

Lecture Notes in Computer Science 6310
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Rainer Keller David Kramer
Jan-Philipp Weiss (Eds.)

Facing the
Multicore-Challenge

Aspects of New Paradigms and Technologies
in Parallel Computing

13

Volume Editors

Rainer Keller
High Performance Computing Center Stuttgart (HLRS)
Universität Stuttgart
Nobelstr. 19
70569 Stuttgart, Germany
E-mail: keller@hlrs.de

David Kramer
Institute of Computer Science and Engineering
Karlsruhe Institute of Technology, Germany
Haid-und-Neu-Str. 7
76131 Karlsruhe, Germany
E-mail: kramer@kit.edu

Jan-Philipp Weiss
Engineering Mathematics and Computing Lab (EMCL)
& Institute for Applied and Numerical Mathematics 4
Karlsruhe Institute of Technology, Germany
Fritz-Erler-Str. 23
76133 Karlsruhe, Germany
E-mail: jan-philipp.weiss@kit.edu

Library of Congress Control Number: 2010935359

CR Subject Classification (1998): D.1-3, C.1.4, C.4, I.3.1, F.2.1, G.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-16232-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16232-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

The proceedings at hand are the outcome of the conference for young scien-
tists titled Facing the Multicore-Challenge held at the Heidelberger Akademie
der Wissenschaften, March 17–19, 2010. The conference focused on topics re-
lated to the impact of multicore and coprocessor technologies in science and for
large-scale applications in an interdisciplinary environment. The conference was
funded by the Heidelberger Akademie der Wissenschaften and placed emphasis
on the support and advancement of young scientists.

The aim of the conference was to bring together leading experts as well
as motivated young researchers in order to discuss, recent developments, the
present status of the field, and its future prospects the exchange of ideas, in
a pleasant atmosphere that stimulates. It was the designated goal to address
current issues including mathematical modeling, design of parallel algorithms,
aspects of microprocessor architecture, parallel programming languages, com-
pilers, hardware-aware computing, heterogeneous platforms, emerging architec-
tures, tools, performance tuning, and requirements for large-scale applications.
This broad range of issues is reflected by the present conference proceedings. The
results of the presented research papers clearly show the potential of emerging
technologies in the area of multicore and manycore processors that are paving the
way towards personal supercomputing. However, many issues related to parallel
programming environments, development of portable and future-proof concepts,
and the design of scalable and manycore-ready algorithms still need to be ad-
dressed in future research. Some of these points are the subject of the presented
papers.

These proceedings include diverse and interdisciplinary research work. An
assessment of parallel programming environments like the RapidMind platform
and the perspective of GPGPU computing in large data centers is presented. The
proceedings further address issues of hardware architecture by exploring way-
adaptable caches. The management of parallel units is considered in papers on
thread affinities and on thread creation. Application aspects on modern processor
technologies are investigated for the Cell Broadband Engine by means of the
G-means application for data mining and a numerical study on 3D multigrid
methods. A complex fluid dynamic application modeled by the lattice Boltzmann
equations is considered on multi- and manycore processors like the multicore
CPUs, GPUs, and Cell. The potential of FPGA and GPU technology is outlined
for a sorting problem. Application studies on GPUs include image segmentation
and parallel volume rendering. Furthermore, fault tolerance of pipeline workflows
is the subject of presented research work.

The conference organizers and editors would like to thank the Heidelberger
Akademie der Wissenschaften for giving us the opportunity to organize this
conference at this inspiring venue. Without the funding of the Heidelberger

VI Preface

Akademie der Wissenschaften and the comprehensive support for this fruitful
event this conference would not have been possible. In particular, we would like
to thank all the friendly people at the Heidelberger Akademie der Wissenschaften
for making this conference happen. Last but not least, thank you very much to
all the contributors submitting exciting, novel work and providing multi-facetted
input to the discussions.

March 2010 Rainer Keller
David Kramer

Jan-Philipp Weiss

Preface from the Heidelberg Academy of Sciences and Humanities

The focus of this publication is: How are innovative computer systems going to
have a crucial impact on all branches of science and technology? Multicore sys-
tems are opening up new perspectives to cope with challenges which seemed to
have been out of range to be mastered up to now. However, they are also posing
new challenges in adapting all domains, ranging from mathematical modeling,
numerical methods and algorithms to software and hardware design and devel-
opment. The contributions presented in this volume offer a survey on the state
of the art, the concepts and perspectives for future developments. They are
an outcome of an inspiring conference conceived and organized by the editors
within the junior scientist program of Heidelberg Academy for Sciences and Hu-
manities. The Academy is happy to promote junior scientists getting involved
in innovative research and daring to break new ground. Springer deserves high
recognition for handling the publication efficiently and thus helping to face the
multicore challenges.

Willi Jäger

Acknowledgements

The conference Facing the Multicore-Challenge has been kindly funded and sup-
ported by the Heidelberger Akademie der Wissenschaften, Karlstr. 4, 69117 Hei-
delberg. The Shared Research Group 16-1 of Jan-Philipp Weiss has received
financial support by the Concept for the Future of Karlsruhe Institute of Tech-
nology in the framework of the German Excellence Initiative and the industrial
collaboration partner Hewlett-Packard.

Organization

General Chair

Jan-Philipp Weiss Karlsruhe Institute of Technology, Germany
Rainer Keller Oak Ridge National Laboratory, USA
David Kramer Karlsruhe Institute of Technology, Germany

Mentorship

Willi Jäger University of Heidelberg, Germany

Program Committee

David A. Bader Georgia Tech, Atlanta, USA
Michael Bader University of Stuttgart, Germany
Rosa Badia Barcelona Supercomputing Center, Spain
Richard Barrett Oak Ridge National Labs, USA
Mladen Berekovic TU Braunschweig, Germany
Arndt Bode TU Munich, Germany
George Bosilca University of Tennessee Knoxville, USA
Jim Bovay Hewlett-Packard, USA
Rainer Buchty Karlsruhe Institute of Technology, Germany
Mark Bull EPCC, Edinburgh, UK
Hans-Joachim Bungartz TU Munich, Germany
Franck Cappello LRI, Université Paris Sud, France
Claudia Fohry Kassel University, Germany
Richard Graham Oak Ridge National Labs, USA
Thomas Herault Université Paris Sud, France
Hans Herrmann ETH, Zürich, Switzerland
Vincent Heuveline Karlsruhe Institute of Technology, Germany
Michael Hübner Karlsruhe Institute of Technology, Germany
Ben Juurlink TU Berlin, Germany
Wolfgang Karl Karlsruhe Institute of Technology, Germany
Rainer Keller Oak Ridge National Labs, USA
Hiroaki Kobayashi Tohoku University, Japan
Manfred Krafczyk TU Braunschweig, Germany
Hsin-Ying Lin Intel, USA
Anton Lokhmotov Imperial College, London, UK
Dieter an Mey RWTH Aachen, Germany
Bernd Mohr FZ Jülich, Germany
Claus-Dieter Munz Stuttgart University, Germany

VIII Organization

Norihiro Nakajima JAEA and CCSE, Japan
Wolfgang Nagel TU Dresden, Germany
Christian Perez INRIA, France
Franz-Josef Pfreundt ITWM Kaiserslautern, Germany
Rolf Rabenseifner HLRS, Stuttgart, Germany
Thomas Rauber Bayreuth University, Germany
Michael Resch HLRS, Stuttgart, Germany
Gudula Rünger Chemnitz Technical University, Germany
Olaf Schenk Basel University, Basel, Switzerland
Martin Schulz Lawrence Livermore National Labs, USA
Masha Sosonkina Ames Lab, USA
Thomas Steinke ZIB, Berlin, Germany
Carsten Trinitis TUM, Munich, Germany
Stefan Turek Dortmund University, Germany
Wolfgang Wall TUM, Munich, Germany
Gerhard Wellein RRZE, Erlangen, Germany
Josef Weidendorfer TUM, Munich, Germany
Jan-Philipp Weiss Karlsruhe Institute of Technology, Germany
Felix Wolf FZ Jülich, Germany
Stephan Wong TUD, Delft, The Netherlands

Table of Contents

Invited Talks

Analyzing Massive Social Networks Using Multicore and Multithreaded
Architectures . 1

David Bader

MareIncognito: A Perspective towards Exascale . 2
Jesus Labarta

The Natural Parallelism . 3
Robert Strzodka

Computer Architecture and Parallel Programming

RapidMind: Portability across Architectures and Its Limitations 4
Iris Christadler and Volker Weinberg

A Majority-Based Control Scheme for Way-Adaptable Caches 16
Masayuki Sato, Ryusuke Egawa, Hiroyuki Takizawa, and
Hiroaki Kobayashi

Improved Scalability by Using Hardware-Aware Thread Affinities 29
Sven Mallach and Carsten Gutwenger

Thread Creation for Self-aware Parallel Systems . 42
Martin Schindewolf, Oliver Mattes, and Wolfgang Karl

Applications on Multicore

G-Means Improved for Cell BE Environment . 54
Aislan G. Foina, Rosa M. Badia, and Javier Ramirez-Fernandez

Parallel 3D Multigrid Methods on the STI Cell BE Architecture 66
Fabian Oboril, Jan-Philipp Weiss, and Vincent Heuveline

Applying Classic Feedback Control for Enhancing the Fault-Tolerance
of Parallel Pipeline Workflows on Multi-core Systems 79

Tudor B. Ionescu, Eckart Laurien, and Walter Scheuermann

Lattice-Boltzmann Simulation of the Shallow-Water Equations with
Fluid-Structure Interaction on Multi- and Manycore Processors 92

Markus Geveler, Dirk Ribbrock, Dominik Göddeke, and Stefan Turek

X Table of Contents

FPGA vs. Multi-core CPUs vs. GPUs: Hands-On Experience with a
Sorting Application . 105

Cristian Grozea, Zorana Bankovic, and Pavel Laskov

GPGPU Computing

Considering GPGPU for HPC Centers: Is it Worth the Effort? 118
Hans Hacker, Carsten Trinitis, Josef Weidendorfer, and
Matthias Brehm

Real-Time Image Segmentation on a GPU . 131
Alexey Abramov, Tomas Kulvicius, Florentin Wörgötter, and
Babette Dellen

Parallel Volume Rendering Implementation on Graphics Cards Using
CUDA . 143

Jens Fangerau and Susanne Krömker

Author Index . 155

Analyzing Massive Social Networks Using
Multicore and Multithreaded Architectures

David Bader

Georgia Institute of Technology, USA

Abstract. Emerging real-world graph problems include detecting com-
munity structure in large social networks, improving the resilience of the
electric power grid, and detecting and preventing disease in human pop-
ulations. Unlike traditional applications in computational science and
engineering, solving these problems at scale often raises new challenges
because of sparsity and the lack of locality in the data, the need for ad-
ditional research on scalable algorithms and development of frameworks
for solving these problems on high performance computers, and the need
for improved models that also capture the noise and bias inherent in the
torrential data streams. The explosion of real-world graph data poses a
substantial challenge: How can we analyze constantly changing graphs
with billions of vertices? Our approach leverages the Cray XMT’s fine-
grained parallelism and flat memory model to scale to massive graphs.
On the Cray XMT, our static graph characterization package GraphCT
summarizes such massive graphs, and our ongoing STINGER streaming
work updates clustering coefficients on massive graphs at a rate of tens
of thousands updates per second.

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

MareIncognito: A Perspective towards Exascale

Jesus Labarta

Barcelona Supercomputing Centre, Spain

Abstract. MareIncognito is a cooperative project between IBM and
the Barcelona Supercomputing Center (BSC) targeting the design of rel-
evant technologies on the way towards exascale. The initial challenge of
the project was to study the potential design of a system based on a next
generation of Cell processors. Even so, the approaches pursued are gen-
eral purpose, applicable to a wide range of accelerator and homogeneous
multicores and holistically addressing a large number of components rel-
evant in the design of such systems.

The programming model is probably the most important issue when
facing the multicore era. We need to offer support for asynchronous data
flow execution and decouple the way source code looks like and the way
the program is executed and its operations (tasks) scheduled. In order to
ensure a reasonable migration path for programmers the execution model
should be exposed to them through a syntactical and semantic structure
that is not very far away from current practice. We are developing the
StarSs programming model which we think addresses some the challenges
of targeting the future heterogeneous / hierarchical multicore systems at
the node level. It also integrates nicely into coarser level programming
models such as MPI and what is more important in ways that propagate
the asynchronous dataflow execution to the whole application. We are
also investigating how some of the features of StarSs can be integrated
in OpenMP.

At the architecture level, interconnect and memory subsystem are two
key components. We are studying in detail the behavior of current in-
terconnect systems and in particular contention issues. The question is
to investigate better ways to use the raw bandwidth that we already
have in our systems and can expect to grow in the future. Better un-
derstanding of the interactions between the raw transport mechanisms,
the communication protocols and synchronization behavior of applica-
tions should lead to avoid an exploding need for bandwidth that is often
claimed. The use of the asynchronous execution model that StarSs offers
can help in this direction as a very high overlap between communication
and computation should be possible. A similar effect or reducing sensi-
tivity to latency as well as the actual off chip bandwidth required should
be supported by the StarSs model.

The talk will present how we target the above issues, with special
details on the StarSs programming model and the underlying idea of
the project of how tight cooperation between architecture, run time,
programming model, resource management and application are needed
in order to achieve in the future the exascale performance.

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, p. 2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Natural Parallelism

Robert Strzodka

Max Planck Institut Informatik, Saarbruecken, Germany

Abstract. With the advent of multi-core processors a new unwanted
way of parallel programming is required which is seen as a major chal-
lenge. This talk will argue in exactly the opposite direction that our
accustomed programming paradigm has been unwanted for years and
parallel processing is the natural scheduling and execution model on all
levels of hardware.

Sequential processing is a long outdated illusionary software concept
and we will expose its artificiality and absurdity with appropriate analo-
gies of everyday life. Multi-core appears as a challenge only when looking
at it from the crooked illusion of sequential processing. There are other
important aspects such as specialization or data movement, and admit-
tedly large scale parallelism has also some issues which we will discuss.
But the main problem is changing our mindset and helping others to do
so with better education so that parallelism comes to us as a friend and
not enemy.

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, p. 3, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

RapidMind: Portability across Architectures and
Its Limitations

Iris Christadler and Volker Weinberg

Leibniz-Rechenzentrum der Bayerischen Akademie der Wissenschaften,
D-85748 Garching bei München, Germany

Abstract. Recently, hybrid architectures using accelerators like GP-
GPUs or the Cell processor have gained much interest in the HPC
community. The “RapidMind Multi-Core Development Platform” is a
programming environment that allows generating code which is able to
seamlessly run on hardware accelerators like GPUs or the Cell processor
and multi-core CPUs both from AMD and Intel. This paper describes
the ports of three mathematical kernels to RapidMind which have been
chosen as synthetic benchmarks and representatives of scientific codes.
Performance of these kernels has been measured on various RapidMind
backends (cuda, cell and x86) and compared to other hardware-specific
implementations (using CUDA, Cell SDK and Intel MKL). The results
give an insight into the degree of portability of RapidMind code and code
performance across different architectures.

1 Introduction

The vast computing horsepower which is offered by hardware accelerators and
their usually good power efficiency has aroused interest of the high performance
computing community in these devices. The first hybrid system which entered
the Top500 list [1] was the TSUBAME cluster at Tokyo Institute of Technology
in Japan. Several hundred Clearspeed cards were used to accelerate an Opteron
based cluster; the system was ranked No. 9 in the Top500 list in November 2006.
Already in June 2006, a sustained Petaflop/s application performance was firstly
reached with the RIKEN MD-GRAPE 3 system in Japan, a special purpose
system dedicated for molecular dynamics simulations. In 2008, the first system
ever to reach a sustained High Performance LINPACK (HPL) performance of
more than one Petaflop/s was “Roadrunner”, the No. 1 system on the lists in
July 2008 and November 2008. Roadrunner is a hybrid system based on Opteron
processors and accelerated with PowerXCell8i processors, a variant of the Cell
B.E. (Broadband Engine) with increased double-precision capability.

However, applicability of hardware accelerators for general-purpose HPC sys-
tems is still a source of debate. In 2008, the landscape was quite diverse; many
different hardware solutions existed (Cell, Nvidia and AMD/ATI GPUs, Clear-
Speed accelerator boards, FPGA based systems) and every system had its own
programming language and paradigm. At the same time, the x86 processors
started to become multi-core processors and first HPC systems were based on

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, pp. 4–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

RapidMind: Portability across Architectures and Its Limitations 5

hundred thousands of cores. Improving the scalability of HPC codes to be able
to utilize the increased core counts was already difficult for the scientific commu-
nities; trying to add support for one of the new accelerators was a huge porting
effort with a high risk: what if either the hardware or the software would not be
supported on the long run? Solutions which offered support for different hard-
ware architectures became appealing.

While in the meantime several solutions (e.g. OpenCL [2], PGI accelerator
compiler [3], CAPS hmpp [4], StarSs [5]) exist which provide an abstraction
of the underlying hardware characteristics from the programmer, the situation
was different two years ago: RapidMind Inc. was one of the first companies
providing support for general purpose computing on graphic processing units,
nowadays known as GPGPUs. RapidMind started in 2004 based on the academic
research related to the Sh project [6] at the University of Waterloo. Their work
was started at a time when the first “programmable” GPUs were just released
and the only way to program these devices was by using “shading languages”.
Already at that time people tried porting simulation codes to GPUs [7]. Since
then, RapidMind has subsequently added the Cell processor backend (2007)
and the x86 multi-core processor backend with the rise of multi-core processor
CPUs for the consumer market (2008). In 2009, version 4.0 was released which
introduced the cuda backend, necessary to support double-precision arithmetic
on GPUs. Even today, RapidMind is still the only product that fully supports
Cell, GPUs and multi-core CPUs. All other solutions are either limited by the
hardware which they support or require an adaptation of the code.

At SC06 a paper was published which showed impressive performance gains
by using RapidMind for porting three algorithms (SGEMM, FFT and Black-
Scholes) to the GPU [8]. This is a follow-on work assessing the state-of-the-
art three years later. However, the main reason for choosing RapidMind for a
deeper investigation has been its programming paradigm which differs from serial
programming languages and abstracts the massive parallelism of the underlying
hardware more than any other language concept currently discussed for HPC.

2 Overview

2.1 Software

The “RapidMind Multi-Core Development Platform” promises easy and portable
access not only to multi-core chips from Intel and AMD but also to hardware
accelerators like GPUs and Cell. The basic concept of the RapidMind language
is called “data-stream processing”; a powerful technology to express data paral-
lelism. A simple example of a RapidMind program is given in Fig. 1 (a). Figure 1
(b) represents a schematic view of the executed stream program. A call to a
RapidMind program can be inserted in any valid C++ program and needs to
include the RapidMind library in the header of the file and during linkage. Un-
less specified explicitly, the RapidMind runtime environment will automatically
search for available accelerator hardware and compile the program at runtime
using the RapidMind backend for the detected hardware.

6 I. Christadler and V. Weinberg

#include <rapidmind/platform.hpp>
using namespace RapidMind;
...
// declaration
Array<1, Value4i> input;
Array<1, Value4f> output;

Program example = BEGIN {
// program definition

} END;
// program call
output = example(input);

(a) (b)

Fig. 1. RapidMind programming scheme

RapidMind adds special types and functions to C++ which allow the pro-
grammer to define sequences of operations (RapidMind programs) on streams
of data (special arrays). With these, data dependencies and data workflows can
be easily expressed and will naturally contain all necessary information for an
efficient (data-) parallelization. The compiler and the runtime environment then
have maximum information to decide how to auto-parallelize the code.

The structure of RapidMind code forces the programmer to decide early in
the development process which operations could be performed in parallel without
any side-effects. This usually results in many small code snippets that can run in
parallel which is optimal to fill the pipeline of a GPU or other massively parallel
devices.

2.2 Hardware

Three different platforms are used for the performance measurements. An Nvidia
Tesla based system is used to measure the cuda backend from RapidMind against
implementations based on CUDA and the CUDA libraries cuBLAS and cuFFT.
Tesla is Nvidia’s first dedicated general purpose GPU with enhanced double-
precision capability. A C1060 supports partly IEEE-754, consists of 240 thread
processors with an overall performance of 78 GFlop/s in double-precision and
933 GFlop/s in single-precision. One Nvidia Tesla S1070 1U rack consists of four

Table 1. Hardware overview

Hardware SP peak perf. DP peak perf.

1 C1060 GPU 933 GFlop/s 78 GFlop/s
1 Tesla S1070 4140 GFlop/s 345 GFlop/s
Nehalem-EP (2.53 GHz, 1 core) 20 GFlop/s 10 GFlop/s
Nehalem-EP (2.53 GHz, 8 cores) 162 GFlop/s 81 GFlop/s
1 PowerXCell8i (8 SPUs) 205 GFlop/s 102 GFlop/s
1 QS22-blade 2 PowerXCell8i (16 SPUs) 410 GFlop/s 205 GFlop/s

RapidMind: Portability across Architectures and Its Limitations 7

C1060 computing processors with a total single-precision performance of around
4 TFlop/s.

An IBM QS22-blade based system is used to compare RapidMind’s cell back-
end with code using Cell intrinsics which is taken from the SDK. Each QS22-
blade hosts two PowerXCell8i, the processors used to accelerate Roadrunner [9].
Each PowerXCell8i is running at 3.2 GHz, is partly IEEE-754 conform and has a
single-precision peak performance of 204.8 GFlop/s and a double-precision peak
performance of 102.4 GFlop/s. A QS22-blade has therefore a total of slightly
more than 400 GFlop/s single-precision performance. The main difference be-
tween the Cell processor and GPUs or current multi-core CPUs is its inho-
mogeneity; eight synergistic processor units (SPUs) are added to one PowerPC
processor unit (PPU). The Cell processor has a very good performance per Watt
ratio and the 6 most energy efficient supercomputers, as ranked by Green500 [10]
in November 2009, are based on PowerXCell8i technology.

RapidMind’s x86 backend is benchmarked against code using Intel’s Math
Kernel Library (MKL) on one of the latest Intel processors, a Xeon E5540
known as “Nehalem-EP”. A Nehalem-EP core running at 2.53 GHz has a single-
precision peak performance slightly above 20 GFlop/s and a double-precision
peak performance of around 10 GFlop/s. One Nehalem-EP node consists of 2
sockets with four cores per socket. A Nehalem-EP node with 8 cores reaches 162
GFlop/s single and 81 GFlop/s double-precision performance.

The performance figures of all three architectures are summarized in Table 1.
Since the double-precision peak performance of one Nehalem-EP node (8 cores,
81 GFlop/s) is quite comparable with the double-precision performance of 1
Nvidia C1060 GPU (78 GFlop/s) and 1 PowerXCell8i (102 GFlop/s) we tried
to compare these platforms directly where possible.

3 The RapidMind Ports and Their Performance

To judge the suitability of recent accelerator hardware for scientific computing
and high-performance computing, three mathematical kernels from the Euroben
benchmark suite [11] have been chosen:

– mod2am: a dense matrix-matrix multiplication,
– mod2as: a sparse matrix-vector multiplication,
– mod2f: a one-dimensional Fast Fourier Transformation (FFT).

The kernels have been selected to show both the advantages and the pitfalls
of current accelerators. They are representatives of three (dense linear algebra,
sparse linear algebra and spectral methods) of the “seven dwarfs”, an ontology
for scientific codes introduced by [12]. According to Fig. 11 in [13] these three
dwarfs account for approximately one third of the workload of current European
HPC Tier-1 centers. The selection of kernels was performed by the EU FP7-
project PRACE, published in [14] and should be extended to cover all important
dwarfs in the future.

8 I. Christadler and V. Weinberg

3.1 Dense Matrix-Matrix Multiplication (mod2am)

The dense matrix-matrix multiplication (C = A × B) is one of the most basic
algorithms used in scientific computing. It is the basis of the High Performance
LINPACK code, which determines the Top500 rank of a system. The schoolbook
version of the algorithm is composed of three nested for-loops. Many sophisti-
cated optimization strategies exist, and one of the fastest implementations is the
MKL version. Making use of the MKL functions is straightforward and basi-
cally needs a call to cblas dgemm (double-precision arithmetic) or cblas sgemm
(single-precision arithmetic).

A first implementation in RapidMind is straightforward. In a first step, the
RapidMind data types must be used to express the matrices A (of size m × l),
B (l × n) and C (m × n). All matrices can be represented by two-dimensional
arrays of floating point data:

Array<2,Value1f> A(m,l);
Array<2,Value1f> B(l,n);
Array<2,Value1f> C(m,n);

In a second step the RapidMind program mxm needs to be declared. Since there
are no clear data streams which could be fed into the program a helper index
array is used. This index array ensures that the defined program mxm can sum
up the corresponding entries of the input matrices A and B. All matrices are au-
tomatically transferred to the GPU memory at execution time. The RapidMind
control flow construct RM FOR is used to allow manipulation of the streamed data.

Program mxm = BEGIN {
In<Value2i> ind;
Out<Value1f> c = Value1f(0.);

Value1i k;
// Computation of C(i,j)
RM_FOR (k=0, k < Value1i(l), k++) {

c += A[Value2i(ind(0),k)]*B[Value2i(k,ind(1))];
} RM_ENDFOR;

} END;

The call to the RapidMind program then looks as follows:

C= mxm(grid(m,n));

The call to the RapidMind function grid(m,n) generates a virtual helper array
of size m× n which does not require additional storage. The whole helper array
is automatically initialized with integers from (0, 0) to (m, n) and is directly
passed to the program and used for the index computation.

After this first naive approach a second, GPU-optimized version of the matrix
multiplication has been produced. This version is based on code available at the

RapidMind: Portability across Architectures and Its Limitations 9

0.001

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048 4096 8192

G
Fl

op
/s

Matrix size (m)

Dense matrix-matrix multiplication (mod2am, simple version)

RM gpu-opt version (sp)

cuda, 1 C1060, sp

cuda, 1 C1060, dp

x86, 8 N-EP, sp

x86, 8 N-EP, dp

Fig. 2. Performance comparison of the simple mod2am version on various RapidMind
backends and associated hardware. The simple version is also compared to the GPU-
optimized version running on 1 C1060 GPU in single-precision.

RapidMind developer portal [15]. The basic difference between both versions
is the fact, that the GPU-optimized version operates on arrays of Value4f, to
optimal use the GPU vector registers; 4 × 4 submatrices are multiplied and
accumulated.

Figure 2 1 shows the performance of the simple version using the cuda and
x86 RapidMind backends and compares the single-precision cuda backend perfor-
mance with the GPU-optimized version. It can be seen that the GPU-optimized
version is indeed four times faster than the naive approach for single-precision
arithmetic. This means that the use of Value4f instead of Value1f really im-
proves performance. It is important to note, that neither the language nor the
program definition of the simple approach should prevent the compiler from
doing this optimization by itself.

Measurements for double-precision reveal that the simple approach is actu-
ally faster than the GPU-optimized version. This is counterintuitive and only
becomes understandable if one takes into account, that the cuda backend is the
latest RapidMind backend and was introduced with version 4.0 in July 2009.
The target of this version was to enable RapidMind to support Nvidia Tesla
cards; a RapidMind version with improved performance of the cuda backend
was scheduled for version 4.1.

Figure 3 shows the performance of the GPU-optimized version on various
backends and compares it with hardware-specific languages (CUDA and MKL).
It shows that the performance of the RapidMind implementation is more than an
1 Time is always measured for the execution of the whole kernel. This includes the

time to transfer data between host and accelerator for GPU and Cell results. The
y-axis uses log-scale to better cover the whole performance range for all matrix sizes.

10 I. Christadler and V. Weinberg

0.001

0.01

0.1

1

10

100

8 16 32 64 128 256 512 1024 2048 4096

G
Fl

op
/s

Matrix size(m)

Dense matrix-matrix multiplication (mod2am, gpu-version, dp)

MKL (8 N-EP cores)

CUDA (C1060 GPU)

RapidMind gpu-opt. (C1060 GPU)

RapidMind gpu-opt. (8 N-EP cores)

Fig. 3. Performance comparision of the GPU-optimized version on various backends.
Performance measurements have been performed both on an Nvidia GPU and a
Nehalem-EP socket with eight cores. The RapidMind version is compared to a CUDA
version based on cuBLAS and an MKL implementation of the dense matrix-matrix
multiplication. Performance measurements are based on double-precision arithmetic.

1

10

100

1000

64 128 256 512 1024 2048 4096 8192

G
Fl

op
/s

Matrix size (m)

Dense matrix-matrix multiplication (mod2am, cell-version, sp)

Cell SDK (16 SPUs)

Cell SDK (8 SPUs)

MKL (8 N-EP cores)

RapidMind cell-opt. (16 SPUs)

RapidMind cell-opt. (8 SPUs)

RapidMind cell-opt. (8 N-EP cores)

Fig. 4. Performance comparison of the Cell-optimized version on various RapidMind
backends. Performance measurements have been performed on 1 PowerXCell8i (8
SPUs), 1 QS22-blade (16 SPUs) and an 8-core Nehalem-EP node. The RapidMind ver-
sion is compared to a dense matrix-matrix multiplication example from the Cell SDK
and the MKL implementation. All performance results are based on single-precision
arithmetic.

RapidMind: Portability across Architectures and Its Limitations 11

order of magnitude slower than the MKL implementation, while the difference
between RapidMind and CUDA performance is only a factor of 3. Compar-
ing Fig. 2 with Fig. 3 reveals that the performance difference between the two
RapidMind implementations varies extremely for certain matrix sizes, although
the implementations vary only slightly.

The performance of both the simple version and the GPU-optimized version
are not able to deliver decent performance on the Cell platform. A third ver-
sion optimized for the Cell processor is based on another code available through
the RapidMind developer portal. This time, computation is performed using
a block partitioning of 64 by 64 blocks. All matrices are in a “block swiz-
zled” format so that these blocks are contiguous in memory. The computations
and memory transfers are overlapped using double buffering and are partly
based on the matrix-matrix multiplication example from the IBM Cell SDK
(/opt/cell/sdk/src/demos/matrix mul/). The Cell SDK version is also used
for performance comparison.

Figure 4 gives an insight into the performance of the Cell-optimized version.
Again the RapidMind figures have been compared with implementations in other
languages. Since the Cell SDK version is based on single-precision arithmetic, it
has been compared to single-precision results obtained with the RapidMind cell
and x86 backends and an SGEMM implementation using MKL on 8 Nehalem-EP
cores. This time, the RapidMind version is able to nearly meet the performance
of the hardware-specific and highly optimized Cell SDK version; it reaches 88%
of the SDK version. However, this comes at the price of a hardware-specific
RapidMind implementation and contradicts the idea of seamlessly portable code.

In conclusion, the three different implementations illustrate the current limita-
tions of code and performance portability. Hardly any problems were experienced
when moving the code to other platforms, but in many cases the performance
was not predictable. Tuning the code to better exploit certain characteristics of
the employed hardware normally yields better performance but requires to stick
with this hardware. The idea behind RapidMind is that the language and pro-
gram definitions are generic enough to allow the compiler to do hardware-specific
optimizations itself.

3.2 Sparse Matrix-Vector Multiplication (mod2as)

Sparse linear algebra is another building block of many scientific algorithms. The
sparse matrix-vector multiplication exposes a low computational intensity and
is usually memory bound. It is a good example for code that will not perform
well on recent hardware accelerators on which the transfer between the x86 host
memory and the accelerator memory is a severe bottleneck. Even x86 hardware
will only run at a small percentage of its theoretical peak performance. While
mod2am reaches more than 90% of peak, mod2as runs at rates less than 5% of
peak on Nehalem-EP. Since this algorithm is not well suited for accelerators, we
provided only one RapidMind mod2as implementation and put a special focus
on the performance achieved with the x86 backend on Nehalem-EP (shown in
Fig. 5).

12 I. Christadler and V. Weinberg

The implementation of mod2as is based on [16]. The input matrix A of mod2as
is stored in a 3-array variation of the CSR (compressed sparse row) format which
can be easily transferred to RapidMind. The array matvals contains the non-
zero elements of A, the element i of the integer array indx is the number of the
column in A that contains the i-th value in the matvals array and element j of
the integer array rowp gives the index of the element in the matvals array that
is the first non-zero element in row j of A. The input and output vectors are
declared as:

Array<1,Value1i> indx(nelmts);
Array<1,Value1i> rowp(nrows+1);
Array<1,Value1f> matvals(nelmts);

Array<1,Value1f> invec(ncols);
Array<1,Value1f> outvec(nrows);

Once again a helper array based on a call to grid(nrows) is created and used as
input vector to allow the correct index computation. The RapidMind program
is very clean: using RapidMind’s RM FOR() control structure, the program loops
over one row of the input matrix and computes the matrix-vector product.

Program spMXV = BEGIN {
In<Value1i> i;
Out<Value1f> c;

c = Value1f(0.);
Value1i j;

RM_FOR(j=rowp[i], j < rowp[i+1] , j++) {
c += matvals[j] * invec[indx[j]];

} RM_ENDFOR;

} END;

3.3 One-Dimensional Fast Fourier Transformation (mod2f)

The Fast Fourier Transformation (FFT) is widely used in many scientific pro-
grams. Its computational intensity is not as high as for mod2am, but is already
in a range where accelerators should be beneficial. The RapidMind version of
mod2f computes the FFT using a split-stream algorithm as described in [17].
The implementation is a straightforward conversion of a one butterfly Cooley-
Tukey radix-2 FFT; the butterfly kernels are defined as RapidMind programs.
Figure 6 gives the achieved performance for different platforms and shows that
one implementation is able to deliver performance on at least two backends.

RapidMind: Portability across Architectures and Its Limitations 13

0.001

0.01

0.1

1

10

100

1000

10000

64 128 256 512 1024 2048 4096 8192

Pe
rf

or
m

an
ce

 in
 M

Fl
op

/s

#Rows

Sparse matrix-vector multiplication (mod2as, dp)

MKL (8 N-EP cores)

CUDA (C1060 GPU)

RapidMind (8 N-EP cores)

RapidMind (C1060 GPU)

RapidMind (Cell, 8 SPUs)

Fig. 5. Performance comparison of the sparse matrix-vector multiplication. Perfor-
mance results for the RapidMind implementation on various backends are given and
compared with implementations in CUDA and based on MKL. The difference between
the MKL and the RapidMind x86-results is less than a factor of 3 for big matrix sizes.

0.001

0.01

0.1

1

10

100

256 1024 4096 16384 65536 262144 1048576

G
Fl

op
/s

Length

Fast Fourier Transformation (mod2f, sp)

MKL (1 N-EP core)

CUDA (C1060 GPU)

RapidMind (C1060 GPU)

RapidMind (8 N-EP cores)

RapidMind (Cell, 8 SPUs)

Fig. 6. Performance comparison of the one-dimensional Fast Fourier Transformation.
The RapidMind implementation is compared to a CUDA version of mod2f based on
cuFFT and the corresponding MKL implementation. The gap between the RapidMind
cuda-results and the highly-optimized cuFFT version is a factor of 5, the difference
between the x86-results and the MKL version is again less than a factor of 3.

14 I. Christadler and V. Weinberg

4 Conclusions and Future Work

The work presented in this paper has shown that RapidMind really offers code
portability across various architectures, both multi-core x86 CPUs and accelera-
tors like GPUs or the Cell processor. Using RapidMind for the Euroben kernels
has been straightforward: the code development of the first naive implementation
took only a few days for each. Adapting the original version to new backends
comes practically for free and is a matter of hours and of getting used to the
new environments.

However, performance portability differs: code written naturally without a
deep understanding of the hardware and RapidMind’s internal mode of operation
will not deliver optimal performance in most circumstances and hardly exploit
the potential of the hardware. For mod2am, the highly optimized cell-version
is able to reach 88% of the SDK implementation but will deliver poor perfor-
mance when used on GPUs. The fastest mod2am implementation using CUDA is
three times faster than any RapidMind code. For none of the used benchmarks,
RapidMind code was able to fully reach the performance of hardware-specific
implementations. This is not a big surprise, since it is one of the drawbacks of
the achieved code portability. But it is important to state, that the language de-
sign optimally supports the compiler. To efficiently use this information to full
capacity requires that many people constantly improve all backends, adapting
them to the latest hardware and its accompanying language features.

Recently, RapidMind Inc. has been acquired by Intel. Their product will dis-
solve in Intel’s new language Ct (C for throughput computing) [18]. The basic
concepts of both languages have always been very similar. The acquisition has
pros and cons: on one hand, it is up to speculations if – or when – Ct will sup-
port non-Intel architectures. On the other hand, Intel has much experience with
mantaining high-performance compilers and analyzing tools.

Future work will focus on Intel’s Ct and other approaches that are able to
deliver support for multiple accelerators. This might include OpenCL, the PGI
accelerator compiler, hmpp from CAPS and the StarSs concept. Our work will
focus on the question of portability, both in terms of source code and in terms of
achievable performance. The number of kernels will be increased to get a better
coverage of the “Berkeley dwarfs”.

Acknowledgements

This work was financially supported by the KONWIHR-II project “OMI4papps”
and by the PRACE project funded in part by the EU’s 7th Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. RI-211528. We specially
thank our colleague Hans Hacker for providing the CUDA ports and performance
figures, and JSC and CEA for access to their accelerator systems and support.

RapidMind: Portability across Architectures and Its Limitations 15

References

1. The Top500 supercomputing sites, http://www.top500.org/
2. OpenCL, http://www.khronos.org/opencl/
3. PGI Accelerator Compiler, http://www.pgroup.com/resources/accel.htm
4. CAPS hmpp workbench, http://www.caps-entreprise.com/hmpp.html
5. Planas, J., Badia, R.M., Ayguade, E., Labarta, J.: Hierarchical Task-Based Pro-

gramming with StarSs. The International Journal of High Performance Computing
Applications 23(3), 284–299 (2009)

6. Sh project, http://libsh.org/
7. Ernst, M., Vogelgsang, C., Greiner, G.: Stack Implementation on Programmable

Graphics Hardware. In: VMV 2004, pp. 255–262 (2004)
8. McCool, M., Wadleigh, K., Henderson, B., Lin, H.-Y.: Performance evaluation of

GPUs using the RapidMind development platform. In: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing (2006)

9. Los Alamos Lab: Roadrunner, http://www.lanl.gov/roadrunner/
10. The Green500 list of energy efficient supercomputers, http://www.green500.org/
11. The Euroben benchmark home page, http://www.euroben.nl/
12. Asanovic, K., et al.: The Landscape of Parallel Computing Research: A View from

Berkeley (2006),
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf

13. Simpson, A., Bull, M., Hill, J.: PRACE Deliverable D6.1 Identification and Cate-
gorisation of Applications and Initial Benchmarks Suite,
http://www.prace-project.eu/documents/Identification and

Categorisation of Applications and Initial Benchmark Suite final.pdf

14. Cavazzoni, C., Christadler, I., Erbacci, G., Spiga, F.: PRACE Deliverable D6.6
Report on petascale software libraries and programming models (to appear),
http://www.prace-project.eu/documents/public-deliverables-1/

15. RapidMind developer site,
https://developer.rapidmind.com/sample-code/

matrix-multiplication-samples/rm-sgemm-gpu-5938.zip

16. Bell, N., Garland, M.: Efficient Sparse Matrix-Vector Multiplication on CUDA,
http://www.nvidia.com/object/nvidia_research_pub_001.html

17. Jansen, T., von Rymon-Lipinski, B., Hanssen, N., Keeve, E.: Fourier Volume Ren-
dering on the GPU Using a Split-Stream-FFT. In: VMV 2004, pp. 395–403 (2004)

18. Intel Ct Technology, http://software.intel.com/en-us/data-parallel/

http://www.top500.org/
http://www.khronos.org/opencl/
http://www.pgroup.com/resources/accel.htm
http://www.caps-entreprise.com/hmpp.html
http://libsh.org/
http://www.lanl.gov/roadrunner/
http://www.green500.org/
http://www.euroben.nl/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf
http://www.prace-project.eu/documents/Identification_and_Categorisation_of_Applications_and_Initial_Benchmark_Suite_final.pdf
http://www.prace-project.eu/documents/Identification_and_Categorisation_of_Applications_and_Initial_Benchmark_Suite_final.pdf
http://www.prace-project.eu/documents/public-deliverables-1/
https://developer.rapidmind.com/sample-code/matrix-multiplication-samples/rm-sgemm-gpu-5938.zip
https://developer.rapidmind.com/sample-code/matrix-multiplication-samples/rm-sgemm-gpu-5938.zip
http://www.nvidia.com/object/nvidia_research_pub_001.html
http://software.intel.com/en-us/data-parallel/

A Majority-Based Control Scheme
for Way-Adaptable Caches

Masayuki Sato1, Ryusuke Egawa2,3,
Hiroyuki Takizawa1,3, and Hiroaki Kobayashi2,3

1 Graduate School of Information Sciences, Tohoku University
2 Cyberscience Center, Tohoku University

3 JST CREST
{masayuki@sc.,egawa@,tacky@,koba@}isc.tohoku.ac.jp

Abstract. Considering the trade-off between performance and power
consumption has become significantly important in microprocessor de-
sign. For this purpose, one promising approach is to employ way-
adaptable caches, which adjust the number of cache ways available to
a running application based on assessment of its working set size. How-
ever, in a very short period, the estimated working set size by cache
access locality assessment may become different from that of the over-
all trend in a long period. Such a locality assessment result will cause
excessive adaptation to allocate too many cache ways to a thread and,
as a result, deteriorate the energy efficiency of way-adaptable caches.
To avoid the excessive adaptation, this paper proposes a majority-based
control scheme, in which the number of activated ways is adjusted based
on majority voting of locality assessment results of several short sam-
pling periods. By using majority voting, the proposed scheme can make
way-adaptable caches less sensitive to the results of the periods includ-
ing exceptional behaviors. The experimental results indicate that the
proposed scheme can reduce the number of activated ways by up to 37%
and on average by 9.4%, while maintaining performance compared with
a conventional scheme, resulting in reduction of power consumption.

1 Introduction

In the last four decades, a continuous increase in the number of transistors on a
chip realizes high-performance microprocessors. However, this advance also in-
duces high energy consumption. Considering the trade-off between performance
and energy has become significantly important in modern microprocessor design.
Especially, power management of on-chip caches has been attracting attention,
because a large on-chip cache is essential to achieve high performance but also
increases power consumption.

Among a lot of studies on energy-efficient cache managements, one promising
approach is a way-partitioned cache [1], in which each way of a set-associative
cache is independently managed to find a good trade-off between performance
and power consumption. One of such mechanisms called dynamic cache partition-
ing mechanisms for multi-core processors [2,3,4] can exclusively allocate ways to

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, pp. 16–28, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Majority-Based Control Scheme for Way-Adaptable Caches 17

each thread and avoid inter-thread kickouts [5], which cause performance degra-
dation on multi-core processors. Albonesi et al. have discussed the effects of
changing the number of ways on the performance and power consumption [6].
The way-adaptable cache [7] dynamically allocates an appropriate number of
cache ways to each thread, and also inactivates unused cache ways for energy
saving. Power-aware dynamic cache partitioning [8] was also proposed to achieve
both resource partitioning among threads and power management.

In these energy-efficient cache mechanisms, it is important to correctly esti-
mate the amount of the cache resource required by individual threads. Almost
all the mechanisms estimate the working set size of a thread by sampling cache
accesses in a certain period, and estimate the minimum number of cache ways to
keep the performance. As a result, the number of cache ways allocated to each
thread is decided so as to provide the cache capacity larger than the working set
size. If there are unused cache ways not allocated to any thread, power supply
to those ways is cut off to reduce the energy consumption

In this paper, we first discuss estimation accuracy of the cache capacity neces-
sary for a thread. Here, we assume the way-adaptable cache [7] as the cache power
management mechanism. Observing the cache access behavior during a certain
period, we point out that irregular accesses with a little impact on the overall
performance temporarily happen. In addition, if such accesses are included in the
statistic data used to estimate the working set size, the required cache capacity
is inaccurately estimated, resulting in degradation of energy efficiency.

To solve the problems caused by the sensitiveness to these unexpected and ir-
regular accesses, this paper proposes a new control scheme for the way-adaptable
cache. In the scheme, the number of activated ways is decided by the majority
voting of working set assessment results of several short sampling periods to
eliminate the effect of exceptional cache behavior occurring in a short period.
Using the proposed scheme in the way-adaptable cache, the number of ways
required by each thread is reduced without performance degradation. Conse-
quently, this will lead to a reduction in power consumption and improvement of
energy efficiency of caches.

The rest of this paper is organized as follows. In Section 2, we show the way-
adaptable cache mechanism and discuss the effect of exceptional and temporary
cache access behavior. In Section 3, we propose a new control scheme for way-
adaptable caches based on the discussions in Section 2. In Section 4, the proposed
scheme is evaluated with the number of activated ways on the way-adaptable
cache. Finally, Section 5 concludes this paper.

2 The Way-Adaptable Cache Mechanism

2.1 Mechanism Overview

This paper assumes the situation where each thread is executed on the way-
adaptable cache mechanism [7] under the single-thread execution environment.
Figure 1 shows the basic concept of the way-adaptable cache. The mechanism
is designed for a set-associative cache and manages each way individually. The

18 M. Sato et al.

Partition

Set-associative cache

Way
0

Way
1

Way
2

Way
3

Way
4

Way
5

Way
6

Way
7

Activated Ways Deactivated Ways

t-associative cache

Way
3

Way
4

Way
5

Way
6

Way
7

tt

Core

access

Fig. 1. Basic concept of the way-adaptable cache (in the case of eight ways)

Nu
m
be
r o
f a
cc
es
se
s

C1 C2 C3 CN-1

 . . .

 . . .

Nu
m
be
r o
f a
cc
es
se
s

C1 C2 C3 CN-1

 . . .

 . . .

(a) High-locality Model (b) Low-locality Model

CN CN

Fig. 2. Stack Distance Profiling

mechanism estimates the minimum number of required ways to run a thread,
allocates them to keep the performance, and inactivates unused ways. When
inactivating these ways, the mechanism writes back dirty lines in the ways to the
lower-level memory hierarchy. After that, power supply to the ways are disabled
by power-gating to reduce power consumption.

Metric for Locality Assessment. To estimate the number of ways required by
a thread, a metric is required to judge whether the thread requires more ways or
not. The way-adaptable cache mechanism uses stack distance profiling [9] for this
purpose. From the profiling result, metric D for locality assessment is calculated.

Figure 2 shows two examples of the results of stack distance profiling. Let
C1, C2, ..., Cn be N counters for an N -way set-associative cache with the LRU
replacement policy. Ci counts the number of accesses to the i-th line in the LRU
stack. Therefore, counters C1 and Cn are used to count the numbers of accesses
to MRU lines and LRU lines, respectively. If a thread has a high locality, cache
accesses are concentrated on the MRU lines as shown in Figure 2(a). In this
case, the ratio of LRU accesses to MRU accesses becomes lower. However, if

A Majority-Based Control Scheme for Way-Adaptable Caches 19

Fig. 3. The 3-bit state machine to decide the way-adaptation

a thread has a low locality, cache accesses are widely distributed from MRU
to LRU as shown in Figure 2(b); the ratio of LRU accesses to MRU accesses
becomes higher. From the above observations, this ratio, which is defined as D
in the following equation, represents the cache access locality of a thread.

D =
LRUcount

MRUcount
. (1)

A Control Mechanism of the Way-Adaptable Cache. To adjust the num-
ber of activated ways to dynamic phase changes of an application, the mechanism
samples cache accesses in a certain period, called a sampling period. After the
sampling period, the mechanism has an opportunity to judge a demand of cache
resizing, i.e., changing the number of activated ways. If the mechanism actu-
ally judges that resizing is needed, the number of activated ways is changed one
by one. We call this opportunity an adaptation opportunity. The sampling pe-
riod and the adaptation opportunity are alternately repeated as the execution
proceeds.

At the adaptation opportunity, the mechanism uses a cache-resizing control
signal of a state machine to judge whether the number of activated ways should
be changed or not. The state machine records the locality assessment results of
the past sampling periods as its state. The locality assessment result of each
sampling period is input to the state machine at the following adaptation op-
portunity. These past results are used for stabilizing the adaptation control.

In the locality assessment of each sampling period, D is compared with thresh-
olds t1, t2 (t1 < t2). If D < t1, the mechanism sends a result dec to the state
machine to suggest decreasing the number of ways. On the other hand, if t2 < D,
the mechanism sends a result inc to suggest increasing the number of ways. If
t1 < D < t2, the mechanism sends a result keep to the state machine to suggest
keeping the current number of ways.

Figure 3 shows the state transition diagram of the 3-bit state machine used
in this mechanism. The state machine changes its state when signal inc or dec
is input. When inc is given to the state machine, it outputs the cache up-sizing
control signal INC and then always transits to State 000 from any state. How-
ever, in the case of dec given, the machine works conservatively to generate the

20 M. Sato et al.

down-sizing signal DEC. Before moving into State 111 for generating the DEC
signal, the machine transits to intermediate states from 001 to 110 to judge the
continuity of the down-sizing requests. During these states, it outputs KEEP
to keep the current activated ways. After continuing dec requests, the machine
eventually outputs the DEC signal for down-sizing and then transits to State
111. That is, dec does not immediately change the number of ways but inc
does. According to this behavior of the state machine, the mechanism can avoid
performance degradation caused by insensitivity to inc and frequent changes of
the number of activated ways.

2.2 Exceptional Disturbances of Cache Accesses

We define temporal and exceptional cache behaviors that generate a lot of LRU
accesses in a short period as exceptional disturbances, which have little impact
on the overall performance in thread execution. When exceptional disturbances
happen, D becomes large and hence the cache access locality will be judged
excessively low, even if the cache access locality is almost always high except
the short period of exceptional disturbances, and thus additional ways are not
required. Figure 4 shows the examples of two sampling periods. In the figure,
the sampling period A does not include exceptional disturbances. On the other
hand, the sampling period B includes exceptional disturbance. Comparing aver-
age locality assessment metric D in each period, average D of the period B is
obviously larger than that of the period A. In this case, the way-adaptable cache
will increase the number of activated ways, even though this does not increase
the thread performance but the power consumption.

To reduce the effect of exceptional disturbances, one solution is to increase
the interval, because average D of the sampling period B in Figure 4 decreases
as the sampling period B becomes longer. However, there are drawbacks of a
long sampling period. If the sampling period becomes long, the probability of
including multiple exceptional disturbances in one sampling period increases. If
multiple exceptional disturbances are in a long period, the effect of reducing
average D of a long period gets balanced out, and average D in a long period
is eventually comparable to average D in a short period. As a result, the effect
of exceptional disturbances in locality assessment at an adaptation opportunity
is not reduced even if using a long period, and the number of activated ways
cannot be reduced. Moreover, once the number of ways is increased by excep-
tional disturbances, a long time is required to reduce the number of activated
ways because the interval between adaptation opportunities is long. As a re-
sult, the number of activated ways is increased because excessive activated ways
are maintained for a long time. Consequently, a new technique is required to
alleviate the effect of exceptional disturbances, resulting in a reduction in the
number of activated ways, while the interval between adaptation opportunities
is unchanged.

A Majority-Based Control Scheme for Way-Adaptable Caches 21

Fig. 4. Exceptional disturbances and the effect to locality assessment

Time...sampling
period

...
voting the result of
locality evaluation

voting the result of
locality evaluation

voting the result of
locality evaluation

majority decision majority decision majority decision

adaptation
opportunity

adaptation
opportunity

adaptation
opportunity

Fig. 5. Timing chart of the proposed mechanism

3 A Majority-Based Control Scheme for Way-Adaptable
Caches

In this paper, we focus on the problem that the way-adaptable cache mechanism
excessively adapts to exceptional disturbances. To reduce the effect of excep-
tional disturbances, a majority-based cache-resizing control scheme is proposed
in this section. The proposed scheme uses locality assessment results of several
short sampling periods in locality assessment between two consecutive adapta-
tion opportunities, in order to reduce the effect of the locality assessment results
of sampling periods with exceptional disturbances on the assessment. Using this
scheme in the way-adaptable cache, the reduction in the number of activated
ways and, as a result, the reduction in power consumption of the cache can be
expected without performance loss.

22 M. Sato et al.

Figure 5 illustrates the relationship between adaptation opportunities and
sampling periods in the proposed scheme. The end of each sampling period does
not always mean an adaptation opportunity; a sampling period ends at a fixed
interval, and then a new sampling period may immediately begin without an
adaptation opportunity. At the end of every sampling period, the result of lo-
cality assessment of an application in the period, i.e. inc, dec, or keep is decided
with Eq. 1 and two thresholds (t1, t2). If an adaptation opportunity comes dur-
ing a sampling period, the period is immediately terminated and the locality
assessment in the period is performed using the statistic information collected
until then.

At an adaptation opportunity, the number of activated ways should be con-
sidered based on the series of locality assessment results of several sampling
periods. However, to relax the negative effects of exceptional disturbances, the
mechanism needs to take account of the results by the sampling periods including
exceptional disturbances. If there are fewer periods that produce different results
against the other periods, the scheme decides that these periods are affected by
exceptional disturbances. On the other hand, if almost all the periods since the
last adaptation opportunity produce the same result, the scheme decides that
the cache access behavior is stable and consistent, and hence adjust the number
of activated ways based on the result.

To realize such a control mechanism, the proposed scheme uses majority vot-
ing by the locality assessment results of multiple periods between consecutive
adaptation opportunities. In the proposed scheme, each sampling period votes
to inc, dec, or keep. The proposed scheme adjusts the number of activated ways
based on the majority of votes. If the number of votes to dec is equal to that to
inc, or if that to keep is the largest, the mechanism does not change the num-
ber of activated ways. On the other hand, if the number of votes to dec is larger
than those to the others, the mechanism decreases the number of activated ways.
Similarly, if the number of votes to inc is larger than those to the others, the
mechanism increases the number of ways.

In the proposed scheme, the length of sampling period and the interval be-
tween adaptation opportunities are important parameters to appropriately es-
timate the number of ways. The number of votes available at an adaptation
opportunity should be as large as possible to allow the mechanism to correctly
identify sampling periods including exceptional disturbances. Hence, the length
of sampling period should be as short as possible in terms of the identifica-
tion accuracy. However, a certain number of accesses are required to obtain the
statistically-reliable results to evaluate the locality in a period. In the proposed
scheme, access-based interval [8] is used for deciding sampling periods, in which
the end of a period comes after a certain number of cache accesses. By using
this interval, the proposed scheme can ensure that a certain number of sampled
accesses are included in one sampling period. In addition, an adaptation oppor-
tunity comes at a fixed time-based interval [3] to make the adaptation frequency
moderate.

A Majority-Based Control Scheme for Way-Adaptable Caches 23

Table 1. Processor and memory model

Parameter Value
fetch, decode, issue, and commit width 8 instructions
Working frequency 1GHz
L1 I-Cache 32kB, 4-way, 64B-line, 1 cycle latency
L1 D-Cache 32kB, 4-way, 64B-line, 1 cycle latency
L2 Cache 1MB, 32-way, 64B-line, 14 cycle latency
Main Memory 100 cycle latency

4 Evaluations

4.1 Experimental Setup

In this paper, the proposed mechanism is examined in single-thread execution
with the way-adaptable cache. We have developed a simulator including the way-
adaptable cache based on the M5 simulator [10]. Table 1 shows the simulation
parameters of a modeled processor and memory hierarchy. The way-adaptable
cache mechanism with the proposed control scheme is applied to the L2 cache.
We assume a 32-way set-associative cache in our evaluation, because caches
with more than 16 ways are employed in some latest industrial microprocessors.
For example, AMD Phenom II processor has a 64-way maximum set-associative
cache [11]. As demonstrated in [12], the effect of the way-adaptable cache in-
creases with the number of ways.

In the proposed scheme, thresholds (t1, t2) are required as mentioned in Sec-
tion 2.1. According to the previous work [8], (t1, t2) = (0.001, 0.005) is a fine-
tuned parameter set to maintain performance, and we use these values as the
thresholds. Benchmarks examined on the simulator are selected from the SPEC
CPU2006 benchmark suite [13]. Each simulation is done by executing first one
billion cycles of the simulated processor.

4.2 Deciding the Length of the Periods

As mentioned in Section 3, the number of votes available at one adaptation op-
portunity should be as large as possible. This means that the sampling period
should be as short as possible, because the interval between adaptation opportu-
nities is fixed. However, in terms of the statistic reliability of a vote, the number
of cache accesses in a sampling period should be as large as possible. Therefore,
we first investigate an appropriate length of a sampling period.

In the preliminary evaluation, we assume that the end of a sampling period
and an adaptation opportunity come simultaneously at a fixed number of cache
accesses, and hence we use an n-bit saturating counter for counting the number of
cache accesses. A sampling period ends when the counter overflows. The purpose
of the preliminary evaluation is to find the minimum number of cache accesses
that is large enough for locality assessment, and hence to obtain reliable votes
as many as possible.

24 M. Sato et al.

0.80

0.85

0.90

0.95

1.00

lib
qu

an
tum

bw
av

es lbm mcf
milc

ze
us

mp

Gem
sF

DTD
as

tar
bz

ip2

ca
lcu

lix
de

alI
I

ga
mes

s

go
bm

k

gr
om

ac
s

h2
64

ref

hm
mer

na
md

om
ne

tpp
sje

ng

so
ple

x
ton

to wrf

xa
lan

kb
mk

AVG.

N
or

m
al

iz
ed

 I
P

C
8bit 10bit 12bit 14bit 16bit 18bit

Fig. 6. Effect of sampling period length on performance

Figure 6 shows the evaluation results. In this figure, “8-bit” means that an 8-
bit counter is used; the end of a sampling period and an adaptation opportunity
come at every 256 accesses. These results clearly indicate that the use of 8-bit
and 10-bit counters often leads to severe performance degradation. On the other
hand, if the number of bits in the counter is 12 or more, the performance does not
change significantly. From these observations, 4096 accesses saturating a 12-bit
counter are at least required to properly assess the cache access locality. Since
a shorter sampling is better to increase the number of votes at an adaptation
opportunity, a 12-bit counter is used in the proposed scheme in the following
evaluation.

In addition, the interval between adaptation opportunities is set to 5 ms in
the following evaluation as with [3]. Specially, an adaptation opportunity comes
at every 5 million cycles, because the clock rate of the simulated microprocessor
is 1GHz.

4.3 Evaluation Results of the Proposed Scheme

For each benchmark, we evaluated the proposed scheme in terms of performance
and the average number of activated ways. In our evaluation, there is no signif-
icant difference in performance between the conventional scheme and the pro-
posed scheme. In the following, therefore, this paper discusses only the average
number of activated ways of each scheme.

Figure 7 shows the average number of activated ways for each benchmark. In
the figure, the “conventional scheme (5 ms)” indicates a original scheme, in which
the end of a sampling period and an adaptation opportunity simultaneously
come at every 5ms. The “majority-based scheme (12 bit-5 ms)” indicates our
proposed scheme, in which the length of a sampling period is decided with a 12-
bit counter, and the interval between consecutive adaptation opportunity is 5 ms.
According to Figure 7, the average number of activated ways in the majority-
based scheme is 9.4% less than that in the conventional scheme. This indicates
that the majority-based scheme can decrease the number of activated ways, and
thereby is more effective to reduce the energy consumption with keeping the
same performance.

A Majority-Based Control Scheme for Way-Adaptable Caches 25

0

5

10

15

20

25

30

lib
qu

an
tum

bw
av

es lbm mcf
milc

ze
us

mp

Gem
sF

DTD
as

tar
bz

ip2

ca
lcu

lix
de

alI
I

ga
mes

s

go
bm

k

gr
om

ac
s

h2
64

ref

hm
mer

na
md

om
ne

tpp
sje

ng

so
ple

x
ton

to wrf

xa
lan

cb
mk

AVG.

A
ve

ra
ge

 A
ct

iv
at

ed
 W

ay
s

conventional scheme (5ms) majority-based scheme (12bit-5ms)

Fig. 7. Average number of activated ways

From the evaluation results, the benchmarks can be classified as follows.
Category I: libquantum. For this benchmark, the average number of activated

ways of the majority-based scheme is slightly increased compared to that of the
conventional scheme. This benchmark causes redundant activations of the ways
in the proposed scheme. In this case, when the number of votes to keep in a
period is equal to that to inc, the locality assessment by the conventional scheme
results in keep at the following adaptation opportunity. On the other hand, the
locality assessment by the majority-based scheme results in inc. However, such
a case rarely happens and has little effect in evaluated benchmarks through all
categories.

Category II: bwaves, lbm, mcf, milc, and zeusmp. For each benchmark in this
category, the average number of activated ways of the majority-based scheme is
almost the same as that of the conventional scheme. These benchmarks in this
category do not include exceptional disturbances. This is because the number
of L2 accesses is very small in these benchmarks. However, in mcf, all the ways
are used and hence the average numbers of activated ways are larger than those
of the others in this category. Even in mcf, cache access patterns are relatively
regular and predictable.

Category III: GemsFDTD, astar, bzip2, calculix, dealII, gamess, gobmk,
h264ref, hmmer, namd, omnetpp, sjeng, soplex, tonto, wrf, and xalancbmk.
For each benchmark in this category, the average number of activated ways
of the majority-based scheme is smaller than that of the conventional scheme.
Especially for soplex, the average number of activated ways is reduced by up
to 37%. These benchmarks often cause exceptional disturbances because they
frequently access the cache. The difference in the number of activated ways
indicates that the proposed scheme can properly eliminate the negative effect of
exceptional disturbances. Figures 8 and 9 show the cache access distributions of
wrf with the conventional scheme and the majority-based scheme, respectively.
These distributions are observed by stack distance profiling in the same period
in cycles of the simulated processor. In this period, exceptional disturbances
are clearly observed. In Figure 8, the number of accesses with high LRU states

26 M. Sato et al.

 1e+08
 2e+08

 3e+08
 4e+08

 5e+08
 6e+08

Processor cycles

 0
 5

 10
 15

 20
 25

 30

LR
U st

at
e

 1000

 2000

 3000

 4000

 5000

 6000
A

cc
es

se
s

Fig. 8. Cache access distribution observed by stack distance profiling (the conventional
scheme)

 1e+08
 2e+08

 3e+08
 4e+08

 5e+08
 6e+08

Processor cycles

 0
 5

 10
 15

 20
 25

 30

LR
U st

at
e

 1000

 2000

 3000

 4000

 5000

 6000

A
cc

es
se

s

Fig. 9. Cache access distribution observed by stack distance profiling (the majority-
based scheme)

gradually increases as the number of cycles proceeds. This means that the num-
ber of activated ways in the conventional scheme also increases due to the excep-
tional disturbances. However, the majority-based scheme can successfully inhibit
the increase as shown in Figure 9. From the above results, it is obvious that the
majority-based scheme is robust to an unstable situation frequently causing ex-
ceptional disturbances. The superiority of the majority-based scheme against
the conventional one becomes more remarkable in the benchmarks with frequent
cache accesses.

Consequently, these results clearly demonstrate that the majority-based
scheme can reduce the number of activated ways to achieve the same perfor-
mance, compared to the conventional scheme with time-based interval. As the
number of activated ways is strongly correlated with the static leakage power
of the cache, the majority-based scheme will be effective to save the energy

A Majority-Based Control Scheme for Way-Adaptable Caches 27

consumption. In the future work, we will thoroughly evaluate how much power
consumption of the way-adaptable cache is reduced by the majority-based
scheme.

5 Conclusions

Way-partitioned caches are promising approaches to realize energy-efficient com-
puting on multi-core processors. In these caches, it is important to accurately es-
timate the number of ways required by a thread, because inaccurate partitioning
and adaptation degrade energy efficiency. This paper has discussed the excep-
tional disturbances of cache accesses and their effects on the locality assessment
results used to estimate the number of required ways. To reduce the effects, this
paper also proposed a scheme that decides the number of activated ways based
on majority voting of the results in several short sampling periods. By using the
proposed scheme for the way-adaptable cache, the average number of activated
ways is decreased by up to 37%, and 9.4% on an average without performance
degradation. From this observation, the way-adaptable cache mechanism with
the proposed scheme enables the lower-power and higher-performance execution
than that with the conventional scheme. This also indicates that the proposed
scheme can estimate the number of ways required for maintaining performance
more accurately than the conventional scheme.

In our future work, we will evaluate the power consumption of the way-
adaptable cache with the proposed scheme. We will also apply the proposed
scheme to estimation the number of ways in other way-partitioned cache mech-
anisms, and cache-aware thread scheduling [14].

Acknowledgement

The authors would like to thank the anonymous reviewers for constructive com-
ments, and also thank all members of our laboratory for valuable discussions.
This research was partially supported by Core Research for Evolutional Science
and Technology (CREST), Japan Science and Technology Agency (JST).

References

1. Ravindran, R., Chu, M., Mahlke, S.: Compiler-Managed Partitioned Data Caches
for Low Power. In: Proc. the 2007 ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, pp. 237–247 (2007)

2. Suh, G., Rudolph, L., Devadas, S.: Dynamic Partitioning of Shared Cache Memory.
Journal of Supercomputing 28(1), 7–26 (2004)

3. Qureshi, M.K., Patt, Y.N.: Utility-Based Cache Partitioning: A Low-Overhead,
High-Performance, Runtime Mechanism to Partition Shared Caches. In: Proceed-
ings of 39th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 423–432 (2006)

28 M. Sato et al.

4. Settle, A., Connors, D., Gibert, E., Gonzáles, A.: A Dynamically Reconfigurable
Cache for Multithreaded Processors. Journal of Embedded Computing 2(2), 221–
233 (2006)

5. Kihm, J., Settle, A., Janiszewski, A., Connors, D.: Understanding the Impact of
Inter-Thread Cache Interference on ILP in Modern SMT Processors. The Journal
of Instruction-Level Parallelism 7 (2005)

6. Albonesi, D.H.: Selective Cache Ways: On-Demand Cache Resource Allocation. In:
Proceedings of 32nd Annual International Symposium on Microarchitecture, pp.
248–259 (1999)

7. Kobayashi, H., Kotera, I., Takizawa, H.: Locality Analysis to Control Dynamically
Way-Adaptable Caches. ACM SIGARCH Computer Architecture News 33(3), 25–
32 (2005)

8. Kotera, I., Abe, K., Egawa, R., Takizawa, H., Kobayashi, H.: Power-Aware Dy-
namic Cache Partitioning for CMPs. Transaction on High-Performance Embedded
Architectures and Compilers 3(2), 149–167 (2008)

9. Chandra, D., Guo, F., Kim, S., Solihin, Y.: Predicting Inter-Thread Cache Con-
tention on a Chip Multi-Processor Architecture. In: Proceedings of the 11th In-
ternational Symposium on High-Performance Computer Architecture, pp. 340–351
(2005)

10. Binkert, N.L., Dreslinski, R.G., Hsu, L.R., Lim, K.T., Saidi, A.G., Reinhardt, S.K.:
The M5 Simulator: Modeling Networked Systems. IEEE Micro 26(4), 52–60 (2006)

11. AMD: Family 10h AMD Phenom II Processor Product Data Sheet. Technical Doc-
uments of Advanced Micro Devices (June 2009)

12. Yang, S.H., Powell, M.D., Falsafi, B., Vijaykumar, T.N.: Exploiting choice in re-
sizable cache design to optimize deep-submicron processor energy-delay. In: Pro-
ceedings of The Eighth International Symposium on High-Performance Computer
Architecture (2002)

13. Henning, J.L.: SPEC CPU2006 Benchmark Descriptions. ACM SIGARCH Com-
puter Architecture News 34(4), 1–17 (2006)

14. Sato, M., Kotera, I., Egawa, R., Takizawa, H., Kobayashi, H.: A Cache-Aware
Thread Scheduling Policy for Multi-Core Processors. In: Proceedings of the
IASTED International Conference on Parallel and Distributed Computing and
Networks, pp. 109–114 (2009)

Improved Scalability by Using
Hardware-Aware Thread Affinities

Sven Mallach1 and Carsten Gutwenger2

1 Universität zu Köln, Germany
2 Technische Universität Dortmund, Germany

Abstract. The complexity of an efficient thread management steadily
rises with the number of processor cores and heterogeneities in the de-
sign of system architectures, e.g., the topologies of execution units and
the memory architecture. In this paper, we show that using informa-
tion about the system topology combined with a hardware-aware thread
management is worthwhile. We present such a hardware-aware approach
that utilizes thread affinity to automatically steer the mapping of threads
to cores and experimentally analyze its performance. Our experiments
show that we can achieve significantly better scalability and runtime sta-
bility compared to the ordinary dispatching of threads provided by the
operating system.

1 Introduction

Today, multicore processors have become an ultimate commodity in private
and scientific computing allowing multiple levels of parallelism. Namely one can
achieve parallelism by superscalarity, SIMD instructions, multiple cores, and si-
multaneous multithreading using only a single processor. Under these conditions
cache/memory considerations become more complex and, when combining two
or more processors within one system, complexity rises extremely if an imple-
mentation shall scale on different architectures.

However, even within the omnipresent products of the x86 processor market,
systems have significant differences concerning cache and memory subsystem
design, which has a high impact on the overall performance of an implementation.
This heterogeneity will considerably increase when multicore processors will offer
64, 128 or even more cores on a single chip. In such a scenario not all cores can
have uniform access to all caches (or cache levels) and memory in terms of
latencies. Therefore the choice of the “right” cores to share data will be of great
importance. At the same time, other heterogeneous designs arise. E.g., the Cell
processor [3] shipped with every Playstation 3 has lead to a community using the
offered parallel floating point computation power for scientific purposes. Again,
exploiting this potential requires new and non-standard programming techniques
as well as knowledge about hardware issues.

Taking a look at current designs in the x86 processor market, we consider
NUMA to become the dominant type of multiprocessor systems. Despite the

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, pp. 29–41, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

30 S. Mallach and C. Gutwenger

never ending discussion whether explicit (hand-tuned) or implicit (compiler-
driven) parallelism is the better strategy, hardware details have to be taken
into account in order to achieve good scalability. This fact makes it hard for
parallelized implementations to perform reasonably in general.

In this paper, we present a hardware-aware thread management using thread
affinity as a key concept and analyze its performance. Our goal is to show that
the effort to investigate the underlying system topology and properties in com-
bination with a steered mapping of threads to execution units is worthwhile.
When discussing parallel implementations, it is often argued that they lead to
less “determinism” in terms of running times. In contrast to that we will show
in our experimental analysis that the controlled dispatch of threads results in
much more stable and reliable scalability as well as improved speedups.

Thread affinity is not an entirely new idea. Studies which propose its use
within OpenMP-driven programs can be found, e.g., in [10]. The authors in [9]
use affinities to prevent interrupt handling routines to be executed by different
cores. Further, autopin [5] is an application that already binds threads to exe-
cution units in order to optimize performance. However, autopin asks the user
to specify possible bindings which are then successively applied to find out the
superior one. This requires detailed knowledge about the underlying hardware.
Moreover, the implementation of the hardware performance counters used for
evaluation is not yet standardized. Reading them out needs modified kernels
and their values can be influenced by other processes. Additionally, the time
needed for the optimization process is high compared to the runtime of typical
small algorithmic tasks on relevant input sizes as we will show here. In contrast
to that, the presented approach tries to exploit operating system (OS) calls as
well as processor instructions to retrieve topology information automatically.

The remainder of this paper is organized as follows. In Sect. 2, we describe
the differences in common memory subsystem and processor designs in detail.
Sect. 3 presents our hardware-aware thread management. We explain how the
respective strategies are implemented using thread affinity. In Sect. 4, we evaluate
the sustained performance when applying the proposed strategies and compare
them to the performance achieved when leaving the full responsibility to schedule
threads to the OS. We will conclude on our approach in the last section.

2 Hardware Preliminaries

The central difference between todays multiprocessing designs is their way of
accessing the memory. Besides uniform systems, like SMP (symmetric multipro-
cessing), the number of non-uniform memory architectures (NUMA) steadily
increases. In SMP systems (see Fig. 1(a)), we have a single amount of physi-
cal memory shared equally by all execution units, and one memory controller
that (sequentially) arbitrates all incoming requests. Not necessarily, but in gen-
eral, this implies that all processors are connected to the controller via a single
bus system called front side bus (FSB). The main advantage of this design is
that data can be easily shared between processors at equal cost. The disadvan-
tage is that it does not scale for arbitrary numbers of processors, since memory

Improved Scalability by Using Hardware-Aware Thread Affinities 31

(a) SMP (b) NUMA

Fig. 1. Typical memory system topologies

bandwidth quickly becomes a bottleneck if multiple processors require access si-
multaneously. In contrast to that, scalability is the most important design target
of NUMA systems; see Fig. 1(b). Each processor has its own memory banks, its
own memory controller, and its own connection. The drawback shows up if one
processor needs access to data stored in a memory bank controlled by a different
processor. In this case considerably slower connections between the processors
have to be used to transfer the data. This can lead to a significant performance
loss if an algorithm or thread management is not able or not designed to keep
data local to processors.

3 Hardware-Aware Thread Management

3.1 Hardware Awareness

We consider now SMP and NUMA systems with multicore processors, i.e., we
have not only parallelism between processors but also within each processor.
For simplicity of presentation, we use the terms core and execution unit as syn-
onyms, even though in case of simultaneous multithreading hardware-threads
would represent multiple execution units on one core. Due to the different ex-
tent of locality we have to treat SMP and NUMA in different ways if we are to
share data and to synchronize threads. Therefore we are interested in control-
ling which thread runs on which core, and—at any time—to be able to pick the
best processor core for the current job that is to be processed. For this purpose,
our hardware-aware thread management tries to gain as much topology infor-
mation as possible, e.g., how many cores exist and which of them are placed on
the same processor chip—possibly sharing caches. For x86 processors the corre-
sponding mapping is obtained by determining the APIC IDs of their cores [2].
Similar functionality is extracted from the numactl -API [4] to investigate the
node structure of the underlying multiprocessing system.

32 S. Mallach and C. Gutwenger

In this paper, we focus on the typical use case where a sequence of memory
(e.g., a container data structure) has been initialized sequentially (e.g., by read-
ing some input) and will now be worked on in parallel. Due to the first touch
strategy applied by many operating systems, the data or part of it is only stored
within the cache(s) belonging to the core which executed the main thread, while
all other caches in the system remain cold. Since the end of the data structure
was initialized last, we can also assume that the probability of remaining cache
data increases towards the end of it.

A thread running on the same core (or cores with access to the same cache-
level) will perform well and threads running on cores located on the same chip
with access to a coherent higher-level cache or at least local memory will incur
only small delays. But threads on cores of other processors that cannot exploit
any locality will experience high latencies. Therefore, especially for small tasks
or only once traversed data, page migration on NUMA systems is often not
worthwhile compared to the reuse of a subset of the local cores while keeping
remote ones idle.

Even though there exist routines in multithreading libraries that look like
they start a bunch of threads at once, behind the scenes, the respective num-
ber of threads has to be started one by one. This means every thread ti has a
start time T start

i and an end time T end
i that varies with the choice of the execut-

ing core. Due to synchronization needs, the overall performance of the parallel
computation depends on the “slowest” thread, i.e., for t threads in the parallel
section the running time ΔT is maxt

i=1T
end
i −mint

j=1 T start
j . Therefore our goal

is to minimize ΔT by starting potentially slow threads as early as possible and
finding an optimal mapping of threads (e.g., processing certain array intervals)
to cores.

Under the assumptions made, it is reasonable to start threads on “distant”
cores processing the front-end of the memory sequence first, since they will be
the “slowest” ones. There is only a small chance that the data resided in a
cache, and on a NUMA system there is a memory transfer needed to get the
data to the executing processor. Coming closer to the end of the sequence, the
probability that it can be obtained from a cache of the processor executing the
main thread rises. It is therefore promising to use cores as local as possible to the
core executing the main thread for processing these intervals. The last interval
might then even be processed by the main thread itself.

3.2 Thread Affinity

While the concept of thread pooling, i.e., keeping once used threads alive for fast
re-use without creation overhead, is a well known and widely applied concept
(even in compiler libraries like OpenMP), thread affinity has not yet gained the
focus it deserves. This is especially surprising since thread affinity can easily be
combined with pooling leading to much more reliable parallel execution.

If we consider a multiprocessing system with k cores, our usual assumption
is that, if we create k threads, these will be scheduled one-by-one on the k
available units. In many cases this assumption is wrong and operating systems

Improved Scalability by Using Hardware-Aware Thread Affinities 33

Fig. 2. Worst case scenario: using thread affinity (left); with flexible scheduling (right)

tend to schedule more than one thread on one core, or need some time slices to
move threads to a less loaded one. The concept of thread affinity allows us to
take control over the spreading of threads by explicitly configuring which thread
shall run on which execution unit. Together with knowledge about the topology
and memory design of the system, we use it as a powerful instrument to exploit
algorithmic properties and significantly improve runtime latencies. Nearly all
strategies that derive from the observations in Sect. 3 depend on the possibility
to control the mapping of threads to execution units for exploiting data localities
and available memory bandwidth.

The usual way thread affinity is implemented is by using OS functions. The
Unix scheduler offers the function sched setaffinity() and when using POSIX
threads [1], the function pthread setaffinity() can also be applied. Windows
offers the API function SetThreadAffinityMask() for this purpose. Solaris also
knows ways to implement thread affinity, but with the drawback that they all
need privileged execution rights.

Despite all advantages, there exists a pathological example where the appli-
cation of thread affinity may have negative impacts if other compute-intensive
processes load one or more of the cores where threads are bound to. As a simple
example for a dual-core processor, imagine some program P that can be trivially
partitioned into two parts P0 and P1. Suppose its parallel execution shall start
at some point of time Tstart and time trun is needed to execute P0 or P1. Now
assume that at Tstart, there is already another process Pf scheduled on core 1,
as shown in the left part of Fig. 2. Since the thread that shall execute part P1 is
bound to core 1, the scheduler is forced to wait until the end of the current time
slice. If we abstract from the costs of context switches and assume that P0 can
be shortly re-scheduled for synchronization, the running time of the program
will be tslice + trun − Tstart. If the binding could be released, as is indicated in
the right part of Fig. 2, a running time of 2 · trun would suffice. In contrast to
the left scenario, this would mean no loss compared to sequential execution of P
and with more cores speedup could still be achieved. To enable the release of a
binding we could relax the restriction of a thread’s affinity mask to only one core,
but this would lead to non-optimal scheduling in other cases. One solution could
be to augment the mask only if necessary—at the cost of additional overhead

34 S. Mallach and C. Gutwenger

for testing the respective conditions. Experiments how to realize such a strategy
efficiently are just in their infancy.

3.3 General Pitfalls

When leaving the responsibility completely to the OS, it often happens that
threads are dispatched on the same core that also executes the main thread. In
the worst case, if the assigned tasks have running times in the order of a few
time slices, every thread performs its tasks one-by-one instead of being moved
to another core. Hence, a more or less sequential execution takes place. Even if
this is not the case, a considerable performance penalty due to synchronization
overhead results. Consider a thread that is to be awakened. No matter which
implementation of threads is used, some time before it will have acquired a mutex
lock and called the wait() function of a condition variable, which releases the
lock again. If now the main thread wants to wake up the thread, it locks the
mutex and calls signal() for the corresponding condition variable. Afterwards
it would unlock the mutex. Experiments [6] have shown that the signaled thread
may receive a time slice before the main thread has reached the atomic part of
the unlock, like shown in Fig. 3. As returning from wait() results in a try to
re-lock the mutex, the time slice will be spent with waiting, until, in the next
time slice assigned to the main thread, the unlock completes.

In Sect. 4 we will see that it can even be profitable to use less than the max-
imum available execution units for a given task. As shown in [6], the execution
time needed to perform a task on a given input size by a single thread taking
part in the parallel execution can increase when the overall number of partici-
pating threads rises. This is the case if the memory controller is saturated or if
inter-processor communication has to be used in a NUMA system. Even the as-
sumption that the sustainable memory bandwidth for one processor is sufficient
to serve all its cores is wrong as our and other [5] results demonstrate. Especially
if we decide to use only a subset of the available threads, it is important not to
start with the most “distant” ones, but to use those that are most local to the
core which initialized the data. Employing this strategy we can be considerably
faster than if we would have spread the work randomly.

3.4 Implementation of Dispatch Strategies

In order to facilitate flexible strategies for different subsystem designs and sce-
narios by means of thread affinity, we implemented a thread-pool that keeps

main thread thread
lock(mutex)
wait(mutex)

lock(mutex)
signal() lock(mutex)
unlock(mutex)

Fig. 3. Synchronization process between the main thread and a computation thread

Improved Scalability by Using Hardware-Aware Thread Affinities 35

threads sorted according to their topology in the system. To avoid the issues de-
scribed above, we also control which core executes the main thread and bind no
other thread to it. Hence, now every sequential initialization will be performed
on that known core that we now refer to as cmain. We implement dispatch strate-
gies optimized for different memory subsystem designs, tasks, and numbers of
participating threads by deciding to group threads on, e.g., the processor com-
prising cmain, or to alternate between the available processors in order to balance
load and optimize bandwidth. For this purpose, the functions that realize the
selection of particular threads mainly operate on the sorted array mentioned
above.

In case of a compute-bound operation with dynamic load balancing, two major
properties have to be taken into account, namely the memory architecture and
the number of threads to use. Due to our assumption to work on sequentially
initialized data, we emphasize on exploiting locality on NUMA systems. That
is, the dispatching function will not alternate between the nodes, but try to use
as many cores from the processor comprising cmain as possible. In other scenar-
ios with threads allocating a lot of memory themselves, a bandwidth-optimizing
distribution strategy would be more appropriate. On an SMP architecture, incor-
porating cores of another processor does not incur higher delays. Additionally,
if the processors have their own bus connections to the memory controller (like
in our Penryn test system; see Sect. 4) it is worthwhile to use cores on distinct
ones even if only two threads have to be dispatched, since using only one of them
would not fully exploit the sustainable bandwidth of the controller.

In case of a memory-bound operation things become more complicated be-
cause, for small inputs, cache considerations decide whether a dispatch strategy
is a good one or not. If the input entirely fits into the cache, it is generally diffi-
cult to be faster than sequential execution, since other cores have cold caches. To
react on this, our dispatching function takes into account the amount of mem-
ory that will be worked on by a single thread as a third parameter. If we have
small inputs and a coherent cache level for some or all cores on one processor,
we try to dispatch all threads on the processor with core cmain. This leads to
a trade off: Using less cores than available means a weaker parallelization, but
these fewer threads now work on hot caches and receive much faster memory
access. On SMP systems we can expect only little effects resulting from that,
but on NUMA this strategy avoids the high latencies that would be incurred
by a page migration to other processors. If the input size is bigger than the
cache, local and remote cores will equally have to read from main memory. The
cost for inter-processor communication can therefore be amortized by a stronger
parallelization, so it is worthwhile to use cores on other processors, too. Simi-
larly, if available, we can get more bandwidth by using multiple bus connections
of SMP systems. The dispatching function starts the threads on cores of the
other processors first as they will have the highest delays and then moves on
to the processor with the main thread. If only a subset of the available cores is
used, only as many “distant” cores as necessary are involved. Fig. 4 shows the

36 S. Mallach and C. Gutwenger

(a) A 2-processor system with 4 cores
and two cores sharing an L2-cache

(b) A 2-processor system with 4
cores and a shared L3-cache each

scenario / core 0 1 2 3 4 5 6 7

NUMA (a) and (b), 4 threads, out-of-cache 0 1 2 3
SMP (a) and (b), 4 threads, out-of-cache 0 1 2 3
NUMA and SMP (a), 4 threads, in-cache 0/2 1/3
NUMA and SMP (b), 4 threads, in-cache 0 1 2 3

(c) Example dispatchs for the above system architectures

Fig. 4. Treatment of different architectures by our thread management

resulting thread dispatch strategies for some example scenarios that can be
mapped one-to-one to the test systems used in the evaluation.

4 Experimental Evaluation

A good indicator for the performance of a thread management is its memory
throughput. Due to the constantly growing gap between computational and
memory throughput, most algorithms will not be able to scale linearly as long
as they do not comprise intensive computations on a relatively small amount
of data. Otherwise speedup can only increase to a certain factor well known as
memory wall [8]. This factor cannot be superseded even by use of arbitrary num-
bers of cores, since every execution unit spends its time on waiting for memory
transfers and additional units may even worsen the pollution of the memory bus.
Another important measure is the speedup for small inputs. The advantages of
efficient dispatching strategies, synchronization and small latencies achieved by
a thin management layer can be visualized here. For our purposes, this focus is
straight-forward, as we want to demonstrate the benefits of a hardware-aware
thread management rather than present a competition between algorithms im-
plemented on top of different backends which have their own impact on the
measured performance.

We consider two scenarios to demonstrate the advantages when using thread
affinity. We begin with a shallow copy (the C function memcpy()) as an ex-
amination of a memory bound directive which can be trivially parallelized and
therefore theoretically achieve a linear speedup only bounded by the sustainable
memory throughput. With this example we gain insight about the current state
of the memory gap mentioned above, sensitize for the dependencies between
speedup and memory throughput, and demonstrate the effects of our cache-
aware thread management. We intentionally do not use established benchmarks

Improved Scalability by Using Hardware-Aware Thread Affinities 37

like, e.g., STREAM [7] for comparison because they initialize data in parallel.
As a second experiment, we consider a more computationally intensive oper-
ation which is not memory bound. For this purpose, we choose the function
partition() from the Standard Template Library, which is part of the C++
standard. It has been parallelized using dynamic load balancing [6,11] and is now
executed on top of our thread-pool. Being a basis for many sorting and selec-
tion problem algorithms, it is an adequate example to demonstrate the improved
scalability and stability achieved.

4.1 System Setup

The test systems used in our experimental evaluation are summarized in Ta-
ble 1. For our benchmarks we use the C function clock gettime(), measuring
wall clock time with a resolution of 1 ns on all test systems, and the g++-4.4.1
compiler with optimization flag -O2. We compare the arithmetic average of the
running times (or throughputs) of 1000 calls to the sequential and parallel func-
tion on different input data, thus wiping out cache effects between successive
function calls. This simulates real world applications, which usually have cold
caches before the start of a parallel computation. The pseudo-random inputs are
equal for every number of used threads (by using seeds) and stored in containers
of type std::vector. For the throughput benchmarks these are 64-bit floating
point numbers, and for partition() we use 32-bit floating point numbers in
the range [0,MAX RAND] with MAX RAND/2 as pivot element. For our test
systems MAX RAND is 232 − 1.

4.2 Results

Fig. 5 shows the results for the memcpy() function. We first notice the typical
progression of the line representing the sequential memory throughput. On all
platforms we have a very high throughput at the beginning stemming from full
in-cache data, which steadily decreases with the proportion of data that fits into
the cache. When no data from the initialization is reusable, it becomes stagnant.

Table 1. Systems used for benchmarks

Nehalem Shanghai Penryn

CPU Intel Core i7 940 AMD Opteron 2378 Intel Xeon E5430
CPUs / Frequency 1 / 2.93 GHz 2 / 2.4 GHz 2 / 2.66 GHz

Cores per CPU 4 (8 Threads) 4 4
Memory Architecture Single NUMA UMA / SMP
L1 Data / Instr. (Core) 32 KB / 32 KB 64 KB / 64 KB 32 KB / 32 KB

L2 256 KB per Core 512 KB per Core 2 × 6 MB per CPU
L3 (CPU) 8 MB 6 MB -
Main memory 12 GB 16 GB 8 GB

Linux (x86-64) Kernel 2.6.28-14-generic 2.6.24-25-generic

38 S. Mallach and C. Gutwenger

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 10000 100000 1e+06 1e+07

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Input size

memcpy()

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 10000 100000 1e+06 1e+07

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Input size

memcpy()

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10000 100000 1e+06 1e+07

T
h

ro
u

g
h

p
u

t
[M

B
/s

]

Input size

memcpy()

Fig. 5. Throughput for memcpy(): Nehalem (top), Shanghai (middle), Penryn (bottom)

Improved Scalability by Using Hardware-Aware Thread Affinities 39

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 10000 100000 1e+06 1e+07

S
p

e
e

d
u

p

Input size

partition()

 0

 1

 2

 3

 4

 5

 6

 7

 10000 100000 1e+06 1e+07

S
p
e
e
d
u
p

Input size

partition()

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10000 100000 1e+06 1e+07

S
p
e
e
d
u
p

Input size

partition()

Fig. 6. Speedup for partition(): Nehalem (top), Shanghai (middle), Penryn (bottom)

40 S. Mallach and C. Gutwenger

For the parallel execution, we firstly observe a very poor performance due to the
sequential initialization of the data, which is therefore only available in coherent
or shared on-chip caches. Therefore and due to less overhead, execution with
2 (Penryn) or 4 threads (Nehalem and Shanghai) performs slightly better than
with more threads. This effect dominates and leads to peak throughputs on
all test systems until the input size runs ahead the cache size, e.g., at 106 (8
MB) for the Nehalem system. Using the presented hardware-aware approach
we generally achieve a higher throughput than without thread affinity in this
interval. Afterwards, the throughput becomes solely dependent on the bandwidth
to the memory where the input was stored after initialization. As claimed before,
all platforms cannot even serve their execution units with twice the sequential
throughput. When the input size reaches a certain threshold, the gap between
our multithreading strategy and the performance of the OS becomes smaller,
since tasks now run long enough to be successively spread over all cores and
smaller latencies gained by a smart dispatch order do not further dominate the
overall execution time.

Fig. 6 gives the results for the partition() function. We observe very similar
results on the Nehalem and Shanghai systems with excellent scaling for the high-
est input sizes measured. The performance of the Penryn system is reasonable,
despite that the additional speedup using 6 and 8 threads is not comparable to
the other systems. While the proposed hardware-aware implementation begins
to scale already for small inputs, the lines representing execution without affinity
have a less steady and sometimes even chaotic progression. Again and due to
the same reasons, for the highest input sizes applied the respective lines tend to
close up to each other.

5 Conclusion

We have presented a hardware-aware approach for efficient thread management.
We pointed out how thread affinity can be used to improve speedup as well as
stability of parallel executions and showed the effect of these improvements using
two practical examples, namely a memory bound copy scenario and a function
for partitioning a range of numbers. We can conclude for both scenarios that
the use of thread affinity in connection with knowledge about the underlying
processor topology and memory subsystem has lead to better and more reliable
memory throughput and scalability. As claimed in the introduction, we confirmed
that affinity-based execution is especially worthwhile for small inputs and showed
that the interval where improvements make up a considerable difference is small.
As a consequence, there is no scope to try out different strategies at runtime
and the presented thread management is designed to automatically obtain the
information needed to find a good setup.

We also sensitized that already today, and even in NUMA systems, generally
not all cores can be simultaneously served with transferred data. As the num-
ber of cores steadily increases, this ratio will even worsen in the near future.
Consequently, the effort of thread management paying respect to this fact will

Improved Scalability by Using Hardware-Aware Thread Affinities 41

increase at the same time. Whereas in the past even small and simple data struc-
tures were stored in memory for reuse, it may soon make sense to recompute
them instead of waiting for satisfied load requests. Though memory has become
cheaper, a change in algorithm design could lead to applications being faster and
considered superior as previous implementations by consuming less memory.

References

1. Drepper, U., Molnar, I.: The native POSIX thread library for linux. Technical
report, Red Hat, Inc. (February 2005)

2. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual
(April 2008)

3. Kistler, M., Perrone, M., Petrini, F.: Cell multiprocessor communication network:
Built for speed. IEEE Micro 26(3), 10–23 (2006)

4. Kleen, A.: A NUMA API for linux. Technical report, Novell Inc., Suse Linux Prod-
ucts GmbH (April 2005)

5. Klug, T., Ott, M., Weidendorfer, J., Trinitis, C.: autopin — Automated optimiza-
tion of thread-to-core pinning on multicore systems. In: Transactions on High-
Performance Embedded Architectures and Compilers. Springer, Heidelberg (2008)

6. Mallach, S.: Beschleunigung paralleler Standard Template Library Algorithmen.
Master’s thesis, Technische Universität Dortmund (2008),
http://www.informatik.uni-koeln.de/ls juenger/people/mallach/pubs/

diplomarbeit.pdf

7. McCalpin, J.D.: Memory bandwidth and machine balance in current high perfor-
mance computers. In: IEEE Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, Dezember (1995)

8. McKee, S.A.: Reflections on the memory wall. In: Proceedings of the 1st Conference
on Computing Frontiers (CF), p. 162. ACM Press, New York (2004)

9. Scogland, T., Balaji, P., Feng, W., Narayanaswamy, G.: Asymmetric interactions
in symmetric multi-core systems: analysis, enhancements and evaluation. In: Pro-
ceedings of the 2008 ACM/IEEE Conference on Supercomputing (SC 2008), pp.
1–12. IEEE Press, Los Alamitos (2008)

10. Terboven, C., Mey, D., Schmidl, D., Jin, H., Reichstein, T.: Data and thread affinity
in OpenMP programs. In: Proceedings of the Workshop on Memory Access on
Future Processors (MAW), pp. 377–384. ACM Press, New York (2008)

11. Tsigas, P., Zhang, Y.: A simple, fast parallel implementation of quicksort and its
performance evaluation on sun enterprise 10000. In: Proceedings of the 11th Eu-
romicro Conference on Parallel Distributed and Network based Processing (PDP),
pp. 372–381. IEEE Press, Los Alamitos (2003)

http://www.informatik.uni-koeln.de/ls_juenger/people/mallach/pubs/diplomarbeit.pdf
http://www.informatik.uni-koeln.de/ls_juenger/people/mallach/pubs/diplomarbeit.pdf

Thread Creation for Self-aware Parallel Systems

Martin Schindewolf, Oliver Mattes, and Wolfgang Karl

Institute of Computer Science & Engineering
KIT – Karlsruhe Institute of Technology

Haid-und-Neu-Straße 7
76131 Karlsruhe, Germany

{schindewolf,mattes,karl}@kit.edu

Abstract. Upcoming computer architectures will be built out of hun-
dreds of heterogeneous components, posing an obstacle for efficient cen-
tral management of system resources. Thus, distributed management
schemes, such as Self-aware Memory, gain importance. The goal of this
work is to establish a POSIX-like thread model in a distributed system,
to enable a smooth upgrade path for legacy software. Throughout this
paper, design and implementation of protocol enhancements of the SaM
protocol are outlined. This paper studies the overhead of thread creation
and presents first performance numbers.

1 Introduction

The rising integration level in chip manufacturing enables to combine more logic
on a single chip every year. By now building multiprocessor systems on chips
(MPSoCs) or manycore processors is feasible, as demonstrated by the Intel Po-
laris or its successor called Intel Singlechip Cloud Computer (SCC) which con-
tains 48 x86-cores in one processor. In the future processor architectures are
expected to change from homogeneous to heterogeneous processor designs, con-
sisting of different types of cores on one chip.

Efficient usage of these complex processors largely depends on the availability
of thread management, memory management and synchronization mechanisms.
Managing resources – such as the memory or the CPU – efficiently, gets more
and more complicated with every new processor generation. Up to now the man-
agement tasks are commonly handled by the operating system (OS). The OS
handles the access of all different user programs to system-level entities. Thus,
a centralized management scheme results in the bottleneck of the system. So a
universally applicable and scalable method for system management with direct
support of heterogeneous parallel systems is required.

In addition to the complex management tasks, the reliability gains importance
as a major topic in future systems. Due to the increasing integration level and the
complex structures, the probability of hardware failures, during the execution
of a program, rises. Executing the operation system on the failing component
leads to a breakdown of the whole system although unaffected components could
continue to run.

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, pp. 42–53, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Thread Creation for Self-aware Parallel Systems 43

Therefore we propose a decentral system in which several independent op-
erating system instances are executed on a pool of different processor cores. If
one operating system instance fails, other parts of the system proceed. A new
way for managing this kind of decentral system is required. Our approach re-
lies on self-managing components by integrating self-x capabilities, especially
self-awareness. As an example for such a decentralistic system we approach Self-
aware Memory (SaM). Coming along with that, memory accesses are processed
by self-managing system components. Especially, one hardware component called
SaM-Requester manages its assigned resource – the main processing unit – and
handles the logical to physical memory mapping. A more detailed introduction
to Self-aware Memory is given in Section 2.

However, disruptive hardware changes which break backwards compatibility
are unwanted, as programmers must be able to readapt their software with-
out rewriting. Therefore, we propose a smooth upgrade path for hardware and
software. In the proposed design software and hardware operate interactively
enabling a legacy code base to be executed. Thus, parallel programs written us-
ing the POSIX-thread model – which is a well established parallel programming
model for shared memory architectures – continues to run. The goal of our work
is to keep the POSIX-compatibility so that only minimal software changes are
required. In this paper we present a way of enabling the spawning of multiple
threads without a central instance.

In the section 2 we present the background and related work. Section 3 holds
the design and implementation, followed by the results and the conclusion in
section 4 and 5.

2 Background and Related Work

2.1 Background

Self-aware Memory (SaM) [3], [7] represents a memory architecture, which en-
ables the self-management of system components to build up a loosely coupled
decentral system architecture without a central instance. Traditionally, the mem-
ory management tasks are handled software-based such as operating system and
program libraries assisted by dedicated hardware components e.g. the memory
management unit or a cache controller. The main goal of SaM is the development
of an autonomous memory subsystem, which increases the reliability and flexi-
bility of the whole system which is crucial in upcoming computer architectures.

First SaM controls memory allocation, access rights and ownership. Hence,
a central memory management unit is obsolete and the operating system is
effectively relieved from the task of managing memory. The individual memory
modules act as independent units, and are no longer directly assigned to a specific
processor. Figure 1 depicts the structure of SaM [3].

Due to this concept SaM acts as a client-server architecture in which the
memory modules offer their services (i.e., store and retrieve data) to client pro-
cessors. The memory is divided into several autonomous self-managing memory
modules, each consisting of a component called SaM-Memory and a part of the

44 M. Schindewolf, O. Mattes, and W. Karl

Fig. 1. Structure of SaM

physical memory. The SaM-Memory is responsible for handling the access to its
attached physical memory, administration of free and reserved space as well as
mapping to the physical address space. As a counterpart of the SaM-Memory,
the so called SaM-Requester augments the processor with self-management func-
tionality. Dedicated instructions for memory allocation and management (e.g.,
free memory, modify access rights) enhance the processor. The SaM-Requester
is responsible for handling memory requests, performing access rights checks and
mapping of virtual address space of the connected processor into the distributed
SaM memory space. However, the SaM simulation prototype has been extended
with support for basic synchronization constructs. These, also known as atomic
instructions, enable lock-based synchronization of parallel threads. However, un-
til now the hardware prototype only ran single-threaded applications, using the
SaM protocol mechanisms to allocate/deallocate and access memory. Addition-
ally, the CPU node provides local memory to store the program which is exe-
cuted from the local memory. Dynamically allocated memory is handled by the
SaM mechanisms without operating system support. Until now, the hardware
prototype has no operating system at all.

2.2 Related Work

Previous related work proposes Organic Computing as a paradigm for the de-
sign of complex systems. Cited from [9]: “The objective of Organic Computing
is the technical usage of principles observed in natural systems”. These techni-
cal systems interact and are capable of adapting autonomously to a changing
environment [10]. The key properties to realize complex systems are the so called

Thread Creation for Self-aware Parallel Systems 45

self-x properties [6]. Originally intended to realize autonomic computing sys-
tems, these properties, namely self-configuration, self-optimization, self-healing,
and self-protection, are also researched in the context of Organic Computing
for embedded systems. To achieve self-organization, previous related work ad-
dresses task allocation in organic middleware [2]. Task allocation is bio-inspired
and relies on artificial hormones to find the best processing element. DodOrg is
a practical example for a grid of processing elements organized by organic mid-
dleware. In contrast, our approach targets the programmability of distributed
systems at the thread level, (instead of the task level) and favors a simplistic
selection scheme over a rather complex one.

Rthreads (remote threads) is a framework to allow the distribution of shared
variables across a clusters of computers employing software distributed shared
memory. Synchronization primitives are derived from the POSIX thread model.
The Rthreads implementation utilizes PVM, MPI, or DCE and introduces lit-
tle overhead [4]. DSM-Threads supports distributed threads on top of POSIX
threads employing distributed virtual shared memory [8]. DSM-Threads feature
various consistency models and largely rely on a POSIX-compliant operating
system. Related work combining Pthreads and distributed systems relies on op-
erating system support combined with a library implementation. However, our
proposed design relies on neither of those as an operating system is currently not
used. The SaM concept greatly simplifies to build a distributed shared memory
system and for the prototype, operating system support is not needed either.

3 Design and Implementation

This section presents design and implementation of the envisioned SaM pro-
tocol enhancements. The protocol enhancements over the single-threaded case
are three-fold: first, the communication between CPU and SaM-Requester is
presented, communication between multiple SaM-Requesters is highlighted and
finally, a use case spawning an additional thread involving two SaM-Requesters
and one SaM-Memory node is shown.

3.1 Protocol Design

To allow the SaM-Requester to manage the processor as a resource, it needs
additional information about the state of the processor. Further, information
instruction set architecture, frequency, bus width, caches, special operational
modes (e.g. barrel shifter, floating point unit, etc.) of the processor are of impor-
tance. In order to reliably answer requests of other SaM-Requesters, CPU and
dedicated SaM-Requester have to obey the following rules:

1. The CPU signals the SaM-Requester once it finished its work (idle)
2. The SaM-Requester tracks the current state of the CPU (idle or working)

46 M. Schindewolf, O. Mattes, and W. Karl

CPU SaM-Requester

idle

busy

runfinished

CPU

idle

CPU

busy

runfinished
CPU Done

Memory Requests,

etc.

Upload Done

Fig. 2. Schematic protocol overview between SaM-Requester and CPU

3. If the CPU is idle its assigned SaM-Requester competes with other SaM-
Requesters for work

4. If the SaM-Requester has been chosen to work, it retrieves the program and
signals the CPU to start.

The protocol states and transitions are shown in Figure 2 – messages are
marked with dashed arrows. The CPU may either be in an idle state, waiting for
a program to arrive or currently executing (busy state). Once the CPU finishes
executing a program, a CPU Done message is sent to the SaM-Requester. By
this means the SaM-Requester can track the state of the CPU. Subsequently, the
SaM-Requester starts answering to SaM-Requesters demanding CPU resources.
If a program is transferred to the SaM-Requester, it sends an Upload Done mes-
sage to the CPU, which immediately starts executing. During program execution
the SaM-Requester serves memory requests from the CPU as illustrated in [3].

Figure 3 illustrates the negotiation of SaM-Req0 and SaM-Req1 designed to
spawn a new thread running in a shared address space. First, SaM-Req0 broad-
casts a request for a processing unit into the SaM space (CPU Req). If no answer
is received within a predefined time span, an error is returned to the CPU. In
case a SaM-Requester answers with a CPU Ack message if the corresponding
CPU is idle and fulfills the requirements. Now SaM-Req0 collects answers for a
predefined time span t1 and selects the processor which fits best. CPU Grant
messages are exchanged in turn between the Requesters to acknowledge the
match. This second round of messages enables the SaM-Req1 to answer subse-
quent CPU requests while not having granted the CPU. Then, SaM-Req0 sends
the CPU state and all SaM-Table entries. As already mentioned the CPU state
is needed to start the thread. The SaM-Table entries define the memory space of
the first thread. Until now this memory was uniquely assigned to the first thread
– creating a new thread requires to share this memory. Thus, sending the SaM

Thread Creation for Self-aware Parallel Systems 47

SaM-Req0 SaM-Req1

CPU Request

CPU Ack

CPU Grant

Wait for
answers

CPU Ok Grant

CPU State

SaM-Table Entry
Repeat*

Fig. 3. SaM-Requester: protocol to spawn thread (on CPU1)

Table entries makes them shared. Since memory modules are scattered through-
out the system and the first thread may have reserved memory in many of these
modules, a distributed shared memory space results from creating the second
thread. For additional threads, the memory space already exists and copying
the SaM-Table entries suffices.

The example protocol to create a thread on CPU1 is shown in Figure 4: initi-
ated by a call to thread init, CPU0 sends a Thread Init message to its SaM-Req0.
On behalf of that message, SaM-Req0 finds a SaM-Memory node, which is ca-
pable of storing the program. After copying the program from the local memory
to the SaM-Memory node, the SaM-Req0 returns. CPU0 continues executing
and reaches the point to create a new thread (via Thread Create). SaM-Req0
reacts by finding a suitable CPU and setting up a shared memory space (for
more details refer to the section above). After SaM-Req1 received and inserted
the SaM-Table entries, it requests the program from the SaM-Memory node.
SaM-Mem now sends the program to the SaM-Req1, which on successful com-
pletion signal Create Ok to the SaM-Req0. Further, the newly created thread is
executed on CPU1. SaM-Req0 forwards the successful creation of the thread to
CPU0 which continues to execute.

3.2 Implementation

A schematic overview of the implementation of SaM-Requester and CPU node
is shown in Figure 5. The picture is an excerpt obtained from Xilinx Platform
Studio [1]. On the left hand side the microblaze processor with 64 KByte of local
block random access memory (BRAM) connected through a local memory bus,
divided into separate paths for instruction and data, is shown. The right hand
side shows the identical design for the SaM-Requester, which is implemented as

48 M. Schindewolf, O. Mattes, and W. Karl

CPU0 SaM-Req0 SaM-Mem SaM-Req1 CPU1

Thread Init
Upload Prog

Thread Create
CPU Request

CPU Grant

MemID, Entries

Get Prog

Prog

Signal CPU
Create Ok

Create Ok

Fig. 4. Protocol overview creating a thread on CPU1

a program running on the microblaze processor. Both microblazes – representing
CPU and SaM-Requester – communicate by sending messages over a fast simplex
link (FSL) bus. The processor local bus (PLB) connects peripherals as well as
the DRAM to the processors.

The implementation of the idle CPU state works as follows: the BRAM of the
CPU microblaze contains a small program called tiny bootloop. This program
polls the FSL and waits for the Upload Done message from the SaM-Requester.
The message contains the following information: instruction pointer, pointer to
thread local data, return address, and stack pointer. Assigning these information
to the architectural registers is done inside the tiny bootloop before branching
to the new instruction pointer and executing the newly created thread.

While communication between CPU and Requester is bus based, Requester
and Memory nodes communicate over ethernet. As reliable communication is
of key importance, we utilize lwip4, a light weight TCP/IP stack for embedded
systems [5]. The implementation of lwip4 comprises IP, TCP, ICMP, and UDP
protocols. The hardware needs to be interrupt driven and deliver timer as well as
ethernet interrupts to the processor. The lwip library takes care of the interrupt
handling, exposing callback functions to the programmer (as low level API).
By Registering and customizing these callbacks, the communication between
SaM-Memory and SaM-Requester is implemented. However, utilizing only one
of the available transport layer protocols (TCP or UDP) is not sufficient. While
TCP does not support broadcast messages, UDP is connectionless and does not
provide reliable communication. Hence, a combination of UDP (for mulitcasts
and broadcasts) and TCP (for reliable communication) is employed. Figure 3

Thread Creation for Self-aware Parallel Systems 49

Fig. 5. Implementation of SaM prototype on Xilinx FPGA boards

illustrates this interaction: the messages with dotted lines (CPU Request and
CPU Ack) are sent using the UDP protocol. The CPU Request is broadcasted
whereas the answer (e.g. CPU Ack) is sent directly to the requesting node. Then,
SaM-Req0 initiates a hand-over from UDP to TCP and establishes a connection
to SaM-Req1. In order to establish a connection, SaM-Req0 to listen on a specific
port and accept the incoming request. Once established, the connection serves as
bidirectional communication channel. Now, the connection-oriented TCP proto-
col enables the reliable transmission of subsequent packets (CPU Grant, etc.).

To show the big picture of the SaM prototype, we would like to draw your atten-
tion to Figure 5. The components shown in this figure, CPU and SaM-Requester
are implemented on one FPGA. The fast simplex link (FSL) enables message pass-
ing between these two components. The design of the SaM-Requester comprises a
dedicated interrupt controller, prioritizing and delivering requests to the microb-
laze. Since FSL messages are of key importance, the priority of these messages
is high. In order to service an FSL interrupt request a dedicated FSL interrupt
handler was written: it copies messages to a buffer and defers processing of the
packets. Thus, the interrupt handler occupies the processor only for a small
amount of time. This is a critical aspect as interrupt handlers execute in a dif-
ferent context than user programs. If the interrupt controller raises an interrupt,
masks all interrupts are masked (that is held back) until the interrupt handler
acknowledges the current one. Thus, processing data packets in an interrupt
handler not only degrades reactivity of the whole system but also may lead to
a complete system lock up (e.g. because interrupts are masked while trying to
send a TCP/IP packet).

4 Results

This section presents first results obtained from the SaM prototype introduced
in this paper. Three Spartan-3A DSP 1800A FPGA boards from Xilinx where
connected through an 8 port 10/100 Mbps ethernet switch. Each FPGA board
holds one SaM component – in total two SaM-Requesters and one SaM-Memory.

50 M. Schindewolf, O. Mattes, and W. Karl

 0

 2

 4

 6

 8

 10

 12

 14

0x500 0x1000 0x2000 0x5000 0x10000

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

 (
s)

Program size [bytes]

Creating one thread in the SaM environment

Req0 to Mem0
CPU time

Req0/1 nego.
Mem0 to Req1

Fig. 6. Average time for spawning one thread while varying program size from 0x500
to 0x10000 Bytes

In our test case the CPU bundled with the first SaM-Requester (denoted Req0)
starts the program, indirectly initiates a program transfer to the SaM-Memory
(called Mem0) and later calls thread create. During the create call the second
SaM-Requester (Req1) positively acknowledges a CPU request from Req0. This
section studies the overhead of the process and improvements of the prototype.
All times reported in this section are the average of 5 runs. By repeating the
process, the effect of outliers on the reported numbers is mitigated.

Figure 6 depicts the various phases of the thread creation process (also confer
to figure 4): the first bar shows how long a transfer of the program to a SaM-
Memory takes, second the CPU time between Thread init and Thread create,
third the negotiation process of the two SaM-Requesters is timed and last trans-
ferring the program from Memory to Req1 is shown. Figure 6 shows that only
the duration of a program transfer is influenced by the program size. Further, as
the program size rises (above 0x1000 Bytes) the time for the program transfer
is the most prominent in the whole process. In addition selecting a particular
CPU, takes a constant amount of time.

The second scenario simulates the case where a second CPU is not available
immediately. Thus, an artificial delay was introduced before Req1 answers the
request. The delay time is varied between 0 and 10000 milliseconds as shown in
Figure 7. From the reported times we conclude that delays between 0 and 500
milliseconds will go unnoticed by the user, whereas larger delays (5 seconds and
above) let the delay contribute the largest individual time to the overall process.
The program size used in this scenario is fixed (0x5000 Bytes).

From the first two overhead studies presented before, we concluded that the
implementation of the SaM-Memory is crucial for the overall performance. Es-
pecially, the program transfer time needs to be reduced. As a program has to
be written to DRAM by the SaM-Memory, we decided to speed up the process

Thread Creation for Self-aware Parallel Systems 51

 0

 2

 4

 6

 8

 10

 12

0 100 500 1000 5000 10000

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

 (
s)

Artificial Delay [msec]

Creating one thread in the SaM environment

Req0 to Mem0
CPU time

Req0/1 nego.
Mem0 to Req1

Fig. 7. Average time for spawning one thread while varying an artificial time delay
from 0 to 10000 milliseconds

 0

 2

 4

 6

 8

 10

 12

 14

0x500 0x1000 0x2000 0x5000 0x10000

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

 (
s)

Program size [bytes]

Creating one thread in the SaM environment with an optimized SaM-Memory

Req0 to Mem0
CPU time

Req0/1 nego.
Mem0 to Req1

Fig. 8. Average time for spawning one thread while varying program size from 0x500
to 0x10000 Bytes employing an optimized SaM-Memory

by adding Cache Links for instruction and data to the microblaze CPU. The
impact of these cache links is studied in the following.

Figure 8 shows a significantly reduced program transfer time from Req0 to
Mem0. Thus, copying a program to DRAM memory from the ethernet interface
is sped up significantly by adding the cache links.

The same becomes apparent in Figure 9. As writing the program to memory
seems to be a crucial factor, equipping the SaM-Requester with cache links could
lead to a reduced transfer time from Mem0 to Req1, further reducing the impact
of the program transfer time.

52 M. Schindewolf, O. Mattes, and W. Karl

 0

 2

 4

 6

 8

 10

 12

0 100 500 1000 5000 10000

A
ve

ra
ge

 r
un

 ti
m

e
in

 s
ec

on
ds

 (
s)

Artificial Delay [msec]

Creating one thread in the SaM environment with an optimized SaM-Memory

Req0 to Mem0
CPU time

Req0/1 nego.
Mem0 to Req1

Fig. 9. Average time for spawning one thread while varying an artificial time delay
from 0 to 10000 milliseconds with an optimized SaM-Memory

5 Conclusion

In this paper we present an approach towards the flexible use and management
of computing resources in a distributed environment. Besides design and imple-
mentation of the POSIX-like thread concept, we also showed first performance
numbers measured on a SaM prototype utilizing several FPGA boards.

Concluding from the results presented in Section 4, it became apparent that
with larger programs (size > 0x2000 Bytes) the transfer time of the program
becomes the most prominent factor in the protocol. This effect can be mitigated
by adding cache links to respective components, as demonstrated with the op-
timized SaM-Memory design. Hence, future work will consider the optimization
of the SaM-Requester.

Further, the response time of the SaM-Requester should not exceed 1 sec-
ond. Otherwise, the relation between response time and transfer time is dispro-
portional. However, with a optimized design this might change in the future -
reducing the tolerable response time.

These are important insights and fundamentals that will help us to advance
our work and experiment with real applications and more complex scenarios. In
particular we would like to take the next step and design and implement the
join operation to complement the creation of threads.

References

1. Asokan, V.: Designing multiprocessor systems in platform studio. In: White Paper:
Xilinx Platform Studio (XPS), pp. 1–18 (November 2007)

2. Brinkschulte, U., Pacher, M., von Renteln, A.: An artificial hormone system for
self-organizing real-time task allocation in organic middleware. In: Würtz, R.P.
(ed.) Organic Computing, pp. 261–284. Springer, Heidelberg (March 2008)

Thread Creation for Self-aware Parallel Systems 53

3. Buchty, R., Mattes, O., Karl, W.: Self-aware Memory: Managing Distributed Mem-
ory in an Autonomous Multi-master Environment. In: Brinkschulte, U., Ungerer,
T., Hochberger, C., Spallek, R.G. (eds.) ARCS 2008. LNCS, vol. 4934, pp. 98–113.
Springer, Heidelberg (2008)

4. Dreier, B., Zahn, M., Ungerer, T.: The rthreads distributed shared memory system.
In: Proc. 3rd Int. Conf. on Massively Parallel Computing Systems (1998)

5. Dunkels, A.: Full tcp/ip for 8-bit architectures. In: MobiSys 2003: Proceedings of
the 1st International Conference on Mobile Systems, Applications and Services,
pp. 85–98. ACM, New York (2003)

6. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

7. Mattes, O.: Entwicklung einer dezentralen Speicherverwaltung für verteilte Sys-
teme. University of Karlsruhe (TH), Diploma thesis (May 2007)

8. Mueller, F.: Distributed shared-memory threads: Dsm-threads. In: Workshop on
Run-Time Systems for Parallel Programming, pp. 31–40 (1997)

9. Müller-Schloer, C.: Organic computing: on the feasibility of controlled emergence.
In: CODES+ISSS 2004: Proceedings of the 2nd IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis, pp. 2–5. ACM,
New York (2004)

10. Schmeck, H.: Organic computing - a new vision for distributed embedded systems.
In: ISORC 2005: Proceedings of the Eighth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing, Washington, DC, USA, pp.
201–203. IEEE Computer Society, Los Alamitos (2005)

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, pp. 54 – 65, 2010
© Springer-Verlag Berlin Heidelberg 2010

G-Means Improved for Cell BE Environment

Aislan G. Foina1,2, Rosa M. Badia2, and Javier Ramirez-Fernandez1

1 Universidade de São Paulo, Av. Prof. Luciano Gualberto, Travessa 3,
158, 05508-970, São Paulo, Brazil

2 Barcelona Supercomputing Center and Artificial Intelligence Research Institute (IIIA) –
Spanish National Research Council (CSIC), Jordi Girona, 31, 08034, Barcelona, Spain
{Aislan.Foina,Rosa.M.Badia}@bsc.es, Jramirez@lme.usp.br

Abstract. The performance gain obtained by the adaptation of the G-means al-
gorithm for a Cell BE environment using the CellSs framework is described. G-
means is a clustering algorithm based on k-means, used to find the number of
Gaussian distributions and their centers inside a multi-dimensional dataset. It is
normally used for data mining applications, and its execution can be divided
into 6 execution steps. This paper analyzes each step to select which of them
could be improved. In the implementation, the algorithm was modified to use
the specific SIMD instructions of the Cell processor and to introduce parallel
computing using the CellSs framework to handle the SPU tasks. The hardware
used was an IBM BladeCenter QS22 containing two PowerXCell processors.
The results show the execution of the algorithm 60% faster as compared with
the non-improved code.

Keywords: Data mining, Cell BE, parallel programming, software
performance.

1 Introduction

The number of transistors in the processor has increased every year, according to
Moore's Law. However, the processor speed is not increasing at the same rate. This is
caused due to the difficulty in dissipating the great amount of heat generated inside
the processor and the electric problems when a very high frequency is applied to the
components, such as parasite capacitance. For these reasons, the processor industry
decided to increase the number of cores inside a single chip instead of increasing its
internal speed. Thus, a few years ago, some multi-core processors started to appear in
the market, and now chips with more than 4 cores available can be found.

Following the modification in the hardware architecture, new programming models
have to be developed to maximize the use of these new multi-core processors. Conse-
quently to new programming models, applications have to be modified or adapted to
use these programming models in order to exploit the computational resources avail-
able in an optimal way.

One area that has demanded more and more processing power is data mining, since
the data generated by society doubles every year [1]. Data mining is the process of
extracting patterns from an amount of data. One of the most used data mining

 G-Means Improved for Cell BE Environment 55

techniques is clustering, which consists in searching for groups of affinity between
each point of the given dataset. There is a popular iterative algorithm called k-means
commonly used to conduct this search [2].

Given a dataset of X points of d dimensions, k-means divides the points in k clus-
ters, where each point is assigned to the cluster center with the nearest mean distance.
It starts by defining some random centers and then assigns each point x that belongs to
X to the nearest center cj, cj belonging to the set of centers C and j, a value between 1
and k. After that, it recalculates each cj based on the mean distance of the points be-
longing to it, and runs the algorithm all over again. Although k-means is a commonly
used algorithm for clustering, it has some problems. Firstly, the application has to
know the number of clusters k to be passed as a parameter to the algorithm. Secondly,
it is known by its worst case performance in terms of execution time of the algorithm.

So as to solve the first problem, some modifications to the k-means were devel-
oped by the scientific community; one of them being the G-means algorithm [3]. This
algorithm, after running the k-means and finding the centers, verifies each points
cluster in order to check if the cluster data follow a Gaussian distribution. If the data
does not look like a Gaussian distribution, the G-means replaces the cluster center by
two new centers. If any of the centers has been split, it runs the k-means again with
the new value of k. The G-means does it until all the centers have a Gaussian data
distribution, and its algorithm can be seen in Algorithm 1.

Algorithm 1. G-means(X, α)

1: Considering C the set of two centers c1 and c2 randomly chosen inside X.
2: C ← k-means (C, X)
3: Let Xj be the set of data points assigned to center cj.
4: Use a statistic test for each Xj to check if a Gaussian distribution (at a confidence
level α) follows.
5: When Xj passes the test, keep cj. Otherwise, replace cj with two new centers,
updating C.
6: Go back to step 2 with the new C until no more centers are added.

The statistic test used by G-means contains the Anderson-Darling – A&D – normality
test. Considering a dataset Xj, the data points of which are assigned to the center cj, it
executes the algorithm described in Algorithm 2.

Algorithm 2

1: Considering C the set of two centers c1 and c2 randomly chosen inside Xj.
2: C ← k-means (C, xj)
3: Let v= c1 - c2 be a vector of d dimensions connecting these two centers.
4: Project each point of Xj onto v, being Xj’ the 1-dimension vector containing the
result of the projection.
5: Normalize Xj’ to set it with mean 0 and variance 1.
6: Perform the Anderson-Darling normality test. If A2(Xj’) is in the range of non-
critical values at confidence level α, keep cj, and discard c1 and c2. Otherwise, replace
cj by c1 and c2.

56 A.G. Foina, R.M. Badia, and J. Ramirez-Fernandez

In brief, the G-means algorithm will have 6 execution phases. The first one is the big
k-means; it will run the k-means for the whole dataset X starting with two centers. At
the end of this phase, each point of the dataset will be assigned to one of the centers.
At this point, the datasets will have to be reorganized to group the records that belong
to each center. Based on that, the second phase is the data group, which executes this
grouping. From the third stage to the last one, the phases are executed for each center
data Xj. The third phase is the first step of the statistic test, the two-center k-means,
where the k-means is executed using the data assigned to one specific center and two
arbitrary centers. At the end of the k-means execution, the result vector v has to be
calculated and the data projected on it. Hence, the next phase is the projection phase.
At this stage, the mean and the standard deviation are calculated simultaneously with
the projection, using the simplified standard deviation formula. After the projection, it
is the sort phase turn, in which the projection vector is sorted in ascendant order.
Finally, with the sorted projection vector, the A&D calculation phase proceeds. At
this stage, the data is normalized and submitted to the statistical formulas of the A&D
test, as the standard normal cumulative distribution function. At the end of the execu-
tion, if all clusters pass the A&D normality test, the algorithm is terminated; other-
wise, another iteration of the 6 phases is made with the new number of centers.

Concerning the second problem about the k-means performance, since it is intrinsic
to the algorithm, there are two approaches to increase its performance: 1) Modifying
the algorithm to run in a different computer architecture, such as processors that sup-
port SIMD instructions or GPUs; 2) Modifying it to explore the parallelism in order to
be executed in a multi-core processor and/or a multiprocessor environment, such as a
cluster.

Having this in mind, the proposal is to modify the G-means algorithm to be exe-
cuted in a Cell Broadband Engine Architecture – Cell BE – in order to verify the real
speedup of the algorithm in this environment, using all Cell SPUs to explore the
SIMD and the parallelism.

This paper is organized in 7 sections. This first one is the introduction, followed by
the related work in section 2. Later, a description of the CellSs framework is provided
in section 3. Section 4 presents the implementation, and section 5 shows the method-
ology followed. Next, section 6 presents the results obtained and its discussion. Fi-
nally, in section 7, the conclusions are presented and future work is proposed.

2 Related Work

Since the introduction of the Cell BE processor in the market in 2005, many papers
have been published based on its architecture. One of them describes the implementa-
tion of the k-means in Cell processor [4]. Another paper written by Burhrer et al.
published his implementation of k-means together with other data mining algorithms
implemented for Cell processor as well, with some interesting benchmarks [5]. Other
works focused on the implementation of the k-means in other architectures. One of
these works implemented the k-means to run in a GPU using CUDA language [6].
Another author described the implementation of the k-means to a multi-processor
architecture [7]. The difference of this research is the fact that the parallel k-means is
part of a larger algorithm that calls the k-means frequently, but has many other calcu-
lations to automatically find the number of clusters existing in the dataset.

 G-Means Improved for Cell BE Environment 57

Regarding the number of clusters in the k-means, Polleg and Moore developed the
X-means to find the number of clusters existing in the data set automatically, using
the Bayesian Information Criterion – BIC – to evaluate the cluster distribution [8].
Nevertheless, this algorithm presented some problems with some kinds of distribu-
tions. Consequently, Hamerly and Elkan developed a k-means modified algorithm
using the Anderson-Darling normality test to check the proximity of the cluster distri-
bution to a Gaussian distribution, and called this algorithm as G-means [3]. Yet none
of the authors explored the parallelism or the SIMD instructions in their algorithms.
The study and implementation of such issues are the main point here.

3 StarSs Framework

Nowadays platforms are becoming more and more powerful, increasing the number
of cores and offering different kind of processors and accelerators. But programmers’
tasks are becoming more and more complex, as dealing with such architectures and
making the most of them is not easy. That is why intuitive and more human-centric
programming interfaces are necessary to exploit the power of the underlying architec-
ture without exposing it to the programmer. The StarSs (Star Superscalar) model
helps programmers with developing parallel applications. There are three versions:
SMPSs, CellSs and NestedSs [9].

CellSs is a task-based programming model for the Cell BE. From a sequential code
properly marked (using #pragma directives), it can exploit applications parallelism by
dividing the execution into several small portions, called tasks. It is based on a source
to source compiler and a runtime library. The runtime keeps and constantly updates a
data dependence graph to choose which tasks can be executed satisfying data depend-
encies, or which ones must wait until the data they need is calculated.

Tasks are executed in the SPUs of the Cell BE and cannot call other tasks inside
them. Therefore, a task must be a piece of code (a void function) and cannot access
global data or return some value. In case of need, global data must be passed as an
input or input/output parameter to the function and the returning value must be an
output parameter.

4 Implementation

The implementation of the G-means was divided into several steps, and each step had
its result compared with the previous step result. The first step to compare results is
the definition of the reference code in order to evaluate the speedup generated by
every new modification. In this way, it was defined that the reference execution time
will be the one taken by the G-means implementation using the actual k-means
speedup defined in Burhrer and Parthasarathy [10]. However, to reach this first mile-
stone, the standard sequential k-means had to be implemented prior to the G-means.

The k-means implementation followed the Burhrer and Parthasarathy algorithms
structure in order to support the SIMD instructions and the parallelization, with the
difference that it was conducted using the CellSs framework to handle the parallel
tasks. After the k-means implemented and tested with a known dataset of few thou-
sand points and 2 dimensions, the improvements phase started. The first modification

58 A.G. Foina, R.M. Badia, and J. Ramirez-Fernandez

was in the k-means code, changing the calculation functions to use the SIMD instruc-
tions of the SPU processor. The distance formula used is a simplification of the
Euclidean Distance, seen in (1).

∑
=

−=
n

i
ii qpqpd

1

2
1 ||),(. (1)

This distance formula was used since the k-means only needs to find the nearest cen-
ter, and the distance itself is not important. Thus, the square root calculation used in
the standard Euclidean Distance is not necessary. This formula was modified to use
the SIMD instructions spu_sub and spu_madd, seen in Algorithm 3.

Algorithm 3. Code showing the SIMD implementation of the distance algorithm.

vector float acc = {0,0,0,0};

for (i = 0; i < dimensions/4+1; i++) {
result = spu_sub(recVec[i], centerVec[i]);
acc = spu_madd(result,result,acc);

}
distance = spu_extract(acc, 0) + spu_extract(acc, 1)
 + spu_extract(acc, 2) + spu_extract(acc, 3);

The second modification was the organization of the data in consecutive memory
position to introduce memory independence between the functions execution in order
to define these functions as CellSs tasks to allow each SPU to work in parallel. With
this, it was possible to define the CellSs tasks with the #pragmas. Hence, the k-means
code could be compiled by the CellSs and executed using the Cell SPUs. The distance
calculation and centers assignment were defined as a SPU task, and the SIMD instruc-
tions were used to handle the data.

In this way, the k-means Cell BE improvements already reported by other authors
were implemented by using the CellSs framework. The k-means implementation
being finished, a main code was created around the k-means so that the G-means
could be implemented following the Hamerly and Elkan work [3]. This main code
calls the k-means in two different ways: The first execution sends to the k-means all
the dataset to find which centers each point belongs to: big k-means; the second one is
called for each center, sending only the points that belonged to that center to check if
the distribution is Gaussian, in order to split the center or not: two-center k-means. In
the second k-means call, the test calculation had to be implemented to verify the dis-
tribution, and to decide whether the center splitting will occur. These implementations
were made following the Hamerly work, and then finalizing the first functional ver-
sion of the code. Now, G-means is using an improved k-means designed to use the
SIMD instructions inside CellSs SPU tasks, and standard sequential calculation for
the rest of the algorithm. This version of the code was used in the results section to
measure the reference execution time of the G-means as compared with the improve-
ments in the codes.

So as to define an optimization strategy, the algorithm was analyzed in order
to find the parts that can be modified to be executed in parallel and/or to use SIMD

 G-Means Improved for Cell BE Environment 59

instructions. As already mentioned in the introduction, the G-Means algorithm can be
divided into six execution phases: First, the big k-means which needs all the dataset;
second, the data group in order to group the records belonging to each center to-
gether; third, the two-center k-means execution considering the center splitting to find
the result vector; next, the projection of the points in the result vector; later, the sort
of this projection vector; and finally, the A&D calculation. Since the k-means algo-
rithm is already improved, the two phases that use this algorithm, the big k-means and
the two-center k-means, was discarded as an improvement candidate. Likewise, the
phases in which the access to the whole memory is necessary can not be parallelized.
Consequently, the data group and the sort can not be improved. The only remaining
phases to be improved are the projection and the A&D calculation. Accordingly, the
next phase of the implementation focused on the improvement of these G-means
algorithm peculiarities.

4.1 First Improvement: The Projection in the Results Vector

The projection was modified to explore the SIMD instructions and to split the calcula-
tion between the SPUs. Its formula, presented in (2), consists of the scalar product
between each point x and the reference vector v found, divided by the module of v.

2||||
||

V

VP
C

•= . (2)

First, the vector of d-dimension v is calculated using the result of the two-center k-
means. With v, its module powv is calculated. Then, the dataset is divided into chunks
of the same size used by the k-means. After that, one chunk of records, vector v and
powv are sent to the SPUs in order to find the projection of each point in the chunk.
At the same time, the SPU accumulates the value of the projection and its power of
two in other variables to aid in the mean and the standard deviation calculation here-
after in the A&D test. Based on the projection formula, the SPU task implementation
was created according to Algorithm 4.

Algorithm 4. SPU task code of the projection calculation

for (j = 0; j < chunk_number_of_records; j++) {
vector float result = {0,0,0,0};
for (i = 0; i < dimension/4+1; i++) {
 result = spu_madd(record[i],v[i], result);
}
float pdotv = spu_extract(result,0) +

spu_extract(result,1) +
spu_extract(result,2) +
spu_extract(result,3);

float c = pdotv / powv;
projectionVec[j] = c;
meanSum += c;
stdSum += c*c;

}

60 A.G. Foina, R.M. Badia, and J. Ramirez-Fernandez

4.2 Second Improvement: Anderson-Darling Test

The next implementation was in the Anderson-Darling calculation. This calculation is
divided into steps, being the first one to sort the projection vector Xj’. After the sort-
ing, (3) is applied to all values in the vector, one by one.

[]))(1ln()(ln
12

1
1

knk

n

k

YFYF
n

k
S −+

=

−+−=∑ . (3)

Where F(x) is the standard normal cumulative distribution function and values of Y
are the points of the projection vector normalized. After calculating the S value, (4) is
applied.

SnA −−=2 . (4)

Thus, the strategy to parallelize this calculation was to create a task to first normalize
and calculate all the F(x) values in parallel, creating a vector F of size n with these
values. Later, another task was created that calculates, in parallel, every value of S for
each point in vector F, generating a new S vector with the results. After all tasks are
executed, the values of S are summed at the end and the A2 is calculated.

4.3 Third Improvement: CellSs Configuration and Code Parameters

The third and last improvement of the code is related to the parameter tuning of the
G-means algorithm and the CellSs framework. For each task, the size of the chunk to
be sent to each SPU has to be defined. If this value is too big, the SPU will spend a
long time waiting for the DMA transference, increasing its idle time. Conversely, if
this value is too small, the overhead generated by the CellSs and the cost of the data
transference will reduce the performance, as well. Hence, these chunk size parameters
were analyzed for each task in order to find the best values. Since the k-means and
projection phases are dependent on the dimension of the data, the chunk size was
calculated using the GetChunksize algorithm described in Buehrer paper. For the
Anderson-Darling algorithm, since the vector size will always contain 1-dimension
values independently of the number of dimensions of the dataset, the chunk size was
defined as 1024 records per SPU. This value was chosen since the dataset normally
used has 20,000 points for each cluster; thus this value will create 20 tasks to be sent
to the 16 SPUs.

Similarly, the CellSs has its own real-time execution parameters. For instance, one
of them is how many tasks will be send to each SPU at the same time. Two parame-
ters were studied specifically, the min_tasks and max_strand_size. The min_tasks
specifies the minimum number of ready tasks before they are scheduled, and the
max_strand_size defines the maximum number of tasks that are simultaneously sent
to an SPU. These parameters were analyzed, as well, to find the best configuration
that reduces the maximum of the execution time of the G-means.

 G-Means Improved for Cell BE Environment 61

5 Test Methodology

A starting point to compare the execution of different implementations was the crea-
tion of a dataset to be used by the algorithm. Thus, to measure the execution time of
the G-means, a data file was created, using the function gen_gaussian_datafile() pro-
vided by the k-means code developed by Pelleg and Moore [8]. A dataset was created,
containing 600,000 points of 60 dimensions each, divided into 30 Gaussians distribu-
tions and it will be referred to as the 600k60d dataset in this paper. Each cluster has
exactly 20,000 points. This size and dimensions were selected due to the application
in which the G-means algorithm will be used to work with these numbers.

With the dataset ready, a measurement of the total execution time of each part of
the G-means algorithm was made, showing the percentage of time spend in each part.
Later, several different versions of the G-means was generated, each one with a new
improvement compared to the previous version. Then, each of these versions was
executed and all the results were compared between themselves.

To conclude, the code was written in C and compiled and executed using the
CellSs version 2.2. The α confident level constant used during the test was α =
0.00001. For this confidence level, the critical value for the Anderson-Darling test is
2.357. The environment was a Linux running a kernel version 2.8.16-128.e15 SMP.
The server used is an IBM BladeCenter QS22 containing two PowerXCell processors
and totalizing 16 SPUs available.

6 Results and Discussion

In order to start the analysis of the results, a probe function was added to the unim-
proved source code to measure the time of each part of the G-means algorithm.
An execution of the G-means using the 600k60d dataset had its results presented in
Table 1, which describes the time spent in each part of the code.

Table 1. G-means execution time for each part of the algorithm

G-means Phases Time Percentage
Improved big k-means 2.00s 7%
Data group 3.35s 11%
Two-centers improved k-means 8.06s 27%
Projection calculation 3.42s 12%
Vector sort for the A&D 3.79s 13%
Anderson-Darling calculation 8.69s 30%

Total 29.31s 100%

As seen in Table 1, the projection and the A&D calculation account for a total of

42% of the execution time. Since the k-means is already improved and the sorting and
grouping parts do not handle enough points to be worth the sort parallelization, these
phases are the only parts of the algorithm that can be improved.

62 A.G. Foina, R.M. Badia, and J. Ramirez-Fernandez

The execution of the unimproved version of the G-means with the 600k60d data-
set using only one SPU resulted in an execution time of 78.35 seconds. This execu-
tion and its time will be addressed here as base execution and base time. The best
execution time was 29.12 seconds when using 16 SPUs and it will be addressed
here as base parallel time. This time means a speedup of 2.7 times. After the im-
provement in the projection phase, this best time reduced to 26.81 seconds using the
same number of SPUs, resulting in a total speedup of 2.9 times when compared to
the base time and 8% faster then the base parallel time. This small speedup was
already expected, since the projection phase only accounts for 12% of the execution
time.

Regarding the second improvement, the A&D calculation, the results are more ex-
pressive. The best execution time was 19.27s with all SPUs, presenting a speedup of
4.0 times compared to the base execution. Until now, the code modifications has
reduced the execution time by 34% when compared to the base parallel time.

To finalize, all the variables about the chunk size and the compiler were tuned to
find their best value. About the chunk sizes of the k-means and the projection, the
4kB value described in Buehrer’s paper does not apply, since the CellSs handles the
memory transfers and has the double buffer feature implemented. Hence, the execu-
tion time was measured with this parameter varying between 4kB, 8kB, 16kB and
32kB. For values greater than 32kB, there will be return fail due to the limited mem-
ory of the SPU. The results are presented in Table 2.

Table 2. Execution time of the G-means for different chunk sizes using the 600k60d dataset

Chunk Size (bytes) 4k 8k 16k 32k
Time (s) 40.04s 23.29s 18.12s 19.71s

As can be seen, the best chunk size measured was 16kB. Since the CellSs handles

the memory transfers, the 16kB maximum DMA transfer limit of the Cell BE does not
apply. But values bigger than this physical limit need two DMA transfers, which
means two times the cost to start the transfers.

For the A&D calculation parameters, since it does not depend on the dataset di-
mension and it can have different parameters for each of its two tasks, the values used
were numbers of records instead of kilobytes. The range of number of records meas-
ured was 64, 128, 256, 512, 1024, 2048 and 4096 for both tasks. The best value for
the F(x) parameters calculation and S calculation are 256 and 512, respectively, but
other values between 256 and 1024 showed close execution times, as well. When the
number of records gets smaller than 256, the time increases significantly due to the
large number of very small tasks, generating a processing overhead of the CellSs.
Nevertheless, when it gets bigger than 1024, the number of records of each cluster
divided by the chunk size is smaller than the number of SPUs, since the clusters have
20,000 points each.

 G-Means Improved for Cell BE Environment 63

After the software parameters are tuned, the two runtime CellSs parameters,
min_tasks and max_strand_size, were analyzed. The default values for each of these
parameters are 32 and 8, respectively. Since the tasks are created using the software
algorithms to explore the limits of the SPUs, each single task is optimized to use all
the resources available. As a consequence, when the max_strand_size and min_tasks
were both set to 1, the G-means has the best execution time.

With all the parameters tuned, the best G-means execution time was 12.51 seconds,
using 16 SPUs. It represents a speedup of 6.3 times the unimproved single SPU G-
means execution, and 57% faster than the base parallel time.

To conclude the results part, the phase measurement performed in Table 1 will be
carried out again, but with the execution phases of the improved version of the
G-means. The time necessary for each phase of the improved code are presented in
table 3. Comparing both tables, it is easy to notice the reduction of the participation
of the two improvements in the overall execution time of the G-means. The projec-
tion phase had its time reduced from 3.42s to 0.50s (6.8x) and the A&D calculation
was reduced from 8.69s to 0.33s (26.3x). The speedup was owed to the paralleliza-
tion of the execution between the 16 SPUs, the use of SIMD instructions and the
better scheduling of the tasks of the CellSs due to tuning the parameters. Figure 1
shows the speedup of each implementation varying the number of SPUs, as com-
pared to the base execution.

1.0x

1.5x

2.0x

2.5x

3.0x

3.5x

4.0x

4.5x

5.0x

5.5x

6.0x

6.5x

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of SPUs

S
pe

ed
up

Fig. 1. Graph comparing the four different executions of the G-means. The bottom line
(square) is the speedup of the code containing improvements only in the k-means function. The
second one (triangle) presents the speedup measured for the G-means with the extra improve-
ment in the projection function. The following (circle), is the speedup for the code containing
improvement in the Anderson-Darling calculation, as well. The last one (star) represents the
execution of the G-means with the final improved code after the tuning of the parameters.

64 A.G. Foina, R.M. Badia, and J. Ramirez-Fernandez

Table 3. G-means execution time for each part of the improved algorithm

G-means Phases Time Percentage
Improved big k-means 1.16s 9%
Data group 3.34s 27%
Two-centers improved k-means 3.38s 27%
Projection calculation 0.50s 4%
Vector sort for the A&D 3.80s 30%
Anderson-Darling calculation 0.33s 3%

Total 12.52s 100%

7 Conclusions and Future Work

Modern applications need modification to explore the features of the new multi-core
and SIMD processors. This research chose a common clustering algorithm to demon-
strate some results of these modifications. The code parallelization can be divided into
independent tasks significantly reducing the execution time. However, more than the
implementation, the tuning of the parameters can easily increase the performance
without too much effort.

The G-means development used the CellSs framework, the objective of which is to
help the programmer to develop applications using the Cell BE. The use of the CellSs
allowed an easy and quick implementation of the parallelism in the application, only
the definition of the void functions, the correct organization of the memory and the
insertion of the #pragmas in the code being necessary.

Another good point of the CellSs is its backward compatibility with other frame-
works of its family, such as the SMPSs for multi-processors environment and the
Hybrid StarSs, for heterogeneous and/or hierarchical platforms. There is one imple-
mentation directed to Cell BE, creating two task layers, one to be executed at the PPU
level and the other at the SPU level. Another recent implementation of the Hybrid
StarSs allows the use of the GPUs. Hence, as a future plan, small modifications in the
#pragmas will be made to port the G-means code to different supercomputers archi-
tectures, such as SMP CPUs and GPUs.

Acknowledgments. This work was partly supported by the National Council for
Scientific and Technological Development (CNPq) under Grants 142048/2008-9 and
201667/2008-8. Also, the researchers at BSC are supported by the Spanish Ministry
of Science and Innovation (contracts no. TIN2007-60625 and CSD2007-00050), the
European Commission in the context of the HiPEAC Network of Excellence (contract
no. IST-004408), and the MareIncognito project under the BSC-IBM collaboration
agreement.

References

1. Lyman, P., Varian, H.R.: How Much Information (2003),
http://www.sims.berkeley.edu/how-much-info-2003
(retrieved from December 2009)

 G-Means Improved for Cell BE Environment 65

2. Macqueen, J.: Some Methods of Classification and Analysis of Multivariate Observations.
In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probabil-
ity, pp. 281–297 (1967)

3. Hamerly, G., Elkan, C.: Learning the K in K-Means. Neural Information Processing Sys-
tems 16, 281–288 (2003)

4. Simek, F.: Implementation of K-means Algorithm on the Cell Processor. BSc. Thesis.
Czech Technical University in Prague (2007)

5. Buehrer, G., Parthasarathy, S., Goyder, M.: Data mining on the cell broadband engine. In:
Proceedings of the 22nd Annual International Conference on Supercomputing, Island of
Kos, Greece, pp. 26–35. ACM, New York (2008)

6. Hong-tao, B., Li-li, H., Dan-tong, O., Zhan-shan, L., He, L.: K-Means on Commodity
GPUs with CUDA. In: Computer Science and Information Engineering, WRI World Con-
gress, pp. 651–655 (2009)

7. Tian, J., Zhu, L., Zhang, S., Liu, L.: Improvement and Parallelism of k-Means Clustering
Algorithm. Tsinghua Science &Technology 10, 277–281 (2005)

8. Pelleg, D., Moore, A.: X-means: Extending K-means with Efficient Estimation of the
Number of Clusters. In: Proceedings of the 17th International Conf. on Machine Learning,
pp. 727–734 (2000)

9. Perez, J.M., Bellens, P., Badia, R.M., Labarta, J.: CellSs: Programming the Cell/B.E. made
easier. IBM Journal of R&D 51(5), 593–604 (2007)

10. Buehrer, G., Parthasarathy, S.: The Potential of the Cell Broadband Engine for Data Min-
ing. Ohio State University Technical Report OSU-CISRC-3/07–TR22 (2007)

Parallel 3D Multigrid Methods
on the STI Cell BE Architecture

Fabian Oboril1,3,�, Jan-Philipp Weiss1,3, and Vincent Heuveline2,3

1 SRG New Frontiers in High Performance Computing
2 RG Numerical Simulation, Optimization, and High Performance Computing

3 Engineering Mathematics and Computing Lab
Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

fabian.oboril@student.kit.edu,
{vincent.heuveline,jan-philipp.weiss}@kit.edu

Abstract. The STI Cell Broadband Engine (BE) is a highly capable het-
erogeneous multicore processor with large bandwidth and computing
power perfectly suited for numerical simulation. However, all performance
benefits come at the price of productivity since more responsibility is put
to the programmer. In particular, programming with the IBM Cell SDK
is hampered by not only taking care of a parallel decomposition of the
problem but also of managing all data transfers and organizing all com-
putations in a performance-beneficial manner. While raising complexity of
program development, this approach enables efficient utilization of avail-
able resources.

In the present work we investigate the potential and the performance
behavior of Cell’s parallel cores for a resource-demanding and bandwidth-
bound multigrid solver for a three-dimensional Poisson problem. The
chosen multigrid method based on a parallel Gauß-Seidel and Jacobi
smoothers combines mathematical optimality with a high degree of in-
herent parallelism. We investigate dedicated code optimization strategies
on the Cell platform and evaluate associated performance benefits by
a comprehensive analysis. Our results show that the Cell BE platform
can give tremendous benefits for numerical simulation based on well-
structured data. However, it is inescapable that isolated, vendor-specific,
but performance-optimal programming approaches need to be replaced
by portable and generic concepts like OpenCL – maybe at the price of
performance loss.

Keywords: Cell BE, IBM Cell SDK, multigrid, Gauß-Seidel smoother,
stencil kernel, performance analysis.

1 Introduction

Numerical simulation of complex physical processes in science and engineering
relies on methods of high performance computing that produce reliable results in

� Corresponding Author.

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, pp. 66–78, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallel 3D Multigrid Methods on the STI Cell BE Architecture 67

a moderate amount of time. Since the grinding halt of frequency scaling, proces-
sor manufacturers are focusing on multicore technologies that have brought up a
multitude of different concepts – including graphics processing units (GPUs) and
heterogeneous concepts like the Cell BE. In this context, cache-based homoge-
neous multicore processors are dominating the scene due to their general applica-
bility and the compatibility with classical parallel programming approaches like
OpenMP and MPI. These processors are very flexible because of their general
purpose instruction set architecture and their complex setup of the cores, but
their floating point performance and prospect of scalability to larger core counts
is limited [7]. GPUs from NVIDIA and AMD with up to 1600 cores [14,1] over-
come the issue of scalability and offer unrivaled floating point performance. But
the associated stream processing paradigm is based on data parallelism with a
necessary high degree of locality, low level of couplings, uniformity of operations,
and high arithmetic intensities. Moreover, the constraints of host interaction via
the narrow PCIe datapath are degrading device-local speedups.

Within the next few years we expect to see two basic processor concepts. We
will see complex cache-based processor architectures with moderate core counts,
huge local caches, and shared memory that favor general applicability and ease
of programmability. And we will see massively parallel and lightweighted cores
with little local memory in a cluster-like design or network design (like the Cell
BE and Intel Rock Creek [12]), or based on SIMD technology (like NVIDIA
Fermi [13]). This approach takes into account all scalability issues by means
of stream processing or software-managed local memories. However, the final
answer still needs to be found whether a broad range of applications can be
mapped beneficially to these types of platforms – providing further increasing
performance and user-friendly programming environments.

The gap between scalability and huge floating point performance on the one
hand and high flexibility on the other hand is bridged by the concept of the Cell
Broadband Engine (BE) designed and developed by Sony, Toshiba and IBM
(STI). It offers a considerable memory bandwidth which is crucial for a large
class of numerical algorithms. The Cell BE architecture is a heterogeneous ar-
chitecture consisting of two kinds of cores: the Power Processor Element (PPE) –
a general purpose core for data management and orchestration – and eight Syner-
gistic Processor Elements (SPEs) – highly optimized vector computing cores with
software-controlled local stores instead of classical caches. The reduced instruc-
tion set of the SPEs is reflecting simplicity of the core design. But consequently,
Cell’s original programming approach by means of the IBM Cell SDK is assign-
ing complex tasks to the programmer. Data transfers between the main memory
and the local stores have to be user-controlled and overlapped with computation.
Data alignment in different memory levels needs to be arranged manually, and
computations need to be organized by vectorization intrinsics. However, Cell’s
low-level programming methodologies may result in efficient utilization of avail-
able resources – unleashing Cell’s power. Beside the hardware capability and
programming environment the choice of numerical solution schemes has a large
impact on the quality of the results, the total amount of work to be done, and

68 F. Oboril, J.-P. Weiss, and V. Heuveline

parallel performance. Multigrid methods for the discrete solution of problems of
elliptic type have an optimal work complexity and a high degree of parallelism
in the associated vector and stencil operations.

In this work, we have implemented and optimized a multigrid solver on the
Cell BE architecture for a 3D Poisson model problem by means of the IBM Cell
SDK. We have chosen a straightforward but realistic multigrid setting [17] in
order to be able to assess all capabilities and programmability issues for the Cell
BE and to provide a thorough performance analysis for all parts of the multigrid
solution cycle. Major parts of this work are based on the study in [15].

In Section 2 we give a brief introduction to multigrid methods and we define
our model scenario. In Section 3 we summarize hardware details of the Cell pro-
cessor and provide some details on the IBM Cell SDK. Implementation aspects
are described in Section 4. A thorough performance analysis is presented in Sec-
tion 5. Our investigation shows that the comprehensive programming effort leads
to convincing results and proves Cell’s competitiveness. Section 6 provides some
links to related work. In Section 7 we conclude with a short future perspective
on hardware-aware and heterogeneous computing.

2 A Full Multigrid Scheme for a 3D Poisson Problem

Multigrid methods are very fast schemes for iterative solution of grid-based linear
systems of equations. By utilizing a hierarchy of nested grids, error components
can be damped efficiently on coarse grids with reduced complexity while the
accuracy of the problem is still reflected by the solution on the finest grid. Apart
from alternative approaches, the number of necessary iterations does typically
not depend on the mesh resolution. Our chosen multigrid method uses a full
multigrid cycle (FMG) for generating a fine grid solution starting from a coarse
grid approximation. Then, consecutive V-cycles are applied until the desired
accuracy is achieved. As a coarse grid solver we rely on a conjugate gradient (CG)
method without preconditioning. Due to performance optimization on the Cell
BE (see Section 4.3) and parallel efficiency, the coarse grid problems are solved
on meshes of size 313 where the CG method provides a fast, parallel and reliable
iterative solver without affecting solution accuracy. Furthermore, a full weighting
restriction and a trilinear interpolation are used for grid transformations. For
some interpolation steps during the FMG we use tricubic interpolation to ensure
better accuracy (see Figure 1). For the relaxation on each subgrid either a Jacobi
(with optimal relaxation parameter ω = 6/7) or a Gauß-Seidel smoother (ω =
1.15) is applied. The latter one uses a red-black numbering for parallelization.
For more details on the described multigrid components we refer to [17].

The model problem under consideration is a three-dimensional Poisson prob-
lem −Δu = f for an unknown function u in the 3D unit cube with Dirichlet
boundary conditions set to zero and a given right hand side f . A typical dis-
cretization by means of finite difference or finite element methods on equidistant
grids with grid size h = 1/(n+1) for a large integer n results in a linear system of
equations (LSE) that is characterized by the classical 7-point Laplacian stencil.

Parallel 3D Multigrid Methods on the STI Cell BE Architecture 69

Gh

G2h

G4h

G8h
V-Cycle FMG

Presmoothing
Postsmoothing
Coarse grid solver

Linear interpolation

Cubic interpolation

Full Weigthing restriction

Fig. 1. Multigrid methods: V-Cycle (left) and Full Multigrid (right)

On all coarse grids 7-point stencils are used for the Laplacian operator instead of
larger Galerkin-type stencils. For this type of problem, multigrid methods offer
a solution scheme with optimal complexity.

3 The Cell Broadband Engine Architecture

The Cell Broadband Engine (BE) is a multicore architecture relying on inno-
vative concepts for heterogeneous processing and memory management. The
main unit of the Cell BE is the Power Processor Element (PPE) running at 3.2
GHz. Since it has only limited computing capabilities, the PPE mainly acts as
controller for the eight SIMD processors called Synergistic Processor Elements
(SPEs) which usually handle the computational workload. The SPEs mainly
perform SIMD instructions on 128-bit wide 128 entry register files. In its latest
release PowerXCell 8i, double precision (DP) performance reaches 12.8 GFlop/s
by executing two FMAs per cycle – giving an aggregated DP peak performance
of 102.4 GFlop/s. The eight SPEs are connected via the Element Interconnect
Bus delivering aggregate peak bandwidth of 204 GByte/s. However, the data has
to be accessed from main memory connected via a Memory Interface Controller
with theoretical bandwidth of 25.6 GFlop/s. In the present work, we use an
IBM BladeCenter QS22 with two PowerXCell 8i processors. Each Cell processor
has its own 16 GByte of DDR2-800-DRAM main memory but it can by default
access the main memory of the other processor resulting in NUMA effects. Both
Cell processors are connected via the Flex I/O interface running a fully coher-
ent protocol called Broadband Engine Interface (BIF). Theoretical throughput
of the Flex I/O interface is 25.6 GByte/s, but due to an overhead of the BIF
protocol speed is reduced.

Cell follows the approach of simplified cores with reduced instruction sets and
less hardware features. Furthermore, the 256 KByte software-controlled Local
Store (LS) memory decreases complexity while allowing maximal flexibility and
efficiency. The LS does not operate like a conventional CPU cache since it does
not contain hardware structures or protocols that store data which may possi-
bly be reused or loaded. Data transfers are managed by Direct Memory Access
(DMA) with full control and responsibility by the programmer or the software

70 F. Oboril, J.-P. Weiss, and V. Heuveline

environment. The same strategy applies to performance-critical data alignment.
Manual double buffering for overlapping computations with communication is
supported by means of asynchronous DMAs. Moreover, all computations need to
be vectorized for full utilization of the SPE’s SIMD units. Due to the absence of
branch predictors, branches should be avoided or hinted by intrinsics, and loops
should be unrolled. Using the IBM Cell SDK [11], the programmer has to han-
dle all mentioned aspects. Furthermore, the programmer has to load programs
onto the SPE and start and stop them explicitly. He also has to take care of all
synchronizations and communication with the PPE and other SPE programs.
The chosen approach gives full flexibility but has severe drawbacks on coding
complexity. An easier programming approach is exemplified by the RapidMind
stream processing model [8], where the compiler and the runtime system are
handling data transfers and parallelization. However, it has been observed that
coding simplicity is accompanied with some performance loss [9]. For this reason,
we are focusing on IBM’s development platform. As of now, OpenCL [6] brings
up a further standardization and generalization of the stream processing model
and promises at least formal portability of implementations. This approach has
to be investigated and compared to our results in future work.

4 Implementation and Optimization

In the following we provide some information on our implementation of the con-
sidered multigrid method. Our multigrid approach on equidistant grids relies
on several types of stencil operators. For parallelization, the computational do-
main is divided into subgrids with minimal interaction across the interfaces. Our
choice for data decomposition and minimizing data traffic is based on the circular
queue method described in [4]. The domain is divided into blocks for the SPEs
where each SPE-block is further divided into subblocks such that selected layers
fit into the LS memory. Stencils are applied to whole layers where neighboring
layers are preloaded via double buffering techniques. Ghost layers are required
across SPE-blocks and corresponding subblocks. Due to the limited local store
size, double buffering, optimal transfer size, and minimal vector length for BLAS
operations, typical block size is 16 KByte for a vector update, and 6 layers (4 in-
put, 2 output) of size 30-35 KByte each (computed dynamically) for the 7-point
stencil.

4.1 Data Allocation and NUMA Effects

For each 3D grid in the multigrid hierarchy two 1D arrays are allocated in main
memory. The first array contains information on the right hand side source vec-
tor, the second one keeps information on the target vector of the LSE. Both
arrays are aligned at 128-Byte boundaries which is crucial for attaining maxi-
mal bandwidth. Data management is controlled by the PPE by means of the
_malloc_align function. Data buffers in the LS are aligned manually. Our de-
composition strategy explicitly specifies which SPE will update a particular grid

Parallel 3D Multigrid Methods on the STI Cell BE Architecture 71

point. To that end, we use a parallel routine where each SPE initializes the data
on which it is working from now on. This "first touch"-policy coordinates correct
mapping of data to sockets. Another possibility to ensure a correct placement of
data is given by the numactl OS-tool which can bind data to specific memory
banks or processors. Without this NUMA-aware allocation (SPEs may operate
on both main memory locations), performance would be worse.

4.2 Stencil Computations

All subroutines based on matrix-vector-multiplication – including restriction,
interpolation, smoothing step, CG-substep, and calculation of the residual – use
fixed stencils instead of applying assembled sparse matrices. Due to the chosen
equidistant grid each stencil is constant in space and only performs nearest
neighbor computations on the input vector. Each point in the 3D grid is updated
with weighted contributions from a subset of its neighbors where the weights are
provided by specific stencil routines. In Figure 2 the procedure is exemplified by
means of a 7-point stencil (e.g. Laplacian or Jacobian stencil).

Stencil

Input array

Output array

l rm

b

f
d

u

m rl

d

f b

u

Fig. 2. 7-point stencil computation on the input vector

4.3 Optimizations for the Computations

We use a highly optimized double buffering scheme for hiding computations
behind memory latencies and data transfers – and vice versa. Furthermore, we
use only SIMD vector operations by means of vector intrinsics, and SPE-based
BLAS 1 routines. Whenever possible, BLAS routines are preferred due to better
performance characteristics and code readability. E.g. a stencil operation with
128-bit stride memory access can be built by BLAS 1 routines acting on several
vector components at the same time. However, the array length has to be a
multiple of 32 when using BLAS routines. Hence, the number of unknowns per
subgrid is chosen by (2k − 1)3 for k ≥ 5 with an additional array padding
element. As a benefit, this constraint yields data aligned to 128 Byte boundaries.
The main disadvantage of the BLAS routines for the SPEs is the fact that the
input and output data have to be 16 Byte aligned. Hence, BLAS routines cannot

72 F. Oboril, J.-P. Weiss, and V. Heuveline

be applied for the nearest neighbor interaction in unit stride direction for 3D
stencils because of the 8 Byte offsets between neighboring vector components.
Thus, for these operations vector intrinsics have to be used. In our code loops
are maximally unrolled and branches are avoided.

5 Performance Results

To evaluate our implementation and the impact of the applied optimization
strategies, we start with examining some basic linear algebra kernels for a prob-
lem size of 2553 unknowns. Then, we discuss the results of the complete multigrid
method and compare them with those of a CG method. All our computations
are performed in double precision arithmetic. All tests have been run with the
GNU 4.1.2 C/C++-compiler and the -O3 optimization flag. On the QS22, we
only run a single Cell processor with its own local main memory.

0

0.4

0.8

1.2

1.6

1 2 4 8

P
e
rf

o
rm

a
n
c
e
 i
n
 G

F
lo

p
/s

Vector Update

16-Byte-Alignment
128-Byte-Alignment

128-Byte-Alignment and Double Buffering

0

0.4

0.8

1.2

1.6

2

2.4

2.8

1 2 4 8

number of SPEs

Scalar Product

0

1

2

3

4

5

6

7

8

1 2 4 8

3D Laplace-Stencil

0

0.4

0.8

1.2

1.6

1 2 4 8

Vector Update

scalare operations
vector intrinsics

BLAS for SPE

0

0.4

0.8

1.2

1.6

2

2.4

2.8

1 2 4 8

number of SPEs

Scalar Produkt

0

1

2

3

4

5

6

7

8

1 2 4 8

3D Laplace-Stencil

(a) Alignment and double buffering (b) Optimizations for the calculation

Fig. 3. Performance of a vector update, scalar product and a 3D Laplacian stencil for
2553 unknowns with different optimization techniques

5.1 Influence of Applied Optimization Techniques

In Figure 3 (a) the influence of data alignment and double buffering is depicted
for the 3D Laplacian stencil, a vector update of type x = x + αy and a scalar
product < x, y >. Figure 3 (b) shows the differences in performance when using
scalar operations, the SPE’s vector intrinsics, and BLAS routines on the SPEs.
It is obvious that double buffering and a 128 Byte alignment of the data are es-
sential for high performance. The same applies to the usage of BLAS 1 routines,
especially for the application of stencil routines. Surprisingly, for the scalar prod-
uct performance of scalar operations is superior compared to the results based
on vector intrinsics. This behavior is attributed to the cost-intensive reduction

Parallel 3D Multigrid Methods on the STI Cell BE Architecture 73

operation. Maximal performance on 8 SPEs is 1.5 GFlop/s for the vector update,
2.5 GFlop/s for the scalar product, and 7.5 GFlop/s for the 3D Laplacian sten-
cil. The first two routines are clearly bandwidth-bound when using more than
two SPEs. In contrast, the stencil routine is not bandwidth-bound in the sense
that no saturation effects are observed when increasing the number of SPEs.
This is mainly due to the cost-intensive local vector re-organization via shuffle
operations for the interactions.

5.2 Performance of Various Stencil Routines

On our applied structured grids, all matrix-vector-multiplications are imple-
mented by stencil routines. Hence the full weighting restriction, the linear and
cubic interpolation, the smoothers, and the CG-step use stencil routines. They
basically differ in their data access pattern and the dimensions of source and tar-
get vector. The Gauß-Seidel smoother with red-black parallelization is accessing
data with a stride of two with associated performance degradation. A perfor-
mance comparison of these routines is given in Figure 4. In theory, all stencil
routines are bandwidth-bound with upper bounds due to computational inten-
sity resulting in 12.8 GFlop/s for the 3D Laplacian stencil, 5.0 GFlop/s for the
linear interpolation, 12.4 GFlop/s for the cubic interpolation and 10.7 GFlop/s
for the smoothers and the full weighting restriction (assuming a memory band-
width of 25.6 GByte/s). Sustained stream-bandwidth for read operations on the
QS22 for a single Cell and its local memory banks is only 21 GByte/s. For si-
multaneous read and write accesses bandwidth decreases to roughly 18 GByte/s.
Thus, actual performance results can only reach about 70 % of the theoretical
upper limits. Keeping this fact in mind, performance of the 3D Laplacian sten-
cil, of the linear interpolation, of the full weighting restriction, and of the Jacobi
smoother are close to optimal. Only the cubic interpolation, and especially the
Gauß-Seidel smoother with red-black-enumeration are not that efficient. This has
to be attributed to repeated local vector re-organization due to non-continuous
access patterns and nearest neighbor interactions in unit stride direction.

5.3 Comparison of Gauß-Seidel and Jacobi Smoother

By comparing the performance of the Gauß-Seidel and the Jacobi smoother we
find that the latter is faster in terms of runtime for a single smoothing step (see
e.g. Table 1). In Figure 5 performance numbers for both smoothers are presented
for a different number of SPEs and different problem sizes. However, improved
smoothing properties of the Gauß-Seidel method [17] result in reduced runtime
of the complete multigrid scheme, since fewer iterations have to be performed
(e.g. two GS-steps instead of eight J-steps) for the same error reduction. An
analysis of the runtime for the complete multigrid solver is illustrated in Table 2.
For the Jacobi solver with two smoothing steps, significantly more V-cycles and
coarse grid CG-iterations are necessary until the same error bound is reached.
For eight smoothing steps the number of iterations is similar to the Gauß-Seidel
case, but total runtime is slightly worse.

74 F. Oboril, J.-P. Weiss, and V. Heuveline

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

P
er

fo
rm

an
ce

 in
 G

F
lo

p/
s

number of SPEs

3D−Laplace

Full Weighting Restriction

linear Interpolation

cubic Interpolation

Jacobi Smoother

GS Smoother

Fig. 4. Performance comparison of various stencil routines

Table 1. Detailed runtime analysis of the multigrid method on 8 SPEs

Interpolation Smoother (one iteration) Residual Error- Restriction
cubic linear Gauß-Seidel Jacobi correction

Unknowns [ms] [ms] [ms] [ms] [ms] [ms] [ms]
633 0.5 0.3 0.9 0.5 0.4 0.3 0.3
1273 2.1 1.2 7.1 3.6 3.2 2.9 1.4
2553 17.6 9.7 76.8 27.4 27.1 23.5 9.6

Table 2. Runtime of the complete 4-grid multigrid solver, number of required V-cycles,
and coarse grid CG iterations for the Jacobi- and the Gauß-Seidel smoother on 8 SPEs,
2553 grid points on the finest level, and 313 grid points on the coarsest grid, error bound
10−6

Gauß-Seidel Jacobi
Smoothing V-Cycles CG Iterations Time [s] V-Cycles CG-Iterations Time [s]

Steps per cycle total per cycle total
2 8 ≤ 71 186 4.6 37 ≤ 74 815 15.5
4 6 ≤ 68 176 4.9 18 ≤ 73 376 8.6
6 5 ≤ 65 160 5.3 12 ≤ 71 253 6.8
8 5 ≤ 63 148 6.4 9 ≤ 70 219 6.2
10 5 ≤ 60 137 7.5 8 ≤ 69 205 6.3
12 4 ≤ 57 126 7.2 8 ≤ 69 199 6.7

Parallel 3D Multigrid Methods on the STI Cell BE Architecture 75

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 1 2 3 4 5 6 7 8
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

P
er

fo
rm

an
ce

 in
 G

F
lo

p/
s

B
an

dw
id

th
 in

 G
B

yt
e/

s

number of SPEs

Jacobi mit 633 unknowns
Jacobi mit 1273 unknowns
Jacobi mit 2553 unknowns
Jacobi mit 5113 unknowns

Gauß−Seidel mit 633 unknowns
Gauß−Seidel mit 1273 unknowns
Gauß−Seidel mit 2553 unknowns

Fig. 5. Performance behavior of relaxed Jacobi and Gauß-Seidel smoothers

5.4 Results for the Multigrid Method

The Gauß-Seidel smoother with two steps for pre- and post-smoothing results in
a runtime of 4.58 seconds for 2553 unknowns and an error bound of 10−6 for the
approximate solution of the complete multigrid solver. In Table 3 the runtime
for the multigrid with Gauß-Seidel smoothing is compared to the runtime for the
multigrid with Jacobi smoothing, and the plain CG method. In the multigrid
method, the coarsest grid is 313. As expected, the CG method without precon-
ditioning is by far too slow for huge problems. Only for small problem sizes the
CG solver is faster than our multigrid implementation based on a FMG method
followed by V-cycles. This is due to the fact, that the costs for thread manage-
ment, SPE program launch, and coarse grid overhead are much higher for the
multigrid solver. The LS of each SPE is shared by both the application data for
the operations at issue and the program code. Using the GNU compiler and the
optimization flag -O3, the size of the executable code of one of the four main
steps of the multigrid method is at least 80 KByte. Combination of several rou-
tines would result in a code size exceeding a reasonable size. Thus, we decided to
use a separate SPE-program for each subroutine of the multigrid method. How-
ever, this approach leads to a management overhead which reduces the efficiency
of our implementation. In contrast, the complete code for the CG has a size of
100 KByte – fitting perfectly in the LS and reducing the management overhead.

For a problem size of more than one million unknowns our multigrid imple-
mentation is 16 times faster than the CG solver expressing the reduced work
complexity which is increasing linearly in the problem size for the multigrid
method and polynomially with exponent 4/3 for the CG method [2]. The dom-
inating part of the multigrid method is the smoothing step – especially when

76 F. Oboril, J.-P. Weiss, and V. Heuveline

Table 3. Runtime for the 2-grid (633), 3-grid (1273) and 4-grid (2553) multigrid method
with Gauß-Seidel (2 smoothing steps) and Jacobi (2 and 8 smoothing steps) smoothing,
and the CG method on 8 SPEs.

Gauß-Seidel, 2 Its. Jacobi, 2 Its. Jacobi, 8 Its. CG
Unknowns V-Cycles Time [s] V-Cycles Time [s] V-Cycles Time [s] CG-Its. Time [s]

633 7 0.75 33 2.92 8 0.88 170 0.05
1273 7 1.53 35 6.28 8 1.99 349 4.03
2553 9 4.58 38 15.91 9 6.16 716 64.45

using the Gauß-Seidel smoother (see Table 1). Hence, the smoother is the rou-
tine that should be optimized primarily. Calculation of the residual and error
correction nearly take the same amount of time as the Jacobi smoother.

Further details on the applied multigrid methods, implementation aspects and
performance results can be found in [15].

6 Related Work

Detailed discussions on data locality techniques for stencil operations and op-
timization techniques for the Cell BE architecture are presented in [4,3]. An
evaluation of a single precision multigrid solver using the Jacobi smoother on
the Cell BE can be found in [16]. The implementation there is based on the IBM
Cell SDK without using BLAS routines for the SPEs. Performance results have
the same quality like ours. In [8,9] an alternative approach for Cell programming
is exemplified by means of the RapidMind development platform. Comparison
of both performance results (although obtained in single precision only) indicate
a non-negligible performance degradation by the additional software layer. A
performance analysis of a GPU-based multigrid method is provided in [5]. The
measurements are done on a NVIDIA GeForce GTX 280 in double precision.
Performance is significantly better than for our Cell implementation – proving
unrivaled computing capabilities and memory bandwidth of modern GPUs.

7 Conclusion

The landscape of multicore and accelerator technologies is multi-faceted. The fu-
ture is about to bring further performance progression by increasing core counts.
The Cell BE is representing the branch of chip-level heterogeneous multicore
configurations and ring-based interconnects. Although the Cell project is be-
lieved not to be continued, its basic ideas will be seen in future devices like
Intel’s Larrabee (ring and specialized cores) and Rock Creek (software-managed
caches). On the software side and for the algorithms a lot of research is still
necessary in order to overcome the current multicore dilemma and to express a
high degree of multi-level parallelism within the applications.

Numerical simulation of scientific or technological problems requires tremen-
dous computing power that can be provided by the Cell BE. But much more

Parallel 3D Multigrid Methods on the STI Cell BE Architecture 77

important than pure GFlop/s-numbers is the available memory bandwidth. For
bandwidth-bound applications like the considered multigrid method sustained
bandwidth is the limiting factor for nearly all basic subroutines. Hence, an effi-
cient utilization of the available bandwidth is performance-critical. Our approach
for a parallel multigrid solver points out the capabilities of the Cell processor,
but also shows the price in terms of complexity and extra coding effort. A lot of
responsibility for hardware-specific handling is put on the programmer.

For best performance on the Cell architecture, a bunch of optimization tech-
niques has to be applied. This includes blocking techniques for the SPEs and
their Local Store memory, overlapping of computation and communication by
manual double buffering, and vectorization of the computations on the SPEs.
Moreover, data has to be aligned at 128 Byte boundaries in the main memory as
well as in the Local Stores. By following these rules, coding complexity and code
size increases, but all existing resources can be utilized beneficially. By following
Cell’s vendor-specific programming approach, portability to other platforms is
not given.

As an alternative, OpenCL provides a generic programming environment. How-
ever, feasibility and performance competitiveness (based on immature compilers)
has still to be proven. With the first pre-release version 0.1 of IBM’s OpenCL SDK
[10] available we have started to evaluate the suitability of OpenCL. For achieving
optimal performance utilization of double buffering and SIMD operations is again
essential. This reduces the portability of implementations but only the computing
kernels have to be arranged for different platforms. Regarding the early status of
the first release sustained performance for a vector update and scalar product is
pretty impressive. The OpenCL implementation reaches approximately 90 to 100
% of the non-OpenCL performance. Currently, we are implementing and evaluat-
ing more complex routines by means of OpenCL.

Acknowledgements

The Shared Research Group 16-1 received financial support by the Concept for
the Future of Karlsruhe Institute of Technology (KIT) in the framework of the
German Excellence Initiative and the industrial collaboration partner Hewlett-
Packard. We also thank the Steinbuch Centre for Computing (SCC) at KIT for
its support and for providing the IBM QS22 BladeCenter.

References

1. AMD. ATI Radeon HD 5870 GPU Feature Summary (February 2010),
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/
hd-5870/Pages/ati-radeon-hd-5870-specifications.aspx

2. Axelsson, O., Barker, V.A.: Finite element solution of boundary value problems.
Academic Press, London (1984)

3. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization
and Performance Modeling of Stencil Computations on Modern Microprocessors.
SIAM Review 51(1), 129–159 (2009)

http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5870/Pages/ati-radeon-hd-5870-specifications.aspx
http://www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5870/Pages/ati-radeon-hd-5870-specifications.aspx

78 F. Oboril, J.-P. Weiss, and V. Heuveline

4. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson,
D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on state-
of-the-art multicore architectures. In: SC 2008: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, pp. 1–12 (2008)

5. Göddeke, D., Strzodka, R., Turek, S.: Performance and accuracy of hardware-
oriented native-, emulated-and mixed-precision solvers in FEM simulations (part 2:
Doubleprecision GPUs). Technical report, Technical University Dortmund (2008)

6. Khronos Group. OpenCL (February 2010), http://www.khronos.org/opencl/
7. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitive Approach.

Elsevier Academic Press, Amsterdam (2006)
8. Heuveline, V., Lukarski, D., Weiss, J.-P.: RapidMind Stream Processing on the

Playstation 3 for a Chorin-based Navier-Stokes solver. In: Proc. of 1st Int. Work-
shop on New Frontiers in High-performance and Hardware-aware Computing, Lake
Como, pp. 31–38. Universitätsverlag Karlsruhe (2008)

9. Heuveline, V., Lukarski, D., Weiss, J.-P.: Performance of a Stream Processing
Model on the Cell BE NUMA Architecture Applied to a 3d Conjugate Gradi-
ent Poisson Solver. International Journal of Computational Science 3(5), 473–490
(2009)

10. IBM. OpenCL Development Kit for Linux on Power (February 2010),
http://www.alphaworks.ibm.com/tech/opencl

11. IBM. Programming the Cell Broadband Engine Architecture: Examples and Best
Practices (August 2008),
http://www.redbooks.ibm.com/abstracts/sg247575.html

12. Intel. Single-chip Cloud Computer (February 2010),
http://techresearch.intel.com/UserFiles/en-us/File/terascale/
SCC-Overview.pdf

13. NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: FERMI
(February 2010),
http://www.nvidia.com/content/PDF/fermi_white_papers/
NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

14. NVIDIA. Tesla C1060 Computing Processor (February 2010),
http://www.nvidia.com/object/product_tesla_c1060_us.html

15. Oboril, F.: Parallele 3D Mehrgitter-Methoden auf der STI Cell BE Architektur.
Diploma thesis, Karlsruhe Institute of Technology, Germany (2009)

16. Ritter, D.: A Fast Multigrid Solver for Molecular Dynamics on the Cell Broad-
band Engine. Master’s thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg
(2008)

17. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Elsevier Academic Press,
Amsterdam (2001)

http://www.khronos.org/opencl/
http://www.alphaworks.ibm.com/tech/opencl
http://www.redbooks.ibm.com/abstracts/sg247575.html
http://techresearch.intel.com/UserFiles/en-us/File/terascale/SCC-Overview.pdf
http://techresearch.intel.com/UserFiles/en-us/File/terascale/SCC-Overview.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/object/product_tesla_c1060_us.html

Applying Classic Feedback Control for
Enhancing the Fault-Tolerance of Parallel
Pipeline Workflows on Multi-core Systems

Tudor B. Ionescu, Eckart Laurien, and Walter Scheuermann

Institute of Nuclear Technology and Energy Systems, Stuttgart, Germany

Abstract. Nuclear disaster early warning systems are based on simu-
lations of the atmospheric dispersion of the radioactive pollutants that
may have been released into the atmosphere as a result of an accident
at a nuclear power plant. Currently the calculation is performed by a se-
ries of 9 enchained FORTRAN and C/C++ sequential simulation codes.
The new requirements to our example early warning system we focus on
in this paper include a maximum response time of 120 seconds whereas
currently computing a single simulation step exceeds this limit. For the
purpose of improving performance we propose a pipeline parallelization
of the simulation workflow on a multi-core system. This leads to a 4.5x
speedup with respect to the sequential execution time on a dual quad-
core machine. The scheduling problem which arises is that of maximizing
the number of iterations of the dispersion calculation algorithm while not
exceeding the maximum response time limit. In the context of our ex-
ample application, a static scheduling strategy (e.g., a fixed rate of firing
iterations) proves to be inappropriate because it is not able to tolerate
faults that may occur during regular use (e.g., CPU failure, software er-
rors, heavy load bursts). In this paper we show how a simple PI-controller
is able to keep the realized response time of the workflow around a de-
sired value in different failure and heavy load scenarios by automatically
reducing the throughput of the system when necessary, thus improving
the system’s fault tolerance.

Keywords: pipeline scheduling, queuing theory, feedback control,
dispersion simulation, fault tolerance.

1 Introduction

In many engineering and natural sciences, modelling and simulation play an im-
portant role in understanding the behaviour and limitations of certain technical
facilities, natural phenomena, and other physical or abstract systems. One type
of simulation software component, called simulation code, has been established
as the standard way of encapsulating a simulator for a certain physical aspect
of a real system. A simulation code is a command line executable which uses
file-based communication with the outer world. The codes are often written in
FORTRAN or C/C++ and are usually developed at research institutes by do-
main experts. The simulation of complex systems like, for example, a nuclear

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, pp. 79–91, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

80 T.B. Ionescu, E. Laurien, and W. Scheuermann

power plant, and complex physical phenomena like the atmospheric dispersion
of radioactive pollutants, asks for a multi-physics approach. In software terms,
this means that for computing one simulation step several simulation codes are
involved. Usually, there exists an exact predefined calling order (workflow) of
the codes.

Many of the simulation codes are based on old sequential implementations of
complex algorithms. The parallelization of these codes appears to be a straight-
forward approach for improving their performance. But, as experience shows,
parallelization turns out to be a very costly and time consuming operation. Fur-
thermore, in order to speedup the entire workflow one must parallelize every
code involved in the workflow; otherwise the unparallelized codes will repre-
sent performance bottlenecks. Fortunately, when the workflow contains several
modular simulation codes another speedup technique can be used, namely the
parallel process pipeline method. The main advantage of this technique is that
it does not require any changes made to the simulation codes. In addition, it is
complementary to the parallelization method.

In this paper we focus on a dispersion calculation simulation workflow which
is used by a nuclear disaster early warning system. The purpose of the simula-
tion is, firstly, to trace the airborne radioactive materials that may have been
released into the atmosphere as a result of an accident at a nuclear power-plant
and, secondly, to calculate the effects of the radiation upon humans and the
environment. In case of an emergency, the calculation has to be performed in
real time using measured weather and emission data. The new requirements to
the system include a hard deadline of 120 seconds1 for the simulator’s response
time. If this deadline is missed once, the entire simulation is compromised. On
the other hand, in order to assure a high quality of the results, it is desirable
for the algorithm to perform a great number of iterations without exceeding the
response time limit. In other words, the system’s throughput (i.e., the number of
iterations) must be maximized while the response time must be kept within the
imposed limit. Implementing the dispersion calculation workflow as a parallel
process pipeline on a multi-core system leads to a 4.5x speedup with respect
to the sequential computation time. For the dispersion calculation workflow, a
static scheduling strategy (e.g., a fixed rate of firing iterations) is inappropriate
because if a software or hardware fault occurs, the scheduling algorithm must
react so as to reduce the system’s throughput in order to meet the response time
deadline at the cost of a lower quality of the results.

This is where the PI controller comes into play by providing a robust algorithm
for dynamically scheduling the execution of the process pipeline stages. Given a
desired response time for one calculation step (i.e., workflow run), the controller
attempts to keep the realized response time to the desired value by acting upon
the throughput. This way the response time can be automatically controlled
regardless of the characteristics of the underlying hardware environment, of the

1 Although this value seems to be very high for the response time of a real-time
system, the dispersion calculation application can be regarded as one according to
the definitions of a real-time system from [1].

Applying Classic Feedback Control for Enhancing the Fault-Tolerance 81

Fig. 1. A linear N-station queueing network

number of concurrently running calculations, and of the level of disturbances
and other faults in the system. The only parameter that needs to be fed to the
controller is a reasonable desired response time. By reasonable we mean a value
that is to be determined experimentally depending on the theoretical peak load
of the system and the envisioned hardware platform as well as on different failure
scenarios and projected worst case execution times.

In short, our contribution is two-fold: (i) We model a dispersion calculation
workflow using queuing network theory from a pure computational point of view
and implement it in the discrete events domain of computation as a parallel
process pipeline; (ii) We derive a discrete mathematical model for the response
time in a parallel process pipeline and then reformulate the scheduling problem
in terms of control theory. Finally, we propose a controller design and test its
capabilities.

2 Pipeline Workflow Scheduling: The Case of Dispersion
Calculation Workflows

In our approach, the dispersion calculation workflow is regarded as a process
pipeline. The pipeline stages are represented by the different computation steps
carried out by different simulation codes. Each stage receives its input from
the previous stage and outputs data for the next stage. Such a pipeline can be
modelled as a queueing network with discrete events [2].

The following subsection presents the queueing network metrics which will be
used throughout the paper. We use the notations from [3].

2.1 Queueing Network Terminology

We consider a generic linear N -station queueing network as the one shown in
figure 1. It is assumed that stations do not have to share resources and can
thus work in parallel. There are three events related to each request: ei

arrival[k]
– the arrival and en-queueing of request k at station i, ei

process[k] – starting
to actually process request k, and ei

complete[k] – the completion of request k at
station i. Considering that the occurrence of each event e has a time-step τ(e),
then τ(ei

complete[k]) = τ(ei+1
arrival[k]) if the queue of station i is not empty at that

time. For simplicity we will sometimes write τ i
arrival[k] instead of τ(ei

arrival[k]).

Definition 1. Let Ai ≥ 0 be the number of observed arrivals and Ci ≥ 0 the
number of observed completions at station i for a timespan T > 0. Then the
arrival rate at station i is given by λi = Ai/T and the throughput of station

82 T.B. Ionescu, E. Laurien, and W. Scheuermann

i by X i = Ci/T . The arrival rate of the entire queueing network is given by
λ = λ1. The network’s throughput is given by X = min{X i} for i = 1..N .

Definition 2. Let Bi ≥ 0 represent the length of time that station i was observed
to be busy and Ci ≥ 0 the number of jobs that have been completed in a timespan
T . Then the service time of station i is given by Si = Bi/Ci. The service time
of the entire network is given by S =

∑N
1 Si.

The theoretical speedup with respect to the sequential service time (i.e., if all
stations share a single set of resources and thus work sequentially) when all
stations work in parallel is S/ max{Si}.

Definition 3. Let Bi represent the length of time that station i was observed to
be busy in a time interval T . Then the utilization of the station’s resource(s) is
given by U i = Bi/T . Considering that the stations possess identical resources,
the utilization of the network’s resources is given by U =

∑N
1 U i/N .

Definition 4. Let i be a station in a queueing network and let Si be its service
time. Further, let W i ≥ 0 denote the average time spent by a request in the queue
of station i (waiting time). Then the station’s response time (latency) is
given by Ri = Si + W i. The response time of the entire network is given by
R =

∑N
1 Ri.

Assuming Si to be constant, upon τ(ei
arrival[k]) the expected waiting time of

request k at station i is given by

W i
k = Qi(τ i

arrival[k])Si − (τ i
arrival[k] − τ i

process[k − 1]) (1)

where Qi represents the number of enqueued requests at station i (including the
one currently being processed).

Considering that for a pipeline workflow X = min{X i}, the latency depends
on λ = λ1 which, in term, depends on the type of workload considered. In our
case we are able to control the arrival rate and therefore the model is said to be
a closed one and the workload of batch type.

We will now relate the queueing network metrics to the dispersion calculation
workflow.

2.2 The Dispersion Calculation Workflow

The dispersion simulations we target in this paper rely on the Lagrangian par-
ticle model [4]. The goal of the simulation is, firstly, to trace airborne particles
(radioactive aerosols) that have been released into the atmosphere as a conse-
quence of an accident at a nuclear power plant and, secondly, to calculate the
effects of radioactivity upon humans and the environment. In the Lagrangian
particle model, the trace species are represented by particles spreading across an
area surrounding the point of emission. The dispersion is determined by wind

Applying Classic Feedback Control for Enhancing the Fault-Tolerance 83

speed, wind direction, and atmospheric turbulence. The monitored area is di-
vided into a regular grid and only those cells containing at least one particle are
processed by the dispersion calculation algorithm.

The workflow is composed of 9 autonomous simulation codes (FORTRAN
executables) which communicate with the outer world only through ASCII and
binary files. The first group of codes (WIND) is concerned with generating a
3-dimensional wind field based on weather data. The second group (RAIN) pro-
cesses weather data and prepares the information about the influence of pre-
cipitation upon the concentration of the transported radioactive substances. A
third group of codes (EMIS) processes the data about the type and quantity of
the released radioactive substances and determines which proportion of particles
corresponds to which nuclide type. The data from the first three groups of codes
are used by the dispersion module (DISP) to simulate the transport of about
10000 particles. Its output is then fed to the equivalent dose module (AIRD)
which determines the amount of radiation in the air. Finally, the dose module
(DOSE) computes the time-integrated effects of radiation upon the organs of
humans belonging to different age groups.

It is important to note that in the following execution chain all codes or
groups of codes only need the results from previous code groups for any given
time-step: (WIND, RAIN, EMIS) > DISP > AIRD > DOSE. This makes the
pipeline parallelization possible. In this context, the notion of simulation step or
time-step refers to a complete run of the workflow for a set of input weather and
emission data. The input interval Δt refers to the timespan (or time interval)
for which the input data for the current time-step are valid. Thus, a simulation
step can use an input interval of any length (e.g., 10 minutes or 10 seconds) and
can be computed in a time which depends on the underlying hardware resources
and the semantics of the workflow (i.e., parallel vs. sequential).

In terms of queueing network theory, the sequential computation time needed
by the workflow to process one simulation step represents the total service time
S =

∑N
1 Si of a linear queueing network. If the workflow is parallelized using

the pipeline method then one simulation step k will be computed in a time
Smax

k = max {Si
k}, i = 1..N .

In some application contexts (e.g., an accident at a nuclear power plant) dis-
persion calculations have to be performed in real-time with currently measured
weather and radioactive emission data. During real-time calculations, at the be-
ginning of each time-step current weather and emission data are fetched from the
National Weather Forecast Center and from the source of emission, respectively,
in form of average values for a given real timespan Δtk = tnow−tpast = tk−tk−1
whereby the index k identifies the simulation step. Δtk is dictated by the work-
flow and can take values from Smax

k to 120 seconds. The upper limit of 120
seconds is imposed by law and ensures a certain standard of accuracy for the
results. In general, the smaller Δtk is the more accurate the results will be.
But more importantly, the 120 seconds limit applies to the total latency of the
workflow: Rk < 120s. This means that regardless of the value of Δtk and of
the characteristics of the computing environment, the results of one simulation

84 T.B. Ionescu, E. Laurien, and W. Scheuermann

step must become available with a maximum delay of two minutes with respect
to the timespan for which the input data are valid. This is the hard real-time
condition imposed to the system.

In order to comply with the real-time condition the simulation clock must be
accurately set according to the service times observed in the queueing network.
The simulation clock determines the arrival rate of requests which means that
the tick period of the simulation clock is defined as T sc = 1/λ. However, in
a real computing environment the service times of the dispersion calculation
modules cannot be accurately determined for several reasons. Firstly, depending
on the input data SDISP , SAIRD, and SDOSE can experience variations of up
to 50% from the observed average values. Secondly, the service times depend on
the server load determined, for example, by the number of concurrently running
dispersion calculations. Furthermore, in case of a disturbance (e.g., a process
reclaiming 100% of the system’s processing capacity) or a hardware failure (e.g.,
a defect processor in a multi-core system) the service times of the simulation
codes can be unpredictable.

The fact that we do not always have a priori knowledge about the service
times in an arbitrary computing environment already suggests the need for some
sort of feedback mechanism able to provide at least estimations for the stations’
service times based on measured values from the past. However, we will not
attempt to obtain estimations for the service times but rather for the latencies
of the stations since this way we can use the waiting times as buffers that can
be freely manipulate. For example, if the service times of stations increase for
some reason, we can reduce the waiting times to compensate the increase of the
service times in order to keep the latency as invariant as possible.

3 Feedback Control of Parallel Process Pipelines

The two main goals of a controller are: (1) reference tracking, i.e., eliminating
the steady state error e between a measured process variable y and a desired
setpoint (or reference variable) r so that eventually e = r−y = 0 and (2) distur-
bance rejection, i.e., minimizing the effects of perturbations upon the controlled
process. In addition to these goals our aim is to maximize the server utilization
U while obtaining an optimal trade-off between the length of the time-step T sc

and the total latency of the network R. For this purpose, the controller out-
put will be used to set T sc whereas R will be the measured process variable.
The choice of an appropriate controller depends on the dynamics of the process
to be controlled. The process dynamics are usually described by one or several
differential equations which characterize the behaviour of the system.

In the following we will first derive a general-purpose model of a process
pipeline and then propose a controller able to meet all the requirements men-
tioned before.

Applying Classic Feedback Control for Enhancing the Fault-Tolerance 85

3.1 A Discrete Model for Latency in Parallel Process Pipelines

Consider an N-station queueing network as the one shown in figure 1 where the
service times of all stations are assumed to be time-step invariant, i.e., Si

k = Si =
constant. We define the job arrival period at station i as the amount of time
that passes between two consecutive job arrivals at that station: T i = 1/λi =
max {Si−1, T i−1} for i > 1 and T i = T sc for i = 1. Under these conditions, the
following recursion holds for any station i of the queueing network:

ΔRi = Ri
k − Ri

k−1 = Si − T i (2)

where k designates the last enqueued request at station i. A natural choice for
the discretization time-step is Δti = max {Si, T i} since in a real computing
environment where Si can vary, the actual value of Ri

k can only be accurately
measured upon occurrence of ei

complete[k].
We now sketch an intuitive proof for this first order difference equation which

will be backed up by experimental results in section 3.3. Considering that Ri
k =

W i
k + Si

k, equation 2 simply states that when T i < Si a new request, say k,
arrives ”too soon” at station i and must therefore wait in line Si −T i more time
units than the previous request before being processed. In this case Δti = Si.
Conversely, when T i > Si the request arrives ”too late” because the completion
rate of the station is higher than the arrival rate of requests. In this case, the
newly arrived request k will have to wait W i

k = min {T i − Si, W i
k−1} less time

units than the previous request. Δti = T i if W i
k−1 = 0 and Δti = Si otherwise.

Please also note that, by convention, if T i > Si and W i
k−1 = 0 then ΔRi = 0

since in this model both the latency and the waiting time are positive values. A
steady state with W i

k = W i
k−1 is reached when T i = Si.

In a real computing environment the accurate value of the latency Ri
k can

only be obtained with a time delay equal to Ri
k itself. However, for being able

to efficiently control the latency we need to obtain at least an estimation of Ri
k

upon the arrival of request k at station i. For this purpose we can use relation
1 to compute the waiting time in Ri

k = W i
k + Si

k.
Extending the model to represent the total latency of the queueing network

is straightforward and yields:

ΔR = Rk − Rk−1 =
N∑

i=1

ΔRi Δt

Δti
(3)

where Δt = max {Si, T sc} for i = 1..N . The delay with which we can measure
Rk is given by τcomplete[k]− τarrival[k] = Rk. An estimation of the total latency,
denoted R̃k, can be obtain by summing up R̃i

k computed using relation 1 for all
stations i and updating this value upon arrival of a request at any of the stations
in the network.

As an illustration of how the total latency in a given queueing network can be
computed, we will consider the assembly line example from [2]. Given a queue-
ing network of 3 stations with S1 = 10, S2 = 15, S3 = 3, and T sc = 7,

86 T.B. Ionescu, E. Laurien, and W. Scheuermann

Fig. 2. The closed loop block diagram of a process pipeline and a controllers

compute Rk for k = 5. First, we determine ΔR1 = S1 − T sc = 3, ΔR2 =
S2−max {S1, T sc} = 5, and ΔR3 = S3−max {S2, T 2} = S3−max {S2, S1, T sc}
= 3 − 15 < 0 which, by convention, results in ΔR3 = 0. Next, we deter-
mine Δt = max {S1, S2, S3, T sc} = 15, Δt1 = max {S1, T sc} = 10, Δt2 =
max {S2, T 2} = 15, and Δt3 = max {S3, T 3} = 15. Finally, by using equa-
tion 3 we obtain ΔR = 3 15

10 + 5 15
15 + 0 15

15 = 12.5 and, taking into account that
R1 = S1 + S2 + S3 = 28, R5 = R1 + 4ΔR = 78.

Before proceeding to the controller design phase, two remarks regarding the
limitations and the applicability of the presented model are necessary.

Firstly, we have considered the service times of all stations to be time-step
invariant. Any variations from the observed averages for the service times are
regarded as disturbances in the model. We found this simplification to be nec-
essary because the service times of the simulation codes depend on the input
data and the computing environment. Rather than claiming the impossibility of
deriving a model for the service times in a queueing network, we conjecture that
the presented simplified model suffices for achieving the goal of controlling the
latency in a queueing network and prove it through experiments in section 3.3.

Secondly, the applicability of the model is limited by the fact that equations
2 and 3 can be only be used in a setup where the cost of the communication
between the stations can be neglected. For example, on a multi-core system we
can neglect this cost by employing a RAM-drive solution. If the communication
cost cannot be neglected, the service time of any of the stations will have an
additional communication component with own dynamics, i.e., S = Sproc+Scom,
for which the presented model does not hold any more.

3.2 Controller Design

It is well known from classic control literature (see for example [5]) that for con-
trolling a first order system – like the one described by equation 3 – it suffices to
use a PI (proportional-integral) controller. Figure 2 depicts the block diagram
of the controller together with the process pipeline feedback loop and its char-
acterizing parameters. The discrete version (also known as the velocity form) of
the PI controller is given by:

uk = uk−1 + Kc(ek − ek−1) +
KcTs

Ti
ek (4)

Applying Classic Feedback Control for Enhancing the Fault-Tolerance 87

with uk the controller output (which in our case is used to set T sc
k = uk), Rsp

the controller setpoint (i.e., the desired total response time), R the observed
response time, Kc the controller gain, Ti the integral time, and Ts the error
estimation period.

As previously discussed, the waiting time is given by relation 1 based on which
we can compute an estimation of the total response time as R̃k =

∑N
i=1 (W̃ i

k + S̃i
k).

Here, S̃i
k represents the latest value of Si which has been observed at station i. W̃ i

k

is also computed on the basis of S̃i
k. For each request k, the estimated value of the

response time Rk is updated repeatedly over a time period of Δt and such a change
is triggered by the arrival of a request at any of the stations in the network. Thus,
Ts does not directly reflect Δt but the time interval between two request arrivals
at any of the stations and R̃k is updated incrementally every Ts. Consequently,
ek = R̃k − Rsp and is also updated every Ts.

The parameters Kc and Ti must be adjusted so as to stabilize the closed loop
system. We applied the Ziegler-Nichols frequency response method [5] to find
proper values for the controller gain and the integral time. This method states
that Kc and Ti should be chosen as follows: Kc = 0.4Ku and Ti = 0.8Tu where
Ku represents the value of the gain for which the process starts to oscillate (while
Ti = ∞) and Tu the period of oscillation.

3.3 Experimental Validation of the Approach

We conducted a series of experiments to examine the performance of the disper-
sion calculations workflow with and without feedback control. For this purpose,
we implemented the workflow using the Ptolemy II Scientific Workflow System
[6]. The PI controller and the simulation clock have been implemented using
standard Ptolemy II actors whereas the simulation codes have been wrapped by
customized Ptolemy II server actors. All simulations have been conducted within
the discrete event (DE) domain provided by the Ptolemy II system.

The simulation code actor is threaded and has a first-come first-served queue
of unlimited capacity. When a request arrives it is immediately processed if the
actor’s state is IDLE and enqueued otherwise. The actor outputs the service time
of the last request upon finishing its processing, the queue length upon arrival
of a new request, and the currently elapsed time upon arrival of a new request
if the actor is not in IDLE state. All these values are used to compute R̃k.

The PI controller receives the current value of the error and Ts as inputs and
outputs T sc. The simulation clock generates a new request every T sc time units.
This mechanism works as follows: A timer is reset every time a new request is
generated and then compared to T sc every tenth of a second. When the timer
reaches the current value of T sc a new request is issued. T sc is updated every Ts

time units where Ts ranges from 100 milliseconds to tenths of seconds, depending
on CPU load and the level of perturbations in the system.

Test Setup. The tests were conducted under Windows Server 2008 installed
on a dual quad-core Intel machine with 8GB of RAM. The amount of RAM was

88 T.B. Ionescu, E. Laurien, and W. Scheuermann

sufficient for installing a RAM-Drive large enough to entirely support the I/O
exchange of the dispersion calculation workflow. Hence, the I/O overhead could
be neglected in both the model and the experiments.

We ran a dispersion calculation with real weather and emission data for
1000 seconds in two disturbance scenarios using two scheduling strategies: feed-
forward scheduling with a constant T sc = 3.071s and feedback scheduling using
a PI controller with Rsp = 30s, Kc = 0.75, and Ti = 100. The values for Ti

and Kc were determined using the Ziegler-Nichols method. The setpoint was
chosen by considering the maximum total service time of the queueing network
at 100% CPU utilization which yielded a value of about 25 seconds for S (while
normally at low CPU utilization S = 13.5s). Hence, Rsp was set to 30 seconds
in order to allow the error to take both positive and negative values even under
heavy CPU load conditions. With no disturbances in the system, we obtained a
4.5x speedup with respect to the sequential workflow and an average 59% CPU
utilization using the PI controller with Rsp = 30s which yielded an average T sc

of 3.071s. This value was then used for the tests with constant T sc in order to
obtain a similar CPU utilization.

In the first disturbance scenario, we simulated a server load burst using
Prime95 [7], a CPU ”torture” program that searches for very large prime num-
bers. Prime95 does not rely on cycle scavenging and, thus, constitutes an ideal
application stress testing tool. We ran the program with the large FFT (Fast
Fourrier Transformation) option and 8 torture threads corresponding to the 8
available CPU cores. The large FFT option heavily uses the CPU while only
requiring some RAM and is considered to be the hardest CPU stress test facili-
tated by Prime95. In the second disturbance scenario, we simulated a permanent
CPU core failure using a simple fault injection technique: one in 8 simulation
code actor firings was deemed to fail after a random time period ranging from 1
to 4 seconds and had to be retried.

Test Results. The results of the tests are presented in figure 3. The first
diagram (i.e., top-left) corresponding to a workflow run with a fixed T sc of 3.071
seconds shows that, when Prime95 is started using 8 parallel threads (one on each
CPU core) after an undisturbed period of about 850 seconds, the response time
starts to increase with a steep linear slope; R reaches over 200 seconds after
1000 seconds of total simulation time. In fact this constitutes a proof for the
correctness of our mathematical model for the total response time in a queueing
network.

When a PI controller is used to control T sc (see top-right diagram) we ob-
serve a sudden rise in R up to a value of 100 seconds, after which the response
time settles back to around 30 seconds while T sc is kept around 20 seconds. The
controller action prevented the response time to exceed the 120 seconds limit
imposed by law under the effect of a sudden CPU load burst. During the undis-
turbed phase the controller was able to follow the reference value Rsp = 30s with
a maximum deviation of ±3.5s (excluding the initial overshoot) at an average
T sc = 3.071s and an average CPU utilization of 59%.

Applying Classic Feedback Control for Enhancing the Fault-Tolerance 89

Fig. 3. Test results for fixed T sc (left) and PI-controlled T sc (right). Note that the
diagrams were scaled to fit the boxes.

By contrast, when T sc is fixed to a value of 3.071 seconds which equals the
average value of the controller output during the undisturbed phase we obtain
an unexpected steady state response time of 20 seconds. This shows that without
feedback it is nearly impossible to obtain a desired response time. This statement
is also backed up by additional failed attempts to obtain a response time of
exactly 30 seconds by directly manipulating T sc. For example, when T sc = 3.08s
we obtain a steady state response time of 17.4 seconds whereas when T sc = 3.06s
the steady state response time becomes 23.5 seconds. Also, the reason for the
discrepancy between the projected response time for a given constant T sc and
the Rsp that leads to that particular T sc when using a PI controller remains an
open question.

The bottom diagrams show what happens when one in 8 jobs fails and needs to
be restarted after a random time period between 1 and 4 seconds. Once again,
when T sc is fixed at 3.071 seconds (i.e., the bottom-left diagram) after 1000
seconds of simulation time the response time has a linearly increasing trend and

90 T.B. Ionescu, E. Laurien, and W. Scheuermann

exceeds the upper limit of 120 seconds. The PI controller (see the bottom-right
diagram) is able to leverage the effects of this type of perturbation as well by
preventing the response time to exceed 39 seconds which is far below the upper
limit of 120 seconds.

4 Novelty of Our Approach and Related Work

Our work stands at the intersection between classic feedback control applied
to computer science problems and pipeline workflow scheduling on multi-core
platforms.

Classic control theory has received more attention in the computer science
community since it was shown in [8] how the PI controller outperforms other
algorithms for optimizing TCP/IP traffic in routers. This became possible after
an exact mathematical model of the TCP/IP protocol was derived [9]. In [10] it
has been shown that a PI controller was able to keep the load of a web server to
a certain desired level in order to improve the quality of the service. A similar
approach can be found in [11] where a queueing model based feedback control
solution is introduced.

In [12] a feedback control real-time scheduling (FCS) framework for adaptive
real-time systems is presented. In [13] a process pipeline for JPEG encoding
is proposed whereby the pipeline workflow scheduling problem is solved using
integer linear programming algorithm.

In addition to the quality of service, real-time and pipeline scheduling, queue-
ing network modelling, and feedback control problems discussed in these papers,
we also addressed the issue of fault-tolerance in early warning simulation sys-
tems. In short, the novelty of our approach consists of applying classic feedback
control theory to the end of solving the scheduling problem in a discrete-event
based pipeline workflow for dispersion calculations.

5 Conclusion and Future Work

We have presented a new method for scheduling discrete-event based pipeline
workflows on multi-core systems. As an example application we have considered
an early warning system based on legacy simulation codes for tracing the disper-
sion of radioactive pollutants. We successfully applied classic feedback control
theory to the pipeline workflow scheduling problem. Our aim was to use a PI
(proportional-integral) controller for reliably controlling the latency in the dis-
persion calculation workflow while also obtaining an optimal trade-off between
CPU utilization, response time, and the accuracy of the results. We validated
our approach through tests which showed how the PI controller achieves both
the reference tracking and the disturbance rejection goals while also meeting the
imposed real-time and fault-tolerance requirements, which is not the case when
fixing the tick period of the simulation clock to a constant value. Overall, the
method leads to a 4.5x speedup with respect to the sequential execution time

Applying Classic Feedback Control for Enhancing the Fault-Tolerance 91

with reduced implementation efforts and without modifying the implementations
of the simulation codes.

As part of our future work, we intend to reduce the overshoot caused by a
sudden load burst in the system (which is visible in the top-right diagram figure
3) using adaptive control and to scale out the dispersion simulation application
by using a cluster of multi-core systems. For this purpose, the mathematical
model presented in this work has to be extended so as to take into consideration
the communication component of the service time.

References

1. Burns, A., Wellings, A.: Real-Time Systems and Programming Languages, 4th edn.
Addison Wesley, Reading (2009)

2. Misra, J.: Distributed discrete-event simulation. ACM Computing Surveys 18, 39–
65 (1986)

3. Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative system
performance: computer system analysis using queueing network models. Prentice-
Hall, Inc., Englewood Cliffs (1984)

4. Legg, B.J., Raupach, M.R.: Markov-chain simulation of particle dispersion in inho-
mogeneous flows: The mean drift velocity induced by a gradient in eulerian velocity
variance. Boundary-Layer Meteorology 24, 3–13 (1982)

5. Åström, K.J., Hägglund, T.: Advanced PID Control. ISA (2006)
6. Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs,

S., Xiong, Y.: Taming heterogeneity – the ptolemy approach. Proceedings of the
IEEE 91, 127–144 (2003)

7. Woltman, G.: Prime95 v25.9 (2009), http://www.mersenne.org/freesoft/
8. Hollot, C., Misra, V., Towsley, D., Gong, W.: On designing improved controllers for

aqm routers supporting tcp flows. Technical report, University of Massachusetts,
Amherst, MA, USA (2000)

9. Kelly, F.: Mathematical modelling of the internet. In: Proceedings of the 4th Int.
Contr. on Industrial and Applied Mathematics (2000)

10. Abdelzaher, T., Lu, C.: Modeling and performance control of internet servers. In:
Proceedings of the 39th IEEE Conference on Decision and Control, pp. 2234–2239
(2000)

11. Sha, L., Liu, X., Lu, Y., Abdelzaher, T.: Queueing model based network server
performance control. In: Proceedings of the 23rd Real-Time Systems Symposium,
pp. 81–90 (2002)

12. Lu, C., Stankovic, J., Son, S., Tao, G.: Feedback control real-time scheduling:
Framework, modeling, and algorithms. Real-Time Systems 23, 85–126 (2002)

13. Benoit, A., Kosch, H., Rehn-Sonigo, V., Robert, Y.: Multi-criteria scheduling of
pipeline workflows (and application to the jpeg encoder). The International Journal
of High Performance Computing Applications 23, 171–187 (2009)

http://www.mersenne.org/freesoft/

Lattice-Boltzmann Simulation of the
Shallow-Water Equations with Fluid-Structure
Interaction on Multi- and Manycore Processors

Markus Geveler, Dirk Ribbrock, Dominik Göddeke, and Stefan Turek

Institut für Angewandte Mathematik, TU Dortmund, Germany
markus.geveler@math.tu-dortmund.de

Abstract. We present an efficient method for the simulation of laminar
fluid flows with free surfaces including their interaction with moving rigid
bodies, based on the two-dimensional shallow water equations and the
Lattice-Boltzmann method. Our implementation targets multiple funda-
mentally different architectures such as commodity multicore CPUs with
SSE, GPUs, the Cell BE and clusters. We show that our code scales well
on an MPI-based cluster; that an eightfold speedup can be achieved us-
ing modern GPUs in contrast to multithreaded CPU code and, finally,
that it is possible to solve fluid-structure interaction scenarios with high
resolution at interactive rates.

Keywords: High performance computing; Lattice-Boltzmann methods;
shallow water equations; fluid-structure interaction; CUDA; Cell BE;
multithreading.

1 Introduction and Motivation

In many practical situations, the behaviour of a fluid can be modelled by the
shallow water equations (SWE), e.g., for tidal flows, open water waves (such
as tsunamis), dam break flows and open channel flows (such as rivers). In such
cases, vertical acceleration of the fluid is negligible because the flow is dominated
by horizontal movement, with its wavelength being much larger than the corre-
sponding height. In the SWE, vertical velocity is replaced by a depth-averaged
quantity, which leads to a significant simplification of the general flow equations
(like the Navier-Stokes equations which are derived from general conservation
and continuity laws). In the inhomogeneous SWE, source terms are employed to
internalise external forces, e.g., wind shear stress and, more importantly, forces
resulting from the interaction between the fluid and the bed topography. Using
such source terms, the two-dimensional SWE can be used for the simulation of
a fluid given by its free surface, which significantly reduces the computational
cost and makes them a popular method for instance in (ocean-, environmental-
and hydraulic) engineering.

The Lattice-Boltzmann method (LBM) is a modern numerical technique that
starts with a fully discrete model rather than discretising a set of partial dif-
ferential equations and solving them directly. One of the key features of the

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, pp. 92–104, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Lattice-Boltzmann Simulation of the Shallow-Water Equations 93

LBM is that an implementation in parallel is comparably easy, which makes it a
promising method, especially in view of modern computational hardware, which
evolves towards massive fine-grained parallelism (see below).

Besides efficiency, a key feature of a method for advanced simulations in-
volving a fluid is the capability of letting it interact with its environment. This
interaction includes the internalisation of the ‘world geometry’ in terms of the
surface the fluid is streaming over and interaction with rigid bodies that move
through and are moved by the fluid (fluid-structure interaction, FSI). An algo-
rithm that provides both reasonable performance on modern commodity based
computer systems on the one hand and FSI functionality on the other hand is
very attractive in engineering and for example in computer graphics, ranging
from feature film to games and interactive environments.

During the past few years, computer architecture has reached a turning point.
Together, the memory, power and instruction-level parallelism (ILP) wall form a
‘brick wall’ [1], and performance is no longer increased by frequency scaling, but
by parallelisation and specialisation. Commodity CPUs have up to six cores, the
Cell processor is heterogeneous, and throughput-oriented fine-grained parallel
designs like GPUs are transitioning towards becoming viable general purpose
compute resources. On the software side, programming models for fine-grained
parallelism are subject to active discussion and are rapidly evolving. Program-
mers have to adapt to this inevitable trend, because compiler support is on the
far horizon if at all, in particular for computations with low arithmetic intensity
(ratio of arithmetic operations per memory transfer). Established parallelisa-
tion strategies for both shared and distributed memory architectures have to be
revisited, and different strategies are necessary for different architectures.

1.1 Related Work

Fan et al. [2] were the first to implement a Lattice-Boltzmann solver on a cluster
of GPUs. Advanced Lattice-Boltzmann solvers on CPUs and GPUs have been
implemented by Tölke and Krafczyk [3], Thürey [4] and Pohl [5]. Many publica-
tions are concerned with interactive and (visually) accurate simulations of fluid
flow [6–9].

1.2 Paper Contribution and Paper Overview

In Section 2.1 and Section 2.2 we briefly review the shallow water equations,
and their solution using the Lattice-Boltzmann method with support for internal
boundaries. In Section 2.3 we present modifications to the LBM to incorporate
more realistic simulation scenarios with nontrivial bed topologies, in particular
the dynamic flooding and drying of areas. Furthermore, this section describes
our approach to couple the simulation of fluids with moving solid objects that
influence the behaviour of the fluid.

Section 3 is dedicated to parallelisation and vectorisation techniques for the
FSI-LBM solver. We present efficient algorithms for all levels of parallelism en-
countered in modern computer architectures. In Section 4 we demonstrate the

94 M. Geveler et al.

applicability and performance of our approach for several prototypical bench-
mark problems. Performance is evaluated on a cluster of conventional CPUs
communicating via MPI, on multi-socket multi-core SMP systems, on a Cell
blade, and on modern fully programmable GPUs. We are convinced that such
algorithmic studies with respect to exploiting parallelism on various levels for a
given application are necessary at this point, in particular in view of the chal-
lenges outlined in this section. We conclude with a summary and a discussion in
Section 5.

2 Mathematical Background

2.1 Shallow Water Equations

Using the Einstein summation convention (subscripts i and j are spatial indices)
the two-dimensional shallow water equations in tensor form read

∂h

∂t
+

∂(huj)
∂xj

= 0 and
∂hui

∂t
+

∂(huiuj)
∂xj

+ g
∂

∂xi
(
h2

2
) = Sb

i , (1)

where h is the fluid depth, u = (u1, u2)T its velocity in x- and y-direction, and
g denotes the gravitational acceleration. In addition, we apply a source term
Sb

i which internalises forces acting on the fluid due to the slope of the bed and
material-dependent friction:

Sb
i = Sslope

i + Sfriction
i . (2)

The slope term is defined by the sum of the partial derivatives of the bed to-
pography, weighted by gravitational acceleration and fluid depth (b denotes the
bed elevation), and we define the friction term using the Manning equation (as
suggested by Zhou [10]).

Sslope
i = −gh

∂b

∂xi
, Sfriction

i = −gn2
bh

− 1
3 ui

√
ujuj, (3)

nb denotes a material-specific roughness coefficient. Using the inhomogeneous
SWE with source term (2) enables the simulation of a fluid (bounded by its
surface) with a two-dimensional method due to the coupling of fluid motion
with the bed topography.

2.2 Lattice-Boltzmann Method

In order to solve problem (1) with some initial conditions h(x, t = 0), u(x, t = 0)
and a constant bed topography, b(x), we apply the Lattice-Boltzmann method
(LBM) with a suitable equilibrium distribution to recover the SWE. In the LBM,
the fluid behaviour is determined by particle populations residing at the sites
of a regular grid (the lattice). The particles’ movement (streaming) is restricted
to fixed trajectories eα (lattice velocities) defined by a local neighbourhood on

Lattice-Boltzmann Simulation of the Shallow-Water Equations 95

the lattice. We use the D2Q9 lattice, which defines the lattice velocities in the
direction of the eight spatial neighbours as

eα =

⎧⎪⎨
⎪⎩

(0, 0) α = 0
e(cos (α−1)π

4 , sin (α−1)π
4) α = 1, 3, 5, 7√

2e(cos (α−1)π
4 , sin (α−1)π

4) α = 2, 4, 6, 8,

(4)

with e = Δx
Δt being the ratio of lattice spacing and timestep. Particle behaviour

is defined by the Lattice-Boltzmann equation and a corresponding collision op-
erator. Here, the Lattice-Bhatnagar-Gross-Krook (LBGK) collision operator [11]
is used, which is a linearisation of the collision-integral around its equilibrium
state with a single uniform relaxation time τ . Using this relaxation, the Lattice-
Boltzmann equation can be written as

fα(x + eαΔt, t + Δt) = fα(x, t) − 1
τ
(fα − feq

α) +
Δt

6e2 eαiS
b
i , α = 0, . . . , 8, (5)

where fα is the particle distribution corresponding to the lattice-velocity eα and
f eq

α a local equilibrium distribution, which defines the actual equations that are
solved. In order to recover the SWE, a suitable f eq

α has to be defined for every
lattice-velocity. Zhou [10] has shown that the equilibria can be written as

f eq
α =

⎧⎪⎨
⎪⎩

h(1 − 5gh
6e2 − 2

3e2 uiui) α = 0
h(gh

6e2 + eαiui

3e2 + eαjuiuj

2e4 − uiui

6e2) α = 1, 3, 5, 7
h(gh

24e2 + eαiui

12e2 + eαjuiuj

8e4 − uiui

24e2) α = 2, 4, 6, 8
(6)

and that the SWE can be recovered by applying Chapman-Enskog expansion
on the LBGK approximation (5). Finally, macroscopic mass (fluid depth) and
velocity can be obtained by

h(x, t) =
∑
α

fα(x, t) and ui(x, t) =
1

h(x, t)

∑
α

eαifα, (7)

respectively. We use the popular bounce-back rule as boundary conditions, where
particles are reflected using opposite outgoing directions and which therefore
implements no-slip boundary conditions. In the following, this basic method is
used as a starting point for our more sophisticated solver, capable of dealing with
complex flow scenarios, including the interaction with moving solid obstacles.

2.3 Dry-States and Fluid Structure Interaction

The LBM for the shallow water equations presented above can interact with
the bed surface and therefore is not restricted to simple scenarios (as it would
be if an equilibrium distribution function corresponding to the two-dimensional
Navier-Stokes equations had been used). However, it is restricted to subcritical1

1 Usually, the term critical flow is associated with a Froude number being smaller
than one. Throughout this paper, we use it for flows over a bed topography with
possibly very small (or even zero-valued) fluid depth.

96 M. Geveler et al.

flows, i. e., the fluid depth is significantly greater than zero. The first extension to
the method aims at allowing so-called dry-states, since the dynamic drying and
wetting of the bed topography is a feature desired by many applications. In our
approach, we define a fluid depth below a specified small threshold parameter as
dry and set the macroscopic velocity at dry sites to zero, to avoid the division
by zero in the extraction phase of the original algorithm (the evaluation of equa-
tion (7)). Secondly, local oscillations caused by critical non-zero fluid-depths are
confined with an adaptive limiter approach. Due to space constraints, we refer
to Geveler [12] for details.

In order to simulate rigid bodies moving within the fluid, the method de-
scribed so far is extended by three major algorithmic steps: In the first step, the
forces acting on the fluid due to a moving boundary have to be determined. We
use the so-called BFL-rule [13], which interpolates the momentum values for the
consistency with non-zero Dirichlet boundary conditions induced by a moving
boundary. The interpolation is achieved by taking values in opposite direction of
the solid movement similar to the bounce-back rule, see Figure 1. In the original

Fig. 1. Modified bounce-back scheme for moving boundaries

BFL formulation, the interpolation needs four coefficients depending on the dis-
tance q = |bβ−x|

Δx where eβ is the lattice-velocity approximating the direction of
the solid movement, bβ the corresponding point on the solid boundary and x a
location in the fluid (and on the lattice) in opposite direction. In our approach,
we use a piecewise linear approximation of the boundary, and set q = 1

2 , which
reduces three of the four coefficients to zero. We obtain a very simple formula2

for the missing momentum, that still respects the moving boundary. Let uB

be the macroscopic velocity of the solid, our modified boundary condition then
reads:

f temp
−β (x, t + Δt) = 6Δx w−β(uB(bβ) · e−β). (8)

The superscript temp indicates the distribution function after the collision step.
The wα are weights depending on the lattice, which can be set to 4

9 for α = 0 and
1
9 for uneven α and 1

36 in the even case for our D2Q9 lattice, see Caiazzo [14].
The second major step in performing FSI is the extrapolation of missing

macroscopic quantities. Moving solids imply that the lattice is in general not
2 It should be noted, that this simplification increases performance but reduces the

spatial convergence order to one.

Lattice-Boltzmann Simulation of the Shallow-Water Equations 97

invariant over time: Lattice sites that belong to a solid region at time t may
become fluid sites at time t + Δt. In this case, the missing quantities have to be
reconstructed. We use an indirect so-called equilibrium refill method proposed
for example by Caiazzo [14], which uses a three point-backward approximation
after calculating the opposite direction of the solid’s movement in order to use
one-dimensional extrapolation only. Again, the value q = 1

2 is used and we obtain

h̃(x, t + Δt) = 3h(x + e−βΔt, t + Δt) − 3h(x + 2(e−βΔt), t + Δt) (9)
+ h(x + 3(e−βΔt), t + Δt)

for the extrapolated fluid depth and

ũ(x, t + Δt) = 8/15ΔxuB(bβ , t + Δt) + 2/3u(x + e−βΔt, t + Δt) (10)
− 2/5u(x + 2(e−βΔt), t + Δt)

for the macroscopic velocities, respectively.
Finally, the force acting on the solid due to fluid movement is determined by

the Momentum-Exchange algorithm (MEA) [15], in order to be able to couple
the method with a solid mechanics (CSM) solver. The MEA uses special dis-
tribution functions to compute the moments resulting from incoming particles
and outgoing particles corresponding with a single lattice-velocity −β at a solid
(boundary) point b:

fMEA
−β (b, t) = eβi(f

temp
β (x, t) + f temp

−β (x, t + Δt)). (11)

The forces can be aggregated into the total force acting on b:

F (b, t) =
∑
α

fMEA
α (b, t). (12)

3 Implementation and Parallelisation

3.1 Modular FSI-LBM Solver

The combination of all functionality presented in Section 2 results in the solver
given by Algorithm 1. Note that the algorithm is designed in a modular way in
order to be able to activate/disable certain functionality, for instance to disable
the FSI components in scenarios without moving objects.

3.2 Efficient Parallelisation and Vectorisation

It can be seen in Algorithm 1 that parallelism is trivially abundant in the
modified LBM solver: All work performed for each lattice site is independent
of all other sites (in the basic algorithm). However, this general observation
does not lead in a straightforward manner to an efficient parallelisation, and
in particular vectorisation. Our implementation supports coarse-grained paral-
lelism for distributed memory systems, medium-grained parallelism on multi-
core shared memory machines, and fine-grained parallelism corresponding to

98 M. Geveler et al.

Algorithm 1. LBM solver for SWE with FSI
perform preprocessing → h(x, 0), u(x, 0)
for all timesteps

approximate extrapolation direction → −β
determine lattice sites to be initialised
for all lattice sites to be initialised

initialise fluid sites (equations (9) und (10))
for all fluid sites

for α = 0 to 8:
compute equilibrium distribution functions (equation (6))
perform LBGK collision
compute momentum exchange (equations (11) and (12))
for all fluid sites adjacent to moving boundary

apply modified BFL-rule (equation (8))
compute and apply source-terms (equations (2) and (3))
perform LBM streaming
for all boundary fluid sites not adjacent to moving solid

apply standard bounce-back scheme
extract physical quantities (equation (7))

the SIMD paradigm. The latter is important not only in the SSE units of con-
ventional CPUs, but also on graphics processors. For instance, the SIMD width
is 32 on current NVIDIA CUDA-capable GPUs. We apply the same techniques
for coarse- and medium-grained parallelism on CPUs; and for fine-grained par-
allelism within CPU cores and GPU multiprocessors, respectively. Only the
actual implementation of the algorithms varies for different architectures, see
Section 3.4.

The SIMD paradigm implies that branches should be avoided in the innermost
loops, because otherwise serialisation of the branches occurs. In the context of
our FSI-LMB solver, sites can be fluid, solid, dry or moving boundary, and
each type has to be treated differently. Furthermore, different computations are
performed in the collision steps for the nine lattice velocities of the D2Q9 model.
For an efficient vectorisation, we want to store all data contiguously in memory.
A special packing algorithm is used to determine the largest connected areas
in the given domain: For the basic solver without source terms and FSI, all
obstacle sites can be eliminated, as they contain no fluid throughout the entire
calculation. In a second step, all remaining sites are classified with respect to
their neighbours in all nine directions in a similar way as it has been proposed
by Krafczyk et al. [16]. For example, if the northern neighbours of two adjacent
lattice-sites are also adjacent and have the same boundary conditions, the solver
can process these sites in a vectorised manner without branches. However, for
the advanced algorithm employing FSI, this lattice-compression technique is not
suitable since the lattice is dynamically altered by the movement of the solids.
In this case, the packing algorithm is only run once in the preprocessing phase,
packing only stationary obstacles as in the original algorithm. Dynamic lattice
transformation in the actual simulation is achieved by tagging lattice sites either

Lattice-Boltzmann Simulation of the Shallow-Water Equations 99

as fluid, solid or fluid-boundary, etc. In all cases, the packed data is stored in one-
dimensional arrays that contain areas of lattice-sites with related neighbours and
the same boundary conditions. Despite vectorisation, the approach also ensures
good spatial and temporal locality of the computations.

To be able to distribute the solver calculation across various cores and to
calculate the solution in parallel, the domain (the packed data vectors) is parti-
tioned into different nearly independent parts. We pad each local array with a
few ghost entries, allowing it to synchronise with its predecessor and successor.
As we use a one-dimensional data layout, each part has only two direct neighbour
parts to interact with. After each time step every part sends its own results cor-
responding to subdomain boundaries to the ghost sites of its direct neighbours.
As soon as every part has finished these independent, non-blocking transfers,
the next time step calculation can begin. On shared memory architectures, the
synchronisation phase does not involve message passing, but can be realised via
locks on shared data, and thus the procedure is conceptually the same. Conse-
quently, the communication between the different parts is very efficient, because
it involves no serialisation.

3.3 Source Terms and FSI Implementation

The partial derivatives in the slope source term (3) are evaluated by means of the
semi-implicit centred scheme proposed by Zhou [10], where the slope is computed
at the midpoint between the lattice-site and one neighbouring lattice-site and
therefore includes the interpolation of the fluid depth:

Sslope
i = Sslope

i (x +
1
2
eαΔt, t) (13)

With this approach, we are able to achieve a horizontal steady-state even when
nonplanar bed topographies are involved, see Section 4.1.

Besides the source terms, two additional solver modules are needed to pro-
vide FSI functionality. To increase efficiency, Algorithm 1 can be reformulated,
resulting in a fused kernel that performs LBGK collision and LBM streaming
and all steps between these two. The corresponding module also automatically
corrects the streaming of particles that are influenced by a moving boundary,
i. e., a boundary that is not treated as a solid obstacle by our packed lattice
data structure. In addition, the BFL rule is applied and the MEA distribution
functions are computed. The second FSI module performs the initialisation of
fluid sites with all necessary extrapolations.

Keeping track of the lattice flags is achieved by boolean vectors directly cor-
responding to the compressed data vectors needed by the basic solver and cal-
culations concerning these flags, e.g., determining fluid sites that need to be
initialised, are performed on the fly.

3.4 Hardware-Oriented Implementation

The solver is built on top of the HONEI libraries [17] to be able to use the
different target hardware plattforms efficiently. HONEI provides a wide range of

100 M. Geveler et al.

software backends to access different hardware via a unified interface. Its generic
backend approach enables the programmer to develop code without having to
care about specific hardware details, and applications built on top of the libraries
are written only once and can directly benefit from hardware acceleration by sim-
ply designating them with a hardware tag. Furthermore, the backend-specific
infrastructure eases the development of application-specific functionality, be-
cause hardware specific optimisation has not to be done from scratch: The CPU
backend is built around SSE intrinsics. The multicore backend uses PThreads
to provide an abstract thread type and tools to execute and synchronise these
threads. The GPU backend is based on NVIDIA CUDA and provides simplified
access to any CUDA-enabled GPU. In addition, all memory transfers between
main memory and the GPU device memory are done automatically and executed
only if necessary. The Cell backend enables support for the IBM Cell BE and
grants a comfortable way to create custom SPE programs on top of the IBM SPE
libraries. Finally, the MPI backend encapsulates the common message passing
interface.

4 Results

4.1 Validation

Figure 2 demonstrates the applicability of our solver for various dam break
scenarios including the flooding of dry areas and self-propelled objects moving
through the resulting fluid surface. We abstain from giving detailed numerical
test results here, and refer to the theses of the first two authors [12, 18]. There,
it is shown that all solver configurations provide good accuracy in terms of mass
conservation, smoothness of quantity-fields and stability, as well as a compar-
ison in terms of accuracy with a solver using a finite element discretisation of
the Navier-Stokes equations. The treatment of dry-states by the experimental
limiter methods combined with the cutoff of particle populations at the fluid-
solid interface may lead to a small loss of mass. Nonetheless, the FSI-LMB solver
always computes a stable and visually accurate solution.

The first scenario we present (top row in the figure) is a partial dam break
simulation, a standard benchmark problem for shallow water solvers. For this
test case, the modules treating source terms, dry-states and FSI are deactivated
in our modular solver. The middle row in the figure depicts the same partial
dam break simulation, but with supercritical initial fluid depth (dry-states).
The results show that such configurations can be stabilised by our solver with
no significant loss of mass. The third scenario (bottom row) contains two sta-
tionary obstacles and one moving solid coupled with a full cuboidal dam break
simulation. Furthermore, this configuration includes the nontrivial bed topogra-
phy given by fγ(x, y) = γ(x2 + y2) and is therefore, even though no dry-states
are present, a test case for the full functionality of our solver, because all solver
modules including FSI and the treatment of source terms are activated. In all
simulations with an uneven bed geometry present, the steady-state solution al-
ways cancels out the non-vanishing forces and converges to a horizontal plane.

Lattice-Boltzmann Simulation of the Shallow-Water Equations 101

(a) after preprocessing (b) after 20 timesteps (c) after 60 timesteps

(d) after 10 timesteps (e) after 40 timesteps (f) after 50 timesteps

(g) after preprocessing (h) after 20 timesteps (i) after 80 timesteps

Fig. 2. Partial dam break simulations. Top: without source terms and FSI (the lower
basin is filled with water initially); middle: with dry-states (the lower basin is empty
initially), without FSI; bottom: full FSI simulation (bird’s eye view) with cuboidal dam
break.

4.2 Performance Benchmarks

We first evaluate the performance on different multi- and manycore architectures
of the basic solver without its source term and FSI modules. Figure 3 (left)
shows the mega lattice updates per second (MLUP/s) for increasing lattice size,
simulating a partial dam break scenario like the one depicted in Figure 2 (top
row). The CPU SSE/multicore backend is evaluated on a dual-socket dual-core
AMD Opteron 2214 system and an Intel Core i7 quadcore workstation. The Cell
backend is tested with an IBM QS22 blade with two Cell BE processors. The
GPU-based solver is executed on a NVIDIA GeForce 8800 GTX and a GeForce
GTX 285. The QS22 blade executes twice as fast as the Opteron system, but
is outperformed by a factor of two by the Core i7 system. Even the older GTX
8800 outperforms all CPU systems but is restricted to small lattice sizes due to
its comparatively small amount of device memory. Finally, the GTX 285 reaches
eight times the performance of the fastest CPU system. These speedup factors are

102 M. Geveler et al.

 0

 50

 100

 150

 200

 250

 300

2502 5002 10002 15002 20002 24002 28002

M
LU

P
/s

Number of lattice sites

GTX 285
8800 GTX

Core i7, 4 threads
QS22 Blade

Opteron, 3 threads

(a) Performance on different architectures

 0

 5

 10

 15

 20

 25

 30

 35

 40

2502 5002 10002 15002 20002 24002 28002

M
LU

P
/s

Number of lattice sites

1 process, 1 node
2 processes, 2 nodes
3 processes, 3 nodes
4 processes, 4 nodes
8 processes, 4 nodes

(b) Strong scalability with MPI

Fig. 3. Partial dam break benchmark on different architectures

 0

 0.02

 0.04

 0.06

 0.08

 0.1

2502 5002 10002 15002 20002 24002 28002

to
ta

l t
im

e
of

 e
xe

cu
tio

n
pe

r
tim

es
te

p

number of lattice sites

full functionality
source terms without FSI

basic solver

Fig. 4. Time per timestep (in seconds) for the three scenarios with corresponding
solver configurations (basic solver, with source terms, full functionality with FSI) on
the GeForce GTX 285

proportional to the bandwidth to off-chip memory of the various architectures,
ranging from 6.4GB/s per socket (Opteron), 25GB/s (Cell) and 33GB/s (i7)
to 87GB/s and 160GB/s for the two GPUs. Detailed measurements reveal that
only the kernel responsible for computing the equilibrium distribution functions
is compute-bound, all other operations are limited in performance by the memory
bandwidth [18]. Figure 3 (right) shows almost perfect strong scaling of the MPI
backend on a small cluster of Opteron 2214 nodes.

Our last experiment compares the performance of increasingly complex solver
configurations on the GeForce GTX 285 by simulating the three test cases
described above. We emphasise that the speedup of the GPU over other

Lattice-Boltzmann Simulation of the Shallow-Water Equations 103

architectures is in line with the measurements for the basic LBM solver, even
with full FSI functionality. The timing measurements in Figure 4 demonstrate
that all solver configurations can cope with high resolutions in reasonable time.
For example, even the full algorithm can compute a single timestep on a lattice
with approximately 1.7 million lattice-sites in less than 0.04 seconds, correspond-
ing to 30 timesteps per second. The more advanced solvers do not benefit from
the static lattice compaction (cf. Section 3.2) to the same extent as the basic
solver, because the domain changes in the course of the simulation. Besides the
additional computational effort, the loss in performance compared to the ba-
sic solver is therefore certainly due to the increase in conditional branches in
the code.

5 Conclusions and Future Work

The combination of the shallow water equations and a suitable Lattice-Boltzmann
approach with methods to stabilise dry-states as well as for fluid-structure interac-
tion has been used for a novel approach to simulate ‘real-world’ free surface fluids.
With the presented algorithm, the problem of lacking computational resources for
the direct solution of flow equations can be overcome if quantitative accuracy is
less important than, for example, visual appearance as it is the common case in
computer graphics or entertainment.

In addition to this numerical modeling, we implemented our method on a
wide range of parallel architectures, addressing coarse, medium and fine-grained
parallelism. In future work, we will explore heterogeneous systems, e.g., the
simultaneous use of the CPU cores and GPUs in cluster nodes, to maximise the
computational efficiency.

Acknowledgements

We would like to thank Danny van Dyk, Sven Mallach and all contributors to
HONEI. This work has been supported by Deutsche Forschungsgemeinschaft
(DFG) under the grant TU 102/22-2, and by BMBF (call: HPC Software für
skalierbare Parallelrechner) in the SKALB project (01IH08003D / SKALB).
Thanks to NVIDIA for generous hardware donations, and to IBM Germany
for access to QS22 blades.

References

1. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: A view from Berkeley. Technical Re-
port UCB/EECS-2006-183, EECS Department, University of California, Berkeley
(2006)

2. Fan, Z., Qiu, F., Kaufman, A., Yoakum-Stover, S.: GPU cluster for high perfor-
mance computing. In: SC 2004: Proceedings of the 2004 ACM/IEEE Conference
on Supercomputing, p. 47 (2004)

104 M. Geveler et al.

3. Tölke, J., Krafczyk, M.: TeraFLOP computing on a desktop PC with GPUs for
3D CFD. International Journal of Computational Fluid Dynamics 22(7), 443–456
(2008)

4. Thürey, N., Iglberger, K., Rüde, U.: Free Surface Flows with Moving and Deforming
Objects for LBM. In: Proceedings of Vision, Modeling and Visualization 2006, pp.
193–200 (2006)

5. Pohl, T.: High Performance Simulation of Free Surface Flows Using the Lattice
Boltzmann Method. PhD thesis, Universität Erlangen-Nürnberg (2008)

6. Molemaker, M.J., Cohen, J.M., Patel, S., Noh, J.: Low viscosity flow simulations
for animations. In: Gross, M., James, D. (eds.) Eurographics / ACM SIGGRAPH
Symposium on Computer Animation (2008)

7. van der Laan, W.J., Green, S., Sainz, M.: Screen space fluid rendering with cur-
vature flow. In: I3D 2009: Proceedings of the 2009 Symposium on Interactive 3D
Graphics and Games, pp. 91–98. ACM, New York (2009)

8. Baboud, L., Décoret, X.: Realistic water volumes in real-time (2006)
9. Krüger, J.: A GPU Framework for Interactive Simulation and Rendering of Fluid

Effects. PhD thesis, Technische Universität München (2006)
10. Zhou, J.G.: Lattice Boltzmann methods for shallow water flows. Springer, Heidel-

berg (2004)
11. Higuera, F.J., Jimenez, J.: Boltzmann approach to lattice gas simulations. EPL

(Europhysics Letters) 9(7), 663–668 (1989)
12. Geveler, M.: Echtzeitfähige Interaktion von Festkörpern mit 2D Lattice–Boltzmann

Flachwasserströmungen in 3D Virtual–Reality Anwendungen. Diploma thesis,
Technische Universität Dortmund (2009)

13. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-
lattice fluid with boundaries. Physics of Fluids 13(11), 3452–3459 (2001)

14. Caiazzo, A.: Asymptotic Analysis of lattice Boltzmann method for Fluid-Structure
interaction problems. PhD thesis, Technische Universität Kaiserslautern, Scuola
Normale Superiore Pisa (2007)

15. Caiazzo, A., Junk, M.: Boundary forces in lattice Boltzmann: Analysis of momen-
tum exchange algorithm. Computaters & Mathematics with Applications 55(7),
1415–1423 (2008)

16. Krafczyk, M., Lehmann, P., Philippova, O., Hänel, D., Lantermann, U.: Lattice
Boltzmann Simulations of complex Multi-Phase Flows. Springer, Heidelberg (2000)

17. van Dyk, D., Geveler, M., Mallach, S., Ribbrock, D., Göddeke, D., Gutwenger,
C.: HONEI: A collection of libraries for numerical computations targeting multiple
processor architectures. Computer Physics Communications 180(12), 2534–2543
(2009)

18. Ribbrock, D.: Entwurf einer Softwarebibliothek zur Entwicklung portabler, hard-
wareorientierter HPC Anwendungen am Beispiel von Strömungssimulationen mit
der Lattice Boltzmann Methode. Diploma thesis, Technische Universität Dortmund
(2009)

FPGA vs. Multi-core CPUs vs. GPUs:
Hands-On Experience with a Sorting Application

Cristian Grozea1,�, Zorana Bankovic2, and Pavel Laskov3

1 Fraunhofer Institute FIRST,
Kekulestrasse 7, 12489 Berlin, Germany
cristian.grozea@first.fraunhofer.de

2 ETSI Telecomunicación, Technical University of Madrid,
Av. Complutense 30, 28040 Madrid, Spain

zorana@die.upm.es
3 Wilhelm Schickard Institute for Computer Science
University of Tuebingen, Sand 1, 72076 Tuebingen

pavel.laskov@uni-tuebingen.de

Abstract. Currently there are several interesting alternatives for low-
cost high-performance computing. We report here our experiences with
an N-gram extraction and sorting problem, originated in the design
of a real-time network intrusion detection system. We have considered
FPGAs, multi-core CPUs in symmetric multi-CPU machines and GPUs
and have created implementations for each of these platforms. After
carefully comparing the advantages and disadvantages of each we have
decided to go forward with the implementation written for multi-core
CPUs. Arguments for and against each platform are presented – corre-
sponding to our hands-on experience – that we intend to be useful in
helping with the selection of the hardware acceleration solutions for new
projects.

Keywords: parallel sort, FPGA, GPU, CUDA, multi-core, OpenMP,
VHDL.

1 Introduction

Low-cost high-performance computing is a recent development that brings com-
puting power equivalent to former supercomputers to ordinary desktops used
by programmers and researchers. Harnessing this power, however, is non-trivial,
even with a growing availability of tools for facilitating the transition from tra-
ditional architectures. Successful use of possibilities offered by modern parallel
architectures is still largely application-dependent and more often than not ne-
cessitates rethinking of programming paradigms and re-design of software.

In this contribution, we describe the experience of a practical transition to
multi-core architecture in a specific application that requires high performance

� Corresponding author.

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, pp. 105–117, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

106 C. Grozea, Z. Bankovic, and P. Laskov

and low latency - real-time network intrusion detection. The goal of a network
intrusion detection system (IDS) is to detect malicious activity, e.g. buffer over-
flow attacks or web application exploits, in incoming traffic. Both performance
and latency are of crucial importance for this application if decisions must be
made in real time whether or not to allow packets to be forwarded to their
destination.

An anomaly-based network IDS ReMIND [3] developed in our laboratory is
designed for detection of novel, previously unseen attacks. Unlike traditional.
signature-based IDS which look for specific exploit patterns in packet content,
our IDS detects packets with highly suspicious content. The crucial component of
our detection algorithms is finding of matching subsequences in packet content,
a problem that requires efficient algorithms for sorting such subsequences.

The goal of the project described in this contribution was to accelerate existing
sequence comparison algorithms (see e.g. [26,18] for details) to work at a typical
speed of an Ethernet link of 1 Gbit/s by using parallel architectures.

There exist at least four alternatives in this field: FPGA devices and various
boards using them (ranging from prototyping boards to FPGA based accelera-
tors, sometimes general purpose, sometimes specialized) [29]; multi-core CPUs,
with 2, 3, 4 cores or more [10]; many-core GPUs, with 64,128, 240 or even more
cores [25]; the Cell processor [13,32]. The former three solutions were considered
and implemented in the course of the current study.

Let us now describe the specific setting of the problem for which an acceler-
ation was sought. The ReMIND system receives packets from a network inter-
face and, after some preprocessing, transforms them into byte strings containing
application-layer payload. For a decision to be made, a set of N -grams (sub-
strings of length N) must be extracted from each string (the values of N that
work best are in typically in the range of 4 to 8), and compared to the set of N -
grams in the prototype; the latter set has been previously extracted from payload
of normal packets. The comparison essentially amounts to computing the inter-
section of two sets of N -grams. An efficient linear-time solution to this problem
involves lexicographic sorting of all N -grams in the incoming string (linear-time,
low constants). The sorting component takes a string and is supposed to return
some representation of sorted N -grams in this string, for examples an index set
containing the positions of the respective N -grams, in a sorted order, in the orig-
inal string1. The incoming strings can be up to 1480 bytes long (maximal length
of an Ethernet frame), and to achieve 1 Gbit/s speed, approximately 84,000 full-
length packets must be handled per second. Processing of single packets can be
assumed independent from each other since, in the simplest case, decisions are
made independently on each packet.

We will now proceed with the description of the particular methods and
implementations followed by the presentation and discussion of experimental
results.

1 Returning a sorted set of N-grams itself blows up the size of the data by a factor of
up to N .

FPGA vs. Multi-core CPUs vs. GPUs 107

2 Methods

The following hardware platforms were available for our implementation:

– FPGA: Xilinx evaluation board ML507 equipped with a Virtex-5 family
XC5VFX70T FPGA, maximum clock frequency 0.55 GHz, 70 thousand logic
cells.

– CPUs: Dell Precision T7400 with two Xeon 5472 quad-core, clock speed
3GHz and 16GB of RAM.

– GPUs: Two Nvidia Quadro FX 5600, with 1.5 GB of RAM and 128 v1.0
CUDA shaders each - the clock of the shaders: 1.35 GHz.

The details of a hardware design and/or algorithms for each platform are pre-
sented below.

2.1 FPGA

The ML507 board used offers a PCIe 1x connection to the hosting PC, and
the setup was to capture data from network on the PC, send data over the
PCIe to the FPGA board, sort it there, and send the results back to the PC.
All communication with the board had to be implemented as DMA transfers,
for efficiency reasons and in order to overlap communication and processing
both on the PC side and on the FPGA side. This requirement proved to be
very difficult to fullfil as the support of Xilinx did not include the sources of a
complete application + driver solution, just a performance demo with some of
the components only in binary form [4].

Let L be the length of the list to sort. It is interesting to note that the FPGA
could do all comparisons between the elements of an L-long sequence in O(1)
time complexity and O(L2) space complexity, by specifying a comparator for
every pair of elements in the list.

When one targets efficiency on a serial or multi-core CPU implementation,
a good order and good constant algorithm is chosen and this usually solves
the problem. When working with FPGAs, the things are more complicated. A
smart but more complex algorithm can solve the problem in less steps, but the
maximum clock speed usable depends on the complexity of the design/algorithm
implemented, so the net effect of using a smarter algorithm can be of slowing
down the implementation. This is exactly what has happened to us.

The complex sort-merge sorting. This algorithm was specialized in sorting
L = 1024 elements lists. In a first stage, the incoming data is grouped into groups
of 8 items, sorted in O(1) with the extensive comparators network described
above. Every 4 such groups are merged with a 4-way merging network producing
a 32-elements group. The 32 groups of 32 elements each are repeatedly merged
with a tree of parallel 4-way merging nodes, which outputs on its root in sorted
sequence the 1024 items. Despite the clever design and the tight and professional
VHDL coding of this algorithm, it went past the resources of the FPGA chip

108 C. Grozea, Z. Bankovic, and P. Laskov

we used. After a synthesis process (the rough equivalent for FPGA of compiling
to object files) that took two days (not unheard of in the FPGA world), the
numbers reported for resources usage were much beyond the available resources:
235% LUTs, 132% block RAMs, max frequency 60MHz. While the maximum
frequency was above the 50MHz needed with this design, everything else was
beyond physical limits. Only a bigger FPGA chip could have accommodated
the design – and indeed it did fit (if only barely) on the biggest FPGA of the
Virtex-5 family, the FX200T. But, as we didn’t have this much more expensive
one, we had to look for possible alternatives.

The bitonic sort. Batcher’s bitonic sort algorithm is an early algorithm [5]
that has implementations on most types of parallel hardware. Its time complexity
is O((log2L)2), its space complexity is O(L(log2L)2), as it consists in (log2L)2

stages of L/2 comparators. While the time complexity was maybe acceptable
for our problem (although for L as low as 1480, (log2L)2 is only about 10 times
smaller than L), the space complexity was not acceptable. We have used the
perfect shuffling technique of Stone [30] to collapse all these stages to a single one
through which the data is looped (log2L)2 times. But, the shuffling circuits where
still using too much of the FPGA area (more than available), so we considered
one more option.

The insertion sort. The parallel insertion sort algorithm is very simple: the
sequence to sort is given element by element. At every step all stored elements
equal to or bigger than the current input element shift replacing their right
neighbor, leaving thus an empty place for the insertion of the current input
element.

We implement the needed comparison and conditional shifting by creating a
“smart cell” that can store one element and does the right thing when presented
with an input. The whole parallel insertion sort is implemented as a chain of
such smart cells, as long as the maximum length of the list to sort, and with
appropriate connections.

The circuit for a “smart cell” able to process elements of three bits in size is
given in Figure 1(a). The circuit for a full chain of 4 smart cells that can sort
lists of length 4 of 3-bit elements is shown in Figure 1(b).

Please note that the time complexity of one step is O(1), i.e. constant, but
the amount of resources needed (comparators, multiplexers, gates) is directly
proportional to the length of the list to sort. Overall, the time complexity is
O(L), the space complexity is O(L) as well.

The VHDL code for this implementation is given in Appendix 1. It uses the
construction “generate” to create multiple instances of “smart cells” and to
connect appropriately their pins.

2.2 Multi-core CPUs

We have used OpenMP, which makes parallelizing serial programs in C/C++ and
Fortran fairly easy [9]. A fragment from the implementation of an early bench-
mark is given in Appendix 2. As one can see in the code we provide, we don’t try

FPGA vs. Multi-core CPUs vs. GPUs 109

(a) smart cell

(b) chain of smart cells

Fig. 1. (a) The circuits of a smart cell used in the parallel insertion sort (here for 3
bit elements); (b) Parallel insertion sort as a structure composed of many smart cells
(here for processing 4 elements of 3 bits each)

110 C. Grozea, Z. Bankovic, and P. Laskov

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

CPU Cores (SMP)

G
bi

t/s
 p

ro
ce

ss
ed

Requests
Both directions

Fig. 2. The performance of the multicore solution: the highest volume of network traffic
that can be processed as a function of the number of cores used

to split the individual sorting tasks, but to dispatch them to multiple threads (in
groups of 16) that get dispatched on the cores and on the CPUs. While for forking
threads and splitting the workload of a for loop to those threads OpenMP is very
easy to use, for the anomaly detection system we needed a producer-consumer
setup, where the network data acquisition would acquire data and send it in
some load-balancing fashion to the worker threads. Producer-consumer setups
are notably difficult to implement in OpenMP, because of limited locking and
signaling mechanisms, mainly because it lacks condition variables. Therefore,
while we kept using OpenMP, we have added message queue from the open-
source library boost to implement the queues needed for the producer-consumer
paradigm.

2.3 GPUs

Our Nvidia GPUs are programmable with CUDA [24,20], which combines
C/C++ on the host side with C-like kernels that run in parallel on the cores
of the GPU. A C++ STL like framework on top of CUDA is the open-source
library Thrust [1]. We have used this library to implement our test programs.
As a result these are remarkably concise, as can be see in Appendix 3.

3 Results and Analysis

The performances obtained have been: FPGA – processing 1.875 Gbit/s, com-
munication 1 Gbit/s; multi-core CPU – 2 Gbit/s overall; GPU – 8 Mbit/s overall,
including processing and communication.

The FPGA communication implemented achieved 2 Gbit/s with Bus-Master
DMA transfers (approx. 1 Gbit/s in each direction). The parallel insertion sort

FPGA vs. Multi-core CPUs vs. GPUs 111

was the only one fitting into our FPGA chip, when restricted to sorting of 256
64bits elements (8-byte-grams) or sorting 512 48bits elements (6-byte-grams).
It did so for a maximum clock speed of 240MHz. This was more than the
128MBytes/s needed to process a full-speed 1 Gbit line. Still, retrieving data
from FPGA board requires more than 8 bits of output per input byte, when
there are more than 256 elements to sort. This would then require more than
2 Gbit/s communication speed between the CPU and the FPGA board. The
communication constraints and the difficulty to adapt sorting to FPGA led us
to investigate the alternatives.

The multi-core CPU implementation achieved from the first tests 2 Gbit/s.
The results of the complete network intrusion detection system prototype, where
time is spent also on tasks other than the N -gram extraction and sorting are
shown in Figure 2, where the numbers are estimated offline by running on previ-
ously captured network traffic. Added to the graph is a curve “both directions”
which models the worst-case traffic, completely unbalanced such that the re-
quests are much longer than the replies. Please note that in general (for example
for the HTTP protocol), the requests are short and the replies longer. We have
also tested the prototype on a quad-core QuickPath Interconnect-enabled Intel
E5540@2.53GHZ machine; the QPI architecture did not lead to a supplementary
acceleration, probably because our solution doesn’t require much synchroniza-
tion or data passing from one core to another.

The GPU solution had the latency so high that only about 1% of the desired
speed has been obtained (1000 sorts/second of 1024 element long lists). Our
profiling linked most of this latency to the memory transfers between the memory
space of the CPU and that of the GPU. While the radix sorting in Thrust has
been reportedly outperformed [19], speeding it up will not have a big impact on
the total time. For this reason we decided that it makes little sense to investigate
further the GPU alternative as a possible improvement over the multi-core CPU
version. The GPUs are a better fit for sorting large vectors.

4 Related Work

Previous work on sorting on FPGA include generating automatically optimal
sorting networks by using quickly reconfigurable FPGAs as evaluator for a ge-
netic programming system [17], with a follow-up where the genetic search is
also done on the FPGA [16]. Human designed sorting networks were published
e.g. in [12] (where the authors write that “The results show that, for sorting,
FPGA technology may not be the best processor choice”) and [21]. A recent
paper where the tradeoffs involved in implementing sorting methods on FPGA
are carefully considered is [7].

The state-of-the-art GPU sorting algorithms in CUDA (radix sort, merge sort)
are explained in [27], and are included in the open-source library CUDPP[28]
starting with version 1.1.

112 C. Grozea, Z. Bankovic, and P. Laskov

Most GPU application papers compare to a CPU implementation, although
most often with a single core one - reporting in this way the best speed-up
values. In [8] the GPU, FPGA and multi-core CPU implementations for solving
three problems (Gaussian Elimination, DES - Data Encryption Standard and
Needleman-Wunsch) are compared. Unfortunately, although the GPU used was
the same family with the one we used, and the same holds true for the CPU, the
authors used a much older FPGA (Virtex II Pro, maximum frequency 100MHz),
which could have biased the results. Another paper comparing all three platforms
we tested (and supplementarily a massively parallel processor array, Ambric
AM2000) is [31] where various methods for generating random numbers with
uniform, Gaussian and exponential distributions have been implemented and
benchmarked. Another interesting factor is introduced in the comparison, the
power efficiency (performance divided by power consumption) and here FPGAs
were the leaders with a big margin. A very extensive overview of the state of the
art in heterogeneous computing (including GPU, Cell BEA, FPGA, and SIMD-
enabled multi-core CPU) is given in [6]. The obvious conclusion one gets after
surveying the existing literature is that there is no clear winner for all problems.
Every platform has a specific advantage. What is most interesting, beyond the
price of the devices – which is fairly balanced for the devices we used – is how
much progress is one researcher expected to make when entering these low-cost
HPC technologies fields on the particular problem of interest, and this depends
most on how easy is to develop for these platforms.

5 Discussion and Conclusion

5.1 Comparing the Difficulty of Programming and Debugging

As far as the FPGA is concerned, it can be configured in the language VHDL
in two styles: “behavioral” (corresponding to the procedural style of CPU pro-
gramming) and “structural” (one abstraction layer lower). If in the beginning
the ”behavioral” style might look appealing, after hitting the area limitation
hard barrier one is supposed to grasp such definitions “FDSE is a single D-type
flip-flop with data (D), clock enable (CE), and synchronous set (S) inputs and
data output (Q)” [2] and work almost exclusively in a structural fashion, where
the allocation of the very limited resources is more under the control of the de-
signer and not of the compiler – so previous experience with digital electronics
helps. In other words, “programming” FPGAs is not really for regular computer
programmers, as the programming there is actually describing a structure, which
only sometimes can be done by describing its desired behavior. If the general
purpose logic cells are to be saved, then explicit modules on the FPGA such as
DSP units and memory blocks have to be referenced and used and this shifts
the competencies needed even more towards the field of digital electronics and
further away from the one of computer science.

Some of the FPGA tools are overly slow. We mentioned that it took us two
days to synthesize the most complex sorting algorithm we created for FPGA
– by using Xilinx ISE 10. Switching to Synplify reduced the synthesis time to

FPGA vs. Multi-core CPUs vs. GPUs 113

50 minutes. Still a lot by software engineering practice (software compilation
rarely takes that long). Even worse, while alternative tools can cover the chip-
independent stages in the FPGA workflow, the chip-dependent stages like map,
place and route can be done usually only with the vendor’s software tools – and
these stages are slower than the synthesis.

We think FPGA is still an interesting platform, for being energy efficient and
to some extent scalable: when one needs more FPGA resources, one can simply
use more FPGA chips connected to each others. The FPGA chips have hundreds
of I/O pins that could facilitate the communication. It is unlikely that the speed
issues with the FPGA workflow tools can be solved completely, as the problems
they try to solve are NP-complete (resource allocation, place & route)[33]. This
issue gets worse with the size of the FPGA. While our FPGA drifts towards
entry-level ones, bigger ones could have been worse for this reason.

As far as the multi-core CPUs are concerned, programming them can be done
with standard compilers – newest versions of the main C/C++ compilers like
GNU gcc and Intel’s one have all OpenMP support. Adding parallelism to loops
is fairly easy in OpenMP. The possibility to implementing a correct and complete
producer-consumer setup is unfortunately considered outside of the scope of the
OpenMP framework. Debugging and tuning OpenMP multi-threaded code is not
as easy as for the serial code, of course, but it’s not overly difficult, especially with
the aid of tracing tools like VampirTrace [22] used by us. The entry level barrier
is not too high, but having parallel programming knowledge helps – especially
understanding race conditions and the synchronization mechanisms.

One of the main problems with programming the GPUs is the instability of
the frameworks and the fact that most are vendor-specific. OpenCL [23] may
change this in time, but for now we have used CUDA, which is the natural
choice for Nvidia graphic chips. CUDA itself has now reached its third major
version in two years, following the advances of the hardware. While CUDA is
suitable for developing code, debugging code is much more complicated. It used
to be the case that on Microsoft Windows XP machines memory errors that
on CPU programs are caught by supervisors led to lock-ups and the need to
restart the whole machine. The situation has been better in Linux, where only
the X Window had to be restarted sometimes, in order to force the reinitial-
ization of the graphic card. There is an emulated device mode which turns to
some extent debugging CUDA into debugging many CPU-side threads, but it
is much slower than the non-emulated mode. Apart from the difficulty to de-
bug code, another criticism to the CUDA framework was that it is (still) too
low-level, making the implementation and the tuning of complex systems overly
difficult. Systems like Thrust, PyCUDA [15] and BSGP [14] aim to fix this. The
need to transfer data between the CPU’s memory and GPU’s memory is also
a major disadvantage of the GPU when used as a computing coprocessor, as
these transfers introduce undesirable latencies. In CUDA, for a limited set of
devices, which share the memory with the CPU (and are thus not top perform-
ing ones), page-locked host memory can be mapped to the GPU memory space,
reducing these latencies. On the other hand, the dedicated GPU memory is

114 C. Grozea, Z. Bankovic, and P. Laskov

higher speed (at least bandwidth-wise), so this is just a trade-off with outcomes
to be tested case by case. While knowing C/C++ is enough to start CUDA
programming, getting good performance requires leveraging the hardware prim-
itives/structures meant for graphics (e.g. texture memory) - the compilers do
not do this for the user, so having experience with graphics programming does
still help.

5.2 Conclusion

To conclude, FPGA is the most flexible but least accessible, GPU comes next,
very powerful but less flexible, difficult to debug and requiring data transfers
which increase the latency, then comes the CPU which might sometimes be too
slow despite multiple cores and multiple CPUs, but is the easiest to approach.
In our case the multi-core implementation offered us the best combination of
compatibility, high bandwidth and low latency, therefore we have selected this
solution for integration into the ReMIND prototype.

References

1. Thrust, http://code.google.com/thrust
2. Xilinx FDSE,

http://www.xilinx.com/itp/xilinx7/books/data/docs/s3esc/

s3esc0081 72.html

3. Project ReMIND (2007), http://www.remind-ids.org
4. Xilinx application note XAPP1052, v1.1 (2008),

http://www.xilinx.com/support/documentation/application notes/

xapp1052.pdf

5. Batcher, K.E.: Sorting networks and their applications. In: Proceedings of the
Spring Joint Computer Conference, April 30-May 2, pp. 307–314. ACM, New York
(1968)

6. Brodtkorb, A.R., Dyken, C., Hagen, T.R., Hjelmervik, J., Storaasli, O.O.: State-
of-the-Art In Heterogeneous Computing. Journal of Scientific Programming (draft,
accepted for publication)

7. Chamberlain, R.D., Ganesan, N.: Sorting on architecturally diverse computer sys-
tems. In: Proceedings of the Third International Workshop on High-Performance
Reconfigurable Computing Technology and Applications, pp. 39–46. ACM, New
York (2009)

8. Che, S., Li, J., Sheaffer, J.W., Skadron, K., Lach, J.: Accelerating compute-
intensive applications with gpus and fpgas. In: Symposium on Application Specific
Processors (2008)

9. Dagum, L., Menon, R.: Open MP: An Industry-Standard API for Shared-Memory
Programming. IEEE Computational Science and Engineering 5(1), 46–55 (1998)

10. Dongarra, J., Gannon, D., Fox, G., Kennedy, K.: The impact of multicore on
computational science software. CTWatch Quarterly (February 2007)

11. Grozea, C., Gehl, C., Popescu, M.: ENCOPLOT: Pairwise Sequence Matching in
Linear Time Applied to Plagiarism Detection. In: 3rd Pan Workshop. Uncovering
Plagiarism, Authorship And Social Software Misuse, p. 10

http://code.google.com/thrust
http://www.xilinx.com/itp/xilinx7/books/data/docs/s3esc/s3esc0081_72.html
http://www.xilinx.com/itp/xilinx7/books/data/docs/s3esc/s3esc0081_72.html
http://www.remind-ids.org
http://www.xilinx.com/support/documentation/application_notes/xapp1052.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1052.pdf

FPGA vs. Multi-core CPUs vs. GPUs 115

12. Harkins, J., El-Ghazawi, T., El-Araby, E., Huang, M.: Performance of sorting al-
gorithms on the SRC 6 reconfigurable computer. In: Proceedings of the 2005 IEEE
International Conference on Field-Programmable Technology, pp. 295–296 (2005)

13. Hofstee, H.P.: Power efficient processor architecture and the Cell processor. In:
Proceedings of the 11th International Symposium on High-Performance Computer
Architecture, San Francisco, CA, pp. 258–262 (2005)

14. Hou, Q., Zhou, K., Guo, B.: BSGP: bulk-synchronous GPU programming. In: ACM
SIGGRAPH 2008 papers, p. 19. ACM, New York (2008)

15. Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., Fasih, A., Sarma, A.D.,
Nanongkai, D., Pandurangan, G., Tetali, P., et al.: PyCUDA: GPU Run-Time Code
Generation for High-Performance Computing. Arxiv preprint arXiv:0911.3456
(2009)

16. Korrenek, J., Sekanina, L.: Intrinsic evolution of sorting networks: A novel complete
hardware implementation for FPGAs. LNCS, pp. 46–55. Springer, Heidelberg

17. Koza, J.R., Bennett III, F.H., Hutchings, J.L., Bade, S.L., Keane, M.A., Andre,
D.: Evolving sorting networks using genetic programming and the rapidlyrecon-
figurable Xilinx 6216 field-programmable gate array. In: Conference Record of the
Thirty-First Asilomar Conference on Signals, Systems & Computers, vol. 1 (1997)

18. Krueger, T., Gehl, C., Rieck, K., Laskov, P.: An Architecture for Inline Anomaly
Detection. In: Proceedings of the 2008 European Conference on Computer Network
Defense, pp. 11–18. IEEE Computer Society, Los Alamitos (2008)

19. Leischner, N., Osipov, V., Sanders, P.: GPU sample sort. Arxiv preprint
arXiv:0909.5649 (2009)

20. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A unified
graphics and computing architecture. IEEE Micro, 39–55 (2008)

21. Martinez, J., Cumplido, R., Feregrino, C.: An FPGA-based parallel sorting ar-
chitecture for the Burrows Wheeler transform. In: ReConFig 2005. International
Conference on Reconfigurable Computing and FPGAs, p. 7 (2005)

22. Muller, M.S., Knupfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel,
W.E.: Developing Scalable Applications with Vampir, VampirServer and Vampir-
Trace. In: Proceedings of the Minisymposium on Scalability and Usability of HPC
Programming Tools at PARCO (2007) (to appear)

23. Munshi, A.: The OpenCL specification version 1.0. Khronos OpenCL Working
Group (2009)

24. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming
with CUDA (2008)

25. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU
computing. Proceedings-IEEE 96(5), 879 (2008)

26. Rieck, K., Laskov, P.: Language models for detection of unknown attacks in network
traffic. Journal in Computer Virology 2(4), 243–256 (2007)

27. Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for many-
core GPUs. In: Proceedings of the 2009 IEEE International Symposium on Paral-
lel&Distributed Processing, pp. 1–10. IEEE Computer Society, Los Alamitos (2009)

28. Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for GPU comput-
ing. In: Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium
on Graphics Hardware, p. 106. Eurographics Association (2007)

29. Smith, M.C., Vetter, J.S., Alam, S.R.: Scientific computing beyond CPUs: FPGA
implementations of common scientific kernels. In: Proceedings of the 8th Inter-
national Conference on Military and Aerospace Programmable Logic Devices,
MAPLD 2005, Citeseer (2005)

116 C. Grozea, Z. Bankovic, and P. Laskov

30. Stone, H.S.: Parallel processing with the perfect shuffle. IEEE Transactions on
Computers 100(20), 153–161 (1971)

31. Thomas, D.B., Howes, L., Luk, W.: A comparison of CPUs, GPUs, FPGAs, and
massively parallel processor arrays for random number generation. In: Proceed-
ing of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, pp. 63–72. ACM, New York (2009)

32. Williams, S., Shalf, J., Oliker, L., Kamil, S., Husbands, P., Yelick, K.: The potential
of the cell processor for scientific computing. In: Proceedings of the 3rd Conference
on Computing Frontiers, pp. 9–20. ACM, New York (2006)

33. Wu, Y.L., Chang, D.: On the NP-completeness of regular 2-D FPGA routing ar-
chitectures and a novel solution. In: Proceedings of the 1994 IEEE/ACM Inter-
national Conference on Computer-Aided Design, pp. 362–366. IEEE Computer
Society Press, Los Alamitos (1994)

Appendix 1: Parallel Insertion Sort in VHDL for FPGA

library IEEE;use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;
constant nrbitselem:integer:=3;
subtype elem is STD_LOGIC_VECTOR((nrbitselem-1) downto 0);
subtype elemp1 is STD_LOGIC_VECTOR(nrbitselem downto 0);
type vect is array(natural range<>) of elem;
type vectp1 is array(natural range<>) of elemp1;
entity insertsortsmartcell is

Port (datain : in elem;we: in std_logic;
leftelem: in elem;leftisbigger: in std_logic;
clk: in std_logic;reset:in std_logic;
imbigger:buffer std_logic;storage:inout elem);

end insertsortsmartcell;
architecture Behavioral of insertsortsmartcell is begin

imbigger<=’1’ when storage>datain else ’0’;
process(clk,reset)
begin if clk’event and clk=’1’ then
if reset=’1’ then storage<=(others=>’1’);
else if we=’1’ then if imbigger=’1’ then if leftisbigger=’0’ then

storage<=datain; -- insertion right here
else storage<=leftelem;

end if;end if;end if;end if;end if;
end process;end Behavioral;
entity insertsort is

generic(abw:integer:=2);
Port (xin:elem;storage : inout vect(2**abw-1 downto 0);

clk:std_logic;reset:std_logic;we:std_logic;xout:out elem);
end insertsort;
architecture Behavioral of insertsort is
signal isbigger: std_logic_vector(2**abw-1 downto 0);
begin

a:for i in 0 to 2**abw-1 generate
b:if i=0 generate
cell0:entity work.insertsortsmartcell port map(xin,we,
xin,’0’,clk,reset,isbigger(i),storage(i));

end generate;
c:if i>0 generate
cell:entity work.insertsortsmartcell port map(xin,we,
storage(i-1),isbigger(i-1),clk,reset,isbigger(i),storage(i));

end generate;end generate;
xout<=storage(2**abw-1);

end Behavioral;

FPGA vs. Multi-core CPUs vs. GPUs 117

Appendix 2: OpenMP Benchmark for Sorting

This is a code fragment from a benchmark that proves that it is possible to
extract the N -grams and sort those on the multi-core CPUs we used, at a speed
higher than 1 Gbit/s. The sorting is virtual in the sense that no data is moved
around, just indexes are reordered; full details including code not reproduced
here are given in [11]. The OpenMP influence on the code is minimal: a header
is included, the number of threads is specified, then through one or two pragmas
the tasks are split between threads.

#include "omp.h"
#define fr(x,y)for(int x=0;x<y;x++)
omp_set_num_threads(4);//how many threads openmp will use
//fork the threads
#pragma omp parallel private(counters,startpos,ix,ox,v)
{fr(rep,125000/16){
#pragma omp for schedule(static,1)

fr(rep2,16){
... //generate an array, then sort it with serial radix sort

}}}

Appendix 3: Benchmark of Sorting on GPU Using Thrust

//included: <thrust/device_vector.h>, <thrust/host_vector.h>, <thrust/functional.h>, <thrust/sort.h>
int main(void){const int N = 1024;int elements[N] = {1,3,2};

thrust::host_vector<int> A(elements,elements+N);thrust::device_vector<int> B(N);
int s=0;for(int rep=0;rep<1000;rep++){

thrust::copy(A.begin(), A.end(), B.begin());
thrust::sorting::radix_sort(B.begin(), B.end());
thrust::copy(B.begin(), B.end(), A.begin());
s=s+A[0]+1;}

std::cout<<s<<" ";
return 0;}

Considering GPGPU for HPC Centers:
Is It Worth the Effort?

Hans Hacker1, Carsten Trinitis1, Josef Weidendorfer1, and Matthias Brehm2

1 Department of Informatics, Technische Universität München, Germany
{hacker,trinitic,weidendo}@cs.tum.edu

2 Leibniz Rechenzentrum, Garching bei München, Germany
brehm@lrz.de

Abstract. In contrast to just a few years ago, the answer to the question
“What system should we buy next to best assist our users” has become
a lot more complicated for the operators of an HPC center today. In
addition to multicore architectures, powerful accelerator systems have
emerged, and the future looks heterogeneous. In this paper, we will con-
centrate on and apply the abovementioned question to a specific accel-
erator with its programming environment that has become increasingly
popular: systems using graphics processors from NVidia, programmed
with CUDA. Using three benchmarks encompassing main computational
needs of scientific codes, we compare performance results with those ob-
tained by systems with modern x861 multicore processors. Taking the ex-
perience from optimizing and running the codes into account, we discuss
whether the presented performance numbers really apply to computing
center users running codes in their everyday tasks.

1 Introduction

In recent years, the strategy for an HPC center to get best performance out of
their users’ codes has undergone significant changes. Ten to fifteen years ago, a
great variety of processor types and systems existed, e.g. MIPS, SPARC, Alpha,
or vector systems like Cray, NEC, Fujitsu, etc.. Today, the TOP500 list [1] (the
list of the 500 fastest supercomputers in the world) is dominated by x86 Intel or
AMD processor based systems with high speed interconnects like e.g. Infiniband
[2], and only a small niche remains for other architectures, such as IBM’s Power
architecture. Every few years, the next generation of a parallel system or compute
cluster was put into operation, consisting of faster general purpose processor
architectures. For many users, recompilation was only needed if the new system
brought a change in the processors’ Instruction Set Architecture (ISA).

Today, the number of options to choose from for a future system has increased
again. On one hand, this is driven by technical boundaries in processor design,
leading to multicore architectures with a wide variety of design options even
inside a chip. Currently available multicore processors are often not best suited
1 By x86 we also refere to the 64-bit extension of the x86 ISA.

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, pp. 118–130, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Considering GPGPU for HPC Centers 119

to characteristic requirements of scientific code, e.g. only raising computational
power but neglecting data transfer between components often results in reduced
scalability for parallel code. On the other hand, the computer gaming industry
has put a lot of effort into developing specially tuned graphics hardware devices,
which get more similar to standard processors with every new generation [3]. The
capability of graphics processing units (GPU) has reached a stage where they
seem general enough to be useful to areas other than graphics, establishing the
term GPGPU (General Purpose Graphics Processing Units) [4,5,6]. Companies
such as NVidia or ATI/AMD see the HPC community as potential customers.
Actually, the pure computational power achievable with tuned codes fitting a
GPU’s hardware capabilities is astonishing, even more so as this hardware is
quite cheap since it is build for the mass market. However, graphics hardware
traditionally is programmed in a way significantly different from regular software
programming. It uses interfaces tuned for graphics requirements such as OpenGL
and MS Direct3D. Due to this fact, GPU manufacturers introduced new pro-
prietary programming models and according SDKs (e.g. NVidia CUDA [7], ATI
Stream [8]).

While the available accelerator systems are attractive, a closer look should be
taken at the requirements of scientific/HPC codes to judge usefulness. Ranging
from requirements for IEEE floating point compliance and high bandwidth for
data transfer, to stability and reliability, there is still room for improvement.
Hence, adaption of accelerator hardware as part of the computer equipment of
an HPC computing center has multiple aspects. From a purely operational point
of view, these are:

– Improvement regarding performance/cost ratio in contrast to standard hard-
ware: The cost that has to be taken into account must include power con-
sumption and cooling needs both for GPU accelerators and standard sys-
tems, respectively.

– Expected exploitation of accelerator systems: What is the best way to fully
utilize resulting heterogeneous systems? How many users are expected to
actually run code which can utilize the accelerator parts?

– Stability/reliability of hardware and software, e.g. device driver, for use in
multiuser environments.

To be able to answer the second aspect above regarding user acceptance of
accelerator systems, it should be kept in mind that, besides performance, their
main concerns are:

– Ease of use: What amount of studying effort is required to make optimal use
of hardware? Is there a need for rewriting parts of the code from scratch, or
can existing C/Fortran code be incrementally tuned to use additional fea-
tures? Problems for adaption for the user could comprise a new programming
model, new languages and new tools to be used. Similar, if the hardware does
not completely conform to IEEE floating point standards (exactly same re-
sult, exception support), checking the correctness of a port can require a
significant amount of time.

120 H. Hacker et al.

– Persistency and long-term support: Is it worth for users to tune their code
for a given accelerator system? If the system involves a new programming
model/-language, this should be part of a standardization process.

In this paper, we concentrate on the reachable performance of graphics proces-
sors from NVidia using CUDA. In order to achieve this, we have tuned a set of
codes defined within work package (WP) 8 in the PRACE project. The work
presented here was carried out in the context of the EU PRACE project,which
prepares the creation of a persistent pan-European HPC service, consisting of
several tier-0 centers providing European researchers with access to capability
computers and forming the top level of the European HPC ecosystem. PRACE
is a project funded in part by the EU 7th Framework Programme [9]. If avail-
able, we also measured optimized library codes with similar functionality. The
results were compared with numbers obtained from systems consisting of recent
x86 processors. In addition to performance results, we take a look at the use-
fulness of employing NVidia hardware as part of the computer equipment in an
HPC center, taking the aspects presented above into account. In the process of
optimizing and running the code, we obtained sufficient experience to be able to
give profound arguments for discussion.

The paper is structured as follows: In the next section, we give an overview of
the broader scope of PRACE where this work was done, and present some related
work. Then, the programming model of CUDA is shortly presented. Afterwards,
the different codes from the benchmark are shown, followed by optimization
and tuning tips relevant for the codes. The next section presents performance
numbers in detail. Finally, we discuss the advantages and disadvantages of using
such accelerator systems at all, before we give a conclusion and an outlook on
future work.

2 Related Work

In this paper, we concentrate on CUDA. However, the porting of the benchmarks
was carried out as part of the “technology watch” subproject of PRACE with a
broader focus. There, all kind of different architectures relevant for computing
centers are taken into account, as can be read in the respective project deliver-
ables [10]. The PRACE benchmarks represent simple kernels quite easily to port
to various architectures, allowing for evaluation in the tight time frame of the
project, i.e. striving for medium term statements. The Rodinia benchmark suite
[11] takes a different approach. It specifically emphasizes on heterogeneous com-
puting, fusing multicore architectures with GPU components. Further, it tries
to cover the “dwarfs” application categorization of Berkeley [12]. This approach
could become relevant for follow-up subprojects of PRACE.

There are quite a few projects world-wide that work towards the next-
generation supercomputer, and collaborate in the International Exascale Soft-
ware Project (IESP) [13]. The web page provides presentations and reports about
the current status of these projects. While we expect that accelerators such as

Considering GPGPU for HPC Centers 121

GPUs to play an important role in this context, concrete statements are still
pending.

There are a lot of papers presenting ports of all kind of applications to GPUs
(see gpgpu.org [4]). However, it is quite difficult to estimate how much of these
research works will result in code to be used by users of an HPC center.

3 CUDA as an Example for GPGPU Programming

In recent years, outsourcing compute intensive vector operations to graphics
cards has become a popular pastime activity, especially in numerical simulation.
Many people achieved quite good performance and scalability on non trivial
problems by the so called Compute Unified Device Architecture (CUDA), a
parallel programming model developed by NVidia. CUDA is an extension to the
C programming language and allows programmers to utilize NVidia graphics
cards for scientific computations. Each CUDA program consists of a so called
host section and the device sections. The host section is executed sequentially
and calls one or more so called kernels. These kernels are executed as threads in
parallel on a device. Threads are grouped into blocks with up to three dimensions,
where threads within the same block can be synchronized. The maximum number
of threads per block is 512.

Thread blocks are grouped in one- or two dimensional grids. A grid may
contain up to 65535 blocks per dimension. Thread blocks are distributed over the
available SMs (Streaming Multiprocessors) upon execution. Each SM can serve
up to 1024 coexisting threads. Current NVidia hardware contains up to 30 SMs;
with each block being executed on exactly one SM. An SM consists of eight scalar
cores with 2048 32-bit registers and 16 KB shared memory. Each of these cores
is capable of performing integer and single precision floating point operations.
Upon execution, blocks are divided into so called warps. CUDA currently groups
32 threads into warps. Within one warp, threads are always synchronous. Thread
creation and scheduling are completely done in hardware.

Figure 1 shows a CUDA program for matrix addition (C = A + B). Each
thread computes exactly one value of the result matrix. Blocks of 4x4 threads
each are created and grouped in a two dimensional grid. Blocks are then executed
by multiprocessors.

4 Methodology

4.1 The PRACE WP8 Benchmarks

In order to be able to assess and compare the performance among the vast
amount of mainly heterogeneous PRACE prototypes, it was decided to select a
set of small, easy to port, yet meaningful computational kernels. As a guideline
for the selection, the principle of ’dwarfs’ [14][12] was consulted. A dwarf is an

122 H. Hacker et al.

Fig. 1. CUDA example with mapping to hardware

algorithmic method that captures a pattern of computation and communication.
The underlying numerical methods may change over time, but the claim is that
the underlying patterns persist through generations. Three important dwarfs are
namely dense linear algebra, sparse linear algebra and spectral methods.

Due to its modularity, the codes from the EuroBen benchmark suite2 were
chosen. This benchmark suite provides synthetic programs for scientific and tech-
nical computing. It is organized in modules of increasing complexity. Module 1
is concerned with the performance of important basic computational kernels
like the dot-product or the axpy operation. The second module considers ba-
sic numerical algorithms that use the operators from module 1. These include
matrix-vector multiply, solution of full and sparse linear systems or FFTs, etc.
In the 3rd module skeleton applications like ODE and PDE solvers are tested
that in turn use the algorithms from module 2.

As a representation for dense linear algebra, mod2am was selected. This is
a dense matrix-matrix multiplication in the form of C = AB. In the area of
sparse linear algebra, the choice fell on mod2as, a sparse matrix-vector product
in the form of c = Ab. The matrix is stored in the compressed row storage
(CRS) format. Finally mod2f, a 1-D complex FFT represents the dwarf spectral
methods.

2 http://www.euroben.nl

Considering GPGPU for HPC Centers 123

4.2 Porting and Optimization Strategies

mod2am. The obvious way to implement this benchmark is to apply the li-
brary calls cublasDgemm / cublasSgemm. As with every accelerator-card, one
needs to transfer the data to the cards’ main-memory. CUDA offers various
ways to copy data. For this application, two methods were chosen. The first
method is to allocate the host data-structures with malloc and the same data
structures on the GPU and then copy the data. However, the MMU is involved
in every page-request. The second method allocates the host data-structures via
a special CUDA call (cudaMallocHost) which marks the allocated pages as non-
swappable and allows data transfer to take place without the interference of the
MMU. Since the mod2am-benchmark uses a typical C-’row-major’ data arrange-
ment, the transpose option for the input matrices was used. Unfortunately, there
is no transpose option for the output so one has to write a kernel that transposes
the matrix. There is an example code for a matrix transposition in the SDK that
was modified accordingly. The transposition is done out-of-place by blocking the
matrix, transposing the block and storing it back to the main memory of the
card. NVidia gives a small example of a blocked dense matrix-matrix multiply in
the programming guide. For comparing to CUBLAS, this kernel was also imple-
mented. As the original NVidia example kernel only allowed matrices with the
multiple size of the blocks, a few changes (mainly if clauses) had to be applied to
deal with matrices of arbitrary size. Due to the existence of CUBLAS, the port-
ing of this benchmark was straightforward. Only the different data arrangement
(column-major vs. row-major) required slightly more effort.

mod2as. NVidia offers no library for sparse matrix operations. However, on
CUDA Zone [7] the publication ’Efficient Sparse Matrix-Vector Multiplication
on CUDA’ by Nathan Bell and Michael Garland [15] can be found. The proposed
CSR-kernel was modified to fit the needs of the C reference implementation of
mod2as. It was not necessary to change the data structures. The CSR-kernel
exploits the use of the shared memory within the Streaming Multiprocessor.
Because of the warp concept (a warp consists of 32 threads that are all syn-
chronous) a very efficient reduction can be performed. Furthermore, this kernel
puts the x-vector into the texture-cache of the GPU. Since the x-data is reused
multiple times this improves efficiency.

mod2f. By the time when the porting of mod2f has been started, cuFFT (the
NVidia FFT implementation) only supported single precision. The single preci-
sion port therefore was straightforward. For double precision, a port of the given
Radix-4 FFT C-code was carried out.

The given code works out-of-place, which means that additionally to the in-
put vectors (real and imaginary), two other vectors are used for intermediate
values. It also uses a precalculated vector of sines and cosines. The sine/cosine
vector is being calculated by two nested loops that leads potentially to a major
load-imbalance. However, as the loops form a geometric sequence, they can be
unrolled. Thus, each thread calculates exactly one element of the result.

124 H. Hacker et al.

The calculation consists of multiple Radix-4 rounds plus additional Radix-2
rounds if the input data is not a power of 4. The Radix-4 rounds always use four
real and four imaginary values, resulting into eight values to be calculated. Since
a SM has eight scalar units and a warp consists of 32 threads, this fits perfectly
(4x 8 threads).

As a GPU does not have caches like a CPU, access to the global memory is
very slow (400-600 cycles). To hide this latency, NVidia recommends starting
between 64-192 threads (oversubscribing). Additionally the memory accesses of
a half-warp (16 threads) are coalesced in bundles of 128/64 or 32 bytes. In
order to minimize memory access, the data types double2/float2 (struct of two
doubles/floats) should be used. Each round always requires both the real- and
the imaginary value. The .x value is the real- and the .y value is the imaginary-
part of the vector/number. To fully exploit the usage of the double2/float2 type
one can use the texture cache. This loads both the .x/.y-values to the cache.
Hence, the .y-value read is almost for free. The readability of the code suffers
considerably by using the cache. However, by using float2/double2 and texture-
cache, the accesses to global-memory could be halved (9-10% speedup).

There are also many (integer) intermediate values that are calculated at the
beginning of each round. Each SM is able to perform eight (integer) additions
or bit-operations each clock-cycle. However, an SM can only perform two 32-bit
multiplications per cycle. Therefore, one can use the __mul24/__umul24 intrinsic
(8 instructions / cycle). Both inputs require a value less or equal to 24 bit. The
result is 32 bit. The first implementation also calculated those values ahead and
stored the results in the shared memory of the SM. The use of the CUDA profiler
indicated that it is faster (5-6%) to have each thread calculate the value itself
and store the results in registers.

The double precision port was written generically and can calculate single
precision as well. However, it turned out that a few kernels had to be specialized.
The first implementation used two intermediate values, which were stored in the
shared memory of the SM. This led to bank-conflicts with double precision.
For single precision, because of being only 32-bit wide, this works perfectly.
Furthermore, for double precision, the intermediate values are substituted twice
in order to have only one calculation (the intermediates are stored in registers). If
using single-precision the usage of ’fused multiply-add’ (just cuts the result of the
multiply instead of rounding) results in slightly different values than without.
One can use an intrinsic to avoid ’fused multiply-add’ (compiler-default). In
order to avoid the rounding errors a considerable coding overhead is needed.
Two FFT-rounds require two distinct loop variables. Here the grid-feature of
CUDA can be used. One can start the blocks of calculation in a grid of up to
two-dimensions. Each dimension is used as a loop variable.

The optimal number of threads per block is 64. 32 threads are not sufficient
to hide the latency of the global memory (400-600 cycles). With more than 64
threads, the overhead of the calculations outweigths the latency hiding.

Considering GPGPU for HPC Centers 125

5 Results

The CUDA results were obtained on the PRACE prototype ’uchu’. A node con-
sists of a Intel Harpertown (Xeon E5462 at 2.8 GHz) with 16 GB of system
memory and two NVidia Tesla C1060 cards each with 4 GB of GDDR3 mem-
ory. The cards are attached via PCIe x16 (gen2) with a theoretical maximum
throughput of 8 GB/s. However the measured maximum is only 5.7 GB/s. The
installed NVidia/CUDA driver version was 190.18 and the toolkit version 2.3.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 1000 2000 3000 4000 5000 6000 7000 8000

M
F

lo
p/

s

Matrix Size

mod2am (single precision)

Nehalem 8 Cores (mkl)
Nehalem 4 Cores (mkl)

Tesla C1060 (roundtrip)
Tesla C1060 (kernel)

Fig. 2. mod2am in single precision

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 0 1000 2000 3000 4000 5000 6000 7000 8000

M
F

lo
p/

s

Matrix Size

mod2am (double precision)

Nehalem 8 Cores (mkl)
Nehalem 4 Cores (mkl)

Tesla C1060 (roundtrip)
Tesla C1060 (kernel)

Fig. 3. mod2am in double precision

126 H. Hacker et al.

The comparison results were obtained on the SGI Altix ICE System (another
PRACE prototype). Each node consists of two sockets, each with a Intel Nehalem
EP (at 2.53 GHz). The node has 16 GB of system memory. The benchmarks were
compiled using the Intel icc in version 11.1.064 and the Math Kernel Library
(MKL) in version 10.1.

Figure 2 and Fig. 3 show the results of mod2am. Due to its highly parallel
nature, this kernel is the sweet-spot for GPGPUs. The observed jitter in the
CUDA results is due to underutilization of the hardware because of the input

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 5000 10000 15000 20000 25000
 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

M
F

lo
p/

s

T
hr

ou
gh

pu
t (

M
B

/s
)

Vector length

mod2as (single precision - 15% fill)

 Tesla C1060 (roundtrip)
 Tesla C1060 (kernel)

 Nehalem 1 Core (mkl)
 Nehalem 2 Cores (mkl)
 Nehalem 4 Cores (mkl)
 Nehalem 8 Cores (mkl)

 Tesla C1060 (Throughput - mod2as)
 Tesla C1060 (Throughput - max)

Fig. 4. mod2as in single precision

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5000 10000 15000 20000 25000

M
F

lo
p/

s

Vector length

mod2as (double precision - 15% fill)

 Tesla C1060 (roundtrip)
 Tesla C1060 (kernel)

 Nehalem 1 Core (mkl)
 Nehalem 2 Cores (mkl)
 Nehalem 4 Cores (mkl)
 Nehalem 8 Cores (mkl)

Fig. 5. mod2as in double precision

Considering GPGPU for HPC Centers 127

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

M
F

lo
p/

s

Vector length

mod2f (single precision)

Tesla C1060 - cufft
Tesla C1060 - own

Nehalem (1 core, mkl)

Fig. 6. mod2f in single precision

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

M
F

lo
p/

s

Vector length

mod2f (double precision)

Tesla C1060 - cufft
Tesla C1060 - own

Nehalem (1 core, mkl)

Fig. 7. mod2f in double precision

data size. The two different CUDA curves show achieved performance of the pure
kernel and the performance with the inclusion of the data transfer (roundtrip).

Figure 4 and Fig. 5 show the results of mod2as. The main issue with this
benchmark is that the data-transfer as well as the calculation are both of com-
plexity O(n). The overall performance is limited by the throughput of the PCIe
bus as shown in Fig. 4. The horizontal line (”throughput max”) indicates the
maximum PCIe throughput on the ’uchu’ system. The tangential line shows the
measured throughput of mod2as. The performance numbers for the pure ker-
nel, with the data already on the card, indicate the potential of the Tesla card.

128 H. Hacker et al.

Therefore the suitability here clearly depends on whether the data can stay on
the accelerator and be reused for multiple iterations or if the results have to be
processed outside the accelerator after each calculation.

Figure 6 and Fig. 7 compare the results of mod2f with cuFFT, a hand coded
version of a radix-4 FFT and MKL on Nehalem. The MKL provides only a serial
version for the 1D-FFT. Recently NVidia released a new version of cuFFT (v.2.3)
which supports double precision. The single precision performance was enhanced
substantially. The cuFFT versions are an excellent choice for big inputs.

6 Discussion

Taking into account the results obtained by our benchmarks, this section will
discuss the issues pointed out in the introduction.

From the HPC center’s point of view, the following conditions apply:

– Performance/Cost: In terms of acquisition costs, graphics cards turned out
to be an extremely cheap option for HPC, but in terms of operating costs,
it must be taken into account that these nodes might be idle for a non-
negligible part of their lifetime, still consuming additional power for cooling
etc. . Therefore, future GPGPU accelerators should allow turning off idle
parts of the system in order to guarantee efficient use.

– Exploitation: Despite the fact that only few users are willing and able to
optimize their code the way described in this paper, there has been a strong
demand for computing centers to offer compute nodes equipped with the
respective hardware. However, as this applies only to a fraction of the users
in a computing center, only a fraction of cluster nodes should be equipped
with high end graphics cards for HPC usage.

– Stability/reliability of hardware: At the time of writing, existing graphics
cards do not support error correcting codes (ECC), as this is not an issue
in graphics programming - if one of several million pixels in an image has
the wrong color, the user will not notice. DRAM failures are discussed in
detail in [16]. Even if not all memory failures can be corrected, it is of major
importance in an HPC Center to at least detect failing DRAMs. However,
NVidia has announced that its new Fermi card will support ECC.

From the users’ point of view, the situation looks as follows:

– Ease of use: Comprehensive study is certainly involved for users and/or pro-
grammers who intend to port their applications to CUDA. However, CUDA
is relatively easy to learn for experienced programmers, as web pages provide
plenty of examples. From a computing center’s point of view, it would be a
lot easier for users to upgrade to hardware that supports existing standards
like e.g. OpenMP, PThreads, etc. or libraries like e.g. MPI. Programs should
still run in standard C, C++, or FORTRAN environments without major
modification, i.e. downward compatibility should be maintained to avoid un-
necessary porting overhead. Regarding libraries, CUBLAS provides almost

Considering GPGPU for HPC Centers 129

the complete set of BLAS routines for numerical operations. However, when
it comes to more complex operations like e.g. sparse matrix computations,
the user has to implement the underlying numerical algorithms. Also, cur-
rent GPGPUs are not yet fully IEEE compliant, which can lead to errors
when carrying out floating point operations. However, this might change
with future GPGPU generations.

– Persistency: From our point of view, it is hard to foresee if a programming
environment like CUDA, which is heavily derived from proprietary NVidia
hardware (see section 3), will still prevail in five years. The upcoming stan-
dard for GPGPU programming, OpenCL [17], at least ensures that code is
not bound to the success of only one vendor.

7 Conclusions and Future Work

In this paper, the practicability of using GPGPUs as accelerator cards in HPC
centers has been investigated. We used several benchmarks from the PRACE
WP8 benchmark suite and implemented these under CUDA on contemporary
NVidia hardware. The benchmark results were compared with contemporary
standard x86 based systems. In the discussion section, the issues raised in the
introduction were answered according to the obtained results. We came to the
conclusion that, at the time of writing, graphics cards are not yet a suitable
alternative to ”standard” HPC architectures, as several issues from both the
computing center’s and the users’ point of view indicate that the effort is still
too much. However, the picture might change with future GPGPU architectures
like e.g. NVidia Fermi, which will be subject to future investigations.

While one can argue whether results from three numerical kernels are suffi-
cient to draw any conclusions regarding the benefit of GPU usage in computer
centers, the same procedure was chosen within PRACE for comparing different
architecture types. In future investigations additional benchmark kernels should
be examined to cover different types of applications, e.g. based on the dwarfs
classification [12].

Acknowledgments

This work was financially supported by the PRACE project funded in part by
the EU’s 7th Framework Programme (FP7/2007-2013) under grant agreement
no. RI-211528. We specially thank our colleague Iris Christadler for valuable
input from the HPC center’s view.

References

1. Top500 Consortium: The Top 500 supercomputing sites, http://www.top500.org/
2. Infiniband Trade Association: Infiniband Interconnect Homepage,

http://www.infinibandta.org/

http://www.top500.org/
http://www.infinibandta.org/

130 H. Hacker et al.

3. Novakovic, N.: CPU and GPU now, the convergence goes on. The Inquirer (October
2009),
http://www.theinquirer.net/inquirer/opinion/1560330/
cpugpu-convergence-goes

4. GPGPU.org: A central resource for GPGPU news and information,
http://gpgpu.org

5. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,
Purcell, T.: A survey of general-purpose computation on graphics hardware. Com-
puter Graphics Forum 26(1), 80–113 (2007)

6. Harris, M.: Mapping computational concepts to GPUs. In: ACM SIGGRAPH 2005
Courses. ACM Press, New York (2005)

7. CUDA Zone: The resource for CUDA developers,
http://www.nvidia.com/object/cuda_home.html

8. Advanced Micro Devices, Inc.: ATI Stream Software Development Kit (SDK),
http://developer.amd.com/gpu/ATIStreamSDK

9. PRACE: Partnership for Advanced Computing in Europe,
http://www.prace-project.eu

10. PRACE: Public deliverables,
http://www.prace-project.eu/documents/public-deliverables-1

11. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.:
Rodinia: A Benchmark Suite for Heterogeneous Computing. In: Proceedings of the
IEEE International Symposium on Workload Characterization (IISW). IEEE, Los
Alamitos (October 2009)

12. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer,
K., Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The
landscape of parallel computing research: a view from berkeley. Technical Report
UCB/EECS-2006-183, Electrical Engineering and Computer Sciences, University
of California at Berkeley (December 2006)

13. IESP: International exascale software project homepage,
http://www.exascale.org/

14. Colella, P.: Defining software requirements for scientific computing (2004)
15. Bell, N., Garland, M.: Efficient sparse matrix-vector multiplication on CUDA.

NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation (December 2008)
16. Schroeder, B., Pinheiro, E., Weber, W.D.: DRAM errors in the wild: a large-scale

field study. In: SIGMETRICS 2009: Proceedings of The Eleventh International
Joint Conference on Measurement and Modeling of Computer Systems, pp. 193–
204. ACM, New York (2009)

17. Khronos Group: OpenCL - The open standard for parallel programming of hetero-
geneous systems, http://www.khronos.org/opencl/

http://www.theinquirer.net/inquirer/opinion/1560330/cpu\discretionary {-}{}{}gpu-convergence-goes
http://www.theinquirer.net/inquirer/opinion/1560330/cpu\discretionary {-}{}{}gpu-convergence-goes
http://gpgpu.org
http://www.nvidia.com/object/cuda_home.html
http://developer.amd.com/gpu/ATIStreamSDK
http://www.prace-project.eu
http://www.prace-project.eu/documents/public-deliverables-1
http://www.exascale.org/
http://www.khronos.org/opencl/

Real-Time Image Segmentation on a GPU

Alexey Abramov1, Tomas Kulvicius1,2,
Florentin Wörgötter1, and Babette Dellen3,4

1 Georg-August University, Bernstein Center for Computational Neuroscience,
Department for Computational Neuroscience, III Physikalisches Institut,

Göttingen, Germany
{abramov,tomas,worgott}@bccn-goettingen.de

2 Department of Informatics Vytautas Magnus University, Kaunas, Lithuania
3 Bernstein Center for Computational Neuroscience, Max-Planck-Institute for

Dynamics and Self-Organization, Göttingen, Germany
4 Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Barcelona, Spain

bdellen@iri.upc.edu

Abstract. Efficient segmentation of color images is important for many
applications in computer vision. Non-parametric solutions are required in
situations where little or no prior knowledge about the data is available.
In this paper, we present a novel parallel image segmentation algorithm
which segments images in real-time in a non-parametric way. The algo-
rithm finds the equilibrium states of a Potts model in the superparamag-
netic phase of the system. Our method maps perfectly onto the Graphics
Processing Unit (GPU) architecture and has been implemented using
the framework NVIDIA Compute Unified Device Architecture (CUDA).
For images of 256 × 320 pixels we obtained a frame rate of 30 Hz that
demonstrates the applicability of the algorithm to video-processing tasks
in real-time1.

1 Introduction

Image segmentation, i.e. the partitioning of an image into disjoint parts based on
some image characteristics, such as color information, intensity or texture is one
of the most fundamental tasks in computer vision and image processing and of
large importance for many kinds of applications, e.g., object tracking, classifica-
tion and recognition [1]. As a consequence, many different approaches for image
segmentation have been proposed in the last twenty years, e.g. methods based
on homogeneity criteria inside objects of interest [2], clustering [3,4,5], region-
based growing [1], graph cuts [6,7] and mean shift segmentation [8]. We can
distinguish between parametric (model-driven) [6,7] and nonparametric (data-
driven) techniques [1,3,4,5,8]. If little is known about the data being segmented,
nonparametric methods have to be applied. The methods of superparamagnetic
clustering is a nonparametric method which solves the segmentation problem by

1 By real-time we understand processing of a full frame at 25Hz or faster.

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, pp. 131–142, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

132 A. Abramov et al.

finding the equilibrium states of the energy function of a ferromagnetic Potts
model (without data term) in the superparamagnetic phase [9,10,11]. By con-
trast, methods which find solutions by computing the minimum of an energy
function usually require a data term – otherwise only trivial solutions are ob-
tained. Hence, the equilibrium-state approach to the image segmentation prob-
lem has to be considered as fundamentally different from approaches which
find the minimum energy configuration of energy functions in Markov random
fields [12].

The Potts model [9], which is a generalization of the Ising model [13], de-
scribes a system of interacting granular ferromagnets or spins that can be in q
different states, characterizing the pointing direction of the respective spin vec-
tors. Depending on the temperature, i.e. disorder introduced to the system, the
spin system can be in the paramagnetic, the superparamagnetic, or the ferro-
magnetic phase. In the ferromagnetic phase, all spins are aligned, while in the
paramagnetic phase the system is in a state of complete disorder. In the super-
paramagnetic phase regions of aligned spins coexist. Blatt et al. (1996) applied
the Potts model to the image segmentation problems in a way that in the super-
paramagnetic phase regions of aligned spins correspond to a natural partition of
the image data [11]. Finding the image partition corresponds to the computation
of the equilibrium states of the Potts model.

The equilibrium states of the Potts model have been approximated in the
past using the Metropolis-Hastings algorithm with annealing [14] and methods
based on cluster updating, which are known to accelerate the equilibration of
the system by shortening the correlation times between distant spins. Prominent
algorithms are Swendsen-Wang [3], Wolff [4], and energy-based cluster updating
(ECU) [5]. All of these methods obey detailed balance, ensuring convergence of
the system to the equilibrium state. However, convergence has only been shown
to be polynomial for special cases of the Potts model.

Since the real-time aspect is getting more and more important in image pro-
cessing and especially in image segmentation, parallel hardware architectures and
programming models for multicore computing have been developed to achieve ac-
celeration [15]. In this paper, we investigate opportunities for achieving efficient
performance of superparamagnetic clustering using the Metropolis algorithm
with annealing [14], and propose a real-time implementation on graphics pro-
cessing units (GPU). For images of size 256×320 pixels the Metropolis procedure
on GPU is 160 times faster than on CPU. Furthermore, a novel short-cut, con-
sistent with the relaxation procedure of the Metropolis algorithm, is introduced
for fast cooling.

The remainder of the paper is organized as follows: Section 2 describes the
proposed segmentation algorithm. In Section 3, segmentation results for several
test images are presented and the respective processing times on GPU and CPU
are reported. In Section 4, the results are discussed and directions for future
work are given.

Real-Time Image Segmentation on a GPU 133

2 The Segmentation Algorithm

The overall algorithm consists of several major steps as illustrated in Fig. 1.
First, a parallel Metropolis procedure is developed and used to partition the
image into disjoint regions (see 2.1). To reduce the total number of required
Metropolis iterations, we developed a parallel algorithm that distinguishes be-
tween true object boundaries and boundaries caused by domain fragmentation
(this is: uniform areas are split into meaningless sub-segments, see 2.2). The
corresponding true segments are then relabeled (see 2.3), and the Metropolis
algorithm is reapplied (see 2.4) for another short relaxation process after which
steady state is achieved.

Find object
 boundaries

Input image Metropolis Labeling Metropolis
Final

 segments

Fig. 1. Block diagram of the proposed segmentation method

2.1 Metropolis Algorithm

In the Potts model, a spin variable σk, which can take on q discrete values
v1, v2, . . . , vq, called spin states, is assigned to each pixel of the image. The
energy of the system is described by

E = −
∑
<ij>

Jijδij , (1)

with the Kronecker sign

δij =
{

1 if σi = σj ,
0 otherwise. (2)

where σi and σj are the respective spin variables of two neighboring pixels i and
j. The function

Jij = 1 − |gi − gj|/Δ (3)

is a coupling constant, determining the interaction strength, where gi and gj are
the respective color vectors of the pixels, and

Δ = α · (
∑

<i,j>

|gi − gj|/
∑

<i,j>

1) (4)

computes the averaged color vector difference of all neighbors < i, j >. The
factor α ∈ [0, 10] is a system parameter.

The Metropolis algorithm allows generating spin configurations S which obey
the Boltzmann probability distribution [16]

P (S) ∼ exp [−βE(S)] , (5)

134 A. Abramov et al.

where β = 1/kT , T is the temperature parameter, and k is the Boltzmann
constant.

Initially, values are assigned randomly to all spin variables. According to
the Metropolis algorithm, each spin-update procedure consists of the following
steps [17]:

1. The system energy EA of the current spin configuration SA is computed
according to Eq. 1.

2. A pixel i with spin variable σi in spin state vl is selected and for each possible
move to a new spin state σi �= vl the energy EB of the resulting new spin
configuration SB is computed according to Eq. 1. The number of possible
moves is (q − 1).

3. Among all new possible configurations we find the configuration with the
minimum energy

Enew = min(E1, E2, . . . , Eq−1) , (6)

and compute the respective change in energy

ΔE = Enew − EA . (7)

4. If the total energy of the configuration is decreased by this move, i.e. ΔE < 0,
the move is always accepted.

5. If the energy increased, i.e. ΔE > 0, the probability that the proposed move
will be accepted is given by

PA→B = exp
(
−|ΔE|

kTn

)
, (8)

and
Tn+1 = γTn γ < 1 , (9)

where γ is the annealing coefficient. We draw a number ξ randomly from a
uniform distribution in the range of [0, 1]. If ξ < PA→B, the move is accepted.

Each spin update involves only the nearest neighbors of the considered pixel.
Hence, spin variables of pixels that are not neighbors of each other can be up-
dated simultaneously [18]. Therefore the Metropolis algorithm fits very well to
the GPU architecture.

The energy function may contain many local minima in which the system
can get trapped. This problem can be resolved by slow annealing of the spin
system. An annealing schedule allows to simulate a cooling process by decreasing
the temperature after each iteration (see Eq. 9). While slow cooling leads to an
undesired increase in computation time, fast cooling faces the problem of domain
fragmentation. In the next section, we present an algorithm for resolving the
domain-fragmentation problem.

Real-Time Image Segmentation on a GPU 135

2.2 Resolving Domain Fragmentation

Domain fragmentation describes the fact that large uniform areas are being split
into sub-segments despite high attractive forces within them [10]. It happens in
the case of a too fast annealing process when the temperature decreases rapidly
and the system arrives too early at the ”frozen” state. For illustration, the spin
configuration with q = 6 after 20 Metropolis iterations is presented for an ex-
ample image (Fig. 2(a-b)). Large interaction forces within the apple and the
background lead to the creation of domains that try to cover each other. This
effect has its origin in the finite interaction range and local dynamics of the
Metropolis algorithm. The fragmented domains, however, carry all the required
information to resolve this problem. For this we consider the result after an
initial fast cooling phase consisting of 20 Metropolis iterations only and find
that domain-fragment boundaries are unstable and clear-cut whereas true seg-
ment boundaries are stable and characterized by a noisy local neighborhood
(Fig. 2(b)). This holds true for real images due to their finite image gradient at
true boundaries and it allows us to distinguish true segment boundaries from
those caused by domain fragmentation.

x

pixels

200150100500
-1

0

1

1

2

3

4

5

6
S

(a)

(b)

(e)

(ñ)

(d)Sx̀

Fig. 2. Detection of real boundaries after using the Metropolis algorithm. (a) Input
image. (b) Configuration of spin states after 20 Metropolis iterations. (c) Function of
spin states for one image row as marked by a horizontal line in panels (a) and (b). (d)
Changes of spin state for the same row where each peak represents a changing spin
state. (e) Detected object boundaries.

The procedure works as follows. After a fixed small number of Metropolis
iterations, we compute the spatial derivatives along the x and y direction of the
spin-state configuration S(x, y) according to

S′
x =

ΔS(x, y)
Δx

and S′
y =

ΔS(x, y)
Δy

. (10)

In Fig. 2(c,d) functions Sx and S′
x are depicted for one row of the original image.

Each peak of S′
x represents a change in the spin state. Here we are interested

136 A. Abramov et al.

only in the number of peaks rather than in the derivative values, because the
Potts model does not penalize differences between certain spin states stronger
than others (see Eq. 2). The frequency of peaks increases significantly at real
boundaries (depicted by dashed lines). Thus considering couples of pixels in
parallel we find boundaries

B(xi, yj) =

⎧⎨
⎩

1 if S′(xi, yj) �= 0 and S′(xi−1, yj) �= 0,
1 if S′(xi, yj) �= 0 and S′(xi, yj−1) �= 0,
0 otherwise.

(11)

The result of this procedure is a binary image where objects are depicted by
white and boundaries by black (see Fig. 2(e)). This step can also be imple-
mented completely in parallel. Erroneous noisy speckles arising from this pro-
cedure are corrected by applying the Metropolis algorithm a second time for
recovery (see 2.4). We used a fixed parameter α = 0.7 for all images. For images
which have not much texture a larger parameter α > 1 can be used to obtain
even better results.

Note, one cannot easily use a conventional edge detector (on the original
image) for this. An edge detector would indeed find many segment boundaries,
but it would also find others which are unrelated to the segments that come out
from the Metropolis procedure. As we need to continue the relaxation process,
we should do this using only ”the correct” segments. Otherwise relaxation would
have to undo all wrong segments to finally reach the minimum. Moreover the
proposed procedure yields closed object boundaries while many edge detectors
produce borders having gaps. The method of using the noisiness to distinguish
real edges from domain edges is consistent within our algorithmic framework
and, thus, allows continuation of the Metropolis procedure without problems.

2.3 Labeling of Connected Components

After resolving the domain fragmentation described in Sec. 2.2, all connected
components, i.e. areas having a closed boundary, have to be labeled in order to
get the spin states configuration back.

As our segmentation algorithm has to be sufficient for real-time applications,
we decided to use a procedure suggested by He et al. (2009) which is, to our
knowledge, among many algorithms proposed for the labeling of connected com-
ponents in a binary image, the fastest labeling algorithm to date [19]. All steps
of the employed labeling procedure are represented in Fig. 3.

The chosen algorithm completes labeling in two scans of an image: during the
first scan it assigns provisional labels to object pixels (see Fig. 3(b)) and records
label equivalences for labels, belonging to the same object. Label equivalences
are being resolved during the first scan choosing one of the equivalent labels as
a representative label. All representative labels are stored in the representative
label table where provisional labels act as indexes. During the second scan,
all equivalent labels are replaced by their representative label obtained from
the representative label table (see Fig. 3(c)). The detailed description of the
algorithm and its optimizations can be found in [19].

Real-Time Image Segmentation on a GPU 137

(a) (b) (ñ)

Fig. 3. Fast labeling of connected components. (a) Defined object boundaries. (b)
Provisional labels after the first image scan. (c) Representative labels assigned after
the second image scan.

Both image scans run on the CPU and are extremely fast for image sizes that
are being used in our work. Especially the second scan can be accelerated on the
GPU architecture, since representative labels can be assigned simultaneously to
all pixels by independent parallel processing threads.

2.4 Employment of Metropolis for Final Relaxation

After the labeling of connected components we assign spin states to all pixels
according to

σ(xi, yj) = L(xi, yj) mod q , (12)

where mod means that the segment label L(xi, yj) of the pixel is divided by the
number of possible spin states q and the new spin state σ is the remainder of
the division. After this assignment we apply five more Metropolis iterations to
obtain the final spin configuration after which final segments can be extracted.

2.5 Experimental Environment

As hardware platforms for testing of our segmentation algorithm we used

– NVIDIA card GeForce GTX 295 (using a single GPU) with 40 multiproces-
sors each having 8 cores, so 240 processor cores in total and 896 MB device
memory.

– CPU 2.2GHz AMD Phenom Quad 9550 (using a single core) with 2 GB
RAM.

3 Experimental Results

3.1 Segmentation Results

We applied the developed algorithm to a set of real images, i.e. Cluttered scene,
Lampshade from the Middlebury dataset2 and Skier from the Berkeley dataset3

(see Fig. 4(a)). The results at the different stages of the algorithm are shown in
Fig. 4(b-e).
2 Available under http://vision.middlebury.edu/stereo/
3 Available under http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

138 A. Abramov et al.

(a)

(b)

(ñ)

(d)

(f)

Cluttered scene Lampshade Skier

(e)

Fig. 4. Intermediate and final results of the segmentation algorithm for three example
images. (a) Test images. (b) Results after 10 Metropolis iterations with q = 256.
(c) Found objects boundaries. (d) Labeling of connected components. (e) Extracted
segments after the final relaxation. (f) Results of graph-based image segmentation
approach of Felzenszwalb and Huttenlocher [7].

Real-Time Image Segmentation on a GPU 139

0 2 4 6 8 10 12 x 105
0

100

200

300

400

500

600

700

Metropolis (GPU)

Finding boundaries (GPU)

Labeling (CPU)

Relaxation (GPU)

processing time

ti
m

e
 (

m
s
)

number of pixels in an image

(a) (b)

73%

20%

2% 5%

Fig. 5. Timing performances of the algorithm. (a) Execution time on GPU versus the
number of pixels in an image. (b) Total computation time of all algorithmic steps in
percentage.

In Fig. 4(b), the spin states after 10 Metropolis iterations are shown. Domain
fragmentation is clearly visible, characterized by noisy boundaries, in all three
images. The more textured an input image is, the more noisy entities are arising.
Objects borders are found, resulting in a binary image (see Fig. 4(c)). Since the
Lampshade and Skier images contain much more texture than Cluttered scene,
more boundaries and consequently more boundary errors are visible at this stage
(Fig. 4(c), middle and right panels). Experimentally it was determined that 10
Metropolis iterations are enough to obtain closed object boundaries which are
acceptable for the labeling of connected components.

In Fig. 4(d) the results after the labeling of connected components are rep-
resented. Errors after the resolving domain fragmentation, resulting in noisy
speckles, are removed by reapplying the Metropolis procedure for system re-
laxation. The respective final segments extracted after the final relaxation are
shown in Fig. 4(e). Fig. 4(f) shows a comparison to a conventional segmentation
algorithm.

3.2 Execution Time

In Fig. 5(a), the dependence of the segmentation runtime on the number of pixels
in an image for the GPU architecture is shown. We can see that the dependence
is almost linear, as the Metropolis algorithm, resolving the domain fragmentation
and the labeling procedure have almost the ideal linearity property versus image
size (i.e., for N × N images, its complexity is O(N2)).

Among all algorithmic steps only the runtime of the labeling depends on the
structure of the input image, but deviations are in the range of two millisec-
onds for images up to 256 × 320 pixels and of ten milliseconds for images up
to 1024 × 1240 pixels. For very textured images like Skier the labeling takes
longer, since shapes of objects are more difficult and more provisional labels are
being assigned, so more time is needed to solve label equivalences (see 2.3). The
most time-consuming step is the Metropolis procedure, taking together with the

140 A. Abramov et al.

Table 1. Total computation times obtained for GPU and CPU for different sizes of
the test images

Image size (px) GPU / CPU (ms)
”Cluttered scene” ”Lampshade” ”Skier”

128 × 160 9.55 / 1.4 × 103 10.5 / 1.4 × 103 11.0 / 1.5 × 103

256 × 320 33.8 / 5.8 × 103 34.3 / 5.9 × 103 33.7 / 5.9 × 103

512 × 640 150.5 / 24.3 × 103 153.1 / 24.4 × 103 154.6 / 24.3 × 103

1024 × 1280 601.3 / 100.8 × 103 612.2 / 102.2 × 103 609.8 / 102.5 × 103

Table 2. Comparison of computation times obtained for the proposed method on GPU
and graph-based method by Felzenszwalb and Huttenlocher on CPU [7]

Image size (px) GPU method / graph-based on CPU (ms)
”Cluttered scene” ”Lampshade” ”Skier”

128 × 160 9.55 / 10.0 10.5 / 10.0 11.0 / 10.0
256 × 320 33.8 / 75.0 34.3 / 75.0 33.7 / 75.0
512 × 640 150.5 / 510.0 153.1 / 500.0 154.6 / 470.0

1024 × 1280 601.3 / 3020.0 612.2 / 2950.0 609.8 / 2920.0

relaxation process more than 90 percent of the total execution time (see Fig. 5(b)).
Processing times of our segmentation algorithm on GPU and CPU are compared
in Table 1. The comparison of processing times for the proposed GPU method
and the efficient graph-based method on CPU of Felzenszwalb and Huttenlocher
is shown in Table 2.

4 Discussion

We introduced a novel parallel nonparametric image segmentation algorithm
based on the method of superparamagnetic clustering. Using the highly parallel
GPU architecture we obtained processing times which are sufficient for real-time
applications. For images of size 256 × 320 pixels the algorithm can be used for
real-time processing tasks and of size up to 512 × 620 for close to real-time
applications. The algorithm has been adapted to fit the parallel architecture of
GPUs, including a novel procedure to resolve the domain-fragmentation problem.

The proposed method has been applied to several real images. Obtained
segmentation results for a single frame are comparable with conventional ap-
proaches. In Fig. 4(f) results of graph-based image segmentation proposed by
Felzenszwalb and Huttenlocher (2004) are shown. We can see that our results
(see Fig 4(e)) look very similar with the difference that our method yields more
small segments for very textured images like Skier. This happens because our
method takes into account only color information of interacting pixels. Therefore
our algorithm has a better performance for large segments than for small ones,

Real-Time Image Segmentation on a GPU 141

since the color segmentation works best for large uniform image regions. For tex-
tured areas, corresponding to small regions, the performance of our algorithm
decreases, because the gray-value similarity of neighboring pixels is too low.
Towards better results for very textured images, in the future texture segmen-
tation can be incorporated into the algorithm. With respect to processing time
our method outperforms the mentioned graph-based approach (see Table 2).

Also it is necessary to point out that the processing time is almost independent
of image structure, number of segments, and image density, i.e. the relation
between object pixels and boundary pixels during the labeling of connected
components. The slowest part of the algorithm is Metropolis updating, since
some annealing iterations have to be executed.

Before parallel hardware architectures became widespread, most image seg-
mentation methods running on CPU either delivered precise segmentation results
at low speed or real-time processing with relatively poor accuracy. Nowadays
different types of parallel architectures are used for the real-time image seg-
mentation: digital signal processors (DSP) with field programmable gate arrays
(FPGA) and GPUs [15,20,21]. Using of DSPs and FPGAs makes it possible to
achieve real-time processing [15] but requires far more development time than
in the case of GPUs with CUDA. Furthermore, software developed for FPGAs
is highly dependent on the used chip type and as a consequence has a limited
portability while CUDA applications run on a wide range of GPUs without any
problems.

After release of the framework CUDA by NVIDIA in 2007, some image seg-
mentation algorithms were implemented on the GPU [20,21]. A method proposed
by Kim et al. (2009) segments cervicographic images using the spatially coherent
deterministic annealing, but not in real-time. The real-time algorithm of Vineet
and Narayanan (2008) performs a binary segmentation of the image into objects
of interest and background, which is a different problem. In our case, the whole
image is segmented into similar regions according to a similarity criterion, here
color.

Currently, we are investigating whether alternative approaches for computa-
tion of equilibrium states of the Potts model can be parallelized efficiently as
well [3,4,5]. In the future, we will apply the proposed algorithm to the problem
of image-sequence segmentation with the aim to track image segments in real
time in a model-free way [22].

Acknowledgment

The work has received support from the German Ministry for Education and
Research (BMBF) via the Bernstein Center for Computational Neuroscience
(BCCN) Göttingen and the EU Project PACO-PLUS. B.D. also acknowledges
support from Spanish Ministry for Science and Innovation via a Ramon y Cajal
fellowship. We thank Karl Pauwels for valuable discussion.

142 A. Abramov et al.

References

1. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice-Hall, Englewood Cliffs
(2001)

2. Sahoo, P.K., Soltani, S., Wong, A.K.C., Chen, Y.: A survey of thresholding tech-
niques. Computer Vision, Graphics and Image Processing 41(2), 233–260 (1988)

3. Swendsen, R.H., Wang, S.: Nonuniversal critical dynamics in Monte Carlo simula-
tions. Physical Review Letters 76(18), 86–88 (1987)

4. Wolff, U.: Collective Monte Carlo updating for spin systems. Physical Review Let-
ters 62(4), 361–364 (1989)

5. von Ferber, C., Wörgötter, F.: Cluster update algorithm and recognition. Physical
Review E 62(2), 1461–1464 (2000)

6. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation.
International Journal of Computer Vision 70(2), 109–131 (2006)

7. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation.
International Journal of Computer Vision 59(2), 167–181 (2004)

8. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space anal-
ysis. Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)

9. Potts, R.B.: Some generalized order-disorder transformations. Proc. Cambridge
Philos. Soc. 48, 106–109 (1952)

10. Eckes, C., Vorbrüggen, J.C.: Combining data-driven and model-based cues for seg-
mentation of video sequences. In: Proc. of World Congress on Neural Networks,
pp. 868–875 (1996)

11. Blatt, M., Wiseman, S., Domany, E.: Superparamagnetic clustering of data. Phys-
ical Review Letters 76(18), 3251–3254 (1996)

12. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow
algorithms for energy minmization in vision. Pattern Analysis and Machine Intel-
ligence 9, 1124–1137 (2004)

13. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31, 253–258 (1925)
14. Geman, D., Geman, S.: Stochastic relaxation, gibbs distributions, and the bayesian

restoration of images. Pattern Analysis and Machine Intelligence 6, 721–741 (1984)
15. Meribout, M., Nakanishi, M.: A new real time object segmentation and tracking

algorithm and its parallel architecture. Journal of VLSI Signal Processing 39(3),
249–266 (2005)

16. Carnevali, P., Coletti, L., Patarnello, S.: Image processing by simulated annealing.
IBM Journal of Research and Development 29(6), 569–579 (1985)

17. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. of Chem. Phys. 21(11),
1087–1091 (1953)

18. Barkema, G.T., MacFarland, T.: Parallel simulation of the ising model. Physical
Review E 50(2), 1623–1628 (1994)

19. He, L., Chao, Y., Suzuki, K., Wu, K.: Fast connected-component labeling. Pattern
Recognition 42, 1977–1987 (2009)

20. Kim, E., Wang, W., Li, H., Huang, X.: A parallel annealing method for automatic
color cervigram image segmentation. In: Medical Image Computing and Computer
Assisted Intervention, MICCAI-GRID 2009 HPC Workshop (2009)

21. Vineet, V., Narayanan, P.J.: CUDA cuts: fast graph cuts on the GPU. In: Proc.
CVPRW 2008, pp. 1–8 (2008)

22. Dellen, B., Aksoy, E.E., Wörgötter, F.: Segment tracking via a spatiotemporal link-
ing process including feedback stabilization in an n-d lattice model. Sensors 9(11),
9355–9379 (2009)

Parallel Volume Rendering Implementation
on Graphics Cards Using CUDA

Jens Fangerau and Susanne Krömker

Interdisciplinary Center for Scientific Computing - IWR
Heidelberg University

Visualization and Numerical Geometry Group
Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
Phone: +49 6221 54 8844, phone: +49 6221 54 8883

{jens.fangerau,kroemker}@iwr.uni-heidelberg.de,
www.iwr.uni-heidelberg.de

Abstract. The ever-increasing amounts of volume data require high-end
parallel visualization methods to process this data interactively. To meet
the demands, progamming on graphics cards offers an effective and fast
approach to compute volume rendering methods due to the parallel ar-
chitecture of today’s graphics cards.

In this paper, we introduce a volume ray casting method working in
parallel which provides an interactive visualization. Since data can be
processed independently, we managed to speed up the computation on
the GPU by a peak factor of more than 400 compared to our sequen-
tial CPU version. The parallelization is realized by using the application
programming interface CUDA.

Keywords: volume rendering, ray casting, GPGPU, parallel computing,
CUDA.

1 Introduction

Direct volume rendering, or volume rendering for short, is a visualization method
in computer graphics to create colored and semitransparent segments from a 3D
scalar dataset and to project them onto a 2D image. Applications are found in
medicine, biology, geology and fluid dynamics for measured as well as simulated
data. Although a lot of efforts and simplifications were made to speed up the
algorithms, volume rendering has a huge computing time because of large cubic
data sets which do not always allow for an interactive visualization.

Another approach to investigate a volume works by detecting isosurfaces using
the Marching Cubes algorithm by Lorensen and Cline [1]. This indirect volume
rendering method generates triangle meshes of 2D surfaces that separate 3D ar-
eas with lower values from those with higher than the isovalue. But considering
blurred or cloud-like objects with smoothly varying values, direct rendering tech-
niques are better suited. This follows from the possibility to get direct access to
a volume without assigning it a geometrical structure with a triangulation that
shows arbitrary surfaces.

R. Keller et al. (Eds.): Facing the Multicore-Challenge, LNCS 6310, pp. 143–153, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

www.iwr.uni-heidelberg.de

144 J. Fangerau and S. Krömker

Volume rendering has become an important scientific tool and applications are
for example in medical science where data are acquired by computed tomogra-
phy (CT) or magnetic resonance tomography (MRT). These methods compute a
stack of gray-value images which are assembled to a volume. Another application
area can be found in biology, where volume data are generated by virtual optical
slices via confocal microscopy.

By the volume rendering technique, single elements of a volume, the voxels,
are assigned a certain color and opacity. The opacity is used for determining the
density and the transparency of a voxel and consequently for the whole volume.
Thus, certain areas can be made diaphanous or hid entirely and allow diagnosis
without making a surgical intervention. Figure 1 shows two examples of a CT
scan visualized with our ray casting algorithm. Here, volume clipping is used to
reveal inner parts of the head.

Datasets resulting from simulations of aerodynamic behavior on different car
shapings consist of scalar values on an irregular grid and therefore more informa-
tion about connectivity and adjacencies of the data is needed. Generally, it is not
necessary that 3D data exist on a regular grid. However, for a fast computation
in volume rendering, we only regard datasets on regular grids.

Today 3D datasets have a dimension1 of 512×512×512 pixels or even bigger
and despite the fact that the processing power is growing permanently, volume
rendering makes great demands on every system visualizing these data. Even
with existing speed-ups for miscellaneous render methods, a limit is reached at
a certain size of the dataset such that an interactive operation is not possible
anymore.

This limitation can be overcome by exploiting the parallel architecture of
today’s graphics processing units (GPUs). They are specialized on massive par-
allel data problems and belong to the field of General-Purpose computation on
Graphics Processing Units (GPGPU). In [2], a massively parallel volume render-
ing algorithm is introduced. This algorithm, called 2-3 swap, allows an arbitrary
number of processors to be used for image compositing to overcome the bot-
tleneck of interprocessor communication. There also exist algorithms on GPU
clusters [3] [4] to process large data sets.

To employ this computing device we realize a volume rendering method with
the Compute Unified Device Architecture (CUDA) by NVIDIA [5]. Since the ray
casting method of volume rendering consists of independent calculation steps, it
is well-suited to be parallelized on the graphics card. More precisely, NVIDIA’s
graphics cards have many multiprocessors (MP) where each multiprocessor con-
sists of eight scalar processors. For example, the GeForce GTX 280 features 30
MPs and so in total 30 × 8 = 240 streaming processors (SP) that concurrently
operate in parallel. Thus, data can be evaluated much faster than on the central
processing unit (CPU) which can only operate sequentially (or at most with four
cores in parallel like today’s quad-core CPUs).

1 The size does not have to be a power of 2 but this is an ideal case for computer
graphics when working with textures.

Parallel Volume Rendering Implementation on Graphics Cards 145

Fig. 1. CT volume data of dimension 336 × 384 × 132 pixels from a human head
visualized in GVvis with our ray casting method. The size of the projected image is
2048 × 2048 pixels.

2 State-of-the-Art in Volume Rendering

The basis for all volume rendering methods is the physical model of transport
of light through a colored, semitransparent and bounded data medium which
is represented by the volume. This transport of light is approximated by the
time-independent equation of transfer which describes the transport of light
against absorption, emission and scattering,

n · ∇I = −χI + η, (1)

where I is the specific intensity and n denotes the direction of the radiation
field. χ describes the extinction coefficient or total absorption coefficient and η
specifies the emission coefficient.

Equation (1) can be seen as the volume rendering equation which is equivalent
to the rendering equation of Kajiya [6] if a series of simplifications of the interac-
tion of light are made, like setting the boundary conditions, the assumption that
light spreads out in vacuum and considering the elastic case, i.e., ignoring the
frequency of light. Lacroute listed in his technical report [7] explicit restrictions
to generate the volume rendering equation.

The behavior of light described by the equation of transfer can be approx-
imated by several optical models like the density-emitter model of Sabella [8]
and (1) can then be computed by integrating along one ray which leads to the
volume compositing equation in its most common notation by using the over op-
erator. In image processing and computer graphics this equation is also known
as alpha blending,

146 J. Fangerau and S. Krömker

Cout = Cmαm + (1 − αm)Cin

= Cm overCin, (2)

where αm describes the opacity of the current voxel, Cin denotes the previous
density or color, Cm defines the current color of the voxel and Cout denotes
the color that has to be computed. More details about light transport and the
derivation of the volume rendering equation are given in [9].

The volume rendering method ray casting follows immediately from (2). The
analysis varies in computing from back-to-front or front-to-back. In the first case
the ray has to be evaluated until it reaches the final projection image but in
proceeding front-to-back, early ray termination can be used to abort the ray
traversal at an early stage. In this case the volume compositing equation looks
as follows:

Cout = Cm(1 − αin)αm + Cin,

αout = (1 − αin)αm + αin, (3)

where αin is the previous opacity compared to the current opacity αm and αout

states the finally computed one.
As mentioned before, volume rendering is a visualization method to create

a projection of a 2D image from a 3D scalar dataset. The different algorithms
for volume rendering can be categorized into three main classes: Image-based
techniques generate a projection based on the image plane whereas by contrast
object-based techniques create a projection based on the object. The third class
deals with frequency domain methods which process volume data in the frequency
domain and transform them into the image domain.

The most common representative of the image-based methods is ray casting
in which for each pixel of the image plane, a ray is cast into the bounded volume.

Volume data can also be displayed with the object-based method texture slic-
ing by slicing the volume into a stack of 2D textures and the generation of
polygons for each slice. The cell projection method does also belong to the object-
based methods and will be used to visualize volume data on an irregular grid.
The idea of Shirley and Tuchman [10] consists of generating tetrahedrons from
a field of voxels or cells and their projection onto the image plane.

A hybrid technique is the shear warp algorithm by Lacroute [7] in which the
volume is first sheared and after applying the volume compositing equation the
distorted intermediate image is warped to form the final image. The shear warp
algorithm is considered to be one of the fastest CPU methods because it makes
optimal use of the CPU’s caching ability. Thus the algorithm makes efficient
use of coherence data structures and traversal occurs in storage order. There is
very little overhead due to addressing arithmetic or inefficient memory access
patterns.

Parallel Volume Rendering Implementation on Graphics Cards 147

3 Parallelization in Visualizing Volume Data

For accelerating volume rendering techniques there already exist many approa-
ches on the GPU. Krüger and Westermann [11] present their well-known stream
model for volume ray casting by using the fragment shader of the graphics card.
Their adept idea is the storage of front faces and back faces of the bounding box
in 2D RGB and 2D RGBA textures respectively. This technique can be seen as
the state-of-the-art volume rendering technique for interactive volume rendering.

There are accelerated ray casting systems for an interactive light field dis-
play [12] that provides the possibility to manipulate virtual volumetric ob-
jects floating in the display workspace. Kim provides in his dissertation [13] a
stream model for ray casting implemented in CUDA and focuses on the decom-
position of fine-grain task parallelism that achieves load balancing among the
multiprocessors.

Mensmann et al. [14] offer a slab-based ray casting method with CUDA and as-
sert that common acceleration methods like bricking do not benefit from CUDA
features such as shared memory. They compare their results with the technique
from [11] where both approaches are implemented in the volume rendering en-
gine voreen2. Moreover, there also exist techniques on CPU, GPU and many-core
architectures for the purpose of medical imaging [15] and a scheme of data com-
pression is given that reduces data-transfer overhead.

Next to ray casting accelerations there also exists a parallel shear warp method
on distributed-memory multiprocessor systems [16] but since shear warp is well-
suited for caching on the CPU, the speed-up gained on this processing unit
cannot be transfered to the GPU which uses the transistors mainly for data
processing. Beyond, optimizations for the algorithm require a nonuniform access
to memory, which is not available on the GPU.

4 Implementation

Due to the evident fact of volume ray casting that each ray is cast into the volume
independently, we realize the compositing equation (2) and (3) in parallel on the
GPU. For each ray, equidistant samples are taken along the ray whereupon
samples between voxels in general are interpolated trilinearly. The samples are
shaded depending on their computed gradients and all sample contributions
along one ray are evaluated by using (2) which then result in the final color of
the according pixel in the image plane. Figures 1 and 2 show images generated
by our ray casting method. We fulfill the parallelization using the CUDA-API,
which distributes the calculations of the final colors on the streaming processors
of the GPU. In the context of GPU programming with CUDA, the CPU is also
called host and the GPU is known as the device [5].

The host loads the application or function that has to be computed as a kernel
onto the device. The kernel will then be executed in parallel by several threads.
A thread denotes one part of an execution in processing of a program. The
2 http://www.voreen.org/

148 J. Fangerau and S. Krömker

Fig. 2. Visualization of two volume examples with the program GVvis using our GPU
ray casting method. In both cases the size of the projected image is 2048×2048 pixels.
Left: CT volume data of dimension 128 × 128 × 62 pixels from a teddy bear. Right:
CT volume data of dimension 256 × 256 × 110 from an engine block with transparent
color properties.

threads are arranged hierarchically within a block and each has an ID number
for addressing. Furthermore, a set of blocks is contained in a grid in which these
blocks also have an ID-number. As a result we have a grid of thread blocks.

In the following we will discuss our algorithm in detail with main focus on the
kernel. On the host, we define a built-in 3D vector in CUDA of dimension n, named
f3Sum, where n is the amount of rays cast into the volume. This vector stores the
results of the compositing equation for each pixel of the image plane in RGB val-
ues. It is initialized with 0 on each thread with associated idx and idy.

f3Sum[idx + imageWidth * idy] = (0,0,0);

On the device, each thread estimates the start and the direction vector f3Start
and f3Dir of one ray, depending on idx and idy as well as the position and
viewing direction of the camera. If the ray intersects the boundary box of the
volume, then (3) will be evaluated in front-to-back order to use early ray termi-
nation. Now, for an arbitrarily chosen stepSize the ray will be traversed until it
either exits the bounding box or the criteria of early ray termination is fulfilled.
The call below is executed on each thread and the contribution of a voxel in
position f3Pos along the ray will be added to the corresponding entry of f3Sum.

for step = 0 to MaxStep do
if (!EarlyRayTerminationIsFulfilled) then

f3Pos = f3Start + step * stepSize * f3Dir;
f3Sum[idx + imageWidth * idy] += ContributionOnPosition(f3Pos);

By using early ray termination we get a percentaged speed-up between 5% and
30% depending on the volume and its position relative to the viewing camera.
The final color of one ray traversal is stored in the associated entry in f3Sum.
This vector will be sent back to the host when the whole processing on the device

Parallel Volume Rendering Implementation on Graphics Cards 149

is done. When kernel execution is completed, a synchronization of all threads
is done automatically so we can be certain that all results are stored in f3Sum.
Afterwards the entries of f3Sum form a RGB texture on the CPU and will be
visualized with the desired size of the image plane.

However, we do not always find the ideal case that all threads have equal
computing times because each ray differs in length depending on volume ori-
entation and viewing direction of the camera. In CUDA, a kernel is processed
by distributing the blocks to multiprocessors with available execution capac-
ity. The threads within a block execute concurrently on one multiprocessor
and when they terminate, new blocks can be launched on the now idle mul-
tiprocessor. In our CUDA implementation, we find out that a block size of
(dimBlock.x = 8) × (dimBlock.y = 8) and a grid size of

⌊
imageWidth+ dimBlock.x− 1

dimBlock.x

⌋
×

⌊
imageHeight+ dimBlock.y− 1

dimBlock.y

⌋

result in the best computation times. Block sizes smaller than 8 × 8 yield lower
framerates [FPS] since a multiprocessor has less work to do and data access on
the global memory is expensive. For block sizes greater than 8×8 we observe not
much of a difference in computation time. Note that this fluctuation depends on
the amount and arrangement of input data to be parallelized.

5 Benchmarks and Results

The program we developed to visualize the volume data is called GVvis which
among other methods, it contains an implemented version of the volume ray
casting algorithm on the CPU as well as on the GPU. Both techniques are
accelerated by using early ray termination. The program is built with g++ 4.3
on an unix system by using C++, OpenGL, CUDA 2.3 and Qt for the GUI.

We examine three different 8-bit volume data generated by CT which are
illustrated in figure 1 and 2. The teddy bear and the engine block are chosen
randomly from open source projects which are provided by the Computer Graph-
ics Group of the University of Erlangen-Nuremberg. The human head is kindly
provided by the German Cancer Research Center (DKFZ). The volumes differ
in their volumetric size and in the amount of transfer functions affecting their
visual appearance. We choose these data to compare the computing times of
our CPU- and GPU-based ray casting version against the image size. There the
image size denotes the resolution of the texture storing the final results. Con-
sequently, the amount of rays cast into the volume is the product of currently
used image width and height of the texture. Hence, a bigger image size yields a
more resolutive visual output.

We consider volume sizes below 20 MB because the graphics card is limited
to its own global memory. Our program needs to send the whole volume dataset
to the device including transfer function elements. For allocating all variables
(e.g. voxel field, gradient, transfer function) we need nearly 300 MB for the
example of the human head. In addition, more than 200 MB of memory have

150 J. Fangerau and S. Krömker

Table 1. Computing time on different computer systems

System 1 System 2
Image size CPU time GPU time CPU

GPU
CPU time GPU time CPU

GPU[pixels] [sec] [sec] [sec] [sec]

Teddy bear, volume size: 128 × 128 × 62, raw file size: 0.99 MB
32 × 32 0.038032 0.030635 1.24 0.027612 0.024472 1.13
64 × 64 0.122649 0.054660 2.24 0.122942 0.025764 4.77

128 × 128 0.463002 0.040498 11.43 0.402457 0.026366 15.26
256 × 256 1.771453 0.050477 35.09 1.501589 0.027952 53.72
512 × 512 6.991023 0.060850 114.89 5.989265 0.034157 175.35

1024 × 1024 27.872928 0.102042 273.15 24.052541 0.071986 334.13
2048 × 2048 111.324370 0.273764 406.64 95.429019 0.201665 473.21

Engine block, volume size: 256 × 256 × 110, raw file size: 6.9 MB
32 × 32 0.048713 0.228838 0.21 0.032698 0.145385 0.22
64 × 64 0.146461 0.211831 0.69 0.114114 0.145455 0.78

128 × 128 0.456134 0.206123 2.21 0.433420 0.146993 2.95
256 × 256 1.700188 0.226943 7.49 1.710926 0.149610 11.44
512 × 512 6.778179 0.254925 26.59 6.795164 0.162959 41.70

1024 × 1024 25.650378 0.295635 86.76 27.249742 0.212555 128.20
2048 × 2048 102.400089 0.505312 202.65 108.903587 0.416474 261.49

Human head, volume size: 336 × 384 × 132, raw file size: 16.2 MB
32 × 32 0.083478 0.482578 0.17 0.080035 0.373132 0.21
64 × 64 0.251737 0.467592 0.54 0.251024 0.366383 0.69

128 × 128 0.984302 0.485343 2.03 0.923825 0.387899 2.38
256 × 256 3.657701 0.526307 6.95 3.376500 0.410511 8.23
512 × 512 14.459413 0.644006 22.45 13.014291 0.476879 27.29

1024 × 1024 57.632532 0.820424 70.25 50.532764 0.592416 85.30
2048 × 2048 230.728418 1.2944500 178.24 198.635344 0.955145 207.96

to be allocated on the device to store the results in f3Sum with an image size
of 4096 × 4096. The benchmarking is done on two different computer systems
displaying image sizes from 322 to 20482 increasing in powers of 2. Hence, with
increasing image size, we always get a scale factor of 4 for f3Sum. Thus, for
an image size of e.g. 8192 × 8192 we have to allocate (4 ∗ 200 MB) + 300 MB =
1100 MB. Therefore, we are constrained to 3D sizes that can fit into the graphics
memory.

In total, we have four processing units in two computer systems (considering
a CPU and a GPU on each) which are compared in visualizing the data.

The two systems have the following specifications:

1. Intel Quad Core i5-750 with 4×2.666 GHz and 4 GB RAM, NVIDIA GeForce
GTX 260 with 896 MB GDDR3 RAM and 27 MPs, OS: Ubuntu 9.10,

Parallel Volume Rendering Implementation on Graphics Cards 151

2. Intel Core 2 Duo E8500 with 2×3.16 GHz and 4 GB RAM, NVIDIA GeForce
GTX 280 with 1024 MB GDDR3 RAM and 30 MPs, OS: Debian 5.0.3.

Table 1 gives an overview about the computing times of the ray casting method
calculated on the CPU and GPU. By evaluating the table, we see the great
speed-up with a peak factor of nearly 400 on system 1 and more than 470 on
system 2 for the teddy bear and an image size of 2048 × 2048 pixels.

The weak start of the GPU is due to the fact that data of small image sizes can
be cached on the CPU and therefore can be processed in a few clock cycles. In con-
trast, the GPU has to broadcast their computed data via the graphics bus to the
main memory of the CPU where they are finally evaluated. In general, we are not
interested in such small images. With increasing size, the visualization process is
faster on the GPU. Considering the CPU computing times on both systems, their
values vary only slightly due to the clock cycles of the CPUs. The small advantage
in speed of the GTX 280 compared to the GTX 260 is because of its amount of
multiprocessors and thus the amount of executing threads in parallel.

Figure 3 shows the computing time of the teddy bear for the different image
sizes. We observe the linear progress of the CPU computing time in contrast to
the almost constant time at the beginning but also slowly increasing time of the
computation on the GPU. We can also see that with increasing image sizes the
speed-up factor is getting even bigger and that the visualization process is only
bounded on the memory resources available on the GPU.

We monitor rates between 5 and 15 FPS on the GPU for the image size of
2048 × 2048 for all three volumes. When comparing these results with the ray
casting implementation in [11] using the fragment shader applied to our three
volumes, our program reaches nearly equal frame rates. Since our code is not yet
optimized in memory access and handling there is still room for improvements.
Mensmann et al. [14] already compared a CUDA and fragment shader version
of ray casting, both implemented in voreen. Their CUDA speed-up varies from
−4% to 42% compared to the fragment shader version of [11]. The negative value

Fig. 3. Image size along computing time described by the logarithm in milliseconds for
the teddy bear

152 J. Fangerau and S. Krömker

appears in using phong shading because complex kernels need many registers and
therefore less threads work concurrently.

6 Conclusion and Outlook

Above results show the effectiveness and rapidness of parallel computation of
volume rendering methods and prove that volume ray casting is well-suited for
computing on GPUs in parallel. It should be remembered that these huge time
differences only occur when comparing our CPU and GPU ray casting versions
and we are conscious of the fact that the CPU as well as the GPU version are
not yet optimized. On the graphics card we are going to improve the perfomance
by using 3D textures and deliberate shared memory handling for better memory
efficiency on the host as well as on the device. Not considering the parallelism
part, we can expand our ray casting algorithm in addition to early ray termina-
tion with empty space skipping to speed up the visualization process even more.
This is also part of our current research.

Another important fact for GPU programming is the data exchange via the
graphics bus. In our program we discover that this is a great bottleneck for the
computing time and ultimately the visualization step. Although we use graphics
cards with PCIe 2.0 x16, which corresponds to a bandwidth of 8 GB/s, we
observe that the transfer time from CPU to GPU and backwards takes nearly
50% of the whole rendering process. Thus we also try to minimize the transfer
rate even if this requires running kernels with low parallelism calculations.

Nevertheless, the physical limit of today’s CPUs is reached sooner or later
because of problems in miniaturization, manufacturing and radiation of heat.
With APIs like CUDA we can implement available algorithms in parallel on the
GPU, in case they can be parallelized (for example, when consisting of inde-
pendent data) instead of proceeding them sequentially on the CPU. However,
CUDA is limited to graphics cards from NVIDIA but with already existing open
programming platforms like the Open Computing Language (OpenCL) created
by the Khronos Group3, parallel programming will be soon available on other
hardware and hence platform independence is guaranteed. Note that not ev-
ery process can be parallelized and just be released on the GPU, thus existing
algorithms have to be examined whether they are suitable for parallelization.
However, using the example of ray casting, we showed that the speed-up on the
graphics card is enormous and the field of applications is multifunctional.

Acknowledgment

The authors like to thank Prof. Dr. Hans-Peter Meinzer and his research group,
especially Mathias Seitel, at the German Cancer Research Center (DKFZ) for
assisting and providing volume datasets.
3 The Khronos group is a consortium which advocates the creation and administration

of open standards in multimedia area.

Parallel Volume Rendering Implementation on Graphics Cards 153

References

1. Lorensen, W.E., Cline, H.E.: Marching Cubes: A High Resolution 3D Surface Con-
struction Algorithm. ACM SIGGRAPH Computer Graphics 21(4), 163–169 (1987)

2. Yu, H., Wang, C., Ma, K.-L.: Massively Parallel Volume Rendering Using 2-3 Swap
Image Compositing. In: Conference on High Performance Networking and Com-
puting - Proceedings of the 2008 ACM/IEEE Conference on Super Computing,
vol. 48, pp. 1–11 (November 2008)

3. Strengert, M., Magallón, M., Weiskopf, D., Guthe, S., Ertl, T.: Large Volume Visu-
alization of Compressed Time-Dependent Datasets on GPU Clusters. In: Parallel
Computing - Parallel Graphics and Visualization, vol. 31, pp. 205–219 (February
2005)

4. Strengert, M., Magallón, M., Weiskopf, D., Guthe, S., Ertl, T.: Hierarchical Vi-
sualization and Compression of Large Volume Datasets Using GPU Clusters. In:
Eurographics Symposium on Parallel Graphics and Visualization (EGPGV 2004),
pp. 41–48 (2004)

5. Compute Unified Device Architecture - Programming Guide 2.0, Nvidia (June
2008)

6. Kajiya, J.T.: The Rendering Equation. ACM SIGGRAPH Computer Graph-
ics 20(4), 143–150 (1986)

7. Lacroute, P.G.: Fast Volume Rendering Using a Shear-Warp Factorization of the
Viewing Transformation. Stanford University, Technical Report: CSL-TR-95-678
(September 1995)

8. Sabella, P.: A Rendering Algorithm for Visualizing 3D Scalar Fields. In: Interna-
tional Conference on Computer Graphics and Interactive Techniques, vol. 22(4),
pp. 51–58. ACM, New York (1988)

9. Fangerau, J.: Volume Rendering auf Graphikkarten und parallele Implementierung
unter CUDA. diploma thesis, Heidelberg University (2009)

10. Shirley, P., Tuchman, A.: A Polygonal Approximation to Direct Scalar Volume
Rendering. ACM SIGGRAPH Computer Graphics 24(5), 63–70 (1990)

11. Krüger, J., Westermann, R.: Acceleration Techniques for GPU-based Volume Ren-
dering. In: Proceedings of the 14th IEEE Visualization, p. 38. IEEE Computer
Society, Los Alamitos (2003)

12. Agus, M., Gobbetti, E., Guitián, J.A.I., Marton, F., Pintore, G.: GPU Accelerated
Direct Volume Rendering on an Interactive Light Field Display. In: Computer
Graphics Forum, vol. 27(2), pp. 231–240 (April 2008)

13. Kim, J.: Volume Ray Casting with CUDA. dissertation, University of Maryland
(2008)

14. Mensmann, J., Ropinski, T., Hinrichs, K.H.: Poster: Slab-Based Raycasting: Ef-
ficient Volume Rendering with CUDA. High Performance Graphics 2009 Posters
(August 2009), http://viscg.uni-muenster.de/publications/2009/MRH09

15. Smelyanskiy, M., Holmes, D., Chhugani, J., Larson, A., Carmean, D.M., Han-
son, D., Dubey, P., Augustine, K., Kim, D., Kyker, A., Lee, V.W., Nguyen, A.D.,
Seiler, L., Robb, R.: Mapping High-Fidelity Volume Rendering for Medical Imag-
ing to CPU, GPU and Many-Core Architectures. In: IEEE Educational Activities
Department, vol. 15(6), pp. 1563–1570 (2009)

16. Sano, K., Kitajima, H., Kobayashi, H., Nakamura, T.: Parallel Processing of the
Shear-Warp Factorization with the Binary-Swap Method on a Distributed-Memory
Multiprocessor System. In: Proceedings of the IEEE Symposium on Parallel Ren-
dering, p. 87 (July/August 1997)

http://viscg.uni-muenster.de/publications/2009/MRH09

Author Index

Abramov, Alexey 131

Bader, David 1
Badia, Rosa M. 54
Bankovic, Zorana 105
Brehm, Matthias 118

Christadler, Iris 4

Dellen, Babette 131

Egawa, Ryusuke 16

Fangerau, Jens 143
Foina, Aislan G. 54

Geveler, Markus 92
Göddeke, Dominik 92
Grozea, Cristian 105
Gutwenger, Carsten 29

Hacker, Hans 118
Heuveline, Vincent 66

Ionescu, Tudor B. 79

Karl, Wolfgang 42
Kobayashi, Hiroaki 16

Krömker, Susanne 143
Kulvicius, Tomas 131

Labarta, Jesus 2
Laskov, Pavel 105
Laurien, Eckart 79

Mallach, Sven 29
Mattes, Oliver 42

Oboril, Fabian 66

Ramirez-Fernandez, Javier 54
Ribbrock, Dirk 92

Sato, Masayuki 16
Scheuermann, Walter 79
Schindewolf, Martin 42
Strzodka, Robert 3

Takizawa, Hiroyuki 16
Trinitis, Carsten 118
Turek, Stefan 92

Weidendorfer, Josef 118
Weinberg, Volker 4
Weiss, Jan-Philipp 66
Wörgötter, Florentin 131

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	Analyzing Massive Social Networks Using Multicore and Multithreaded Architectures
	MareIncognito: A Perspective towards Exascale
	The Natural Parallelism

	Computer Architecture and Parallel Programming
	RapidMind: Portability across Architectures and Its Limitations
	Introduction
	Overview
	Software
	Hardware

	The RapidMind Ports and Their Performance
	Dense Matrix-Matrix Multiplication (mod2am)
	Sparse Matrix-Vector Multiplication (mod2as)
	One-Dimensional Fast Fourier Transformation (mod2f)

	Conclusions and Future Work
	References

	A Majority-Based Control Scheme for Way-Adaptable Caches
	Introduction
	The Way-Adaptable Cache Mechanism
	Mechanism Overview
	Exceptional Disturbances of Cache Accesses

	A Majority-Based Control Scheme for Way-Adaptable Caches
	Evaluations
	Experimental Setup
	Deciding the Length of the Periods
	Evaluation Results of the Proposed Scheme

	Conclusions
	References

	Improved Scalability by Using Hardware-Aware Thread Affinities
	Introduction
	Hardware Preliminaries
	Hardware-Aware Thread Management
	Hardware Awareness
	Thread Affinity
	General Pitfalls
	Implementation of Dispatch Strategies

	Experimental Evaluation
	System Setup
	Results

	Conclusion
	References

	Thread Creation for Self-aware Parallel Systems
	Introduction
	Background and Related Work
	Background
	Related Work

	Design and Implementation
	Protocol Design
	Implementation

	Results
	Conclusion
	References

	Applications on Multicore
	G-Means Improved for Cell BE Environment
	Introduction
	Related Work
	StarSs Framework
	Implementation
	First Improvement: The Projection in the Results Vector
	Second Improvement: Anderson-Darling Test
	Third Improvement: CellSs Configuration and Code Parameters

	Test Methodology
	Results and Discussion
	Conclusions and Future Work
	References

	Parallel 3D Multigrid Methods on the STI Cell BE Architecture
	Introduction
	A Full Multigrid Scheme for a 3D Poisson Problem
	The Cell Broadband Engine Architecture
	Implementation and Optimization
	Data Allocation and NUMA Effects
	Stencil Computations
	Optimizations for the Computations

	Performance Results
	Influence of Applied Optimization Techniques
	Performance of Various Stencil Routines
	Comparison of Gauß-Seidel and Jacobi Smoother
	Results for the Multigrid Method

	Related Work
	Conclusion
	References

	Applying Classic Feedback Control for Enhancing the Fault-Tolerance of Parallel Pipeline Workflows on Multi-core Systems
	Introduction
	Pipeline Workflow Scheduling: The Case of Dispersion Calculation Workflows
	Queueing Network Terminology
	The Dispersion Calculation Workflow

	Feedback Control of Parallel Process Pipelines
	A Discrete Model for Latency in Parallel Process Pipelines
	Controller Design
	Experimental Validation of the Approach

	Novelty of Our Approach and Related Work
	Conclusion and Future Work
	References

	Lattice-Boltzmann Simulation of the Shallow-Water Equations with Fluid-Structure Interaction on Multi- and Manycore Processors
	Introduction and Motivation
	Related Work
	Paper Contribution and Paper Overview

	Mathematical Background
	Shallow Water Equations
	Lattice-Boltzmann Method
	Dry-States and Fluid Structure Interaction

	Implementation and Parallelisation
	Modular FSI-LBM Solver
	Efficient Parallelisation and Vectorisation
	Source Terms and FSI Implementation
	Hardware-Oriented Implementation

	Results
	Validation
	Performance Benchmarks

	Conclusions and Future Work
	References

	FPGA vs. Multi-core CPUs vs. GPUs: Hands-On Experience with a Sorting Application
	Introduction
	Methods
	FPGA
	The complex sort-merge sorting.
	The bitonic sort.
	The insertion sort.

	Multi-core CPUs
	GPUs

	Results and Analysis
	Related Work
	Discussion and Conclusion
	Comparing the Difficulty of Programming and Debugging
	Conclusion

	References
	Appendix 1: Parallel Insertion Sort in VHDL for FPGA
	Appendix 2: OpenMP Benchmark for Sorting
	Appendix 3: Benchmark of Sorting on GPU Using Thrust

	GPGPU Computing
	Considering GPGPU for HPC Centers:Is It Worth the Effort?
	Introduction
	Related Work
	CUDA as an Example for GPGPU Programming
	Methodology
	The PRACE WP8 Benchmarks
	Porting and Optimization Strategies

	Results
	Discussion
	Conclusions and Future Work
	References

	Real-Time Image Segmentation on a GPU
	Introduction
	The Segmentation Algorithm
	Metropolis Algorithm
	Resolving Domain Fragmentation
	Labeling of Connected Components
	Employment of Metropolis for Final Relaxation
	Experimental Environment

	Experimental Results
	Segmentation Results
	Execution Time

	Discussion
	References

	Parallel Volume Rendering Implementation on Graphics Cards Using CUDA
	Introduction
	State-of-the-Art in Volume Rendering
	Parallelization in Visualizing Volume Data
	Implementation
	Benchmarks and Results
	Conclusion and Outlook
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

