classical,
involutive negation.

In [11] a sentence in G∼ is associated to each rule of the form 〈P,Q, η〉 in
ΦCB. It is proved that, for 〈P,Q, η〉 ∈ ΦCB and θ the sentence in G∼ associated
to it, the following holds:

– If η ∈ (0, 1) then θ is satisfied by a certain interpretation I of L if and only
if Q/IP ∈ (0, 1).

– If η ∈ {0, 1} then θ is satisfied by a certain interpretation I of L if and only
if Q/IP = η.

In [11] the problem of checking satisfiability of the set of sentences in G∼

associated to the rules in ΦCB is proved to be equivalent to the problem of
satisfiability in classical first-order logic for such sentences (i.e., equivalent to
determining whether there is a classical interpretation of L that satisfies the
sentences associated to the rules).

The relation between our approach and that in [11] is clear in the light of
the results stated in Section 3. We will have that a certain collection of rules
Φ ⊆ ΦCB will be found to be inconsistent according to the approach defined in
[11] if and only if there is no probability function w on L such that |=w Φ∗, where
Φ∗ is defined from Φ by replacing η in each rule 〈P,Q, η〉 ∈ Φ by the interval
(0, 1).

Unlike the approach in [11], our probabilistic formalisation is equisatisfiable
with ΦCB (see Proposition 3) and ensures finding all minimal unsatisfiable sets
of rules. In [11] the fragment of compound rules in CADIAG-2 is also consid-
ered in addition to the binary fragment (at the expense of a further weakening
in the information expressed by the formulas in G∼ representing these rules).
As mentioned earlier, we do not consider CADIAG-2’s compound rules in this
paper. Certainly, we would require additional efforts to ensure (if possible at all)
equisatisfiability and completeness of our decomposition procedure (as given by
Proposition 4 for ΦCB) if we consider CADIAG-2’s compound rules, although
the former would not be necessary if we assumed a probabilistic interpretation
of the rules from the outset.

7 Conclusion

While CADIAG-2’s knowledge base is, when formalised as a probabilistic logic
theory, highly unsatisfiable it is unclear what action this calls for. Inconsistency
in a knowledge base may capture critical information and maintaining it may be

The Consistency of the CADIAG-2 Knowledge Base 445

critical to the integrity of the represented knowledge (see [19] for a more com-
prehensive discussion). An ongoing research challenge is to study and measure
the inconsistencies in CADIAG-2 in order to understand them better and to
determine suitable repair strategies.

Regardless of one’s preferred strategy for resolving the conflicts, it is clear
that detecting them is critical to a complete understanding of the knowledge base
which is challenging when we reach CADIAG-2’s size. Even with our (fortuitous)
decomposition, the extraction of all conflicts under the standard interpretation of
the rules in CADIAG-2 is unfeasible for everyday knowledge base development
(we estimate that it will take weeks to extract all conflicts. Of course, if the
modellers decide that producing and maintaining a satisfiable version is the right
course of action then even several weeks would not be unreasonable as a one-time
cost). Subsequent satisfiability checks would go much faster, especially as one
can check only the relevant fragment a modeller is working on. This is similar
to various proposals from the description logic community for modular ontology
development (see [20,21,22]). As part of our future work we intend to integrate
more general modular analysis into our reasoner as an optimization. We intend
to investigate whether it is necessary to do this decomposition outside of the
solver (that is, by decomposing the input knowledge base before even starting to
solve PSAT) in the rather crude manner we currently do, or whether modular
analysis can be more tightly integrated with the reasoning process.

We have, as yet, to attempt entailment from CADIAG-2 or any of its frag-
ments. It is not clear yet the extent to which one could generate interesting
queries for CADIAG-2’s knowledge base (or, more generally, for CADIAG-2 like
knowledge bases) once it has been repaired and possibly modified for inferential
purposes (see [6]).

We hope that CADIAG-2, or CADIAG-2 like problems, will be taken up by
the PSAT solving community. CADIAG-2 is interestingly different in kind, not
only in size, from traditional generated problems while its size sets a new base
line for scalable PSAT.

References

1. Adlassnig, K., Kolarz, G., Scheithauer, W., Grabner, H.: Approach to a hospital-
based application of a medical expert system. Informatics for Health and Social
Care 11(3), 205–223 (1986)

2. Adlassnig, K., Kolarz, G., Effenberger, W., Grabner, H.: Cadiag: Approaches to
computer-assisted medical diagnosis. Computers in Biology and Medicine 15, 315–
335 (1985)

3. Adlassnig, K.: Fuzzy set theory in medical diagnosis. IEEE Transactions on Sys-
tems, Man and Cybernetics 16(2), 260–265 (1986)

4. Leitich, H., Adlassnig, K., Kolarz, G.: Evaluation of two different models of semi-
automatic knowledge acquisition for the medical consultant system CADIAG-
2/RHEUMA. Artificial Intelligence in Medicine 25, 215–225 (2002)

5. Ciabattoni, A., Vetterlein, T.: On the fuzzy (logical) content of Cadiag2. Fuzzy
Sets and Systems (2009) (to appear shortly)

446 P. Klinov, B. Parsia, and D. Picado-Muiño

6. Picado Muiño, D.: The (probabilistic) logical content of cadiag2. In: Proceedings
of ICAART 2010, pp. 28–35 (2010)

7. Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)
8. Zadeh, L.: Fuzzy logic and approximate reasoning. Synthese 30, 407–428 (1975)
9. Klir, G., Folger, T.: Fuzzy Sets, Uncertainty and Information. Prentice-Hall Inter-

national, Englewood Cliffs (1988)
10. Zimmermann, H.: Fuzzy Set Theory and its Applications. Kluwer Academic Pub-

lisher, Dordrecht (1991)
11. Ciabattoni, A., Rusnok, P.: On the classical content of monadic G∼ and its appli-

cations to a fuzzy medical expert system. In: Proceedings of the 12th International
Conference on the Principles of Knowledge Representation and Reasoning (2010)

12. Klinov, P., Parsia, B.: Pronto: A practical probabilistic description logic reasoner.
In: International Workshop on Uncertainty in Description Logics (2010)

13. Hooker, J.N.: Quantitative approach to logical reasoning. Decision Support Sys-
tems 4, 45–69 (1988)

14. Baader, F., Calvanese, D., McGuiness, D., Nardi, D., Patel-Schneider, P.F.: De-
scription Logic Handbook. Cambridge University Press, Cambridge (2003)

15. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Hei-
delberg (2008)

16. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32,
57–95 (1987)

17. Parker, M., Ryan, J.: Finding the minimum weight IIS cover of an infeasible system
of linear inequalities. Ann. Math. Artif. Intell. 17(1-2), 107–126 (1996)

18. Moser, W., Adlassnig, K.: Consistency checking of binary categorical relationships
in a medical knowledge bases. Artificial Intelligence in Medicine 8, 389–407 (1992)

19. Gabbay, D.M., Hunter, A.: Making inconsistency respectable: a logical framework
for inconsistency in reasoning. In: Jorrand, P., Kelemen, J. (eds.) FAIR 1991.
LNCS, vol. 535, pp. 19–32. Springer, Heidelberg (1991)

20. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should I
extract? In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Description
Logics. CEUR Workshop Proceedings, CEUR-WS.org, vol. 477 (2009)

21. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Extracting modules from
ontologies: A logic-based approach. In: Stuckenschmidt, H., Parent, C., Spaccapi-
etra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 159–186. Springer, Hei-
delberg (2009)

22. Cuenca Grau, B., Parsia, B., Sirin, E.: Ontology integration using ε-connections.
In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies.
LNCS, vol. 5445, pp. 293–320. Springer, Heidelberg (2009)

On the Complexity of Model Expansion�

Antonina Kolokolova, Yongmei Liu, David Mitchell, and Eugenia Ternovska

1 Memorial University of Newfoundland, Canada
2 Sun Yat-sen University, China

3 Simon Fraser University, Canada
kol@cs.mun.ca, ymliu@mail.sysu.edu.cn, mitchell@cs.sfu.ca,

ter@cs.sfu.ca

Abstract. We study the complexity of model expansion (MX), which is the prob-
lem of expanding a given finite structure with additional relations to produce a
finite model of a given formula. This is the logical task underlying many prac-
tical constraint languages and systems for representing and solving search prob-
lems, and our work is motivated by the need to provide theoretical foundations
for these. We present results on both data and combined complexity of MX for
several fragments and extensions of FO that are relevant for this purpose, in par-
ticular the guarded fragment GFk of FO and extensions of FO and GFk with
inductive definitions. We present these in the context of the two closely related,
but more studied, problems of model checking and finite satisfiability. To obtain
results on FO(ID), the extension of FO with inductive definitions, we provide
translations between FO(ID) with FO(LFP), which are of independent interest.

1 Introduction

Fagin’s theorem, which states that existential second order logic (∃SO) exactly captures
the complexity class NP [6], initiated the area of descriptive complexity theory [14], the
study of the relationship between logics and complexity classes. Descriptive complexity
results can be seen as providing a way to view logics as “declarative programming lan-
guages” for problems in the corresponding classes. In [19], the third and fourth authors
proposed explicitly taking this idea as the formal basis on which to build practical tools
for representing and solving search problems. On this view, a problem specification is a
formula φ in some suitable logic L, a problem instance is a finite structure A for some
part of the vocabulary of φ (the “instance vocabulary”). A is a model of ∃S̄φ, where
S̄ is the remaining (“expansion”) vocabulary of φ, and a solution for A is a witness
for the second order existential quantifiers. Thus, problem solving entails expanding a
given structure to satisfy a given formula. It is not too hard to see that this is the formal
task underlying a wide variety of actual constraint languages and systems.

The major emphasis of most practical systems is on NP search problems. Fagin’s
theorem tell us FO has the right expressive power for a specification language for NP,
and the effectiveness of modern SAT solvers provides an easy way to build a solver

� Earlier versions of this work were presented at LCC 2006 and LaSh 2006. The work presented
here was carried out while the first two authors were PIMS post-doctoral fellows at Simon
Fraser University.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 447–458, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

448 A. Kolokolova et al.

Table 1. Complexity of model checking, model expansion and satisfiability problems, for FO and
related logics on finite structures. ≡CK denotes capturing of complexity class K on class C of
finite structures; K-c denotes completeness for class K. New results are presented in bold; other
results are provided with references or are easy corollaries.

Logic Model checking Model expansion Satisfiability
Combined Data Combined Data

FO PSPACE-c ≡BIT AC0 NEXP-c ≡NP Undecidable
[21] [2] [25,19] [6] [24]

FO(LFP) EXP-c ≡sP NEXP-c ≡NP Undecidable
[25] [13,25,18]

FO(ID) EXP-c ≡sP NEXP-c ≡NP Undecidable
FOk P-c ∈ AC0 NP-c NP-c, �≡NP k≥3: Undecidable

k=2: NEXP-c [10]
[26,11] [26] k=1: EXP-c

GFk P-c ∈ AC0 NEXP-c k≥2: ≡NP k≥2:Undecidable
[11,7] k=1: NP-c k=1:2EXP-c [9]

RGFk na na NP-c NP-c, �≡NP na
μGF UP∩ co-UP ∈ P NEXP-c NP-c 2EXP-c

[15] [12]
GFk(ID) ∈EXP ∈P NEXP-c k≥2: ≡NP k≥2:Undecidable

via grounding to SAT. However, practical specification languages require a variety of
convenience features, so we are interested model expansion for logics which would
provide a natural formal basis for such features. The main purpose of this paper is to
summarize what is known about model expansion for the restriction of FO to guarded
fragments (to support types and efficient grounding), the extension of FO with induction
as in FO(ID) [4] and FO(LFP), and the combination of the two, filling in gaps as needed.

Table 1 presents the summary, placing facts about model expansion in the context
of the two related, but more familiar, tasks of model checking and satisfiability in the
finite. In the table, new results are presented in bold. We use K-c to denote completeness
for complexity class K, and ≡CK to denote capturing of complexity class K on a class
C of finite structures (see Definition 2).

2 Definitions

For each logic L, we consider three tasks: satisfiability, model checking, and model
expansion, all for finite structures. For model checking and model expansion, we con-
sider two notions of complexity, so-called data complexity and combined complexity.
In this section we present definitions for these. We denote by vocab(φ) the vocabulary
of formula φ.

Definition 1. For a given logic L, we consider complexity of three problems.

1. Model Checking: given (A, φ), where φ is a sentence ofL andA is a finite structure
for vocab(φ), does A |= φ?

On the Complexity of Model Expansion 449

2. Model Expansion (MX): given (A, φ), where φ is a sentence in L, A is a finite
σ-structure where σ ⊂ vocab(φ), is there an expansion A′ of A to vocab(φ) such
that A′ � φ?

3. Finite Satisfiability: given a sentence φ in L, is there a finite A for vocab(φ) such
that A � φ?

The first and the last of these problems have been studied for a long time. Our focus is
on model expansion.

Example 1. Let A be a graph G = (V ;E), and let φ be

∀x∀y [(Clique(x) ∧Clique(y)) ⊃ (x = y ∨E(x, y))].

If B is an expansion of A to vocab(φ), then B |= φ iff CliqueB is a set of vertices that
forms a clique in B.

For model checking and model expansion we consider two notions of complexity. These
were introduced by [25]; here we follow the presentation of [16]. Let enc() denote some
standard encoding of structures and formulas as binary strings.

Definition 2. Let K be a complexity class and L a logic. Let P be the problem of model
checking or model expansion.

1. The data complexity of P for L is K if for every sentence φ of L the language
{enc(A)|(A, φ) ∈ P} belongs to K. The data complexity of P forL is K-hard if for
some sentence φ ofL the language {enc(A)|(A, φ) ∈ P} is K-hard. The combined
complexity of L is K (resp. K-hard) if the language {(enc(A), enc(φ)) | (A, φ) ∈
P} belongs to K (resp. is K-hard).

2. Let C be a class of finite structures. P for L captures K on C if the data complexity
of P for L is K and for every property Q of structures from C that is in K there is a
sentence φQ of L such that A |= φQ iff A has property Q, for every A ∈ C.

Clearly, the complexity of MX lies between complexities of model checking and satis-
fiability, since in that case, a part of the input structure is given. E.g. in the case of FO,
we avoid undecidability by fixing the universe.

3 Complexity of MX for First-Order Logic

Complexities of model checking and satisfiability for first-order logic were determined
decades ago. The combined complexity of model checking for FO is PSPACE-complete
by reduction to QBF [21]. The data complexity of FO AC0; moreover, FO captures AC0

over structures with the BIT predicate (or arithmetic structures) [2].
MX for a logic L is equivalent to model checking for ∃SO(L). That is, there exists

an expansion of a structure A that satisfies a formula φ iff A satisfies φ preceded by
existential quantifiers for all expansion predicates. Many complexity properties for MX
follow from this observation and well-known results on model checking.

Theorem 1. The combined complexity of MX for FO is NEXP-complete; MX for FO
captures NP .

450 A. Kolokolova et al.

Proof. The first part is implicit in the proof of expression complexity of ∃SO in [25] (a
different proof is presented in [19].) The second part is just Fagin’s theorem [6].

It follows that MX for Πi formulas captures level Σi+1 of the polynomial hierarchy.

Remark 1. In some cases, the only information about the model that is given as an
instance for the model expansion is the size of the model (i.e., the instance vocabulary
σ is empty). In that case, it is reasonable to give the size of a model as a number in
binary notation. This leads to an exponential increase in complexity (since the structure
itself is exponential in the size of the input).

Although data complexity of model expansion for full first-order logic is NP-complete,
there are fragments of FO for which model expansion is tractable. In particular, the
results of [8] translate into the following.

Definition 3. A universal Horn formula is a first-order formula consisting of a con-
junction of Horn clauses, preceded by universal first-order quantifiers. Here, a clause
is Horn if it contains at most one positive occurrence of an expansion predicate. A
universal Krom formula is defined similarly, except that the restriction is at most two
occurrences of expansion predicates per clause.

Theorem 2. The data complexity of the MX problem for universal Horn and Krom
formulae is, respectively, P-complete and NL-complete. Moreover, MX for universal
Horn and Krom captures P and NL, respectively, over successor structures.

4 Complexity of MX for Guarded Fragments of FO

The guarded fragment GF of FO was introduced by Andréka et al. [1], and has recently
received considerable attention. Here any existentially quantified subformula φ must be
conjoined with a guard, i.e., an atomic formula over all free variables of φ. Gottlob et
al. [7] extended GF to the k-guarded fragment GFk, where the conjunction of up to k
atoms may act as a guard.

The combined complexity of model checking for GFk is P-complete [11,7]. In par-
ticular, model checking for GFk can be done in time O(lnk), where l is the size of the
formula, and n is the size of the structure [17]. The finite satisfiability problem for GF
is 2EXP-complete [9].

In this section, we discuss complexity of MX for GFk: we show that the combined
complexity of MX for GFk, k ≥ 1, is the same as that for FO, and MX for GFk, k ≥ 2,
captures NP just as MX for FO does. We also identify a fragment of GFk, which we
denote by RGFk , such that the combined complexity of MX for RGFk is NP-complete.
Although the data complexity of MX for RGFk is NP-complete, we show that it does
not capture NP. As a corollary of our main results, we show that finite satisfiability for
GFk, k ≥ 2 is undecidable.

Definition 4. The k-guarded fragment GFk of FO is the smallest set of formulas that
1. Contains all atomic formulas;
2. Is closed under Boolean operations;
3. Contains ∃x̄(G1 ∧ . . .∧Gm ∧ φ), if the Gi are atomic, m ≤ k, φ ∈ GFk , and every
free variable of φ appears in some Gi. Here G1 ∧ . . . ∧Gm is called the guard of φ.

On the Complexity of Model Expansion 451

A fragment of GFk that is of particular interest in application of model expansion is
RGFk, which we use to denote sentences from GFk in which all guards are given by
the instance structure (i.e., no expansion predicates appear in guards). Let FOk denote
FO formulas that use at most k distinct variables. Then it is easy to see that any FOk

formula can be rewritten in linear time into an equivalent one in RGFk, by using atoms
of the form x = x as parts of the guards when necessary. For example, the formula
∃x∃y[R(x) ∧ E(x, y)] can be rewritten to ∃x∃y[R(x) ∧ y = y ∧ E(x, y)], where R is
an instance predicate, and E is an expansion predicate.

Lemma 1. There is a polynomial-time algorithm that, given an arbitrary ∃SO sen-
tence, constructs an equivalent ∃SO sentence whose first-order part is in GF2.

Proof. Suppose φ is a ∃SO sentence ∃X1 . . .∃Xm ϕ, where ϕ is FO. Let l be the size
of φ, and let k be the width of ϕ, that is, the maximum number of free variables in any
subformula of ϕ. We introduce k new predicates U1, . . ., Uk such that the arity of Ui

is i, 1 ≤ i ≤ k. Let ϕ′ be the formula obtained from ϕ by replacing any subformula
∃x̄ ψ(x̄) with ∃x̄(Ui(x̄)∧ψ(x̄)) and any subformula ∀x̄ ψ(x̄) with ∀x̄(Ui(x̄) ⊃ ψ(x̄)),
where i is the length of x̄. Let η be the formula

k−1∧
i=0

∀x1 . . . ∀xi+1(x1 = x1 ∧ Ui(x2 . . . xi+1) ⊃ Ui+1(x1 . . . xi+1)).

It is easy to see that any model of η interprets Ui as the i-ary universal relation, 1 ≤
i ≤ k. Now let φ′ be the ∃SO sentence ∃X1 . . . ∃Xm∃U1 . . .∃Uk (ϕ′ ∧ η). Clearly,
ϕ′ ∧ η ∈ GF2, and φ′ is equivalent to φ. Also, both ϕ′ and η are of size O(l2), and
hence φ′ is of size O(l2).

Lemma 2. There exists a polynomial-time algorithm that, given a structure M and
an ∃SO sentence φ, constructs a structure M′and an ∃SO sentence φM such that the
first-order part of φM is in GF1, and M |= φ iff M′ |= φM.

Proof. SupposeM is a structure, and φ is an ∃SO sentence. Let n be the size ofM, and
let l be the size of φ. For each domain element a of M, we introduce a new constant
symbol ca. Let M′be the structure that expands M by interpreting ca as a. Let φ′

be the ∃SO sentence constructed from φ as in the proof of Lemma 1. Now let φM
be the sentence obtained from φ′ by replacing each subformula ∀x1 . . . ∀xi+1(x1 =
x1 ∧ Ui(x2 . . . xi+1) ⊃ Ui+1(x1 . . . xi+1)) with∧

a∈dom(M)

∀x2 . . .∀xi+1(Ui(x2 . . . xi+1) ⊃ Ui+1(cax2 . . . xi+1)).

Clearly, the first-order part of φM is in GF1, M |= φ iff M′ |= φM, and the size of
φM is O(l2n).

Theorem 3. 1. The combined complexity of MX for GFk, k ≥ 1 is NEXP-complete;
2. MX for GFk, k ≥ 2, captures NP;
3. The finite satisfiability problem for GFk, k ≥ 2, is undecidable.

452 A. Kolokolova et al.

Proof. 1. follows from Lemma 2 and the fact that the combined complexity of MX
for FO is in NEXP;

2. follows from Lemma 1 and the fact that MX for FO captures NP;
3. By the proof of Lemma 1, finite satisfiability for FO can be reduced to that for GF2.

Lemma 3 ([19]). 3-SAT can be reduced to MX for a formula φ ∈ RGF1.

Proof. Suppose Γ = {C1, . . . , Cm} is a set of 3-clauses. Let A be the structure with
universe {a,¬a | a ∈ atoms(Γ)} such that A interprets Clause as the set of clauses
in Γ and interprets Complements as the set of complementary literals. Let φ be

∀x∀y∀z(Clause(x, y, z) ⊃ True(x) ∨ True(y) ∨ True(z))
∧ ∀x∀y(Complements(x, y) ⊃ (True(x) ≡ ¬True(y))).

Clearly, φ ∈ RGF1, and Γ is satisfiable iff A can be expanded to a model of φ.

We quote the following result concerning polynomial-time grounding of RGFk

sentences:

Lemma 4 ([20]). There is an algorithm that, given a structureA and a RGFk sentence
φ, constructs in O(l2nk) time a propositional formula ψ such that A can be expanded
to a model of φ iff ψ is satisfiable, where l is the size of φ, and n the size of A.

Theorem 4. (1) The combined complexity of MX for RGFk is NP-complete. (2) The
data complexity of MX for GF1 and RGFk is NP-complete. (3) MX for RGFk and
hence also FOk does not capture NP .

Proof. (1) follows from Lemmas 4 and 3. (2) follows from Lemma 3 and that the data
complexity of MX for FO is in NP. (3): Since SAT can be decided in nondeterministic
O(n2) time, by Lemma 4, MX for RGFk can be decided in nondeterministic O(n2k)
time. By Cook’s NTIME hierarchy theorem [3], for any i > 2k, there is a problem that
can be solved in nondeterministic O(ni) time but not nondeterministic O(ni−1) time.
Thus there are infinitely many problems in NP that cannot be expressed by MX for
RGFk.

5 Complexity of ID-Logic

One limitation of first-order logic as a practical language is its lack of mechanism to
describe recursion or induction. Therefore, a natural way to extend first-order logic is
by adding inductive definitions. One such approach, called ID-logic, is presented in
[4]. ID-logic is an extention of classical logic in which (non-monotone) definitions can
appear as atomic formulae. FO(ID) is the extension of FO with such definitions.

Definition 5. An inductive definition Δ is a set of rules of the form ∀x̄(X(t̄) ← φ)
where X is a predicate symbol of arity r, x̄ is a tuple of object variables, t̄ a tuple of
object variables of length r, φ is an arbitrary first-order formula.

On the Complexity of Model Expansion 453

The semantics of the logic is defined by the standard satisfaction recursion of classical
logic, augmented with one additional rule saying that a valuation I satifies a definition
D if it is the 2-valued well-founded model of this definition. While the well-founded
semantics can be defined in several ways, we use a definition where one constructs a
sequence (Iξ, Jξ)ξ≥o of approximations (under- and over-estimates) of the intended
model of the definition Δ extending Io, which is a structure providing interpretations
to open (i.e., those not appearing in the heads of the rules) symbols of Δ (see [4] for
details). Each new element Iξ is obtained by what we call a “double step” in the proof
below, i.e., the square of the so-called stable operator STΔ. This operator is in tern is
equivalent to a least fixpoint, as will be seen in the proof. The sequence (Iξ, Jξ)ξ≥o

has a limit (I, J), where I and J are the least (respectively, the greatest) fixpoints of
ST 2

Δ. A good (total) definition is such that I = J , otherwise the entire theory does not
have a model. Here, we introduce a formula CONSΔ which expresses this consistency
(totality) criterion, but using least fixpoints only.

Example 2. Consider formula Δeven ∧ ∀x(E(x) ∨ E(s(x))), where

Δeven ≡
{

E(x) ← x = 0
E(s(s(x))) ← E(x) ∧ ¬E(s(x))

}
.

This formula states that every number is either even or odd. Definition Δeven is one
of possible definitions of even numbers, which is total on natural numbers, but not on
integers.

5.1 Equivalence between FO(ID) and FO(LFP)

In this section, we study a FO fragment of ID-logic, FO(ID). We show that the expres-
sive power of FO(ID) is equivalent, over finite structures, to that of FO(LFP). This result
allows us to transfer known complexity results for FO(LFP) to FO(ID).

Lemma 5. FO(ID) ⊆ FO(LFP).

Proof. We start by showing how to evaluate a single definition Δ (which can have
multiple defined predicates). If a definition is not total on I0, we need to ensure that there
is no model for the whole theory. Then we can use evaluated definitions to construct a
FO(LFP) formula corresponding to the original FO(ID) formula.

A definition Δ for a given initialization of open predicates from I0 is evaluated as
follows.

Replace in Δ all negative occurrences of Xi by X ′
i for new variables X ′

i . For ex-
ample, a rule ∀x̄(Xi(t̄(x̄)) ← ¬Xj(t̄′(x̄))) becomes replaced with ∀x̄(Xi(t̄(x̄)) ←
¬X ′

j(t̄
′(x̄))) Let φ be a formula encoding Δ after this substitution.

Computing one (double) step of the evaluation (a step corresponding to evaluating φ
with I and then J giving the values for negated literals) becomes

ψ ≡ LFPx̄,X̄φ([LFPx̄,X̄φ]j/X ′
j), (*)

454 A. Kolokolova et al.

by semantics of FO(ID). Here fixpoints are simultaneous on all Xi and the notation
[LFPx̄,X̄φ]j/X ′

j means replacing the occurrences of X ′
j in φ with the fixpoint of Xj

in the simultaneous least fixed point of φ over all X̄ .
To simplify the presentation assume, using the fact that simultaneous LFP is equiv-

alent to LFP, that a variable X encodes all variables Xi. Then, the simultaneous LFPs
from ψ become just LFPs.

Let Y be a variable encoding the fixpoint of X after the double step (∗). This variable
is used to initialize X ′

i before the next double step. Since after each step ψ the variable
Y contains the partial truth assignments on structure I after the ith (double) step of the
evaluation procedure, Y is monotone. Therefore, there exists a fixpoint of Y defined by
ψ, and it is the least fixed point. Therefore, the formula

ΨΔ(ū) ≡ [LFPȳ,Y ψ(Y)]ū

computes the values of the defined predicates in φ whenever the fixpoint exists. This
is also true when Y is treated as a list of predicates X1 . . .Xk being defined in Δ, in
which case LFP in ΨΔ is a simultaneous fixed point.

It is possible, though, that the value computed using the upper bound estimation (the
innermost LFP of the double step (∗)) is different from the outer LFP in the double step.
If this is the case, then the following formula is false:

CONSΔ ≡ ∀z̄([LFPȳ,Y ψ(Y)]z̄ ↔ LFPx̄,X̄ψ(x̄, LFPȳ,Y ψ(Y)/X ′
i))[z̄]

Suppose now that the FO(ID) theory is defined by a formula with multiple defini-
tions. Let φ′ be a first-order formula with occurrences of definitions Δ1 . . . Δm for
some m. To simplify the presentation, view each definition as defining one predicate
Pi. If the fixpoint of Δi exists, then ∀x̄Pi(x̄) ↔ ΨΔi(x̄), so occurrences of Pi in φ′

can be treated as occurrences of ΨΔi . From the point of view of evaluation, it is more
efficient to compute Pi ≡ ΨΔi and then refer just to Pi.

Finally, φ′ is converted to a formula

Φ ≡
m∧

i=1

CONSΔi ∧ φ′((∀x̄(Pi(x̄) ↔ ΨΔi(x̄)))/Δi)

That is, Φ is a conjunction of two parts: the conjunction of consistency formulas
ensures that all definitions were total, and φ′ remains the same except all definitions are
replaced by the FO(LFP) formulas computing them.

The resulting formula is in FO(LFP).

Example 3. Recall the formula from Example 2 stating that every number is either even
or odd. The following describes a construction of an equivalent FO(LFP) formula.

A formula corresponding to Δeven becomes, after replacing ¬E with ¬E′,

(φE(x,E,E′) ≡ (∃y(x = y ∧ y = 0)) ∨ (∃y(x = s(s(y)) ∧ E(y) ∧ ¬E′(s(y)))).

Define ψE(z, E′) ≡ [LFPx,EφE(x,E, LFPE,xφE(x,E,E′)))]z. This computes
one iteration of the stable operator ST 2

Δ.

On the Complexity of Model Expansion 455

Now, ΨΔ ≡ LFPz,E′ψE(z, E′). Consistency is checked by
∀uΨΔ(u) ↔ [LFPx,EψE(x,E, ΨΔ)]u. Now, the final formula becomes

(∀uΨΔ(u) ↔ [LFPx,EψE(x,E, ΨΔ)]u)∧(∀x(P (x) ↔ ΨΔ(x))∧(P (x)∨P (s(X))).

Here, the first conjunct checks that the definition “makes sense”, otherwise the formula
does not have a model, the second part defines a particular variable P (x) to represent
the defined E, and the last part uses P outside of the definition ΔE .

Lemma 6. FO(LFP) ⊆ FO(ID)

Proof. By Theorem 9.4.2 of [5], every FO(LFP) formula is equivalent to one of the
form ∀u[LFPz̄,Zψ]ũ, where ψ ∈ Δ2, which can be written as an FO(ID) formula
{Z(z̄) ← ψ}.

Therefore, the following holds:

Theorem 5. The complexity of model checking for ID-logic and FO(LFP) coincide
over finite structures.

Corollary 1. The combined complexity of the model checking for FO(ID) is complete
for EXP; the expression complexity for FO(ID) is complete for P; FO(ID) captures P
over successor structures.

5.2 Complexity of MX for FO(ID)

Intuitively, adding polynomial-time computable predicates to an NP predicate should
not add expressive power, suggesting that both combined and data complexities of MX
for FO(ID) (or, equivalently, FO(LFP)) should coincide with the those for FO without
inductive definitions or least fixed points.

Theorem 6. The combined complexity of MX for FO(ID) is NEXP-complete; The data
complexity for MX of FO(ID) is NP-complete, and NP is captured by existential second-
order with inductive definitions ∃SO(ID).

Proof. We know from Theorem 1 that data complexity for MX problem is hard for NP
and combined complexity hard for NEXP. Therefore, it is sufficient to show member-
ship of MX in these classes.

The evaluation algorithm proceeds as follows. Use non-determinism to guess the
expansion predicates. Now the problem is reduced to evaluating the FO(ID) formula on
an expanded structure. This can be done in polynomial time of the size of the structure
when formula is fixed (by [13,25,18]) and in exponential time when the formula is a
part of the input by [25]. In the second case, the size of the expansion predicates can be
exponential in the size of the structure (since their arity is not constant), but in NEXP
we can guess exponential-size certificates.

456 A. Kolokolova et al.

Fragments of FO(ID) with Polytime MX. Recall that MX for universal Horn for-
mulae was P-complete. We would like to add inductive definitions to such formulae so
that the complexity of the resulting logic is still in P. The following example shows that
allowing unrestricted use of expansion predicates in the inductive definitions makes it
possible to encode NP-complete problems.

Example 4. The classical example of 3-colourability is representable as a formula with
three expansion predicates R,B,G, encoding colours:

∀v, w(R(v) ∨B(v) ∨G(v)) ∧
∧

Q∈R,G,B

(¬Q(v) ∨ ¬Q(w) ∨ ¬E(v, w)).

The only part of this formula which is not Horn is the first disjunction. It can be replaced
by the inductive definition with a rule X(i) ← Q(i) for every colour Q. Now, the first
disjunction is equivalent to ∀vX(v). Note that the definition of FO(ID) requires that
such X be minimal, therefore, this does not introduce spurious positives.

However, if we disallow any occurrences of the expansion predicates in inductive defi-
nitions, P-completeness is preserved.

Lemma 7. Adding inductive definitions to universal Horn formulae defined on page
450 preserves data complexity of MX to be P-complete, when expansion predicates do
not occur in inductive definitions.

Proof. By theorem 2, data complexity of MX for universal Horn formulae is P-complete.
Therefore, a polytime algorithm for MX of universal Horn formulae can first evaluate all
inductive definitions, and then run Grädel’s algorithm for evaluating existential second-
order Horn formulae replacing all defined predicates by their computed values.

We can also add expansion predicates in a restricted fashion. First, all expansion pred-
icates occurring in definitions have to be defined (i.e, occur in a head of a rule of some
definition). Second, such predicates cannot be defined in terms of each other unless
they are in the same definition. Third, the definitions can only occur as conjunction to
the rest of the formula. Intuitively, in this case, if expansion predicates in the body of
a definition are either given values already, or are being defined in that definition, then
the definition can be evaluated. The intuition here is similar to the intuition of RGFk.

Definition 6. Let {X̄1, . . . , X̄k} be all expansion predicates occurring in a first-order
formula φ. Then φ is in RFO(ID) if (1) for each X̄i there is a definition Δi defining
all predicates in X̄i, and Δi is conjuncted with the rest of the formula. (2) The only
expansion predicates allowed in the body of Δi are among X̄1, . . . , X̄i−1; the body of
Δ1 contains no expansion predicates.

More generally, φ is in RuHorn(ID) if there are also expansion predicates P̄ which
do not occur in the definitions and with all definitions removed, φ is universal Horn
with respect to P̄ .

Theorem 7. MX for RFO(ID) is P-complete.

Corollary 2. MX for RuHorn(ID) is P-complete.

On the Complexity of Model Expansion 457

6 Conclusion

We presented complexity results for model expansion for a number of logics closely
related to FO. For providing a foundation for practical constraint languages, future work
needs to consider similar problems in the presence of arithmetic and other interpreted
function symbols. For some steps in this direction, see [23,22].

We know that GF(ID) (guarded logic with inductive definitions) coincides with μGF
on total structures; however, the question is still open whether they coincide every-
where, as FO(ID) and FO(LFP) do. The problem lies in a different treatment of induc-
tive definitions that are not total.

Acknowledgments

The authors are grateful to the Natural Sciences and Engineering Council of Canada
and to the Pacific Institute for Mathematical Sciences for financial support.

References

1. Andréka, H., van Benthem, J., Németi, I.: Modal languages and bounded fragments of pred-
icate logic. Journal of Philosophical Logic 49(3), 217–274 (1998)

2. Barrington, D.M., Immerman, N., Straubing, H.: On uniformity within NC1. Journal of
Computer and System Sciences 41(3), 274–306 (1990)

3. Cook, S.A.: A hierarchy for nondeterministic time complexity. Journal of Computer and
System Sciences 7(4), 343–353 (1973)

4. Denecker, M., Ternovska, E.: A logic of non-monotone inductive definitions. ACM transac-
tions on computational logic (TOCL) 9(2), 1–52 (2008)

5. Ebbinghaus, H.D., Flum, J.: Finite model theory. Springer, Heidelberg (1995)
6. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Com-

plexity of computation, SIAM-AMC, vol. 7, pp. 43–73 (1974)
7. Gottlob, G., Leone, N., Scarcello, F.: Robbers, marshals, and guards: game theoretic and log-

ical characterizations of hypertree width. In: Twentieth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS 2001), pp. 195–206 (2001)

8. Grädel, E.: Capturing Complexity Classes by Fragments of Second Order Logic. Theoretical
Computer Science 101, 35–57 (1992)

9. Grädel, E.: On the restraining power of guards. Journal of Symbolic Logic 64, 1719–1742
(1999)

10. Grädel, E., Kolaitis, P.G., Vardi, M.Y.: On the decision problem for two-variable first-order
logic. Bulletin of Symbolic Logic 3, 53–69 (1997)

11. Grädel, E., Otto, M.: On logics with two variables. Theoretical Computer Science 224, 73–
113 (1999)

12. Grädel, E., Walukiewicz, I.: Guarded fixed point logic. In: Fourteenth Annual IEEE Sympo-
sium on Logic in Computer Science (LICS 1999), pp. 45–55 (1999)

13. Immerman, N.: Relational queries computable in polytime. In: Fourteenth Annual ACM
Symposium on Theory of Computing (STOC 1982), pp. 147–152 (1982)

14. Immerman, N.: Descriptive complexity. Springer, New York (1999)
15. Jurdzinski, M.: Deciding the winner in parity games is in UP ∩ co-UP. Information Process-

ing Letters 69, 119–124 (1998)

458 A. Kolokolova et al.

16. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004)
17. Liu, Y., Levesque, H.J.: A tractability result for reasoning with incomplete first-order knowl-

edge bases. In: 18th Int. Joint Conf. on Artif. Intell. (IJCAI 2003), pp. 83–88 (2003)
18. Livchak, A.: Languages for polynomial-time queries. In: Computer-based modeling and op-

timization of heat-power and electrochemical objects, p. 41 (1982)
19. Mitchell, D., Ternovska, E.: A framework for representing and solving NP search problems.

In: 20th National Conf. on Artif. Intell. (AAAI), pp. 430–435 (2005)
20. Patterson, M., Liu, Y., Ternovska, E., Gupta, A.: Grounding for model expansion in k-

guarded formulas with inductive definitions. In: 22nd International Joint Conference on Ar-
tificial Intelligence, IJCAI 2007 (2007)

21. Stockmeyer, L.: The Complexity of Decision Problems in Automata Theory. Ph.D. thesis,
MIT (1974)

22. Tasharrofi, S., Ternovska, E.: Capturing NP for search problems with built-in arithmetic. In:
Fermüller, C., Voronkov, A. (eds.) LPAR-17. LNCS, vol. 6397, Springer, Heidelberg (2010)

23. Ternovska, E., Mitchell, D.: Declarative programming of search problems with built-in arith-
metic. In: 21st International Joint Conference on Artificial Intelligence, IJCAI 2009 (2009)

24. Trahtenbrot, B.: The impossibility of an algorithm for the decision problem for finite do-
mains. Doklady Academii Nauk SSSR 70, 569–572 (1950) (in Russian)

25. Vardi, M.Y.: The complexity of relational query languages. In: Fourteenth Annual ACM
Symposium on Theory of Computing (STOC 1982), pp. 137–146 (1982)

26. Vardi, M.Y.: On the complexity of bounded-variable queries. In: Fourteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1995), pp. 266–
276 (1995)

Labelled Unit Superposition Calculi for
Instantiation-Based Reasoning

Konstantin Korovin� and Christoph Sticksel

School of Computer Science
The University of Manchester

{korovin,sticksel}@cs.man.ac.uk

Abstract. The Inst-Gen-Eq method is an instantiation-based calculus which is
complete for first-order clause logic modulo equality. Its distinctive feature is
that it combines first-order reasoning with efficient ground satisfiability checking
which is delegated in a modular way to any state-of-the-art ground SMT solver.
The first-order reasoning modulo equality employs a superposition-style calculus
which generates the instances needed by the ground solver to refine a model of a
ground abstraction or to witness unsatisfiability.

In this paper we present and compare different labelling mechanisms in the
unit superposition calculus that facilitates finding the necessary instances. We
demonstrate and evaluate how different label structures such as sets, AND/OR
trees and OBDDs affect the interplay between the proof procedure and blocking
mechanisms for redundancy elimination.

1 Introduction

Instantiation-based methods (IMs) are a class of calculi for first-order clausal logic. The
common idea is to instantiate clauses in a smart way and to employ efficient proposi-
tional or more general ground reasoning methods in order to prove unsatisfiability or to
find a model. There is considerable current interest in instantiation-based methods (see
[1,9,6]), motivated by their attractive features, some of which are complementary to
other contemporary methods. Among other important properties, all known IMs natu-
rally decide the first-order logic fragment of effectively propositional logic (EPR), also
called Bernays-Schönfinkel class, which has applications in areas as diverse as bounded
model checking ([11]), logic programming ([3]) and knowledge representation ([5]).

In many applications efficient equational reasoning is indispensable. While theoret-
ical foundations of equational reasoning in several instantiation-based methods have
been laid already some time ago ([8,4,2]), due to a number of challenging issues only
now practical implementations of the calculi appear.

In this paper we take up equational reasoning in the Inst-Gen-Eq calculus as pre-
sented in [4]. One of the distinctive features of the Inst-Gen method is a modular com-
bination of ground reasoning based on any off-the-shelf SMT solver with superposition
style first-order reasoning. A major practical challenge in this approach is efficient ex-
traction of relevant substitutions from superposition proofs, which are used for instance

� Supported by the Royal Society.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 459–473, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

460 K. Korovin and C. Sticksel

generation. Here we need to explore potentially all non-redundant superposition proofs
of the contradiction, extract relevant substitutions and efficiently propagate redundancy
elimination from instantiation into superposition derivations.

In this paper we address this challenge by introducing a labelled unit superposition
calculus. Labels are used to collect relevant substitutions during superposition deriva-
tions and facilitate efficient instance generation. Non-trivial issues arise when we merge
several superposition derivations which is done by a new merging rule. Merging allows
to share several derivations of the same literal which avoids repeated work and can be
used to strengthen redundancy elimination.

We introduce and investigate different label structures based on sets, AND/OR trees
and OBDDs and highlight how the label structure can be exploited for redundancy
elimination. Finally we have implemented these approaches and compared their perfor-
mance on the TPTP library.

2 The Inst-Gen Method Modulo Equality

We consider first-order clausal logic with equality. Given a set of first-order clauses S
we first form its ground abstraction S⊥ by mapping all variables to the same ground
term, conventionally denoted ⊥. Overloading the notation, we use ⊥ also for the sub-
stitution that maps all variables to the ground term ⊥. If the ground abstraction S⊥ is
unsatisfiable (modulo equality), the original set S is also unsatisfiable and the proce-
dure can terminate. Otherwise, there is a model I⊥ of the ground abstraction S⊥ and
the first-order instantiation process is guided by means of a selection function sel based
on I⊥. The selection function assigns to each first-order clause C in S exactly one lit-
eral sel(C) = L from C such that I⊥ |= L⊥. At least one such literal always exists as
the ground abstraction of the clause is true in the model I⊥.

If the set of selected (not necessarily ground) literals, seen as unit clauses, is satis-
fiable in first-order logic with equality, a model for the clause set S exists and it has
thus been proved satisfiable. Otherwise, there is a subset of the selected literals which is
inconsistent. We instantiate the clauses these literals are selected in such that the incon-
sistency can already be witnessed in the ground abstraction. Thus the ground model has
to be refined in order to resolve the inconsistency. For non-equational literals it suffices
to search for unifiable complementary literal pairs. In the presence of equations, we
apply the unit superposition calculus in order to find inconsistent literals and to obtain
instantiating substitutions.

Definition 1 (Unit Superposition)

l r s[l′] t
(σ)

(s[r] t)σ
l r s[l′] � t

(σ)
(s[r] � t)σ

(i) σ = mgu(l, l′), (ii) l′ is not a variable, (iii) lσρ ! rσρ and
(iv) s[l′]σρ ! tσρ for some grounding substitution ρ

l � r
(σ)�

σ = mgu(l, r)

The unit superposition calculus is similar to the standard superposition calculus, see,
e.g., [10]. For simplicity and without loss of generality we assume pure equational logic

Labelled Unit Superposition Calculi for Instantiation-Based Reasoning 461

where all atoms are equations. Different literals are made variable-disjoint and as we
only have literals, i.e. unit clauses, we reduce the inference rules to the ones above.

A proof of the contradiction, denoted �, is a tree where each leaf is a selected literal
in a clause, inner nodes are obtained by applying inference rules to the parent nodes and
the root is the contradiction �. Every proof of a contradiction shows that the literals at
the leaves are inconsistent in first-order and the clauses these literals are selected in have
to be instantiated in a way that the ground solver can witness the inconsistency. Then the
model of the ground abstraction has to be refined, possibly leading to further conflicts
or making the ground abstraction unsatisfiable. If no contradiction can be proved from
the set of selected literals, the first-order clause set is satisfiable. Let us note that unlike
in standard superposition where one proof of the contradiction suffices, we need to ex-
plore all non-redundant proofs by unit superposition. Different proofs generate different
clause instances and potentially all of them are necessary to witness unsatisfiability of
the given set of clauses.

If in the unit superposition calculus the premises l , r and s[l′] , t can be inferred to
(s[r] , t)σ, then the ground abstraction (s[r] , t)σ⊥ of the conclusion follows (mod-
ulo equality) from the ground abstractions of the premises instantiated with the mgu σ,
namely (l , r)σ⊥ and (s[l′] , t)σ⊥. The same argument holds for the disequation
s[l′] �, t. Further, if l �, r can be inferred to the contradiction � using σ, then the
ground abstraction (l �, r)σ⊥ is also contradictory. By induction over the inferences in
a proof of the contradiction we can show that there are relevant substitutions to the leaf
literals such that the ground abstractions of the instantiated literals are contradictory.

The following extraction of relevant instances from proofs of the contradiction has
been described and proved complete in [4]. For each leaf literal in a proof its rele-
vant substitution is obtained by composing the substitutions from inferences along the
branch. The set of relevant instances of a unit superposition proof is {C1θ1, . . . , Cnθn}
where θ1, . . . , θn are the relevant substitutions to the leaf literals and C1, . . . , Cn are
clauses the leaf literals are selected in. In order to witness the inconsistency in the
ground abstraction and to force a refinement of the ground model, we add the relevant
instances to the original clause set and form their ground abstractions.

However, in practice this approach of extracting substitutions has some shortcomings
that we will discuss in this paper along with more robust mechanisms to obtain relevant
instances. Let us demonstrate the Inst-Gen-Eq method by way of an example and point
out the problems that we will address in the following sections.

Example 1. Consider the following unsatisfiable set of clauses.

f(x, y) f(y, x) (1)

f(u, v) � g(z) ∨ u z (2)

f(a, b) g(c) (3)

a � b (4)

The ground abstractions of clauses (1) and (2) are f(⊥,⊥) , f(⊥,⊥) and f(⊥,⊥) �,
g(⊥) ∨ ⊥ , ⊥, respectively. Clauses (3) and (4) are ground and therefore identical to
their ground abstractions. The ground abstractions of the first literals in each clause are
satisfiable and can therefore be selected. With the following unit superposition proof
we find the selected literals in clauses (2) and (3) to be inconsistent in first order.

462 K. Korovin and C. Sticksel

(3)

f(a, b) g(c)
(2)

f(u, v) � g(z)
[a/u, b/v]

g(c) � g(z)
[c/z]�

(∗)

In order to make the inconsistency visible in the ground abstraction, we add an instance
of clause (2) with the substitution [a/u, b/v, c/z] obtained by composing the two sub-
stitutions in the proof. No substitution is applied to (3) because it is already ground.

f(a, b) � g(c) ∨ a c (5)

We can prove another inconsistency in the set of selected literals.

(3)

f(a, b) g(c)

(1)

f(x, y) f(y, x)
(2)

f(u, v) � g(z)
[u/x, v/y]

f(v, u) � g(z)
[a/v, b/u]

g(c) � g(z)
[c/z]�

(†)

After instantiating clauses (1) and (2) at the leaves of the proof with respective sub-
stitutions of [b/x, a/y] and [b/u, a/v, c/z] the ground abstraction consisting of clauses
(3)-(7) becomes unsatisfiable. Again, the ground clause (3) cannot be instantiated.

f(b, a) f(a, b) (6)

f(b, a) � g(c) ∨ b c (7)

The main challenge we face in a practical implementation of the unit superposition
calculus is the treatment of literal variants. Obviously, it is desirable to identify all literal
variants in order to make the calculus less prolific and to avoid trivial non-termination. If
all literal variants were treated separately, a commutativity axiom like f(x, y) , f(y, x)
could infer an infinite number of variants of the literal f(u, v) �, g(z) since we consider
all literals to be variable disjoint.

On the other hand, the literal f(u, v) �, g(z) occurs twice in the same branch of
the second proof tree (†) in Example 1 above. Linking both occurrences of the literal
in the proof would collapse the proof tree into a graph with a cycle which is highly
inconvenient in an implementation of the calculus. When composing substitutions on
a branch of the proof tree, we would need to compose the substitution with itself an
unbounded number of times. While in Example 1 the composition of the substitution
[u/x, v/y] with itself can only generate a finite number of instances, this is not the case
for a substitution like [f(x)/x].

To overcome these problems, we introduce labels for literals in unit superposition
where we accumulate composed substitutions from inferences. The relevant instances
can then be read off the label of the contradiction, thus obsoleting the need to trace a
proof tree. Further, the labels will allow us to treat literal variants initially as disjoint
while merging of literals is done in an explicit step that keeps track of literal variants
merged in the label. This allows to uniformly treat literal variants in an implementation
of the calculus and to include them in the usual heuristics in a given clause algorithm.

Labelled Unit Superposition Calculi for Instantiation-Based Reasoning 463

3 Set Labelled Unit Superposition

To each literal we attach a label and we consider literals with different labels to be dis-
tinct and also distinguish between variants of a literal. However, our calculus provides
an explicit inference step to merge two variants of a literal into one with a label that
joins both their labels. The labels of conclusions accumulate substitutions from their
inferences, in this way eagerly extracting substitutions in a proof. The merging step
combines the two proofs of a literal and its variant. Further inference steps are then
simultaneously applied to both proofs.

The basic element of any literal label is a closure which is a pair of a clause C and a
substitution θ, written as C · θ. In the first and simplest structure for labelling literals, a
label L is a set of closures {C1 ·θ1, . . . , Cn ·θn}. Given a substitution σ, the σ-instance
of the label L is the label Lσ = {C1 · θ1σ, . . . , Cn · θnσ}.

Initially, we create for each clause C, where L is the selected literal in C, a labelled
literal {C · []} : L from the clause C and the empty substitution []. We therefore distin-
guish between literals from different clauses in the beginning.

We modify the inference rules of the unit superposition calculus from Definition 1
to work on set labelled literals and add a merging rule for literals which are variants
of each other. Note that the labels are only a mechanism for bookkeeping, they do not
occur in the side conditions of the inferences.

Definition 2 (Set Labelled Unit Superposition)

Merging

L : l r L′ : l′ r′ (σ)
L ∪ L′σ : l r

L : l � r L′ : l′ � r′
(σ)

L ∪ L′σ : l � r

where σ is a renaming such that l′σ = l and r′σ = r. The conclusion replaces the two premises.

Superposition

L : l r L′ : s[l′] t
(σ)

Lσ ∪ L′σ : (s[r] t)σ

L : l r L′ : s[l′] � t
(σ)

Lσ ∪ L′σ : (s[r] � t)σ

where (i) σ = mgu(l, l′), (ii) l′ is not a variable, (iii) lσρ ! rσρ and (iv) s[l′]σρ ! tρ for some
grounding substitution ρ.

Equality Resolution

L : (l � r)
(σ)Lσ : �

where σ = mgu(l, r).

Having derived a labelled contradiction, we now do not need to trace a proof tree to
obtain the relevant instances. Instead, we can read the clauses to be instantiated and

464 K. Korovin and C. Sticksel

their respective relevant substitutions off the label: the set of relevant instances of a set
labelled literal {C1 · θ1, . . . , Cn · θn} : L is the set {C1θ1, . . . , Cnθn}.

Replacing extraction of substitutions from proofs with the labelling approach above
preserves completeness of the instantiation procedure if Inst-fairness as in Lemma 6 in
[4] is upheld. This requires unit superposition (i) to derive the contradiction from certain
non-redundant selected literals and (ii) to generate instances such that the conflict on
selected literal becomes redundant. We will show that our labelled calculus satisfies
these two properties by a simulation argument.1

Unlabelled and labelled unit superposition in Definition 1 and Definition 2, respec-
tively, have the same side conditions and the same premises lead to the same conclusion.
We can therefore state the following lemma from which (i) follows.

Lemma 1. Any unlabelled unit superposition derivation can be stepwise simulated by
set labelled unit superposition using only superposition and equality resolution.

The required instances in (ii) are provided by the relevant instances extracted from a
proof of the contradiction. We show that the relevant instances of an unlabelled proof
of a literal are contained in the relevant instances of a label of the literal in every corre-
sponding labelled proof. We first consider labelled unit superposition without merging
and in a second step show that inserting merging inferences is compatible.

Lemma 2. Let the literal L be derived by unlabelled unit superposition and let the rel-
evant instances extracted from the proof of L be C1θ1, . . . , Cnθn. The stepwise simula-
tion by set labelled unit superposition yields the labelled literal L : L where L contains
the set of closures {C1 · θ1, . . . , Cn · θn}.

To finish the argument we have to include merging inferences which can occur at any
step of a labelled unit superposition derivation. The conclusion of a merging inference
replaces its premises and renames the literals to make them identical. We therefore
must ensure that after merging literals the relevant instances that were in the label of a
premise remain in the label of the conclusion.

Lemma 3. Let L be a literal and let the relevant instances extracted from its proof
be C1θ1, . . . , Cnθn. After a merging inference with the labelled literal L : L as the
left premise (the right premise, respectively) the label of the conclusion contains the
closures C1 · θ1, . . . , Cn · θn (respectively C1 · θ1σ, . . . , Cn · θnσ).

Finally if unit superposition is applied in a fair way, that is every non-redundant in-
ference is drawn eventually, we can state the completeness theorem which is based on
results from [4].

Corollary 1. A fair labelled unit superposition process with instantiation of relevant
instances from contradictions yields an Inst-fair saturation process.

Let us resume our running example, demonstrating the merging inference rule before
we point out some disadvantages of set labels and move on to different label structures
in the next sections.

1 For proofs see http://www.cs.man.ac.uk/˜sticksec/LPAR2010-Full.pdf

Labelled Unit Superposition Calculi for Instantiation-Based Reasoning 465

Example 2. We draw an inference which corresponds to the first inference in proof (†)
in Example 1 from the selected literals in clauses (1) and (2).

(1)

{(1) · []} : f(x, y) � f(y, x)

(2)

{(2) · []} : f(u, v) �� g(z)
[u/x, v/y]

{(1) · [u/x, v/y], (2) · []} : f(v, u) �� g(z)

(†′)

We note that applying the substitution [u/x, v/y] to the closure (2) · [] results in the
same closure as the variables x and y in the domain of the substitution do not occur in
the closure. The conclusion f(v, u) �, g(z) is a variant of the right premise and we can
merge the two literal variants into one which replaces the distinct variants.

(2)

{(2) · []} : f(u, v) �� g(z)

(†′)
{(1) · [u/x, v/y], (2) · []} : f(v, u) �� g(z)

[v/u, u/v]
{(2) · [], (1) · [v/x, u/y], (2) · [v/u, u/v]} : f(u, v) �� g(z)

(‡)

With superposition and equality resolution which are the last steps in both proofs (∗)
and (†) in Example 1, we derive the contradiction.

(3)

{(3) · []} : f(a, b) � g(c)

(‡)

{(2) · [], (1) · [v/x, u/y], (2) · [v/u, u/v]} : f(u, v) �� g(z)
[a/u, b/v]

{(3) · [], (2) · [a/u, b/v], (1) · [b/x, a/y], (2) · [b/u, a/v]} : g(c) �� g(z)
[c/z]

{(3) · [], (2) · [a/u, b/v, c/z], (1) · [b/x, a/y], (2) · [b/u, a/v, c/z]} : �
(∗′)

The instances of the clauses in the label of the contradiction with their respective
substitutions are exactly the instances (5)-(7) in Example 1 and unsatisfiability can be
shown on the ground abstraction of clauses (1)-(7).

We can exploit the observation that set labels can become saturated to prove that set la-
belled unit superposition is a decision procedure for the Bernays-Schönfinkel fragment
of first-order clause logic with equality. We first need to introduce some terminology
motivated by the usual idea in theorem proving that clauses are equal modulo renaming.
We extend this notion to closures and labelled literals in the following ways.

Two closures C · θ and C′ · θ′ are equivalent up to renaming away from a set of
variables V if there exists a renaming μ where rng(μ) ∩ V = ∅ such that C · θ =
C′μ · μ−1θ′μ. Intuitively we want the closures to be equal if C and C′ as well as Cθ
and C′θ′ are equal up to renaming, therefore we have to “pull out” the renaming μ
from the substitution θ′. Further, we want to make the clauses variable-disjoint from V ,
which becomes obvious in the next step.

For a labelled literal L : L we do not distinguish closures in L equivalent up to re-
naming away from var(L). Clauses in the labelL are made variable-disjoint fromL and
without loss of generality we assume that for a closure C · θ it is dom(θ) ⊆ var(C).

We say that a set of closures S is equivalent up to renaming away from a set of
variables V to a set of closures S′ if for every closure in S there is a closure equivalent
up to renaming away from V in S′ and vice versa.

Finally, two labelled literals L : L and L′ : L′ are equivalent up to renaming if there
is a renaming ρ such that L = L′ρ and L is equivalent to L′ρ up to renaming away from
var(L). We then do not distinguish between labelled literals equivalent up to renaming.

Theorem 1. Inst-Gen-Eq with set labelled unit superposition is a decision procedure
for the Bernays-Schönfinkel fragment of first-order logic with equality.

466 K. Korovin and C. Sticksel

Proof. There is only a finite number of labelled literals that are not equivalent up to
renaming and thus only a finite number of relevant instances from labels of contra-
dictions. The set labelled unit superposition calculus can therefore derive only a finite
number of distinct set labelled literals.

As discussed, set labels make available the relevant instances directly, thus obsoleting
the need to trace a proof tree. The proof of a literal cannot be reconstructed from its label
as the union of labels in merging and superposition inferences loses the proof structure.
However, the relevant instances are all that is needed to witness the inconsistency of the
selection in the ground abstraction. Further, the merging inference can combine several
proofs with their common parts factored out in the union of the labels.

4 Redundancy Elimination and Selection Changes

Although set labels are a concise and powerful enough mechanism in many practical
cases, they show a weakness when we consider redundancy that occurs in the incremen-
tal process of instantiation. Set labels collect clauses at the leaves of proofs and accumu-
late respective relevant substitutions. Merging inferences combine superposition proofs
and the conclusion contains closures from several proofs. When a leaf clause becomes
redundant with the accumulated relevant substitution, every proof with the clause at a
leaf is redundant and all leaf clauses in this proof can be eliminated. However, in a set
label we cannot separate out all closures corresponding to the redundant proof from a
set label since the structure is lost when two proofs are merged.

Example 3. Let us assume that the unlabelled unit superposition proof (†) in Exam-
ple 1 becomes redundant due to the accumulated substitution applied to (2).2 Let us
further assume proof (∗) is not redundant. In the labelled unit superposition calculus
in Example 2, both proofs were merged and we had {(3) · [], (2) · [a/u, b/v, c/z], (1) ·
[b/x, a/y], (2) · [b/u, a/v, c/z]} as the label of the contradiction.

We would obtain the set label {(2) · [b/u, a/v, c/z], (1) · [b/x, a/y], (3) · []} from
the redundant proof (†) and we want to eliminate these redundant closures from the set
label of the merged proofs. However, the set label from the non-redundant proof (∗) is
{(3) · [], (2) · [a/u, b/v, c/z]} and we have to retain these closures.

As the information about the proof structure cannot be recovered from a set label,
we cannot eliminate all closures from the a set label. In particular, we would need to
know that the proofs overlap on closure (3) · [] and not on (1) · [b/x, a/y].

A similar problem arises from changes in the selection function. The model of the
ground abstraction may change in a way that a different literal has to be selected in a
clause than before. In that case, all proofs with the previously selected literal at a leaf
should be eliminated. Again, we want to remove a subset of the clauses in the label of a
literal and it is not possible to determine if a clause has to be kept in the label as it may
well be from the label of a non-redundant proof that was merged.

2 See http://www.cs.man.ac.uk/˜sticksec/LPAR2010-Full.pdf for an ex-
tended example with concrete redundancy.

http://www.cs.man.ac.uk/~sticksec/LPAR2010-Full.pdf

Labelled Unit Superposition Calculi for Instantiation-Based Reasoning 467

The cause of the problem is that we use the set union for combining labels in both the
merging inference and in the superposition inference. In the next section we will present
a different label structure that preserves the shape of proofs by using two different
operations in merging and superposition.

Let us finally note that set labels are still a useful sound and complete mechanism.
Unit superposition with set labels merely generates more instances of clauses than
strictly necessary while adding these instances does not harm soundness nor complete-
ness. An instance of a clause is a sound consequence of the clause. Although we cannot
determine the full subset to be eliminated from a label, we can safely remove each
clause from a label which has become redundant with its substitution or where the se-
lection has changed. In Section 7 we will evaluate an implementation of set labels with
this restricted elimination against the more powerful elimination in the next section.

5 Tree Labelled Unit Superposition

In order to eliminate redundancy in a labelled unit superposition calculus as described
above, we need to preserve a certain Boolean structure in the label. To this end we can
regard a closure C · θ as a propositional variable. A merging inference corresponds to
a disjunction and a superposition to a conjunction of labels. Eliminating parts of a label
then means assigning false to propositional variables in the tree where the correspond-
ing closures have become redundant and simplifying the Boolean structure.

Let us write the disjunction of two labels as T1 � T2 and the conjunction of two
labels as T1 � T2. A tree label is then either a closure C · θ, a conjunction

�n
i=1 Ti or

a disjunction
⊔n

i=1 Ti of n tree labels T1, . . . , Tn. This structure is isomorphic to an
AND/OR tree where all non-leaf nodes are either labelled as AND nodes or OR nodes.
AND and OR nodes alternate on each level of the tree such that AND nodes only have
OR nodes as successors and vice versa for OR nodes. We call this label a tree label.

Definition 3. A tree label is an AND/OR tree where each leaf is a closure C · θ. The
σ-instance of a tree label T is the AND/OR tree T with the substitution σ applied at
each leaf such that C · θ becomes C · θσ.

In order to eliminate from a tree label a closure that has become redundant, we assign
false to the propositional variable and simplify the tree with Boolean operations.

Definition 4. The C · θ-restriction T |C·θ of an AND/OR tree T is the tree obtained
by replacing every occurrence of C · θ in T with the constant false and recursively
simplifying the tree using the rules (i) false � U → U and (ii) false � U → false.

The strength of tree labels when compared to set labels is the precise elimination of
redundancy by restriction. If the closure C · θ has become redundant, then we can
simplify the tree label C · θ�T to T and the label C · θ�T to the empty label. Literals
with the latter label are redundant and can be discarded.

We now define a unit superposition calculus with different operators to combine
labels in the merging and the superposition inference, namely � and �, respectively.

468 K. Korovin and C. Sticksel

Definition 5 (Tree Labelled Unit Superposition)

Restriction

T : L
T |C·θ : L

where C · θ is redundant. The label of the literal is replaced with its restriction.

Merging

T : l r T ′ : l′ r′ (σ)
T # T ′σ : l r

T : l � r T ′ : l′ � r′
(σ)

T # T ′σ : l � r

where σ is a renaming such that l′σ = l and r′σ = r. The conclusion replaces the two premises.

Superposition

T : l r T ′ : s[l′] t
(σ)

(T $ T ′)σ : (s[r] t)σ

T : l r T ′ : s[l′] � t
(σ)

(T $ T ′)σ : (s[r] � t)σ

where (i) σ = mgu(l, l′), (ii) l′ is not a variable, (iii) lσρ ! rσρ and (iv) s[l′]σρ ! tρ for some
grounding substitution ρ.

Equality Resolution

T : (l � r)
(σ)T σ : �

where σ = mgu(l, r).

As in the set labelled unit superposition calculus, we start with the selected literals
which are labelled with the respective clauses they are selected in. Upon finding the
contradiction we generate the instances of all clauses at the leaves of the tree. The set
of relevant instances of a tree label is the set of closures occurring at leaves of the
AND/OR tree.

In order to show that tree labelled unit superposition can replace set labelled unit
superposition and in turn unlabelled unit superposition with extraction of relevant in-
stances from proofs, we need to extend the simulation argument from Section 3.

Tree labelled unit superposition can stepwise simulate set labelled unit superposition
using only superposition, merging and equality resolution inferences and the relevant
instances in set labels are identical to the relevant instances in the tree label. Therefore
Lemmas 1, 2 and 3 apply for tree labels as well, but we additionally have to deal with the
restriction inference and show that it preserves completeness using the following lemma.

Lemma 4. A restriction inference on C · θ eliminates exactly those closures from the
tree label which occur in corresponding unlabelled proofs, redundant due to C · θ.

The lemma follows by induction over the proof structure the tree labelled literal was
derived from. Let us give an example to illustrate elimination by restriction and the
subsequent simplification of the AND/OR tree.

Labelled Unit Superposition Calculi for Instantiation-Based Reasoning 469

Example 4. The contradiction in the set labelled unit superposition proof (∗′) from Ex-
ample 2 has the set label{

(3) · [], (2) · [a/u, b/v, c/z], (1) · [b/x, a/y], (2) · [b/u, a/v, c/z]
}

.

In a tree labelled unit superposition proof, we obtain the label

(3) · [] $
(
(2) · [a/u, b/v, c/z] #

(
(1) · [b/x, a/y] $ (2) · [b/u, a/v, c/z]

))
which preserves the structure of the two proofs that were merged.

If we were to eliminate (2) · [b/u, a/v, c/z] which corresponds to the leaf literal
f(u, v) �, g(z) in proof (†) in Example 1, the tree label becomes

(3) · [] $
(
(2) · [a/u, b/v, c/z] #

(
(1) · [b/x, a/y] $ false

))
=

(3) · [] $ (2) · [a/u, b/v, c/z].

Eliminating (2) · [a/u, b/v, c/z] which corresponds to f(u, v) �, g(z) in proof (∗) in
Example 1 leaves us with

(3) · [] $
(
false #

(
(1) · [b/x, a/y] $ (2) · [b/u, a/v, c/z]

))
=

(3) · [] $ (1) · [b/x, a/y] $ (2) · [b/u, a/v, c/z].

Both tree labels then lead to exactly the instances that were generated from the separate
proofs in Example 1.

6 OBDD Labelled Unit Superposition

Two labelled literals L1 : L and L2 : L are identical if their labels are. Moreover, since
labels encode proofs and certain proofs are isomorphic, we can generalise the notion
of identity on labelled literals to equivalence based on logical equivalence of Boolean
formulae. Exploiting equivalence of labels in a labelled unit superposition procedure is
not only an important simplification step, in some cases it is essential for termination as
we will show on our running example.

Equivalence of two set labels can easily be checked: if their sets are equal, their
relevant instances are equal and the literals do not need to be distinguished. Here, the
property that sets are unordered collections of elements leads to a natural normal form
where equivalence of labels can be checked efficiently. However, the situation is not
so easy for tree labels since they are not produced in a normal form. The sequence of
merging and superposition inferences determines the shape of the tree which makes
comparing tree labels by their shape unusable except in simple cases.

Standard normal forms of Boolean formulae are the disjunctive and conjunctive nor-
mal forms (DNF and CNF) which are unfortunately frequently exponential in the size of
the original formula. However, approaches like the definitional transformation, which
introduces new variables for subterms of the original formula, do not produce a unique
normal form, which makes checking equivalence of labels more difficult.

470 K. Korovin and C. Sticksel

In this section we propose tree labels based on ordered binary decision diagrams
(OBDDs) which offer particularly promising features, above all unique normal forms
and checking of equivalence in constant time. An OBDD is a graph with common sub-
trees shared, it provides a compact and well-understood normal form of Boolean for-
mulae. OBDDs are used in similar contexts to encode Boolean structures, e.g. [9].

Definition 6. An OBDD label B is an OBDD where each node is a closure C · θ. The
σ-instance of an OBDD label B is the OBDD Bσ where each closure C · θ is replaced
with C · θσ.

We remark that σ-instantiation of an OBDD may require changing the variable ordering
in the OBDD and thus a reordering of the OBDD.

Definition 7. The C · θ-restriction B|C·θ of an OBDD label is obtained by replacing
each node C · θ in B with false and reducing the OBDD.

The inference rules of OBDD labelled unit superposition are in straightforward analogy
to tree labelled unit superposition in Definition 5 where tree labels are replaced with
OBDDs. We obtain relevant instances from an OBDD label in the obvious way: the set
of relevant instances of an OBDD label B is the set of all nodes C · θ in B.

Let us further discuss our running example where keeping the Boolean structure
of a tree label in an OBDD normal form prevents non-termination in the case of not
normalised tree labels.

Example 5. We notice that the equation f(x, y) , f(y, x) is not orientable in any
simplification ordering and must therefore be applied in both directions. Let T1 and T2
be the labels of f(x, y) , f(y, x) and f(u, v) �, g(z), respectively.

We draw a first superposition inference between the literals with the equation in the
given orientation

(1)

T1 : f(x, y) f(y, x)
(2)

T2 : f(u, v) � g(z)
[u/x, v/y]

T1[u/x, v/y] $ T2[] : f(v, u) � g(z)
(i)

and merge the conclusion with the premise

(2)

T2[] : f(u, v) � g(z)
(i)

T1[u/x, v/y] $ T2[] : f(v, u) � g(z)
[v/u, u/v]

T2[] #
(
T1[v/x, u/y] $ T2[v/u, u/v]

)
: f(u, v) � g(z)

(ii)

A second superposition with the equation reversed

(1)

T1 : f(y, x) f(x, y)
(2)

T2 : f(u, v) � g(z)
[v/x, u/y]

T1[v/x, u/y] $ T2[] : f(v, u) � g(z)
(iii)

results in the same conclusion with a different label. We merge it again

(2)

T2[] : f(u, v) � g(z)
(iii)

T1[v/x, u/y] $ T2[] : f(v, u) � g(z)
[v/u, u/v]

T2[] #
(
T1[u/x, v/y] $ T2[v/u, u/v]

)
: f(u, v) � g(z)

(iv)

Labelled Unit Superposition Calculi for Instantiation-Based Reasoning 471

and obtain the following tree label from (ii) and (iv)

T2[] #
(
T1[v/x, u/y] $ T2[v/u, u/v]

)
#
(
T1[u/x, v/y] $ T2[v/u, u/v]

)
.

Let us abbreviate this label to

T 1
2 #
(
T −1

1 $ T −1
2

)
#
(
T 1

1 $ T −1
2

)
(a)

using the superscript 1 to denote the substitutions [] and [u/x, v/y] as well as −1 for
[v/x, u/y] and [v/u, u/v]. The corresponding set label is{

T 1
2 , T −1

2 , T 1
1 , T −1

1

}
.

It is now necessary to repeat inferences (i) and (iii) for f(v, u) �, g(z) with the
label T2 being (a). We note that for the substitutions applied to T2 in the merging,
we have T −1

1 [v/u, u/v] = T 1
1 , T 1

1 [v/u, u/v] = T −1
1 , T −1

2 [v/u, u/v] = T 1
2 and

T 1
2 [v/u, u/v] = T −1

2 .
The label of the conclusion has the structure of (a) where T 1

2 is substituted by (a)
and T −1

2 by (a) with the substitution [v/u, u/v] applied.

T 1
2 #
(
T −1

1 $ T −1
2

)
#
(
T 1

1 $ T −1
2

)
#(

T −1
1 $
(
T −1

2 #
(
T 1

1 $ T 1
2

)
#
(
T −1

1 $ T 1
2

)))
#(

T 1
1 $
(
T −1

2 #
(
T 1

1 $ T 1
2

)
#
(
T −1

1 $ T 1
2

)))
(b)

The set label does not change as no new leaves are added in the
tree label. Literals with identical labels are identical and therefore
no further inferences are necessary.

As the tree labels (a) and (b) have a different structure from
the way they were built up during the inferences, they are distinct
and we would continue with inferences, obtaining ever-growing
labels in the conclusion.

If we, however, transform both labels to an OBDD using the
same ordering, we obtain the relatively simple OBDD shown to
the right. Just as for set labels we do not need to generate further
inferences from here.

OBDD labels are in a normal form as set labels are, therefore we can state a variant of
Theorem 1.

Theorem 2. Inst-Gen-Eq with OBDD labelled unit superposition is a decision proce-
dure for the Bernays-Schönfinkel fragment of first-order logic with equality.

Proof. There is only a finite number of distinct closures and therefore only a finite
number of OBDDs built from these closures. Therefore there is only a finite number of
distinct OBDD labelled literals and the OBDD labelled unit superposition calculus will
therefore terminate after a finite number of inference steps.

472 K. Korovin and C. Sticksel

7 Implementation and Evaluation

We have implemented set, tree and OBDD labels in our iProver-Eq system (see [7]) and
evaluated it with the TPTP benchmark library v4.0.1. We have used a cluster of Intel
Xeon Quad Core machines with 2.33GHz and 2GB of memory limit and ran each of the
13783 problems for at most 120 seconds. In total, 4848 problems were solved by at least
one label implementation and 3970 problems were solved by all three implementations.

As expected, the performance on non-equational problems was equal in all three
label implementations, therefore we only focus on the 9054 problems with at least one
equation, see Figure 1.

The results show that set and tree labels exhibit a comparable performance on both
the overall number of solved problems and the number of problems that were solved
fastest in the implementation. The number of problems solved only with set and tree la-
bels (193 and 216) are significant, as well as the number of problems solved with other
labels but not with the respective implementation (259 and 282). In a direct compari-
son, there are 195 problems where tree labels are more than twice as fast as set labels,
whereas vice versa set labels are twice as fast on only 70 problems.

Despite the fact that OBDD labels provide a normal form, efficient checking for label
equivalence and precise elimination of redundancy, in practice they remain considerably
weaker than trees and sets. Their performance is mainly hit by the effort spent building
OBDD labels which can become rather large. In the problems that were solved, OBDDs
were well-behaved so that the number of nodes in OBDDs was in most cases much less
than quadratic in the number of variables, i.e. closures in labels. Problems that were not
solved in the time limit mostly had either a large number of closures (up to 50,000) or
the Boolean structure had to be represented with a large number of nodes (many with
several millions). Nevertheless, there are 119 problems solved with OBDD labels which
are not solved with both of the other label implementations. Further, on 93 problems
OBDD labels are faster than both the other labels, which include 9 problems with a
runtime greater than one second where OBDD labels are significantly faster.

Problems solved not solved fastest
set 2006 259 601
tree 1983 282 699
OBDD 1512 753 93

193

216 13

1393
344

30

76

set

tree OBDD

Fig. 1. Comparing labels on the number of solved equational problems out of 9054 in total: set
labels solved 2006 problems and were fastest on 601 problems, while 259 problems were only
solved with other labels. 193 problems could be solved with set labels and not with tree or OBDD
labels, 30 problems were not solved with set labels but both with tree and OBDD labels and 1393
problems were solved with all three labels.

Labelled Unit Superposition Calculi for Instantiation-Based Reasoning 473

The results make hybrid approaches, such as a combination of tree and set labels,
look promising. We will also further investigate how to improve OBDD labels with
techniques exploiting the specific structure of labels.

8 Conclusion

In this paper we introduced a labelled superposition calculus for efficient instance gen-
eration for equational reasoning in the Inst-Gen framework. We investigated and eval-
uated several label structures based on sets, AND/OR trees and OBDDs. Our imple-
mentation and experimental results show that our labelled approach has a promising
potential. We observe that different label structures are complementary in performance
on many problems which indicates further investigation is needed regarding possible
combinations of these techniques. In further work we will also explore possibilities to
make use of the information in labels in other calculi and applications, for example for
query answering.

References

1. Baumgartner, P.: Logical Engineering with Instance-Based Methods. In: Pfenning, F. (ed.)
CADE 2007. LNCS (LNAI), vol. 4603, pp. 404–409. Springer, Heidelberg (2007)

2. Baumgartner, P., Tinelli, C.: The Model Evolution Calculus with Equality. In: Nieuwenhuis,
R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 392–408. Springer, Heidelberg (2005)

3. Eiter, T., Faber, W., Traxler, P.: Testing Strong Equivalence of Datalog Programs - Imple-
mentation and Examples. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR
2005. LNCS (LNAI), vol. 3662, pp. 437–441. Springer, Heidelberg (2005)

4. Ganzinger, H., Korovin, K.: Integrating Equational Reasoning into Instantiation-Based The-
orem Proving. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp.
71–84. Springer, Heidelberg (2004)

5. Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ- Description Logic to Disjunctive Datalog
Programs. In: KR 2004, pp. 152–162. AAAI Press, Menlo Park (2004)

6. Korovin, K.: Instantiation-Based Automated Reasoning: From Theory to Practice. In:
Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 163–166. Springer, Heidelberg
(2009)

7. Korovin, K., Sticksel, C.: iProver-Eq – An Instantiation-based Theorem Prover with Equal-
ity. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 196–202. Springer,
Heidelberg (2010)

8. Letz, R., Stenz, G.: Integration of Equality Reasoning into the Disconnection Calculus. In:
Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 176–190.
Springer, Heidelberg (2002)

9. de Moura, L., Bjørner, N.: Deciding Effectively Propositional Logic Using DPLL and Substi-
tution Sets. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI),
vol. 5195, pp. 410–425. Springer, Heidelberg (2008)

10. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning. Elsevier, Amsterdam (1999)

11. Pérez, J.A.N., Voronkov, A.: Encodings of Bounded LTL Model Checking in Effectively
Propositional Logic. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 346–
361. Springer, Heidelberg (2007)

Boosting Local Search Thanks to CDCL

Gilles Audemard, Jean-Marie Lagniez, Bertrand Mazure, and Lakhdar Saı̈s

Université Lille-Nord de France
CRIL - CNRS UMR 8188

Artois, F-62307 Lens
{audemard,lagniez,mazure,sais}@cril.fr

Abstract. In this paper, a novel hybrid and complete approach for propositional
satisfiability, called SATHYS (Sat Hybrid Solver), is introduced. It efficiently
combines the strength of both local search and CDCL based SAT solvers. Con-
sidering the consistent partial assignment under construction by the CDCL SAT

solver, local search is used to extend it to a model of the Boolean formula, while
the CDCL component is used by the local search one as a strategy to escape from
a local minimum. Additionally, both solvers heavily cooperate thanks to relevant
information gathered during search. Experimentations on SAT instances taken
from the last competitions demonstrate the efficiency and the robustness of our
hybrid solver with respect to the state-of-the-art CDCL based, local search and
hybrid SAT solvers.

1 Introduction

The SAT problem, namely the issue of checking whether a Boolean formula in Con-
junctive Normal Form (CNF) is satisfiable or not, is a central issue in many artificial
intelligence and computer science domains, including hardware and software verifi-
cation, planning, cryptography and bioinformatics. These last two decades, many ap-
proaches have been proposed to solve large application SAT instances, based on logi-
cally complete or incomplete methods. Both stochastic local search (SLS) techniques
[34,33,20] and elaborate variants of the DPLL procedure [7], commonly named modern
SAT solvers [30,9], can now solve many families of hard SAT instances. Based on differ-
ent paradigms, these two kinds of approaches admit complementary behavior in terms
of performances. Modern SAT or CDCL (Conflict Driven Clause Learning) solvers are
particularly efficient on application benchmarks while local search performs better on
random SAT instances. Stochastic Local search (Algorithm 2) and modern SAT solvers
(Algorithm 1) are recognized as two important search paradigms. Their differences arise
in the way the search space is explored. In SLS, the algorithm explores the search space
in a non systematic way starting from a complete assignment and moving to another
complete assignment by inverting the truth value of a chosen variable (this is a flip).
After a fixed number of flips, another complete assignment is generated, and the pro-
cess is repeated. Modern SAT solvers explore the search space in a systematic way by
developing a search tree, where at each node the current partial assignment is extended
by assigning a selected variable and propagating unit literals. In SLS, the search process
can lead to a local minimum, in this case several strategies are designed to escape from

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 474–488, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Boosting Local Search Thanks to CDCL 475

such minimum. In modern SAT solvers, the process can lead to a conflict and in this
case several learning strategies are designed for resolving such a conflict [38].

Combining stochastic local search and conflict driven clause learning solvers is
clearly a challenging issue as stated by Selman et al. [35] in 1997 (challenge 7) and
in 2003 [24]. Such a combination might exploit the strength of both approaches and
might result in a new but more efficient hybrid SAT solver. Several attempts have been
made these last years [4] and different hybrid solvers have been designed leading to
real progress towards the resolution of this challenging issue (see section 5). However,
the challenge remains open as the performance of these proposed hybrid solvers is far
from those of the CDCL based solvers particularly on application instances. Our goal
in this paper is to design a hybrid SLS/CDCL solver that outperforms the local search
techniques, while significantly reducing the gap with CDCL based solvers particularly
on application category.

In this paper, we propose a new hybridization of local search and modern SAT solver,
named SATHYS (Sat Hybrid Solver). In our approach, both components heavily coop-
erate through relevant information gathered during search. More precisely, our hybrid
solver alternatively performs the search process using local search and CDCL based SAT

solvers. On the one hand, at each node of the search tree, the local search component
is used to extend to the model, the current (consistent) partial assignment built by the
CDCL based component. On the other hand, the CDCL part is conditionally invoked by
the local search component when a local minimum is encountered. Each solver benefits
from the other in several ways. First, each time a local minimum is reached, the local
search technique updates the activity of the boundary variables [14]. The idea is to di-
rect the CDCL search towards boundary points proven to be important by Goldberg in
[14]. Secondly, the polarities of the literals involved in the best complete assignment
found during local search are exploited by the CDCL component. From the other side,
the CDCL solver shares with local search the current partial assignment together with
the learnt clauses. The originality of our proposed hybrid SAT solver arises in alternating
search of both components while exchanging relevant information.

The rest of the paper is organized as follows. Section 2 introduces some definitions
and notations. Then, we present CDCL and SLS solvers in a unified way. Section 3 de-
scribes our new hybrid solver. In Section 4 we provide some experimental comparison
with different SAT solvers including the CDCL solver MINISAT and several well known
SLS and hybrid solvers. Before concluding, section 5 discusses the related works.

2 Technical Background

2.1 Preliminary Definitions and Notations

Let V = {x1, ..., xn} be a set of propositional variables, a literal # is either a positive xi

or a negative variable xi. The two literals x and x are said complementary. We denote
by # the complementary literal of #. A clause ci = (#1 ∨ . . . ∨ #ni) is a disjunction
of literals. A unit clause is a clause with only one literal, called unit literal. A formula
Σ = (c1∧. . .∧cm) is in conjunctive normal form (CNF) as it is a conjunction of clauses.
The set of variables involved in Σ will be noted VΣ . An interpretation I of a Boolean
formula Σ associates a truth value I(x) ∈ {false, true} to some variables x ∈ VΣ . I

476 G. Audemard et al.

is complete if it assigns a truth value to every x ∈ VΣ , and partial otherwise. A complete
(resp. partial) interpretation will be noted Ic (resp. Ip). A clause, a CNF formula and an
interpretation can be represented using sets.

It should say that a clause β is falsified (resp. satisfied) by I if ∀# ∈ β (resp. ∃# ∈ β),
β is falsified (resp. satisfied) by # under I. Σ|� denotes the formula simplified by the
assignment of the literal # to true, that is Σ|� = {α \ {#} such that α ∈ Σ and # �∈
α}. This notation can be extended to an interpretation. Let I = {#1, ..., #n} be an
interpretation, Σ|I = (...(Σ|�1)...|�n).

A model of a formula Σ, noted I |= Σ, is an interpretation I such that ∀c ∈ Σ,
c is satisfied by I. On the contrary, an interpretation I is called a nogood of Σ, noted
I �|= Σ, if ∃c ∈ β such that c is falsified by I.

SAT is the problem of checking whether a CNF formula admits a model or not. If the
answer is positive, then the formula is called satisfiable, else it is called unsatisfiable.

2.2 CDCL Solvers

CDCL based SAT solvers (Algorithm 1), generally referred as modern SAT solvers [30],
are based on classical unit propagation (lines 2, 14 and 15) efficiently combined through
incremental data structures, restart policies (line 15) [15], activity-based variable selec-
tion heuristics (VSIDS-like) (line 12) [30], and clause learning (line 6) [36].

A CDCL based SAT solver is a sophisticated variant of the well known DPLL [7]
procedure. At each node of the search tree, the assigned literals (the decision literal
and the propagated ones) are labeled with the same decision level starting from 1 and
increased at each decision (or branching step). After backtracking, some variables are
unassigned and the current decision level is decreased accordingly. At level m, the
current partial interpretation Ip can be represented as an ordered sequence of decision-
propagation steps made at the different levels. We note Ii

p where i ≤ m, the partial
interpretation Ip restricted to the first i sequences of decision-propagation. An asserting
level associated to a falsified clause α = (x ∨ β) under an interpretation Ip (in short
level(α, Ip)) is defined as the level j such that α|Ij

p
= x and x represents the asserting

literal of α under Ip.
Algorithm 1 describes the general skeleton of a CDCL based SAT solver. Let us briefly

explain its main components. A more detailed description of modern SAT solvers can
be found in [6]. The algorithm initializes the learnt database Γ as the empty set (line
1), then unit propagation is applied on the original formula Σ (line 2). The function
BCP (Σ) returns the set of propagated literals. The main loop contains several cases.
First, if all variables are assigned then the formula is empty and I is a model of Σ (line
4). If the partial assignment Ip is consistent, then a new decision variable is chosen and
unit propagation is performed (lines 12, 13 and 14). Otherwise, a conflict is reached
and a nogood (or a learnt clause) α is computed (line 6). If α is the empty clause, then
the instance is proven unsatisfiable (line 8). Otherwise, α = (x∨ β) and j the asserting
level of α w.r.t. Ip. After that, the clause α is added to the learnt database (line 9) and
the algorithm backtracks to level j by computing a new partial interpretation Ij

p (line
10). At level j the asserting literal x ∈ α is propagated (line 14). Finally, the algorithm
restarts if the cutoff value in terms of the number of conflicts is reached (line 15).

Boosting Local Search Thanks to CDCL 477

Algorithm 1. CDCL solver
Input: a CNF formula Σ
Output: SAT or UNSAT
Γ ← ∅;1

Ip ← BCP (Σ);2

while (true) do3

if (Σ|Ip = ∅) then return SAT;4

if (∅ ∈ Σ|Ip) then5

α=(x ∨ β) ← analyzeConflict(Σ ∪ Γ, Ip);6

j ← level(α, Ip);7

if (α = ∅) then return UNSAT;8

Γ ← Γ ∪ {α};9

Ip ← Ij
p;10

else11

x ← chooseDecisionLiteral(Σ|Ip);12

Ip ← Ip ∪ {x};13

Ip ← Ip ∪ BCP ((Σ ∪ Γ)|Ip);14

if (restart()) then Ip ← BCP (Σ ∪ Γ);15

2.3 Local Search Solvers

Algorithm 2 gives the general scheme of a local search solver. It uses a stochastic walk
over complete interpretations of Σ. At each step (or flip), it tries to reduce the number of
falsified clauses (this step is usually called a descent). The next complete interpretation
is chosen among the neighbors (interpretations that differ only by the truth value of one
variable) of the current one (line 7). A local minimum is reached when no descent is
possible. In such a case, a strategy is used in order to escape from this minimum (line
5). Like in CDCL solvers, sometimes a restart (called a try in SLS) is performed and
a new complete interpretation is generated. However restarts in CDCL and SLS solvers
have not exactly the same role. In the CDCL case, it is now well admitted that restarts
are used to reorder variables, directing the solver to the same part of the search space
using a different branch. On the other hand, restarts in SLS solvers are used in order to
diversify the search by generating a new complete interpretation.

3 SATHYS: A Novel Hybrid Approach

In this section, we present SATHYS, our hybrid solver for SAT which is available at
http://www.cril.fr/˜lagniez/sathys. Before giving its formal descrip-
tion, we provide some intuitions and motivations behind the design of SATHYS.

3.1 Motivations

Recently, several works have shown that local search techniques provide relevant infor-
mation for locating unsatisfiable cores [16,17]. Motivated by these results, we propose

http://www.cril.fr/~lagniez/sathys

478 G. Audemard et al.

Algorithm 2. Local Search solver
Input: a CNF formula Σ
Output: SAT
Ic ← completeInterpretation(Σ) ;1

while (true) do2

if (Σ|Ic = ∅) then return SAT;3

if a local minimum is reached then4

x ← chooseLitteralT oEscapeMinima(Σ,Ic);5

else6

x ← chooseLitteralT oF lip(Σ,Ic);7

flip(Ic, x);8

if (restart()) then Ic ← completeInterpretation(Σ);9

a new hybridization scheme of SLS and CDCL solvers. In our hybrid approach, the two
methods heavily interact and play complementary roles:

1. SLS directs the CDCL search towards the proof of unsatisfiability ;
2. CDCL directs the SLS search towards a model if it exists.

Let us briefly summarize these bidirectional interactions.

SLS → CDCL. The SLS affects the CDCL solver at two different levels known to be
important for the efficiency of satisfiability solvers. First, the activity of the variables
usually maintained by CDCL are dynamically refined by the SLS component. This local
search refinement of the activity-based heuristic (VSIDS) is achieved using the notion
of boundary points introduced recently by E. Goldberg in [14]. A boundary point is a
complete interpretation (point) I such that there exists at least one literal # belonging
to all clauses falsified by I. In [14], it was shown that focusing resolution on such kind
of literals # improves the proof quality by reducing the length of the refutation. From
the recent work by Grégoire et al. [17], we can also deduce that if the boundary point
corresponds to a local minimum, then the literal # belongs to at least one unsatisfiable
core. Considering these two interesting features of boundary points, we exploit this no-
tion to refine the activity of the clauses. When a local minimum is reached, updating the
activity of the variables associated to literals appearing in all the falsified clauses by the
boundary point might guide CDCL towards the most important part of the search space.
Indeed, favoring the assignment of such literals aims to direct the search to unsatisfiable
cores and might reduce the length of the resolution proof.

The second interaction level where SLS influences with CDCL is on the assignment
polarity (false, true) of the chosen variable. More precisely, when the next variable
to assign is chosen by CDCL, its polarity is taken from the best complete interpretation
(in terms of the number of satisfied clauses) found by the SLS solver. Usually, in CDCL

solvers such as Rsat [32], the assignment polarity (or phase) follows a progress saving
scheme. Each time a variable is assigned, its truth value is saved, and used as the polarity
of the variable when such a variable is selected again.

Boosting Local Search Thanks to CDCL 479

CDCL → SLS. From CDCL to SLS, the current CDCL branch made of the set of de-
cisions and propagations is provided to SLS. Using such a partial interpretation, the
SLS solver tries to extend it into a model by focusing search on the remaining unas-
signed variables. In this way, local search exploits variable dependencies provided by
the decisions and propagations of the CDCL solver. Let us recall that exploiting vari-
able dependencies is identified as an important issue for the efficiency of local search
based techniques [35,24,31]. On the other hand, as the CDCL solver is called when SLS

reaches a local minimum, the new partial interpretation revised by CDCL contains sev-
eral flipped variables. Consequently, from the local search side CDCL can be seen as a
strategy that helps local search to escape from local minima.

3.2 Formal Description

Even if the main core of the SATHYS hybrid solver is a local search based algorithm,
the integration of the CDCL part leads to a complete hybrid solver able to prove both
satisfiability and unsatisfiability. In this section, we give a detailed description of our
approach as depicted by the Algorithm 3.

First of all, the algorithm starts with an empty set of learnt clauses (Γ) and a com-
plete interpretation Ic built by randomly extending the current partial interpretation Ip

obtained by propagating unit literals on the original formula (lines 2–3). Note that func-
tion BCP (Boolean Constraint Propagation) returns the set of propagated unit literals.
After this initialization step local search process is performed. If there exists a neigh-
boring interpretation (an interpretation that differs from Ic by only the truth value of
one variable x), that reduces the number of falsified clauses (descent phase), then the
variable x is flipped, i.e. its truth value is reversed (lines 22-23). It is important to note
that only variables out of Ip can be flipped. Indeed, the variables involved in Ip are
considered tabu during the local search step. This partial interpretation evolves during
the search and is modified in the CDCL part of the algorithm (lines 11–19). However at
each iteration of the loop (line 4), we have Ip ⊆ Ic.

When a local minimum is reached (line 6), we select one of the two following strate-
gies : (1) call the CDCL component of the solver (lines 11–19) or (2) apply any other
repair strategy, like novelty [29] or rsaps [22], to escape from such local minima (lines
8–9). The selection between the two strategies is done using a condition based on the
search progress SLSprogress that will be explained later.

Each time the CDCL part of the solver is called (lines 11-20), a decision literal # is
chosen (line 11). Then unit propagation is performed (line 12). If it leads to a contradic-
tion (line 13), a classical analysis is performed, the learnt clause γ is added to the learnt
database Γ before back-jumping to the level j. If the learnt clause is empty, then the the
formula is proven unsatisfiable (line 16). As long as the current partial interpretation Ip

is not consistent, the process continues (see the loop line 13). At the end of this process,
the consistent partial interpretation Ip is extended to a complete one Ic (line 20) and
the local search component continues the search process. After each CDCL part, the par-
tial interpretation Ip is modified (line 19). Consequently, the fixed part of the complete
interpretation Ic is also modified. In this way, we derive a new strategy based on CDCL

to escape from local minima.

480 G. Audemard et al.

Algorithm 3. SATHYS

Input: a CNF formula Σ
Output: SAT or UNSAT

Γ ← ∅;1

Ip ← BCP (Σ);2

Ic ← Ip ∪ completeInterpretation(Σ|Ip);3

while (true) do4

if (Σ|Ic = ∅) then return SAT;5

if a local minimum is reached then6

if (SLSprogress > 0) then7

� ← chooseLitteralT oEscapeLocalMinima(Σ|Ip , Ic);8

flip(Ic, �);9

else10

Ip ← Ip ∪ {�} with � �∈ Ip;11

Ip ← Ip ∪ BCP ((Σ ∪ Γ)|Ip);12

while (∅ ∈ (Σ ∪ Γ)|Ip) do13

γ=(� ∨ β)← analyzeConflict(Σ ∪ Γ, Ip);14

j ← level(γ,Ip);15

if (γ = ∅) then return UNSAT;16

Γ ← Γ ∪ {γ};17

Ip ← Ij
p;18

Ip ← Ip ∪ BCP ((Σ ∪ Γ)|Ip);19

Ic ← Ip ∪ (Ic \ Ip);20

else21

x ← chooseLitteralT oF lip(Σ|Ip , Ic);22

flip(Ic, �);23

if (restart()) then24

Ip ← BCP (Σ ∪ Γ);25

Ic ← Ip ∪ completeInterpretation(Σ|Ip) ;26

This process is repeated until the next restart (line 24). As long as a model is not
found or the unsatisfiability of the formula is not proven the solver restarts the previous
process with a new initial complete interpretation (lines 25-26).

In the following, we introduce some improvements embedded in our solver SATHYS.

Calling the CDCL oracle. The behavior of our hybrid method heavily depends on the
value of the variable SLSprogress (see Algorithm 3, line 7). We use a similar mech-
anism as it is done in [21]. When the local search engine reduces the MAXSAT value
found in the current restart, this variable SLSprogress is increased. Our reasoning is
that as long as SLS allows improvements i.e. increases the number of satisfied clauses,
the execution of SLS is favored. Each time a local minimum is reached, the value of
SLSprogress is decreased. By getting frequently stuck in local minima, it seems
that the local search engine has a real difficulty to improve the current interpretation. In
this case, we need to call the CDCL engine in order to escape from these local minima.

Boosting Local Search Thanks to CDCL 481

Activity based heuristic for CDCL. The heuristic used in the CDCL part of the Al-
gorithm 3 is a slightly modified version of VSIDS [30]. Indeed, as usual, all weights
of the variables are increased during the conflict analysis. Furthermore, when a local
minimum is reached, we look for a boundary point and we increase the activity of the
variable with one of its literals appearing in all the falsified clauses. In this way, and as
explained above, our aim is to generate shorter resolution proofs.

Polarity of the decision literals. The polarity of the decision variable is known to be
very important for the efficiency of SAT solvers. We propose here to use both engines
in order to choose the best polarity for a given variable. At each restart, we store the
interpretation associated to the current MAXSAT value and we modify it using progress
saving [32]. Then when a given decision variable is chosen by CDCL, its polarity is
taken from the last memorized complete interpretation with the best MAXSAT value.
Indeed, we focus the search near the MAXSAT value, so near a solution by taking into
account dependencies between variables.

4 Experimental Validation

In this section, we provide an experimental validation of our hybrid solver SATHYS.
Like most other solvers, we use SatElite in a preprocessing step [8]. Instances from
the SAT’09 competition are used as a test set. They are divided into three different
categories: crafted (281 instances), application (292) and random (570).

Let us note that these instances are carefully selected for the SAT competition be-
cause of their relevance. From the results of the last SAT competitions, one can have
in mind that most of the state-of-the-art SAT solvers present very close performance in
terms of the number of solved instances. For example, PRECOSAT [3] and GLUCOSE [1]
were ex-aequo in terms of the number of solved instances in the application category
SAT +UNSAT).

The experimentation has been conducted on the same cluster as for last SAT 2009
competition (Intel Xeon 3GHz under Linux with a RAM memory size of 2GB). The
time limit (time-out) has been set to 1200 CPU seconds.

4.1 Effectiveness of the Collaboration

First of all, our goal is to highlight that our hybrid scheme is really relevant. To measure
the relevance of the different improvements introduced to SATHYS (described in the
previous sections), we compared SATHYS with the following variants:

– SATHYSnb: the VSIDS heuristic is not updated when a boundary point is
discovered.

– SATHYScdclAtEachLM : instead of using the variable SLSprogress we call the
CDCL solver at each local minimum.

– SATHYSnoPolarity: Literal polarity are not updated with the MAXSAT

interpretation.

482 G. Audemard et al.

Table 1. Comparison of different versions of the SATHYS solver. For each category, we provide
the number of solved instances. The total number of solved instances on all categories is also
given.

solver Crafted Application Random total
SATHYS 104 148 189 441
SATHYSnb 103 144 191 438
SATHYScdclAtEachLM 101 141 8 250
SATHYSnoPolarity 106 142 188 436

The Table 1 summarizes the results obtained by the four versions of SATHYS solver.
Not surprisingly, we can note that SATHYSnb is the best one on random instances.

Indeed, random instances are globally unsatisfiable i.e. the unsatisfiable core tends to
include all the clauses of the original formula. As the role of the activities (VSIDS) is to
focus the search on the most important part of formula, this is clearly not relevant in case
of random instances. Also, the boundary points are useless for this kind of instances.

Concerning SATHYScdclAtEachLM , this version is the worst one. Indeed, too many
calls of CDCL consumes clearly too much time. Moreover, as CDCL approaches are not
well suited for random instances, calling CDCL penalizes SATHYS. We can note that
the number of calls to the CDCL engine has an important impact on the performances
of SATHYS. Consequently, fine-tuning the local search progress (SLSprogress) is
crucial for the efficiency of our hybrid approach.

Concerning SATHYSnoPolarity , this version obtains good performance on the crafted
category. However, literals polarity seems to be a relevant criteria for application in-
stances considered as the most important category by the SAT community.

In summary, the cooperation scheme designed in SATHYS and described in the pre-
vious section improves the robustness and the efficiency of our hybrid solver.

4.2 Comparison

In this section, we compare our solver against some of the well known SAT solvers.
Many of them are considered as the state-of-the-art SAT solvers in at least one category
of instances. We can note that four solvers considered in our comparative experiments
have obtained a gold medal at the SAT competition in 2009 in different categories.

– Two SLS methods: WSAT [34] with rnovelty strategy and ADAPTG2 [27].
– Two hybrid approaches: HYBRIDGM [2] and HINOTOS[26].
– Five complete approaches: MINISAT [9], GLUCOSE [1], PRECOSAT [3], RSAT [32],

and CLASP [13].
– A portfolio solver : SATZILLA I [37].

Table 2 summarizes the obtained results. Let us start this comparison with local
search solvers. We can note that they perform better than SATHYS only in the random
category of instances. This is not surprising since they are particularly suited to this kind
of instances. On the other categories of instances, local search based techniques obtain
bad results. As underlined during the SAT’09 competition, the main weak point of local

Boosting Local Search Thanks to CDCL 483

Table 2. SATHYS vs. some other SAT solvers. For each category and each solver, the number of
solved instances is provided.

Crafted Application Random
total (sat unsat) total (sat unsat) total (sat unsat) total

ADAPTG2 68 (68 0) 8 (8 0) 294 (294 0) 375
GNOVELTY+ 54 (54 0) 7 (7 0) 281 (281 0) 342
SATHYS 104 (71 33) 148 (63 85) 189 (189 0) 441
HYBRIDGM 51 (51 5) 0 (5 0) 294 (294 0) 350
HINOTOS 105 (69 36) 107 (39 68) 77 (65 11) 288
MINISAT 99 (72 27) 152 (59 93) 3 (3 0) 254
GLUCOSE 114 (75 39) 152 (54 98) 17 (17 0) 266
PRECOSAT 122 (81 41) 164 (65 99) 2 (2 0) 288
RSAT 105 (71 34) 143 (53 90) 5 (5 0) 253
CLASP 131 (78 53) 138 (53 85) 84 (66 18) 353
SATZILLA I 128 (86 42) 142 (60 82) 145 (90 55) 415

search based solvers resides in their inefficiency on the application category. Improving
local search based techniques on application category remains a very challenging issue.
As the skeleton of our solver is an SLS technique, where the CDCL component can be
considered as a strategy for escaping from local minima, the good performances of our
hybrid solver provides real advances on this important issue.

Comparatively with other hybrid solvers, SATHYS is the best one w.r.t. in the appli-
cation category. HYBRIDGM seems to be tuned for random instances whereas HINOTOS

and SATHYS are comparable on crafted category. The results show clearly that our hy-
brid solver outperforms all the hybrid approaches.

SATHYS is very competitive with respect to the sate-of-the-art CDCL solvers in both
crafted and application categories. To our best knowledge, it is the first time that an
hybrid solver is able to obtain such promising results. On random instances, classical
CDCL solvers present a very bad behavior. On this last category, clause learning and
back-jumping are useless.

Interestingly enough, SATHYS is also very competitive with respect to the portfolio
based solver SATZILLA. This portfolio uses CDCL, local search and lookahead solvers.
In this approach, the different solvers are called independently.

To summarize, SATHYS is the first competitive solver on all the three categories
of SAT instances (crafted, application and random). It is also the most robust one: it
obtains the best overall results in terms of the total number of solved instances and it is
often close to the first rank on each category.

The previous table provides information about the number of solved instances in the
considered time limit. Also, we present the classical scatter plot in order to compare
SATHYS with one of the best known hybrid solver HINOTOS, PRECOSAT (the state-
of-the-art solver on application category), CLASP (the best solver on crafted category)
and SATZILLA (it obtains the second best overall results behind SATHYS). In these
curves, the y-axis represents the time (in log scale) of SATHYS and the x-axis the time
of the other solver. So, a dot below the diagonal represents an instance where SATHYS

is faster than the other solver. This is shown in Figure 1.

484 G. Audemard et al.

 1

 10

 100

 1000

 1 10 100 1000

random
crafted

application

 1

 10

 100

 1000

 1 10 100 1000

random
crafted

application

PRECOSAT HINOTOS

 1

 10

 100

 1000

 1 10 100 1000

random
crafted

application

 1

 10

 100

 1000

 1 10 100 1000

random
crafted

application

CLASP SATZILLA

Fig. 1. Scatter plot: SATHYS vs. {PRECOSAT,HINOTOS,CLASP,SATZILLA }

Analyzing these figures, we can conclude that SATHYS outperforms HINOTOS. How-
ever our approach is slightly slower than PRECOSAT, which is one of the best CDCL

solvers. However, SATHYS solves more instances than PRECOSAT. Comparatively with
CLASP, we can observe that our method obtains similar performance on application and
crafted instances, but SATHYS is better on random instances. Finally, it is impossible
to differentiate SATZILLA and SATHYS in terms of CPU time.

Finally, we also want to hightlight that our solver is competitive on difficult hard SAT

and UNSAT instances from crafted and application categories. Table 3 provides results
on a selection of instances. Because of lack of space we do not report the results for
each solver. However, to be as fair as possible, we also report the best result obtained in
the competition over the 50 submitted solvers (BEST column). SATHYS is efficient on
SAT as well as UNSAT instances.

Boosting Local Search Thanks to CDCL 485

Table 3. Highlight results on a selection of instances. Results are reported in seconds.

SAT BEST SATHYS HINOTOS GLUCOSE PRECOSAT CLASP SATZILLA

q query 3 L100 coli N 183 677 – 577 414 780 –
post-c32s-col400-16 N 66 247 380 714 141 66 125
countbitsarray02 32 N 926 1100 – 926 – – –
maxxororand032 N 579 768 – – – – –
minand128 N 16 71 219 26 26 23 212
rpoc xits 08 UNSAT N 154 1036 1115 398 159 – 589
gt-ordering-unsat-gt-060 N 15 171 – – 149 – –
9dlx vliw at b iq3 N 430 1137 – – – 1095 430
gss-19-s100 Y 38 641 – 611 – – 38
UCG-20-5p1 Y 413 835 – – 537 – –
UTI-15-10p1 Y 392 935 – 392 – – 1140
gt-ordering-sat-gt-040 Y 15 6 – – 149 – –
em 9 3 5 exp Y 18 288 209 51 181 140 276
ndhf xits 20 Y 1.6 180 – – 249 – 75
partial-10-15-s Y 228 1092 – – – – –
vmpc 30 Y 18 825 – – 292 159 551
velev-pipe-sat-1.0-b7 Y 14 294 – – 343 – 87
new-difficult-21-168-19-90 Y 0.1 141 – – – 370 416
mod3block 3vars 9gates. . . Y 5.7 4.8 – 126 63 26 24
rbsat-v945c61409g10 Y 21 362 – 898 147 150 933
instance n8 i9 pp Y 41 115 454 1117 800 – 421

In conclusion of this experimental comparison, SATHYS is a very efficient solver
in three categories (crafted, application and random) and consequently, it is the most
robust solver. From the above results, we can consider SATHYS as the first hybrid solver
that brings real advances to three of the ten challenges proposed in [35,24]:

– Challenge 5: Design a practical stochastic local search procedure for proving un-
satisfiability;

– Challenge 6: Improve stochastic local search on structured problems by efficiently
handling variable dependencies;

– Challenge 7: Demonstrate the successful combination of stochastic search and sys-
tematic search techniques, by the creation of a new algorithm that outperforms the
best previous examples of both approaches.

5 Related Work

We presents here the most noticeable approaches combining local search and DPLL

based ones. They can be classified in three different categories depending on which of
the two solvers is considered as the main core of the hybrid solver.

The first category includes those using DPLL as the main solver and SLS as an ora-
cle. In [5], SLS is used in a preprocessing step to derive a static variable ordering for
DPLL. Weights representing the number of times each clause is falsified during the lo-
cal search pretreatment is computed. The variable occurring most often in clauses with
higher weights is selected first. The approach proposed in [28] extends the previous
one, while invoking SLS at each node of the search tree. The SLS oracle is used to

486 G. Audemard et al.

both extend the current partial assignment to a model or to select the next variable to
assign according to similar clause weighting process. Similarly to [28], in [11], the au-
thors introduce some conditions to reduce the number of calls to SLS. The variables are
dynamically ordered according to local-search statistics. In [19], an hybrid constraint
solving schema which retains some systematicity of constructive search while incorpo-
rating the heuristic guidance and lack of commitment to variable assignment of local
search. The proposed method backtracks through a space of complete but possibly in-
consistent solutions while supporting the freedom to move arbitrarily under heuristic
guidance. hybridGM is an incomplete SAT solver proposed in [2] focusses the DPLL-
search around local minima with only one unsatisfied clause.

If a formula is satisfiable, chances are to find a satisfying assignment around such
minima. hybridGM’s DPLL component then completely checks these areas of the search
space. SATUN [12] an extension of hybridGM performs local search as it is done by
hybridGM, but for a limited amount of time. The limit is set in a way that gives local
search a reasonable chance to find a satisfying assignment. In case the formula is satisfi-
able, this will result in a performance competitive with the hybrid’s SLS component. As
soon as the limit is reached, the formula is expected to be unsatisfiable. SATUN’s DPLL

component will then perform a search on the complete search space of the formula to
confirm that assumption.

The second category considers SLS as the main core of the hybrid solver. Among
these approaches, we can cite the approach proposed in [18], where DPLL is used to
derive implications between literals. These implications are used to both simplify the
formula and to compute dependency relations between literals used during the local
search phase.

In [23] the algorithm starts with a partial or complete interpretation. At each step
constraint propagation is applied. In case of conflict, a nogood is learnt and local search
is applied to repair the current partial interpretation. Otherwise, the current consistent
interpretation is extended in a classical way. In [25], the authors propose an hybrid
strategy based on shared memory, ideally suited for multi-core processor architectures.
They particularly show that DPLL can provide highly effective guidance for a local
search style solver for the MAXSAT problem. More precisely, DPLL shares its current
partial assignment with SLS and a flip is not allowed if the variable is assigned with the
same polarity by DPLL. The two solvers are run simultaneously on two different cores.

Finally, the last category contains hybrid solvers where both engines play an equal
role. The hybrid solver HBISAT [10] and its extended and improved version hinotos
[26] belong to this category. In both approaches, a local search is used to identify a
subset of clauses to be passed to a DPLL SAT solver through an incremental interface. In
other words, the guided local search identifies incremental sets of clauses that are hard,
and these clauses are subsequently added to the clause database of the DPLL-based
solver. In addition, the solution obtained by the DPLL solver on the subset of clauses is
fed back to the local search solver to jump over any locally optimal points.

6 Conclusion

In this paper a novel integration of SLS and CDCL based SAT solvers is introduced. This
hybrid solver represents an original combination of both engines. The two components

Boosting Local Search Thanks to CDCL 487

heavily cooperate towards proving the satisfiability or unsatisfiability of the SAT for-
mula. Such strong cooperation lies in the exploitation of SLS for directing CDCL search
towards unsatisfiability proof; and CDCL for escaping from SLS local minima. SATHYS,
the resulting method, obtains very good results on a wide range of instances taken from
the last competitions. These results show important performance improvements of the
state-of-the-art SLS and hybrid SLS solvers particularly on crafted and application cat-
egory. More interestingly, SATHYS significantly reduces the performance gap between
SLS and CDCL solvers while becoming extremely competitive with most of the state-of-
the arts CDCL solvers on application instances. Consequently, SATHYS can be consid-
ered as the first successful hybrid SAT solver. A future work, we first plan to investigate
how conflict driven clause learning can be adapted to local search based techniques.
Secondly, as the cooperation scheme between the two solvers integrated in SATHYS is
proven to be efficient, we plan to design a new parallel version of SATHYS in order to
benefit from the computational resources of multicore based architectures.

References

1. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Pro-
ceedings of International Joint Conference on Artificial Intelligence, pp. 399–404 (2009)

2. Balint, A., Henn, M., Gableske, O.: A novel approach to combine a SLS- and DPLL-solver
for the satisfiability problem. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 284–
297. Springer, Heidelberg (2009)

3. Biere, A.: PicoSAT essentials. Journal on Satisfiability 4, 75–97 (2008)
4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, February

2009. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam
(2009)

5. Crawford, J.: Solving satisfiability problems using a combination of systematic and local
search. In: Second Challenge on Satisfiability Testing organized by Center for Discrete Math-
ematics and Computer Science of Rutgers University (1996)

6. Darwiche, A., Pipatsrisawat, K.: Complete Algorithms, ch. 3, pp. 99–130. IOS Press, Ams-
terdam (2009)

7. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commu-
nication of ACM 5(7), 394–397 (1962)

8. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination.
In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg
(2005)

9. Een, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

10. Fang, L., Hsiao, M.: A new hybrid solution to boost SAT solver performance. In: Proceedings
of DATE, pp. 1307–1313 (2007)

11. Ferris, B., Fröhlich, J.: Walksat as an informed heuristic to DPLL in SAT solving. Technical
report, CSE 573: Artificial Intelligence (2004)

12. Gableske, O., Rüth, J.: Satun: A complete hybrid sat solver. SAT2010 paper draft (2010)
13. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:

Proceedings IJCAI 2007, pp. 386–392 (2007)
14. Goldberg, E.: Boundary points and resolution. In: Kullmann, O. (ed.) SAT 2009. LNCS,

vol. 5584, pp. 147–160. Springer, Heidelberg (2009)
15. Gomes, C., Selman, B., Kautz, H.: Boosting combinatorial search through randomization.

In: AAAI/IAAI, pp. 431–437 (1998)

488 G. Audemard et al.

16. Gregoire, E., Mazure, B., Piette, C.: Extracting MUSes. In: proceedings of ECAI, pp. 387–
391 (2006)

17. Gregoire, E., Mazure, B., Piette, C.: Local-search extraction of muses. Constraints 12(3),
325–344 (2007)

18. Habet, D., Li, C.M., Devendeville, L., Vasquez, M.: A hybrid approach for sat. In: Van Hen-
tenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 172–184. Springer, Heidelberg (2002)

19. Havens, W., Dilkina, B.: A hybrid schema for systematic local search. In: Canadian Confer-
ence on AI, pp. 248–260 (2004)

20. Hirsch, E., Kojevnikov, A.: Unitwalk: A new SAT solver that uses local search guided by unit
clause elimination. Annals of Mathematical and Artificial Intelligence 43(1), 91–111 (2005)

21. Hoos, H.: An adaptive noise mechanism for walksat. In: proceedings of AAAI, pp. 655–660
(2002)

22. Hutter, F., Tompkins, D.A.D., Hoos, H.H.: Scaling and probabilistic smoothing: Efficient
dynamic local search for SAT. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp.
233–248. Springer, Heidelberg (2002)

23. Jussien, N., Lhomme, O.: Local search with constraint propagation and conflict-based heuris-
tics. In: AAAI/IAAI, pp. 169–174 (2000)

24. Kautz, H., Selman, B.: Ten challenges redux: Recent progress in propositional reasoning and
search. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 1–18. Springer, Heidelberg (2003)

25. Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating systematic and local search
paradigms: A new strategy for maxsat. In: IJCAI, pp. 544–551 (2009)

26. Letombe, F., Marques-Silva, J.: Improvements to hybrid incremental sat algorithms. In:
Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp. 168–181. Springer,
Heidelberg (2008)

27. Li, C.M., Wei, W., Zhang, H.: Combining adaptive noise and look-ahead in local search for
sat. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 121–133.
Springer, Heidelberg (2007)

28. Mazure, B., Saı̈s, L., Grégoire, E.: Boosting complete techniques thanks to local search meth-
ods. Ann. Math. Artif. Intell. 22(3-4), 319–331 (1998)

29. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In: Proceed-
ings of AAAI, pp. 321–326 (1997)

30. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient
SAT solver. In: Proceedings of DAC, pp. 530–535 (2001)

31. Pham, D.N., Thornton, J., Sattar, A.: Building structure into local search for sat. In: proceed-
ings of IJCAI, pp. 2359–2364 (2007)

32. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for satisfiability
solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 294–
299. Springer, Heidelberg (2007)

33. Selman, B., Kautz, H.: An empirical study of greedy local search for satisfiability testing. In:
Proceedings of AAAI, pp. 46–51 (1993)

34. Selman, B., Kautz, H., Cohen, B.: Noise strategies for improving local search. In: proceed-
ings of AAAI, pp. 337–343 (1994)

35. Selman, B., Kautz, H., McAllester, D.: Ten challenges in propositional reasoning and search.
In: Proceedings of IJCAI, pp. 50–54 (1997)

36. Marques Silva, J., Sakallah, K.: Grasp - a new search algorithm for satisfiability. In: ICCAD,
pp. 220–227 (1996)

37. Xu, L., Hutter, F., Hoos, H.: K Leyton-Brown. Satzilla: Portfolio-based algorithm selection
for sat. Journal of Artificial Intelligence Research 32, 565–606 (2008)

38. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in
boolean satisfiability solver. In: proceedings of ICCAD, pp. 279–285 (2001)

Interpolating Quantifier-Free Presburger Arithmetic

Daniel Kroening1, Jérôme Leroux2, and Philipp Rümmer1

1 Oxford University Computing Laboratory, United Kingdom
2 Laboratoire Bordelais de Recherche en Informatique, France

Abstract. Craig interpolation has become a key ingredient in many symbolic
model checkers, serving as an approximative replacement for expensive quantifier
elimination. In this paper, we focus on an interpolating decision procedure for the
full quantifier-free fragment of Presburger Arithmetic, i.e., linear arithmetic over
the integers, a theory which is a good fit for the analysis of software systems. In
contrast to earlier procedures based on quantifier elimination and the Omega test,
our approach uses integer linear programming techniques: relaxation of interpo-
lation problems to the rationals, and a complete branch-and-bound rule tailored
to efficient interpolation. Equations are handled via a dedicated polynomial-time
sub-procedure. We have fully implemented our procedure on top of the SMT-
solver OpenSMT and present an extensive experimental evaluation.

1 Introduction

Craig interpolation has become a key ingredient in many symbolic model checkers,
serving as an approximative replacement for expensive quantifier elimination [10]. The
application of Craig interpolants in lieu of quantifier elimination relies on the avail-
ability of an effective interpolating decision procedure. In this paper, we focus on an
interpolating decision procedure for the quantifier-free fragment of Presburger Arith-
metic (QFPA for short), that is linear arithmetic over the integers, a theory which is a
good fit for the analysis of software systems. An interpolant ψ for a pair (φA, φB) of
Presburger formulas is a Presburger formula such that free variables in ψ occur both in
φA and φB , and such that φA entails ψ and φB entails ¬ψ.

Interpolating decision procedures typically derive the interpolant from a proof of in-
consistency of φA and φB , which in turn is computed by a decision procedure for the
underlying logic. Decision problems arising in software analysis are often large, and
call for a scalable algorithm. The most efficient decision procedures for the quantifier-
free fragment of the Presburger arithmetic known today use the Simplex algorithm in
combination with a variant of the branch-and-bound technique. The Simplex algorithm
is used to solve the relaxed problem, in which the variables are permitted to take frac-
tional values. In case a variable x obtains the fractional value r, branch-and-bound will
consider the two sub-problems in which x ≤ �r	 or x ≥ -r., respectively. The orig-
inal problem has an integer solution iff one of the two sub-problems has a solution.
Branch-and-bound is incomplete by itself, and usually augmented by a cutting-plane
technique, e.g., Gomory’s cutting planes. An instance of an efficient implementation of
these techniques is the SMT-solver Z3 [6].

In principle, any cut-based decision procedure for Presburger can be used for the
computation of interpolants. The primary problem is computational cost: for the most

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 489–503, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

490 D. Kroening, J. Leroux, and P. Rümmer

common cut rules (in particular for Gomory’s cutting planes) it is possible to construct
cases where the derivation of interpolants from proofs has exponential complexity. This
high complexity is caused by mixed cuts, which involve rounding (rational) constant
terms of inequalities that are derived from both φA and φB . Intuitively, interpolating
calculi rely on identifying which parts of φA and φB are contributing to an intermediate
argument; additional effort is required when rounding intermediate arguments derived
from both φA and φB .

The contribution of this paper is a novel interpolating decision procedure for the
full QFPA fragment. Our algorithm computes in polynomial time interpolants for two
classes of constraints (i) conjunctions of inequality constraints unsatisfiable over the
rationals, and (ii) conjunctions of equality and divisibility constraints unsatisfiable over
the integers. For the full QFPA fragment, the algorithm is exponential in the worst case.
This complexity is proved tight since we exhibit formulas such that every interpolant
is exponentially large. Moreover the algorithm improves the doubly exponential upper
bound complexity known for the computation of interpolants based on the elimination
of blocks of quantifiers [17]. Our general procedure integrates efficient reasoning and
interpolation for equalities by means of a transformation of matrices into Smith Normal
Form, which resembles a known procedure for interpolating linear diophantine equa-
tions [7]. For reasoning about inequalities, our procedure uses a complete version of the
branch-and-cut principle that avoids mixed cuts and therefore allows interpolant extrac-
tion from proofs in polynomial time. Since the proof size is exponentially large in the
worst case, we deduce an exponential upper bound for the runtime of the algorithm.

Related Work. Interpolation procedures have been proposed for various fragments
of linear integer arithmetic. McMillan considers the logic of difference-bound con-
straints [12]. This logic, a fragment of QFPA, is decidable by reduction to rational
arithmetic. As an extension, Cimatti et al. [5] present an interpolation procedure for the
unit two variable per inequality (UTVPI) fragment of linear integer arithmetic. Both
fragments allow efficient reasoning and interpolation, but are not sufficient to express
many typical program constructs, such as integer division. In [7], interpolation proce-
dures for QFPA restricted to conjunctions of integer linear (dis)equalities, and for QFPA
restricted to conjunctions of divisibility constraints are given. The combination of both
fragments with integer linear inequalities is not supported, however. Our work closes
this gap, as it permits predicates involving all types of constraints.

Lynch et al. [9] define an interpolation procedure for linear rational arithmetic, and
extend it to integer arithmetic by means of Gomory cuts. For integer arithmetic, how-
ever, interpolation in [9] can produce formulas that violate the vocabulary condition
(i.e., can contain variables that are not common to φA and φB), and are therefore not
true interpolants. The problem is that Gomory cuts used in [9] do not prevent mixed
cuts, for which no efficient interpolation is possible in QFPA.

Brillout et al. [2] define a complete interpolating sequent calculus for QFPA. The
calculus contains a rule strengthen that is general enough to simulate arbitrary (pos-
sibly mixed) Gomory cuts, but in general causes exponential complexity of interpolant
extraction from proofs. In contrast, our cut rule (which is embedded in an effective
decision procedure) enables extraction with polynomial complexity.

Interpolating Quantifier-Free Presburger Arithmetic 491

The recent SMT-solver SmtInterpol decides and interpolates problems in linear inte-
ger arithmetic, apparently using an architecture similar to the one in [11]. To the best of
our knowledge, the precise design and calculus of SmtInterpol has not been documented
in publications yet (see Sect. 9 for an empirical comparison with our approach).

Interpolation for rational arithmetic is a well-explored field. McMillan presents an
interpolating theorem prover for linear rational arithmetic and uninterpreted functions
[11]; an interpolating SMT-solver for the same logic has been developed by Beyer et
al. [1]. Rybalchenko et al. introduce an algorithm for interpolating rational arithmetic
with uninterpreted functions without the need for explicit proofs [15].

2 Interpolation for Quantifier-Free Presburger Formulas

Naturally, if there exists an interpolant ψ for (φA, φB) then φA ∧ φB is unsatisfiable.
Conversely, if φA ∧ φB is unsatisfiable, interpolants for (φA, φB) can be obtained by
introducing the sets XA, XB of free variables of respectively φA and φB , and the fol-
lowing Presburger formulas:

ψ⊥ = (∃x)x∈XA\XB
φA

ψ� = ¬ (∃x)x∈XB\XA
φB

Since φA ∧ φB is unsatisfiable we observe that ψ⊥ and ψ� are two interpolants for
(φA, φB). The formulas ψ⊥ and ψ� are respectively called the strongest interpolant
and the weakest interpolant since ψ⊥ entails ψ and ψ entails ψ� for any interpolant ψ.

We are interested in computing quantifier-free Presburger interpolants for pairs of
quantifier-free Presburger formulas. Formulas in this logic are defined by fixing a count-
able set X of variables. Quantifier-free Presburger formulas are formulas in the follow-
ing grammar where x ∈ X , α ∈ Z, β ∈ Z and m ∈ N≥2:

φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ

p ::= l �= β | l = β | l ≤ β | l ∈ β + mZ

l ::= 0 | αx | l + l

The category l denotes linear terms. The category p denotes predicates of linear arith-
metic. For simplicity reason, we only allow constants β as right-hand side of the pred-
icates. Predicates l �= β, l = β and l ≤ β are respectively disequality predicates,
equality predicates, and inequality predicates. Predicates l ∈ β + mZ are divisibil-
ity predicates, which are short-hand notation for ∃x l − mx = β. These predicates
are included to allow quantifier-free interpolation. In fact, let us consider the pair
(x− 2y = 0, x− 2z = 1) of quantifier-free Presburger formulas. Note that x is the
unique free variable that occurs in both formulas. The even divisibility predicate x ∈ 2Z
is an interpolant; any interpolant requires at least one divisibility predicate.

The semantics of Presburger formulas is defined as is common over the domain Z of
integers. We write φ |= ψ to express that φ entails ψ, i.e., ψ holds whenever φ holds.

Since Presburger formulas are effectively equivalent to quantifier-free Presburger
formulas, we can compute two quantifier-free Presburger formulas ψ′

⊥ and ψ′
� equiv-

alent to ψ⊥ and ψ� respectively. In particular if φA ∧ φB is unsatisfiable, we deduce

492 D. Kroening, J. Leroux, and P. Rümmer

that ψ′
⊥ and ψ′

� are two quantifier-free interpolants for (φA, φB). However, the com-
putation of ψ′

⊥ or ψ′
� requires a lot of useless computational efforts. For instance if φA

is a formula of the form (x = 0) ∧ φ′
A and φB is a formula of the form (x = 1) ∧ φ′

B

where φ′
A and φ′

B are very complex Presburger formulas, it is sufficient to consider
ψ = (x = 0) to obtain an interpolant for (φA, φB); eliminating variables for com-
puting ψ′

⊥ and ψ′
� can be very difficult. From a theoretical point of view, up to our

knowledge the best known upper-bound complexity for eliminating blocks of existen-
tial quantifiers is double-exponential [17].

In this paper we provide an algorithm computing interpolants for the QFPA fragment
in exponential time in the worst case. We first show that this result is tight. For this
purpose, consider the following families of formulas (where n ∈ N>1):

φn
A = − n < y + 2nx ≤ 0, φn

B = 0 < y + 2nz ≤ n .

We can observe that φn
A and φn

B are inconsistent, and that the only interpolant for the
interpolation problem (φn

A, φ
n
B) is the following formula ψ (up to equivalence):

ψ =
(
y ∈ −n + 1 + 2nN

)
∨
(
y ∈ −n + 2 + 2nN

)
∨ · · · ∨

(
y ∈ 2nN

)
The size of ψ is linear in n, and therefore exponential in the size of (φn

A, φ
n
B); the same

holds for all equivalent quantifier-free formulas in Presburger arithmetic.
Using a SAT approach [11] we reduce the interpolation computation problem to

conjunctions of literals (predicates or negation of predicates) extracted from φA and
φB . In particular, w.l.o.g. we can assume that φA, φB are conjunctions of literals. By
introducing fresh variables, we can assume that explicit divisibility predicates do not
appear. In fact, let us consider the formulas φ′

A and φ′
B obtained from φA and φB

by replacing l ∈ β + mZ and ¬(l ∈ β + mZ) by respectively l − mx = β and
l −mx − y = β ∧ −y ≤ −1 ∧ y ≤ m − 1 where x, y are two fresh variables distinct
for each replaced predicate. Since introduced variables are local to either φ′

A or φ′
B we

deduce that any formula is an interpolant for (φA, φB) if and only if it is an interpolant
for (φ′

A, φ
′
B). Thus, we can assume without loss of generality that φA and φB do not

contain divisibility predicates.
Finally, since the negations of the predicates l �= β, l = β, l ≤ β are equivalent to

the predicates l = β, l �= β, − l ≤ −β − 1, we can assume that the literals of φA and
φB are predicates (without negation). We have reduced our problem to the computation
of interpolants for formulas φA, φB that are conjunctions of disequality, equality and
inequality predicates.

3 Overview of the Interpolation Procedure

We assume the vocabulary X = {x1, . . . , xn}, using an arbitrary but fixed enumeration
of the variables, and denote the vector of all variables by x = (x1, . . . , xn)t. We identify
a linear term l with the matrix product l = utx where u = (α1, . . . , αn)t ∈ Zn denotes
coefficients of x in l, i.e. l = α1x1+· · ·+αnxn. We associate to a predicate p the vector
up ∈ Zn, the relation #p ∈ {�=,=,≤}, and the integer βp ∈ Z such that p is denoted
by ut

px#pβp. Valuations of X are identified with vectors v = (v1, . . . , vn)t ∈ Zn such

Interpolating Quantifier-Free Presburger Arithmetic 493

that v satisfies a predicate p if ut
pv#pβp holds. We introduce the ith elementary vector

ei,n of Zn (simply denoted by ei when n is unambiguous) defined by:

ei,n = (0, . . . , 0︸ ︷︷ ︸
i−1 zeroes

, 1, 0, . . . , 0)t ∈ Zn

Predicates are strengthened with interval labels. The ordered set (Z,≤) is extended into
(Z∞,≤) where Z∞ = Z∪{−∞,∞} and ≤ satisfies −∞ ≤ δ ≤ ∞ for every δ ∈ Z∞.
An (integral) interval is a a set of the form �δ−, δ+� = {δ ∈ Z | δ− ≤ δ ≤ δ+}
where δ−, δ+ ∈ Z∞. The interval �δ, δ� where δ ∈ Z is simply denoted by {δ}. In
the sequel, a predicate p labelled with an interval I is denoted by (p)I . Semantically,
a labelled predicate (p)I is satisfied by a valuation v if v satisfies p and ut

pv ∈ I . In
order to simplify the presentation, we assume that I ⊆ {βp} if p is an equality and
I ⊆ �−∞, βp� if p is an inequality. The label of a disequality can be any interval.
Observe that any unlabeled formula φ is equivalent to a labelled one satisfying the
previous labeling conventions. Given a conjunction φ of labelled predicates, we denote
by φ̄ the formula obtained from φ by unlabeling the predicates.

We first show on the following example how the unsatisfiability of a conjunction
φ = φA ∧ φB can be discovered by analyzing systems of inequalities over the ra-
tional numbers and systems of equalities over the integers. We consider the following
formulas:

φA = (x− 2y ≤ 0)�−∞,0� ∧
(2y − x ≤ 0)�−∞,0�

φB = (x − 2z ≤ 1)�−∞,1� ∧
(2z − x ≤ −1)�−∞,−1�

The label of (2z − x ≤ −1)�−∞,−1� is first partitioned into J1 ∪ J2 where J1 =
�−∞,−2� and J2 = {−1}. We observe that φ is unsatisfiable if and only if both
the formulas φ1 = φA,1 ∧ φB,1 and φ2 = φA,2 ∧ φB,2 are unsatisfiable, where
φA,1 = φA, φA,2 = φA, and:

φB,1 = (x− 2z ≤ 1)�−∞,1� ∧
(2z − x ≤ −1)J1

φB,2 = (x− 2z ≤ 1)�−∞,1� ∧
(2z − x ≤ −1)J2

We introduce the system of interval predicates extracted from φ1 labels, i.e. − ∞ ≤
x − 2y ≤ 0 ∧ −∞ ≤ 2y − x ≤ 0 ∧ −∞ ≤ x − 2z ≤ 1 ∧ −∞ ≤ 2z − x ≤ −2.
An LP-solver decides in polynomial time its unsatisfiability over the rational numbers.
In particular we deduce that φ1 is unsatisfiable over the integers. The unsatisfiability
of φ2 is obtained by partitioning the label of (x − 2y ≤ 0)�−∞,0� into J3 ∪ J4 where
J3 = �−∞,−1� and J4 = {0}. We observe that φ2 is unsatisfiable if and only if both
the following formulas φ3 = φA,3 ∧ φB,3 and φ4 = φA,4 ∧ φB,4 are unsatisfiable,
where φB,3 = φB,2, φB,4 = φB,2, and:

φA,3 = (x − 2y ≤ 0)J3 ∧
(2y − x ≤ 0)�−∞,0�

φA,4 = (x − 2y ≤ 0)J4 ∧
(2y − x ≤ 0)�−∞,0�

From the system of interval predicates extracted from φ3 labels, an LP-solver shows
that φ3 is unsatisfiable. Finally, let us consider the system of equalities extracted from
the φ4 labels, i.e. x− 2y = 0∧ 2z−x = −1. Since this system is unsatisfiable over the

494 D. Kroening, J. Leroux, and P. Rümmer

integers, we deduce that φ4 is unsatisfiable. We have proved that φ is unsatisfiable by
strengthening predicates until either a system of inequalities becomes unsatisfiable over
the rational numbers, or a system of equalities becomes unsatisfiable over the integers.

Now, we exhibit a way for computing an interpolantψ for (φA, φB). From the system
of inequalities proving that φ1 is unsatisfiable over the rational numbers, we deduce in
Sect. 5 that ψ1 = (true) is an interpolant for (φA,1, φB,1). The same approach shows
that ψ3 = (false) is an interpolant for (φA,3, φB,3). From the system of equalities
proving that φ4 is unsatisfiable, we deduce in Sect. 4 that ψ4 = (x ∈ 2Z) is an
interpolant for (φA,4, φB,4). Finally, we show in Sect. 7 that an interpolant for (φA, φB)
can be obtained from ψ1, ψ3 and ψ4 by considering the following tree where the leaves
φ1, φ3 and φ4 are respectively labelled by the interpolants ψ1, ψ3 and ψ4, where the
node φ is labelled by ∧ since the partitioned label of φ comes from its B part, and
where the node φ2 is labelled by ∨ since the partitioned label of φ2 comes from its A
part. This tree provides the interpolant ψ = true ∧ (false ∨ x ∈ 2Z) for (φA, φB):

φ ∧

φ1true φ2 ∨

φ3false φ4 x ∈ 2Z

Our general algorithm follows this approach. Now, let us assume that φA and φB

are any conjunctions of labelled predicates. Interpolants for (φA, φB) or valuations w
satisfying φ̄A ∧ φ̄B are computed using algorithm interpolant(φA , φB).

1 interpolant (φA , φB)
2 if check_equality(φA , φB) returns a formula ψ return ψ
3 if check_inequality(φA , φB) returns a formula ψ return ψ
4 if check_unsatpred(φA , φB) returns a formula ψ return ψ
5 return strengthening(φA , φB)

This algorithm first executes three sub-algorithms check_equality, check_inequality
and check_unsatpred respectively presented in Sect. 4, Sect. 5 and Sect. 6:

– check_equality returns in polynomial time an interpolant if a system of equalities
extracted from φA and φB labels is unsatisfiable over the integers.

– check_inequality returns in polynomial time an interpolant if a system of inequal-
ities extracted from φA and φB labels is unsatisfiable over the rational numbers.

– check_unsatpred returns in linear time an interpolant if an unsatisfiable labelled
predicate occurs in φA or φB . This sub-algorithm is required for the termination
when disequalities occur in φA or φB .

When these sub-algorithms fail in computing an interpolant, the sub-algorithm
strengthening is executed. It tries to compute a valuation satisfying φ̄A ∧ φ̄B . If it
fails, the label of a predicate is partitioned and algorithm interpolant is recursively
called on each element of the partition. This last sub-algorithm is presented in Sect. 7.

Interpolating Quantifier-Free Presburger Arithmetic 495

4 Unsatisfiable Equalities over the Integers

This section describes interpolation in the case that the inconsistency of φA ∧ φB is
caused by equations. To this end, we extract a system UAx = dA of equations from
φA, where UA ∈ Zm×n is an integer matrix and dA ∈ Zm is an integer vector. The
system UAx = dA consists of all equations ut

px = δ such that φA contains a predicate p
labelled with a singleton J = {δ}. The same is done for φB by introducing UB ∈ Zl×n

and dB ∈ Zl. We also introduce the formulas φ′
A and φ′

B obtained from φA and φB

by keeping the other labelled predicates (p)I with I not reduced to a singleton. The
conjunctions φA, φB can then be represented in the form

φA = UAx = dA ∧ φ′
A, φB = UBx = dB ∧ φ′

B

In order to examine the satisfiability of the two systems UAx = dA, UBx = dB of
equations, we combine them to

Ux = d, U =
(
UA

UB

)
∈ Z(l+m)×n, d =

(
dA

dB

)
∈ Zl+m

and solve them by transforming the matrix U into Smith Normal Form (SNF):

Lemma 4.1 (Smith Normal Form of integer matrices). Suppose U ∈ Zk×n is an
integer matrix. U can be represented as U = LSR, such that L ∈ Zk×k and R ∈ Zn×n

are invertible (in the respective rings of integer matrices), and S ∈ Zk×n is in Smith
Normal Form:

S =

⎛⎜⎜⎜⎜⎜⎝
α1 0 · · · · · · 0
0 α2

. . .
......

. . .
. . .

. . .
. . . αr 0... 0 0

...0 · · · · · · 0

⎞⎟⎟⎟⎟⎟⎠
where r ≤ min{k, n} and α1, . . . , αr are positive integers such that αi+1 ∈ αiZ for
all i ∈ {1, . . . , r − 1}. The matrices L, S,R can effectively be computed from U in
polynomial time [8].

Given the decompositionU = LSR, the satisfiability of the system Ux = d⇔ SRx =
L−1d can directly be determined: a solution to the equations exists if and only if (i) each
element αi of S divides the ith component of L−1d, and (ii) for each r < i ≤ k the ith
component of L−1d is zero.

We first consider the case that the system Ux = d is unsatisfiable (satisfiable systems
are discussed in Sect. 7). In this case, an interpolant can be computed from the equa-
tions without involving the inequalities or disequalities in φ′

A, φ′
B . An interpolation

procedure for equations has been described in [7] (using transformation of matrices to
Hermite Normal Form) and can easily be carried over to our context of matrices in SNF.

If Ux = d is unsatisfiable, then the equivalent system S(Rx) = L−1d contains an
unsatisfiable equation

et
iS(Rx) = et

iL
−1d

496 D. Kroening, J. Leroux, and P. Rümmer

such that the right-hand side et
iL

−1d cannot be represented as an integral linear com-
bination of the left-hand side coefficients et

iS. This equation can be obtained as a lin-
ear combination of the equations in Ux = d by left-multiplying with the row vec-
tor st = et

iL
−1. Restricting this linear combination to the equations from φA and elim-

inating variables that only occur in φA (the variables XA\XB) yields an interpolant:

ψ = (∃xj)xj∈XA\XB
st

(
UA

0

)
x = st

(
dA

0

)
Note that a quantifier-free interpolant can trivially be obtained by rewriting the exis-
tential quantifiers to a divisibility constraint: a formula like ∃y1, . . . , yu. β1y1 + · · · +
βuyu + l = β is equivalent to the constraint l ∈ β + gcd(β1, . . . , βu)Z.

To see that ψ is indeed an interpolant for (φA, φB), we can first observe that the
following entailments hold:

φA |= UAx = dA |= st

(
UA

0

)
x = st

(
dA

0

)
|= ψ

Vice versa, because stUx = std is unsatisfiable and the variables XA\XB do not occur
in φB , it is also the case that φB and ψ are inconsistent:

φB |= st

(
0
UB

)
x = st

(
0
dB

)
|= ¬ψ

The following algorithm summarizes the equality interpolation procedure:

1 check_equality(φA , φB)
2 extract equality systems UAx = dA and UBx = dB from φA and φB

3 let L, S,R be the Smith Normal Form decomposition of U
4 if there exists i such that et

iSRx = et
iL

−1d is unsatisfiable
5 let st = et

iL
−1

6 return a divisibility predicate equivalent to:
7 (∃x)x∈XA\XB

st
(

UA

0

)
x = st
(
dA

0

)
Proposition 4.2. Algorithm check_equality(φA , φB) returns in polynomial time an
interpolant for (φA, φB) if the system of equalities Ux = d is not satisfiable over the
integers.

5 Unsatisfiable Inequalities over the Rationals

Interpolation procedures for linear inequalities over the rationals have been described in
[13, 11], and are in the following paragraphs adapted to our setting. In order to examine
the satisfiability of φA∧φB over the rationals, we extract systems of inequalitiesCAx ≤
cA and CBx ≤ cB (with CA ∈ Zm′×n, CB ∈ Zl′×n, cA ∈ Zm′

, and cB ∈ Zl′) from the
labelled predicates in φA, φB . More precisely, whenever φA contains a predicate (p)I

such that I = �δ−, δ+� then CAx ≤ cA contains the inequalities − ut
px ≤ −δ− and

Interpolating Quantifier-Free Presburger Arithmetic 497

ut
px ≤ δ+ if δ−, δ+ ∈ Z. Predicates labelled with an interval I such that δ− = −∞ or

δ+ = ∞ are in the same way translated to single inequalities.
The system CBx ≤ cB is constructed in the same manner from φB . As in Sect. 4,

we then combine both systems into one:

Cx ≤ c, C =
(
CA

CB

)
∈ Z(l′+m′)×n, c =

(
cA

cB

)
∈ Zl′+m′

A complete criterion for the solvability of Cx ≤ c is given by Farkas’ lemma [16]:

Lemma 5.1 (Farkas). Suppose C ∈ Qk×n is a rational matrix and c ∈ Qk is a vector.
Exactly one of the following statements is true:

– The system Cx ≤ c is satisfiable: there is a vector v ∈ Qn such that Cv ≤ c.
– There is a non-negative vector w ∈ Qk such that wtC = 0 and wtc < 0.

We can decide in polynomial time which case holds, and simultaneously compute the
corresponding vector v or w.

For the rest of this section, let us assume that the second case holds, and that we have
computed a non-negative vector w ∈ Ql′+m′

as in the lemma (the first case is discussed
in the next section). Without loss of generality, we assume that w is integral, because w
can be multiplied with any possibly occurring denominators. The following inequality
is an interpolant for (φA, φB):

ψ = wt

(
CA

0

)
x ≤ wt

(
cA

0

)
To see that ψ is an interpolant, first recall that wtC = 0, which implies that the
term wt

(
CA

0

)
x only contains variables that also occur in wt

(0
CB

)
x. This means that

all free variables in ψ occur both in φA and φB .
Furthermore, the entailment φA |= ψ holds:

φA |= CAx ≤ cA |=
(
CA

0

)
x ≤
(
cA

0

)
|= ψ

We can, vice versa, derive a formula from φB that contradicts ψ, because the combined
inequality wtCx ≤ wtc is unsatisfiable by construction:

φB |= CBx ≤ cB |=
(

0
CB

)
x ≤
(

0
cB

)
|= wt

(
0
CB

)
x ≤ wt

(
0
cB

)
|= ¬ψ

Altogether, we have proved that ψ is an interpolant for (φA, φB). The following algo-
rithm summarizes the inequality interpolation procedure:

1 check_inequality(φA , φB)
2 extract inequality systems CAx ≤ cA and CBx ≤ cB from φA and φB

3 if there exists w ∈ Zk such that wtC = 0 and wtc < 0
4 return the inequality predicate:
5 wt

(
CA

0

)
x ≤ wt

(
cA

0

)
Proposition 5.2. Algorithm check_inequality(φA , φB) returns in polynomial time
an interpolant for (φA, φB) if the system of inequalities Cx ≤ c is not satisfiable over
the rationals.

498 D. Kroening, J. Leroux, and P. Rümmer

6 Unsatisfiable Predicates

We observe that false or true are trivial interpolants for (φA, φB) if an unsatisfiable
predicate (p)I occurs in φA or φB . Algorithm check_unsatpred implements this idea.
This algorithm is important for the termination of algorithm interpolant. In fact, an al-
ternative version of algorithm interpolant without check_unsatpred never terminates
on (φA, φB) with φA = (x = 0){0} and φB = (x �= 0)Z.

1 check_unsatpred(φA , φB)
2 if an unsatisfiable predicate (p)I occurs in φA return false
3 if an unsatisfiable predicate (p)I occurs in φB return true

Proposition 6.1. Algorithm check_unsatpred(φA , φB) returns in linear time an
interpolant for (φA, φB) if an unsatisfiable predicate (p)I occurs in φA or φB .

7 When Strengthening Is Necessary

We assume that (i) the system of equalities Ux = d introduced in Sect. 4 admits an
integral solution, and (ii) the system of inequalities Cx ≤ c introduced in Sect. 5 admits
a rational solution.

Farkas’ lemma provides in polynomial time a vector v ∈ Qn such that Cv ≤ c. This
vector is rounded up to a vector w ∈ Zn satisfying the system of equalities Ux = d by
using the Smith Normal Form decomposition LSR of U (see Sect. 4):

w = R−1[Rv]

where [Rv] is the integral part of Rv, i.e. the unique vector in Zn such that there exists
a vector ε ∈ Qn satisfying Rv = [Rv] + ε and − 1

2 < εi ≤ 1
2 for every i.

Lemma 7.1. Vector w satisfies the system of equalities Ux = d.

Intuitively w is “not so far” from v since v = w + R−1ε, and since v satisfies the
system of inequalities Cx ≤ c it is quite possible that w also satisfies this system.
Hence this vector is a good candidate for a valuation satisfying φA ∧ φB . Note that if
w does not satisfy this conjunction but it satisfies the more relaxed formula φ̄A ∧ φ̄B

obtained from φA ∧ φB by removing the labels, we have discovered a solution to our
original problem (labels are just used to prove the unsatisfiability). So let us assume
that w is not a solution of φ̄A ∧ φ̄B . In this case, there exists a labelled predicate (p)I

that occurs in φA ∧ φB such that w does not satisfy p. We introduce the pivot value
μ = ut

pv for partitioning I into the following three disjoint intervals I<
μ , I=

μ , and I>
μ

where I#
μ = {δ ∈ I | δ#μ}. We select the rational value μ for partitioning I since

μ ∈ I (recall that v satisfies the system Cx ≤ c). Note that the integral value ut
pw is

not a good choice for partitioning I since in general this value is not in I . In particular
w is just used to select a predicate p and its value is no longer used in the sequel.

The decomposition of I into (I<
μ , I=

μ , I>
μ) should not be replaced by the partitions

(I<
μ , I≥μ) or (I≤μ , I>

μ) since the termination of the algorithm is no longer guaranteed

Interpolating Quantifier-Free Presburger Arithmetic 499

with these partitions. In fact the partition (I<
μ , I≥μ) degenerates to (∅, I) if μ is the lower

bound of I and the partition (I≤μ , I>
μ) degenerates to (I, ∅) if μ is the upper bound of I .

Intuitively in these two cases the predicate (p)I is not really strengthened.
An interpolantψ for (φA, φB) is deduced from interpolantsψ# of (φ#

A , φ#
B) for each

∈ {<,=, >} by introducing the following formula:

ψ =

{
ψ< ∨ ψ= ∨ ψ> if (p)I occurs in φA

ψ< ∧ ψ= ∧ ψ> if (p)I occurs in φB

1 strengthening(φA , φB)
2 let v ∈ Qn such that Cv ≤ c
3 let w = R−1[Rv]
4 if w satisfies φ̄A ∧ φ̄B return w
5 let (p)I be a labelled predicate of φA ∧ φB such that w does not satisfy p
6 let μ = ut

pv
7 foreach # ∈ {<,=, >}
8 let (φ#

A , φ#
B) obtained from (φA, φB) by replacing I by I#

μ

9 let ψ#=interpolant(φ#
A , φ#

B)
10 if the previous function returns a valuation w return w

11 return

{
ψ< ∨ ψ= ∨ ψ> if (p)I occurs in φA

ψ< ∧ ψ= ∧ ψ> if (p)I occurs in φB

Proposition 7.2. When algorithm interpolant(φA , φB) terminates, it returns either
an interpolant for (φA, φB) or a valuation w ∈ Zn satisfying φ̄A ∧ φ̄B .

8 Termination and Complexity

The exponential worst case execution time of interpolant is proved using a rooted tree
that logs the algorithm execution. As expected a node N denotes a recursive sub-call of
interpolant with input (φN

A , φN
B). Internal nodes N have three children denoted by N#

with # ∈ {<,=, >}.
We first examine sub-algorithm strengthening(φA , φB) when the computed vector

v ∈ Qn is rounded up into an integer vector w ∈ Zn that is not a solution of φ̄A ∧ φ̄B .
We denote by (p)I a labelled predicate that occurs in φA or φB such that w does not
satisfy p.

Lemma 8.1. The set I contains at least two distinct integers.

Recall that p is a predicate of the form ut
px#pβp. The distance of the pivot value μ to

βp is bounded by the following lemma where ||z||1 = |z1| + · · ·+ |zn| for any vector
z = (z1, . . . , zn)t ∈ Zn.

Lemma 8.2. We have |μ− βp| ≤ 1
2

∣∣∣∣ut
pR

−1
∣∣∣∣

1.

500 D. Kroening, J. Leroux, and P. Rümmer

We introduce an integer s denoting the size of the input problem, i.e. the number of bits
to denote (φA, φB) with integral coefficients encoded in binary. Since the lines of the
computed matrices U are vectors up for some predicates p, we deduce that the size of
the matrix U is bounded by s. As the Smith Normal Form of a matrix U is obtained
with a polynomial time algorithm, we deduce that there exists a polynomial P such that
1
2

∣∣∣∣ut
pR

−1
∣∣∣∣

1
< 2P (s) at any step of the computation. From the previous Lemma 8.2

we deduce that every pivot value μ satisfies |μ − βp| < 2P (s). Let us recall that the
pivot value μ is used by sub-algorithm strengthening to partition I into three intervals
I<
μ , I=

μ and I>
μ . An immediate induction shows that every predicate p is labelled by

an interval with integral bounds in �βp − 2P (s), βp + 2P (s)�. In particular the number
of possible intervals I that label a predicate p is bounded by (2 + 2P (s)+1)2. Let k
denote the number of predicates. We have proved that the number of possible labelings
is bounded by (2 + 2P (s)+1)2k.

Lemma 8.3. Intervals I<
μ , I=

μ and I>
μ are strictly included in I .

Lemma 8.4. Two distinct internal nodes have distinct labels.

From the previous lemma we deduce that the number of internal nodes N is bounded
by (2 + 2P (s)+1)2k . As an internal node has at most three leaf children, we deduce
that the number of nodes is bounded by 4(2 + 2P (s)+1)2k = O(4Q(s)) where Q is the
polynomial Q(s) = 2s(P (s) + 1). We have proved the following theorem.

Theorem 8.5. In exponential time in the worst case, algorithm interpolant(φA , φB)
returns either a valuation satisfying φ̄A ∧ φ̄B or an interpolant for (φA, φB).

9 Experimental Evaluation

We have created a prototypical implementation of our interpolating decision procedure
and integrated it as a theory solver into the SMT-solver OpenSMT [3], with the long-
term goal of creating an interpolating SMT-solver to be used in model checkers. The
prototype was developed on top of a recent development version of OpenSMT that
already provided an interpolation procedure for propositional logic. In order to imple-
ment the algorithm check_inequality, we internally invoke the LP solver present in
OpenSMT, which realizes the algorithm from [6].

To the best of our knowledge, the following tools and algorithms are the only ones
available for comparison (also see Sect. 1):

– the theorem prover iPrincess [2], which implements an interpolating decision pro-
cedure for QFPA based on a sequent calculus,

– the SMT-solver SmtInterpol,1 a recently released interpolating decision procedure
for linear integer arithmetic that uses an architecture similar to the one in Foci [11],

– quantifier elimination (QE) procedures, which can be used to generate interpolants
as illustrated in Sect. 2; for our experiments, we use the implementation of the
Omega test [14] available in iPrincess.

1 http://swt.informatik.uni-freiburg.de/research/tools/
smtinterpol

http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol
http://swt.informatik.uni-freiburg.de/research/tools/smtinterpol

Interpolating Quantifier-Free Presburger Arithmetic 501

Table 1. Results of applying the four compared tools to SMT-LIB benchmarks (times in seconds).
Experiments were done on an Intel Xeon X5667 4-core machine with 3.07GHz, heap-space lim-
ited to 12GB, running Linux, with a timeout of 900s.

OpenSMT SmtInterpol iPrincess Omega QE

Averest 10/9 10/1/31.75/ 8/4/97.02/ 0/0/–/ –/–/203.89/
90/221 72/149 –/– 8/132639

CIRC/multiplier 16/1 5/1/48.94/ 5/1/24.40/ 6/1/130.46/ –/–/108.71/
45/2357 45/48827 35/12764 125/15392

CIRC/simplebitadder 17/0 7/0/102.81/ 5/0/8.58/ 6/0/412.82/ –/–/97.83/
63/23362 45/41077 49/47218 129/93181

check 4/1 4/1/0.77/ 2/1/0.17/ 4/1/36.65/ –/–/0.26/
36/1.7 18/2.3 33/485 30/0.67

nec-smt/small 17/18 1/0/251.95/ 7/0/259.86/ 0/0/–/ –/–/134.88/
9/36 63/1728 –/– 66/15867

mathsat 100/21 74/15/52.96/ 65/13/45.74/ 11/11/61.78/ –/–/168.81/
666/2020 585/126705 99/13745 612/101088

rings 294/0 9/0/59.93/ 0/0/–/ 54/0/108.01/ –/–/227.25/
81/4611 –/– 62/3470 1474/55307

wisa 2/3 0/0/–/ 1/2/394.22/ 0/0/–/ –/–/67.01/
–/– 9/1039 –/– 14/23709

unsat/sat unsat / sat / average time / #interpolants / average int. size

The benchmarks for our experiments are derived from different families of the SMT-
LIB category QF-LIA. Some of the selected families (e.g., rings) are specifically de-
signed to test integer reasoning capabilities, and contain problems satisfiable over ra-
tionals. Because SMT-LIB benchmarks are usually conjunctions at the outermost level,
we partitioned them into A∧B by choosing the first k

10 ·n of the benchmark conjuncts
as A, the rest as B (where n is the total number of conjuncts, and k ∈ {1, . . . , 9}). This
yields 9 interpolation problems for each SMT-LIB benchmark.

Our experimental results are summarized in Table 1:2

– the number unsatisfiable/satisfiable problems tested, and the number of unsat/sat
results that the tools were able to derive; in the remaining cases, either a timeout
or a memory-out occurred. No figures are given for QE, which does not decide
satisfiability of interpolation problems.

– the average time (in seconds) required to solve each benchmark, including the time
for computing the 9 interpolants for a benchmarks. For QE, this is simply the aver-
age time to compute 9 interpolants.

– the total number of interpolants that could be computed. For OpenSMT and Smt-
Interpol, which compute interpolants on-the-fly while solving a problem, this is
always 9× the number of unsat results. iPrincess first constructs a proof for a prob-
lem, and afterwards extracts interpolants, which means that sometimes fewer than 9
interpolants can be computed (interpolant extraction has exponential complexity).

2 http://www.philipp.ruemmer.org/interpolating-opensmt.shtml

http://www.philipp.ruemmer.org/interpolating-opensmt.shtml

502 D. Kroening, J. Leroux, and P. Rümmer

– the average size of generated interpolants, in terms of the number of equations,
inequalities, and occurrences of propositional variables in the interpolant.3

Discussion. The experimental results show that our implementation in OpenSMT is
competitive with all compared interpolation procedures: in 4 of the 8 families, it is
able to prove the largest of problems unsatisfiable (and to compute interpolants for
them); in all families but CIRC/simplebitadder, the runtime is smaller or comparable
with the other tools; in 4 families, the generated interpolants are significantly smaller
(on average) than the interpolants computed by the other tools.

QE is able to generate a large number of interpolants in the families CIRC/multi-
plier, CIRC/simplebitadder, and rings, albeit the generation is slow (on average) and
the interpolants are large. It can be observed that our construction of interpolation prob-
lems by choosing arbitrary partitionings of SMT-LIB problems tends to generate many
trivial interpolation problems, in the sense that the partition φA does not contain any
local variables (or only few). On such interpolation problems, QE naturally performs
very well; with an increasing number of local symbols, the performance of QE quickly
degrades (also see [2] for a discussion of this phenomenon).

The complexity of interpolant extraction in iPrincess (which can be exponential due
to mixed cuts) becomes visible in rings, where the prover can solve many more prob-
lems than the other systems, but can only produce a small number of interpolants.

Conclusion. We have presented an algorithm computing interpolants in the quantifier-
free fragment of Presburger arithmetic in exponential time in the worst case. This al-
gorithm combines the one presented in [7] that computes interpolants in polynomial
time for systems of equalities over the integers and the one presented in [11] that com-
putes interpolant in polynomial time for systems of inequalities over the rational num-
bers, without any overhead. In fact, sub-algorithm strengthening is called only if sub-
algorithms check_equality and check_inequality fail in computing an interpolant.

Even though we limit the presentation to conjunctions of literals, following [11]
the algorithm can be applied to any formula of the QFPA fragment. In the worst case
this extended algorithm calls the presented algorithm for each conjunction of literals
extracted from φA and φB . In particular the worst case complexity is still exponential
(we call an exponential number of times an exponential algorithm and 2n2n = 4n). In
particular our algorithm matches the exponential lower bound complexity.

We have created a prototypical implementation of our interpolating decision proce-
dure. The experimental results show that our implementation is competitive with all
compared interpolation procedures; work on further optimizations and further bench-
marks is in progress. We are interested in applying interpolation to the verification of
safety properties for counter-systems, a class of automata equipped with a finite set of
counters (applications of these automata are given in [4]). More precisely, we plan to
implement the combination of the lazy-interpolation framework [12] with the acceler-
ation framework presented in [4] that requires an efficient interpolator for QFPA.

3 OpenSMT generates interpolants that use the SMT-LIB flet operator to achieve a more
compact representation, as a result of how propositional interpolants are computed. Eliminat-
ing flets can sometimes significantly increase the size of interpolants, but is practically not
necessary for further processing, which is why flets have been kept for our comparison.

Interpolating Quantifier-Free Presburger Arithmetic 503

Acknowledgements. We would like to thank the OpenSMT team and Gérald Point for
help with the implementation, Thomas Wahl for discussions, and the anonymous refer-
ees for helpful comments.

References

[1] Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In: Gupta, A.,
Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 304–308. Springer, Heidelberg (2008)

[2] Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An interpolating sequent calculus for
quantifier-free Presburger arithmetic. In: Giesl, J., Hähnle, R. (eds.) Automated Reasoning.
LNCS, vol. 6173, pp. 384–399. Springer, Heidelberg (2010)

[3] Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT solver. In: Esparza,
J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 150–153. Springer, Heidelberg
(2010)

[4] Caniart, N., Fleury, E., Leroux, J., Zeitoun, M.: Accelerating interpolation-based model-
checking. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp.
428–442. Springer, Heidelberg (2008)

[5] Cimatti, A., Griggio, A., Sebastiani, R.: Interpolant generation for UTVPI. In: Schmidt,
R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp. 167–182. Springer, Heidelberg (2009)

[6] Dutertre, B., de Moura, L.M.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)

[7] Jain, H., Clarke, E.M., Grumberg, O.: Efficient Craig interpolation for linear diophantine
(dis)equations and linear modular equations. In: Gupta, A., Malik, S. (eds.) CAV 2008.
LNCS, vol. 5123, pp. 254–267. Springer, Heidelberg (2008)

[8] Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and Hermite
normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979)

[9] Lynch, C., Tang, Y.: Interpolants for linear arithmetic in SMT. In: Cha, S(S.), Choi, J.-
Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 156–170.
Springer, Heidelberg (2008)

[10] McMillan, K.L.: Applications of Craig interpolants in model checking. In: Halbwachs, N.,
Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 1–12. Springer, Heidelberg (2005)

[11] McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1) (2005)
[12] McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.) CAV

2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)
[13] Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computa-

tions. J. Symb. Log. 62(3), 981–998 (1997)
[14] Pugh, W.: The Omega test: a fast and practical integer programming algorithm for depen-

dence analysis. Communications of the ACM 8, 102–114 (1992)
[15] Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. In: Cook,

B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 346–362. Springer, Heidelberg
(2007)

[16] Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
[17] Weispfenning, V.: Complexity and uniformity of elimination in Presburger arithmetic. In:

ISSAC, pp. 48–53 (1997)

Variable Compression in ProbLog

Theofrastos Mantadelis and Gerda Janssens

Departement Computerwetenschappen, K.U. Leuven
Celestijnenlaan 200A - bus 2402, B-3001 Heverlee, Belgium

firstname.lastname@cs.kuleuven.be

Abstract. In order to compute the probability of a query, ProbLog
represents the proofs of the query as disjunctions of conjunctions, for
which a Reduced Ordered Binary Decision Diagram (ROBDD) is com-
puted. The paper identifies patterns of Boolean variables that occur in
Boolean formulae, namely AND-clusters and OR-clusters. Our method
compresses the variables in these clusters and thus reduces the size of
ROBDDs without affecting the probability.

We give a polynomial algorithm that detects AND-clusters in disjunc-
tive normal form (DNF) Boolean formulae, or OR-clusters in conjunctive
normal form (CNF) Boolean formulae.

We do an experimental evaluation of the effects of AND-cluster com-
pression for a real application of ProbLog. With our prototype imple-
mentation we have a significant improvement in performance (up to 87%)
for the generation of ROBDDs. Moreover, compressing AND-clusters of
Boolean variables in the DNFs makes it feasible to deal with ProbLog
queries that give rise to larger DNFs.

Keywords: ProbLog, Statistical Relation Learning, Probabilistic Logic
Programming, Variable Compression, Binary Decision Diagrams.

1 Introduction

ProbLog [1,2] is a probabilistic framework that extends Prolog with probabilis-
tic facts. ProbLog computes the probability of a query in two main steps. First,
ProbLog collects the probabilistic facts for each SLD proof of the query. Each
probabilistic fact is represented by a Boolean variable, each proof by the con-
junction of probabilistic facts used in the proof, and the set of all proofs by a
disjunction of conjunctions (a DNF). In the second step, ProbLog uses ROBDDs
[3,4] to calculate the success probability of the query. Note that assessing the
probability of a DNF Boolean formula is a #P-complete problem [5] and using
ROBBDs is a state-of-the-art approach [6].

For typical ProbLog applications, generating a ROBDD can become one of
the limiting factors. The size of the constructed ROBDD depends heavily on the
variable ordering. There has been a lot of research on finding efficient variable
orderings by using static [7,8] and dynamic heuristics [9,10]. In this paper we
present variable compression as a complementary approach to construct smaller
ROBDDs. We observed patterns (AND-clusters, OR-clusters) in the ROBDDs

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 504–518, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Variable Compression in ProbLog 505

that make it possible to replace a set of Boolean variables with a single new one
without affecting the final probability. To benefit from the variable compression,
the clusters should be discovered before the actual ROBDD generation.

The paper has two main contributions. The first contribution is the definition
of the AND-clusters and OR-clusters, their usage in assessing the probability
of a DNF Boolean formula, and their usage for compressing ROBDDs. The
second contribution is the Book Marking algorithm that detects AND-clusters
in ProbLog set of proofs.

We also evaluate experimentally the effects of the AND-clusters in a typical
ProbLog application [1,11]. Our experiments show the impact of the AND-cluster
compression: the number of variables in the ROBDD is on average reduced by
28% and the time performance of the generation of the ROBDDs improves on av-
erage by 41%. The AND-cluster compression also allowed us to compute queries
that caused timeouts. In our benchmarks AND-cluster compression is beneficial
for larger DNFs where the cost of executing the bookmarking algorithm is lower
than the time gain we have during ROBDD generation.

We briefly introduce ProbLog in Section 2 and explain how ROBDDs are
used. In Section 3 we define AND-clusters, OR-clusters and present their use
in a probabilistic context. The Book Marking algorithm for AND-clusters is in
Section 4. The experiments follow in Section 5 and the complexity analysis is in
Section 6. Finally, Section 7 concludes.

2 ProbLog and Its Use of ROBDDs

2.1 The ProbLog Language

A ProbLog program T [2] consists of a set of labelled ground facts pi :: pf i

together with a set of definite clauses. Each such fact pf i is true with probability
pi, that is, these facts correspond to random variables, which are assumed to be
mutually independent. Together, they thus define a distribution over subsets of
LT = {pf1, . . . , pfn}. The definite clauses add arbitrary background knowledge
(BK) to those sets of logical facts. Given the one-to-one mapping between ground
definite clause programs and Herbrand interpretations, a ProbLog program also
defines a distribution over its Herbrand interpretations.

ProbLog inference calculates the success probability Ps(q|T) of a query q in
a ProbLog program T , that is, the probability that the query q is provable in a
logic program that combines BK with a randomly sampled subset of LT .

Figure 1 shows a small ProbLog program encoding a probabilistic graph and
the graph that is represented by the probabilistic facts edge/2. The success prob-
ability of path(1,3) corresponds to the probability that a randomly sampled
subgraph contains at least one of the four possible paths from node 1 to node 3.

2.2 Program Execution in ProbLog

ProbLog programs are executed in two steps. Given a ProbLog program T and a
query q, the first step, SLD-resolution, collects all proofs for query q in BK∪LT .

506 T. Mantadelis and G. Janssens

0.5::edge(1, 2). % x0 0.4::edge(1, 4). % x1 0.7::edge(2, 3). % x2

0.8::edge(2, 6). % x3 0.9::edge(4, 5). % x4 0.7::edge(5, 2). % x5

0.6::edge(5, 7). % x6 0.4::edge(6, 3). % x7 0.3::edge(6, 7). % x8

path(X, Y):- path(X, Y, [X]).

path(X, Y, _):- edge(X, Y).

path(X, Y, A):- edge(X, Z), \+ member(Z, A), path(Z, Y, [Z|A]).

% Query: problog_exact(path(1, 3), Probability)

Fig. 1. Example ProbLog program path/2 and its graph

Proofs are stored as lists of probabilistic facts in a trie data structure. This trie
represents the proofs of the query q in a compact way as it exploits prefix sharing
between proofs. The usage of tries is not important for this paper.

In our example, SLD resolution finds four proofs for the query path(1,3)
which are represented by the following lists of probabilistic edge/2 facts:

edge(1,2),edge(2,3)

edge(1,2),edge(2,6),edge(6,3)

edge(1,4),edge(4,5),edge(5,2),edge(2,3)

edge(1,4),edge(4,5),edge(5,2),edge(2,6),edge(6,3)

In general these lists of probabilistic facts express the Boolean formula:∨
prj∈proofs

(
∧

pfi∈prj

pfi) (1)

where the pfi represent the probabilistic facts used in proof prj . Using the xi

to represent the edge/2 facts as indicated in the ProbLog program, the DNF
for the path(1,3) query is the formula (x0 ∧ x2) ∨ (x0 ∧ x3 ∧ x7) ∨ (x1 ∧ x4 ∧
x5 ∧ x2) ∨ (x1 ∧ x4 ∧ x5 ∧ x3 ∧ x7). In order to compute the correct probability
for (1), ProbLog faces the disjoint sum problem [6]. ProbLog solves this in its
second step, namely by the transformation of the disjunction of conjunctions
into mutually disjoint conjunctions by constructing a ROBDD for (1).

A ROBDD for the path(1,3) example of Figure 1 is given in Figure 2a. The
topmost circular node in the ROBDD corresponds to the probabilistic fact x0
and is called a variable node. A variable node has two successors pointed to
by the high edge and the low edge. Edges are implicitly directed: they point
downwards. The ROBDD that is rooted at the low successor represents the
Boolean expression that is yielded by substituting “false” for the variable. The
high successor represents the Boolean expression that is yielded by substituting
“true”. The “true” node 1 and the “false” node 0 represent whether the binary

Variable Compression in ProbLog 507

(a) Bad ordering.
x0-x1-x2-x3-x4-x5-x7

(b) Good ordering.
x0-x1-x4-x5-x2-x3-x7

(c) ProbLog ordering.
x7-x3-x2-x5-x0-x4-x1

Fig. 2. ROBDD for the query path(1,3)

formula is satisfied or not. The paths from the root to node 1 give the disjoint
sum as a disjunction of disjoint conjunctions.

The computation of the probability is bottom up and linear in the size of
the ROBDD. Details are in [2]. ProbLog computes that 0.498296 is the exact
probability that a path from node 1 to node 3 exists.

Note that in general a variable can have multiple nodes in a ROBDD. For
example, in Figure 2a the variables x2, x3, x4, x5 have two nodes each. A ROBDD
imposes an order on the Boolean variables and the different variables appear in
that order in all the paths of the ROBDD. ROBDDs are reduced which means
that two nodes never have the same successors if they are nodes of the same
variable and that no node has the same high and low successor. These reductions
do not perform the variable compression we are aiming at.

3 Variable Compression

3.1 Motivation

ProbLog uses ROBDDs to compute the success probability of a query. While the
complexity of the calculation of the probability is linear in terms of the size of
the ROBDD, the generation of the ROBDD is NP-hard.

It is well-known that the variable ordering used to construct the ROBDD for
a Boolean formula has an impact on the size of the ROBDD. For our path(1,3)
example, Figure 2a until 2c use different variable orderings. The orderings that
give rise to smaller ROBDDs are called good orderings: constructing smaller
ROBDDs takes less time and space and also the computation of the probability is
faster. State-of-the-art ROBDD tools use heuristics to decide about the variable
ordering, whose search space is exponential.

508 T. Mantadelis and G. Janssens

We reduce the search space for the variable ordering by decreasing the number
of variables in the Boolean formula, namely by replacing subsets of variables by
new representative variables. We call this variable compression. We can only
do variable compression if we do not affect the probability.

We discovered sets of variables in the ROBDDs for which we can compute
the contribution of such a set of variables to the probability of the ROBDD
independently from the rest of the ROBBD. For example, the set of variables x1,
x4 and x5 in Figure 2b. This implies that we can replace those three variables by a
new representative variable, whose probability is computed from the probabilities
of x1, x4 and x5. Later in this section we define this set as an AND-cluster.

In order to do variable compression before ROBDD generation, we need to de-
tect these patterns in the Boolean formulae, or in the case of ProbLog at the level
of the DNF (1). It turns out that in the proofs of path(1,3) either the proba-
bilistic facts corresponding to x1, x4 and x5 appear all three together in a proof,
or none of them occurs. The AND-clusters are determined for particular DNFs
and as such they are query-dependent. For path(1,7), x1, x4 and x5 no longer
form an AND-cluster as we also have a proof edge(1,4),edge(4,5),edge(5,7)
that does not contain x5. Now only x1 and x4 form an AND-cluster.

As the AND-clusters are query-dependent, they do not appear in the Prob-
Log source program itself. Although one could be tempted to replace the facts
edge(1,4),edge(4,5) by a single one, this is not a good idea because path/2
queries could have 4 as a starting node.

3.2 Cluster Definitions

We define two kinds of clusters and proof that their compression does not effect
the final probability. We define the clusters in terms of the ROBDDs because
the patterns can also be valuable for other application areas that use ROBDDs.

Definition 1. Let F be a Boolean formula with variables v1, . . . , vl. The vari-
ables {x1, . . . , xk} ⊆ {v1, . . . , vl}, k > 1, form an AND-cluster if there exists a
variable ordering such that the ROBDD R of F

1. has only one node ni for variable xi, 1 ≤ i ≤ k,
2. node nj has as only incoming edge the high edge of node nj−1, 2 ≤ j ≤ k,
3. and the low edges of the nodes {n1, ..., nk} connect to the same node in R.

Definition 2. Let F be a Boolean formula with variables v1, . . . , vl. The vari-
ables {x1, . . . , xk} ⊆ {v1, . . . , vl}, k > 1, form an OR-cluster if there exists a
variable ordering such that the ROBDD R of F

1. has only one node ni for variable xi, 1 ≤ i ≤ k,
2. node nj has as only incoming edge the low edge of node nj−1, 2 ≤ j ≤ k,
3. and the high edges of the nodes {n1, ..., nk} connect to the same node in R.

In a probabilistic framework like ProbLog that uses ROBDDs to calculate prob-
abilities, each ROBDD variable has an assigned probability. To be able to com-
press the clusters of variables to new representative variables, we need to

Variable Compression in ProbLog 509

compute the probabilities of the representative variables such that the probali-
bilty we compute for the ROBDD as a whole does not change.

Theorem 1 (Probability of AND-cluster). To replace an AND-cluster {x1,
. . . , xn} by a representative variable V with probability PV = PAND({x1, . . . , xn})
=

n∏
i=1

P (xi) does not change the probability of the ROBBD as a whole.

Proof. First consider the simple case of a ROBDD that consist of exactly one
AND-cluster, {x1, . . . , xn}. The probability of this ROBDD is P (x1) · ... ·P (xi) ·
... · P (xn) · 1 + (1− P (x1) · ... · P (xi) · ... · P (xn)) · 0 =

n∏
i=1

P (xi). But in general,

an AND-cluster has an outgoing high edge to a part T with PT and its low
edges connect to a part F with PF . The probability of the ROBDD part that
includes the AND-cluster can be generalised as P = P (x1) · ... · P (xi) · ... ·
P (xn) · PT + (1 − P (x1) · ... · P (xi) · ... · P (xn)) · PF = PT ·

n∏
i=1

P (xi) + PF −

PF ·
n∏

i=1
P (xi) = (PT − PF) ·

n∏
i=1

P (xi) + PF . If we replace the AND-cluster with

a new representative variable V with PV and calculate the probability, we get
P = PV · PT + (1− PV) · PF = PV · PT + PF − PV · PF = (PT − PF) · PV + PF .

Therefore PV = PAND({x1, . . . , xn}) =
n∏

i=1
P (xi).

Theorem 2 (Probability of an OR-cluster). To replace an OR-cluster {x1,
. . . , xn} to the representative variable V with probability PV = POR({x1, . . . , xn})
= P (x1) + (1 − P (x1)) · POR({x2, . . . , xn}) and POR({xn}) = P (xn) does not
change the probability of the ROBBD as a whole.

Proof. First consider the simple case of a ROBDD that consist of exactly one
OR-cluster, {x1, . . . , xn}. The probability of this ROBDD is P (x1) · 1 + (1 −
P (x1)) · (P (x2) · 1 + (1 − P (x2)) · . . . · (P (xi) · 1 + (1 − P (xi)) · . . . · (P (xn) ·
1 + (1 − P (xn)) · 0)) . . .) = P (x1) + (1 − P (x1)) · POR({x2, . . . , xn}). But in
general an OR-cluster has its high edges to a part T with PT and an outgoing
low edge to a part F with PF . The probability can be generalised as P =
P (x1) ·PT +(1−P (x1)) · (P (x2) ·PT +(1−P (x2)) · . . . · (P (xi) ·PT +(1−P (xi)) ·
. . . ·(P (xn) ·PT +(1−P (xn)) ·PF)) . . .) = (P (x1)+(1−P (x1)) ·P (x2)+ . . .+(1−
P (x1)) · . . . · (1−P (xi−1)) ·P (xi)+ . . .+(1−P (x1)) · . . . · (1−P (xn−1)) ·P (xn)) ·
PT + (1−P (x1)) · . . . · (1− P (xn)) · (PF /PT). If we replace the OR-cluster with
a new representative variable V with PV and calculate the probability, we get
P = PV ·PT +(1−PV) ·PF if we replace PV = P (x1)+(1−P (x1)) ·P (x2)+ . . .+
(1−P (x1)) · . . . ·(1−P (xi−1)) ·P (xi)+ . . .+(1−P (x1)) · . . . ·(1−P (xn−1)) ·P (xn)
then we need to prove that 1−PV = (1−P (x1)) · . . . ·(1−P (xn)) ⇒ 1−(P (x1)+
(1 − P (x1)) · P (x2) + . . . + (1 − P (x1)) · . . . · (1 − P (xi−1)) · P (xi) + . . . + (1 −
P (x1)) · . . . · (1 − P (xn−1)) · P (xn)) = (1 − P (x1)) · . . . · (1 − P (xn)). Finally
by using the distribution rule we see that the previous formula is a tautology.
Therefore PV = POR({x1, . . . , xn}) = P (x1) + (1− P (x1)) · POR({x2, . . . , xn}).

510 T. Mantadelis and G. Janssens

3.3 Using the Clusters for Variable Compression

We illustrate the variable compression with our path(1,3) example. In Figure 3a
we have two AND-clusters, {x1, x4, x5} and {x3, x7}. After compression we ob-
tain the ROBDD in Figure 3b with two new Boolean variables x1, 4, 5, x3, 7 and
their associated probabilities P (x1, 4, 5)1, P (x3, 7)2. After AND-compression we
now have two OR-clusters, {x0, x1, 4, 5} and {x3, 7, x2} as shown in Figure 3b; by
further compressing them we get the ROBDD in Figure 3c with two new Boolean
variables x0, 1, 4, 5, x3, 7, 2 and their probabilities P (x0, 1, 4, 5)3, P (x3, 7, 2)4. Fi-
nally, by compressing the single AND-cluster {x0, 1, 4, 5, x3, 7, 2} of the ROBDD
in Figure 3c we end up with the ROBDD in Figure 3d that has a single Boolean
variable x0, 1, 4, 5, 3, 7, 2 and probability P (x0, 1, 4, 5, 3, 7, 2)5.

(a) AND-clusters. (b) OR-clusters. (c) AND-cluster. (d) Compressed.

Fig. 3. Compressing ROBDD of path(1,3). Notation: coloured nodes represent
clusters

Not all ROBDDs can be compressed to a single variable, iterating AND/OR-
cluster based variable compression can lead to an easier to construct ROBDD.
We want to use variable compression to be able to deal with queries that caused
timeouts. So, we are willing to pay a certain cost to detect the clusters. In order
to use our variable compression in practise, we first have to detect AND-clusters
in DNFs. In the rest of this paper we focus on AND-clusters and we already
obtain promising results with AND-cluster variable compression. The detection
of OR-clusters in the DNFs is part of future work.

1 P (x1, 4, 5) = PAND({x1, x4, x5}) = 0.4 · 0.9 · 0.7 = 0.252
2 P (x3, 7) = PAND({x3, x7}) = 0.8 · 0.4 = 0.32
3 P (x0, 1, 4, 5) = POR({x0, x1, 4, 5}) = 0.5 + (1− 0.5) · 0.252 = 0.626
4 P (x3, 7, 2) = POR({x3, 7, x2}) = 0.32 + (1− 0.32) · 0.7 = 0.796
5 P (x0, 1, 4, 5, 3, 7, 2) = PAND({x0, 1, 4, 5, x3, 7, 2}) = 0.626 · 0.796 = 0.498296

Variable Compression in ProbLog 511

4 Discovering AND-clusters

To be able to benefit from AND-cluster compression, we need to identify them
before the ROBDD generation. Fortunately, AND-clusters also appear in the
DNF representing the proofs: either all the probabilistic facts of an AND-cluster
appear in a proof, or none of them. A naive approach to detect AND-clusters is to
find longest common subsequences (LCS) in conjunctions of the DNF, however
this is an NP-hard problem [12]. As our problem is a special case of the LCS we
can do better.

Lemma 1. Every set of probabilistic facts {pf1, ..., pfn} in a set of proofs
{pr1, . . . , prm} satisfying ∀pfi ∈ {pf1, ..., pfn} occur(pfi) = (

⋂
pfi∈prj

prj) ∩
(
⋂

pfi �∈prj
prj) = {pf1, ..., pfn} forms an AND-cluster.

The first part of occur(pfi) is the set of probabilistic facts that occur in each
proof in which pfi occurs. The second part is the set of probabilistic facts that do
not occur in proofs that do not contain pf . We use prj to denote the complement
of the set prj with respect to the set of the probabilistic facts in all proofs. The
first set is a possible AND-cluster for pfi but it might also contain probabilistic
facts that occur in proofs that do not contain pfi. In order to exclude the latter
ones, the possible AND-cluster has to be restricted to probabilistic facts that
only occur in proofs containing pfi.

4.1 The Book Marking Algorithm

Based on Lemma 1, the Book Marking algorithm in Table 1 deals with all the
proofs one by one and ensures that for all probabilistic facts pfi seen by the
algorithm so far occur(pfi) is computed. The algorithm encodes a proof by a
bit string. We order the probabilistic facts by their chronological appearance in
the proofs. The ith probabilistic fact is denoted by pf(i). The ith bit encodes
whether the probabilistic fact pf(i) is used in the proof. We refer to the bitstring
as the occurrence number (ON) of the proof.

We use a two dimensional matrix (MA) of bits to represent the AND-clusters.
Row k corresponds to the probabilistic fact pf(k) and represents occur(pf(k)).
Column l represents the probabilistic fact pf(l). The element l of a row k indi-
cates whether pf(l) forms an AND-cluster with pf(k). This matrix grows incre-
mentally as we deal with the proofs one by one and the size of each dimension
is equal to the number of different, already seen probabilistic facts.

Dealing with a new proof involves computing ON and then computing its
impact on the AND-clusters already in MA according to Lemma 1 using the
following three operations:

1. for each previously seen probabilistic fact i which appears in this proof, we
compute MA[i] = MA[i] ∧ON ,

2. for each previously seen probabilistic fact i that does not occur in this proof,
we compute MA[i] = MA[i] ∧ ¬ON ,

3. we grow MA to include AND-clusters for the probabilistic facts that were
not seen before.

512 T. Mantadelis and G. Janssens

Table 1. The Book Marking algorithm

bookmarking(DNF) {

for each Proof in DNF {

ON = bit_encode(Proof)

for (i = 0; i < MatrixSize; i++) {

if (2 ^ i & ON) > 0 then

\\ Old row of pf in ON - operation 1

MA[i] = MA[i] & ON

else

\\ Old row of pf not in ON - operation 2

MA[i] = MA[i] & neg(ON)

}

for (i = MatrixSize; i < ListLength; i++) {

\\ Add a new row - operation 3

MA[i] = neg(2 ^ MatrixSize - 1) & ON

}

MatrixSize = ListLength

}

}

After all proofs of the DNF have been dealt with, all the rows in MA with more
than one active bit (i.e. set to 1) represent an AND-cluster.

4.2 An Example of the Book Marking Algorithm

As an example for the Book Marking algorithm we use the proofs of path(1,3):
{x0, x2}, {x0, x3, x7}, {x1, x4, x5, x2}, {x1, x4, x5, x3, x7}. Each row of Table 2
corresponds to a single proof (PR), and has the probabilistic fact order (OL),
the occurrence number (ON) and the matrix (MA).

For the first proof the algorithm uses the order x0 < x2 to compute 11 as the
occurrence number of the proof. As initially the matrix MA is empty, operation
3 uses the ON to construct a MA with two rows and two columns with all bits
activated.

For the second proof the algorithm adds x3 and x7 to the order which becomes
x0 < x2 < x3 < x7. The algorithm computes ON = 1101; note that we are
reading the bitstrings from right to left. Operation 1 computes the conjunction
of 1101 with the row of x0: 11∧ 1101 = 0011∧ 1101 = 0001. This operation sets
the bit corresponding to x2 to 0 as x0 and x2 are no longer an AND-cluster.
For the row of x2, operation 2 computes 11 ∧ neg(1101) = 0011 ∧ 0010 = 0010
and sets the bit for the probabilistic fact x0 to 0. Finally, the algorithm extends
MA by two new rows and columns for the probabilistic facts x3 and x7 with
as values of the rows neg(11) ∧ 1101 = 1100 ∧ 1101 = 1100. Note that also the
existing rows are expanded with new columns set to 0.

When all proofs are dealt with, the Book Marking Algorithm has found
two different AND-clusters, namely {x1, x4, x5} and {x3, x7}. Without vari-
able compression, ProbLog generates the ROBDD of Figure 2c, which has a

Variable Compression in ProbLog 513

Table 2. Book Marking algorithm example

Proof(PR) = x0, x2
Order List(OL) = [x0, x2]
Occurrence Number (ON) = 11 = 3
Matrix(MA) = [3, 3]

1 1 x2
1 1 x0

x2 x0

PR = x0, x3, x7
OL = [x0, x2, x3, x7]
ON = 1101 = 13
MA = [3 ∧ 13, 3 ∧ neg(13), neg(3) ∧ 13, neg(3) ∧ 13]
MA = [1, 2, 12, 12]

1 1 0 0 x7
1 1 0 0 x3
0 0 1 0 x2
0 0 0 1 x0

x7 x3 x2 x0

PR = x1, x4, x5, x2
OL = [x0, x2, x3, x7, x1, x4, x5]
ON = 1110010 = 114
MA = [1 ∧ neg(114), 2 ∧ 114, 12 ∧ neg(114),

12 ∧ neg(114), neg(15) ∧ 114,
neg(15) ∧ 114, neg(15) ∧ 114]

MA = [1, 2, 12, 12, 112, 112, 112]

1 1 1 0 0 0 0 x5
1 1 1 0 0 0 0 x4
1 1 1 0 0 0 0 x1
0 0 0 1 1 0 0 x7
0 0 0 1 1 0 0 x3
0 0 0 0 0 1 0 x2
0 0 0 0 0 0 1 x0

x5 x4 x1 x7 x3 x2 x0

PR = x1, x4, x5, x3, x7
OL = [x0, x2, x3, x7, x1, x4, x5]
ON = 1111100 = 124
MA = [1 ∧ neg(124), 2 ∧ neg(124), 12 ∧ 124,

12 ∧ 124, 112 ∧ 124, 112 ∧ 124, 112 ∧ 124]
MA = [1, 2, 12, 12, 112, 112, 112]

1 1 1 0 0 0 0 x5
1 1 1 0 0 0 0 x4
1 1 1 0 0 0 0 x1
0 0 0 1 1 0 0 x7
0 0 0 1 1 0 0 x3
0 0 0 0 0 1 0 x2
0 0 0 0 0 0 1 x0

x5 x4 x1 x7 x3 x2 x0

size in between the sizes of the other two ROBDDs in Figure 2. After com-
pressing the variables of the AND-clusters to a representative variable x1, 4, 5
with P (x1, 4, 5) = 0.252 and x3, 7 with P (x3, 7) = 0.32, we get the compressed
proofs: {x0, x2}, {x0, x3,7}, {x1,4,5, x2}, {x1,4,5, x3,7}. For the compressed
proofs, ProbLog generates the ROBBD of Figure 3b.

The algorithm as presented here only tackles proofs that contains either pos-
itive or negative occurrences of each probabilistic fact and not both. If in one
proof a probabilistic fact is positive and in an other is negative, this probabilistic
fact does not form an AND-cluster.

5 Experiments for AND-clusters

We implemented the variable compression method using only AND-clusters
within ProbLog. To judge the practicality and the impact we use ProbLog bench-
marks that discover links in real biological networks [11]. Graphs model proba-
bilistic links between concepts such as genes, proteins, etc.. The first benchmark
consists of a graph of concepts related to the Alzheimer disease that has 23060
edges; because of the size, inference for this graph soon becomes intractable.
We query for the existence of a path between two given nodes, to control the

514 T. Mantadelis and G. Janssens

problem size we limit the maximum path length. For the second benchmark, we
take the experiments (the same data sets and the same queries) from [1]. All
the graphs are fragments of the same network [11]. The experiments should give
answers to the following questions:

1. What is the compression ratio in a real life data set?
2. How does compression improve the performance of generating a ROBDD?
3. In which cases is the variable compression beneficial?

The default setting of ProbLog is to use CUDD’s [13] group sifting [14] dynamic
reordering during ROBDD generation. CUDD uses the following memory-time
trade-off. It starts by consuming memory without reordering the variables, once
the memory usage passes a threshold, it starts reordering the variables and as
a consequence it consumes time. While CUDD is implemented in C, our Book
Marking algorithm is implemented in Yap Prolog [15].

When we increase the problem size for the first benchmark, we see that
the ROBDD generation time is the limiting factor. We executed three differ-
ent queries with a timeout of 1 hour for the ROBDD generation. Each query
was executed 5 times and we present the averaged times for the ROBDD gener-
ation. Table 3 presents the comparison of executing the queries with four differ-
ent settings. The first and second column use the dynamic reordering strategy;
the third and the fourth use the order in which probabilistic facts appear in the
proofs as a static ordering; the first and third column use variable compression of
AND-clusters. Our experiments confirm that for big ProbLog problems dynamic
reordering performs better than static ordering. Variable compression improves
the ROBDD generation times and has the expected effect both for dynamic and
static orderings.

The second part of Table 3 presents the compression statistics which are inde-
pendent of the reordering method: the time to do variable compression, the num-
ber of AND-clusters found, the number of variables before compression (ovars),
the number of variables after compression (cvars), and finally the variable com-
pression ratio6. We note that the time cost for doing the variable compression is
by far less than the time gained during ROBDD generation. More importantly,
the time for finding the AND-clusters is polynomial (as shown in the next sec-
tion), while that for ROBDD generation is exponential. Because our constant
costs are relatively high, we notice that in small problems variable compression
needs more time than we gain during ROBDD generation, but those problems
are solved very fast either way. The benefit of variable compressing is far more
significant for larger problem sizes.

In order to confirm the positive results for the compression ratio and the bet-
ter performance of the ROBDD generation, we use the larger set of experiments
of our second benchmark. We study the impact of variable compression in com-
bination with dynamic reordering as it was confirmed to be the better option
for ProbLog. In this benchmark, all the queries can be computed without vari-
able compression. The behaviour of queries is diverse, as some spent most of the
6 Ratio = (ovars - cvars) / ovars

Variable Compression in ProbLog 515

Table 3. First benchmark results. The reported times are in milliseconds. Longer path
lengths timeout. A - indicates a timeout and * that the system runs out of memory.

Path Reordering Reordering Static Static Compression statistics
Length Compressed only Compressed time clusters ovars cvars ratio

8 4 4 5 5 7 11 34 23 32%
9 51 97 7 9 22 17 91 71 22%

(a) 10 153 297 10 12 32 25 137 110 20%
11 24,830 90,529 * * 336 76 337 254 25%
12 3,083,750 - - - 835 92 479 378 21%
8 5 4 4 5 5 7 26 17 35%

(b) 9 282 417 24,904 47,000 72 49 170 119 30%
10 1,035 1970 * * 91 53 226 169 25%
11 1,019,588 - - - 966 104 528 410 22%
4 4 4 4 4 0 3 13 10 23%

(c) 5 95 246 18 23 64 42 135 91 33%
6 224 497 74 122 33 45 180 131 27%
7 58,917 2,488,793 * * 385 92 455 350 23%

Table 4. Averaged results and standard deviation. Where Comp. Ratio = (number
of variables before compression - number of variables after compression) / number
of variables before compression, ROBDD Gen. Time Gain = (ROBDD time without
compression - ROBDD time with compression) / ROBDD time without compression
and Compression Time Ratio= (SLD time with book marking algorithm - SLD time
without) / SLD time without.

Query ROBDD ROBDD Gen. Compression
Group Comp. Ratio Time Gain Time Ratio
Small (28± 11)% (40± 36)% (26± 41)%
Big (27± 5)% (47± 23)% (69± 107)%
All (28± 10)% (41± 36)% (32± 53)%

time in the ROBDD generation and others in SLD-resolution. Among the 360
queries of [1], 100 queries do not use any probabilistic facts. We divided the other
260 queries in 3 groups: the first group contains 92 queries that generate tiny
ROBDDs with less than 20 variables; the second group contains 152 queries that
generate small ROBDDs with 20 or more variables but less than 100; and finally
the third group contains the queries that generated relatively big ROBDDs with
more than 100 variables.

For the ’Tiny’ group we obtain an average compression ratio of 42%. Their
ROBDD generation times and the variable compression times are too small to
draw any conclusions. For the other two groups, we compute averages for each
group and for both groups together. The results are in Table 4. We give the
variable compression ratio, the time gain realised for the ROBDD generation,
and the variable compression time relative to the SLD resolution time.

While the results might be specific for the application, they confirm the actual
presence of AND-clusters in real world datasets. In this real dataset we encounter

516 T. Mantadelis and G. Janssens

a compression ratio that ranges from 7% to 61% with an average of 28%. The
compression ratio results are similar to the ones of the first benchmark.

In the ‘Small query’ group 44% of the queries have a small number of variables
and they do not need variable reordering neither before nor after compression:
their time gain is near 0. Most of the other queries in the ‘Small query’ group
need reordering before and no reordering after compression, so they have a huge
time gain up to 87%. On average we end up with a gain of 40%.

For the ‘Big query’ group the average gain is larger namely 47%, but the
variation is less as all the queries need reordering before and after compression.
Here the gain comes from having less variables that have to be dealt with during
the reordering by the state-of-the-art tool.

Comparing the variable compression time with the SLD-resolution time shows
that the former is smaller than the latter, but its cost is relatively higher for the
’Big’ queries.

Our experiments7 yield promising results, answering our initial questions by
showing that there is in real life ProbLog applications a role for variable com-
pression as it improves significantly the performance of the ROBDD generation.

6 Complexity Analysis

The Book Marking algorithm in Table 1 has a worst case complexity of O(M ·
N2) where M is the number of proofs seen and N is the number of different
probabilistic facts; usually for ProbLog applications M >> N . For all M proofs,
we do a bitwise encoding, and then we modify the matrix MA.

By using an indexed table, the encoding of a proof is done in O(N) time and
requires O(N) space to remember the index for each probabilistic fact encoun-
tered. Each proof needs to modify MA which is an NxN bit table. Activating
or deactivating a bit in the table is done in constant time, but in the worst case
all bits needs to be processed resulting in O(N2) operations. So, the total time
complexity is O(M · (N + N2)) = O(M · N2) and the total space complexity
O(N + N2) = O(N2).

One can take advantage of the symmetry and other properties of the NxN
bit matrix MA to avoid some computations. These optimisations reduce the
constant times rather than the complexity. One such optimisation is that we use
arbitrary precision integers to represent each row of MA.

7 Related Work and Conclusions

We exploit regularities, AND-clusters and OR-clusters, observed in ROBDDs to
improve the generation of ROBDDs for DNFs in ProbLog. Variable compression
based on these clusters reduces the number of variables in the DNFs. This results
in smaller ROBDDs, whose generation uses less time and memory, and as such
7 For our experiments we used an IntelR CoreTM 2 Duo CPU at 3.00GHz with 2GB

of RAM memory running Ubuntu 8.04.2 Linux.

Variable Compression in ProbLog 517

we can deal with ProbLog queries that used to cause timeouts. Our method
is a pre-processing step that detects clusters of Boolean variables. Taking into
account the probabilistic setting, variable compression is feasible and can be
followed by any other variable ordering heuristic. For other applications, one
might be able to find different meaningful compressions or one might just use
our clusters as input to existing variable ordering heuristics.

Variable ordering heuristics also exploit structural properties of the problem
modelled by the ROBDD such as connected variables [16,14]. Heuristics designed
for one application area might perform poorly in another context [17]. We are
not aware of variable ordering heuristics to be used in a probabilistic context.

Hintsanen [18] argues that structural properties are important for finding the
most reliable subgraph. He calculates the probability of subgraphs connecting
two nodes and search for the subgraph with the maximum probability. The
paper identifies as a special case the series-parallel subgraphs for which they
can compute the probability polynomially. These series-parallel subgraphs have
similarities with our AND/OR-clusters.

We have presented a polynomial algorithm for detecting the AND-clusters
and we have obtained promising results for an application using a real database.
For ProbLog the best results are obtained by combining AND-cluster variable
compression with the group sifting dynamic variable ordering of CUDD. By using
variable compression we managed to answer more queries. We showed that AND-
cluster based variable compression is beneficial for more complex ROBDD.

For a future implementation of the Book Marking algorithm, C would be
a better choice than Prolog both for time efficiency as for space. This would
reduce many hidden constant costs of Prolog and would also save Prolog garbage
collector executions. It is worth noting that the AND-clusters could be computed
in parallel with the SLD-resolution.

In addition to the technical improvements, a challenging task is to investigate
how we can take advantage of OR-clusters and compress the ROBDDs even more.
Finally, the goal would be to generalise the method and to be able to compress
repeated structures in the ROBDD. The size of the ROBDDs is one of the limits
that is currently reached when executing ProbLog programs. We think that an
approach based on variable compression can push this limit.

Acknowledgements

We want to thank Bart Demoen and Angelika Kimmig for the valuable discus-
sions and comments. This research is supported by: GOA/08/008 “Probabilistic
Logic Learning”.

References

1. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic prolog and its
application in link discovery. In: Proceedings of IJCAI, pp. 2462–2467 (2007)

2. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the
efficient execution of ProbLog programs. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 175–189. Springer, Heidelberg (2008)

518 T. Mantadelis and G. Janssens

3. Akers, S.B.: Binary decision diagrams. IEEE Trans. Computers 27(6), 509–516
(1978)

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

5. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Jour-
nal on Computing 8(3), 410–421 (1979)

6. Rauzy, A., Châtelet, E., Dutuit, Y., Bérenguer, C.: A practical comparison of
methods to assess sum-of-products. Reliab. Eng. Syst. Safe 79(1), 33–42 (2003)

7. Fujita, M., Fujisawa, H., Kawato, M.: Evaluation and improvements of boolean
comparison method based on binary decision diagrams. In: Proceedings of ICCAD,
pp. 2–5 (1988)

8. Malik, S., Wang, A., Brayton, R., Sangionvanni-Vincentelli, A.: Logic verification
using binary decision diagrams in a logic synthesis environment. In: Proceedings
of ICCAD, pp. 6–9 (1988)

9. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
Proceedings of ICCAD, pp. 42–47 (1993)

10. Somenzi, F.: Efficient manipulation of decision diagrams. STTT 3(2), 171–181
(2001)

11. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link discovery in
graphs derived from biological databases. In: Leser, U., Naumann, F., Eckman, B.
(eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 35–49. Springer, Heidelberg (2006)

12. Maier, D.: The complexity of some problems on subsequences and supersequences.
ACM 25(2), 322–336 (1978)

13. Somenzi, F.: CUDD: Colorado university decision diagram package release 2.4.1
(2005), http://vlsi.colorado.edu/~fabio/CUDD/

14. Panda, S., Somenzi, F.: Who are the variables in your neighborhood. In: Proceed-
ings of ICCAD, pp. 74–77 (1995)

15. Santos Costa, V., Damas, L., Reis, R., Azevedo, R.: YAP User’s Manual (2002),
http://www.ncc.up.pt/~vsc/Yap

16. Aloul, F.A., Markov, I.L., Sakallah, K.A.: Faster SAT and smaller BDDs via com-
mon function structure. In: Proceedings of ICCAD, pp. 443–448 (2001)

17. Narodytska, N., Walsh, T.: Constraint and variable ordering heuristics for compil-
ing configuration problems. In: Proceedings of IJCAI, pp. 149–154 (2007)

18. Hintsanen, P.: The most reliable subgraph problem. In: Kok, J.N., Koronacki, J.,
Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007.
LNCS (LNAI), vol. 4702, pp. 471–478. Springer, Heidelberg (2007)

http://vlsi.colorado.edu/~fabio/CUDD/
http://www.ncc.up.pt/~vsc/Yap

Improving Resource-Unaware SAT Solvers

Steffen Hölldobler, Norbert Manthey�, and Ari Saptawijaya

ICCL – International Center for Computational Logic
Technische Universität Dresden, 01062 Dresden, Germany

{sh,norbert,ari}@janeway.inf.tu-dresden.de

Abstract. The paper discusses cache utilization in state-of-the-art SAT
solvers. The aim of the study is to show how a resource-unaware SAT
solver can be improved by utilizing the cache sensibly. The analysis is
performed on a CDCL-based SAT solver using a subset of the indus-
trial SAT Competition 2009 benchmark. For the analysis, the total cy-
cles, the resource stall cycles, the L2 cache hits and the L2 cache misses
are traced using sample based profiling. Based on the analysis, several
techniques – some of which have not been used in SAT solvers so far – are
proposed resulting in a combined speedup up to 83% without affecting
the search path of the solver. The average speedup on the benchmark is
60%. The new techniques are also applied to MiniSAT2.0 improving its
runtime by 20% on average.

1 Introduction

The satisfiability problem (SAT) is one of the most intensely studied problems
in Computer Science with numerous applications within Computer Science it-
self and beyond. SAT has not only triggered important developments within
Theoretical Computer Science (see e.g. [8]), but the active development of SAT
solvers in recent years has turned SAT solvers into powerful tools to solve SAT
encoded problems in various fields, from group theory over hardware and soft-
ware verification, planning, scheduling, termination analysis, configuration and
security to bioinformatics (see e.g. [5,12,14,15]).

Encoding real world problems often results in large SAT instances with mil-
lions of variables and clauses. The quest to solve such problems pushes computers
to their limits and requires advanced methods and techniques on all levels from
the logic and calculus level over heuristics, data structures, software and systems
level to the hardware or computing resources level.

The recent success of SAT solvers is based on various developments includ-
ing advances on the calculus level like conflict-directed clause learning (CDCL),
advanced heuristics including restarts, improved data structures like the two-
watched-literal schema, and advanced low-level processes like intelligent cache
utilization. Whereas the improvements on the calculus level, the heuristics and
the data structures are usually well-documented (see e.g. [9,18,19,21]), we found

� Supported by the European Master’s Program in Computational Logic (EMCL).

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 519–534, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

520 S. Hölldobler, N. Manthey, and A. Saptawijaya

that in most of the cases the techniques and methods applied in low-level pro-
cesses can only be understood by studying the sometimes quite intertwined code
of the SAT solvers; declarative descriptions were missing with the exception of
[7,25]. On the other hand, state-of-the-art SAT solvers must be aware and must
make clever use of low-level processes and the underlying hardware in order to
compete on the highest level in SAT competitions and SAT races and, more
importantly, in order to solve real world problems.

In this paper we study how computing resources are utilized by a SAT solver
while solving industrial problems. In particular, we observe and analyze the use
of caches in solving SAT instances. We aim at a clever use of caches as caches
allow faster data access compared to main memory access.

Our study uses mainly the CDCL-based SAT solver riss [16], which was de-
veloped at the ICCL as a student project, but we apply our analysis and findings
also to MiniSAT2.0. The industrial problems in the study are taken from a sub-
set of the benchmark set used in the SAT competition 2009. The measurements
are conducted using the HPCToolkit [1] via sample-based profiling. At each sam-
ple point, the performance counter is accessed using the PAPI library [3]. Using
these measurement tools, we observe the following processor events: total cy-
cles, resource stall cycles, L2 cache hits and L2 cache misses. Additionally, the
numbers of clause read-accesses and write-accesses are collected.

Based on the runtime analysis from the measurements we suggest several im-
provements. The first suggestion is to use a slab allocator [6]. A slab allocator
reserves one huge amount of memory and partitions it into slabs of a fixed size,
the so-called slab size. The single slabs can be allocated and freed by the appli-
cation. Consequently, the application controls the use of memory and the system
memory overhead per allocation is saved. Using appropriate clause representa-
tion schemes and the slab allocator leads to a speedup of the runtime perfor-
mance of 23%. The second suggestion is to use propagation prefetching schemes,
which lead to a speedup of 12%. On the other hand, applying prefetching during
conflict analysis turned out to be ineffective.

Based on the implementation analysis, we also carry out some experiments to
improve memory access. These concern the reuse of vectors, the compression of
data structures needed for the representation of literals and partial assignments,
and the combination of information about decision level and reason clause per
variable [20]. We also suggest to maintain the watcher list lazily in that a gap in
the list due to the removal of a clause is not closed immediately but is only closed
once the propagation has terminated. The lazy maintenance of the watcher list
leads to a speedup of 23%.

The most encouraging result is obtained when several improvements are com-
bined. In our experiments we obtain a combined speedup of up to 83% and 60%
on average. One should observe that the improvements considered herein do not
change the search-path in finding a solution.

Besides our solver riss, we also measure and evaluate the cache performance
of MiniSAT2.0 [10]. After applying some of the above mentioned improvements
we observe a speedup of 20% on average.

Improving Resource-Unaware SAT Solvers 521

The paper is organized as follows. The description of the solver is given in
Section 2. In Sections 3 and 4 the measurements are described and analyzed.
The improvements are suggested in Section 5. Finally, in Section 6 related and
future work are discussed.

2 Description of the Solver

The solver riss (available at [2]) is based on the CDCL procedure. Customized
from the solver HydraSAT [4], riss is implemented in C++. It is compiled to a 64-
bit binary using the GNU Compiler version 4.1.2 with the highest optimization
level -O3.

A literal is implemented using a 32-bit unsigned integer. A clause is imple-
mented by storing its activity (32-bit floating point), its size (32-bit unsigned
integer) and a pointer to the literals of the clause. In case a clause is used in sev-
eral solver components, no copy of this clause is made. Instead, only the address
of the clause is shared among the components. Finally, a formula is implemented
as a vector of pointers to clauses it contains. Auxiliary data structures used in
the solver are vectors, stacks, double-ended queues and priority queues. The first
three are adopted from the C++ Standard Template Library. The priority queue
is implemented using a binary heap. The used data structures are chosen as
simple as possible to analyze the effect of existing and new improvements. The
SAT solver riss has the following components:

– Unit Propagation. The two watched-literal scheme [19] is used. As usual,
this scheme is realized by maintaining watcher lists. The solver riss handles
binary clauses separately. Unit propagation is performed firstly on binary
clauses and then on longer clauses. Due to the special treatment for binary
clauses, watcher lists for literals occurring in binary clauses are introduced.
For binary clauses, the watcher list of a literal does not only store the pointer
to the clauses, but it stores also the other literal of the clause.

– Conflict Analysis. The first UIP scheme [18] is used. Additionally, the learnt
clause obtained from the conflict analysis is further minimized using self-
subsumption [11].

– Decision Heuristics. The decision heuristic follows the basic principle of
VSIDS [19]. Each variable is assigned an activity and the variable with
the highest activity is picked as a decision variable. Every 1000 decisions
an attempt to pick a decision variable randomly takes place (up to ten at-
tempts). If these attempts fail, a deterministic decision is made using the
activity-based heuristic. Decision variables are assigned negative polarity.

– Restart Heuristics. A restart is triggered when the number of conflicts has
reached a certain value. These values come from a geometric sequence with
increase factor and base set to 1.5 and 100, respectively.

– Removal Heuristics. Learnt clauses are removed immediately after a restart.
Our heuristic removes learnt clauses with more than six literals and the
oldest 55% of the remaining learnt clauses with more than two literals.

522 S. Hölldobler, N. Manthey, and A. Saptawijaya

3 Measurement

The measurement is conducted using the HPCToolkit [1] via sample-based pro-
filing. The solver is run and halted at a specified processor event and the method
currently running is analyzed. Such an event is triggered when a performance
counter reaches the maximum of its period. When the program is halted, the
performance counters are read using the PAPI Library [3]. The precision of the
measurement is assured due to the long run of the solver.

In the measurement, four processor events are traced simultaneously: total
cycles, resource stall cycles, L2 cache hits and L2 cache misses. The sample rate
for the total cycles is 106, whereas the sample rate for the other three events
are set to 105. In addition to tracing processor events, the numbers of clause
read-accesses and write-accesses are observed. Analyzing the behavior of literal
read-accesses and write-accesses in clauses allows us to learn which among the
two accesses is more frequent and which positions of the clauses are accessed
most frequently. Hence, the more frequent accesses can be treated specially.

For the measurement, 40 problem instances of the industrial benchmark from
the SAT competition 2009 are used. These instances are all the instances that can
be solved within 45 minutes timeout using the basic version of riss, i.e. without
any improvement which will be discussed subsequently. Appendix A shows the
selected instances together with their solving time and memory usage. The total
runtime for the benchmark is 9.5 hours. The measurement is performed on a
hardware with AMD Opteron 285 2.66 GHz processor, 1024 KB Level 2 Cache,
2 GB main memory, 64-byte cache line size. In the subsequent sections, the
computation of runtime, wait rate, L2 cache access, L2 cache miss rate and
work cycles is as usual:

– runtime = total cycles × CPU frequency,
– wait rate = stall cycles / total cycles,
– L2 cache access = L2 cache misses + L2 cache hits,
– L2 cache miss rate = L2 cache misses / L2 cache access,
– work cycles = total cycles − stall cycles.

Because L1 cache is not analyzed, memory access refers to L2 cache and main
memory access in the sequel.

4 Results and Analysis

Based on the measurement results, a runtime and an implementation analysis
is performed. Whereas the former involves the analysis on the processor events
and data structure accesses, the latter is concerned with the improvement of the
implementation.

4.1 Runtime Analysis

It is important to know which part of the data is accessed most frequently. This
information cannot be obtained using the HPCToolkit. Thus, additional runs for

Improving Resource-Unaware SAT Solvers 523

1e+08

1e+09

1e+10

1e+11

1e+12

0 1 2 3 4 5 6 7 8 >8

ac
ce

ss
es

literal index

write accesses

read accesses

Fig. 1. Literal accesses in clauses. Literal index denotes the position of the literal stored
in the clause and > 8 refers to all accessed indexes greater than 8. Note that the Y-axis
of the diagram uses a log scale to show more clearly that the number of accesses is
decreasing exponentially.

measurement have to be performed. Fig. 1 depicts the literal accesses in clauses.
The most frequently accessed literals are the literal at index 0 (60% read access,
25% write access) and at index 1 (15% read access, 50% write access) of the
literal array. The total number of write accesses is only 17% of read accesses.
Note that literals are only accessed by the unit propagation and in the conflict
analysis components. The very frequent access of the first two literals is caused
by the implementation of the unit propagation where the first two literals are
always the watched ones.

Table 1 shows the distribution of each processor event amongst the solver
components. It can be seen that most of the runtime is spent by the unit propa-
gation. The conflict analysis component consumes only about 6% of the runtime,
whereas the remaining components share only 2% of the runtime. Most of the
L2 cache misses and hits are produced in the unit propagation as well. Hence,
this component needs to be optimized in order to obtain a high impact for the
solver’s performance.

Based on the measurement result, the wait rate of the solver is 82%. This value
indicates that the solver does not use the provided resources well. Computing
the L2 cache miss rate, we obtain the value of 40% for our solver.

Analyzing the unit propagation further, we obtain the distribution of each
processor event for the propagation on binary clauses and on longer clauses as
shown in Table 2. The result indicates that the unit propagation component
spends most of its runtime in propagating units on clauses with more than
two literals, with most of the time spent in literal read accesses (45.8%) and
maintaining the watcher lists (24.26%).

524 S. Hölldobler, N. Manthey, and A. Saptawijaya

Table 1. Distribution of processor events in solver

Component Total Cycles Stall Cycles L2 Misses L2 Accesses
Decision Heuristics 1.77% 1.59% 3.13% 2.95%
Removal Heuristics 0.31% 0.21% 0.09% 0.21%
Conflict Analysis 5.74% 5.42% 6.27% 7.27%
Restart Event Heuristics 0.00% 1.33% 0.00% 0.00%
Unit Propagation 91.65% 92.62% 90.08% 88.94%

Table 2. Distribution of processor events for Unit Propagation

Total Cycles Stall Cycles L2 Misses L2 Accesses
Propagate on binary clauses 5.71% 5.55% 7.95% 5.64%
Propagate on longer clauses 83.86% 85.30% 78.17% 79.78%
Literal read access 45.8% 54.49% 24.07% 12.57%
Maintain watcher list 24.26% 18.59% 2.19% 36.64%

Watcher lists
¬1
1
¬2
2
¬3
3
¬4
4

Watcher list
for literal 2

Clause Header
Activity

Size
Literals

Clause Literals
¬2
¬1
¬3

Fig. 2. Accessing the first literal of a clause using the two watched-literal scheme

Following the two watched-literal scheme, the watcher list of the literal to
propagate is accessed and all clauses occurring in this list are processed sequen-
tially. Visiting these clauses results in two cache misses if the other watched
literal is not satisfied. This scheme is considered expensive, because some part
of the penalty of the cache misses can be reduced as explained in Section 5.1.
The memory scheme of accessing the first literal of a clause in a watcher list
during propagation is shown in Fig. 2. The first cache miss occurs when the
clause header is visited. The second one results from visiting the first literal af-
terwards. Note that the cache misses in looking up the truth value of a literal are
negligible (less than 2%). The cache miss due to the extraction of the watcher
list of a literal occurs only once (while propagating this literal); it is referred to
as 0th cache miss in the sequel.

4.2 Implementation Analysis

The amount of memory accessed during solving instances can be reduced by
compressing data, especially boolean arrays and the truth-value assignment of

Improving Resource-Unaware SAT Solvers 525

the solver. Applying the assignment compression [7] saves 75% compared to the
original size, because four ternary truth values (positive, negative, undefined) can
be stored in a byte. A similar approach can be applied to boolean arrays, which
saves about 88% of its original size. Nevertheless, the compression of boolean
arrays has a cost as it requires additional instructions that are executed every
time the array is accessed. The consequences of either choice are discussed in
Section 5.2.

To enable the phase-saving heuristic in choosing the polarity of a decision
variable [21], the truth-value assignment also stores the backup polarity (i.e. the
polarity previously assigned but erased due to backtracking) for every variable.
This polarity is stored next to the current polarity. Thus, reading only an assign-
ment loads every second byte (that stores the backup polarity) unnecessarily into
the cache. In fact, this byte that stores the backup polarity is used only when
the variable is assigned undefined or a polarity should be chosen.

Memory accesses can be avoided in the implementation by reusing data struc-
tures. A newly created vector without specifying a size results in a vector with no
allocated storage capacity. Enlarging a vector allocates a new piece of memory
and copies the content of the old piece of memory to the new one. Afterwards,
the old piece of memory is freed. On the other hand, clearing a vector keeps
its allocated capacity. Thus, copying memory can be avoided by clearing and
reusing a vector, instead of deleting the vector and creating a new one.

Furthermore, memory accesses can be reduced by storing data that is likely
to be accessed at the same time close together. For example, the decision level
and the clause that implies a certain variable assignment (reason clause) per
variable can be stored in a single array instead of two separate arrays [20].

5 Improvements

The analysis from Section 4 suggests some improvements with the goal to reduce
cache misses and improving data locality. The main reason for cache misses is the
separation of the clause header and the clause literals. We discuss and evaluate
several improvements in this section.

5.1 Clause Access Improvements

Cache clause. The first idea is to move literals from the clause literals to the
clause header. This improvement is called cache clause. By moving four literals
(see next paragraph for explanation), we obtain 19%1 of runtime speedup. This
result is similar to clause packing improvement in [7]. The number of L2 cache
misses is reduced by 32%. Choosing to access the locally stored literals or the
clause literals increases the work cycles by 3%.

Slab allocator. With the cache clause improvement, the size of the clause header
becomes 32-byte, so that two clause headers fit exactly on one cache line. Because
1 In the sequel, all percent values are average values on the benchmark in Appendix A,

if not specified otherwise.

526 S. Hölldobler, N. Manthey, and A. Saptawijaya

all clauses are allocated using the memory allocator malloc, 8-byte additional
storage (for system information) is added to every allocation. This storage pre-
vents the system to place two clause headers compactly on a single cache line.
Using the slab allocator this additional storage can be avoided [6], because it
stores the 8-byte system information only once before its 4 KBytes page-aligned
blocks (allocated using the valloc() function), allowing the clause headers to
be stored compactly. The slab allocator alone does not affect the runtime and
main memory accesses, but combining it with the cache clause leads to a better
improvement. Combining the two improvements results in 23% speedup of the
runtime and the number of L2 cache misses is reduced by 26% compared to the
basic version of riss.

Flattened clause. Another approach is to store the clause in an array2 and to
combine the clause header and literals [10]. With this scheme, accessing the size
and the activity of a clause is less flexible, because these accesses cannot be done
via accessing a class member. The literal access remains a simple array access
because it is executed most frequently. No additional instructions are needed
to determine whether to access the locally stored literals or the clause literals.
Accessing the size or the activity has to be done using a negative index. Fig. 3
shows the implementation and the memory scheme of the flattened clause im-
provement.3 Together with the malloc allocator, this scheme yields 21% runtime
speedup. The L2 cache miss rate is decreased by 20% and 24% of the L2 cache
accesses in the basic version of the solver are caught by the L1 cache. Combin-
ing the flattened clause with the slab allocator improves the runtime by 22%.
In order to handle clauses with variable sizes, one needs a separate allocator for
each size (due to the fixed slab size). Multiple slab allocators of different sizes
are then combined in a wrapper. Allocating a clause uses the allocator for the
corresponding size (of the clause), which is chosen from the wrapper.

Blocking literal. The improvements in clause implementation avoid the second
cache miss occurring in visiting the clauses in a watcher list as discussed in
Section 4.1. In [7], some literals of the clauses in a watcher list are stored directly
in the watcher list itself in order to avoid the first cache miss. Unfortunately the
search path may change using this improvement. This approach is known as
blocking literal scheme [23].

Prefetching schemes. The first cache miss can also be avoided if the prefetch
unit is used to store the clauses of a watcher list in the cache. The GNU Com-
piler provides an instruction builtin prefetch(void*) that tells the prefetch
unit of the CPU the address to fetch into the cache. Because the watcher list
is traversed linearly, clauses can be prefetched. To avoid 0th cache miss, the
2 We prefer a flat array over a structure as we like to store the pointer to the very

first literal and not to a struct, where the first two elements are size and activity.
3 The function activity() could be implemented more simple. As long as the clause

header contains only 32 bit values, one could also use ((float*)literals)[-2] to
access the activity of the clause. The long version is preferred because the elements
of the clause header can be seen explicitly.

Improving Resource-Unaware SAT Solvers 527

typedef literal_t* cls;

cls literals;

literal_t literal(cls literals,uint32_t index) {

return literals[index];

}

uint32_t size(cls literals) {

return ((uint32_t*)literals)[-1];

}

float activity(cls literals) {

return ((float*)(&(((uint32_t*)literals)[-1])))[-1];

}

Header

Activity

Size

¬2
¬5
¬6

Literals

Fig. 3. The implementation and the memory scheme of the flattened clause

corresponding watcher list is prefetched as soon as another literal is added to
the propagation queue. Prefetching the clauses (effectively the clause headers)
can be done in two ways: either all clauses in the currently visited watcher list
are prefetched (first prefetching scheme) or the clauses from the watcher lists of
the first d literals in the propagation queue are prefetched (second prefetching
scheme). Note that d is a parameter and it refers to the number of consecutive
literals in the propagation queue.

The following results are obtained without improving the implementation of
clause. The first prefetching scheme delivers 12% speedup and the stall cycles
are reduced to 84%. The results of the second prefetching scheme depend on the
parameter d. For d = 10, we gain 4% speedup of the runtime. This parameter
can be tuned further, but this is not considered in the current work. In both
schemes the number of work cycles, cache hits and cache misses increase be-
cause unnecessary clauses are prefetched due to a conflict which stops the unit
propagation. The cache miss penalty of misses that occurred during prefetching
do not have any negative impact on the runtime, because memory is prefetched
by the prefetch unit in parallel to the execution of the algorithm in the CPU.

5.2 Reducing Memory Accesses

As shown in Table 2, the maintenance of the watcher lists, i.e. removing elements
from the watcher list, needs almost 25% of runtime. Removing a clause from a
watcher list pushes all subsequent clauses one position forward. As a result, lots
of memory accesses are performed. Using a linked-list instead of a vector for a
watcher list reduces the memory accesses by 13%, but increases the runtime by
20%. The negative impact is caused by the high miss rate of L2 cache, i.e. 71%,
which results from the non-linear read access of the list elements.

Lazy maintenance. In the maintenance of a watcher list there is no need to
push all subsequent clauses immediately to fill in the “gaps” which occur due
to the removal of clauses. The watcher list can be maintained lazily. This can
be illustrated as follows. Suppose that the first clause is removed from the list,

528 S. Hölldobler, N. Manthey, and A. Saptawijaya

the pointer of this clause is kept, marked as a gap, and subsequent clauses are
not pushed immediately forward. Suppose that the second clause has also to be
removed, then we leave a wider gap (of two clauses) in the list. If the third clause
is not removed from the list then this clause can be pushed forward to the top of
the list, making the gap in the list smaller. Note that only this clause is pushed
forward as the following clauses could be potentially removed as well leaving a
new gap. In the end, when the propagation stops (e.g. due to a conflict) then all
the gaps can be removed at once from the watcher list. This lazy maintenance
of watcher list results in 23% speedup of the solver’s runtime, decreases the
memory accesses by 35% and, thus, increases the L2 miss rate by 54%. This
scheme also decreases the work cycles by 52%. These results indicate that the
process of maintaining a watcher list is buffered completely in the L2 cache. The
complexity of the maintenance is improved from quadratic to linear.

Compressed assignment and boolean arrays. Data structure compression may
reduce memory accesses further. This compression includes the compression of
the truth-value assignment and boolean arrays. These improvements are called
compressed assignment and compressed boolean arrays. Our experiment shows
that both compressions do not lead to any impact on the runtime performance.
Some speedup gained from less L2 cache hits and misses has to compensate the
execution of compression and decompression operations.

Negative index assignment. The assignment can be stored more compactly by
storing the backup polarities from the currently used ones separately, rather
than storing both polarities next to each other (cf. Section 4.2). The assignment
is partitioned in two halves, albeit stored in a single array.4 The half partition
of backup polarities is identified by indexing the assignment with the negative
variable. The number of memory accesses is reduced by 1% using this scheme and
the runtime is slightly better than the runtime with respect to the compressed
assignment and boolean arrays.

Combining decision level and reason clause. In order to analyze conflict, the
decision level and the clause that implies a certain variable assignment (rea-
son clause) need to be stored. If a variable is assigned or when backtracking
is performed, both the decision level and the reason clause of the variable are
updated. Thus, instead of storing the two information in separate arrays, they
can be combined and stored in a single array [20]. The runtime of our solver is
not affected by this improvement.

Compression of literals. Compressing the literals as done in siege [22] is also
analyzed. The compression is able to store three literals in a 64-bit integer and
reduces the storage needed by 33% in the best case. The maximum number of
variables in the formula is reduced to 220, because the representation of one
compressed literal is stored in 21-bit. The number of L2 cache misses reduces by
3%, but the number of work cycles increases by 17%. As a result, the runtime
does not change. The number of memory accesses decreased by almost 1%.
4 It can alternatively be realized using two separate arrays.

Improving Resource-Unaware SAT Solvers 529

Vector reuse. The implementation of the conflict analysis needs three vectors.
The first one stores the literals of the learnt clause. The second vector stores
a backup of the first one during minimizing the learnt clause. The last vector
stores temporary literals that have to be processed. Clearing and reusing these
vectors lead to 4% runtime improvement and the number of memory accesses
decreases by 3%.

Prefetching of reason clauses. Conflict analysis performs resolution and thus
needs to read many clauses. The order of these clauses depends on the order of
the literals on the trail and the information whether the current literal on the
trail is contained in the current intermediate resolvent. To improve the clause
read accesses, prefetching is applied to some of the reason clauses of the current
conflict clause. The first n reason clauses are prefetched. Again, n is a new
parameter that can be tuned for the benchmark. Prefetching the first three, six
or ten reason clauses does not affect the runtime of the solver significantly.

5.3 Applying Improvements to MiniSAT2.0

The solver riss uses similar data structures as MiniSAT2.0. This leads to similar
behavior as well. The analysis can only be done on 39 out of 40 problem instances
because MiniSAT2.0 fails to solve one instance within the timeout. MiniSAT2.0
needs only 80% of the memory accesses compared to our solver. Due to a similar
number of L2 cache misses, the L2 cache miss rate of MiniSAT2.0 is 50%. The
wait rate of MiniSAT2.0 is equal to our solver. Because the two solvers imple-
ment different search algorithms, their runtime cannot be compared. However
the similar number of work cycles indicates that the two solvers are suited for
the benchmark equally well.

MiniSAT2.0 is more resource-aware than the original version of riss. Some
of the improvements discussed herein are already implemented, namely the flat-
tened clause approach and the lazy removal. Thus, only the slab allocator and
prefetching can be applied. Adding only the slab allocator to MiniSAT2.0 does
not change the runtime. Applying prefetching in unit propagation results in
20% improvement (available at [2]). Adding both approaches does not speed up
the solver further. The improved version of MiniSAT2.0 solved all benchmark
instances.

5.4 Combination of Improvements

Most of the improvements described previously can be combined. Table 3 gives
the results of the six combinations with respect to the total cycles, L2 accesses,
L2 miss rate and wait rate. Note that the values for total cycles and L2 accesses
of each combination are relative to those of the basic version, whereas the values
for the L2 miss rate and wait rate are absolute. The following acronyms are
used: CC, slab, VR, P1, NA, CBA, CA and LM refer to the cache clause (with
four local literals), slab allocator, vector reuse, the first prefetching scheme,
the negative index assignment, the compressed boolean arrays, the compressed
assignment and the lazy maintenance improvement, respectively.

530 S. Hölldobler, N. Manthey, and A. Saptawijaya

Table 3. Results of improvement combinations. In this table, Basic refers to the basic
version of the solver, Comb1 = CC + slab + VR + P1 + LM, Comb2 = FC + slab +
VR + P1 + LM, Comb3 = Comb1 + NA, Comb4 = Comb2 + NA, Com5 = Comb3
+ CBA and Comb6 = Comb1 + CA + CBA

Configuration Total Cycles L2 Accesses L2 Miss Rate Wait rate
Basic 100.0% 100.0% 40.94% 81.12%

Comb1 40.93% 56.3% 47.68% 75.56%
Comb2 39.91% 56.72% 48.7% 75.88%
Comb3 41.01% 56.01% 48.05% 75.82%
Comb4 40.9% 56.51% 48.86% 76.14%
Comb5 40.69% 54.56% 48.25% 74.86%
Comb6 39.7% 51.71% 49.3% 72.21%

Table 4. Comparing cycles distribution of basic version and combined improvements

Total Cycles Improvement Work Cycles Improvement
total cycles work cycles

Comb6 100% 60.31% 100% 42.62%
Decision Heuristic 4.28% 0.07% 4.52% -0.02%
Removal Heuristic 0.68% 0.04% 2.33% -0.58%
Conflict Analysis 13% 0.58% 15.97% -1.99%
Restart Event Heuristic 0% 1.33% 0.01% 1.33%
Unit Propagation 80.87% 59.55% 74.48% 44.56%
Propagate on binary clauses 14.42% -0.01% 13.07% -1.08%
Propagate on longer clauses 61.47% 59.46% 54.14% 46.32%
Literal read access 9.17% 16.04% 8.34% -3.87%
Maintain watched list 0.22% 24.18% 0.34% 49.51%
Prefetch memory 23.14% -9.18% 3.46% -1.98%

All combinations result in a runtime improvement of almost 60% on aver-
age. Combinations with slab, VR, P1, LM together with a clause improvement
(CC or FC), as in Comb1 and Comb2, serve as the core of optimizations. The
performance drops significantly when only slab, VR, P1 and LM are considered
(without any clause improvement), where we obtain 64.49% total cycles, 73.92%
L2 accesses, 55.42% L2 miss rate and 84.45% wait rate. The gained improve-
ment does not interfere with compressing data structures much. We only further
analyze the combination with the best runtime improvement, viz. Comb6. Ap-
pendix A gives the runtime and used amount of memory per instance. Adding
further improvements to this combination does not lead to significant changes in
runtime. Table 4 shows the distribution of the runtime and the work cycles for
Comb6. It also lists the amount of improvement obtained by comparing its ab-
solute runtime (and work cycles) to the runtime (and work cycles, respectively)
of the basic version. Compared to the basic version of the solver (Table 1), the
distribution of the total cycles moves from the unit propagation to other com-
ponents. The conflict analysis now needs 13% of the runtime. The work cycles

Improving Resource-Unaware SAT Solvers 531

change mainly for the unit propagation. The major improvement is achieved in
propagating longer clauses. The runtime improvement of this part is caused by
the improvement of the literal read access (16%) and the lazy maintenance of the
watcher list (24%). The newly introduced prefetching scheme consumes about
9% of this improvement.

The unit propagation still remains at the heart of the solver and is the part
where further improvements concerning the resource usage should be applied.
The usage of the prefetch function seems to offer some space for the optimization
of the solver, because it requires only about 4% of the work cycles but consumes
about 23% of the total runtime.

6 Conclusion and Future Work

In this paper we present a study on the utilization of computing resources in
state-of-the-art SAT solvers. The aim is to improve the resource usage in SAT
solving and, consequently, the overall performance of SAT solvers. We analyze
the cache performance of the SAT solver riss via sample-based profiling on a
subset of the industrial benchmark set from the SAT competition 2009. The
analysis leads to several improvements including the efficient representation of
clauses as well as the use of slab allocators and clause-prefetching schemes in two
watched-literal propagation. Additionally, compression schemes of several data
structures and lazy maintenance of watcher list are suggested. By combining
several improvements a speedup of up to 83%, and 60% on average, can be
obtained. In addition to the findings reported in a preliminary version of this
paper [17] we also analyze the compact storage of the information about decision
level and reason clause as well as prefetching during conflict analysis. Moreover,
the suggestions of using a slab allocator and prefetching are also applied to
MiniSAT2.0 resulting in a speedup of 20% on average.

The idea of cache clause improvement and compressed assignment is also
considered in [7] to improve MiniSAT. MiniSAT also enjoys lazy maintenance
of watcher lists similar to what we describe here. There is also some similarity
between the idea of the flattened clause and the clause representation described
in [24], where the clause head and body are combined and stored in an array.
Compared to [24], the additional clause offsets array is not needed because we do
not store the whole clause database in a single array. We also record in our clause
representation the activity of clause instead of the number of watched literals.
The combined storage of the variables level and reason clause information is also
implemented in RSat [20].

Cache performance of SAT solvers has also been studied in [25]. Compared
to [25], we do not study the cache performance on various unit propagation
schemes. Instead, we consider only the two watched-literal propagation, which is
commonly used in recent solvers, and study some further improvements includ-
ing the use of a slab allocator and clause prefetching schemes. We also examine
the cache performance of MiniSAT2.0 (and riss) using measurement tools dif-
ferent from [25]. In order to better validate the analysis, our measurements are

532 S. Hölldobler, N. Manthey, and A. Saptawijaya

conducted on more SAT instances taken from a recent benchmark used at the
SAT competition 2009.

We also considered MiniSAT2.1. It turned out that MiniSAT2.1 is difficult to
compare to MiniSAT2.0 and riss with respect to the utilization of computing re-
sources for various reasons: MiniSAT2.1 implements a blocking literal approach
to avoid the first cache miss which interferes with the prefetching approach pro-
posed herein, it uses a different allocator, and implements a different search
algorithm.

The approach presented in this paper is limited. We should consider additional
SAT instances; we should consider additional metrics like cycles per instruction,
L2 miss rate per instruction, or L2 demand miss rate; we should consider ad-
ditional unit propagation schemes; we should consider other hardware; and we
should consider simulation based profiling. In general, we would like to have an
environment which allows us to configure, test and evaluate SAT solvers with re-
spect to all kinds of SAT instances and metrics. Ideally, the environment should
also support formal correctness proofs for the SAT solvers.

As future work we would like to study translation lookaside buffers [13]. A
preliminary study involving riss has shown that using a page size of 2 MBytes
(instead of 4 KBytes) leads to a speedup of 10%. For this result, the benchmark
was run on an Intel Core i7 860 CPU with 8 MBytes L2 cache and a clock
frequency of 2.80 GHz. Using a page size of 2 MBytes has decreased the runtime
of both, the basic and the improved version of the solver.

Another interesting direction is the effect of branch miss-prediction and the re-
lated cache behavior. The implemented solvers of the ICCL are usually
component-based and support a large number of runtime parameters. Running
the chosen configuration implies that lots of if-statements have to be processed
and, thus, the code contains lots of conditional branch instructions. At the mo-
ment we are measuring the prediction rate of our solver and try to study its
influence to the caches afterwards.

We would also like to study improvements that affect the search path including
the blocking literal approach. In this line of work, a metric has to be defined in
order to compare different search paths.

Acknowledgment. The authors would like to thank Julian Stecklina and Hermann
Härtig as well as all members of the SAT project group at the ICCL for many
fruitful discussions, hints, and suggestions.

References

1. HPCToolkit, http://hpctoolkit.org/
2. ICCL SAT project group,

http://www.wv.inf.tu-dresden.de/Research/SATSolving/

3. PAPI library, http://icl.cs.utk.edu/papi/
4. Baldow, C., Gräter, F., Hölldobler, S., Manthey, N., Seelemann, M., Steinke, P.,

Wernhard, C., Winkler, K., Zenker, E.: HydraSAT 2009.3 solver description. SAT
2009 Competitive Event Booklet,
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf

http://hpctoolkit.org/
http://www.wv.inf.tu-dresden.de/Research/SATSolving/
http://icl.cs.utk.edu/papi/
http://www.cril.univ-artois.fr/SAT09/ solvers/booklet.pdf

Improving Resource-Unaware SAT Solvers 533

5. Béjar, R., Manyà, F.: Solving the round robin problem using propositional logic. In:
Procs. 17th National Conf. on Artificial Intelligence and 12th Conf. on Innovative
Applications of Artificial Intelligence (2000)

6. Bonwick, J.: The slab allocator: an object-caching kernel memory allocator. In:
Proceedings of the USENIX Summer 1994 Technical Conference (1994)

7. Chu, G., Harwood, A., Stuckey, P.J.: Cache conscious data structures for boolean
satisfiability solvers. JSAT 6, 99–120 (2009)

8. Cook, S.A.: The complexity of theorem-proving procedures. In: Procs. 3rd Annual
ACM Symposium on Theory of Computing (1971)

9. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5(7), 394–397 (1962)

10. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, Springer, Heidelberg (2004)

11. Eén, N., Sörensson, N.: MiniSAT - a SAT solver with conflict-clause minimization.
In: Poster - 8th SAT (2005)

12. Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.:
SAT solving for termination analysis with polynomial interpretations. In: Marques-
Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, Springer, Heidelberg
(2007)

13. Hennessy, J., Patterson, D.: Computer Architecture - A Quantitative Approach.
Morgan Kaufmann, San Francisco (1996)

14. Kautz, H., Selman, B.: Planning as satisfiability. In: Procs. 10th European Con-
ference on Artificial Intelligence (1992)

15. Lynce, I., Marques-Silva, J.: SAT in bioinformatics: making the case with haplotype
inference. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, Springer,
Heidelberg (2006)

16. Manthey, N.: riss 2010 solver description. SAT Race (2010) (submitted to),
http://www.ki.inf.tu-dresden.de/~norbert/webdata/data/riss-short.pdf

17. Manthey, N., Saptawijaya, A.: Towards improving the resource usage of SAT-
solvers. In: Pragmatics of SAT Workshop (2010) (to appear)

18. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A new search algorithm for satisfia-
bility. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102. Springer,
Heidelberg (1996)

19. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Design Automation Conference, pp. 530–535 (2001)

20. Pipatsrisawat, K., Darwiche, A.: RSat solver description for SAT competition, SAT,
Competitive Event Booklet (2009),
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf

21. Pipatsrisawat, K., Darwiche, A.: A lightweight component caching scheme for sat-
isfiability solvers. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS,
vol. 4501. Springer, Heidelberg (2007)

22. Ryan, L.O.: Efficient algorithms for clause learning SAT solvers. Master’s thesis,
Simon Fraser University, Canada (2004)

23. Sörensson, N., Eén, N.: MiniSAT 2.1 and MiniSAT++ 1.0 - SAT race, editions.
SAT, Competitive Event Booklet (2008),
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf

24. van Gelder, A.: Generalizations of watched literals for backtracking search. In:
Seventh International Symposium on AI and Mathematics (2002)

25. Zhang, L., Malik, S.: Cache performance of SAT solvers: a case study for efficient
implementation of algorithms. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003.
LNCS, vol. 2919, pp. 287–298. Springer, Heidelberg (2004)

http://www.ki.inf.tu-dresden.de/~norbert/webdata/data/riss-short.pdf
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf
http://www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf

534 S. Hölldobler, N. Manthey, and A. Saptawijaya

A Problem Instances Used in the Measurement

Instances So
lv

in
g

T
im

e
(s

ec
on

ds
)

M
em

or
y

U
sa

ge
(K

B
)

Sa
ti
sfi

ab
le

?

C
om

b6
So

lv
in

g
T

im
e

(s
ec

on
ds

)

C
om

b6
M

em
or

y
U

sa
ge

(K
B

)

ACG-10-5p0.cnf 169.062565 170968 no 136.284517 157404
AProVE09-20.cnf 1756.697786 203888 yes 690.167132 189568
UCG-15-5p0.cnf 476.773796 321968 no 354.950183 299132
UCG-20-5p1.cnf 1226.080625 474164 yes 864.186008 438676
UR-15-5p0.cnf 574.231887 338256 no 424.722543 314796
UTI-10-10p0.cnf 607.533968 388956 no 391.532469 368260
UTI-15-10p0.cnf 1027.736229 601984 no 674.366145 569592
blocks-4-ipc5-h22-unknown.cnf 570.543656 269496 no 387.100192 228484
cmu-bmc-longmult15.cnf 130.956184 26744 no 41.038564 21940
countbitswegner064.cnf 2585.413578 266988 no 710.664413 251164
eq.atree.braun.8.unsat.cnf 256.244014 30292 no 67.508219 26544
gss-16-s100.cnf 243.911243 38484 yes 186.859678 31492
gss-17-s100.cnf 357.822362 40828 yes 265.224575 33632
gss-20-s100.cnf 705.240074 51040 yes 446.959933 43296
gus-md5-07.cnf 121.45559 98880 no 80.96906 84092
gus-md5-09.cnf 820.299265 102548 no 517.428337 86196
manol-pipe-c10nidw s.cnf 820.53928 625660 no 363.090691 544076
manol-pipe-c6bidw i.cnf 257.124069 175516 no 109.158822 151748
manol-pipe-c6nidw i.cnf 273.521094 181600 no 112.223013 157352
manol-pipe-g10id.cnf 812.70279 339084 no 169.682604 302568
manol-pipe-g10nid.cnf 2334.201878 570644 no 561.383084 514792
mizh-md5-47-3.cnf 814.090877 275084 yes 396.752795 254432
mizh-md5-47-4.cnf 668.657788 246784 yes 326.028375 225876
mizh-sha0-35-3.cnf 219.293705 153244 yes 104.942558 138980
ndhf xits 20 SAT.cnf 393.776609 252364 yes 200.740545 232580
post-c32s-gcdm16-22.cnf 998.362393 257068 yes 354.654164 224016
q query 3 L60 coli.sat.cnf 336.085004 240176 yes 128.248015 210628
q query 3 L70 coli.sat.cnf 561.367083 285092 yes 215.357459 248620
q query 3 l44 lambda.cnf 2024.402517 135872 no 479.485966 120156
q query 3 l45 lambda.cnf 1767.374454 133816 no 488.114505 118532
q query 3 l48 lambda.cnf 2068.153251 136716 no 524.03275 120612
rbcl xits 06 UNSAT.cnf 415.165946 32620 no 58.451653 29076
schup-l2s-abp4-1-k31.cnf 448.384022 69608 no 158.749921 61040
schup-l2s-guid-1-k56.cnf 2439.468457 306456 no 1035.388707 280568
schup-l2s-motst-2-k315.cnf 344.433525 561832 yes 267.844739 486528
simon-s02b-dp11u10.cnf 1189.330328 80564 no 324.756296 71560
uts-l05-ipc5-h27-unknown.cnf 353.102067 163212 no 168.186511 139832
uts-l06-ipc5-h31-unknown.cnf 1186.990182 284108 no 486.886428 244824
vmpc 24.cnf 659.017186 73148 yes 184.459528 68824
vmpc 26.cnf 539.513717 84628 yes 174.962934 79120

Expansion Nets: Proof-Nets for Propositional
Classical Logic

Richard McKinley

Theoretische Informatik und Logik, Institut für Informatik und Angewandete
Mathematik, Üniversität Bern

Abstract. We give a calculus of proof-nets for classical propositional
logic. These nets improve on a proposal due to Robinson by validating the
associativity and commutativity of contraction, and provide canonical
representants for classical sequent proofs modulo natural equivalences.
We present the relationship between sequent proofs and proof-nets as
an annotated sequent calculus, deriving formulae decorated with expan-
sion/deletion trees. We then show a subcalculus, expansion nets, which
in addition to these good properties has a polynomial-time correctness
criterion.

1 Introduction

In contrast to the well-developed theory of proof-identity for intuitionistic natu-
ral deduction (given by interpretation of proofs in a cartesian-closed category),
the theory of identity for proofs in classical logic is very poorly understood. In-
vestigations by several researchers over the last ten years [16,7,12,13,2,11] have
only served to underline the difficulty of the problem. Many of these difficulties
concern proofs with cuts; here the problem is that proof-identity must account
for the nonconfluence of cut-elimination. Yet even for cut-free proofs, opinions
on the “right notion” of proof-identity differ. A reasonable minimal requirement
is that proofs differing by commuting conversions of noninterfering sequent rules
should be equal. Proof-nets [9] are a tool for providing canonical representants of
such equivalence classes of proofs. A proposal by Robinson [16] gives proof-nets
for propositional classical logic, but fails to provide canonical representants for
sequent proofs because it contains explicit weakening attachments. The proof-
identities induced by Robinson’s nets do not include, among other desirable
proof-identities, commutativity/associativity of contraction, a key assumption
in the development of abstract models of proofs. In Führmann and Pym’s work
[7], a categorical model of proofs is built from equivalence classes of Robinson’s
nets, ensuring that the structure interpreting the structural rule in the resulting
category forms a commutative monoid, and that those monoids are constructed
pointwise.

In this paper we take Robinson’s nets as a starting point for developing a
more abstract notion of proof-net for classical logic. Our nets are concrete rep-
resentatives of the equivalence classes used in [7]. We then go on to identify a

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 535–549, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

536 R. McKinley

Ax
p, p̄

Ax�%

Γ, |A,B
∨

Γ, A ∨B

Γ, A Δ, B
∧

Γ,Δ, A ∧B

Γ, A,A
C

Γ, A

Γ
W

Γ, B

Fig. 1. Cut-free multiplicative LK (one-sided)

subcalculus of these nets which has a polynomial-time correctness criterion, and
therefore forms a propositional proof system [3].

1.1 Preliminaries

We assume familiarity with proof-nets for unit free multiplicative linear logic
MLL− with Mix. In particular, we assume knowledge of the switching graph
condition for multiplicative proof structures, and how it leads to a proof of
sequentialization for MLL− + Mix proof nets [5,6]. We will also assume, without
proof, the existence of a polynomial time correctness criterion equivalent to the
switching criterion; such a criterion is given by attempting to sequentialize by
searching for splitting pars, a technique first described in [6], and available in
English translation in the Linear Logic Primer [4].

2 Proof Nets with Contraction and Weakening

Robinson’s proof-nets for classical logic [16] are based very closely on Girard’s
proof-nets for MLL with units [9]. The basic idea comes from [8]: correctness
is given by treating the conjunctions and axioms of classical logic in the same
way as the linear logic axiom and tensor, and treating both contraction and dis-
junction in the same way as the linear logic “par” connective. However, unlike
Girard’s nets, Robinson’s nets are presented in a two-sided form, with multiple
premises and multiple conclusions, deriving formulae with an explicit negation
connective. We will consider a small variant of this calculus: one-sided nets, over
formulae of classical logic in negation normal form. A cut-free sequent calculus
deriving multisets of such formulae, with explicit structural rules and multiplica-
tively formulated logical rules, is given in Figure 1. Considering one-sided nets
allows us to give a more compact presentation of our systems: the one-sidedness
is not necessary for the approach, however, and the results of the subsequent sec-
tions carry over easily to a two-sided setting. A more important departure from
Robinson’s setting is the treatment of weakening, as will be explained below.

Expansion Nets: Proof-Nets for Propositional Classical Logic 537

%

1

Ax

p p̄

A

Wk

A ∧B

∧
BA

A

Ctr

AA

A ∨B

∨
BA

Fig. 2. Proof nets for classical logic with unrestricted contraction and weakening

The definition of these nets begins with a notion of proof structure: an object
which locally has the structure of a proof-net:

Definition 1. A Robinson proof-structure is a directed graph built from the
subgraphs in Figure 2 having no incoming edges.

We refer to the vertices of a Robinson structure labelled with formulae of propo-
sitional logic as formula-nodes. The other vertices are referred to as rule-nodes.

To obtain a correctness criterion, it is necessary to anchor each weakening to
some other node of the proof. In [16] this anchoring is part of the structure of
the weakening node: we instead use the more usual notion of an attachment.

Definition 2. An attachment f for a Robinson proof-structure F is a func-
tion mapping each rule node labelled with Wk to some other rule-node of the
proof-structure. By an attached proof structure, we mean a pair (F, f) of a proof
structure F and an attachment f for F .

Example 1. Below we see two different attachments of the same proof structure,
represented by the grey arrows:

% ∨%
∨

%
1

%
1

⊥ ∧⊥
∧

⊥
Wk

⊥
Wk

% ∨%
∨

%
1

%
1

⊥ ∧⊥
∧

⊥
Wk

⊥
Wk

(1)

A proof in LK can be seen as a recipe for building an attached proof struc-
ture: each rule of the calculus corresponding to a rule node. This procedure is
sometimes referred to as desequentialization, and is described in detail in [16].

538 R. McKinley

One chooses the attachment for a weakening from one of the formulae present
in the context of the weakening rule; this arbitrary choice means that attached
proof-nets themselves cannot be the canonical proof objects we seek. For MLL,
the right notion of canonical proof object is a quotient of attached proof-nets
by so-called Trimble rewiring [17], whereby two proof-nets are equivalent if just
one of the attachments of a unit is changed. According to Trimble rewiring, the
two attached nets in (1) are different; this is important, as the corresponding
morphisms are distinguished in some ∗-autonomous categories. We know of no
natural model of classical proofs (whatever the formulation) where such proofs
are distinguished, and so are happy to take unattached nets as proof-objects in
their own right.

The standard problem in the theory of proof-nets is to give a global correct-
ness criterion for identifying, among the proof-structures, those which can be
obtained from desequentializing a sequent proof. This then leads to a sequen-
tialization theorem, allowing one to reconstruct a sequent proof out of a correct
proof-net. As Robinson nets ae so closely modelled on MLL nets, we may adapt
any of the many equivalent formulations of correctness for MLL nets. For ex-
ample, the following is the switching graph criterion, suitably altered for our
setting:

Definition 3. Let F be a Robinson proof-structure.

(a) A rule-node of F is switched if it is a Ctr or ∨ node. A switching of a
Robinson proof-structure is a choice, for each switched node, of one of its
successors.

(b) Given an attachment f for F , and a switching σ for F , the switching graph
σ(F, f) is the graph obtained by deleting from F all edges from a switched
node to its successor not chosen by σ, forgetting directedness of edges, and
adding an edge from each Wk node to its image under f .

(c) (F, f) is ACC-correct if, for each switching σ, σ(F, f) is acyclic and con-
nected.

(d) F is a Robinson net if, for some f , (F, f) is ACC-correct.

Correctness for (unattached) Robinson nets is in NP, since it is necessary to
guess an attachment before testing the switching criterion.

Theorem 1 (Robinson).

(a) Every proof-structure arising from an LK proof is a Robinson-net.
(b) Every Robinson-net can be obtained by desequentializing an

LK proof.

Using the techniques developed in [6,4], we can capture reasoning the in presence
of the Mix rule:

� Γ � Δ
Mix

� Γ,Δ

Expansion Nets: Proof-Nets for Propositional Classical Logic 539

Definition 4. Let F be a Robinson proof-structure, and f an attachment for F

(a) (F, f) is AC-correct if, for each switching σ, σ(F, f) is acyclic.
(b) F is a Mix-net if there is an attachment f such that (F, f) is AC-correct.

Theorem 2. (a) Every proof-structure arising from a sequent proof in the sys-
tem in Figure 1 plus Mix is a Mix-net.

(b) Every Mix-net can be obtained by desequentializing a sequent proof with
Mix.

The mix rule does not allow us to prove more theorems, but it extends the space
of proofs available to us. It will be important later; in its presence, we can give
a complete class of proof nets with polynomial-time correctness.

3 Expansion/Deletion Nets

As a way of presenting proofs, unattached Robinson-style proof-nets are a sub-
stantial improvement over LK proofs. Two sequent derivations differing by a
simple permutation of rule occurrences desequentialize to the same proof-net.
However proof identity in classical logic is more complicated than it is, for exam-
ple, in MLL−; simple rule permutations are not the only source of non-canonicity
in proofs. In the following section we consider sources of non-canonicity arising
from the contraction rule, which Robinson’s nets suffer from as acutely as the
sequent calculus. We will then give a new formulation of proof nets (expan-
sion/deletion nets) which do not exhibit these problems.

3.1 Problems with Contraction

Contraction is not associative. Given three copies of the conclusion A, there
are two ways we can contract them, which should be equivalent.

A

Ctr

AA

Ctr

AA
≡

A

Ctr

A

Ctr

AA

A

Girard suggests an obvious fix in [8]: n-ary contraction nodes. In addition, we
should require that the conclusion of the link is not in turn the premise of another
contraction link. We will call contractions of this special kind expansions.

Weakening is not a unit for contraction. Given a proof-net deriving a
formula A, we can weaken to form another copy of A and then immediately
apply contraction, to again obtain a proof of A. We would prefer that weakening
be a unit to contraction; that these two proofs of A be identified.

540 R. McKinley

Contraction on disjunctions is not pointwise. The following two figures
contain the same essential information, and two proofs differing by them are
essentially the same:

A B A B

∨ ∨

Ctr

A ∨B

A B A B

Ctr Ctr

∨

A ∨B

We can ensure that only one of these figures may appear in our nets by
forbidding the contraction node to act on disjunctions, this is natural, since the
sequent rule introducing disjunction is invertible.

3.2 Expansion/Deletion Trees

In our view a proof net is best seen as a forest together with a relation on
the nodes of the forest (representing the axiom links of a proof net as usually
presented). For MLL− (with or without mix) the forest is built from formula
trees, but for classical logic the trees must contain additional structure, to ac-
count for contraction and weakening. Our proof nets will be built from typed
expansion/deletion trees or ed-trees; these can be seen as formula trees where,
at a node typed p, p̄ or A ∧ B, we can expand (corresponding to a single n-ary
contraction) or delete (corresponding to weakening).

Definition 5 (Expansion/deletion trees). Let X = x, y, . . . be a countable
set – the axiom variables. An expansion/deletion tree (or ed-tree) over X is of
the form t below:

t ::= 1 | ∗ | (w + · · ·+ w) | (t ∨ t) w ::= x | x̄ | t⊗ t

where (w + · · · + w) denotes a nonempty finite formal sum, and ∗ denotes the
empty formal sum. We call the empty sum a deletion, and a nonempty sum an
expansion. We call the members of the grammar w “witnesses”.

The advantage of using formal sums of witnesses to keep track of contractions
is that formal sums are associative and commutative: that ∗ is the unit for the
formal sum means that weakening will be the unit for contraction.

Types for ed-trees and witnesses are as follows:

Definition 6. A type is either

(a) A formula of classical propositional logic;
(b) A witness type of one of the two following forms:

• A positive witness type, written [p], where p is a positive atom;
• A negative witness type, written [p̄], where p̄ is a negative atom; or
• A conjunctive witness type, written A⊗B, where A and B are formulae

of propositional classical logic.

Expansion Nets: Proof-Nets for Propositional Classical Logic 541

x̄ : [p̄] 1 : % ∗ : A x : [p]

t : A s : B

t ∨ s : A ∨B

t : A s : B

t⊗ s : A⊗B

w1 : [p] · · · wn : [p]

(w1 + · · ·+ wn) : p

w1 : [p̄] · · · wn : [p̄]

(w1 + · · ·+ wn) : p̄

w1 : A⊗B · · · wn : A⊗B

(w1 + · · ·+ wn) : A ∧B

Fig. 3. Typing derivations for terms

Definition 7. A typed term is a pair t : A of a term t and a type A, derivable
in the typing system given in Figure 3.

The typing rules in Figure 3 ensure that the conclusion of an expansion is never
the premise of another expansion.

Having found the right notion of tree, a proof-structure is just a forest of those
trees. We will refer to these forests as annotated sequents, since we will later give
sequent calculi deriving them.

Definition 8. An annotated sequent is a forest F of typed ed-trees in which
axiom variables occur in dual pairs: that is

(a) each axiom variable x, and each negated variable ȳ, occurs at most once in
F , and

(b) there is an occurrence of x̄ in F if and only if there is an occurrence of x.

The type of an annotated sequent F is the ordinary sequent comprising the mul-
tiset of types of the the ed-trees making up F .

To see an annotated sequent as a proof structure in the more usual sense we can
consider its graph, in which we add axiom links to the forest:

Definition 9. The graph of an annotated sequent F is a directed graph with
vertices given by instances of subtrees of F ; we call these the nodes of F . The
edges of the graph are given by the forest structure (with edges directed toward
the root), plus an edge from x to x̄ for each variable x appearing in F . The edges
above a ⊗ or ∨ node are ordered; edges above expansion nodes are unordered.

Example 2. The following annotated sequent is a proof of Pierce’s law

(((x̄) ∨ ∗)⊗ (ȳ)) : (p̄ ∨ q) ∧ p̄, (x + y) : p (2)

542 R. McKinley

The graph of this annotated sequent is

(p̄ ∨ q) ∧ p̄

+

⊗
p̄

+

ȳ

∨
q̄

∗
p̄

+

x̄

p

+

yx

(3)

Correctness for annotated sequents is analogous to that for Robinson structures:

Definition 10. Let F be an annotated sequent. An attachment for F is a func-
tion assigning, to each deletion ∗ of F , some other subterm of F . An attached
annotated sequent is a pair (F, f) of an annotated sequent F and an attachment
f for F .

Definition 11. Let (F, f) be an attached annotated sequent.

(a) A switching σ for (F, f) is a choice of successor for each expansion node and
each ∨ node.

(b) The switching graph σ(F, f) is obtained from the graph of F by
1: deleting all incoming edges to each expansion and ∨ node, other than

those coming from the nodes chosen by the switching,
2: forgetting the directedness of edges,
3: adding an edge between each deletion and its image under the attachment f .

(c) (F, f) is an ed-net if, for every switching σ of F , σ(F, f) is acyclic.

3.3 Expansion Nets

We consider now a subclass of ed-nets, expansion nets, which are interesting
because they have a default attachment ; this allows a polynomial time correctness
criterion.

Definition 12. (a) An expansion/deletion tree t is an expansion tree if every
deletion ∗ in t occurs as the left or right disjunct of a disjunctive subterm
of t.

(b) An ed-net F is an expansion net if every term appearing in F is an expansion
tree.

Definition 13. Let F be a forest of typed expansion trees. The default attach-
ment of F is a function assigning to each subterm of the form ∗, the subterm t
with which it forms t ∨ ∗ or ∗ ∨ t.

Expansion Nets: Proof-Nets for Propositional Classical Logic 543

Ax�� 1 : %
Ax

(x̄) : p̄, (x) : p

F, t : A, s : B
∨

F, t ∨ s : A ∨B

F, t : A G, s : B
∧

F,G, (t⊗ s) : A ∧B

F
W

F, ∗ : A

F G
Mix

F, G

F, t : A ∧B, s : A ∧B
C∧

F, t + s : A ∧B

F, s : p, t : p
Cp

F, s + t : p

F, s : p̄, t : p̄
Cp̄

F, s + t : p̄

Fig. 4. LKed

This default attachment can then be used to check correctness:

Proposition 1. A forest of typed expansion trees F is an expansion-net if and
only if, for every switching σ, σ(F, f) is acyclic, where f is the default
attachment.

Since the acyclicity of the switching graphs can be decided polynomially, cor-
rectness for expansion-nets is polynomial time.

Remark 1. Let MLL∗ be the subset of binary MLL formulae (in which each
atom occurs at most once) having no subformula of the form (⊥⊗A) or (A⊗⊥).
A similar argument to the one above shows that provability for this fragment
of MLL is decidable in polynomial time: the formula itself defines a proof-net
with a default attachment for each ⊥. By replacing switched nodes with par
and unswitched nodes with tensor, an expansion net gives rise to a binary MLL
formula; this formula belongs to MLL∗, and so its provability can be checked in
polynomial time.

What remains to prove is that we have not lost any theorems of propositional
logic by restricting contraction and weakening: that the system of expansion
nets is complete. To see this, we consider the relationship between sequent proofs
and expansion nets. Specifically, we give an annotated sequent calculus deriving
annotated sequents. We first give a sequent calculus deriving ed-nets, and then
give a restricted system deriving expansion nets.

4 Decorating Sequent Derivations with Terms

In Figure 4 we give a sequent-style calculus for deriving annotated sequents.
One should think of this calculus in the same way as a lambda-term-annotated

544 R. McKinley

F, t : A, s : B
∨

F, t ∨ s : A ∨B

F, t : A
∨L

F, t ∨ ∗ : A ∨B

F, s : B
∨R

F, ∗ ∨ s : A ∨B

Fig. 5. The three disjunction rules of LKe

sequent system for intuitionisitic logic; the annotated sequents themselves are
proof objects, with the sequent proof giving their inductive buildup. The anno-
tated system plays, for LKed, the role of desequentialization.

Example 3. The following annotated sequent proof illustrates how contractions
at the level of sequent proofs are interpreted by expansions at the level of the
annotated sequents.

Ax

(x̄) : ā, (x) : a
Ax

(ȳ) : ā, (y) : a
∧

(x̄) : ā, (ȳ) : ā, (x⊗ y) : a ∧ a
Ax

(z̄) : ā, (z) : a
∧

(x̄) : ā, (ȳ) : ā, z̄ : ā, ((x⊗ y)⊗ z) : (a ∧ a) ∧ a
C

(x̄) : ā, (ȳ + z̄) : ā, ((x⊗ y) ⊗ z) : (a ∧ a) ∧ a
C

(x̄ + ȳ + z̄) : ā, ((x⊗ y)⊗ z) : (a ∧ a) ∧ a

(4)

The particular way in which the contractions are carried out does not affect the
annotated endsequent: any commutation or association of the contractions gives
rise to the same term assignment.

Applying the standard sequentialization techniches to ed-nets, we obtain the
following statement of the surjectivity of desequentialization:

Proposition 2. An annotated sequent F is an ed-net if and only if it can be
derived in LKed.

Given a proof in LKed, we can recover an ordinary sequent proof by forgetting
the annotations: this yields a proof in LK. This forgetful projection of LKed is
a subcalculus of LK, since it only has contractions for conjunctions and atoms.
If we can show all the missing contractions admissible in LKed, then we have
shown that LKed (and, by extension, expansion/deletion nets) are complete. In
fact, we will show an even more restricted calculus, LKe, complete: this calculus
derives expansion nets. Completeness of LKed will then follow as a corollary.

4.1 A Calculus Deriving Expansion Nets

Let LKe be derived from LKed as follows; LKe consists of all the rules of LKed

except W, and has in addition the two rules ∨L and ∨R shown in Figure 5. In
LKe, the subterm ∗ is never introduced except by these disjunction rules, and
so the conclusion of an LKe derivation consists of expansion trees.

Expansion Nets: Proof-Nets for Propositional Classical Logic 545

We show now that LKe and LKed are equivalent with respect to provability
– that is, they prove the same theorems. The easier direction is the following:

Proposition 3. If LKe � t : A, then LKed � t : A.

Proof. By induction on the length of proofs. The property clearly holds for the
axioms. For every rule in LKe other than ∨L and ∨R, there is a corresponding
rule in LKed, and the proof is easy. We need only show the admissibility of
∨L and ∨R. But these can be easily simulated by one application of weakening
followed by one of the LKed ∨ rule.

For the opposite direction, we will need the following easy lemma:

Lemma 1. (a) If LKe � F, t ∨ s : A ∨B, and s, t �= ∗, then
LKe � t : A, s : B.

(b) If LKe � F, t ∨ ∗ : A ∨B or LKe � F, ∗ ∨ t : B ∨A, then
LKe � F, t : A.

Since LKe is not complete for sequents, but only for (annotated) formulae, we
cannot directly prove that if LKed proves a sequent of type Γ, so does LKe.
Instead, we prove that, if LKed proves a sequent of type Γ, there is a term t
such that LKe proves t :

∨
Γ. We first observe that re-association of disjunctions

is admissible in LKe.

Lemma 2. Let t : A and s : B be expansion tree differing by association of
disjunctions in some subterm. Then LKe � t : A if and only if
LKe � s : B.

Proposition 4. If F has type Γ = A1, . . . , An, and LKed � F , then there are
terms ti : Ai such that, if t = (((t1 ∨ t2) ∨ . . . tn−1) ∨ tn), then LKe � t :
(((A1 ∨A2) ∨ . . . An−1) ∨An).

Proof. For any proof in LKed of an annotated sequent s1 : A1, . . . sn : An, we
give a sequence t1 : A1, . . . tn : An such that t = (((t1 ∨ t2)∨ . . . tn−1)∨ tn) :

∨
Γ

is provable in LKe, by induction on the height of a proof in LKed.
For the axioms of LKed, the claim is clearly true. For the inductive step, we

proceed by case analysis on the last rule ρ of the LKed proof. In each case, we
assume that the proposition holds for the premisses of ρ, and that An is the
active formula of ρ.

ρ = W By the induction hypothesis, we have terms t1 : A1 . . . tn−1 : An−1
with LKe � ((t1 ∨ t2) ∨ . . . tn−1) : ((A1 ∨ A2) ∨ · · · ∨An−1) apply the
rule ∨L in LKe, to add a new disjunct of type An to the conclusion.

ρ = ∨ In the case of the ∨ rule, applied to an annotated sequent F, sn−1 :
A, sn : B, consider the subterms tn−1 : A and tn : B of t. If t =
(((t1 ∨ t2) ∨ ∗) · · · ∗) then apply Lemma 1 twice, followed by ∨L, to
obtain a proof of the correct form. Otherwise, there is a reassociation
of t which has the correct form.

ρ = C Similar to the treatment of disjunction.

546 R. McKinley

ρ = Mix Suppose that LKed � F and LKed � G, where F has type A1, . . . , An

and G has type B1, . . . Bm, and that we have corresponding LKe-
provable terms t and s. The result of applying the LKe Mix-rule can
be reassociated to have the correct form.

ρ = ∧ Given annotated sequents F1, s1 : A1 and F2, s2 : A2, with correspond-
ing LKe-provable terms t and t′, let tA1 and tA2 be the disjuncts of t
and t′ corresponding to s1 and s2:
• If neither tA1 nor tA2 is ∗, then we may apply Lemma 1 twice, fol-

lowed by ∧ and then ∨, to obtain a proof of the correct shape.
• If both tA1 = ∗ and tA2 = ∗ are ∗ then apply Lemma 1 to remove the

deletions. By applying the LKe Mix-rule and then ∨L, we obtain a
provable term of the required shape.

• The final case is where exactly one tAi = ∗; without loss of generality,
let it be tA1 . We treat this much like a cut against weakening in
LK. We know that LKe � (((t1 ∨ t2) ∨ . . . tm) ∨ ∗). By Lemma 1,
LKe � (((t1 ∨ t2) ∨ . . . tm). Now “weaken” the conclusion once for
A ∧ B and once for each member of F2: that is, apply ∨L once for
each of those formulae. The result is an LKe provable term ((((t1 ∨
t2) ∨ . . . tm) ∨ ∗) ∨ · · · ∨ ∗) of the correct type.

The content of the above result is that, at the theorem level, the rules of conjunc-
tion, disjunction, weakening and Mixare admissible in LKe; the contraction rule
is also admissible when restricted to atoms and conjunctions. In the following
section we demonstrate the general admissibility of contraction in LKe, which
is enough to see that it is a complete calculus for classical propositional logic.

4.2 Cut-Free Completeness of LKe

By cut-free completeness of LKe, we mean the following:

Theorem 3. For every formula A of classical propositional logic such that � A
in LK, there is an expansion tree t such that LKe � t : A.

To show this, we need only show that the contraction rule of LK is admissible
for theorems of LKe, in the sense that, if t : B ∨ (A ∨A) is provable, then there
is a term t′ so that t′ : B ∨ A is provable ; the remaining cases to check are
disjunctions and the unit %. The following lemma will be essential:

Lemma 3. (a) If LKe � F, 1 : %, then LKe � F .
(b) If LKe � t ∨ 1 : A ∨%, then either t = ∗ or LKe � t : A.

Proof. By induction on the length of proofs. For example, in case the last rule
proving F, 1 : % is a conjunction

� G1, t : A, 1 : % G2, s : B
∧

� G1, G2, (t⊗ s) : A ∧B, 1 : %

G1, t : A is is provable, and so we may prove G1, G2, (t⊗ s) : A ∧B ��

Expansion Nets: Proof-Nets for Propositional Classical Logic 547

Lemma 4. If LKe � t∨ (s1 ∨ s2) : B ∨ (A∨A), then there is a term s such that
LKe � t ∨ s : B ∨A.

Proof. If either one or both si is ∗, this can be easily shown using Lemma 1.
Similarly, if A is a conjunction or atom, we can use Lemma 1 and the relevant
contraction rule of LKe. If A is the unit %, then s1 and s2 are equal to 1, and
by Lemma 3, LKe � t ∨ 1 : B ∨ %. Finally, suppose that the claim holds for all
formulae of size n, and let A = B1∨B2 of size n+1. Apply Lemma 1 four times
to obtain a proof of

t : B, ta : B1, tb : B2, tc : B1, td : B2

using ∨ and the induction hypothesis, we obtain a proof of (t∨u)∨v : (B∨B1)∨B2
and by reassociating the disjunctions we obtain a proof of t∨(u∨v) : B∨(B1∨B2)

��
Corollary 1. If A is provable in LK, then there is an expansion/deletion tree
t such that LKe � t : A.

5 Conclusions and Further Work

We have given a calculus of proof-nets which identifies more sequent proofs than
Robinson’s proposal, while maintaining a connection with the sequent calculus.
Other researchers have given abstract notions of proof-net for classical logic;
these make the identifications we wish to make but lack a strong connection
to the sequent calculus. Lamarche and Strassburger [12] give two notions of
proof-net, both of which validate more identities than Robinson. The B-nets
are nothing more than binary linkings on a sequent forest: they possess sequen-
tialization into an additive sequent calculus, but checking correctness of such
a net is no more efficient than checking the truth-table of the conclusion. The
same paper introduces N-nets, which give a better account of proof-identity, but
for which no correctness criterion/sequentialization theorem is known. Hughes’s
combinatorial proofs [10,11] also make more identifications than Robinson’s nets,
and have a polynomial-time correctness criterion. However, the mapping from
sequent proofs to combinatorial proofs is not surjective; there are correct combi-
natorial proofs which do not correspond to a sequent-calculus proof. Moreover,
Hughes’s approach does not deal directly with the units % and ⊥. Hughes’s
system can be seen as a kind of “Herbrand’s theorem for propositional logic”,
reducing provability in unit-free propositional logic (coNP) to provability in the
binary fragment of unit free MLL+Mix (P-time). Seen in this light, our result
extends this connection to the classical units; we reduce provability in propo-
sitional logic to provability in a (polytime decidable) fragment of MLL + Mix

(with units).
In both of the cases above, there is a mismatch between sequent calculus

and the proposed proof nets: the nets we present here are, we believe, the first
sufficiently abstract nets to maintain a good correspondence to sequent calculus
proofs.

We mention now some further work.

548 R. McKinley

Garbage collection. Given a subterm of the form s = ∗⊗t or s = t⊗∗ in an ed-
net, we can view the subproof introducing t as garbage; garbage collection would
be an algorithm taking a net with garbage and returning a garbage free net: i.e.
an expansion net. For similar situations in MAL+Mix nets [1] and combinatorial
proofs, there is a confluent garbage collection algorithm; unfortunately, attempts
to apply those methods to ed-nets yield annotated sequents which fail to satisfy
correctness. This opens up two directions for further research: to find a garbage
collection procedure which stays within correct proof nets, or to find a good
generalization of correctness so that the existing algorithms work.

Cut-elimination. We can easily add cuts to ed-nets by adding a new construc-
tor �$ for terms, with typing rule

t : A s : Ā

t �$ s : Cut

It is then possible to define a weakly normalizing cut-elimination procedure
based on Gentzen’s original procedure; the definition of the reductions requires
the notion of subnet, which for ed-nets is rather tricky to define. Since cut-
elimination depends on the calculation of subnets (either kingdoms or empires)
it is not local; this is somewhat alien to the spirit of proof nets, but it is not
clear if a cut-reduction theory for such proof-nets can be local and retain a close
correspondence to the sequent calculus. One way to improve the cut-reduction
theory of the nets is to asymmetrize all the cuts, by insisting that, for each
dual pair A and Ā, contraction is admissible for one of the pair. This is only a
challenge for the atoms, where we need contraction on both p and p̄ for com-
pleteness. Nevertheless, this is possible, by treating the atoms in the same way
as universal/existential quantifiers, leading to a calculus in which the contrac-
tion/contraction and weakening/weakening critical pairs cannot be formed.

Classical quantifiers. The terminology expansion/deletion recalls Miller [15],
whose expansion tree proofs can be seen as a prototype notion of proof-net
for classical logic. The paper [14] makes this connection explicit in the case
of first-order prenex formulae; the paper introduces a notion of Herbrand net, in
which provability at the propositional level is treated as trivial — propositional
axioms are replaced by arbitrary propositional tautologies. We foresee no major
obstacles in combining Herbrand nets with the results of the current paper to
capture nets for first- or higher-order classical quantifiers.

Nets for additively formulated classical logic. The correctness/
sequentialization results for our nets are heavily tied to the multiplicatively for-
mulated sequent calculus. It is, of course, possible to extract an ed-net from a
proof in an additively formulated calculus, but there are natural identities in
those calculi which are not validated by our nets. Taking the view that the ad-
ditive and multiplicative classical connectives are essentially different operations
(that happen to coincide at the level of provability), we look for natural notions
of proof net for additively formulated classical logic.

Expansion Nets: Proof-Nets for Propositional Classical Logic 549

Acknowledgements. Thanks to Kai Brünnler, Lutz Strassburger and Willem
Heijltjes for useful discussions while working on this paper. This work was sup-
ported by the ANR grant “INFER” and an SNF Ambizione fellowship.

References

1. Bellin, G.: Two paradigms of logical computation in affine logic? In: Logic for
concurrency and synchronisation, pp. 111–144 (2003)

2. Bellin, G., Hyland, M., Robinson, E., Urban, C.: Categorical proof theory of clas-
sical propositional calculus. Theor. Comput. Sci. 364(2), 146–165 (2006)

3. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
J. Symb. Logic 44(1), 36–50 (1979)

4. Danos, V., Di Cosmo, R.: The linear logic primer. lecture notes,
http://www.dicosmo.org/CourseNotes/LinLog/

5. Danos, V., Regnier, L.: The structure of multiplicatives. Archive for Mathematical
Logic 28, 181–203 (1989)

6. Danos, V.: La Logique Linéaire Appliquée l’étude de Divers Processus de Normal-
isation. PhD thesis, University of Paris VII (1990)

7. Führmann, C., Pym, D.: Order-enriched categorical models of the classical sequent
calculus. Journal of Pure and Applied Algebra 204(1), 21–78 (2006)

8. Girard, J.-Y.: A new constructive logic: Classical logic. Mathematical Structures
in Computer Science 1(3), 255–296 (1991)

9. Girard, J.-Y.: Proof-nets: The parallel syntax for proof-theory. In: Logic and Al-
gebra, pp. 97–124. Marcel Dekker, New York (1996)

10. Hughes, D.J.D.: Towards Hilbert’s 24th problem: Combinatorial proof invariants.
Electron. Notes Theor. Comput. Sci. 165, 37–63 (2006)

11. Hughes, D.J.D.: Proofs Without Syntax. Annals of Mathematics 143(3), 1065–1076
(2006)

12. Lamarche, F., Strassburger, L.: Naming proofs in classical logic. In: Urzyczyn, P.
(ed.) TLCA 2005. LNCS, vol. 3461, pp. 246–261. Springer, Heidelberg (2005)

13. Lamarche, F., Strassburger, L.: Constructing free boolean categories. In: LICS
2005: Proceedings of the 20th Annual IEEE Symposium on Logic in Computer
Science, Washington, DC, USA, pp. 209–218. IEEE Computer Society, Los Alami-
tos (2005)

14. McKinley, R.: Proof nets for Herbrand’s theorem (Preprint),
http://arxiv.org/abs/1005.3986v1

15. Miller, D.: A compact representation of proofs. Studia Logica 46(4), 347–370 (1987)
16. Robinson, E.: Proof nets for classical logic. Journal of Logic and Computa-

tion 13(5), 777–797 (2003)
17. Trimble, T.H.: Linear logic, bimodules, and full coherence for autonomous cate-

gories. PhD thesis, Rutgers University (1994)

http://www.dicosmo.org/CourseNotes/LinLog/
http://arxiv.org/abs/1005.3986v1

Revisiting Matrix Interpretations for Polynomial
Derivational Complexity of Term Rewriting�

Friedrich Neurauter, Harald Zankl, and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, Austria

Abstract. Matrix interpretations can be used to bound the derivational
complexity of term rewrite systems. In particular, triangular matrix in-
terpretations over the natural numbers are known to induce polynomial
upper bounds on the derivational complexity of (compatible) rewrite
systems. Using techniques from linear algebra, we show how one can
generalize the method to matrices that are not necessarily triangular
but nevertheless polynomially bounded. Moreover, we show that our ap-
proach also applies to matrix interpretations over the real (algebraic)
numbers. In particular, it allows triangular matrix interpretations to in-
fer tighter bounds than the original approach.

Keywords: Derivational complexity, polynomial matrix interpretations.

1 Introduction

Many powerful techniques for establishing termination of term rewrite systems
have been developed in the course of time, most of which have been automated
successfully, as is evident in the results of the (annual) international competi-
tion for termination and complexity tools.1 Moreover, Hofbauer and Lautemann
observe in [9] that “proving termination with one of these specific techniques
in general proves more than just the absence of infinite derivations. It turns
out that in many cases such a proof implies an upper bound on the maximal
length of derivations”, which they consider as a natural measure for the com-
plexity of (terminating) term rewrite systems. More precisely, the resulting no-
tion of derivational complexity relates the length of a longest derivation to the
size of its initial term. For example, polynomial interpretations imply a double-
exponential upper bound on the derivational complexity [9]. However, since term
rewriting is a model of computation and algorithms of polynomial complexity
are widely accepted as feasible, one is especially interested in polynomial deriva-
tional complexity. But currently only few techniques for establishing feasible
upper complexity bounds are known. Commonly, they are stripped-down vari-
ants of existing termination techniques. For example, if a term rewrite system
can be shown terminating by a matrix interpretation (over the natural numbers)
[5, 10] that orients all rewrite rules strictly, then its derivational complexity is

� This research is supported by FWF (Austrian Science Fund) project P22467.
1 http://termcomp.uibk.ac.at

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 550–564, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://termcomp.uibk.ac.at

Revisiting Matrix Interpretations for Polynomial Derivational Complexity 551

at most exponential. However, by restricting the shape of the matrices to upper
triangular form, one obtains a method for establishing polynomial derivational
complexity [13], where the degree of the polynomial depends on the dimension
of the matrices. Using match-bounds [7] or arctic matrix interpretations [12],
linear derivational complexity can be inferred.

In this paper we investigate the method of (triangular) matrix interpretations
that is widely used in current automated termination and complexity tools. Us-
ing techniques from linear algebra, we show how one can generalize the method
of triangular matrix interpretations, as introduced in [13], to matrix interpre-
tations that are not necessarily triangular but nevertheless induce polynomial
upper bounds on the derivational complexity of compatible term rewrite sys-
tems. Moreover, we show that our approach also applies to matrix interpreta-
tions over the real (algebraic) numbers. In particular, we also show how one can
infer tighter bounds from triangular matrix interpretations by examining the
diagonal structure of upper triangular (complexity) matrices.

The remainder of this paper is organized as follows. Section 2 introduces ba-
sic notions of term rewriting and some mathematical prerequisites. In Section 3,
we review matrix interpretations in the context of complexity analysis of term
rewriting, before presenting our main result in Section 4. In Section 5, we give de-
tails on implementation-specific issues. Finally, we provide experimental results
in Section 6, before concluding in Section 7.

2 Preliminaries

We assume familiarity with the basics of term rewriting [2, 17]. Let V denote a
countably infinite set of variables and F a fixed-arity signature. The set of terms
over F and V is denoted by T (F ,V). The size |t| of a term t is defined as the
number of symbols occurring in it and the depth of t is defined as follows: if t
is a variable or a constant, then depth(t) := 0, otherwise depth(f(t1, . . . , tn)) :=
1 + max{depth(ti) | 1 � i � n}. A rewrite rule is a pair of terms written as
l → r, such that l is not a variable and all variables in r are contained in l. A
term rewrite system R (TRS for short) over T (F ,V) is a set of rewrite rules. For
complexity analysis we assume TRSs to be finite. The rewrite relation induced
by → is denoted by →R. As usual, →∗

R denotes the reflexive transitive closure
of →R and →n

R its n-th iterate. A term s ∈ T (F ,V) is called a normal form if
there is no term t such that s→R t.

The derivation height of a term t with respect to a TRSR is defined as follows:
dh(t,→R) := max{n | ∃u t →n

R u}. The derivational complexity function of a
terminating TRS R computes the maximal derivation height of all terms up to
a given size, i.e., dcR : N \ {0} → N, k �→ max{dh(t,→R) | |t| � k}. Sometimes
we say that R has linear, quadratic, etc. derivational complexity if dcR(k) can
be bounded by a linear, quadratic, etc. polynomial in k.

An important concept for establishing termination of TRSs is the notion of
well-founded monotone algebras. An F -algebra A consists of a non-empty car-
rier A and interpretation functions fA : An → A for every n-ary f ∈ F . By

552 F. Neurauter, H. Zankl, and A. Middeldorp

[α]A(·) : T (F ,V) → A we denote the usual evaluation function of A with re-
spect to a variable assignment α : V → A. A well-founded monotone F-algebra
is a pair (A, >A), where A is an F -algebra and >A is a well-founded order on A
such that every fA is strictly monotone in all arguments (with respect to >A). A
well-founded monotone algebra naturally induces an order 'A on terms: s 'A t
if [α]A(s) >A [α]A(t) for all assignments α of elements of A to the variables in s
and t. Finally, it is well-known that a TRS R is terminating if and only if it is
compatible with a well-founded monotone algebra (A, >A), where compatibility
means that l 'A r for every rewrite rule l → r ∈ R.

Linear Algebra. As usual, we denote by N, Z, Q and R the sets of natural, integer,
rational and real numbers. Given some D ∈ {N,Z,Q,R} and m ∈ D, >D denotes
the natural order of the respective domain and Dm := {x ∈ D | x � m}; e.g.,
R0 refers to the set of all non-negative real numbers. For any ring R (e.g., Z,
Q, R), we denote the ring of all n-dimensional square matrices over R by Rn×n,
and R[x1, . . . , xn] denotes the associated polynomial ring in n indeterminates
x1, . . . , xn. In the special case n = 1, a polynomial P ∈ R[x] can be written as
follows: P (x) =

∑d
k=0 akx

k (d ∈ N). For the largest k such that ak �= 0, we call
akx

k the leading term of P , ak its leading coefficient and k its degree. P is said
to be monic if its leading coefficient is one. Moreover, it is said to be linear,
quadratic, cubic etc. if its degree is one, two, three etc.

We say that a matrix is non-negative if all its entries are non-negative. Abusing
notation, we denote the set of all non-negative n-dimensional square matrices
of Zn×n by Nn×n. An upper triangular matrix is a matrix, where all entries
below the main diagonal are zero. An upper triangular complexity matrix is a
non-negative upper triangular matrix whose diagonal entries are at most one and
whose top-left entry is exactly one. As usual, we denote the transpose of a matrix
(vector) A by AT . The characteristic polynomial of a square matrix A ∈ Rn×n is
defined as χA(λ) := det(λIn −A), where In denotes the n-dimensional identity
matrix and det the determinant of a matrix. It is monic and its degree is n. The
equation χA(λ) = 0 is called the characteristic equation of A. The eigenvalues
of A are precisely the solutions of its characteristic equation, and the spectral
radius ρ(A) of A is the maximum of the absolute values of all eigenvalues. By
mλ we denote the multiplicity of the eigenvalue λ. A non-zero vector x is an
eigenvector of A if Ax = λx for some eigenvalue λ of A. The Cayley-Hamilton
theorem [15] states that every matrix satisfies its own characteristic equation,
that is, χA(A) = 0, and it holds for square matrices over commutative rings.

Recurrence Relations. Informally, a recurrence relation is an equation that re-
cursively defines a sequence; each element of the sequence is defined as a function
of the preceding elements. For example, the Fibonacci numbers are defined by
Fn = Fn−1 +Fn−2 with F0 = 0 and F1 = 1. Solving a recurrence relation means
obtaining a closed-form solution; in this example, a non-recursive function of n.

A linear homogeneous recurrence relation with constant coefficients is an equa-
tion of the form an = c1an−1 + c2an−2 + · · ·+ cdan−d, where the d � 1 coefficients
c1, . . . , cd are constants with cd �= 0. The same coefficients yield the characteristic

Revisiting Matrix Interpretations for Polynomial Derivational Complexity 553

polynomial χ(λ) := λd − c1λ
d−1 − c2λ

d−2 − · · · − cd whose d roots play a key role
in the solution of a recurrence relation (cf. [3, 4]). To be precise, if λ1, λ2, . . . , λr

(1 � r � d) are the distinct (possibly complex) roots of the characteristic polyno-
mial such that λi is of multiplicity mi (i = 1, 2, . . . , r), then the general solution of
the recurrence relation is given by

an =
r∑

i=1

(ci1 + ci2n + · · ·+ cimin
mi−1)λn

i

where the cik’s are (complex) constants. Any real solution is of this form as
well, with the imaginary part zero. Moreover, if the coefficients of χ(λ) are
real numbers, its non-real roots always come in conjugate pairs; i.e., if λj :=
rj(cos(φj) + i sin(φj)) is a root of χ(λ), then so is its complex conjugate λ∗

j :=
rj(cos(φj) − i sin(φj)). In this case, avoiding the use of complex numbers, the
most general real solution can be written as

an =
∑

i

(ci1 + ci2n + · · ·+ cimin
mi−1)λn

i

+
∑

j

(dj1 + dj2n + · · ·+ djmjn
mj−1)rn

j cos(nφj)

+
∑

j

(d′j1 + d′j2n + · · ·+ d′jmj
nmj−1)rn

j sin(nφj)

where the cik’s, djk’s and d′jk’s are real constants, the λi’s the distinct real roots
of χ(λ) and the λj ’s, λj := rj(cos(φj) + i sin(φj)), the distinct complex roots
(modulo conjugates).

3 Matrix Interpretations and Derivational Complexity

Next we review the method of matrix interpretations in the context of complex-
ity analysis of term rewriting. Matrix interpretations [10,5] were originally intro-
duced over the natural numbers. Later on they were lifted to the reals [1, 21, 6]
using the same technique that was already used to lift polynomial interpretations
from N to R (cf. [8]). Similarly, the first results relating matrix interpretations
and derivational complexity of TRSs (cf. [13], triangular matrix interpretations)
are based on matrix interpretations over the natural numbers. But these results
have never been lifted to the reals. In the next section we shall see, however,
how this follows from a more general result that holds for matrix interpretations
over both N and R, the foundations of which are laid in the present chapter.

Let F denote a signature. A matrix interpretation M over N is a well-founded
monotone algebra, where the carrier M is the set Nn for some fixed dimension
n ∈ N \ {0}. The well-founded order >M on M is defined as follows:

(x1, x2, . . . , xn)T >M (y1, y2, . . . , yn)T :⇐⇒ x1 >N y1∧x2 �N y2∧· · ·∧xn �N yn

554 F. Neurauter, H. Zankl, and A. Middeldorp

For each k-ary function symbol f ∈ F , we choose an interpretation function

fM : (Nn)k → Nn, (x1, . . . ,xk) �→ F1x1 + · · ·+ Fkxk + f

where f ∈ Nn and F1, . . . , Fk ∈ Nn×n. In addition, we require (Fi)1,1 �N 1 for
all i = 1, . . . , k to achieve strict monotonicity of fM in all arguments. Finally, a
triangular matrix interpretation over N is a matrix interpretation over N, where
all matrices are upper triangular complexity matrices.

When extending matrix interpretations from N to R, the main problem is
the non-well-foundedness of >R. This problem is overcome by >R,δ, which is
defined as follows: given some fixed positive real number δ, x >R,δ y if and only
if x− y �R δ for all x, y ∈ R. Thus >R,δ is well-founded on subsets of R that are
bounded from below. Then a matrix interpretation M over R is a well-founded
monotone algebra, where the carrier M is the set Rn

0 for some fixed dimension
n ∈ N \ {0}. The well-founded order >M on M is defined as follows:

(x1, x2, . . . , xn)T >M (y1, y2, . . . , yn)T :⇐⇒ x1 >R,δ y1∧x2 �R y2∧· · ·∧xn �R yn

For each k-ary function symbol f , we choose an interpretation function

fM : (Rn
0)k → Rn

0 , (x1, . . . ,xk) �→ F1x1 + . . . + Fkxk + f

where f ∈ Rn
0 and F1, . . . , Fk are non-negative matrices in Rn×n with (Fi)1,1 �R

1 for all i = 1, . . . , k in order to achieve strict monotonicity of fM in all argu-
ments. Again, a triangular matrix interpretation over R is a matrix interpretation
over R, where all matrices are upper triangular complexity matrices.

Remark 1. Concerning polynomial interpretations, it was recently shown in [14]
that it suffices to consider the set Ralg of real algebraic2 numbers instead of
the entire set R of real numbers. To be precise, it was shown that polynomial
termination over R is equivalent to polynomial termination over Ralg. Observing
that the technique of [14] readily applies to matrix interpretations as well, we
may draw the conclusion that matrix interpretations over R are equivalent to
matrix interpretations over Ralg with respect to proving termination of TRSs.

Matrix interpretations over R can be used to bound the derivational complexity
of compatible TRSs.3 LetM be a matrix interpretation over R that is compatible
with some TRS R. Then any rewrite sequence

t = t0 →R t1 →R t2 →R t3 →R t4 →R · · ·

gives rise to a strictly decreasing sequence of vectors of non-negative real numbers

[α]M(t) >M [α]M(t1) >M [α]M(t2) >M [α]M(t3) >M [α]M(t4) >M · · ·
2 A real number is said to be algebraic if it is a root of a non-zero polynomial in one

variable with integer coefficients.
3 The reasoning presented in the sequel readily includes matrix interpretations over N

as a special case (by letting δ = 1 and observing that x >N y if and only if x �N y+1).

Revisiting Matrix Interpretations for Polynomial Derivational Complexity 555

for all variable assignments α. In particular, by definition of >M , the first com-
ponents of these vectors form a sequence of non-negative real numbers that is
strictly decreasing with respect to the order >R,δ, and every rewrite step causes
a decrease of at least δ. Hence, the first component of the vector 1

δ · [α]M(t) gives
an upper bound on dh(t,→R). So if we manage to bound (the first component of)
this vector for all terms t up to a given (but arbitrary) size k, then we have actu-
ally established an upper bound on the derivational complexity of R. Moreover,
as we are only interested in the asymptotic growth of 1

δ · [α]M(t) with respect to
the size of t, we may neglect the multiplicative factor 1

δ because δ is a constant.
As already observed in [13], this problem essentially reduces to bounding the
entries of finite matrix products of the form M1 ·M2 · . . . ·Mk, Mi ∈ M. Such
products arise naturally when evaluating terms in a matrix interpretation; e.g.,
if t := f(g(a, b), c) then [α]M(t) = F1G1a+F1G2b+F1g+F2c+f . As in [13], we
reduce this problem to the analysis of the growth of the powers of a single ma-
trix. To this end, we note that for all 1 � i, j � n, (M1 ·M2 · . . .·Mk)i,j � (Ak)i,j ,
where the matrix A is the component-wise maximum of all matrices occurring in
M; i.e., Ai,j := max{Bi,j | B ∈M} for all 1 � i, j � n. If |t| � k then the length
of each product is at most depth(t) (� k) and the number of products equals the
number of subterms of t, which is also bounded by k. Thus any lemma stating
that the entries of the matrix Ak are polynomially bounded in k of degree d− 1
can readily be used as the basis of a corresponding theorem that establishes a
polynomial upper bound of degree d on the derivational complexity of all TRSs
that are compatible with the matrix interpretation M. In [13], for example, this
is achieved by restricting the shape of the matrices to upper triangular form.

Lemma 2 ([13, Lemma 5]). Let A ∈ Nn×n be an upper triangular complexity
matrix and k ∈ N. Then (Ak)i,j ∈ O(kn−1) for all 1 � i, j � n.

Theorem 3 ([13, Theorem 6]). If a TRS R is compatible with a triangular
matrix interpretation of dimension n, then dcR(k) ∈ O(kn).

However, we claim that Lemma 2 only gives a rough estimate of the growth of the
entries of the matrix Ak, i.e., the degree of the polynomial bound can be lowered
in many cases. To this end, we provide a more concise analysis of the growth of
Ak in the next section, obtaining a replacement for Lemma 2, which allows us
to tighten the bounds established by Theorem 3. In particular, our refinement
holds for matrix interpretations over both N and R. Moreover, we remark that
the restriction of the shape of the matrices is another source for improvement.
Clearly, there are also non-triangular matrices that exhibit polynomial growth,
but in general non-triangular matrix interpretations do not induce polynomial
(but rather exponential) upper bounds on the derivational complexity of com-
patible TRSs. So in order to be useful in (automated) complexity analysis of
term rewriting, a characterization of polynomially bounded matrices is required
such that, when searching for a compatible matrix interpretation for a given
TRS, it is guaranteed beforehand that the search process only considers such
matrices. This is the main goal of the following sections.

556 F. Neurauter, H. Zankl, and A. Middeldorp

4 Main Result

In this section we elaborate on how to lift the restriction to upper triangular
matrices. To this end, we leverage the Cayley-Hamilton theorem and the theory
of linear homogeneous recurrence relations to completely characterize the growth
of the powers of real square matrices (independently of the shape of the matrices).
In particular, we show that the key point with respect to polynomial boundedness
of such matrices is the nature of their eigenvalues. According to the discussion
in Section 3, our results apply to matrix interpretations over N and R alike.

Lemma 4. Let A ∈ Rn×n
0 . Then ρ(A) � 1 if and only if all entries of Ak

(k ∈ N) are asymptotically bounded by a polynomial in k of degree d, where
d := maxλ(0,mλ− 1) and λ are the eigenvalues with absolute value exactly one.

Proof. First, let us assume that ρ(A) > 1, i.e., A has an eigenvalue λ of ab-
solute value strictly greater than one. For any eigenvector x associated to λ,
we have Ax = λx and hence Akx = λkx. Since x is non-zero by definition
and |λ| > 1, there is at least one component of λkx whose absolute value
grows exponentially in k. But this can only be the case if at least one en-
try of Ak grows exponentially in k as well. Conversely, if ρ(A) � 1, we have
to show that the entries of Ak are polynomially bounded. Since A is a real
n × n matrix, its characteristic polynomial χA(λ) is a monic polynomial of de-
gree n with real coefficients. Without loss of generality, it can be written as
χA(λ) = λt · p(λ), 0 � t � n, where t is maximal and p is a monic polynomial of
degree n− t. By the Cayley-Hamilton theorem, A satisfies its own characteristic
equation, that is, χA(A) = 0. Clearly, if t = n then Ak = 0 for all k � n and
d = 0, such that the claim follows trivially. If t < n we rearrange the equation
χA(A) = 0 into the form An = c1A

n−1 + c2A
n−2 + · · ·+ cn−tA

t with coefficients
c1, . . . , cn−t, readily obtaining a recursive equation for the powers of A, namely,
for all k � n ∈ N Ak = c1A

k−1 +c2A
k−2 + · · ·+cn−tA

k−(n−t). Thus we establish
the following recurrence relation

Ak = c1Ak−1 + c2Ak−2 + · · ·+ cn−tAk−(n−t) (1)

and note that the sequence (Aj)j�t where Aj := Aj satisfies it by construction.
This is a linear homogeneous recurrence relation with constant coefficients and
characteristic polynomial χ(λ) = p(λ). Since the coefficients of χ(λ) are real
numbers, the non-real roots (eigenvalues) always come in conjugate pairs; i.e., if
λj := rj(cos(φj) + i sin(φj)) is a root of χ(λ), then so is its complex conjugate
λ∗

j := rj(cos(φj)− i sin(φj)). Thus the general solution of (1) can be written as

Ak =
∑

i

(Ci,0 + Ci,1k + · · ·+ Ci,mi−1k
mi−1)λk

i

+
∑

j

(Dj,0 + Dj,1k + · · ·+ Dj,mj−1k
mj−1)rk

j cos(kφj) (2)

+
∑

j

(D′
j,0 + D′

j,1k + · · ·+ D′
j,mj−1k

mj−1)rk
j sin(kφj)

Revisiting Matrix Interpretations for Polynomial Derivational Complexity 557

where the λi’s are the distinct real roots of χ(λ), each having multiplicity mi,
and the λj ’s, λj := rj(cos(φj) + i sin(φj)), the distinct complex roots (modulo
conjugates), each having multiplicity mj . By assumption, the absolute values of
all eigenvalues are at most one; hence, |λi| � 1 and rj � 1 in (2), such that
the asymptotic growth of the entries of the matrix Ak is polynomial rather than
exponential. In particular, the degree d of the polynomial bound is at most m−1,
where m is the largest of the multiplicities of the eigenvalues with absolute value
exactly one. If there are no such eigenvalues, then ρ(A) < 1 and limk→∞ Ak = 0,
such that d = 0. ��

Example 5. Consider the 4 × 4 matrix A := (Ai,j)1�i,j�4 with all entries zero
except A1,1 = A2,4 = A3,2 = A4,3 = 1. It has one real eigenvalue λ1 = 1 of mul-
tiplicity two and a pair of complex conjugate eigenvalues λ2 = 1

2 (−1 + i
√

3) and
λ∗

2 = 1
2 (−1− i

√
3) of multiplicity one, all of which have absolute value exactly

one. Hence, the spectral radius ρ(A) of A is also one. According to Lemma 4,
the entries of the matrix Ak, k ∈ N, are bounded by a linear polynomial in k.
The actual bound, however, is even lower since A4 = A, such that the powers of
A are trivially bounded by a constant, and we can use the method outlined in
the proof of Lemma 4 to show this. To this end, we note that the characteristic
polynomial of A is χA(λ) = λ4 − λ3 − λ + 1. Thus, by the Cayley-Hamilton
theorem, we obtain the recursive equation Ak = Ak−1 + Ak−3 − Ak−4 for all
k � 4 ∈ N, the general solution of which can be written as

Ak = (C0 + C1k)λk
1 + D rk cos(kφ) + D′ rk sin(kφ) (3)

where r(cos(φ) + i sin(φ)) = λ2, that is, r = 1 and φ = 2π
3 . In the next step,

the exact values of the four constants C0, C1, D and D′ can be determined, for
example, by letting k = 4, 5, 6, 7 in (3) and solving the resulting systems of linear
equations. In doing so, one learns that C1 is zero, which means that the linear
summand in (3) vanishes. Further, we obtain Ak = C0 + D cos(kφ) + D′ sin(kφ),

C0 :=

⎛⎜⎜⎜⎜⎝
1 0 0 0
0 1

3
1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3

⎞⎟⎟⎟⎟⎠ D :=

⎛⎜⎜⎜⎜⎝
0 0 0 0
0 2

3 − 1
3 − 1

3

0 − 1
3

2
3 − 1

3

0 − 1
3 − 1

3
2
3

⎞⎟⎟⎟⎟⎠ D′ :=

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0

0 0 −
√

3
3

√
3

3

0
√

3
3 0 −

√
3

3

0 −
√

3
3

√
3

3 0

⎞⎟⎟⎟⎟⎟⎠
which explains why the powers of A are bounded by a constant. In particular,
the periodic nature of the sequence (Ak)k∈N becomes evident.

On the basis of Lemma 4, we now establish the following theorem concerning
complexity analysis of TRSs that holds for matrix interpretations over N and R.

Theorem 6. Let R be a TRS and M a compatible matrix interpretation of
dimension n. Further, let A denote the component-wise maximum of all matri-
ces occurring in M. If the spectral radius of A is at most one, then dcR(k) ∈
O(kd+1), where d := maxλ(0,mλ− 1) and λ are the eigenvalues of A with abso-
lute value exactly one.

558 F. Neurauter, H. Zankl, and A. Middeldorp

Remark 7. Actually the d in Theorem 6 can be strengthened to maxλ(0,mλ)−1
because the pathological case ρ(A) < 1 implies dcR(k) ∈ O(k0).

The next example shows why triangular matrices may fail. Similar (but larger)
systems are contained in TPDB [18], e.g., TRS/Cime 04/dpqs.xml.

Example 8. Consider the TRS R = {f(f(x)) → f(c(f(x))), c(c(x)) → x} which is
compatible with the matrix interpretation

fM(x) =

(
1 1 0
0 0 0
0 0 0

)
x +

(
0
1
0

)
cM(x) =

(
1 0 2
0 0 1
0 1 0

)
x

The eigenvalues of the component-wise maximum matrix are −1, 1 and 1; hence,
Theorem 6 deduces a quadratic upper bound on the derivational complexity ofR.
There cannot exist a triangular matrix interpretation compatible with R since
the second rule demands that all diagonal entries in cM are non-zero, but then
the first rule can no longer be oriented.

Next we specialize Theorem 6 to triangular matrix interpretations. In such inter-
pretations all matrices are upper triangular complexity matrices whose diagonal
entries are restricted to the closed interval [0, 1] and whose top-left entry is always
one. Hence, this is also true for the component-wise maximum matrix A. Since
the diagonal entries of a triangular matrix give the multiset of its eigenvalues,
the matrix A is therefore guaranteed to have spectral radius one.

Theorem 9. Let R be a TRS and M a compatible triangular matrix interpre-
tation over N or R of dimension n. Further, let A denote the component-wise
maximum of all matrices occurring in M, and let d denote the number of ones
occurring along the diagonal of A. Then dcR(k) ∈ O(kd).4

Note that the bound established by Theorem 9 for matrix interpretations over
N is at least as tight as the one of Theorem 3 since d � n.

Example 10. The TRSR = {a(b(a(x))) → a(b(b(a(x)))), b(b(b(x))) → b(b(x))}5

is compatible with the triangular matrix interpretation

aM(x) =

(
1 2 1
0 0 1
0 0 0

)
x +

(
0
1
1

)
bM(x) =

(
1 0 2
0 0 1
0 0 0

)
x +

(
1
0
0

)
The diagonal of the component-wise maximum of the two matrices has the shape
(1, 0, 0). Hence, R has (at most) linear derivational complexity by Theorem 9,
whereas the bound established by Theorem 3 is cubic. Incidentally, the bound
inferred from Theorem 9 is even optimal since it is easy to see that the deriva-
tional complexity of R is at least linear. It is easy to show that there are no
triangular matrix interpretations of dimension one and two compatible with R.

The final example shows the benefit of matrix interpretations over R.
4 Independently in [19, Proposition 7.6] the same result has been established for N.
5 TPDB problem TRS/Zantema 04/z126.xml

Revisiting Matrix Interpretations for Polynomial Derivational Complexity 559

Example 11. Consider the TRSR.6 There exists a matrix interpretation (see web-
site in Footnote 8) compatible with R such that the diagonal of the component-
wise maximum matrix has the shape (1, 1

2 , 0). Due to Theorem 9, the derivational
complexity ofR is at most linear. Our implementation could find a triangular ma-
trix interpretation of the same dimension over N compatible with R establishing
a quadratic but not a linear bound.

5 Implementation Issues

In Theorem 6, we consider some TRS together with a compatible matrix inter-
pretation and demand that the component-wise maximum matrix A has spec-
tral radius at most one. So we have to make sure that the absolute values of
all its eigenvalues (real and complex ones) are at most one. However, since A
is a non-negative real square matrix, we only have to ensure this condition for
all (non-negative) real eigenvalues of A. This follows directly from the Perron-
Frobenius theorem ([16], weak form), which states that the spectral radius of a
non-negative real square matrix is an eigenvalue of the matrix; i.e., there exists
a non-negative real eigenvalue that dominates in absolute value all eigenvalues.

Concerning the automation of Theorem 6, the main problem that has to be
dealt with is the following. Given some square matrix A with unknown entries,
all of which are supposed to be non-negative real (or integer) numbers, we need
a set of constraints, expressed in terms of the unknown entries, that enforce
ρ(A) � 1; e.g., for which non-negative values of a, b, c and d has the matrix

A :=
(
a b
c d

)
spectral radius at most one? In the sequel, we present three different approaches.

(A) The first approach is based on the explicit calculation of the eigenvalues
of A, i.e., the explicit calculation of the roots of the characteristic polynomial
χA(λ). For the two-dimensional case, we have χA(λ) = λ2 − (a + d)λ + ad− bc,

and by the quadratic formula we obtain the roots λ1,2 = a+d
2 ±

√
(a−d)2+4bc

2 ,
both of which are real because all matrix entries are non-negative. In particular,
λ2 (� λ1) is non-negative, such that it suffices to require λ2 � 1 according to the
Perron-Frobenius theorem. Simplifying this condition as much as possible, we
infer that the matrix A has spectral radius at most one if and only if a+d � 2 and
a+ d � ad− bc+ 1. This explicit approach also applies to matrices of dimension
three and four since there exist formulas for the solution of arbitrary cubic and
quartic polynomial equations with symbolic coefficients (though the respective
calculations are tedious). However, for equations of degree five or higher, there
are no formulas that express the solutions of such equations in terms of their
coefficients using only the four basic arithmetic operations and radicals (n-th
roots, for some integer n).
6 TPDB problem TRS/Secret 05 SRS/matchbox2.xml

560 F. Neurauter, H. Zankl, and A. Middeldorp

(B) Next we present an alternative and simpler approach for three-dimensional
matrices. To this end, let A be some arbitrary three-dimensional non-negative
real square matrix with entries a, b, . . . , i and characteristic polynomial χA(λ)

λ3−(a+e+i)λ2+(ei−fh+ai−cg+ae−bd)λ−(aei+bfg+cdh−ceg−bdi−afh)

which we abbreviate by λ3 + pλ2 + qλ + r. By the Perron-Frobenius theorem,
it suffices to constrain the real roots of χA(λ) to the closed interval [−1, 1].
To this end, we make use of the well-known fact that a cubic polynomial like
χA(λ) either has only one real root (and two complex conjugate roots) if its
discriminant D := p2q2 − 4q3 − 4p3r − 27r2 + 18pqr is negative or three (not
necessarily distinct) real roots if D � 0. Visualizing the geometric shape of
χA(λ), it is not hard to see that in the latter case all three roots are in [−1, 1]
if and only if χA(−1) � 0, χA(1) � 0 and χ′

A(λ) � 0 for all λ ∈ R with |λ| � 1
(here χ′

A denotes the first derivative of χA). Thus we conclude that the matrix
A has spectral radius at most one if and only if

(D < 0 ∧ χA(−1) � 0 ∧ χA(1) � 0)∨
(χA(−1) � 0 ∧ χA(1) � 0 ∧ χ′

A(λ) � 0 for all |λ| � 1)

These are polynomial constraints in the entries of A. In particular, the constraint
χ′

A(λ) = 3λ2 + 2pλ + q � 0 for all |λ| � 1 can be shown to be equivalent to

(p2 − 3q � 0) ∨ (−3 � p � 3 ∧ −(q + 3) � 2p � q + 3)

by means of the quadratic formula. Here the term p2 − 3q is essentially the
discriminant of χ′

A(λ); if it is negative, then χ′
A(λ) has no real root, such that

the constraint holds trivially, otherwise it has two real roots λ1 and λ2. In case
λ1 = λ2, the constraint also holds because then χ′

A(λ) = 3 · (λ − λ1)2. Finally,
if λ1 �= λ2, then both must necessarily lie in the closed interval [−1, 1] for the
constraint to hold, which is ensured by the second disjunct in the above formula.

(C) Last but not least, we present a generic method that works for matrices
with unknown entries of any dimension. To this end, let A be an n-dimensional
square matrix whose entries are supposed to be real numbers (not necessarily
non-negative). Its characteristic polynomial is a monic polynomial of degree
n, which can be written as χA(λ) = λn +

∑n−1
i=0 ciλ

i, where the coefficients ci,
0 � i � n−1, are polynomial expressions in the entries of A. Since all coefficients
are supposed to be real numbers, χA(λ) can always be factored as

χA(λ) = (λ− r)b ·
∏
j

(λ2 + pjλ + qj)mj (4)

where b = 0 if n is even, b = 1 otherwise, mj � 1 (mj ∈ N) is the multiplicity of
the quadratic factor λ2 + pjλ+ qj , and r, pj , qj ∈ R. Thus the absolute values of
all roots (real and complex ones) of χA(λ) are at most one if and only if |r| � 1
(in case b = 1) and the absolute values of the roots of all quadratic factors

Revisiting Matrix Interpretations for Polynomial Derivational Complexity 561

are at most one. So when does the latter condition hold for a given quadratic
factor λ2 + pjλ + qj? By the quadratic formula, we obtain the roots λ1,2 :=

− pj

2 ±
√

p2
j−4qj

2 . If the discriminant p2
j − 4qj is negative, both roots are complex,

i.e., λ1,2 := − pj

2 ± i

√
4qj−p2

j

2 and have absolute value |λ1| = |λ2| = √
qj . Hence,

we demand √qj � 1, or equivalently, qj � 1. In the other case, if p2
j − 4qj � 0,

both roots are real, and the constraints |λ1| � 1 and |λ2| � 1 simplify to

−2 � pj � 2 and − (qj + 1) � pj � qj + 1

As a consequence, the matrix A ∈ Rn×n with characteristic polynomial (4) has
spectral radius at most one if and only if b = 1 implies −1 � r � 1 and for all
quadratic factors λ2 + pjλ + qj in (4),

(p2
j−4qj < 0 ∧ qj � 1) ∨ (p2

j−4qj � 0 ∧ −2 � pj � 2 ∧ −(qj +1) � pj � qj +1)

Non-negative Integer Matrices. If all matrix entries are non-negative integers,
one can also apply a totally different approach. It is based on graph theory and
the following lemma, which is an immediate consequence of [11, Corollary 1].7

Lemma 12. Let A ∈ Nn×n. Then ρ(A) > 1 if and only if (Ak)i,i > 1 for some
k ∈ N and i ∈ {1, . . . , n}.

Viewing A ∈ Nn×n as the adjacency matrix of a directed weighted graph GA of
n vertices numbered from 1 to n, such that for every positive entry Ai,j there
is an edge from vertex i to vertex j of weight Ai,j , the condition (Ak)i,i > 1 for
some i ∈ {1, . . . , n} mentioned in the previous lemma holds if and only if

1. there is a cycle in GA containing at least one edge of weight w > 1, or
2. there are (at least) two different paths (cycles) from some vertex to itself.

This is due to the well-known fact that the entry (Ak)i,j equals the sum of the
weights of all distinct paths in GA of length k from vertex i to vertex j, where
the weight w of a path is the product of the weights of its edges (in particular,
w � 1). Hence, we have ρ(A) � 1 if and only if neither of the two conditions
holds. Since every cycle of GA is composed of simple cycles, that is, cycles with
no repeated vertices (aside from the necessary repetition of the start and end
vertex), we may restrict to simple cycles for both conditions.

Next we make two important observations. First, for A ∈ Nn×n, GA cannot
have a simple cycle containing an edge of weight greater than one if every ma-
trix in the set {A,A2, . . . , An} has diagonal entries less than or equal to one. Con-
cerning the second condition, let us assume that there are two different simple cy-
cles C1 and C2 of length l1 and l2, 1 � l1, l2 � n, from some vertex i to itself.
Considering all paths of length lcm(l1, l2), the least common multiple of l1 and
l2, we clearly have (Alcm(l1,l2))i,i > 1. In addition, we also have (Al1+l2)i,i > 1
because there are two different cycles, each of weight at least one, from vertex i
to itself of length l1 + l2, namely, the concatenation of C1 and C2 as well as the

7 The joint spectral radius of a singleton set {A} of matrices coincides with ρ(A).

562 F. Neurauter, H. Zankl, and A. Middeldorp

concatenation of C2 and C1. Hence, we can detect the existence of the cycles C1
andC2 by examining the diagonal entries of allmatrices in the set{A,A2, . . . , Am},
wherem := min(l1+l2, lcm(l1, l2)). More generally, we can detect any pair of cycles
satisfying condition 2 by examining the diagonal entries of the matrices in the set
{A,A2, . . . , Ap(n)}, where p(n) := max{min(l1 + l2, lcm(l1, l2)) | 1 � l1, l2 � n}.
The left part of the table below shows the values of p(n) for various values of n.

n 1 2 3 4 5 6
p(n) 1 2 5 7 9 11

n 1 2 3 4 5 6
q(n) 1 2 3 5 7 9

In particular, we observe that p(n) � n for n � 1, and we draw the following
conclusion. If every matrix in the set {A,A2, . . . , Ap(n)} has diagonal entries less
than or equal to one, then neither condition 1 nor condition 2 can hold, which
implies ρ(A) � 1. The converse is obvious.

Now let us apply this result to matrix interpretations. By definition, all ma-
trices of a matrix interpretation M must have a top-left entry of at least one.
Hence, this is also true for the maximum matrix A of M. In other words, in
GA, vertex 1 has a loop (of length one) to itself. This corresponds to a dimen-
sion reduction by one for precluding all instances of condition 2. More precisely,
we do not have to consider the cases l1 = n or l2 = n because then not only
C1 and C2 but also C1 (C2) and the loop of vertex 1 satisfy condition 2 (for
n > 1), and we can detect this by examining the diagonal entries of the matrix
An, which has to be considered anyway for precluding all instances of condi-
tion 1. Therefore, if A1,1 > 0, we have ρ(A) � 1 if and only if every matrix in
the set {A,A2, . . . , Aq(n)} has diagonal entries less than or equal to one, where
q(n) := max(n, p(n − 1)) for n > 1 and q(1) := 1. Some values for q(n) are
displayed in the right part of the above table.

6 Experimental Results

The criteria proposed in this paper have been implemented in the complexity tool
CaT [20] and the 1172 non-duplicating TRSs in TPDB 7.0.2 have been considered.
All tests have been performed on a server equipped with 64 GB of main memory
and eight dual-core AMD Opteron R© 885 processors running at a clock rate of
2.6 GHz with a time limit of 60 seconds per system.8

We searched for matrix interpretations of dimension d ∈ {1, . . . , 5} by encod-
ing the constraints as an SMT problem (quantifier-free non-linear arithmetic),
which is solved by bit-blasting. We used max(2, 6− d) (7 − d) bits to represent
coefficients (intermediate results). The numerators of rational numbers are rep-
resented with the bit-width mentioned above while all denominators are 2. CaT
found compatible matrix interpretations (not necessarily polynomially bounded)
for 287 TRSs, giving an upper bound on the number of systems our results can
apply to (if used stand-alone).

Table 1 indicates the number of systems where the labeled approach yields
polynomial upper bounds on the derivational complexity. The first row shows
8 For full details see http://cl-informatik.uibk.ac.at/software/cat/polymatrix.

http://cl-informatik.uibk.ac.at/software/cat/polymatrix

Revisiting Matrix Interpretations for Polynomial Derivational Complexity 563

Table 1. Polynomial bounds for 1172 systems

O(k) O(k2) O(k3) O(kn)
Theorem 3|9N |9R 46| 85| 88 158|184|185 177|202|196 203|205|199
A|B|C|Lemma 12 61|68| 80| 64 158|176|185|175 –|182|191|180 –|–|193|190
row 1|row 2|row 1+2 88| 80| 88 191|185|200 205|191|209 208|196|212
CaT(2009)|CaT(2010) 208|214 299|309 310|321 328|329

that the theorems proposed in this paper allow to infer tighter upper bounds
from triangular matrices than [13]; e.g., the number of linear (quadratic) upper
bounds increases by 84% (16%) if one compares Theorems 3 and 9N. The results
for (possibly) non-triangular matrix interpretations are reported in the second
row. The generic method based on factoring the characteristic polynomial (C)
is implemented by comparing the coefficients from the characteristic polynomial
with the coefficients of equation (4). Note that only this non-triangular approach
allows to add upper bounds on the multiplicity of eigenvalues to the matrix
encoding, which explains the high score for linear bounds. Since encoding A
(B) is becoming harder for larger dimensions, we implemented it for dimensions
one and two (and three) only (explaining the – in the table). Row three relates
the approaches based on triangular and non-triangular matrices. Here row 1
corresponds to the accumulated power of Theorems 3 and 9 and row 2 to A, B, C,
and Lemma 12, respectively. The impact of the methods proposed in this paper
when integrated into the 2009 competition version of CaT is shown in row four.
CaT was the strongest (derivational) complexity prover in 2008, 2009, and 2010.
Since most parts of this paper aim at tightening bounds, it is not surprising that
the total number of polynomial bounds did not increase significantly.

7 Conclusion, Related and Future Work

We have presented a characterization of matrix interpretations that induce poly-
nomial upper bounds on the derivational complexity of compatible TRSs. Con-
trary to previous approaches, our method applies to matrix interpretations over
N and R alike and does not restrict the shape of the matrices. At the core of our
method is the analysis of the growth of finite products of matrices. In particular,
we estimate the growth of a product of the form M1 ·M2 · . . . ·Mk by the growth
of a (suitably chosen) matrix Ak, which is determined by its spectral radius. For
future work, the investigation of joint spectral radius theory [11] looks promising
since the joint spectral radius is a measure of the maximal growth of products
of matrices taken from a set and has been the subject of intense research.

Concerning related work, very recently (and independently) Waldmann [19]
provides a characterization of polynomially bounded matrix interpretations over
N, which extends triangular matrix interpretations. In [19] matrices are viewed as
weighted (word) automata and the derivational complexity of TRSs is bounded
by the growth of the weight function computed by such automata. We believe
that the method is at least as powerful as our approach for matrix interpretations
over N. In contrast to our approach, it can handle the TRS in [19, Example 7.5],

564 F. Neurauter, H. Zankl, and A. Middeldorp

probably because it is not based on the maximum matrix. In practice, the method
based on automata is much harder to implement (cf. [19, Section 8]). Unlike our
approach, it only applies to matrix interpretations over N; the extension to R
(Q) raises non-trivial issues (cf. [19, Section 10]).

References

1. Alarcón, B., Lucas, S., Navarro-Marset, R.: Proving termination with matrix in-
terpretations over the reals. In: WST 2009, pp. 12–15 (2009)

2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

3. Charalambides, C.A.: Enumerative Combinatorics. Chapman & Hall/CRC, Boca
Raton (2002)

4. Chuan-Chong, C., Khee-Meng, K.: Principles and Techniques in Combinatorics.
World Scientific Publishing Company, Singapore (1992)

5. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. JAR 40(2–3), 195–220 (2008)

6. Gebhardt, A., Hofbauer, D., Waldmann, J.: Matrix evolutions. In: WST 2007, pp.
4–8 (2007)

7. Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata that certify
termination of left-linear term rewriting systems. I&C 205(4), 512–534 (2007)

8. Hofbauer, D.: Termination proofs by context-dependent interpretations. In: Middel-
dorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 108–121. Springer, Heidelberg (2001)

9. Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations
(preliminary version). In: Dershowitz, N. (ed.) RTA 1989. LNCS, vol. 355, pp.
167–177. Springer, Heidelberg (1989)

10. Hofbauer, D., Waldmann, J.: Termination of string rewriting with matrix interpre-
tations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 328–342. Springer,
Heidelberg (2006)

11. Jungers, R.M., Protasov, V., Blondel, V.D.: Efficient algorithms for deciding the
type of growth of products of integer matrices. LAA 428(10), 2296–2311 (2008)

12. Koprowski, A., Waldmann, J.: Arctic termination ... below zero. In: Voronkov, A.
(ed.) RTA 2008. LNCS, vol. 5117, pp. 202–216. Springer, Heidelberg (2008)

13. Moser, G., Schnabl, A., Waldmann, J.: Complexity analysis of term rewriting based
on matrix and context dependent interpretations. In: FSTTCS 2008. LIPIcs, vol. 2,
pp. 304–315 (2008)

14. Neurauter, F., Middeldorp, A.: Polynomial interpretations over the reals do not
subsume polynomial interpretations over the integers. In: RTA 2010. LIPIcs, vol. 6,
pp. 243–258 (2010)

15. Rose,H.E.:LinearAlgebra:APureMathematicalApproach.Birkhäuser,Basel (2002)
16. Serre, D.: Matrices: Theory and Applications. Springer, Heidelberg (2002)
17. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-

ence, vol. 55. Cambridge University Press, Cambridge (2003)
18. Termination problem data base, version 7.0.2. (2010),

http://termcomp.uibk.ac.at/status/downloads/tpdb-7.0.2.tar.gz
19. Waldmann, J.: Polynomially bounded matrix interpretations. In: RTA 2010.

LIPIcs, vol. 6, pp. 357–372 (2010)
20. Zankl, H., Korp, M.: Modular complexity analysis via relative complexity. In: RTA

2010. LIPIcs, vol. 6, pp. 385–400 (2010)
21. Zankl, H., Middeldorp, A.: Satisfiability of non-linear (ir)rational arithmetic. In:

LPAR-16. LNCS, vol. 6355. Springer, Heidelberg (to appear, 2010)

http://termcomp.uibk.ac.at/status/downloads/tpdb-7.0.2.tar.gz

An Isabelle-Like Procedural Mode for HOL
Light

Petros Papapanagiotou and Jacques Fleuriot

University of Edinburgh
School of Informatics

Informatics Forum, 10 Crichton Street
Edinburgh EH8 9AB, UK

P.Papapanagiotou@sms.ed.ac.uk, jdf@inf.ed.ac.uk

Abstract. HOL Light is a modern theorem proving system charac-
terised by its powerful, low level interface that allows for flexibility and
programmability. However, considerable effort is required to become ac-
customed to the system and to reach a point where one can comfortably
achieve simple natural deduction proofs. Isabelle is another powerful and
widely used theorem prover that provides useful features for natural de-
duction proofs, including its meta-logic and its four main natural de-
duction tactics. In this paper we describe our efforts to emulate some of
these features of Isabelle in HOL Light. One of our aims is to decrease
the learning curve of HOL Light and make it more accessible and usable
by a range of users, while preserving its programmability.

1 Introduction

In recent years, research in automated reasoning has resulted in powerful theorem
proving systems (proof assistants), which are capable of proving a huge variety
of theorems in any formally specified subset of higher-order logic, either auto-
matically or interactively. A lot of automated tactics have been implemented,
for instance based on decision procedures [1] and model elimination [2]. Most
importantly, many of these systems are implemented in such a way so as to en-
sure the soundness and correctness of the formalization, for example by using
the LCF approach [3] and allowing only conservative extensions of theories.

Proof assistants are generally characterised by a steep learning curve: they
require from a few weeks to several months for the average beginner to become
accustomed to their functionality and comfortable enough to use them effectively.
Although they are generally complicated systems, the difficulty of usage varies
from system to system. HOL Light, the proof assistant at the focus of this
paper, is a powerful system that allows interaction at a low level, resulting in
much flexibility and programmability. As a low-level theorem proving system,
HOL Light is often considered to be more difficult to harness than many other
proof assistants. Isabelle, for its part, is another powerful and widely used proof
assistant, which, although still complicated, is considered a more user-friendly
system. This is attributed to its small set of basic tactics as well as its powerful
automated tools.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 565–580, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

566 P. Papapanagiotou and J. Fleuriot

In this work, by taking advantage of the flexible and highly programmable
environment of HOL Light, we emulate the basic Isabelle tactics in an effort
to create a more user-friendly interface for natural deduction [4] proofs in HOL
Light. Natural deduction is a proof calculus that relies mainly on the use of
introduction and elimination inference rules for forward and backward reasoning
respectively. For instance, in Figure 1 we show two simple natural deduction
proof trees of the following two statements:

nd lemma : (P → Q ∧R) −→ ((P → Q) ∧ (P → R))

and
nd lemma2 : (∀x. (P x→ Q x)) → ¬(∃x. P x ∧ ¬Q x)

In this figure, each step of the proofs is annotated with the corresponding natural
deduction rule being used. The annotation consists of the symbol of the logical
connective corresponding to the rule and an i for introduction rules or an e for
elimination rules. Rules that produce new assumptions are also tagged with a
unique number, eg. → i3. The new assumptions are then surrounded by square
brackets [] and tagged with the same number so as to be easily associated with
the rule that produced them.

[P → Q ∧ R]1 [P]3
Q ∧ R

→ e

Q
∧e

P → Q
→ i3

[P → Q ∧ R]1 [P]4
Q ∧ R

→ e

R
∧e

P → R
→ i4

(P → Q) ∧ (P → R)
∧i

(P → Q ∧ R) → ((P → Q) ∧ (P → R))
→ i1

[∃x. P x ∧ ¬Q x]2

[∀x. (P x → Q x)]1
P a → Q a

∀e
[P a ∧ ¬Q a]3

P a
∧e

Q a
→ e

[P a ∧ ¬Q a]3
¬Q a

∧e

⊥
¬e

⊥ ∃e3

¬(∃x. P x ∧ ¬Q x)
¬i2

(∀x. (P x → Q x)) → ¬(∃x. P x ∧ ¬Q x)
→ i1

Fig. 1. Two examples of simple natural deduction proof trees

In this paper, while avoiding to delve too deeply into the implementation
details, we give an idea of the functionality of our tactics and how these allow
natural deduction style proofs in HOL Light. In Section 2, we describe HOL Light
in more detail and explain the tradeoff between flexibility and user-friendliness
and why the system has a steeper learning curve compared to other theorem
proving systems. In Section 3, we decribe Isabelle and its procedural proof style
and demonstrate why it is considered relatively user-friendly. We analyse our

An Isabelle-Like Procedural Mode for HOL Light 567

efforts towards emulating some of the features that result from Isabelle’s meta-
logic and its basic rule tactics in Section 4, whereas in Section 5, we discuss the
limitations of our implementation as well as our plans for further development.

2 HOL Light

HOL Light [5] is a member of the HOL family of theorem provers. It was initially
built as an attempt to overcome certain disadvantages of its predecessors. The
system, written in OCaml, is lightweight and flexible and allows for interaction
at multiple levels. We describe a few of its more salient features next.

2.1 Overview

The system has equality as the only primitive concept and a few primitive in-
ference rules. These form the basis for other, more complex, inference rules for
forward reasoning and for tactics for backwards reasoning. Built on top of these,
HOL Light has its own automated methods for proofs such as the model elimi-
nation procedure MESON [6]. Additionally, it has an array of conversion meth-
ods that allow for efficient and fine-grained manipulation (such as rewriting or
numerical reduction) of formulas. Theories ranging from Peano arithmetic to
multivariable real analysis have already been formalised and are available for
use within the system.

Implementation-wise, HOL Light is based on the LCF approach, which guar-
antees that any proved theorem is a logical consequence of the primitive axioms
[3]. In practice, this is achieved using the OCaml type “thm” whose instances are
theorems that are only derivable through the use of inference rules. The logical
consequence symbol “�” is only used in such HOL Light thms. So, for instance,
x = y � y = x is an example of a HOL Light theorem. The LCF approach,
combined with the close interaction between the logic level and OCaml, allow
for a smooth implementation and integration of techniques and tools that can
seamlessly interact with the internals and methods of HOL Light. For example,
it is possible to create arbitrarily complex tactics for manipulating the goal state
of a proof, as long as the validity of the result can be verified using either the
available or custom, derived inference rules.

In a nutshell, HOL Light is a flexible, highly programmable system that of-
fers capabilities for fine, low-level control of both automated and interactive
proofs. As mentioned by Harrison, it was designed to be “the Linux of Theorem
Provers”1. As one might expect, though, there is a tradeoff between this flexi-
bility and the complexity and user-friendliness of the system. This is discussed
in the next section.

2.2 Proof Construction in HOL Light

In HOL Light, interactive proofs are constructed following a procedural proof
style. The conjecture, given as a HOL Light term, may be set as a goal using the
1 http://www.math.kobe-u.ac.jp/icms2006/icms2006-video/video/v103.html

http://www.math.kobe-u.ac.jp/icms2006/icms2006-video/video/v103.html

568 P. Papapanagiotou and J. Fleuriot

command “g”. Other commands known as tactics are used to refine it. A tactic
can be applied using the “e” command (see Figure 4) and can either eliminate
the goal by producing its proof or result in any number of new subgoals. It is
worth noting that most tactics in HOL Light aim to affect only the conclusion
of the goal with limited interaction with the assumptions. If an assumption is
required in more complicated proof steps, it is usually undischarged, moving it
to the conclusion (ie. it becomes an antecedent to the current conclusion), and
manipulated there. The proof is complete when all subgoals have been proven.
The command top thm can then be used to return the proven theorem as an
instance of the thm type.

Packaging the proofs. A complete proof in HOL Light is most commonly
packaged within a prove statement (see Figure 2). All the tactics that prove the
goal are thus packaged into a single composite tactic using the various available
tacticals, with THEN and THENL being the most commonly used ones (the lat-
ter being used for the application of different tactics to different subgoals). All
the currently available theories in HOL Light contain theorems packaged in such
prove statements. Although HOL Light offers this as a concise and programmat-
ically efficient way to package the finished proofs, it limits the readability and
replayability of the proofs drastically. Especially when a goal is split into multi-
ple subgoals, it becomes difficult for the user to follow the proof during replay
and to have a clear image of the sequence of steps and the effects of each step.

Variety of tactics and tacticals. Further difficulties in the user interaction
with HOL Light are due to its large variety of tactics. Available tactics range
from simple applications of natural deduction rules to complex ones with multiple
arguments. Moreover, each natural deduction rule is represented by a different
tactic which results in a very large number of commands even for simple proofs.
This can be constrasted to Isabelle, where only four natural deduction tactics
are needed for natural deduction proofs (see Section 3). Examples of HOL Light
tactics and their complexity are discussed in Section 4.1.

The situation is worsened for the novice user by the existence of complex
theorem tactics. For example, CONJUNCTS THEN must be given another tactic
as an argument that will then be applied to each of the conjuncts in an exist-
ing assumption (see Figure 2). There are multiple types of tactics and tacticals,
involving terms, theorems, lists of theorems or other tactics as arguments. Al-
though this variety of commands provides a flexible environment for the expert
user and system developer, it requires considerable effort on behalf of the novice
user to become acquainted with their usage and generally adjust to HOL Light’s
particular style of procedural proofs.

Examples. In Figure 1, the natural deduction proof trees of the two examples
nd lemma and nd lemma2 (as introduced in Section 1) are shown. The corre-
sponding proofs in HOL Light (without making use of the available automated
tactics such as TAUT) are shown in Figure 2. The proofs divert considerably
from the original natural deduction trees, since not all natural deduction infer-
ence rules are directly available as HOL Light tactics. We analyse these examples
further in Section 4.1.

An Isabelle-Like Procedural Mode for HOL Light 569

let nd lemma = prove (‘(P ==> (Q ∧ R)) ==> ((P==>Q) ∧ (P==>R))‘,
DISCH TAC THEN CONJ TAC
THEN DISCH TAC THEN UNDISCH TAC ‘P ==> Q ∧ R‘
THEN ANTS TAC THENL
[FIRST ASSUM ACCEPT TAC ; DISCH THEN (ACCEPT TAC o CONJUNCT1);
FIRST ASSUM ACCEPT TAC ; DISCH THEN (ACCEPT TAC o CONJUNCT2)]);;

let nd lemma2 = prove (‘(!x. P x ==> Q x) ==> ∼ (?x. P x ∧ ∼ Q x)‘,
DISCH TAC THEN DISCH THEN (CHOOSE THEN ASSUME TAC) THEN
FIRST X ASSUM (CONJUNCTS THEN ASSUME TAC) THEN
FIRST X ASSUM (ANTE RES THEN MP TAC) THEN
FIRST ASSUM (ACCEPT TAC o NOT ELIM));;

Fig. 2. Two examples of simple proofs in HOL Light. Note that ∼ denotes negation
(¬), ! denotes universal quantification (∀), and ? denotes existential quantification (∃).

As a final remark here, we note that there is a desire on the part of Harrison
to make HOL Light more user-friendly. This is expressed within his “future
wishes” list [7] and our current effort can be viewed as a step in that direction.
In particular, one of our immediate audience will be experienced Isabelle users,
although more generally, through the new small suite of tactics, we hope to cut
down on the time required for anyone to become familiar with the system.

3 Isabelle

Isabelle [8] is a well known and widely used Higher Order Logic theorem prover
written in Standard ML. We give a brief overview of some of its main features
in the next few Sections.

3.1 Overview

Isabelle is by nature an interactive theorem prover, but also includes a number
of automated tactics and decision procedures such as its simplifier and its auto
and blast [9] methods. Overall, it is generally viewed as a sound system, widely
accepted by the theorem proving community. The system provides a formal,
convenient meta-logic [8] for the formalisation of theorems and inference rules
in particular logics such as higher-order logic (HOL) and ZF set theory. In this
work, we are concerned with the higher-order logic version of the system known
as Isabelle/HOL. Of particular interest, are the uses of metavariables, meta-level
implication and meta-level quantification. We give a brief, relatively informal
overview of some of these features next:

– At the user level, metavariables (or schematic variables, are usually distin-
guished from other free variables by a preceding “?”. Their characteristic is
that they can be instantiated to any other term during a proof. Thus the
reflexive property of equality is formalised as the theorem ?a =?a which
allows the metavariable ?a to be arbitrarily instantiated.

– Meta-level implication is used to represent logical consequence from a list
of assumptions to a conclusion. In Isabelle/HOL, this is distinguished from

570 P. Papapanagiotou and J. Fleuriot

normal implication through the use of a double arrow (=⇒) instead of the
single arrow (−→) of normal logical implication. For example, p =⇒ q can
be interpreted as “assuming p we can prove q” while [[p; q]] =⇒ r (which
stands for p =⇒ (q =⇒ r)) means that “having p and q as assumptions we
can prove r”.

– Meta-level quantification involves the use of “
∧

-bound” variables [10]. The
“
∧

” symbol denotes a meta-level universal quantifier which bounds a vari-
able to a particular subgoal. This is particularly useful in the formalisation
of the universal introduction rule. We describe its use further in Section 5.

3.2 Isabelle’s Procedural Proof Style

Natural Deduction plays a central role in Isabelle’s procedural proofs, whereby
inference rules can be broadly distinguished into three categories: introduction,
elimination, and destruction rules. This categorization resembles the normal
distinction between introdution and elimination rules in natural deduction, with
the main difference being in the further distinction of elimination rules into
Isabelle-style elimination (a notion slightly different from the one in natural
deduction) and destruction rules. Each rule is described with the help of the
meta-logic and follows the following general form:

[[P1; P2; ... Pn]] =⇒ Q

Each premise Pi can consist of a meta-level implication as in the example of the
Isabelle disjunction elimination rule:

disjE : [[?P∨?Q; ?P =⇒?R; ?Q =⇒?R]] =⇒?R

Normal object-level implication can also be represented, as in the example of
the implication introduction rule:

impI : [[?P =⇒?Q]] =⇒?P −→?Q

Paying attention to the distinction between meta-level and object-level implica-
tion, this rule can be interpreted in a forward direction as “if given ?P we can
prove ?Q then we can deduce that ?P implies ?Q” or in a backward direction
as “in order to prove that ?P implies ?Q, we have to prove Q with P as an as-
sumption”. These rules are better described using natural deduction proof trees
as shown in Figure 3 [10].

The four tactics. Basic rule application occurs through one of four tactics (or
methods): rule, erule, drule and frule. We briefly describe the application of each
of the four tactics with any given rule [[P1; P2; ... Pn]] =⇒ Q:

– The rule tactic unifies Q with the current subgoal. Each Pi is then instanti-
ated and added as a new subgoal for a total of n new subgoals. Note that each
Pi may consist of meta-level implication so that the new subgoal may have
its own assumptions added to the assumptions of the current subgoal. The
rule tactic is appropriate for backward reasoning using introduction rules.

An Isabelle-Like Procedural Mode for HOL Light 571

[[?P∨?Q; ?P =⇒?R; ?Q =⇒?R]] =⇒?R [[?P =⇒?Q]] =⇒?P −→?Q [[?P ; ?Q]] =⇒?P∧?Q

?P∨?Q

?P....
?R

?Q....
?R

?R
disjE

?P....
?Q

?P −→?Q
impI

?P ?Q

?P∧?Q
conjI

Fig. 3. Isabelle’s disjE, impI and conjI rules

– The erule tactic behaves similarly to rule but also unifies P1 (major premise)
with one of the assumptions in the current subgoal. The matching assump-
tion is deleted (eliminated) from the current subgoal and n−1 new subgoals
are introduced. The erule tactic is appropriate for elimination rules. In the
example of disjE, the erule tactic would eliminate an assumption matching
?P∨?Q and produce two new subgoals ?P =⇒?R and ?Q =⇒?R instantiated
appropriately.

– The drule tactic is appropriate for forward reasoning with destruction rules.
It unifies the major premise P1 with one of the assumptions of the current
subgoal which is then deleted (destroyed) and n− 1 new subgoals are intro-
duced. The current subgoal with Q added as an assumption forms the nth
subgoal.

– The frule tactic is identical to the drule tactic, but does not delete the match-
ing assumption, allowing for it to be reused in the proof if need be.

Extensions of the four tactics. It is often the case that there are several
possible matches when one of the four tactics is applied. For example, drule may
be able to match the major premise of an inference rule with more than one
assumptions. If we consider [[a ∧ b; c ∧ d]] =⇒ d as our current goal, and the
conjunction elimination rule conjunct2 : [[?P∧?Q]] =⇒?Q, the major premise
?P∧?Q can be unified with both a∧ b and c∧d. However, in this particular case
we would rather match it to c ∧ d so that we can obtain d. Isabelle will only
try to unify the first matching assumption, so we have to guide it into matching
c ∧ d. This can be accomplished using a variant of drule called drule tac. This
tactic allows us to provide a partial instantiation for the metavariables of the
inference rule. In our example, instead of using apply (drule conjunct2) we would
use apply (drule tac P=c in conjunct2). This would instantiate ?P to c therefore
forcing the major premise to match the desired c∧ d. There are “ tac” extended
tactics for all four methods described above. We note also that Isabelle provides
alternative ways of instantiating variables in rules to be applied but these will
not be covered here.

More tactics. There are several other tactics available in Isabelle, such as sub-
goal tac that introduces a new subgoal, case tac that uses a case split over a
variable and cut tac that introduces a new assumption. Moreover, the simplifi-
cation tactic simp is often used for rewriting both the goal and the assumptions.
Finally, as mentioned before, there is a variety of automated tactics that simplify
or try to prove the goal such as clarify, auto, blast etc.

572 P. Papapanagiotou and J. Fleuriot

Examples. Following our examples from Section 1, the natural deduction proofs
of nd lemma and nd lemma2 (as defined in Section 1) in Isabelle are shown on
the left in Figure 4. Compared to the HOL Light proofs from Figure 2, these
proofs are more readable and much closer to the natural deduction proof trees as
shown in Figure 1. There is a clear sequence of steps and the proof can be easily
replayed so as to monitor the effect of every rule application. The breaking up
of the subgoals is still unclear, but every rule is only applied to one subgoal at
a time so that a relatively easy to follow proof replay is possible.

lemma nd lemma:
“(P −→ Q ∧ R) −→ ((P −→ Q) ∧ (P −→ R))”
apply (rule impI)
apply (erule conjE)
apply (rule impI)
apply (rule conjI)
apply (drule mp)
apply assumption
apply assumption
apply (drule tac Q=R in mp)
apply assumption
apply assumption
done

g ‘(P==>(Q ∧ R))==>((P==>Q) ∧ (P==>R))‘;;
e (rule impI);;
e (erule conjE);;
e (rule impI);;
e (rule conjI);;
e (drule mp);;
e assumption;;
e assumption;;
e (drule tac [‘Q‘,‘R‘] mp);;
e assumption;;
e assumption;;
let nd lemma = top thm();;

lemma nd lemma2:
“(∀x. (P x −→ Q x)) −→ ¬(∃x. P x ∧ ¬Q x)”
apply (rule impI)
apply (rule notI)
apply (erule exE)
apply (erule conjE)
apply (erule notE)
apply (erule allE)
apply (drule mp)
apply assumption
apply assumption
done

g ‘(!x:A. P x ==> Q x) ==> ∼(?x. P x ∧ ∼Q x)‘;;
e (rule impI);;
e (rule notI);;
e (exE ‘a:A‘);;
e (erule conjE);;
e (erule notE);;
e (erule allE);;
e (drule mp);;
e (meta assumption [‘(a’:A)‘]);;
e (meta assumption [‘(a’:A)‘]);;
let nd lemma2 = top thm();;

Fig. 4. Two examples of simple natural deduction proofs in Isabelle (left) and in HOL
Light using the Isabelle-like tactics (right)

Overall, Isabelle’s interface at the user level is relatively simple, with a small
set of commands that can make use of any proven theorem. There is still a
learning curve until the user can be comfortable with the syntax and with using
the available tactics, but having only four major tactics for natural deduction
proofs makes for a more user-friendly environment, especially for a beginner,
compared to the plethora of available tactics in HOL Light.

4 “Isabelle Light”

Our efforts have been towards emulating some of the main aspects of Isabelle’s
procedural proof style within HOL Light. The powerful, low-level, programmable
environment of HOL Light allows for a transparent emulation where Isabelle-like
tactics are integrated in the system as normal HOL Light tactics. We describe
the results and the most challenging parts of our implementation next.

An Isabelle-Like Procedural Mode for HOL Light 573

4.1 Overview

A list of Isabelle tactics and their implemented counterparts in HOL Light is
shown in Figure 5. Our implementation includes the emulation of the four Is-
abelle style natural deduction tactics and their extensions. These tactics can be
used with most of the natural deduction inference rules. The two Isabelle natural
deduction rules exE (∃e) and allI (∀i) are the only rules that are being treated
differently due to the limitations of our system (see Section 5).

Isabelle syntax ‘Isabelle Light’
rule th rule th
rule tac p=a, q=b in th rule tac [(‘p‘,‘a‘);(‘q‘,‘b‘)] th
erule exE exE ‘x:A‘
rule allI allI
case tac “tm” case tac ‘tm‘
subgoal tac “tm” subgoal tac ‘tm‘
simp simp[]
simp add: th1 th2 simp[th1;th2]
assumption assumption
assumption meta assumption [‘p:A‘;‘q:B‘]

Fig. 5. Isabelle tactics and their HOL Light counterparts

Examples. The ‘Isabelle Light’ proofs of nd lemma and nd lemma2 (see Sec-
tion 1) are shown in Figure 4. In contrast to the original HOL Light proofs,
shown in Figure 2, they are noticeably similar to the corresponding Isabelle
proofs. In the former, there is no clear sequence of natural deduction steps and
an attempt to replay the proof step by step may prove non-trivial. For example,
the DISCH THEN (ACCEPT TAC o CONJUNCT1) statement in the first proof
combines the application of three natural deduction proof steps, namely implica-
tion introduction (DISCH THEN), conjunction elimination (CONJUNCT1), and
assumption matching (ACCEPT TAC), in a single step2. In the new proof, these
three steps are distinct and thus easier to follow and replay.

Moreover, in the original HOL Light proofs we note the use of UNDISCH TAC
to undischarge an assumption, move it to the conclusion of the goal and use it
there. This is a purely HOL Light specific step that is unrelated to the natural
deduction proof and which our new mechanism makes redundant.

These examples also demonstrate how there is a different tactic in HOL Light
for each natural deduction inference rule. For example, the application of the im-
plication introduction rule (impI in Isabelle) requires the use of the DISCH TAC
tactic (or its more complicated variant, DISCH THEN). Furthermore, conjunc-
tion elimination is achieved through the use of the CONJUNCTS THEN theorem
tactic in combination with another theorem tactic (eg. ASSUME TAC). This in-
creases the complexity of the system in terms of both learning and remembering
the usage of each tactic. The usage of each logical rule can only be seen through

2 Note that the o operator corresponds to functional composition.

574 P. Papapanagiotou and J. Fleuriot

the effects of the respective tactic on the goal, whereas representing the rules as
theorems, as in Isabelle, provides better inspectability.

In comparison, the Isabelle-style proofs in Figure 4 are simpler to understand,
given that only one of the four natural deduction tactics combined with an
inference rule is used in each step. Additionally, the names of the inference rules
being used relate to the original natural deduction inference rules better, making
them easier to remember. We have therefore drawn from the advantages of the
Isabelle proof style, including better readability, replayability and similarity to
the actual natural deduction proof (see Figure 1).

Beyond natural deduction. Although natural deduction is the main focus
here, our implemented tactics go beyond that. In particular, we have provided the
counterparts of the subgoal tac and case tac Isabelle tactics and have attempted
to reconstruct a version of Isabelle’s simp tactic. As we discussed in Section 2.2,
assumptions in HOL Light are rarely manipulated beyond a few simple inference
steps. As a result, even though HOL Light includes its own powerful rewriting
tactic, it is designed to leave the assumptions unaffected. Our implemented simp
tactic follows the behaviour of Isabelle’s simp tactic which enables rewriting
of the assumptions prior to rewritting the conclusion of the goal. Moreover,
we provide a meson shortcut for HOL Light’s model elimination based tactic
ASM MESON TAC[], which allows the automated proof of many theorems that
can also be proven by Isabelle’s tableau-tactic blast.

Compatibility. It is worth noting that our Isabelle-like tactics are implemented
transparently, at the same level as the original HOL Light tactics. Effectively,
this provides the user with an enhanced user interface where either HOL Light or
Isabelle Light tactics or even their combinations (eg. through THEN or THENL)
can be used in the same proof. Therefore, a user already familiar with HOL
Light needs not convert to a new user interface, but simply become accustomed
to the new tactics should they wish to use them.

In Figure 6, we include a slightly more complicated proof of a theorem about
multiplicative functions included in the HOL Light distribution. An alternative
proof using our implemented Isabelle-like tactics is also given. In the original
proof there is a variety of tactics being used, such as the ones described for
the other two examples, but also more obscure ones such as the STRIP TAC.
The use of MP TAC to add assumptions as antecedents to the conclusion of the
goal is also evident. Moreover, one may notice the necessity of using a lambda
abstraction to properly manipulate an antecedent. In contrast, the Isabelle-like
proof only uses a limited set of tactics and natural deduction rules. Assumptions
are manipulated transparently as part of tactic applications, without any need
for explicit intermediate commands. We also demonstrate the smooth interaction
of our implemented tactics with the HOL Light tacticals such as THEN and
REPEAT. Finally, our tactics render the use of both the lambda abstraction and
the intermediate lemma MONO FORALL unnecessary.

In the remaining few sections, we proceed to describe some of the design and
implementation details underlying the current work.

An Isabelle-Like Procedural Mode for HOL Light 575

let MULTIPLICATIVE IGNOREZERO =
prove (‘!f g. (!n. ∼(n = 0) ==> g(n) = f(n)) ∧ multiplicative f ==> multiplicative g‘,
REPEAT GEN TAC THEN SIMP TAC[MULTIPLICATIVE; ARITH EQ] THEN
REPEAT(DISCH THEN(CONJUNCTS THEN2 ASSUME TAC MP TAC)) THEN
REPEAT(MATCH MP TAC MONO FORALL THEN GEN TAC) THEN
DISCH THEN(fun th -> STRIP TAC THEN MP TAC th) THEN
ASM REWRITE TAC[] THEN ASM MESON TAC[MULT EQ 0]);;

g ‘!f g. (!n. ∼(n = 0) ==> g(n) = f(n)) ∧ multiplicative f ==> multiplicative g‘;;
e (REPEAT allI);;
e (simp[MULTIPLICATIVE; ARITH EQ]);;
e (rule impI);;
e (REPEAT(erule conjE));;
e (REPEAT allI);;
e (rule impI);;
e (REPEAT(erule conjE));;
e (erule tac [‘a‘,‘m‘] allE);;
e (erule tac [‘a‘,‘n‘] allE);;
e (REPEAT(drule mp));;
e (REPEAT(rule conjI) THEN assumption);;
e (meson[MULT EQ 0]);;
let MULTIPLICATIVE IGNOREZERO = top thm();;

Fig. 6. A more complicated example of a proof as originally found in HOL Light (within
“Examples/multiplicative.ml”) and using the new Isabelle-like tactics

4.2 The Meta-level

The primary challenge of our work was to emulate features that are provided
by Isabelle’s meta-logic within HOL Light. HOL Light does not use a meta-
logic as part of the formalisation of the goals and theorems, but it relies on
the OCaml toplevel. A goal is described as an OCaml pair of a list of labelled
theorems (assumptions) and a term (conclusion). There is, notably, no meta-level
implication available as part of the logic. Each of the available tactics in HOL
Light refines the first goal in the current goalstate and returns a new goalstate
that may include any number of subgoals.

Meta-theorems. In order to emulate the Isabelle behaviour, a user should
expect to be able to use any HOL Light theorem as an inference rule with
the new tactics. We, therefore, have a need for both describing and proving
Isabelle-like natural deduction inference rules as HOL Light theorems. In order
to achieve this, we emulate ‘meta-level’ implication at the syntactic level. We
define a meta-level implication symbol ===> (as opposed to the shorter ==>
of normal HOL Light implication) which, in effect, is just syntactic sugar for the
normal HOL Light implication. However, it captures the idea of derivation as an
inference rule, thereby allowing the user to distinguish the assumptions from the
conclusion of the rule and to read it in a similar way to that described in Section
3.2 for the Isabelle rules. We call HOL Light theorems that include this meta-
level implication meta-theorems. Using this syntax for meta-level implication we
can describe all natural deduction inference rules as meta-theorems, except from
those involving meta-level quantification (see Section 5).

In order to obtain and prove such meta-theorems, we implemented a mecha-
nism to introduce conjectures as new goals involving our meta-level implication.
We also introduced an MTAUT tactic that uses HOL Light’s TAUT tautology

576 P. Papapanagiotou and J. Fleuriot

prover to prove trivial propositional meta-theorems. Given the above, and fol-
lowing the example from Section 3.2, Isabelle’s disjE rule is initially derived in
our system as a HOL Light meta-theorem as follows:

let disjE = MTAUT ‘P ∨ Q===>(P===>R)===>(Q===>R)===>R‘;;

Meta-rules. It is worth noting at this point that, even though meta-theorems
are straightforward to specify and use at the user-level, a more flexible and thus
complicated specification of the corresponding inference rules is required at the
implementation level. We call such specifications meta-rules. These have a par-
ticular structure, which facilitates the implementation of the natural deduction
tactics (see Section 4.3). We will not cover the implementation of this specifica-
tion in detail in this paper, but we provide the internal representations of our
Isabelle-like disjE and conjI as examples in Figure 7. As shown in this figure,
meta-rules are implemented using an OCaml triplet that includes the following
elements:

1. The conclusion of the rule as a HOL Light term.
2. The list of the meta-assumptions of the rule. Each of these meta-assumptions

is represented using a pair that matches the HOL Light subgoal type and
consists of a list of labelled (in this case not explicitly but merely with an
empty string) theorems/assumptions and a conclusion.

3. A HOL Light theorem (thm) that can be used for the justification of the rule.
We provide a few more details on the justification theorem in the following
section.

The relatively complicated syntax of meta-rules makes them hard to use at the
user level. For that reason, we provide an automated method which seemlessly
converts HOL Light meta-theorems to the underlying meta-rules, thereby allow-
ing users to apply the tactics directly on the more user-friendly meta-theorems.
Thus, the novice user, for instance, never needs to be aware or use the meta-rules.

4.3 Implementing the Isabelle-Like Tactics

Having established a sufficient emulation for meta-theorems, the implementa-
tion of the tactics corresponding to Isabelle’s rule methods was then relatively
straightforward. HOL Light provides tools for term to term and term to theorem
matching as well as instantiation tools. Moreover, it is flexible enough to allow
arbitrarily complex tactics as long as their effects on the current goal can be
justified using the available HOL Light inference rules.

Justification of the four tactics. Formally justifying the behaviour of the
four natural deduction tactics is an important step for compliance with the LCF
approach followed by HOL Light. As explained in Section 2.2, the application
of a tactic to a goal in HOL Light may result in any number of new subgoals.
If the proof is completed successfully, this means that each of the newly created
subgoals was eventually proven, with their proofs resulting in a HOL Light the-
orem (thm). Each tactic must, therefore, provide a justification which allows the
proof of the initial goal from the proven subgoals.

An Isabelle-Like Procedural Mode for HOL Light 577

(‘r‘, Conclusion
[

([], ‘p ∨ q‘);
⎫⎬⎭Meta-assumptions([(””, ‘p � p‘)], ‘r‘);

([(””, ‘q � q‘)], ‘r‘)
],
‘p ∨ q, p ==> r, q ==> r � r‘ Justification theorem

)

(‘p ∧ q‘, Conclusion
[

([], ‘p‘);
}

Meta-assumptions
([], ‘q‘);

],
‘p, q � p ∧ q‘ Justification theorem

)

Fig. 7. Isabelle-like disjunction elimination (disjE) and conjunction introduction (conjI)
rules as implementation-level meta-rules in HOL Light

In order to justify the behaviour of the four tactics, we use the justification
theorem included in the meta-rule structure of the inference rule being applied.
In particular, we attempt to use each of the proven subgoals to eliminate the
assumptions of this justification theorem. So, for instance, in Figure 7, the jus-
tification theorem for conjI is p, q � p ∧ q. Thus, when using it with the rule
tactic, the two subgoals produced, once proven, will satisfy each of the two as-
sumptions p and q of the justification theorem. This then leads to the proof of
the conclusion p ∧ q which has been matched to the original goal. Variations of
this approach are used for the other three tactics as well.

Instantiation lists. Another challenging part of our implementation was the
introduction of instantiations, or what we described in Section 3.2 as the “ tac”
extensions to the tactics. We decided to represent such instantiation choices at
the user level using lists of pairs that we simply call instantiation lists.

As a result, our Isabelle drule tac example in Section 3.2 apply (drule tac P=c
in conjunct2) is converted to e (drule tac [(‘P‘,‘c‘)] conjunct2) in HOL Light. An
example of the usage of drule tac in an actual proof both in Isabelle and HOL
Light is demonstrated in the first example proof in Figure 4.

5 Limitations and Future Work

The primary limitations of the current version of our system reside in the use
of metavariables and the lack of meta-level quantification. These are reviewed
next.

578 P. Papapanagiotou and J. Fleuriot

5.1 Limitations of Meta-variables

Although metavariables exist in HOL Light, their usage is limited. The single
HOL Light tactic that allows the unification of the goal with one of the assump-
tions with metavariable instantiation (this is analogous to Isabelle’s assumption
tactic) uses limited term unification (First Order unification without type in-
stantiation). These limitations are propagated to our system for now. Moreover,
HOL Light does not allow our assumption tactic direct access to the introduced
metavariables and so, in order to function properly, the user must provide the list
of meta-variables manually. We have, therefore, introduced a meta assumption
tactic which must be used as an alternative to assumption when metavariables
are involved in the goal and which must be given the list of metavariables in the
goalstate as an argument (see Figure 5).

5.2 Meta-level Quantification

So far, we have not considered any solutions for the emulation of meta-level quan-
tification. Due to this limitation, out of all the rules of natural deduction for First
Order logic, we are unable to express the universal introduction and existential
elimination rules as meta-theorems in HOL Light at this stage. We have there-
fore implemented these rules as separate tactics allI and exE respectively. These
tactics are shortcuts to using HOL Light’s GEN TAC and X CHOOSE TAC
respectively. Another side-effect of the lack of meta-level quantification is the
fact that some incorrect meta-variable instantiations may be allowed during the
proofs. This occurs when a meta-variable bound by an already introduced vari-
able is instantiated without taking into immediate account that the instantiation
for that meta-variable should be fresh. At the end of the proof, HOL Light will
fail to reconstruct the proven theorem if an incorrect instantiation occurred,
thereby maintaining soundness, but only after the user has been lead to believe
that the proof was successful.

5.3 Future Work

Plans for further improvements include steps towards reconstructing tactics with
behaviours similar to Isabelle’s automated tactics, focusing on the commonly
used clarify and auto tactics. In particular, clarify is a non-aggressive version of
auto that does not carry out any simplification [10].

Furthermore, our future work will focus on an extensive evaluation of the
system. The evaluation will be based on reconstruction of some Isabelle theories
in HOL Light using our system. Moreover, we will invite various users, from
novices in the area of automated reasoning to experienced Isabelle users to try
out the system and provide feedback. We aim to evaluate how easily new users
can become accustomed to HOL Light and how comfortable expert users feel
when porting their Isabelle proofs in HOL Light.

An Isabelle-Like Procedural Mode for HOL Light 579

Finally, we hope to investigate potential emulations of features from other
tactic languages, with the aim of making HOL Light friendlier for users beyond
Isabelle. One possibility would be to emulate some of the features of Ltac, the
tactic language available in the proof assistant Coq [11].

6 Conclusion

We have described our efforts to improve the user-level interaction with HOL
Light so as to make it more user-friendly for novice users as well as users familiar
with Isabelle.

Our initial focus has been on the emulation of features that result from Is-
abelle’s meta-logic, including meta-level implication and the usage of metavari-
ables in HOL Light. We have also created representations for Isabelle styled
natural deduction rules both at a user-level and at an implementation-level.
Using these, we reconstructed the four basic natural deduction tactics of Is-
abelle and their extended variations as HOL Light tactics. We consider the sam-
ple proofs that we translated from Isabelle to HOL Light relatively close to
the syntax and style of Isabelle. Moreover, our implemented tactics seemlessly
embed into HOL Light, offering extra functionality and maintaining compat-
ibility with the existing proof style. We believe this is a first step to a more
user-friendly HOL Light within the standards of the procedural proof style of
Isabelle.

Acknowledgments. We thank the referees for their helpful comments. This re-
search is funded by an EPSRC studentship and by EPSRC grant EP/E005713/1.

References

1. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arith-
metic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 295–314.
Springer, Heidelberg (2005)

2. Loveland, D.: Mechanical Theorem-Proving by Model Elimination. Journal of the
ACM (JACM) 15, 236–251 (1968)

3. Paulson, L.: Logic and computation: interactive proof with Cambridge LCF. Cam-
bridge Univ. Pr., Cambridge (1990)

4. Prawitz, D.: Natural deduction: A proof-theoretical study. Almqvist & Wiksell
Stockholm (1965)

5. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

6. Harrison, J.: Optimizing proof search in model elimination. In: McRobbie, M.A.,
Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 313–327. Springer, Heidelberg
(1996)

7. Harrison, J.: HOL Light: future wishes. In: Talk at Workshop on Interactive The-
orem Proving, Cambridge (2009),
http://www.cl.cam.ac.uk/~jrh13/slides/itp-25aug09/slides.pdf

8. Paulson, L.: Isabelle.: Generic Theorem Prover. Springer, Heidelberg (1994)

http://www.cl.cam.ac.uk/~jrh13/slides/itp-25aug09/slides.pdf

580 P. Papapanagiotou and J. Fleuriot

9. Paulson, L.: A generic tableau prover and its integration with Isabelle. J. UCS 5,
73–87 (1999)

10. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: a proof assistant for higher-
order logic. Springer, Heidelberg (2002)

11. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov,
A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 377–440. Springer, Heidelberg
(2000)

Bottom-Up Tree Automata with Term Constraints

Andreas Reuß and Helmut Seidl

Technische Universität München
Institut für Informatik I2

Boltzmannstraße 3
85748 Garching

Abstract. We introduce bottom-up tree automata with equality and disequality
term constraints. These constraints are more expressive than the equality and dis-
equality constraints between brothers introduced by Bogaert and Tison in 1992.
Our new class of automata is still closed under Boolean operations. Moreover,
we show that for tree automata with term constraints not only membership but
also emptiness is decidable. This contrasts with the undecidability of emptiness
for automata with arbitrary equality constraints between subterms identified by
paths as shown in 1981 by Mongy.

1 Introduction

Finite tree automata have been widely used for the specification of tree languages. Such
automata, however, are restricted to inspect their input only locally during a bottom-up
traversal. Many efforts therefore have been made to enhance the expressiveness of such
devices. A way to achieve this is to add constraints to the transitions of the automaton.

In [12], Mongy proposes automata which allow transitions to be constrained by
equalities of subtrees which are identified by paths. Since the resulting class of lan-
guages is not closed under complementation, [5] generalizes these automata by addi-
tionally allowing disequality constraints between subtrees identified by paths. Let us
call such constraints path constraints and the corresponding automata path-constrained
automata (PCA). For both classes, however, the emptiness problem is undecidable. In
fact, Tommasi shows that already for automata with equality tests between cousins
emptiness is not decidable [13].

For this reason, Bogaert and Tison consider automata where only equalities and dis-
equalities between direct subterms, i.e., constraints on paths of length one, are allowed
[2]. This class is known as the class of tree automata with constraints between broth-
ers. The emptiness problem for this class is decidable. Later, Caron et al. observe that
emptiness is also decidable for arbitrary path-constrained automata if only the num-
ber of equality constraints along each path of trees is bounded [3]. These results have
been applied to derive a decision procedure for inductive reducibility of rewrite sys-
tems [7] and, more generally, for the first-order theory of encompassment [4]. In fact,
automata with disequality path constraints only are sufficient for deciding inductive
reducibility [6]. Another class of automata with certain equality constraints and dise-
quality path constraints have recently been applied to solve the HOM problem for reg-
ular tree languages [10]. Another interesting class of tree automata with global equality

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 581–593, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

582 A. Reuß and H. Seidl

and disequality constraints is considered by Godoy et al. in the context of MSO logic
with isomorphism tests and unification with membership constraints [8,1]. Extensions
of constraints between brothers in ranked trees to constraints between siblings in un-
ranked trees are studied by Löding and Wong [11].

Here, we build on a formulation of tree automata by means of Horn clauses (see,
e.g., [9]).

In this formalism, constraints between brothers can be expressed by means of equal-
ities and disequalities between variables. We generalize this class of constraints to con-
straints between arbitrary terms. We show that the resulting class of term-constrained
automata (TCA) is closed under Boolean operations. We also show that emptiness for
TCA is still decidable.

The rest of the paper is organized as follows. After providing basic definitions and
concepts in Section 2, we relate the expressiveness of TCA to tree automata with path
constraints in section 3. Additionally we show that TCA are closed under Boolean op-
erations. In Section 4, we then present an algorithm for deciding emptiness of a general-
ized form of TCA with disequality constraints only. In Section 5, we then show how to
construct to each TCA a (generalized) TCA without equality constraints. By this con-
struction, the emptiness test from Section 4 can be applied to decide emptiness also for
arbitrary TCA.

2 Preliminaries

We consider ordered ranked trees made up of symbols from a ranked alphabet (Σ, ar)
where Σ denotes a set of symbols and ar : Σ → N ∪ {0} is a function which specifies
each symbol’s arity. If the arities of symbols are understood, the ranked alphabet is
denoted by Σ alone. For a ranked alphabet Σ, and a (countable) set X = {x1,x2, . . .}
of variables with Σ ∩ X = ∅, the set TΣ(X) of (finite ordered) trees over Σ and X
consists of all terms t given by the grammar:

t ::= xi | a | b(t1, . . . , tk)

where a, b ∈ Σ, and a has arity 0, while b has arity k > 0. The tree t is called ground if
t does not contain any variable xi ∈ X. The set of ground terms is also denoted by TΣ .

Assume we are given a finite set P of unary predicates. Then a literal A is a term of
the form p(t) where p ∈ P and t ∈ TΣ(X). A term constraint is a conjunction of atomic
constraints where a constraint either is an equality xi = s or a disequality xj �= t for
variables xi,xj and terms s, t. A substitution θ is a mapping θ : X → TΣ(X). We write
tθ and Aθ for the result of applying θ to the term t and the literal A, respectively. θ is
called ground if xiθ is ground for all i. The substitution θ satisfies the term constraint
φ (denoted by: θ |= φ) if it satisfies each constraint occurring in φ. The substitution
θ satisfies the constraint xi = s if xiθ = sθ. Likewise, the substitution θ satisfies the
constraint xi �= t if xiθ �= tθ.

A constrained Horn clause c is given by B0 ⇐ B1, . . . , Bm, φ where B0, . . . , Bm

are literals and φ is a term constraint. The left-hand side B0 is the head of the clause c
while the sequence B1, . . . , Bm, φ denotes the body of c. The constraint φ imposes an
additional restriction on the applicability of the clause. A constraint φ which is always

Bottom-Up Tree Automata with Term Constraints 583

true can be omitted. Assume that we are given a finite set C of constrained Horn clauses.
Then the least modelMC of C is the least set M of ground facts p(t), t ∈ TΣ , such that
MC ⊇ TC(MC). Here, the operator TC is defined as follows. Assume that M is any set
of ground facts p(t). Then TC(M) is the set of all ground facts B0θ where θ is a ground
substitution, B0 ⇐ B1, . . . , Bm, φ is in C, B1θ, . . . , Bmθ ∈ M , and θ |= φ. The set
MC is therefore given by

MC =
⋃
{T i

C (∅) | i ≥ 0} .

The language {t ∈ TΣ | p(t) ∈ MC} of p is also denoted by LC(p). For convenience,
we also consider the set Li

C(p) = {t ∈ TΣ | p(t) ∈ T i
C (∅)} which consists of all trees t

where the fact p(t) can be derived by at most i rounds of fixpoint iteration. Consider as
an example the set C consisting of two (non-constrained) Horn clauses:

p(f(x1)) ⇐ p(x1), p(a) ⇐
Here, we have Li

C(p) = {f j(a) | 0 ≤ j ≤ i − 1} where the number of elements in
Li
C(p) is given by |Li

C(p)| = i, and the language of p is

LC(p) =
⋃
{Li

C(p) | i ≥ 0} = {f i(a) | i ≥ 0} = {a, f(a), f(f(a)), ...} .

In this paper, we consider tree automata as a particular restricted form of sets of (con-
strained) Horn clauses [9]. Here, unary predicates serve as states while clauses provide
the transitions of the automaton. A constrained Horn clause c is an automata clause if
it is of the form:

p(a) ⇐ or p(b(x1, . . . ,xk)) ⇐ p1(x1), . . . , pk(xk), φ

where a, b ∈ Σ, p, p1, . . . , pk ∈ P are predicates, and φ may only mention variables
from {x1, . . . ,xk}. A finite tree automaton with term constraints (TCA for short) then
is a pair A = (C, F) where C is a finite set of automata clauses and F ⊆ P is a finite
set of accepting predicates (or states). The language of A then is given by L(A) =⋃
{LC(p) | p ∈ F}. Using dynamic programming, we obtain the following proposition:

Proposition 1. Membership (of a ground term) is decidable in polynomial time for
TCA.

This also holds for automata with complex heads, i.e., heads of the form p(t) where
p ∈ P , and t is a term which mentions all variables x1, . . . ,xk .

For a ground tree t′, let validC(t′) denote the set of all predicates p with t′ ∈ LC(p).
The algorithm for testing membership of a tree t determines for all subtrees t′ of t,
the set validC(t′). Then t′ ∈ LC(p) iff p ∈ validC(t′). The algorithm proceeds bottom-
up over t. Assume that the algorithm has already determined the sets validC(t′) for all
proper subtrees t′ of a tree t1. In order to determine validC(t1), the algorithm iterates
over all clauses of the TCA. The set validC(t1) then consists of all predicates p for
which there is a clause p(s) ⇐ p1(x1), . . . , pk(xk), φ with t1 = sθ, θ = {x1 �→
s1, . . . ,xk �→ sk}, such that for all i = 1, . . . , k, pi ∈ validC(si) and θ |= φ. Thus,
the set validC(t1) can be computed in time polynomial in the size of the TCA and
t1. Consequently, the set validC(t′) for all subtrees t′ of t can also be determined in
polynomial time. This completes the proof. ��

584 A. Reuß and H. Seidl

3 Expressiveness and Closure Properties

Tree automata with constraints between brothers can be represented by TCA where
all terms occurring in constraints are variables and vice versa. Let us call such au-
tomata variable-constrained automata (VCA). In addition to constraints on variables as
in VCA, TCA in general allow also for comparisons like xi �= f(xj), which express
relations between subtrees at different levels (depths) in the input trees. We have:

Theorem 2. TCA are strictly more expressive than VCA.

Proof. By definition, each VCA V can be considered as a TCA defining the same lan-
guage. For the reverse direction, consider the TCA A = (C, F) with F = {p}, and
C = {c1, c2, c3}, where:

c1 ≡ p(b(x1,x2)) ⇐ q(x1), q(x2),x1 = f(x2)
c2 ≡ q(f(x1)) ⇐ q(x1)
c3 ≡ q(a) ⇐

Here, L(A) = LC(p) = {b(f i+1(a), f i(a)) | i ≥ 0}. We show by contradiction that
no VCA V = (C′, F ′) exists with L(V) = L(A). From |L(V)| = |L(A)| = |LC(p)| =
∞, it follows for some predicate p′ ∈ F ′ with LC′(p′) ⊆ LC(p), that |LC′(p′)| = ∞.
Therefore, there exists a clause c ≡ p′(b(x1,x2)) ⇐ q1(x1), q2(x2), φc in C′ such that
c can produce infinitely many trees t ∈ LC(p) ∩ LC′(p′). Let t1, t2 be two such trees
with t1 = b(f i+1(a), f i(a)) and t2 = b(f j+1(a), f j(a)), j > i ≥ 0. By construction,
we have:

(1) f j+1(a) ∈ LC′(q1), f i(a) ∈ LC′(q2), but
(2) b(f j+1(a), f i(a)) /∈ LC′(p′) ⊆ {b(fk+1(a), fk(a)) | k ≥ 0}, and
(3) t1, t2 ∈ LC′(p′) by application of c.

In the following we show that every combination of (dis)equality constraints between
x1,x2 in φc leads to a contradiction:

(i) If either x1 �= x1 or x2 �= x2 in φc, then φc is unsatisfiable and therefore (3)
cannot hold.

(ii) If either x1 = x2 or x2 = x1 in φc, neither t1 nor t2 can be generated by c
contradicting again (3).

(iii) Both x1 = x1 in φc and x2 = x2 in φc are tautologies. Therefore now as-
sume that φc is a tautology or equivalent to x1 �= x2. Then f j+1(a) �= f i(a),
and therefore θ |= φc for θ(x1) = f j+1(a), θ(x2) = f i(a). We conclude that
b(f j+1(a), f i(a)) ∈ LC′(p′) contradicting (2). ��

For path-constrained automata (PCA) the emptiness problem is not decidable [12].
Paths identify subterms. A path is represented as a sequence of integers. E.g., the con-
straint 1.2 = 2 in the body of a clause p(h(x1,x2)) ⇐ r(x1), s(x2), 1.2 = 2 means that
the second argument of x1 must exist and equal x2. Likewise, the constraint 1.2 �= 2 in
the body of a clause p(h(x1,x2)) ⇐ r(x1), s(x2), 1.2 �= 2 means that either at least
one of the paths 1.2, 2 does not exist or both exist and the two corresponding subterms
are different. It is not difficult to see that PCA can simulate TCA.

Bottom-Up Tree Automata with Term Constraints 585

Proposition 3. For every TCA A, a PCA A′ can be constructed with L(A) = L(A′).
��

Assume that the maximal depth of a term occurring in a constraint of A is k. The
idea of the construction is that A′ records the topmost constructors up to depth k of
the current argument within the predicate (or state) and then enforces the required
equalities or disequalities by means of path constraints. The clause p(h(x1,x2)) ⇐
r(x1), s(x2),x1 = f(x2,x2) then is simulated by the clauses ph(_,_)(h(x1,x2)) ⇐
rf(_,_)(x1), st(x2), 2 = 1.1, 2 = 1.2 for arbitrary patterns t of depth 1.

Likewise, path constraints can be expressed by term constraints — but only if we
allow extra variables yi which do not occur in the head. The constraint 1.2 = 2, for
example can be expressed by a disjunction

∨
φf over all f ∈ Σ with ar(f) = r ≥ 2

where φf is given by x1 = f(y1, . . . ,yr) ∧ x2 = y2. By this reduction, we conclude:

Proposition 4. Emptiness for the extension of TCA with term constraints which may
use variables yi not occurring in the respective heads, is undecidable. ��

PCA with disequality constraints only have been used in [6] to decide ground reducibil-
ity. They do not allow for equality tests. However, since path constraints for tree au-
tomata in general are more expressive than term constraints without auxiliary variables,
we conjecture that PCA with disequalties only are incomparable to TCA.

In the following, we collect some extensions to the language of constraints used by
TCA which do not increase expressiveness.

Arbitrary Boolean Formulas. Assume that the constraint φ of a clause c is an arbitrary
Boolean formula over atomic constraints, i.e., equalities xi = s and disequalities xj �= t
between xi,xj and terms s, t. Then we can construct a set of clauses c1, . . . , cr which
are equivalent to c and whose constraints are conjunctions of atomic constraints. For
this, we first transform φ to DNF (disjunctive normal form) φ ≡ φ1 ∨ . . . ∨ φr . This
step may introduce negations of the original atomic constraints, i.e. an equality xj =
t may result from a disequality xj �= t and vice versa. Second, we build for each
of the conjunctions φ1, . . . , φr in the DNF form of φ one extra clause ci with term
constraint φi.

Arbitrary Terms. Our definition of term constraint requires the left-hand sides of the
equalities and disequalities to be single variables xi ∈ X. Without increasing expres-
siveness, we as well may allow arbitrary terms on left-hand sides, since every constraint
s = t and s �= t can be split into equivalent conjunctions of equalities xi = ti and
disjunctions of disequalities xi �= ti, respectively. The resulting positive Boolean com-
binations over constraints can then be transformed in each clause to DNF (disjunctive
normal form) and used to build equivalent sets of automata clauses, as described above.
E.g., the clause

H ⇐ p1(x1), p2(x2), p3(x3), g(x1, a) = g(x3,x2) ∧ f(x1,x2) �= f(x2,x3)

is equivalent to the clause

H ⇐ p1(x1), p2(x2), p3(x3), (x1 = x3 ∧ x2 = a ∧ x1 �= x2)
∨ (x1 = x3 ∧ x2 = a ∧ x2 �= x3)

586 A. Reuß and H. Seidl

which in turn is equivalent to the set

{ H ⇐ p1(x1), p2(x2), p3(x3), x1 = x3 ∧ x2 = a ∧ x1 �= x2,
H ⇐ p1(x1), p2(x2), p3(x3), x1 = x3 ∧ x2 = a ∧ x2 �= x3} .

Henceforth, we therefore allow φ to be an arbitrary Boolean formula over equality and
disequality constraints between arbitrary terms (not mentioning additional variables),
unless specified otherwise.

Deterministic TCA. Let C be a set of automata clauses over a fixed ranked alphabet
Σ. Then C is deterministic if for each t ∈ TΣ , there is at most one p ∈ P such that
t ∈ LC(p). C is total deterministic if for each t ∈ TΣ , there is exactly one p ∈ P such
that t ∈ LC(p). A TCA A = (C, F) is (total) deterministic if C is (total) deterministic.
For every TCA A = (C, F) an equivalent total deterministic automaton A′ = (C′, F ′)
can be constructed with L(A′) = L(A) by means of the powerset construction. The
powerset construction is a standard automata technique. A general construction for con-
strained automata can, e.g., be found in [5]. For TCA, the powerset automaton A′ can
be constructed as follows. The predicates P ′ of A′ are taken from the powerset of the
set of predicates P of A, and F ′ = {P ∈ P ′ | P ∩ F �= ∅}. We define P (a) ⇐ ∈ C′ if
and only if P = {p ∈ P | p(a) ⇐ ∈ C} and, similarly:

P (b(x1, . . . ,xk)) ⇐ P1(x1), . . . , Pk(xk), φ′ ∈ C′

iff P is a subset of the set

{p ∈ P | p(b(x1, . . . ,xk)) ⇐ p1(x1), . . . , pk(xk), φ ∈ C, p1 ∈ P1, . . . , pk ∈ Pk}

and
φ′ =
∧

p∈P

(
∨

p(b(x1,...,xk))⇐p1(x1),...,pk(xk),φ′′∈C
pi∈Pi

φ′′)

∧
∧

p/∈P

(
∧

p(b(x1,...,xk))⇐p1(x1),...,pk(xk),φ′′∈C
pi∈Pi

¬φ′′) .

Note that in the construction of φ′ an atomic constraint xi = t may result from a
constraint xi �= t and vice versa. We have:

Proposition 5. For every TCA, an equivalent total deterministic TCA exists and can be
constructed in exponential time. ��
In a total deterministic automaton, for each tree t ∈ TΣ there is exactly one predicate
p with t ∈ LC(p). This allows for complementation, yielding the same good closure
properties for TCA as for non-constrained tree automata. Complementation A of a TCA
A can be done in two steps. In the first step, a total deterministic TCA is constructed
which is equivalent to A. Thus, the powerset construction for the set C consisting of the
two clauses

p(f(x1)) ⇐ p(x1),x1 = a p(a) ⇐
would result in the clauses:

{p}(f(x1)) ⇐ {p}(x1),x1 = a {p}(a) ⇐
∅(f(x1)) ⇐ {p}(x1),x1 �= a ∅(f(x1)) ⇐ ∅(x1)

Bottom-Up Tree Automata with Term Constraints 587

If Σ also contains a symbol b of arity 0, we additionally must add the clause ∅(b) ⇐.

In the second step of complementation, the final states are exchanged with the non-
final ones.

The union A1 ∪ A2 of two TCA A1 = (C1, F1) and A2 = (C2, F2) is defined by
(C1∪C2, F1∪F2), assuming C1∩C2 = F1∩F2 = ∅. An automaton for the intersection of

two tree automata A1 and A2 can be constructed as A1 ∪A2, or – more efficiently – by
a direct construction which uses the Cartesian products of original states and transitions
[5]. Thus, we obtain:

Proposition 6. TCA are closed under union, intersection, and complementation. ��

4 Automata with Disequality Constraints Only

We now consider the class TCA �= of automata with disequality constraints only. We
additionally allow TCA �= clauses to have complex heads, i.e., literals p(t) where p ∈ P ,
and t is an arbitrary term. So we consider clauses of the form:

p(t) ⇐ p1(x1), . . . , pk(xk), φ

where p, p1, . . . , pk ∈ P are predicates, φ is a conjunction of disequalities ti �= tj ,
and φ and t may only mention variables from {x1, . . . ,xk} (k ≥ 0). The number of
disequalities in a clause c ∈ C is denoted dc(c).

Emptiness. A semi-algorithm for non-emptiness of TCA �= computes for i ≥ 1, the set
Li
C(p) for all predicates p until an accepting state p′ is found for which Li

C(p′) �= ∅.
Here, the set Li

C(p) can be computed from the sets Li−1
C (q), q ∈ P , by applying the

implications c ∈ C (starting with L0
C(p) = ∅, p ∈ P).

For non-constrained automata, each round i ≥ 1 finds all recognized trees of depth
i. Since each predicate p with LC(p) �= ∅ recognizes at least one tree of depth lin-
ear in |P|, after a linear number of rounds (non-)emptiness is decided. Constraints,
however, can delay the derivation process: if a term constraint φ of a clause c ≡
p(t) ⇐ p1(x1), . . . , pk(xk), φ is false for every substitution θ with xiθ ∈ Lj

C(pi), i ∈
{1, . . . , k}, then c cannot produce a tree in round j + 1 even if Lj

C(pi) �= ∅ for all i.
Still, c may later produce a tree for a suitable combination of trees ti ∈ Lm

C (pi),m > j.
We will establish an upper bound for the number of rounds which are needed in

order to decide TCA �=-emptiness. By a counting argument, it suffices to increase the
sets Li

C(p) only up to a fixed number of trees. We claim that for proving non-emptiness
of a predicate q, at most (

∑
c∈C dc(c)) + 1 trees for each predicate p �= q suffice. This

claim follows from the next lemma which says that each term constraint φ of a clause c
“filters out” at most dc(c) trees:

Lemma 7. Let A = (C, F) be a TCA �= and c ∈ C be an automata clause with c ≡
q(t) ⇐ p1(x1), . . . , pk(xk), φ. Assume there is a number d ≥ 0 such that ∃θ ∀i ∈
{1, . . . , k} xiθ ∈ Ld

C(pi) ∧θ |= φ. Then |Ld+1
C (q)| ≥ max

1≤i≤k
{|Ld

C(pi)| − dc(c)}.

588 A. Reuß and H. Seidl

Proof. Let pj ∈ {p1, . . . , pk} and φ ≡ C1 ∧ . . . ∧ Cm,m = dc(c). Reorder the Ci s. t.
xj is mentioned exactly in C1, . . . , Cl, 0 ≤ l ≤ m. Choose θ s.t. θ |= Cl+1 ∧ . . . ∧Cm

and xiθ ∈ Ld
C(pi) for all i ∈ {1, . . . , k} \ {j}. Making C1, . . . , Cl true by choosing

θ(xj) can be considered as an instance of the pigeonhole principle implying that there
are at least |Ld

C(pj)| − l ≥ |Ld
C(pj)| − m different trees in Ld

C(pj) which satisfy all
Ci, 1 ≤ i ≤ l. Each of them can be used in combination with the trees xiθ, i �= j, to
produce one tree for Ld+1

C (q). ��

Theorem 8. Let A = (C, F) be a TCA �= with n = |P| predicates and d =
∑

c∈C dc(c)
disequality constraints. Then for all p ∈ P , it holds that LC(p) = ∅ iff Ln(d+1)

C (p) = ∅.

Proof. Direction “⇒” is trivial. For a proof of “⇐”, consider the derivation process
where we stop after round r iff ∀p (|Lr

C(p)| ≤ d⇒ |Lr+1
C (p)| = |Lr

C(p)|). This process
terminates after at most n(d+ 1) rounds, i.e., r ≤ n(d+ 1), since in every round i ≤ r
at least one set of cardinality ≤ d increases, which is only possible ≤ n(d + 1) times.
Assume for a contradiction that LC(p) �= ∅ but Lr

C(p) = ∅.
Let j be minimal such that j > r andLj

C(p) �= ∅ butLj−1
C (p) = ∅ for some predicate

p by application of some clause cj in round j. The derivations between rounds r+1 and
j−1 only increase non-empty sets since j is minimal, and the stopping condition of the
derivation process ensures that j > r+1 holds. We inductively define a chain of clauses
cr+1, . . . , cj where the indexes correspond to rounds such that ∀i ∈ {r + 1, . . . , j − 1}
ci ≡ qi(ti) ⇐ pi1(xi1), . . . , pik

(xik
), φi is chosen such thatLi

C(qi)\Li−1
C (qi) �= ∅, and

qi(xk) occurs in the body of ci+1 (for some xk ∈ X). The chain exists because every
derivation by some clause ci+1 in round i + 1 > 1 would already occur in round i if
Li
C(q) = Li−1

C (q) for all q ∈ P in the body of ci+1. Let qr+1, . . . , qj be the respective
head predicates (especially, qj = p) and Lr

C(qr+1), . . . ,Lj−1
C (qj) the increased sets

(Li−1
C (qi)is increased in round i, possibly by applying ci.)
By Lemma 7, we have |Li−1

C (qi)| ≤ |Li
C(qi+1)|+ dc(ci+1) for i = r+1, . . . , j− 1.

Since Lj−1
C (qj) = Lj−1

C (p) = ∅, it follows that |Lr
C(qr+1)| ≤

∑j
i=r+2 dc(ci) for the

set Lr
C(qr+1) which is increased in round r + 1.

If qi �= qk for all r + 1 ≤ i < k ≤ j, then
∑j

i=r+2 dc(ci) ≤
∑

c∈C dc(c) = d, and
we get a contradiction because |Lr

C(qr+1)| ≤ d and also Lr+1
C (qr+1) \ Lr

C(qr+1) �= ∅,
violating the assumption that ∀p (|Lr

C(p)| ≤ d⇒ |Lr+1
C (p)| = |Lr

C(p)|).
If on the other hand qi = qk for some r + 1 ≤ i < k ≤ j, then |Lr

C(qr+1)| ≤∑
c∈C dc(c) also holds: Let i, k be such a pair such that k− i is maximal. Then we have

Lm
C (qk) = Lm

C (qi)∀m, and Li−1
C (qi) ⊆ Lk−1

C (qi), hence |Li−1
C (qi)| ≤ |Lk−1

C (qk)|.
Both facts together yield |Lr

C(qr+1)| ≤
∑i

m=r+2 dc(cm) +
∑j

m=k+1 dc(cm). From
maximality of k− i, it follows that qr+1, . . . , qi are pairwise disjoint with qk+1, . . . , qj ,
and so also cr+1, . . . , ci are pairwise disjoint with ck+1, . . . , cj . Recursively removing
multiple occurrences of clauses cm in both sums over chain segments (with consecutive
indexes) in the same way, together with the disjointness of these segments with respect
to their members, finally proves that |Lr

C(qr+1)| ≤
∑

c∈C dc(c). ��

Bottom-Up Tree Automata with Term Constraints 589

5 General TCA

We now turn to automata with (arbitrary) term constraints (TCA). There, atomic con-
straints are either disequalities s �= t or equalities s = t for terms s and t. So we
consider clauses of these two forms:

p(a) ⇐
p(b(x1, . . . ,xk)) ⇐ p1(x1), . . . , pk(xk), φ

where a, b ∈ Σ, p, p1, . . . , pk ∈ P are predicates, and φ is a Boolean combination of
equalities and disequalities which may only mention variables from {x1, . . . ,xk}. If φ
is a conjunction of atomic constraints, we also write φ as a comma-separated sequence
of these.

Normal Form for Term Constraints. A term constraint φ is in normal form if it is equal
to⊥ (false) or is a conjunction of atomic constraints where all left-hand sides of equality
constraints are variables xi ∈ X, and the following holds:

(1) If xi = xj occurs in φ, then i < j; and
(2) If an equality constraint xi = t occurs in φ, then xi does not occur in any other

atomic constraint of φ.

The following fact is wellknown.

Proposition 9. For every term constraint φ, a disjunction φ′ ≡ φ1 ∨ . . . ∨ φr of term
constraints φi can be constructed such that each φi is in normal form and φ is equiva-
lent to φ′, i.e., for all ground substitutions θ,

θ |= φ iff θ |= φ′ ��
In order to construct φ′, we first transform φ into disjunctive normal form φ′

1∨ . . .∨φ′
r .

Then we further proceed with each φ′
i separately. Let φ′

i ≡ ψ1 ∧ ψ2 where ψ1 and ψ2
consist of all equality constraints and all disequality constraints of φ′

i, respectively. If
ψ1 is unsatisfiable, we return ⊥ for φi, i.e., remove it from the disjunction. Otherwise,
a most general unifier σ of ψ1 can be constructed with the properties (1), (2). Assume
that σ = {xj1 �→ t1, . . . ,xjs �→ ts}. Then the corresponding conjunction φi is given
by:

xj1 = t1, . . . ,xjs = ts, ψ2σ

Consider, e.g., φ ≡ x1 = x2,x1 = f(x4),x2 = f(x3). The normal form of this term
constraint is φ′ ≡ x1 = f(x4),x3 = x4,x2 = f(x4).

Saturating deterministic TCA. Let A = (C, F) denote a deterministic TCA (possibly
with equality constraints). Our goal is to construct an equivalent deterministic TCA
A′ = (C′, F) (with the same set of predicates and accepting predicates) which is sat-
urated. This means that every clause c given by H ⇐ p1(x1), . . . , pk(xk), φ has the
following properties. Let X and Y denote the set of variables occurring in left-hand
sides and right-hand sides of equality constraints in φ, respectively. Then

1. φ is in normal form;
2. for all ground substitutions θ : X → TΣ with θ |= φ and xiθ ∈ LC(pi) for all

xi ∈ Y , xjθ ∈ LC(pj) also for all xj ∈ X .

590 A. Reuß and H. Seidl

In this case, the literals pj(xj),xj ∈ X, are redundant and therefore can be removed.
Let φ ≡

∧
xi∈X(xi = ti) ∧ φ′ where φ′ contains disequality constraints only. Let

τ : X → TΣ(Y) denote the substitution τ = {xi �→ ti | xi ∈ X}. Let xj1 , . . . ,xjr be
an enumeration of the variables of the clause which are not in X . Then the clause:

Hτ ⇐ pj1(xj1), . . . , pjr(xjr), φ′

has disequality constraints only and is equivalent to the clause c. Thus, we obtain:

Proposition 10. For every saturated deterministic TCA A, a TCA �= A′ can be con-
structed such that L(A) = L(A′). ��

In particular, this means that emptiness for saturated deterministic TCA is decidable.

Example. Consider the deterministic set of clauses C = {c1, c2, c3, c4} with

c1 ≡ p(h(x1,x2)) ⇐ p1(x1), p2(x2), x1 = f(x2,x2),x1 �= a
c2 ≡ p1(f(x1,x2)) ⇐ p2(x1), p2(x2), x2 = a
c3 ≡ p2(g(x1)) ⇐ p2(x1)
c4 ≡ p2(a) ⇐

over Σ = {a, h, f, g} and P = {p, p1, p2}. Here, clauses c2, c3 and c4 are saturated,
while clause c1 is not. By adding the constraint x2 = a, we obtain from c1 the clause:

p(h(x1,x2)) ⇐ p1(x1), p2(x2),x1 = f(x2,x2),x2 = a,x1 �= a

or:
p(h(x1,x2)) ⇐ p1(x1), p2(x2),x1 = f(a, a),x2 = a,x1 �= a

which is saturated and equivalent to c1. The languages of the predicates are LC(p) =
{h(f(a, a), a)}, LC(p1) = {f(gi(a), a) | i ≥ 0}, LC(p2) = {gi(a) | i ≥ 0}. The set
C′ of an equivalent TCA �= thus is given by C′ = {c′1, c′2, c3, c4} with

c′1 ≡ p(h(f(a, a), a)) ⇐
c′2 ≡ p1(f(x1, a)) ⇐ p2(x1)

In the following, let A = (C, F) denote a fixed deterministic TCA. We observe:

Proposition 11. Let X denote a set of variables. For every xi ∈ X, let pi denote a
predicate. Then for every term t ∈ TΣ(X) and predicate p, a constraint Ψt,p can be
constructed such that for all ground substitutions θ : X → TΣ with xiθ ∈ LC(pi) for
all xi ∈ X,

tθ ∈ LC(p) iff θ |= Ψt,p

Proof. We proceed by induction on the structure of t, with the two base cases:

(1) if t = xi, xi ∈ X then Ψt,p is % (true) if p = pi, and ⊥ otherwise;
(2) if t = a, a ∈ Σ then Ψt,p is % if p(a) ⇐∈ C, and ⊥ otherwise.

Bottom-Up Tree Automata with Term Constraints 591

In both cases, the assertion of the proposition is satisfied.
For the induction step, let t = f(t1, . . . , tk). Let θ′ denote the substitution with

xiθ
′ = ti for i = 1, . . . , k. Then we define:

Ψt,p ≡
∨
{φθ′∧Ψt1,p1∧. . .∧Ψtk,pk

| p(f(x1, . . . ,xk)) ⇐ p1(x1), . . . , pk(xk), φ ∈ C}

Now assume that θ is a ground substitution such that tθ ∈ LC(p). By definition, tθ =
f(t1θ, . . . , tkθ). Since A is deterministic, there exist predicates p1, . . . , pk and a clause
p(f(x1, . . . ,xk)) ⇐ p1(x1), . . . , pk(xk), φ such that the following holds:

1. tiθ ∈ LC(pi) for all i = 1, . . . , k;
2. θ′θ |= φ where xiθ

′θ = tiθ.

By induction hypothesis, the first item implies that θ |= Ψti,pi for all i. From the second
item, we deduce that θ |= φθ′ as well, and therefore by definition θ |= Ψt,p. For the
reverse implication, assume that θ |= Ψt,p. Then some clause p(f(x1, . . . ,xk)) ⇐
p1(x1), . . . , pk(xk), φ exists such that

1. θ |= Ψti,pi for all i, and
2. θ |= φθ′.

By induction hypothesis, we conclude from the first item that tiθ ∈ LC(pi) for all i.
By the second item, θ′θ |= φ. Overall, we therefore can apply the clause to the ti to
produce t, i.e., t ∈ LC(p). ��

Assume that H ⇐ p1(x1), . . . , pk(xk), φ is an automata clause where the constraint
φ is in normal form (

∧
xi∈X xi = ti) ∧ φ′ where φ′ consists of disequalities only. Let

Ψti,pi be the constraints as provided by Proposition 11 for the right-hand sides ti of
xi ∈ X in φ. Let φ denote the constraint:

φ ∧
∧
{Ψti,pi | xi ∈ X}

Then the following holds:

Proposition 12. For a ground substitution θ, the following statements are equivalent:

1. θ |= φ and xiθ ∈ LC(pi) for all i;
2. θ |= φ and xiθ ∈ LC(pi) for all xi �∈ X . ��

The constraint φ need not be in normal form, but is equivalent to a (possibly empty)
finite disjunction of constraintsφ1∨. . .∨φs where each φj is in normal form. The clause
H ⇐ p1(x1), . . . , pk(xk), φ then is equivalent to the set of clauses cj , j = 1, . . . , s,
given by

H ⇐ p1(x1), . . . , pk(xk), φj

Let Xj denote the set of left-hand sides of equalities in φj . Then X ⊆ Xj for all j.
Whenever X = Xj , the clause cj is saturated. Otherwise, we apply the same procedure
to the clause cj . Since X ⊂ Xj , i.e., the set of variables occurring on left-hand sides
of equalities has become strictly larger, this refinement may occur at most at k levels.
Overall, we therefore have proved the following theorem:

592 A. Reuß and H. Seidl

Theorem 13. For every deterministic TCA A = (C, F), a saturated deterministic TCA
A′ = (C′, F) with the same set of predicates can be constructed such that L(A) =
L(A′). ��

By Proposition 5, for every TCA, an equivalent deterministic TCA can be constructed,
which, by Theorem 13, can be saturated. By Proposition 10 we furthermore know, that
every saturated deterministic TCA can be transformed into an equivalent TCA �= — to
which we can apply the emptiness test from Theorem 8. In summary, we therefore have
obtained:

Theorem 14. For every TCA A, it can be decided whether or not L(A) = ∅. ��

6 Conclusion

In this paper, we have introduced a novel class of tree automata with equality and dis-
equality term constraints (TCA). The languages accepted by our class of automata are
closed under Boolean operations for tree languages, i.e., union, intersection, and com-
plementation. We showed that TCA are strictly more expressive than tree automata with
constraints between brothers of [2], but less expressive than tree automata with arbitrary
path constraints [5]. While emptiness is undecidable for the latter class of automata, we
showed that emptiness for TCA is decidable. Our algorithm relies on a determinization
procedure for TCA together with a nontrivial transformation of deterministic TCA into
a class of automata with disequality constraints only. It remains as an open problem
to evaluate precise complexity bounds for the proposed algorithm and evaluate how it
behaves on practical examples. It also would be interesting to clarify the expressiveness
of our class in comparison with the classes of constrained automata used in [10,1].

Acknowledgements. We like to thank Andreas Gaiser, Sylvia Friese, Andrea Flexeder,
and the LPAR reviewers for many helpful comments and hints.

References

1. Barguño, L., Creus, C., Godoy, G., Jacquemard, F., Vacher, C.: The emptiness problem for
tree automata with global constraints. In: Proceedings of the 25th Annual IEEE Symposium
on Logic in Computer Science (LICS 2010), Edinburgh, Scotland, UK, July 2010. IEEE
Computer Society Press, Los Alamitos (2010),
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/
BCGJV-lics10.pdf (to appear)

2. Bogaert, B., Tison, S.: Equality and disequality constraints on direct subterms in tree au-
tomata. In: STACS 1992: Proceedings of the 9th Annual Symposium on Theoretical Aspects
of Computer Science, London, UK, pp. 161–171. Springer, Heidelberg (1992) ISBN 3-540-
55210-3

3. Caron, A.-C., Comon, H., Coquidé, J.-L., Dauchet, M., Jacquemard, F.: Pumping, cleaning
and symbolic constraints solving. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS,
vol. 820, pp. 436–449. Springer, Heidelberg (1994), ISBN 3-540-58201-0

http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BCGJV-lics10.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/BCGJV-lics10.pdf

Bottom-Up Tree Automata with Term Constraints 593

4. Caron, A.-C., Coquidé, J.-L., Dauchet, M.: Encompassment properties and automata with
constraints. In: Kirchner, C. (ed.) RTA 1993. LNCS, vol. 690, pp. 328–342. Springer, Hei-
delberg (1993), ISBN 3-540-56868-9

5. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree automata techniques and applications (2007),
http://www.grappa.univ-lille3.fr/tata (release October 12, 2007)

6. Comon, H., Jacquemard, F.: Ground reducibility is exptime-complete. In: LICS 1997: Pro-
ceedings of the 12th Annual IEEE Symposium on Logic in Computer Science, Washington,
DC, USA, p. 26. IEEE Computer Society, Los Alamitos (1997) ISBN 0-8186-7925-5

7. Comon, H., Jacquemard, F.: Ground reducibility and automata with disequality constraints.
In: Enjalbert, P., Mayr, E.W., Wagner, K.W. (eds.) STACS 1994. LNCS, vol. 775, pp. 151–
162. Springer, Heidelberg (1994), ISBN 3-540-57785-8

8. Filiot, E., Talbot, J.-M., Tison, S.: Tree automata with global constraints. In: Ito, M., Toyama,
M. (eds.) DLT 2008. LNCS, vol. 5257, pp. 314–326. Springer, Heidelberg (2008), ISBN 978-
3-540-85779-2, doi:
http://dx.doi.org/10.1007/978-3-540-85780-8_25.

9. Frühwirth, T.W., Shapiro, E.Y., Vardi, M.Y., Yardeni, E.: Logic programs as types for logic
programs. In: LICS, pp. 300–309 (1991)

10. Godoy, G., Giménez, O., Ramos, L., Àlvarez, C.: The hom problem is decidable. In: STOC,
pp. 485–494 (2010)

11. Löding, C., Wong, K.: On nondeterministic unranked tree automata with sibling constraints.
In: FSTTCS, pp. 311–322 (2009)

12. Mongy, J.: Transformation de noyaux reconnaissables d’arbres. PhD thesis, Laboratoire
d’Informatique Fondamentale de Lille, Université des Sciences et Technologies de Lille,
Villeneuve d’Ascq, France (1981)

13. Tommasi, M.: Automates d’arbres avec tests d’égalité entre cousins germains. Mémoire de
DEA, Univ. Lille I (1992)

http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1007/978-3-540-85780-8_25

Constructors, Sufficient Completeness, and
Deadlock Freedom of Rewrite Theories

Camilo Rocha and José Meseguer

University of Illinois at Urbana-Champaign
{hrochan2,meseguer}@cs.illinois.edu

Abstract. Sufficient completeness has been throughly studied for equa-
tional specifications, where function symbols are classified into construc-
tors and defined symbols. But what should sufficient completeness mean
for a rewrite theory R = (Σ, E, R) with equations E and non-equational
rules R describing concurrent transitions in a system? This work ar-
gues that a rewrite theory naturally has two notions of constructor: the
usual one for its equations E, and a different one for its rules R. The
sufficient completeness of constructors for the rules R turns out to be
intimately related with deadlock freedom, i.e., R has no deadlocks out-
side the constructors for R. The relation between these two notions is
studied in the setting of unconditional order-sorted rewrite theories. Suf-
ficient conditions are given allowing the automatic checking of sufficient
completeness, deadlock freedom, and other related properties, by propo-
sitional tree automata modulo equational axioms such as associativity,
commutativity, and identity. They are used to extend the Maude Suffi-
cient Completeness Checker from the checking of equational theories to
that of both equational and rewrite theories. Finally, the usefulness of
the proposed notion of constructors in proving inductive theorems about
the reachability rewrite relation →R associated to a rewrite theory R
(and also about the joinability relation ↓R) is both characterized and
illustrated with an example.

1 Introduction

Formal specification and declarative programming of concurrent systems can be
naturally achieved with rewrite theories [29] of the form R = (Σ,E,R), where
(Σ,E) is an equational theory axiomatizing the set of system states as elements
of the initial algebra TΣ/E , and where the system’s concurrent transitions are
axiomatized by the rules R. Equational deduction with the theory (Σ,E) al-
lows for proofs of equalities t = u between Σ-terms, written (Σ,E) � t = u,
and rewriting logic deduction with the theory R (see [29]) allows for proofs of
sequents of the form t → v, intuitively meaning that state t can reach state v
after a possibly complex combination of zero, one, or more transitions, written
R � t → v. This paper is concerned with the sufficient completeness and dead-
lock freedom of rewrite theories R, with automatic proof methods for checking
these properties, and with the closely related topic of constructor-based inductive
reasoning for R.

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 594–609, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Constructors, Sufficient Completeness, and Deadlock Freedom 595

A Running Example. Consider the following system comprising a sender of a
list of numbers, a receiver of such a list, and a communication channel through
which numbers are sent to the receiver, and acknowledgments are sent back
to the sender. It can be specified (with essentially self-explanatory syntax) as
the following rewrite theory CHANNEL=(ΣCHANNEL, ECHANNEL, RCHANNEL) in the Maude
rewriting logic language [9].

mod CHANNEL is
sorts Nat List NilList EmptyChannel Channel Terminal State .
subsorts NilList < List . subsorts Nat EmptyChannel < Channel . subsorts Terminal < State .
op 0 : -> Nat [ctor metadata "rctor"] . op s_ : Nat -> Nat [ctor metadata "rctor"] .
op nil : -> NilList [ctor metadata "rctor"] .
op _;_ : Nat List -> List [ctor metadata "rctor"] . op _@_ : List List -> List .
op mt : -> EmptyChannel [ctor metadata "rctor"] .
op ack : -> Channel [ctor metadata "rctor"] .
op <_:_:_> : List Channel List -> State [ctor] .
op <_:_:_> : NilList EmptyChannel List -> Terminal [ctor metadata "rctor"] .
vars M N : Nat . vars L L’ : List .
eq [ap01] : nil @ L = L . eq [ap02] : (N ; L) @ L’ = N ; (L @ L’) .
rl [send] : < N ; L : mt : L’ > => < L : N : L’ > .
rl [recv] : < L : N : L’ > => < L : ack : L’ @ (N ; nil) > .
rl [ack] : < L : ack : L’ > => < L : mt : L’ > .

endm

Note that the type structure is order-sorted, with sorts sometimes including
smaller subsorts, and with operators sometimes overloaded in smaller subsorts.
The signature ΣCHANNEL is here given by the sorts, subsorts, and operator (op)
declarations, where the list of argument sorts is followed by the result sort. The
constructor (ctor) and rewrite-constructor (metadata "rctor") declarations
are essential for the sufficient completeness and inductive reasoning concepts
and methods discussed below. States of this systems are (ground) terms of sort
State, that is, ground terms of the form < l : c : l′ >, where l is the list of
numbers still to be sent by the sender, c is the current contents of the channel,
and l′ is the list of numbers already received by the receiver. The contents c
can be either a natural number built up with 0 and the successor operator s,
or the empty contents mt, or an acknowledgment ack. Lists of natural numbers
are defined with the function symbols nil, ; , and @ , with ; a list “cons”
operator, and @ a list append operator. The equations ECHANNEL are labelled
[ap0] and [ap1], and are declared with the eq keyword; they define the append
function in the usual way. The rules RCHANNEL specifying the system’s transitions
are labelled [send],[recv], and [ack], and are declared with the rl keyword.
Rule [send] puts the leftmost number of the sender’s list in the channel if
the channel is empty, rule [recv] appends the number in the channel to the
receiver’s list and sends back an ack, and rule [ack] consumes the ack message
and clears the channel so that a new number can be sent. Note that the sort
Terminal is the subsort of State determined by those states < l : c : l′ > such
that l = nil and c = mt. The intention, of course, is to characterize the terminal
or final states of the system, for which no more transitions are possible.

Sufficient Completeness and Deadlock Freedom. Sufficient completeness
is proved relative to a subsignature of constructor operators. However, since a
rewrite theory comprises deduction with both equations E and rules R, in this

596 C. Rocha and J. Meseguer

work we argue that there are two different notions of constructors for R, and
therefore two different notions of sufficient completeness with quite different
meanings:

1. equational constructors, or E-constructors, are specified by a subsignature
Ω ⊆ Σ, and then E-sufficient completeness is the usual requirement that for
each sort s and each ground term t ∈ TΣ of that sort there is a ground term
u ∈ TΩ of sort s such that (Σ,E) � t = u, and

2. rewrite constructors, or R-constructors, are specified by a subsignature Υ ⊆
Σ, and then R-sufficient completeness is the different requirement that for
each sort s and each ground term t ∈ TΣ of that sort there is a ground term
v ∈ TΥ of sort s such that R � t→ v.

Intuitively, E-sufficient completeness means that the operators in Σ−Ω are fully
defined by means of the equations E, so any ground term can be proved equal by
E to one where only operators in Ω are used. The ctor keyword is used above
for this purpose. Note that the only symbol not having the ctor declaration is
the list append operator @ . Therefore, ECHANNEL-sufficient completeness is the
claim that @ is fully defined by the equations [ap0] and [ap1].

How should R-sufficient completeness be intuitively understood? First of all,
note that, because of rewriting logic’s equality rule (see [8]), whenever there
is a proof of (Σ,E) � t = u there is also a (zero-step) proof of R � t → u.
That is, since the states of R are E-equivalence classes of terms [t]E , there is
already a representative term u ∈ [t]E with u ∈ TΩ, so that E-constructors
are trivially R-constructors. Therefore, for R-constructors to have any teeth, a
more restrictive subsignature Υ ⊆ Ω is needed, so that each ground Σ-term of
a given sort reaches nontrivially a ground Υ -term of the same sort. R-sufficient
completeness then provides an algebraic notion of deadlock freedom, that is,
of proper termination. A concurrent system design often has an intended set
P of goal states that any computation should ultimately reach. A system is
then called deadlock-free outside P iff all terminal system states belong to P .
Therefore, R-sufficient completeness implies that R is deadlock free outside TΥ .
In the CHANNEL example, Υ is specified by the operators having the metadata
"rctor" declaration. Since only terms of sort State can be rewritten by the rules
RCHANNEL, the key point is that only the subsort-smallest version of the operator

op <_:_:_> : NilList EmptyChannel List -> Terminal [ctor metadata "rctor"] .

has the metadata "rctor" declaration. This means that every state is expected
to be rewritable with RCHANNEL to one of the form < nil : mt : l >. It is easy to
see by inspection of the rules in RCHANNEL that all such states are terminal states.
Section 5 shows that, conversely, all terminal states are of that form.

Automatic Proof Methods. In this work we also investigate automatic suf-
ficient completeness proof methods based on equational tree automata under
appropriate left-linearity assumptions, and it reports on their implementation in
an extension of Maude’s Sufficient Completeness Checker (SCC) [17]. The need
for equational tree automata, as opposed to just standard tree automata, comes

Constructors, Sufficient Completeness, and Deadlock Freedom 597

from the fact that the equations E in many rewrite theories R = (Σ,E,R) nat-
urally decompose as a disjoint union E = G ∪A, where A is a set of structural
axioms such as associativity, and/or commutativity, and/or identity for some
operators in Σ, and the equations G are (ground) confluent and terminating
modulo A.

Inductive Reasoning. It is well-known that E-constructors are essential for
inductive equational reasoning, i.e., reasoning about the theorems satisfied by the
initial algebra TΣ/E . For instance, in the CHANNEL example the ctor declaration
for nil and ; can be used to prove by structural induction that append is asso-
ciative, i.e., that TΣCHANNEL/ECHANNEL

|= (∀l, l′, l′′ : List) l@(l′@l′′) = (l@l′)@l′′. This
paper shows that R-constructors (and also E-constructors) play a similarly cru-
cial role in reasoning about inductive reachability properties of the initial model
TR of the rewrite theory R, which intuitively models the states and concurrent
computations of the system defined by R. For example, it presents a detailed
proof of the fact that TCHANNEL satisfies the inductive ground reachability property

TCHANNEL |= (∀l, l′ : List) < l : mt : nil >→< nil : mt : l′ > =⇒ l = l′

from which it is easy to show that: (i) all sequences of numbers in the sender are
fully received in order by the receiver; and (ii) the protocol terminates with the
sent list in the receiver, the sender with empty list, and the channel empty. The
importance of R-constructors for inductive reasoning about ground joinability,
that is, about the relation ↓R , is also studied in this work.

Proof for all the results in this paper, as well as formal verification experiments
summarized here, can be found in [32].

2 Preliminaries

2.1 Rewrite Theories and the Initial Reachability Model TR

Rewriting logic [29] is parametric on the underlying equational logic. Order-
sorted equational logic is used as the the underlying equational logic through-
out this paper. In an order-sorted signature Σ = (S, F,≤), the sorts S form a
poset (S,≤) and the function symbols in F = {Fw,s}(w,s)∈S∗×S can be subsort
overloaded. The existence of a subset K ⊆ S of top sorts is assumed, one per
connected component of (S,≤), and each operator f ∈Fs1...sn,s is also assumed
to be declared at the level of its top sorts f ∈ Fk1...kn,k. Given a S-sorted set
X = {Xs}s∈S of disjoint sets of variables, TΣ(X) = {TΣ(X)s}s∈S denotes the
set of Σ-terms with variables in X , and TΣ (resp., TΣ,s), the set of ground Σ-
terms (resp., of ground Σ-terms of sort s). It is also assumed that if t ∈ TΣ(X)s

and s ≤ s′, then t ∈ TΣ(X)s′ , for all sorts s, s′ ∈ S.

Definition 1. An (unconditional) order-sorted rewrite theory (RT) is a tuple
R = (Σ,E,R), where ER = (Σ,E) is an (unconditional) order-sorted equational
theory, and R is a set of universally quantified (unconditional) rewrite rules of
the form l → r with l, r ∈ TΣ(X)k for some top sort k ∈ K.

598 C. Rocha and J. Meseguer

Sentences in rewriting logic are sequents (∀X) t → u, with t, u ∈ TΣ(X)k for
k ∈ K. A RT R entails a sequent (∀X) t → u, written R � (∀X) t → u, iff
(∀X) t → u can be obtained by finite application of the deduction rules in [8].
For an equality (∀X) t = u, R � (∀X) t = u iff ER � (∀X) t = u.

Definition 2 ([8]). Given an order-sorted equational signature Σ, a Σ-reach-
ability model is a pair A→ = (A,→A) where A = (A, ιA) is an (order-sorted)
Σ-algebra, and →A= {→A,k}k∈K is a K-indexed family of binary relations,
with →A,k⊆ A2

k such that →A,k is reflexive and transitive, and for each f ∈
Fk1...kn,k, whenever a1 ∈ Ak1 , . . . , an ∈ Akn , and ai →Aki

a′i for 1 ≤ i ≤ n,
then fA(a1, . . . , an) →A,k fA(a′1, . . . , a

′
n). Given a RT R = (Σ,E,R), the initial

reachability model of R, denoted by TR = (TΣ/E ,→R), has the initial (Σ,E)-
algebra TΣ/E for its states and satisfies [t]E →R [u]E iffR � t→ u, for t, u ∈ TΣ.

2.2 The Canonical Reachability Model CanR

Rewriting logic’s rules of deduction [8] allow for correct reasoning about a RT
R = (Σ,E,R). But because they are based on the equational deduction relation
=E , which is in general undecidable, it may be undecidable whether just a one-
rewrite inference step [t]E

1→R [u]E can be taken. Furthermore, even if deduction
with E is decidable, there may be an infinite number of terms in E-equivalence
classes; so, an infinite search may be needed to find a term t′ ∈ [t]E that can be
rewritten with the rules in R. Therefore, the most useful rewrite theories satisfy
some executability conditions under which the relation →R can be reduced to
simpler forms of rewriting.

First, it is reasonable to have a disjoint union E ∪ A of sets of equations in
R = (Σ,E ∪A,R), with A a collection of axioms (such as associativity, and/or
commutativity, and/or identity) for which there exists a matching algorithm
modulo A producing a finite number of A-matching substitutions. The second
condition is that E should be ground sort-decreasing, ground confluent, and
ground strongly-normalizing modulo A. This means that in the rewrite theory
RE = (Σ,A,

−→
E), where

−→
E = {(∀X) l → r | (∀X) l = r ∈ E}, with simpler

rewrite relation→RE : (i) for each s ∈ S and [t]A ∈ TΣ/A,s, [t]A →RE [u]A implies
[u]A ∈ TΣ/A,s, and (ii) for each sort s ∈ S and for each [t]A ∈ TΣ/A,s all maximal
1→RE -sequences beginning with [t]A terminate in a unique A-equivalence class
[canΣ,E/A(t)]A ∈ TΣ/A,s, called the E-canonical form of [t]A. The third condition
is that the rules R should be ground coherent relative to the equations E modulo
A [33]. Ground coherence precisely means that, in the rewrite theories RE =
(Σ,A,

−→
E) and RR = (Σ,A,R) (which have decidable rewrite relations →RE

and →RR because of the assumptions on A), for each A-equivalence class [t]A
such that [t]A

1→RR [u]A there is a rewrite [canΣ,E/A(t)]A
1→RR [v]A such that

[canΣ,E/A(u)]A = [canΣ,E/A(v)]A. Ground coherence means that rewriting with
R modulo E ∪A can be achieved by adopting the strategy of first simplifying to
canonical form with E modulo A, and then applying a rule in R modulo A.

Constructors, Sufficient Completeness, and Deadlock Freedom 599

Definition 3. R = (Σ,E ∪ A,R) is called executable iff it satisfies the three
executability conditions above.

Proposition 1 ([8]). Let R = (Σ,E ∪ A,R) be executable, with order-sorted
signature Σ = (S, F,≤). The canonical reachability model of R is the Σ-reach-
ability model CanR = (CanΣ,E/A,→CanR), where (1) CanΣ,E/A is the canon-
ical term algebra CanΣ,E/A = ({CanΣ,E/A,s}s∈S , ιCanΣ,E/A

) in which for each
s ∈ S, CanΣ,E/A,s = {[canΣ,E/A(t)]A ∈ TΣ/A | t ∈ TΣ,s}, and for each f ∈ F ,
the equality fCanΣ,E/A

([t1]A, . . . , [tn]A)=[canΣ,E/A(f(t1, . . . , tn))]A defines the Σ-
algebra structure ιCanΣ,E/A

, and (2) →CanR={([canΣ,E/A(t)]A, [canΣ,E/A(u)]A) |
R � t→ u′ ∧ u′ ∈ [canΣ,E/A(u)]A}. Then, the initial reachability model TR and
the canonical reachability model CanR are isomorphic (written TR ∼= CanR).

3 Sufficient Completeness and Deadlock Freedom

In this section two different notions of constructors and of sufficient completeness
are proposed for an RT R, and R-constructors are related to deadlock freedom.

Definition 4. Let R = (Σ,E,R) be a RT. A constructor signature pair for R
is a pair (Υ,Ω) of order-sorted subsignatures Υ = (S, FΥ ,≤) ⊆ Ω = (S, FΩ,≤) ⊆
Σ = (S, F,≤). The S-sorted set TΩ = {TΩ,s}s∈S is called the set of E-constructor
terms,and the S-sorted set TΥ={TΥ,s}s∈S is called the set ofR-constructor terms.

The intuition behind E-constructor terms is that any ground Σ-term should
be provably equal to a term in TΩ; for R-constructor terms is that any Σ-term
should be rewritable in a finite number of steps to a term in TΥ .

The notion of sufficient completeness of a rewrite theory R relative to a con-
structor signature pair (Υ,Ω) is that Ω are the constructors for the equations
and Υ the constructor for the rules, which includes the standard concept of
constructor for equational specifications as a special case.

Definition 5. Let R = (Σ,E,R) have signature Σ = (S, F,≤), and let (Υ,Ω)
be a constructor signature pair. R is called: E-sufficiently complete relative to
Ω iff (1) (∀s ∈ S)(∀t ∈ TΣ,s)(∃u ∈ TΩ,s) ER � t = u; R-sufficiently complete
relative to Υ iff (2) (∀s ∈ S)(∀t ∈ TΣ,s)(∃v∈ TΥ,s)R � t → v; and sufficiently
complete relative to (Υ,Ω) iff (1) and (2) hold. The constructors Ω are called
E-constructors, and the constructors Υ are called R-constructors.

Note that Definition 5 makes explicit use of sort information by requiring the
witnesses u and v to have sort less or equal than s. This sort requirement can
be crucial, for example, when inducting on a variable xs of sort s.

Definition 5 does not yet make any use of the executability assumptions
about R. Under such assumptions, the notion of sufficient completeness for
R = (Σ,E ∪ A,R) can be further sharpened by relating it to two other fun-
damental concepts, namely those of the canonical term algebra CanΣ,E/A for
(Σ,E ∪A) (see Proposition 1) and the set NormR/A of R-normal forms of R.

600 C. Rocha and J. Meseguer

Definition 6. Let R = (Σ,E ∪ A,R) be executable. The S-sorted family of
sets NormR/A ⊆ CanΣ,E/A, called the family of R-terminal states of CanR, is
defined for each s ∈ S by the condition [t]A ∈ NormR/A,s iff [t]A ∈ CanΣ,E/A,s

and (� ∃u ∈ TΣ)R � t
1→ u. Call R ground weakly-normalizing (modulo A) iff

(∀t∈ TΣ)(∃[v]A ∈NormR/A)R � t→ v, and ground sort-decreasing (modulo A)

iff [t]A ∈ TΣ/A,s and [t]A
1→RR [u]A imply [u]A ∈ TΣ/A,s.

Theorem 1. Let R = (Σ,E ∪ A,R) be executable, ground weakly-normalizing
and ground sort-decreasing, and let (Υ,Ω) be a constructor signature pair. If
(1) CanΣ,E/A ⊆ TΩ/A and (2) NormR/A ⊆ TΥ/A hold, then R is sufficiently
complete relative to (Υ,Ω).

By definition (see Section 1), condition (2) in Theorem 1 exactly means that R
is deadlock free outside TΥ/A. Therefore, if R is canonically sufficiently complete
relative to (Υ,Ω), then it is deadlock free outside TΥ/A.

Definition 7. R = (Σ,E ∪ A,R) is called canonically sufficiently complete
relative to (Υ,Ω) iff it is executable, ground weakly-normalizing, ground sort-
decreasing, and satisfies conditions (1) and (2) in Theorem 1. Furthermore, Ω
is called a signature of E-free constructors modulo A iff CanΩ,E/A = TΩ/A, and
Υ is called a signature of R-terminal constructors iff NormR/A = TΥ/A.

The sets TΩ/A and TΥ/A provide respective envelopes containing the key sets
CanΣ,E/A (the set of states of CanR) and NormR/A (the set of terminal states
of CanR). Furthermore, if Ω is a signature of E-free constructors modulo A, and
Υ is a signature ofR-terminal constructors, these envelopes are tight, in the sense
that TΩ/A and TΥ/A exactly characterize CanΣ,E/A and NormR/A, respectively.

For purposes of checking canonical sufficient completeness, as well as checking
signatures of E-constructors and R-terminal constructors for R = (Σ,E∪A,R),
it is helpful to be in a situation in which the rewrite relations induced by R can
be jointly captured by a simpler rewriting relations.

Definition 8. For R = (Σ,E ∪ A,R), define the RTs RE = (Σ,A,
−→
E), and

RR∪E = (Σ,A,R ∪ −→E).

AlthoughRE andRR∪E ignore the semantic distinction between the equations E
and the rules R of R, under suitable executability assumptions they respectively
simulate each type of deduction with R. In particular: (i) the sets CanΣ,E/A and
NormRE/A coincide, and (ii) the sets NormRR∪E/A and NormR/A also coincide,
even though RR∪E has a simpler rewrite relation than R.

Theorem 2. Let R = (Σ,E ∪ A,R) be executable and ground sort-decreasing.
Then, (1) NormRE/A = CanΣ,E/A, and (2) NormRR∪E/A = NormR/A.

4 Checking the Properties with PTA

Tree automata techniques have been used to check the sufficient completeness
of equational specifications, e.g., [12,19,17]. Given a constructor signature pair

Constructors, Sufficient Completeness, and Deadlock Freedom 601

(Υ,Ω) for R = (Σ,E ∪ A,R), in this section we introduce sufficient conditions
under which the problems of deciding whether R is canonically sufficiently com-
plete relative to (Υ,Ω), Ω is a signature of E-free constructors, and Υ is signature
of R-terminal constructors, can all be reduced to emptiness checks of languages
recognized by propositional tree automata. The treatment here generalizes that
of [19,17], where such automata were used to check E-sufficient completeness.

4.1 Propositional Tree Automata

Propositional Tree Automata [20] (PTA) extend traditional equational tree au-
tomata by allowing inputs to range over a many-sorted signature instead of over
an unsorted signature, recognition is done modulo axioms, and an input term is
accepted if its set of reachable states satisfies a given proposition.

Definition 9. A propositional tree automaton is a tuple A = (K,F,Q, Γ,A,Δ)
where (K,F) is a many-sorted signature, i.e., a set K of sorts and a K∗ ×K-
indexed set F of function symbols, Q = {Qk}k∈K is a K-indexed set of pairwise
disjoint sets of states such that Qk ∩ Fε,k′ = ∅ for each k, k′ ∈ K, Γ = {γk}k∈K

is a K-indexed set of Boolean propositions where the atoms in each γk are among
the states in Qk, A is a set of unconditional (K,F)-equational axioms, and Δ
is a set of transition rules of the form f(p1, . . . , pn) → q, or p → q, for some
k ∈ K, p, q ∈ Qk, f ∈ Fk1...kn,k, and pi ∈ Qki .

A PTA A can be regarded as a RT RA, so that L(A), the language accepted by
A, can be defined in terms of reachability in RA.

Definition 10. Let A = (K,F,Q, Γ,A,Δ) be a PTA, and let Σ = (K,F ∪Q, ∅),
where each q ∈ Qk is viewed as a constant of sort k ∈ K. Then, RA = (Σ,A,Δ)
is the associated RT of A and the move relation →A is the binary relation
defined by t →A u iff [t]A

1→RA [u]A, for t, u ∈ TΣ. Let ReachA,k : TΣ −→
P(Qk) be the map t �→ {q ∈ Qk | A � t→q}, for each k ∈ K. Then, L(A) =
{L(A)k}k∈K , where L(A)k = {t ∈ TΣ,k | ReachA,k(t) |= γk}, and where |=
denotes the satisfaction relation of propositional logic.

When the emptiness problem for PTA is decidable, other typical decision prob-
lems, such as inclusion, universality and intersection-emptiness are all decidable
due to the Boolean closure properties of PTAs. As shown in [20], when A is
any combination of associativity, commutativity and identity axioms, but ex-
cluding the case in which there is an associative but not commutative symbol
in A, the emptiness problem for PTA is decidable. In the special case in which
there are associative but not commutative symbols in A, machine learning tech-
niques can be applied to create a semi-decision procedure which can always show
non-emptiness, and can show emptiness under certain regularity conditions [20].

Definition 11. R = (Σ,A,R) is PTA-checkable iff R is ground weakly normal-
izing and ground sort-decreasing, Sk ∩ Fε,k = ∅ for each k ∈ K, the axioms A
are any combination of associativity, commutativity and identity axioms, except
for the cases in which a symbol is associative but not commutative, and every
rule in R is of the form f(t1, . . . , tn) → t, with f(t1, . . . , tn) linear.

602 C. Rocha and J. Meseguer

4.2 Checking Canonical Sufficient Completeness

R = (Σ,E ∪ A,R), with Σ = (S, F,≤), is not canonically sufficiently complete
relative to the constructor signature pair (Υ,Ω) iff there is a sort s ∈ S and
a term t ∈ TΣ,s such that either (i) [t]A ∈ NormRE/A,s − TΩ/A,s or (ii) [t]A ∈
NormRR∪E/A,s−TΥ/A,s. Under PTA-checkability, canonical sufficient completeness
can be reduced to an emptiness problem of PTAs by constructing two automata
that accept precisely those terms t ∈ TΣ,s such that [t]A satisfies (i) or (ii).
Theorem 3 extends to RTs Theorem 5.4.2 in [17] for equational specifications.

Theorem 3. Let R = (Σ,E ∪A,R) be executable, ground weakly-normalizing,
and ground sort-decreasing, and let (Υ,Ω) be a constructor signature pair. If RE

and RR∪E are PTA-checkable, then there are PTAs AE and AR∪E s.t. R is
canonically sufficiently complete relative to (Ω, Υ) iff L(AE) = L(AR∪E) = ∅.

4.3 Checking Signatures of E-Free and R-Terminal Constructors

Recall that if R = (Σ,E ∪ A,R), with signature Σ = (S, F,≤), is canonically
sufficiently complete relative to (Υ,Ω), then Ω is an E-free constructor signature
iff (∀s ∈ S) TΩ/A,s − NormRE/A,s = ∅, and Υ is an R-terminal constructor
signature iff (∀s ∈ S) TΥ/A,s −NormR/A,s = ∅.

Theorem 4. Let R = (Σ,E∪A,R) be canonically sufficiently complete relative
to (Υ,Ω), and with RE and RR∪E PTA-checkable. Then there are PTAs BE and
BR∪E such that Ω is a signature of E-free constructors modulo A iff L(BE) = ∅,
and Υ is a signature of R-terminal constructors iff L(BR∪E) = ∅.

4.4 The Extended Maude Sufficient Completeness Checker

The Maude Sufficient Completeness Checker [19] (SCC) has been extended in
this work to construct the automata defined in the proofs of Theorems 3 and 4,
so that sufficient completeness checks, and also checks for E-free constructors
and R-terminal constructors, can be automatically handled for such RTs.

Given an executable RT R = (Σ,E ∪ A,R) annotated with constructor sig-
nature pair (Υ,Ω) in the syntax of Maude and satisfying the conditions in The-
orem 3, the SCC’s command scc-df builds the automata AE and AR∪E and
checks for their emptiness. For the running example, it works as expected:

Maude> (scc-df CHANNEL .)
Checking sufficient completeness and deadlock freeness of CHANNEL...
Success: The equational subtheory of CHANNEL is sufficiently complete under the assumption
that it is ground weakly-normalizing, ground confluent, and ground sort-decreasing.
Success: The rewrite theory CHANNEL is deadlock-free outside rctor-terms under the assumption
that it is ground weakly-normalizing, ground sort-decreasing, and ground coherent.

For R and (Υ,Ω) as above, and under the assumption of R being canonically
sufficiently complete relative to (Υ,Ω), the SCC’s commands free-terminal
builds the automata L(BE) and L(BR∪E) and checks for their emptiness.

Constructors, Sufficient Completeness, and Deadlock Freedom 603

Maude> (free-terminal CHANNEL .)
Checking freeness of constructors of CHANNEL...
Success: The equational subtheory of CHANNEL has equational free constructors under the
assumption that it is sufficiently complete, ground weakly-normalizing, ground confluent,
and ground sort-decreasing.
Success: CHANNEL has terminal constructors under the assumption that it is deadlock-free
outside rctor-terms, ground weakly-normalizing, ground sort-decreasing, and ground coherent.

5 Constructor-Based Inductive Reasoning

In this section we discuss the crucial role thatR-constructors and E-constructors
play in inductive proofs of ground reachability and ground joinability properties
for a rewrite theory R. Due to space limitations, the discussion does not cover
in detail either the theoretical foundations for the soundness of the inductive
arguments given in the examples, or the alternative proof techniques that could
be used for these properties. The aim here is more modest, namely to characterize
when it is sound to use constructors in such inductive proofs, and to illustrate
with the running example the key role played by constructors in such proofs.

5.1 Ground Reachability

Ground reachability is an inductive property of RTs particularly important for
establishing reachability properties of concurrent systems specified by RTs, for
instance, when algorithmic model checking techniques are limited. In this section
we clarify the role of constructors in ground reachability proofs.

Definition 12. Let R be a RT with signature Σ=(S,F,≤), and let t, u ∈ TΣ(X)s

for some s ∈ S. Then u is (deductively) R-reachable from t iff R � (∀X) t→ u,
and u is ground R-reachable from t, written R � (∀X) t → u, iff R � tθ → uθ
for each ground substitution θ : X −→ TΣ (i.e., mapping θ : X −→ TΣ such
that θ(xs) ∈ TΣ,s for every xs ∈ Xs).

Reasoning in R about an inductive property ϕ requires a deduction relation �ind
with inductive inference support such that R � ϕ (i.e., TR |= ϕ) if R �ind ϕ.

Inductive reasoning about ground reachability for a rewrite theory R is some-
what subtle, because there is the risk of the target term in the reachability goal
becoming a “moving” target. The problem is that rewrite sequents are not sym-
metric and the proofs obtained by induction over R-constructor terms cannot
be “lifted” to proofs for Ω-terms in general. A solution for this problem is to
require the E-equivalence class of the target term in the reachability goal to be
invariant under the substitutions used in the proof, by constraining the variables
occurring in the target term. Namely, for a constructor-based structural induc-
tion proof of ground reachability to be sound, it is mandatory to consider all
E-constructor terms of sort s when the induction variable occurs in the target
term of the reachability goal. However, for a variable outside the target term it
is enough to consider R-constructor terms.

Theorem 5. Let R have signature Σ = (S, F,≤), let t, u ∈ TΣ(X)s for some
s ∈ S, and let θ : X −→ TΣ. If R is sufficiently complete relative to the construc-
tor signature pair (Υ,Ω), then there exists a ground substitution η : X −→ TΩ

604 C. Rocha and J. Meseguer

such that (1) η(x) ∈ TΥ for each x ∈ Vars(t) − Vars(u), and ER � θ(x) = η(x)
for each x ∈ Vars(u), and (2) R � tθ → tη. Furthermore, R � (∀X) t → u iff
R � tη → uη for each η as above.

Formal Properties of CHANNEL. Recall the CHANNEL specification from Sec-
tion 1, with constructor signature pair (ΥCHANNEL, ΩCHANNEL). Two key properties of
CHANNEL are of particular interest:

1. In-order reception: every (ground) terminal state reachable from an initial
state of the form < l : mt : nil > preserves the order of messages, i.e.,
CHANNEL � (∀l, l′ : List) < l : mt : nil >→< nil : mt : l′ > =⇒ l = l′.

2. Proper termination: the protocol terminates in a state of sort Terminal.
Observe that, if CHANNEL is strongly-normalizing and the constructor subsigna-
ture ΥCHANNEL is a signature of terminal constructors, then (1) and (2) together
ensure that the protocol always terminates with successful in-order communi-
cation. Note also that (1) cannot be checked by standard model-checking algo-
rithms because the number of ground instances of l is countably infinite.

CHANNEL is executable (see [32]), and it is sufficiently complete relative to its
constructor signature pair, as was shown in Section 4. This latter fact implies
that the reachability condition in (1) is not void. Two complementary proofs
are required for establishing (1), namely, a proof of the existence of a reachable
terminal state preserving the order of messages for each initial state, and a
proof of the uniqueness of such a terminal state. Property (2) follows directly
from the strong-normalization of CHANNELRCHANNEL∪ECHANNEL

(see [32]), plus the fact
that ΥCHANNEL is a signature of terminal constructors as verified in Section 4.4.

The existence claim is a logical consequence of the following inductive claim:
CHANNEL �ind (∀l, l′ : List) < l : mt : l′ >→< nil : mt : l′ @ l > .
Using the sufficient completeness of CHANNEL relative to the constructor signa-

ture pair (ΥCHANNEL, ΩCHANNEL), the steps of the constructor-based inductive proof
are a base case in which the property is proved for l = nil, and an inductive
case in which the property is proved for l = n; l, assuming there is a proof for
l = l, with l a fresh “constant” of sort List. The soundness of the proof follows
from Theorem 5 and the soundness of structural induction.

– Base case. CHANNEL �< nil : mt : l′ > 0→< nil : mt : l′ @ nil >, because
(∀l :List) l@ nil = l inductively holds in ECHANNEL (see [32]).

– Inductive case. Assume the property holds for l = l, where l is a “fresh”
constant of sort List. Let l = n; l with n a variable of sort Nat:

< n; l : mt : l′ >
3→ { [send], [recv], and [ack] }

< l : mt : l′ @(n; nil) >
→ { induction hypothesis }

< nil : mt : (l′ @ (n; nil))@ l >
= { assoc. of @ is an inductive consequence of ECHANNEL }

< nil : mt : l′ @ ((n; nil)@ l) >
= { [ap01] and [ap02] }

< nil : mt : l′ @ (n; l) >

Constructors, Sufficient Completeness, and Deadlock Freedom 605

The uniqueness proof requires a ground confluence argument about CHANNEL.
A RT R = (Σ,E ∪ A,R) is ground confluent iff R � t → u and R � t →
v implies R � u ↓ v, for t, u, v ∈ TΣ (see Definition 13 in Section 5.2). A
ground confluence proof for R is not mechanizable in general because of the
undecidability of equational deduction with E ∪A. However, if R is executable
and the rewrite rules R ∪ −→E are ground sort-decreasing, ground confluent, and
ground weakly-normalizing modulo A, then R inherits the ground confluence
fromRR∪E , for which automated methods have better chances of success because
of the executability assumptions on A (see Section 2.2). The key observation is
that for rewrite proofs R � t → u and R � t → v, there are analogous rewrite
proofs RR∪E � t → canΣ,E/A(u) and RR∪E � t → canΣ,E/A(v), and since
RR∪E is ground confluent, the RR∪E-joinability witness for canΣ,E/A(u) and
canΣ,E/A(v) is also a witness for the R-joinability of u and v.

CHANNELRCHANNEL∪ECHANNEL
is ground sort-decreasing, ground confluent, and ground

strongly normalizing (see [32]), which establishes the uniqueness proof for (1).
Therefore, as desired, the CHANNEL protocol always terminates in a state of sort
Terminal with successful in-order communication.

5.2 Ground Joinability

The notion of ground joinability is of great importance in the field of term
rewriting and also in theorem proving, see, e.g., [31,2,23,28,3,1,5]. In particular,
it is a key technique for proving ground confluence. In this section we explain how
R-constructors can be used to prove ground joinability; the reader is referred
to [32] for an illustrative example of these ideas.

Definition 13. Let R be a RT with signature Σ=(S,F,≤), and let t, u∈TΣ(X)s

for some s ∈ S. The terms t and u are called (deductively) R-joinable, written
R � (∀X) t ↓ u, iff ∃v ∈ TΣ(X)s such that R � (∀X) t→ v and R � (∀X)u→ v,
and ground R-joinable, written R � (∀X) t ↓ u, iff R � tθ ↓ uθ for all ground
substitutions θ : X −→ TΣ.

For inductive reasoning about ground joinability the situation is easier than for
ground reachability, because the lack of symmetry of rewrite sequents does not
play a crucial role in this case. As shown by Theorem 6, for the constructor-based
inductive proof to be sound, it is sufficient to consider all R-constructor terms
of sort s when inducting on a variable xs.

Theorem 6. Let R be a RT with signature Σ =(S,F,≤), and let t, u∈TΣ(X)s

for some s ∈ S. If R is sufficiently complete relative to the constructor signature
pair (Υ,Ω), then R � (∀X) t ↓ u iff (∀η : X −→ TΥ)R � tη ↓ uη.

6 Related Work

Sufficient completeness was first defined in Guttag’s thesis [15]; this property is
in general undecidable, even for unconditional equational specifications [15,16].

606 C. Rocha and J. Meseguer

Sufficient completeness of equational specifications has been widely studied, see,
e.g., [21,30,10,22,4,6,5,27]. For a good review of the literature up to the 1980s and
for important (un)decidability results see [25,24]. A closely connected concept is
ground reducibility, see, e.g., [31,25,11,26,13]. Tree automata methods have been
used since the late 1980s for both sufficient completeness and ground reducibility,
see, e.g., [11,13,19,6], and Chapter 4 of [12] and references there. For order-
sorted and membership equational logic specifications, sufficient completeness
has been studied in, e.g., [7,18,5], and for order-sorted specifications modulo
axioms, including the context-sensitive case, in [19,17].

The work presented here combines and generalizes two different research
strands. On the one hand, it can be seen as a natural generalization from the case
of equations E to that of both equations E and rules R, of the work in [19,17] on
(propositional) equational tree automata methods for checking sufficient com-
pleteness of left-linear equations modulo axioms for order-sorted specifications.
On the other hand, it also generalizes the work by I. Gnaedig and H. Kirchner [14]
on constructors for non-terminating rewrite systems in the following precise
sense: the notion of sufficient completeness proposed in [14] exactly corresponds
to that of R-sufficient completeness in this work for the special case of a rewrite
theory R = (Σ, ∅, R), where Σ has a single sort and there are no equations. The
treatment of the more general case of rewrite theories R = (Σ,E∪A,R) clarifies
the important distinction between constructors for equations and constructors
for rules, extends the ideas to the more general order-sorted case modulo ax-
ioms, and provides new automated tree automata techniques complementing the
narrowing-based techniques proposed in [14], and, to the best of the authors’
knowledge, investigates for the first time the relationship betweenR-constructors
and deadlock freedom, and the use of R-constructors (and E-constructors) for
inductive proofs of ground reachability.

7 Concluding Remarks and Future Work

This work has proposed notions of constructors and of sufficient completeness for
rewrite theories R = (Σ,E,R), making a crucial distinction between
E-constructors andR-constructors. It has motivated why they are useful both to
check that specifications are “fully defined” in their equational part, and dead-
lock free in their non-equational transitions. It has developed the theoretical
foundations of sufficient completeness in the setting of order-sorted rewrite the-
ories of which equations and rules are applied modulo equational axioms such
as associativity and/or commutativity and/or identity. It has also shown how,
except for the case of associativity without commutativity, the property is decid-
able by propositional tree automata under reasonable linearity assumptions, and
is supported by the extension of the Maude SCC tool reported here. Finally, it
has shown how R-constructors (and E-constructors) play a crucial role in induc-
tive proofs of ground reachability and ground joinability. All the ideas presented
here, as well as the SCC tool, have been extended in [32] to the case of generalized
rewrite theories [8] R = (Σ,E ∪A,R, φ), where φ is a frozenness map assigning

Constructors, Sufficient Completeness, and Deadlock Freedom 607

to each n-argument function symbol f in Σ a subset φ(f) ⊆ {1, . . . , n} of argu-
ment positions under which rewriting with R is forbidden. This generalizes to
the level of non-equational rules the analogous treatment in [19,17] of sufficient
completeness for equational specifications (Σ,E ∪ A) with a context-sensitive
rewriting map μ, with μ(f) ⊆ {1, . . . , n}.

As usual, much work remains ahead. Since the goal in this work has been to
obtain automatic techniques for checking the sufficient completeness of a rewrite
theory, some restrictions have been imposed, such as treating only the order-
sorted case (leaving out the case of membership equational theories), and also
assuming that equations and rules are left-linear and unconditional. The notion
of a sufficiently complete rewrite theory is equally meaningful and useful without
these restrictions. Therefore, reasoning techniques that will allow such a property
to be established for more general rewrite theories should be investigated, even
if such techniques are no longer automatic. The related topic of constructor-
based inductive techniques for ground reachability and ground joinability has
only been sketched; it deserves a more comprehensive analysis in future work,
in which a detailed comparison with alternative approaches to proving such
properties should also be given.

Acknowledgements. The authors would like to thank Joe Hendrix for fruit-
ful discussions on these ideas and the SCC tool, and the anonymous referees
for comments that helped to improve the paper. This work has been partially
supported by NSF grants CNS 07-16638 and CCF 09-05584.

References

1. Avenhaus, J., Hillenbrand, T., Löchner, B.: On using ground joinable equations in
equational theorem proving. Journal of Symbolic Computation 36(1-2), 217–233
(2003)

2. Bachmair, L., Dershowitz, N., Plaisted, D.A.: Completion without failure. In: Kaci,
A.H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures. Rewriting
Techniques, vol. 2, pp. 1–30. Academic Press, New York (1989)

3. Becker, K.: Proving ground confluence and inductive validity in constructor based
equational specifications. In: Gaudel, M.-C., Jouannaud, J.-P. (eds.) CAAP 1993,
FASE 1993, and TAPSOFT 1993. LNCS, vol. 668, pp. 46–60. Springer, Heidelberg
(1993) ISBN 3-540-56610-4

4. Bouhoula, A.: Using induction and rewriting to verify and complete parameterized
specifications. Theoretical Computer Science 170(1-2), 245–276 (1996)

5. Bouhoula, A.: Simultaneous checking of completeness and ground confluence for
algebraic specifications. ACM Transactions on Computational Logic 10(3) (2009)

6. Bouhoula, A., Jacquemard, F.: Automated induction with constrained tree au-
tomata. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS
(LNAI), vol. 5195, pp. 539–554. Springer, Heidelberg (2008)

7. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoretical Computer Science 236(1-2), 35–132 (2000)

8. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoretical Computer Science 360(1-3), 386–414 (2006)

608 C. Rocha and J. Meseguer

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Quesada,
J.: Maude: specification and programming in rewriting logic. Theoretical Computer
Science 285, 187–243 (2002)

10. Comon, H.: Sufficient completness, term rewriting systems and “anti-unification”.
In: Siekmann, J.H. (ed.) CADE 1986. LNCS, vol. 230, pp. 3–540. Springer, Heidel-
berg (1986), ISBN 3-540-16780-3

11. Comon, H.: An effective method for handling initial algebras. In: Grabowski, J.,
Wechler, W., Lescanne, P. (eds.) ALP 1988. LNCS, vol. 343, pp. 108–118. Springer,
Heidelberg (1989), ISBN 3-540-50667-5

12. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2007)

13. Comon, H., Jacquemard, F.: Ground reducibility is EXPTIME-complete. Informa-
tion and Computation 187(1), 123–153 (2003)

14. Gnaedig, I., Kirchner, H.: Computing constructor forms with non terminating
rewrite programs. In: Bossi, A., Maher, M.J. (eds.) PPDP, pp. 121–132. ACM,
New York (2006) ISBN 1-59593-388-3

15. Guttag, J.: The Specification and Application to Programming of Abstract Data
Types. PhD thesis, University of Toronto, Computer Science Department (1975)

16. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types.
Acta Informatica 10, 27–52 (1978)

17. Hendrix, J.: Decision Procedures for Equationally Based Reasoning. PhD thesis,
University of Illinois at Urbana-Champaign (April 2008)

18. Hendrix, J., Clavel, M., Meseguer, J.: A sufficient completeness reasoning tool for
partial specifications. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 165–174.
Springer, Heidelberg (2005), ISBN 3-540-25596-6

19. Hendrix, J., Meseguer, J.: On the completeness of context-sensitive order-sorted
specifications. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 229–245.
Springer, Heidelberg (2007), ISBN 978-3-540-73447-5

20. Hendrix, J., Ohsaki, H., Viswanathan, M.: Propositional tree automata. In: Pfen-
ning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 50–65. Springer, Heidelberg (2006),
ISBN 3-540-36834-5

21. Huet, G.P., Hullot, J.-M.: Proofs by induction in equational theories with construc-
tors. In: FOCS, pp. 96–107. IEEE, Los Alamitos (1980)

22. Jouannaud, J.-P., Kounalis, E.: Automatic proofs by induction in theories without
constructors. Information and Computation 82(1), 1–33 (1989)

23. Kapur, D., Narendran, P., Otto, F.: On ground-confluence of term rewriting sys-
tems. Information and Computation 86(1), 14–31 (1990)

24. Kapur, D., Narendran, P., Rosenkrantz, D.J., Zhang, H.: Sufficient-completeness,
ground-reducibility and their complexity. Acta Informatica 28(4), 311–350 (1991)

25. Kapur, D., Narendran, P., Zhang, H.: On sufficient-completeness and related prop-
erties of term rewriting systems. Acta Informatica 24(4), 395–415 (1987)

26. Kounalis, E.: Testing for the ground (co-)reducibility property in term-rewriting
systems. Theoretical Computer Science 106(1), 87–117 (1992)

27. Lazrek, A., Lescanne, P., Thiel, J.-J.: Tools for proving inductive equalities, relative
completeness, and omega-completeness. Information and Computation 84(1), 47–
70 (1990)

28. Martin, U., Nipkow, T.: Ordered rewriting and confluence. In: Stickel, M.E. (ed.)
CADE 1990. LNCS, vol. 449, pp. 366–380. Springer, Heidelberg (1990), ISBN 3-
540-52885-7

29. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

Constructors, Sufficient Completeness, and Deadlock Freedom 609

30. Nipkow, T., Weikum, G.: A decidability result about sufficient-completeness of
axiomatically specified abstract data types. In: Cremers, A.B., Kriegel, H.-P. (eds.)
GI-TCS 1983. LNCS, vol. 145, pp. 257–268. Springer, Heidelberg (1982), ISBN 3-
540-11973-6

31. Plaisted, D.: Semantic confluence tests and completion methods. Information and
Control 65, 182–215 (1985)

32. Rocha, C., Meseguer, J.: Constructors, sufficient completeness and deadlock free-
dom of generalized rewrite theories. Technical report, University of Illinois at
Urbana-Champaign (2010)

33. Viry, P.: Equational rules for rewriting logic. Theoretical Computer Science 285,
487–517 (2002)

PBINT, A Logic for Modelling Search Problems
Involving Arithmetic

Shahab Tasharrofi and Eugenia Ternovska

Simon Fraser University, Canada
{sta44,ter}@cs.sfu.ca

Abstract. Motivated by computer science challenges, Grädel and Gurevich [13]
suggested to extend the approach and methods of finite model theory beyond fi-
nite structures, an approach they called Metafinite Model Theory. We develop this
direction further, in application to constraint specification/modelling languages.
Following [27], we use a framework based on embedded model theory, but with a
different background structure, the structure of arithmetic which contains at least
(N; 0, 1, +,×, <, || ||), where ||x|| returns the size of the binary encoding of x.
We prove that on these structures, we can unconditionally capture NP using a
variant of a guarded logic. This improves the result of [27] (and thus indirectly
[13]) by eliminating the small cost condition on input structures.

As a consequence, our logic (an idealized specification language) allows one
to represent common arithmetical problems such as integer factorization or dis-
joint scheduling naturally, with built-in arithmetic, as opposed to using a binary
encoding. Thus, this result gives a remedy to a problem with practical specifi-
cation languages, namely that there are common arithmetical problems that can
be decided in NP but cannot be axiomatized naturally in current modelling lan-
guages. We give some examples of such axiomatizations in PBINT and explain
how our result applies to constraint specification/modelling languages.

1 Introduction

This paper shows an application of descriptive complexity [17,12] to developing foun-
dations of constraint specification/modelling languages, a sub-area of AI. Such lan-
guages are developed in several communities, have associated solvers, and are intended
as universal languages for search problems in some complexity classes, usually NP (e.g.
scheduling, planning, etc.). Examples include languages and systems of Answer Set
Programming [25,10], modelling languages from the CP community such as ESSENCE
[9], or the language of the IDP system1 [29]. These languages do not closely correspond
to FO logic – they often contain inductive definitions and built-in arithmetic. Designers
usually focus on the convenience of the language, and rarely pay attention to the ex-
pressiveness. For each language, several tasks can be studied – satisfiability and model
checking are among them. Here, since we are interested in search problems, we focus
on the task of model expansion (MX), the logical task of expanding a given structure
with new relations. The user axiomatizes their problem in some logic L (a specifica-
tion/modelling language). The task of model expansion for L (abbreviated L-MX), is:

1 A language and system based on FO(ID), an extension of first-order logic with inductive defi-
nitions under well-founded semantics, see [7].

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 610–624, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

PBINT, A Logic for Modelling Search Problems Involving Arithmetic 611

Model Expansion for logic L
Given: 1. An L-formula φ with vocabulary σ ∪ ε

2. A structure A for σ
Find: an expansion of A, to σ ∪ ε, that satisfies φ.

Thus, we expand the structure A with relations and functions to interpret ε, obtaining
a model B of φ. The complexity of this task obviously lies in-between that of model
checking (the entire structure is given) and satisfiability (no part of a structure is given).
In the combined setting an instance consists of a structure together with a formula. We
focus here on data complexity, where the formula is fixed and the input consists of an
instance structure only. We call σ, the vocabulary of A, the instance vocabulary, and
ε := vocab(φ) \ σ the expansion vocabulary.

Remark 1. Since FO MX can specify exactly the problems that ∃SO can, one might
ask why we don’t stick with the standard notion of ∃SO model checking. Primarily it
is because we rarely use pure FO, and because for each language L, MX is just one
among several tasks of interest.

Descriptive complexity [17] and metafinite model theory [13,12] can find applications
in constraint modelling languages. The authors of [21] emphasized the importance of
the property of capturing NP and other complexity classes for such languages. The
capturing property is of fundamental importance as it shows that, for a given language:
(a) we can express all of NP – giving the user an assurance of universality of the
language for a given complexity class,
(b) no more than NP can be expressed – thus solving can be achieved by means of
constructing a universal polytime reduction to an NP complete problem such as SAT
or CSP. This reduction is called propositionalization or grounding.

The authors proposed to take the capturing property as a fundamental guarding prin-
ciple in the development and study of declarative programming for search problems in
this complexity class, and started careful development of foundations of modelling lan-
guages of search problems based on extensions and fragments of first-order (FO) logic.
While the current focus is on the complexity class NP, by no means, do we suggest
that the expressive power of the languages for search problems should be limited to NP.
Our goal is to design languages for non-specialist users who may have no knowledge of
complexity classes. The users will be given a simple syntax within which they are safe,
and they would be encouraged to express their problems in that syntax.

The classic Fagin’s theorem [8], relating ∃SO and NP, states that parameterized (for-
mula is fixed) FO MX captures NP. However, FO lacks many features needed for prac-
tical specification languages such as a built-in support for arithmetic. Fagin’s theorem
allows one to represent all problems in NP, however, there is no direct way to deal
with numbers and operations on them since in logic we have abstract domain elements.
Therefore, problems involving numbers have to encode their inputs and outputs using
elements of the domain. A usable logic for these problems would use standard arith-
metic, as in all realistic modelling languages.

A solution, inspired by a previous proposal [13], was given in [27]. There, MX ideas
were extended to embedded MX to provide mathematical foundation for dealing with in-
finite arithmetic structure with ×, +, <, etc., and aggregate functions (min, sum etc.),

612 S. Tasharrofi and E. Ternovska

operations that are considered “built-in”. The authors needed a method for handling op-
erations with outputs outside of the input domain, as is common in practical languages.
They also desired universal quantification over integers since it is convenient and is
used in practice. Access to the arithmetical structure through weight terms as in [13]
was not sufficient. They defined two new logics, GGFk and DGGFk. The former is an
extension of the k-guarded fragment of FO (or FO(ID)), in which instance predicates
are used as guards of quantifiers and expansion predicates (here, GG stands for double-
guarded, not for [13]). DGGFk, is an extension of GGFk in which definable guards are
allowed, provided they are polysize in the domain size. The extension allows for quan-
tifying over variables whose values fall outside of the input domain. It was proven that,
under a small-cost condition, NP is captured for both fragments. That is, (a) for every
problem in NP (represented by a class of logical structures) there is a specification in
the logic such that an instance (a structure) is in the class iff there is an expansion of
that structure that satisfies the specification; and (b) for every specification in the logic,
the task of MX is in NP. The small cost condition says that values of the input numbers
cannot be bigger than 2poly(n), where poly(n) is some polynomial in the size n of the
domain.

The two fragments provide natural axiomatizations (that do not involve binary en-
codings) but have two limitations:

(1) Poly-size guards are too limiting. Suppose we want to output the total weight of all
items in a Knapsack (an expansion predicate). A natural axiom would be:
∃x (G(x) ∧ Output(x) ∧ x = Σy(Weight(y) : Knapsack(y)). We cannot use a
polysize guard G: there are up to 2n distinct sums, where n is the size of the domain.
(2) Small cost condition cannot be satisfied in natural axiomatizations of some com-
mon problems in NP such as integer factorization or a quadratic programming problem:
given m, a, c find x such that x2 = a (mod m) ∧ x > c.

The values of the given integers, m and a, are, in general, unlimited in the size of the
input domain, which is 3.

As we show in [26], several practical modelling languages, including the system lan-
guages of ASP and IDP, meet the same challenges regarding the small cost condition.
Both these languages capture NP over small cost arithmetical structures and, also, none
of these languages can axiomatize factorization or the quadratic residue problem (two
prominent non-small cost problems) using their built-in arithmetic. Although we did
not discuss it in [26], the same analysis applies to some other system languages such as
NP-SPEC [3] to show that their built-in arithmetic has limited expressibility.

Here, we introduce a new logic, PBINT, which is suitable for modelling problems
that involve arithmetic as it eliminates the small cost condition and captures NP for
all problems involving arithmetic. The logic can be viewed as an idealized specifica-
tion/modelling language. PBINT uses a different background structure than that of [27],
namely the structure containing at least (N; 0, 1,+,×, <, || ||), among other polytime
relations. PBINT eliminates the two drawbacks above while retaining three important
features:

PBINT, A Logic for Modelling Search Problems Involving Arithmetic 613

– Natural logic. All problems with arithmetical operations can be axiomatized natu-
rally (without e.g. binary encodings and with quantifiers over numbers).

– Capturing NP. The result is due to a new kind of existential and upper guards, and
a slightly different set of allowable arithmetic operations.

– Polytime Grounding. The grounding time is polynomial in the size of the binary
encoding of the input structure (not necessarily in the domain size).

2 Background: MX with Arithmetic

Throughout the paper, we use := for “denotes”,⇒ for material implication, and ∃x̄ for
∃x1 . . .∃xn, similarly for ∀x̄.

Embedded MX. Embedded finite model theory (see [19]), the study of finite structures
whose domain is drawn from some infinite structure, was introduced to study databases
that contain numbers and numerical constraints. Rather than think of a database as a
finite structure, we take it to be a set of finite relations over an infinite domain.

Definition 1. A structure A is embedded in an infinite background (or secondary)
structure M = (U ; M̄) if it is a structure A = (U ; R̄) with a finite set R̄ of finite
relations and functions, where M̄ ∩ R̄ = ∅. The set of elements of U that occur in some
relation of A is the active domain of A, denoted adomA.

Example 1. Consider a company database with a table containing employee numbers,
salaries and pension plans. This database is a finite structure embedded in the infinite
background structure of the natural numbers with the standard arithmetic operations.
Queries over embedded databases may use the database relations and the arithmetical
operations whose interpretation is provided by the infinite background structure. E.g.
the following query (a FO formula with free variable x) returns people whose total
salary and pension plan contribution is above $100,000: ∃s∃p (empl(x, s, p)∧ s+ p ≥
$100, 000).

In database research, embedded structures are used with logics for expressing queries.
Here, we use them similarly, with logics for MX specifications. Throughout, we use
the following conventions: σ denotes the vocabulary of the embedded structure A =
(U ; R̄), which is the instance structure; ν denotes the vocabulary of an infinite back-
ground structure M = (U ; M̄); ε is an expansion vocabulary; R̄ and M̄ always denote
the interpretations of σ and ν, respectively. We treat R̄ and M̄ as tuples or as sets, de-
pending on the context. A formula φ over σ ∪ ν ∪ ε constitutes an MX specification.
The model expansion task remains the same: expand a (now embedded) σ-structure to
satisfy φ.

A Logic for Embedded MX: Double-guarded logic. Just as [27], we use a guarded
logic in an embedded setting, which allows us to quantify over elements of the back-
ground structure (unlike, e.g. [13]). Again, we use an adaptation of the guarded frag-
ment GFk of FO [11]. In formulas of GFk, a conjunction of up to k atoms acts as a
guard for each quantified variable.

614 S. Tasharrofi and E. Ternovska

Definition 2. The k-guarded fragment GFk of FO (with respect to σ) is the smallest set
of formulas that:
1. contains all atomic formulas;
2. is closed under Boolean operations;
3. contains ∃x̄ (G1∧. . .∧Gm∧φ), provided the Gi are atomic formulas of σ, m ≤ k,

φ ∈ GFk, and each free variable of φ appears in some Gi.
4. contains ∀x̄ (G1∧. . .∧Gm ⊃ φ) provided the Gi are atomic formulas of σ, m ≤ k,

φ ∈ GFk, and each free variable of φ appears in some Gi.
For a formula ψ := ∃x̄ (G1∧. . .∧Gm∧φ), conjunctionG1∧. . .∧Gm is called the
existential guard of the tuple of quantifiers ∃x̄; universal guard is defined similarly.

Example 2. Let ε be {E1, E2}. The following formula is not guarded:∀x∀y (E1(x, y) ⊃
E2(x, y)). It is guarded when E1 is replaced by P which is not in ε. The following for-
mula is the standard encoding of the temporal formula Until(P1, P2): ∃v2 (R(v1, v2)∧
P2(v2) ∧ ∀v3 (R(v1, v3) ∧ R(v3, v2) ⊃ P1(v3))). The formula is 2-guarded, i.e., is in
GF2, but it is not 1-guarded.

The guards of GFk are used to restrict the range of quantifiers. We also use “upper
guard” axioms, which restrict the elements in expansion relations to those occurring in
the interpretation of guard atoms. To formalize this, we introduce the following restric-
tion of FO, denoted GGFk(ε).

Definition 3. The double-guarded fragment GGFk(ε) of FO, for a given vocabulary ε,
is the set of formulas of the form φ∧ψ, with ε ⊂ vocab(φ∧ψ), where φ is a formula of
GFk, and ψ is a conjunction of upper guard axioms, one for each symbol of ε occurring
in ψ, of the form ∀x̄ (E(x̄) ⊃ G1(x̄1) ∧ · · · ∧Gm(x̄m)), where m ≤ k, and the union
of free variables in the Gi is precisely x̄.

We call the guards of GFk, that restrict the range of quantifiers, lower guards, and the
guards from Def. 3 upper guards. Upper guards on expansion functions are discussed
later. In GGFk, all upper and lower guards are from the instance vocabulary σ, so ranges
of quantifiers and expansion predicates are explicitly limited to adomA. In DGGFk,
this restriction is relaxed, adding a mechanism for “user-defined” guard relations that
may contain elements outside adomA. The authors assume that the instance vocabulary
always contains the predicate symbol adomA, which always denotes the active domain.
Then adomA(x) can be used as a guard atom (upper or lower)2. Guards provide a
logical formalization of some aspects of the type systems of some existing constraint
modelling languages [22]. Lower guards correspond to declaring the types of variables,
and upper guards to declaring the types of expansion predicates.

So far, we explained how formulas are constructed. To finish definition of the logic,
we need to define well-formed terms. This definition depends in the vocabulary of the
background structure. The authors of [27] used arithmetical structures, same as [13].

2 The relation which corresponds to the active domain is definable with respect to each instance
structure, but the defining FO formula requires disjunctions, thus cannot be used as a guard
and the predicate symbol adomA(x) is necessary.

PBINT, A Logic for Modelling Search Problems Involving Arithmetic 615

Arithmetical Structure In addition to standard arithmetical operators, it has a collec-
tion of multiset operations, including max, min, sum and product.

Definition 4. An Arithmetical structure is a structure N containing at least
(N; 0, 1, χ,<,+, ·,min,max,Σ,Π), with domain N, the natural numbers, and where
min, max, Σ, and Π are multiset operations andχ[φ](x̄) is the characteristic function.
Other functions, predicates, and multiset operations may be included, provided every
function and relation of N is polytime computable.

Well-formed terms are defined over ν ∪ σ ∪ ε by induction, as usual. The details are
not important here. The authors of [27] proved that, using operations mentioned above,
the MX task for logics GGFk and DGGFk and for structures embedded in arithmetical
structures captures NP under small cost condition.

3 Logic PBINT

The first step towards eliminating the limitations of the previous logics is to use a dif-
ferent background structure.

Definition 5. A Compact Arithmetical structure is a structure N c containing at least
(N; 0, 1,+,×, <, || ||) with domain N, the natural numbers, where 0, 1, +, × and <
have their usual meaning and ||x|| returns the size of binary encoding of number x, i.e.,
||x|| = 1 + �log2(x + 1)	. Other functions, predicates, and multi-set operations (min,
max etc.) may be included, provided every function and relation of N c is polytime
computable.

Our capturing results in Section 4 remain valid even when the background structure’s
domain changes from N to Z (although a more detailed proof would be needed).

Requirements on σ. As before, we consider embedded MX, but the embedding is
into the compact arithmetical structure. We make some assumptions about the instance
vocabulary σ. It contains predicate adomA and a constant SIZE. The constant SIZE
is equal to |adomA|×S where |adomA| is the number of elements in the active domain
and S is the size of binary encoding of the maximum element of the active domain. In
other words, SIZE upper-bounds the number of bits needed to encode (in binary)
the input structure A embedded in N c. We also need a constant default denoting a
particular default value needed in upper guards on functions. Its meaning is specified
by the user.

Logic PBINT. We introduce a new logic, PBINT, standing for Polynomially Bounded
Integers. This logic is a variant of the double-guarded logic except we use compact
arithmetical structures and allow functions in σ and ε, or new kinds of guards, with
more freedom in existential and upper guards on the outputs of expansion functions.
The three forms of guards in PBINT are as follows:
1. Instance Guards are instance predicates (including adomA) interpreted by the

instance structure A . Note that, although we do not require it to be so, all specifi-
cations can be rewritten to only use adomA as a guard.

616 S. Tasharrofi and E. Ternovska

2. Polynomial Range Guards are relations of the form p(SIZE) ≤ x ≤ p′(SIZE)
with p and p′ two polynomials.

3. PBINT Guards are relations of the form ||x|| ≤ poly(SIZE) where poly(SIZE)
is a polynomial depending only on the constant SIZE.

Instance guards and polynomial range guards define ranges of size at most polynomial
in the binary encoding size of structure. However, PBINT guards can define ranges
with exponentially many different integers. For example, condition ||x|| ≤ SIZE is
equivalent to x ≤ 2SIZE−1 − 1, exponential the in value of SIZE. Also note that
guards definable by stratifiable inductive definitions with (1), (2) as the base cases can
be added without changing our results.

Definition 6 (logic PBINT). We define our logic as follows.
Background Structure: the compact arithmetical structure.
Terms are constructed as usual over ν ∪ σ ∪ ε.
Formulas:

(a) Upper Guards
i. Expansion relations are upper-guarded by instance or polynomial range

guards.
ii. An expansion function f has an upper guard axiom of the form ∀x̄∀y (f(x̄) =

y ⇒ (G(x̄, y) ∨ y = default)) where G(x̄, y) is a conjunction of guards
jointly guarding variables x̄ and y so that x̄ is upper-guarded by instance or
polynomial range guards and y is upper-guarded by any of the three types of
guards.

(b) Lower Guards
i. Existential guards: any of the three types of guards.

ii.Universal guards: instance or polynomial range guards.

The upper guards on expansion functions need the y = default disjunct to keep the up-
per guard meaningful. Otherwise, any expansion function would have its input restricted
by a guard G(x̄, y) which is in contradiction to the totality of functions (therefore mak-
ing the specification outright false).

A similar problem happens when instance functions are allowed: the usual definition
of active domain becomes meaningless because a function is total and thus defined on
all the integers making the active domain equal to N. While it is possible to disallow the
instance functions, it is certainly not desirable for any nice practical logic. Therefore,
we choose to allow instance functions, but to require them to have upper guards and
the “default” value for inputs outside of the intended range, just as for expansion func-
tions. Active domain now contains all elements of the universe contained in all instance
relations, together with all elements in the ranges of the instance functions. This trick
also enables us to ensure that both instance and expansion functions have finite (also
polynomial size) representation.

Example 3 (Disjoint Scheduling). Given a set of Tasks, t1, · · · , tn and a set of con-
straints, find a schedule that satisfies all the constraints. Each task ti has an earliest
starting time EST (ti), a latest ending time LET (ti) and a length L(ti). There are also
two predicates P (ti, tj), that says task ti should end before task tj starts, and D(ti, tj),

PBINT, A Logic for Modelling Search Problems Involving Arithmetic 617

which means that the two tasks ti and tj cannot overlap. We are asked to find two
functions start(ti) and end(ti) satisfying the given conditions.

In PBINT, we axiomatize this problem as follows: Instance vocabulary σ consists
of symbols EST , LET , L, Task, P and D. Expansion vocabulary consists of two
functions start and end which are upper-guarded as follows:

∀t∀s (start(t) = s⇒
(Task(t) ∧ ||s|| ≤ SIZE) ∨ s = default),

∀t∀e (end(t) = e⇒
(Task(t) ∧ ||e|| ≤ SIZE) ∨ e = default).

The following sentences axiomatize the problem statement:

∀ti (Task(ti) ⇒ start(ti) ≥ EST (ti)),
∀ti (Task(ti) ⇒ end(ti) ≤ LET (ti)),
∀ti (Task(ti) ⇒ start(ti) + L(ti) = end(ti)),
∀ti∀tj (P (ti, tj) ⇒ end(ti) ≤ start(tj)),
∀ti∀tj (D(ti, tj) ⇒

end(ti) ≤ start(tj) ∨ end(tj) ≤ start(ti)).

In a practical language, usually upper and lower guards are defined by types and need
not be given explicitly. For example, here, the predicate Task is a type and functions
start and end are functions from the type Task to integer type. So, predicate Task
disappears from the above sentences.

Now, let us compare how this problem is axiomatized under small cost condition.
Note that this class of structures dissatisfies the small cost condition because values in
a structure, e.g. LET (ti), are not related to the domain size, i.e., the number of tasks.
So, another class of structures is needed here. One general choice would be to encode
all numbers in binary. For example, instead of function EST , there will be predicate
EST ′(ti, j) for which, EST (t) = n iff n = Σk(2k : EST ′(t, k)). To simplify, let
us also assume that there is a unary relation B defining the set of bit indices, e.g. all
values appearing in the second position of a tuple in EST ′ are in B. Also, assume that
0 is the minimum value in B and that if p > 0 is in B, so is p − 1. Now that we are
no longer working on “built-in” numbers, numerical operations have to be axiomatized.
For example, formula start(ti) ≤ EST (ti) is replaced by: (all quantified variables
below are lower-guarded by B)

E(0) ∨ ∃k (¬start′(ti, k) ∧ EST ′(ti, k) ∧ E(k + 1)),
E(k) := ∀k′ (k′ ≥ k ⇒ (start′(ti, k) ⇔ EST ′(ti, k))).

Other inequalities in the above axioms are replaced by similar formulas. The addition
operator in start(ti) + L(ti) = end(ti) is axiomatized as follows: (all quantifiers are
lower-guarded by B and operator ⊕ stands for logical xor)

∀k (start(ti, k)⊕ L(ti, k)⊕ C(k) ⇔ end(ti, k)),
C(k) :=

∃k′ (L(ti, k′) ∧ start(ti, k′) ∧ k′ < k ∧ CF (k, k′)),
CF (k, k′) :=

∀k′′ (k′ < k < k′′ ⇒ L(ti, k′′) ∨ start(ti, k′′)).

618 S. Tasharrofi and E. Ternovska

The first axiomatization is incomparably more natural.

Example 4 (Factorization). You are given a number n and asked to find some nontrivial
factorization for n. Here, σ only has constant n and ε only has constants p and q which
are upper-guarded as follows ||p|| ≤ SIZE and ||q|| ≤ SIZE where ||c|| ≤ SIZE
abbreviates ∀m (c = m ⇒ ||m|| ≤ SIZE) in case of zero-ary (constant) expansion
functions. Now, the axiomatization is:

p > 1 ∧ p < n ∧ q > 1 ∧ q < n ∧ p× q = n.

Example 5 (Quadratic Residues). You are given numbers r, n and c and asked to find
a number x such that x2 ≡ r (mod n) and x < c. Here, instance vocabulary consists
of constants n, r and c and expansion vocabulary only has constant x upper-guarded by
sentence ||x|| ≤ SIZE. The axiomatization consists of two sentences 0 ≤ x ∧ x ≤
c ∧ x < n and ∃q (||q|| ≤ SIZE ∧ x× x = q × n + r).

Both Factorization and Quadratic Residue problems would have to be axiomatized in
binary in the logics of [27].

4 Capturing NP

Theorem 1. Let K be an isomorphism-closed class of compact arithmetical embedded
structures over vocabulary σ. Then the following are equivalent:
1. K ∈ NP ,
2. there is a PBINT sentence φ of a vocabulary τ = σ ∪ ν ∪ ε, such that
A ∈ K iff there exists an expansion B of A with B |= φ.

The proof for the two different directions of this theorem are given in separate subsec-
tions. But, first, we introduce a characterization for PTIME due to Bellantoni and Cook
[1] which is needed for our proof of (1) ⇒ (2).

4.1 Bellantoni-Cook Characterization of PTIME

We briefly describe a functional language introduced by Bellantoni and Cook [1] which
captures polytime functions. It has originally been defined to work on strings in {0, 1}∗.
But, as such strings encode numbers, we have reformulated the operations in numerical
terms.

Functions in Bellantoni-Cook form have two sets of parameters separated by a semi-
colon. Parameters to the left of semicolon are called “normal” inputs and those to its
right are “safe” inputs. This separation disables the possibility of introducing recursions
whose depth depend on the result of other recursions. This property is essential to prove
that such functions are poly-time computable. Here are the constructs:
1. Zero: Z(;) = 0.
2. Projections πn,m

j (x1, · · · , xn;xn+1, · · · , xn+m) = xj .
3. Successors S0(; a) = 2× a, S1(; a) = 2× a + 1.
4. Modulo 2: M(; a) = a mod 2.

PBINT, A Logic for Modelling Search Problems Involving Arithmetic 619

5. Predecessor: P (; a) = �a
2 	.

6. Conditional: C(; a, b, c) = if 2|a then b else c.
7. Safe recursion that defines n + 1-ary function f based on n-ary function g and the

n + 2-ary functions h0 and h1:

f(0, x; y) = g(x; y),
f(2a, x; y) = h0(a, x; y, f(a, x; y)),
f(2a+ 1, x; y) = h1(a, x; y, f(a, x; y)).

8. Safe composition that defines function f based on functions r0, · · · , rk+k′ :

f(x̄; ȳ) =
r0(r1(x̄;), ..., rk(x̄;); rk+1(x̄; ȳ), ..., rk+k′ (x̄; ȳ)).

This language interests us as it is a purely syntactic characterization of PTIME which
is based on numbers. Furthermore, the language is free of any unnatural functions for
bounding growth of numbers.

Bellantoni-Cook’s theorem says that any function defined in this form is PTIME and
that for any PTIME computable function f(a), there is a function f ′(w; a) such that
f(a) = f ′(w; a) for all a’s and for all w’s satisfying ||w|| ≥ pf(||a||) (where ||x|| is
the binary encoding size of x and pf is a polynomial depending on f and constructible
based on Bellantoni-Cook’s proof).

4.2 NP ⊆ PBINT MX

Proof. Let us first review our proof structure for (1)⇒ (2).
1. We know NP problems have PTIME verifiers.
2. By Bellantoni and Cook’s theorem, every such polytime verifier can be given in

their syntax.
3. So, it remains to show that, verifier V in Bellantoni-Cook form, can be turned

into axiomatization φ in PBINT so that for σ-structure A, φ is satisfiable by an
expansion of A iff there is a polysize certificate for A accepted by V .

As this proof is so detailed, we only include the proof idea here. The full proof is in
the Appendix.

The proof constructs PBINT specification φ based on verifier V . In φ, expansion
vocabulary ε consists of:
1. B : N × N to map start times to functions, e.g., B(5, cf) means that, at time 5,

function f has started running (cf is a constant used to refer to function f).
2. E : N × N which, similarly, maps start times to end times, e.g., E(5, 10) means

that the function that had started running at time 5 ended running at time 10, and
together with B(5, cf), it means that function f started at time 5 and ended at
time 10.

3. r : N → N is used to store result of function executions. It is needed only when
execution of a function terminates. For instance, continuing example above, having
r(10) = 2 means that result of computing function f is 2 (because it was f that
ended at time 10).

620 S. Tasharrofi and E. Ternovska

4. arg : N × N → N is used for storing function arguments. Semantically,
arg(n,m) = k means that the mth argument of function starting at time n is
k. For example, having arg(5, 1) = 7 together with examples listed in items (1)
to (3), means that function f started running and at time 5 on argument 7, and it
finished at time 10 and gave result 2, so f(7) = 2.

This expansion vocabulary enables us to simulate the behavior of a program in
Bellantoni-Cook form. We will have axioms saying what each function does. For ex-
ample, for base function Z we have that it finishes immediately and gives zero as result.
This is axiomatized as below:

∀n (T (n) ∧B(n, cZ) ⇒ E(n, n + 1)),
∀n (T (n) ∧B(n, cZ) ⇒ r(n + 1) = 0).

where T (n) is a lower guard which bounds the time needed for simulating verifier V (a
polynomial in the size of binary encoding of structure).

All other base functions have similarly simple axiomatizations. Functions defined in
terms of other functions (using safe recursion or safe composition) need more complex
(but still straightforward) axiomatizations. All these details can be found in the full
proof.

There are some more subtle issues that have to be addressed in order to give a correct
proof, e.g. encoding structures as numbers. All these subtleties are dealt with in the full
proof given in the Appendix (which did not fit here, please see the online version).

4.3 PBINT MX⊆ NP

Proof. Here, the proof goes as follows:

1. We first show that, given an MX specification φ in PBINT, you can find equivalent
ψ in ∃SO by using binary encodings of numbers.

2. Next, we show that structure A for φ is convertible to structure A′ for ψ (in poly-
time) so that satisfying expansion B of A exists iff satisfying expansion B′ of A′

exists.
3. Then, by Fagin’s theorem, PBINT MX⊆NP.

To obtain ψ, we first create a specification in which all existentially quantified variables
with PBINT guard G are replaced by skolemized PBINT functions upper-guarded by
G. Then, this specification is converted to ψ by replacing PBINT functions with re-
lations that encode value of the function in binary. For example, for PBINT function
f(x1, · · · , xn), relation Qf (x1, x2, · · · , xn, k) is introduced with k being guarded by
new relation R. The idea is that Qf(x1, · · · , xn, k) holds iff the k-th bit of binary en-
coding of f(x1, · · · , xn) is one.

We know that all numbers in a PBINT specification are guarded. Hence, there is
a polynomial p(n) such that 2p(SIZE) is greater than all numbers generated in φ. So,
assuming that we have a relationR containing all numbers 0, · · · , p(SIZE), describing
operations of background structure is easy. For example, assuming that x, y and z are
encoded by unary predicates Qx, Qy and Qz , the relation x = y+z can be axiomatized
as follows:

PBINT, A Logic for Modelling Search Problems Involving Arithmetic 621

∀k (R(k) ⇒
(Carry(k) ⇔ (Qx(k) ⇔ (Qy(k) ⇔ ¬Qz(k))))),

Carry(k) :=
∃k′ (R(k′) ∧ k′ < k ∧Qy(k′) ∧Qz(k′) ∧ CF (k, k′)),

CF (k, k′) :=
∀k′′ (R(k′′) ∧ k′ < k′′ < k ⇒ Qy(k′′) ∨Qz(k′′)).

Although cumbersome, all other background operations can be similarly axiomatized.
Now, structureA′ is obtained fromA by adding unary relationR toA and converting

all numbers inA to their binary representation. These tasks can be done in polytime and
so obtaining A′ from A is polytime achievable.

So, as ψ is in ∃SO, the task of model expansion for ψ is in NP. Also, asA is polytime
convertible toA′ and existence of a satisfying expansion forA is equivalent to existence
of a satisfying expansion for A′, model expansion for φ will also be in NP.

5 Related Work

Research in databases over infinite structures can be traced back to the seminal paper by
Chandra and Harel [4]. There are several follow-up papers with developments in several
directions including [28,24,13], and more recent [12]. Topor [28] studies the relative
expressive power of several query languages in the presence of arithmetical operations.
He also investigates domain independence and genericity in such frameworks.

Another line of database-motivated work over infinite background structures is em-
bedded model theory (See [19,20]). Work in this area generally reduces questions on
embedded finite models to questions on normal finite models. An important result in this
area is the natural-domain-active-domain collapse for ∃SO for embedded finite models,
as well as other deep expressiveness results. The work also describes a notion of safety
(through e.g. range-restriction) to achieve safety with many background structures, and
connections between safety and decidability. The active domain quantifiers are similar
to our proposal of lower guards, however our goal was to reflect what is used in prac-
tical languages, namely the so-called domain predicates of Answer Set Programming
and type information from other languages. We’ve done it through the use of upper and
lower guards. In general, research in database theory is mostly focused around com-
putability and the expressive power of query languages, while our interest, following
[12] is in capturing complexity classes, but in connection with specification/modelling
languages. We plan, however, to investigate the applicability of domain-independence,
range-restrictedness and other notions from embedded model theory to practical mod-
elling languages.

Grädel and Gurevich [13] studied logics over infinite background structures in a more
general computer science context. They characterized NP for arithmetical structures
under some small weight property, generalized to the small cost condition in [27] (see
[27] for a more detailed discussion). While this condition corresponds to existing prac-
tical languages such as ASP and IDP system (see our paper [26] for more details), our
work here gives an unconditional result for capturing NP in the presence of arithmetical
structures, and thus is a step forward in the development of such languages. Instead of

622 S. Tasharrofi and E. Ternovska

controlling access to the background structure through the use of weight terms [13], we
rely on guarded fragments, which is much closer to practical specification languages.

The work we mentioned so far is the closest to our proposal, and was the most inspi-
rational. The research on descriptive complexity in the embedded setting also includes
the work of Grädel and Meer [15], as well as Grädel and Kreutzer [14]. Another line
(Cook, Kolokolova and others [6]) establishes connections between bounded arithmetic
and finite model theory, in particular by relying on Grädel’s characterization of PTIME.
While this work is less relevant here, we still plan to provide more detail in the journal
version of the paper.

Another direction on capturing complexity classes is bounded arithmetic, including
[2,23,1]. However, the characterization of complexity classes there is in terms of prov-
ability in systems with a limited collection of non-logical symbols, and is not applicable
here.

There are many different characterizations of PTIME such as Leivant’s [18], Immer-
man’s [16], Cobham’s [5] and Bellantoni-Cook characterization [1]. Leivant’s charac-
terization says that PTIME functions are exactly those that are provable in a logic called
L2(QF+). Immerman’s logic is a fix-point logic with least fix-point operator and ≤
which works on structures with abstract domain elements. The two other characteriza-
tions of Cobham’s and Bellantoni-Cook have the property of characterizing PTIME as
a set of functions working on numbers and so better suited for our purpose of charac-
terizing search problems over arithmetical structures. Also, the safe recursion and safe
composition operators in the Cook-Bellantoni characterization give us a more natural
way of guaranteeing that the result of the simulation we need in our proof falls within
some bounds. Therefore, we choose the Bellantoni-Cook characterization [1] over Cob-
ham’s as the basis of our proof.

Built-in arithmetic is implemented in many modelling languages, e.g. the MX-based
IDP system [29] and LPARSE [25]. However, as we showed in a parallel work in [26],
such languages have limited expressiveness in the presence of arithmetic constraints.
For example, we showed in [26] that the two problems of integer factorization and
quadratic residues are not expressible in ASP and IDP systems using their built-in arith-
metic. Also, in many cases, allowing arithmetic constraints without careful restrictions
provides the language with very high expressiveness, as is shown for ESSENCE [22].

6 Conclusion

In modelling languages, you are frequently faced with the problem of having a
framework to support both a natural specification of problems, and reasoning about
those problems. In this paper, we took our measure of naturality to be being able to use
“built-in” arithmetic, and our measure of reasoning to be being in NP. We showed some
examples of problems of practical importance and argued that our fragment of logic
is able to represent them naturally. We proved that embedded (in N c) MX for PBINT
captures exactly NP. This result guarantees universality of our logic for this complexity
class and also settles our reasoning abilities by showing that all PBINT axiomatizations
can be efficiently (in polytime) grounded to any state of the art solver of NP problems.

PBINT, A Logic for Modelling Search Problems Involving Arithmetic 623

Our work is a significant step forward from the previous proposal since it overcomes a
number of limitations.

The language we proposed is natural because it is essentially FO logic, where guards
can be made “invisible” through “hiding” them in a type system. Solving can be
achieved through grounding to SAT, a work which is being performed in our group,
but falls outside the scope of this paper.

In summary, our work has shown a new application of descriptive complexity and
metafinite model theory, and contributed to those areas by improving a previous result
of capturing NP for arithmetical structures. Future directions include (a) analysis of
existing languages in connection with our results here, similar to what was done for
ESSENCE with respect to the previous proposal [22]; (b) design of logics with dif-
ferent background structures, (c) extending the framework to deal with combination
of languages, interacting in a modular system, (d) continue with our implementation
development.

Acknowledgement. This work is generously funded by NSERC, MITACS and D-
Wave. We also express our gratitude towards the anonymous referees for their useful
comments.

References

1. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime func-
tions (extended abstract). In: STOC 1992: Proceedings of the twenty-fourth annual ACM
symposium on Theory of computing, pp. 283–293 (1992)

2. Buss, S.R.: Bounded arithmetic. PhD thesis, Princeton University (1985)
3. Cadoli, M., Palopoli, L., Schaerf, A., Vasile, D.: Np-spec: An executable specification lan-

guage for solving all problems in np. In: Gupta, G. (ed.) PADL 1999. LNCS, vol. 1551, pp.
16–30. Springer, Heidelberg (1999)

4. Chandra, A., Harel, D.: Computable queries for relational databases. Journal of Computer
and System Sciences 21, 156–178 (1980)

5. Cobham, A.: The intrinsic computational difficulty of functions. In: Bar-Hillel, Y. (ed.) Proc.
of the 1964 International Congress for Logic, Methodology, and the Philosophy of Science,
pp. 24–30 (1964)

6. Cook, S., Kolokolova, A.: A second-order system for polytime reasoning based on grädel’s
theorem. In: Proceedings of Sixteenth Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS 2001), pp. 177–186 (2001)

7. Denecker, M., Ternovska, E.: A logic of non-monotone inductive definitions. TOCL 9(2),
1–51 (2008)

8. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Com-
plexity of computation, SIAM-AMC proceedings, vol. 7, pp. 43–73 (1974)

9. Frisch, A.M., Grum, M., Jefferson, C., Hernandez, B.M., Miguel, I.: The essence of essence:
A constraint language for specifying combinatorial problems. In: Proc. of the Fourth Inter-
national Workshop on Modelling and Reformulating Constraint Satisfaction Problems, pp.
73–88 (2005)

10. Gebser, M., Schaub, T., Thiele, S.: Gringo: A new grounder for answer set programming.
In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp.
266–271. Springer, Heidelberg (2007)

624 S. Tasharrofi and E. Ternovska

11. Gottlob, G., Leone, N., Scarcello, F.: Robbers, marshals, and guards: game theoretic and
logical characterizations of hypertree width. In: PODS 2001 (2001)

12. Grädel, E.: Finite Model Theory and Descriptive Complexity, pp. 125–230. Springer, Hei-
delberg (2007)

13. Grädel, E., Gurevich, Y.: Metafinite model theory. Inf. Comput. 140(1), 26–81 (1998)
14. Grädel, E., Kreutzer, S.: Descriptive complexity theory for constraint databases. In: Flum, J.,

Rodrı́guez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 67–81. Springer, Heidelberg
(1999)

15. Grädel, E., Meer, K.: Descriptive complexity theory over the real numbers. Mathematics of
Numerical Analysis: Real Number Algorithms 32, 381–403 (1996)

16. Immerman, N.: Relational queries computable in polynomial time. In: STOC 1982: Proceed-
ings of the 14th Annual ACM Symposium on Theory of Computing, pp. 147–152 (1982)

17. Immerman, N.: Descriptive complexity (1999)
18. Leivant, D.: A foundational delineation of computational feasibility. In: LICS 1991: Pro-

ceedings of the sixth Annual IEEE Symposium on Logic in Computer Science, pp. 2–11
(1991)

19. Libkin, L.: Elements of Finite Model Theory (2004)
20. Libkin, L.: Embedded Finite Models and Constraint Databases, pp. 257–338. Springer, Hei-

delberg (2007)
21. Mitchell, D.G., Ternovska, E.: A framework for representing and solving NP search prob-

lems. In: Proc. AAAI 2005 (2005)
22. Mitchell, D.G., Ternovska, E.: Expressiveness and abstraction in ESSENCE. Con-

straints 13(2), 343–384 (2008)
23. Skelley, A.: Theories and Proof Systems for PSPACE and the EXP-Time Hierarchy. PhD

thesis, University of Toronto (2005)
24. Suciu, D.: Domain-independent queries on databases with external functions. Theor. Com-

put. Sci. 190(2), 279–315 (1998)
25. Syrjänen, T.: Lparse 1.0 User’s Manual (2000),

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
26. Tasharrofi, S., Ternovska, E.: Built-in arithmetic in knowledge representation languages. In:

Proc. of Logic and Search, LaSh 2010 (2010)
27. Ternovska, E., Mitchell, D.G.: Declarative programming of search problems with built-in

arithmetic. In: Proc. of 21st International Joint Conference on Artificial Intelligence (IJCAI
2009), pp. 942–947 (2009)

28. Topor, R.: Safe database queries with arithmetic relations. In: Proc. 14th Australian Com-
puter Science Conf., pp. 1–13 (1991)

29. Wittocx, J., Marien, M.: The IDP System, KU Leuven (June 2008),
www.cs.kuleuven.be/˜dtai/krr/software/idpmanual.pdf

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
www.cs.kuleuven.be/~dtai/krr/software/idpmanual.pdf

Resolution for Stochastic Boolean Satisfiability�

Tino Teige and Martin Fränzle

Carl von Ossietzky Universität, Oldenburg, Germany
{teige,fraenzle}@informatik.uni-oldenburg.de

Abstract. The stochastic Boolean satisfiability (SSAT) problem was
introduced by Papadimitriou in 1985 by adding a probabilistic model of
uncertainty to propositional satisfiability through randomized quantifi-
cation. SSAT has many applications, e.g., in probabilistic planning and,
more recently by integrating arithmetic, in probabilistic model checking.
In this paper, we first present a new result on the computational com-
plexity of SSAT: SSAT remains PSPACE-complete even for its restriction
to 2CNF. Second, we propose a sound and complete resolution calculus
for SSAT complementing the classical backtracking search algorithms.

1 Introduction

In 1985, Papadimitriou proposed the idea of modeling uncertainty in proposi-
tional satisfiability (SAT) by introducing randomized quantification in addition
to existential quantification. This gives the notion of stochastic Boolean satis-
fiability (SSAT) [1]. An SSAT formula consists of a quantifier prefix and of a
propositional formula. The quantifier prefix is an alternating sequence of ex-
istentially quantified variables and variables bound by randomized quantifiers.
The meaning of a randomized variable x is that x takes value true with a cer-
tain probability p and value false with the complementary probability 1 − p.
Due to the presence of such probabilistic assignments, the semantics of an SSAT
formula Φ is no longer qualitative in the sense that Φ is true or false, as it is for
existential and universal quantifiers, but rather quantitative. For SSAT formulae
Φ, we ask for the maximum probability of satisfaction. Intuitively, a solution of
Φ is a tree of assignments to the existential variables, depending on the proba-
bilistically determined values of preceding randomized variables, that maximize
the probability of satisfying the propositional formula.

In recent years, the SSAT framework became popular within the Artificial
Intelligence (AI) community, as many problems from that area exhibiting un-
certainty can be described as SSAT problems or even special cases of SSAT,
in particular probabilistic planning problems [2,3,4]. Inspired by that work,
other communities have started to exploit the idea of SSAT in their formalisms
and methods. The Constraint Programming (CP) community is working on

� This work has been partially supported by the German Research Council (DFG)
as part of the Transregional Collaborative Research Center “Automatic Verification
and Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 625–639, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

626 T. Teige and M. Fränzle

y = true

x = true

p = 0.3
y = true

p = 0.3

Pr = 1 Pr = 0 Pr = 0 Pr = 1

Pr = 0.3 · 0 + 0.7 · 1 = 0.7

x

Pr = 0.3 · 1 + 0.7 · 0 = 0.3
y y

Pr(Φ) = max(0.3, 0.7) = 0.7

x = false

y = false

p = 0.7p = 0.7

truetrue false false

Φ = ∃x R0.3y : (x ∨ ¬y) ∧ (¬x ∨ y)

y = false

Fig. 1. Semantics of an SSAT formula depicted as a tree

stochastic constraint satisfaction problems [5,6,7] to address, e.g., multi-objective
decision making under uncertainty [8]. Most recently, the Model Checking com-
munity suggested an approach based on stochastic satisfiability for the symbolic
analysis of probabilistic (hybrid) systems. To do so, the authors of [9] extended
SSAT wrt. arithmetic theories –as known from satisfiability modulo theories
(SMT) [10]– which leads to the notion of stochastic satisfiability modulo theories
(SSMT). By the expressive power of SSMT, bounded probabilistic reachability
problems of uncertain hybrid systems can be phrased as SSMT formulae. Though
the general SSAT problem is PSPACE-complete, the plethora of real-world ap-
plications calls for practically efficient algorithms. The first SSAT algorithm was
suggested by Littman [11] and is an extension of the Davis-Putnam-Logemann-
Loveland (DPLL) procedure [12,13] for SAT with appropriate quantifier handling
and algorithmic optimizations like unit propagation, purification, and threshold-
ing. Recently, Majercik further improved the DPLL-style SSAT algorithm by
non-chronological backtracking [14]. The SSMT algorithm from [9,15] builds on
the SSAT procedures but also integrates an underlying theory solver, and was
successfully applied to a realistic case study [16].

In this paper, we make two contributions that shed a bit more light on the
nature of SSAT. In Section 3, we investigate the computational complexity of
the SSAT subclass where the propositional formula is in 2CNF. It turns out
that even this special case, called S2SAT, is as hard as the general problem,
i.e. PSPACE-complete. To the best of our knowledge the precise complexity of
S2SAT was so far open. In Section 4, we propose a novel approach to solve SSAT
problems. All existing SSAT algorithms implement a DPLL-based backtracking
search explicitly traversing the tree given by the quantifier prefix. Following the
idea of resolution for propositional and first-order formulae [17] and for QBF
formulae [18], we develop a sound and complete resolution calculus for SSAT
and theoretically compare it with the classical DPLL-SSAT approach.

2 Preliminaries

A stochastic Boolean satisfiability (SSAT) formula is given by Φ = Q : ϕ with
a prefix Q = Q1x1 . . .Qnxn of quantified propositional variables xi, where Qi is
either an existential quantifier ∃ or a randomized quantifier

Rpi with a rational

Resolution for Stochastic Boolean Satisfiability 627

constant 0 < pi < 1, and a propositional formula ϕ s.t. Var(ϕ) ⊆ {x1, . . . , xn},
where Var(ϕ) denotes the set of all variables in ϕ. W.l.o.g., we may assume
that ϕ is in conjunctive normal form (CNF), i.e. a conjunction of disjunctions
of propositional literals. A literal # is a propositional variable, i.e. # = xi, or its
negation, i.e. # = ¬xi. The semantics of Φ, as illustrated in Fig. 1, is defined by
the maximum probability of satisfaction Pr(Φ) as follows.

Pr(ε : ϕ) =

{
0 if ϕ is equivalent to false

1 if ϕ is equivalent to true

Pr(∃x Q : ϕ) = max(Pr(Q : ϕ[true/x]), P r(Q : ϕ[false/x]))

Pr(

Rpx Q : ϕ) = p · Pr(Q : ϕ[true/x]) + (1 − p) · Pr(Q : ϕ[false/x])
Note that the semantics is well-defined as Φ has no free variables s.t. all vari-
ables have been substituted by the constants true and false when reaching the
quantifier-free base case. Given any SSAT formula Φ and any rational constant
0 ≤ t ≤ 1, the SSAT decision problem (Φ, t) asks for whether Pr(Φ) ≥ t holds.

All existing algorithms to solve SSAT are based on a DPLL-based back-
tracking search that mimics the semantics above. Fig. 2 shows the standard
SSAT procedure presented in [19] (in a version without universal quantifiers).
DPLL-SSAT(Φ, θl, θu) takes as inputs an SSAT formula Φ and two threshold
values θl, θu with 0 ≤ θl ≤ θu ≤ 1. DPLL-SSAT then returns value p = Pr(Φ)
if θl ≤ Pr(Φ) < θu. Otherwise, it returns a witness value p < θl iff Pr(Φ) < θl,
and p ≥ θu iff Pr(Φ) ≥ θu. These thresholds are exploited during search to boost
efficiency by skipping some recursive calls of DPLL-SSAT which is called thresh-
olding (cf. Fig. 2). Two other algorithmic optimizations are unit propagation
and purification. The first one detects unit literals and immediately propagates
them. A literal in clause c is unit if it is undecided and all other literals in c are
false. Similarly, purification propagates pure literals. A literal # in an undecided
clause is pure if no undecided clause contains the negation of #. Purification is
not possible for randomized variables as both branches have some contribution.

Before we state some properties of SSAT formulae that are essential for the
resolution calculus introduced in Section 4, we formally define the assignment ff c

that falsifies a disjunctive clause c and that is unique wrt. c’s variables. Let c be a
non-tautological disjunction of propositional literals, i.e. �|= c. Then, the mapping

ff c : Var(c) → B is defined by ∀x ∈ Var(c) : ff c(x) =
{
true ; ¬x ∈ c
false ; x ∈ c

. That

is, c evaluates to false under assignment ff c. The following rather technical
proposition comprises simple but important observations which the soundness of
the proposed SSAT resolution relies on. Intuitively, property 1 states that under
an assignment τ that falsifies a clause c in a propositional formula ϕ in CNF,
the satisfaction probability of the SSAT formula Q : ϕ under τ is 0. Property 2
rephrases the semantics of quantifiers: from Pr(Q : ϕ[true/x]) = p1 and Pr(Q :
ϕ[false/x]) = p2 it immediately follows that Pr(∃x Q : ϕ) = max(p1, p2) and
Pr(

Rpx Q : ϕ) = p · p1 + (1 − p) · p2. Property 3 safely estimates the value of
Pr(

Rpx Q : ϕ) if just one of the values Pr(Q : ϕ[true/x]) or Pr(Q : ϕ[false/x])
is known by taking the safe upper bound 1 for the other value.

628 T. Teige and M. Fränzle

DPLL-SSAT(Q : ϕ, θl, θu)
if ϕ contains a clause equivalent to false then return 0.
if all clauses in ϕ equivalent to true then return 1.
// Unit propagation
if ϕ contains a unit literal � with Var(�) = {x} then
if Q = Q1∃xQ2 then return DPLL-SSAT(Q1Q2 : ϕ[v(�)/x], θl, θu).
if Q = Q1

RpxQ2 then return DPLL-SSAT(Q1Q2 : ϕ[v(�)/x], θl/p(�), θu/p(�)) · p(�).
// Purification
if ϕ contains a pure literal � with Var(�) = {x} then
if Q = Q1∃xQ2 then return DPLL-SSAT(Q1Q2 : ϕ[v(�)/x], θl, θu).

// Branching and thresholding
if Q = ∃xQ′ then

p1 = DPLL-SSAT(Q′ : ϕ[true/x], θl, θu).
if p1 ≥ θu then return p1.
p2 = DPLL-SSAT(Q′ : ϕ[false/x], max(θl, p1), θu).
return max(p1, p2).

if Q =

RpxQ′ then
p1 = DPLL-SSAT(Q′ : ϕ[true/x], (θl − (1 − p))/p, θu/p).
if p1 · p + (1 − p) < θl then return p1 · p.
if p1 · p ≥ θu then return p1 · p.
p2 = DPLL-SSAT(Q′ : ϕ[false/x], (θl − p1 · p)/(1 − p), (θu − p1 · p)/(1 − p)).
return p1 · p + p2 · (1 − p).

Fig. 2. DPLL-based backtracking algorithm for SSAT from [19]. If literal � is positive
then v(�) = true, p(�) = p, otherwise v(�) = false, p(�) = 1 − p.

Proposition 1. Letϕ be some propositional formula with Var(ϕ) = {x1, . . . , xn},
Q = Qi+1xi+1 . . . Qnxn be a quantifier prefix, and Var(ϕ) ↓j:= {x1, . . . , xj} for
j ≤ n. Then, the following properties hold.

1. If ϕ is in CNF and there is a non-tautological clause c ∈ ϕ s.t. Var(c) ⊆
Var(ϕ) ↓i then for each τ : Var(ϕ) ↓i→ B with ∀x ∈ Var(c) : τ(x) = ff c(x) :

Pr(Q : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) = 0.
2. For k ∈ {1, 2} let be Vk ⊆ Var(ϕ) ↓(i−1), and τk : Vk → B s.t. for each

τ ′k : Var(ϕ) ↓(i−1)→ B with ∀x ∈ Vk : τ ′k(x) = τk(x) it holds that
Pr(Q : ϕ[τ ′1(x1)/x1] . . . [τ ′1(xi−1)/xi−1][true/xi]) ≤ p1,
P r(Q : ϕ[τ ′2(x1)/x1] . . . [τ ′2(xi−1)/xi−1][false/xi]) ≤ p2.

If ∀x ∈ V1 ∩ V2 : τ1(x) = τ2(x) then for each τ : Var(ϕ) ↓(i−1)→ B with
∀x ∈ V1 : τ(x) = τ1(x) and ∀x ∈ V2 : τ(x) = τ2(x) it holds that
(a) Pr(∃xi Q : ϕ[τ(x1)/x1] . . . [τ(xi−1)/xi−1]) ≤ max(p1, p2) and
(b) Pr(

Rpxi Q : ϕ[τ(x1)/x1] . . . [τ(xi−1)/xi−1]) ≤ p · p1 + (1− p) · p2.
3. Let V1 ⊆ Var(ϕ) ↓(i−1), and τ1 : V1 → B s.t. for each τ : Var(ϕ) ↓(i−1)→ B

with ∀x ∈ V1 : τ(x) = τ1(x) it holds that
Pr(Q : ϕ[τ(x1)/x1] . . . [τ(xi−1)/xi−1][vxi/xi]) ≤ p1

where vxi ∈ B. Then,
Pr(

Rpxi Q : ϕ[τ(x1)/x1] . . . [τ(xi−1)/xi−1]) ≤ p′ · p1 + (1 − p′)
where p′ = p if vxi = true, and p′ = 1− p if vxi = false.

Resolution for Stochastic Boolean Satisfiability 629

Proof. For property 1, by construction of τ and since clause c is non-tautological,
it holds that c[τ(x1)/x1] . . . [τ(xi)/xi] ≡ false. Since ϕ is in CNF and c ∈ ϕ,
it follows that formula ϕ[τ(x1)/x1] . . . [τ(xi)/xi] with variables xi+1, . . . , xn is
unsatisfiable. Immediately, Pr(Q : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) = 0. Property 2
follows immediately from the definition of Pr. Property 3 is a direct consequence
of property 2b since w.l.o.g. we may assume that 0 ≤ p2 ≤ 1 holds. �

3 Computational Complexity of SSAT

It is well-known that the general SSAT decision problem is PSPACE-complete.
The hardness can be easily shown by a reduction from the quantified Boolean
formula (QBF) problem: given a QBF instance Q : ϕ (where Q may contain
existential and universal quantifiers), we construct the SSAT formula Q′ : ϕ
s.t. Q′ arises from Q by replacing all universal quantifiers by randomized ones

Rp with some rational 0 < p < 1. Then Q : ϕ is true iff Pr(Q′ : ϕ) ≥ 1.
This reduction shows that QBF can be seen as a special case of SSAT, while
both general problems share PSPACE-completeness. There is some extensive
work on the complexity of SSAT and QBF subcases that gives a better in-
sight into the relation of both problems. When restricting a QBF formula to
just existential or to just universal variables, this results in the well-known NP-
complete SAT problem and the co-NP-complete tautology (TAUT) problem, re-
spectively. The subclass of SSAT that allows only randomized variables gives the
PP-complete (“probabilistic polynomial time”) MAJSAT problem. Recall that
(co-)NP ⊆ PP ⊆ PSPACE holds. Thus, randomized quantifiers are in some sense
computationally harder than just existential or just universal ones. In addition to
restricting the quantifier prefix, it is of interest to consider special shapes of the
propositional formula. A propositional formula is in kCNF iff it is in CNF and
each of its clauses contains exactly k literals. The special cases of SAT, TAUT,
QBF, MAJSAT, and SSAT for which the formulae are in 3CNF do not change
the complexity results mentioned above. Restricting however a QBF formula to
be in 2CNF, the resulting QBF subproblem can be solved in linear time [20], and
thus also the corresponding subcases of SAT and TAUT. The same restriction
of MAJSAT, called MAJ2SAT, however remains PP-complete [21]. This is an
interesting result as alternating existential and universal quantifiers seem to be
computationally harder than just randomized ones for formulae in kCNF with
k ≥ 3, but computationally weaker for formulae in 2CNF. In the following, we
will investigate the complexity of the SSAT subclass for which the propositional
formula is in 2CNF. We call this problem S2SAT. As MAJ2SAT is PP-complete,
it immediately follows that S2SAT is PP-hard. The precise complexity of S2SAT,
however, was so far open to the best of our knowledge.

We will show that S2SAT is as hard as the general SSAT problem, i.e.
PSPACE-complete. PSPACE-membership immediately follows from the fact that
S2SAT is a subcase of SSAT. We prove PSPACE-hardness by a linear-time many-
one reduction from the PSPACE-complete decision problem 1-in-3Q3SAT. A
1-in-3Q3SAT formula Q : ϕ is simply a Q3SAT formula, i.e. a QBF formula

630 T. Teige and M. Fränzle

with ϕ in 3CNF. While quantifier treatment remains unchanged, satisfaction
of ϕ, however, differs from the standard definition: ϕ is 1-in-3 satisfied un-
der truth assignment τ iff each clause c ∈ ϕ is 1-in-3 satisfied under τ iff
exactly one literal in each c is satisfied under τ . PSPACE-hardness can be
shown by reduction from Q3SAT that relies on the reduction from 3SAT to
1-in-3 3SAT by Schaefer [22]. For an arbitrary Q3SAT instance Q : ϕ with
ϕ = cl1 ∧ . . . ∧ clm we construct the 1-in-3Q3SAT instance Q′ : ϕ′ as follows.
For each clause cli = (#i

1 ∨ #i
2 ∨ #i

3) ∈ ϕ we introduce five 1-in-3Q3SAT clauses
one-in-three(cli) := (#i

1 ∨ ai ∨ di) ∧ (#i
2 ∨ bi ∨ di) ∧ (ai ∨ bi ∨ ei) ∧ (ci ∨ di ∨

fi) ∧ (#i
3 ∨ ci ∨ false) with six fresh Boolean variables ai, bi, ci, di, ei, fi and

the constant literal false that is never satisfied. It holds that cli is satisfied
under τ iff ∃ai, bi, ci, di, ei, fi : one-in-three(cli) is 1-in-3 satisfied under τ . By
setting Q′ := Q ∃a1, b1, . . . , em, fm and ϕ′ :=

∧m
i=1 one-in-three(cli), it follows

that Q : ϕ is true iff Q′ : ϕ′ is 1-in-3 true, i.e. true under 1-in-3 satisfaction.
Note that Q′ : ϕ′ is of size linear in Q : ϕ (6m new variables and 5m clauses).

Theorem 1. S2SAT is PSPACE-complete.

Proof. PSPACE-membership is obvious as SSAT lies in PSPACE. We prove
PSPACE-hardness by a linear-time many-one reduction from 1-in-3Q3SAT.

Let Q : ϕ be a 1-in-3Q3SAT instance. We will construct an S2SAT instance
(Φ, t) s.t. Q : ϕ is 1-in-3 true iff Pr(Φ) ≥ t. First observe that Q : ϕ is 1-
in-3 true iff Pr(Q′ : ϕ) ≥ 1 under 1-in-3 satisfaction where Q′ arises from
Q by replacing all universal quantifiers by randomized ones

R0.5. Let be ϕ =
{(#11 ∨ #12 ∨ #13), . . . , (#m

1 ∨ #m
2 ∨ #m

3)}. Now, we introduce 3m fresh randomized
variables (three randomized variables per clause) all with the same probability
p = 0.9 resulting in the prefix Q′′ := Q′ R0.9r1

1 , r
1
2 , r

1
3 , . . . , r

m
1 , rm

2 , rm
3 of Φ.

The following propositional formula ψ of Φ ensures that at most one literal per
clause in ϕ is true. To also enforce that at least one literal per clause is true,
the probability threshold t will be set correspondingly by taking account of the
probabilities of the randomized variables

R0.9ri
j to rule out non-solutions of ϕ.

ψ :=
m∧

i=1

⎛⎜⎜⎜⎝
identify value of literal �i

j with variable ri
j︷ ︸︸ ︷⎛⎝ 3∧

j=1

(#i
j ∨ ¬ri

j) ∧ (neg(#i
j) ∨ ri

j)

⎞⎠
at most one true literal per clause︷ ︸︸ ︷

∧(¬ri
1 ∨ ¬ri

2)
∧(¬ri

1 ∨ ¬ri
3)

∧(¬ri
2 ∨ ¬ri

3)

⎞⎟⎟⎟⎠
where neg(#) returns the opposite literal of #, i.e. it returns x if # = ¬x, and ¬x
otherwise. Note that ψ is in 2CNF and Φ is of size linear in Q : ϕ (Φ contains
3m new variables and 9m clauses).

We now show that Pr(Q′ : ϕ) ≥ 1 under 1-in-3 satisfaction iff Pr(Φ) ≥
0.009m. Let be Q′ = Q1x1 . . . Qnxn. Note that under each assignment τ to the
variables in Q′ there exists a unique assignment τ ′ to the randomized variables
ri
1, r

i
2, r

i
3 s.t. the combined assignment τ ′′ to all variables in Q′′ with τ ′′(xi) =

τ(xi) and τ ′′(ri
j) = τ ′(ri

j) satisfies
∧3

j=1(#
i
j ∨ ¬ri

j) ∧ (neg(#i
j) ∨ ri

j) in ψ for each
1 ≤ i ≤ m, i.e. at least one of

Pr(

R0.9rk+1, . . . , r3m : ψ[τ (x1)/x1] . . . [τ ′(r1)/r1] . . . [τ ′(rk−1)/rk−1][true/rk]),
P r(

R0.9rk+1, . . . , r3m : ψ[τ (x1)/x1] . . . [τ ′(r1)/r1] . . . [τ ′(rk−1)/rk−1][false/rk])

Resolution for Stochastic Boolean Satisfiability 631

is 0 for each 1 ≤ k ≤ 3m. Due to (¬ri
1 ∨ ¬ri

2) ∧ (¬ri
1 ∨ ¬ri

3) ∧ (¬ri
2 ∨ ¬ri

3) ∈ ψ
and because of setting ri

j to true with probability 0.9 and to false with 0.1,
for each assignment τ to the variables in Q′ it holds that Pr(

R0.9r1
1 , . . . , r

m
3 :

ψ[τ(x1)/x1] . . . [τ(xn)/xn]) ≤ 0.009m.
Furthermore, for each assignment τ to the variables in Q′ that 1-in-3 sat-

isfies ϕ, i.e. Pr(ε : ϕ[τ(x1)/x1] . . . [τ(xn)/xn]) ≥ 1 under 1-in-3 satisfaction,
the unique assignment τ ′ also satisfies (¬ri

1 ∨ ¬ri
2) ∧ (¬ri

1 ∨ ¬ri
3) ∧ (¬ri

2 ∨ ¬ri
3)

for each 1 ≤ i ≤ m, since each clause in ϕ has exactly one true literal under
τ , and thus τ ′′ satisfies ψ. Therefore, for each 1 ≤ i ≤ m exactly one vari-
able of ri

1, r
i
2, r

i
3 is set to true by τ ′, from which follows that Pr(

R0.9r1
1 , . . . , r

m
3 :

ψ[τ(x1)/x1] . . . [τ(xn)/xn]) = 0.009m. Vice versa, if for some assignment τ to the
variables in Q′ it holds that Pr(

R0.9r1
1 , . . . , r

m
3 : ψ[τ(x1)/x1] . . . [τ(xn)/xn]) =

0.009m then for each 1 ≤ i ≤ m exactly one variable of ri
1, r

i
2, r

i
3 is set to true

by τ ′ due to (¬ri
1 ∨ ¬ri

2) ∧ (¬ri
1 ∨ ¬ri

3) ∧ (¬ri
2 ∨ ¬ri

3) and due to

R0.9ri
j . From∧3

j=1(#
i
j ∨ ¬ri

j) ∧ (¬#i
j ∨ ri

j), we conclude that each clause in ϕ has exactly one
true literal under τ . Thus, Pr(ε : ϕ[τ(x1)/x1] . . . [τ(xn)/xn]) ≥ 1 under 1-in-3
satisfaction. Summarizing, Pr(ε : ϕ[τ(x1)/x1] . . . [τ(xn)/xn]) ≥ 1 under 1-in-3
satisfaction iff Pr(

R0.9r1
1 , . . . , r

m
3 : ψ[τ(x1)/x1] . . . [τ(xn)/xn]) = 0.009m. From

this fact and due to Pr(

R0.9r1
1 , . . . , r

m
3 : ψ[τ(x1)/x1] . . . [τ(xn)/xn]) ≤ 0.009m

for each τ , it immediately follows by definition that Pr(Q′ : ϕ) ≥ 1 under 1-in-3
satisfaction iff Pr(Φ) = 0.009m iff Pr(Φ) ≥ 0.009m. To complete the reduction,
we choose the rational constant t := 0.009m.

The resulting S2SAT instance (Φ, t) contains n+3m variables and 9m clauses
where n is the number of variables and m is the number of clauses in Q : ϕ. The
rational constant t = 0.009m can be represented by a decimal fraction of size
O(m). Thus, (Φ, t) can be constructed in linear time. �

We remark that S2SAT with just homogeneous probabilities in randomized quan-
tifiers, i.e.

R0.5, is of the same complexity while the proof is slightly more com-
plex. In brief, 3m more randomized variables are appended to Q′′ (on the right)
and ψ is extended by 3m more clauses, i.e.

R0.5hi
1, h

i
2, h

i
3 and (ri

1 ∨ ¬hi
1) ∧ (ri

2 ∨
¬hi

2)∧(ri
3∨¬hi

3) per clause ci. Then, if ri
j = true both assignments to hi

j satisfy
(ri

j ∨ ¬hi
j), and otherwise, i.e. ri

j = false, just hi
j = false does. Thus, for each

i one of ri
1, r

i
2, r

i
3 is true iff the corresponding probability is 0.55, and all ri

j are
false iff the probability is 0.56. It remains to set t := 0.55m.

4 Resolution for SSAT

In this section, we propose a novel approach to solve SSAT problems. All ex-
isting SSAT algorithms implement a DPLL-based backtracking procedure as in
Fig. 2, explicitly traversing the tree given by the quantifier prefix and computing
the individual satisfaction probabilities for each subtree, as indicated by Fig. 1.
Following the idea of resolution for propositional and first-order formulae [17]
and for QBF formulae [18], we develop a sound and complete resolution calculus
for SSAT. Recall that resolution for both SAT and QBF shows polynomial-time

632 T. Teige and M. Fränzle

solvability on their restrictions to 2CNF as each resolution step yields clauses
of size at most two, of which just quadratically many exist. Note that the same
property cannot be expected for SSAT resolution due to PSPACE-completeness
of S2SAT (Theorem 1). Therefore, a sound and complete resolution calculus for
SSAT must involve some rule that destroys the above property.

In the sequel, let Φ = Q : ϕ be an SSAT formula where ϕ is in CNF. W.l.o.g., ϕ
does not contain tautological clauses1, i.e. ∀c ∈ ϕ : �|= c. Let Q = Q1x1 . . .Qnxn

be some quantifier prefix and ϕ be some propositional formula with Var(ϕ) ⊆
{x1, . . . , xn}. Then, the quantifier prefixQ(ϕ) is given by the smallest prefix of Q
that contains all variables from ϕ, i.e. Q(ϕ) = Q1x1 . . . Qixi where xi ∈ Var(ϕ)
and for each j > i : xj /∈ Var(ϕ).

Starting with clauses in ϕ, S-resolution is given by the consecutive application
of rules R.1-R.5 to derive new clauses cp that are annotated with some values
0 ≤ p < 1. It is important to remark that in contrast to classical resolution
such clauses cp are not necessarily semantic consequences of ϕ but are just
entailed with some probability. Informally speaking, the derivation of a clause cp

means that under SSAT formula Q : ϕ, the clause c is violated with a maximum
probability at most p, i.e. the satisfaction probability of Q : (ϕ ∧ ¬c) is at most
p. More intuitively, the minimum probability that clause c is implied by ϕ is at
least 1−p. This follows from the observation that Pr(Q : ψ) = 1−Pr(Q′ : ¬ψ),
where Q′ arises from Q by replacing existential quantifiers by universal ones,
where universal quantifiers call for minimizing the satisfaction probability. We
thus have Pr(Q′ : (ϕ ⇒ c)) ≥ 1−Pr(Q : (ϕ∧¬c)). Once the empty clause ∅p is
derived, it follows that the probability of the given SSAT formula is at most p,
i.e. Pr(Q : (ϕ∧¬false)) = Pr(Q : ϕ) ≤ p. The first rule R.1 is just of technical
nature, and derives a clause c0 from an original clause c in ϕ.

(R.1)
c ∈ ϕ

c0

The second rule R.2 derives a redundant clause by adding some literal # to
clause cp. To keep soundness of this rule, the literal # may not talk about a
variable x that already occurs in cp. Furthermore, the variable x must appear
in the quantifier prefix Q(c) of clause c. Such an extension rule is redundant in
classical resolution schemes for SAT and QBF. In the stochastic case, we need
such rule to achieve completeness of S-resolution. Note that this rule impedes
a potential polynomial-time solvability for SSAT formulae in 2CNF as sizes of
derived clauses are no longer guaranteed to be at most two. Though completeness
might be obtained in another way, the choice of extension rule R.2 seems to be
justified by Theorem 1 (PSPACE-completeness of S2SAT), indicating that a
polynomial time algorithm for S2SAT cannot be expected.

(R.2)
cp, Qx ∈ Q(c), x /∈ Var(c), # ∈ {x,¬x}

(c ∨ #)p

1 Tautological clauses c are redundant, i.e. Pr(Q : (ϕ ∧ c)) = Pr(Q : ϕ).

Resolution for Stochastic Boolean Satisfiability 633

Rules R.3 and R.4 constitute the actual resolution rules as known from the
non-stochastic case. Depending on whether an existential (R.3) or a randomized
variable (R.4) is resolved upon, the probability value of the resolvent clause is
computed according to the semantics Pr(Φ).

(R.3)
(c1 ∨ ¬x)p1 , (c2 ∨ x)p2 , ∃x ∈ Q, ∃x /∈ Q(c1 ∨ c2), �|= (c1 ∨ c2)

(c1 ∨ c2)max(p1,p2)

(R.4)
(c1 ∨ ¬x)p1 , (c2 ∨ x)p2 ,

Rpx ∈ Q,

Rpx /∈ Q(c1 ∨ c2), �|= (c1 ∨ c2)
(c1 ∨ c2)p·p1+(1−p)·p2

The final rule R.5 is similar in nature to rule (a) of the QBF resolution scheme
in [18], where all universal literals not preceding any existential literal in a clause
can be removed. In the stochastic case, we yet have to take care about the
probability of the resulting clause. Therefore, we pessimistically resolve clause
(c ∨ #)p1 with the non-existing clause (c ∨ ¬#)1. The latter clause is annotated
with the highest possible probability 1 that is always a safe upper bound. Thus,
the resolvent clause cp′·p1+(1−p′) takes a valid upper bound probability.

(R.5)
(c ∨ #)p1 , # ∈ {x,¬x}, Rpx ∈ Q,

Rpx /∈ Q(c), p′ =
{

p ; # = ¬x
1− p ; # = x

cp′·p1+(1−p′)

Given the above rules R.1 to R.5, S-resolution is sound in the following sense.

Lemma 1. Let clause cp be derivable by S-resolution. Further, let be Q(c) =
Q1x1 . . . Qixi. Then, for each τ : Var(ϕ) ↓i→ B with ∀x ∈ Var(c) : τ(x) = ff c(x)
it holds that

Pr(Qi+1xi+1 . . .Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) ≤ p.

Proof. We show the lemma by induction over the application of rules R.1-R.5. In
the base case, we can just derive clauses cp=0 by R.1 from clauses in ϕ. For this
step, the assumption holds by property 1 of Proposition 1. Now assume that the
assumption holds for all clauses in the premises of rules R.2-R.5. For rules R.3,
R.4, and R.5, by Proposition 1, properties 2a, 2b, and 3, resp., it follows that
for each τ ′ : Var(ϕ) ↓j−1→ B with ∀x ∈ Var(c) : τ ′(x) = ff c(x) :

Pr(Qjxj . . . Qnxn : ϕ[τ ′(x1)/x1] . . . [τ ′(xj−1)/xj−1]) ≤ p,

where xj = x and j ≥ i + 1. Since variables xi+1, . . . , xj−1 do not occur in the
derived clause cp, for k = j − 1 to i + 1 we successively conclude that

Pr(Qk+1xk+1 . . .Qnxn : ϕ[τ ′(x1)/x1] . . . [τ ′(xk−1)/xk−1][true/xk]) ≤ p,
Pr(Qk+1xk+1 . . .Qnxn : ϕ[τ ′(x1)/x1] . . . [τ ′(xk−1)/xk−1][false/xk]) ≤ p,

which finally leads to the desired result by choosing τ := τ ′, i.e.
Pr(Qi+1xi+1 . . .Qnxn : ϕ[τ(x1)/x1] . . . [τ(xi)/xi]) ≤ p.

Soundness of rule R.2 is obvious: x /∈ Var(c) and thus there are at least two
τ1, τ2 with τ1(x) = true and τ2(x) = false that satisfy the assumption for cp.
Hence, each such τ with τ(x) = ff (c∨�)(x) satisfies the assumption for (c∨ l)p.�

634 T. Teige and M. Fränzle

Corollary 1 (Soundness of S-resolution). If the empty clause ∅p is derivable
by S-resolution from a given SSAT formula Q : ϕ then Pr(Q : ϕ) ≤ p.

Corollary 1 follows directly from Lemma 1. Theorem 2 shows completeness.

Theorem 2 (Completeness of S-resolution). If Pr(Q : ϕ) = p < 1 for
some SSAT formula Q : ϕ then the empty clause ∅p is derivable by S-resolution.

Proof. If ∅ ∈ ϕ, i.e. ϕ contains an empty clause, then p = 0 and the empty clause
∅0 is derivable by rule R.1. In the remaining proof, we assume that ∅ /∈ ϕ. We
prove the theorem by induction over the number of quantifiers in the quantifier
prefix Q. If Q = ∃x then (¬x), (x) ∈ ϕ, hence p = 0, since otherwise p = 1.
Then, (¬x)0 and (x)0 are derivable from (¬x) and (x) by R.1, and R.3 finally
yields ∅0. If Q =

Rpxx then (¬x) ∈ ϕ or (x) ∈ ϕ, since otherwise p = 1. If
(¬x) ∈ ϕ and (x) /∈ ϕ, i.e. p = 1 − px, the empty clause ∅1−px=p is derivable
by R.1, yielding (¬x)0, and R.5, yielding ∅px·0+(1−px). Analogously, if (¬x) /∈ ϕ
and (x) ∈ ϕ, i.e. p = px, the empty clause ∅px=p is derivable. If (¬x) ∈ ϕ and
(x) ∈ ϕ, i.e. p = 0, the empty clause ∅0 is derivable by R.1, yielding (¬x)0 and
(x)0, and R.4, yielding ∅px·0+(1−px)·0.

In the induction step, we will show that ∅pr is derivable for Pr(QxQ : ϕ) =
pr < 1. Let p1 = Pr(Q : ϕ[true/x]) and p2 = Pr(Q : ϕ[false/x]). Induction
hypothesis assumes that if p1 < 1 (resp. p2 < 1) then ∅p1 (resp. ∅p2) is derivable
from Q : ϕ[true/x] (resp. Q : ϕ[false/x]).

If Q = ∃ then pr = max(p1, p2), and since pr < 1 it follows that p1, p2 < 1. By
induction hypothesis, the same resolution sequence as for Q : ϕ[true/x] derives
one of the clauses ∅p1 , (¬x)p1 for ∃x Q : ϕ. Analogously, one of the clauses ∅p2 ,
(x)p2 is derivable by the same resolution sequence as for Q : ϕ[false/x]. Let us
consider any resolution sequence R for ∃x Q : ϕ deriving ∅p1 that is minimal in
the sense that no application of any rule in R can be omitted in order to derive
∅p1 . Observe that each clause c involved in R does not contain variable x, i.e.
x /∈ Var(c): first, the positive literal x cannot be contained in c since R yields
∅p1 for Q : ϕ[true/x]. Second, the negative literal ¬x cannot be contained in c
since R yields ∅p1 for ∃x Q : ϕ and R is minimal. Furthermore, ∅p1 cannot be
derived directly from a clause c ∈ ϕ, since ∅ /∈ ϕ. Thus, one of the rules R.3,
R.4, or R.5 must be applied in R. Let R′ be the resolution sequence that works
as R except for the following modifications: for one clause c0 that occurs in R
and is derived by R.1, rule R.2 is applied to obtain clause (¬x ∨ c)0. For the
latter application, note that ∃x ∈ Q(c). In the premise of each rule in R, c0 is
then replaced by (¬x ∨ c)0. Since R is minimal, i.e. c0 is a predecessor of ∅p1 ,
and by the rules of S-resolution, it follows that R′ derives (¬x)p1 for ∃x Q : ϕ.
Hence, (¬x)p1 is always derivable from ∃x Q : ϕ. With the same argument, (x)p2

is derivable. R.3 finally yields ∅max(p1,p2)=pr.
If Q =

Rpx then pr = px · p1 + (1 − px) · p2. As pr < 1 holds, at least one of
p1, p2 is less than 1. For case p1, p2 < 1, as shown above for Q = ∃, clauses (¬x)p1

and (x)p2 are derivable from

Rpxx Q : ϕ. R.4 then gives ∅px·p1+(1−px)·p2=pr. For
case p1 < 1, p2 = 1, clause (¬x)p1 is derivable, and R.5 yields ∅px·p1+(1−px)=pr.
Analogously for p1 = 1, p2 < 1, clause ∅(1−px)·p2+px=pr is derivable. �

Resolution for Stochastic Boolean Satisfiability 635

R.1 R.1

R.3

R.5

R.1

R.5

R.3

R.2

R.3

R.4

R0.8x1 ∃x2

R0.3x3 : (x1 ∨ x2) (x2 ∨ x3)(¬x2)

∅0.8

(x1)
0

(x1 ∨ x2)
0 (¬x2)

0

(x2)
0.3

(x2 ∨ x3)
0

∅0.3

∅0.24

(¬x1)
0.3

(¬x1 ∨ ¬x2)
0

Fig. 3. Different derivations of the empty clause by S-resolution. Arrows denote appli-
cations of the corresponding resolution rules.

Example. Consider the SSAT formula Φ =

R0.8x1 ∃x2

R0.3x3 : (x1∨x2)∧(¬x2)∧
(x2 ∨ x3). There is just one satisfying assignment, namely x1 = true, x2 =
false, x3 = true, and the maximum probability of satisfaction thus is Pr(Φ) =
0.24. In Fig. 3, three different derivations of empty clauses are depicted. Each
empty clause proves an upper bound of Pr(Φ) according to Corollary 1, while
only ∅0.24 constitutes the exact probability of satisfaction. Such a derivation of
∅p with p = Pr(Φ) always exists due to Theorem 2.

Theoretical evaluation. For a theoretical assessment, we compare S-resolution
with the standard SSAT procedure DPLL-SSAT from Fig. 2. As both approaches
are sound and complete, we are interested in their proof complexity, i.e. the size
of their proofs. We define the size of a proof that an SSAT instance (Φ, t) is
true or false as the number of steps needed by a method to decide (Φ, t), i.e. the
number of rule applications for S-resolution and the number of recursions for
DPLL-SSAT. Both approaches may produce proofs of exponential size in worst
case (examples are given below). We will thus compare their smallest proofs.

For a fair comparison we have to distinguish between true and false SSAT
instances. The rationale is that S-resolution yields only upper bounds on sat-
isfaction probabilities. To decide a true SSAT instance (Φ, t), i.e. Pr(Φ) ≥ t,
S-resolution needs to derive all empty clauses ∅p (which implies to apply all rules
until no new clause can be derived) to give a positive answer. Note that there can
be exponentially many derivations of empty clauses. DPLL-SSAT with its algo-
rithmic optimizations however potentially outputs the result much earlier. For
instance, consider the family of SSAT formulae

R0.5y1 . . .

R0.5yn : (y1)∧ . . .∧(yn)
and t = 0.5n+1. Observe that the number of derivations of empty clauses ∅p is
exponential in n and that for each ∅p it holds that p > t. DPLL-SSAT, however,
solves the problem in n steps, e.g., just by unit propagation. Thus, DPLL-SSAT

636 T. Teige and M. Fränzle

will never be worse, and potentially much more efficient, than S-resolution on
true SSAT instances whenever exponentially many empty-clause derivations ex-
ist, which generally is the case.

Let us consider the case where the SSAT instance (Φ, t) is false, i.e. Pr(Φ) < t.
We will first show that on such instances, each DPLL-SSAT proof of size k can
be easily transformed into an S-resolution proof of size O(k2), i.e. with just a
quadratic overhead. Thereafter, we present a family of SSAT instances for which
the smallest S-resolution proof is of constant size while DPLL-SSAT needs in
best case exponentially many computation steps.

Proposition 2. For false SSAT instances each DPLL-SSAT proof of size k can
be transformed into an S-resolution proof of size O(k2).

We sketch the proof of Proposition 2 by explaining how a derivation of an empty
clause ∅p with p < t can be constructed from a DPLL-SSAT(Φ, t, t) proof search.
Foremost observe that due to assumption Pr(Φ) < t, the upper threshold θu will
never be exceeded by any intermediate probability result (cf. Fig. 2), as other-
wise Pr(Φ) ≥ t would hold. For our purpose, we slightly modify DPLL-SSAT.
In order to keep track of the current partial variable assignment, DPLL-SSAT
takes an additional input pa that is a set of literals representing the current par-
tial assignment. To solve an SSAT problem, we call DPLL-SSAT(Φ, t, t, pa) with
pa = ∅. Moreover, the return value of DPLL-SSAT now is a pair of the proba-
bility value p and a derived clause cpr annotated with a probability value pr, as
explained below. Note that the concrete implementation as shown in Fig. 2 must
be adapted correspondingly. However, both changes do not influence the proba-
bility result p of DPLL-SSAT. For base case “false” of DPLL-SSAT, we return
the pair (0, c0) where clause c consists of all negated literals in the set pa. This
clause c0 is derivable by one application of R.1 and at most |pa|− 1 applications
of R.2. In case that all clauses are satisfied, i.e. base case “true”, we cannot ap-
ply any rule. To indicate this “failure”, we return (1, ∅1) with the non-derivable
clause ∅1. When branching for variable x we recursively call DPLL-SSAT on the
extended assignment pa∪{#} where # = x if x is substituted by true and # = ¬x
otherwise. Let cpr1

1 and cpr2
2 be the clauses returned by the recursive calls. We

first consider the existential case. Recall again that p1 ≥ θu will never be satis-
fied. If both pr1, pr2 < 1, i.e. both clauses could be derived by S-resolution, we
return the resolved clause ((c1 ∪ c2)−{x,¬x})max(pr1,pr2) by rule R.3. If pr1 = 1
or pr2 = 1 then no rule is applicable and we return clause ∅1 to indicate this.
For the randomized case, let first be pr1, pr2 < 1. If p1 · p + (1 − p) < θl holds
then we return (c1 − {¬x})pr1·p+(1−p) by R.5. Otherwise, the returned clause
is ((c1 ∪ c2) − {x,¬x})pr1·p+pr2·(1−p)) by R.4. If pr1 < 1 and pr2 = 1 then we
derive (c1 − {¬x})pr1·p+(1−p) by R.5. Analogously for pr1 = 1 and pr2 < 1,
(c2−{x})p+pr2·(1−p). If pr1 = pr2 = 1 then no rule is applicable indicated by ∅1.

Special attention must be devoted to unit propagation and purification. For
purification observe that propagating a pure literal will never cause a clause
violation by definition. Thus, we neglect this assignment and keep the set pa
for the recursive call of DPLL-SSAT and just pass through clause cpr returned
by recursion. Note that unit propagation moves a quantifier in the prefix to the

Resolution for Stochastic Boolean Satisfiability 637

left, i.e. Q1QxQ2 � QxQ1Q2. This of course is not a valid operation in general.
However, this is correct for unit literals, i.e. Pr(Q1QxQ2 : ϕ∧#) = Pr(QxQ1Q2 :
ϕ∧#) with # ∈ {x,¬x}, as the value of x satisfying # does not depend on Q1. This
semantics-preserving quantifier reshuffling justifies the derivation of clause cpr

by recursive call DPLL-SSAT with updated assignment pa ∪ {#}. Now observe
that assignment pa ∪ {¬#} violates some clause, as # is unit. Clause (c′ ∪ {#})0
is thus derivable by S-resolution, where c′ consists of all negated literals in pa.
If pr < 1, we return clause ((c∪ c′)−{¬#})pr in the existential case by R.3, and
((c∪c′)−{¬#})pr·p(�) in the randomized case by R.4. If pr = 1, we return ∅1 and
(c′)p(�) for the existential and randomized case, respectively. For each returned
pair (p, cpr) it holds that p ≤ pr. Furthermore, if p < θl then pr < θl. This is
given by the base case p1 · p + (1 − p) < θl and by manipulating the thresholds
for recursion (cf. Fig. 2). Thus, the initial call DPLL-SSAT(Φ, t, t, ∅) returns a
pair (p, ∅pr) with pr < t, i.e. the empty clause ∅pr is derivable by S-resolution,
iff Pr(Φ) < t. Observe that at most one clause is derived per DPLL-SSAT call,
except for the base case “false”. Let k be the DPLL-SSAT proof size and f ≤ k
be the number of DPLL-SSAT calls that directly lead to the base case “false”.
Further, let ai for 1 ≤ i ≤ f be the number of variables that are assigned values
when reaching the i-th base case “false”. Clearly, ai ≥ |pa|. Thus, for i-th base
case “false”, at most ai new clauses are derived by R.1 and R.2. Hence, the
S-resolution proof size k′ is at most k +

∑f
i=1 ai. Very conservatively, ai ≤ k for

each i. Immediately, k′ ≤ k + f · k ≤ k + k2 ∈ O(k2).

Proposition 3. There is a family of false SSAT instances for which the smallest
S-resolution proof is of constant size while the smallest DPLL-SSAT proof is of
exponential size.

To prove Proposition 3, consider the family of SSAT formulae Φn∈N>0 =

Q1,1x1,1 . . . Q1,nx1,nQ2,nx2,nQ3,nx3,n . . . Q2,1x2,1Q3,1x3,1 :
n∧

i=1

all comb(x1,i, x2,i, x3,i)

where all comb(x1,i, x2,i, x3,i) = (x1,i ∨ x2,i ∨ x3,i) ∧ (x1,i ∨ x2,i ∨ ¬x3,i) ∧ . . . ∧
(¬x1,i ∨ ¬x2,i ∨ ¬x3,i) is a predicate in 3CNF that gives all non-tautological
clauses with the three variables x1,i, x2,i, x3,i. Obviously, all comb(x1,i, x2,i, x3,i)
is unsatisfiable, and thus Pr(Φn) = 0. Hence, for each t > 0 it holds that the
SSAT instance (Φn, t) is false. S-resolution needs in best case only 7 resolu-
tion steps to derive the empty clause ∅0, namely by resolving only clauses in
all comb(x1,i, x2,i, x3,i) for some i. DPLL-SSAT however needs exponentially
many steps in n to solve the problem. The rationale is that a conflict, i.e. base
case “false”, is detected not before variables x1,1 . . . x1,nx2,n are assigned. After
setting x2,n, the conflict in all comb(x1,n, x2,n, x3,n) is revealed by unit propa-
gation. However, after backtracking to some point where x2,n is unassigned,
the conflict is no longer present and is only revisited after branching for x2,n

again. Hence, DPLL-SSAT must traverse all 2n+1 assignments to the variables
x1,1 . . . x1,nx2,n until Φn is solved.

It is expected that conflict-driven clause learning [23] as employed in DPLL-
based SAT solvers is beneficial to significantly improve DPLL-SSAT proof sizes

638 T. Teige and M. Fränzle

on problems of such or similar structures. An interesting issue for future research
thus is to investigate how S-resolution can be instrumental in developing a more
general clause learning scheme to be integrated into DPLL-based SSAT algo-
rithms: by Lemma 1, a derived clause (c∨ #)p means that under each assignment
that falsifies (c ∨ #), the satisfaction probability of the remaining subproblem
is at most p. The inductive argument in the proof of Theorem 2 suggests that
there are also clauses (c ∨ #)p for which the probability of the subproblem is
exactly p. Thus, under a partial assignment that falsifies c one could directly
propagate literal # as the satisfaction probability of the other branch, for which
the negation of # holds, is already known, namely p.

5 Discussion and Future Work

In this paper, we have explained two contributions to the field of stochastic
propositional satisfiability solving. First, we have shown that the restriction of
SSAT to formulae in 2CNF is PSPACE-complete, i.e. as hard as the general
problem. Second, we have introduced a sound and complete resolution calculus
for SSAT that complements the work on classical DPLL-based SSAT algorithms.
While each DPLL-SSAT proof for false SSAT instances can be transformed into
an S-resolution proof with just a quadratic overhead, there is a family of SSAT
instances for which the smallest S-resolution proof is of constant size and each
DPLL-SSAT proof, however, is of exponential size.

Similar to proofs of unsatisfiability for SAT, S-resolution provides a theoretical
framework to generate proofs of satisfiability with insufficient probability. Such
proofs permit the subsequent validation of SSAT solver results as well as the
extraction of small subformulae having the same satisfaction probabilities as the
original formula. In future work, we will concentrate on two challenging issues.
Motivated by the success of clause learning in SAT solving, we will investigate
an SSAT clause learning scheme based on S-resolution to significantly improve
performance of DPLL-based SSAT solvers. Another topic is the potential appli-
cation of S-resolution for computing stochastic variants of Craig interpolants,
expected to provide a technique enhancing applications of SSAT solving, among
them the extension of SSAT-based bounded model checking of probabilistic sys-
tems like Markov Decision Processes to unbounded model checking.

References

1. Papadimitriou, C.H.: Games against nature. J. Comput. Syst. Sci. 31(2), 288–301
(1985)

2. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic Boolean Satisfiability. Jour-
nal of Automated Reasoning 27(3), 251–296 (2001)

3. Majercik, S.M., Littman, M.L.: MAXPLAN: A New Approach to Probabilistic
Planning. In: Artificial Intelligence Planning Systems, pp. 86–93 (1998)

4. Majercik, S.M., Littman, M.L.: Contingent Planning Under Uncertainty via
Stochastic Satisfiability. Artificial Intelligence Special Issue on Planning With Un-
certainty and Incomplete Information 147(1-2), 119–162 (2003)

Resolution for Stochastic Boolean Satisfiability 639

5. Walsh, T.: Stochastic constraint programming. In: Proc. of the 15th European
Conference on Artificial Intelligence (ECAI 2002), IOS Press, Amsterdam (2002)

6. Tarim, A., Manandhar, S., Walsh, T.: Stochastic constraint programming: A
scenario-based approach. Constraints 11(1), 53–80 (2006)

7. Balafoutis, T., Stergiou, K.: Algorithms for Stochastic CSPs. In: Benhamou, F.
(ed.) CP 2006. LNCS, vol. 4204, pp. 44–58. Springer, Heidelberg (2006)

8. Bordeaux, L., Samulowitz, H.: On the stochastic constraint satisfaction framework.
In: SAC, pp. 316–320. ACM, New York (2007)

9. Fränzle, M., Hermanns, H., Teige, T.: Stochastic satisfiability modulo theory: A
novel technique for the analysis of probabilistic hybrid systems. In: Egerstedt, M.,
Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 172–186. Springer, Heidelberg
(2008)

10. Barrett, C., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories.
In: [24], ch. 26, pp. 825–885

11. Littman, M.L.: Initial Experiments in Stochastic Satisfiability. In: Proc. of the 16th
National Conference on Artificial Intelligence, pp. 667–672 (1999)

12. Davis, M., Putnam, H.: A Computing Procedure for Quantification Theory. Journal
of the ACM 7(3), 201–215 (1960)

13. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving.
Communications of the ACM 5, 394–397 (1962)

14. Majercik, S.M.: Nonchronological backtracking in stochastic Boolean satisfiability.
In: ICTAI, pp. 498–507. IEEE Computer Society, Los Alamitos (2004)

15. Teige, T., Fränzle, M.: Stochastic satisfiability modulo theories for non-linear arith-
metic. In: Perron, L., Trick, M.A. (eds.) CPAIOR 2008. LNCS, vol. 5015, pp. 248–
262. Springer, Heidelberg (2008)

16. Teige, T., Eggers, A., Fränzle, M.: Constraint-based analysis of concurrent proba-
bilistic hybrid systems: An application to networked automation systems. Nonlin-
ear Analysis: Hybrid Systems (2010) (to appear)

17. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J.
ACM 12(1), 23–41 (1965)

18. Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formu-
las. Inf. Comput. 117(1), 12–18 (1995)

19. Majercik, S.M.: Stochastic Boolean satisfiability. In: [24], vol. 27, pp. 887–925
20. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth

of certain quantified Boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)
21. Goldsmith, J., Hagen, M., Mundhenk, M.: Complexity of DNF and isomorphism

of monotone formulas. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005.
LNCS, vol. 3618, pp. 410–421. Springer, Heidelberg (2005)

22. Schaefer, T.J.: The complexity of satisfiability problems. In: Proc. of the Tenth
Annual ACM Symposium on Theory of Computing, pp. 216–226. ACM, New York
(1978)

23. Silva, J.P.M., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In:
[24], ch. 4, pp. 131–153

24. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (February 2009)

Symbolic Automata Constraint Solving

Margus Veanes, Nikolaj Bjørner, and Leonardo de Moura

Microsoft Research Redmond, WA, USA
{margus,nbjorner,leonardo}@microsoft.com

Abstract. Constraints over regular and context-free languages are com-
mon in the context of string-manipulating programs. Efficient solving of
such constraints, often in combination with arithmetic and other theo-
ries, has many useful applications in program analysis and testing. We
introduce and evaluate a method for symbolically expressing and solv-
ing constraints over automata, including subset constraints. Our method
uses techniques present in the state-of-the-art SMT solver Z3.

1 Introduction

Regular expressions are used in different applications to express validity con-
straints over strings. In our case, the original motivation for supporting regular
expression constraints comes from two particular applications: program analy-
sis [13], and database query analysis [19], where the application is to synthesize
data-base tables from SQL queries. In the latter case, like-patterns are special
kinds of regular expressions that are common in SQL queries, consider e.g.:

SELECT ∗ FROM T WHERE C LIKE r1 AND NOT C LIKE r2 AND LEN(C) < D + E (1)

that selects all rows from a table T having columns C, D and E, where the C-
value matches the like-pattern r1, does not match the like-pattern r2 and whose
length is less than the sum of D-value and E-value. The analysis discussed in [19]
aims at generating tables that satisfy a test condition, e.g., that the result of (1)
is nonempty. A core part of that analysis is to find solutions to select-conditions
of the above form.

We introduce a technique that allows conditions such as SELECT of (1) to
be expressed and analyzed using satisfiability modulo theories (SMT) solving
in a way that is extensible with other constraints and theories. The central
idea behind the technique is the notion of a symbolic (language) acceptor for a
language (set of strings) L, as a binary predicate AccL(w, k) that is true modulo
a theory Th(L) iff w ∈ L and k is the length |w| of w. For a regular expression r
the symbolic acceptor for L(r) is constructed from a symbolic finite automaton
Ar that accepts L(r); the symbolic acceptor is denoted by AccAr and the theory
is denoted by Th(Ar). The automaton Ar is itself symbolic in the sense that its
moves are labeled by formulas rather than individual characters, which provides
a succinct way to represent automata.

In particular, solving the select condition in (1) corresponds to solving,

AccAr1 (c, k) ∧ ¬AccAr2 (c, k) ∧ k < d + e (2)

C. Fermüller and A. Voronkov (Eds.): LPAR-17, LNCS 6397, pp. 640–654, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Symbolic Automata Constraint Solving 641

modulo the theories Th(Ar1), Th(Ar2) and linear arithmetic. A solution of (2)
is a mapping of particular values for c, k, d, and e which makes (2) true (modulo
the given theories).

In applications such as [13,19], that build on the SMT technology, a fundamen-
tal aspect is that new theories can be added seamlessly and work in combination
with existing theories.

The construction of Th(A) builds on automata theory that offers a choice
between various logically equivalent forms of axiomatization and composition
techniques for performance considerations. For example, an encoding for (1)
that is equivalent to the direct encoding (2) has the form

AccAr1×Ar2 (c, k) ∧ k < d + e (3)

where A denotes the complement of A and A × B denotes the product of A
and B. Since complementation may cause exponential blowup in the size of an
automaton, it may be useful to use an encoding that combines product with
complementation as difference:

AccAr1\Ar2 (c, k) ∧ k < d + e (4)

Note that if L(r1) ⊆ L(r2) in (1), i.e., L(r1) \ L(r2) = ∅ then the query (1)
is infeasible. In contrast to (2), the encoding in (4) provides some benefits for
the integration with SMT solving, since it can detect emptiness during the in-
cremental difference construction. Independently, difference checking provides a
way to check subset constraints, that have other useful applications [9].

Combination of regular constraints on strings with quantifier free linear arith-
metic and length constraints is known to be decidable [22,23]. One can effectively
compute an upper bound on the length of all strings, see [17]. By using these
bounds to restrict the maximum length of strings in solutions of acceptor formu-
las, one obtains a complete decision procedure for solving linear arithmetic with
regular constraints and length constraints with the approach described in this
paper. For context free languages the approach gives a complete semi-decision
procedure.

We describe a specialized algorithm for constructing the difference A \ B
between a symbolic PDA A and a symbolic FA B. This algorithm is of interest
independently from the main application context; one use of the algorithm is for
checking subset constraints of the form L1 ⊆ L2 where L1 is context free and
L2 is regular without the need to provide fixed length bounds for the words.
We evaluate the performance of the different approaches we implemented in a
prototype tool and provide a comparison with the HAMPI tool [11].

2 Preliminaries

In the following, we assume familiarity with classical automata theory [10], logic
and model theory [8]. We are working in a fixed multi-sorted universe U of values.
For each sort σ, Uσ is a separate sub-universe of U . The basic sorts needed in this

642 M. Veanes, N. Bjørner, and L. de Moura

paper are the Boolean sort B, UB = {true, false}, and the sort of n-bit-vectors,
for a given number n ≥ 1; an n-bit-vector is essentially a vector of n Booleans.
Characters are represented by n-bit-vectors of fixed length n, such that n = 7 (8)
bits encode standard (extended) ASCII characters, and n = 16 encode Unicode
characters. With n clear from the context, we write C for the character sort. The
complete alphabet is UC. Constant characters are for example written as ‘a’.

There is a built-in (predefined) signature of function symbols and a built-in
theory (set of axioms) for those symbols. Each function symbol f of arity n ≥ 0
has a given domain sort σ0 × · · · × σn−1, when n > 0, and a given range sort
σ, f : σ0 × · · · × σn−1 → σ. For example, there is a built-in Boolean function
< : C×C → B that provides a strict total order of all the characters. One can also
declare fresh (new) uninterpreted function symbols f of arity n ≥ 0, for a given
domain sort and a given range sort. Using model theoretic terminology, these
new symbols expand the signature. A constant is a nullary function symbol. Well-
sorted terms and formulas (Boolean terms) are defined as usual. We write FV (t)
for the set of free variables in a term (or formula) t. A term or formula without
free variables is closed. Let FC denote the set of all quantifier-free formulas with
at most one fixed free variable of sort C. Throughout the paper, we denote that
variable by χ. Given ϕ ∈ FC, and a character or term t of sort C, we write ϕ[t]
for the formula where each occurrence of χ is replaced by t.

A model is a mapping from function symbols to their interpretations (values).
The built-in function symbols have the same interpretation in all models, keeping
that in mind, we may omit them from the model. A model for a formula ϕ
provides an interpretation for all the uninterpreted symbols in ϕ. A model M
for a closed formula ϕ satisfies ϕ, M |= ϕ, if the interpretations provided by
M make ϕ true. A closed formula ϕ is satisfiable if it has a model. A formula
ϕ with FV (ϕ) = x̄ is satisfiable if its existential closure ∃x̄ϕ is satisfiable. We
write |= ϕ, if ϕ is valid (true in all models for ϕ). For ϕ ∈ FC, we write [[ϕ]] for
the set of all a ∈ UC such that |= ϕ[a].

For example, the character range set [a-z\d] in a regex is translated into the
formula ψ = (‘a’ ≤ χ∧χ ≤ ‘z’)∨ (‘0’ ≤ χ∧χ ≤ ‘9’) with χ as the single free
variable in ψ. The formula ψ is satisfiable; ψ[‘b’] is true; ψ[‘A’] is false. Note
that ‘a’, ‘z’, ‘0’ and ‘9’ in ψ stand for terms that use only built-in function
symbols and denote the bit-vector encodings of the corresponding characters and
digits.

3 Symbolic Automata

We use a representation of automata where several transitions from a source state
to a target state are combined into a single symbolic move. Symbolic moves are
labeled by formulas from FC that represent sets of characters rather than indi-
vidual characters. This representation has the advantage of being more succinct
for symbolic analysis than an explicit representation. The following definition
builds directly on the standard definition of PDAs.

Symbolic Automata Constraint Solving 643

Definition 1. A Symbolic Push Down Automaton or SPDA A is a tuple (Q,
ϕΣ , Z, Δ, q0, z0, F), where Q is a finite set of states, ϕΣ is a formula in FC

called input predicate, Z is a finite set of stack symbols, q0 ∈ Q is the initial
state, z0 ∈ Z is the initial stack symbol, F ⊆ Q is the set of final states and
Δ : Q× Z ×FC ×Q× Z∗ is the move relation.

An SPDA A denotes the PDA [[A]] whose input alphabet is [[ϕΣ]] and [[A]] has
a transition (q, z, a, p, z) for each (q, z, ϕ, p, z) ∈ Δ and a ∈ [[ϕ ∧ ϕΣ]]. The
remaining components map directly to the corresponding components of a PDA.
When ϕΣ is true, i.e., when the input alphabet is UC, we omit ϕΣ from the
definition.

An εSPDA A may in addition have moves where the condition is ε /∈ FC,
denoting the corresponding ε-move in [[A]]. Let ρ = (q, z, α, p, z) be a move of
an εSPDA A.We define Src(ρ) def= q, Tgt(ρ) def= p, Cnd(ρ) def= α, Pop(ρ) def= z, and
Push(ρ) def= z. We also use the following notations

ΔA(q) def= {ρ | ρ ∈ ΔA,Src(ρ) = q}
ΔA(q, z) def= {ρ | ρ ∈ ΔA(q),Pop(ρ) = z}

and furthermore will allow lifting functions to sets. For example, ΔA(Q) def=
∪{ΔA(q) | q ∈ Q}. We write Δε

A for the set of all epsilon moves in ΔA and Δ� ε
A

for ΔA \Δε
A.

An εSPDA A is clean if all moves in Δ� ε
A have satisfiable conditions, and

normalized if there are no two moves in Δ� ε
A that differ only with respect to their

condition.
The language L(A) accepted by A is the language L([[A]]) accepted by the

PDA [[A]].
It is clear that for any εSPDA A there is a normalized εSPDA A′ such that

[[A]] = [[A′]]: just combine all nonepsilon moves that only differ with respect to
their conditions into a single move by making a disjunction of their conditions.

Elimination of epsilon moves from an εSPDA corresponds to transforming
the corresponding context free grammar into Greibach Normal Form (GNF),
which can be done in polynomial time. Move conditions play no active role
in the algorithm. (Terminals are in general treated as black boxes in normal
form transformations of grammars.) In the prototype tool we use a variation of
the Blum-Koch algorithm [3] for GNF transformation that has worst case time
complexity O(n4).

Definition 2. An εSPDA A represents a symbolic finite automaton with epsilon
moves or εSFA if for all ρ ∈ ΔA, Pop(ρ) = Push(ρ) = z0A.

When considering an εSPDA A that represents an εSFA, we omit the stack
symbols and denote A by the tuple (QA, ϕΣA, ΔA, q0A, FA). We use [14] as the
concrete language definition of regular expressions or regexes in this paper. The
translation from a regex to an εSFA follows very closely the standard algorithm,
see e.g., [10, Section 2.5], for converting a standard regular expression into a

644 M. Veanes, N. Bjørner, and L. de Moura

0 1

2

χ �= ‘2’ ∧ χ �= ‘b’

χ = ‘2’ χ = ‘b’

Fig. 1. Sample εSFA generated from the regex ^(2b|[^2b])$

finite automaton with epsilon moves. A sample regex and corresponding εSFA
are illustrated in Figure 1.

When we say SPDA or SFA we assume that epsilon moves are not present.

4 Symbolic Language Acceptors

To encode language acceptors, we use particular kinds of axioms, all of which
are equations of the form

∀x̄(tlhs = trhs) (5)

where FV (tlhs) = x̄ and FV (trhs) ⊆ x̄. When tlhs and trhs are formulas, we often
write ‘⇔’ instead of ‘=’. The left-hand-side tlhs of (5) is called the head of (5)
and the right-hand-side trhs of (5) is called the body of (5)

Many SMT solvers support various kinds of patterns for triggering axioms.
Yet in this paper, we use the convention that the pattern of an equational axiom
is always its head.

The same convention is used in [19]. Axioms are asserted as equations that are
expanded during proof search. Expanding the formula up front is problematic
since the equational axioms introduced for automata are in general mutually
recursive (as shown below) and a naive a priori exhaustive expansion would in
most cases not terminate. Straight-forward depth-bounded expansions are also
not practical as the size of the bounded expansion is easily exponential in the
depth.

The overall idea behind the axioms introduced below is as follows. For a
given εSPDA A we construct a theory Th(A) that includes a particular ax-
iom with head AccA(w, k). The main property of Th(A) is that it precisely
characterizes the language accepted by A as the set of solutions w and k for
Th(A) ∧ AccA(w, k), where k is the length of w.

Lists. Lists are built-in algebraic data-types and are accompanied with standard
constructors and accessors. For each sort σ, L〈σ〉 is the list sort with element
sort σ. For a given element sort σ there is an empty list ε (of sort L〈σ〉) and
if e is an element of sort σ and l is a list of sort L〈σ〉 then [e|l] is a list of sort
L〈σ〉. The accessors are, as usual, hd (head) and tl (tail). Words or strings are
represented by lists of characters; we write W for the sort L〈C〉. We adopt the
common convention that [a, b, c] stands for the list [a|[b|[c|ε]]] and we use l1 · l2
for concatenation of l1 and l2.

Symbolic Automata Constraint Solving 645

Construction of Th(A). Let A be a given εSPDA. Assume A is normalized. Let
N be a built-in non-negative numeral sort such as a bit-vector or integer sort
restricted to non-negative integers. We use N for representing the length |l| of a
list l, i.e., the number of elements in l. Let Z be a sort for representing ZA and
assume that ZA ⊆ UZ. By slight abuse of notation, we also use elements in U as
terms. We may assume, without loss of generality that Z is a fixed numeral sort
as well. We represent a stack as an element of sort S = L〈Z〉.

For all q ∈ QA, declare the predicate symbol

AccA
q : W× N× S → B

Recall that an ID of [[A]] is a triple (q, w, s) where q ∈ Q[[A]], w is a word and s is a
stack [10]. For defining the axioms it is more convenient to use acceptance by the
empty stack rather than final states, the language accepted by the empty stack
is denoted by N([[A]]) in [10, page 112]. The transformation of A to an equivalent
εSPDA A′ such that L([[A]]) = N([[A′]]) is straightforward. We therefore assume
below that FA = ∅.

The idea behind the axioms defined below is that the formula AccA
q (w, n, s)

holds iff |w| = n and (q, w, s) �∗
[[A]] (p, ε, ε) for some p ∈ Q[[A]], where �[[A]] is the

step relation of [[A]] as defined in [10, page 112]. We write �A for �[[A]]. Declare
also

AccA : W× N → B

The intuition is that AccA(w, n) holds iff |w| = n and w ∈ L(A).

Definition 3. Fix q ∈ QA and z ∈ ZA. Assume ΔA(q, z) is

{(q, z, ϕi, qi, zi) | 1 ≤ i ≤ m} ∪ {(q, z, ε, qi, zi) | m < i ≤ k}.

Define

axA def= ∀wn (AccA(w, n) ⇔ AccA
q0A

(w, n, [z0A]))

axA
q

def= ∀wn (AccA
q (w, n, ε) ⇔ (w = ε ∧ n = 0))

axA
q,z

def= ∀wn s (AccA
q (w, n, [z|s]) ⇔

((w �= ε ∧ n > 0 ∧ (
m∨

i=1

(ϕi[hd(w)] ∧ AccA
qi

(tl(w), n−1, zi · s))))

∨
k∨

j=m+1

AccA
qj

(w, n, zj · s))) (6)

Th(A) def= {axA} ∪ {axA
q , ax

A
q,z | q ∈ QA, z ∈ ZA}.

Definition 4. An ε-loop of A is a derivation (q, w, s) �+
A (q, w, s′) s.t. |s| ≤ |s′|.

Intuitively, an ε-loop is a derivation that does not consume any characters from
the input word and starts and ends in the same state for some stacks that
do not decrease in size. Note that an ε-loop can only involve ε-moves, since any

646 M. Veanes, N. Bjørner, and L. de Moura

nonepsilon move decreases the length of the input word by one. Define the binary
relation �εA: ((QA × Z∗

A)× (QA × Z∗
A)) called the ε-step relation of A as:

(q1, s1) �εA (q2, s2)
def= (q1, ε, s1) �A (q2, ε, s2)

Lemma 1. If A has no ε-loops then �εA is wellfounded.

Proof. Assume A has no ε-loops and suppose, by contradiction, that there is an
infinite chain ((qi, si) �εA (qi+1, si+1))i<ω . Since QA is finite, there is a fixed q
and an infinite subset I ⊆ ω such that q = qi for i ∈ I and (q, ε, si) �+

A (q, ε, sj)
for i, j ∈ I such that i < j. Since ZA is finite and I is infinite, it follows that
|si| ≤ |sj | for some i, j ∈ I where i < j, contradicting ε-loop-freeness of A. 	

Theorem 1. Assume that �εA is wellfounded. For all w ∈ UW and n ∈ UN:

Th(A) |= AccA(w, n) ⇐⇒ w ∈ L(A) and |w| = n.

Proof. By using that �εA is wellfounded, define (w1, (q1, s1)) ' (w2, (q2, s2)) as
the lexicographic order : |w1| > |w2| or, |w1| = |w2| and (q1, s1) �εA (q2, s2).

For each axiom ax q,z in Th(A) we show that each occurrence of AccA
p in the

body of ax q,z is smaller wrt ' than the head of ax q,z. For the cases when w �= ε
we have that

(w, (q, [z|s])) ' (tl(w), (qi, zi · s))
by using that |w| > |tl(w)| according to the built-in theory of lists. For the case
of the epsilon moves in (6) we have that

(w, (q, [z|s])) ' (w, (qj , zj · s))

since (q, ε, [z|s]) �A (qj , ε, zj · s) and thus (q, [z|s]) �εA (qj , zj · s).
It follows that the set of axioms is mathematically well-defined. We can now

prove, by induction over the length of w that the following statement holds,
which is also directly evident from the definitions. For all IDs (q, w, s) of [[A]]:

∃p ∈ QA((q, w, s) �∗
A (p, ε, ε)) ⇐⇒ Th(A) |= AccA

q (w, |w|, s).

Finally, let q = q0A, s = [z0A] and use axiom axA. 	

In general, presence of ε-loops may imply that �εA is not wellfounded and the
theorem fails, as illustrated by the following example. Moreover, for εSFAs, ε-
loop-freeness is equivalent to �εA being wellfounded.

Example 1. Let A = ({q}, {z}, q, z, ∅, {(q, z, ε, q, (z))}). For example (q, ε, (z)) �A
(q, ε, (z)). The language accepted by A is empty. The theory Th(A) for A includes
the axiom axA

q,z : ∀w n s (AccA
q (w, n, [z|s]) ⇔ AccA

q (w, n, [z|s])). This axiom is a
useless tautology. Consider for example a model M with an interpretation for
AccA

q such that M |= AccA
q (ε, 0, (z)) and expand M so that M |= axA ∧ axA

q .
Then M |= AccA(ε, 0) but ε /∈ L(A). 	

Symbolic Automata Constraint Solving 647

For εSFAs full epsilon elimination may cause quadratic increase in the number
of moves, although the number of states may decrease. For εSPDAs the increase
is even higher (although still polynomial) by using GNF transformation. For
symbolic analysis this may create more complex axioms than needed and may
reduce the performance considerably [18]. For εSFAs A we implemented ε-loop-
elimination by using the following construction, that does not increse the number
of moves. Recall the definition of ε-closure, denoted here by ε(q), as the closure
of {q} by ε-moves [10]. Similarly, define �(q) as the closure of {q} by ε-moves in
reverse. Let q̃

def= ε(q) ∩ �(q) (note that {q} ⊆ q̃) and let

Ã
def= ({q̃ | q ∈ QA}, ϕΣA, {(q̃, ϕ, p̃) | (q, ϕ, p) ∈ ΔA}, q̃0A, {q̃ | q ∈ FA})

It is straightforward to show that Ã is ε-loop-free and equivalent to A. For
εSPDAs we have not investigated specialized algorithms for ε-loop-elimination
and resort to extended GNF (EGNF) transformation [3] that, translated into
εSPDAs, allows some ε-moves but eliminates ε-loops.1

5 Difference Construction

We describe an algorithm that is used below for encoding difference constraints.
The input to the algorithm consists of a clean SPDA A and a clean SFA B, and
the output of the algorithm is a clean SPDA C that is equivalent to A×B, i.e.,
L(C) = L(A) \ L(B). Thus, L(C) = ∅ iff L(A) ⊆ L(B).

The general idea behind the algorithm is to incrementally determinize and
complement B, and simultaneously compose it with A, while keeping the con-
struction clean. During this process the SMT solver is used to generate all solu-
tions to cube formulas that represent satisfiable combinations of move conditions
for all moves from subsets of states of B that arise during determinization of B.
Given a finite sequence of formulas ϕ = (ϕi)i<n from FC, and distinct Boolean
constants b = (bi)i<n define

Cube(ϕ, b) def=
∧
i<n

ϕi ⇔ bi.

Recall that the variable χ is shared in all the ϕi. A solution of Cube(ϕ, b)
is a model M such that M |= ∃χCube(ϕ, b). In particular, M provides a truth
assignment to all the bi’s. Given a set G of formulas we write

∨
G for the formula∨

ϕ∈G ϕ, similarly for
∧

G. The following property follows by using basic model
theory.

Proposition 1. If M is a solution of Cube(ϕ, b) then
∧
{ϕi | i < n,M |= bi}

is satisfiable.
1 Absence of ε-loops does not directly follow from the definition of EGNF that allows

grammar productions of the form A → B where A and B are nonterminals, thus
A → B and B → A would be allowed simultaneously. But the algorithm in [3] for
converting a CFG to EGNF will not generate such circular productions.

648 M. Veanes, N. Bjørner, and L. de Moura

Given a solution M of Cube(ϕ, b), let ϕM denote the formula∧
({bi |M |= bi} ∪ {¬bi |M |= ¬bi})

We use the following iterative model generation procedure to generate the set
Solutions(Cube(ϕ, b)) of all solutions of Cube(ϕ, b).

1. Initially let M = ∅.
2. Keep adding solutions of Cube(ϕ, b) to M until Cube(ϕ, b)∧

∧
M∈M ¬ϕM is

unsatisfiable.
3. Let Solutions(Cube(ϕ, b)) = M.

The procedure is still exponential (in n) in the worst case, but seems to work
well in practice. It is also better than creating all subsets of ϕ and filtering out
all combinations that are unsatisfiable, which is always exponential.

The following property is used in the difference construction algorithm for
generating all satisfiable subsets of move conditions for a given set of moves.

Proposition 2. Let ϕ and b be as above. For all subsets G of ϕ,
∧

G is sat-
isfiable if and only if there exists M ∈ Solutions(Cube(ϕ, b)) such that M |= bi

for all ϕi ∈ G.

An SFA A is total if for all q ∈ QA, the formula ∀χ
∨
{Cnd(t) | t ∈ ΔA(q)} is

valid. In order to make an SFA that is not total into an equivalent total SFA,
one can add a new dead state d to it with the move (d, true, d), and a new
move (q, ϕ, d) from each state q where ϕ is satisfiable and ϕ =

∧
{¬Cnd(t) |

t ∈ Δ(q)}. Clearly, determinism is preserved by this transformation. An SFA A
is determinisitic if [[A]] is deterministic. Note that, it is easy to show that A is
deterministic iff for all (p, ϕ1, q1) and (p, ϕ2, q2) in ΔA, if q1 �= q2 then ϕ1 ∧ϕ2 is
unsatisfiable. Given a total deterministic SFA A, the complement A of A is the
deterministic SFA (QA, q0A, QA \ FA, ΔA).

It is easy to see that for a total deterministic SFA A, L(A) = L(A). We use the
following property of regular languages to speed up the difference construction
in some cases, with a low initial overhead. For regular languages it is a well-
known fact that reversing the language preserves regularity. Given an εSFA A
with nonempty L(A) and a state q /∈ QA, the reverse Ar of A with initial state
q is the εSFA

(QA ∪ {q}, q, {q0A}, {(Tgt(t),Cnd(t),Src(t)) | t ∈ ΔA} ∪ {(q, ε, p) | p ∈ FA})

Given a word s let sr denote the word that is s in reverse and let Lr denote the
language {sr | s ∈ L}. (Note that L = (Lr)r.) It follows that L(Ar) = L(A)r.
We make use of the property L(A) = L(Ar)r.

The point of reversing is that complementation of an SFA A requires deter-
minization that may cause exponential blowup in the size of the automaton,
which can be avoided if Ar is deterministic. A classical example is the SFA A
for the regex [ab]*a[ab]{n} where n is a positive integer. A has n + 2 states
and the size of the minimum deterministic SFA for this regex has 2n+1 states,
whereas Ar is deterministic.

Symbolic Automata Constraint Solving 649

We are now ready to describe the algorithm. Let A be an SPDA and B an
SFA. Assume that A is clean and B is normalized, clean, and total.

Check the special cases first:

– If B is deterministic let C = A×B.
– Else, if A represents an SFA and Br is deterministic let C = (Ar ×Br)r.

General case. We describe the algorithm as a depth-first-exploration algorithm
using a stack S as a frontier, a set V : (QA × 2QB) × ZA of visited elements,
and a set T of moves. Initially, let q0C = 〈q0A, {q0B}〉, S = (〈q0C , z0A〉), V =
{〈q0C , z0A〉}, and T = ∅.

(i) If S is empty go to (iv) else pop 〈〈p,q〉, z〉 from S.
(ii) Let ΔA(p, z) = (p, z, ϕi, pi, zi)i<m, ΔB(q) = (, ψi, qi)i<n. Let a = (ai)i<m

and b = (bi)i<n be fresh Boolean constants. Compute

M = Solutions(Cube((ϕi)i<m · (ψi)i<n,a · b))

with the additional constraint that
∨

a is true. For each move (p, z, ϕi, pi, zi)
of A and for each solution M in M such that M |= ai do the following. Let

γ = ϕi ∧
∧

({ψj |M |= bj} ∪ {¬ψj |M |= ¬bj}), q′ = {qj |M |= bj}.

Add the move (〈p,q〉, z, γ, 〈pi,q′〉, zi) to T . For each z′ ∈ zi define v =
〈〈pi,q′〉, z′〉, if v /∈ V then add v to V and if there exists ρ ∈ ΔA such that
Src(ρ) = p′ and Pop(ρ) = z′ then push v to S.

(iii) Go to (i).
(iv) Compute the set of final states F = {〈p,q〉 | 〈p,q〉 ∈ π1(V), p ∈ FA,q ∩

FB = ∅}. If F = ∅ let C = ({q0C}, {z0A}, q0C , z0A, ∅, ∅), else let C =
(π1(V), π2(V), q0C , z0A, F, T).

The complementation of B in the algorithm is reflected in the computation of F
where a state of C is final if its first component is a final A-state and its second
component, that is a set of B-states, includes no final B state.

The totality of B is assumed in the computation of M, where each solution
will make at least one ai and at least one bj true. The totality assumption
can be avoided by representing a “dead state” implicitly in the algorithm. The
presentation of the algorithm gets technically more involved in this case.

To see that B is indeed incrementally determinized, consider any two moves

ρ1 = (q,
∧

M1|=bj

ψj ∧
∧

M1|=¬bj

¬ψj , {qj |M1 |= bj})

ρ2 = (q,
∧

M2|=bj

ψj ∧
∧

M2|=¬bj

¬ψj , {qj |M2 |= bj})

that are composed with moves of A and added to T in Step (ii), where M1,M2 ∈
M. We need to show that if Tgt(ρ1) �= Tgt(ρ2) (i.e., for some bj , M1 |= bj and

650 M. Veanes, N. Bjørner, and L. de Moura

M2 |= ¬bj), then Cnd(ρ1) ∧Cnd(ρ2) is unsatisfiable, which holds because there
is at least one ψj such that ψj is a conjunct of Cnd(ρ1) and ¬ψj is a conjunct
of Cnd(ρ2).

The property that all possible satisfiable combinations of B-moves are consid-
ered in Step (ii) and that the composition with A-moves preserves satisfiability
of the conditions of the moves added to T , follows from Proposition 2 and the
added constraint that

∨
a is true in the computation of M.

Finally, note that if A represents an SFA then so does C.

5.1 Difference Checking

The difference algorithm has a more efficient version in the case when A above
also represents an SFA and the purpose is to find a single witness in L(A)\L(B).
In this case the explicit construction of L(A)\L(B) is not needed since Th(L(A)\
L(B)) is not needed. The checking of final states can be done when an element
is popped from S and a “witness tree” can be incrementally updated (instead of
T) that records links backwards from newly found target states to their source
states. This algorithm has the same complexity as the full construction in the
general case, but may finish sooner when L(A) \ L(B) is nonempty.

6 Implementation

The algorithms and the axiom generation discussed above, have been imple-
mented in a prototype tool for analyzing regular expressions and context free
grammars. The SMT solver Z3 [6] is used for satisfiability checking and model
generation. We use some features that are specific to Z3, including the integrated
combination of decision procedures for algebraic data-types, integer linear arith-
metic, bit-vectors and quantifier instantiation. We also make use of incremental
features so that we can manipulate logical contexts while exploring different com-
binations of constraints. Use of algebraic data-types is central in the construction
of the language acceptors, as was illustrated in Section 4. The definitions of the
axioms match very closely with the implementation.

Working within a context enables incremental use of the solver. A context
includes declarations for a set of symbols, assertions for a set of formulas, and
the status of the last satisfiability check (if any). There is a current context and
a backtrack stack of previous contexts. Contexts can be saved through pushing
and restored through popping. The use of contexts is illustrated below
z3.Push(); //push a new context for collecting solutions
Term[] b = ... //fresh Boolean constants for B-moves
Term[] a = ... //fresh Boolean constants for A-moves
Term[] cube = ... //corresponding cube equations
z3.AssertCnstr(z3.MkAnd(cube)); //assert the cube formula
z3.AssertCnstr(z3.MkOr(a)); //at least one a[i] must hold
Model M;
while (z3.CheckAndGetModel(out M) != LBool.False) //get M
{

AddToSolutions(M); //record M
z3.AssertCnstr(Negate(M,a,b)); //exclude M

}
z3.Pop(); //return to the previous context

Symbolic Automata Constraint Solving 651

Table 1. Sample regexes

\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*([,;]\s*\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*)*

$?(\d{1,3},?(\d{3},?)*\d{3}(\.\d{0,2})?|\d{1,3}(\.\d{0,2})?|\.\d{1,2}?)

([A-Z]{2}|[a-z]{2} \d{2} [A-Z]{1,2}|[a-z]{1,2} \d{1,4})?([A-Z]{3}|[a-z]{3} \d{1,4})?

[A-Za-z0-9](([\.\-]?[a-zA-Z0-9]+)*)@([A-Za-z0-9]+)(([\.\-]?[a-zA-Z0-9]+)*)\. ([A-Za-z][A-Za-z]+)

(\w|-)+@((\w|-)+\.)+(\w|-)+

[+-]?([0-9]*\.?[0-9]+|[0-9]+\.?[0-9]*)([eE][+-]?[0-9]+)?

((\w|\d|\-|\.)+)@{1}(((\w|\d|\-){1,67})|((\w|\d|\-)+\.(\w|\d|\-){1,67}))\.((([a-z]|[A-Z]|\d){2,4})(\.([a-z] |[AZ]|\d){2})?)

(([A-Za-z0-9]+ +)|([A-Za-z0-9]+\-+)|([A-Za-z0-9]+\.+)|([A-Za-z0-9]+\++))*[A-Za-z0-9]+@((\w+\-+)|(\w+\.))*\w {1,63}\.[a-zA-Z]{2,6}

(([a-zA-Z0-9 \-\.]+)@([a-zA-Z0-9 \-\.]+)\.([a-zA-Z]{2,5}){1,25})+([;.](([a-zA-Z0-9 \-\.]+)@([a-zA-Z0-9 \-\.

]+)\.([a-zA-Z]{2,5}){1,25})+)*

((\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*)\s*[,]{0,1}\s*)+

Table 2. Experiments. For 1 ≤ i ≤ 10, Ai is a εSFA for the regex in row i in Table 1.
Time is

∑
1≤i,j≤10,i�=j ti,j , where ti,j is the time to generate a member x ∈ L(Ai)\L(Aj)

where i �= j.

Experiment Time Formulas checked by Z3

direct encoding 15s Th(Ai) ∧ Th(Aj) ∧ AccAi(x, k) ∧ ¬AccAj (x, k)
difference algorithm 60s Th(Ai \ Aj) ∧ AccAi\Aj (x, k)
difference checking 10s No axioms for the automata are asserted, but Z3 is

used for solving cube formulas.

and shows a simplified code snippet from the tool responsible for comput-
ing Solutions(Cube(ϕ, b)) in the difference construction algorithm in Section 5,
where the solutions are generated incrementally using a context, and the model
generation feature is used to extract solutions from Z3.

7 Evaluation

We conducted several experiments where we evaluated the performance of the
difference algorithm and the axiomatization approach.2 The following experi-
ments were run on a laptop with an Intel dual core T7500 2.2GHz processor. We
used a collection of 10 complex regexes ri extracted from a case study in [13]
that are representative for various practical usages. Table 1 shows the samples.
For several ri the corresponding automaton Ai has thousands of states. In all
cases, Ai \Aj for i �= j is nonempty. There are a total of 90 such combinations.

Experiments are shown in Table 2. The table does not reflect experiments
where the set difference is empty (i.e. for the case i = j but assuming that Aj is
made slighltly different from Ai in Ai \Aj so that the theories are not identical
but accept the same words): in this case the direct encoding diverges when Ai

encodes an infinite language. In contrast, the difference constructions remain

2 More details are available in [17].

652 M. Veanes, N. Bjørner, and L. de Moura

robust, i.e., the construction of A \ B terminates with the empty automaton
when A \B is empty.

To our knowledge, a system that comes closest to the scope of ours is the open
source string constraint solver Hampi [11]. We conducted a similar experiment
using Hampi. Given the regexes ri in Table 1, Hampi’s input corresponding to
the membership constraint x ∈ L(ri) \ L(rj) is:

var x : l; reg a := Ri; reg b := R2; assert x in a; assert x not in b;

where Ri is a Hampi representation of the regex ri. The declaration var x : l
constrains the length of x to be l. Altough Hampi supports length ranges var x :
llower .. lupper the range declaration caused segmentation faults in the underlying
STP [7] solver, so we resorted to using the more restricted case. The experiment
with using l = 10 took a toal of 2min to complete for the 90 cases. By setting
l = 15, the experiment took 4min 30sec to complete. For values of l < 10,
several of the membership constraints become unsatisfiable and fail to detect
nonemptiness of L(ri) \L(rj). For example, for l = 3, the experiment took 1min
and 30sec, but for most of the constraints the result was unsat.

8 Related Work

The work presented here is a nontrivial extension of the work started in [18]
where different εSFA algorithms and their effect on language acceptors for εSFAs
(including minimization and determinization) are studied. The experiments in
[18] failed in determinization, which needed the idea of solving cube formulas.
Moreover, the approach of language acceptors presented in [18] does not sup-
port precise length constraints, and the axioms were not studied for εSPDAs.
Theorem 1 generalizes a similar statement for εSFAs in [18].

Although, an extension of FAs with predicates has been suggested earlier [21],
we are not aware of similar results for PDAs that make the difference algorithm
possible. We are also not aware of symbolic analysis with SMT being studied,
based on such extensions.

The Hampi [11] tool, that is a string constraint solver, supports encoding of
difference constraints L(R1) \ L(R2) between regular expressions R1 and R2,
where R1 can be obtained as a finitization of a context free grammar. Unlike
in our case, Hampi turns string constraints over fixed-size string variables into
a query to STP [7]. STP is a solver for bit-vectors and arrays. The input size
needs to be fixed, since STP does not support axioms or algebraic data types,
and potential combination with other theories, e.g. linear arithmetic, is not in
the scope of STP.

A decision procedure for subset constraints over regular language variables is
introduced in [9] by reasoning over dependency graphs. In contrast, we showed
how finite push-down automata can be generalized by making transitions sym-
bolic, and how a decision procedure can be embedded into a background theory
of an SMT solver.

Symbolic Automata Constraint Solving 653

Several decision problems related to CFGs are studied in [2] and depth-
bounded versions thereof are mapped to SAT solving. In particular, an algo-
rithm is provided for checking bounded version of ambiguity (whether a string
has more than one parse tree in a given grammar) of CFGs, that provides an
advantage over an algorithm in [15], by providing a witness in case of ambiguity.
Using SMT and the approach presented here, an interesting direction for future
work is to study extensions of symbolic acceptors based on grammars that cap-
ture parse trees, which is also related to symbolic acceptors for tree-automata.
A parse tree can be represented with an algebraic data-type based on the pro-
ductions of the grammar. Potentially, this approach can be used for ambiguity
checking and in addition to providing a witness, avoids the need to provide a
priori depth-bounds.

Several program analysis techniques for programs with strings [22,5,16,20]
build on automata libraries [12,1] that efficiently handle transitions over sets of
characters as either BDDs [4] or interval constraints. Most of those approaches
suffer from the separation of the decision procedures that are not tightly cou-
pled. Constraints over strings are decided by one solver, while constraints over
other domains are decided by other solvers, but the solvers usually cannot be
combined in an efficient, sound or complete fashion. SMT solvers directly ad-
dress this problem by combining decision procedures for a variety of theories.
Particular examples from applications involving strings are: symbolic analysis of
SQL queries [19] and analysis of .NET programs [13].

9 Conclusion

We believe that the use of symbolic language acceptors as a purely logical de-
scription of formal languages and their mapping to state of the art SMT solving
techniques opens up a new approach to analyzing and solving language the-
oretic problems in combination with automata theoretic techniques. We have
demonstrated the scalability of the technique on solving extended regular con-
straints, that have direct applications in static analysis, testing, and database
query analysis.

Acknowledgement. The Hampi comparison in Section 7 would not have been
possible without the help of Pieter Hooimeijer who set up the whole environment
for the experiment and provided scripts for converting the regexes in Table 1 to
Hampi format.

References

1. BRICS finite state automata utilities, http://www.brics.dk/automaton/
2. Axelsson, R., Heljanko, K., Lange, M.: Analyzing context-free grammars using an

incremental SAT solver. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson,
M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS,
vol. 5126, pp. 410–422. Springer, Heidelberg (2008)

http://www.brics.dk/automaton/

654 M. Veanes, N. Bjørner, and L. de Moura

3. Blum, N., Koch, R.: Greibach Normal Form Transformation Revisited. Inf. Com-
put. 150(1), 112–118 (1999)

4. Brace, K.S., Rudell, R.L., Bryant, R.E.: Efficient implementation of a BDD pack-
age. In: DAC 1990, pp. 40–45. ACM, New York (1990)

5. Christensen, A.S., Møller, A., Schwartzbach, M.I.: Precise Analysis of String Ex-
pressions. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 1–18. Springer,
Heidelberg (2003)

6. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. TACAS 2008, pp. 337–340. Springer,
Heidelberg (2008)

7. Ganesh, V., Dill, D.L.: A Decision Procedure for Bit-Vectors and Arrays. In:
Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531.
Springer, Heidelberg (2007)

8. Hodges, W.: Model theory. Cambridge Univ. Press, Cambridge (1995)
9. Hooimeijer, P., Weimer, W.: A decision procedure for subset constraints over reg-

ular languages. In: PLDI, pp. 188–198 (2009)
10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading (1979)
11. Kiezun, A., Ganesh, V., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI: a solver

for string constraints. In: ISSTA 2009, pp. 105–116. ACM, New York (2009)
12. Klarlund, N.: Mona & Fido: The Logic-Automaton Connection in Practice. In:

Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 311–326. Springer, Heidelberg
(1998)

13. Li, N., Xie, T., Tillmann, N., de Halleux, P., Schulte, W.: Reggae: Automated test
generation for programs using complex regular expressions. In: ASE 2009 (2009)

14. MSDN. .NET Framework Regular Expressions (2009),
http://msdn.microsoft.com/en-us/library/hs600312.aspx

15. Schmitz, S.: Conservative ambiguity detection in context-free grammars. In: Arge,
L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
pp. 692–703. Springer, Heidelberg (2007)

16. Shannon, D., Hajra, S., Lee, A., Zhan, D., Khurshid, S.: Abstracting Symbolic Exe-
cution with String Analysis. In: MUTATION 2007, pp. 13–22. IEEE, Los Alamitos
(2007)

17. Veanes, M., Bjørner, N., de Moura, L.: Solving extended regular constraints sym-
bolically. Technical Report MSR-TR-2009-177, Microsoft Research (2009)

18. Veanes, M., de Halleux, P., Tillmann, N.: Rex: Symbolic Regular Expression Ex-
plorer. In: ICST 2010, IEEE, Los Alamitos (2010)

19. Veanes, M., Tillmann, N., de Halleux, J.: Qex: Symbolic SQL query explorer. In:
LPAR-16. LNCS (LNAI). Springer, Heidelberg (2010)

20. Wassermann, G., Gould, C., Su, Z., Devanbu, P.: Static checking of dynamically
generated queries in database applications. ACM TSEM 16(4), 14 (2007)

21. Watson, B.W.: chapter Implementing and using finite automata toolkits, pp. 19–36.
Cambridge U. Press, Cambridge (1999)

22. Yu, F., Bultan, T., Cova, M., Ibarra, O.H.: Symbolic String Verification: An
Automata-Based Approach. In: Havelund, K., Majumdar, R., Palsberg, J. (eds.)
SPIN 2008. LNCS, vol. 5156, pp. 306–324. Springer, Heidelberg (2008)

23. Yu, F., Bultan, T., Ibarra, O.H.: Symbolic String Verification: Combining String
Analysis and Size Analysis. In: Kowlaewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 322–336. Springer, Heidelberg (2009)

http://msdn.microsoft.com/en-us/library/hs600312.aspx

Author Index

Alenda, Régis 52
Audemard, Gilles 474
Axelsson, Roland 67

Baader, Franz 82, 97
Banbara, Mutsunori 112
Barrett, Clark 402
Biere, Armin 357
Bjørner, Nikolaj 640
Blanchette, Jasmin Christian 127
Bonfante, Guillaume 142
Brock-Nannestad, Taus 157
Brünnler, Kai 172

Charatonik, Witold 187
Chatterjee, Krishnendu 1
Chaudhuri, Kaustuv 202
Claessen, Koen 127
Codish, Michael 217
Condotta, Jean-François 233

David, Claire 248
Dawson, Jeremy E. 263
de Moura, Leonardo 640
Deng, Yuxin 278
Doyen, Laurent 1

Ferrari, Mauro 294
Fietzke, Arnaud 302
Fiorentini, Camillo 294
Fiorino, Guido 294
Fleuriot, Jacques 565
Fränzle, Martin 625
Fuhs, Carsten 217

Giesl, Jürgen 217
Giordano, Laura 317
Gliozzi, Valentina 317
Goré, Rajeev 263
Grégoire, Benjamin 333

Hague, Matthew 67
Halpern, Joseph Y. 15
Henzinger, Thomas A. 348
Hermanns, Holger 302

Heule, Marijn 357
Hölldobler, Steffen 519
Hottelier, Thibaud 348
Hyvärinen, Antti E.J. 372

Inoue, Katsumi 112

Janssens, Gerda 504
Järvisalo, Matti 357
Jouannaud, Jean-Pierre 387
Jovanović, Dejan 402
Junttila, Tommi 372

Kaci, Souhila 233
Kaminski, Mark 417
Klinov, Pavel 432
Kolokolova, Antonina 447
Korovin, Konstantin 459
Kovács, Laura 348
Kreutzer, Stephan 67
Kroening, Daniel 489

Lagniez, Jean-Marie 474
Lange, Martin 67
Latte, Markus 67
Leroux, Jérôme 489
Libkin, Leonid 248
Lippmann, Marcel 82
Liu, Hongkai 82
Liu, Yongmei 447

Maher, Michael J. 16
Mantadelis, Theofrastos 504
Manthey, Norbert 519
Marquis, Pierre 233
Matsunaka, Haruki 112
Mazure, Bertrand 474
McKinley, Richard 535
Meseguer, José 594
Middeldorp, Aart 550
Mitchell, David 447
Monate, Benjamin 387
Morawska, Barbara 97
Moser, Georg 142

656 Author Index

Neurauter, Friedrich 550
Niemelä, Ilkka 372

Olivetti, Nicola 52, 317

Papapanagiotou, Petros 565
Parsia, Bijan 432
Picado-Muiño, David 432
Pozzato, Gian Luca 317
Preining, Norbert 30

Reuß, Andreas 581
Rocha, Camilo 594
Rümmer, Philipp 489
Rybalchenko, Andrey 348

Sacchini, Jorge Luis 333
Säıs, Lakhdar 474
Saptawijaya, Ari 519
Schneider-Kamp, Peter 217

Schürmann, Carsten 157
Schwind, Nicolas 233
Seidl, Helmut 581
Smolka, Gert 417
Sticksel, Christoph 459

Tamura, Naoyuki 112
Tan, Tony 248
Tasharrofi, Shahab 610
Teige, Tino 625
Ternovska, Eugenia 447, 610

van Glabbeek, Rob 278
Veanes, Margus 640

Weidenbach, Christoph 302
Witkowski, Piotr 187

Zankl, Harald 550

	Title
	Preface
	Organization
	Table of Contents
	The Complexity of Partial-Observation Parity Games
	Introduction
	Definitions
	Reduction of Objectives to Visible Objectives
	Complexity of Partial-Observation Parity Games
	Complexity of Sure Winning
	Complexity of Almost-Sure Winning
	Complexity of Limit-Sure Winning and Value Decision Problems

	The Complexity of Acyclic Games
	References

	Awareness in Games, Awareness in Logic
	References

	Human and Unhuman Commonsense Reasoning
	Introduction
	Defeasible Reasoning
	Defeasible Logic
	Non-monotonic Inheritance Networks

	Ford's Logic
	The Logic FDL
	Properties of FDL
	Conclusion
	References

	Gödel Logics – A Survey
	Introduction
	Syntax and Semantics for Propositional Gödel Logics
	Syntax and Semantics for First-Order Gödel Logics
	Axioms and Deduction Systems for Gödel Logics
	Topologic and Order

	Propositional Gödel Logics
	Completeness of H^0 for LC

	First Order Gödel Logics
	Preliminaries
	Relationships between Gödel Logics
	Axiomatizability

	Further Topics
	Relation to Kripke Frames
	Number of Different Gödel Logics
	Proof Theory

	References

	Tableau Calculus for the Logic of Comparative Similarity over Arbitrary Distance Spaces
	Introduction
	Syntax and Semantics
	A Labeled Tableau Calculus
	Termination
	Soundness
	Completeness

	Conclusion
	References

	Extended Computation Tree Logic
	Introduction
	Extended Computation Tree Logic
	Related Formalisms
	Expressivity and Model Theory
	Satisfiability
	Model Checking
	Finite State Systems
	Visibly Pushdown Systems
	Pushdown Systems

	Conclusion and Further Work
	References

	Using Causal Relationships to Deal with the Ramification Problem in Action Formalisms Based on Description Logics
	Introduction
	DL-Based Action Formalisms and Causal Relationships
	Deciding Consistency
	Consistency w.r.t. the Empty TBox
	The General Case

	Deciding Projection
	Additional Results and Future Work
	References

	SAT Encoding of Unification in {\it EL}
	Introduction
	Unification in {\it EL}
	The SAT Encoding
	Soundness
	Completeness
	Some Comments Regarding the Reduction

	Connection to the Original ``in NP'' Proof
	Conclusion
	References

	Generating Combinatorial Test Cases by Efficient SAT Encodings Suitable for CDCL SAT Solvers
	Introduction
	Covering Arrays and Related Work
	Hnich's SAT Encoding
	Order Encoding
	Overview of Order Encoding
	An Order Encoding of CA

	Mixed Encoding
	Comparison and Symmetry
	Experiments
	Conclusion
	References

	Generating Counterexamples for Structural Inductions by Exploiting Nonstandard Models
	Introduction
	Background
	Isabelle/HOL
	Nitpick

	Introductory Examples
	Rule Induction
	Structural Induction

	The Approach
	Description
	Theoretical Properties
	Implementation

	A More Advanced Example
	Evaluation
	Discussion and Related Work
	Conclusion
	References

	Characterising Space Complexity Classes via Knuth-Bendix Orders
	Introduction
	Preliminaries
	Computation by Rewriting
	Turing Machines and Rewriting
	The Knuth Bendix Order
	Characterising Linear Space via KBO
	Characterising Polynomial Space via KBO
	Characterising Exponential Space via KBO
	Conclusion
	References

	Focused Natural Deduction
	Introduction
	Natural Deduction for Intuitionistic Linear Logic
	Focused Natural Deduction

	Soundness and Completeness
	Relation to the Backward Linear Focusing Calculus
	Conclusion and Related Work
	References

	How to Universally Close the Existential Rule
	Introduction
	The Sequent Systems
	Admissible Rules and Invertibility
	Relation between System Q and the Usual Sequent Calculus
	Relation between System FQ and Free Logic
	Syntactic Cut-Elimination
	Herbrand's Theorem and Interpolation
	References

	On the Complexity of the Bernays-Sch\"{o}nfinkel Class with Datalog
	Introduction
	Preliminaries
	NEXPTIME Upper Bound
	NEXPTIME Lower Bound
	Hardness of C^2_r+ Datalog
	Related Work
	Conclusion and Future Work
	References

	Magically Constraining the Inverse Method Using Dynamic Polarity Assignment
	Introduction
	Magic Sets Transformation
	The Focused Inverse Method
	Forward Reasoning and the Inverse Method

	Dynamic Polarity Assignment
	The Mechanism of Dynamic Polarity Assignment
	Implementing Magic Sets with Dynamic Polarity Assignment
	Example
	Correctness

	Conclusion
	References

	Lazy Abstraction for Size-Change Termination
	Introduction
	Term Rewrite Systems and Dependency Pairs
	Size-Change Termination and Dependency Pairs
	Approximating SCT in NP
	Automation by SAT Encoding
	Implementation and Experiments
	Conclusion
	References

	A Syntactical Approach to Qualitative Constraint Networks Merging
	Introduction
	Preliminaries
	Qualitative Formalisms and Qualitative Constraint Networks
	Basic Distances and Aggregation Functions

	The Merging Issue
	Problem and Example
	Rationality Postulates for QCN Merging Operators

	Two Classes of QCN Merging Operators
	$Δ_1$ Operators
	$Δ_2$ Operators
	Computational Complexity

	Comparison between $Δ_1$,$Δ_2$ and Related Works
	When to Choose a $Δ_1$ Operator
	When to Choose a $Δ_2$ Operator

	Conclusion
	References

	On the Satisfiability of Two-Variable Logic over Data Words
	Introduction
	Data Words and the Main Result
	Data Words
	Logics over Data Words

	Additional Notations
	Disjunctive Constraints for Data Words
	Existential Presburger Formulae
	Presburger Automata
	Profile Automata for Data Words
	A Normal Form for MSO2(,+1)

	Some Preliminary Results
	Proof of Theorem 3
	Satisfiability over Locally Different Data Words
	Satisfiability over General Data Words

	Analysis of the Complexity
	References

	Generic Methods for Formalising Sequent Calculi Applied to Provability Logic
	Introduction
	Sequents, Multisets, Sets and Provability Logic
	Reasoning about Derivations and Derivability
	Deep and Shallow Embeddings
	Properties of Our Generic Derivability Predicates
	Sequents, Formulae and the GLS Rules

	An Axiomatic Type Class for Multisets and Sequents
	Capturing the Core of Cut-Admissibility Proofs
	The Proof of Cut-Admissibility for GLS
	Conclusions
	References

	Characterising Probabilistic Processes Logically
	Introduction
	Probabilistic (Bi)simulations
	The Probabilistic Modal mu-Calculus
	Characteristic Equation Systems
	Modal Characterisations
	References

	fCube: An Efficient Prover for Intuitionistic Propositional Logic
	Introduction
	Preliminaries and Tableau Calculus
	Simplification Rules
	fCube Strategy
	Evaluation and Conclusions
	References

	Superposition-Based Analysis of First-Order Probabilistic Timed Automata
	Introduction
	Preliminaries
	First-Order Logic, Hierarchic Superposition, SUP(LA)
	Probabilistic Timed Automata

	First-Order Probabilistic Timed Automata
	Semantics of FPTA

	Reachability Analysis in FOL
	From FPTA to FOL(LA)
	Extending SUP(LA) with Labels
	From FOL(LA) to VPTA

	Analyzing DHCP
	Conclusion
	References

	A Nonmonotonic Extension of KLM Preferential Logic P
	Introduction
	KLM Preferential Logic P
	The Logic P_min
	Relations between P_min and 1-Entailment and Rational Closure

	A Tableaux Calculus for P_min
	Phase 1: The Calculus $T-AB_PH 1^P$
	Phase 2: The Calculus $T-AB_PH 2^P$

	Conclusion
	References

	On Strong Normalization of the Calculus of Constructions with Type-Based Termination
	Introduction
	A Primer on Type-Based Termination
	System \CICminus
	Strong Normalization
	Preliminary Definitions
	The Interpretation
	Interpretation of Simple Types
	Soundness
	Strong Normalization

	Related Work
	Conclusions
	References

	Aligators for Arrays
	Introduction
	Aligators in Action
	Invariant Generation with Aligators
	Programming Model
	Invariant Inference with Aligators

	Experimental Results
	Loop Extraction for Aligators

	Conclusion
	References

	Clause Elimination Procedures for CNF Formulas
	Introduction
	Preliminaries
	Overview of Contributions
	Tautology-Based Clause Elimination Procedures
	Hidden Tautology Elimination
	Asymmetric Tautology Elimination

	Subsumption-Based Clause Elimination Procedures
	Hidden Subsumption Elimination
	Asymmetric Subsumption Elimination

	Clause Elimination Procedures Based on Blocked Clauses
	Hidden Blocked Clause Elimination
	Asymmetric Blocked Clause Elimination

	Reconstructing Solutions After HBCE and ABCE
	Experimental Evaluation
	Conclusions
	References

	Partitioning SAT Instances for Distributed Solving
	Introduction
	Preliminaries
	Approaches to Distributed Solving
	DPLL-Based Partitioning with Lookahead
	One-Step Unit Propagation Lookahead
	The Partition Function
	Exploiting Unique Implication Points
	Lookahead as a Preprocessing Technique

	Partitioning with Scattering
	Benchmarking Partition Functions
	Experiments on the Partition Tree Approach
	Conclusions
	References

	Infinite Families of Finite String Rewriting Systems and Their Confluence
	Introduction
	Preliminaries
	Parameterized Words
	Syntax
	Semantics

	The Rewriting Toolkit for Parameterized Words
	Auxiliary Algorithms
	Factoring
	Intersection, Equality and Left-Overlaps

	Parameterized Rewriting
	Termination of Parameterized Rewriting
	Confluence of Parameterized Rewriting
	Implementation and Example

	Conclusion
	References

	Polite Theories Revisited
	Introduction
	Preliminaries
	Many-Sorted First-Order Logic
	Combination of Theories

	Polite Theories
	Definitions
	Finite Witnessability Revisited
	A New Combination Theorem for Polite Theories
	Combining Multiple Polite Theories

	Theory Instantiations
	Conclusion
	References

	Clausal Graph Tableaux for Hybrid Logic with Eventualities and Difference
	Introduction
	Hybrid Logic with Eventualities and Difference
	Clausal Form
	Tableaux for $K^∗$
	Tableaux for H_D
	Tableaux for $H^∗$ and H_D
	Conclusion
	References

	The Consistency of the CADIAG-2 Knowledge Base: A Probabilistic Approach
	Introduction
	Notation and Preliminary Definitions
	The Knowledge Base in CADIAG-2
	Checking Satisfiability of CADIAG-2
	Algorithms
	Decomposition of CADIAG-2

	Results
	Related Work
	Conclusion
	References

	On the Complexity of Model Expansion
	Introduction
	Definitions
	Complexity of MX for First-Order Logic
	Complexity of MX for Guarded Fragments of FO
	Complexity of ID-Logic
	Equivalence between FO(ID) and FO(LFP)
	Complexity of MX for FO(ID)

	Conclusion
	References

	Labelled Unit Superposition Calculi for Instantiation-Based Reasoning
	Introduction
	The Inst-Gen Method Modulo Equality
	Set Labelled Unit Superposition
	Redundancy Elimination and Selection Changes
	Tree Labelled Unit Superposition
	OBDD Labelled Unit Superposition
	Implementation and Evaluation
	Conclusion
	References

	Boosting Local Search Thanks to CDCL
	Introduction
	Technical Background
	Preliminary Definitions and Notations
	cdcl Solvers
	Local Search Solvers

	SatHys: A Novel Hybrid Approach
	Motivations
	Formal Description

	Experimental Validation
	Effectiveness of the Collaboration
	Comparison

	Related Work
	Conclusion
	References

	Interpolating Quantifier-Free Presburger Arithmetic
	Introduction
	Interpolation for Quantifier-Free Presburger Formulas
	Overview of the Interpolation Procedure
	Unsatisfiable Equalities over the Integers
	Unsatisfiable Inequalities over the Rationals
	Unsatisfiable Predicates
	When Strengthening Is Necessary
	Termination and Complexity
	Experimental Evaluation
	References

	Variable Compression in ProbLog
	Introduction
	ProbLog and Its Use of ROBDDs
	The ProbLog Language
	Program Execution in ProbLog

	Variable Compression
	Motivation
	Cluster Definitions
	Using the Clusters for Variable Compression

	Discovering AND-clusters
	The Book Marking Algorithm
	An Example of the Book Marking Algorithm

	Experiments for AND-clusters
	Complexity Analysis
	Related Work and Conclusions
	References

	Improving Resource-Unaware SAT Solvers
	Introduction
	Description of the Solver
	Measurement
	Results and Analysis
	Runtime Analysis
	Implementation Analysis

	Improvements
	Clause Access Improvements
	Reducing Memory Accesses
	Applying Improvements to MiniSAT2.0
	Combination of Improvements

	Conclusion and Future Work
	References
	Problem Instances Used in the Measurement

	Expansion Nets: Proof-Nets for Propositional Classical Logic
	Introduction
	Preliminaries

	Proof Nets with Contraction and Weakening
	Expansion/Deletion Nets
	Problems with Contraction
	Expansion/Deletion Trees
	Expansion Nets

	Decorating Sequent Derivations with Terms
	A Calculus Deriving Expansion Nets
	Cut-Free Completeness of LK_e

	Conclusions and Further Work
	References

	Revisiting Matrix Interpretations for Polynomial Derivational Complexity of Term Rewriting
	Introduction
	Preliminaries
	Matrix Interpretations and Derivational Complexity
	Main Result
	Implementation Issues
	Experimental Results
	Conclusion, Related and Future Work
	References

	An Isabelle-Like Procedural Mode for HOL Light
	Introduction
	HOL Light
	Overview
	Proof Construction in HOL Light

	Isabelle
	Overview
	Isabelle's Procedural Proof Style

	``Isabelle Light''
	Overview
	The Meta-level
	Implementing the Isabelle-Like Tactics

	Limitations and Future Work
	Limitations of Meta-variables
	Meta-level Quantification
	Future Work

	Conclusion
	References

	Bottom-Up Tree Automata with Term Constraints
	Introduction
	Preliminaries
	Expressiveness and Closure Properties
	Automata with Disequality Constraints Only
	General TCA
	Conclusion
	References

	Constructors, Sufficient Completeness, and Deadlock Freedom of Rewrite Theories
	Introduction
	Preliminaries
	Rewrite Theories and the Initial Reachability Model TR
	The Canonical Reachability Model CanR

	Sufficient Completeness and Deadlock Freedom
	Checking the Properties with PTA
	Propositional Tree Automata
	Checking Canonical Sufficient Completeness
	Checking Signatures of E-Free and R-Terminal Constructors
	The Extended Maude Sufficient Completeness Checker

	Constructor-Based Inductive Reasoning
	Ground Reachability
	Ground Joinability

	Related Work
	Concluding Remarks and Future Work
	References

	PBINT, A Logic for Modelling Search Problems Involving Arithmetic
	Introduction
	 Background: MX with Arithmetic
	Logic PBINT
	Capturing NP
	Bellantoni-Cook Characterization of PTIME
	NP PBINT MX
	PBINT MX NP

	Related Work
	Conclusion
	References

	Resolution for Stochastic Boolean Satisfiability
	Introduction
	Preliminaries
	Computational Complexity of SSAT
	Resolution for SSAT
	Discussion and Future Work
	References

	Symbolic Automata Constraint Solving
	Introduction
	Preliminaries
	Symbolic Automata
	Symbolic Language Acceptors
	Difference Construction
	Difference Checking

	Implementation
	Evaluation
	Related Work
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

