Chapter 6
Stability Theory for Strong and Mild Solutions

6.1 Introduction

Let (X, || - ||x) be a Banach space, and let us consider the Cauchy problem

WO _ ). 0<i<T
o Au@, O<i<T, 6.1)
u0)=xeX.

We know that if A generates a Co-semigroup {S(¢), ¢ > 0}, then the mild solution
of the Cauchy problem (6.1) is given by

u*(t) = S(@)x.

If X is finite-dimensional, with a scalar product (-, -) x, Lyapunov proved the equiv-
alence of the following three conditions:

(D e Ollx < collxllxe™, r, co > 0.

(2) max{Re(}r) : det(Al — A) =0} <O.

(3) There exists a positive definite matrix R satisfying
() crllxl} < (Rx,x)x < callxl%, x € X, c1.c2> 0,
(i) A*R+RA=-1.

If condition (1) is satisfied, then the mild solution {u*(¢), t > 0} of the Cauchy
problem (6.1) is said to be exponentially stable.
To prove that (1) implies (3), the matrix R is constructed using the equation

(Rx,x)x =/0 Hu"(t)”;dt.

When X is infinite-dimensional, then the interesting examples of PDEs result in an
unbounded operator A. In this case, if we replace condition (2) by

(2’) max{Re(A): A€o (A)} <0,

with 0(A) denoting the spectrum of A, the equivalence of (1) and (2°) fails
((27) # (1)) due to the failure of the spectral mapping theorem (refer to [63], p. 117),
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204 6 Stability Theory for Strong and Mild Solutions

unless we make more restrictive assumptions on A (e.g., A is analytic). A sufficient
condition for exponential stability is given in [63], p. 116:

o0
/ HS(t)x”pxdt <oo, forp>1.
0

In our PDE examples, we need p =2 and X = H, areal separable Hilbert space.
In this case, condition (1) alone implies that R, given by

(Rx,y)n = /0 (u* (@), uw* @), 1,

exists as a bilinear form, and in fact, the equivalence of conditions (1) and (3) above
can be proved (see [13]). We now consider the Cauchy problem in a real Hilbert
space,

WO _ awty. 0<i<T
d[ = AlU , <I< N (62)
u(0) =x € H.

Theorem 6.1 Let (H, (-, -)y) be a real Hilbert space. The following conditions are
equivalent:

(1) The solution of the Cauchy problem (6.2) {u*(t), t > 0} is exponentially stable.
(2) There exists a nonnegative symmetric operator R such that for x € 2(A),

A*Rx + RAx = —x.

Proof Define (Rx, y)p as above. Using condition (1), we have

o
(Rx,x)n =/ |S@)x|?, di < 0. (6.3)
0
Clearly, R is nonnegative definite and symmetric. Now, for x, y € H,

d
5(RS(t)x, S()y)=(RAS(1)x, S(1)y), + (RS(1)x, AS(1)y),,.

But
o
(RS)x, S(1)y),, =f (Sax, S)y),, du
t
by the semigroup property. Hence, we obtain

(RAS(1)x, S()y), + (RS(1)x, AS(1)y),,

d

= a/l <S(u)x, S(u)y)H du

=—(S®x, Sy,
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since S(¢) is strongly continuous. Thus, if x € Z(A), then
(RA+A*R)x,y), = —(x, ¥)u.

giving (2).
From the above calculations condition (2) implies that

d
S {RSOx. S()x), = —[S0)x 1%,

Hence,

1
/0 |S@)x|)3, du = (Rx, x) i — (RS()x, S()x),,
<(Rx,x)H.

Thus, [;° [S(®)x (1% dt < occ.

We know that S(¢)x — 0 as t — oo for each x (see Exercise 6.1). Hence, by the
uniform boundedness principle, for some constant M, we have [|S(t)||.¢w) <M
forall ¢ > 0.

Consider the map 7 : H — L2(R+, H), Tx = S(t)x. Then T is a closed linear
operator on H. Using the closed graph theorem, we have

o 2
/0 IS@x|2 dt < cxl,.

Let 0 < p < M~ and define
te(p) =sup{t: ”S(s)x”H > pllx|lg, forall0 <s < t}.

Since ||S(t)x||g — 0 as t — 00, we have that 7, (p) < oo for each x € H, t,(p) is
clearly positive, and

5 ) 1y (p) ’ ) )
(P Xy < IS@x |7, dr < c*lixl.
0

giving . (p) < (c/p)* =1o.
For t > 1y, using the definition of 7, (p), we have

Isox|, < s~ tx(p))“,sf(H) |S(tx()x] 5
<Mopllx|lx.

Let 8=Mp < 1 and ] > tg be fixed. For 0 < s < 1, lett =nt; + 5. Then
Is@ Hz(H) = ”S(ml)”zu{) ||S(S)”$(H)
< M| S|’y = MB" < M'e™H,

where M’ = M /B and u = —(1/t;) log 8 > 0. O
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In particular, we have proved the following corollary.

Corollary 6.1 If S(-)x € L>(R, H) for all x in a real separable Hilbert space H,
then

||S(t)||$(H) <ce™™,  forsomer > 0.

Exercise 6.1 (a) Find a continuous function f(¢) such that fooo( f(1)?dt < oo but
lim; o0 f(2) # 0.

(b) Show that if fooo ||S(t)x||%{ dt < oo for every x € H, then lim;_, || S(#)x|| g
=0 forevery x € H.

Hint: recall that ||S(t)|| 2 (my < Me*'. Assume that ||S(t;)x || > 8 for some se-
quence tj — oo. Then, |S®)x|lg = S(Me)*1 on[tj — oFl,tj].

We note that (Rx, x)y does not play the role of the Lyapunov function, since
in the infinite-dimensional case, (Rx, x)g > c1|lx||* with ¢; > 0 does not hold (see
Example 6.1). We shall show that if A generates a pseudo-contraction semigroup,
then we can produce a Lyapunov function related to R. The function A in Theo-
rems 6.2 and 6.3 is called the Lyapunov function. Let us recall that {S(z), t > 0} is
a pseudo-contraction semigroup if there exists w € R such that

|s@) ”z(H) <e”.

Theorem 6.2 (a) Let {u*(t)t > 0} be a mild solution to the Cauchy problem (6.2).
Suppose that there exists a real-valued function A on H satisfying the following
conditions:

(1) crllxll?, < Ax) < callx|3 forx € H,
(2) (A'(x), Ax) g < —c3A(x) for x € D(A),

where c1, ¢y, c3 are positive constants. Then the solution u*(t) is exponentially
stable.

(b) If the solution {u*(t)t > 0} to the Cauchy problem (6.2) is exponentially
stable and A generates a pseudo-contraction semigroup, then there exists a real-
valued function A on H satisfying conditions (1) and (2) in part (a).

Proof (a) Consider 3" A(u*(t)). We have
%(e%’A(um))) = 3¢ A(u* (1)) + e (A (¥ (1)), Au* (1)) .-

Hence,
t
ec3’A(ux(t)) —Ax) = /0 eC3S{C3A(ux (s)) + (A’(u’C (s)), Aux(s))H}ds.

It follows, by condition (2), that

e AW (1)) < AW).
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Using (1), we have
2 _ e
cllut @ e AWX) < ce” I,
proving (a).

(b) Conversely, we first observe that for ¥ (x) = (Rx,x)y with R defined
in (6.3), we have ¥'(x) = 2Rx by the symmetry of R. Since R = R*, we can write

(W/'(x), Ax),, = (Rx, Ax)y + (Rx, Ax)y = (A*Rx, x),, + (x, RAx)
=(A*Rx + RAx, x),, = — x|l
Consider now, for some « > 0 (to be determined later),
A(x) = (Rx, x)p +alx]|F;.

Clearly A(x) satisfies condition (1) in (a). Since S(¢) is a pseudo-contraction semi-
group, there exists a constant A (assumed positive WLOG) such that (see Exer-
cise 3.5)

(x, Ax)g < Allx|l3;,  x € D(A). (6.4)
‘We calculate

(A'(x), Ax), = (¥'(x), Ax),, +20(x, Ax)y = llx 113 (2aeh — 1).

Choosing o small enough, so that 2al < 1, and using condition (1), we obtain (2)
in (a). O

Let us now consider the case of a coercive operator A (see condition (6.5)), with
a view towards applications to PDEs. For this, we recall some concepts from Part .
We have a Gelfand triplet of real separable Hilbert spaces

Ve H< V*

where the embeddings are continuous. The space V* is the continuous dual of V,
with the duality on V x V* denoted by (-, -) and satisfying

(v,h) = (v, h)n

ifhe H.

Assume that V is dense in H. We shall now construct a Lyapunov function for
determining the exponential stability of the solution of the Cauchy problem (6.2),
where A : V — V* is a linear bounded operator satisfying the coercivity condition

2(v, Av) < Allol|3 —alvl}, veV,reR, a>0. (6.5)
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We note that the following energy equality in [72] holds for solutions u”(¢) €
L*([0,T1. V)N C((0, T, H):

t
2
lu @] = Ixl7 = 2/0 (u*(s), Au*(s))ds. (6.6)
We now state our theorem.

Theorem 6.3 (a) The solution of the Cauchy problem (6.2) with a coercive coeffi-
cient A is exponentially stable if there exists a real-valued function A that is Fréchet
differentiable on H, with A and A’ continuous, locally bounded on H, and satisfy-
ing the following conditions:

() erlxlly < A®) < eallxl.
(2) Forx eV, A'(x) € V, and the function

Vox—(A@x),v)eR

is continuous for any v* € V*.
(3) Forx e V, {A'(x), Ax) < —c3 A(x), where ¢y, c3, ¢3 are positive constants.

In particular, if
2(A'(x), Ax), = —Ilx|},

then condition (3) is satisfied.
(b) Conversely, if the solution to the Cauchy problem (6.2) is exponentially stable,
then the real-valued function

Alx) = /O |t @3 at 6.7)
satisfies conditions (1)—(3) in part (a).

Proof Note that forz, ' > 0,

"d
A @) — A(u* () = /ﬂ gA(ux(s)) ds.
But, using (2) and (3), we have

d
aA(M’C(s)) = (A" (u*(5)), Au*(5)) < —c3A(u* (5)).

Denoting @ (1) = A(u*(t)), we can then write
D'(t) < —c30(1)

or, equivalently, d(® (t)e®")/dt < 0, giving @ (1)e®3 < @(0).
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Using condition (1), we have
et @3 < AW ®) < A < eallxlfe .

To prove (b), we observe that, by the energy equality,
t
2
|3 = 1x1% +2f (Au*(s),u*(s))ds
0

' '
< ||x||%1+|)»|/0 Hux(s)”ilds—a/o ||ux(s)}|%/ds.

Hence,

t t
Huxu)Hi,Jra/O [t )] ds < ||x||%1+|x|/0 e )] ds:

Letting t — oo and using the fact that

| @) |3 <clixlle™ (v >0),

A
[Tl ds<—(1+'i)n I

A®x) =/O |u )5 ds,

we obtain

Define

then A(x) < cz||x||%1. Let x, y € H and consider

T(x,y)= fo (w* (@), u* (1)), dt

Using the fact that u*(s) € L?([0, 00), V) and the Schwarz inequality, we can see
that 7' (x, y) is a continuous bilinear form on V, which is continuous on H. Hence,
T(x,y)= (Cx, y)g. Since A'(x) = 2Cx (by identifying H with H*), we can see
that A and A’ are locally bounded and continuous on H. By the continuity of the
embedding V < H, we have that for v, v € V, T(v,v’) = (Cv,v')y for some
bounded linear operator C on V, and property (2) in (a) follows. Now,

t
|t )], - |xI|H—2/ (Au*(s), u™(s))ds

But | (u* (s), Au* ()| < chllu* ()13, giving

t
@1, = 11y = =265 [ )] s
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Let t — oo; then [|u*(¢)]|%, — 0, so that
2
—llxlg = —2c5 A(x),
implying A(x) > ci|x[|3; for c; = 1/(2c}).

It remains to prove that A(x) satisfies condition (3) in (a).
Note that

0 . )
A (1)) = / Ju O s) |3, ds.
0
By the uniqueness of solution,
u” O (s) = u*(t +5).

Hence,

0 2 o0 2

A(ux(t)):/o ||ux(t+s)||vds=/ s ds.
t
Observe that
diA(uX(s)) = (A"u*(s), Au*(s)).
S
Since the map A" : V — H is continuous, we can write
t t
A(u* (1)) — Ax) =/ (A (u*(9)), Au*(s))ds = —/ | )|)5 ds.
0 0

By the continuity of the embedding V «— H, we have |x|lg < collx|lv, x € V,
co > 0, and hence,

! / X X 1 ! X 2
A LA ds < —— ds.
/()( (4™ (9)), Au*(s))ds < 6(2)/0 [u* ()| ds

Now divide both sides by ¢ and let r — 0. Since A’ is continuous and u”*(-) €
C(0,T], H), we get

1
(A'(x), Ax) < —C—2||x||%,.

2 O

The following example shows that in the infinite-dimensional case, if we define

*© 2
Alx) = / |u* @] dt.
0
then A(x) does not satisfy the lower bound in condition (2) of (a) of Theorem 6.3.

Example 6.1 Consider a solution of the following equation

dou(t, x) = 227 4 (62
=y FYRR A (6.8)

u(0, x) = ¢(x) € L>(R) N L' (R).
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Here, H = L?(R), and V is the Sobolev space W12(R). We denote by ¢(1) the
Fourier transform of ¢(x) and use the similar notation 7 (¢, 1) for the Fourier trans-
form of u(¢, x). Then (6.8) can be written as follows:

du(t, 5 Z
M(T) = —a®22i(t, ) + (ibA+)i(t, 1),

400, 1) = §(1).

(6.9)

The solution is
% (t, 1) = g(x) exp{(—a*»* + ibr + c)t}.

By Plancherel’s theorem, ||u? (¢, ) ||z = ||u? (¢, -)| g, so that
oo
[u? @, HZ = /_m|¢(k)|zexp{(—2a2k2 +2¢)t} da

< llgll% explyt} (v =2¢).

For ¢ < 0, we obtain an exponentially stable solution.
Take A = —2a%, B =2c¢. Then

opoo > 9P
A(@:/O /_OO|¢(/\)| exp{—(Ak2+B)t}dkdt=/_oo AA2+BdA

does not satisfy A(g) > ¢ ||<p||%, (see condition (1) in part (a) of Theorem 6.3).

In the next section, we consider the stability problem for infinite-dimensional
stochastic differential equations using the Lyapunov function approach. We shall
show that the fact that a Lyapunov function for the linear case is bounded below can
be used to study the stability for nonlinear stochastic PDEs.

6.2 Exponential Stability for Stochastic Differential Equations

We recall some facts from Part I. Consider the following stochastic differential equa-
tion in H:
dX(1) = (AX(t) + F(X(1)))dt + B(X (1)) dW;,

X0)=xeH, 6.10)

where

(1) A is the generator of a Cyp-semigroup {S(¢), t >0} on H.
(2) W, isa K-valued .%;-Wiener process with covariance Q.
(3) F:H— H and B: H— £ (K, H) are Bochner-measurable functions satis-

fying
|F)|3, + (B QB (1) < £(1 + IIx11%),

|F) = FOo) |5, + u((B&) — BD))Q(B(x) — B»)*) < #llx — vl
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Then (6.10) has a unique .%;-adapted mild solution (Chap. 3, Theorem 3.5), which
is a Markov process (Chap. 3, Theorem 3.6) and depends continuously on the initial
condition (Chap. 3, Theorem 3.7). That is, the integral equation

t t
X(t):S(t)x—I—/ S(t—s)F(X(s))ds—i—/ S(t —s)B(X(s))dW,  (6.11)
0 0

has a solution in C ([0, T, L??((£2, %, P), H)), p > 1. Here .# = 0 (U;=0Z1).

In addition, the solution of (6.11) can be approximated by solutions X,, obtained
by using Yosida approximations of the operator A in the following manner.

Recall from (1.22), Chap. 1, that for n € p(A), the resolvent set of A, R(n, A) de-
notes the resolvent of A at n, and if R, =nR(n, A), then A, = AR, are the Yosida
approximations of A. The approximating semigroup is S, (¢) = e’". Consider the
strong solution X;; of

dX(t) = (A, X (1) + F(X(1)))dt + B(X(t)) dW;, 6.12)
X0)=xeH. '
Then X € C([0, T1, L>’((2, #, P), H)), p > 1, by Theorem 3.5 in Chap. 3. By
Proposition 3.2 in Chap. 3, for p > 1,
lim sup E(|X50) — X 0)]7) =0, (6.13)
T

l’l—)OOOStE

where X*(¢) is the solution of (6.11).

We also recall the Itd formula, Theorem 2.9 in Chap. 2, for strong solutions
of (6.10). Let C}%’l oc ([0, T] x H) denote the space of twice differentiable functions
¥ :[0,T] x H — R with locally bounded and continuous partial derivatives ¥;,
¥, and ¥,,. Let X*(¢) be a strong solution of (6.10), and ¥ € C,f,loc([O, T]x H).
Then, with x € Z(A),

t
W(I,Xx(t))—lI/(O,x):/ (W (s, X (9)) + LW (5. X*(5))) ds
0

+fol(t1/x(s,x"(s)), B(X*(5))dWy),, (6.14)

where
LW (t,x) = (¥ (t, x), Ax + F(x)), + %tr(llfxx (t,x)B(x)QB*(x)).  (6.15)
Clearly (6.14) is valid for strong solutions of (6.12), with x € H and A replaced by

Ay in (6.15).
We are ready to discuss the stability of mild solutions of (6.10).
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Definition 6.1 Let {X*(¢), r > 0} be a mild solution of (6.10). We say that X*(¢) is
exponentially stable in the mean square sense (m.s.s.) if forallt >0 and x € H,

E|X*0)|3 <ce Plxl3, ¢ B>0. (6.16)

It is convenient to denote by Cgp(H ), with p > 1, the subspace of C2(H ) con-
sisting of functions f : H — R whose first two derivatives satisfy the following
growth condition:

[ £/ <Clxlz and | 7G| gy < CllxIZ

for some constant C > 0.

Theorem 6.4 The mild solution of (6.10) is exponentially stable in the m.s.s. if there
exists a function A : H — R satisfying the following conditions:

(1) Ae cgp(H).
(2) There exist constants cy, ¢y > 0 such that

cillxlf < A) <eallxlly forallx € H.
(3) There exists a constant c3 > 0 such that
LAX) < —c3A(x) forall x € D(A)
with £ A(x) defined in (6.15).

Proof Assume first that the initial condition x € Z(A). Let X (¢) be the mild solu-
tion of Theorem 3.5 in Chap. 3 to the approximating equation

(6.17)

dX(t) = AX(t) + R, F(X (@) dt + R, B(X (1)) dW,,
X(0)=x € 2(A),

that is,

t

t
Xjf(r):S(t)er/ S(t—s)R,,F(Xj;(s))ds+/ S(t — $)RyB(X;(s)) dW;
0 0

with R, defined in (1.21). We note that (6.17) is an alternative to (6.12) in approx-
imating the mild solution of (6.10) with strong solutions. This technique preserves
the operator A and we have used it in the proof of Theorem 3.11.

Since x € Z(A) and R, : H — Z(A), the solution X; () € Z(A). Moreover,
since the initial condition is deterministic, Theorem 3.5 in Chap. 3 guarantees that
X, € . Then, the linear growth of B and the boundedness of R, and S(¢) im-
plies that the conditions of Theorem 3.2 are met, so that X}, (¢) is a strong solution
of (6.17). We apply Itd’s formula (6.14) to e’ A(X;(r)) and take the expectations,
to obtain

t
eMEA(Xy (1)) — A(X(0) = E/ e (3 A(Xp(9)) + L A(X;i(5))) ds,
0
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where

L A(x) =(A'(x), Ax + R, F(x)), + %tr(A”(x)(RnB(x))Q(RnB(x))*). (6.18)

By condition (3),
3 AX) + L AX) < —ZLAXx) + L Ax).
The RHS of the above equals to
(A' (), (Ry — DF (),

1 * *
+ Etr{A”(x)[(RnB(x))Q(RnB(x)) — B(x)Q(B))*]}.
Hence,
eNEA(X (1) — Ax)
t
< E/O e“”{(A’(Xj‘l (). (Ry — DF(X;5(5)))

34" (X O) [(RiB(X9)) (Ra B(X5(5)))°

- B 0)Q(B(x50) T} as.
In order to pass to the limit, we need to show that

supTE”X;‘(t) — X*(r) ||§{ — 0.

0<t<
Consider

E| x50 - x 0|,

t
< EH/ St —s)(RyF (X5 (s)) — F(X*(s)))ds
0

t 2
+/ St —5)(RaB(X;(s)) — B(X*(5))) dW;
0

H
2

< C{E /l St — )Ry (F(X;i(s)) — F(X*(s)))ds
0

H

t
+E [ 156 =Ry (BG6) = BOCO) a4

2
+ E”/[ S(t —$)(Ry — DF(X*(s)) ds
0

H

t
+E/0 ISt = s)(Ry — DB(X*(s5)) ||;2(KQ’H)ds}.

(6.19)

(6.20)
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The first two summands are bounded by CZE fot X5 (s) — X*(s) ||%] for
n > ng (no sufficiently large), where C depends on supy,.7 [|S(®)|l.# ) and
SUP,~ g | Rull (k). and % is the Lipschitz constant. o

By the properties of R,, the integrand in the third summand converges to zero,
and, by (2.17) in Lemma 2.2, Chap. 2, the integrand in the fourth summand con-
verges to zero. Both integrands are bounded by C£|| X*(s) ||%{ for some constant C
depending on the norms of S(¢) and R,, similar as above, and the constant £ in the
linear growth condition. By the Lebesgue DCT, the third and fourth summands can
be bounded uniformly in ¢ by &,(T) — 0.

An appeal to Gronwall’s lemma completes the argument.

The convergence in (6.20) allows us to choose a subsequence X;, such that

X, @) — X*(t), 0<t<T, P-as.

We will denote such a subsequence again by X;,.

Now we use assumption (1), the continuity and local boundedness of A’,
the continuity of F, the uniform boundedness of || R, |l « ), and the convergence
(R,, — I)x — 0 to conclude that

t
Ef e (A (X5 (). (Ry — DF (X;())), ds — 0
0
by the Lebesgue DCT. Now, using Exercise 2.19, we have

tr{ A" (X5 (9)) (R B(X2(9))) Q(Ru B(X(9)))"}
= tr{ (R B(X;(5))) A" (X; ) (R B(X; (5))) 0}

o0

Z (A" (X5 (9)) (RuB(X5(9))) f7. (RuB(X5(9)) i)y

with
(A" (X5)) (Ra B(X;3 () £ (Ru B (X;5()) f7)
= (A7 (X*(9) B(X* () £, B(X* () fi)y
Hence,
u{ A" (X5)) (R B(X;/(9))) Q(Ra B(X;5(5))) "}
= A" (X)) B(X* () 2(B(X*()))"}.
Obviously,

{4 (X5 ) B(X; ) 2(B(X; )]
— tr{ A" (X*(5)) B(X* () Q(B(X*(5)))"}.
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Now we use assumption (1), the continuity and local boundedness of A" and A”,
the growth condition on F and B, and the fact that

sup E|| X2 (s)|5, < oo,
0<t<T

and apply Lebesgue’s DCT to conclude that the right-hand side in (6.19) converges
to zero.
By the continuity of A and (6.20), we obtain

eVEA(XT (1) < A),
and finally, by condition (2),

E|x* 0|} < Z—Te—fﬂnxni,, x € D(A). 6.21)

We recall that the mild solution X*(¢) depends continuously on the initial condition
x € H in the following way (Lemma 3.7):

sugEHXx(t) X073, <erlx =y}, T>o0.
1<

Then fort <T,
E|x* 0|5 < EIX* 0]}, + E|X*0) - X 03
< E—Te*“fnyu%, +erlx =yl

2

- 2
<5 € V2 =yl + e

=723 +erllx — vl
Cl
for all y € Z(A), forcing inequality (6.21) to hold for all x € H, since Z(A) is
dense in H. O

The function A defined in Theorem 6.4, satisfying conditions (1)—(3), is called a
Lyapunov function.

We now consider the linear case of (6.10) with F =0 and B(x) = Bgx, where
Bye L(H,Z (K, H)), and || Box|| <d|xlln,

dX()=AX(t)dt+ BoX(¢)dW;,
(1) = AX () dt + BoX (1) dW, 6.22)
X0)=x€eH.
Mild solutions are solutions of the corresponding integral equation
t
X(@)=S()x +/ St —s)BoX (s)dW;. (6.23)
0

The concept of exponential stability in the m.s.s. for mild solutions of (6.22) obvi-
ously transfers to this case. We show that the existence of a Lyapunov function is a
necessary condition for stability of mild solutions of (6.22). The following notation
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will be used:
1
Lov (x) =(¥'(x), Ax), + 5 tr(¥" (x)(Box) Q(Box) ™). (6.24)

Theorem 6.5 Assume that A generates a pseudo-contraction semigroup of opera-
tors {S(t), t > 0} on H and that the mild solution of (6.22) is exponentially stable
in the m.s.s. Then there exists a function Ao(x) satisfying conditions (1) and (2) of
Theorem 6.4 and the condition

(3") LAo(x) < —c3A0(x), x € D(A), for some c3 > 0.
Proof Let

o 2
Ap(x) =/0 E|X*(1)|;, dt +alx|%,

where the value of the constant o > 0 will be determined later. Note that X*(¢)
depends on x linearly. The exponential stability in the m.s.s. implies that

o 2
/ E|X*(0)|} dt <oo.
0
Hence, by the Schwarz inequality,

T(x,y)= /oo E(X* (1), XY (1)), dt
0

defines a continuous bilinear form on H x H, and there exists a symmetric bounded
linear operator 7' : H — H such that

(Tx,x)n =/O E|X 0|3, dr.

Let
U (x)=(Tx,x)gy.

Using the same arguments, we define bounded linear operators on H by
~ t 2
(T0)x,x), = /0 E|X*(s)|}, ds.
Consider solutions {X; (¢), t > 0} to the following equation:

dX(t) = A X(t)dt + BoX (1) dW,,
X(O0)=xeH,

obtained using the Yosida approximations of A. Just as above, we have continu-
ous bilinear forms 7;,, symmetric linear operators 75 (¢), and real-valued continuous
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functions ¥, (¢), defined for X,,,
t
Tu(1)(x,y) = fo E(X;; (), X (w)),, du,

B t
(10,20, = [ E[x3 @] du

@, (1) (x) = (T, (D)x, x) .

‘We have
t
W, (1) (X5 (5)) = ( fo E| X3 ) ||2du)

Letp: H— R, ¢(h) = ||h|3,, and

y=X;(s)

(Pio)(x) = Ep(X*(1))

be the transition semigroup. Using the uniqueness of the solution, the Markov prop-
erty (3.59) yields

t ~
EW,(1)(X;(s)) =E/(; (Pu@)(X;i(s)) du
t X
:E/ E(o(X u + )| 7 du
0

t
= [ X3+ ) du
0
=Wt + 5)(x) — W (s)(x). (6.25)

With ¢ and n fixed, we use the It6 formula for the function ¥, (¢)(x), then take the
expectation of both sides to arrive at

E(@,(0)(X5(5))) = W () (x) + /O E(LW (1) (X2 ))) du, (6.26)

where
Ly ()(x) = 2T, (H)x, Anx),; + tr(T, (1) (Box) Q(Box)*).
Putting (6.25) and (6.26) together, we have

W1+ 5)(x) = W (5) (x) = / E(Zu (1) (X)) du + W, () ().
0

Rearranging the above, dividing by s, and taking the limit as s — 0 give

Wn(t +5)(x) = ¥ (D) _ W (s)(x)
S S

% / ' E(ZW, (1) (X (w))) du + (6.27)
0
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We fix n and ¢, and intend to take the limit in (6.27) as s — 0.
The processes X, () are continuous in the mean-square, since

E[ X3 - X; @),
<2(1Aul % iy + 1Bol s a1, 2k ty)) 11(Q) f Bl ar.
Hence,
}%MZ}%%/{)SE”XZ(M)”iIdu:||x||%1- (6.28)
Now consider
EZW, (1) (X, ()
= EQT, ()X ), An X)) ;) + E(tr(T (1) (Bo Xy ) Q(Bo X () "))

Since

lim A, X (u) = Apx, lim 7, (1) X (u) = T, (t)x,

u—0 u—0
and

~ ~ 2
(7@ X5 @), A X @) < [T )| o 1 Anll 20 [ X5 @) [ € LT (),

the Lebesgue DCT gives

1in}) EQT, ()X w), An Xy w)),) = 2Tn(0)x, Apx),,.

u—
For the term involving the trace, we simplify the notation and denote

®,(u) = BoX}(u) and x;j(u) = D, (u)f;,

where { f ,-}?" | is an ONB in K that diagonalizes the covariance operator Q. Using

Exercise 2.19, we have

tr(T ()P () Q(®n () ") = tr((Dn () " T (1) (1) Q)

L

~
Il
—-

kj(fn(t)(pn(u)fjv (pn(u)fj>H

(T ()] (), 3 ()

M

~.
I
_

M

t .
A / E| X5 s)|?, ds. (6.29)
0

~.
Il
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Denote x/ = (Box) fj. Since By is continuous, as u — 0, BoX; (u) — Box in
Z(K,H), so that x;,(u) — x/ in H. By the continuity of the solution X, with
respect to the initial condition (Chap. 3, Lemma 3.7),

sup E[ X5 (5) — x¥ (9)]%, > 0 asu—0,
T

0<s<

so that, by Lebesgue’s DCT and by reversing the calculations in (6.29),
ad ! J 2
S [ EPxE OO, ds
=t 70
o0 t .
— Z}\j/o E|XE ()], ds = t(T(6)(Box) Q(Box)*).
j=1

Summarizing, we proved that

dv, (1) (x)

& =GO + 113

In the next step, we fix ¢ and allow n — 00. By the mean-square continuity of X, (¢)
and the definition of (T, (t)x, x) g and (T (t)x, x) g, we can calculate the derivatives
below, and the convergence follows from condition (6.13):

dv, (2)(x) N o2 de@)(x)
— = E|Xy@0)| ;= E|X 0|} = —
Now, we need to show that as n — oo, for x € Z(A),
LT )x, x),, > L(T()x,x) . (6.30)

Consider

(Tu(0)x, Anx),, — (T (0)x, Ax),,|

= | T [An = A)x]y + [((Ta®) = T @), Ax) 4| = 0.

Since (6.13) implies that
T 2
lim E/ |5 () — X* )| 5, du =0, (6.31)
n—oo 0

we thus have the weak convergence of 7, (¢)x to T (¢)x, and, further, by the Banach—
Steinhaus theorem, we deduce that sup,, | 7;,(¢)|| ##) < oo. Using calculations sim-
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ilar as in (6.29), we have

tr(7, (1) (Box) Q(Box)*) = Y aj{Tu(t)x! x7),,

M

~
I
-

Aj(f(t)xj, xj>H

i
WK

.
Il
-

= (T (1) Box Q(Box)*),
by Lebesgue’s DCT, proving the convergence in (6.30). Summarizing, we have

d(T (t)x, 8
SOLDE _ (T 0, )y + el

We will now let # — oo. Then, by the exponential stability condition,

d(T (t)x,
WO gy o

Since (T ()x,x)g — (Tx,x)H, using the weak convergence of T(t)x to Tx and
the Lebesgue DCT, exactly as above, we obtain that

LT (), x), =2(T (t)x, Ax),, + tr(T () Box Q(Box)*)
— 2(Tx, Ax) g + tr(T Box Q(Box)*) = Lo(Tx, x) .
In conclusion,
LW (x) =—|xll3. xeD(A).

Now, Ag satisfies conditions (1) and (2). To prove condition (3’), let us note that, as
in Sect. 6.1, since ||S(¢)|| < e*’, inequality (6.4) is valid for some constant A > 0.
Hence,

Lollx|I3 = 2(x, Ax) i + tr((Box) Q(Box)*) < 2h +d*tr Q) Ix[lF;  (6.32)
gives
L Ao(x) < —IIxlIF +a (20 +d> w(Q)) Ix 17 < —e340(x),
c3 > 0, by choosing « small enough. 0
Remark 6.1 For the nonlinear equation (6.10), we need to assume F(0) =0 and

B(0) =0 to assure that zero is a solution. In this case, if the solution {X*(¢), t > 0}
is exponentially stable in the m.s.s., we can still construct

Ax) =/0 E|X 0|3 di + allxl?.



222 6 Stability Theory for Strong and Mild Solutions

We however do not know if it satisfies condition (1) of Theorem 6.4. If we assume
that it does, then one can show, as in Theorem 6.5, that it satisfies condition (2).
Then we can prove that A(x) also satisfies condition (3).

First, observe that for ¥ (x) = (Rx, x) g, as before,

LU (x)=—|xy
and

ZLAX) =LY (x) +aZ x|
= —|lx|I +a(2(x, Ax + F(x)),, + tr(B(x) QB*(x))),

noting the form of the infinitesimal generator .Z of the Markov process X~ (r). We
obtain

LAX) < —|x)5 + 2eilxll7 +a(2fx, F(0), +tr(B(x) QB*(x))).

Now using the fact that F'(0) = 0, B(0) = 0, and the Lipschitz property of F and B,
we obtain

LAX) < —lIxI3 +a@r+2H + A w(Q)) x5
Hence, for o small enough, condition (3) follows from condition (2).

As shown in Part I, the differentiability with respect to the initial value requires
stringent assumptions on the coefficients ' and B. In order to make the result more
applicable, we provide another technique that uses first-order approximation. We
use trace norm of a difference of nonnegative definite operators in the approximation
condition. Recall that for any trace-class operator 7', we defined the trace norm
in (2.1) by

o(T) =u((T7%)"?).
Note (see [68]) that for a trace-class operator 7 and a bounded operator S,
(@) [t(D)] = (1),
(®) =(ST) = ISI=(T) and =(T'S) = S|z (T).

Theorem 6.6 Assume that A generates a pseudo-contraction semigroup of oper-
ators {S(t), t > 0} on H. Suppose that the solution {Xg (1), t = 0} of the linear
equation (6.22) is exponentially stable in the m.s.s. Then the solution {X*(t), t > 0}
of (6.10) is exponentially stable in the m.s.s. if

20xlla | F() | + 7 (B(x)QB*(x) — Box Q(Box)*) < %IIXII%{. (6.33)
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Proof Let Ag(x) = (Tx,x)g + a|x||3, as in the proof of Theorem 6.5. Note that
(Tx,x)g = E [°I1 X3 (0|3 dt, so that

o t 2 c 2
<Tx,x>Hs/0 el dr = S sl

Hence, || f‘llg(g) < c/B. Clearly Ay satisfies conditions (1) and (2) of Theorem 6.4.
It remains to prove that

L Ap(x) < —c3A0(x).

Consider
L Ao(x) — LoAo(x)
=(Ap(x), F(x)), + %tr(Ag(x)(B(x)QB*(x) — (Box)Q(Box)*))
<2((T +a)x, F(x)), + 1((T + a)(B(x) QB*(x) — (Box) Q(Box)*))

< (IT 2 + @) 2Ixlla | F) ,; + T (B(x) QB*(x) — (Box) Q(Box)*))

1 B 2
< <5 +QZ)HXHH'

It follows that

1
LA < LoAo(x) + (5 +a£> I3

1 «aB
< —lIxll} + (21 + d2 (@) Ix 1 + (5 + 5) [E3%

For o small enough, we obtain condition (3) in Theorem 6.4 using condition (2). [
We now consider stability in probability of the zero solution of (6.10).

Definition 6.2 Let {X*()};>0 be the mild solution of (6.10) with F(0) =0 and
B(0) = 0 (assuring that zero is a solution). The zero solution of (6.10) is called
stable in probability if for any & > 0,

lim P(sug”Xx 0|, > g) —0. (6.34)

[lxll 7—0 >

Once a Lyapunov function satisfying conditions (1) and (2) of Theorem 6.4
is constructed, the following theorem provides a technique for proving condi-
tion (6.34).

Theorem 6.7 Let X*(t) be the solution of (6.10). Assume that there exists a func-
tion ¥ € Cgp(H) having the following properties:
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(1) Y(x) > 0as ||x||lg — 0.
(2) infjxy>e ¥ (x) =Ae > 0.
(3) LY (x) <0, when x € Z(A) and || x| g < 8 for some § > 0.

Then, {X* (), t > 0} satisfies condition (6.34).

Proof The proof is similar to the proof of Theorem 6.4. We assume first that the
initial condition x € Z(A) and consider strong solutions X (¢) of the approximating
equations (6.17),n =1,2,...,

t '
Xj(z):S(r)x+/ S(t—s)R,,F(X;(s))ds+/ S(t — )Ry B(X;:(5)) dW.
0 0
Denote B, ={x € H : ||x|| <&} and let
tg:inf{t: “Xx(t)||H>8} and rg:inf{t: ||XZ(t)||H>8}.

Applying It6’s formula to ¥ (X}, (¢)) and taking the expectations yield

tATe

Ey(X;(tAtl)—v(x)=E A L (X5(9))ds,
where
LW (x) =(¥'(x), Ax + R, F(x)), + %tr(llf”(x)(RnB(x)) O(R,B(x))").
Let & < 8. Then for x € B,, using condition (3), we get
LY (x) < =LV (X)+ LY (x)
= ('), (Ru = DF (1)),
+ %tr{W”(x)[(RnB@))Q(RnB<x>)* — B Q(BW)']}-
Hence,
E¥(X;(t AT)) — W (x)

tAT)
SE/O {(¥/ (X3 ). Ry = DF(X;(9)) 4

45 n{ (GO (BB ) QR B(X0)))°

— B(X3()0(B(X3())"]}} ds. (6.35)

Using (6.20) and passing to the limit, as in the proof of Theorem 6.4, show that
the RHS in (6.35) converges to zero. Using condition (2), we conclude that for
x € Z(A) N Be and any n,

U(x) = E(W(X;(tAtl)) =1 P(t) <t). (6.36)
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By the a.s. (and hence weak) convergence of t/' to 7., we have that

Y(x) > Ag I}ln_l)gcl)fP(rf < t) > APt <1).
To remove the restriction that x € Z(A), recall that

sup E|X*(t) — X' (1)]3,— 0 asly—x|z—0.
0<t<T

We can select a sequence y, — x, y, € Z(A), such that X (t) — X*(¢t) a.s. for
all 7. Now using the assumptions on ¥ and the Lebesgue DCT, we obtain (6.36) for

all x € H. Inequality (6.36), together with conditions (2) and (1), implies that for
X € B,

P(suplxi ], >¢) <X w0 el —o.
t>0 )\'8

giving (6.34). O
The following results are now obvious from Theorems 6.5 and 6.6.

Theorem 6.8 Assume that A generates a pseudo-contraction semigroup of opera-
tors {S(t), t > 0} on H. If the solution Xy (t) of the linear equation (6.22) is expo-
nentially stable in the m.s.s., then the zero solution of (6.22) is stable in probability.

Theorem 6.9 Assume that A generates a pseudo-contraction semigroup of opera-
tors {S(t), t = 0} on H. If the solution XS (t) of the linear equation (6.22) is ex-
ponentially stable in the m.s.s. and condition (6.33) holds for a sufficiently small
neighborhood of x = 0, then the zero solution of (6.10) is stable in probability.

We note that the exponential stability gives degenerate invariant measures. To
obtain nondegenerate invariant measures, we use a more general concept introduced
in Chap. 7.

6.3 Stability in the Variational Method

We consider a Gelfand triplet of real separable Hilbert spaces
Ve H< V*

The space V* is the continuous dual of V, V is dense in H, and all embeddings are
continuous. With (-, -) denoting the duality between V and V*, we assume that for
heH,

(v,hy=(v,h)g.
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Let K be a real separable Hilbert space, and Q a nonnegative definite trace-class
operator on K. We consider {W;, t > 0}, a K-valued Q-Wiener process defined on
a filtered probability space (£2, %, {F};>0, P).

Let M2([0, T, V) denote the space of all V-valued measurable processes satis-
fying
(1) u(t,-) is .#;-measurable,

T

() E [y llu@t, o)} dt < oo,

Throughout this section we consider the following equation:

dX () =AX(@))dt+ B(X(t))dW;,

(6.37)
X(0)=xeH,

where A and B are in general nonlinear mappings, A : V — V* B:V —
Z(K,H), and

A [y« sarlivlly  and  [B@)| 4 g gy <billvllv, veV, (6.38)

for some positive constants ay, by .
We recall the coercivity and weak monotonicity conditions from Chap. 4, which
we impose on the coefficients of (6.37)

(C) (Coercivity) There exist ¢ > 0, y, A € R such thatforallv eV,
2(v, A(v)) + tr(B(v) Q0 B*(v)) < Ml —allvl? + y. (6.39)
(WM) (Weak Monotonicity) There exists A € R such that for all u,v e V,

2{u — v, Aw) — A)) +tr((Bu) — B(v)) Q(Bu) — B(v))")
<Alu—vl3. (6.40)

Since conditions (6.38), (6.39), and (6.40) are stronger than the assumptions in The-
orem 4.7 (also in Theorem 4.4) of Chap. 4, we conclude that there exists a unique
strong solution {X*(¢), t > 0} of (6.37) such that

X*() e L*(£2,C([0, T1. H)) N M*([0, T1. V).

Furthermore, the solution X*(¢) is Markovian, and the corresponding semigroup
has the Feller property.

The major tool we will use will be the It6 formula due to Pardoux [62]. It was
introduced in Part I, Sect. 4.2, Theorem 4.3, for the function ¥ (1) = ||u||%1.

Theorem 6.10 (It6 Formula) Suppose that ¥ : H — R satisfies the following con-
ditions:

(1) W is twice Fréchet differentiable, and ¥ , V', " are locally bounded.
(2) ¥ and W' are continuous on H.
(3) For all trace-class operators T on H, tr(TW¥ (-)) : H — R is continuous.
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4) IfveV,thenW'(v) € V,and for any v' € V*, the function (¥'(-),v"): V - R
is continuous.
B) 1¥' W) lv < co(l + ||v|lv) for some constant co > 0 and any v € V.

Let X*(t) be a solution of (6.37) in L2(£2,C(0,T], H) N Mz([O, T1,V). Then

t

t
W(Xx(t))zllf(x)—i—/ LU (X (s)) ds+/ (W' (X" (9)), B(X*())dWy) ;.
0 0
where

1
LW () =(¥'(u), Aw)) + 3 tr(¥" (u) B(u) QB* (u)).

We extend the notion of exponential stability in the m.s.s. to the variational case.

Definition 6.3 We say that the strong solution of the variational equation (6.37) in
the space L%(£2,C(0,T], H))N M2([O, T1, V) is exponentially stable in the m.s.s.
if it satisfies condition (6.16) in Definition 6.1.

The following is the analogue of Theorem 6.4 in the variational context. The
proof for a strong solution is a simplified version of the proof of Theorem 6.4 and is
left to the reader as an exercise.

Theorem 6.11 The strong solution of the variational equation (6.37) in the space
L%2(2,C(0,T1, H)) N MZ([O, T1,V) is exponentially stable in the m.s.s. if there
exists a function ¥ satisfying conditions (1)—(5) of Theorem 6.10, and the following
two conditions hold:

(D) cillxl ¥ &) <elxllf. e, c2>0,x € H.
2) LY (v) < —c3¥(v),c3>0,veV,with £ defined in Theorem 6.10.

Exercise 6.2 Prove Theorem 6.11.

We now consider the linear problem analogous to (6.37). Let Ay € £ (V, V*)
and By € Z(V, Z(K, H)). In order to construct a Lyapunov function directly from
the solution, we assume a more restrictive coercivity condition

(C’) (Coercivity) There exist @ > 0, A € R such that forallv e V,
2(v, Agv) + tr((Bov) Q(Bov)*) < Al — vl (6.41)

We denote by % the operator . with A and B replaced by Ag and By. Consider
the following linear problem:

:dX(t) = AoX (s)ds + Bo(X (s)) dW;, 642

X(0)=x e H.

Theorem 6.12 Under the coercivity condition (6.41), the solution of the linear
equation (6.42) is exponentially stable in the m.s.s. if and only if there exists a
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function ¥ satisfying conditions (1)—(5) of Theorem 6.10 and conditions (1) and (2)
of Theorem 6.11.

Remark 6.2 A function ¥ satisfying conditions in Theorem 6.12 is called a Lya-
punov function.

Proof Tt remains to prove the necessity. By the It6 formula applied to ||x ||%1, taking
expectations, and using condition (6.41), we have

t
E|X* 05, = bty + 25 [ {4037 0), X)) ds
t
+Ef tr(BoX* (s)Q(BoX*(5))") ds
0
) ! 2 ! 2
< ||x||,,+|)\|/0 E||Xx(s)||Hds—oz/0 E|X*(s)|} ds

t t
< ||x||%,(1+|x|c)/ e_ﬂsds—a/ E||X"(s)||2vds
0 0

by exponential stability in the m.s.s. Let t — oo. Then

o 1
fo E|x* )] ds = —(1+ 11e/B) Ixl.

Define
T(x,y)= / E(X*(5), X" (5)), ds.
0

Then, by the preceding inequality and the Schwarz inequality, it is easy to see
that T is a continuous bilinear form on H x H. Since the embedding V — H
is continuous, T is also a continuous bilinear form on V x V. This fact can be
used to show that conditions (1)—(5) of Theorem 6.10 are satisfied by the function
¥ (x)=T(x,x).Clearly, ¥ (x) < cz||x||%1. To prove the lower bound on ¥ (x), we
observe that

Lollvllz = 2(v, Agv) + tr((Bov) Q(Bov)*),

so that, for some constants m, c6,

2 2 2 2
|Lollvlig | < collvlly +ma(@vIy < cpllvlly.

Again, by Itd’s formula, after taking the expectations, we obtain that
2 ’ ! 2
E|X*® |y — Il = f EZp| X*(5) |3 ds
0

t
=~ [ E|x o} ds.
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As t — 00, using exponential stability in the m.s.s., we can see that
2
Y (x) = crllx g,
where ¢ = 1/cj,.

To prove the last condition, observe that, similarly as in (6.25), the uniqueness of
the solution and the Markov property (3.59) yield

ElI/(Xx(t))=/0 E|X*(s + 0|3 ds
:/ E|x*()|3 ds
t

o0 t
sf Ey|xx<s>|\zvds_k/ E|X* )|, ds.
0 0

since k||x ||%{ <|x ||%, for some constant k. Hence, by taking the derivatives of both
sides at r = 0, we get

k
LoW (x) < —kl|x[13; = -V 0

Remark 6.3 Note that in case where t — E|| X~ (t)||%, is continuous at zero, in the
last step of the proof of Theorem 6.12, we obtain that £ (v) = —|| v||%, forveV.

Let us now state analogues of Theorem 6.6 for the solutions in variational case.

Theorem 6.13 Let {Xo(t)}:>0 be the solution of the linear equation (6.42) with the
coefficients satisfying condition (6.41). Assume that the function t — E|| Xo(t) ||%, is
continuous and that the solution Xo(t) is exponentially stable in the m.s.s. If for a
sufficiently small constant c,

2|llv | A) — Agv|

ye +T(BW)QB*(v) — BwQ(Bov)*) < clvl},  (6.43)

then the strong solution of (6.37) is exponentially stable in the m.s.s.
For the zero solution of (6.37) to be stable in probability, it is enough to as-
sume (6.43) for v e (V, || - lv) in a sufficiently small neighborhood of zero.

Theorem 6.14 Let {Xo(t)};>0 be the solution of the linear equation (6.42) with the
coefficients satisfying condition (6.41). Assume that the solution X(t) is exponen-
tially stable in the m.s.s. Let for v e V, A(v) — Aogv € H. If for a sufficiently small
constant c,

2vllm |A@) — Agv| , + T(B)QB*(v) — BovQ(Bov)*) <cllvlly,  (6.44)

then the strong solution of (6.37) is exponentially stable in the m.s.s.
For the zero solution of (6.37) to be stable in probability, it is enough to as-
sume (6.44) for v e (H, | - ||g) in a sufficiently small neighborhood of zero.
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Exercise 6.3 Verify that Theorem 6.7 holds for 6.37 (replacing (6.10)), under ad-
ditional assumptions (1)—(5) of Theorem 6.10.

Exercise 6.4 Prove Theorems 6.13 and 6.14.

Remark 6.4 Using an analogue of Theorem 6.7 with the function ¥ satisfying
conditions (1)—(5) of Theorem 6.10, we can also prove conclusions in Theo-
rems 6.8 and 6.9 for (6.37) and its linear counterpart (6.42) under conditions (6.43)
and (6.44).

Appendix: Stochastic Analogue of the Datko Theorem

Theorem 6.15 Let A generate a pseudo-contraction Co semigroup {S(t), t > 0}
on a real separable Hilbert space H, and B : H — £ (K, H). A mild solution
{X*(2), t = 0} of the stochastic differential equation (6.22) is exponentially stable
in the m.s.s. if and only if there exists a nonnegative definite operator R € £ (H)
such that

Lo(Rx,y)g =—{x,y)g forallx,y e H,
where £ is defined in (6.24).

Proof The necessity part was already proved in Sect. 6.2, Theorem 6.5, with

(R b= [ B 0,0 0)

which, under stability assumption, is well defined by the Schwarz inequality. To
prove the sufficiency, assume that R as postulated exists; then

2(Rx, Ay)g = —((I + AR))x. y),,. (6.45)

where A(R) = tr(R(Box)Q(Box)*) I. The operator I + A(R) is invertible, so that
we get

2(R(I+ AR) %, ), = (x, ¥)u
By Corollary 6.1,
HS(t)Hz(H) <Me™™, 1>0.

We consider the solutions {X; (¢), ¢ > 0} obtained by using the Yosida approxima-
tions A, = AR, of A. Let us apply It6’s formula to (RX;, (¢), X;, (t)) iz and take the
expectations of both sides to arrive at
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t
E(RX; (1), X5 (1)), = (Rx, X) i + ZE/ (RX;(s), AnX;y (5)),, ds
0

t
+ E/ (AR X5 (), X;5(5)), ds.
0

From (6.45) with y = R, X;, it follows that
2(RX;(5), AR, X (5)); = —(AR)X;5 (8), Ru Xy (5)); — (X55 (), Ru X5 (5)) -

Hence,

t

E(RX; (1), X5 (1)), = (Rx, x) i — Ef (X3 (9), Ru X (5))y ds
0

t
+ E/ (AR)X;5(5), X5 (s) — Ru X35 (5)),, ds.
0

We let n — oo and use the fact that sup,, sup, .y E|[| X} (t)||%1 < 00 to obtain

t
E(RX* (1), X* (1)), = (Rx, x) —/0 E|X ()]}, ds.
Let (1) = E(RX*(t), X* (1)) . Then

2(t) < IRl zun E| X*®)]%
and

2 @) =—E|X*0]* < ————E5@),
0 =—E|X* 0l < po 2

so that
_—lt
E(1) < (Rx,x) ez’
since Z'(0) = (Rx, x) . Hence,

t 2
E|x* 0|3 <2|sox| + ZEH/ S(t — s)BX*(s) dW;
0

H
<2M?eM||x|13; +2w(Q)M?| Bl % ) /Ot e PHITIE| X (s) ||§1 ds.
We complete the proof by using
(Rx,x) < ||Rllzllx|l7; and E||XX(S)||2 =—8'(s). O
As shown in Sect. 6.1, Example 6.1, x — (Rx, x), however, is not a Lyapunov

function, so that we cannot study stability of nonlinear equations using Theo-
rem 6.15.
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