
Chapter 7
Ultimate Boundedness and Invariant Measure

We introduce in this chapter the concept of ultimate boundedness in the mean square
sense (m.s.s.) and relate it to the problem of the existence and uniqueness of invari-
ant measure. We consider semilinear stochastic differential equations in a Hilbert
space and their mild solutions under the usual linear growth and Lipschitz condi-
tions on the coefficients. We also study stochastic differential equations in the varia-
tional case, assuming that the coefficients satisfy the coercivity condition, and study
their strong solutions which are exponentially ultimately bounded in the m.s.s.

7.1 Exponential Ultimate Boundedness in the m.s.s.

Definition 7.1 We say that the mild solution of (6.10) is exponentially ultimately
bounded in the mean square sense (m.s.s.) if there exist positive constants c, β , M
such that

E
∥
∥Xx(t)

∥
∥

2
H

≤ ce−βt‖x‖2
H + M for all x ∈ H. (7.1)

Here is an analogue of Theorem 6.4.

Theorem 7.1 The mild solution {Xx(t), t ≥ 0} of (6.10) is exponentially ultimately
bounded in the m.s.s. if there exists a function Ψ ∈ C2

2p(H) satisfying the following
conditions:

(1) c1‖x‖2
H − k1 ≤ Ψ (x) ≤ c2‖x‖2

H − k2,

(2) L Ψ (x) ≤ −c3Ψ (x) + k3,

for x ∈ H , where c1, c2, c3 are positive constants, and k1, k2, k3 ∈ R.

Proof Similarly as in the proof of Theorem 6.4, using Itô’s formula for the solutions
of the approximating equations (6.17) and utilizing condition (2), we arrive at

EΨ
(

Xx(t)
)− EΨ

(

Xx(0)
)≤

∫ t

0

(−c3 EΨ
(

Xx(s)
)+ k3

)

ds.
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Hence, Φ(t) = EΨ (Xx(t)) satisfies

Φ ′(t) ≤ −c3Φ(t) + k3.

By Gronwall lemma,

Φ(t) ≤ k3

c3
+
(

Φ(0) − k3

c3

)

e−c3t .

Using condition (1), we have, for all x ∈ H ,

c1E
∥
∥Xx(t)

∥
∥

2
H

− k1 ≤ EΨ
(

Xx(t)
)≤ k3

c3
+
(

c2‖x‖2
H − k2 − k3

c3

)

e−c3t ,

and (7.1) follows. �

Theorem 7.2 Assume that A generates a pseudo-contraction semigroup of oper-
ators {S(t), t ≥ 0} on H . If the mild solution {Xx

0 (t), t ≥ 0} of the linear equa-
tion (6.22) is exponentially ultimately bounded in the m.s.s., then there exists a
function Ψ0 ∈ C2

2p(H) satisfying conditions (1) and (2) of Theorem 7.1, with the
operator L0 replacing L in condition (2).

Proof Since the mild solution Xx
0 (t) is exponentially ultimately bounded in the

m.s.s., we have

E
∥
∥Xx

0 (t)
∥
∥

2
H

≤ ce−βt‖x‖2
H + M for all x ∈ H.

Let

Ψ0(x) =
∫ T

0
E
∥
∥Xx

0 (s)
∥
∥2
H

ds + α‖x‖2
H ,

where T and α are constants to be determined later.
First, let us show that Ψ0 ∈ C2

2p(H). It suffices to show that

ϕ0(x) =
∫ T

0
E
∥
∥Xx

0 (s)
∥
∥2
H

ds ∈ C2
2p(H).

Now,

ϕ0(x) ≤ c

β

(

1 − e−βT
)‖x‖2

H + MT ≤ c

β
‖x‖2

H + MT.

If ‖x‖2
H = 1, then ϕ0(x) ≤ c/β + MT .

Since Xx
0 (t) is linear in x, we have that, for any positive constant k, Xkx

0 (t) =
kXx

0 (t). Hence, ϕ0(kx) = k2ϕ0(x), and for any x ∈ H ,

ϕ0(x) = ‖x‖2
Hϕ

(
x

‖x‖H

)

≤
(

c

β
+ MT

)

‖x‖2
H .
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Let c′ = c/β + MT . Then φ0(x) ≤ c′‖x‖2
H for all x ∈ H . For x, y ∈ H , define

τ(x, y) =
∫ T

0
E
〈

Xx
0 (s),X

y

0 (s)
〉

H
ds.

Then τ(x, y) is a nonnegative definite bounded bilinear form on H × H since
ϕ0(x) ≤ c′‖x‖2

H . Hence, τ(x, y) = 〈Cx,y〉H , where C is a nonnegative definite
bounded linear operator on H with ‖C‖L (H) ≤ c′. Therefore, ϕ0 = 〈Cx,x〉H ∈
C2

2p(H), and Ψ0 ∈ C2
2p(H). Clearly Ψ0 satisfies condition (1) of Theorem 7.1. To

prove (2), observe that by the continuity of the function t → E‖Xx
0 (t)‖2

H and be-
cause

Eϕ0
(

Xx
0 (r)

)=
∫ T

0
E
∥
∥Xx

0 (r + s)
∥
∥2
H

ds =
∫ T+r

r

E
∥
∥Xx

0 (s)
∥
∥2
H

ds,

we have

L0ϕ0(x) = d

dr

(

Eϕ0
(

Xx
0 (r)

))
∣
∣
∣
∣
r=0

= lim
r→0

Eϕ0(X
x
0 (r)) − Eϕ0(x)

r

= lim
r→0

(

−1

r

∫ r

0
E
∥
∥Xx

0 (s)
∥
∥

2
H

ds + 1

r

∫ r+T

T

E
∥
∥Xx

0 (s)
∥
∥

2
H

ds

)

= −‖x‖2
H + E

∥
∥Xx

0 (T )
∥
∥2
H

≤ −‖x‖2
H + ce−βT ‖x‖2

H + M

≤ (−1 + ce−βT
)‖x‖2

H + M.

Therefore, since by (6.32), L0‖x‖2
H ≤ (2λ + d2 tr(Q))‖x‖2

H , we have

L0Ψ0(x) = L0ϕ0(x) + L0‖x‖2
H

≤ (−1 + ce−βT
)‖x‖2

H + α
(

2λ + d2 tr(Q)
)‖x‖2

H + M. (7.2)

If T > ln(c/β), then one can choose α small enough such that Ψ0(x) satisfies con-
dition (2) with L replaced by L0. �

The following theorem is a counterpart of Remark 6.1 in the framework of expo-
nential ultimate boundedness.

Theorem 7.3 If the mild solution of (6.10) is exponentially ultimately bounded in
the m.s.s. and, for some T > 0,

ϕ(x) =
∫ T

0
E
∥
∥Xx(t)

∥
∥

2
H

dt ∈ C2
2p(H),



236 7 Ultimate Boundedness and Invariant Measure

then there exists a (Lyapunov) function Ψ ∈ C2
2p(H) satisfying conditions (1)

and (2) of Theorem 7.1.

Theorem 7.4 Suppose that the mild solution Xx
0 (t) of the linear equation (6.22)

satisfies condition (7.1). Then the mild solution Xx(t) of (6.10) is exponentially
ultimately bounded in the m.s.s. if

2‖x‖H

∥
∥F(x)

∥
∥
H

+ τ
(

B(x)QB∗(x) − B0xQ(B0x)
∗)< ω̃‖x‖2

H + M1, (7.3)

where ω̃ < maxs>ln(c/β)(1 − ce−βs)/(c/β + Ms).

Proof Let Ψ0(x) be the Lyapunov function as defined in Theorem 7.2, with T >

ln(c/β), such that the maximum in the definition of ω̃ is achieved. It remains to
show that

L Ψ0(x) ≤ −c3Ψ0(x) + k3.

Since Ψ0(x) = 〈Cx,x〉H + α‖x‖2
H for some C ∈ L (H) with ‖C‖L (H) ≤ c/β +

MT and α sufficiently small, we have

L Ψ0(x) − L0Ψ0(x)

≤ (‖C‖L (H) + α
)(

2‖x‖H
∥
∥F(x)

∥
∥
H

+ τ
(

B(x)QB∗(x) − B0xQ(B0x)
∗))

≤ (c/β + MT + α)
(

ω̃‖x‖2
H + M1

)

.

Using (7.2), we have

L Ψ0(x) ≤ (−1 + ce−βT
)‖x‖2

H + α
(

2λ + d2 tr(Q)
)‖x‖2

H + M

+ (c/β + MT + α)
(

ω̃‖x‖2
H + M1

)

≤ (−1 + ce−βT + ω̃(c/β + MT )
)‖x‖2

H

+ α
(

2λ + d2 tr(Q) + ω̃
)‖x‖2

H + M + (c/β + MT + α).

Using the bound for ω̃, we have −1 + ce−βT + ω̃(c/β + MT ) < 0, so that we can
choose α small enough to obtain condition (2) of Theorem 7.1. �

Corollary 7.1 Suppose that the mild solution Xx
0 (t) of the linear equation (6.22) is

exponentially ultimately bounded in the m.s.s. If, as ‖x‖H → ∞,
∥
∥F(x)

∥
∥
H

= o
(‖x‖H

)

and τ
(

B(x)QB∗(x) − B0xQ(B0x)
∗)= o

(‖x‖H

)

,

then the mild solution Xx(t) of (6.10) is exponentially ultimately bounded in the
m.s.s.

Proof We fix ω̃ < maxs>ln(c/β)(1 − ce−βt /(c/β + Ms), and using the assumptions,
we choose a constant K such that for ‖x‖H ≥ K , condition (7.3) holds. But for
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‖x‖H ≤ K , by appealing to the growth conditions on F and B ,

2‖x‖H
∥
∥F(x)

∥
∥
H

+ τ
(

B(x)QB∗(x) − B0xQ(B0x)
∗)

≤ ‖x‖2
H + ∥

∥F(x)
∥
∥2
H

+ τ
(

B(x)QB∗(x) − B0xQ(B0x)
∗)

≤ ‖x‖2
H + �

(

1 + ‖x‖2
H

)+ (‖B0x‖2
L (H)

)

tr(Q)

≤ ‖x‖2
H + �

(

1 + ‖x‖2
H

)+ d2‖x‖2
H tr(Q)

≤ K2 + �
(

1 + K2)+ M ′.

Hence, condition (7.3) holds with the constant M1 = K2 + �(1 +K2)+M ′, and the
result follows from Theorem 7.4. �

Example 7.1 (Dissipative Systems) Consider SSDE (6.10) and, in addition to as-
sumptions (1)–(3) in Sect. 6.2, impose the following dissipativity condition:

(D) (Dissipativity) There exists a constant ω > 0 such that for all x, y ∈ H and
n = 1,2, . . . ,

2
〈

An(x − y), x − y
〉

H
+ 2

〈

F(x) − F(y), x − y
〉

H
+ ∥
∥B(x) − B(y)

∥
∥

L2(KQ,H)

≤ −ω‖x − y‖2
H , (7.4)

where Anx = ARnx, x ∈ H , are the Yosida approximations of A defined
in (1.22).

Then the mild solution to (6.10) is ultimately exponentially bounded in the m.s.s.
(Exercise 7.1).

Exercise 7.1 (a) Show that condition (D) implies that for any ε > 0, there exists a
constant Cε > 0 such that for any x ∈ H and n = 1,2, . . . ,

2〈Anx,x〉H + 2
〈

F(x), x
〉

H
+ ∥
∥B(x)

∥
∥

L2(KQ,H)
≤ −(ω − ε)‖x‖2

H + Cε

with An, the Yosida approximations of A. Use this fact to prove that the strong solu-
tions Xx

n(t) of the approximating SDEs (6.12) are ultimately exponentially bounded
in the m.s.s. Conclude that the mild solution Xx(t) of (6.10) is ultimately exponen-
tially bounded in the m.s.s.

(b) Prove that if zero is a solution of (6.10), then the mild solution Xx(t) of (6.10)
is exponentially stable in the m.s.s.

7.2 Exponential Ultimate Boundedness in Variational Method

We study in this section strong solutions to (6.37) whose coefficients satisfy linear
growth, coercivity, and monotonicity assumptions (6.38)–(6.40).
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Definition 7.2 We extend Definition 7.1 of exponential ultimate boundedness in the
m.s.s. to the strong solution {Xx(t), t ≥ 0} of (6.37) and say that Xx(t) is exponen-
tially ultimately bounded in the m.s.s. if it satisfies condition (7.1).

Let us begin by noting that the proof of Theorem 7.1 can be carried out in this
case if we assume that the function Ψ satisfies conditions (1)–(5) of Theorem 6.10
and that the operator L is defined by

L Ψ (u) = 〈

Ψ ′(u),A(u)
〉+ tr

(

Ψ ′′(u)B(u)QB∗(u)
)

. (7.5)

Hence, we have the following theorem.

Theorem 7.5 The strong solution {Xx(t), t ≥ 0} of (6.37) is exponentially ulti-
mately bounded in the m.s.s. if there exists a function Ψ : H → R satisfying condi-
tions (1)–(5) of Theorem 6.10 and, in addition, such that

(1) c1‖x‖2
H − k1 ≤ Ψ (x) ≤ c2‖x‖2

H + k2 for some positive constants c1, c2, k1, k2

and for all x ∈ H ,
(2) L Ψ (x) ≤ −c3Ψ (x) + k3 for some positive constants c3, k3 and for all x ∈ V .

In the linear case, we have both, sufficiency and necessity, and the Lyapunov
function has an explicit form under the general coercivity condition (C).

Theorem 7.6 A solution {Xx
0 (t), t ≥ 0} of the linear equation (6.42) whose coeffi-

cients satisfy coercivity condition (6.39) is exponentially ultimately bounded in the
m.s.s. if and only if there exists a function Ψ0 : H → R satisfying conditions (1)–(5)
of Theorem 6.10 and, in addition, such that

(1) c1‖x‖2
H − k1 ≤ Ψ0(x) ≤ c2‖x‖2

H + k2 for some positive constants c1, c2, k1, k2

and for all x ∈ H ,
(2) L0Ψ0(x) ≤ −c3Ψ0(x)+k3 for some positive constants c3, k3 and for all x ∈ V .

This function can be written in the explicit form

Ψ0(x) =
∫ T

0

∫ t

0
E
∥
∥Xx

0 (s)
∥
∥2
V
ds dt (7.6)

with T > α0(c|λ|/(αβ) + 1/α), where α0 is such that ‖v‖2
H ≤ α0‖v‖2

V , v ∈ V .

Proof Assume that the solution {Xx
0 (t), t ≥ 0} of the linear equation (6.42) is ex-

ponentially ultimately bounded in the m.s.s., so that

E
∥
∥Xx

0 (t)
∥
∥2
H

≤ ce−βt‖x‖2
H + M for all x ∈ H.
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Applying Itô’s formula to the function ‖x‖2
H , taking the expectations, and using the

coercivity condition (6.39), we obtain

E
∥
∥Xx

0 (t)
∥
∥

2
H

− ‖x‖2
H =

∫ t

0
EL0

∥
∥Xx

0 (s)
∥
∥

2
H

ds

≤ λ

∫ t

0
E
∥
∥Xx

0 (s)
∥
∥

2
H

ds − α

∫ t

0
E
∥
∥Xx

0 (s)
∥
∥

2
V
ds + γ t. (7.7)

Hence,
∫ t

0
E
∥
∥Xx

0 (s)
∥
∥2
V

≤ 1

α

(

λ

∫ t

0
E
∥
∥Xx

0 (s)
∥
∥2
H

ds + ‖x‖2
H + γ t

)

.

Applying condition (7.1), we have

∫ t

0
E
∥
∥Xx

0 (s)
∥
∥

2
V

≤ 1

α

(
c|λ|
β

(

1 − e−βt
)‖x‖2

H + ‖x‖2
H + (|λ|M + γ

)

t

)

≤
(
c|λ|
α β

+ 1

α

)

‖x‖2
H + |λ|M + γ

α
t.

Therefore, with Ψ0 defined in (7.6),

Ψ0(x) =
∫ T

0

∫ t

0
E
∥
∥Xx

0 (s)
∥
∥

2
V
ds dt ≤

(
1

α
+ c|λ|

α β

)

T ‖x‖2
H + |λ|M + γ

2α
T 2. (7.8)

Now
∣
∣L0‖v‖2

H

∣
∣≤ 2a1‖v‖2

V + b2
1 tr(Q)‖v‖2

V ≤ c′‖v‖2
V

for some positive constant c′. Therefore, we conclude that

L0‖v‖2
H ≥ −c′‖v‖2

V .

From (7.7) we get

E
∥
∥Xx

0 (t)
∥
∥

2
H

− ‖x‖2
H ≥ −c′

∫ t

0
E
∥
∥Xx

0 (s)
∥
∥

2
V
ds.

Using (7.1), we have

c′
∫ t

0
E
∥
∥Xx

0 (t)
∥
∥

2
V
ds ≥ (

1 − e−βt
)‖x‖2

H − M.

Hence,

Ψ0(x) ≥ 1

c′

∫ T

0
‖x‖2

H

(

1 − e−βt
)

dt − MT ≥ 1

c′

(

T − c

β

)

‖x‖2
H − MT

c′ .

Choose T > c/β to obtain condition (1).
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To prove that condition (2) holds, consider

EΨ0
(

Xx
0 (r)

)=
∫ T

0

∫ t

0
E
∥
∥X

Xx
0 (r)

0 (s)
∥
∥

2
V
ds dt.

By the Markov property of the solution and the uniqueness of the solution,

EΨ0
(

Xx
0 (r)

)=
∫ T

0

∫ t

0
E
∥
∥Xx

0 (s + r)
∥
∥2
V
ds dt =

∫ T

0

∫ t+r

r

E
∥
∥Xx

0 (s)
∥
∥2
V
ds dt.

We now need the following technical lemma that will be proved later.

Lemma 7.1 If f ∈ L1([0, T ]), T > 0, is a nonnegative real-valued function, then

lim
Δt→0

∫ T

0

∫ t+Δt

t
f (s) ds

Δt
dt =

∫ T

0
lim

Δt→0

∫ t+Δt

t
f (s) ds

Δt
dt =

∫ T

0
f (t) dt.

Assuming momentarily that Ψ0 satisfies conditions (1)–(5) of Theorem 6.10, we
have

L0Ψ0(x) = d

dr

(

EΨ0
(

Xx
0 (r)

))
∣
∣
∣
∣
r=0

= lim
r→0

∫ T

0

∫ t+r

t
E‖Xx

0 (s)‖2
V ds

r
dt − lim

r→0

T

r

∫ r

0
E
∥
∥Xx

0 (s)
∥
∥

2
V
ds

≤
∫ T

0
E
∥
∥Xx

0 (t)
∥
∥2
V
dt − lim

r→0

T

α0

1

r

∫ r

0
E
∥
∥Xx

0 (s)
∥
∥2
H

ds

for α0 such that ‖v‖2
H ≤ α0‖v‖2

V . This gives

L0Ψ0(x) ≤
(
c|λ|
α β

+ 1

α
− T

α0

)

‖x‖2
H + |λ|M + γ

α
T . (7.9)

With T > α0(
c|λ|
α β

+ 1
α
), condition (2) holds.

It remains to prove that Ψ0 satisfies conditions (1)–(5) of Theorem 6.10. We use
linearity of (6.42) to obtain, for any positive constant k,

Xkx
0 (t) = kXx

0 (t).

Then Ψ0(kx) = k2Ψ0(x), and by (7.8), for ‖x‖H = 1,

Ψ0(x) ≤
(

1

α
+ c|λ|

α β

)

T + |λ|M + γ

2α
T 2.

Hence, for x ∈ H ,

Ψ0(x) ≤ ‖x‖2
HΨ0

(
x

‖x‖H

)

≤
[(

1

α
+ c|λ|

α β

)

T + |λ|M + γ

2α
T 2
]

‖x‖2
H , (7.10)
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which implies that Ψ0(x) ≤ c′′‖x‖2
H for all x ∈ H . For x, y ∈ H , denote

τ(x, y) =
∫ T

0

∫ t

0
E
〈

Xx
0 (s),X

y

0 (s)
〉

H
ds dt ≤ Ψ

1
2

0 (x)Ψ
1
2

0 (y) ≤ c′′‖x‖H‖y‖H .

Then τ is a continuous bilinear form on H × H , and there exists C ∈ L (H), with
‖C‖L (H) ≤ c′′, such that

τ(x, y) = 〈Cx,y〉H . (7.11)

Using the continuity of the embedding V ↪→ H , we conclude that τ(x, y) is a con-
tinuous bilinear form on V × V , and hence,

τ(x, y) = 〈C̃x, y〉V for x, y ∈ V, (7.12)

with C̃ ∈ L (V ). Now it is easy to verify that Ψ0 satisfies conditions (1)–(5) of
Theorem 6.10. �

Proof of Lemma 7.1 We are going to use the Fubini theorem to change the order of
integrals,

∫ T

0

∫ t+Δt

t
f (s) ds

Δt
dt = 1

Δt

∫ T

0

(∫ t+Δt

0
f (s) ds

)

dt

= 1

Δt

[∫ Δt

0

(∫ s

0
f (s) dt

)

ds +
∫ T

Δt

(∫ T

s−Δt

f (s) dt

)

ds

+
∫ T+Δt

T

(∫ T

s−Δt

f (s) dt

)

ds

]

= 1

Δt

[∫ Δt

0
sf (s) ds +

∫ T

Δt

f (s)Δt ds +
∫ T+Δt

T

f (s)(T + Δt − s) ds

]

≤ 1

Δt

[

Δt

∫ Δt

0
f (s) ds + Δt

∫ T

Δt

f (s) ds + Δt

∫ T+Δt

T

f (s) ds

]

=
∫ Δt

0
f (s) ds +

∫ T

Δt

f (s) ds +
∫ T+Δt

T

f (s) ds.

The first and third terms converge to zero as Δt → 0, so that

lim
Δt→0

∫ T

0

∫ t+Δt

t
f (s) ds

Δt
dt ≤

∫ T

0
f (t) dt.

The opposite inequality follows directly from Fatou’s lemma. �

By repeating the proof of Theorem 7.6, we obtain a partial converse of Theo-
rem 7.5.
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Theorem 7.7 Let the strong solution {Xx(t), t ≥ 0} of (6.37) be exponentially ul-
timately bounded in the m.s.s. Let

Ψ (x) =
∫ T

0

∫ t

0
E
∥
∥Xx(s)

∥
∥

2
V
ds dt (7.13)

with T > α0(c|λ|/(αβ)+ 1/α), where α0 is such that ‖v‖2
H ≤ α0‖v‖2

V , v ∈ V . Sup-
pose that Ψ (x) satisfies conditions (1)–(5) of Theorem 6.10. Then Ψ (x) satisfies
conditions (1) and (2) of Theorem 7.5.

To study exponential ultimate boundedness, i.e., condition (7.1), for the strong
solution of (6.37), we use linear approximation and the function Ψ0 of the corre-
sponding linear equation (6.42) as the Lyapunov function. We will prove the fol-
lowing result.

Theorem 7.8 Suppose that the coefficients of the linear equation (6.42) satisfy
the coercivity condition (6.39) and its solution {Xx

0 (t), t ≥ 0} is exponentially ul-
timately bounded in the m.s.s. Let {Xx(t), t ≥ 0} be the solution of the nonlinear
equation (6.37). Furthermore, we suppose that

A(v) − A0v ∈ H for all v ∈ V

and that, for v ∈ V ,

2‖v‖H

∥
∥A(v) − A0v

∥
∥
H

+ τ
(

B(v)QB∗(v) − B0vQ(B0v)
∗)≤ ω̃‖v‖2

H + k,

where ω̃ and k are constants, and

ω̃ <
c

α0β
[( 1

α
+ c|λ|

αβ

)+ ( 1
α

+ c|λ|
αβ

+ c
β

)+ |λ|M
2α

( 1
α

+ c|λ|
αβ

+ c
β

)2]
.

Then Xx(t) is exponentially ultimately bounded in the m.s.s.

Proof Let

Ψ0(x) =
∫ T0

0

∫ t

0
E
∥
∥Xx

0 (t)
∥
∥

2
V
ds dt

with T0 = α0(c|λ|/(αβ) + 1/α) + c/β . Then Ψ0(s) satisfies conditions (1)–(5) of
Theorem 6.10, and for all x ∈ H ,

c1‖x‖2
H − k1 ≤ Ψ0(x) ≤ c2‖x‖2

H + k2.

It remains to prove that, for all x ∈ V ,

L Ψ0(x) ≤ −c3Ψ0(s) + k3.
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Then we can conclude the result by Theorem 7.5. Now, for x ∈ V ,

L Ψ0(x) − L0Ψ0(x)

= 〈

Ψ ′
0(x),A(x) − A0x

〉+ 1

2
tr
(

Ψ ′′
0 (x)

(

B(x)QB∗(x) − B0xQ(B0x)
∗))

= 〈

Ψ ′
0(x),A(x) − A0x

〉

H
+ 1

2
tr
(

Ψ ′′
0 (x)

(

B(x)QB∗(x) − B0xQ(B0x)
∗)).

But Ψ ′
0(x) = 2Cx and Ψ ′′

0 (x) = 2C for x ∈ V , where C is defined in (7.11). By
inequality (7.10),

‖C‖L (H) ≤
(

1

α
+ c|λ|

α β

)

T0 + |λ|M + γ

2α
T 2

0 .

Hence,

L Ψ0(x)−L0Ψ0(x) ≤ 2
〈

Cx,A(x)−A0x
〉

H
+τ

(

C
(

B(x)QB∗(x)−B0xQ(B0x)
∗)),

and we have

L Ψ0(x) ≤ L0Ψ0(x) + ‖C‖L (H)

[

2‖x‖H‖A(x) − A0x‖H

+ τ
(

B(x)QB∗(x) − B0xQ(B0x)
∗)].

When T = T0, from (7.9) we have

L0Ψ0(x) ≤ − c

α0β
‖x‖2

H + |λ|M + γ

α
T0,

giving

L Ψ0(x) ≤ − c

α0β
‖x‖2

H + |λ|M + γ

α
T0 + ‖C‖L (H)

(

ω̃‖x‖2
H + k

)

≤
(

− c

α0β
+ ω̃‖C‖L (H)

)

‖x‖2
H + |λ|M + γ

α
T0 + k‖C‖L (H).

Now, −c/(α0β) + ω̃‖C‖L (H) < 0 if ω̃ satisfies our original assumption, and we
arrive at L Ψ0(x) ≤ −c3Ψ0(x) + k3 with c3 > 0. �

Remark 7.1 Note that the function Ψ0(x) in Theorem 7.8 is the Lyapunov function
for the nonlinear equation.

Corollary 7.2 Suppose that the coefficients of the linear equation (6.42) satisfy
the coercivity condition (6.39), and its solution {Xx

0 (t), t ≥ 0} is exponentially ul-
timately bounded in the m.s.s. Let {Xx(t), t ≥ 0} be a solution of the nonlinear
equation (6.37). Furthermore, suppose that

A(v) − A0v ∈ H for all v ∈ V
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and that, for v ∈ V ,

2‖v‖H

∥
∥A(v)−A0v

∥
∥
H

+ τ
(

B(v)QB∗(v)−B0vQ(B0v)
∗)≤ k

(

1 +‖v‖2
H

)

(7.14)

for some k > 0. If for v ∈ V , as ‖v‖H → ∞,
∥
∥A(v) − A0v

∥
∥
H

= o
(‖v‖H

)

and
τ
(

B(v)QB∗(v) − B0vQ(B0v)
∗)= o

(‖v‖2
H

)

,

(7.15)

then Xx(t) is exponentially ultimately bounded in the m.s.s.

Proof Under assumption (7.15), for a constant ω̃ satisfying the condition of Theo-
rem 7.8, there exists an R > 0 such that, for all v ∈ V with ‖v‖H > R,

2‖v‖H
∥
∥A(v) − A0v

∥
∥
H

+ τ
(

B(v)QB∗(v) − B0vQ(B0v)
∗)≤ ω̃‖v‖2

H .

For v ∈ V and ‖v‖H < R, by (7.14),

2‖v‖H
∥
∥A(v) − A0v

∥
∥
H

+ τ
(

B(v)QB∗(v) − B0vQ(B0v)
∗)

≤ k
(

1 + ‖v‖2
H

)≤ k
(

1 + R2).

Hence, we have

2‖v‖H
∥
∥A(v) − A0v

∥
∥
H

+ τ
(

B(v)QB∗(v) − B0vQ(B0v)
∗)

≤ ω̃‖v‖2
H + (k + 1)R2.

An appeal to Theorem 7.8 completes the proof. �

Theorem 7.9 Suppose that the coefficients of the linear equation (6.42) satisfy
the coercivity condition (6.39) and its solution {Xx

0 (t), t ≥ 0} is exponentially ul-
timately stable in the m.s.s. with the function t → E‖Xx

0 (t)‖2
V being continuous for

all x ∈ V . Let {Xx(t), t ≥ 0} be a solution of the nonlinear equation (6.37). If for
v ∈ V ,

2‖v‖V

∥
∥A(v) − A0v

∥
∥
V ∗ + τ

(

B(v)QB∗(v) − B0vQ(B0v)
∗)≤ ω̃0‖v‖2

V + k0

for some constants ω̃0, k0 such that

ω̃ <
c

(α0 + 1)β
[( 1

α
+ c|λ|

αβ

)+ ( 1
α

+ c|λ|
αβ

+ c
β

)+ |λ|M
2α

( 1
α

+ |λ|
αβ

+ c
β

)2]
,

then Xx(t) is exponentially ultimately bounded in the m.s.s.

Proof Let, as before,

Ψ0(x) =
∫ T0

0

∫ t

0
E
∥
∥Xx

0 (t)
∥
∥

2
V
ds dt
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with T0 = α0(c|λ|/(αβ) + 1/α) + c
β

. For x ∈ V ,

L Ψ0(x) − L0Ψ0(x)

= 〈

Ψ ′
0(x),A(x) − A0x

〉+ 1

2
tr
(

Ψ ′′
0 (x)

(

B(x)QB∗(x) − B0xQ(B0x)
∗))

with Ψ ′
0(x) = 2C̃x and Ψ ′′

0 (x) = 2C, where the operators C and C̃ are defined
in (7.11) and (7.12). By inequality (7.10) and the continuity of the embedding
V ↪→ H ,

‖C‖L (H) ≤
(

1

α
+ c|λ|

α β

)

T0 + |λ|M + γ

2α
T 2

0 ,

‖C̃‖L (V ) ≤ α0‖C‖L (V ).

Hence,

L Ψ0(x)−L0Ψ0(x) ≤ 2〈C̃x,Ax−A0x〉H + tr
(

C
(

B(x)QB∗(x)−B0xQ(B0x)
∗)),

and we have

L Ψ0(x) ≤ L0Ψ0(x) + 2‖C̃‖L (V )‖x‖V ‖Ax − A0x‖V ∗

+ tr
(

CB(x)QB∗(x) − B0xQ(B0x)
∗)

≤ L0Ψ0(x) + (‖C‖L (H) + ‖C̃‖L (V )

)(

2‖x‖V ‖Ax − A0x‖V ∗

+ τ
(

B(x)QB∗(x) − B0xQ(B0x)
∗)).

Since s → E‖Xx
0 (s)‖2

V is a continuous function, we obtain from earlier relations for
L0Ψ0(x) that

L0Ψ0(x) ≤ − c

β
‖x‖2

V + |λ|M + γ

α
T0.

Hence,

L Ψ0(x) ≤ − c

β
‖x‖2

V + |λ|M
α

T0 + (‖C‖L (H) + ‖C̃‖L (V )

)(

ω̃0‖x‖2
V + k0

)

≤
(

− c

β
+ ω̃0

(‖C‖L (H) + ‖C̃‖L (V )

)
)

‖x‖2
V

+ k0

(

‖C‖L (H) + ‖C̃‖L (V ) + |λ|M + γ

α
T0

)

.

Since, with the condition on ω̃0, −c/β + ω̃0(‖C‖L (H) + ‖C̃‖L (V )) < 0, we see
that conditions analogous to those of Theorem 7.1 are satisfied by Ψ0, giving the
result. �
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Corollary 7.3 Suppose that the coefficients of the linear equation (6.42) satisfy the
coercivity condition (6.39) and its solution {Xx

0 (t), t ≥ 0} is exponentially ultimately
bounded in the m.s.s. with the function t → E‖Xx

0 (t)‖2
V being continuous for all

x ∈ V . Let {Xx(t), t ≥ 0} be a solution of the nonlinear equation (6.37). If for
v ∈ V , as ‖v‖V → ∞,

∥
∥A(v) − A0v

∥
∥
V ∗ = o

(‖v‖V

)

and

τ
(

B(v)QB∗(v) − B0vQ(B0v)
∗)= o

(‖v‖2
V

)

,

(7.16)

then Xx(t) is exponentially ultimately bounded in the m.s.s.

Proof We shall use Theorem 7.9. Under assumption (7.16), for a constant ω̃0 satis-
fying the condition of Theorem 7.9, there exists an R > 0 such that, for all v ∈ V

with ‖v‖V > R,

2‖v‖V

∥
∥A(v) − A0v

∥
∥
V ∗ + τ

(

B(v)QB∗(v) − B0vQ(B0v)
∗)≤ ω̃0‖v‖2

V .

Using that ‖A(v)‖V ∗ , ‖A0(v)‖V ∗ ≤ a1‖v‖V and ‖B(v)‖L (K,H), ‖B0v‖L (K,H) ≤
b1‖v‖V , we have, for v ∈ V such that ‖v‖H < R,

2‖v‖V
∥
∥A(v) − A0v

∥
∥
V ∗ + τ

(

B(v)QB∗(v) − B0vQ(B0v)
∗)

≤ 4a1‖v‖2
V + (∥

∥B(v)
∥
∥

2
L (K,H)

+ ‖B0v‖2
L (K,H)

)

tr(Q)

≤ (

4a1 + 2b2
1 tr(Q)

)‖v‖2
V

≤ (

4a1 + 2b2
1 tr(Q)

)

R2.

Hence, for v ∈ V ,

2‖v‖V

∥
∥A(v) − A0v

∥
∥
V ∗ + τ

(

B(v)QB∗(v) − B0vQ(B0v)
∗)

≤ ω̃0‖v‖2
V + (

4a1 + 2b2
1 tr(Q)

)

R2.

An appeal to Theorem 7.9 completes the proof. �

7.3 Abstract Cauchy Problem, Stability and Exponential
Ultimate Boundedness

We present an analogue of a result of Zakai and Miyahara for the infinite-
dimensional case.

Definition 7.3 A linear operator A : V → V ∗ is called coercive if it satisfies the
following coercivity condition: for some α > 0, γ,λ ∈ R, and all v ∈ V ,

2〈v,Av〉 ≤ λ‖v‖2
H − α‖v‖2

V + γ. (7.17)
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Proposition 7.1 Consider a stochastic evolution equation,

{

dX(t) = A0X(t) dt + F(X(t)) dt + B(X(t)) dWt ,

X(0) = x ∈ H,
(7.18)

with the coefficients A0 and F satisfying the following conditions:

(1) A0 : V → V ∗ is coercive.
(2) F : V → H , B : V → L (K,H), and there exists a constant K > 0 such that

for all v ∈ V ,

∥
∥F(v)

∥
∥2
H

+ ∥
∥B(v)

∥
∥

2
L (K,H)

≤ K
(

1 + ‖v‖2
H

)

.

(3) There exists a constant L> 0 such that for all v, v′ ∈ V ,

∥
∥F(v) − F(v′)

∥
∥2
H

+ tr
((

B(v) − B(v′)
)

Q
(

B∗(v) − B∗(v′)
))≤ L‖v − v′‖2

H .

(4) For v ∈ V , as ‖v‖H → ∞,

∥
∥F(v)

∥
∥
H

= o
(‖v‖H

)

,
∥
∥B(v)

∥
∥

L (K,H)
= o

(‖v‖H

)

.

If the classical solution {ux(t), t ≥ 0} of the abstract Cauchy problem

⎧

⎨

⎩

du(t)

dt
= A0u(t),

u(0) = x ∈ H,

(7.19)

is exponentially stable (or even exponentially ultimately bounded), then the solution
of (7.18) is exponentially ultimately bounded in the m.s.s.

Proof Let A(v) = A0v + F(v) for v ∈ V . Since F(v) ∈ H ,

2
〈

v,A(v)
〉+ tr

(

B(v)QB∗(v)
)

= 2〈v,A0v〉 + 2
〈

v,F (v)
〉+ tr

(

B(v)QB∗(v)
)

≤ λ‖v‖2
H − α‖v‖2

V + 2‖v‖H
∥
∥F(v)

∥
∥
H

+ ∥
∥B(v)

∥
∥

2
L (K,H)

tr(Q)

≤ λ′‖v‖2
H − α‖v‖2

H + γ

for some constants λ′ and γ . Hence, the evolution equation (7.18) satisfies the coer-
civity condition (6.39). Under assumption (2)

∥
∥F(v)

∥
∥

2
H

+ tr
(

B(v)QB∗(v)
)≤ ∥

∥F(v)
∥
∥

2
H

+ tr(Q)
∥
∥B(v)

∥
∥

2
L (K,H)

≤ (

1 + tr(Q)
)

K
(

1 + ‖v‖2
H

)

,
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so that condition (7.14) holds, and since
∥
∥F(v)

∥
∥
H

= o
(‖v‖H

)

and τ
(

B(v)QB∗(v)
)= o

(‖v‖2
H

)

as ‖v‖H → ∞,

Corollary 7.2 gives the result. �

Example 7.2 (Stochastic Heat Equation) Let S1 be the unit circle realized as the
interval [−π,π] with identified points −π and π . Denote by W 1,2(S1) the Sobolev
space on S1 and by W(t, ξ) the Brownian sheet on [0,∞)×S1, see Exercise 7.2. Let
κ > 0 be a constant, and f and b be real-valued functions. Consider the following
SPDE:

⎧

⎨

⎩

∂X(t)

∂t
(ξ) = ∂2X(t)

∂ξ2
(ξ) − κf (X(t)(ξ)) + b(X(t)(ξ))

∂2W

∂t∂ξ
,

X(0)(·) = x(·) ∈ L2(S1).

(7.20)

Let H = L2(S1) and V = W 1,2(S1). Consider

A0(x) =
(

d2

dξ2
− κ

)

x

and mappings F,B defined for ξ ∈ S1 and x, y ∈ V by

F(x)(ξ) = f
(

x(ξ)
)

,
(

B(x)y
)

(ξ) = 〈

b
(

x(·)), y(·)〉
L2(S1)

.

Let

‖x‖H =
(∫

S1
x2(ξ) dξ

)1/2

for x ∈ H,

‖x‖V =
(∫

S1

(

x2(ξ) +
(

dx(ξ)

dξ

)2)

dξ

)1/2

for x ∈ V.

Then we obtain the equation

dX(t) = A0X(t) dt + F
(

X(t)
)

dt + B
(

X(t)
)

dW̃t ,

where W̃t is a cylindrical Wiener process defined in Exercise 7.2. We have

2
〈

x,A0(x)
〉 = −2‖x‖2

V + (−2κ + 2)‖x‖2
H

≤ −2‖x‖2
H + (−2κ + 2)‖x‖2

H = −2κ‖x‖2
H .

By Theorem 6.3(a), with Λ(x) = ‖x‖2
H , the solution of (7.19) is exponentially sta-

ble. If we assume that f and b are Lipschitz continuous and bounded, then con-
ditions (1)–(3) of Proposition 7.1 are satisfied. Using representation (2.35) of the
stochastic integral with respect to a cylindrical Wiener process, we can conclude
that the solution of the stochastic heat equation (7.20) is exponentially ultimately
bounded in the m.s.s.
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Exercise 7.2 Let S1 be the unit circle realized as the interval [−π,π] with identified
points −π and π . Denote by {fj (ξ)} an ONB in L2(S1) and consider

W(t, ζ ) =
∞
∑

j=1

wj(t)

∫ ζ

−π

fj (ξ) dξ, t ≥ 0,−π ≤ ζ ≤ π, (7.21)

where wj are independent Brownian motions defined on {�,F , {Ft }t≥0},P }.
Show that the series (7.21) converges P -a.s. and that

Cov
(

W(t1, ζ1)W(t2, ζ2)
)= (t1 ∧ t2)(ζ1 ∧ ζ2).

Conclude that the Gaussian random field W(·, ·) has a continuous version. This
continuous version is called the Brownian sheet on S1.

Now, let Φ(t) be an adapted process with values in L2(S1) (identified with
L (L2(S1),R)) and satisfying

E

∫ ∞

0

∥
∥Φ(t)

∥
∥2
L2(S1)

dt < ∞.

Consider a standard cylindrical Brownian motion W̃t in L2(S1) defined by

W̃t (k) =
∞
∑

j=1

wj(t)〈k,fj 〉L2(S1).

Show that the cylindrical stochastic integral process

∫ t

0
Φ(s)dW̃s (7.22)

is well defined in L2(�,R).
On the other hand, for an elementary processes of the form

Φ(t, ξ) = 1[0,t](s)1[−π,ζ ](ξ), (7.23)

define

Φ · W =
∫ ∞

0

∫

S1
Φ(s, ξ)W(ds, dξ). (7.24)

Clearly Φ · W = W(t, ζ ). Extend the integral Φ · W to general processes. Since

Φ · W =
∫ ∞

0
Φ(s)dW̃s

for elementary processes (7.23), conclude that the integrals are equal for general
processes as well.
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Example 7.3 Consider the following SPDE driven by a real-valued Brownian mo-
tion:

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dtu(t, x) =
(

α2 ∂
2u(t, x)

∂x2
+ β

∂u(t, x)

∂x
+ γ u(t, x) + g(x)

)

dt

+
(

σ1
∂u(t, x)

∂x
+ σ2u(t, x)

)

dWt,

u(0, x) = ϕ(x) ∈ L2
(

(−∞,∞)
)∩ L1

(

(−∞,+∞)
)

,

(7.25)

where we use the symbol dt to signify that the differential is with respect to t . Let
H = L2((−∞,∞)) and V = W

1,2
0 ((−∞,∞)) with the usual norms

‖v‖H =
(∫ +∞

−∞
v2 dx

)1/2

, v ∈ H,

‖v‖V =
(∫ +∞

−∞

(

v2 +
(

dv

dx

)2)

dx

)1/2

, v ∈ V.

Define the operators A : V → V ∗ and B : V → L (H) by

A(v) = α2 d2v

dx2
+ β

dv

dx
+ γ v + g, v ∈ V,

B(v) = σ1
dv

dx
+ σ2v, v ∈ V.

Suppose that g ∈ L2((−∞,∞))∩L1((−∞,∞)). Then, using integration by parts,
we obtain for v ∈ V ,

2
〈

v,A(v)
〉+ tr

(

Bv(Bv)∗
)

= 2

〈

v,α2 d2v

dx2
+ β2 dv

∂x
+ γ v + g

〉

+
∥
∥
∥
∥
σ1

dv

dx
+ σ2v

∥
∥
∥
∥

2

H

= (−2α2 + σ 2
1

)‖v‖2
V + (

2γ + σ 2
2 + 2α2 − σ 2

1

)‖v‖2
H + 2〈v,g〉H

≤ (−2α2 + σ 2
1

)‖v‖2
V + (

2γ + σ 2
2 + 2α2 − σ 2

1 + ε
)‖v‖2

H + 1

ε
‖g‖2

H

for any ε > 0. Similarly, for u,v ∈ V,

2
〈

u − v,A(u) − A(v)
〉+ tr

(

B(u − v)
(

B(u − v)
)∗)

≤ (−2α2 + σ 2
1

)‖u − v‖2
V + (

2γ + σ 2
2 + 2α2 − σ 2

1

)‖u − v‖2
H .

If −2α2 + σ 2
1 < 0, then the coercivity and weak monotonicity conditions, (6.39)

and (6.40), hold, and we know from Theorem 4.7 that there exists a unique strong
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solution uϕ(t) to (7.25) in L2(Ω,C([0, T ],H))∩M2([0, T ],V ). Taking the Fourier
transform yields

dt û
ϕ(t, λ) = (−α2λ2ûϕ(t, λ) + iλβûϕ(t, λ) + γ ûϕ(t, λ) + ĝ(λ)

)

dt

+ (

iσ1λû
ϕ(t, λ) + σ2û

ϕ(t, λ)
)

dWt

= ((−α2λ2 + iλβ + γ
)

ûϕ(t, λ) + ĝ(λ)
)

dt

+ (iσ1λ + σ2)û
ϕ(t, λ) dWt .

For fixed λ,

a = −α2λ2 + iλβ + γ,

b = ĝ(λ),

c = iσ1λ + σ2.

By simple calculation (see Exercise 7.3),

E
∣
∣ûϕ(t, λ)

∣
∣
2 = E

∣
∣ϕ̂(λ)

∣
∣2 + 2Re

(
bb + bϕ̂(λ)(a + a + cc)

(a + a + cc)(a + cc)
e(a+a+cc)

)

− 2Re

(
b(aϕ̂(λ) + b)

a(a + cc)
eat
)

+ 2Re

(
βb

a(a + a + cc)

)

. (7.26)

By Plancherel’s theorem,

E
∥
∥uϕ(t)

∥
∥

2
H

=
∫ +∞

−∞
E
∣
∣ûϕ(t, λ)

∣
∣
2
dλ

and

E
∥
∥uϕ(t)

∥
∥

2
V

= E
∥
∥uϕ(t)

∥
∥

2
H

+ E

∥
∥
∥
∥

d

dx
uϕ(t, x)

∥
∥
∥
∥

2

H

=
∫ +∞

−∞
(

1 + λ2)E
∣
∣ûϕ(t, λ)

∣
∣
2
dλ.

For a suitable T > 0,

Ψ (ϕ) =
∫ T

0

∫ t

0
E
∥
∥uϕ(s)

∥
∥

2
V
ds dt

=
∫ +∞

−∞
(

1 + λ2)
∫ T

0

∫ t

0
E
∥
∥û(s, λ)

∥
∥2

ds dt dλ.
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Thus it is difficult to compute a Lyapunov function explicitly. In view of Remark 7.1,
it is enough to compute a Lyapunov function of the linear SPDE

dtu(t, x) =
(

α2 ∂
2u(t, x)

∂x2
+ β

∂u(t, x)

∂x
+ γ u(t, x)

)

du

+
(

σ1
∂u(t, x)

∂x
+ σ2u(t, x)

)

dWt .

Define the operators A0 : V → V ∗ and B0 : V → L (H) by

A0(v) = α2 d2v

dx2
+ β

dv

dx
+ γ v, v ∈ V,

B0(v) = B(v), v ∈ V

(since B is already linear). Taking the Fourier transform and solving explicitly, we
obtain that the solution is the geometric Brownian motion

û
ϕ
0 (t, λ) = ϕ̂(λ)eat−

1
2 c

2t+cWt ,

E
∣
∣û

ϕ
0 (t, λ)

∣
∣
2 = ∣

∣ϕ̂(λ)
∣
∣2e(a+a+cc)t .

The function t → E‖uϕ
0 (t)‖2

V is continuous for all ϕ ∈ V ,

∥
∥A(v) − A0(v)

∥
∥
V ∗ = ‖g‖V ∗ = o

(‖v‖V

)

as ‖v‖V → ∞,

and

τ
(

B(v)QB∗(v) − (B0v)Q(B0v)
∗)) = 0.

Thus, if {u0(t), t ≥ 0} is exponentially ultimately bounded in the m.s.s., then the
Lyapunov function Ψ0(ϕ) of the linear system is the Lyapunov function of the non-
linear system, and

Ψ0(ϕ) =
∫ +∞

−∞
(

1 + λ2)
(∫ T

0

∫ t

0
E
∣
∣û0(s, λ)

∣
∣
2
ds dt

)

dλ

=
∫ +∞

−∞

{
(

1 + λ2)
∣
∣ϕ̂(λ)

∣
∣2
(

exp{(−2α2 + σ 2
1 )λ

2 + 2γ + σ 2
2 )T }

((−2α2 + σ 2
1 )λ

2 + 2γ + σ 2
2 )

2

)

− T

(−2α2 + σ 2
1 )λ

2 + 2γ + σ 2
2

− 1

(−2α2 + σ 2
1 )λ

2 + 2γ + σ 2
2

}

dλ.

Using Theorem 7.8, we can conclude that the solution of the nonlinear system is
exponentially ultimately bounded in the m.s.s.

Exercise 7.3 Complete the computations in (7.26).
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Example 7.4 Consider an equation of the form

{

dXt = AX(t) dt + F(X(t)) dt + B(X(t)) dWt ,

X(0) = x ∈ H,

where F and B satisfy the conditions of Proposition 7.1. This example is moti-
vated by the work of Funaki. If −A is coercive, a typical case being A = �, we
conclude that the solution of the deterministic linear equation is exponentially sta-
ble since the Laplacian has negative eigenvalues. Thus, the solution of the deter-
ministic equation is exponentially bounded, and hence, by Proposition 7.1, the so-
lution of the nonlinear equation above is exponentially ultimately bounded in the
m.s.s.

Example 7.5 Let O ⊆ R
n be a bounded open domain with smooth boundary.

Assume that H = L2(O) and V = W
1,2
0 (O), the Sobolev space. Suppose that

{Wq(t, x); t ≥ 0, x ∈ 0} is an H -valued Wiener process with associated covari-
ance operator Q, given by a continuous symmetric nonnegative definite kernel
q(x, y) ∈ L2(O × O), q(x, x) ∈ L2(O),

(Qf )(x) =
∫

O
q(x, y)f (y) dy.

By Mercer’s theorem [41], there exists an orthonormal basis {ej }∞j=1 ⊂ L2(O) con-
sisting of eigenfunctions of Q such that

q(x, y) =
∞
∑

j=1

λjej (x)ej (y)

with tr(Q) = ∫

O q(x, x) dx =∑∞
j=1 λj < ∞.

Let −A be a linear strongly elliptic differential operator of second order on O ,
and B(u) : L2(O) → L2(O) with B(u)f (·) = u(·)f (·). By Garding’s inequality,
−A is coercive (see [63], Theorem 7.2.2). Then the infinite-dimensional problem is
as follows:

dtu(t, x) = Au(t, x) dt + u(t, x) dtWq(t, x),

and we choose Λ(v) = ‖v‖2
H for v ∈ W

1,2
0 (O). We shall check conditions under

which Λ is a Lyapunov function. With L defined in (6.15), using the spectral rep-
resentation of q(x, y), we have

L
(‖v‖2

H

) = 2〈v,Av〉 + tr
(

B(v)QB∗(v)
)

= 2〈v,Av〉 +
∫

O
q(x, x)v2(x) dx.
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Let

λ0 = sup

{
L (‖v‖2

H )

‖v‖2
H

, v ∈ W
1,2
0 (O), ‖v‖2

H �= 0

}

= sup

{
2〈v,Av〉 + 〈Qv,v〉H

‖v‖2
H

, v ∈ W
1,2
0 (O), ‖v‖2

H �= 0

}

.

If λ0 < 0, then, by Theorem 6.4, the solution is exponentially stable in the m.s.s.
Consider the nonlinear equation in O ,

{

dtu(t, x) = Ã(x,u(t, x)) dt + B̃(u(t, x))dtWq(t, x),

u(0, x) = ϕ(x), u(t, x)|∂O = 0.
(7.27)

Assume that

Ã(x, v) = Av + α1(x, v), B̃(x, v) = B(v) + α2(x, v),

where αi(x, v) satisfy the Lipschitz-type condition

sup
x∈O

∣
∣αi(x, v1) − αi(x, v2)

∣
∣< c‖v1 − v2‖H ,

so that the nonlinear equation (7.27) has a unique strong solution. Under the as-
sumption

αi(x,0) = 0,

zero is a solution of (7.27), and if

sup
x∈O

∣
∣αi(x, v)

∣
∣= o

(‖v‖H
)

, ‖v‖H → 0,

then, by Theorem 6.14, the strong solution of the nonlinear equation (7.27) is expo-
nentially stable in the m.s.s.

On the other hand, let us consider the operator A as above and F and B satisfying
the conditions of Proposition 7.1. Then, under the condition

sup

{
2〈v,Av〉
‖v‖2

H

, u ∈ W
1,2
0 (O), ‖v‖2

H �= 0

}

< 0,

the solution of the abstract Cauchy problem (7.19), with A0 replaced by A, is expo-
nentially stable, and we conclude that the solution of the equation

{

dX(t) = AX(t) dt + F(X(t)) dt + B(X(t)) dWt ,

X(0) = x ∈ H,

is ultimately exponentially bounded in the m.s.s.
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Consider now the SSDE (3.1) and assume that A is the infinitesimal generator of
a pseudo-contraction C0-semigroup {S(t), t ≥ 0} on H (see Chap. 3) with the co-
efficients F : H → H and B : H → L (K,H), independent of t and ω. We assume
that F and B are in general nonlinear mappings satisfying the linear growth con-
dition (A3) and the Lipschitz condition (A4) (see Sect. 3.3). In addition, the initial
condition is assumed deterministic, so that (3.1) takes the form

{

dX(t) = (AX(t) + F(X(t))) dt + B(X(t)) dWt ,

X(0) = x ∈ H.
(7.28)

By Theorem 3.5, there exists a unique continuous mild solution.
Using Corollary 7.1, we now have the following analogue of Proposition 7.1.

Proposition 7.2 Suppose that the classical solution {ux(t), t ≥ 0} of the abstract
Cauchy problem (7.19) is exponentially stable (or even exponentially ultimately
bounded) and, as ‖h‖H → ∞,

∥
∥F(h)

∥
∥
H

= o
(‖h‖H

)

,
∥
∥B(h)

∥
∥

L (K,H)
= o

(‖h‖H

)

,

then the mild solution of (7.28) is exponentially ultimately bounded in the m.s.s.

7.4 Ultimate Boundedness and Invariant Measure

We are interested in the behavior of the law of a solution to an SDE as t →
∞. Let us begin with a filtered probability space (Ω,F , {Ft }t≥0,P ) and an
H -valued time-homogeneous Markov process Xξ0(t), Xξ0(0) = ξ0, where ξ0 is
F0-measurable random variable with distribution μξ0 . Assume that its associated
semigroup Pt is Feller. We can define for A ∈ B(H), the Markov transition proba-
bilities

P(t, x,A) = Pt1A(x), x ∈ H.

Since a regular conditional distribution of Xξ0(t) exists (Theorem 3, Vol. I, Sect. 1.3
in [25]), we have that

P(t, x,A) = P
(

Xξ0(t) ∈ A|ξ0 = x
)=

∫

H

P
(

Xξ0 ∈ A|ξ0 = x
)

μξ0(dx), x ∈ H.

Then, for a bounded measurable function f on H (f ∈ Bb(H)),

(Ptf )(x) =
∫

H

f (y)P (t, x, dy). (7.29)
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The Markov property (3.52) takes the form

E
(

f
(

Xξ0(t + s)
)∣
∣FX

ξ0
t
)= (Psf )

(

X
ξ0
t

)=
∫

H

f (y)P
(

s,Xξ0(t), dy
)

,

so that the transition probability P(t, x,A) is a transition function for a time-
homogeneous Markov process Xξ0(t).

We observe that the following Chapman–Kolmogorov equation holds for Markov
transition probabilities

P(t + s, x,A) =
∫

H

P (t, y,A)P (s, x, dy), (7.30)

which follows from the semigroup property of Pt , (3.58) applied to ϕ(x) = 1A(x)

and from the fact that P(t, x, dy) is the conditional law of Xξ0(t).

Exercise 7.4 Show (7.30).

Let us now define an invariant probability measure and state a general theorem
on its existence.

Definition 7.4 We say that a probability measure μ on H is invariant for a time-
homogeneous Markov process Xx(t) with the related Feller semigroup {Pt , t ≥ 0}
defined by (7.29) if for all A ∈ B(H),

μ(A) =
∫

H

P (t, x,A)μ(dx),

or equivalently, since H is a Polish space, if for all f ∈ Cb(H),

∫

H

(Ptf ) dμ =
∫

H

f (y)dμ.

Let μ be a probability measure on H and define

μn(A) = 1

tn

∫ tn

0

∫

H

P (t, x,A)dt μ(dx) (7.31)

for a sequence {tn}∞n=1 ⊂ R+, tn → ∞. In particular, for a real-valued bounded
Borel-measurable function f (x) on H , we have

∫

H

f (x)μn(dx) = 1

tn

∫ tn

0

∫

H

∫

H

f (y)P (t, x, dy)μ(dx)dt. (7.32)

Theorem 7.10 If ν is weak limit of a subsequence of {μn}, then ν is an invariant
measure.
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Proof We can assume without loss of generality that μn ⇒ ν. Observe that, by the
Fubini theorem and the Chapman–Kolmogorov equation,
∫

H

(Ptf )(x)ν(dx) = lim
n→∞

∫

H

(Ptf )(x)μn(dx)

= lim
n→∞

1

tn

∫ tn

0

∫

H

∫

H

(Ptf )(y)P (s, x, dy)μ(dx)ds

= lim
n→∞

1

tn

∫ tn

0

∫

H

(Pt+sf )(x)μ(dx)ds

= lim
n→∞

[
1

tn

{∫ tn

0

∫

H

(Psf )(x)μ(dx)ds

+
∫ tn+t

tn

∫

H

(Psf )(x)μ(dx)ds −
∫ t

0

∫

H

(Psf )(x)μ(dx)ds

}]

.

Since ‖Psf (x0)‖H ≤ ‖f (x0‖H , the last two integrals are bounded by a constant,
and hence, using (7.32),

∫

H

(Ptf )(x) ν(dx) = lim
n→∞

1

tn

∫ tn

0

∫

H

(Psf )(x0)μ(dx)ds

= lim
n→∞

1

tn

∫ tn

0

∫

H

∫

H

f (y)P (s, x, dy)μ(dx)ds

= lim
n→∞

∫

H

f (x)μn(dx) =
∫

H

f (x) ν(dx). �

Corollary 7.4 If the sequence {μn} is relatively compact, then an invariant measure
exists.

Exercise 7.5 Show that if, as t → ∞, the laws of Xx(t) converge weakly to a
probability measure μ, then μ is an invariant measure for the corresponding semi-
group Pt .

We shall now consider applications of the general results on invariant measures
to SPDEs. In case where {Xξ0(t), t ≥ 0} is a solution of an SDE with a random
initial condition ξ0, taking in (7.31) μ = μξ0 , the distribution of ξ0, gives

P
(

Xξ0(t) ∈ A
)=

∫

H

P (t, x,A)μξ0(dx). (7.33)

Thus, properties of the solution can be used to obtain tightness of the measures μn.

Exercise 7.6 Prove (7.33).

Before we apply the result on ultimate boundedness to obtain the existence of an
invariant measure, let us consider some examples.
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Example 7.6 (Navier–Stokes Equation [76]) Let D ⊆ R
2 be a bounded domain with

smooth boundary ∂D . Consider the equation

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂vi(t, x)

∂t
+

2
∑

j=1

vj
∂vi(t, x)

∂xj
= − 1

ρ

∂P (t, x)

∂xi
+ ν

2
∑

j=1

∂2vi(t, x)

∂x2
j

+ σiẆ
i
t (x),

2
∑

j=1

∂vj

∂xj
= 0, x ∈ D, ν > 0,

i = 1,2.

(7.34)

Let C∞
0 = {v ∈ C∞

0 (D) × C∞
0 (D); ∇v = 0}, with ∇ denoting the gradient. Let

H = C∞
0 in L2(D) × L2(D), and V = {v : W 1,2

0 (D) × W
1,2
0 (D),∇v = 0}. Then

V ⊆ H ⊆ V ∗ is a Gelfand triplet, and the embedding V ↪→ H is compact.
It is known [76] that

L2(D) × L2(D) = H ⊕ H⊥,

where H⊥ is characterized by H⊥ = {v : v = ∇(p) for some p ∈ W 1,2(D)}.
Denote by � the orthogonal projection of L2(D) × L2(D) onto H⊥, and for

v ∈ C∞
0 , define

A(v) = v��v − �
[

(v · ∇)v
]

.

Then A can be extended as a continuous operator form V to V ∗.
Equation (7.34) can be recast as an evolution equation in the form

{

dX(t) = A(X(t)) dt + σ dWt ,

X(0) = ξ,

where Wt is an H -valued Q-Wiener process, and ξ ∈ V a.e. is an F0-measurable
H -valued random variable. It is known (see [76]) that the above equation has a
unique strong solution {uξ (t), t ≥ 0} in C([0, T ],H) ∩ L2([0, T ],V ), which is a
homogeneous Markov and Feller process, satisfying for T < ∞,

E
∥
∥uξ (T )

∥
∥

2
H

+ ν

∫ T

0

2
∑

i=1

∥
∥
∥
∥

∂uξ (t)

∂xi

∥
∥
∥
∥

2

H

dt ≤ E‖ξ‖2
H + T

2
tr(Q).

Using the fact that ‖uξ (t)‖V is equivalent to (
∑2

i=1‖ ∂u(ξ)
∂xi

‖2
H )1/2, we have

sup
T

1

T

∫ T

0
E
(∥
∥uξ (t)

∥
∥

2
V

)

dt ≤ c

2ν
tr(Q)

with some constant c. By the Chebychev inequality,

lim
R→∞ sup

T

1

T

∫ T

0
P
(∥
∥uξ (t)

∥
∥
V
> R

)

dt = 0.
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Hence, for ε > 0, there exists an Rε such that

sup
T

1

T

∫ T

0
P
(∥
∥uξ (t)

∥
∥
V
> Rε

)

dt < ε.

Thus, as tn → ∞,

sup
n

1

tn

∫

H

∫ tn

0
P
(

t, x, B̃Rε

)

dt μξ (dx) < ε,

where B̃Rε is the image of the set {v ∈ V ; ‖v‖V > Rε} under the compact embed-
ding V ↪→ H , and μξ is the distribution of ξ on H . Since B̃Rε is a complement of a
compact set, we can use Prokhorov’s theorem and Corollary 7.4 to conclude that an
invariant measure exists. Note that its support is in V , by the weak convergence.

Example 7.7 (Linear equations with additive noise [79]) Consider the mild solution
of the equation

{

dX(t) = AX(t) dt + dWt,

X(0) = x ∈ H,

where A is an infinitesimal generator of a strongly continuous semigroup {S(t),
t ≥ 0} on H . Denote

Qt =
∫ t

0
S(r)QS∗(r) dr,

and assume that tr(Qt ) < ∞. We know from Theorems 3.1 and 3.2 that

X(t) = S(t)x +
∫ t

0
S(t − s) dWs (7.35)

is the mild solution of the above equation. The stochastic convolution
∫ t

0 S(t −
s) dWs is an H -valued Gaussian process with covariance

Qt =
∫ t

0
S(u)QS∗(u) du

for any t . The Gaussian process X(t) is also Markov and Feller, and it is called an
Ornstein–Uhlenbeck process. The probability measure μ on H is invariant if for
f ∈ Cb(H) and any t ≥ 0,

∫

H

f (x)μ(dx) =
∫

H

E
(

f
(

Xx(t)
))

μ(dx)

=
∫

H

Ef

(

S(t)x +
∫ t

0
S(t − s) dWs

)

μ(dx).
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For f (x) = ei〈λ,x〉H , λ ∈ H , we obtain

μ̂(λ) = μ̂
(

S∗(t)λ
)

e− 1
2 〈Qtλ,λ〉H ,

where μ̂ denotes the characteristic function of μ. It follows that
∣
∣μ̂(λ)

∣
∣≤ e− 1

2 〈Qt ,λ,λ〉H ,

or

〈Qtλ,λ〉H ≤ −2 ln
∣
∣μ̂(λ)

∣
∣= 2 ln

(
1

|μ̂(λ)|
)

.

Since μ̂(λ) is the characteristic function of a measure μ on H , then by Sazonov’s
theorem [74], for ε > 0, there exists a trace-class operator S0 on H such that
|μ̂(λ)| ≥ 1/2 whenever 〈S0λ,λ〉H ≤ 1. Thus, we conclude that

〈Qtλ,λ〉H ≤ 2 ln 2

if 〈S0λ,λ〉H ≤ 1. This yields

0 ≤ Qt ≤ (2 ln 2)S0.

Hence, supt tr(Qt ) < ∞.
On the other hand, if supt tr(Qt ) < ∞, let us denote by P the limit in trace norm

of Qt and observe that

S(t)PS∗(t) =
∫ ∞

0
S(t + r)QS∗(t + r) dr =

∫ ∞

t

S(u)QS(u)du = P − Qt.

Thus,

1

2

〈

S(t)PS∗(t)λ,λ
〉

H
= 1

2

〈

Pλ,λ
〉

H
− 1

2
〈Qtλ,λ〉H ,

implying

e− 1
2 〈Pλ,λ〉H = e− 1

2 〈PS∗(t)λ,S∗(t)λ〉H e− 1
2 〈Qtλ,λ〉H .

In conclusion, μ with the characteristic functional e− 1
2 〈Pλ,λ〉H is an invariant mea-

sure. We observe that the invariant measure exists for the Markov process X(t)

defined in (7.35) if and only if supt tr(Qt ) < ∞. Also, if S(t) is an exponentially
stable semigroup (i.e., ‖S(t)‖L (H) ≤ Me−μt for some positive constants M and μ)
or if Stx → 0 for all x ∈ H as t → ∞, then the Gaussian measure with covariance
P is the invariant (Maxwell) probability measure.

Let {X(t), t ≥ 0} be exponentially ultimately bounded in the m.s.s., then, clearly,

lim sup
t→∞

E
∥
∥X(t)

∥
∥2
H

≤ M < ∞ for all x ∈ H. (7.36)

Definition 7.5 A stochastic process X(t) satisfying condition (7.36) is called ulti-
mately bounded in the m.s.s.
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7.4.1 Variational Equations

We focus our attention now on the variational equation with a deterministic initial
condition,

{

dX(t) = A(X(t)) dt + B(X(t)) dWt ,

X(0) = x ∈ H,
(7.37)

which is driven by a Q-Wiener process Wt . The coefficients A : V → V ∗ and B :
V → L (K,H) are independent of t and ω, and they satisfy the linear growth,
coercivity (C), and weak monotonicity (WM) conditions (6.38), (6.39), (6.40). By
Theorem 4.8 and Remark 4.2 the solution is a homogeneous Markov process, and
the associated semigroup is Feller.

We note that in Theorem 7.5, we give conditions for exponential ultimate bound-
edness in the m.s.s. in terms of the Lyapunov function. Assume that Ψ : H → R

satisfies the conditions of Theorem 6.10 (Itô’s formula) and define

L ψ(u) = 〈

ψ ′(u),A(u)
〉+ (1/2) tr

(

ψ ′′(u)B(u)QB∗(u)
)

. (7.38)

Let {Xx(t), t ≥ 0} be the solution of (7.37). We apply Itô’s formula to Ψ (Xx(t)),
take the expectation, and use condition (2) of Theorem 7.5 to obtain

EΨ
(

Xx(t)
)− EΨ

(

Xx(t ′)
) = E

∫ t

t ′
LΨ

(

Xx(s)
)

ds

≤
∫ t

t ′

(−c3EΨ
(

Xt(s)
)+ k3

)

ds.

Let Φ(t) = EΨ (Xx(t)), then Φ(t) is continuous, so that

Φ ′(t) ≤ −c3Φ(t) + k3.

Hence,

EΨ
(

Xx
t

)≤ k3

c3
+
(

Ψ (x) − k3

c3

)

e−c3t .

Assuming that Ψ (x) ≥ c1‖x‖2
H − k1, we obtain

c1E
∥
∥Xx(t)

∥
∥

2
H

− k1 ≤ k3

c3
+
(

c2‖x‖2
H − k3

c3

)

e−c3t .

Thus we have proved the following:

Proposition 7.3 Let Ψ : H → R satisfy conditions (1)–(5) of Theorem 6.10 and
assume that condition (2) of Theorem 7.5 holds and that c1‖x‖2

H − k1 ≤ Ψ (x) for
x ∈ H and some constants c1 > 0 and k1 ∈ R. Then

lim sup
t→∞

E
∥
∥Xx(t)

∥
∥

2
H

≤ 1

c1

(

k1 + k3

c3

)

.

In particular, {Xx(t), t ≥ 0} is ultimately bounded.
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Let us now state the theorem connecting the ultimate boundedness with the exis-
tence of invariant measure.

Theorem 7.11 Let {Xx(t), t ≥ 0} be a solution of (7.37). Assume that the embed-
ding V ↪→ H is compact. If Xx(t) is ultimately bounded in the m.s.s., then there
exists an invariant measure μ for {Xx(t), t ≥ 0}.
Proof Applying Itô’s formula to the function ‖x‖2

H and using the coercivity condi-
tion, we have

E
∥
∥Xx(t)

∥
∥2
H

− ‖x‖2
H =

∫ t

0
EL

∥
∥Xx(t)

∥
∥2
H

ds

≤ λ

∫ t

0
E
∥
∥Xx(s)

∥
∥

2
H
ds − α

∫ t

0
E
∥
∥Xx(s)

∥
∥

2
V

+ γ t

with L defined in (7.38). Hence,
∫ t

0
E
∥
∥Xx(s)

∥
∥

2
V
ds ≤ 1

α

(

λ

∫ t

0
E
∥
∥Xx(s)

∥
∥

2
H

ds + ‖x‖2
H + γ t

)

.

Therefore,

1

T

∫ T

0
P
(∥
∥Xx(t)

∥
∥
V
> R

)

dt ≤ 1

T

∫ T

0

E‖Xx(t)‖2
V

R2
dt

≤ 1

αR2

1

T

(

|λ|
∫ T

0
E
∥
∥Xx(t)

∥
∥2
H

dt + ‖x‖2
H + γ T

)

.

Now, by (7.36), E‖Xx(t)‖2
H ≤ M for t ≥ T0 and some T0 ≥ 0. But

sup
t≤T0

E
∥
∥Xx(t)

∥
∥

2
H

≤ M ′

by Theorem 4.7, so that

lim
R→∞ sup

T

1

T

∫ T

0
P
(∥
∥Xx(t)

∥
∥
V
> R

)

dt

≤ lim
R→∞ sup

T

|λ|
αR2

1

T

(∫ T0

0
E
∥
∥Xx(t)

∥
∥

2
dt +

∫ T

T0

E
∥
∥Xx(t)

∥
∥

2
H

dt

)

≤ lim
R→∞ sup

T

|λ|
αR2

(
T0

T
M ′ + T − T0

T
M

)

≤ lim
R→∞

|λ|
αR2

(

M ′ + M
)

, 0 ≤ T0 ≤ T .

Hence, given ε > 0, there exists an Rε such that

sup
T

1

T

∫ T

0
P
(∥
∥Xx(t)

∥
∥
V
> Rε

)

dt < ε.
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By the assumption that the embedding V ↪→ H is compact, the set {v ∈ V :
‖v‖V ≤ Rε} is compact in H , and the result is proven. �

Remark 7.2 Note that a weaker condition on the second moment of Xx(t), i.e.,

sup
T>T0

1

T

∫ T

0
E
∥
∥Xx(t)

∥
∥

2
H

dt <M for some T0 ≥ 0,

is sufficient to carry out the proof of Theorem 7.11.

In Examples 7.2–7.6, we consider equations whose coefficients satisfy the condi-
tions imposed on the coefficients of (7.37) and the embedding V ↪→ H is compact,
so that an invariant measure exists if the solution is ultimately bounded in the m.s.s.

Theorem 7.12 Suppose that V ↪→ H is compact and the solution of {Xx(t), t ≥ 0}
of (7.37) is ultimately bounded in the m.s.s. Then any invariant measure μ satisfies

∫

V

‖x‖2
V μ(dx) < ∞.

Proof Let f (x) = ‖x‖2
V and fn(x) = 1[0,n](f (x)). Now fn(x) ∈ L1(V ,μ). We use

the ergodic theorem for a Markov process with an invariant measure (see [78],
p. 388). This gives

lim
T→∞

1

T

∫ T

0
(Ptfn)(x) dt = f ∗

n (x) μ-a.e.

and Eμf
∗
n = Eμfn, where Eμfn = ∫

V
fn(x)μ(dx).

By the assumption of ultimate boundedness, we have, as in the proof of Theo-
rem 7.11,

lim sup
T→∞

1

T

∫ T

0
E
∥
∥Xx(t)

∥
∥

2
V
dt ≤ C|λ|

α
, C < ∞.

Hence,

f ∗
n (x) = lim

T→∞
1

T

∫ T

0
(Ptfn)(x) dt

≤ lim sup
T→∞

1

T

∫ T

0

(

Ptf (x)
)

dt

= lim sup
T→∞

1

T

∫ T

0
E
∥
∥Xx(t)

∥
∥

2
V
dt ≤ C|λ|

α
.

But fn(x) ↑ f (x), so that

Eμf = lim
n→∞Eμfn = lim

n→∞Eμf
∗
n ≤ C|λ|

α
. �
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Remark 7.3 (a) For parabolic Itô equations, one can easily derive the result using
Ψ (x) = ‖x‖2

H and Theorem 7.11.
(b) Note that if μn ⇒ μ and the support of μn is in V with the embedding

V ↪→ H being compact, then by the weak convergence the support of μ is in V

by the same argument as in Example 7.6.

Let us now consider the problem of uniqueness of the invariant measure.

Theorem 7.13 Suppose that for ε, δ, and R > 0, there exists a constant T0(ε, δ,R)

> 0 such that for T ≥ T0,

1

T

∫ T

0
P
(∥
∥Xx(t) − Xy(t)

∥
∥
V

≥ δ
)

dt < ε

for all x, y ∈ VR = {v ∈ V : ‖v‖V ≤ R} with the embedding V ↪→ H being com-
pact. If there exists an invariant measure μ for a solution of (7.37), {Xx0(t), t ≥ 0},
X(0) = x0, with support in V , then it is unique.

Proof Suppose that μ,ν are invariant measures with support in V . We need to show
that

∫

H

f (x)μ(dx) =
∫

H

f (x)ν(dx)

for f uniformly continuous bounded on H , since such functions form a determining
class.

For G ∈ B(H), define

μx
T (G) = 1

T

∫ T

0
P
(

Xx(t) ∈ G
)

dt, x ∈ H, T > 0.

Then, using invariance of μ and ν, we have
∣
∣
∣
∣

∫

H

f (x)μ(dx) −
∫

H

f (x) ν(dx)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

H

∫

H

f (x)
[

μ
y
T (dx)μ(dy) − μz

T (dx)ν(dz)
]
∣
∣
∣
∣

≤
∫

H×H

∣
∣
∣
∣

∫

H

f (x)μ
y
T (dx) −

∫

H

f (x)μz
T (dx)

∣
∣
∣
∣
μ(dy)ν(dz).

Let

F(y, z) =
∣
∣
∣
∣

∫

H

f (x)μ
y
T (dx) −

∫

H

f (x)μz
T (dx)

∣
∣
∣
∣
.

Then, using the fact that μ,ν have the supports in V , we have
∣
∣
∣
∣

∫

H

f (x)μ(dx) −
∫

H

f (x) ν(dx)

∣
∣
∣
∣
≤
∫

V×V

∣
∣F(y, z)

∣
∣μ(dy)ν(dz).
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Let V c
R = V \ VR and choose R > 0 such that

μ
(

V c
R

)+ ν
(

V c
R

)

< ε.

Then,
∣
∣
∣
∣

∫

H

f (x)μ(dx)−
∫

H

f (x) ν(dx)

∣
∣
∣
∣
≤
∫

VR×VR

∣
∣F(y, z)

∣
∣μ(dy)ν(dz)+ (4ε+2ε2)M,

where M = supx∈H |f (x)|. But for δ > 0,
∫

VR×VR

∣
∣F(y, z)

∣
∣μ(dy)ν(dz)

≤
∫

VR×VR

{
1

T

∫ T

0
E
∣
∣f
(

Xy(t)
)− f

(

Xz(t)
)∣
∣μ(dy)ν(dz)

}

≤ 2M sup
y,z∈VR

1

T

∫ T

0
P
(∥
∥Xy(t) − Xz(t)

∥
∥
V
> δ

)+ sup
y,z∈VR‖y−z‖<δ

∣
∣f (y) − f (z)

∣
∣

≤ 2Mε + ε

for T ≥ T0, since f is uniformly continuous.
Using the last inequality and the bound for |∫

H
f (x)μ(dx) − ∫

H
f (x) ν(dx)|,

we obtain the result. �

Let us now give a condition on the coefficients of the SDE (7.37) which guaran-
tees the uniqueness of the invariant measure. We have proved in Theorem 7.11 (see
Remark 7.3), that the condition

sup
T>T0

{
1

T

∫ T

0
E
∥
∥Xx(t)

∥
∥2
H

dt

}

≤ M for some T0 ≥ 0

implies that there exists an invariant measure to the strong solution {Xx(t), t ≥ 0},
whose support is in V .

Theorem 7.14 Suppose that V ↪→ H is compact, the coefficients of (7.37) satisfy
the coercivity condition (6.39), and that for u,v ∈ V ,

2
〈

u − v,A(u) − A(v)
〉+ ∥

∥B(u) − B(v)
∥
∥2

L2(KQ,H)
≤ −c‖u − v‖2

V ,

where the norm ‖ · ‖L2(KQ,H) is the Hilbert–Schmidt norm defined in (2.7). Assume
that the solution {Xx(t), t ≥ 0} of (7.37) is ultimately bounded in the m.s.s. Then
there exists a unique invariant measure.

Proof By Itô’s formula, we have, for t > 0,

E
∥
∥Xx(t)

∥
∥

2
H

=‖x‖2
H +2E

∫ t

0

〈

Xx(s),A
(

Xx(s)
)〉

ds +E

∫ t

0

∥
∥B
(

Xx(s)
)∥
∥

2
L2(KQ,H)

ds.
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Using the coercivity condition (C), (6.39), we have

E
∥
∥Xx(t)

∥
∥

2
H

+ αE

∫ t

0

∥
∥Xx(s)

∥
∥

2
V
ds ≤ (‖x‖2

H + γ t
)+ λE

∫ t

0

∥
∥Xx(s)

∥
∥

2
H

ds.

It follows, similarly as in the proof of Theorem 7.11, that

sup
T>T0

1

T

∫ T

0
E
∥
∥Xx(s)

∥
∥

2
V
ds ≤ |γ | + ‖x‖2

H/T0

α
+ |λ|

α
sup
T>T0

∫ T

0
E
∥
∥Xx(s)

∥
∥

2
H

ds.

By the Chebychev inequality, we know that

1

T

∫ T

0
P
(∥
∥Xx(s)

∥
∥
V
> R

)≤ 1

R2

{
1

T

∫ T

0
E
∥
∥Xx(s)

∥
∥

2
V
ds

}

.

Hence, using the arguments in Example 7.6, an invariant measure exists and is sup-
ported on V . To prove the uniqueness, let Xx1(t),Xx2(t) be two solutions with
initial values x1, x2. We apply Itô’s formula to X(t) = Xx1(t) − Xx2(t) and obtain

E
∥
∥X(t)

∥
∥

2
H

≤ ‖x1 − x2‖2
H + 2E

∫ t

0

〈

X(s) − A
(

Xx1(s)
)− A

(

Xx2(s)
)〉

ds

+ E

∫ t

0

∥
∥B
(

Xx1(s)
)− B

(

Xx2(s)
)∥
∥2

L2(KQ,H)
ds.

Using the assumption, we have

E
∥
∥X(t)

∥
∥

2
H

≤ ‖x1 − x2‖2
H − c

∫ t

0
E
∥
∥X(s)

∥
∥

2
V
ds,

which implies that
∫ t

0
E
∥
∥X(s)

∥
∥

2
V

≤ 1

c
‖x1 − x2‖2

H .

It now suffices to refer to the Chebychev inequality and Theorem 7.13 to complete
the proof. �

7.4.2 Semilinear Equations Driven by a Q-Wiener Process

Let us consider now the existence of an invariant measure for a mild solution of a
semilinear SDE with deterministic initial condition

{

dX(t) = (AX(t) + F(X(t))) dt + B(X(t)) dWt ,

X(0) = x ∈ H,
(7.39)
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where A is the infinitesimal generator of a pseudo-contraction C0-semigroup S(t)

on H , and the coefficients F : H → H and B : H → L (K,H), independent of
t and ω, are in general nonlinear mappings satisfying the linear growth condition
(A3) and the Lipschitz condition (A4) in Sect. 3.3. We know from Theorem 3.6
that the solution is a homogeneous Markov process and from Theorem 3.7 that it is
continuous with respect to the initial condition, so that the associated semigroup is
Feller.

We studied a special case in Example 7.7. Here we look at the existence under
the assumption of exponential boundedness in the m.s.s. We will use the Lyapunov
function approach developed earlier in Theorem 7.8 and Corollary 7.3. We first give
the following proposition.

Proposition 7.4 Suppose that the mild solution {Xx(t)} of (7.39) is ultimately
bounded in the m.s.s. Then any invariant measure ν of the Markov process
{Xx(t), t ≥ 0} satisfies

∫

H

‖y‖2
Hν(dy) ≤ M,

where M is as in (7.36).

The proof is similar to the proof of Theorem 7.12 and is left to the reader as an
exercise.

Exercise 7.7 Prove Proposition 7.4.

Theorem 7.15 Suppose that the solution {Xx(t), t ≥ 0} of (7.39) is ultimately
bounded in the m.s.s. If for all R > 0, δ > 0, and ε > 0, there exists T0 =
T0(R, δ, ε) > 0 such that for all t ≥ T0,

P
(∥
∥Xx(t) − Xy(t)

∥
∥
H

> δ
)

< ε for x, y ∈ BH(R) (7.40)

with BH(R) = {x ∈ H,‖x‖ ≤ R}, then there exists at most one invariant measure
for the Markov process Xx(t).

Proof Let μi , i = 1,2, be two invariant measures. Then, by Proposition 7.4, for each
ε > 0, there exists R > 0 such that μi(H \BH(R)) < ε. Let f be a bounded weakly
continuous function on H . We claim that there exists a constant T = T (ε,R,f ) > 0
such that

∣
∣Ptf (x) − Ptf (y)

∣
∣≤ ε for x, y ∈ BH(R) if t ≥ T .

Let C be a weakly compact set in H . The weak topology on C is given by the metric

d(x, y) =
∞
∑

k=1

1

2k

∣
∣〈ek, x − y〉H

∣
∣, x, y ∈ C, (7.41)

where {ek}∞k=1 in an orthonormal basis in H .
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By the ultimate boundedness, there exists T1 = T1(ε,R) > 0 such that for
T ≥ T1,

P
(

Xx(t) ∈ BH(R)
)

> 1 − ε/2 for x ∈ BH(R).

Now f is uniformly continuous w.r.t. the metric (7.41) on BH(R). Hence, there
exists δ′ > 0 such that x, y ∈ HR with d(x, y) < δ′ imply that |f (x) − f (y)| ≤ δ,
and there exists J > 0 such that

∞
∑

k=J+1

1

2k

∣
∣〈ek, x − y〉H

∣
∣≤ δ′/2 for x, y ∈ BH(R).

Since P(|〈ek,Xx(t) − Xy(t)〉| > δ) ≤ P(‖Xx(t) − Xy(t)‖H > δ), by the given as-
sumption we can choose T2 ≥ T1 such that for t ≥ T2,

P

{
J
∑

k=1

(〈

ek,X
x(t)

〉− 〈

ek,X
y(t)

〉)2
> δ′/2

}

≥ 1 − ε/3 (7.42)

for x, y ∈ BH(R). Hence, for t ≥ T2,

P
{∣
∣f
(

Xx(t)
)− f

(

Xy(t)
)∣
∣≤ δ

}

≥ P
{

Xx(t),Xy(t) ∈ BH(R), d
(

Xx(t),Xy(t)
)≤ δ′}

≥ P

{

Xx(t),Xy(t) ∈ BH(R),

J
∑

k=1

1

2k

∣
∣
〈

ek,X
x(t) − Xy(t)

〉

H

∣
∣≤ δ′/2

}

≥ P
{

Xx(t),Xy(t) ∈ BH(R),
∣
∣
〈

ek,X
x(t) − Xy(t)

〉

H

∣
∣≤ δ′/2, k = 1, . . . , J

}

≥ 1 − ε/3 − ε/3 − ε/3 = 1 − ε,

since the last probability above is no smaller than that in (7.42).
Now, with M0 = sup |f (x)|, given ε > 0, choose T so that for t ≥ T ,

P
(∣
∣f
(

Xx(t)
)− f

(

Xy(t)
)∣
∣≤ ε/2

)≥ 1 − ε

4M0
.

Then

E
∣
∣f
(

Xx(t)
)− f

(

Xy(t)
)∣
∣≤ ε

2
+ 2M0

ε

4M0
= ε.

Note that for invariant measures μ1, μ2,
∫

H

f (x)μi(dx) =
∫

H

(Ptf )(x)μi(dx), i = 1,2.

For t ≥ T , we have
∣
∣
∣
∣

∫

H

f (x)μ1(dx) −
∫

H

f (y)μ2(dy)

∣
∣
∣
∣
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=
∣
∣
∣
∣

∫

H

∫

H

[

f (x) − f (y)
]

μ1(dx)μ2(dy)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

H

∫

H

[

(Ptf )(x) − (Ptf )(y)
]

μ1(dx)μ2(y)

∣
∣
∣
∣

=
∣
∣
∣
∣

(∫

BH (R)

+
∫

H\BH (R)

)(∫

BH (R)

+
∫

H\BH (R)

)

× [

(Ptf )(x) − (Ptf )(y)
]

μ1(dx)μ2(dy)

∣
∣
∣
∣

≤ ε + 2(2M0)ε + 2M0ε
2.

Since ε > 0 is arbitrary, we conclude that
∫

H

f (x)μ1(dx) =
∫

H

f (x)μ2(dx). �

In case we look at the solution to (7.39), whose coefficients satisfy the linear
growth and Lipschitz conditions (A3) and (A4) of Sect. 3.1 in Chap. 3, we conclude
that under assumption (7.40) and conditions for exponential ultimate boundedness,
there exists at most one invariant measure.

Note that in the problem of existence of the invariant measure, the relative weak
compactness of the sequence μn in Theorem 7.10 is crucial. In the variational case,
we achieved this condition, under ultimate boundedness in the m.s.s., assuming that
the embedding V ↪→ H is compact. For mild solutions, Ichikawa [33] and Da Prato
and Zabczyk [11], give sufficient conditions. Da Prato and Zabczyk use a factoriza-
tion technique introduced in [10]. We start with the result in [32].

Theorem 7.16 Assume that A is a self-adjoint linear operator with eigenvectors
{ek}∞k=1 forming an orthonormal basis in H and that the corresponding eigenvalues
−λk ↓ −∞ as k → ∞. Let the mild solution of (7.39) satisfy

1

T

∫ T

0
E
∥
∥Xx(s)

∥
∥

2
H

ds ≤ M
(

1 + ‖x‖2
H

)

. (7.43)

Then there exists an invariant measure for the Markov semigroup generated by the
solution of (7.39).

Proof The proof depends on the following lemma.

Lemma 7.2 Under the conditions of Theorem 7.16, the set of measures

μt(·) = 1

t

∫ t

0
P(s, x, ·) for t ≥ 0

with P(s, x,A) = P(Xx(s) ∈ A) is relatively weakly compact.
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Proof Let yk(t) = 〈Xx(t), ek〉H . Then, by a well-known result about the weak com-
pactness ([25], Vol. I, Chap. VI, Sect. 2, Theorem 2), we need to show that the
expression

1

T

∫ T

0

( ∞
∑

k=1

Ey2
k (t)

)

dt

is uniformly convergent in T .
Let S(t) be the C0-semigroup generated by A. Since S(t)ek = e−λkt ek for each

k, yk(t) satisfies

yk(t) = e−λkt x0
k +

∫ t

0
e−λk(t−s)

〈

ek,F
(

Xx(s)
)〉

H
ds

+
∫ t

0
e−λk(t−s)

〈

ek,B
(

Xx(s)
)

dW(s)
〉

H
,

Ey2
k (t) ≤ 3e−2λkt

(

x0
k

)2 + 3E

∣
∣
∣
∣

∫ t

0
e−λk(t−s)

〈

ek,F
(

Xx(s)
)〉

H
ds

∣
∣
∣
∣

2

+ 3E

∣
∣
∣
∣

∫ t

0
e−λk(t−s)

〈

ek,B
(

Xx(s)
)

dWs

〉
∣
∣
∣
∣

2

.

For N large enough, so that λN > 0, and any m> 0, using Exercise 7.8 and assump-
tion (7.43), we have

N+m
∑

k=N

1

T

∫ T

0
E

∣
∣
∣
∣

∫ t

0
e−λk(t−s)

〈

ek,F
(

Xx(s)
)〉

H
ds

∣
∣
∣
∣

2

dt

≤ 1

2εT

∫ T

0

∫ t

0
e2(−λk+ε)(t−s)

∣
∣
〈

ek,F
(

Xx(s)
)〉

H

∣
∣
2
ds dt

= 1

T

∫ T

0

∫ T

r

e2(−λk+ε)(t−s) dt
∣
∣
〈

ek,F
(

Xx(s)
)〉

H

∣
∣
2
ds

≤
∫ T

0 E‖F(Xx(s))‖2
H ds

4ε(λN − ε)T
≤ c1(1 + ‖x‖2

H )

ε(λN − ε)

for some constants ε > 0 and c1 > 0.
Utilizing the Hölder inequality, we also have that

N+m
∑

N

1

T

∫ T

0
E

∣
∣
∣
∣

∫ t

0
e−λk(t−s)

〈

ek,B
(

Xx(s)
)

dW(s)
〉
∣
∣
∣
∣

2

dt

≤ tr(Q)
∫ T

0 E‖B(Xx(t))‖2
L (K,H)

dt

2λNT
≤ c2 tr(Q)(1 + ‖x‖2

H )

λN
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for some constant c2 > 0. Thus,

N+m
∑

N

1

T

∫ T

0
Ey2

k (t) dt ≤ 3‖x‖2
H

2λN

+ 3(c1 + c2)
(

1 + ‖x‖2
H

)
[

1

δ(λN − δ)
+ tr(Q)

λN

]

.

Thus the condition in [25] holds. �

The proof of Theorem 7.16 is an immediate consequence of the lemma. �

Exercise 7.8 Let p > 1, and let g be a nonnegative locally p-integrable function on
[0,∞). Then for all ε > 0 and real d ,

(∫ t

0
ed(t−r)g(r) dr

)p

≤
(

1

qε

)p/q ∫ t

0
ep(d+ε)(t−r)gp(r) dr,

where 1/p + 1/q = 1.

7.4.3 Semilinear Equations Driven by a Cylindrical Wiener
Process

We finally present a result in [12], which uses an innovative technique to prove the
tightness of the laws L (Xx(t)). We start with the problem

{

dX(t) = (AX(t) + F(X(t))) dt + B(X(t)) dW̃t ,

X(0) = x ∈ H,
(7.44)

where W̃t is a cylindrical Wiener process in a separable Hilbert space K . Assume
that the coefficients and the solution satisfy the following hypotheses.

Hypothesis (DZ) Let conditions (DZ1)–(DZ4) of Sect. 3.10 hold, and, in addition,
assume that:

(DZ5) {S(t), t > 0} is a compact semigroup.
(DZ6) For all x ∈ H and ε > 0, there exists R > 0 such that for every T ≥ 1,

1

T

∫ T

0
P
(∥
∥Xx(t)

∥
∥
H

> R
)

dt < ε,

where {Xx(t), t ≥ 0} is a mild solution of (7.44).
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Remark 7.4 (a) Condition (DZ6) holds if {Xx(t), t ≥ 0} is ultimately bounded in
the m.s.s.

(b) In the special case where Wt is a Q-Wiener process, we can replace B with
B̃ = BQ1/2.

Theorem 7.17 Under Hypothesis (DZ), there exists an invariant measure for the
mild solution of (7.44).

Proof We recall the factorization formula used in Lemma 3.3. Let x ∈ H , and

Yx(t) =
∫ t

0
(t − s)−αS(t − s)B

(

Xx(s)
)

dWs.

Then

Xx(1) = S(1)x + G1F
(

Xx(·))(1) + sinπα

π
GαY

x(·)(1) P -a.s.

By Lemma 3.12, the compactness of the semigroup {S(t), t ≥ 0} implies that the
operators Gα defined by

Gαf (t) =
∫ t

0
(t − s)α−1S(t − s)f (s) ds, f ∈ Lp

([0, T ],H ),

are compact from Lp([0, T ],H) into C([0, T ],H) for p ≥ 2 and 1/p < α ≤ 1.
Consider γ : H × Lp([0,1],H) × Lp([0,1],H) → H ,

γ (y,f, g) = S(1)y + G1f (1) + Gαg(1).

Then γ is a compact operator, and hence, for r > 0, the set

K(r) =
{

x ∈ H : x = S(1)y + G1f (1) + Gαg(1),

‖y‖H ≤ r,‖f ‖Lp ≤ r,‖g‖Lp ≤ rπ

sinπα

}

is relatively compact in H .
We now need the following lemma.

Lemma 7.3 Assume that p > 2, α ∈ (1/p,1/2), and that Hypothesis (DZ) holds.
Then there exists a constant c > 0 such that for r > 0 and all x ∈ H with ‖x‖H ≤ r ,

P
(

Xx(1) ∈ K(r)
)≥ 1 − cr−p

(

1 + ‖x‖p
H

)

.

Proof By Lemma 3.13, using Hypothesis (DZ3), we calculate

E

∫ 1

0

∥
∥Yx(s)

∥
∥
p

H
ds
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= E

∫ 1

0

∥
∥
∥
∥

∫ s

0
(s − u)−αS(s − u)B

(

Xx(u)
)

dWu

∥
∥
∥
∥

p

H

ds

≤ kE

∫ 1

0

(∫ s

0
(s − u)−2α

∥
∥S(s − u)B

(

Xx(u)
)∥
∥2

L2(K,H)
du

)p/2

ds

≤ k2p/2E

∫ 1

0

(∫ s

0
(s − u)−2αK 2(s − u)

(

1 + ∥
∥Xx(u)

∥
∥

2
H

)

du

)p/2

ds.

By (3.103) and Exercise 3.7,

E

∫ 1

0

∥
∥Yx(s)

∥
∥
p

H
ds ≤ k2p/2

(∫ 1

0
t−2αK 2(t) dt

)p/2

E

∫ 1

0

(

1 + ∥
∥Xx(u)

∥
∥

2
H

)p/2
du

≤ k1
(

1 + ‖x‖p
H

)

for some k1 > 0.

Also, using Hypothesis (DZ2), we get

E

∫ 1

0

∥
∥F
(

Xx(u)
)∥
∥p

H
du ≤ k2

(

1 + ‖x‖p
H

)

, x ∈ H.

By the Chebychev inequality,

P

(
∥
∥Yx(·)∥∥

Lp ≤ πr

sinαπ

)

≥ 1 − r−p sinp απ

πp
E
∥
∥Yx(·)∥∥p

Lp ≥ 1 − r−pπ−pk1
(

1 + ‖x‖p
H

)

P
(∥
∥F
(

Xx(·))∥∥
Lp ≤ r

)

≥ 1 − r−pE
(∥
∥F
(

Xx(·))∥∥p
Lp

)≥ 1 − r−pk2
(

1 + ‖x‖p
H

)

,

giving

P
(

Xx(1) ∈ K(r)
) ≥ P

({
∥
∥Yx(·)∥∥

Lp ≤ πr

sinαπ

}

∩ {∥∥F (Xx(·))∥∥
Lp ≤ r

}
)

≥ 1 − r−p
(

π−pk1 + k2
)(

1 + ‖x‖pH
)

. �

We continue the proof of Theorem 7.17.
For any t > 1 and r > r1 > 0, by the Markov property (recall Proposition 3.4)

and Lemma 7.3, we have

P
(

Xx(t) ∈ K(r)
)= P

(

t, x,K(r)
)

=
∫

H

P
(

1, y,K(r)
)

P(t − 1, x, dy)

≥
∫

‖y‖H ≤r1

P
(

1, y,K(r)
)

P(t − 1, x, dy)
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≥ (

1 − c
(

r−p
(

1 + r
p

1

)))
∫

‖y‖H ≤r1

P(t − 1, x, dy)

= (

1 − c
(

r−p
(

1 + r
p

1

)))

P
(∥
∥Xx(t − 1)

∥
∥
H

≤ r1
)

,

giving

1

T

∫ T

0
P
(

Xx(t) ∈ K(r)
)

dt ≥ 1 − cr−p
(

1 + r
p

1

) 1

T

∫ T

0
P
(∥
∥Xx(t)

∥
∥
H

≤ r1
)

dt.

If we choose r1 according to condition (DZ6) and take r > r1 sufficiently large,
we obtain that 1

T

∫ T

0 P(t, x, ·) dt is relatively compact, ensuring the existence of an
invariant measure. �

7.5 Ultimate Boundedness and Weak Recurrence of the
Solutions

In Sect. 4.3 we proved the existence and uniqueness for strong variational solutions,
and in Sect. 4.4 we showed that they are strong Markov and Feller processes. We
will now study weak (positive) recurrence of the strong solution of (7.45), which is
(exponentially) ultimately bounded in the m.s.s.

The weak recurrence property to a bounded set was considered in [59] for the so-
lutions of SDEs in the finite dimensions and in [33] for solutions of stochastic evo-
lution equations in a Hilbert space. This section is based on the work of R. Liu [51].

Let us consider a strong solution of the variational equation
{

dX(t) = A(X(t)) dt + B(X(t)) dWt ,

X(0) = x ∈ H.
(7.45)

We start with the definition of weak recurrence.

Definition 7.6 A stochastic process X(t) defined on H is weakly recurrent to a
compact set if there exists a compact set C ⊂ H such that

Px
(

X(t) ∈ C for some t ≥ 0
)= 1 for all x ∈ H,

where P x is the conditional probability under the condition X(0) = x. The set C is
called a recurrent region. From now on recurrent means recurrent to a compact set.

Theorem 7.18 Suppose that V ↪→ H is compact and the coefficients of (7.45) sat-
isfy the coercivity and the weak monotonicity conditions (6.39) and (6.40). If its
solution {Xx(t), t ≥ 0} is ultimately bounded in the m.s.s., then it is weakly recur-
rent.

Proof We prove the theorem using a series of lemmas.
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Lemma 7.4 Let {X(t), t ≥ 0} be a strong Markov process in H . If there exists
a positive Borel-measurable function ρ : H → R+, a compact set C ⊂ H , and a
constant δ > 0 such that

Px
(

X
(

ρ(x)
) ∈ C

)≥ δ for all x ∈ H,

then Xx(t) is weakly recurrent with the recurrence region C.

Proof For a fixed x ∈ H , let τ1 = ρ(x), �1 = {ω : X(τ1) /∈ C}, τ2 = τ1 +ρ(X(τ1)),
�2 = {ω : X(τ2) /∈ C}, τ3 = τ2 + ρ(X(τ2)), etc. Define �∞ =⋂∞

i=1 �i . Since

{

ω : X(t,ω) /∈ C for any t ≥ 0
}⊂ �∞,

it suffices to show that Px(�∞) = 0. Note that

Px(�1) < 1 − δ < 1.

Since ρ : H → R+ is Borel measurable and τi is a stopping time for each i, we can
use the strong Markov property to get

Px(�1 ∩ �2) = Ex
(

Ex
(

1�1(ω)1�2(ω)|Fτ1

))

= Ex
(

1�1(ω)Ex
(

1�2(ω)|Fτ1

))

= Ex
(

1�1(ω)Ex
(

1�2(ω)|X(τ1)
))

= Ex
(

1�1(ω)PX(τ1)
({

ω : X(ρ(τ1)
)

/∈ C
}))

.

But, by the assumption,

PX(τ1)
({

ω : X(ρ(X(τ1(ω)
)))

/∈ C
})

< 1 − δ,

so that

Px(�1 ∩ �2) < (1 − δ)2.

By repeating the above argument, we obtain

Px

(
n
⋂

i=1

�i

)

< (1 − δ)n,

which converges to zero, and this completes the proof. �

Lemma 7.5 Let {X(t), t ≥ 0} be a continuous strong Markov process. If there exists
a positive Borel-measurable function γ defined on H , a closed set C, and a constant
δ > 0 such that

∫ γ (x)+1

γ (x)

P x
(

X(t) ∈ C
)

dt ≥ δ for all x ∈ H, (7.46)
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then, there exists a Borel-measurable function ρ : H → R+ such that γ (x) ≤
ρ(x) ≤ γ (x) + 1 and

Px
(

X
(

ρ(x)
) ∈ C

)≥ δ for all x ∈ H. (7.47)

Proof By the assumption (7.46), there exists tx ∈ [γ (x), γ (x) + 1) such that

Px
(

X(tx) ∈ C
)≥ δ.

Define

ρ(x) = inf
{

t ∈ [γ (x), γ (x) + 1
) : Px

({

ω : X(t,ω) ∈ C
})≥ δ

}

.

Since the mapping t → X(t) is continuous and the characteristic function of a closed
set is upper semicontinuous, we have that the function

t → Px
(

X(t) ∈ C
)

is upper semicontinuous for each x. Hence,

Px
(

X
(

ρ(x)
) ∈ C

)≥ δ.

We need to show that the function x → ρ(x) is Borel measurable. Let us define
Bt (H) = B(H), for t > 0. Since {X(t),0 ≤ t ≤ T } is a Feller process, the map
Θ : (t, x) → P x(ω : X(t) ∈ C) from ([0, T ] × H,B([0, T ] × H)) to (R1,B(R1))

is measurable (see [54], [27]). Hence, Θ is a progressively measurable process with
respect to {Bt (H)}. By Corollary 1.6.12 in [16], x → ρ(x) is Borel measurable. �

Let us now introduce some notation. Let Br = {v ∈ V : ‖v‖V ≤ r} be a sphere
in V with the radius r , centered at 0, and let Br be its closure in (H,‖ · ‖H ). For
A ⊂ H , denote its interior in (H,‖·‖H ) by A0. If Bc

r = H \Br , then (Br)
c = (Bc

r )
0.

Lemma 7.6 Suppose that the coefficients of (7.45) satisfy the coercivity condi-
tion (6.39) and, in addition, that its solution {Xx(t), t ≥ 0} exists and is ultimately
bounded in the m.s.s. Then there exists a positive Borel-measurable function ρ on
H such that

Px
({

ω : X(ρ(x),ω) ∈ Br

})≥ 1 − 1

αr2

(|λ|M1 + M1 + |γ |), x ∈ H, (7.48)

and

Px
({

ω : X(ρ(x),ω) ∈ (Bc
r

)0})≤ 1

αr2

(|λ|M1 + M1 + |γ |), x ∈ H, (7.49)

where α,λ, γ are as in the coercivity condition, and M1 = M + 1 with M as in the
ultimate boundedness condition (7.36).
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Proof Since lim supt→∞ Ex‖X(t)‖2
H ≤ M <M1 for all x ∈ H , there exist positive

numbers {Tx, x ∈ H } such that

Ex
∥
∥X(t)

∥
∥

2
H

≤ M for t ≥ Tx.

Hence, we can define

γ (x) = inf
{

t : Ex
∥
∥X(s)

∥
∥2
H

≤ M1 for all s ≥ t
}

.

Since t → Ex‖X(t)‖2
H is continuous, Ex‖X(γ (x))‖2

H ≤ M1. The set

{

x : γ (x) ≤ t
} = {

x : Ex
∥
∥X(s)

∥
∥2
H

≤ M1 for all s ≥ t
}

=
⋂

s≥t
s∈Q

{

x : Ex
∥
∥X(s)

∥
∥

2
H

≤ M1
}

is in B(H), since the function x → Ex‖X(s)‖2 is Borel measurable. Using Itô’s
formula (4.37) for ‖x‖2

H , then taking the expectations on both sides, and applying
the coercivity condition (6.39), we arrive at

Ex
∥
∥X
(

γ (x) + 1
)∥
∥

2
H

− Ex
∥
∥X
(

γ (x)
)∥
∥

2
H

= Ex

∫ γ (x)+1

γ (x)

(

2
〈

X(s),A
(

X(s)
)〉+ tr

(

B
(

X(s)
)

Q
(

B
(

X(s)
)∗))

ds

≤ λ

∫ γ (x+1)

γ (x)

Ex
∥
∥X(s)

∥
∥2
H

ds − α

∫ γ (x)+1

γ (x)

Ex
∥
∥X(s)

∥
∥2
V
ds + γ.

It follows that
∫ γ (x)+1

γ (x)

E
∥
∥X(s)

∥
∥

2
V
ds ≤ 1

α

(|λ|M1 + M1 + |γ |).

Using Chebychev’s inequality, we get

∫ γ (x+1)

γ (x)

P x
({

ω : ∥∥X(t,ω)
∥
∥
V
> r

})

dt ≤ 1

αr2

(|λ|M1 + M1 + |γ |).

Hence,

∫ γ (x)+1

γ (x)

P x
({

ω : X(t,ω) ∈ (Bc
r

)0})≤ 1

αr2

(|λ|M1 + M1 + |γ |),

and consequently,

∫ γ (x)+1

γ (x)

P x
({

ω : X(t,ω) ∈ Br

})

dt ≥ 1 − 1

αr2

(|λ|M1 + M1 + |γ |).
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Using Lemma 7.5, we can claim the existence of a positive Borel-measurable
function ρ(x) defined on H such that γ (x) ≤ ρ(x) ≤ γ (x) + 1, and (7.48) and
then (7.49) follow for r > 0 and for all x ∈ H . �

We now conclude the proof of Theorem 7.18. Using (7.48), we can choose r

large enough such that

Px
({

ω : X(ρ(x),ω) ∈ Br

})≥ 1

2
for x ∈ H.

Since the mapping V ↪→ H is compact, the set Br is compact in H , giving that X(t)

is weakly recurrent to Br by Lemma 7.4. �

Definition 7.7 An H -valued stochastic process {X(t), t ≥ 0} is called weakly pos-
itive recurrent to a compact set if there exists a compact set C ⊂ H such that X(t)

is weakly recurrent to C and the first hitting time to C,

τ = inf
{

t ≥ 0 : X(t) ∈ C
}

,

has finite expectation for any x = X(0) ∈ H .

Theorem 7.19 Suppose that V ↪→ H is compact and the coefficients of (7.45) sat-
isfy the coercivity condition (6.39) and the monotonicity condition (6.40). If its so-
lution {Xx(t), t ≥ 0} is exponentially ultimately bounded in the m.s.s., then it is
weakly positively recurrent.

Proof We know that

Ex
∥
∥X(t)

∥
∥2
H

≤ ce−βt‖x‖2
H + M for all x ∈ H.

Let M1 = M + 1, and w(r) = 1
β

ln(1 + cr2), r ∈ R. Then we have

Ex
∥
∥X(t)

∥
∥

2
H

≤ M1 for x ∈ H and t ≥ w
(‖x‖H

)

,

and
∞
∑

l=1

w((l + 1)N)

l2
< ∞ for any N ≥ 0. (7.50)

Let K = (1 + Δ)
√|λ|M1 + M1 + |γ |/√α, and let us define the sets

E0 = BK,

El = B(l+1)K − BlK = B(l+1)K ∩ (Bc
lK

)0
for l ≥ 1,

where Br is a sphere in V with the radius r , centered at 0. We denote w′(l) =
w(lKα0) + 1 with α0 such that ‖x‖H ≤ α0‖x‖V for all x ∈ V . As in the proof of
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Lemma 7.6, there exists a Borel-measurable function ρ(x) defined on H satisfying
w(‖x‖H ) ≤ ρ(x) ≤ w(‖x‖H ) + 1, and

Px
({

ω : X(ρ(x),ω) ∈ (Bc
lK

)0}) ≤ 1

α(lK)2

(|λ|M1 + M1 + |γ |)

≤ 1

l2(1 + Δ)2
for all x ∈ H. (7.51)

Let

τ1 = ρ(x), x1(ω) = X(τ1,ω), �1 = {

ω : x1(ω) /∈ E0
}

,

τ2 = τ1 + ρ
(

x1(ω)
)

, x2(ω) = X(τ2,ω), �2 = {

ω : x2(ω) /∈ E0
}

, . . . ,

and so on. Let �∞ =⋂∞
i=1 �i . As in the proof of Lemma 7.4,

Px

( ∞
⋂

i=1

�i

)

= 0.

Hence, � differs from

∞
⋃

i=1

�c
i =

∞
⋃

i=1

{

ω : xi(ω) ∈ E0
}

by at most a set of Px -measure zero. Let

Ai = �c
i −

i−1
⋃

j=1

{

ω : xj (ω) ∈ E0
}= {

ω : x1(ω) /∈ E0, . . . , xi−1 /∈ E0, xi ∈ E0
}

.

Then � differs from
⋃∞

i=1 Ai by at most a set of Px -measure zero. For i ≥ 2, let us
further partition

Ai =
⋃

j1,j2,...,jn−1

A
j1,...,ji−1
i ,

where

A
j1,...,ji−1
i = {

ω : x1(ω) ∈ Ej1, . . . , xi−1(ω) ∈ Eji−1, xi(ω) ∈ E0
}

.

Let τ(ω) be first hitting time to E0. Then for ω ∈ A1 = �c
1,

τ(ω) ≤ ρ(x) ≤ w
(‖x‖H

)+ 1,

and for ω ∈ A
j1,...,ji−1
i ,

τ(ω) ≤ τi(ω) ≤ τi−1(ω) + ρ
(

xi−1(ω)
)

.
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Moreover, for ω ∈ A
j1,...,ji−1
i ,

xi−1(ω) ∈ Eji−1 ⊂ B(ji−1+1)K .

Hence,
∥
∥xi−1(ω)

∥
∥
H

≤ α0
∥
∥xi−1(ω)

∥
∥
V

≤ α0(ji−1 + 1)K,

giving

ρ
(

xi−1(ω)
)≤ w

(∥
∥xi−1(ω)

∥
∥
H

)+ 1 ≤ w
(

α0(ji−1 + 1)K
)+ 1 = w′(ji−1 + 1)

and

τ(ω) ≤ τi−1 + w′(ji−1 + 1).

Using induction,

τ(ω) ≤ w
(‖x‖H

)+ 1 + w′(j1 + 1)+ · · · + w′(ji−1 + 1).

By the strong Markov property,

Px
(

A
j1,...,ji−1
i

)= Px
({

ω : x1(ω) ∈ Ej1, . . . , xi−1(ω) ∈ Eji−1, xi(ω) ∈ E0
})

≤ Px
({

ω : x1(ω) ∈ Ej1, . . . , xi−1(ω) ∈ Eji−1

})

= Px
({

ω : x1(ω) ∈ Ej1, . . . , xi−2(ω) ∈ Eji−2

}∩ {xi−1(ω) ∈ Eji−1

})

≤ Ex
{

1{ω:x1(ω)∈Ej1 ,...,xi−2∈Eji−2 }Pxi−2(ω)
({

ω̃ : X(ρ(xi−2(ω)
)

, ω̃
) ∈ Eji−1

})}

.

Since Eji−1 = B(ji−1+1)K ∩ (Bc
ji−1K

)0, we get by (7.51)

Pxi−2(ω)
(

ω̃ : X(ρ(xi−2(ω)
)

, ω̃
) ∈ Eji−1

)

≤ Pxi−2
(

ω̃ : X(ρ(xi−2(ω)
)

, ω̃
) ∈ (Bc

ji−1K

)0)

≤ 1

j2
i−1(1 + Δ)2

.

Hence,

Px
(

A
j1,...,ji−1
i

)≤ 1

j2
i−1(1 + Δ)2

Px
({

ω : x1(ω) ∈ Ej1, . . . , xi−2(ω) ∈ Eji−2

})

.

By induction,

Px
(

A
j1,...,ji−1
i

)≤ 1

(1 + Δ)2(i−1)

1

j2
1 · · · j2

i−1

,

which implies that Px(Ai) < 1, for Δ large enough.
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Now

Ex(τ) ≤
∑

i,j1,...,ji−1≥1

Px
(

A
j1,...,ji−1
i

)

× [

w′(‖x‖H
)+ 1 + w′(j1 + 1) + · · · + w′(ji−1 + 1)

]

≤ w
(‖x‖H

)+ 1 +
( ∞
∑

i=2

1

(1 + Δ)2(i−1)

)

(
∑

j1,...,ji−1≥1

w′(‖x‖H ) + 1 + w′(j1 + 1) + · · · + w′(ji−1 + 1)

j2
1 · · · j2

i−1

)

= w
(‖x‖H

)+ 1 +
( ∞
∑

i=2

1

(1 + Δ)2(i−1)

(

w
(‖x‖H

)+ 1
)

)

{(
∑

j1,...,ji−1≥1

1

j2
1 · · · j2

i−1

)

+ (i − 1)
∑

j1,...,ji−1≥1

w′(j1 + 1)

j2
1 · · · j2

i−1

}

= (

w
(‖x‖H

)+ 1
)

(

1 +
∞
∑

i=2

(
A

(1 + Δ)2

)i−1
)

+ B

(1 + Δ)2

∞
∑

i=2

(
A

(1 + Δ)2

)i−2

(i − 1),

where A =∑∞
l=1

1
l2

, and B =∑∞
l=1

1
l2
w′(l + 1), with both series converging due

to (7.50).
Consequently, Ex(τ) is finite for Δ large enough. The set E0 is compact since

the embedding V ↪→ H is compact. �

We have given precise conditions using a Lyapunov function for exponential ulti-
mate boundedness in the m.s.s. We can thus obtain sufficient conditions for weakly
(positive) recurrence of the solutions in terms of a Lyapunov function.

We close with important examples of stochastic reaction–diffusion equations.
Let O ⊂ R

n be a bounded domain with smooth boundary ∂O , and p be a positive
integer. Let V = W 1,2(O) and H = W 0,2(O) = L2(O). We know that V ↪→ H is a
compact embedding. Let

A0(x) =
∑

|α|≤2p

aα(x)
∂α1

∂x
α1
1

· · · ∂αn

∂x
αn
n

,

where α = (α1, . . . , αn) is a multiindex. If A0 is strongly elliptic, then by Garding
inequality ([63], Theorem 7.2.2) A0 is coercive.
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Example 7.8 (Reaction–diffusion equation) Consider a parabolic Itô equation
{

dX(t, x) = A0X(t, x) dt + f (X(t, x)) dt + B(t, x)) dWt ,

X(0, x) = ϕ(x) ∈ H, X|∂O = 0,
(7.52)

where A0, f , and B satisfy the following conditions:

(1) A0 : V → V ∗ is a strongly elliptic operator.
(2) f : H → H and B : H → L (K,H) satisfy

∥
∥f (h)

∥
∥

2
H

+ ∥
∥B(h)

∥
∥

2
L (K,H)

≤ K
(

1 + ‖h‖2
H

)

, h ∈ H.

(3) ‖f (h1) − f (h2)‖2
H + tr((B(h1) − B(h2))Q(B(h1) − B(h2))

∗) ≤ λ‖h1 − h2‖,
h1, h2 ∈ H .

If the solution to the equation

du(t, x) = A0u(t, x) dt

is exponentially ultimately bounded and, as ‖h‖H → ∞,
∥
∥f (h)

∥
∥
H

= o
(‖h‖H

)

,
∥
∥B(h)

∥
∥

L (K,H)
= o

(‖h‖H

)

,

then the strong variational solution of (7.52) is exponentially ultimately bounded in
the m.s.s. by Proposition 7.1, and consequently it is weakly positive recurrent.

Example 7.9 (Reaction–diffusion equation) Consider the following one-dimensional
parabolic Itô equation

⎧

⎨

⎩

dX(t, x) =
(

α2 ∂
2X

∂x2
+ β

∂X

∂x
+ γX + g(x)

)

dt +
(

σ1
∂X

∂x
+ σ2X

)

dWt ,

u(0, x) = ϕ(x) ∈ L2(O) ∩ L1(O), X|∂O = 0,
(7.53)

where O = (0,1), and Wt is a standard Brownian motion.
Similarly as in Example 7.3, if −2α2 + σ 2

1 < 0, then the coercivity and weak
monotonicity conditions (6.39) and (6.40) hold, and Theorem 4.7 implies the exis-
tence of a unique strong solution.

With Λ(v) = ‖v‖2
H and L defined by (6.15), we get

L Λ(v) ≤ (−2α2 + σ 2
1

)
∥
∥
∥
∥

dv

dx

∥
∥
∥
∥

2

H

+ (

2γ + σ 2
2 + ε

)‖v‖2
H + 1

ε
‖g‖2

H .

Since ‖ dv
dx ‖2

H ≥ ‖v‖2
H (see Exercise 7.9), we have

L Λ(v) ≤ (−2α2 + σ 2
1 + 2γ + σ22 + ε

)‖v‖2
H + 1

ε
‖g‖2

H .
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Hence, if −2α2 +σ 2
1 +2γ +σ 2

2 < 0, then the strong variational solution of (7.53) is
exponentially ultimately bounded by Theorem 7.5, and hence it is weakly positive
recurrent.

Exercise 7.9 Let f ∈ W 0,2((a, b)). Prove the Poincaré inequality

∫ b

a

f 2(x) dx ≤ (b − a)2
∫ b

a

(
df (x)

dx

)2

dx.
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