

Lecture Notes in Artificial Intelligence 6332
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Bernhard Pfahringer Geoff Holmes
Achim Hoffmann (Eds.)

Discovery Science

13th International Conference, DS 2010
Canberra, Australia, October 6-8, 2010
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Bernhard Pfahringer
Geoff Holmes
The University of Waikato, Department of Computer Science
Private Bag 3105, Hamilton 3240, New Zealand
E-mail:{bernhard, geoff}@cs.waikato.ac.nz

Achim Hoffmann
The University of New South Wales, School of Computer Science and Engineering
Sydney 2052, Australia
E-mail: achim@cse.unsw.edu.au

Library of Congress Control Number: 2010935451

CR Subject Classification (1998): I.2, H.3, H.4, H.2.8, J.1, F.1

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-16183-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16183-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the papers presented at the 13th International Conference
on Discovery Science (DS 2010) held in Canberra, Australia, October 6–8, 2010.

The main objective of the Discovery Science (DS) conference series is to
provide an open forum for intensive discussions and the exchange of new ideas
and information among researchers working in the area of automating scien-
tific discovery or working on tools for supporting the human process of discov-
ery in science. It has been a successful arrangement in the past to co-locate
the DS conference with the International Conference on Algorithmic Learning
Theory (ALT). This combination of ALT and DS allows for a comprehensive
treatment of the whole range, from theoretical investigations to practical appli-
cations. Continuing in this tradition, DS 2010 was co-located with the 21st ALT
conference (ALT 2010). The proceedings of ALT 2010 were published as a twin
volume (6331) of the LNCS series.

The international steering committee of the Discovery Science conference se-
ries provided important advice on a number of issues during the planning of Dis-
covery Science 2010. The members of the steering committee were Alberto Apos-
tolico, Setsuo Arikawa, Hiroki Arimura, Jean-Francois Boulicaut, Vitor Santos
Costa, Vincent Corruble, Joao Gama, Achim Hoffmann, Tamas Horvath, Alipio
Jorge, Hiroshi Motoda, Ayumi Shinohara, Einoshin Suzuki (Chair), Masayuki
Takeda, Akihiro Yamamoto, and Thomas Zeugmann.

We received 43 full-paper submissions out of which 25 long papers were ac-
cepted for presentation and are published in this volume. Each submission was
allocated three reviewers from the program committee of international experts in
the field. In total 125 reviews were written discussing in detail the merits of each
submission. The selection of papers was made after careful evaluation of each
paper based on originality, technical quality, relevance to the field of Discovery
Science, and clarity.

This volume consists of two parts. The first part contains the papers accepted
for presentation at the conference.

The second part contains the invited talks of ALT 2010 and DS 2010. Since
the talks were shared between the two conferences, for the speakers invited specif-
ically for ALT 2010, only abstracts are contained in this volume, while the full
papers are found in the twin volume, LNCS 6331 (the proceedings of ALT 2010).
The following invited speakers presented their work: Peter Bartlett Optimal On-
line Prediction in Adversarial Environments, Ivan Bratko Discovery of Abstract
Concepts by a Robot, Alexander Clark, Towards General Algorithms for Gram-
matical Inference, Rao Kotagiri Contrast Pattern Mining and Its Application for
Building Robust Classifiers, and Manfred Warmuth The Blessing and the Curse
of the Multiplicative Updates.

VI Preface

We are deeply indebted to the program committee members as well as their
subreferees who had the critically important role of reviewing the submitted
papers and contributing to the intense discussions which resulted in the selection
of the papers published in this volume. Without this enormous effort, ensuring
the high quality of the work presented at Discovery Science 2010 would not have
been possible.

We also thank all the authors who submitted their work to Discovery Science
2010 for their efforts. We wish to express our gratitude to the invited speak-
ers for their acceptance of the invitation and their stimulating contributions to
the conference. Furthermore, we wish to thank the Air Force Office of Scien-
tific Research, Asian Office of Aerospace Research and Development as well as
the Artificial Intelligence Journal for their financial support contributing to the
success of this conference.

Finally, we wish to thank everyone who helped to make Discovery Science
2010 a success: the DS steering committee, the ALT conference chairs, invited
speakers, the Publicity Chair for Discovery Science 2010, Albert Bifet, for the
well-designed web presence, and last but not least the Local Arrangements Chair
for Discovery Science 2010, Eric McCreath, and the Local Arrangements Chair
for Algorithmic Learning Theory, Mark Reid, and their team of supporters who
worked very hard to make both conferences a success.

July 2010 Bernhard Pfahringer
Geoff Holmes

Achim Hoffmann

Organization

Organization Committee

Steering Committee Chair Einoshin Suzuki
Conference Chair Achim Hoffmann
Program Chairs Bernhard Pfahringer

Geoffrey Holmes
Publicity Chair Albert Bifet
Local Arrangements Chair Eric McCreath

Program Committee

Akihiro Yamamoto Kyoto University, Japan
Albert Bifet University of Waikato, New Zealand
Albert Yeap AUT, New Zealand
Alipio Jorge University of Porto, Portugal
Alneu de Andrade Lopes University of Sao Paulo, Brazil
Andre Carvalho University of Sao Paulo, Brazil
Antoine Cornuejols AgroParisTech, France
Antonio Bahamonde University of Oviedo, Spain
Bettina Berendt Katholieke Universiteit Leuven, Belgium
Carlos Soares University of Porto, Portugal
Colin de la Higuera University of Nantes, France
Concha Bielza Technical University of Madrid, Spain
Daisuke Ikeda Kyushu University, Japan
Daniel Berrar University of Ulster, Ireland
David Dowe Monash University, Melbourne, Australia
Dino Pedreschi Pisa University, Italy
Donato Malerba University of Bari, Italy
Einoshin Suzuki Kyushu University, Japan
Filip Zelezny Technical University Prague, Czech Republic
Gerhard Widmer Johannes Kepler University, Austria
Gerson Zaverucha Universidade Federal do Rio de Janeiro, Brazil
Guillaume Beslon INSA Lyon, France
Hendrik Blockeel Katholieke Universiteit Leuven, Belgium
Hideo Bannai Kyushu University, Fukuoka, Japan
Hiroshi Motoda AOARD and Osaka University, Japan
Hisashi Kashima University of Tokyo, Japan
Ian Watson University of Auckland, New Zealand
Inaki Inza University of Basque Country, Spain
Ingrid Fischer University of Konstanz, Germany
Irene Ong UW-Madison, USA

VIII Organization

Jaakko Hollmen Helsinki University of Technology, Finland
Janos Csirik University of Szeged and RGAI Szeged,

Hungary
Jean-Francois Boulicaut INSA Lyon, France
Jesse Davis University of Washington, USA
Joao Gama University of Porto, Portugal
Jose Luis Borges University of Porto, Portugal
Kevin Korb Monash University, Australia
Kouichi Hirata Kyushu Institute of Technology, Japan
Kristian Kersting Fraunhofer IAIS and University of Bonn,

Germany
Kuniaki Uehara Kobe University, Japan
Ljupco Todorovski Josef Stefan Institute, Slovenia
Luis Torgo University of Porto, Portugal
Maarten van Someren University of Amsterdam, Netherlands
Maguelonne Teisseire Cemagraf Montpellier, France
Makoto Haraguchi Hokkaido University, Japan
Marta Arias Universitat Politècnica de Catalunya, Spain
Mario J. Silva Universidade de Lisboa, Portugal
Masayuki Numao University of Osaka, Japan
Michael Berthold University of Konstanz, Germany
Michael May Fraunhofer IAIS Bonn, Germany
Mohand-Said Hacid University Claude Bernard Lyon 1, France
Nada Lavrač Jožef Stefan Institute, Slovenia
Nuno Fonseca University of Porto, Portugal
Patricia Riddle University of Auckland, New Zealand
Paulo Azevedo Universidade do Minho, Portugal
Pedro Larranaga Polytechnic University of Madrid, Spain
Peter Andreae Victoria University of Wellington,

New Zealand
Peter Christen Australian National University, Australia
Ross King University of Wales, UK
Simon Colton Imperial College London, UK
Sriraam Natarajan UW-Madison, USA
Stan Matwin University Ottawa, Canada
Stefan Kramer Technische Universitat München, Germany
Stephen Marsland Massey University, New Zealand
Szymon Jaroszewicz National Institute of Telecommunications,

Poland
Takashi Washio Osaka University, Japan
Tamas Horvath University of Bonn and Fraunhofer IAIS,

Germany
Tapio Elomaa Tampere University of Technology, Finland
Vincent Corruble Universite Pierre et Marie Curie, France
Vitor Santos Costa University of Porto, Portugal
Will Bridewell CSLI Stanford, USA

Organization IX

Additional Reviewers

Carlos Ferreira
Cristiano Pitangui

Elena Ikonomovska
Ken-ichi Fukui

Table of Contents

Sentiment Knowledge Discovery in Twitter Streaming Data 1
Albert Bifet and Eibe Frank

A Similarity-Based Adaptation of Naive Bayes for Label
Ranking: Application to the Metalearning Problem of Algorithm
Recommendation . 16

Artur Aiguzhinov, Carlos Soares, and Ana Paula Serra

Topology Preserving SOM with Transductive Confidence Machine 27
Bin Tong, ZhiGuang Qin, and Einoshin Suzuki

An Artificial Experimenter for Enzymatic Response Characterisation . . . 42
Chris Lovell, Gareth Jones, Steve R. Gunn, and Klaus-Peter Zauner

Subgroup Discovery for Election Analysis: A Case Study in Descriptive
Data Mining . 57

Henrik Grosskreutz, Mario Boley, and Maike Krause-Traudes

On Enumerating Frequent Closed Patterns with Key in Multi-relational
Data . 72

Hirohisa Seki, Yuya Honda, and Shinya Nagano

Why Text Segment Classification Based on Part of Speech Feature
Selection . 87

Iulia Nagy, Katsuyuki Tanaka, and Yasuo Ariki

Speeding Up and Boosting Diverse Density Learning 102
James R. Foulds and Eibe Frank

Incremental Learning of Cellular Automata for Parallel Recognition of
Formal Languages . 117

Katsuhiko Nakamura and Keita Imada

Sparse Substring Pattern Set Discovery Using Linear Programming
Boosting . 132

Kazuaki Kashihara, Kohei Hatano, Hideo Bannai, and
Masayuki Takeda

Discovery of Super-Mediators of Information Diffusion in Social
Networks . 144

Kazumi Saito, Masahiro Kimura, Kouzou Ohara, and
Hiroshi Motoda

Integer Linear Programming Models for Constrained Clustering 159
Marianne Mueller and Stefan Kramer

XII Table of Contents

Efficient Visualization of Document Streams . 174
Miha Grčar, Vid Podpečan, Matjaž Juršič, and Nada Lavrač

Bridging Conjunctive and Disjunctive Search Spaces for Mining a New
Concise and Exact Representation of Correlated Patterns 189

Nassima Ben Younes, Tarek Hamrouni, and Sadok Ben Yahia

Graph Classification Based on Optimizing Graph Spectra 205
Nguyen Duy Vinh, Akihiro Inokuchi, and Takashi Washio

Algorithm for Detecting Significant Locations from Raw GPS Data 221
Nobuharu Kami, Nobuyuki Enomoto, Teruyuki Baba, and
Takashi Yoshikawa

Discovery of Conservation Laws via Matrix Search 236
Oliver Schulte and Mark S. Drew

Gaussian Clusters and Noise: An Approach Based on the Minimum
Description Length Principle . 251

Panu Luosto, Jyrki Kivinen, and Heikki Mannila

Exploiting Code Redundancies in ECOC . 266
Sang-Hyeun Park, Lorenz Weizsäcker, and Johannes Fürnkranz

Concept Convergence in Empirical Domains . 281
Santiago Ontañón and Enric Plaza

Equation Discovery for Model Identification in Respiratory Mechanics
of the Mechanically Ventilated Human Lung . 296

Steven Ganzert, Josef Guttmann, Daniel Steinmann, and
Stefan Kramer

Mining Class-Correlated Patterns for Sequence Labeling 311
Thomas Hopf and Stefan Kramer

ESTATE: Strategy for Exploring Labeled Spatial Datasets Using
Association Analysis . 326

Tomasz F. Stepinski, Josue Salazar, Wei Ding, and Denis White

Adapted Transfer of Distance Measures for Quantitative
Structure-Activity Relationships . 341

Ulrich Rückert, Tobias Girschick, Fabian Buchwald, and
Stefan Kramer

Incremental Mining of Closed Frequent Subtrees . 356
Viet Anh Nguyen and Akihiro Yamamoto

Optimal Online Prediction in Adversarial Environments 371
Peter L. Bartlett

Table of Contents XIII

Discovery of Abstract Concepts by a Robot . 372
Ivan Bratko

Contrast Pattern Mining and Its Application for Building Robust
Classifiers . 380

Kotagiri Ramamohanarao

Towards General Algorithms for Grammatical Inference 381
Alexander Clark

The Blessing and the Curse of the Multiplicative Updates 382
Manfred K. Warmuth

Author Index . 383

Sentiment Knowledge Discovery in Twitter
Streaming Data

Albert Bifet and Eibe Frank

University of Waikato, Hamilton, New Zealand
{abifet,eibe}@cs.waikato.ac.nz

Abstract. Micro-blogs are a challenging new source of information for
data mining techniques. Twitter is a micro-blogging service built to dis-
cover what is happening at any moment in time, anywhere in the world.
Twitter messages are short, and generated constantly, and well suited
for knowledge discovery using data stream mining. We briefly discuss
the challenges that Twitter data streams pose, focusing on classification
problems, and then consider these streams for opinion mining and sen-
timent analysis. To deal with streaming unbalanced classes, we propose
a sliding window Kappa statistic for evaluation in time-changing data
streams. Using this statistic we perform a study on Twitter data using
learning algorithms for data streams.

1 Introduction

Twitter is a “what’s-happening-right-now” tool that enables interested parties
to follow individual users’ thoughts and commentary on events in their lives—
in almost real-time [26]. It is a potentially valuable source of data that can be
used to delve into the thoughts of millions of people as they are uttering them.
Twitter makes these utterances immediately available in a data stream, which
can be mined using appropriate stream mining techniques. In principle, this
could make it possible to infer people’s opinions, both at an individual level as
well as in aggregate, regarding potentially any subject or event [26].

At the official Twitter Chirp developer conference in April 2010 [28], the
company presented some statistics about its site and its users. In April 2010,
Twitter had 106 million registered users, and 180 million unique visitors every
month. The company revealed that 300,000 new users were signing up per day
and that it received 600 million queries daily via its search engine, and a total of
3 billion requests per day based on its API. Interestingly, 37 percent of Twitter’s
active users used their phone to send messages.

Twitter data follows the data stream model. In this model, data arrive at high
speed, and data mining algorithms must be able to predict in real time and under
strict constraints of space and time. Data streams present serious challenges for
algorithm design [3]. Algorithms must be able to operate with limited resources,
regarding both time and memory. Moreover, they must be able to deal with data
whose nature or distribution changes over time.

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 A. Bifet and E. Frank

The main Twitter data stream that provides all messages from every user in
real-time is called Firehose [16] and was made available to developers in 2010.
To deal with this large amount of data, and to use it for sentiment analysis
and opinion mining—the task considered in this paper—streaming techniques
are needed. However, to the best of our knowledge, data stream algorithms,
in conjunction with appropriate evaluation techniques, have so far not been
considered for this task.

Evaluating data streams in real time is a challenging task. Most work in the
literature considers only how to build a picture of accuracy over time. Two main
approaches arise [2]:

– Holdout: Performance is measured using on single hold-out set.
– Interleaved Test-Then-Train or Prequential: Each individual example

is used to test the model before it is used for training, and accuracy is
incrementally updated.

A common problem is that for unbalanced data streams with, for example, 90%
of the instances in one class, the simplest classifiers will have high accuracies of
at least 90%. To deal with this type of data stream, we propose to use the Kappa
statistic, based on a sliding window, as a measure for classifier performance in
unbalanced class streams.

In Section 2 we discuss the challenges that Twitter streaming data poses and
discuss related work. Twitter sentiment analysis is discussed is Section 3, and
the new evaluation method for time-changing data streams based on the sliding
window Kappa statistic is proposed in Section 4. We review text data stream
learners in Section 5. Finally, in Section 6, we perform an experimental study
on Twitter streams using data stream mining methods.

2 Mining Twitter Data: Challenges and Related Work

Twitter has its own conventions that renders it distinct from other textual data.
Consider the following Twitter example message (“tweet”): RT @toni has a
cool #job. It shows that users may reply to other users by indicating user
names using the character @, as in, for example, @toni. Hashtags (#) are used
to denote subjects or categories, as in, for example #job. RT is used at the
beginning of the tweet to indicate that the message is a so-called “retweet”, a
repetition or reposting of a previous tweet.

In the knowledge discovery context, there are two fundamental data mining
tasks that can be considered in conjunction with Twitter data: (a) graph mining
based on analysis of the links amongst messages, and (b) text mining based on
analysis of the messages’ actual text.

Twitter graph mining has been used to tackle several interesting problems:

– Measuring user influence and dynamics of popularity. Direct links
indicate the flow of information, and thus a user’s influence on others. There

Sentiment Knowledge Discovery in Twitter Streaming Data 3

are three measures of influence: indegree, retweets and mentions. Cha et
al. [5] show that popular users who have high indegree are not necessarily
influential in terms of retweets or mentions, and that influence is gained
through concerted effort such as limiting tweets to a single topic.

– Community discovery and formation. Java et al. [15] found commu-
nities using HyperText Induced Topic Search (HITS) [17], and the Clique
Percolation Method [8]. Romero and Kleinberg [25] analyze the formation of
links in Twitter via the directed closure process.

– Social information diffusion. De Choudhury et al. [7] study how data
sampling strategies impact the discovery of information diffusion.

There are also a number of interesting tasks that have been tackled using Twitter
text mining: sentiment analysis, which is the application we consider in this
paper, classification of tweets into categories, clustering of tweets and trending
topic detection.

Considering sentiment analysis [18,21], O’Connor et al. [19] found that sur-
veys of consumer confidence and political opinion correlate with sentiment word
frequencies in tweets, and propose text stream mining as a substitute for tra-
ditional polling. Jansen et al. [14] discuss the implications for organizations of
using micro-blogging as part of their marketing strategy. Pak et al. [20] used clas-
sification based on the multinomial näıve Bayes classifier for sentiment analysis.
Go et al. [12] compared multinomial näıve Bayes, a maximum entropy classifier,
and a linear support vector machine; they all exhibited broadly comparable ac-
curacy on their test data, but small differences could be observed depending on
the features used.

2.1 The Twitter Streaming API

The Twitter Application Programming Interface (API) [1] currently provides a
Streaming API and two discrete REST APIs. Through the Streaming API [16]
users can obtain real-time access to tweets in sampled and filtered form. The
API is HTTP based, and GET, POST, and DELETE requests can be used to
access the data.

In Twitter terminology, individual messages describe the “status” of a user.
Based on the Streaming API users can access subsets of public status descriptions
in almost real time, including replies and mentions created by public accounts.
Status descriptions created by protected accounts and all direct messages cannot
be accessed. An interesting property of the streaming API is that it can filter
status descriptions using quality metrics, which are influenced by frequent and
repetitious status updates, etc.

The API uses basic HTTP authentication and requires a valid Twitter ac-
count. Data can be retrieved as XML or the more succinct JSON format. The
format of the JSON data is very simple and it can be parsed very easily because
every line, terminated by a carriage return, contains one object.

4 A. Bifet and E. Frank

3 Twitter Sentiment Analysis

Sentiment analysis can be cast as a classification problem where the task is to
classify messages into two categories depending on whether they convey positive
or negative feelings.

Twitter sentiment analysis is not an easy task because a tweet can contain a
significant amount of information in very compressed form, and simultaneously
carry positive and negative feelings. Consider the following example:

I currently use the Nikon D90 and love it, but not as much as
the Canon 40D/50D. I chose the D90 for the video feature. My
mistake.

Also, some tweets may contain sarcasm or irony [4] as in the following example:

After a whole 5 hours away from work, I get to go back again,
I’m so lucky!

To build classifiers for sentiment analysis, we need to collect training data so
that we can apply appropriate learning algorithms. Labeling tweets manually as
positive or negative is a laborious and expensive, if not impossible, task. However,
a significant advantage of Twitter data is that many tweets have author-provided
sentiment indicators: changing sentiment is implicit in the use of various types
of emoticons. Hence we may use these to label our training data.

Smileys or emoticons are visual cues that are associated with emotional states
[24,4]. They are constructed by approximating a facial expression of emotion
based on the characters available on a standard keyboard. When the author of
a tweet uses an emoticon, they are annotating their own text with an emotional
state. Annotated tweets can be used to train a sentiment classifier.

4 Streaming Data Evaluation with Unbalanced Classes

In data stream mining, the most frequently used measure for evaluating pre-
dictive accuracy of a classifier is prequential accuracy [10]. We argue that this
measure is only appropriate when all classes are balanced, and have (approxi-
mately) the same number of examples. In this section, we propose the Kappa
statistic as a more sensitive measure for quantifying the predictive performance
of streaming classifiers. For example, considering the particular target domain
in this paper, the rate in which the Twitter Streaming API delivers positive
or negative tweets may vary over time; we cannot expect it to be 50% all the
time. Hence, a measure that automatically compensates for changes in the class
distribution should be preferable.

Just like accuracy, Kappa needs to be estimated using some sampling proce-
dure. Standard estimation procedures for small datasets, such as cross-validation,
do not apply. In the case of very large datasets or data streams, there are two ba-
sic evaluation procedures: holdout evaluation and prequential evaluation. Only
the latter provides a picture of performance over time. In prequential evaluation

Sentiment Knowledge Discovery in Twitter Streaming Data 5

Table 1. Simple confusion matrix example

Predicted Predicted
Class+ Class- Total

Correct Class+ 75 8 83
Correct Class- 7 10 17
Total 82 18 100

Table 2. Confusion matrix for chance predictor based on example in Table 1

Predicted Predicted
Class+ Class- Total

Correct Class+ 68.06 14.94 83
Correct Class- 13.94 3.06 17
Total 82 18 100

(also known as interleaved test-then-train evaluation), each example in a data
stream is used for testing before it is used for training.

We argue that prequential accuracy is not well-suited for data streams with
unbalanced data, and that a prequential estimate of Kappa should be used in-
stead. Let p0 be the classifier’s prequential accuracy, and pc the probability that
a chance classifier—one that assigns the same number of examples to each class
as the classifier under consideration—makes a correct prediction. Consider the
simple confusion matrix shown in Table 1. From this table, we see that Class+
is predicted correctly 75 out of 100 times, and Class- is predicted correctly 10
times. So accuracy p0 is 85%. However a classifier predicting solely by chance—
in the given proportions—will predict Class+ and Class- correctly in 68.06%
and 3.06% of cases respectively. Hence, it will have an accuracy pc of 71.12% as
shown in Table 2.

Comparing the classifier’s observed accuracy to that of a chance predictor
renders its performance far less impressive than it first seems. The problem is
that one class is much more frequent than the other in this example and plain
accuracy does not compensate for this. The Kappa statistic, which normalizes
a classifier’s accuracy by that of a chance predictor, is more appropriate in
scenarios such as this one.

The Kappa statistic κ was introduced by Cohen [6]. We argue that it is par-
ticularly appropriate in data stream mining due to potential changes in the class
distribution. Consider a classifier h, a data set containing m examples and L
classes, and a contingency table where cell Cij contains the number of examples
for which h(x) = i and the class is j. If h(x) correctly predicts all the data,
then all non-zero counts will appear along the diagonal. If h misclassifies some
examples, then some off-diagonal elements will be non-zero.

We define

p0 =
∑L

i=1 Cii

m

6 A. Bifet and E. Frank

pc =
L∑

i=1

⎛⎝ L∑
j=1

Cij

m
·

L∑
j=1

Cji

m

⎞⎠
In problems where one class is much more common than the others, any classifier
can easily yield a correct prediction by chance, and it will hence obtain a high
value for p0. To correct for this, the κ statistic is defined as follows:

κ =
p0 − pc

1 − pc

If the classifier is always correct then κ = 1. If its predictions coincide with the
correct ones as often as those of the chance classifier, then κ = 0.

The question remains as to how exactly to compute the relevant counts for the
contingency table: using all examples seen so far is not useful in time-changing
data streams. Gama et al. [10] propose to use a forgetting mechanism for esti-
mating prequential accuracy: a sliding window of size w with the most recent
observations, or fading factors that weigh observations using a decay factor α.
As the output of the two mechanisms is very similar (every window of size w0
may be approximated by some decay factor α0), we propose to use the Kappa
statistic measured using a sliding window. Note that, to calculate the statistic
for an nc class problem, we need to maintain only 2nc + 1 estimators. We store
the sum of all rows and columns in the confusion matrix (2nc values) to com-
pute pc, and we store the prequential accuracy p0. The ability to calculate it
efficiently is an important reason why the Kappa statistic is more appropriate
for data streams than a measure such as the area under the ROC curve.

5 Data Stream Mining Methods

We experimented with three fast incremental methods that are well-suited to
deal with data streams: multinomial näıve Bayes, stochastic gradient descent,
and the Hoeffding tree.

Multinomial Näıve Bayes. The multinomial näıve Bayes classifier is a pop-
ular classifier for document classification that often yields good performance. It
can be trivially applied to data streams because it is straightforward to update
the counts required to estimate conditional probabilities..

Multinomial naive Bayes considers a document as a bag-of-words. For each
class c, P (w|c), the probability of observing word w given this class, is estimated
from the training data, simply by computing the relative frequency of each word
in the collection of training documents of that class. The classifier also requires
the prior probability P (c), which is straightforward to estimate.

Assuming nwd is the number of times word w occurs in document d, the
probability of class c given a test document is calculated as follows:

P (c|d) =
P (c)

∏
w∈d P (w|c)nwd

P (d)
,

Sentiment Knowledge Discovery in Twitter Streaming Data 7

where P (d) is a normalization factor. To avoid the zero-frequency problem, it is
common to use the Laplace correction for all conditional probabilities involved,
which means all counts are initialized to value one instead of zero.

Stochastic Gradient Descent. Stochastic gradient descent (SGD) has experi-
enced a revival since it has been discovered that it provides an efficient means to
learn some classifiers even if they are based on non-differentiable loss functions,
such as the hinge loss used in support vector machines. In our experiments we
use an implementation of vanilla stochastic gradient descent with a fixed learn-
ing rate, optimizing the hinge loss with an L2 penalty that is commonly applied
to learn support vector machines. With a linear machine, which is frequently
applied for document classification, the loss function we optimize is:

λ

2
||w||2 +

∑
[1 − (yxw + b)]+,

where w is the weight vector, b the bias, λ the regularization parameter, and the
class labels y are assumed to be in {+1,−1}.

We compared the performance of our vanilla implementation to that of the
Pegasos method [27], which does not require specification of an explicit learning
rate, but did not observe a gain in performance using the latter. On the contrary,
the ability to specify an explicit learning rate turned out to be crucial to deal
with time-changing Twitter data streams : setting the learning rate to a value
that was too small meant the classifier adapted too slowly to local changes in
the distribution. In our experiments, we used λ = 0.0001 and set the learning
rate for the per-example updates to the classifier’s parameters to 0.1.

Hoeffding Tree. The most well-known tree decision tree learner for data
streams is the Hoeffding tree algorithm [9]. It employs a pre-pruning strategy
based on the Hoeffding bound to incrementally grow a decision tree. A node is
expanded by splitting as soon as there is sufficient statistical evidence, based
on the data seen so far, to support the split and this decision is based on the
distribution-independent Hoeffding bound.

Decision tree learners are not commonly applied to document classification
due to the high-dimensional feature vectors involved. Simple linear classifiers
generally yield higher accuracy. Nevertheless, we include Hoeffding trees in our
experiments on Twitter data streams to verify that this observation also holds
in this particular context. Moreover, decision trees can potentially yield valuable
insight into interactions between variables.

6 Experimental Evaluation

Massive Online Analysis (MOA) [2] is a system for online learning from
examples, such as data streams. All algorithms evaluated in this paper were

8 A. Bifet and E. Frank

implemented in the Java programming language by using WEKA [13] and the
MOA software.

In our experiments, we used the Twitter training datasets to extract features
using text filters in WEKA. Each tweet was represented as a set of words. We
extracted 10, 000 unigrams using the default stop word list in WEKA. We used
term presence instead of frequency, as Pang et al. [22] reported that term pres-
ence achieves better results than frequency on sentiment analysis classification.
The resulting vectors are stored in sparse format.

6.1 The twittersentiment.appspot.com and Edinburgh Corpora

Twitter Sentiment (twittersentiment.appspot.com) is a website that enables
visitors to research and track the sentiment for a brand, product, or topic. It
was created by Alec Go, Richa Bhayani, Karthik Raghunathan, and Lei Huang
from Stanford University. The website enables a visitor to track queries over
time. Sentiment classification is based on a linear model generated using the
maximum entropy method.1 The Twitter Sentiment website provides an API
to use the maximum entropy classifier: one can use it to determine the polarity
of arbitrary text, retrieve sentiment counts over time, and retrieve tweets along
with their classification.

The developers of the website collected two datasets: a training set and a
test one, which were also used for sentiment classification in [12]. The training
dataset was obtained by querying the (non-streaming) Twitter API for messages
between April 2009 and June 25, 2009 and contains the first 800, 000 tweets with
positive emoticons, and the first 800, 000 tweets with negative emoticons. The
list of positive emoticons used was: :), :-), :), :D, and =). The negative emoticons
used were: :(, :-(, and : (. The test dataset was manually annotated with class
labels and consists of 177 negative tweets and 182 positive ones. Test tweets
were collected by looking for messages that contained a sentiment, regardless
of the presence of emoticons. Each tweet contains the following information: its
polarity (indicating the sentiment), the date, the query used, the user, and the
actual text.

The Edinburgh corpus [23] was collected over a period of two months using
the Twitter streaming API. It contains 97 million tweets and requires 14 GB
of disk space when stored in uncompressed form.2 Each tweet has the following
information: the timestamp of the tweet, an anonymized user name, the tweet’s
text, and the posting method that was used.

The corpus was collected between November 11th 2009 and February 1st
2010, using Twitter’s streaming API. It is thus a representative sample of the
entire stream. The data contains over 2 billion words and there is no distinction
between English and non-English tweets. We only considered tweets in English
and only those that contained emoticons.

1 The software is available at http://nlp.stanford/software/classifier.shtml
2 The corpus can be obtained at http://demeter.inf.ed.ac.uk/

http://nlp.stanford/software/classifier.shtml
http://demeter.inf.ed.ac.uk/

Sentiment Knowledge Discovery in Twitter Streaming Data 9

Table 3. Total prequential accuracy and Kappa measured on the
twittersentiment.appspot.com data stream

Accuracy Kappa Time
Multinomial Näıve Bayes 75.05% 50.10% 116.62 sec.
SGD 82.80% 62.60% 219.54 sec.
Hoeffding Tree 73.11% 46.23% 5525.51 sec.

Table 4. Accuracy and Kappa for the test dataset obtained from
twittersentiment.appspot.com

Accuracy Kappa
Multinomial Näıve Bayes 82.45% 64.89%
SGD 78.55% 57.23%
Hoeffding Tree 69.36% 38.73%

6.2 Results and Discussion

We performed two data stream experiments: one using the training dataset from
twittersentiment.appspot.com, and another one with the Edinburgh Corpus.
We also performed a classic train/test experiment based on each training set
and the test set from twittersentiment.appspot.com.

First, we consider the data from twittersentiment.appspot.com. We per-
formed a prequential evaluation, testing and then training, using the training
stream of 1, 600, 000 instances, half positives and half negatives. Figure 1 shows
the learning curve for this stream measuring prequential accuracy and Kappa
using a sliding window of size 1, 000. Table 3 reports the total prequential accu-
racy and Kappa. In this data stream the last 200, 000 instances are positive, as
the data was collected to have the same number of positive and negative tweets:
the rate of tweets using positive emoticons is usually higher than that of nega-
tive ones. We see at the end of the learning curve in Figure 1 that prequential
accuracy still presents (apparently) good results, but that the value of Kappa
is zero or below. This is an extreme example of a change in class distribution
(one class disappears completely from the stream), which shows very clearly why
Kappa is useful when the distribution of classes evolves over time. We see that
the worst method in accuracy, Kappa, and time for this dataset is the Hoeffding
Tree, supporting our hypothesis that tree learners are not appropriate in this
context.

The second experiment uses the data from twittersentiment.appspot.com
in a classic train/test set-up. Table 4 reports accuracy and Kappa for the test set.
The results for accuracy for näıve Bayes are comparable to those in [12]. As SGD
is very sensitive to change in the data distribution, we trained it on a randomized
version of the training dataset for this particular test. Doing this improves its
accuracy on the test set, but näıve Bayes is somewhat better. Note that the
Hoeffding tree is the slowest of the three methods, as the current implementation
does not use sparse instances as multinomial näıve Bayes and SGD do.

10 A. Bifet and E. Frank

Sliding Window Prequential Accuracy

30

40

50

60

70

80

90

100

0,
01

0,
08

0,
15

0,
22

0,
29

0,
36

0,
43 0,

5
0,

57
0,

64
0,

71
0,

78
0,

85
0,

92
0,

99
1,

06
1,

13 1,
2

1,
27

1,
34

1,
41

1,
48

1,
55

Millions of Instances

A
cc

u
ra

cy
 %

NB Multinomial SGD Hoeffding Tree Class Distribution

Sliding Window Kappa Statistic

0

10

20

30

40

50

60

70

80

0,
01

0,
08

0,
15

0,
22

0,
29

0,
36

0,
43

0,
50

0,
57

0,
64

0,
71

0,
78

0,
85

0,
92

0,
99

1,
06

1,
13

1,
20

1,
27

1,
34

1,
41

1,
48

1,
55

Millions of Instances

K
ap

p
a

S
ta

ti
st

ic

NB Multinomial SGD Hoeffding Tree Class Distribution

Fig. 1. Sliding window prequential accuracy and Kappa measured on the
twittersentiment.appspot.com data stream. (Note: solid line shows accuracy in both
graphs.).

Sentiment Knowledge Discovery in Twitter Streaming Data 11

Table 5. Total prequential accuracy and Kappa obtained on the Edinburgh corpus
data stream

Accuracy Kappa Time
Multinomial Näıve Bayes 86.11% 36.15% 173.28, sec.
SGD 86.26% 31.88% 293.98 sec.
Hoeffding Tree 84.76% 20.40% 6151.51 sec.

Table 6. Accuracy and Kappa for the test dataset obtained from
twittersentiment.appspot.com using the Edinburgh corpus as training data
stream

Accuracy Kappa
Multinomial Näıve Bayes 73.81% 47.28%
SGD 67.41% 34.23%
Hoeffding Tree 60.72% 20.59%

The twittersentiment.appspot.com data does not constitute a represen-
tative sample of the real Twitter stream due to the fact that the data was
augmented to be balanced. Hence we now turn to the Edinburgh corpus. We
converted the raw data following the same methodology as Go et al. [11,12]:

– Feature Reduction. Twitter users may use the @ symbol before a name to
direct the message to a certain recipient. We replaced words starting with
the @ symbol with the generic token USER, and any URLs by the token
URL. We also replaced repeated letters: e.g., huuuuuungry was converted to
huungry to distinguish it from hungry.

– Emoticons. Once they had been used to generate class labels, all emoticons
were deleted from the input text so that they could not be used as predictive
features.

Once this steps had been performed WEKA’s text filter was used to convert the
data into vector format.

The resulting data stream contains 324, 917 negative tweets and 1, 813, 705
positive ones. We observe that negative tweets constitute 15% of the labeled
data and positive ones 85%. It appears that people tend to use more positive
emoticons than negative ones.

Figure 2 shows the learning curve measuring prequential accuracy and Kappa
using a sliding window of 1, 000, and Table 5 reports the total prequential accu-
racy and value of Kappa. We see in the learning curve of Figure 2 that accuracy
is similar for the three methods, but this is not the case when one considers
the Kappa statistic. Again, Kappa provides us with a better picture of relative
predictive performance. In this stream, we see that multinomial näıve Bayes and
SGD perform comparably.

Finally, we test the classifiers learned with the Edinburgh corpus using the
test set from twittersentiment.appspot.com. Again, the training data was

12 A. Bifet and E. Frank

Sliding Window Prequential Accuracy

75

77

79

81

83

85

87

89

91

93

95

0,
01 0,

1
0,

19
0,

28
0,

37
0,

46
0,

55
0,

64
0,

73
0,

82
0,

91 1
1,

09
1,

18
1,

27
1,

36
1,

45
1,

54
1,

63
1,

72
1,

81 1,
9

1,
99

2,
08

Millions of Instances

A
cc

u
ra

cy
 %

NB Multinomial SGD Hoeffding Tree Class Distribution

Sliding Window Kappa Statistic

0

10

20

30

40

50

60

70

80

90

100

0,
01 0,
1

0,
19

0,
28

0,
37

0,
46

0,
55

0,
64

0,
73

0,
82

0,
91 1

1,
09

1,
18

1,
27

1,
36

1,
45

1,
54

1,
63

1,
72

1,
81 1,
9

1,
99

2,
08

Millions of Instances

K
ap

p
a

S
ta

ti
st

ic

NB Multinomial SGD Hoeffding Tree Class Distribution

Fig. 2. Sliding window prequential accuracy and Kappa measured on data stream
obtained from the Edinburgh corpus. (Note: solid line shows accuracy in both graphs.).

Sentiment Knowledge Discovery in Twitter Streaming Data 13

Table 7. SGD coefficient variations on the Edinburgh corpus

Middle of Stream End of Stream
Tags Coefficient Coefficient Variation
apple 0.3 0.7 0.4
microsoft -0.4 -0.1 0.3
facebook -0.3 0.4 0.7
mcdonalds 0.5 0.1 -0.4
google 0.3 0.6 0.3
disney 0.0 0.0 0.0
bmw 0.0 -0.2 -0.2
pepsi 0.1 -0.6 -0.7
dell 0.2 0.0 -0.2
gucci -0.4 0.6 1.0
amazon -0.1 -0.4 -0.3

randomized for SGD as in the case of the twittersentiment.appspot.comdata.
Table 6 shows the results. The value of Kappa shows that multinomial näıve
Bayes is the most accurate method on this particular test set.

An advantage of the SGD-based model is that changes in its weights can be
inspected to gain insight into changing properties of the data stream. Table 7
shows the change in coefficients for some words along the stream obtained from
the Edinburgh corpus. The coefficients correspond to December 26th 2009, and
February 1st 2010, respectively. Monitoring these coefficients, which determine
how strongly absence/presence of the corresponding word influences the model’s
prediction of negative or positive sentiment, may be an efficient way to detect
changes in the population’s opinion regarding a particular topic or brand.

7 Conclusions

Twitter streaming data can potentially enable any user to discover what is hap-
pening in the world at any given moment in time. Because the Twitter Streaming
API delivers a large quantity of tweets in real time, data stream mining and eval-
uation techniques are the best fit for the task at hand, but have not been consid-
ered previously. We discussed the challenges that Twitter streaming data poses,
focusing on sentiment analysis, and proposed the sliding window Kappa statistic
as an evaluation metric for data streams. Considering all tests performed and
ease of interpretability, the SGD-based model, used with an appropriate learning
rate, can be recommended for this data.

In future work, we would like to extend the results presented here by evaluat-
ing our methods in real time and using other features available in Twitter data
streams, such as geographical place, the number of followers or the number of
friends.

14 A. Bifet and E. Frank

Acknowledgments

We would like to thank Alec Go, Lei Huang, and Richa Bhayani for very gen-
erously sharing their Twitter dataset with us. We would also like to thank Sasa
Petrovic, Miles Osborne, and Victor Lavrenko for making their Twitter dataset
publicly available.

References

1. Twitter API: (2010), http://apiwiki.twitter.com/
2. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis

Journal of Machine Learning Research, JMLR (2010),
http://moa.cs.waikato.ac.nz/

3. Bifet, A., Holmes, G., Pfahringer, B., Frank, E.: Fast perceptron decision tree learn-
ing from evolving data streams. In: Proceedings of the 14th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pp. 299–310 (2010)

4. Carvalho, P., Sarmento, L., Silva, M.J., de Oliveira, E.: Clues for detecting irony in
user-generated contents: oh..!! it’s ”so easy”;-). In: Proceeding of the 1st Interna-
tional CIKM Workshop on Topic-sentiment Analysis for Mass Opinion, pp. 53–56
(2009)

5. Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.P.: Measuring User Influence
in Twitter: The Million Follower Fallacy. In: Proceedings of the 4th International
AAAI Conference on Weblogs and Social Media, pp. 10–17 (2010)

6. Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psycho-
logical Measurement 20(1), 37–46 (1960)

7. De Choudhury, M., Lin, Y.-R., Sundaram, H., Candan, K.S., Xie, L., Kelliher, A.:
How does the data sampling strategy impact the discovery of information diffusion
in social media. In: Proceedings of the 4th International AAAI Conference on
Weblogs and Social Media, pp. 34–41 (2010)

8. Derenyi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Physical
Review Letters 94(16) (2005)

9. Domingos, P., Hulten, G.: Mining high-speed data streams. In: Proceedings of the
6th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 71–80 (2000)

10. Gama, J., Sebastião, R., Rodrigues, P.P.: Issues in evaluation of stream learning
algorithms. In: Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 329–338 (2009)

11. Go, A., Bhayani, R., Raghunathan, K., Huangi, L.: (2009),
http://twittersentiment.appspot.com/

12. Go, A., Huang, L., Bhayani, R.: Twitter sentiment classification using distant su-
pervision. In: CS224N Project Report, Stanford (2009)

13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

14. Jansen, B.J., Zhang, M., Sobel, K., Chowdury, A.: Micro-blogging as online word
of mouth branding. In: Proceedings of the 27th International Conference Extended
Abstracts on Human Factors in Computing Systems, pp. 3859–3864 (2009)

http://apiwiki.twitter.com/
http://moa.cs.waikato.ac.nz/
http://twittersentiment.appspot.com/

Sentiment Knowledge Discovery in Twitter Streaming Data 15

15. Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblog-
ging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-
KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 56–65
(2007)

16. Kalucki, J.: Twitter streaming API (2010),
http://apiwiki.twitter.com/Streaming-API-Documentation

17. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J.
ACM 46(5), 604–632 (1999)

18. Liu, B.: Web data mining; Exploring hyperlinks, contents, and usage data. Springer,
Heidelberg (2006)

19. O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets
to polls: Linking text sentiment to public opinion time series. In: Proceedings of the
International AAAI Conference on Weblogs and Social Media, pp. 122–129 (2010)

20. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion
mining. In: Proceedings of the Seventh Conference on International Language Re-
sources and Evaluation, pp. 1320–1326 (2010)

21. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Foundations and Trends
in Information Retrieval 2(1-2), 1–135 (2008)

22. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using
machine learning techniques. In: Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pp. 79–86 (2002)

23. Petrovic, S., Osborne, M., Lavrenko, V.: The Edinburgh Twitter corpus. In: #So-
cialMedia Workshop: Computational Linguistics in a World of Social Media, pp.
25–26 (2010)

24. Read, J.: Using emoticons to reduce dependency in machine learning techniques for
sentiment classification. In: Proceedings of the ACL Student Research Workshop,
pp. 43–48 (2005)

25. Romero, D.M., Kleinberg, J.: The directed closure process in hybrid social-
information networks, with an analysis of link formation on Twitter. In: Proceed-
ings of the 4th International AAAI Conference on Weblogs and Social Media, pp.
138–145 (2010)

26. Schonfeld, E.: Mining the thought stream. TechCrunch Weblog Article (2009),
http://techcrunch.com/2009/02/15/mining-the-thought-stream/

27. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal Estimated sub-
GrAdient SOlver for SVM. In: Proceedings of the 24th International Conference
on Machine learning, pp. 807–814 (2007)

28. Yarow, J.: Twitter finally reveals all its secret stats. BusinessInsider Weblog Article
(2010), http://www.businessinsider.com/twitter-stats-2010-4/

http://apiwiki.twitter.com/Streaming-API-Documentation
http://techcrunch.com/2009/02/15/mining-the-thought-stream/
http://www.businessinsider.com/twitter-stats-2010-4/

A Similarity-Based Adaptation of Naive Bayes
for Label Ranking: Application to the
Metalearning Problem of Algorithm

Recommendation

Artur Aiguzhinov1,2,
Carlos Soares1,2, and Ana Paula Serra1,3

1 FEP - Faculdade de Economia da Universidade do Porto
2 LIAAD-INESC Porto LA

3 CEFUP - Centro de Economia e Finanças da Universidade do Porto
artur@liaad.up.pt, csoares@fep.up.pt, aserra@fep.up.pt

Abstract. The problem of learning label rankings is receiving increas-
ing attention from several research communities. A number of common
learning algorithms have been adapted for this task, including k-Nearest
Neighbours (k-NN) and decision trees. Following this line, we propose
an adaptation of the naive Bayes classification algorithm for the label
ranking problem. Our main idea lies in the use of similarity between the
rankings to replace the concept of probability. We empirically test the
proposed method on some metalearning problems that consist of relating
characteristics of learning problems to the relative performance of learn-
ing algorithms. Our method generally performs better than the baseline
indicating that it is able to identify some of the underlying patterns in
the data.

1 Introduction

Label ranking is an increasingly popular topic in the machine learning literature
[9]. Label ranking studies the problem of learning a mapping from instances to
rankings over a finite number of predefined labels. It is a variation of the con-
ventional classification problem. In contrast to the classification setting, where
the objective is to assign examples to a specific class, in label ranking we are
interested in assigning a complete preference order of the labels to every example
[5].

Several methods have been developed for label ranking, some of which consist
of adapting existing classification algorithms (e.g., k-Nearest Neighbor [2], de-
cision trees [15]). Some approaches (e.g., [5]) are based on probabilistic models
for ranking, such as the Mallows model [10,5]. Other approaches take advantage
of the possibility to compute the similarity/distance between rankings, unlike
the traditional classification setting, where two classes are either the same or
different [15].

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 16–26, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Similarity-Based Adaptation of Naive Bayes for Label Ranking 17

In this paper, we follow the latter approach. We propose an adaptation of
the naive Bayes (NB) algorithm for label ranking. Despite its limitations, NB
is an algorithm with successful results in many applications [7]. Additionally,
the Bayesian framework is well understood in many domains. For instance, we
plan to apply this method on the problem of predicting the rankings of financial
analysts. In the Financial Economics area, Bayesian models are widely used (e.g.,
the Black–Litterman model for active portfolio management [1]).

The main idea lies in replacing the probabilities in the Bayes theorem with
the distance between rankings. This can be done because it has been shown that
there is a parallel between the concepts of distance and likelihood [17].

The paper is organized as follows: section 2 provides the formalization of the
label ranking problem; section 3 briefly describes the naive Bayes algorithm for
classification; section 4 shows the adaptation of the NB algorithm for label rank-
ing; section 5 explains the problem of metalearning, which will be the application
domain for the empirical evaluation; section 6 presents empirical results; finally,
section 7 concludes with the goals for future work.

2 Learning Label Rankings

Based on [16], a label ranking problem is defined as follows. Let X ⊆ {V1, . . . ,Vm}
be an instance space of nominal variables, such that Va = {va,1, . . . , va,na} is the
domain of nominal variable a. Also, let L = {λ1, . . . , λk} be a set of labels, and
Y = ΠL be the output space of all possible total orders1 over L defined on
the permutation space Π . The goal of a label ranking algorithm is to learn a
mapping h : X → Y, where h is chosen from a given hypothesis space H, such
that a predefined loss function � : H× Y × Y → R is minimized. The algorithm
learns h from a training set T = {xi, yi}i∈{1,...,n} ⊆ X ×Y of n examples, where
xi = {xi,1, xi,2, . . . , xi,m} ∈ X and yi = {yi,1, yi,2, . . . , yi,k} ∈ ΠL. Furthermore,
we define y−1

i = {y−1
i,1 , y−1

i,2 , . . . , y−1
i,k } as the order of the labels in example i.

Given that we are focusing on total orders, y−1
i is a permutation of the set

{1, 2, . . . , k} where y−1
i,j is the rank of label λj in example i.

Unlike classification, where for each instance x ∈ X there is an associated class
yi ∈ L2, in label ranking problems there is a ranking of the labels associated with
every instance x and the goal is to predict it. This is also different from other
ranking problems, such as in information retrieval or recommender systems. In
these problems the target variable is a set of ratings or binary relevance labels
for each item, and not a ranking.
1 A total order is a complete, transitive, and asymmetric relation � on L, where

λi � λj indicates that λi precedes λj . In this paper, given L = {A, B, C}, we
will use the notation {A, C, B} and {1, 3, 2} interchangeably to represent the order
A � C � B.

2 Here, we use both yi to represent the target class (label) in classification and the
target ranking in label ranking to clarify that they are both the target of the learning
problem. We will explicitly state the task we are dealing with when it is not clear
from the context.

18 A. Aiguzhinov, C. Soares, and A.P. Serra

The algorithms for label ranking can be divided into two main approaches:
methods that transform the ranking problem into multiple binary problems and
methods that were developed or adapted to predict the rankings. An exam-
ple of the former is the ranking by pairwise comparisons [9]. Some examples
of algorithms that are specific for rankings are: the predictive clustering trees
method [15], the similarity-based k-Nearest Neighbour for label ranking [2], the
probabilistic k-Nearest Neighbour for label ranking [5] and the linear utility
transformation method [8,6].

To assess the accuracy of the predicted rankings relative to the corresponding
target rankings, a suitable loss function is needed. In this paper we compare two
rankings using the Spearman correlation coefficient [2,16]:

ρ(π, π̂) = 1 −
6
∑k

j=1(πj − π̂j)2

k3 − k
(1)

where π and π̂3 are, respectively, the target and predicted rankings for a given
instance. Two orders with all the labels placed in the same position will have a
Spearman correlation of +1. Labels placed in reverse order will produce corre-
lation of −1. Thus, the higher the value of ρ the more accurate the prediction is
compared to target. The loss function is given by the mean Spearman correlation
values (eq. 1) between the predicted and target rankings, across all examples in
the dataset:

� =
∑n

i=1 ρ(πi, π̂i)
n

(2)

An extensive survey of label ranking algorithms is given by [16].

3 The Naive Bayes Classifier

We follow [11] to formalize the naive Bayes classifier. In classification, each in-
stance xi ∈ X is binded to class yi ∈ L. The task of a learner is to create a
classifier from the training set T .The classifier takes a new, unlabelled instance
and assigns it to a class (label).

The naive Bayes method classifies a new instance xi by determining the most
probable target value, cMAP (xi)4, given the attribute values that describe the
instance:

cMAP (xi) = arg max
λ∈L

P (λ|xi,1, xi,2, . . . , xi,m) (3)

where xi,j is the value of attribute j for instance i.
The algorithm is based on the Bayes theorem that establishes the probability

of A given B as:

P (A|B) =
P (B|A)P (A)

P (B)
(4)

3 In the following, we will use yi and πi interchangeably to represent the target ranking.
4 MAP – Maximum A Posteriori.

A Similarity-Based Adaptation of Naive Bayes for Label Ranking 19

Thus, the Bayes theorem provides a way to calculate the posterior probability
of a hypothesis.

Using (4), we can rewrite (3) as

cMAP (xi) = arg max
λ∈L

P (xi,1, xi,2, . . . , xi,m|λ)P (λ)
P (xi,1, xi,2, . . . , xi,m)

= arg max
λ∈L

P (xi,1, xi,2 . . .xi,m|λ)P (λ) (5)

Computing the likelihood P (xi,1, xi,2, . . . , xi,m|λ) is very complex and requires
large amounts of data, in order to produce reliable estimates. Therefore, the naive
Bayes classifier makes one simple, hence, naive, assumption that the attribute
values are conditionally independent from each other. This implies that the prob-
ability of observing the conjunction xi,1, xi,2, . . . , xi,m is the product of the prob-
abilities for the individual attributes: P (xi,1, xi,2, . . . , xi,m|λ) =

∏m
j=1 P (xi,j |λ).

Substituting this expression into equation (5), we obtain the naive Bayes
classifier:

cnb(xi) = arg max
λ∈L

P (λ)
m∏

j=1

P (xi,j |λ) (6)

4 Adapting NB to Ranking

Consider the classic problem of the play/no play tennis based on the weather
conditions. The naive Bayes classification algorithm can be successfully applied
to this problem [11, chap. 6]. For illustration purposes, we extend this example
application to the label ranking setting by replacing the target with a ranking
on the preferences of a golf player regarding three tennis courts on different days
(Table 1).

The last three columns in Table 1 represent the ranks of the tennis courts A,
B and C.

Table 1. Example of tennis courts {A, B, C} rankings based on the observed weather
conditions

Day Outlook Temperature Humidity Wind Ranks
A B C

1 Sunny Hot High Weak 1 2 3
2 Sunny Hot High Strong 2 3 1
3 Overcast Hot High Weak 1 2 3
4 Rain Mild High Weak 1 3 2
5 Rain Mild High Strong 1 2 3
6 Sunny Mild High Strong 2 3 1

As described earlier, the difference between classification and label ranking
lies in the target variable, y. Therefore, to adapt NB for ranking we have to
adapt the parts of the algorithm that depend on the target variable, namely:

20 A. Aiguzhinov, C. Soares, and A.P. Serra

– prior probability, P (y)
– conditional probability, P (x|y)

The adaptation should take into account the differences in nature between label
rankings and classes. For example, if we consider label ranking as a classification
problem, then the prior probability of ranking {A, B, C} on the data given in
Table 1 is P ({A, B, C}) = 3/6 = 0.5, which is quite high. On the other hand,
the probability of {A, C, B} is quite low, P ({A, C, B}) = 1/6 = 0.167. However,
taking into account the stochastic nature of these rankings [5], it is intuitively
clear that the observation of {A, B, C} increases the probability of observing
{A, C, B} and vice-versa. This affects even rankings that are not observed in the
available data. For example, the case of unobserved ranking {B, A, C} in Table 1
would not be entirely unexpected in the future considering a similar observed
ranking {B, C, A}.

One approach to deal with stochastic nature characteristic of label rankings
is to use ranking distributions, such as the Mallows model (e.g., [10,5]). Alter-
natively, we may consider that the intuition described above is represented by
varying similarity between rankings.

Similarity-based label ranking algorithms have two important properties:

– they assign non-zero probabilities even for rankings which have not been
observed. This property is common to distribution-based methods;

– they are based on the notion of similarity between rankings, which also un-
derlies the evaluation measures that are commonly used. Better performance
is naturally expected by aligning the algorithm with the evaluation measure.

Similarity and probability are different concepts and, in order to adapt NB for
label ranking based on the concept of similarity, it is necessary to relate them.
A parallel has been established between probabilities and the general Euclidean
distance measure [17]. This work shows that maximizing the likelihood is equiv-
alent to minimizing the distance (i.e., maximizing the similarity) in a Euclidean
space. Although not all assumptions required for that parallel hold when con-
sidering distance (or similarity) between rankings, given that the naive Bayes
algorithm is known to be robust to violations of its assumptions, we propose a
similarity-based adaptation of NB for label ranking.

In the following description, we will retain the probabilistic terminology (e.g.,
prior probability) from the original algorithm, even though it does not apply
for similarity functions. However, in the mathematical notation, we will use the
subscript LR to distinguish the concepts. Despite the abuse, we believe this makes
the algorithm easier to understand.

We start by defining S as a similarity matrix between the target rankings in
a training set, i.e. Sn×n = ρ(πi, πj). The prior probability of a label ranking is
given by:

PLR(π) =
∑n

i=1 ρ(π, πi)
n

(7)

We say that the prior probability is the mean of similarity of a given rankings
to all the others. We measure similarity using the Spearman correlation coef-
ficient (1). Equation 7 shows the average similarity of one ranking relative to

A Similarity-Based Adaptation of Naive Bayes for Label Ranking 21

others. The greater the similarity between two particular rankings, the higher is
the probability that the next unobserved ranking will be similar to the known
ranking. Take a look a the Table 2 with the calculated prior probability for the
unique rankings. We also added a column with prior probabilities considering
the rankings as one class.

Table 2. Comparison of values of prior probability by addressing the label ranking
problem as a classification problem or using similarity

π P (π) PLR(π)
A B C 0.500 0.708
B C A 0.333 0.583
A C B 0.167 0.792

As stated above, the ranking {A, C, B}, due to its similarity to the other
two rankings, achieves a higher probability. Note that since we measure prior
probability of label ranking as a similarity between rankings, it would not add
to one as the in case of probability for classification.

The similarity of rankings based on the value i of attribute a, (va,i), or con-
ditional probability of label rankings, is:

PLR(va,i|π) =

∑
i:xi,a=va,i

ρ(π, πi)

|{i : xi,a = va,i}|
(8)

Table 3 demonstrates the logic behind the conditional probabilities based on
similarity. Notice that there are no examples with Outlook = Sunny and a target
ranking of {A, C, B}; thus, P (Outlook = Sunny|{A, C, B}) = 0. However, in the
similarity approach, the probability of {A, C, B} depends on the probability of
similar rankings, yielding PLR(Outlook = Sunny|{A, C, B}) = 0.750.

Table 3. Comparison of values of conditional probability by addressing the label rank-
ing problem as a classification problem or using similarity

π P (Outlook = Sunny|π) PLR(Outlook = Sunny|π)
A B C 0.33 0.500
B C A 1.00 0.750
A C B 0.00 0.750

Applying equation (6), we get the estimated posterior probability of ranking
π:

PLR(π|xi) = PLR(π)
m∏

a=1

PLR(xi,a|π) = (9)

=

∑n
j=1 ρ(π, πj)

n

[
m∏

a=1

∑
j:xj,a=xi,a

ρ(π, πj)

|{j : xj,a = xi,a}|

]

22 A. Aiguzhinov, C. Soares, and A.P. Serra

The similarity-based adaptation of naive Bayes for label ranking will output the
ranking with the higher PLR(π|xi) value:

π̂ = argmax
π∈ΠL

PLR(π|xi) = (10)

= argmax
π∈ΠL

PLR(π)
m∏

a=1

PLR(xi,a|π)

5 Metalearning

The algorithm proposed in the previous section was tested on some metalearning
problems. Algorithm recommendation using a metalearning approach has often
been address as a label ranking problem [2,15]. Here, we provide a summary of
a problem.

Many different learning algorithms are available to data analysts nowadays.
For instance, decision trees, neural networks, linear discriminants, support vector
machines among others can be used in classification problems. The goal of data
analysts is to use the one that will obtain the best performance on the problem
at hand. Given that the performance of learning algorithms varies for different
datasets, data analysts must select carefully which algorithm to use for each
problem, in order to obtain satisfactory results.

Therefore, we can say that a performance measure establishes a ranking of
learning algorithms for each problem. For instance, Table 4 illustrates the rank-
ing of four classification algorithms (ai) on two datasets (dj) defined by estimates
of the classification accuracy of those algorithms on those datasets.

Table 4. Accuracy of four learning algorithms on two classification problems

a1 a2 a3 a4

d1 90% (1) 61% (3) 82% (2) 55% (4)
d2 84% (2) 86% (1) 60%(4) 79% (3)

Selecting the algorithm by trying out all alternatives is generally not a viable
option. As explained in [15]:

In many cases, running an algorithm on a given task can be time consum-
ing, especially when complex tasks are involved. It is therefore desirable
to be able to predict the performance of a given algorithm on a given
task from description and without actually running the algorithm.

The learning approach to the problem of algorithm recommendation consists
of using a learning algorithm to model the relation between the characteristics
of learning problems (e.g., application domain, number of examples, proportion

A Similarity-Based Adaptation of Naive Bayes for Label Ranking 23

of symbolic attributes) and the relative performance (or ranking) of a set of al-
gorithms [2]. We refer to this approach as metalearning because we are learning
about the performance of learning algorithms.

Metalearning approaches commonly cast the algorithm recommendation prob-
lem as a classification task. Therefore, the recommendation provided to the user
consists of a single algorithm. In this approach, the examples are datasets and
the classes are algorithms. However, this is not the most suitable form of rec-
ommendation. Although the computational cost of executing all the algorithms
is very high, it is often the case that it is possible to run a few of the available
algorithms. Therefore, it makes more sense to provide recommendation in the
form of a ranking, i.e. address the problem using a label ranking approach, where
the labels are the algorithms. The user can then execute the algorithms in the
suggested order, until no computational resources (or time) are available.

In the metalearning datasets, each example (xi, yi) represents a machine learn-
ing problem, referred to here as base-level dataset (BLD). The xi is the set of
metafeatures that represent characteristics of the BLD (e.g., mutual information
between symbolic attributes and the target) and the yi is the target ranking,
representing the relative performance of a set of learning algorithms on the cor-
responding BLD. More details can be found in [2].

6 Experiment Results

We empirically tested the proposed adaptation of the naive Bayes algorithm for
learning label rankings on some ranking problems obtained from metalearning
applications. We start by describing the experimental setup and then we discuss
the results.

6.1 Experimental Setup

We used the following metalearning datasets in our experiments:

– class: these data represent the performance of ten algorithms on a set of
57 classification BLD. The BLD are characterized by a set of metafeatures
which obtained good results with the k-NN algorithm [2].

– regr: these data represent the performance of nine algorithms on a set of 42
regression BLD. The set of metafeatures used here has also obtained good
results previously [14].

– svm-*: we have tried four different datasets describing the performance of
different variants of the Support Vector Machines algorithm on the same 42
regression BLD as in the previous set and also using the same set of metafea-
tures [13]. The difference between the first three sets, svm-5, svm-eps01 and
svm-21 is in the number of different values of the kernel parameter that were
considered. The remaining dataset svm-eps01 uses the same 11 alternative
kernel parameters as svm-11 but the value of the kernel parameter ε is 0.128
and not 0.001 as in the other sets.

24 A. Aiguzhinov, C. Soares, and A.P. Serra

Given that the attributes in the metalearning datasets are numerical and the
NB algorithm is for symbolic attributes, they must be discretized. We used a
simple equal-width binning method using 10 bins.

The baseline is a simple method based on the mean rank of each label (i.e.,
algorithm or parameter setting in these datasets) over all training examples (i.e.,
BLDs) [3].

π̄−1
j =

∑n
i=1 π−1

i,j

n
(11)

where π−1
i,j is the rank of label λj on dataset i. The final ranking is obtained

by ordering the mean ranks and assigning them to the labels accordingly. This
ranking is usually called the default ranking, in parallel to the default class in
classification.

The performance of the label ranking methods was estimated using a method-
ology that has been used previously for this purpose [2]. It is based on the leave-
one-out performance estimation method because of the small size of the datasets.
The accuracy of the rankings predicted by methods was evaluated by comparing
them to the target rankings (i.e., the rankings based on the observed perfor-
mance of the algorithms) using the Spearman’s correlation coefficient (Eq. 1).
The code for all the examples in this paper has been written in R [12].

6.2 Results

The results of the experiments are presented in Table 5. As the table shows,
the algorithm is significantly better than the baseline on all datasets. In two
datasets, with a 99% confidence level, in one with 95% and the remaining with
90% confidence. Despite the small size of the datasets (less than 60 examples),
the algorithm is able to detect some patterns with predictive value.

Table 5. Experimental results of the adapted naive Bayes algorithm for label ranking
compared to the baseline. Items with (*),(**), and (***) have statistical significance
at 10% , 5% , and 1% confidence level respectively.

Dataset NBr Baseline p-values
class 0.506 0.479 0.000***
regr 0.658 0.523 0.056*

svm-5 0.326 0.083 0.000***
svm-11 0.372 0.144 0.029**
svm-21 0.362 0.229 0.055*

svm-eps01 0.369 0.244 0.091*

7 Conclusion

In this paper we presented an adaptation of the naive Bayes algorithm for label
ranking that is based on similarities of the rankings taking advantage of a parallel

A Similarity-Based Adaptation of Naive Bayes for Label Ranking 25

that can be established between the concepts of likelihood and distance. We
tested the new algorithm on a number of metalearning datasets and conclude
that it consistently outperforms a baseline method.

A number of issues remain open, which we plan to address in the future.
Firstly, we are currently working on creating new datasets for ranking applica-
tions in different areas, including finance (e.g., predicting the rankings of the
financial analysts based on their recommendations). These new datasets will
enable us to better understand the behaviour of the proposed algorithm. In ad-
dition, we assume that target rankings are total orders. In practice, this is often
not true [4,2]. We plan to address the problem of partial orders in the future.
Finally, we plan to compare the new method with existing ones.

Acknowledgement

This work was partially supported by FCT project Rank! (PTDC/EIA/81178/
2006). We thank the anonymous referees for useful comments.

References

1. Black, F., Litterman, R.: Global portfolio optimization. Financial Analysts Jour-
nal 48(5), 28–43 (1992)

2. Brazdil, P., Soares, C., Costa, J.: Ranking Learning Algorithms: Using IBL and
Meta-Learning on Accuracy and Time Results. Machine Learning 50(3), 251–277
(2003)

3. Brazdil, P., Soares, C., Giraud-Carrier, C., Vilalta, R.: Metalearning Applications
to Data Mining. Springer, Heidelberg (2009)

4. Cheng, W., Dembczynski, K., Hüllermeier, E.: Label Ranking Methods based on
the Plackett-Luce Model. In: 27th International Conference on Machine Learning,
Haifa, Israel (2010)

5. Cheng, W., Hühn, J., Hüllermeier, E.: Decision tree and instance-based learning
for label ranking. In: ICML 2009: Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 161–168. ACM, New York (2009)

6. Dekel, O., Manning, C., Singer, Y.: Log-linear models for label ranking. Advances
in Neural Information Processing Systems 16 (2003)

7. Domingos, P., Pazzani, M.: On the optimality of the simple bayesian classifier
under zero-one loss. Machine learning 29(2), 103–130 (1997)

8. Har-Peled, S., Roth, D., Zimak, D.: Constraint Classification: A New Approach
to Multiclass Classification. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.)
ALT 2002. LNCS (LNAI), vol. 2533, p. 365. Springer, Heidelberg (2002)

9. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning
pairwise preferences. Artificial Intelligence 172(2008), 1897–1916 (2008)

10. Lebanon, G., Lafferty, J.: Cranking: Combining Rankings Using Conditional Prob-
ability Models on Permutations. In: Proceedings of the Nineteenth International
Conference on Machine Learning, p. 370. Morgan Kaufmann Publishers Inc., San
Francisco (2002)

11. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

26 A. Aiguzhinov, C. Soares, and A.P. Serra

12. R Development Core Team: R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria (2008) ISBN
3-900051-07-0

13. Soares, C., Brazdil, P., Kuba, P.: A meta-learning method to select the kernel width
in support vector regression. Machine Learning 54, 195–209 (2004)

14. Soares, C.: Learning Rankings of Learning Algorithms. Ph.D. thesis, Department
of Computer Science, Faculty of Sciences, University of Porto (2004); supervisors:
Pavel Brazdil and Joaquim Pinto da Costa,
http://www.liaad.up.pt/pub/2004/Soa04

15. Todorovski, L., Blockeel, H., Dzeroski, S.: Ranking with predictive clustering trees.
In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI),
vol. 2430, pp. 123–137. Springer, Heidelberg (2002)

16. Vembu, S., Gärtner, T.: Preference Learning. Springer, Heidelberg (October 2010)
17. Vogt, M., Godden, J., Bajorath, J.: Bayesian interpretation of a distance function

for navigating high-dimensional descriptor spaces. Journal of Chemical Information
and Modeling 47(1), 39–46 (2007)

http://www.liaad.up.pt/pub/2004/Soa04

Topology Preserving SOM with Transductive
Confidence Machine

Bin Tong1,2, ZhiGuang Qin1, and Einoshin Suzuki2,3

1 CCSE, University of Electronic Science and Technology of China, China
2 Graduate School of Systems Life Sciences,Kyushu University, Japan

3 Department of Informatics, ISEE, Kyushu University, Japan

Abstract. We propose a novel topology preserving self-organized map
(SOM) classifier with transductive confidence machine (TPSOM-TCM).
Typically, SOM acts as a dimension reduction tool for mapping training
samples from a high-dimensional input space onto a neuron grid. How-
ever, current SOM-based classifiers can not provide degrees of classifica-
tion reliability for new unlabeled samples so that they are difficult to be
used in risk-sensitive applications where incorrect predictions may result
in serious consequences. Our method extends a typical SOM classifier to
allow it to supply such reliability degrees. To achieve this objective, we
define a nonconformity measurement with which a randomness test can
predict how nonconforming a new unlabeled sample is with respect to
the training samples. In addition, we notice that the definition of non-
conformity measurement is more dependent on the quality of topology
preservation than that of quantization error reduction. We thus incor-
porate the grey relation coefficient (GRC) into the calculation of neigh-
borhood radii to improve the topology preservation without increasing
the quantization error. Our method is able to improve the time efficiency
of a previous method kNN-TCM, when the number of samples is large.
Extensive experiments on both the UCI and KDDCUP 99 data sets show
the effectiveness of our method.

1 Introduction

Self-organized map (SOM) [8] has been successfully used in a wide variety of
applications, including image processing, intrusion detection, etc. SOM performs
a mapping from a high-dimensional input space onto a neuron grid, such that it is
capable of exhibiting a human-interpretable visualization for the data. A major
characteristic of the SOM mapping is that training samples which are relatively
close in the input space should be mapped to neuron nodes that are relatively
close on the neuron grid. Although SOM is a specific type of clustering algorithm,
its variants can serve as classifiers [6,13,9]. In general, a simple SOM classifier
performs in the following way. In its training phase, each sample is assigned to
the nearest weight vector. Note that each neuron node in the neuron grid is
associated with a weight vector that has the same dimensionality with samples
in the input space. Then, each assigned neuron node, which is also referred to as

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 27–41, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

28 B. Tong, Z. Qin, and E. Suzuki

winner neuron node, can be regarded as a representer of some samples, and its
class label is voted by the samples. In the test phase, an unlabeled sample has
the class label the same as the neuron node whose weight vector is nearest to it.

However, current SOM-based classifiers are usually difficult to be used in risk-
sensitive applications, such as medical diagnosis and financial analysis, where
incorrect predictions may result in serious consequences, because they require
predictions to be qualified with degrees of reliability. The efforts to solve this
problem for other kinds of classifiers by using transductive confidence machine
(TCM) [4] can be traced back to kNN-TCM [11], where the kNN algorithm
is embedded into the framework of TCM. A major advantage of using TCM
to provide degrees of prediction reliability is that we do not rely on stronger
assumptions than the i.i.d. one, which is very natural for most applications. In the
kNN-TCM method, a nonconformity measure is defined to map each sample into
a single real value with which a valid randomness test [15] is able to measure how
nonconforming a new unlabeled sample is with respect to the training examples.
kNN-TCM succeeds in obtaining a competitive prediction performance along
with degrees of prediction reliability. However, kNN-TCM would suffer from its
exhaustive computation, as handling a distance matrix is time consuming when
either samples from the input space are of high-dimensionality or the number
of them is large. Fortunately, SOM supplies a desirable dimension reduction
tool such that the number of winner neuron nodes is much smaller than that of
training samples. It implies a clue that integrating a SOM-based classifier with
the TCM framework makes it possible that the computation time efficiency can
be improved.

In this paper, a novel topology preserving SOM classifier with transductive
confidence machine (TPSOM-TCM) is proposed. To achieve it, two significant
issues should be addressed appropriately. The first issue is to design a nonconfor-
mity measurement for the winner neuron nodes, considering the distribution of
the winner neuron nodes on the neuron grid. We also observe that the definition
of the nonconformity measurement largely depends on the quality of topology
preservation [7]. Thus, the second issue is aimed at obtaining a sophisticated
topology preservation without increasing the quantization error. However, there
is often a tradeoff between enhancing the quality of topology preservation and
reducing the quantization error [7] when the dimensionality of the input space
is higher than that of the neuron grid. To handle this challenging issue, we inte-
grate the grey relation coefficient (GRC) [5] with the calculation of neighborhood
radius for each neuron node.

2 Preliminaries

2.1 Transductive Confidence Machine

The framework of transductive confidence machine (TCM) allows to extend clas-
sifiers to produce predictions complemented with a confidence value that is able
to provide an upper bound of the error rate [14]. The algorithmic randomness
test [15] built in TCM is designed to find the regularities in a sample sequence.

Topology Preserving SOM with Transductive Confidence Machine 29

For example, consider the following two sample sequences with the same length
which are “0101010101.. . 01010101”and “1001011110.. . 01100000” . It is obvi-
ous that the first sequence is more regular than the second one. One example
of a valid randomness test [10] for real values produced under the i.i.d. assump-
tion is to measure how likely it is that a new real value is generated by the
previous ones. In order to utilize the valid randomness test, a nonconformity
measurement, which measures how nonconforming a sample is with respect to
other available samples, should be designed to map each sample to a single real
value.

A classifier with TCM generally works in the transductive way that it infers
the class label for every new sample by utilizing the whole training samples. This
process is formulated as follows. Denote X and Y as the input space and the
corresponding label space, respectively. Suppose we are given a sequence of n
training samples X = {x1,x2, . . . ,xn} where xi ∈ X , i = 1, 2, . . . , n, and each xi

corresponds to a class label yi, where yi ∈ Y. In addition, we suppose that every
training sample is drawn from the same unknown probability distribution P that
satisfies the i.i.d. assumption. To predict the class label of a new unlabeled sam-
ple xn+1, we construct an extended sample sequence X ′ = X ∪ xn+1, and each
possible label yn+1 ∈ Y is tentatively labeled as the class label of xn+1. We then
have a sequence of nonconformity scores denoted by α = {α1, α2, . . . , αn, αn+1},
where αi, i = 1, 2, . . . , n, represents the nonconformity score of xi, and αn+1 is
for xn+1 given a specific class label yn+1. In each tentative labeling, we perform
a randomness test for the sequence X ′. The randomness test function [10] is
defined as follows.

p(αn+1) =
card{i | αi ≥ αn+1, 1 ≤ i ≤ n + 1}

n + 1
(1)

where card represents the cardinality of a set. The output of the randomness
test function is called p-value. We can observe from Eq. (1) that if the p-value is
close to its lower bound 1

n+1 , the new sample xn+1 with the specified label yn+1
is very nonconforming to the training sample sequence X . That is, the closer the
p-value is to the upper bound 1, the more conforming the new sample xn+1 with
the class label yn+1 is with respect to X . When a significance level ε is fixed, the
classifier with TCM outputs a set of class labels Y = {yn+1 ∈ Y | p(αn+1) > ε}
for the new sample xn+1. That is, we accept possible classifications, whose p-
values are above the significance level ε, with a confidence at least 1 − ε.

2.2 Self-Organized Map

In this subsection, we briefly review the self-organized map (SOM) [8], which
serves as a fundamental of our method. The self-organized map (SOM) projects
training samples onto neuron nodes in a low-dimensional neuron grid. In the
following sections, we only consider the low-dimensional neuron grid as a two-
dimensional one. Note that each neuron node uj is associated with a weight
vector wj = [wj1, wj2, ..., wjd], j = 1, 2, . . . , N , where d is the dimensionality
of the weigh vector which is the same as that of the training samples, and N

30 B. Tong, Z. Qin, and E. Suzuki

indicates the number of neuron nodes. For each neuron node uj , we also specify
its coordinate in the neuron grid as rj . The basic learning process of SOM is
illustrated as follows.

(a) Initialize randomly each weight vector wj , j = 1, 2, . . . , N , and set the initial
iteration epoch t to be 1;

(b) Present a training sample xi at epoch t.
(c) Calculate the distances between the sample xi and each neuron weight vector

wj , j = 1, 2, . . . , N , to identify the winner neuron uc, c ∈ N , which is also
called the Best-Matching Unit (BMU).

c = argmin
j

{‖xi − wj‖} (2)

where j = 1, 2, . . . , N and ‖·‖ represents the Euclidean Norm.
(d) Adjust all the weight vectors in the neighborhood of the winner neuron uc.

wj(t + 1) = wj(t) + η(t)hcj(t)[xi − wj(t)] (3)

where η(t) and σ(t) are the learning rate and the neighborhood radius at
epoch t, respectively. Note that both the learning rate and the neighborhood
radius are decreasing over time. hcj(t) = exp(−‖rc−rj‖2

σ(t)2), where rc and rj

are the coordinates of the winner neuron node uc and the updated neuron
node uj, respectively.

(e) t = t + 1.
(f) Repeat the step (b)-(e) until a convergence condition is satisfied.

When a convergence is reached, the training samples from the high-dimensional
input space are mapped to the winner neuron nodes on the neuron grid. In
general, each winner neuron node can be regarded as a representer for the sam-
ples which are mapped to it. The winner neuron nodes preserve the topology
and distribution of the training samples. Precisely speaking, the clusters of the
samples with different class labels in the high-dimensional input space would be
distributed in different areas on the grid. This characteristic is also pointed out
in the SOM literature [7,12].

3 TPSOM-TCM

3.1 Nonconformity Measurement for SOM

In this subsection, the first issue of how to define a nonconformity measurement
in the neuron grid is discussed. As mentioned in section 2.1, in order to integrate
a SOM classifier with the TCM framework, a nonconformity measurement needs
to be designed such that the randomness test can be performed. In this paper,
in contrast to kNN-TCM [11] that designs the nonconformity measurement for
each training or test samples, we design it for each winner neuron node in the
neuron grid, since each winner neuron node is able to represent some of the
training samples.

Topology Preserving SOM with Transductive Confidence Machine 31

Given a sample xi, i = 1, 2, . . . , n, the winner neuron node of the sample xi

is denoted by uc and its class label is voted by yi, yi ∈ Y. We define Nuc =
{u1

c, u
2
c , . . . , u

K
c } as a set of K-nearest winner neuron nodes according to the

coordinate of the neuron grid. For each winner neuron node uj
c ∈ Nuc , j =

1, 2, . . . , K, we define νuj
c

as the number of samples which are mapped to the
neuron node uj

c. Among the νuj
c

samples, we further define νyi

uj
c

as the number of

samples whose class labels are equal to yi, and ν−yi

uj
c

as the number of samples

whose class labels are different from yi, such that νuj
c = ν−yi

uj
c

+ νyi

uj
c
. Following

the idea in kNN-TCM [11] that the nonconformity measurement is the ratio of
the sum of k nearest distances from the same class to the sum of the k nearest
distances from all other classes, the nonconformity score αuc for the winner
neuron node uc is defined as follows:

αuc =

K∑
j=1:uj

c∈Nc

ν−yi

uj
c

K∑
j=1:uj

c∈Nc

νyi

uj
c

(4)

At the first glance, the form of Eq. (4) is different from that of the nonconformity
measurement in kNN-TCM. However, they are conceptually the same. In SOM,
samples close in the input space are mapped to neuron nodes that are close to
each other in the neuron grid. It is natural to consider that the samples that
are close in the input space are more likely to have the same class label, such
that for a given sample, the sum of k nearest distances from the same class
becomes small. From the viewpoint of the neuron grid, for a given neuron node,
the density of samples with that class label becomes high. The intuition behind
the nonconformity measurement is that, for each winner neuron node uj

c ∈ Nuc ,
j = 1, 2, . . . , K, the larger the value of νyi

uj
c

is, the higher density the samples with
class label yi have. Therefore, it may lead to a smaller nonconformity score for
the winner neuron node uc. We observe from Eq. (4) that it is largely dependent
on the topology structure of the neuron grid. That is, a sophisticated topology
preservation for training samples is much more desirable for the nonconformity
measurement.

3.2 Topology Preservation for SOM

In this subsection, how to improve the topology preservation for SOM is dis-
cussed. In SOM-based methods, the topographic error [7] and the quantization
error [7] act as two criteria of estimating the quality of mapping. It was pointed
out in [7,16] that improving the quality of topology preservation and reducing
the quantization error always conflict when the dimension of training samples
is larger than that of the neuron grid, hence there exists a tradeoff between the
two criteria. Since the nonconformity measurement requires a high quality of

32 B. Tong, Z. Qin, and E. Suzuki

the topology preservation, we are motivated to improve the quality of topology
preservation without increasing the quantization error.

One method to improve the topology preservation is introduced in AdSOM
[7]. The topographic error is proposed to measure the continuity for the mapping
that reflects the probability distribution of the training samples. For a sample
xi, i = 1, 2, . . . , n, assume that its nearest weight vector is wc and the second
nearest one is wq. If their corresponding neuron nodes, which are uc and uq

respectively, are not adjacent according to their coordinates of the neuron grid,
a local topographic error is generated. In AdSOM, the neighborhood radius for
the neuron node uj in the updating rule Eq. (3) is given as follows:

h∗
cj(t) =

{
exp[− 1

2 (l
σj

)2]−exp(− 1
2)

σj [1−exp(− 1
2)] ,

0,

l < σj

otherwise. (5)

where l = ‖rc − rj‖ and σj is defined as follows:

σj =

⎧⎨⎩
‖rc − rq‖,
‖rc − rq‖ − s,
1,

if t ≤ ‖rc − rq‖
otherwise when s < ‖rc − rq‖
otherwise.

(6)

where t = max{‖rj − rc‖ , ‖rj − rq‖} and s = min{‖rj − rc‖ , ‖rj − rq‖}. For
the sample xi

the neuron node uj, σj is equal to the distance on the neuron grid between uc

and uq if uj is between them; if uj is outside that area but not far from uc and
uq, σj is equal to ‖rc − rq‖ − s; otherwise, σj is set to be 1. From Eq. (6), we
notice that, given the sample xi, σj depends only on the distance between rc and
rq, which means that the relationship between wc and wq might be neglected.

In order to improve the quality of topology preservation without increasing
the quantization error, we firstly consider the relationships between the given
sample xi and each weight vector wj , j = 1, 2, . . . , N , and exploit these relation-
ships to improve the calculation of σj . Here, the grey relation coefficient (GRC)
[5] is employed to discover the relationships between weight vectors. Given the
sample xi = [xi1, xi2, ..., xid] and the weight vector wj = [wj1, wj2, ..., wjd],
j = 1, 2, . . . , N , k = 1, 2, . . . , d with the normalized form, we define the grey
relation coefficient between xi and wj as ξj , which is computed as follows.

ξjk =
Δmin + ρΔmax

Δjk + ρΔmax
(7)

where ρ (0 ≤ ρ ≤ 1) is a discriminative coefficient, and is usually set to be 0.5.

Δmin = min
j

min
k

|xik − wjk | (8)

Δmax = max
j

max
k

|xik − wjk| (9)

Δjk = |xik − wjk| (10)

Topology Preserving SOM with Transductive Confidence Machine 33

where 1 ≤ j ≤ N , 1 ≤ k ≤ d, and | · | represents the absolute value operator. We

then derive ξj by ξj = 1
d

d∑
k=1

ξjk. Given the example xi, we can associate ξj with

each weight vector wj , j = 1, 2, . . . , N .
To consider the relationships between weight vectors, we modify the calcula-

tion of σj as follows.

σj =

⎧⎨⎩
(ξc + ξq) ‖rc − rq‖,
(ξc + ξq) ‖rc − rq‖ − s′,
1,

if t′ ≤ (ξc + ξq) ‖rc − rq‖
otherwise when s′ < (ξc + ξq) ‖rc − rq‖
otherwise.

(11)

where t′ = max{(ξj + ξc) ‖rj − rc‖ , (ξj + ξq) ‖rj − rq‖} and s′ = min{(ξj +
ξc) ‖rj − rc‖ , (ξj + ξq) ‖rj − rq‖}. The updating rule for the weight vector wj in
Eq. (6) is then recalculated as follows:

wjk(t + 1) = wjk(t) + η(t)h∗
cj(t)ξjk[xik − wjk(t)] (12)

where j = 1, 2, . . . , N and k = 1, 2, . . . , d.

3.3 Framework of TPSOM-TCM

The topology preserving SOM with transductive confidence machine (TPSOM-
TCM) mainly consists of two steps. The first step is to obtain a well-trained SOM
map by using the training samples. Our objective in this step is to improve
the quality of the topology preservation without increasing the quantization
error. Our innovation is to integrate the grey relation coefficient (GRC) with the
calculation of neighborhood radii. The second step is to perform the randomness
test for the winner neuron nodes and the new unlabeled sample. Our innovation
is to invent the nonconformity measurement such that the typical SOM-based
classifier can be embedded into the TCM framework. The main steps of TPSOM-
TCM are presented in Algorithm 1.

We now discuss the time complexity of TPSOM-TCM and kNN-TCM. Let
the number of the unlabeled test samples be m. As pointed out in [2], kNN-TCM
requires O(n2) distance computations when computing the nonconformity scores
for the training samples. The complexity O(nm) is required when computing
the nonconformity scores of the test samples. If both m and n are very large, to
compute the nonconformity scores for the training and test samples is extremely
time consuming. However, in TPSOM-TCM, we only compute the nonconformity
scores for the winner neuron nodes and the test samples. Suppose n

′
(n

′ 	 n) to
be the number of winner neuron nodes in the neuron grid. The time complexity
of TPSOM-TCM when computing the p-values for the test samples would be
O(n

′
m), hence the time computation efficiency can be improved. It explains

why TPSOM-TCM is able to behave more appropriately than kNN-TCM when
the number of samples is large.

34 B. Tong, Z. Qin, and E. Suzuki

Algorithm 1
Input: the training sample sequence X and corresponding label space Y, K, the num-

ber of the neuron nodes in the neuron grid N , the unlabeled test sample xn+1

Output: the class label and the confidence for xn+1

1: Determine the size of the neuron grid according to N .
2: Present the training samples to train the SOM map by following the typical training

steps of SOM, except that the Eq. (12) is employed to update the weight vectors.
3: Calculate the nonconformity score for each winner neuron node.
4: for q = 1 to card(Y) do
5: Associate xn+1 with its nearest neuron node in the neuron grid, and modify the

statistical information of this neuron node.
6: Recalculate the nonconformity scores for the neuron nodes if their calculations

are involved with winner neuron nodes whose statistical information is modified.
7: Calculate the nonconformity score of xn+1 with class label Yq by using Eq. (4).
8: Calculate the p-value of xn+1 with class label Yq by using Eq.(1).
9: end for

10: Predict the class label of xn+1 with the largest p-value.
11: Calculate the confidence for xn+1 one minus the 2nd largest p-value .

4 Experiments on UCI Data Sets

All the data sets in this experiment come from the UCI benchmark repository1.
Before the experiment, all the samples with missing feature values as well as
duplicate were removed. Each data set was normalized to have zero mean and
unit variance. The data sets used in the experiment are specified in Table 1.

Table 1. Summary of the benchmark data sets from UCI

Data set Dimension Instance Class Data set Dimension Instance Class
heart 13 270 2 Balance 4 625 3

Ionosphere 34 351 2 Wdbc 30 569 2
Pima 8 768 2 Wpbc 33 194 2

As mentioned in [8], Kohonen suggested that the training phase of SOM could
be divided into two steps which are the ordering step and the convergence step.
Without a specific explanation, the experiment uses common parameters listed
below. Since the numbers of instances in the data sets are not numerous, in
order to obtain a stable result, the iteration number of the ordering step is set
to be 25 times as large as the number of training instances, while the iteration
number of the convergence step is 5 times as large as the number of training
instances. The initial learning rate of the ordering step is 0.95 and the ending
learning rate is 0.05, while the two learning rates in the convergence step are set
to be 0.05 and 0.01, respectively. The configuration of the neuron grid follows
the default setting of the som topol struct function in the SOM toolbox2. For
more details about this function, please refer to the function specification3. Note

Topology Preserving SOM with Transductive Confidence Machine 35

0 2000 4000 6000 8000
0

0.1

0.2

0.3

0.4

0.5

T
op

og
ra

ph
ic

 E
rr

or

Iteration Number

AdSOM
SOM
TPSOM

(a) Topology error (default size)

0 2000 4000 6000 8000
0

0.5

1

1.5

2

2.5

3

Q
ua

nt
iz

at
io

n
E

rr
or

Iteration Number

(b) Quantization error(default size)

0 2000 4000 6000 8000
0

0.1

0.2

0.3

0.4

0.5

T
op

og
ra

ph
ic

 E
rr

or

Iteration Number

(c) Topology error (16 × 16 size)

0 2000 4000 6000 8000
0

0.5

1

1.5

2

2.5

3
Q

ua
nt

iz
at

io
n

E
rr

or

Iteration Number

(d) Quantization error (16 × 16 size)

Fig. 1. The performance on the topology preservation and the quantization error re-
duction in two neuron grids with different sizes

that we denote our method without considering the topology preservation by
SOM-TCM, and denote our method without considering TCM by TPSOM.

4.1 Analysis of Experiments

First, we examine various SOM methods, i.e., SOM, AdSOM and TPSOM, to
evaluate the performances on the topology preservation and the quantization
error reduction. As discussed in previous sections, the nonconformity measure-
ment depends on the quality of the topology preservation. Thus, a high quality
of the topology preservation without increasing the quantization error is desir-
able. Our TPSOM method considers the relationships between weight vectors
associated with neuron nodes to improve the calculation of the neighborhood

2 http://www.cis.hut.fi/somtoolbox/
3 http://www.cis.hut.fi/somtoolbox/package/docs2/som_topol_struct.html

http://www.cis.hut.fi/somtoolbox/
http://www.cis.hut.fi/somtoolbox/package/docs2/som_topol_struct.html

36 B. Tong, Z. Qin, and E. Suzuki

radii. We conduct experiments on two neuron grids with different sizes. The
size of the first neuron gird follows the default setting of the som topol struct
function in the SOM toolbox2, and the other is set to be a square with 16 × 16
size. The experiments were conducted on the heart data set, and the results are
shown in Fig. 1. From Fig. 1a and Fig. 1c, it is obvious that TPSOM has a
stable change of the topographic error over the iteration period. In most cases,
TPSOM keeps the smallest topographic error in the two neuron grids. In Fig. 1b
and Fig. 1d, TPSOM and AdSOM have similar performances on the quantization
error reduction, and outperform that of SOM apparently. From the viewpoint
of the two quality criteria, TPSOM outperforms AdSOM and SOM. We at-
tribute the fact to the reason that the grey relation coefficient (GRC) can help
discover the relationships between weight vectors so that it is beneficial for the
calculation of the neighborhood radii.

Table 2. Comparison of classification accuracies and degrees of classification reliability.
A pair of values is shown in the form of classification accuracy/reliability degree.

Heart Pima Ionosphere
Methods Average Best Average Best Average Best

SOM 72.3 73.0 73.1 73.2 84.9 84.9
TPSOM 73.3 76.7 71.7 72.6 84.8 87.1

SOM-TCM 80.3/95.3 82.2/94.9 73.0/91.9 73.9/92.0 87.3/94.0 88.9/96.1
TPSOM-TCM 81.3/94.5 83.7/95.5 73.5/93.3 74.8/93.8 86.0/96.2 87.1/97.1

kNN-TCM 82.2/93.8 84.8/94.1 73.1/90.1 74.5/90.4 85.0/96.7 86.6/96.9
Balance Wdbc Wpbc

Methods Average Best Average Best Average Best
SOM 78.4 78.4 92.4 92.4 63.2 63.2

TPSOM 77.5 79.8 93.2 95.0 69.3 71.6
SOM-TCM 83.3/95.9 84.2/96.4 95.3/98.7 96.1/98.8 71.6/90.4 74.2/92.0

TPSOM-TCM 86.02/95.0 87.0/95.8 95.8/98.2 96.1/99.3 75.8/92.1 79.0/93.9
kNN-TCM 85.9/94.0 86.6/96.9 96.5/99.5 96.6/99.5 75.1/88.8 77.4/89.4

Second, we discuss the performance of TPSOM-TCM compared with SOM,
TPSOM, TPSOM-TCM and kNN-TCM. Note that, for the two methods SOM
and TPSOM, we only show the classification accuracy due to their lack of TCM.
In this experiment, 10 × 5-fold cross-validation was utilized. The K values for
searching neighbors used in all the methods are set to be 3. The average re-
sults and the best results are shown in Table 2. We can see that, in most
cases, there is no significant improvement on the classification accuracy from
SOM to TPSOM. The possible reason is that the purpose for designing TP-
SOM is to improve the topology preservation for SOM without increasing the
quantization error. Therefore, we believe that the improvement on the classi-
fication accuracy is more likely to be dependent on reducing the quantization
error. It is worthy of noting that TPSOM-TCM and SOM-TCM outperform
TPSOM and SOM. We attribute the fact to the reason that, in the SOM-based

Topology Preserving SOM with Transductive Confidence Machine 37

classifiers, the class label of a winner neuron node is voted by samples. Thus, the
factor resulting from the samples with class labels, which are different from the
voted one, is arbitrarily ignored in the prediction. However, in the nonconformity
measurement for TPSOM-TCM and SOM-TCM, the density of samples with
different class labels is taken into account such that it would be helpful for
improving the performance of the classification accuracy. We believe that the
nonconformity measurement for TPSOM-TCM and SOM-TCM is effective, and
then TCM helps improving the SOM-based classifiers by using a transductive
way. With the comparison between TPSOM-TCM and SOM-TCM, we notice
that, although TPSOM-TCM has a similar performance on the classification
accuracy with SOM-TCM, TPSOM-TCM outperforms SOM-TCM in terms of
the degree of classification reliability. A possible reason is that TPSOM has a
better topology preservation than SOM itself. Compared with kNN-TCM, we
observe that TPSOM-TCM is competitive in terms of both the classification
accuracy and the degree of classification reliability. We can see that Eq.(4) is
effective in measuring the nonconformity degrees of samples.

5 Experiments on Intrusion Detection

In this section, we make use of the intrusion detection database KDDCUP 994 to
examine the performance of TPSOM-TCM compared with other methods, i.e.,
SOM-TCM, kNN-TCM [11] and Multi-Class SVM (MC-SVM) [1]. The KDD-
CUP 99 data set presents the network flow where the normal one and four types
of attacks, i.e., DoS, Probe, R2L and U2R, are collected. Before the experiment,
we reorganized the data set in the following way. We randomly extracted 5915
training data from the “10 percent corrected” file and 9063 test data from the
“correct” file. The specific details of the data are described in Table 3. We con-
ducted the experiments on the Windows XP platform with Intel 3.16 GHz E8500
processor and 3G main memory. Note that we used LibSVM5 library to simulate
the MC-SVM method and the other methods were simulated by Matlab. The
training iteration times of TPSOM-TCM and SOM-TCM are equivalent, each
of which is 5 times the size of the training data. In addition, the neuron grid was
set to be a square with 10 × 10 size.

Table 3. Data from KDDCUP 99

Class Label Training Data Test Data Class Label Training Data Test Data
Normal 1946 3030 Dos 1764 2299
Probe 1027 1138 R2L 1126 2117
U2R 52 228 Total 5919 9063

4 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

38 B. Tong, Z. Qin, and E. Suzuki

(a) TPSOM-TCM (b) TPSOM-TCM

(c) SOM-TCM (d) SOM-TCM

(e) kNN-TCM (f) kNN-TCM

Fig. 2. False positives, detection rates and degrees of reliability in different K values

5.1 Analysis of Experiments

We firstly evaluate the performances of TPSOM-TCM, SOM-TCM and kNN-
TCM on the false positives and the detection rates along with the degrees of
classification reliability for four types of attacks. We vary the value K from 1 to
4 for searching neighbors when computing the nonconformity score. Although

Topology Preserving SOM with Transductive Confidence Machine 39

the training step for TPSOM-TCM and SOM-TCM is a random process, the
results of the two methods are stable due to the well trained SOM map. Thus,
for each chosen K, the results of TPSOM-TCM and SOM-TCM from only one
run are reported. We can observe from Fig. 2 that, when the K value is set to
be 1, the degrees of classification reliability in TPSOM-TCM and SOM-TCM
keep the highest, while the reliability degrees of kNN-TCM are high and stable
against the change of the K value. A possible reason to explain this fact is that
the nonconformity scores of winner neuron nodes are only taken into account
in TPSOM-TCM and SOM-TCM when computing p-values of the test data,
while all the training data are utilized in kNN-TCM. Although each winner
neuron node is able to represent some training data, the distribution of the
winner neuron nodes is difficult to depict the accurate distribution of the training
data, because the number of neuron nodes is much smaller than that of training
data. Another reason is probably that the characteristics of various attacks are
similar to those of the normal network flow. Hence, the neuron nodes with each
possible class label are diversely distributed in the neuron grid. In this case, the
K nearest neighbor set of a winner neuron node may contain neuron nodes with
various different labels of training data, which would make the nonconformity
measurement ineffective. It is worthy of noting from Fig. 2 that the detection
rates of R2L and U2R are much lower than those of DoS and Probe. A possible
reason is that the features of R2L and U2R network flow are very similar to
those of the normal ones, which is also pointed out in the intrusion detection
literature [3,6].

Table 4. The best results of various methods for false positives, detection accura-
cies and degrees of classification reliability. ‘Rate’ and ‘Conf.’ represent percentage of
performance and degree of classification reliability, respectively.

False Positive Dos Probe R2L U2R
Methods Rate Conf. Rate Conf. Rate Conf. Rate Conf. Rate Conf.

TPSOM-TCM 3.7 98.0 96.6 98.2 70.4 98.3 11.1 97.5 6.6 96.7
SOM-TCM 9.9 98.2 91.6 98.2 85.7 98.3 14.5 98.4 12.7 98.3
kNN-TCM 3.6 99.5 82.9 99.8 76.1 99.7 10.6 99.4 17.5 99.3
MC-SVM 1.7 − 82.6 − 81.3 − 0.7 − 4.4 −

We summarize the best result of each method from different K value settings,
as shown in Table 4. It can be seen that TPSOM-TCM is competitive to kNN-
TCM, in the aspects of false positive, detection rate and degree of classification
reliability. The Dos detection rate of TPSOM-TCM is much higher than that of
kNN-TCM. Although SOM-TCM has a similar performance with TPSOM-TCM
and SOM-TCM in terms of the detection rate and the degree of classification
reliability, SOM-TCM is inferior to TPSOM-TCM and SOM-TCM due to the
reason that the high false positive would place a negative effect on the reliability
of an intrusion detection system. Table 4 also reports the result of MC-SVM.
Although it is able to obtain the lowest false positive, TPSOM-TCM outperforms

40 B. Tong, Z. Qin, and E. Suzuki

MC-SVM in terms of Dos detection rate, R2L detection rate and U2R detection
rate.

We then examine the computation time for TPSOM-TCM, SOM-TCM and
kNN-TCM in the setting of different K values. In this experiment, we divide the
computation time into two parts, which are modeling time and detection time.
By observing the two parts, we are able to take a deep insight on the analysis
of time complexity for each method. It is obvious from Table 5 that, when the
K value changes from 1 to 4, the detection time of each method increases. We
attribute this fact to the reason that, when computing the nonconformity scores
for the test data, a larger value of K would lead to an increase of time by using
Eq. (4). We can also see that kNN-TCM occupies the longest detection time
while TPSOM-TCM and SOM-TCM take much shorter time on it, since the
computation of the distance matrix involved with a large amount of training
data and test data are extremely time consuming. We can draw a conclusion
from Table 5 that TPSOM-TCM is superior to kNN-TCM in the aspect of the
detection time, hence TPSOM-TCM is more likely to be adequate for real-time
detection, especially when the network data is significantly huge. In addition,
we notice that the modeling time of TPSOM-TCM is longer than that of SOM-
TCM. Its reason is that the calculation of the grey relation coefficient for weight
vectors and establishing the neighborhood radius for each neuron node take up
extra time. Note that, in spite of this drawback, TPSOM-TCM almost has the
same detection time with SOM-TCM.

Table 5. modeling time and detection time for various methods in the setting of
different K values. All values are in seconds.

TPSOM-TCM SOM-TCM kNN-TCM
K Value Modeling Detection Modeling Detection Modeling Detection

1 49.4 9 6.0 9.1 11.6 134.6
2 49.3 9.7 6.5 10.3 12.5 147.3
3 47.9 11.9 7.9 12.2 11.9 150.0
4 50.0 12.5 6.5 14.3 12.3 157.2

6 Conclusion

In this paper, we proposed a novel topology preserving SOM classifier with
transductive confidence machine (TPSOM-TCM) which is able to provide the
degree of the classification reliability for new unlabeled samples. To achieve this
objective, we firstly invented a nonconformity measurement for SOM, such that
a typical SOM classifier can be easily embedded in the TCM framework. We
then incorporated the grey relation coefficient (GRC) into the calculation of
neighborhood radii to improve the topology preservation without increasing the
quantization error. The experimental results on both the UCI and KDDCUP 99
data sets illustrate the effectiveness of our method.

Topology Preserving SOM with Transductive Confidence Machine 41

Acknowledgments. This work is partially supported by the grant-in-aid for
scientific research on fundamental research (B) 21300053 from the Japanese Min-
istry of Education, Culture, Sports, Science and Technology. Bin Tong is spon-
sored by the China Scholarship Council (CSC).

References

1. Ambwani, T.: Multi Class Support Vector Machine Implementation to Intrusion
Detection. In: Proceedings of the International Joint Conference on Neural Net-
works (2003)

2. Barbará, D., Domeniconi, C., Rogers, J.P.: Detecting Outliers Using Transduction
and Statistical Testing. In: KDD 2006: Proceedings of the Twelveth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (2006)

3. Cho, S.B.: Incorporating Soft Computing Techniques into A Probabilistic Intrusion
Detection System. IEEE Transactions on Systems, Man, and Cybernetics, Part
C 32(2), 154–160 (2002)

4. Gammerman, A., Vovk, V.: Prediction Algorithms and Confidence Measures Based
on Algorithmic Randomness Theory. Theor. Comput. Sci. 287(1), 209–217 (2002)

5. Hu, Y.C., Chen, R.S., Hsu, Y.T., Tzeng, G.H.: Grey Self-organizing Feature Maps.
Neurocomputing 48(1-4), 863–877 (2002)

6. Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: A Hierarchical SOM-based
Intrusion Detection System. Eng. Appl. of AI 20(4), 439–451 (2007)

7. Kiviluoto, K.: Topology Preservation in Self-organizing Maps. In: IEEE Interna-
tional Conference on Neural Networks (1996)

8. Kohonen, T., Schroeder, M.R., Huang, T.S. (eds.): Self-Organizing Maps. Springer,
Heidelberg (2001)

9. Martin, C., Diaz, N.N., Ontrup, J., Nattkemper, T.W.: Hyperbolic SOM-based
Clustering of DNA Fragment Features for Taxonomic Visualization and Classifica-
tion. Bioinformatics 24(14), 1568–1574 (2008)

10. Melluish, T., Saunders, C., Nouretdinov, I., Vovk, V.: Comparing the Bayes and
Typicalness Frameworks. In: EMCL 2001: Proceedings of the Twelfth European
Conference on Machine Learning, pp. 360–371 (2001)

11. Proedrou, K., Nouretdinov, I., Vovk, V., Gammerman, A.: Transductive Confidence
Machines for Pattern Recognition. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.)
ECML 2002. LNCS (LNAI), vol. 2430, pp. 381–390. Springer, Heidelberg (2002)

12. Su, M.C., Chang, H.T., Chou, C.H.: A Novel Measure for Quantifying the Topology
Preservation of Self-Organizing Feature Maps. Neural Process. Lett. 15(2), 137–145
(2002)

13. Suganthan, P.N.: Hierarchical Overlapped SOM’s for Pattern Classification. IEEE
Transactions on Neural Networks 10(1), 193–196 (1999)

14. Vanderlooy, S., Maaten, L., Sprinkhuizen-Kuyper, I.: Off-Line Learning with Trans-
ductive Confidence Machines: An Empirical Evaluation. In: Perner, P. (ed.) MLDM
2007. LNCS (LNAI), vol. 4571, pp. 310–323. Springer, Heidelberg (2007)

15. Vanderlooy, S., Sprinkhuizen-Kuyper, I.: An Overview of Algorithmic Randomness
and its Application to Reliable Instance Classification. Technical Report MICC-
IKAT 07-02, Universiteit Maastricht (2007)

16. Villmann, T., Der, R., Herrmann, M., Martinetz, T.M.: Topology Preservation in
Self-organizing Feature Map: Exact Definition and Measurement. IEEE Transac-
tions on Neural Networks 8(2), 256–266 (1997)

An Artificial Experimenter for Enzymatic
Response Characterisation

Chris Lovell, Gareth Jones, Steve R. Gunn, and Klaus-Peter Zauner

School of Electronics and Computer Science,
University of Southampton, UK, SO17 1BJ
{cjl07r,gj07r,srg,kpz}@ecs.soton.ac.uk

Abstract. Identifying the characteristics of biological systems through
physical experimentation, is restricted by the resources available, which
are limited in comparison to the size of the parameter spaces being in-
vestigated. New tools are required to assist scientists in the effective
characterisation of such behaviours. By combining artificial intelligence
techniques for active experiment selection, with a microfluidic experi-
mentation platform that reduces the volumes of reactants required per
experiment, a fully autonomous experimentation machine is in develop-
ment to assist biological response characterisation. Part of this machine,
an artificial experimenter, has been designed that automatically proposes
hypotheses, then determines experiments to test those hypotheses and
explore the parameter space. Using a multiple hypotheses approach that
allows for representative models of response behaviours to be produced
with few observations, the artificial experimenter has been employed in
a laboratory setting, where it selected experiments for a human scientist
to perform, to investigate the optical absorbance properties of NADH.

1 Introduction

Biological systems exhibit many complex behaviours, for which there are few
models. Take for example the proteins known as enzymes, which are believed to
act as biochemical computers [19]. Whilst much is understood within a physio-
logical context, there exists a wide parameter space not yet investigated that may
open up the development of biological computers. However, such investigation
is restricted by the available resources, which require effective usage to explore
the parameter spaces. Biological reactants add an additional problem, as they
can undergo undetectable physical changes, which will alter the way they react,
leading to observations not representative of the true underlying behaviours.
There is therefore need for a new tool, which can aid the creation of response
models of biological behaviours. Presented here are artificial intelligence tech-
niques, designed to build models of response behaviours, investigated through an
effective exploration of the parameter space. Key to this is the use of a multiple
hypotheses technique, which helps manage the uncertainties present in exper-
imentation with few, potentially erroneous, observations. These algorithms, or
artificial experimenter, will in the future work with an automated lab-on-chip
experiment platform, to provide a fully autonomous experimentation machine.

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 42–56, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Artificial Experimenter for Enzymatic Response Characterisation 43

Experimentation

Platform

Prior knowledge

Experiment

Manager

Hypothesis

Manager

Artificial Experimenter

Resources

Observations

Experiment Parameters

Fig. 1. Flow of experimentation between an artificial experimenter and an automated
experimentation platform. A prototype of a lab-on-chip platform in development for
conducting the experiments on is shown.

Autonomous experimentation is a closed-loop technique, which computation-
ally builds hypotheses and determines experiments to perform, with chosen
experiments being automatically performed by a physical experimentation plat-
form, as shown in Fig.1. Currently few examples of such closed-loop experimen-
tation systems exist in the literature [20,12,8], whilst another approach provided
the artificial experimenter computational side of the system [9]. Of those that
do exist, none consider learning from a small number of observations that could
be erroneous. One approach works within a limited domain using extensive prior
information to produce a set of hypotheses likely to contain the true hypothe-
sis, allowing the experiment selection strategy to focus on identifying the true
hypothesis from a set of hypotheses as cost effectively as possible [8]. However,
as such prior knowledge does not exist in the domain of interest to us, our tech-
niques must use also experiments to build a database of information to hypoth-
esise from. Additionally, active learning considers algorithms that sequentially
select the observations to learn from [11,5], however the current literature does
not consider learning from small and potentially erroneous sets of observations.

Here we consider the development of an artificial experimenter, where in
Section 2 we first consider the issues of building hypotheses in situations where
observations are limited and potentially erroneous. Next in Section 3 we consider
how such hypotheses can be separated, to efficiently identify the true hypothesis
from a set of potential hypotheses, where we introduce a maximum discrep-
ancy algorithm that is able to outperform a selection of existing active learn-
ing strategies. In Section 4 we present the design for an artificial experimenter,
which is evaluated through simulation in Section 5 and in a laboratory setting in
Section 6, to show proof-of-concept of the techniques developed.

2 Hypothesis Manager

The goal for the hypothesis manager is to develop accurate response predictions
of the underlying behaviours being investigated, with as few experiments as pos-
sible. A key issue is dealing with erroneous observations, which are not represen-
tative of the true underlying behaviour being investigated. Whilst the validity of
all observations could be determined through repeat experiments, doing so will
cut into the resources available for investigating and identifying uncharacterised

44 C. Lovell et al.

parameter

o
b

s
e

rv
a

ti
o

n

A
B

C
h

2

h
3

h
1

(a)

parameter

o
b

s
e

rv
a

ti
o

n

A
B

C
D h

5

h
4

(b)

Fig. 2. Validity of observations affecting hypothesis proposal. Hypotheses (lines) are
formed after observations (crosses) are obtained. In (a), h1 formed after A and B are
obtained questions the validity of C, whilst h2 and h3 consider all observations to be
valid with differing levels of accuracy. In (b), D looks to confirm the validity of C,
however now h4 and h5 differ in opinion about the validity of B.

behaviours. Therefore a hypothesis manager should employ computational meth-
ods to handle such uncertainty, built with the view that computation is cheap
compared to the cost of experimentation, meaning that computational complex-
ity is unimportant, so long as a solution is feasible.

In experimentation, all observations will be noisy, both in terms of the re-
sponse value returned and also in the experiment parameter requested. Such
noise can be thought of as being Gaussian, until a better noise model can be
determined experimentally. As such, we consider a hypothesis as taking the form
of a least squares based regression. In particular we use a spline based approach,
since it is well defined, can be placed within a Bayesian framework to provide
error bars and does not impose a particular spectral scale [18]. A hypothesis is
built from a subset of the available observations, a smoothing parameter and a
set of weights for the observations, which we will discuss more later.

Erroneous observations however, add a different type of noise, which can be
considered as shock noise that provides an observation unrepresentative of the
true underlying behaviour. The noise from an erroneous observation is likely
to be greater than experimental Gaussian noise, meaning that potentially erro-
neous observations can be identified as observations that do not agree with the
prediction of a hypothesis. The term potentially erroneous is important, as if
an observation does not agree with a hypothesis, it may not be the observation
that is incorrect, but rather the hypothesis that is failing to model an area of the
experiment parameter space. In such limited resource scenarios, when presented
with an observation that does not agree with a hypothesis, the hypothesis man-
ager needs to determine whether it is the observation or the hypothesis, or both,
which are erroneous.

A possible solution to this problem is to consider multiple hypotheses in par-
allel, each with a differing view of the observations. Such multiple hypotheses
techniques are promoted in philosophy of science literature, as they can ensure

An Artificial Experimenter for Enzymatic Response Characterisation 45

alternate views are not disregarded without proper evaluation, making exper-
imentation more complete [4]. Whilst there are multiple hypotheses based ap-
proaches in the literature that produce hypotheses from random subsets of the
observations available [6,1], we believe additional more principled techniques can
be applied to aid hypothesis creation. In particular, when a conflicting obser-
vation and hypothesis are identified, the hypothesis can be refined into 2 new
hypotheses, one that considers the observation to be true, and one that con-
siders the observation to be erroneous. To achieve this, the parameters of the
hypothesis are copied into the new hypotheses, however one hypothesis is addi-
tionally trained with the potentially erroneous observation having a high weight-
ing, whilst the other is additionally trained with that observation having a zero
weighting. By giving the observation a higher weighting, the hypothesis consid-
ers the observation to be valid, by having its regression prediction forced closer
to that observation. Whilst the zero weighting of the observation makes the hy-
pothesis consider the observation erroneous and removes it from the regression
calculation. The handling of potentially erroneous observations through multiple
hypotheses, is illustrated in Fig. 2. Next we consider how these hypotheses can
be used to guide experiment selection.

3 Effective Separation of the Hypotheses

With the hypothesis manager providing a set of competing hypotheses, there is
now the problem of identifying the hypothesis that best represents the true un-
derlying behaviour. To do this we consider methods of separating the hypotheses
using experimental design and active learning techniques, evaluated on a sim-
ulated set of hypotheses. As the hypotheses will be built from the same small
set of observations, their predictions are likely to be similar to each other, with
some differences coming from potentially erroneous observations. Therefore, the
metric we are interested in, is how well the separation methods perform when
the hypotheses have different levels of similarity. To do this the techniques pre-
sented will be evaluated using abstract sets of hypotheses, which are described
through a single parameter of similarity.

3.1 Techniques

Design of experiments, sequential learning and active learning techniques have
considered this problem of hypothesis separation. In particular there is the ex-
perimental design technique of T-optimality [2]. However the authors suggest
that such designs can perform poorly if the most likely hypothesis is similar to
the alternate hypotheses or if there is experimental error [2], which is likely in the
experimentation scenario we consider. Whilst many active learning techniques
consider this problem in a classification scenario, where there are discrete predic-
tions from the hypotheses [15], meaning that such techniques will require some
alteration for a regression problem. The technique we apply to make this alter-
ation, is to use the predictions of the hypotheses as the different classification
labels.

46 C. Lovell et al.

In the following, an experiment parameter is represented as x, with its asso-
ciated observation y. Hypotheses, hi(x), can provide predictions for experiment
parameters through ĥi(x). Each hypothesis can have its confidence calculated
based on the existing observations as:

C(h) =
1
N

N∑
n=1

exp

⎛⎜⎝−
(
ĥ(xn) − yn

)2

2σ2

⎞⎟⎠ (1)

where N is the number of observations available. A hypothesis calculates its
belief that parameter x brings about observation y through:

Phi (y|x) = exp

⎛⎜⎝−
(
ĥi(x) − y

)2

2σ2
i

⎞⎟⎠ (2)

where σ2
i will be kept constant for the abstract hypotheses in the simulated

evaluation presented in this section, but is substituted for the error bar of the
hypothesis when applied to real hypotheses discussed in Section 5 and Section 6.
Additionally, where observations are to be predicted, the hypotheses provide pre-
dictions through substituting y for ĥ(x). Finally, the working set of hypotheses
under consideration is defined as H, which has a size of |H|. We now consider
different active learning techniques.

Variance. The difference amongst a group of hypotheses has been previously
considered through looking at the variance of the hypotheses predictions [3].
Experiments are selected where the variance of the predictions is greatest. So as
to allow for previous experiments to be taken into consideration on subsequent
calls to the experiment selection method, the confidence of the hypothesis can
be used to provide a weighted variance of the predictions, based on how well
each hypothesis currently matches the available observations:

x∗
Var = arg max

x
k

|H|∑
i=1

C (hi)
(
ĥi(x) − μ∗

)2
(3)

where

μ∗ =
1∑

i=1 C(hi)

|H|∑
i=1

C(hi)ĥi(x) (4)

and k is a normalising constant for weighted variance.

KL Divergence. The Kullback-Liebler divergence [10], has been employed as
a method for separating hypotheses where there are discrete known labels [13]:

x∗
KLM = arg max

x

1
|H|

|H|∑
i=1

|H|∑
j=1

Phi

(
ĥj(x)|x

)
log

Phi

(
ĥj(x)|x

)
PH

(
ĥj(x)|x

) (5)

An Artificial Experimenter for Enzymatic Response Characterisation 47

where

PH

(
ĥj(x)|x

)
=

1
|H|

|H|∑
k=1

Phk

(
ĥj(x)|x

)
(6)

which is the consensus probability between all hypotheses that the observation
yj will be obtained, within some margin of error, when experiment x is per-
formed. This discrepancy measure selects the experiment that causes the largest
mean difference between the individual hypotheses and the consensus over the
observation distributions.

In its current form this approach requires hypotheses that do not match the
observations to be removed. However, if Phi(ĥj(x)|x) is multiplied by the confi-
dence of the hypothesis, C(hi), and the normalising term 1

|H| in (5) and (6) is
replaced with the inverse of sum of the confidences, 1

C , the impact a hypothesis
has on the decision process can be scaled by its confidence.

Bayesian Surprise. The KL divergence has also been applied to formulate
a notion of surprise, within a Bayesian framework [7]. The prior probability is
determined from the available observations:

Phi(Y |X) =
1
n

n∑
j=1

Phi(yj |xj) (7)

Whilst the predicted posterior probability also takes into consideration what the
new probability of the hypothesis would be if a particular experiment xp was
performed that resulted in a specific yp:

Phi(Y, yp|X, xp) =
1

n + 1
(nPhi(Y |X) + Phi(yp|xp)) (8)

Using these distributions, we consider all predicted observations to determine a
surprise term:

x∗
surprise = arg min

x

1
|H|

|H|∑
i=1

|H|∑
j=1

K
(
hi, ĥj(x)

)
(9)

where K is the KL divergence to provide Bayesian surprise [7]

K (hi, yj) = Phi (Y, yj |X, x) log
Phi (Y, yj|X, x)

Phi (Y |X)
(10)

Importantly the experiment with the lowest KL divergence is selected, so as to
find the experiment that weakens all hypotheses. If the maximum value were
used, it would select the experiment that improves all hypotheses, which by
definition will limit the difference between the hypotheses. It can be shown using
the framework presented here, that using the minimum KL divergence value
results in a better performing discrepancy technique than using the maximum
KL divergence.

48 C. Lovell et al.

Maximum Discrepancy. Separating the hypotheses can be thought of as iden-
tifying experiments that maximise the disagreement between the predictions of
hypotheses. Mathematically we consider maximising the integration of the dif-
ferences between all of the hypotheses, over all possible experiment outcomes:

A =
|H|∑
i=1

|H|∑
j=1

∫
(hi − hj)

2
dyt (11)

where the likelihood function Ph(y|x) can be used to determine the differences
in the hypotheses:

A =
|H|∑
i=1

|H|∑
j=1

∫ (
Phi(y|x) − Phj (y|x)

)2
dy (12)

then as Phi(y|x) is a Gaussian distribution, and distinct y can be taken from the
predictions of the hypotheses, we can formulate a discrepancy measure:

x∗
discrepancy = arg max

x

|H|∑
i=1

|H|∑
i=j

1 − Phi

(
ĥj(x)|x

)
(13)

where we look for the experiment parameter where the hypotheses disagree the
most. Next a method of using the prior information is required. On subsequent
runs, the discrepancy within the sets of currently agreeing hypotheses should be
found, whilst also taking into consideration how well those hypotheses fit the
observations. The disagreement term, 1−Phi (yj |x), can therefore be multiplied
by P (hi, hj|D), defined as:

P (hi, hj |D) = C(hi)C(hj)S(hi|hj) (14)

where

S(hi, hj) =
1
N

N∑
n=1

exp

⎛⎜⎝−
(
ĥi(xn) − ĥj(xn)

)2

2σ2
i

⎞⎟⎠ (15)

is the similarity between two hypotheses predictions for the previously performed
experiments, with σi coming from the error bar of hi at x for real hypotheses,
and is kept constant in the abstract trial discussed next.

3.2 Hypothesis Separation Results

To evaluate the experiment selection techniques, an arbitrary function is used
to create a set of potential training observations. These observations are dis-
torted from the function through Gaussian noise, where the amount of noise is
the parameter that controls how different the hypotheses in the set are. Twenty
hypotheses are then trained from random subsets of the training observations
using an arbitrary regression technique. The hypotheses are then compared to

An Artificial Experimenter for Enzymatic Response Characterisation 49

Table 1. Number of experiments until the hypothesis with the highest confidence is
the true hypothesis. The similarity is shown as the Gaussian noise applied to the initial
training data, where a noisier set of training data provides hypotheses less similar to
each other. The best strategy in each case is highlighted in bold.

Hypothesis Similarity Strategy
(increasing order) Random Variance Max Discrepancy Surprise KL Divergence

N(0, 42) 3 2 2 3 2
N(0, 22) 8 4 3 7 4
N(0, 12) 18 7 7 13 11

each other, with the hypothesis that is most similar to all other hypotheses be-
ing chosen to act as the true hypothesis. The training observations are then dis-
carded. The true hypothesis provides the observations for the experiments that
the active learning techniques request, distorted by Gaussian noise N(0, 0.52).
The goal is for the active learning techniques to provide evidence to make the
true hypothesis have the sustained highest confidence of all the hypotheses in
consideration, where the techniques do not know which is the true hypothesis.

Shown in Table 1 are the results for the average number of experiments, over
100 trials, required for the most confident hypothesis to be the true hypothe-
sis, for sets of hypotheses of increasing similarity. As the similarity between the
hypotheses increases, it is clear that the variance and maximum discrepancy
experiment selection techniques provide the most efficient methods for selecting
experiments to separate the hypotheses. However, the variance approach can
suffer if there is a hypothesis that makes a prediction that is significantly dif-
ferent to the other hypotheses. As illustrated in Fig. 3(a), alongside an example
set of hypotheses in (b), the variance approach can select an experiment where
the majority of the hypotheses have the same view, which will likely result in
no information gain from that observation. The maximum discrepancy approach
however, provides a more robust approach at selecting experiments to separate
hypotheses and as such, it will form the basis for the experiment selection strat-
egy employed by the artificial experimenter. The design of which we discuss in
the next section.

4 Artificial Experimenter

Building on the concepts discussed earlier of multiple hypotheses and maximum
discrepancy experiment selection, we now discuss the design of the artificial
experimenter. To begin a number of exploratory experiments are performed, po-
sitioned equidistant in the parameter space. In the simulated and laboratory
evaluation, 5 experiments are initially performed. After these experiments are
performed, an initial set of working hypotheses are created using random subsets
of the available observations and randomly selected smoothing parameters. The
smoothing parameter is chosen from a set of predetermined smoothing param-
eters that allow for a range of fits. Initially 200 hypotheses are created in this

50 C. Lovell et al.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

Experiment Parameter

O
b
s
e
rv

a
ti
o
n

(a)

0 10 20 30 40 50
-5

0

5

10

15

Experiment parameter

O
b
s
e
rv

a
ti
o
n

(b)

Fig. 3. In (a) is an illustration of where the variance approach can fail, where the solid
line is the experiment parameter chosen by the variance approach and dashed is where
the maximum discrepancy approach chooses, for the hypotheses shown as curved lines.
The variance approach is mislead by a single hypothesis. In (b) is an example set of
hypotheses used to test the different active learning techniques for separating a corpus
of similar hypotheses, where the bold hypothesis is the true hypothesis.

manner. The observations are then compared against all of the hypotheses to
find observations that do not agree with the hypotheses. An observation is de-
termined to be in disagreement with a hypothesis, if that observation is outside
the 95% error bar for the hypothesis. If a hypothesis and observation disagree,
the parameters of the hypothesis are used to build 2 new hypotheses. These 2
new hypotheses are refinements, where one hypothesis will consider the obser-
vation as valid by applying a weight of 100 to the observation, whilst the other
hypothesis considers the observation erroneous by applying a weight of 0 to the
observation. All 3 hypotheses are then retained in the working set of hypotheses.

After this process of refinement, the hypotheses are evaluated against all avail-
able observations, using the confidence function in Eqn. 1. For computational
efficiency, the worst performing hypotheses can at this stage be removed from
the working set of hypothesis. Currently the best 20% hypotheses are kept into
the next stage of experimentation, as initial tests have indicated that higher per-
centages provided little additional benefit and only increased the computational
complexity.

Next a set of experiments to perform are determined by evaluating the hy-
potheses with the discrepancy equation:

D(x) =
|H|∑
i=1

|H|∑
j=1

(
1 − Phi

(
ĥj(x)|x

))
C(hi)C(hj)S(hi, hj) (16)

with the error bars of the hypotheses providing σi for Eqn. 2. Whilst the discrep-
ancy approach has been shown to be efficient in identifying the best fitting hypoth-
esis from a set of hypotheses, it is not designed to explore the parameter space
to help build those hypotheses. Therefore, to promote exploration, the peaks of
Eqn. 16 are used to determine the locations for the set of experiments to next
perform. This allows experiments to be performed that investigate differences be-
tween the hypotheses in several areas of the parameter space. Additionally,

An Artificial Experimenter for Enzymatic Response Characterisation 51

0 50
0

8

(a)

0 50
0

8

(b)

0 50
0

8

(c)

Fig. 4. Underlying behaviours used to evaluate the artificial experimenter, motivated
from possible enzyme experiment responses

repeat experiments are not performed. The set of experiments are then performed
sequentially, where after each experiment is performed, a new set of hypotheses
are created, merged with the working hypotheses, which are refined, evaluated
and reduced in the process described previously. Once all experiments in the set
are performed, a new set of experiments are determined by evaluating the current
working set of hypotheses with the discrepancy equation again.

5 Simulated Results

Evaluating the ability of the technique to build suitable models of biological re-
sponse characteristics, requires underlying behaviours to compare the predictions
against. Whilst documented models of the enzymatic behaviours to be investi-
gated do not exist, there are some possible characteristics that may be observed
defined in the literature. In Fig. 4 we consider three potential behaviours, moti-
vated from the literature, where (a) is similar to Michaelis-Menton kinetics [14],
(b) is similar to responses where there is a presence of cooperativity between
substrates and enzymes [17], whilst (c) considers nonmonotonic behaviours that
may exist in enzymatic responses [19].

To perform the simulation, we assume that a behaviour being investigated
is captured by some function f(x). Calls to this function produce an observa-
tion y, however, experimental noise in both the observations obtained (ε) and
the experiment parameters (δ), deviate this observation from the true response.
Additionally, erroneous observations can in some experiments occur through a
form of shock noise (φ). Whilst ε and δ may occur in all experiments, represented
through a Gaussian noise function, φ will only occur for a small proportion of
experiments and will be in the form of a larger offset from the true observation.
Therefore we use the following function to represent performing an experiment:

y = f(x + δ) + ε + φ (17)

with the goal of the artificial experimenter being to determine a function g(x)
that suitably represents the behaviours exhibited by f(x).

In the simulation, ε = N(0, 0.52) for all experiments and φ = N(3, 1) for
20% of the experiments performed, with one of the first 5 being guaranteed to

52 C. Lovell et al.

be erroneous. Shock noise δ is currently not used for clarity of results. In each
trial, 5 initial experiments are performed, with a further 15 experiments being
chosen through an active learning technique. In addition to the multiple hy-
potheses approach presented here, for comparison a single hypothesis approach
is tested that is trained with all available observations, using cross-validation to
determine the smoothing parameter. The single hypothesis approach is evalu-
ated using two experiment selection methods, which are random selection and
placing experiments where the error bar of the hypothesis is maximal. The multi-
ple hypotheses approach is evaluated using three experiment selection methods,
which are random selection, the multiple peaks of the discrepancy equation as
presented previously, and choosing the single highest peak of the discrepancy
equation for each experiment. For each technique and underlying behaviour, 100
trials are conducted, with the bias and variance of the most confident hypothesis
of each trial compared to the true underlying behaviour, being used to evaluate
the techniques:

E =
1
N

N∑
n=1

((
b̄(xn) − f(xn)

)2 +
1
M

M∑
m=1

(
b̂m(xn) − b̄(xn)

)2
)

(18)

where b̄(xn) is the mean of the predictions of the most confident hypotheses,
b̂m(xn) is the prediction of the most confident hypothesis in trial m, M is the
number of trials and N is the number of possible experiment parameters.

In Fig. 5, the performance of the different artificial experimenter techniques
are shown. The single hypothesis approaches only perform well in the mono-
tonic behaviours shown in (a) and (b), as the cross-validation allows for errors
to be smoothed out quickly. However, in the nonmonotonic behaviour, the sin-
gle hypothesis approaches perform worse, as the features of the behaviours are
smoothed out by the cross-validation, as shown in (d), where the single hypoth-
esis approach misses the majority of the features in the behaviour. On the other
hand, the multiple hypotheses approach using the presented technique, fairs
well in all behaviours. After 15 experiments it has the lowest prediction error
of the techniques tested all three behaviours tested here. However, the multiple
hypotheses approach using random experiment selection, is able to reduce the
error at a faster rate in the nonmonotonic behaviour (c). Whilst as expected,
choosing the single highest peak in the discrepancy equation after each exper-
iment, performs the worst of the multiple hypotheses techniques as expected
throughout, as that approach does not effectively explore the parameter space.

The difference between the random and multiple peaks experiment selection
strategy, is due to the multiple peaks strategy initially finding the differences be-
tween hypotheses that poorly represent the underlying behaviour. These early
experiments will investigate discrepancies that will return more general infor-
mation about the behaviour, with it being possible for experiments within a
particular set obtaining similar information. However, as the hypotheses better
represent the underlying behaviour, the discrepancies between the hypotheses
are more likely to indicate where more specific differences in the hypotheses ex-
ist, for example a smaller peak in the behaviour being investigated. This is why

An Artificial Experimenter for Enzymatic Response Characterisation 53

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16

E

Number Active Experiments

(a)

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16

E

Number Active Experiments

(b)

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16

E

Number Active Experiments

(c)

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50

O
b

se
rv

a
ti

o
n

Experiment Parameter

Underlying

Single

Multiple

(d)

Fig. 5. Comparison of error over number of actively chosen experiments, where 20%
of the observations are erroneous in (a-c), with comparison to true underlying for (c)
shown in (d). Figures (a-c) correspond to the behaviours in Fig. 4. In (a-c) the lines
represent: single hypothesis - variance (dashed), single hypothesis - random (dash dot),
multiple hypotheses - discrepancy peaks (solid), multiple hypotheses - random (dots),
multiple hypotheses - single max discrepancy (dash dot dot). The multiple hypotheses
technique using the peaks of the discrepancy function provides the lowest error after
15 actively selected experiments consistently. The single hypothesis approach fails to
identify features in nonmonotonic behaviours shown in (d).

in all three of the behaviours tested, the multiple peaks experiment selection
strategy is initially one of the worst performing strategies, but then reduces its
error at a faster rate than any of the other strategies. These results suggest
that the multiple peaks experiment strategy may in some scenarios benefit from
additional exploration, before the active strategy begins. Next we consider an
evaluation of the technique within a laboratory setting.

6 Laboratory Evaluation

Further to the simulated evaluation, the artificial experimenter has been tested
within a real laboratory setting. Here the artificial experimenter has guided
a human scientist to characterise the optical absorbance profile of the coen-
zyme NADH, where the rate of change of absorbance can be compared to the
Beer-Lambert law. NADH is commonly used for monitoring enzymatic catalytic
activity.

54 C. Lovell et al.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A
b

so
rb

a
n

ce
 a

t
3

4
0

 n
m

Concentration NADH (mM)

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

A
b

so
rb

a
n

ce
 a

t
3

4
0

 n
m

Concentration NADH (mM)

Hypothesis

Beer-Lambert prediction

(b)

Fig. 6. Most confident hypothesis and experiments chosen for NADH absorbance
characterisation. A stock solution of 5 mM NADH and a 10 mM Tris buffer at pH
8.5 were prepared. Dilutions of NADH requested by the artificial experimenter were
produced by mixing volumes taken from the stock solution and the buffer. Measure-
ments of optical absorbance at 340 nm were recorded with a PerkinElmer Lambda
650 UV-Vis Spectrophotometer to provide the observations. The photometric range of
the spectrophotometer was 6 A. In (a) the most confident hypothesis after 4 active
experiments is shown, where a slight dip in absorbance has been detected. Further ex-
periments determine this dip does not exist, as shown in (b). The hypothesis identifies
a linear region in good agreement with the Beer-Lambert law, whilst also identifying a
nonlinear region that is likely caused by nonlinear optical effects, as all measurements
are within the operational range of the spectrophotometer.

To perform the test, the artificial experimenter was first provided the bound-
ary to which it could explore in the parameter space, 0.001–1.5 mM. The param-
eter space was coded to the parameter space used in the simulation, allowing for
same set of smoothing parameters to be used (λ = {10, 50, 150, 100, 500, 1000}).
The artificial experimenter requested an initial 5 experiments, placed equidis-
tant within the parameter space. Using the procedure described in Fig.6, the
human scientist performed the experiments as directed, providing the observa-
tions to the artificial experimenter. The artificial experimenter then presented a
graph of the observations, along with the current best hypothesis, the alternate
hypotheses and the discrepancy amongst them. The artificial experimenter was
then allowed to select an additional 10 experiments using the multiple peaks
active experiment selection technique described.

In Fig 6, the results of those experiments are shown. After the initial ex-
ploratory experiments, the artificial experimenter identifies the key feature that
there is an increase in absorbance between 0.001 and 0.75 mM, that then begins
to level off. The first active experiment looks at roughly where the increase in
absorbance ends at 0.69 mM, with the observation agreeing with the initial trend
of the data. The second active experiment at 1.23 mM, providing an observation
lower than the initial prediction, makes the artificial experimenter consider the
possibility that rather than a leveling off in absorbance, the absorbance lowers
again with a similar rate to that which it increased. The remainder of experi-
ments then look to investigate whether the absorbance lowers or remains largely
flat, with a few additional experiments investigating where the rise in absorbance
begins. The hypothesis after 15 experiments matches the expected Beer-Lambert

An Artificial Experimenter for Enzymatic Response Characterisation 55

Fig. 7. Microfluidic chip layered design (left) and photo of prototype chip (right).
Reactants flow in channels between the fluidic and valve layers, whilst control chan-
nels exist between the valve and glass layers. Pressure on the control channels control
whether fluidic channels are open or closed, to allow reactants to pass. On-chip ab-
sorbance measurement will allow for all experimentation to take place on chip.

law rate of change in absorbance prediction, using the indicated extinction co-
efficient of 6.22 at a wavelength of 340 nm [16], as shown in Fig. 6(b).

7 Conclusion

Presented here is an artificial experimenter that can direct experimentation in
order to efficiently build response models of behaviours, where the number of
experiments possible is limited and the observations are potentially erroneous.
The domain of enzymatic experiments is used to motivate the approach, however
the technique is designed to be general purpose and could be applied to other
experimentation settings where there are similar limiting factors. The technique
uses a multiple hypotheses approach, where different views of the observations
are taken simultaneously, in order to deal with the uncertainty that comes from
having potentially erroneous observations and limited resources to test them. A
technique of experiment selection that places experiments in locations of the pa-
rameter space where the hypotheses disagree has been proposed. Whilst this ap-
proach appears to perform consistently across simulated behaviours, perhaps ad-
ditional measures of exploration could be added to the technique, so as to better
manage the exploration-exploitation trade-off. Additionally the approach should
also consider when to terminate experimentation by monitoring the change in
hypotheses over time, rather than using fixed numbers of experiments allowed.

The next stage is to couple the artificial experimenter with the lab-on-chip
experiment platform in development, which is shown in Fig. 7. This autonomous
experimentation machine, will allow the artificial experimenter to request exper-
iments to be performed, which the hardware will automatically perform, return-
ing the result of the experiment back to the computational system. As such, it
will provide a tool for scientists, which will not only allow them to reduce experi-
mentation costs, but will also allow them to redirect their time from monotonous
characterisation experiments, to analysing the results, building theories and de-
termining uses for those results.

Fluidic Layer

Valve Layer

Glass

Control Channel

Fluidic Channel
Open Closed

(a)

Fluidic Channel Control Channel

(b)

56 C. Lovell et al.

Acknowledgements. The reported work was supported in part by a Microsoft
Research Faculty Fellowship to KPZ.

References

1. Abe, N., Mamitsuka, H.: Query learning strategies using boosting and bagging. In:
ICML 1998, pp. 1–9. Morgan Kauffmann, San Francisco (1998)

2. Atkinson, A.C., Fedorov, V.V.: The design of experiments for discriminating be-
tween several models. Biometrika 62(2), 289–303 (1975)

3. Burbidge, R., Rowland, J.J., King, R.D.: Active learning for regression based on
query by committee. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.)
IDEAL 2007. LNCS, vol. 4881, pp. 209–218. Springer, Heidelberg (2007)

4. Chamberlin, T.C.: The method of multiple working hypotheses. Science (old se-
ries) 15, 92–96 (1890); Reprinted in: Science, vol. 148, p. 754–759 (May 1965)

5. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models.
Journal of Artificial Intelligence Research 4, 129–145 (1996)

6. Freund, Y., Seung, H.S., Shamir, E., Tishby, N.: Selective sampling using the query
by committee algorithm. Machine Learning 28, 133–168 (1997)

7. Itti, L., Baldi, P.: Bayesian surprise attracts human attention. Vision Research 49,
1295–1306 (2009)

8. King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G.K., Bryant, C.H., Muggle-
ton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature 427, 247–252 (2004)

9. Kulkarni, D., Simon, H.A.: Experimentation in machine discovery. In: Shrager,
J., Langley, P. (eds.) Computational Models of Scientific Discovery and Theory
Formation, pp. 255–273. Morgan Kaufmann Publishers, San Mateo (1990)

10. Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical
Statistics 22, 79–86 (1951)

11. MacKay, D.J.C.: Information–based objective functions for active data selection.
Neural Computation 4, 589–603 (1992)

12. Matsumaru, N., Colombano, S., Zauner, K.-P.: Scouting enzyme behavior. In: CEC,
pp. 19–24. IEEE, Piscataway (2002)

13. McCallum, A.K., Nigam, K.: Employing em and pool-based active learning for text
classification. In: ICML, pp. 584–591. Morgan Kaufmann, San Francisco (1998)

14. Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry, 5th edn. W. H.
Freeman and Company, New York (2008)

15. Settles, B.: Active learning literature survey. Tech. rep., University of Wisconsin-
Madison (2009)

16. Siegel, J.M., Montgomery, G.A., Bock, R.M.: Ultraviolet absroption spectra of dpn
and analogs of dpn. Archives of Biochemistry and Biophysics 82(2), 288–299 (1959)

17. Tipton, K.F.: Enzyme Assays, 2nd edn., pp. 1–44. Oxford University Press, Oxford
(2002)

18. Wahba, G.: Spline Models for Observational Data, CBMS-NSF Regional Confer-
ence series in applied mathematics, vol. 59. SIAM, Philadelphia (1990)

19. Zauner, K.-P., Conrad, M.: Enzymatic computing. Biotechnol. Prog. 17, 553–559
(2001)

20. Żytkow, J., Zhu, M.: Automated discovery in a chemistry laboratory. In: AAAI-90,
pp. 889–894. AAAI Press / MIT Press (1990)

Subgroup Discovery for Election Analysis:
A Case Study in Descriptive Data Mining

Henrik Grosskreutz, Mario Boley, and Maike Krause-Traudes

Fraunhofer IAIS, Schloss Birlinghoven, Sankt Augustin, Germany
{firstname.lastname}@iais.fraunhofer.de

Abstract. In this paper, we investigate the application of descriptive
data mining techniques, namely subgroup discovery, for the purpose of
the ad-hoc analysis of election results. Our inquiry is based on the 2009
German federal Bundestag election (restricted to the City of Cologne)
and additional socio-economic information about Cologne’s polling dis-
tricts. The task is to describe relations between socio-economic variables
and the votes in order to summarize interesting aspects of the voting
behavior. Motivated by the specific challenges of election data analy-
sis we propose novel quality functions and visualizations for subgroup
discovery.

1 Introduction

After a major election of public interest is held, there is a large and diverse set of
societal players that publishes a first analysis of the results within the first day
after the ballots are closed. Examples include traditional mass media like news-
papers and television, citizen media like political blogs, but also political parties
and public agencies. An instance of the last type is the Office of City Develop-
ment and Statistics of the City of Cologne. The morning after major elections
that include Cologne’s municipal area, the office publishes a first analysis report
on the results within the city1. In this report, socio-economic variables (e.g., aver-
age income, age structure, and denomination) are related to the voting behavior
on the level of polling districts. The Office of City Development and Statistics
performs much of the analysis, such as selecting a few candidate hypotheses, be-
forehand, i.e., based on previous election results—a course of action that might
neglect interesting emerging developments. However, due to the strict time limit
involved, there appears to be no alternative as long as an analyst mainly relies
on time-consuming manual data operations. This motivates the application of
semi-automatized data analysis tools.

Therefore, in this academic study, we take on the perspective of an analyst
who is involved in the publication of a short-term initial analysis of election

1 The report on the 2009 Bundestag election can be found (in German language) at
http://www.stadt-koeln.de/mediaasset/content/pdf32/wahlen/

bundestags\wahl2009/kurzanalyse.pdf

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 57–71, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.stadt-koeln.de/mediaasset/content/pdf32/wahlen/bundestagswahl2009/kurzanalyse.pdf
http://www.stadt-koeln.de/mediaasset/content/pdf32/wahlen/bundestagswahl2009/kurzanalyse.pdf

58 H. Grosskreutz, M. Boley, and M. Krause-Traudes

Party description result 2009 change
� SPD social democrats 26% -12.1
� CDU conservatives 26.9% -0.3
� FDP liberals 15.5% +4
� GRUENE greens 17.7% +2.8
� LINKE dem. socialists 9.1% +3.4

Fig. 1. Results of the 2009 Bundestag election in Cologne

results, and we investigate how data mining can support the corresponding ad-
hoc data analysis. In order to narrow down the task, we focus on the following
analysis question:

What socio-economic variables characterize a voting behavior that con-
siderably differs from the global voting behavior?

This question is of central interest because it asks for interesting phenomenons
that are not captured by the global election result, which can be considered as
base knowledge in our context. Thus, answers to this question have the potential
to constitute novel, hence, particularly news-worthy, knowledge and hypotheses.
This scenario is a prototypic example for descriptive knowledge discovery: in-
stead of deducing a global data model from a limited data sample, we aim to
discover, describe, and communicate interesting aspects of it.

(a) (b)

Fig. 2. Spatial visualization of polling districts. Color indicates: (a) above average FDP
votes; (b) high share of households with monthly income greater than 4500e

We base our study on the German 2009 federal Bundestag election restricted
to the results of Cologne. For this election we analyzed the data during a corre-
sponding project with Cologne’s Office of City Development and Statistics. See
Figure 1 for the list of participating parties, their 2009 election results, and the
difference in percentage points to their 2005 results. The data describes the elec-
tion results on the level of the 800 polling districts of the city, i.e., there is one
data record for each district, each of which corresponds to exactly one polling
place. Moreover, for each district it contains the values of 80 socio-economic
variables (see Appendix A for more details). Figure 2 shows the geographical

Subgroup Discovery for Election Analysis 59

alignment of the districts. To illustrate that indeed there is a relation between
voting behavior and socio-economic variables, the figure additionally shows the
districts with a high share of households with high income (Fig. 2(b)). The high
overlap between these districts and those with above-average votes for party
FDP (Fig. 2(a)) is an indication that those two properties are correlated.

The semi-automatized data analysis we propose in this work, i.e., the descrip-
tive pattern and hypotheses generation, is meant purely indicative: the evaluation
of all discovered patterns with respect to plausibility (e.g., to avoid ecological in-
ference fallacy [18]) and their interestingness are up to the analyst and her back-
ground knowledge (hence, semi-automatized data analysis). In fact, almost all of
the analyst’s limited time and attention has to be reserved for the manual prepa-
ration and creation of communicable content. Thus, in addition to fast execution
times, a feasible tool has to meet the following requirements:

(R1) The tool has to discover findings that directly support answers to the anal-
ysis question above. In particular, it must suitably define how to assess
“notably different voting behavior.” That is, it must provide an opera-
tionalization that relates this notion to the measurement constituted by
the poll.

(R2) Operating the tool has to be simple. In particular, it either has to avoid
complicated iterative schemes and parameter specifications, or there must
be clear guidelines for how to use all degrees of freedom.

(R3) The tool’s output must be intuitively interpretable and communicable. This
involves avoiding redundant or otherwise distracting output as well as pro-
viding a suitable visualization.

In the next section we show how subgroup discovery can be configured to meet
these requirements. In particular, we propose new quality functions for sub-
group discovery that are capable of handling vector-valued target variables as
they are constituted by election results, and that avoid the generation of redun-
dant subgroups without requiring the specification of any additional parameter.
Moreover, we propose a visualization technique that is tailor-made for rendering
subgroups with respect to election results.

2 Approach

There are existing approaches to election analysis (e.g., [8,14]) that are either
based on a global regression model or on an unsupervised clustering of the pop-
ulation. In contrast, we approach the problem from a supervised local pattern
discovery perspective [15]. As we show in this section, our analysis question nat-
urally relates to the task of subgroup discovery [21]. After a brief introduction to
this technique, we discuss how a subgroup discovery system can be configured
and extended such that it satisfies the initially identified requirements (R1)-(R3).

2.1 Subgroup Discovery

Subgroup discovery is a descriptive data mining technique from the family of
supervised descriptive rule induction methods (see [17,16]; other members of the

60 H. Grosskreutz, M. Boley, and M. Krause-Traudes

family include contrast set mining, emerging patterns and correlated itemset min-
ing). It aims to discover local sub-portions of a given population that are a) large
enough to be relevant and that b) exhibit a substantially differing behavior from
that of the global population. This difference is defined with respect to a des-
ignated target variable, which in our scenario is the election result. The data
sub-portions are called subgroups, and they are sets of data records that can
be described by a conjunction of required features (in our case the features are
constraints on the values of the socio-economic variables).

For a formal definition of subgroup discovery, let DB denote the given database
of N data records d1, . . . , dN described by a set of n (binary) features (f1(di), . . . ,
fn(di)) ∈ {0, 1}n for i ≤ N . A subgroup description is a subset of the feature set
sd ⊆ {f1, . . . , fn}, and a data record d satisfies sd if f(d) = 1 for all f ∈ sd, i.e. a
subgroup description is interpreted conjunctively. The subgroup described by sd
in a database DB, denoted by DB[sd], is the set of records d ∈ DB that satisfy sd.
Sometimes, DB[sd] is also called the extension of sd in DB. The interestingness
of a subgroup description sd in the context of a database DB is then measured
by a quality function q that assigns a real-valued quality q(sd,DB) ∈ R to sd.
This is usually a combination of the subgroup’s size and its unusualness with
respect to a designated target variable.

In case the target variable T is real-valued, that is, T is a mapping from the
data records to the reals, the unusualness can for instance be defined as the
deviation of the mean value of T within the subgroup from the global mean
value of T . A common choice is the mean test quality function [9]:

qmt(DB, sd) =

√
|DB[sd]|
|DB| · (m(DB[sd]) − m(DB)) (1)

where m(D) denotes the mean value of T among a set of data records D, i.e.,
m(D) = 1/ |D|

∑
d∈D T (d).

Generally, quality functions order the subgroup descriptions according to their
interestingness (greater qualities correspond to more interesting subgroups). One
is then usually interested in k highest quality subgroup descriptions of length at
most l where the length of a subgroup description is defined as the number of
features it contains.

2.2 Application to Election Analysis

Requirement (R1) of Section 1 includes the support of a suitable operationaliza-
tion of “notably different voting behavior”. If we choose to perform this opera-
tionalization on the level of individual parties, i.e., as a notably different share of
votes of one specific party, the analysis question from Section 1 can directly be
translated into subgroup discovery tasks: choose qmt as quality function, create
a set of features based on the socio-economic variables, and as target variable T
choose either a) the 2009 election result of a particular party or b) the difference
of the 2009 and the 2005 result. The latter option defines “voting behavior” with
respect to the change in the share of votes. This is a common perspective that

Subgroup Discovery for Election Analysis 61

is usually used to interpret the outcome with respect to the success or failure of
individual parties.

In order to answer the analysis question independently of a specific party,
one can just run these subgroup discoveries once for each of the possible party
targets and then choose the k best findings among all returned patterns. With
this approach, the patterns for the overall voting behavior are chosen from the
union of the most interesting patterns with respect to the individual parties.

There are, however, several important relations among the parties. For in-
stance, they can be grouped according to their ideology (in our case, e.g., SPD,
GRUENE, and LINKE as “center-left to left-wing”), or one can distinguish be-
tween major parties (SPD and CDU) and minor parties (FDP, GRUENE and
LINKE). Voting behavior can alternatively be characterized with respect to such
groups (e.g., “in districts with a high number of social security claimants, the
major parties lost more than average.”) This indicates that a subgroup may be
interesting although no individual party has an interesting result deviation in it,
but because the total share of two or more parties is notably different.

This is not reflected in the initial approach, hence it is desirable to extend
the subgroup discovery approach such that it captures requirement (R1) more
adequately. In particular, we need a quality function that does not only rely
on a single target variable but instead on a set of k real-valued target vari-
ables T1, . . . , Tk. With this prerequisite we can define a new quality function
analogously to the mean test quality by

qdst(DB, sd) =

√
|DB[sd]|
|DB| ‖m(DB[sd]) − m(DB)‖1 (2)

where m(D) denotes the mean vector of the T1, . . . , Tk values among a set of
data records D, i.e.,

m(D) = 1/ |D|
∑
d∈D

(T1(d), . . . , Tk(d)) .

and ‖(x1, . . . , xk)‖1 denotes the 1-norm, i.e.,
∑k

i=1 |xi|. Using this quality func-
tion we arrive at an alternative instantiation of subgroup discovery. We can
choose qdst as quality function and either a) Ti as the 2009 share of votes of
party i or b) Ti as the gain (2009 result minus 2005 result) of that party.

2.3 Avoidance of Redundant Output

Requirement (R3) demands the avoidance of redundant output, but, unfortu-
nately, a problem with the straightforward discovery of subgroups and other
descriptive patterns is that a substantial part of the discovered patterns can
be very similar. That is, many patterns tend to be only slight variations of each
other, essentially describing the same data records. The reason for this is twofold.
Firstly, there may be many highly correlated variables that provide interchange-
able descriptions. We can get rid of these by performing a correlation analysis

62 H. Grosskreutz, M. Boley, and M. Krause-Traudes

during preprocessing (see Section 3.1). In addition, for an interesting subgroup
sd it is likely that there are some strict specializations sd′ ⊃ sd with an equal
or slightly higher quality. Although the truly relevant and interesting portion
of the subgroup may be described most adequately by sd, those specializations
are at least equally likely to appear in the output, causing redundancy or—even
worse—pushing sd out of the result set altogether.

We now present an approach that generalizes a common principle of some of
the existing methods to address this problem [3,7,19,20], namely to discard sub-
groups sd that do not substantially improve their strict generalization sd′ ⊂ sd.
As captured in our requirement (R2) we want to avoid the introduction of addi-
tional parameters. Therefore, unlike the cited approaches, we do not introduce
a minimum improvement threshold, but instead we use the quality function it-
self to measure the sufficiency of an improvement. That is, for some arbitrary
base quality function q, we propose to assess the quality of a pattern sd as the
minimum of the quality of sd with respect to the extension of all its general-
izations. More precisely, we consider the quality function qΔ that is defined as
qΔ(DB, ∅) = q(DB, ∅) for the empty subgroup description ∅ and

qΔ(DB, sd) = min
sd′|sd′⊂sd

q(DB[sd′], sd) (3)

otherwise. We call qΔ the incremental version of q. After giving some additional
definitions, we discuss in the remainder of this subsection that qΔ has some
desirable properties.

We call a subgroup description sd tautological with respect to a database DB
if DB[sd] = DB, and we call sd non-minimal with respect to DB if there is a
generalization sd′ ⊂ sd having the same extension, i.e., DB[sd] = DB[sd′]. More-
over, we say that a quality function q is reasonable if q(DB, sd) ≤ 0 whenever sd
is tautological with respect to DB.

Proposition 1. Let DB be a database, q a quality function, and qΔ its incre-
mental version. If q is reasonable, then qΔ is non-positive for all non-minimal
subgroup descriptions in DB.

Proof. Note that, by definition, every non-minimal subgroup has a strict gener-
alization sd′ with identical extension. Therefore,

qΔ(DB, sd) ≤ q(DB[sd′], sd) = q(DB[sd], sd) = 0

where the last equality follows from q being reasonable. �

This property assures that non-minimal subgroup descriptions are filtered from
the result set. Such descriptions are considered redundant respectively trivial
[4,19]. For quality functions based on the mean deviation (e.g., Eq. 1) an even
stronger statement holds: for such functions all descriptions are filtered that
do not provide an improvement in the mean deviation. Thus, the incremental
quality directly follows other filtering paradigms from descriptive rule induction;
namely it eliminates patterns that do not provide a confidence improvement [3]

Subgroup Discovery for Election Analysis 63

respectively that are not productive [20]. Finally, we remark that the incremental
quality is bounded by the base quality, i.e., for all subgroup descriptions sd it
holds that qΔ(DB, sd) ≤ q(DB, sd).

2.4 Visualization

In order to completely meet the last requirement (R3), we need an appropriate
visualization technique. Although there is existing work on subgroup visualiza-
tion (e.g., [1,10]), we choose to design a new technique that is tailor-made for
election analysis and allows for multiple target attributes. In fact we propose four
visualizations, one for each possible subgroup discovery configuration discussed
in Section 2.2. A common element is that every subgroup is visualized by a grey
box having a color intensity that reflects the subgroup’s quality. Higher qualities
correspond to more intense grey shades. Every box shows the subgroup descrip-
tion and the size of its extension, plus additional information that depends on
the quality function as well as on the operationalization of “voting behavior”.

(a) (b) (c) (d)

Fig. 3. Visualization for the different combinations of quality functions and opera-
tionalizations of election result: (a) single party result, (b) result distribution, (c) sin-
gle party gain and (d) gain/loss vector. The result of the particular parties are plotted
using their official colors, listed in Figure 1.

Figure 3 shows the four cases: (a) absolute results of a single party, (b) com-
bined absolute results for all parties, (c) gain for a single party, and (d) combined
gains and losses of all parties. In case the mean test is used as quality function,
we show the mean value of the target variable, i.e. the result for a particular
party, in the subgroup next to the extension size. For the vector-valued quality
function this space is occupied by the 1-norm of the mean vector difference.
Beside this figure, the boxes include a visualization of the election result of all
parties. Depending on whether absolute 2009 results or the gains with respect to
2005 are considered, the results are rendered in a different fashion. The absolute
2009 results are represented by two bars (Figure 3(a) and 3(b)): the upper bar
corresponds to the distribution over parties in the subgroup, while the lower bar
visualizes the overall distribution. The different segments in the bars represent
the share of votes for the different parties. They are visualized from left to right
using the parties’ official colors: red (SPD), black (CDU), yellow (FDP), green
(GRUENE) and magenta (LINKE). If, instead, the gains respectively losses are
considered (Figure 3(c) and 3(d)), the result is displayed as bar chart that is
centered around a gain of 0. Gains are visualized by upward bars, while losses
are visualized by downward bars. Again, the global gains are also plotted for easy

64 H. Grosskreutz, M. Boley, and M. Krause-Traudes

comparison: For every party, a first bar shows the local gains in the subgroup,
while a second bar on its right-hand shows the global gains. This second bar
provides the context information required to interpret the gains in a particular
subgroup.

3 Experiment

After the introduction of our tools we are now ready to describe our case study
on the 2009 Bundestag election. Before we provide and discuss the results we
briefly summarize our experimental setup.

3.1 Setup

From the raw input data to the final output we performed the following steps.

preprocessing. In order to avoid the occurrence of highly correlated features
in the result, we performed a correlation analysis and removed one variable
out of every pair of variables with a correlation of at least 0.85. The choice
was based on background-knowledge and subjective preference. Moreover,
we performed a 3-bin frequency discretization to all remaining numerical
variables.

features. Based on the discretization, we defined the set of descriptive features
as follows: for every variable and every bin, there is a binary feature that a
data record possesses if and only if the variable value of this record lies in
that bin. These features are denoted V = h, V = m, and V = l, respectively.
There are, however, several exceptions. Some variables are part of a set of
complementary variables that together describe a common underlying mea-
surement. For instance, for the age structure there is one variable represent-
ing the number of inhabitants aged 16-24, the inhabitants aged 25-34, and so
on, respectively. For such variables, we did not create features corresponding
to the middle or lower bin because they would have only low descriptive
potential. Altogether, there is a total of 64 descriptive features.

parameters. We used a length limit l of 3 for the subgroup descriptions, and a
number of subgroups k of 10. These settings lead to a reasonably small set
of results that can be manually inspected and that are short enough to be
easily communicable.

targets. As stated in Section 2.2 there are several options for the operational-
ization of “voting behavior”: one has to choose between individual parties
and the combined results as well as between the absolute (2009) results and
the difference between the 2009 and the previous (2005) results. This leaves
us with four different configurations of quality functions and target variables.

C1. For absolute combined results, quality function q = qΔ
dst (Eq. 2) with

target variables T1, . . . , T5 such that Ti is the 2009 share of votes of
party i.

Subgroup Discovery for Election Analysis 65

C2. As exemplary configuration for absolute results in the single party case,
q = qΔ

mt (Eq. 1) with the 2009 result of FDP as target T .
C3. For combined results measured by the difference to previous elections,

q = qΔ
dst with target variables T1, . . . , T5 such that Ti as the gain (2009

result minus 2005 result) of party i.
C4. Again as exemplary configuration for differences in the single party case,

q = qΔ
mt with the difference between the 2009 and the 2005 result of FDP

as target.
visualization. Finally, for each configuration the resulting subgroups are ren-

dered using the appropriate visualization technique introduced in Section 2.4.
Additionally, the boxes are joined by arrows corresponding to the transitive
reduction of the specialization relation among the subgroups.

Some of the above steps are not fully consistent with our requirement (R2).
In particular, in the preprocessing step the user is left with the decision which
variables to keep. Moreover, the parameter settings (for the number of bins and
the number of subgroups) are not the only viable option. However, they are a
good starting point, given that a restriction to 3 bins results in bins with an
easily communicable meaning (“low” and “high”), while 10 subgroups represent
a manageable amount of patterns.

3.2 Results

After describing the setup of our experiments we now present the result it yielded.
In order to put our findings into context, we first recap the most important as-
pects of the 2009 Bundestag election results: The parliamentary majority shifted
from the so-called grand coalition (CDU and SPD) to a coalition of CDU and
FDP. The expiration of the grand coalition was essentially caused by an all-
time low result of the social-democratic SPD combined with substantial gains
for the FDP. This development is also reflected in the local results of Cologne
(see Figure 1).

Fig. 4. Subgroups found using the distribution over parties as label

66 H. Grosskreutz, M. Boley, and M. Krause-Traudes

Absolute results of all parties. Figure 4 shows the subgroups obtained using
Configuration C1, i.e., considering the combined absolute results of all parties
in the 2009 election. There are several subgroups with a strong preference for
the liberal-conservative election winners, FDP and CDU. These include the sub-
group of districts with a “high average living space per accommodation,” and
the subgroup “high share of detached houses.” The longer subgroup descrip-
tion “high average living space per accommodation and high share of grammar
school students” is even more notable, as it has an extremely high share of FDP
votes. While all other parties have lower results in these subgroups, the share of
LINKE votes is particularly low. Another interesting subgroup is “high number
of 30-60 year-old single-persons.” This constraint is an indicator for a high share
of GRUENE voters. All other parties obtained results below average in this sub-
group, those of the CDU being particularly weak. There are also subgroups with
a high share of SPD and LINKE votes, namely “high share of social security
claimants” and “high share of muslims.”

This first experiment shows that our tool reveals features that imply a strong
voting preference for one particular party (e.g., GRUENE) as well as for po-
litical alliances or ideological blocks (e.g., CDU/FDP and SPD/LINKE). It is
important to note that subgroups of the latter kind—although they have a clear
interpretation and are easily communicable—can be missed if the analysis is
performed using the single party operationalization: if one uses this option, for
instance the “high share of social security claimants” subgroup is not among the
top-10 subgroups.

Fig. 5. Subgroups for target ’FDP’

Absolute result of FDP. Still, in case one is solely interested in one particular
party, it is a reasonable choice to resort to the individual party configurations.
Configuration C2 exemplary considers the FDP 2009 results—the party with the
highest gain. Figure 5 shows corresponding subgroups.

Subgroup Discovery for Election Analysis 67

While the figure shows some subgroups which are already identified using
Configuration C1 (e.g., “high average living space” and the specialization with
the additional constraint “high share of grammar school students”), it also con-
tains additional results. For instance, districts with a high share of persons with
“net income of more than 4500e” (see Figure 2(b) for a geographical visualiza-
tion). This feature is confirmed by many other investigations to be an attribute
associated with FDP voters.

Gains of all parties. We now move on to the alternative operationalization of
voting behavior based on the gains respectively losses. Again, first we consider
the combined gains and losses of all parties as specified in Configuration C3.
Figure 6 shows the result.

Fig. 6. Subgroups found using the distribution over the gains as label

The districts with a high share of persons with a “net income over 4500e” ex-
perienced over-average gains for the FDP, as well as (small) losses for the CDU.
Such slightly over-averageCDU losses can also be observed in the other subgroups
with very strong FDP gains, like “average living space per accommodation” or the
longer description “detached houses, grammar school students and high income”.
Another interesting observation is that these subgroups are also considered in the
previous section, in which we considered subgroups with a high absolute share of
FDP votes. This co-ocurrence indicates that FDP could achieve additional gains
in its party stronghold. The inverse relation can also be observed for the SPD sub-
groups: the districts with a high share of “social security claimants”—which were
observed to have high SPD results—actually witnessed above-averageSPD losses.
The same holds for the districts with a high share of muslims. This observation
suggests that the SPD is losing popularity right in its party strongholds; an as-
sumption shared by a broad range of media analysts.

One advantage of the visualization is that it not only allows identifying the
winners in a subgroup, but that it also indicates where the votes could have come
from. In the two subgroups above, which attract attention due to over-average
SPD results and over-average SPD losses, the clear winner is the LINKE, while

68 H. Grosskreutz, M. Boley, and M. Krause-Traudes

none of the other parties have above-average gains. This is a hint that a large
part of a former SPD stronghold turned into LINKE voters.

Gains of FDP. Finally, it is possible to search for subgroups with particular
gains or losses of a particular party. Using Configuration C4 we exemplarily do
so again with the FDP gains. The result is shown in Figure 7. Beside confirming
some results from the all parties configuration, it also reveals some additional
observations. The most noteworthy is perhaps the subgroup with a high share
of families having an upper middle-class monthly income (i.e. 3000-4500e). This
group is not traditionally associated with the FDP, and can thus constitute a
hypothetical part of an explanation of the FDP’s success in this election.

Fig. 7. Subgroups with high FDP gain

3.3 Comparison with the Traditional Approach

It is interesting to compare the results presented here with the findings reported
in the Cologne report mentioned in the introduction. The main question consid-
ered there is the identification of party hot-spots and their characterization by
socio-demographics attributes. This corresponds to our analysis configuration
C2, which considers the absolute result of a particular party. If we compare our
results with the report, we observe that our algorithm reveals the same socio-
economic variables as those selected by the Cologne experts in a time-consuming
manual investigation based on prior knowledge and experience. In the case of
FDP, for example, the Cologne report also selects the proportion of persons with
a high income and the grammar school students ratio to characterize polling dis-
tricts with a high FDP support (see page 34 of the report).

3.4 Scalability

While the (manual) preprocessing steps can require some time depending on the
complexity of the given data, the actual subgroup discovery is fast: for each of the

Subgroup Discovery for Election Analysis 69

four configurations, the computation takes less than 30 seconds on a standard
Core 2 Duo E8400 PC. A detailed analysis of complexity issues is beyond the
scope of this paper, but we not that subgroup discovery scales well in practice
[2,6]—in particular with the numbers of polling districts, which is the quantity
that is expected to vary the most in case the method is applied to other elections.
Hence, given that the preprocessing is done in advance, the approach can be
applied, e.g., during an election night.

4 Summary and Discussion

In this paper, we have demonstrated the application of a descriptive data mining
technique, namely subgroup discovery, to ad-hoc election data analysis. This
demonstration included a case study based on the 2009 Bundestag elections
restricted to the data of Cologne. Besides presenting the results of this study,
we formulated several requirements for data analysis software in this application
context and discussed how subgroup discovery tools can be configured to meet
these requirements. In particular, we proposed a new quality function and a novel
filtering scheme for the avoidance of redundant output. The quality function
is an extension of the mean test quality that is based on the combined mean
deviation of several target variables. The generally applicable filtering scheme is
an incremental, i.e., higher order, quality function that is defined with respect to
some desired base quality function. Its idea is to reevaluate all subgroups based
on their base quality in the databases defined by their generalizations.

The quality function with several target variables is motivated by the fact that
an election result is constituted by the combined results of several parties rather
than just one party. Our experiments demonstrate that the introduction of sev-
eral target attributes is a valuable extension: otherwise important patterns that
have an interestingness resulting from the total unusualness of the results of two
ore more parties can be dominated by less interesting patterns. We remark that
subgroup discovery on datasets involving more than one target attribute is also
known as exceptional model mining [13], and that our approach could thus be con-
sidered as a form of exceptional model mining (based on a new quality function).

Our other technical addition, the incremental quality function, generalizes
the well-known idea of evaluating patterns with respect to their generaliza-
tions. Following our earlier specified requirements this filtering technique is com-
pletely parameter-free. This feature distinguishes our method from the other
improvement-based techniques [3,7,19,20] and others, like the weighted covering
scheme [12] or approaches based on affinity [5]. Note that although subgroup fil-
tering based on the theory of relevancy [11] is also parameter-free, it only applies
to data with a binary target variable and thus is not applicable here.

Acknowledgments

Part of this work was supported by the German Science Foundation (DFG)
under the reference number ‘GA 1615/1-1’. We would like to thank the Office of
City Development and Statistics for their kind cooperation.

70 H. Grosskreutz, M. Boley, and M. Krause-Traudes

References

1. Atzmüller, M., Puppe, F.: Semi-automatic visual subgroup mining using vikamine.
J. UCS 11(11), 1752–1765 (2005)

2. Atzmüller, M., Puppe, F.: SD-map - a fast algorithm for exhaustive subgroup
discovery. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006.
LNCS (LNAI), vol. 4213, pp. 6–17. Springer, Heidelberg (2006)

3. Bayardo, R.J., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large,
dense databases. Data Min. Knowl. Discov. 4(2/3), 217–240 (2000)

4. Boley, M., Grosskreutz, H.: Non-redundant subgroup discovery using a closure
system. In: ECML/PKDD, vol. (1), pp. 179–194 (2009)

5. Gebhardt, F.: Choosing among competing generalizations. Knowledge Acquisi-
tion 3, 361–380 (1991)

6. Grosskreutz, H., Rüping, S., Wrobel, S.: Tight optimistic estimates for fast sub-
group discovery. In: ECML/PKDD, vol. (1), pp. 440–456 (2008)

7. Huang, S., Webb, G.I.: Discarding insignificant rules during impact rule discovery
in large, dense databases. In: SDM (2005)

8. Johnston, R., Pattie, C.: Putting Voters in Their Place: Geography and Elections
in Great Britain. Oxford Univ. Press, Oxford (2006)

9. Klösgen, W.: Explora: A multipattern and multistrategy discovery assistant. In:
Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)

10. Kralj, P., Lavrač, N., Zupan, B.: Subgroup visualization. In: Proc. 8th Int. Multi-
conf. Information Society, pp. 228–231 (2005)

11. Lavrac, N., Gamberger, D.: Relevancy in constraint-based subgroup discovery. In:
Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.) Constraint-Based Mining and
Inductive Databases. LNCS (LNAI), vol. 3848, pp. 243–266. Springer, Heidelberg
(2006)

12. Lavrac, N., Kavsek, B., Flach, P., Todorovski, L.: Subgroup discovery with cn2-sd.
J. Mach. Learn. Res. 5(February), 153–188 (2004)

13. Leman, D., Feelders, A., Knobbe, A.: Exceptional model mining. In: Daelemans,
W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI),
vol. 5212, pp. 1–16. Springer, Heidelberg (2008)

14. Mochmann, I.C.: Lifestyles, social milieus and voting behaviour in Germany: A
comparative analysis of the developments in eastern and western Germany. PhD
thesis, Justus-Liebig-University Giessen (2002)

15. Morik, K., Boulicaut, J.-F., Siebes, A. (eds.): Local Pattern Detection. LNCS
(LNAI), vol. 3539. Springer, Heidelberg (2005)

16. Nijssen, S., Guns, T., Raedt, L.D.: Correlated itemset mining in roc space: a con-
straint programming approach. In: KDD, pp. 647–656 (2009)

17. Novak, P.K., Lavrač, N., Webb, G.I.: Supervised descriptive rule discovery: A unify-
ing survey of contrast set, emerging pattern and subgroup mining. J. Mach. Learn.
Res. 10, 377–403 (2009)

18. Robinson, W.S.: Ecological correlations and the behavior of individuals. Am. So-
ciolog. Rev. (1950)

19. Webb, G., Zhang, S.: Removing trivial associations in association rule discovery.
In: ICAIS (2002)

20. Webb, G.I.: Discovering significant patterns. Mach. Learn. 71(1), 131 (2008)
21. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: PKDD

1997, pp. 78–87. Springer, Heidelberg (1997)

Subgroup Discovery for Election Analysis 71

A Description of the Data

The data used in this paper consists of 800 records, one for every polling district
in the City of Cologne. Beside the number of votes obtained by the different
parties in the 2009 and 2005 Bundestag elections, the records include more than
80 descriptive variables, which were assembled from different sources. The pri-
mary data source is the official city statistics, gathered and published by the
Office of Statistics. Second, commercial data was used to obtain information
about the type of buildings and the debt-ratio. Finally, information about the
average income and the education level was taken from an anonymous citizen
survey conducted by the Office of City Development and Statistics in 2008/09.
The survey data is a random sample, stratified according to age, sex and ur-
ban district, which includes about 11200 responses. All variables occurring in at
least one of the subgroup reported in this paper are listed in the following table.
Beside the description of the variable, we also indicate the data source (OS -
Official Statistics, CO - Commercial, SU - Survey).

Variable Description
aged 16-24, aged 25-34,
aged 35-64, aged 65+

age structure, i.e. the number of inhabitants
aged 16-24, 25-45, etc. (OS)

avg living space average living space per accommodation (CO)
catholic, muslim,
protestant

number of persons with a particular religious
denomination (OS)

detached houses type of buildings: number of detached
houses, number of apartment buildings of
different size (CO)

...
16-19 fam. buildings

20+ fam. buildings

education:elem. school

highest level of general education (SU)education:secondary

education:university

families number of families with children (OS)
gram school students number of grammar school students (OS)
income < 1500e

household net income per month (SU)income 1500-3000e
income 3000-4500e
income > 4500e

men, women percentage of male resp. female inhabitants (OS)
occupancy 5-10 y.

duration of living in Cologne (SU)
occupancy 10-15 y.

occupancy 15-20 y.

...
single parents number of single parent households (OS)
single-person <30y number of one-person householders aged

under 30, resp. aged 30-60 (OS)single-person 30-60y

social sec claimants number of social security claimants (OS)

On Enumerating Frequent Closed Patterns with Key
in Multi-relational Data

Hirohisa Seki, Yuya Honda, and Shinya Nagano

Nagoya Inst. of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
seki@nitech.ac.jp

Abstract. We study the problem of mining closed patterns in multi-relational
databases. Garriga et al. (IJCAI’07) proposed an algorithm RelLCM2 for mining
closed patterns (i.e., conjunctions of literals) in multi-relational data, which is an
extension of LCM, an efficient enumeration algorithm for frequent closed item-
sets mining proposed in the seminal paper by Uno et al. (DS’04). We assume that
a database considered contains a special predicate called key (or target), which
determines the entities of interest and what is to be counted. We introduce a no-
tion of closed patterns with key (key-closedness for short), where variables in a
pattern other than the one in a key predicate are considered to be existentially
quantified, and they are linked to a given target object. We then define a clo-
sure operation (key-closure) for computing key-closed patterns, and show that
the difference between the semantics of key-closed patterns and that of the closed
patterns in RelLCM2 implies different properties of the closure operations; in
particular, the uniqueness of closure does not hold for key-closure. Nevertheless,
we show that we can enumerate key-closed patterns using the technique of ppc-
extensions à la LCM, thereby making the enumeration possible without storage
space for previously generated patterns. We also propose a literal order designed
for mining key-closed patterns, which will require less search space. The correct-
ness of our algorithm is shown, and its computational complexity is discussed.
Some preliminary experimental results are also given.

1 Introduction

Multi-relational data mining (MRDM) has been extensively studied for more than a
decade (e.g., [7,8] and references therein). The research topics discussed in the conven-
tional data mining (e.g., [11]) have been considered in this more expressive framework
of MRDM, where data and patterns are represented in the form of logical formulae such
as Datalog (a class of first order logic). The framework is therefore suitable to use the
techniques developed in computational logic, including, among others, inductive logic
programming (ILP).

In contrast to the traditional data mining dealing with rather simple patterns such
as itemsets, the expressive formalism of MRDM allows us to use more complex and
structured data in a uniform way, including trees and graphs in particular, and multi-
relational patterns in general.

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 72–86, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

On Enumerating Frequent Closed Patterns with Key in Multi-relational Data 73

WARMR [5] is one of the earliest works on frequent Datalog pattern mining; it
“upgrades” the conventional frequent itemset mining method based on Apriori [1] to
frequent Datalog pattern mining. Since the number of frequent patterns becomes ex-
tremely large, it is common to focus on more compact representations such as the set
of frequent closed sets (e.g., [11,3]), whose size is much smaller, while preserving the
same information of the set of frequent patterns. Garriga et al. proposed an algorithm
called RelLCM2 [10] for mining closed patterns (i.e., conjunctions of literals) in multi-
relational data, which is an “upgrade” of LCM, an efficient enumeration algorithm for
frequent closed itemsets mining proposed in the seminal paper by Uno et al. [18].

In this paper, we study the problem of mining closed patterns in multi-relational
data based on these precursors. In a typical task of MRDM, a user is usually expected
to specify a special predicate key (or target) (e.g., [5,6]). The key is an atom which
determines the entities of interest and what is to be counted. In SPADA system for
spatial pattern mining [2], for example, a distinction is made between reference (target)
objects and other task-relevant (non-target) objects, which are relevant for the task in
hand and related to the target objects. We introduce a notion of closed patterns with
key (key-closedness), where variables in a pattern other than the one in a key predicate
are considered to be existentially quantified, representing non-target objects linked to a
given target object. We then define a closure operation (key-closure) for computing key-
closed patterns. The difference between the semantics of key-closed patterns and that of
the closed patterns in RelLCM2 implies different properties of the closure operations.
In particular, the uniqueness of closure does not hold for key-closure. Nevertheless, we
show that we can enumerate key-closed patterns using the technique of ppc-extensions
à la LCM, thereby making the enumeration possible without memory space for storing
previously generated patterns. We also propose a literal order designed for mining key-
closed patterns, which will require less search space. The correctness of our algorithm is
shown, and its computational complexity is discussed. Some preliminary experimental
results are also given.

The organization of the rest of this paper is as follows. In Section 2, we give some
preliminaries, notations and definition, and, in particular, we explain the notion of a
closed pattern in multi-relational data. In Section 3, we introduce a notion of closed pat-
terns with key (key-closedness), and define a closure operation computing key-closed
patterns (key-closure). We then explain our algorithm called ffLCM which can enu-
merate key-closed patterns using ppc-extensions. We also show the correctness and the
computational complexity of our algorithm. In Section 4, we give a literal order tai-
lored for mining key-closed patterns, and show its effectiveness by some preliminary
experimental results. Finally, we give a summary of this work in Section 5.1

2 Preliminaries

2.1 Multi-relational Data Mining

In the task of frequent pattern mining in multi-relational databases, we assume that we
have a given database DB , a language of patterns, and a notion of frequency which

1 Due to space constraints, we omit most proofs and some details, which will appear in the full
paper.

74 H. Seki, Y. Honda, and S. Nagano

gf (grandfather)
a
b
· · ·

p (parent)
a b
b c
c d
c e
· · · · · ·

m (male)
a

b
c
· · ·

f (female)
e

d
· · ·

d e

c

b

a

Fig. 1. A family example DB0, including four relations. gf is a key atom (target).

measures how often a pattern occurs in the database. We use Datalog, or Prolog without
function symbols other than constants, to represent data and patterns. We assume some
familiarity with the notions of logic programming (e.g., [14]), although we introduce
some notions and terminology in the following.

An atom (or literal) is an expression of the form p(t1,tn), where p is a predicate
(or relation) of arity n, denoted by p/n, and each ti is a term, i.e., a constant or a
variable.

A substitution θ = {X1/t1, . . . , Xn/tn} is an assignment of terms to variables. The
result of applying a substitution θ to an expression E is the expression Eθ, where all
occurrences of variables Vi have been simultaneously replaced by the corresponding
terms ti in θ. The set of variables occurring in E is denoted by Var(E).

A pattern is expressed as a conjunction of atoms (literals) l1 ∧ · · · ∧ ln, denoted
simply by l1, . . . , ln. Let C be a pattern (i.e., a conjunction) and θ a substitution of
Var(C). When Cθ is logically entailed by a database DB , we write it by DB |= Cθ.
We will represent conjunctions in list notation, i.e., [l1, . . . , ln]. For a conjunction C
and an atom p, we denote by [C, p] the conjunction that results from adding p after the
last element of C.

In multi-relational data mining, one of predicates is often specified as a key (or tar-
get), which determines the entities of interest and what is to be counted.

Example 1 (Multi-relational Database). (Adapted from [15]) Consider a database DB0
(Fig. 1), including relations, p(X, Y) meaning that X is a parent of Y , f (X) for female
X , m(X) for male X , and gf (X) meaning that X is someone’s grandfather. Let gf be
a key (or target).

Consider a pattern C of the form: gf (X),m(X), p(X, Y),m(Y). For a substitution
θ = {X/a, Y/b}, we have that DB0 |= Cθ, since each literal in Cθ =
[gf (a),m(a), p(a, b),m(b)] is in DB0. ��

2.2 Mining Closed Patterns in Multi-relational Data

Since the number of frequent patterns is huge and it is expensive to compute all frequent
patterns, it is usual to consider the problem of mining closed patterns (e.g., [17,3] and

On Enumerating Frequent Closed Patterns with Key in Multi-relational Data 75

T
trans ID list of item IDs
t100 1, 2, 5
t200 2, 4
t300 2, 3
t400 1, 2, 4, 5

key (trans ID)
t100
t200
t300
t400

itemset case multi-relational data
pattern {1, 2} C0 = [key(X), buys(X, 1), buys(X, 2)]

occurrence set {t100 , t400} {{X/t100 }, {X/t400 }}
closure {1, 2, 5} [C0, buys(X, 5)]

buys

t100 1
t100 2
t100 5
t200 2
t200 4
t300 2
t300 3
t400 1
t400 2
t400 4
t400 5

Fig. 2. An Example of Transaction Database T and its Relational Data Representation

references therein). In frequent itemset mining, a notion of closed patterns is defined in
terms of occurrence sets.

Example 2 (Multi-Relational DM includes Frequent Itemsets Mining). Following [18],
we first recall some notions in frequent itemset mining (FIM). Consider a transaction
database T in Fig. 2. Each element ti ∈ T (1 ≤ i ≤ |T |) is called a transaction. Let I
be the set of items. A subset P ⊆ I is called a pattern. For a pattern P , a transaction
including P is called an occurrence of P . The denotation of P , denoted by T (P), is
the set of the occurrences of P .

A pattern P is said to be closed, if P is maximal w.r.t. set inclusion in the set of
patterns with the same denotation as that of P , i.e., {Q | T (P) = T (Q)}. In the case of
FIM, the closed pattern of P is computed by ∩t∈T (P) t, i.e., the set of items common
to all transactions in T (P), which is called the closure of P .

Let P0 = {1, 2} be a pattern. P0 will be represented by a conjunction C0 of the form:
key(X), buys(X, 1), buys(X, 2). The set T (P0) of occurrences of P0 is {t100 , t400}.
As a counterpart of T (P0), it will be appropriate to consider the set of substitutions
{{X/t100}, {X/t400}}. The closure of P0 is ∩t∈T (P0) t = {1, 2, 5}, which will cor-
respond to a conjunction [C0, buys(X, 5)]. �

Definition 1 (Occurrence Set). [10] Let DB be a given database and C a conjunction.
An occurrence of C in DB is a substitution θ of Var(C) such that DB |= Cθ.

The denotation of C, denoted by O(C) is the set of the occurrences of C in DB.
|O(C)| is called the frequency of C, denoted by freq(C). A pattern (conjunction) C
is said to be frequent if freq(C) ≥ min sup, where min sup is a given constant
(threshold). �

Let DB be a given database. For a pair of patterns P and Q, we say that P and Q
are equivalent to each other if O(P) = O(Q). This relationship induces equivalence
classes on patterns. In the case of conjunctions, it does not make sense to consider the
case where P contains a variable not appearing in Q, because the resultant substitutions

76 H. Seki, Y. Honda, and S. Nagano

are not comparable. Therefore, we impose the following condition which requires that
Var(P) = Var(Q).

Definition 2 (Closed Conjunction). Let C be a conjunction, and DB a given database.
C is said to be closed, if there exists no conjunction C′ ⊃ C such that (i) Var(C′) =
Var(C), and (ii) the occurrence set of C′ is the same as that of C, i.e., O(C′) = O(C).

�

The closure of a set of items P is defined as the intersection of all the transactions in
T (P) as explained in Example 2. On the other hand, the above notion of closedness in
MRDM leads to the procedure for computing a closure of a given conjunction, which
is shown in Fig. 3 [10].

Algorithm Clo(C)
input : conjunction C
output: closed conjunction C′

1 C′ ← C ;
2 repeat
3 Find an atom p ∈ ρRR(C′) s.t. O(C′) = O([C′, p]) ;
4 C′ ← [C′, p]
5 until no such atom p is found;
6 return C′

Fig. 3. Computing Range-Restricted Closed Conjunctions Clo [10]

In Fig. 3, a refinement operator ρRR is employed, which computes an atom p to be
added into C′ such that p �∈ C′ and it satisfies the range-restricted condition (e.g., [6]),
i.e., Var(p) ⊆ Var(C′).

We note that there is a caveat to the closure procedure in Fig. 3. The procedure Clo
computes a closure in a non-deterministic way due to ρRR, which might depend on the
order of additions of atom p. However, thanks to the definition of the occurrence set O,
Clo(C) is well behaved, as the following lemma [10] shows:

Lemma 1 ([10]). Let C be a conjunction and p, q atoms such that p ∈ ρRR(C). If
O(C) = O([C, p]) for a given database DB , then O([C, q]) = O([C, q, p]). �

The procedure Clo therefore defines the unique closure for a given conjunction C,
which is in fact the closed conjunction containing C. The following lemma is obvious
from Def. 2 and Lemma 1.

Lemma 2. A conjunction C is closed if and only if C = Clo(C). �

3 Mining Closed Patterns with Key

3.1 Key and Language Bias of Patterns

As explained in Sect. 1, in a typical task of MRDM, a user is usually expected to specify
a special predicate key (or target) (e.g., [5,6]). The key is an atom which determines the

On Enumerating Frequent Closed Patterns with Key in Multi-relational Data 77

entities of interest and what is to be counted. The key (target) is thus to be present in
all patterns considered. In Example 1, the key is predicate gf . We assume henceforth
that the arity of a key atom is 1 for simplifying the explanation.

A pattern containing a key is not always be meaningful to be mined. For example,
let C = [gf (X), f(Y), m(Z)] be a conjunction in Example 1. Variables Y and Z in
C are not linked to variable X in key atom gf (X); the objects represented by Y and
Z will have nothing to do with key object X . In ILP, the following notion of linked
literals [12] is a standard one to specify the so-called language bias, which is similar to
a first-order feature in [13].

Definition 3 (Linked Literal). [12] Let key(X) be a key atom and l a literal. l is said
to be linked to key(X), denoted by key(X) ∼ l, if either X ∈ Var(l)Cor there exists
a literal l1 such that key(X) ∼ l1 and Var(l1) ∩ Var(l) �= ∅. �

Definition 4 (Bias Condition). Given a database DB and a key atom key(X1), we
assume that there are predefined finite sets of predicate (resp. variables; resp. constant
symbols), denoted by P (resp. V ; resp. C), and that, for each literal l in a conjunction
C, the predicate symbol (resp. variables; resp. constants) of l is in P (resp. V ; resp. C).

Moreover, each pattern C of conjunctions to be mined satisfies the following condi-
tions: key(X1) ∈ C and, for each l ∈ C, l ∼ key(X1). �

We denote by L the set of literals constructed using predicate symbols in P and vari-
ables (constants) in V (C), respectively. We also denote by P the set of conjunctions
(patterns) consisting of literals in L such that they satisfy the bias condition.

When a conjunction has a key key(X1), the notion of occurrence set is modified. Let
θ be a substitution of the form: θ = {X1/t1, X2/t2, . . . }. Then, the restriction of θ w.
r. t. key(X1), denoted by θkey , is defined by θkey = X1/t1.2

Definition 5 (Key-Occurrence Set). Let C be a conjunction with key(X1), and DB
a database. Then, the key-restricted occurrence set (key-occurrence set, for short), de-
noted by Okey(C), is defined by Okey(C) = {θkey |θ ∈ O(C)}.

|Okey(C)| is called the frequency of C, denoted by freqkey(C). �

Definition 6 (Key-closed Conjunction). Let C be a conjunction with key(X1), and
DB a database. C is said to be closed w.r.t. key-restriction (or key-closed), if there exists
no conjunction C′ ⊃ C such that (i) Var(C′) = Var(C), and (ii) the key-occurrence
set of C′ is the same as that of C, i.e., Okey(C′) = Okey(C). �

In a conjunction C with key(X1), X1 is a free variable, while the other variables in
C are considered to be existentially quantified. Since key(X1) is specified as a target,
we are only interested in the values substituted for X1 to be counted; we do not care
about the instantiations of those existentially quantified variables, as far as they exist in
a given database. The purpose of considering key-closedness is the same as the case
of closed itemsets: the number of frequent key-closed conjunctions will be less than

2 We denote θkey simply by θkey = t1, when a variable X1 in key is apparent. When there
is no confusion, we also use a notation such as X, Y, Z, . . . instead of X1, X2, X3, . . . for
simplicity.

78 H. Seki, Y. Honda, and S. Nagano

that of frequent (closed) conjunctions, while they have the same information w.r.t. the
key-occurrence sets.

Due to Lemma 1, the closure of a given conjunction C is uniquely determined, which
is computed by Clo(C). On the other hand, a key-closed conjunction containing C is
not unique as shown in Example 3.

Example 3 (Key-Closed Pattern is not unique). Consider database DB in Fig. 4.
In the figure, C = [key(X),mem(Y, X)] is closed, but it is not key-closed, since

there exists a conjunction C1 = [C, anc(Y, X)] which satisfies that C1 ⊃ C and
Okey(C) = Okey(C1). On the other hand, C1 is key-closed.

There exists another key-closed conjunction C2 = [C, des(Y, X)] which also satis-
fies that C2 ⊃ C and Okey(C) = Okey(C2).

We note that O([anc(Y, X), des(Y, X)]) = ∅. �

DB = {key(c),
mem(a, c),
mem(d, c),
anc(a, c),
des(d, c)}

C1 = [C, anc(Y, X)] C2 = [C, des(Y, X)]

C = [key(X), mem(Y, X)]
O(C) = {(c, a), (c, d)}

Okey(C) = {c}

O(C1) = {(c, a)}
Okey(C1) = {c}

O(C2) = {(c, d)}
Okey(C2) = {c}

Fig. 4. A Key-Closed Conjunction is not Unique: C, C1, C2: closedCC1, C2: key-closed. In the
figure, a substitution θ = {X/t1, Y/t2} in an occurrence set is denoted simply by (t1, t2).

We consider a procedure Clokey(C) defined in Fig. 5, which computes, in a non-
deterministic way, a conjunction C′ containing C with the same key-occurrence set
of C. We call C′ a key-closure of C.

Example 4 (Key-Closed Conjunction). Continued from Example 3. For conjunction C,
there are two outputs computed by Clokey(C); one is C1, and the other is C2. Since
Clokey(C1) = C1, C1 is the unique key-closure of itself. Similarly, we have that
Clokey(C2) = C2, thus C2 is also the key-closure of itself. �

The following lemma is immediate from the definitions of key-closedness and Clokey ,
so the proof is omitted.

Lemma 3. Let C be a conjunction and DB a given database. Then, C is closed if C is
key-closed. Moreover, an output computed by Clokey(C) is key-closed, and it is thus
closed. �

3.2 Enumerating Key-Closed Patterns Using PPC-Extensions

Since a key-closed conjunction containing C is not unique (Example 3), computing
the key-closed conjunctions would entail non-deterministic choices in literals added to

On Enumerating Frequent Closed Patterns with Key in Multi-relational Data 79

Algorithm Clokey(C)
input : conjunction C
output: a key-closed conjunction C′

1 C′ ← C;
2 repeat
3 Find an atom p ∈ ρRR(C′) s.t. Okey(C′) = Okey([C′, p]) ;
4 C′ ← [C′, p]
5 until no such atom p is found;
6 return C′

Fig. 5. Computing Closed Conjunctions w.r.t. Key-Restriction Clokey

C. However, because a key-closed conjunction is closed (Lemma 3), we can adopt the
following simple method for enumerating key-closed patterns: (i) we first enumerate all
the closed conjunctions for a given database DB, (ii) then, for each closed conjunction,
we check whether it is key-closed.

In RelLCM2 [10], Garriga et al. upgrade LCM [18] to frequent closed pattern mining
in multi-relational data. The key property of a closed pattern in their algorithms is that
any closed pattern P �= ∅ is a closure extension of other closed patterns, where P
is a closure extension of Q if P = Clo([Q, l]) for some l �∈ P . Uno et al. elaborated
closure extension by introducing the notion of prefix-preserving closure extension (ppc-
extension), which enables us to avoid duplicated enumeration of closed patterns without
storing previously enumerated patterns.

Following [18,10], we explain some definitions necessary for ppc-extension. We first
assume that each variable in V (Def. 4) has its index, denoted by Xi ((|V| ≥ i ≥ 1),
where X1 is assumed to the variable appearing in key atom key(X1). We also as-
sume that there exists a total order � on the set L of literals appearing in conjunctions
(patterns) in P. Then, there exists a mapping ι from L to the set of natural numbers
N = {0, 1, 2, . . .}, where ι(key(X1)) = 0. We further assume that an order on P is
induced based on the total order � (e.g., lexicographically).

Each literal in a conjunction C = [l1, . . . , ln] is supposed to be ordered in ascending
order according to the total order�. The i-th prefix of C, denoted by C[i], is the prefix of
C such that it consists only of literals whose indices are no greater than i, i.e., ι(l) ≤ i
for every l ∈ C[i]. Let C be a conjunction and pr the least prefix of C such that
O(pr) = O(C). Then, the core index of C, denoted by core i(C), is the maximal (i.e.,
last) literal of pr .

Using these definitions, a ppc-extension is defined in an analogous way to LCM as
follows:

Definition 7 (Prefix-preserving closure extension). [10] Let C = [q1, . . . , qn] be a
closed conjunction. A conjunction C′ is called a prefix-preserving closure extension
(ppc-extension) of C, if the following conditions are satisfied:

1. C′ = Clo([C, p]) for some literal p �∈ C,
2. p � core i(C), and
3. C[ι(p) − 1] = C′[ι(p) − 1], that is, the (ι(p) − 1)-prefix of C is preserved. �

80 H. Seki, Y. Honda, and S. Nagano

Algorithm ffLCM(C)
input : closed conjunction C, minimum support min sup

1 if C is not frequent then return;
2 for all refinements [C, p] with p ∈ ρG(C) such that p � core i(C) do
3 if O([C, p]) = ∅ then skip refinement;
4 else C′ ← Clo([C, p]) ;
5 if C[ι(p) − 1] = C′[ι(p) − 1] then // C′ is a ppc-extension of C
6 if C′ is key-closed, C′ ∈ P and frequent then output C′;
7 call ffLCM(C’)
8 end

Fig. 6. Algorithm ffLCM

We are now in position to give our algorithm ffLCM, which is shown in Fig. 6. It is
started by calling ffLCM(Clo(key(X1))). In the algorithm, a refinement operator ρG

is employed (line 2), which computes an atom p ∈ L to be added into C in such a way
that it only requires that p �∈ C.3

When C′ is a ppc-extension of C (line 5), ffLCM(C′) is called recursively (line 7).
The enumeration of closed patterns by the algorithm is therefore done in depth-first
search.

The key-closedness of C′ is checked (line 6) by calling procedureClokey(C′) (Fig. 5),
i.e., C′ is key-closed if and only if C′ = Clokey(C′). When C′ is key-closed, it is an
output of the algorithm (line 6), provided that it satisfies the bias condition (i.e., C′ ∈ P)
and its frequency is no less than a given minimum support.

We now show the properties of the algorithm ffLCM. We introduce some notations.
Let DB be a given database and p a predicate defined in DB . We denote the relation
(i.e., the set of tuples) p by DBp. We also denote the size of DB , the number of tuples in
DB , by |DB |. Let C be a pattern (a conjunction of literals) with variables Xi1 , . . . , Xij

(1 ≤ i1 < · · · < ij ≤ |V|), and O(C) its occurrence set. We consider O(C) as
a relation4 (a set of tuples) with the set of its attributes Var(C) which is defined by
{(ti1 , . . . , tij) | θ = {Xi1/ti1 , . . . , Xij /tij} ∈ O(C)}. In the following, we can thus
use relational algebra expressions such as O(C) � DBp, a natural join of O(C) and
DBp, for example.

Theorem 1 (Algorithm ffLCM)

[Correctness]. Let C is a key-closed conjunction. Then, there exists a single closed
conjunction C0 such that C is a ppc-extension of C0.

[Complexity]. Let DB be a given database. Let C0 be a closed conjunction with its
occurrence set O(C0). Then, the algorithm ffLCM enumerates all frequent key-
closed patterns in O(|O(C0)|× |DB |2×|L|2) time for each closed pattern C0 with
O(|O(C0)| × |DB |2) memory space.

3 Note that, unlike ρRR, ρG allows p to have new variables not occurring in C.
4 In other words, we regard C as a view defined by relations corresponding to literals in C.

On Enumerating Frequent Closed Patterns with Key in Multi-relational Data 81

Proof. [Correctness] The correctness of the algorithm ffLCM is straightforward from
the properties of ppc-extension [18,10] and the fact that a key-closed conjunction is
closed (Lemma 3).

[Complexity] Let [C0, p] be a refinement of C0 with atom p ∈ ρG(C0) such that
p � core i(C0). To compute C = Clo([C0, p]), we first compute O([C0, p]). This is
done by O(C0) � DBp, taking O(|O(C0)| × |DBp|) time.

The next step to compute closure C = Clo([C0, p]) is that, for each literal l ∈
ρRR([C0, p]) ⊆ L, we compute O(C0) � DBp � DB l, and we then check to see
whether the occurrence set of [C0, p, l] is the same as that of [C0, p], which is done
by using difference operation O(C0) � DBp � DB l − (O(C0) � DBp). In the
computation of C = Clo([C0, p]), we thus need O(|O(C0)|× |DBp|× |DB l|) time for
each l ∈ L, hence it takes O(|O(C0)| × |DBp| × |DB | × |L|) in total.

On the other hand, the computation of key-closure Clokey(C) is similarly done, ex-
cept that checking the equivalence of the key-occurrence sets, Okey(C) = Okey([C, l]),
is performed by using difference operation between the projected relations, i.e., the
relations projected on variable X1 occurring in a key atom, πX1(O(C) � DB l) −
πX1O(C). From the fact that O(C) = O([C0, p]), the time complexity is thus the same
as that of computing closure C = Clo([C0, p]).

It therefore follows that the enumeration of key-closed patterns takes O(|O(C0)|
×|DB |2 ×|L|2) time for each closed pattern C0, while it requires O(|O(C0)| ×|DB |2)
memory space. �

Remark 1. For the readers familiar with LCM [18], we recall the complexity of LCM al-
gorithm. For a given transaction database T , it enumerates all frequent closed patterns in
O(||T (P)||×|I|) time for each pattern P with O(||T ||) memory space, where ||T (P)||
is the total size of the occurrence set T (P), defined by ||T (P)|| =

∑
t∈T (P) |t|. There-

fore, LCM achieves polynomial-delay and polynomial-space complexity.
In LCM, to derive the closure of P ∪{i} for an item i, it takes only O(||T (P)||) time.

This is because the closure of P ∪ {i} is computed by ∩t∈T (P∪{i}) t, which is done by
O(||T (P)||) time. On the other hand, to compute C = Clo([C0, p]) in MRDM, it takes
O(|O(C0)| × |DBp| × |DB | × |L|) time.

One way to see these differences is that a transaction database T can be regarded
as a result of joining5 relations buys(X, i) (see Fig 2) up to |I| times, where I is the
set of items. On the contrary, to compute the occurrence set, say, O([C0, p]) of [C0, p]
in MRDM, we should perform a natural join O(C0) � DBp; computing a counter-
part of T thus requires the operations of natural joins dynamically when needed. The
time complexity required for computing closure in MRDM would be therefore a price
intrinsic to the representation of multi-relational data. �

4 Reducing Search Space by a Literal Order w.r.t. Key

4.1 Literal Order w.r.t. Key

As explained in the previous section, the search of algorithm ffLCM is done by first
enumerating all the closed conjunctions for a given database DB, and then checking

5 To be precise, we shall use outerjoin (e.g., [9]), since the size of each transaction t ∈ T will
be different from each other.

82 H. Seki, Y. Honda, and S. Nagano

whether it is key-closed and satisfies the bias condition. Those closed conjunctions
intermediately generated do not necessarily satisfy the bias condition.

Since we regard only key-closed patterns satisfying the bias condition as meaning-
ful, it will be preferable to make the search of the algorithm ffLCM more limited so
that those intermediately generated closed conjunctions should satisfy the bias condi-
tion, while preserving the completeness of the algorithm. To do that, we introduce the
following order in the set L of literals.

Definition 8 (literal order w.r.t. key). Let L be the set of literals which satisfy the bias
condition, and Xi ∈ V a variable with its index i (1 ≤ i ≤ |V|). Let � be a total order
on L such that key(X1) is the minimum of L w.r.t. �.

Suppose that L is a disjoint union of Li ⊆ L (0 ≤ i ≤ |V|), where Li is defined as
follows:

L0 = {key(X1)}
L1 = {p | X1 ∈ Var(p), p �= key(X1)}
Li = {p | Xi ∈ Var(p), and j ≥ i for each Xj ∈ V ar(p)} (|V| ≥ i ≥ 2)

Then, an order over L is said to be an order w.r.t. key (or key-order), denoted by ��, if
it satisfies the following conditions:

1. the restriction of �� to Li (|V| ≥ i ≥ 0) is the same as �, and
2. p ≺� q, if p ∈ Li, q ∈ Lj and i < j. �

In the above definition, L1 is the set of literals other than key(X1) which contain vari-
able X1. On the other hand, a literal p is in Li (2 ≤ i ≤ |V|), if variable Xi occurs in p
and each variable in p has an index not less than i. We note that �� is a total order in L.

For a conjunction C, we define the normal form of C, denote by nf(C), by the
conjunction of literals in C such that each literal in C is in ascending order w.r.t. ��.
We first give the following technical lemma, which shows some useful properties of the
order ��.

Lemma 4. Let C be a conjunction which satisfies the bias condition (i.e., l ∼ key(X1)
for every l ∈ C). Then, there exists a conjunction C′ such that (i) it is a renaming of C
and (ii) every prefix of nf(C′) satisfies the bias condition. �

Example 5. Let C be a conjunction of the form: C = key(X1), p(X1, X3), m(X2),
p(X2, X3), m(X3), where each literal in C is in ascending order w.r.t. ��. C satisfies
the bias condition; key(X1) ∼ l for ∀l ∈ C. Its prefix: key(X1), p(X1, X3), m(X2),
however, does not satisfy the bias condition; key(X1) �∼ m(X2).

On the other hand, consider a renaming C′ of C of the form: C′ = key(X1),
p(X1, X2), m(X3), p(X3, X2), m(X2). Then, for nf(C′) = key(X1), p(X1, X2),
m(X2), p(X3, X2), m(X3), it holds that every prefix of nf(C′) satisfies the bias
condition. �

Let ρ�
G a refinement operator which, like ρG, computes an atom p ∈ L to be added

into C in such a way that p �∈ C and, moreover, [C, p] satisfies the bias condition. Let
ffLCM� be the algorithm ffLCM defined in Fig. 6 which, instead of ρG, employs ρ�

G

and uses a total order ��. The following theorem shows that the algorithm so defined
still satisfies the completeness.

On Enumerating Frequent Closed Patterns with Key in Multi-relational Data 83

Theorem 2 (Correctness of ffLCM with literal order��). Let C be a frequent closed
conjunction which satisfies the bias condition. Then, there exists a a renaming C′ of
C such that (i) every prefix of nf(C′) satisfies the bias condition and (ii) nf(C′) is
computed in ffLCM�.

Moreover, if C is a frequent key-closed conjunction which satisfies the bias condi-
tion, then nf(C′) is an output of ffLCM�. �

Proof. (Sketch) The proof is by induction on the length of C. Due to Lemma 4, there ex-
ists a renaming C′ of C such that every prefix of nf(C′) satisfies the bias condition. Sup-
pose that nf(C′) is of the form: Clo([C0, p]), i.e., nf(C′) is the closure of conjunction
C0, added p at the last of it. Then, nf(C′) is a ppc-extension of Clo(C0), and Clo(C0)
satisfies the bias condition. It follows from the induction hypothesis that Clo(C0) is
computed in ffLCM�. Since renaming does not change key-closedness, nf(C′) is key-
closed if C is key-closed. Therefore, the proposition follows. �

4.2 Experimental Results

To see the effectiveness of the literal order �� (key-order), we now present some results
of our experiments of ffLCM� on two datasets. ffLCM� is implemented using SWI-
Prolog (32 bits, Version 5.6.64), and the experiments were run on a PC with Pentium
Core2Duo 1.8GHz, 2GB memory under Windows XP [16]. Table 1 summarizes the
results for ffLCM� and ffLCM with lexicographical order, denoted by ffLCMlex . The
lexicographical order is employed in RelLCM2 [10].

The first dataset is the mutagenicity prediction,6 containing 30 chemical compounds.
Each compound is represented by a set of facts using predicates such as atom , bond ,
for example. The size of the set P of predicate symbols is 12. The size of key atom
(active(X1)) is 230, and minimum support min sup = 0.05 × 230. We study the ef-
fects of using key-order for the mutagenesis dataset where patterns contain at most 4
variables (i.e., 1 ≤ |V| ≤ 4) and they contain no constant symbols (i.e., |C| = ∅).
Table 1 reports the numbers of frequent key-closures generated, as well as those of fre-
quent closed conjunctions for ffLCM� and ffLCMlex . In Table 1 (above), we show the
rate of reduction to see the effects of literal orders employed. The rate of reduction is
calculated by (1−# closed�/# closedlex)×100, where # closed� (# closedlex) is the
number of frequent closed conjunctions generated in ffLCM� (ffLCMlex), respectively.
According to the increase of the number (# vars) of variables occurring in conjunc-
tions, the use of key-order significantly decreases the number of closed conjunctions
generated; the rate of reduction is more than 40% for |V| = 4.

Next, we note that Table 1 (above) also show the numbers of frequent closed conjunc-
tions generated in ffLCMlex which satisfy the bias condition (the figures in parenthe-
ses). One can see that those numbers are still greater than those in ffLCM� for |V| ≥ 3.
The reason is that, in ffLCM�, it only generates conjunctions such that every prefix
of a conjunction satisfies the bias condition (see Example 5). This means that the use
of key-order is in fact effective for making the enumeration of closed conjunctions

6 http://www.comlab.ox.ac.uk/activities/machinelearning/
mutagenesis.html

http://www.comlab.ox.ac.uk/activities/machinelearning/mutagenesis.html
http://www.comlab.ox.ac.uk/activities/machinelearning/mutagenesis.html

84 H. Seki, Y. Honda, and S. Nagano

Table 1. Effects of Literal Orders in ffLCM for Datasets Mutagenesis (above) and English Corpora
DB (below) with minimum support min sup = 0.05×|key |: # key-closed (# closed) is the num-
ber of frequent key-closures (frequent closed conjunctions) generated, respectively. The figures
in parentheses mean the numbers of generated conjunctions which satisfy the bias condition. −:
time out.

lexicographical order key-oder reduction
vars # key-closed # closed # key-closed # closed rate %

1 1 (1) 1 (1) 1 1 0
2 16 (16) 16 (16) 16 16 0
3 206 (194) 486 (436) 149 320 34.2
4 2016 (1836) 8817 (7664) 1204 4920 44.2

lexicographical order key-oder
vars # key-closed # closed # key-closed # closed

1 1 (1) 1 (1) 1 1
2 42 (8) 59 (8) 8 8
3 − − 40 48
4 − − 150 248

restrictive, thereby reducing the number of patterns generated without losing the search
completeness.

The second dataset is from the Penn Treebank Project7, an annotated corpus of En-
glish, where each sentence is annotated with its part-of-speech (POS) tags. The tagset
contains 36 POS tags, such as cc (coordinating conjunction), dt (determiner), and so
on. Each tag is represented by a predicate here, and the size of the set of predicate sym-
bols P is thus 37. The size of key atom (sentence(X1)) is 300, and the other conditions
are the same as before. Table 1 (below) shows that in this dataset, the effectiveness of
the key-order is more prominent; the runtime of ffLCMlex is over the prescribed time
(48 hours) for |V| ≥ 3.

5 Concluding Remarks

We have studied the problem of mining closed patterns in multi-relational data. Unlike
RelLCM2 by Garriga et al., a database is assumed to contain a special predicate called
key (target), by which one can specify the entities of interest. We have then introduced a
notion of closed patterns with key (key-closedness) which satisfy some bias conditions,
requiring that each object represented by a variable be linked to a given target object.
Therefore, a pattern satisfying the bias conditions can be regarded as a first-order rep-
resentation of some features (or attributes) of the target object. We have also defined
a closure operation computing key-closed patterns (key-closure), and shown that the
uniqueness of closure does not hold for key-closure.

7 http://www.cis.upenn.edu/˜treebank/

http://www.cis.upenn.edu/~treebank/

On Enumerating Frequent Closed Patterns with Key in Multi-relational Data 85

We have proposed an algorithm, called ffLCM, which enumerates key-closed pat-
terns using ppc-extensions à la LCM, thereby making the enumeration possible without
storage space for previously generated patterns. We have also proposed a literal order
designed for mining key-closed patterns, which will require less search space, while
preserving the search completeness. We have discussed its computational complexity,
and have compared our algorithm with the case of LCM. The effects of the proposed
literal order have been exemplified by some experimental results.

As pointed out in [4], efficiency and scalability have been major concerns in multi-
relational data mining. Research in this direction is found, for example, in a recent work
by Appice et al.[2]. Since ffLCM is descended from LCM by Uno et al., it will be ex-
pected to be efficient at least in theory; it will inherit the advantages of polynomial-delay
and polynomial-space algorithm of LCM. Moreover, since ffLCM (Fig. 6) consists of a
simple for-loop, it would be amenable to data-parallelism. As future work, our plan is
to implement our algorithm by exploiting the parallelism as much as possible.

Acknowledgement. The authors would like to thank anonymous reviewers for their
constructive and useful comments on the previous version of the paper. The authors are
also grateful to Nobuhiro Inuzuka for providing us the datasets for the experiments in
this paper.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: VLDB, pp. 487–
499 (1994)

2. Appice, A., Ceci, M., Turi, A., Malerba, D.: A Parallel Distributed Algorithm for Relational
Frequent Pattern Discovery from Very Large Data Sets. Intell. Data Anal. (2009) (to appear)

3. Arimura, H., Uno, T.: Polynomial-Delay and Polynomial-Space Algorithms for Mining
Closed Sequences, Graphs, and Pictures in Accessible Set Systems. In: SIAM Int’l. Conf.
on Data Mining, pp. 1087–1098 (2009)

4. Blockeel, H., Sebag, M.: Scalability and efficiency in multi-relational data mining. SIGKDD
Explorations Newsletter 2003 4(2), 1–14 (2003)

5. Dehaspe, L.: Frequent pattern discovery in first-order logic, PhD thesis, Dept. Computer
Science, Katholieke Universiteit Leuven (1998)

6. De Raedt, L., Ramon, J.: Condensed representations for Inductive Logic Programming. In:
Proc. KR 2004, pp. 438–446 (2004)

7. Dzeroski, S.: Multi-Relational Data Mining: An Introduction. SIGKDD Explorations
Newsletter 5(1), 1–16 (2003)

8. Dzeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer, Heidelberg (2001)
9. Garcia-Molina, H., Widom, J., Ullman, J.D.: Database System Implementation. Prentice-

Hall, Inc., Englewood Cliffs (1999)
10. Garriga, G.C., Khardon, R., De Raedt, L.: On Mining Closed Sets in Multi-Relational Data.

In: IJCAI 2007, pp.804–809 (2007)
11. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann

Publishers Inc., San Francisco (2005)
12. Helft, N.: Induction as nonmonotonic inference. In: Proc. KR 1989, pp. 149–156 (1989)
13. Lavrač, N., Flach, P.A.: An Extended Transformation Approach to Inductive Logic Program-

ming. ACM Trans. Computational Logic 2(4), 458–494 (2001)

86 H. Seki, Y. Honda, and S. Nagano

14. Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)
15. Motoyama, J., Urazawa, S., Nakano, T., Inuzuka, N.: A Mining Algorithm using Prop-

erty Items Extracted from Sampled Examples. In: Muggleton, S.H., Otero, R., Tamaddoni-
Nezhad, A. (eds.) ILP 2006. LNCS (LNAI), vol. 4455, pp. 335–350. Springer, Heidelberg
(2007)

16. Nagano, S., Honda, Y., Seki, H.: On Enumerating Frequent Closed Patterns in Multi-
Relational Data Mining. In: Proc. WiNF 2009, pp. 89–94 (2009) (in Japanese)

17. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed Itemsets for
Association Rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–
416. Springer, Heidelberg (1998)

18. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An Efficient Algorithm for Enumerating Closed
Patterns in Transaction Databases. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI),
vol. 3245, pp. 16–31. Springer, Heidelberg (2004)

Why Text Segment Classification Based on
Part of Speech Feature Selection

Iulia Nagy�, Katsuyuki Tanaka, and Yasuo Ariki

Kobe University
1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan

{nagy,katsutanaka}@me.cs.scitec.kobe-u.ac.jp, ariki@kobe-u.ac.jp

Abstract. The aim of our research is to develop a scalable automatic
why question answering system for English based on supervised method
that uses part of speech analysis. The prior approach consisted in build-
ing a why-classifier using function words. This paper investigates the
performance of combining supervised data mining methods with vari-
ous feature selection strategies in order to obtain a more accurate why
classifier.Feature selection was performed a priori on the dataset to ex-
tract representative verbs and/or nouns and avoid the dimensionality
curse. LogitBoost and SVM were used for the classification process.
Three methods of extending the initial ”function words only” approach,
to handle context-dependent features, are proposed and experimentally
evaluated on various datasets. The first considers function words and
context-independent adverbs; the second incorporates selected lemma-
tized verbs; the third contains selected lemmatized verbs & nouns. Ex-
periments on web-extracted datasets showed that all methods performed
better than the baseline, with slightly more reliable results for the third
one.

Keywords: Question-answering, supervised learning, feature selection.

1 Introduction

In the past years Internet has become a major source of information, many people
relying on it to find the answers to their questions. Although very popular, search
engines do not provide the user with a direct answer to his or her query but with
a number of web pages the user has to browse manually to obtain the information
he or she is looking for. A crucial step for the next generation search engines is
to integrate a system allowing the user to obtain a straightforward and concise
answer to his or her question. Such systems are known as question-answering
(QA) systems and have undergone significant progress during past years. Two
main types of question-answering systems can be distinguished : factoid, which
address questions requiring simple answers such as person name, organization
name, numeric expression, and non-factoid dealing with questions that require
a more complex answer.
� Exchange student from INSA de Lyon, Computer Science Department.

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 87–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

88 I. Nagy, K. Tanaka, and Y. Ariki

Our work focuses on creating a QA system for non factoid questions, more
precisely a why-type QA system. While many such systems are presented in the
QA literature, some of them suffer from domain dependency, since they address
a specific domain such as medicine, or may prove difficult to build due to hand-
crafted patterns and the considerable grammar expert knowledge needed. In the
attempt to overcome these flaws, we adopted a machine learning approach for
building our why-type QA system. The main purpose of our research is to build
an effective QA system able to detect why text segments from arbitrarily built
corpora and scalable to different languages.

More specifically, the task we address is building a classifier for QA-system
able to identify the answers that actually respond to a why question. By applying
this classifier in a preprocessing step we should be able to reduce the amount of
data to analyze, by eliminating all text segment not answering a why question,
and therefore facilitate the work of the answer extraction module of the QA
system. Previous work focused on adapting to English an approach described
in the Japanese literature [10] and evaluating its performance. In this method
only function words are extracted from pre-labeled text segments, and then
used to train a why-classifier. Considering the overall satisfying results of this
experiment, we have decided to seek for methods to improve the performance of
the existent classifier.

In this paper, we present the different techniques we applied in order to im-
prove the initial classifier’s performance. In order to achieve our goal we decided
to enrich the initial feature space with other valuable features. Initially we added
context-independent1 adverbs to the feature space that contained only function
words. Afterwards, using a priori feature selection techniques, lemmatized verbs
and lemmatized verbs & nouns were also added to the feature space.

In order to evaluate how well our 3 methods work, we trained classifiers using
both LogitBoost and SVM with a Pearson VII function based kernel. Moreover,
in order to ensure the validity of our experience, we used various training and
evaluation datasets, composed of web-extracted text segments.

This article is organized as follows: Section 2 describes the related work on
why-type QA, Section 3 describes the previous work along with the method
that initially inspired us. Section 4 presents the feature selection algorithms and
the classifier algorithms proposed while Section 5 describes the experimental
preparation and the results. Finally Section 6 presents the conclusion and the
description of future works.

2 Related Work

With the continuous growth of the information base available on Internet, the
importance of effective question-answering tools to facilitate the search process
continues to increase. While research in building factoid QA systems has a long

1 Context-independent words refer to words that have no intrinsic meaning; on the
contrary, context-dependent words describe an action, a feeling or an object.

Why Text Segment Classification Based on Part of Speech Feature Selection 89

history, it is only recently that studies have started to focus also on the creation
and development of QA systems for answering why-type questions.

One of the best known figures in the domain is Verberne [13–16] whose initial
work consisted in retrieving why-answers with the use of Rhetorical Structure
Theory. In [15] she presented a re-ranking method where the score assigned to a
QA-pair by QAP ranking algorithm2 is weighted by taking into consideration a
number of syntactic features. In her latest work [16] Verberne implements a fully
functional why-QA system by integrating the re-ranking algorithm described
in paper number and also makes a throughout analysis of the advantages and
disadvantages of the BOW model in a why-QA context. This system obtains
a 20% improvement in terms of MRR. Though efficient this method is labor
intensive: the values produced by the 2 parsers used, the Pelican (constituency
parser) and the EP4IR parser (statistical parser), have to be extracted manually
and assigned to the selected features. Moreover, this method requires advanced
language processing skills that only an expert in language syntax and semantics
would possess.

A slightly different approach encountered in scientific literature is to derive
causal expression patterns by extracting causal expressions from corpora. More
clearly, these methods extract why-answers based on the presence of certain
causal verbs [4] or relators [2] in the text analyzed. Although they are simple to
implement and effective, these methods have the disadvantage of a low domain
coverage: they do not address all why-type QA but only those that fulfill a
certain pattern.

A more general approach, where causal expressions are acquired automati-
cally with the aid of the Japanese EDR3 dictionary, is described by Higashinaka
and Isozaki [5]. The EDR dictionary contains phrases gathered from heteroge-
neous sources thus a good coverage of causal expressions is ensured. In this ap-
proach each phrase of the EDR dictionary is processed and context-independent
words that express cause are extracted. All other words are replaced with a
“*” to maintain the structure of the phrase. The structures obtained, combined
with manually extracted causality indicative rules, are used to train a ranker.
While known to be the best-performing fully implemented why-QA system for
Japanese, Higashinaka and Isozaki’s system relies on information extracted from
a hand-crafted resource and therefore is not fully automated. Moreover the EDR
dictionary is a rather high-priced resource only available for a limited number
of languages.

To overcome the disadvantages of the former method, Tanaka [9, 10] built
a fully automated classifier using bag-of-words features. Although the classifier
performed well on small datasets, it failed on very large ones. In order to improve
the performance of his initial method, Tanaka removed all context-dependent
terms (e.g. nouns, verbs, adjectives etc.) and only included in the analysis a small
group of words: the function words. Since the dimension of the new feature space

2 QAP is a scoring algorithm for passages developed for question answering tasks. For
further detail refer to [15].

3 Electronic Dictionary Research.

90 I. Nagy, K. Tanaka, and Y. Ariki

was rather small the dimensionality problem was corrected, while all the initial
qualities of the system were preserved. The latter method has the advantage of
being easy to implement, scalable and effective. Moreover, it proves that feature
selection is a promising technique in classifying text samples. Therefore our
previous work was dedicated to testing and adapting it to English.

3 Previous Work

In this section we document our efforts [7] to extend Tanaka’s [10] method to En-
glish. A detailed description is needed because this paper presents our attempts
to improve this method.

3.1 Terminology

A content word refers to a word that has a meaning, and usually serves to
describe an action, a feeling, an object (e.g. verb, noun, adjective etc.).

A function word is defined as a word that holds no meaning in itself, its sole
purpose being to connect and create relations between content words.

A text segment is a group of sentences that are an eligible candidate for
answering a why-question.

Tanaka’s [10] method will be referred to as “Bag of function words”
henceforth.

Text segments that are eligible why-answers will be referred as why-TS while
those that do not as other-TS.

3.2 Bag of Function Words - Method Outline

The fundamental quality of this method is its ability to build domain indepen-
dent fully automated classifiers. In his work Tanaka argues that 3 conditions are
primordial to obtaining the domain independence of a classifier:

– convergence and reasonable size of feature space
– generality of features in the feature space
– ability of the feature to discriminate between encoding or not encoding cau-

sation text segments.

After analyzing vocabulary syntax, Tanaka concluded that function words fulfill
all three conditions stated beforehand: their number is limited contrary to words
like nouns; they have no intrinsic meaning therefore they ensure generality of
features; and, last but not least, each one of them can be used to express a
specific context(definition, cause, explanation etc.).

In order to identify function words in corpora, Tanaka used syntactic parser
for Japanese on each text segment. The words that fulfilled the conditions stated
above were selected and included in the feature space; the subset obtained con-
tained mainly Japanese particles (e.g. ga, wa, kara etc.). Subsequently these

Why Text Segment Classification Based on Part of Speech Feature Selection 91

words were mapped in a training dataset, composed of both why-TS and other-
TS. Tf − idf was calculated for each function word and feature vectors were
built for each text segment. A classification model was built using LogitBoost
and tested on various datasets.

3.3 LogitBoost

LogitBoost is a boosting algorithm with a binomial log-likelihood loss function
and is part of the ensemble learning methods. The principle that governs en-
semble learning is that combining several models produced by a classification
algorithm into an ensemble might guarantee better accuracy than a single clas-
sifier, under the condition that the models are different enough to avoid making
similar errors. In other words, boosting works by combining weak or base learners
into a more accurate ensemble classifier. During the boosting process a number
of base classifiers are fitted iteratively to re-weighted data in order to build a
strong classifier. With each iteration the weight of the misclassified data points is
increased while decreasing that of the correctly classified. Therefore, at each next
iteration, the base learner will concentrate on the misclassified samples, working
on correctly classifying it. Any algorithm normally used for classification can be
employed as the base learner, provided it allows weighting of samples.

In Tanaka’s study, decision stumps were used as a base learners since they are
was easy to use and gave promising results.

3.4 Adaptation of the Bag of Function Words Method to English

Since the “Bag of function words” method was originaly designed only for
Japanese, our previous work was dedicated to implementing this method for
English. First and foremost, we had to replace the Japanese part-of-speech tag-
ger with one suited to English. We selected the Standford tagger due to its high
accuracy (over 95%). This tagger uses the well known Penn Treebank style con-
taining a total of 36 part-of-speech labels. Following the principle of Tanaka’s
method, we selected 12 part-of-speech labels that we considered labeled words
that fulfilled the three conditions described previously. These parts of speech
mainly consist in coordinations, conjunctions, prepositions, modal verbs, pro-
nouns, particles and determiners.

Feature Extraction. The Stanford Tagger [11] is run on all the text segments
from the training dataset and the function words are extracted. Afterwards every
text segment is mapped in the feature space using tf − idf where the term
frequency equals the number of times a function word appears in a text segment,
and the document frequency measures in how many different text segments the
function word is present. After feature extraction the dataset is thus:

{(xi, yi)} , i = 1, 2, . . .N yiε {true, false} (1)

92 I. Nagy, K. Tanaka, and Y. Ariki

where xi is the feature vector for a given text segment i, N is the total number
of text segments and yi indicates if the i-th text segment encodes (true) or does
not encode causation (false).

Experimental Results. The preprocessed training dataset is used to build
a classifier by using LogitBoost with decision stumps. The performance of the
output classifier was evaluated using 10-fold cross-validation and measuring pre-
cision, recall, and F-measure of all the classifiers produced.

Our experiment concluded that the classifier was successful, yielding an aver-
age precision of 76.1%, and average recall of 70.6% for text segments encoding
causality, respectively 72.6% and 77.9% for text segments that do not encode
causality.

Although preliminary results were promising, we think the small datasets used
for training and testing might affect the validity of our study. Moreover we want
to investigate the potential of other words in the why-classification process.

4 Proposed Method

After further analysis of English syntax we concluded that other parts-of-speech
hold precious information for why-type classification: along with the parts-of-
speech that we considered as labeling function words, some adverbs also fulfilled
the conditions to be considered function words. Adverbs such as “before”, “less”
or “only” are frequently present in any kind of text corpora and therefore they
are not context-dependent. Moreover, since their number is limited, they success-
fully satisfy the reasonable feature space condition (section 3.2, 1st condition).
Considering the properties of these words, we have decided to add them to our
initial feature space. The extraction procedure is detailed in subsection 4.1 . This
method will be considered as the first method for our tests.

An analysis on the Second Edition of the Oxford English dictionary [1] shows
that, out of the 171476 words, over half of the words are nouns, while about
a quarter are adjectives, and about a seventh are verbs. In this respect, we as-
sume that nouns and verbs play an important part when it comes to expressing
causality. In contrast, we consider adjectives only bring supplementary descrip-
tive information but do not hold notable causality discrimination properties.
Hence including verbs and nouns to our feature space might boost the classi-
fier’s performance providing their number remains limited.

On a first approach we considered including only verbs to our analysis since
their number is rather limited. We noticed that for 1000 text segments approxi-
mately the same number of distinctive verbs were extracted. Therefore including
all verbs will almost triple the dimension of the initial feature space. Moreover,
only a small amount of these verbs are eligible candidates for causal expression.
Given these results two options presented to us: use a predefined dictionary of
causal verbs or attempt to automatically extract significant verbs from the set
of verbs present in our training dataset. Although the first option is appealing,
it implies using a resource build with the help of a linguist expert. Besides, there

Why Text Segment Classification Based on Part of Speech Feature Selection 93

exists no record of an exhaustive list of causal verbs, most of them being the
fruit of scientific papers that deal with a precise subject [6].

For these reasons, we selected the second option: acquiring causal verbs au-
tomatically from corpora. To avoid the dimensionality curse we opted for an a
priori feature selection technique. With this technique, we are able to extract
verbs that discriminate well between why-TS and other-TS. We believe this
list also incorporates a fair amount of causal verbs. A full description of this
method can be found in subsection 4.2. Due to the importance of nouns in the
English language we decided to implement this method for nouns as well (see
subsection 4.2).

4.1 Adverb Extraction and Selection

In order to extract the context-independent adverbs from the corpora, we use
WordNet [3] as an external resource that will help identify the eligibility of
an adverb. With the help of the Stanford Tagger we gather all adverbs in our
corpora and select only those whose root does not correspond to content word.
WordNet is only used to verify whether the root is identical to a lemma of a
verb, noun or adjective, and exclude the adverb if that is the case. We decide to
reject these adverbs because we believe they only have a descriptive role in the
sentence, with little or no causality information. Moreover, most of them derive
from adjectives (by adding the “-ly” suffix) that we have already excluded from
analysis. The entire procedure is easy to implement and fully automated.

The WordNet dictionary is a resource broadly used for research purposes
displaying a vast lexical database that can guarantee a good coverage of the
English vocabulary. Moreover this dictionary is or will be available for many
languages, thus guaranteeing the scalability of the present method.

4.2 Verb and Verb & Noun Extraction and Selection

The extraction process is identical for both verbs and nouns. All existing verbs
are selected from corpora and lemmatized using the lemmatizer supplied by
MorphAdorner [8]. The initial feature vectors, used only for feature selection
purposes, are created by following the same procedure we used in our previ-
ous word (see section 3.4) by keeping only verbs. These feature vectors are fed
to several a priori feature selection algorithms and the representative lemmas
are selected. The lemmas extracted are added to the initial feature space, that
contained only function words and selected adverbs. Finally, the final feature
vectors, used for classification, are generated with the same method. In this fea-
ture vectors all features are represented (function words, adverbs and selected
lemmas). We chose to perform the feature selection on lemmas only, because
function words and adverbs seem to represent well each text segment due to
their redundancy in text. Performing a feature selection on all feature will lead
to the elimination of these words and therefore a poorer representation of each
text segment.

94 I. Nagy, K. Tanaka, and Y. Ariki

In our last experiment we follow this procedure for both verbs and nouns.
We chose to make the selection on both nouns and verbs at the same time
because some of these parts-of-speech share the same lemma (e.g. cause, suggest-
suggestion etc.); therefore instead of obtaining two different tf − idf calculations
for the same lemma, we obtain only one where the tf − idf value reflects the
presence of the lemma in the text and not of the verb or noun individually.

4.3 Feature Selection Algorithms

Feature selection is a data mining technique which consist in choosing represen-
tative input features and removing irrelevant and redundant ones. This method
is used in supervised learning to find feature subsets that will boost the clas-
sification accuracy. Moreover, with fewer features to analyze the classification
algorithm will operate faster and more effectively.

For our study we investigated the performance of Correlation based Feature
Selection (CFS) and χ2. The 2 methods differ by the fact that CFS uses one-
sided metrics while χ2 uses two-sided ones. Feature selection algorithms using
two-sided metrics select features most indicative of both membership (positive
features) and non-membership (negative feature), while feature selection using
one-sided metrics only extracts features most indicative of membership.

Correlation Based Feature Selection. CFS uses a heuristic to measure
the usefulness of each feature in predicting the class label by considering their
average correlation to the class against the average inter-correlation. In other
words, a feature has increased importance if it has high average correlation
with the class and low inter-correlation with other features. The formula of the
heuristic is:

Gs =
k rci√

k + k (k − 1) rii

(2)

where k is the number of features in the subset, rci the mean feature correlation
with the class, and rii is the average feature-feature inter-correlation.

To determine which features are included in the output subset the heuristics
is combined with a search strategy.

χ2 Based Feature Selection. The χ2 statistic measures the lack of indepen-
dence between a word, w, and a given category, ck. χ2(w, ck) has a natural value
of zero if word w and category ck are independent. Since χ2(w, ck) is per-class,
the average is used to combine the scores and select the k most representative
features.

This method outputs a ranked list of all the variables in the dataset with
their respective score. The number of features to include in the final subset is
determined empirically.

Why Text Segment Classification Based on Part of Speech Feature Selection 95

4.4 Classification Algorithms

To evaluate the performance of the different proposed methods we consider two
classification algorithms : LogitBoost and Support Vector Machine (SVM) with a
Pearson VII function based kernel (Puk) [12]. LogitBoost has already been used
for classification purpose in previous work, a full description being available in
section 3.3. Support Vector Machine is a very promising machine learning tool
due to its generalization ability and robust behavior over a variety of different
learning tasks. However, SVM can perform effectively only if a suitable kernel
function is applied. Usually the latter is determined experimentally by applying
various kernel functions and selecting the best performing.

In this paper we used Puk function because of its ability to behave as a
generic kernel. The Puk function can be varied gradually from a Gaussian bell
to a Lorentzian line shape just by changing its input parameters, σ and ω. The
Puk kernel function is:

K(xi, xj) =
1[

1 +
(

2
√

‖xi−xj‖2
√

21/ω−1
σ

)2
]ω (3)

In Eq. (4) the parameter σ determines the width (sharpness) of the Pearson VII
function. The parameter ω controls the actual shape (tailing) of the function.
The Euclidean distance between the two vector arguments is normalized ensuring
that all distances between the input objects and the map weights are in the range
[0-1]. Due to this uniform rescaling we can easily optimize the kernel function
just by modifying the values of σ and ω.

5 Experimental Settings and Results

5.1 Datasets

The data used for the experiment came from three main sources : Yahoo!Answers,
Wikipedia and the Why-TS made available by Verbene on her website. From
Yahoo!Answers we have randomly extracted text segments that were the answer
to a why-question, for the positive data, and also those that were the answer
to other types of questions (e.g. when, what, who), for negative data. Only
the answers from the best-answer category were selected. From Wikipedia we
randomly extracted definitions to serve as negative data in our experiment, and
also content-related passages to each why-TS from Verberne’s dataset. The latter
were extracted manually and served as negative examples that possessed similar
word content as the text-segments from the Verberne’s dataset.

From the data collection, we constructed the three training datasets displayed
in Table 1. For each set the origin of negative/positive data is indicated with the
mention whether the data was automatically extracted (A) or manually (M).
The data used for training is balanced (same number of why-TS and other-TS).
The TS column indicates the total number of text segments used for training.

96 I. Nagy, K. Tanaka, and Y. Ariki

Table 1. Training datasets

Name TS Negative Data Positive Data

TR-V 432 Verberne Dataset Wikipedia (M)
TR-Y 2000 Yahoo!Answers (A) Yahoo!Answers (A)
TR-YW 2000 Yahoo!Answers (A) Wikipedia (A)

Table 2. Test datasets

Name Used with Negative Data Positive Data

Test-V TR-V Yahoo!Answers Wikipedia
Test-Y TR-Y Yahoo!Answers Yahoo!Answers
Test-YW TR-YW Yahoo!Answers Wikipedia

For testing purposes we constructed incrementally several datasets in order to
evaluate the performance of the algorithms with the increase of data. We created
test sets of 2000, 4000, 6000, 8000 and 10000 samples. The origin of the data
used to test each training dataset is displayed in Table 2. All data was gathered
automatically.

5.2 Feature Extraction

The features were extracted from the datasets described in section 5.1. using
Stanford Tagger for part-of-speech labeling and MorphAdorner Lemmatizer for
extracting the lemma for verbs and nouns. A simple spell corrector algorithm
was also used to correct recurrent spelling mistakes. Following the three methods
described in section 4. we experimented with six possible feature vectors (see
Fig. 1). There are twelve scenarios of the experiments in which three scenarios
do not incorporate a feature selection step. The description of each is shown in
Table 3.

Fig. 1. Possible feature configurations vectors compared in the experiment

Why Text Segment Classification Based on Part of Speech Feature Selection 97

5.3 Parameter Optimization

In order to obtain maximum accuracy for the classification models we have to
determine the optimal parameter setting for both classifiers. The optimization
parameters were: the number of iterations, i, for the LogitBoost algorithm and
σ, ω and the complexity parameter, c, for SVM-Puk. We evaluate the parameter
setting performance over a 10-fold cross-validation performed on the training
datasets; thus, the data used for parameter tunning is independent from the test
sets. Table 4 contains the optimal parameter setting we have found.

Table 3. Description of scenarios

Features Feature Selection Classifier used Scenario

Function words (F) None
SVM - Puk F1
LogitBoost F2

F + adverbs (FA) None
SVM - Puk FA1
LogitBoost FA2

FA + verbs
χ2 SVM - Puk FV1

LogitBoost FV2

CFS SVM - Puk FV3
LogitBoost FV4

FA + verbs & nouns
χ2 SVM - Puk FN1

LogitBoost FN2

CFS
SVM - Puk FN3
LogitBoost FN4

Table 4. Optimal parameter setting

TR/Test-V TR/Test-YW TR/Test-Y

Parameters i c ω σ i c ω σ i c ω σ

F1 - 1.4 0.9 1.2 - 1.4 0.9 1.2 - 1.0 1.6 1.6
F2 50 - - - 110 - - - 200 - - -
FA1 - 1.4 2.0 2.3 - 1.4 1.5 1.9 - 0.8 1.1 1.1
FA2 80 - - - 110 - - - 80 - - -
FV1 - 1.4 2.0 2.4 - 1.3 4.0 4.0 - 1.3 2.2 2.8
FV2 90 - - - 200 - - - 200 - - -
FV3 - 1.4 2.5 2.5 - 1.0 1.6 2.0 - 1.1 0.9 1.1
FV4 100 - - - 200 - - - 200 - - -
FN1 - 1.2 3.0 3.0 - 1.2 2.0 2.2 - 1.2 2.0 2.1
FN2 100 - - - 200 - - - 300 - - -
FN3 - 1.5 4.0 4.0 - 1.1 2.5 2.5 - 1.4 1.6 1.5
FN4 95 - - - 200 - - - 300 - - -

5.4 Results

All twelve scenarios were executed on each of the three training databases. To
estimate the performance of the model built with each scenario we use a 10-fold

98 I. Nagy, K. Tanaka, and Y. Ariki

Table 5. Results obtained using the SVM classifier. Percent improvement, as well as
statistical significance is with respect to the SVM baseline (F1).

Scenario TR/Test-YW TR/Test-V TR/Test-Y

F1 (baseline) 0.9108 0.8101 0.6418
FA1 0.9178 (0.70%) 0.8318 (2.17%) 0.6467 (0.49%)
FV1 0.9126 (0.18%) 0.8196 (0.95%) 0.6602 (1.84 %)
FV3 0.9158 (0.50%) 0.8082 (-0.19%) † 0.6514 (0.96%)
FN1 0.9252 (1.44%) 0.7700 (-4.01%) 0.6654 (2.36%)
FN3 0.9198 (0.90%) 0.7992(-1.09%) 0.6654 (2.36%)

Table 6. Results obtained using the LogitBoost classifier. Percent improvement, as
well as statistical significance is with respect to the LogitBoost baseline (F2).

Scenario TR/Test-YW TR/Test-V TR/Test-Y

F2 (baseline) 0.9356 0.5344 0.6326
FA2 0.9381 (0.25%)† 0.6490 (11.46%) 0.6410 (0.84%)
FV2 0.9432 (0.76%) 0.6722 (13.78%) 0.6432 (1.06%)
FV4 0.9432 (0.76%) 0.5758 (4.14%) 0.6440 (1.14%)
FN2 0.9496 (1.40%) 0.6300 (9.56%) 0.6556 (2.30%)
FN4 0.9428 (0.72%) 0.6434 (10.9%) 0.6556 (2.30%)

cross-validation. Once each model has been optimized over cross-validation, we
perform the evaluation tests on test datasets.

Tables 5 and 6 contain the results of our findings. The displayed value repre-
sents an average of the 5 F-measures (for 2000, 4000, 6000, 8000 and 10000 text
segments) we measured for each scenario during our experiment. A significance
paired t-test was performed on the 5 F-measure scores measured for each sce-
nario, and succeeded on almost all at a p < 0.05 level; the scenarios that passed
the test only at the p < 0.1 level are denoted with a †. In order to determine
the most significant features for the CFS method we used a hill climbing search
algorithm; for the χ2 selection process we selected all features that had a score
superior to zero.

Results show that all 3 methods over-perform baseline, with one slight excep-
tion for the TR/Test−V with SVM classifier group (refer to the results in italic
from table 5). In this case both function words and function words plus adverbs
yield better results than the methods that integrate verbs or verbs & nouns. We
believe this is a consequence of the fact that negative data was built with similar
content words that existed in the positive data. Therefore verbs and nouns have
lost their discriminative power when integrated in the SVM classification model.
On the contrary, the LogitBoost models built for this set (FV2, FV4, FN2, FN4)
are less affected by the content similarity and perform better than baseline.

Why Text Segment Classification Based on Part of Speech Feature Selection 99

Both LogitBoost and SVM are successful classification models on all data,
yielding similar performance, except for the TR/Test − V data where SVM
classification outperforms LogitBoost with over 20% (refer to second column of
tables 5 and 6). In terms of feature selection χ2 and CFS give similar results.
While χ2 is faster in ranking the results, CFS is easier to manipulate since we are
not required to determine the cut-off value that would produce the best results.
Globally we notice the verbs & nouns methods (FN) are the best performing ones
except for the TR-V Test-V data. Results show that all methods discriminate
very well between random definitions and why-TS (up to 94%) while applied to
a more heterogeneous database the accuracy of classification falls down to 65%.

In terms of execution time we notice that the average speed decreases with the
number of features that are included in the analysis, but also with the number of
validation and training instances. Therefore the time to build the model varies
from 2.7 seconds, on TR-V, to 115.5 seconds, on TR-Y, for the LogitBoost
classifier and from 190 milliseconds, on TR-V, to 28.5 seconds, on TR-Y, for
the SVM classifier. The worst execution time with respect to testing is obtained
when performing the test on the 10000 instances on the Test-Y dataset; the time
is of 1.97 seconds with a LogitBoost classification model and of 70.38 seconds
with a SVM-Puk classification model.

We show the progression of our two classification models with the increase
of test data in Fig. 2 for SVM-Puk and respectively Fig. 3 for LogitBoost; the
dataset used in both figures is TR/Test-Y. We have excluded the FV1-2 and
FN1-2 because we stated before that the χ2 feature selection performance is
similar to CFS while CFS is easier to manipulate.

Fig. 2. F-measure value at various test dataset sizes for SVM-Puk Classifier

This graphics prove that the FN scenario is the best performing with both
SVM and LogitBoost. We note that the SVM-Puk classfier is very sensitive

100 I. Nagy, K. Tanaka, and Y. Ariki

Fig. 3. F-measure value at various test dataset sizes for LogitBoost Classifier

to the quality of the test data, while the LogitBoost classifier suffers very little
from it.

5.5 Conclusion and Future Works

In this paper we investigated several methods to improve the performance of the
“Bag of function words” on English. Through our work we have shown the impor-
tance of adding new features (adverbs, verb lemmas and verb & noun lemmas) in
boosting the classification of why-text segments. Initially, context-independent
adverbs were added to the features showing small but valuable improvement of
classification accuracy on all test datasets. Taking into account the amount of
nouns and verbs in the English language we assumed they held significant infor-
mation in terms of expressing causality and hence considered integrating them in
the analysis. Confronted with their large number, we have added a feature selec-
tion step to our method to avoid the dimensionality curse. Adding the features
selected by the feature selection algorithm has proven successful improving the
classification performance with approximatively 2.5% for nouns & verb lemmas
and 1% for verb lemmas.

We are tempted to think SVM with a Puk kernel might be a more appropriate
classifier than LogitBoost since it can be parameterized to adapt to any kind of
data and the results show that SVM slightly outperforms LogitBoost for most
of the validation tests performed, but we believe this matter requires further
investigation. However, during these experiments the optimum configuration pa-
rameters were determined by a local search performed manually. Therefore the
accuracy of this classification model can be further improved by applying an
automatic extensive search for the configuration parameters.

Future work will be dedicated to making our approach more robust to answers
that contain noise (spelling mistakes, emoticons) and also handling answers that
do not contain direct answers but an url to further resources.

Why Text Segment Classification Based on Part of Speech Feature Selection 101

References

1. AskOxford. How many words are there in the english language?,
http://www.askoxford.com

2. Blanco, N., Castell, E., Moldovan, D.: Causal relation extraction. In: Proceedings
of the Sixth International Language Resources and Evaluation, LREC 2008 (2008)

3. Fellbaum, C.: WordNet: An Electronic Lexical Database. Bradford Books (1998)
4. Girju, R.: Automatic detection of causal relations for question answering. In: Pro-

ceedings of the ACL 2003 workshop on Multilingual summarization and question
answering, pp. 76–83 (2003)

5. Higashinaka, R., Isozaki, H.: Automatically acquiring causal expression patterns
from relation-annotated corpora to improve question answering for why-questions.
ACM Transactions on Asian Language Information Processing (TALIP) 7(2), 1–29
(2008)

6. Khoo, C., Chan, S., Niu, Y.: Extracting causal knowledge from a medical database
using graphical patterns. In: In Proceedings of 38th Annual Meeting of the ACL,
Hong Kong, pp. 336–343 (2000)

7. Nagy, I., Tanaka, K., Takiguchi, T., Ariki, Y.: Extracting why text segment from
web based on grammar-gram. In: Proceedings of the Fouth Spoken Document
Processing Workshop (2010)

8. Philip, R.: ”Pib” Burns of Academic and Northwestern University Research Tech-
nologies. English lemmatizer,
http://morphadorner.northwestern.edu/morphadorner/lemmatizer/

9. Tanaka, T., Takiguchi, K., Ariki, Y.: Automatic why text segment classification
and answer extraction by machine learning (japanese). Journal of Information Pro-
cessing Society 49(6), 2234–2242 (2008)

10. Tanaka, T., Takiguchi, K., Ariki, Y.: Domain independent why text segment
classification and answer extraction by grammar-gram and grammarverb-gram
(japanese). WI2, pages pp. 89–94 (2009)

11. Toutanova, K., Christopher, D.: Manning. Enriching the knowledge sources used
in a maximum entropy part-of-speech tagger. In: Proceedings of the 2000 Joint
SIGDAT conference on Empirical methods in natural language processing and
very large corpora, pp. 63–70 (2000)

12. Ustun, W.J., Melssen, B., Buydens, L.M.C.: Facilitating the application of support
vector regression by using a universal pearson vii function based kernel. Chemo-
metrics and Intelligent Laboratory Systems 81, 29–40 (2006)

13. Verberne, S.: Developing an approach for why-question answering. In: EACL 2006:
Proceedings of the Eleventh Conference of the European Chapter of the Association
for Computational Linguistics: Student Research Workshop, pp. 39–46 (2006)

14. Verberne, S., Boves, L., Oostdijk, N., Coppen, P.-A.: Evaluating discourse-based
answer extraction for why-question answering. In: SIGIR 2007: Proceedings of the
30th annual international ACM SIGIR conference on Research and development
in information retrieval, pp. 735–736 (2007)

15. Verberne, S., Boves, L., Oostdijk, N., Coppen, P.-A.: Using syntactic information
for improving why-question answering. In: COLING 2008: Proceedings of the 22nd
International Conference on Computational Linguistics, pp. 953–960 (2008)

16. Verberne, S., Boves, L., Oostdijk, N., Coppen, P.-A.: What is not in the bag of
words for why-qa? Comput. Linguist. 36(2), 229–245 (2010)

http://www.askoxford.com
http://morphadorner.northwestern.edu/morphadorner/lemmatizer/

Speeding Up and Boosting Diverse Density Learning

James R. Foulds and Eibe Frank

Department of Computer Science, University of Waikato, New Zealand
{jf47,eibe}@cs.waikato.ac.nz

Abstract. In multi-instance learning, each example is described by a bag of in-
stances instead of a single feature vector. In this paper, we revisit the idea of
performing multi-instance classification based on a point-and-scaling concept by
searching for the point in instance space with the highest diverse density. This is
a computationally expensive process, and we describe several heuristics designed
to improve runtime. Our results show that simple variants of existing algorithms
can be used to find diverse density maxima more efficiently. We also show how
significant increases in accuracy can be obtained by applying a boosting algo-
rithm with a modified version of the diverse density algorithm as the weak learner.

1 Introduction

Multi-instance (MI) learning [7] is a variation of traditional supervised learning with
applications in areas such as drug activity prediction [7], content-based image retrieval
[26], stock market prediction [13] and text categorization [1].

In standard supervised learning, each example is represented by a single feature vec-
tor. In MI learning, examples are collections of feature vectors, called bags. The feature
vectors within the bags are known as instances. Each instance is a vector of (typically
real-valued) attribute values. Each bag has a class label, but labels are not given for the
instances. The task is to learn a model from a set of training bags to predict the class
labels of unseen future bags.

The original motivating application for MI learning was the musk drug activity pre-
diction problem [7]. The task is to predict whether a given molecule will bind to a target
“binding site” on another molecule, and hence emit a “musky” odor. A molecule may
take on several different conformations (shapes) by rotating its internal bonds. If a sin-
gle conformation can bind to the target binding site, the molecule is considered to be
active. This is a difficult learning problem because it is not always clear which confor-
mation is responsible for activity. Dietterich et al. represented each molecule as a bag
containing the different conformations that the molecule can adopt.

Much of the work on MI learning, including all early work and notably including [7]
and [14], makes a specific assumption regarding the relationship between the instances
within a bag and its class label. We will follow [21], and refer to this assumption as the
standard MI assumption. It states that each instance has a hidden class label c ∈ Ω =
{+,−}. Here, ‘+’ is the positive class, and ‘−’ is the negative class. The set of class
labels for bags is also Ω. Under this assumption, a bag is positive if and only if at least

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 102–116, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Speeding Up and Boosting Diverse Density Learning 103

one of its instances is positive. (i.e. belong to the ‘+’ class). Thus, the bag-level class
label is determined by the disjunction of the instance-level class labels.

A number of algorithms for MI learning can be found in the literature. Dietterich
et al. [7] presented the first algorithms for MI learning, which use axis-parallel hyper-
rectangles (APR) to solve the musk problem. The algorithms build a single APR that
identifies the “positive” region of instance space. At classification time, any bag that
contains an instance within the APR is labeled as positive, as per the standard MI
assumption.

A different method for tackling MI learning problems is to transform the data so that
unmodified single-instance learner can be applied, e.g. by computing summary statistics
as in the relational learning system RELAGGS [12], or by labelling each instance with
its bag’s label and combining predictions [16].

A common approach to MI learning is to “upgrade” standard supervised algorithms
to handle the MI scenario by modifying their internals. Such algorithms include k-
nearest neighbours [20], support vector machines [1,11], decision trees and rules [6],
logistic regression [24] and boosting [2,24,19]. In [3], a different approach is used:
a standard boosting algorithm is applied in conjunction with an MI base learner—a
special-purpose one that induces hyper-balls or hyper-rectangles. We pursue the same
basic approach in this paper, and show that boosting can be applied successfully in con-
junction with a modified version of an existing, established MI algorithm, the diverse
density method proposed by Maron [14].

The diverse density method is a statistical approach to MI learning under the standard
assumption. However, the original learning techniques within the framework are com-
putationally expensive. In this paper we first investigate heuristics that are designed to
improve computational efficiency. We show that runtime can be improved without loss
of accuracy. We then show how to adapt the basic algorithm so that it can be boosted to
increase predictive performance, yielding multi-instance classifiers that are competitive
with the state-of-the-art.

The remainder of the paper is structured as follows: Sections 2 and 3 detail the di-
verse density framework and its associated algorithms respectively. Section 4 describes
the heuristic variants of these algorithms we consider and Section 5 has experimental
results. Section 6 shows how to adapt the basic method to perform boosting and presents
the improvements in accuracy obtained. We conclude in Section 7.

2 Diverse Density

Diverse density DD(h) : h ∈ H → R+, as defined in [13,14], is an objective function
for determining the best hypothesis ĥ in a certain class of probabilistic multi-instance
classifiers H . The objective function is designed to model the intuition that under the
standard MI assumption, the positive region of the instance space χ = Rd is most
likely to be close to instances from many different (i.e. “diverse”) positive bags. In
[13,14], diverse density is assumed to be proportional to the posterior density for the
model parameters, so under this interpretation maximizing diverse density corresponds
to finding a maximum a-posteriori estimate ĥMAP .

As this posterior density is not defined in terms of a conditional likelihood in [13,14],
it is not immediately obvious that it is an appropriate objective function for classification

104 J.R. Foulds and E. Frank

learning. The “diverse”-ness property is only a heuristic motivation for DD(h). How-
ever, diverse density can instead be understood as a conditional likelihood function un-
der a different interpretation of some terms1 (see also [23]). This interpretation is what
we use here because it is more in line with work in probabilistic machine learning, and
it motivates diverse density learning as a principled maximum-likelihood estimate of a
discriminative model. Additionally, under this interpretation, we do not have to resort
to cross-validation on the training set in order to choose a decision boundary2.

Consider the task of learning a discriminative model Pr(+|Bi, h) for predicting the
probability that a bag Bi is positive, given a hypothesis h. Let Pr(+|Bij , h) be the prob-
ability that instance j of bag Bi is positive. Assuming independence, Pr(+|Bi, h) =
1−

∏
j(1−Pr(+|Bij , h)), the probability that at least one instance is positive, in line

with the standard MI assumption. Further assuming that bags are iid, the conditional
likelihood function for h given a dataset D is

L(h) = Pr(Y |D, h)

=
∏

i

Pr(+|B+
i , h)

∏
i

Pr(−|B−
i , h)

=
∏

i

(
1 −

∏
j

(1 − Pr(+|B+
ij , h))

)∏
i

(∏
j

(1 − Pr(+|B−
ij , h))

)
,

where Y is the set of labels for the bags in D, and the B+
i s and B−

i s are the positive
and negative training bags, respectively.

The model parameters to be learnt are h = {x1, . . . xd, s1, . . . , sd}, where x ∈
χ is the location of the “target point” identifying the positive region of the instance
space, and s is the feature scaling vector. To complete the model, we still need to
specify Pr(+|Bij , h). Maron and Lozano-Perez use a radial “Gaussian-like” function
Pr(+|Bij , h) = exp(−||Bij −x||2), with ||Bij −x||2 =

∑
k s2

k(Bijk −xk)2. In other
words, it is assumed that the probability that instance j of bag Bi is positive drops ex-
ponentially with distance from point x, with the scaling of each dimension k in feature
space determined by sk.

Using this form for Pr(+|Bij , h), the conditional likelihood function is identical
to Maron and Lozano Perez’ diverse density function DD(h) under what they call the
“noisy-or model” (so named because the Pr(+|B+

i , h) term corresponds to a proba-
bilistic version of a logical “or”). Hence, maximizing the (log) likelihood of this model
is equivalent to maximizing diverse density. Maron also formulated the “most-likely-
cause” model for diverse density learning. With this model, the likelihood needs to be
modified so that Pr(+|Bi, h) = maxj Pr(+|Bij). The max operator can be viewed
as an approximation to a logical “or”, so the most-likely-cause model is also consistent
with the standard MI assumption.

1 Specifically, Maron and Lozano Perez’ “Pr(h|B)” and “Pr(h|Bij)” are interpreted as
Pr(+|B,h) and Pr(+|Bij , h) respectively.

2 This fact was also exploited implicitly in EM-DD [25].

Speeding Up and Boosting Diverse Density Learning 105

3 Existing Diverse Density Algorithms

In this section we discuss existing MI learning algorithms that are based on the diverse
density framework. In the next section we introduce new variants of these methods
that are based on simple heuristics designed to reduce training time while maintaining
classification accuracy on new data.

The original maxDD diverse density algorithm attempts to find the target concept by
maximizing diverse density (i.e. conditional likelihood) over the instance space, using
gradient ascent with multiple starting points. Because the feature scaling vector is also
unknown, it is optimized simultaneously (and initialized with all values set to 1.0).
Restarts are performed at every instance from each positive bag, as the target point is
necessarily close to some of those instances.

Maron [13] also proposed an alternative DD maximization algorithm, Pointwise Di-
verse Density (PWDD), which was designed to speed up the training process. However,
he did not evaluate PWDD, except on a simple artificial dataset that is used to illus-
trate the underlying idea. One contribution of this paper is that we compare PWDD to
maxDD (and variants thereof) on a collection of datasets and thus attempt to close this
gap in the literature.

While maxDD uses a gradient ascent method to search for the point of maximum
diverse density—with different starting points—PWDD only computes diverse density
at exactly the points corresponding to instances in positive bags in the training data. For
each positive bag, the algorithm selects the instance with the highest diverse density,
and the output hypothesis is the average point of these selected instances.

This version of the DD algorithm performs no gradient optimization and is therefore
extremely fast; however it requires the feature scaling vector to be known. In practice,
this is typically not the case, so the method must be extended to find the best scaling
vector. Maron proposes several alternatives (but does not name them; the names are
ours):

– Scaling First For each instance in a positive bag, perform gradient ascent to opti-
mize the feature scaling vector for the highest diverse density at that point. Select
the vector that produced the highest diverse density, and use this for PWDD.

– Iterative Pick an initial scaling, then use PWDD to find the best point (or points)
with that scaling. Then use gradient ascent to optimize the scaling vector at the best
point(s). Repeat using the new scaling.

Maron also mentions potential variants where the selection of the best instance is incor-
porated into the gradient ascent optimization routine by replacing the max operator with
the differentiable softmax function. However, we do not consider these softmax-based
variants in this paper.

Zhang and Goldman [25] later formulated the EM-DD algorithm, a variant of the
maxDD algorithm that is based on the expectation-maximization (EM) approach. The
algorithm starts with an initial guess h of the target concept, obtained by selecting
a point from a positive bag. It then performs an iterative procedure consisting of an
expectation step followed by a maximization step.

The expectation step selects the instance from each bag that is most likely to be the
cause of that bag’s label given the current hypothesis h, using the most-likely-cause

106 J.R. Foulds and E. Frank

estimator. Then, the maximization step performs a gradient ascent search based on the
selected instances to find a new h′ that maximizes DD(h′). The current hypothesis h
is reinitialized to h′. The EM loop is repeated until convergence.

Considering computational efficiency, EM-DD has an advantage over maxDD, as it
selects only a single instance from each positive bag during the expectation step, which
reduces the computational difficulty of the maximization step. Hence, EM-DD scales
well with increasing bag size.

The authors of EM-DD initially reported improved performance over maxDD on the
musk data, but Andrews et al. [1] pointed out that the original formulation of EM-DD
selected the best hypothesis based on error rate on the test data. If this is corrected, the
algorithm’s accuracy is not generally superior to that of maxDD. However, it is still
notable for its improved computational efficiency and this is why it is included in the
experimental comparison presented in this paper.

Note that there are also algorithms related to the diverse density framework that are
not based on direct optimization. They include DD-SVM [5] and its successor MILES
[4], which create an instance-based feature space mapping by using diverse density to
compute a similarity function between a bag and an instance (which corresponds to a
feature in a new instance space), and build a support vector machine on the transformed
dataset. The boosted diverse density approach presented in Section 6 generates a similar
classifier because it also produces a linear combination of contributions from diverse
density target points, where each training instance can potentially become a target point.
However, in contrast to MILES, it allows the scaling of features in the original feature
space to be adapted to the data at hand—automatically and individually for each target
point. In Section 5, we compare the empirical performance of our approach with that of
MILES.

4 A New Approach: QuickDD

In this section, we describe some simple variants of existing diverse density maxi-
mization algorithms that are designed to improve the computational efficiency of these
techniques.

As Maron and Lozano-Pérez observed, the point of maximum diverse density is by
definition close to instances from positive bags. A simple heuristic when searching for
this point is therefore to only consider the exact locations of instances in positive bags.
This heuristic is also used in PWDD, but then the best points from the different positive
bags are averaged to form a hypothesis. We propose an even simpler approach, where
the merging step is omitted, and we simply pick the best point from all positive bags as
our target point.

We will refer to this heuristic as QuickDD, as we expect quicker execution over
the standard gradient ascent approaches because the search space is greatly reduced in
this method. We hypothesized that (a) merging of candidate points as in PWDD can
produce undesirable target points and (b) gradient ascent search over instance space
as in maxDD is unnecessary, as an instance from a positive training bag is a sufficient
approximation of the target point in real-world problems. Regarding hypothesis (a), the
average of the highest diverse density points from each positive bag is not guaranteed

Speeding Up and Boosting Diverse Density Learning 107

to be a high diverse density point. If the best points for the positive bags belong to
different local diverse density maxima, the average point may be in the trough between
the maxima, and may not be the best hypothesis.

If the optimal feature scaling is already known, the execution of the maxDD al-
gorithm with the QuickDD heuristic is very efficient: we merely compute the diverse
density at each instance from each positive bag, and select the location of the instance
with the highest diverse density, without performing any gradient optimization. Again,
this is simpler than the PWDD approach, as we do not find the best instance from each
positive bag and average the results, but merely select the best instance and use this as
the target point.

If the optimal feature scaling is not known in advance, we must incorporate some
method to compute it. The methods proposed by Maron for PWDD can easily be
adapted for QuickDD:

– Scaling Only. For each instance in a positive bag, perform gradient ascent to opti-
mize the feature scaling vector at that point. The hypothesis is the point and asso-
ciated scaling vector that produces the highest diverse density. Here, although the
gradient ascent optimization must be performed as many times as for maxDD, the
number of parameters is halved because the coordinates of the target point are not
optimized.

– Iterative. Pick an initial scaling, then compute the diverse density of the points in
all positive bags with respect to that scaling, and select the point (or points) with
the highest diverse density. Then use gradient ascent to optimize the scaling vector
at the best point(s). Repeat using the new scaling.

A motivation for using QuickDD Iterative over PWDD Iterative is that the former
monotonically increases the diverse density of the current hypothesis in each iteration—
since it will not pick a scaling vector or target point location with a lower DD value
than that of the current hypothesis—and thus is guaranteed to converge to a local DD
maximum (or saddle point), while the averaging step in PWDD means that there are no
such guarantees for that algorithm.

Note that the Scaling Only method is also applicable to EM-DD, by restricting the
gradient search performed in each iteration to only optimize the scaling parameters for
a fixed location in instance space.

We also consider the following simplifications of the above approaches:

– No Scaling. Initialize all entries of the feature scaling vector to the same value
(i.e. 1.0 if we follow [14]). Compute the diverse density for each instance in each
positive bag, and select the point with the highest diverse density. Do not perform
any gradient ascent optimization.

– Scaling Once. Initialize the scaling vector as above. Compute the diverse density of
the points in all positive bags with respect to that scaling, and select the point with
the highest diverse density. Then use gradient ascent to optimize the feature scaling
vector at that point. This is equivalent to the QuickDD Iterative method with the
maximum number of iterations set to one.

– Scaling Last. This is an adaption of the Scaling Once method to PWDD. Execute
PWDD to find a point with high diverse density with respect to an initial feature

108 J.R. Foulds and E. Frank

Table 1. Datasets used in the Experiments

Name Number of Number of Avg. Number of Min. Number of Max. Number of
Bags Attributes Instances per Bag Instances per Bag Instances per Bag

musk1 92 166 5.2 2 40
musk2 102 166 64.7 1 1044
muta-atoms 188 10 8.6 5 15
muta-bonds 188 16 21.3 8 40
muta-chains 188 24 28.5 8 52
elephant 200 230 7.0 2 13
fox 200 230 6.6 2 13
tiger 200 230 6.1 1 13
maron 50 2 50.0 50 50

Table 2. Percentage Accuracy for EM-DD, maxDD and PWDD

Dataset EM-DD maxDD PWDD PWDD PWDD PWDD
Scaling First Iterative Scaling Last No Scaling

musk1 85.4±11.6 86.8±11.5 86.9±10.2 86.5±11.5 85.5±11.5 48.9±4.9 •
musk2 85.6±9.8 85.7±9.6 86.3±10.6 85.1±10.0 84.9±10.2 62.7±9.9 •
muta-atoms 72.2±8.4 72.2±10.1 36.1±7.3 • 42.9±15.0 • 64.1±6.5 • 66.5±2.3
muta-bonds 73.0±10.1 73.9±9.5 52.1±17.0 • 70.4±8.9 73.2±8.5 66.5±2.3
muta-chains 73.5±11.1 79.1±7.6 67.8±7.0 65.2±11.1 80.3±7.8 66.5±2.3
elephant 75.9±10.3 81.9±8.9 78.5±6.3 10 82.6±8.7 ◦ 82.6±8.8 ◦ 56.4±5.9 •
fox 60.3±8.5 61.3±10.8 59.7±8.9 62.3±10.7 60.4±10.9 55.4±5.3
tiger 71.9±10.3 75.4±9.7 72.0±9.6 70.5±11.0 71.4±9.9 49.9±6.8 •
maron 93.4±11.0 96.4±7.7 94.2±10.0 94.4±9.9 94.4±9.9 61.6±14.4 •
◦, •: significant increase or decrease vs EM-DD; number in small font: completed runs.

scaling vector, then perform a gradient ascent search to optimize the feature scaling
vector at that point, i.e. perform a single iteration of PWDD Iterative.

5 Experimental Results

In this section we present the results of an empirical study of the classification per-
formance and training time of the algorithms discussed above. The algorithms were
evaluated on a variety of two-class datasets by averaging the results of ten repeats of
ten-fold cross-validation, measuring both classification accuracy and training time. The
datasets used were:

– elephant, fox, tiger. Content-based image retrieval datasets, originally provided
by [1]. The MI bags represent photographs of animals, and the task is to predict
whether an image contains the target animal (elephants, foxes and tigers, respec-
tively).

– musk1, musk2. The musk data used in [7]. Each bag represents a molecule, and the
task is to predict whether the molecule emits a musky odour. The musk2 dataset is
larger, both in terms of the number of molecules, and the number of instances per
molecule.

– mutagenesis. The mutagenicity prediction problem [18], widely used as a bench-
mark for ILP algorithms. The learning problem is to identify mutagenic molecules.
Three representations of molecules were used [17]: muta-atoms, muta-bonds and
muta-chains.

Speeding Up and Boosting Diverse Density Learning 109

Table 3. Training Times in CPU seconds (s), minutes (m) or hours (h) for EM-DD, maxDD and
PWDD

Dataset EM-DD maxDD PWDD PWDD PWDD PWDD
Scaling First Iterative Scaling Last No Scaling

musk1 2.7m±35.2s 22.7m±2.6m ◦ 9.1m±43.2s ◦ 6.6s±1.5s • 2.8s±0.6s • 0.4s±0.0s •
musk2 29.6m±27.7m 23.6h±9.3h ◦ 24.5h±7.1h ◦ 4.9m±2.1m • 1.6m±45.8s • 36.1s±4.9s •
muta-a 0.9s±0.4s 6.4m±2.6m ◦ 27.4s±1.4s ◦ 1.9s±0.8s ◦ 0.8s±0.1s 0.9s±0.0s
muta-b 6.4s±2.2s 49.8m±2.4m ◦ 7.1m±19.0s ◦ 14.5s±4.1s ◦ 9.4s±0.5s ◦ 7.7s±0.1s
muta-c 16.9s±3.7s 6.1h±2.5h ◦ 32.8m±50.2s ◦ 27.0s±7.1s ◦ 21.3s±0.8s ◦ 18.9s±0.3s
elephant 20.1m±3.9m 12.7h±4.2h ◦ 165.8h±47.1h 10 28.5m±33.5m 19.3m±15.9m 6.1s±0.1s •
fox 14.9m±3.5m 13.7h±3.6h ◦ 19.7h±19.0h ◦ 1.9m±2.1m • 2.3m±3.7m • 4.9s±0.1s •
tiger 9.5m±2.4m 6.2h±2.2h ◦ 11.2h±7.4h ◦ 1.9m±1.4m • 2.2m±1.8m • 3.8s±0.1s •
maron 2.5s±0.1s 4.2m±12.5s ◦ 1.3m±2.2s ◦ 4.0s±1.4s ◦ 1.2s±0.0s • 1.1s±0.0s •
◦, •: statistically significant increase or decrease vs EM-DD; number in small font: completed runs.

– maron. An artificial dataset based on one used in [14]. For each bag, 50 instances
were sampled from a uniform distribution in [0, 100] × [0, 100] ⊆ R2. Instances
were positive if and only if they were within a 5 × 5 square in the middle of the
domain, thus implementing the standard MI assumption. We generated 25 positive
and 25 negative bags.

Key statistics of these datasets are summarized in Table 1.
The experiments were performed using WEKA [22], on 3.00 GHz Intel Pentium

4 CPU machines. All implementations were based on those of maxDD and EM-DD
in WEKA, which use a quasi-Newton method with BFGS updates rather than plain
gradient search. The details of this method can be found in Appendix B of [23]. For
numeric stability, the negative logarithm of DD is minimized instead of maximizing
DD directly.

The default behavior of the WEKA implementation of maxDD is to only consider
instances from the largest positive bag as starting points for the optimization; we mod-
ified this to consider instances from all positive bags, to be consistent with the original
description of maxDD. EM-DD was executed using instances from three random posi-
tive bags as starting points [25].

All iterative algorithms were restricted to a maximum of 10 iterations. We also ap-
plied normalization of attributes to the [0, 1] interval to all datasets except for maron, as
all of the algorithms typically performed poorly without this. We tested for significant
differences between algorithms using the corrected resampled t-test [15] with signifi-
cance level α = 0.05.

Tables 2 and 3 display the accuracy and training time results for the three pre-existing
algorithms EM-DD, maxDD and PWDD. Note that some of the 100 runs for the more
expensive methods did not complete in time for submission. In those cases, no signifi-
cance test was performed and the number of completed runs is given in small font next
to the corresponding entry.

The results are consistent with the observations in [1], who disputed the superior
classification performance of EM-DD over maxDD that was reported in earlier work:
EM-DD performed similarly to maxDD on all datasets. However, its training time was
several orders of magnitude lower in all cases. Hence, EM-DD is a worthwhile candi-
date in practical applications of MI learning.

110 J.R. Foulds and E. Frank

Table 4. Percentage Accuracy for EM-DD and maxDD, Using 3 Random Positive Bags for Start-
ing Points

Dataset EM-DD maxDD
musk1 85.4±11.6 87.0±11.4
musk2 85.6±9.8 85.8±10.1
muta-atoms 72.2±8.4 71.5±8.8
muta-bonds 73.0±10.1 74.1±9.5
muta-chains 73.5±11.1 79.2±7.7
elephant 75.9±10.3 81.9±8.5 ◦
fox 60.3±8.5 60.8±10.8
tiger 71.9±10.3 75.6±9.4
maron 93.4±11.0 96.4±7.7
◦, • statistically significant increase
or decrease vs EM-DD.

Table 5. Training Times in CPU seconds (s), minutes (m) or hours (h) for EM-DD and maxDD,
Using 3 Random Positive Bags for Starting Points

Dataset EM-DD maxDD
musk1 2.7m±35.2s 1.8m±27.0s •
musk2 29.6m±27.7m 4.2h±3.6h ◦
muta-atoms 0.9s±0.4s 13.1s±2.8s ◦
muta-bonds 6.4s±2.2s 3.2m±41.6s ◦
muta-chains 16.9s±3.7s 12.7m±2.1m ◦
elephant 20.1m±3.9m 19.5m±5.2m
fox 14.9m±3.5m 15.6m±5.3m
tiger 9.5m±2.4m 8.8m±2.9m
maron 2.5s±0.1s 24.3s±1.9s ◦
◦, • statistically significant increase
or decrease vs EM-DD.

When interpreting this result, it is important to remember that maxDD was executed
using all instances from positive training bags as starting points for the gradient search,
while EM-DD only used instances from three random positive bags. To isolate the ef-
fect of this modification, we performed a separate experiment where we used the same
heuristic to reduce the number of starting points for the search in maxDD. Even with
this modification maxDD frequently remains orders of magnitude slower than EM-DD.
This can be seen from the results shown in Tables 4 and 5. Note that with this change
to maxDD, the difference in accuracy on the elephant dataset becomes statistically
significant.

Table 2 shows that all variants of PWDD suffered at least one significant loss in clas-
sification accuracy against EM-DD. In particular, PWDD struggled on the mutagenesis
datasets, where most variants of the algorithm failed to improve on the 66.5% accu-
racy rate obtained by predicting the majority class. PWDD No Scaling, the variant of
PWDD where no gradient search was used to optimize the scaling vector, only exceeded
the majority class baseline on three datasets (elephant, fox and maron), demonstrating
the importance of scaling features appropriately. PWDD Scaling First also performed
quite poorly, indicating that undesirable scaling vectors were chosen. Moreover, PWDD
Scaling First exhibited larger training times than even maxDD on the image datasets,
indicating that optimizing the scaling vector only can result in hard optimization prob-
lems when the corresponding candidate target point is not appropriate.

Speeding Up and Boosting Diverse Density Learning 111

Table 6. Percentage Accuracy for QuickDD Variants vs EM-DD

Dataset EM-DD QuickDD QuickDD QuickDD EM-DD QuickDD
No Scaling Scaling Only Iterative Scaling Only Scaling Once

musk1 85.4±11.6 49.0±4.9 • 86.1±11.4 86.7±11.1 84.1±12.2 86.4±10.4
musk2 85.6±9.8 62.0±7.3 86.1±11.0 87.4±11.3 83.7±10.5 87.2±11.4
muta-atoms 72.2±8.4 64.5±4.8 • 70.9±8.2 68.5±8.2 75.6±9.5 68.5±8.2
muta-bonds 73.0±10.1 73.6±7.0 74.0±9.4 76.7±8.3 71.8±9.5 76.7±8.3
muta-chains 73.5±11.1 75.5±7.2 80.4±8.5 78.5±7.9 73.4±8.9 78.4±7.9
elephant 75.9±10.3 72.7±9.6 80.7±9.1 30 81.1±8.8 76.2±9.9 81.8±8.9
fox 60.3±8.5 53.7±11.3 60.3±11.2 57 64.0±10.3 61.0±10.4 64.0±10.3
tiger 71.9±10.3 60.0±8.9 • 74.3±10.1 75.1±10.1 72.5±10.5 75.5±9.6
maron 93.4±11.0 61.4±14.3 • 96.2±8.4 96.2±8.4 89.4±13.5 96.8±8.4
◦, •: significant increase or decrease vs EM-DD; number in small font: completed runs.

Table 7. Training Times in CPU seconds (s), minutes (m) or hours (h) for QuickDD Variants vs
EM-DD

Dataset EM-DD QuickDD QuickDD QuickDD EM-DD QuickDD
No Scaling Scaling Only Iterative Scaling Only Scaling Once

musk1 2.7m±35.2s 0.4s±0.0s • 8.2m±39.6s ◦ 7.7s±2.9s • 36.2s±7.7s • 1.7s±0.6s •
musk2 29.6m±27.7m 36.2s±4.9s • 22.7h±8.9h ◦ 6.0m±3.5m • 8.1m±7.1m • 4.2m±3.0m •
muta-a 0.9s±0.4s 0.6s±0.0s • 58.0s±3.1s ◦ 3.3s±1.9s ◦ 0.3s±0.1s • 0.7s±0.0s
muta-b 6.4s±2.2s 4.5s±0.1s • 14.3m±39.2s ◦ 49.9s±25.6s ◦ 3.3s±0.8s • 5.0s±0.2s
muta-c 16.9s±3.7s 10.4s±0.2s • 55.4m±3.2m ◦ 1.3m±44.4s ◦ 12.0s±2.5s • 11.8s±0.4s •
elephant 20.1m±3.9m 3.1s±0.1s • 80.7h±54.8h 30 10.6m±13.1m 1.5h±45.8m ◦ 4.8m±6.7m •
fox 14.9m±3.5m 2.5s±0.0s • 29.3h±26.3h 57 2.7m±3.3m • 16.5m±7.1m 1.2m±1.6m •
tiger 9.5m±2.4m 1.9s±0.0s • 8.7h±4.4h ◦ 1.5m±1.4m • 8.2m±4.8m 39.7s±35.6s •
maron 2.5s±0.1s 0.5s±0.0s • 55.7s±1.7s ◦ 4.4s±1.6s ◦ 0.9s±0.0s • 1.2s±0.0s •
◦, •: statistically significant increase or decrease vs EM-DD; number in small font: completed runs.

However, the Iterative and Scaling Last variants of PWDD were quite competitive
with EM-DD overall, both in terms of classification accuracy and training time. Both
achieved a significant win against EM-DD on the elephant data, while suffering a signif-
icant loss on muta-atoms, with no other significant differences. Both were significantly
faster than EM-DD on all datasets except the three mutagenesis problems and elephant,
exhibiting very fast training times on the two musk datasets. It is noteworthy that the
single-iteration Scaling Last variant was very competitive with Iterative PWDD, where
the maximum number of iterations was set to ten.

The results for QuickDD are summarized in Tables 6 and 7, and compared to EM-
DD. We can see that except for the No Scaling variant — which performed poorly, as
expected — and not withstanding the incomplete results for QuickDD Scaling Only,
there were no significant differences for any of the QuickDD variants against EM-DD
with respect to classification accuracy. Additionally, several QuickDD variants were
superior in terms of training time.

The tables also show results for the EM-DD variant Scaling Only. It was signifi-
cantly faster than the original EM-DD algorithm on six of the nine datasets, and only
significantly slower on the elephant dataset, without any significant differences in clas-
sification accuracy.

QuickDD Iterative yielded an equal number of significant wins and losses for train-
ing time against EM-DD, but the wins were by a large margin on the slowest datasets,
while the losses occurred only on datasets where the training times were already short.

112 J.R. Foulds and E. Frank

Table 8. Percentage Accuracy for QuickDD Scaling Once and PWDD Scaling Last

Dataset PWDD QuickDD
Scaling Last Scaling Once

musk1 85.5±11.5 86.4±10.4
musk2 84.9±10.2 87.2±11.4
muta-atoms 64.1±6.5 68.5±8.2
muta-bonds 73.2±8.5 76.7±8.3
muta-chains 80.3±7.8 78.4±7.9
elephant 82.6±8.8 81.8±8.9
fox 60.4±10.9 64.0±10.3
tiger 71.4±9.9 75.5±9.6
maron 94.4±9.9 96.8±8.4
No significant differences were observed.

Table 9. Training Times in CPU seconds (s) or minutes (m) for QuickDD Scaling Once and
PWDD Scaling Last

Dataset PWDD QuickDD
Scaling Last Scaling Once

musk1 2.8s±0.6s 1.7s±0.6s •
musk2 1.6m±45.8s 4.2m±3.0m ◦
muta-atoms 0.8s±0.1s 0.7s±0.0s
muta-bonds 9.4s±0.5s 5.0s±0.2s •
muta-chains 21.3s±0.8s 11.8s±0.4s •
elephant 19.3m±15.9m 4.8m±6.7m •
fox 2.3m±3.7m 1.2m±1.6m
tiger 2.2m±1.8m 39.7s±35.6s •
maron 0.9s±0.0s 0.9s±0.0s
◦, • statistically significant increase.
or decrease vs PWDD Scaling Last.

Furthermore, QuickDD Iterative and Scaling Once both had a higher classification ac-
curacy than EM-DD on eight of the nine datasets, though these differences were not
individually statistically significant.

It is interesting to compare the runtime of QuickDD Scaling Only with that of maxDD
from Table 3. The former was faster on the musk and mutagenesis datasets, but slower
on the image datasets. This behaviour is similar to that of PWDD Scaling First, which
we discussed above. In both cases, the dimensionality of the search space for the gra-
dient optimization routine is halved relative to maxDD, but training time increases,
implying the occurrence of harder optimization problems.

Similarly to the PWDD case, QuickDD Iterative performed just as well with one
iteration (Scaling Once) as with a maximum of ten, with dramatic reductions in train-
ing time. Thus, repeated iterations appear unnecessary for both PWDD and QuickDD
Iterative. This indicates that the initial scaling factor of 1.0 for all attributes may be
sufficient for finding the location of a good hypothesis, perhaps aided by the dataset
normalization step performed.

There were no significant differences in accuracy between the single-iteration ver-
sions of PWDD and QuickDD (Table 8), but QuickDD Scaling Once was faster that
PWDD Scaling Last on eight of the nine datasets, (Table 9) with only one loss with
respect to training time. Additionally, as Table 7 shows, QuickDD Scaling Once was
significantly faster than EM-DD on seven of the nine datasets and still faster on the

Speeding Up and Boosting Diverse Density Learning 113

same seven datasets when the Scaling Only heuristic was applied in EM-DD. This is
despite the fact that all points in all positive training bags were considered as candi-
date target points by the algorithm, while EM-DD only considered instances from three
random bags as starting points. This shows that QuickDD Scaling Once is faster over-
all than all previous algorithms, while retaining the classification performance of the
slower methods.

6 Boosting Diverse Density Learning

The above results show that simple heuristics can improve the runtime of diverse den-
sity learning. However, they do not increase accuracy in a significant manner. In this
section, we discuss what modifications are required to successfully apply boosting to
diverse density learning, and present experimental results demonstrating that significant
increases in accuracy can be obtained in this manner. We use the Real AdaBoost algo-
rithm described in [10]. In contrast to the original AdaBoost method [9], which is based
on 0/1 predictions from the weak learner, this boosting method can exploit predictions
that are class probability estimates.

As in the original AdaBoost, Real AdaBoost is a sequential process for learning an
ensemble of weak classifiers. In each iteration, a weak classifier is learned based on a
reweighted version of the training data. Initially, all examples receive the same weight.
In subsequent iterations of the boosting process, the weight of an example, i.e. bag B
in the context considered here, is updated based on the current hypothesis h using the
following equation:

w := w × e−0.5 log P r({+,−}|B,h)
1−P r({+,−}|B,h)

where Pr({+,−}|B, h) is the predicted class probability for the observed class of the
bag (either + or −). Thus, the square root of the predicted odds ratio for the observed
class label determines the update. To reduce the likelihood of overfitting, the exponent
can be moderated by multiplying it with a shrinkage value s ∈ (0, 1].

Boosting diverse density learning becomes computationally feasible by applying the
QuickDD Scaling Once variant discussed above as the weak learner. Real AdaBoost re-
quires the underlying learning algorithm to be able to deal with weighted examples, but
it is straightforward to modify diverse density learning to do this by replacing the like-
lihood function with a weighted likelihood and adapting the gradient correspondingly.
If wi is the weight of a bag, then we now maximize:∑

i

w+
i log Pr(+|B+

i , h) +
∑

i

w−
i log Pr(−|B−

i , h).

However, application of Real AdaBoost to the datasets considered above does not yield
significant improvements in accuracy compared to applying stand-alone QuickDD Scal-
ing Once itself directly to the data. We found that two further changes to the diverse
density method are critical to render application of boosting successful:

1. Symmetric learning. Diverse density learning as discussed so far requires the user
to decide prior to learning which class is to be treated as the positive class. The

114 J.R. Foulds and E. Frank

Table 10. Percentage Accuracy for Boosted QuickDD Scaling Once and (optimized) MILES

Dataset No boosting 10 boosting 100 its. Best MILES
iterations shrink. 0.5 configuration

musk1 86.4±10.4 88.2±11.5 89.8±10.9 89.1
musk2 87.6±11.4 88.1±10.0 90.8±9.1 91.6
mutagenesis3-atoms 68.5±8.2 80.6±7.6 ◦ 84.7±7.2 ◦ 83.9
mutagenesis3-bonds 76.7±8.3 80.8±8.9 87.6±7.5 ◦ 86.3
mutagenesis3-chains 78.4±7.9 80.3±7.8 84.6±7.8 86.0
tiger 75.6±9.6 81.1±9.4 82.1±9.2 81.7
fox 64.0±10.3 62.2±9.1 64.4±8.7 64.9
elephant 81.7±9.0 84.5±8.2 86.9±7.9 84.1
◦ statistically significant increase vs baseline
(no significance tests were performed wrt MILES-based results).

first modification is to eliminate this requirement: the basic algorithm is run twice,
in each class treating one class as the positive class and the other class as the neg-
ative one. The final concept output is then the one of the two point-and-scaling
concepts—one representing a negative target point and one representing a (tra-
ditional) positive one— that maximizes the (weighted) conditional loglikelihood.
This means that different classes can be viewed as the positive class in different
iterations of the boosting process.

2. One-sided prediction. Perhaps the most important change is to localize the influ-
ence of each diverse density classifier in the instance space. To this end, we change
the diverse density model so that the probability predicted for the positive class can
never drop below 0.5 (and, consequently, the probability for the negative class can
never exceed 0.5). The new model is:

Pr(+|Bi, h) = 1 − 0.5 ×
∏
j

(1 − Pr(+|Bij , h))

This has the effect that the algorithm can abstain from making a prediction in the
boosting process: a predicted probability of 0.5 means that the odds ratio becomes 1
in the above weight update. Thus, the influence of a weak classifier can be restricted
to a small area around the concept that was found. The likelihood is optimized wrt
this adjusted model.

Table 10 compares the accuracy of the boosted QuickDD Scaling Once algorithm with
the above modifications to that of stand-alone QuickDD Scaling Once, which is the
baseline in the left-most column, on the real-world datasets used in our study. Results
for boosting with 10 iterations and no shrinkage, and boosting with 100 iterations and
shrinkage 0.5 are included. To account for class imbalance, the boosting process was
initialized with a model that predicts the class prior probabilities from the training data.
No shrinkage was applied to the predictions of this initial model. The feature scaling
was initialized to 100.0 for the mutagenesis datasets when boosting because poor results
were obtained for value 1.0, most likely due to the more localized models being used.
Note that runtime (not shown) is linear in the number of boosting iterations.

For reference the table also contains the best results obtained from different variants
of the state-of-the-art MILES multi-instance learning method [4], taken from [8]. As
discussed at the end of Section 3, MILES produces a similar model. The results for

Speeding Up and Boosting Diverse Density Learning 115

MILES were generated under the same experimental conditions and are thus directly
comparable. Note that these results are for the best configurations tried—in several
cases the performance of the standard MILES approach could be improved by replacing
the 1-norm support vector machine from [4] with another learning algorithm [8]—so
they are likely to be optimistic. Despite this optimistic bias, we can see that boosted
diverse density learning is highly competitive.

7 Conclusions

Our results show that PWDD Iterative, a previously proposed MI learning algorithm
that has not received much attention in the literature, perhaps due to a lack of published
empirical results, is very competitive with the more well-known EM-DD algorithm,
both in terms of classification accuracy and training time. Moreover, we found that the
repeated iteration of the algorithm is in fact unnecessary on the datasets we considered,
as similar accuracy could be achieved with a single iteration of PWDD.

Our simplified QuickDD Iterative variant of PWDD, which provides convergence
guarantees, improved results further. When restricted to a single iteration (QuickDD
Scaling Once), the algorithm was very competitive with PWDD and EM-DD for classi-
fication accuracy, while enjoying faster training times. Our results show that instances
from positive training bags are often a sufficient representation for the location of di-
verse density target points. This heuristic dramatically reduces the search space, en-
abling more efficient algorithms for learning diverse density concepts.

We also showed how boosting can be applied in conjunction with QuickDD Scaling
Once to obtain state-of-the-art accuracy on the datasets investigated. Three changes to
the algorithm were necessary to obtain improved accuracy using boosting: incorpora-
tion of bag weights, symmetric treatment of classes, and enabling one-sided prediction.
With these changes, boosting diverse density learning appears to be a viable and prac-
tical alternative to other advanced methods for multi-instance learning.

References

1. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance
learning. In: Neural Information Processing Systems, pp. 561–568. MIT Press, Cambridge
(2003)

2. Andrews, S., Hofmann, T.: Multiple-instance learning via disjunctive programming boosting.
In: Neural Information Processing Systems (2003)

3. Auer, P., Ortner, R.: A boosting approach to multiple instance learning. In: European Con-
ference on Machine Learning, pp. 63–74. Springer, Heidelberg (2004)

4. Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded instance se-
lection. IEEE Pattern Analysis and Machine Intelligence 28(12), 1931–1947 (2006)

5. Chen, Y., Wang, J.Z.: Image categorization by learning and reasoning with regions. Journal
of Machine Learning Research 5, 913–939 (2004)

6. Chevaleyre, Y., Zucker, J.D.: Solving multiple-instance and multiple-part learning problems
with decision trees and rule sets. Application to the mutagenesis problem. In: Conference
of the Canadian Society for Computational Studies of Intelligence, pp. 204–214. Springer,
Heidelberg (2001)

116 J.R. Foulds and E. Frank

7. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem
with axis-parallel rectangles. Artificial Intelligence 89(1–2), 31–71 (1997)

8. Foulds, J.R., Frank, E.: Revisiting multiple-instance learning via embedded instance selec-
tion. In: Proc. 21st Australasian Joint Conference on Artificial Intelligence, Auckland, New
Zealand, pp. 300–310. Springer, Heidelberg (2008)

9. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International
Conference on Machine Learning, pp. 148–156. Morgan Kaufmann, San Francisco (1996)

10. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of
boosting. Annals of Statistics 28(2), 337–407 (2000)

11. Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: International
Conference on Machine Learning, pp. 179–186. Morgan Kaufmann, San Francisco (2002)

12. Krogel, M.A., Wrobel, S.: Feature selection for propositionalization. In: International Con-
ference on Discovery Science, pp. 430–434. Springer, Heidelberg (2002)

13. Maron, O.: Learning from ambiguity. Ph.D. thesis, Massachusetts Institute of Technology
(1998)

14. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Neural Infor-
mation Processing Systems. MIT Press, Cambridge (1998)

15. Nadeau, C., Bengio, Y.: Inference for the Generalization Error. Machine Learning 52(3),
239–281 (2003)

16. Ray, S., Craven, M.: Supervised learning versus multiple instance learning: an empirical
comparison. In: International Conference on Machine Learning, pp. 697–704. Omnipress
(2005)

17. Reutemann, P.: Development of a Propositionalization Toolbox. Master’s thesis, Albert Lud-
wigs University of Freiburg (2004)

18. Srinivasan, A., Muggleton, S., King, R., Sternberg, M.: Mutagenesis: ILP experiments in a
non-determinate biological domain. In: Inductive Logic Programming, GMD-Studien, pp.
217–232 (1994)

19. Viola, P.A., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. In: Neural
Information Processing Systems (2005)

20. Wang, J., Zucker, J.D.: Solving the multiple-instance problem: A lazy learning approach.
In: International Conference on Machine Learning, pp. 1119–1125. Morgan Kaufmann, San
Francisco (2000)

21. Weidmann, N., Frank, E., Pfahringer, B.: A two-level learning method for generalized multi-
instance problems. In: European Conference on Machine Learning, pp. 468–479. Springer,
Heidelberg (2003)

22. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Mor-
gan Kaufmann, San Francisco (2005)

23. Xu, X.: Statistical Learning in Multiple Instance Problems. Master’s thesis, University of
Waikato (2003)

24. Xu, X., Frank, E.: Logistic regression and boosting for labeled bags of instances. In: Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pp. 272–281. Springer, Heidel-
berg (2004)

25. Zhang, Q., Goldman, S.: EM-DD: An improved multiple-instance learning technique. In:
Neural Information Processing Systems, pp. 1073–1080. MIT Press, Cambridge (2002)

26. Zhang, Q., Yu, W., Goldman, S., Fritts, J.: Content-based image retrieval using multiple-
instance learning. In: International Conference on Machine Learning, pp. 682–689. Morgan
Kaufmann, San Francisco (2002)

Incremental Learning of Cellular Automata for
Parallel Recognition of Formal Languages

Katsuhiko Nakamura and Keita Imada

School of Science and Engineering,
Tokyo Denki University, Hatoyama-machi, Saitama-ken,

350-0394 Japan
nakamura@rd.dendai.ac.jp

Abstract. Parallel language recognition by cellular automata (CAs) is
currently an important subject in computation theory. This paper de-
scribes incremental learning of one-dimensional, bounded, one-way, cel-
lular automata (OCAs) that recognize formal languages from positive
and negative sample strings. The objectives of this work are to develop
automatic synthesis of parallel systems and to contribute to the theory
of real-time recognition by cellular automata. We implemented meth-
ods to learn the rules of OCAs in the Occam system, which is based on
grammatical inference of context-free grammars (CFGs) implemented in
Synapse. An important feature of Occam is incremental learning by a
rule generation mechanism called bridging and the search for rule sets.
The bridging looks for and fills gaps in incomplete space-time transition
diagrams for positive samples. Another feature of our approach is that
the system synthesizes minimal or semi-minimal rule sets of CAs. This
paper reports experimental results on learning several OCAs for fun-
damental formal languages including sets of balanced parentheses and
palindromes as well as the set {anbncn |n ≥ 1}.

1 Introduction

A cellular automaton (CA) is an array of regularly interconnected identical finite
state machines called cells. The next state of a cell is determined by the states
of its neighbor cells. Every cell synchronously updates its states. CAs have been
used as theoretical models of parallel systems including biological systems and
parallel computers. Among the research on CAs, parallel, real-time language
recognition is especially important, because it is likely that languages are recog-
nized in real time in the human mind, and CAs have been considered a standard
parallel computation model.

In this paper, we discuss incremental learning of one-dimensional, bounded,
one-way cellular automata (OCAs) that recognize formal languages. We imple-
mented methods of learning OCAs in the Occam system. The objectives of this
research are to develop automatic synthesis of parallel systems and to contribute
to the theory of real-time recognition by cellular automata. This work is based on
our method of incremental learning of context-free grammars (CFGs) and defi-
nite clause grammars (DCGs) implemented in Synapse [8,13,14]. In grammatical

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 117–131, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

118 K. Nakamura and K. Imada

inference, the learning system synthesizes production rules of a grammar from
positive and negative sample strings; whereas, in learning CAs, the system syn-
thesizes rules of local functions of CAs for recognizing a language from similar
samples.

Parallel language recognition by one-dimensional CA was first investigated by
Kasami et. al. [11] in the late 1960s. Real-time and linear-time language recogni-
tion by CA was introduced and discussed by Smith III [18] in 1972, and real-time
recognition by OCAs by Dyer [3] in 1980. Since then, several studies including
[6,21,19] have clarified the parallel recognition power of CA and OCA. Despite
much investigation over more than three decades, many important problems in the
limitations of recognition power still remain unsolved as described in Section 2.

We selected OCAs for learning the rule set of CAs for the following reasons.

– The state transition function of an OCA is represented by rules of the form
q r → p, which is simpler than the form q r s → p of two-way CA. This form
is similar to Chomsky normal form of CFG used in Synapse and is convenient
for the system to synthesize rules.

– OCAs can recognize a wide range of formal languages in real time.
– We can simulate real-time recognition in a CA by real-time recognition in

an OCA as described in the next section.

The most important feature of our approach is incremental learning, in which
the system can synthesize a rule set by adding rules to previously learned rules.
This approach and the following heuristics are suggested by Balzer’s work [1] on
finding an 8-state solution for the firing squad synchronization problem.

– The system generates a rule of the form q r → p only when the pair q and r
of states, appears in testing the transition for a positive samples.

– The system tries to generate the rule q r → p backward from p.
– The system first generates rules for short positive sample strings, and then

produces rules for longer sample strings by adding rules.

Through incremental learning, the system can synthesize rule sets of any OCA
recognizing a complex language, if we divide the language into appropriate sub-
groups. Incremental learning is implemented in Occam as well as in Synapse by
rule generation called bridging and the search for rule sets. Bridging searches for
any missing parts in an incomplete space-time transition diagram for a positive
string, and synthesizes rule(s) that bridge the missing part.

Another important feature of our approach is that the learning system syn-
thesizes minimal, or semi-minimal, rule sets. The small sets of rules are able to
represent the mechanisms of CAs and the structures of the languages. Another
benefit is the ease of checking the correctness of the synthesized rule sets.

Other than Balzer’s work on the firing squad synchronization problem, several
studies have been conducted on learning CAs including H. Juillé, Mitchell et al.
[12] and F.C. Richard [16]. These works use a genetic algorithm to synthesize
CAs and are different from our work in their objectives and methodology of
learning.

Incremental Learning of CAs for Parallel Recognition of Formal Languages 119

This paper is organized as follows. Section 2 briefly describes definitions of
CAs and OCAs and real-time language recognition. It also surveys previous
researches on their parallel recognition power. Sections 3 and 4 describe the
bridging rule generation procedure, search strategy and some extensions and
heuristics in Occam system for synthesizing rule sets. Section 5 shows exper-
imental results from learning CAs that recognize several formal languages by
Occam and compares the results with those of learning CFGs by Synapse and
those of SAT-based approach. Finally, Section 6 concludes the paper and de-
scribes future subjects of research.

2 Recognition of Languages by CA

2.1 CA, OCA and Their Language Recognition

A (two-way) one-dimensional bounded cellular automaton (CA) is a system S =
(K, #, f, A), where:

– K is a finite set of states ;
– # ∈ K is the boundary state;
– f , a transition function, is a mapping from K × K × K into K − {#}; and
– A ⊆ K is a set of accepting states.

A one-way cellular automaton (OCA) is a CA S = (K, #, f, A) such that there
exists a function f ′ : K × K → K with f(x, y, z) = f ′(x, y) for all x, y, z ∈ K.

Informally, the next state of each cell i in a CA is determined by the states
of its left and right neighbor cells and the state of the center cell i. In an OCA,
the next state is determined by the states of its left neighbor cell and the center
cell.

Any global state of the CA, called a configuration, is represented by a string
#u# of states with u ∈ (K − {#})+. The transition function f is extended to
configurations by

f(#a1a2 · · ·an#) = #b1b2 · · · bn#

where bi = f(ai−1, ai, ai+1) for all i ∈ {1, 2, 3, · · · , n}, and a0 = an+1 = #. The
function fn of configurations is recursively defined by f0(c) = c and fn(c) =
f(fn−1(c)), for all configurations c and n ≥ 0.

A CA S = (K, #, f, A) recognizes a language L ⊂ Σ+ in a time t (by the
rightmost cell), if and only if Σ ⊆ K and for all w ∈ Σ+, |w| ≥ 2, and

w ∈ L ⇔ f t(#w#) ∈ {#}K+A {#}.

The CA S recognizes L in real time, if and only if t = |w|−1. The CA S recognizes
L in linear time, if and only if there is a constant c ≥ 1 with t ≤ c · (|w|−1). The
languages recognized by a CA and an OCA are called a CA language (CAL) and
an OCA language (OCAL), respectively.

120 K. Nakamura and K. Imada

The language recognized by the leftmost cell, called the left CAL or left OCAL,
is defined similarly, and is equivalent to the reversal of the language recognized
by the rightmost cell.

A two-way CA S = (K, #, f, A) recognizes a language L ⊆ Σ+ in real time
by the center cell , or in minimal time, if and only if Σ ⊆ K and for all w ∈
Σ+, |w| ≥ 2, and

w ∈ L ⇔ f |w|/2(#w#) ∈
{
{#}K |w|/2A K |w|/2 {#} · · · if |w| is even.

{#}K |w|/2−1AA K |w|/2−1 {#} · · · if |w| is odd.

For real-time recognition by a CA, we can write f i(a1a2 · · · an#) = bi+1 · · · bn#
for all i ∈ {1, 2, · · · , n − 1}. For real-time recognition by an OCA, we also write
f i(a1a2 · · · an) = bi+1 · · · bn.

Figs. 1 and 2 illustrate language recognition by CAs and OCAs. Among these
several forms of recognition, the following facts [2,21] are especially important
for the recognition by Occam.

1. For any CA S, we can construct an OCA S′ such that for any language L, if
S accepts L in real (minimal) time by the center cell, then S′ recognizes L
in real time and vice versa. This fact implies that the class of of languages
recognized by OCA in real-time is closed under reversal.

2. For any CA S, we can construct an OCA S′ such that for any language
L ⊆ Σ+, if S accepts a string w ∈ L in real time, then S′ accepts w x|w|

with a symbol x /∈ Σ in real time. Note that we can transform the synthesized
OCA into the CA.

� � � ���
� � �

##

a1 a2 a3 an

� �
�

�
. . .

accept or reject

(a) (Two-way) CA

� � �
� � �

#

a1 a2 a3 an

��
�

�
. . .

accept or reject

(b) One-way CA (OCA)

Fig. 1. Language recognition of CA and
OCA by rightmost cells

#a1a2 · · · an/2 · · · an#

�
�

�
�
��

�
�

�
�

�
�

�
�

���

�
�

�
�
�

�
�
�

�
�
�

�
�
���

	
	

	
	

	

t = 0

t = n − 1

♦ − t = n/2minimum-time
recognition by
the center cell

real-time
recognition

linear-time
recognition

♦

♦

Fig. 2. A space-time diagram illustrating
minimum-time, real-time and linear-time
recognition

Incremental Learning of CAs for Parallel Recognition of Formal Languages 121

2.2 Language Recognition Power of CA and OCA

Let C(L) denote the class of languages L. The results of previous research closely
related to this work are summarized as follows.

1. C(CAL) is equal to C(deterministic context sensitive language) [11,17].
C(OCAL) includes C(context-free language) [11].

2. C(real-time OCAL), as well as C(real-time CAL), includes non-context-free
languages such as {anbncn | n ≥ 1} [3,17]. C(real-time CAL) includes com-
plex languages such as {an | n is a prime number} [5,17].

3. Both C(real-time OCAL) and C(real-time CAL) are closed under set
operations [17].

4. C(linear-time CAL) is closed under reversal [17].
5. C(minimum-time CAL) = C(real-time OCAL) and

C(real-time CAL) = C(linear-time left OCAL) [2,21].

The relation between the real-time language recognition power of CA and OCA
is especially important. The following languages are shown to be recognized by
CA but not by OCA in real time.

– {12n | n ≥ 0} [2].
– {uvu | u, v ∈ {0, 1}∗, |u| ≥ 1} [19].
– the language L0L0, where L0 = {1j0j or 1j0y10j | y ∈ {0, 1}∗, j > 0} [20].

As L0L0 is a context-free language, C(real-time OCAL) is not closed under con-
catenation, because L0 is a real-time OCAL. Nevertheless, the limitation of the
real-time language recognition power of OCAs has not been sufficiently clari-
fied. Nakamura [15] showed a pumping lemma for recognition of cyclic strings
by OCAs.

3 Learning Rule Sets of OCAs in Occam

This section describes the methods of learning the rules of OCAs implemented
in Occam. The system is written in Prolog and is composed of rule generation
and search for semi-minimal rule sets.

3.1 Representation of Cell States

In Occam, we represent cell states as follows.

1. The input symbols s1, s2, · · · , sm are represented by the numbers 2, 3, · · · , m
respectively.

2. Each state of a cell is represented by a subset S of a set {1, 2, · · · , M} with
M ≥ m (M is called the max state) and 1 ≤ |S| ≤ k for a constant k, called
the size of the state. The state with k ≥ 2 is called the multiple state, and
the state with k = 1 is called the singleton state.

3. The state containing the number 1 is an accepting state.

122 K. Nakamura and K. Imada

A rule is of the form q r → p, where q, r and p are numbers between 1 and M .
The set of states of the OCA is a subset of the power set 2{1,2,··· ,M}. For a set
RS of rules, the transition function is represented by

f(Q, R) = {p | (q r → p) ∈ RS, q ∈ Q, r ∈ R},

for any states Q and R.
One reason for using multiple states is that two or more accepting states

are necessary for many CAs. We cannot construct some CAs (e.g., one that
recognizes palindromes) with only one accepting state. Another reason for using
multiple states is that we can extend the set of acceptable strings by simply
adding rules. Using multiple states is related to the common method of using
multiple layers in constructing a CA with some particular capability.

3.2 Rule Generation

The rule generation procedure first tries to test whether the current rule set
derives an accepting state from an input string by generating a space-time tran-
sition diagram. If the test fails, then the bridging process generates rules for the
OCA, which bridge any missing parts of the incomplete space-time transition
diagram. The space-time transition diagram for an input string a1a2 · · ·an is rep-
resented by a triangular array of the states with indexes (i, j) where 0 ≤ j ≤ n−1
and j + 1 ≤ i ≤ n.

Fig. 3 shows the rule generation procedure. This nondeterministic procedure
receives a string w = a1 · · ·an, a set SN of negative samples and a set of rules
in the global variable RS from the top-level search procedure, and returns a set
of rules for an OCA, which derives the accepting state 1 from the string w but
does not from any string in SN . For a set RS of rules, each state of the array is
determined by the operations in Step 2 of GenerateRule. The procedure Bridge
looks for missing states in the triangular array T from the bottom T [n, n − 1]
with the accepting state 1, and complete a space-time diagram in T by adding
rules to RS that is consistent with the negative samples in SN .

3.3 Searching for Rule Sets

Occam takes as input an ordered set SP of positive samples, an ordered set SN of
negative samples and a set R0 of optional initial rules for incremental learning.
The system searches for any set RS of rules with R0 ⊆ RS that derives an
accepting state from all of the strings in SP but from no string in SN .

The system scans every node in the search tree within a certain depth to find
the minimal set of rules by using iterative deepening with the number of the
rules. Fig. 4 shows the top-level global search procedure. The system controls
the search by iteratively deepening the tree, the depth of which is the number
K of rules. This control ensures that the procedure finds the minimal rule set,
but the trade-off is that the system repeats the same search each time the limit
is increased.

Incremental Learning of CAs for Parallel Recognition of Formal Languages 123

Procedure GenerateRule(w,SN) (Comment: Generates rules and add them to the
global variable RS that derives an accepting state from the string w but not from any
negative sample in SN .)

Step 1 (Initialize a triangular array T of states for w = a1 · · · an.)
T [i, 0] ← {a′

i} for all 1 ≤ i ≤ n (a′
i is the number for ai).

T [i, j] ← ∅ for all 1 ≤ j ≤ n − 1, j + 1 ≤ i ≤ n.
Step 2: (Evolve the space-time diagram by the set of rule in RS.)

For j = 0 to n − 1, for i = j + 1 to n,
T [i, j] ← {p | (q r → p) ∈ RS, q ∈ T [i − 1, j − 1], r ∈ T [i, j − 1]}.
If 1 ∈ T [n, n − 1] then return.

Step 3: (Bridging rule generation)
Call Bridge(1, T, n, n + 1, SN). Return.

Procedure Bridge(p,T, i, j, SN) (Complete a space-time diagram in the triangular ar-
ray T with an element p in (i, j) by adding rules to RS that is consistent with negative
sample in SN . Note: The argument p is either a number or a variable.)

Step 1: If j = 0, assign the number in T [i, 0] to p; Return.
Else if j ≥ 1, nondeterministically choose one of the following steps in order.
1. If p is a variable, assign a number in T [i, j] to p; Return.
2. Proceed the next step.

Step 2: (Find the numbers q and r.)
Call Bridge(Xq, T, i − 1, j − 1, SN) to find q for the variable Xq .
Call Bridge(Xr, T, i, j − 1, SN) to find r for the variable Xr.

Step 3: (Determine the number p.)
Nondeterministically choose one of the following steps in order.
1. If (qr → p) ∈ RS, Return;
2. If p is a variable, assign a number to p with 2 ≤ p ≤ max state (max state is a

predetermined parameter), and proceed the next step.
Step 4: (Test a generated rule and add it to RS.)

Add the rule (qr → p) to RS.
If SN contains a string w such that RS derive the accepting state from w, then
terminate (failure).

Step 5: (Evolve the space-time diagram by RS.)
For j = 0 to n − 1, for i = j + 1 to n,
T [i, j] ← {p | (q r → p) ∈ RS, q ∈ T [i − 1, j − 1], r ∈ T [i, j − 1]}.
Return.

Fig. 3. Nondeterministic procedure for rule generation by bridging

Procedure GlobalSearch(SP , SN , R0) (Comment: Finds a rule set that derives the ac-
cepting state from each positive sample in SP but not from any negative sample in SN .
R0 : a set of optional initial rules.)

Step 1 (Initialize variables.)
RS ← R0 (The global variable RS holds the set of rules.).
K ← |R0| (The limit on the number of rules for iterative deepening.).

Step 2: For each w ∈ SP , call GenerateRule(w,SN).
If no set of rules is obtained within the limit K ≥ |RS|, then add 1 to K and iterate
this step.

Step 3: Output the rules in RS and terminate (Success).
To find multiple solutions, backtrack to the previous choice point.

Fig. 4. Top-level procedure for searching for rule sets in Occam

124 K. Nakamura and K. Imada

3.4 Example: Generation of Rules for Parentheses Language

Consider the learning of an OCA recognizing the balanced parenthesis language,
that is, the set of strings composed of equal numbers of a’s and b’s such that every
prefix does not have more b’s than a’s. For the first positive sample ab, the call
Bridge(1, T, 2, 1, SN) synthesizes rule 2, 3 → 1, where a and b are represented
by 2 and 3, respectively. For the second sample aabb, Step 2 of GenerateRule
generates the incomplete space-time diagram shown in Fig. 5 (a), where GR is
the number of all generated rules. For this incomplete diagram, the operations
of Bridge synthesize four rules,

2, 2 → 2; 3, 3 → 3; 2, 1 → 2 and 1, 2 → 3,

which satisfy no negative sample and complete the diagram shown in (b). Then,
Occam tries to synthesize rules that satisfy all remaining positive samples but
no negative samples. After generating 48 rules, the system fails in completing
this job and backtracks to generate new rules for the sample aabb. The diagram
in (c) is the result.

Fig. 6 shows the sequence of space-time diagrams generated by Occam that
lead to the solution. Each marked state <s> in the diagrams denotes that a new
rule for this state s is generated. After generating 66 rules, the system finds 13
rules, which satisfy all positive rules but no negative rules.

(a) GR = 1

[2][2][3][3]

∅ [1] ∅
∅ ∅
[1]

(b) GR = 5

[2][2][3][3]

[2][1][2]

[2][3]

[1]

(c) GR = 48

[2][2][3][3]

[2][1][3]

[2][3]

[1]

Fig. 5. Sequence of space-time diagrams generated for string aabb

4 Extensions and Heuristics in Occam

To increase the power to learn complex OCAs, Occam adopts several heuristics
and extensions.

4.1 Don’t Care State in Rules

For reducing the number of rules, we incorporate don’t care states into Occam.
The special element 0 of states occurs only as one of the two elements in the left
side of the rules and matches any number of any state. For example, the rule
“3, 0 → 5” applies to the pairs of numbers (3, 1), (3, 2), (3, 3), · · · , and the rule
“0, 6 → 7” applies to (1, 6), (2, 6), (3, 6), · · · .

Incremental Learning of CAs for Parallel Recognition of Formal Languages 125

(a) aabb

[2][2][3][3]

<2>[1]<3>

<2><3>

[1]

(b) abab

[2][3][2][3]

[1]<4>[1]

<2><3>

[1]

(c) ababab

[2][3][2][3][2][3]

[1][4][1][4][1]

[2][3][2][3]

[1][4][1]

[2][3]

[1]

(d) aaabbb

[2][2][2][3][3][3]

[2][2][1]<3>[3]

[2][2]<3>[3]

[2][1][3]

[2][3]

[1]

(e) aabbab

[2][2][3][3][2][3]

[2][1][3][4][1]

[2][3]<4>[3]

[1][4]<3>

[2][3]

[1]

(f) aabbaabb

[2][2][3][3][2][2][3][3]

[2][1][3][4][2][1][3]

[2][3][4]<4>[2][3]

[1][4]<4>[4][1]

[2][4][4][3]

[2][4][3]

<2>[3]

[1]

(g) aabaabbbab

[2][2][3][2][2][3][3][3][2][3]

[2][1][4][2][1][3][3][4][1]

[2][2][4][2][3][3][4][3]

[2][2][4][1][3][4][3]

[2][2][3][3][4][3]

[2][1][3][4][3]

[2][3][4][3]

[1][4][3]

[2][3]

[1]

Fig. 6. Development of space-time diagrams in learning the parenthesis language (each
symbol <s> denotes that a new rule for the state s is generated.)

At present, Occam cannot synthesize rules with the don’t care state and only
inputs initial rules of this type. We use the following initial rules in learning the
sets of palindromes and strings with same number of as and bs, shown in the
next section.

2, 0 → 4; 3, 0 → 5; 4, 0 → 4; 5, 0 → 5
0, 2 → 6; 0, 3 → 7; 0, 6 → 6; 0, 7 → 7

These rules are used for propagating symbolic information from the input strings.
The symbols a and b are represented by 2 and 3, respectively, and then by num-
bers 4 and 5, which move diagonally from left to right in the space-time diagram.
The symbols a and b are represented also by numbers 6 and 7, respectively, which
move vertically in the space-time diagram.

4.2 Hash Tables for Speeding-Up Search

Use of hash tables is a well-known technique in search programs, especially
game-playing programs, to avoid identical partial search. We incorporate this
technique into Occam as follow.

– A table contains hash codes of rule sets.
– Whenever the system generates a new rule, it checks whether the table con-

tains the hash code of the set containing this rule. Unless the table has this
code, the system adds the hash code to the table and at the same time adds
the rule to the rule set.

126 K. Nakamura and K. Imada

We represent the hash code for the set of rules R1, R2, · · ·Rk by c(R1)⊕ c(R2)⊕
· · · ⊕ c(Rk), where c(R) is the hash code of a rule R. By this method, we can
obtain a hash code of a rule set by simply calculating the code of a rule Rk and the
exclusive OR of this code and the code of the existing rule set {R1, R2, · · ·Rk−1}

By using this method, the overhead for hashing is small (usually a few per-
cent). For finding OCAs with multiple rules set, the computation time is reduced
to at most the order of one tenth in the case the limits on the numbers of rules
and states are highly restricted.

4.3 Enumerating and Deriving Strings from Rule Sets

To examine synthesized OCAs, Occam has a function to enumerate strings from
sets of rules. The system first generates the list [X1, X2, · · · , Xn] of variables in
order of their length n, and then, it derives strings matching the lists from the
rule set.

We can also use this function for deriving strings from rule sets to represent
negative samples from their patterns. Some languages, for example, {anbncn |n ≥
1}, require a large number of strings for negative samples. From the list [_,_,_,_]
of four anonymous variables in Prolog, we can represent the pattern of any string
with length four such as aaaa, aaab, aaba, · · · , bbbb, and by [b,_,_,_,_,_], the
pattern of strings with the length six starting with b. For some languages, us-
ing the patterns of negative samples is very effective at reducing the number of
negative samples and computation time.

5 Experimental Results

This section shows experimental results obtained by Occam Version 1.63 writ-
ten in Prolog, using an Intel Core(TM) DUO processor with a 2.93 GHz clock
and SWI-Prolog for Windows. We checked the correctness of several synthesized
rule sets with a large number of samples and by making the rule sets enumerate
strings. We used the number GR of all generated rules as an index of the size of
the search tree, which does not depend on the number of samples and the pro-
cessor environment as the computation time. In general, the number of samples
does not strongly affect computation time provided that sufficient samples are
given to the system. When the system succeeds in learning an OCA after using
a number of positive samples for generating rules, it uses the remainder of the
samples for checking the rule set.

5.1 Learning OCAs Results

Table. 1 shows the computation time and the sizes of rule sets for learning the
rule sets of OCAs for fundamental languages including:

(a) the set {anbn | n ≥ 1},
(b) the balanced parenthesis language,

Incremental Learning of CAs for Parallel Recognition of Formal Languages 127

Table 1. Synthesized rules for OCAs recognizing fundamental languages

language
space-time
diagrams

the number
of rules

the size
of states

the number
of states

GR time in
seconds

(a) {anbn |n ≥ 1} Fig. 7 (1) 5 1 4 7 0.14
(b) parenthesis language Fig. 6 13 1 4 66 0.53
(c) {anbncn |n ≥ 1} Fig. 7 (2) 11 1 6 6663 90

(d) {anbn |n ≥ 1} Fig. 8 21 6 12 8555 357
(e) set of palindromes Fig. 9 12+8* 5 22 267 7.4
(f) {w | #a(w) = #b(w)} – 12+8* 5 21 93 2.6

* The number of the initial rules.

(c) the set {anbncn | n ≥ 1}, a non-context-free language,
(d) the set {anbn | n ≥ 1}, which is the complement of language (a),
(e) the set of palindromes over {a, b}, and
(f) the set {w | #a(w) = #b(w)}, i.e., the set of strings with same number of

as and bs.

The computation time and the numbers GR were obtained by setting the limits
K in Fig. 4 on the numbers of rules to appropriate values. The search by the
iterative deepening beginning with K = 1 needs several times more time and
GR values.

Examples of state transitions for each OCA are shown in Figs. 6, 7, 8 and
9. The states for (a), (b) and (c) are singleton numbers with the size one, but
those for (d) and (e) are multiple states with the size 6 and 5, respectively. We
added the eight initial rules with the don’t care states, shown in Section 4.1, to
the OCAs for languages (e) and (f).

We gave Occam approximately 50 to 100 strings of negative and positive
samples for each learning problem, except (c) that requires a small number
(less than 13) of positive samples, abc, aabbcc, aaabbbccc, · · · but more than
200 negative samples. The positive samples are the first part of strings in the
enumeration of the language in the order of length. The negative samples are
those of the complement of the language.

Figs. 7 shows space-time diagrams of OCAs for the languages (a) and (c) in
a compact format. The OCA for the language {anbn | n ≥ 1} uses a signal,
which is represented by a sequence of state changes with speed 1/2 cells/time as
shown in diagram (1). Diagrams (2) and (3) represent two different mechanisms
of recognizing the set {anbncn | n ≥ 1} by the OCAs obtained by Occam. Note
that the OCA shown in (2) uses two kinds of signals with speeds 2/3 and 1/3;
whereas, the other OCA (3) uses three kinds of signals with speeds 1, 1/2 and
1/3.

As the class of OCA languages are closed with Boolean operations, we can
simply convert the OCA for the language (a) {anbn |n ≥ 1} into an OCA for
the language (d) by replacing the accepting state 1 by states other than 1. At
this moment, however, Occam cannot find this simple rule set, and synthesized

128 K. Nakamura and K. Imada

22222222223333333333
2222222221222222222
222222222422222222
22222222122222222
2222222242222222
222222212222222
22222224222222
2222221222222
222222422222
22222122222
2222242222
222212222
22224222
2221222
222422
22122
2242
212
24
1

(1) aaaaaaaaaabbbbbbbbbb

222222223333333344444444
22222224333333354444444
2222222633333336444444
222222233333334444444
22222243333335444444
2222226333333644444
222222333333444444
22222433333544444
2222263333364444
222223333344444
22224333354444
2222633336444
222233334444
22243335444
2226333644
222333444
22433544
2263364
223344
24354
2636
234
45
1

(2) aaaaaaaabbbbbbbbcccccccc

222222223333333344444444
22222224333333354444444
2222222233333364444444
222222243333363444444
22222222333366544444
2222222433366444444
222222223366344444
22222224366654444
2222222266644444
222222256634444
22222246665444
2222225664444
222224663444
22222566544
2222466444
222256344
22246654
2225644
224634
22565
2464
253
45
1

(3) aaaaaaaabbbbbbbbcccccccc

Fig. 7. Space-time diagrams for recognizing strings of {anbn |n ≥ 1} and {anbncn |n ≥
1} by synthesized rule sets

time
0 [2] [3] [2] [2] [2] [3] [3] [3]

1 [2] [1,3,4,6] [1,3] [1,3] [2] [1,4] [1,4]

2 [1,2] [1,2,4,5] [1,2,4,5] [1,3,4,6] [1] [1,2,4]

3 [1,2,3,5] [1,2,3,5] [1,2,3,5] [5] [1,5]

4 [1,2,3,4,5,6][1,2,3,4,5,6] [1] [1]

5 [1,2,3,4,5,6][1,5] [5]

6 [1,5] [1]

7 [1,5]

Fig. 8. A space-time diagram for recognizing the string abaaabbb ∈ {anbn |n ≥ 1}
(language (d)). (The states other than [2] and [5] contain 1 and are accepting states.).

21 rules for this language with 12 multiple states [1], [2], [3], [5], [1, 3], [1, 4], [1.5],
[1, 2, 5], [1, 2, 3, 5], [1, 2, 4, 5], [1, 3, 4, 6] and [1, 2, 3, 4, 5, 6].

5.2 Comparison with Learning CFGs

The results of learning rule sets of OCAs with Occam can be compared to those
of learning CFGs with Synapse, which uses methods similar to Occam’s for
synthesizing rules. The results are summarized as follows.

– The CFGs have generally fewer rules in Chomsky normal form. For example,
for the languages (a), (b), (d) and (e), Synapse synthesized both ambiguous
and unambiguous CFGs, and the numbers of rules for the unambiguous
CFGs are 3, 6, 11 and 10, respectively.

– Synapse synthesizes these grammars in shorter time, less GR and needs
fewer samples. Language (d) is an exception: Synapse needs 185 seconds and

Incremental Learning of CAs for Parallel Recognition of Formal Languages 129

time
0 [3] [2] [2] [3] [3] [2] [2] [3]

1 [5,6,9] [1,4,6,8] [4,7,10] [1,5,7,8] [5,6,9] [1,4,6,8] [4,7,10]

2 [5,6] [4,7,10] [4,7] [5,6,9] [5,6] [4,7,10]

3 [1,5,7] [4,7] [1,4,6] [5,6] [1,5,7]

4 [5,7,10] [4,6] [4,6,9] [5,7]

5 [5,6] [1,4,6] [4,7]

6 [5,6] [4,7,10]

7 [1,5,7]

Fig. 9. A space-time diagram for recognizing a palindrome baabbaab in language (e).
(The subsets containing 1 represent accepting states.).

generates more than 4 × 104 rules (GR) before synthesizing a CFG with 11
rules.

– Synapse can learn more complicated context-free languages such as the set of
strings of as and bs not of the form ww and the set of strings that have twice
the number of as than bs. It has not been shown that these two languages
are real-time OCAL.

The reason for these differences is that Synapse synthesizes the grammar rules
of the language; whereas, Occam synthesizes the parallel parser, or accepter,
of the language, which recognizes all possible syntactic structures of the strings.
Another difference is that Occam can synthesize non-context-free languages such
as anbncn, whereas Synapse is extended to learn the definite clause grammars
(DCGs) of this language.

5.3 Comparison with Learning CAs by SAT

In addition to this work, we are currently working on another approach to learn-
ing CAs from samples based on the Boolean satisfiability problem (SAT). We
used a similar method to synthesize minimal rule sets of CFGs from positive and
negative samples [9].

In the SAT-based approach, the problem of synthesizing an OCA is repre-
sented by a Boolean formula using the following two predicates: Rule(q, r, p)
which means that there is a rule q r → p and State(w, q) with the meaning that
q is derived from the input string w. The Boolean formula describes positive and
negative samples and how State(w, q) is computed. By using a SAT solver, we
obtained a solution consisting of a rule set as an assignment to variables in a
table representing the local function of the OCA.

Currently, this SAT-based method synthesizes only rule sets recognizing lan-
guages (a) and (b) in the previous section from similar samples. Each of the
rule sets is similar to the one that Occam has synthesized and the computation
time is a little longer. An advantage of the SAT-based approach is that we can
utilize the progress of SAT solvers. An advantage of Occam over the SAT-based
approach is the use of incremental learning.

130 K. Nakamura and K. Imada

6 Conclusion

In this paper, we described methods for incremental learning of rule sets for one-
way CAs (OCAs), recognizing formal languages and showed some experimental
results. Although we have currently obtained a small number of rule sets for
OCAs with the Occam system, the results are encouraging. The experimental
results can be summarized as follows.

– Occam synthesized several minimal, or semi-minimal, rule sets of OCAs that
recognize fundamental formal languages. The OCAs for the languages (d), (e)
and (f) in the previous section would be the first nontrivial parallel systems
synthesized by machine learning, which are not easy for human experts to
construct.

– These results are comparable to those of learning CFGs by Synapse, which
uses methods similar to Occam. Compared to learning CFGs, learning CAs
generally requires more computation time and larger numbers of samples.

– There remain several simple languages that Occam has not synthesized be-
cause of computation time limitations.

Our work is related to the problem of how to construct, or program, parallel
systems such as CAs. Although this problem has not been sufficiently investi-
gated in general, constructing parallel systems seems to be more difficult than
sequential systems with similar number of elements or rules. Machine learning
is potentially an important approach to synthesizing parallel systems.

An approach to solve the computation time problem is incremental learning
so that we divide the positive samples into subgroups and make the system learn
the samples in the subgroups in order. We expect that it is possible to effectively
learn complex OCAs by incremental learning with appropriate partitioning of
the positive samples and ordering of the subgroups.

The most important future subject is to improve Occam so that the system
can learn more complicated OCAs, recognize other languages including subsets
of natural languages, and to extend the learning methods to OCAs with different
types of recognition. Because languages recognized by OCAs in two times real
time are equivalent to those by CA in real time as described in Section 2.1, this
extension is not difficult. Other important future subjects include the following:

– applying our approaches to the learning of other CAs, especially, two-
dimensional CAs for parallel recognition of two-dimensional patterns; and

– making good use of extended Occam to clarify parallel recognition power of
OCAs and CAs.

Acknowledgments

The author would like to thank Yuki Kanke and Toshiaki Miyahara for their help
in testing the Occam system. This work is partially supported by KAKENHI
21500148 and the Research Institute for Technology of Tokyo Denki University,
Q09J-06.

Incremental Learning of CAs for Parallel Recognition of Formal Languages 131

References

1. Balzer, R.: An 8-State Minimal Time Solution to the Firing Squad Synchronization
Problem. Information and Control 10, 22–42 (1967)

2. Choffrut, C., Culik II, K.: On real-time cellular automata and trellis automata.
Acta Informatica 21, 393–407 (1984)

3. Dyer, C.: One-way bounded cellular automata. Inform. and Control 44, 54–69 (1980)
4. Hopcroft, J.E., Ullman, J.E.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading (1979)
5. Fisher, P.C.: Generation of primes by a one-dimensional real-time iterative array.

Jour. of ACM 12, 388–394 (1965)
6. Ibarra, O.H., Palis, M.P., Kim, S.M.: Fast parallel language recognition by cellular

automata. Theoret. Comput. Sci. 41, 231–246 (1985)
7. Ibarra, O.H., Jiang, T.: Relating the power of cellular arrays to their closure prop-

erties. Theoret. Comput. Sci. 57, 225–238 (1988)
8. Imada, K., Nakamura, K.: Towards Machine Learning of Grammars and Compil-

ers of Programming Languages. In: Daelemans, W., Goethals, B., Morik, K. (eds.)
ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 98–112. Springer, Heidel-
berg (2008)

9. Imada, K., Nakamura, K.: Learning Context Free Grammars by SAT Solvers, In-
ternat. Conf. on Machine Learning and Applications, IEEE DOI 10.1109/ICMLA,
28 267, 267-272 (2009)

10. Juillé, H., Pollack, J.B.: Coevolving the ‘ideal’ trainer: Application to the discovery
of cellular automata rules. In: Koza, J.R., et al. (eds.) Proceedings of the Third An-
nual Conference on Genetic Programming 1998, pp. 519–527. Morgan Kaufmann,
San Francisco (1998)

11. Kasami, T., Fujii, M.: Some results on capabilities of one-dimensional iterative
logical networks. Electrical and Communication 51-C, 167–176 (1968)

12. Mitchell, M.: Crutchfield, J. P. and Hraber, P. T., Evolving cellular automata to
perform computations: mechanism and impediments. Physica D 75, 361–391 (1994)

13. Nakamura, K., Matsumoto, M.: Incremental Learning of Context Free Grammars
Based on Bottom-up Parsing and Search. Pattern Recognition 38, 1384–1392 (2005)

14. Nakamura, K.: Incremental Learning of Context Free Grammars by Bridging Rule
Generation and Semi-Optimal Rule Sets. In: Sakakibara, Y., Kobayashi, S., Sato,
K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 72–83.
Springer, Heidelberg (2006)

15. Nakamura, K.: Real-time recognition of cyclic strings by one-way and two-way cel-
lular automata. IEICE Trans. of Information and Systems E88-D, 171–177 (2005)

16. Richards, F.C., Meyer, T.P., Packard, N.H.: Extracting cellular automaton rules
from experimental data. Physica D 45, 189–202 (1990)

17. Smith III, A.R.: Real-time language recognition by one-dimensional cellular au-
tomata. Jour. Comput. and System Sci. 6, 233–253 (1972)

18. Smith III, A.R.: Cellular automata complexity trade-offs. Inform. and Control 18,
466–482 (1971)

19. Terrier, V.: On real time one-way cellular array. Theoret. Comput. Sci. 141, 331–335
(1995)

20. Terrier, V.: Languages not recognizable in real time by one-way cellular automata.
Theoret. Comput. Sci. 156, 281–287 (1996)

21. Umeo, H., Morita, K., Sugata, K.: Deterministic one-way simulation of two-way
real-time cellular automata and its related problems. Information Process. Lett. 14,
159–161 (1982)

Sparse Substring Pattern Set Discovery Using
Linear Programming Boosting

Kazuaki Kashihara, Kohei Hatano, Hideo Bannai, and Masayuki Takeda

Department of Informatics, Kyushu University
{kazuaki.kashihara,hatano,bannai,takeda}@inf.kyushu-u.ac.jp

Abstract. In this paper, we consider finding a small set of substring
patterns which classifies the given documents well. We formulate the
problem as 1 norm soft margin optimization problem where each dimen-
sion corresponds to a substring pattern. Then we solve this problem by
using LPBoost and an optimal substring discovery algorithm. Since the
problem is a linear program, the resulting solution is likely to be sparse,
which is useful for feature selection. We evaluate the proposed method
for real data such as movie reviews.

1 Introduction

Text classification is an important problem in broad areas such as natural lan-
guage processing, bioinformatics, information retrieval, recommendation tasks.
Machine Learning has been applied to text classification tasks in various ways:
SVMs and string kernels (n-gram kernels, subsequence kernels [15], mismatch
kernels [14]) Boosting (e.g., Boostexter [21]).

In some applications regarding texts, not only classification accuracy but also
what makes classification accurate is important. In other words, one might want
to discover some knowledge from an accurate text classifier as well. For example,
in classification task of biosequences, say, DNA or RNA, biologists want to know
patterns in the data which make each sequence positive other than an accurate
classifier. Simply put, one may want an accurate classifier associated with a set
of patterns in the text. In particular, for the purpose of feature selection, it is
desirable that such a set of patterns is small.

In this paper, we formulate the problem of finding a small set of patterns which
induces an accurate classifier as 1-norm soft margin optimization over patterns.
Roughly speaking, this problem is finding a linear combination of classifiers
associated with patterns (or a hyperplane whose each component corresponds
to a pattern) which maximizes the margin w.r.t. the given labeled texts as well
as minimizing misclassification.

Our formulation has two advantages. The first advantage is accuracy of the
resulting classifier. The large margin theory guarantees that linear classifier with
large margin is likely to have low generalization error with high probability [20].
So, by choosing the class of patterns appropriately, solving the problem would

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 132–143, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Sparse Substring Pattern Set Discovery Using Linear Programming Boosting 133

provide us an enough accurate classifier. The second advantage is that the result-
ing solution is often sparse since the 1-norm soft margin optimization is a linear
program. In other words, many of patterns have zero weights in the obtained
linear combination. This would help us to choose a small subset of patterns from
the resulting classifier.

We solve the 1-norm soft margin optimization over patterns by combining
LPBoost [4] and our pattern discovery algorithm. LPBoost is a boosting algo-
rithm which provably solves the 1-norm soft margin optimization. Given a weak
learning algorithm which outputs a “weak hypothesis”, LPBoost iteratively calls
the weak learning algorithm w.r.t. different distributions over training texts and
obtains different weak hypotheses. Then it produces a final classifier as a linear
combination of the weak hypotheses. In this work, we use our pattern discovery
algorithm as the weak learning algorithm for LPBoost.

The pattern class we consider in this paper is that of all the possible substrings
over some alphabet Σ. For substring patterns, we derive an efficient pattern
discovery algorithm. A naive algorithm enumerates all the possible substrings
appearing in the input texts and takes O(N2) time, where N is the length of
total texts. On the other hand, ours runs in time O(N). Our approach can be
further extended by employing pattern discovery algorithms for other rich classes
such as subsequence patterns [6] or VLDC patterns [9], which is our future work
(See Shinohara’s survey [22] for pattern discovery algorithms).

In our preliminary experiments, we apply our method for classification of
movie reviews. In particular, for our data Movie-A, there are about 6 × 1013

possible substrings patterns. Our method outputs a classifier associated with a
small set of substrings whose size is only about 800. Among such 800 patterns, we
find interesting pattern candidates which explain positive and negative reviews.

Let us review some related researches. The bag of words model (BOW) has
been popular in information retrieval and natural language processing. In this
model, each text is regarded as a set of words appearing in the text, or equiv-
alently, a weight vector where each component associates with a word and the
value of each component is determined by the statistics of the word (say, fre-
quency of the word in the text). The BOW model is often effective in classifica-
tion of natural documents. However, we need to determine a possible set of words
in advance, which is a nontrivial task. SVMs with string kernels (e.g., [24,23])
often provide us a state-of-the-art classification for texts. However, the solutions
of kernelized SVMs do not have explicit forms of patterns.

Among related researches, the work of Okanohara and Tsujii [17] would be
most related to ours. They consider a similar problem over substring patterns
and they deal with logistic regression with 1-norm regularization. As we will
show later, in our experiments, our method gains higher accuracy than they
reported. Other related researches include the work of Saigo et al [19]. They
consider 1-norm soft margin optimization over graph patterns and use LPBoost.
Our framework is close to theirs, but we use different techniques for pattern
discovery of substrings.

134 K. Kashihara et al.

2 Preliminaries

2.1 1-Norm Soft Margin Optimization

Let X be the set of instances. We are given a set S of labeled instances S =
((x1, y1), . . . , (xm, ym)), where each instance x belongs to X and each label
yi is −1 or +1, and a set H of n hypotheses, i.e., a set of functions from
X to [−1, +1]. The final classifier is a linear combination of hypotheses in H,∑

h∈H αhh+b, where b is a constant called bias. Given an instance x, the predic-
tion is sign(

∑
h∈H αhh(x)+b), where sign(a) is +1 if a > 0 and−1, otherwise. Let

Pk be the probability simplex, i.e., Pk = {p ∈ [0, 1]k,
∑k

i=1 pi = 1}. For a weight-
ing α ∈ Pn over hypotheses inH and a bias b, its margin w.r.t. a labeled instance
(x, y) is defined as y(

∑
h∈H αhh(x) + b). If the margin of α w.r.t. a labeled in-

stance is positive, the prediction is correct, that is, y = sign(
∑

h∈H αhh(x) + b).
The edge of a hypothesis h ∈ H for a distribution d ∈ Pm over S is defined

as

Edged(h) =
m∑

i=1

yidih(xi).

The edge of h can be viewed as accuracy w.r.t. the distribution d. In fact, if
the output of h is binary-valued (+1 or −1), Edged(h) = 1− 2Errord(h), where
Errord(h)is

∑
i diI(h(xi) = yi), where I(·) is the indicator function such that

I(true) = 1 and I(false) = 0.
The 1 norm soft margin optimization problem is formulated as follows (see,

e.g., [4,25]):

max
ρ,α,ξ,b

ρ− 1
ν

m∑
i=1

ξi (1)

sub.to

yi

⎛⎝∑
j

αjhj(xi) + b

⎞⎠ ≥ ρ− ξi (i = 1, . . . , m),

α ∈ Pn, ξ ≥ 0.

That is, the problem is to find a weighting α over hypotheses and a bias b
which maximize the margin among given labeled instances as well as minimizing
the sum of quantities (losses) by which the weighting misclassifies. Here, the
parameter ν takes values in {1, . . . , m} and it is fixed in advance. This parameter
controls the tradeoff between maximization of the margin and minimization of
losses.

Sparse Substring Pattern Set Discovery Using Linear Programming Boosting 135

By using Lagrangian duality (see, e.g., [3]), we can derive the dual problem
as follows.

min
γ,d

γ (2)

sub.to

Edged(hj) =
∑

i

diyihj(xi) ≤ γ (j = 1, . . . , n),

d ≤ 1
ν
1, d ∈ Pm,

d · y = 0.

The dual problem is to find a distribution over instances for which the edges
of hypotheses are minimized. In other words, the problem is to find the most
difficult distribution for the hypotheses in H.

It is well known that if the primal and dual problems are linear programs, they
are equivalent to each other, i.e., if one solves one problem, one have also solved
the other and vice versa. More precisely, let (ρ∗, α∗, ξ∗, b∗) be an optimizer of
the primal problem (1) and let (γ∗, d∗) be an optimizer of the dual problem (2),
respectively. Then, by the duality of the linear program, ρ∗ − 1

ν

∑m
i=1 ξ∗i = γ∗.

KKT conditions (see, e.g., [3]) implies that an optimal solution has the fol-
lowing property.

– If yi

(∑
j α∗

jhj(xi) + b∗
)

> ρ∗, then d∗i = 0.
– If 0 < d∗i < 1/ν, then yi(

∑
j α∗

jhj(xi) + b∗) = ρ∗.
– If ξ∗i > 0, then d∗i = 1/ν.

That is, only such a labeled instance (xi, yi) that have margin no larger than ρ∗

can have a positive weight d∗
i > 0. Further, note that the number of inseparable

examples (for which ξ∗i > 0) is at most ν. This property shows the sparsity of a
dual solution. The primal solution has sparsity as well:

– If Edged∗(hj) < γ∗, α∗
j = 0.

Similarly, only such a hypothesis hj that Edged∗(hj) = γ∗ can have a positive
coefficient α∗

j > 0.

2.2 LPBoost

We review LPBoost [4] for solving the problem (2). Roughly speaking, LPBoost
iteratively solves some restricted dual problems and gets a final solution.

The detail of LPBoost is given in Algorithm 1. Given the initial distribution
d1, LPBoost works in iterations. At each iteration t, LPBoost chooses a hypoth-
esis ht maximizing the edge w.r.t. dt, and add a new constraint Edged(ht) ≤ γ.
problem and solve the linear program and get dt+1 and γt+1.

In fact,givenaprecisionparameter ε > 0,LPBoostoutputs an ε-approximation.

136 K. Kashihara et al.

Algorithm 1. LPBoost(S,ε)
1. Let d1 be the distribution over S such that d1 · y = 0 and d1 is uniform w.r.t.

positive or negative instances only. Let γ1 = −1.
2. For t = 1, . . . ,

(a) Let ht = arg maxh∈H Edgedt
(h).

(b) If Edgedt
(ht) ≤ γt + ε, let T = t − 1 and break.

(c) Otherwise, solve the soft margin optimization problem (2) w.r.t. the restricted
hypothesis set {h1, . . . , ht}. That is,

(γt+1, dt+1) = arg min
γ,d∈Pm

γ

sub. to

γd(hj) ≤ γ (j = 1, . . . , t)

d ≤ 1
ν
1, d · y = 0.

3. Output f(x) =
∑T

t=1 αtht(x), where each αt (t = 1, . . . , T) is a Lagrange dual of
the soft margin optimization problem (2).

Theorem 1 (Demiriz et al. [4]). LPBoost outputs a solution whose objective
is an ε-approximation of an optimum.

2.3 Strings

Let Σ be a finite alphabet of size σ. An element of Σ∗ is called a string. Strings
x, y and z are said to be a prefix, substring, and suffix of the string u = xyz.
The length of any string u is denoted by |u|. Let ε denote the empty string, that
is, |ε| = 0. Let Σ+ = Σ∗ − {ε}. The i-th character of a string u is denoted by
u[i] for 1 ≤ i ≤ |u|, and the substring of u that begins at position i and ends at
position j is denoted by u[i : j] for 1 ≤ i ≤ j ≤ |u|. For a set of strings S, let
‖S‖ =

∑
s∈S

|s|.

2.4 Our Problem

We consider the 1 norm soft margin optimization problem for string data sets,
where each hypothesis corresponds to a string pattern. That is, we are given a
set of labeled documents (strings), and each substring p ∈ Σ∗ corresponds to a
hypothesis hp ∈ H, and hp(x) for x ∈ Σ∗ is defined as follows:

hp(x) =

{
1 p is a substring of x

−1 p is not a substring of x
.

Thus, our “weak” learner will solve the following problem. Given a set of labeled
strings S = ((x1, ym), ..., (xm, ym)) ⊂ Σ∗×{−1, +1}, and a distribution d ∈ Pm

Sparse Substring Pattern Set Discovery Using Linear Programming Boosting 137

over S, find a string p ∈ Σ∗ such that

p = arg max
q∈Σ∗

Edged(q) =
m∑

i=1

yidihq(xi) (3)

To solve this problem optimally and efficiently, we make use of the suffix array
data structure [16] as well as other related data structures described in the next
section.

3 Algorithms

3.1 Data Structures

Below, we describe the data structures used in our algorithm.
The suffix tree of a string T is a compacted trie of all suffixes of T . For any

node v in the suffix tree, let path(v) denote the string corresponding to the path
from the root to node v. We assume that the string ends with a unique character
‘$’ not appearing elsewhere in the string, thus ensuring that the tree contains |T |
leaves, each corresponding to a suffix of T . The suffix tree and generalized suffix
tree are very useful data structures for algorithms that consider the substrings
of a given string or set of strings. Each node v in the suffix tree corresponds
to a substring of the input strings, and the leaves represent occurrences of the
substring path(v) in the string.

The generalized suffix tree for a set of strings (T1, . . . , Tm), can be defined
as the suffix tree for the string T = T1$1 · · ·Tm$m, where each $i (1 ≤ i ≤ m)
is a unique character not appearing elsewhere in the strings, and each edge is
terminated with the first appearance of any $i. We assume that the leaves of the
generalized suffix tree are labeled with the document index i.

It is well known that suffix trees can be constructed in linear time [26]. In
practice, it is more efficient to use a data structure called suffix arrays which
require less memory. The suffix array of string T is a permutation of all suffixes
of T so that the suffixes are lexicographically sorted. More precisely, the suffix
array of T is an array SA[1, . . . , |T |] containing a permutation of {1, . . . |T |},
such that T [SA[i] : |T |] � T [SA[i + 1] : |T |], for all 1 ≤ i < s, where � denotes
the lexicographic ordering on strings.

It is well known that the suffix array for a given string can be built in time
linear of its length [10,12,13].

Another important array often used together with the suffix array is the height
array. Let LCP [i] = lcp(T [SA[i] : |T |], T [SA[i + 1 : |T |]]) be the height array
LCP [1, |T |] of T , where lcp(TSA[i], TSA[i+1]) is the length of the longest common
prefix between T [SA[i : |T |]] and T [SA[i + 1: |T |]]. The height array can also be
constructed in linear time [11]. Also, by using the suffix array and height arrays
we can simulate a bottom-up post-order traversal on the suffix tree [11]. Most
other algorithms on suffix trees can be efficiently implemented using the suffix
and height arrays [1].

Figure 1 shows an example of a suffix array and suffix tree for the string
BANANA.

138 K. Kashihara et al.

i SA LCP suffix

1 7 -1 $

2 6 0 A$

3 4 1 ANA$

4 2 3 ANANA$

5 1 0 BANANA$

6 5 0 NA$

7 3 2 NANA$

T=BANANA$

7

6

4

2

1

5 3

$

A B
A
N
A
N
A
$

$

$

$ N
A
$

NA$

NA

N
A

Suffix Tree

Fig. 1. Suffix array (left) and suffix tree (right) for string T = BANANA$. The column
SA shows the suffix array, the column LCP shows the height array, the column ‘suffix’
shows the suffixes starting at position i.

3.2 Finding the Optimal Pattern

We briefly describe how we can find the substring p ∈ Σ∗ to maximize Equa-
tion (3) in linear time.

First, we note that it is sufficient to consider strings which correspond to
nodes in the generalized suffix tree of the input strings. This is because for any
string corresponding to a path that ends in the middle of an edge of the suffix
tree, the string which corresponds to the path extended to the next node will
occur in the same set of documents and, hence, its edge score would be the same.
Figure 2 shows an example.

Also, notice that for any substring p ∈ Σ∗, we have

Edged(p) =
m∑

i=1

yidihp(xi)

=
∑

{i:hp(xi)=1}
yidi −

∑
{i:hp(xi)=−1}

yidi

=
∑

{i:hp(xi)=1}
yidi −

⎛⎝ m∑
i=1

yidi −
∑

{i:hp(xi)=1}
yidi

⎞⎠
= 2 ·

∑
{i:hp(xi)=1}

yidi −
m∑

i=1

yidi.

Since
∑m

i=1 yidi canbe easily computed,weneedonly to compute
∑

{i:hp(xi)=1} yidi

for each p to compute its edge score.

Sparse Substring Pattern Set Discovery Using Linear Programming Boosting 139

This value can be computed for each string path(v) corresponding to a node v
in the generalized suffix tree, basically using the linear time algorithm for solving
a generalized version of the color set size problem [7,2]. When each document
is assigned arbitrary numeric weights, the algorithm computes for each node v
of the generalized suffix tree, the sum of weights of the documents that contain
path(v) as a substring. For our problem, we need only to assign the weight yidi

to each document.
The main algorithm and optimal pattern discovery algorithms are summarized

in Algorithm 2 and Algorithm 3. It is easy to see that FindOptimalSubstring-
Pattern(...) runs in linear time: The algorithm of [2] runs in linear time. Also,
since the number of nodes in a generalized suffix tree is linear in the total length
of the strings, line 3 can also be computed in linear time.

i LCP SA D y[D[i]]

1 -1 5 1 1

2 -1 10 2 -1

3 -1 15 3 1

4 -1 20 4 -1

5 0 14 3 1

6 1 19 4 -1

7 1 18 4 -1

8 2 17 4 -1

9 3 16 4 -1

10 1 3 1 1

11 2 12 3 1

12 3 1 1 1

13 2 6 2 -1

14 0 4 1 1

15 1 9 2 -1

16 1 13 3 1

17 2 2 1 1

18 3 11 3 1

19 1 8 2 -1

20 2 7 2 -1

v10

20

15

1617 112

8

2

7

11

10

5

19

14

618

4

3

13

9

v5

v2

v1

v4

v9

$1

$2

$3

$4

v3

v7

v6

v8

$4

$3

$3

a$3

a$3

$1

b$1

$1

$1

$2

bb$2

$2 b$2

$4

$4 a$4

a

a

a

a

a

b

b

b

b

T1=abab, T2=abbb, T3=baba, T4=aaaa
y[T1]=1, y[T2]=-1, y[T3]=1, y[T4]=-1
T =T1$1T2$2T3$3T4$4

Fig. 2. Finding the substring that gives the maximum edge on four documents T1,
T2, T3, and T4, with labels y = (1,−1, 1,−1) and weights d = (0.3, 0.1, 0.2, 0.4). The
generalized suffix tree is depicted on the right, and corresponding suffix arrays and
height arrays are depicted on the left. D holds the document index assigned to each
leaf. For example, Edged(path(v1)) = 0.3∗1∗ (−1)+0.1∗ (−1)∗ (−1)+0.2∗1∗ (−1)+
0.4 ∗ (−1) ∗ 1 = −0.8. The optimal patterns are path(v3) = ‘aba’ and path(v6) = ‘bab’
giving an edge of 1.

Algorithm 2. Compute 1 norm soft margin optimal problem for string
1: Input: Data S = ((T1, y1), . . . , (Tm, ym)), parameter ε.
2: Construct suffix array SA and LCP array for string T = T1$1 · · ·Tm$m.
3: Run Algorithm 1 (LPBoost(S,ε)) using FindOptimalSubstringPattern(SA, LCP,

y, d) for line 2(a).

140 K. Kashihara et al.

Algorithm 3. FindOptimalSubstringPattern(SA, LCP, y, d)
1: wtot :=

∑
yidi;

2: Calculate wv =
∑

{i:hpath(v)(xi)=1} yidi for each node v of the generalized suffix tree,
using SA, LCP and algorithm of [2];

3: vmax := arg maxv Edged(path(v)) = arg maxv(2wv − wtot);
4: return path(vmax);

Table 1. Detail of the data sets

Corpus # of docs total length
MOVIE-A 2000 7786004
MOVIE-B 7440 213970

Table 2. Percentage of correct classifications in classification task

Corpus LPSSD SVM+Ngram normalized SVM+Ngram OT [17]
MOVIE-A 91.25% 85.75% 89.25% 86.5%
MOVIE-B 78.50% 73.80% 74.80% 75.1%

4 Experiments

We conducted sentiment classification experiments for two data sets, MOVIE-A
and MOVIE-B. MOVIE-A is a dataset by Bo Pang and Lillian Lee [18]1. The
data consists of reviews of various movies, with 1000 positive reviews, and 1000
negative reviews. MOVIE-B is a dataset by Ifrim et al. [8] 2 which consisting
of reviews taken from the IMDB database, for movies classified as ‘Crime’ or
‘Drama’. There are 3720 reviews for each genre. Table 1 shows simple statistics
of the data.

We examined the performance of our approach using 10 cross validations.
More precisely, at each trial, we split each of the positive and negative data
randomly so that 4/5 is training, and 1/5 is test. Then we train our method
for the training data and measure the accuracy of the obtained classifier over
the test data. We average the accuracy over 10 trials. The parameter ν for our
method is set as ν/m = 0.1, which, roughly speaking, means that we estimate
the level of noise in the data as 10%.

Table 2 shows the results of our method, as well as several other methods.
“SVM + Ngram” denotes the support vector machine using an ngram kernel,
and “normalized SVM +Ngram” denotes a version which uses normalization
(normalized SVM + Ngram). The scores shown for these methods are for ngrams

1 http://www.cs.cornell.edu/People/pabo/movie-review-data/, polarity dataset
v2.0.

2 http://www.mpi-inf.de/~ifrim/data/kdd08-datasets.zip,
KDD08-datasets/IMDB.

http://www.cs.cornell.edu/People/pabo/movie-review-data/
http://www.mpi-inf.de/~ifrim/data/kdd08-datasets.zip

Sparse Substring Pattern Set Discovery Using Linear Programming Boosting 141

of length n = 7, which gave the best score. The score for “OT [17]” is the score
of a 10-fold cross validation taken directly from their paper.

Table 3 shows substrings with MOVIE-A’s top 10 largest weights in the final
weighting α. It also shows number of documents in which the pattern occurs.
Our method found some interesting patterns, such as est movie, or best, s very e,
and s perfect. Table 4 shows MOVIE-A’s some of the context of the occurrence
of these patterns.

Table 3. MOVIE-A’s Top 10 substrings with largest weight (α)

pattern α #occ in positive #occ in negative
iase 0.01102 13 1
ronicle 0.00778 21 4
s very e 0.00776 15 2
ents r 0.00659 9 1
or best 0.00642 21 5
e of your s 0.00633 8 0
finest 0.00615 44 5
ennes 0.00575 28 8
un m 0.00567 13 1
s insid 0.00564 14 5

Table 4. MOVIE-A’s Context of some substrings in top 100 largest weightings (α)

Pattern est movie s perfect or best s very e
Context best movie is perfect actor best is very effective

funnest movie this perfect ly aword for best is very entertain
greatest movie seems perfect ly nominated for best is very enjoyable

Pattern fun o entertain much like t s a fine
Context fun so entertaining much like the is a fine

funny to entertain much like their delivers a fine
funniest to entertaining much like t is does a fine
funnest to entertainment much like t itanic contributs a fine

5 Conclusion and Future Work

We considered 1-norm soft margin optimization over substring patterns. We solve
this problem by using a combination of LPBoost and an optimal substring pat-
tern discovery algorithm. In our preliminary experiments on data sets concerning
movie reviews, our method actually found some interesting pattern candidates.
Also, the experimental results showed that our method achieves higher accuracy
than other previous methods.

142 K. Kashihara et al.

There is much room for improvements and future work. First, our method
might become more scalable by employing faster solvers for 1-norm soft mar-
gin optimization, e.g., Sparse LPBoost [5]. Second, extending the pattern class
to more richer ones such as VLDC patterns [9] would be interesting. Finally,
applying our method to DNA or RNA data would be promising.

References

1. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2(1), 53–86 (2004)

2. Bannai, H., Hyyrö, H., Shinohara, A., Takeda, M., Nakai, K., Miyano, S.: An O(N2)
algorithm for discovering optimal Boolean pattern pairs. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 1(4), 159–170 (2004)

3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press,
Cambridge (2004)

4. Demiriz, A., Bennett, K.P., Shawe-Taylor, J.: Linear programming boosting via
column generation. Mach. Learn. 46(1-3), 225–254 (2002)

5. Hatano, K., Takimoto, E.: Linear programming boosting by column and row gener-
ation. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS,
vol. 5808, pp. 401–408. Springer, Heidelberg (2009)

6. Hirao, M., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: A practical algo-
rithm to find the best subsequence patterns. Theoretical Computer Science 292(2),
465–479 (2003)

7. Hui, L.: Color set size problem with applications to string matching. In: Apostolico,
A., Galil, Z., Manber, U., Crochemore, M. (eds.) CPM 1992. LNCS, vol. 644, pp.
230–243. Springer, Heidelberg (1992)

8. Ifrim, G., Bakir, G.H., Weikum, G.: Fast logistic regression for text categorization
with variable-length n-grams. In: KDD, pp. 354–362 (2008)

9. Inenaga, S., Bannai, H., Shinohara, A., Takeda, M., Arikawa, S.: Discovering best
variable-length-don’t-care patterns. In: Lange, S., Satoh, K., Smith, C.H. (eds.) DS
2002. LNCS (LNAI), vol. 2534, pp. 86–97. Springer, Heidelberg (2002)

10. Kärkkäinen, J., Sanders, P.: Simple linear work suffix array construction. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 943–955. Springer, Heidelberg (2003)

11. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidel-
berg (2001)

12. Kim, D.K., Sim, J.S., Park, H., Park, K.: Linear-time construction of suffix ar-
rays. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 186–199. Springer, Heidelberg (2003)

13. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. In: Baeza-
Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp.
200–210. Springer, Heidelberg (2003)

14. Leslie, C.S., Eskin, E., Weston, J., Noble, W.S.: Mismatch string kernels for svm
protein classification. In: Advances in Neural Information Processing Systems 15
(NIPS 2002), pp. 1417–1424 (2002)

15. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.J.C.H.: Text
classification using string kernels. Journal of Machine Learning Research 2, 419–444
(2002)

Sparse Substring Pattern Set Discovery Using Linear Programming Boosting 143

16. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Computing 22(5), 935–948 (1993)

17. Okanohara, D., Tsujii, J.: Text categorization with all substring features. In: Proc.
9th SIAM International Conference on Data Mining (SDM), pp. 838–846 (2009)

18. Pang, B., Lee, L.: A sentimental education: Sentiment analysis using subjectivity
summarization based on minimum cuts. In: Proceedings of the ACL (2004)

19. Saigo, H., Nowozin, S., Kadowaki, T., Kudo, T., Tsuda, K.: gboost: a mathemat-
ical programming approach to graph classification and regression. Machine Learn-
ing 75(1), 69–89 (2009)

20. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: a new
explanation for the effectiveness of voting methods. The Annals of Statistics 26(5),
1651–1686 (1998)

21. Schapire, R.E., Singer, Y.: Boostexter: A boosting-based system for text catego-
rization. Machine Learning 39, 135–168 (2000)

22. Shinohara, A.: String pattern discovery. In: Ben-David, S., Case, J., Maruoka, A.
(eds.) ALT 2004. LNCS (LNAI), vol. 3244, pp. 1–13. Springer, Heidelberg (2004)

23. Teo, C.H., Vishwanathan, S.V.N.: Fast and space efficient string kernels using suffix
arrays. In: ICML, pp. 929–936 (2006)

24. Vishwanathan, S.V.N., Smola, A.J.: Fast kernels for string and tree matching. In:
NIPS, pp. 569–576 (2002)

25. Warmuth, M.K., Glocer, K.A., Vishwanathan, S.V.: Entropy regularized lpboost.
In: Freund, Y., Györfi, L., Turán, G., Zeugmann, T. (eds.) ALT 2008. LNCS
(LNAI), vol. 5254, pp. 256–271. Springer, Heidelberg (2008)

26. Weiner, P.: Linear pattern-matching algorithms. In: Proc. of 14th IEEE Ann.
Symp. on Switching and Automata Theory, pp. 1–11 (1973)

Discovery of Super-Mediators of Information Di�usion
in Social Networks

Kazumi Saito1, Masahiro Kimura2, Kouzou Ohara3, and Hiroshi Motoda4

1 School of Administration and Informatics, University of Shizuoka
52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan

��������	��
��	������������
2 Department of Electronics and Informatics, Ryukoku University

Otsu 520-2194, Japan
���	���������	���	������

3 Department of Integrated Information Technology, Aoyama Gakuin University
Kanagawa 229-8558, Japan
�
�������������������

4 Institute of Scientific and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

���������������������	������

Abstract. We address the problem of discovering a di�erent kind of influential
nodes, which we call ”super-mediator”, i.e. those nodes which play an important
role to pass the information to other nodes, and propose a method for discover-
ing super-mediators from information di�usion samples without using a network
structure. We divide the di�usion sequences in two groups (lower and upper),
each assuming some probability distribution, find the best split by maximizing
the likelihood, and rank the nodes in the upper sequences by the F-measure. We
apply this measure to the information di�usion samples generated by two real net-
works, identify and rank the super-mediator nodes. We show that the high ranked
super-mediators are also the high ranked influential nodes when the di�usion
probability is large, i.e. the influential nodes also play a role of super-mediator
for the other source nodes, and interestingly enough that when the high ranked
super-mediators are di�erent from the top ranked influential nodes, which is the
case when the di�usion probability is small, those super-mediators become the
high ranked influential nodes when the di�usion probability becomes larger. This
finding will be useful to predict the influential nodes for the unexperienced spread
of new information, e.g. spread of new acute contagion.

1 Introduction

There have been tremendous interests in the phenomenon of influence that members
of social network can exert on other members and how the information propagates
through the network. Social networks (both real and virtual) are now recognized as an
important medium for the spread of information. A variety of information that includes
news, innovation, hot topics, ideas, opinions and even malicious rumors, propagates in
the form of so-called “word-of-mouth” communications. Accordingly, a considerable
amount of studies has been made for the last decade [1–20].

B. Pfahringer, G. Holmes, and A. Ho�mann (Eds.): DS 2010, LNAI 6332, pp. 144–158, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

Discovery of Super-Mediators of Information Di�usion in Social Networks 145

Among them, widely used information di�usion models are the independent cascade
(IC) [1, 8, 13] and the linear threshold (LT) [4, 5] and their variants [6, 14–18]. These
two models focus on di�erent information di�usion aspects. The IC model is sender-
centered and each active node independently influences its inactive neighbors with given
di�usion probabilities. The LT model is receiver-centered and a node is influenced by its
active neighbors if their total weight exceeds the threshold for the node. Which model
is more appropriate depends on the situation and selecting the appropriate one is not
easy [18].

The major interests in the above studies are finding influential nodes, i.e. finding
nodes that play an important role of spreading information as much as possible. This
problem is called influence maximization problem [8, 10]. The node influence can only
be defined as the expected number of active nodes (nodes that have become influenced
due to information di�usion) because the di�usion phenomenon is stochastic, and es-
timating the node influence eÆciently is still an open problem. Under this situation,
solving an optimal solution, i.e. finding a subset of nodes of size K that maximizes the
expected influence degree with K as a parameter, faces with combinatorial explosion
problem and, thus, much of the e�orts has been directed to finding algorithms to ef-
ficiently estimate the expected influence and solve this optimization problem. For the
latter, a natural solution is to use a greedy algorithm at the expense of optimality. Fortu-
nately, the expected influence degree is submodular, i.e. its marginal gain diminishes as
the size K becomes larger, and the greedy solution has a lower bound which is 63% of
the true optimal solution [8]. Various techniques to reduce the computational cost have
been attempted including bond percolation [10] and pruning [14] for the former, and
lazy evaluation [21], burnout [15] and heuristics [22] for the latter.

Expected influence degree is approximated by the empirical mean of the influence
degree of many independent information di�usion simulations, and by default it has
been assumed that the degree distribution is Gaussian. However, we noticed that this
assumption is not necessarily true, which motivated to initiate this work. In this paper,
we address the problem of discovering a di�erent kind of influential nodes, which we
call ”super-mediator”, i.e. those nodes which play an important role in passing the infor-
mation to other nodes, try to characterize such nodes, and propose a method for discov-
ering super-mediator nodes from information di�usion sequences (samples) without
using a network structure. We divide the di�usion samples in two groups (lower and
upper), each assuming some probability distribution, find the best split by maximizing
the likelihood, and rank the nodes in the upper sequences by the F-measure (more in
subsection 3.2).

We tested our assumption of existence of super-mediators using two real networks1

and investigated the utility of the F-measure. As before, we assume that information
di�usion follows either the independent cascade (IC) model or the linear threshold (LT)
model. We first analyze the distribution of influence degree averaged over all the initial
nodes2 based on the above di�usion models, and empirically show that it becomes a

1 Note that we use these networks only to generate the di�usion sample data, and thus are not
using the network structure for the analyses.

2 Each node generates one distribution, which is approximated by running di�usion simulation
many times and counting the number of active nodes at the end of simulation.

146 K. Saito et al.

power-law like distribution for the LT model, but it becomes a mixture of two distri-
butions (power-law like distribution and lognormal like distributions) for the IC model.
Based on this observation, we evaluated our super-mediator discovery method by fo-
cusing on the IC model. It is reasonable to think that the super mediators themselves
are the influential nodes, and we show empirically that the high ranked super-mediators
are indeed the high ranked influential nodes, i.e. the influential nodes also play a role
of super-mediator for the other source nodes, but this is true only when the di�usion
probability is large. What we found more interesting is that when the high ranked super-
mediators are di�erent from the top ranked influential nodes, which is the case when the
di�usion probability is small, those super-mediators become the high ranked influential
nodes when the di�usion probability becomes larger. We think that this finding is useful
to predict the influential nodes for the unexperienced spread of new information from
the known experience, e.g. spread of new acute contagion from the spread of known
moderate contagion for which there are abundant data.

The paper is organized as follows. We start with the brief explanation of the two
information di�usion models (IC and LT) and the definition of influence degree in
section 2, and then describe the discovery method based on the likelihood maximization
and F-measure in section 3. Experimental results are detailed in section 4 together with
some discussion. We end this paper by summarizing the conclusion in section 5.

2 Information Di�usion Models

We mathematically model the spread of information through a directed network G �

(V� E) without self-links, where V and E (� V�V) stand for the sets of all the nodes and
links, respectively. For each node v in the network G, we denote F(v) as a set of child
nodes of v, i.e. F(v) � �w; (v�w) � E�. Similarly, we denote B(v) as a set of parent nodes
of v, i.e. B(v) � �u; (u� v) � E�. We call nodes active if they have been influenced with
the information. In the following models, we assume that nodes can switch their states
only from inactive to active, but not the other way around, and that, given an initial
active node set H, only the nodes in H are active at an initial time.

2.1 Independent Cascade Model

We recall the definition of the IC model according to [8]. In the IC model, we specify a
real value pu�v with 0 � pu�v � 1 for each link (u� v) in advance. Here pu�v is referred to
as the di�usion probability through link (u� v). The di�usion process unfolds in discrete
time-steps t � 0, and proceeds from a given initial active set H in the following way.
When a node u becomes active at time-step t, it is given a single chance to activate each
currently inactive child node v, and succeeds with probability pu�v. If u succeeds, then
v will become active at time-step t � 1. If multiple parent nodes of v become active
at time-step t, then their activation attempts are sequenced in an arbitrary order, but all
performed at time-step t. Whether or not u succeeds, it cannot make any further attempts
to activate v in subsequent rounds. The process terminates if no more activations are
possible.

Discovery of Super-Mediators of Information Di�usion in Social Networks 147

2.2 Linear Threshold Model

In the LT model, for every node v � V , we specify a weight (�u�v � 0) from its parent
node u in advance such that

�
u�B(v) �u�v � 1. The di�usion process from a given initial

active set H proceeds according to the following randomized rule. First, for any node v
� V , a threshold �v is chosen uniformly at random from the interval [0� 1]. At time-step
t, an inactive node v is influenced by each of its active parent nodes, u, according to
weight �u�v. If the total weight from active parent nodes of v is no less than �v, that is,�

u�Bt(v) �u�v � �v, then v will become active at time-step t� 1. Here, Bt(v) stands for the
set of all the parent nodes of v that are active at time-step t. The process terminates if
no more activations are possible.

2.3 Influence Degree

For both models on G, we consider information di�usion from an initially activated
node v, i.e. H � �v�. Let �(v; G) denote the number of active nodes at the end of the
random process for either the IC or the LT model on G. Note that �(v; G) is a random
variable. We refer to �(v; G) as the influence degree of node v on G. Let �(v; G) denote
the expected number of �(v; G). We call �(v; G) the expected influence degree of node
v on G. In theory we can simply estimate � by the simulations based on either the IC
or the LT model in the following way. First, a suÆciently large positive integer M is
specified. Then, the di�usion process of either the IC or the LT model is simulated from
the initially activated node v, and the number of active nodes at the end of the random
process, �(v; G), is calculated. Last, �(v; G) for the model is estimated as the empirical
mean of influence degrees �(v; G) that are obtained from M such simulations.

From now on, we use �(v) and �(v) instead of �(v; G) and �(v; G), respectively if G
is obvious from the context.

3 Discovery Method

3.1 Super-Mediator

As mentioned in section 1, we address the problem of discovering a di�erent kind of
influential nodes, which we call ”super-mediator”. These are the nodes which appear
frequently in long di�usion sequences with many active nodes and less frequently in
short di�usion sequences, i.e. those nodes which play an important role to pass the
information to other nodes. Figure 1 (a) shows an example of information di�usion
samples. In this figure, by independently performing simulations 5� 000 times based on
the IC model, we plotted 5� 000 curves for influence degree of a selected information
source node with respect to time steps3. From this figure, we can observe that 1) due to
its stochastic nature, each di�usion sample varies in a quite wide range for each simu-
lation; and 2) some curves clearly exhibit sigmoidal behavior in part, in each of which
the influence degree suddenly becomes relatively high during a certain time interval.

3 The network used to generate these data is the blog network (see subsection 4.1).

148 K. Saito et al.

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

1600

1800

time−step

in
flu

en
ce

 d
eg

re
e

(a) Di�usion samples

100 101 102 103 10410−4

10−3

10−2

10−1

100

influence degree

pr
ob

ab
ili

ty

(b) Influence degree distribution

Fig. 1. Information di�usion from some node in the blog network for the IC model (p � 0�1)

In Figure 1 (b), we plotted the distribution of the final influence degree for the above
5� 000 simulations. From this figure, we can observe that there exist a number of bell-
shaped curves (which can be approximated by quadratic equations) in a logarithmic
scale for each axis, which suggests that the influence degree distribution consists of
several lognormal like distributions. Together with the observation from Figure 1 (a),
we conjecture that super-mediators appear as a limited number of active nodes in some
lognormal components with relatively high influence degree. Therefore, in order to dis-
cover these super-mediator nodes from information di�usion samples, we attempt to
divide the di�usion samples in two groups (lower and upper), each assuming some
probability distribution, find the best split by maximizing the likelihood, and rank the
nodes in the upper samples by the F-measure.

3.2 Clustering of Di�usion Samples

Let 	(v) � �1� 2�

 � M(v)� denote a set of indices with respect to information di�usion
samples for an information source node v, i.e. �d1(v)� d2(v)�

 � dM(v)(v)�. Here note
that dm(v) stands for a set of active nodes in the m-th di�usion sample. As described
earlier, in order to discover super-mediator nodes, we consider dividing 	(v) into two
groups, 	1(v) and 	2(v), which are the upper group of samples with relatively high
influence degree and the lower group, respectively. Namely, 	1(v) � 	2(v) � 	(v) and
minm��1(v) �dm(v)� � maxm��2(v) �dm(v)�. Although we can straightforwardly extend our
approach in case of k-groups division, we focus ourselves on the simplest case (k � 2)
because of ease of both evaluation of basic performance and the following derivation.
By assuming the independence of each sample drawn from either the upper or the lower
group, we can consider the following likelihood function.

((v);	1(v)� �) �
�

k��1�2�

�
m��k(v)

p(m; �k)� (1)

where p(m; �k) denotes some probability distribution with the parameter set �k for the
m-th di�usion sample, and � � ��1� �2�. If it is assumed that the influence degree

Discovery of Super-Mediators of Information Di�usion in Social Networks 149

distribution consists of lognormal components, we can express p(m; �k) by

p(m; �k) �
1�

2�	2
k �dm(v)�

exp

������� (log �dm(v)� �
k)2

2	2
k

�����	 � (2)

where �k � �
k� 	
2
k�. Then, based on the maximum likelihood estimation, we can iden-

tify the optimal upper group 	̂1(v) by the following equation.

	̂1(v) � arg max
�1(v)

(;	1(v)� �̂)

�
� (3)

where �̂ denotes the set of maximum likelihood estimators.
Below we describe our method for eÆciently obtaining 	̂1(v) by focusing on the

case that p(m; �k) is the lognormal distribution defined in Equation (2), although the
applicability of the method is not limited to this case. For a candidate upper group
	1(v), by noting the following equations of the maximum likelihood estimation,

̂k �
1

�	k(v)�

�
m��k(v)

log �dm(v)�� 	̂2
k �

1
�	k(v)�

�
m��k(v)

(log �dm(v)� �
̂k)2� (4)

we can transform Equation (3) as follows.

	̂1(v) � arg max
�1(v)

2 log((v);	1(v)� �̂)

�
� arg max

�1(v)

���������
�

k��1�2�

�	k � log
�
	̂2

k

���������� � (5)

Therefore, when a candidate upper group 	1(v) is successively changed by shifting its
boundary between 	1(v) and 	2(v), we can eÆciently obtain 	̂1(v) by simply updating
the suÆcient statistics for calculating the maximum likelihood estimators. Here, we
define the following operation to obtain the set of elements with the maximum influence
degree,

�((v)) �

�
m; �dm(v)� � max

m��(v)
��dm(v)��

�
� (6)

because there might exist more than one di�usion sample with the same influence de-
gree. Then, we can summarize our algorithm as follows.

1. Initialize 	1(v) � �((v)), 	2(v) � 	(v) � �((v)), and L̂ � ��.
2. Iterate the following procedure:
2-1. Set 	1(v) � 	1(v) � �(2(v)), and 	2(v) � 	2(v) � �(2(v)).
2-2. If 	2(v) � �(2(v)), then terminate the iteration.
2-3. Calculate L � �

�
k��1�2� �	k(v)� log(̂2

k).
2-4. If L̂ � L then set L̂ � L and 	̂1(v) � 	1(v)
3. Output 	̂1(v), and terminate the algorithm.

We describe the computational complexity of the above algorithm. Clearly, the num-
ber of iterations performed in step 2 is at most (M(v) � 2). On the other hand, when
applying the operator �(
) in steps 1 and 2.1 (or 2.2), by classifying each di�usion

150 K. Saito et al.

sample according to its influence degree in advance, we can perform these operations
with computational complexity of O(1). Here note that since the influence degree is a
positive integer less than or equal to �V �, we can perform the classification with com-
putational complexity of O(M(v)). As for step 2.3, by adding (or removing) statistics
calculated from �(2(v)), we can update the maximum likelihood estimators �̂ defined
in Equation (4) with computational complexity of O(1). Therefore, the total computa-
tional complexity of our clustering algorithm is O(M(v)). Note that the above discussion
can be applicable to a more general case for which the suÆcient statistics of p(m; �k) is
available to its parameter estimation.

A standard approach to the above clustering problem might be applying the EM
algorithm by assuming a mixture of lognormal components. However, this approach
is likely to confront the following drawbacks: 1) due to the local optimal problem, a
number of parameter estimation trials are generally required by changing the initial
parameter values, and we cannot guarantee the global optimality for the final result;
2) since many iterations are required for each parameter estimation trial, we need a
substantially large computational load for obtaining the solution, which results in a pro-
hibitively large processing time especially for a large data set; and 3) in case that a data
set contains malicious outlier samples, we need a special care to avoid some unexpected
problems such as degradation of 	̂2

k to 0. Actually, our preliminary experiments based
on this approach su�ered from these drawbacks. In contrast, our proposed method al-
ways produces the optimal result with computational complexity of O(M(v)).

3.3 Super-Mediator Discovery

Next, we describe our method for discovering super-mediator nodes. Let D � �dm(v); v �
V�m � 1�

 � M(v)� denote a set of observed di�usion samples. By using the above
clustering method, we can estimate the upper group 	̂1 for each node v � V . For 	̂1(v),
we employ, as a natural super-mediator score for a node w � V , the following F-measure
F(w; v), a widely used measure in information retrieval, which is the harmonic average
of recall and precision of a node w for the node v. Here the recall means the number
of samples that include the node w in the upper group divided by the total number of
samples in the upper group, and the precision means the number of samples that include
a node w in the upper group divided by the total number of the node w in the samples.

F(w; v) �
2��m; m � 	̂1(v)�w � dm(v)��

�	̂1(v)� � ��m; m � 	(v)�w � dm(v)��
� (7)

Note that instead of the F-measure, we can employ the other measures such as the
Jaccard coeÆcients, but for our objective that discovers characteristic nodes appearing
in 	̂1(v), we believe that the F-measure is most basic and natural. Then, we can consider
the following expected F-measure for D.

� (w) �
�
v�V

F(w; v)r(v)� (8)

where r(v) stands for the probability that the node v becomes an information source
node, which can be empirically estimated by r(v) � M(v)

�
v�V M(v). Therefore, we

Discovery of Super-Mediators of Information Di�usion in Social Networks 151

can discover candidates for the super-mediator nodes by ranking the nodes according
to the above expected F-measure.

In order to confirm the validity of the F-measure and characterize its usefulness, we
compare the ranking by the F-measure with the rankings by two other measures, and
investigate how these rankings are di�erent from or correlated to each other considering
several situations. The first one is the expected influence degree defined in Section 2.3.
From observed di�usion samples D, we can estimate it as follows.

�(w) �
1

M(w)

M(w)�
m�1

�dm(w)�� (9)

The second one is the following measure:

�(w) �
�
v�V

��m; w � dm(v)��r(v)� (10)

This measure ranks high those nodes that are easily influenced by many other nodes.

4 Experimental Evaluation

4.1 Data Sets

We employed two datasets of large real networks, which are both bidirectionally con-
nected networks. The first one is a trackback network of Japanese blogs used in [13]
and has 12� 047 nodes and 79� 920 directed links (the blog network). The other one is
a network of people derived from the “list of people” within Japanese Wikipedia, also
used in [13], and has 9� 481 nodes and 245� 044 directed links (the Wikipedia network).

Here, according to [17], we assumed the simplest case where the parameter values
are uniform across all links and nodes, i.e. pu�v � p for the IC model. As for the LT
model, we assumed �u�v � q�B(v)��1, and adopted q (0 � q � 1) as the unique parameter
for a network instead of �u�v as in [18]. According to [8], we set p to a value smaller
than 1d̄, where d̄ is the mean out-degree of a network. Thus, the value of p was set to
0�1 for the blog network and 0�02 for the Wikipedia network. These are the base values,
but in addition to them, we used two other values, one two times larger and the other
two times smaller for our analyses, i.e. 0�02 and 0�05 for the blog network, and 0�04
and 0�01 for the Wikipedia network. We set the base value for q to be 0�9 for the both
networks to achieve reasonably long di�usion results. Same as p, we also adopted two
other values, one two times larger and the other two times smaller. Since the double of
0�9 exceeds the upper-bound of q, i.e. 1�0, we used 1�0 for the larger value, and we used
0�45 for the smaller one.

For each combination of these values, information di�usion samples were gener-
ated for the corresponding model on each network using each node in the network as
the initial active node. In our experiments, we set M � 10� 000, which means 10� 000
information di�usion samples were generated for each initial active node. Then, we
analyzed them to discover super-mediators. To eÆciently generate those information
di�usion samples and estimate the expected influence degree � of an initial active node,

152 K. Saito et al.

100 101 102 10310−10

10−8

10−6

10−4

10−2

100

influence degrees

pr
ob

ab
ili

ty

(a) Blog (p � 0�05)

100 101 102 103 10410−10

10−8

10−6

10−4

10−2

100

influence degree

pr
ob

ab
ili

ty

(b) Blog (p � 0�1)

100 101 102 103 10410−10

10−8

10−6

10−4

10−2

100

influence degree

pr
ob

ab
ili

ty

(c) Blog (p � 0�2)

100 101 102 10310−8

10−6

10−4

10−2

100

influence degree

pr
ob

ab
ili

ty

(d) Wikipedia (p � 0�01)

100 101 102 103 10410−8

10−6

10−4

10−2

100

influence degree

pr
ob

ab
ili

ty

(e) Wikipedia (p � 0�02)

100 101 102 103 10410−8

10−6

10−4

10−2

100

influence degree

pr
ob

ab
ili

ty

(f) Wikipedia (p � 0�04)

Fig. 2. The average influence degree distribution of the IC model

we adopted the method based on the bond percolation proposed in [14]. Note that we
only use these two networks to generate the di�usion sample data which we assume we
observed. Once the data are obtained, we no more use the network structure.

4.2 Influence Degree Distribution

First, we show the influence degree distribution for all nodes. Figure 2 is the results
of the IC model and Fig. 3 is the results of the LT model. M(� 10� 000) simulations
were performed for each initial node v � V and this is repeated for all the nodes in
the network. Since the number of the nodes �V � is about 10,000 for both the blog and
the Wikipedia networks, these results are computed from about one hundred million
di�usion samples and exhibits global characteristics of the distribution. We see that the
distribution of the IC model consists of lognormal like distributions for a wide range of
di�usion probability p with clearer indication for a larger p. Here it is known that if the
variance of the lognormal distribution is large, it can be reasonably approximated by
a power-law distribution [23]. On the contrary, we note that the distribution of the LT
model is di�erent and is a monotonically decreasing power-law like distribution. This
observation is almost true of the distribution for an individual node v except that the
distribution has one peak for the LT model. One example is already shown in Fig 1 (b)
for the IC model. Figures 4 and 5 show some other results for the both models. In each
of these figures the most influential node for the parameter used was chosen as the ini-
tial activated source node v. From this observation, the discovery model we derived in
subsections 3.2 and 3.3 can be straightforwardly applied to the IC model by assuming
that the probability distribution consists of lognormal components and the succeed-
ing experiments were performed for the IC model. However, this does not necessarily

Discovery of Super-Mediators of Information Di�usion in Social Networks 153

100 101 102 10310−10

10−8

10−6

10−4

10−2

100

influence degree

pr
ob

ab
ili

ty

(a) Blog (q � 0�45)

100 101 102 10310−10

10−8

10−6

10−4

10−2

100

influence degree

pr
ob

ab
ili

ty
(b) Blog (q � 0�9)

100 101 102 103 10410−10

10−8

10−6

10−4

10−2

100

influence degree

pr
ob

ab
ili

ty

(c) Blog (q � 1�0)

100 101 102 10310−8

10−6

10−4

10−2

100

influence degree

pr
ob

ab
ili

ty

(d) Wikipedia (q � 0�45)

100 101 102 103 10410−8

10−6

10−4

10−2

100

influence degree

pr
ob

ab
ili

ty

(e) Wikipedia (q � 0�9)

100 101 102 103 10410−8

10−6

10−4

10−2

100

influence degree

pr
ob

ab
ili

ty

(f) Wikipedia (q � 1�0)

Fig. 3. The average influence degree distribution of the LT model

100 101 102 10310−4

10−3

10−2

10−1

influence degree

pr
ob

ab
ili

ty

(a) Blog (p � 0�05)

102 103 10410−4

10−3

10−2

influence degree

pr
ob

ab
ili

ty

(b) Blog (p � 0�1)

102 103 10410−4

10−3

10−2

influence degree

pr
ob

ab
ili

ty

(c) Blog (p � 0�2)

100 101 102 10310−4

10−3

10−2

10−1

influence degree

pr
ob

ab
ili

ty

(d) Wikipedia (p � 0�01)

100 101 102 103 10410−4

10−3

10−2

influence degree

pr
ob

ab
ili

ty

(e) Wikipedia (p � 0�02)

103 10410−4

10−3

10−2

influence degree

pr
ob

ab
ili

ty

(f) Wikipedia (p � 0�04)

Fig. 4. The influence degree distribution for a specific node v of the IC model

mean that the notion of super-mediator is only applicable to the IC model. Finding a
reasonable and eÆcient way to discover super-mediator nodes for the LT model is our
on-going research topic. Further, the assumption of dividing the groups into only two
need be justified. This is also left to our future work.

154 K. Saito et al.

101 102 10310−4

10−3

10−2

10−1

influence degree

pr
ob

ab
ili

ty

(a) Blog (q � 0�45)

101 102 10310−4

10−3

10−2

10−1

influence degree

pr
ob

ab
ili

ty

(b) Blog (q � 0�9)

101 102 10310−4

10−3

10−2

influence degree

pr
ob

ab
ili

ty

(c) Blog (q � 1�0)

101 102 10310−4

10−3

10−2

10−1

influence degree

pr
ob

ab
ili

ty

(d) Wikipedia (q � 0�45)

101 102 10310−4

10−3

10−2

influence degree

pr
ob

ab
ili

ty

(e) Wikipedia (q � 0�9)

101 102 103 10410−4

10−3

10−2

influence degree

pr
ob

ab
ili

ty

(f) Wikipedia (q � 1�0)

Fig. 5. The influence degree distribution for a specific node v of the LT model

4.3 Super-Mediator Ranking

Tables 1, 2 and 3 summarize the ranking results. Ranking is evaluated for two di�erent
values of di�usion probability (p � 0�1 and p � 0�05 for the blog data, and p � 0�02 and
0�01 for the Wikipedia data) and for the three measures mentioned in subsection 3.3.
Rank by all the measures is based on the value rounded o� to three decimal places. So
the same rank appears more than once. The first two (Tables 1 and 2) rank the nodes by
� for p � 0�1 and 0�05 (blog data) and p � 0�02 and 0�01 (Wikipedia data), respectively,
and compare each ranking with those by � and � . From these results we observe that

Table 1. Comparison of the ranking by � with rankings by � and � for a large di�usion
probability

(a) Blog network (p � 0�1)
Ranking by � Ranking by ���

Ranking Node ID � �

1 146 2 2
1 155 1 1
3 140 3 3
3 150 4 4
5 238 5 5
5 278 6 6
5 240 7 7
5 618 10 8
9 136 8 9
9 103 9 10

(b) Wikipedia network (p � 0�02)
Ranking by � Ranking by ���

Ranking Node ID � �

1 790 1 1
1 8340 2 2
3 323 3 3
3 279 4 4
5 326 5 5
6 772 6 6
6 325 7 7
8 1407 8 8
9 4924 9 9

10 3149 11 10

Discovery of Super-Mediators of Information Di�usion in Social Networks 155

Table 2. Comparison of the ranking by � with rankings by � and � for a small di�usion
probability

(a) Blog network (p � 0�05)
Ranking by � Ranking by ���

Ranking Node ID � �

1 155 26 28
2 146 29 29
3 140 41 44
4 150 63 66
5 238 92 93
6 618 79 81
6 240 113 112
8 103 84 86
8 490 95 96
8 173 88 89

(b) Wikipedia network (p � 0�01)
Ranking by � Ranking by ���

Ranking Node ID � �

1 790 167 168
2 279 199 198
2 4019 1 1
4 3729 2 2
4 7919 3 3
4 1720 7 4
4 4465 5 6
4 1712 6 7
9 4380 4 5
9 3670 9 8

Table 3. Comparison of the ranking by � for a high di�usion probability with rankings by �, � ,
and � for a low di�usion probability

(a) Blog network
Ranking by � Ranking by ��� ��

for p � 0�1 for p � 0�05
Ranking Node ID � � �

1 155 26 1 28
2 146 29 2 29
3 140 41 3 44
4 150 63 4 66
5 238 92 5 93
6 278 161 18 154
7 240 113 6 112
8 136 83 8 85
9 103 84 8 86
10 618 79 6 81

(b) Wikipedia network
Ranking by � Ranking by ��� ��

for p � 0�02 for p � 0�01
Ranking Node ID � � �

1 790 167 1 168
2 8340 200 9 201
3 323 196 14 200
4 279 199 2 198
5 326 212 24 206
6 325 231 51 236
7 772 242 41 235
8 1407 257 80 264
9 4924 305 111 298

10 2441 279 103 287

when the di�usion probability is large all the three measures ranks the nodes in a similar
way. This means that the influential nodes also play a role of super-mediator for the
other source nodes. When the di�usion probability is small, the Wikipedia data still
shows the similar tendency but the blog data does not. We further note that � and �

rank the nodes in a similar way regardless of the value of di�usion probability. This
is understandable because the both networks are bidirectional. In summary, when the
di�usion probability is large, all the three measures are similar and the influential nodes
also play a role of super-mediator for the other source nodes.

The third one (Table 3) ranks the nodes by � for p � 0�01 (blog data) and p �

0�02 (Wikipedia data) and compares them with the rankings by the three measures for
p � 0�05 (blog data) and p � 0�01 (Wikipedia data). The results say that the influ-
ential nodes are di�erent between the two di�erent di�usion probabilities, but what is

156 K. Saito et al.

strikingly interesting to note is that the nodes that are identified to be influential (up to
10th) at a large di�usion probability are almost the same as the nodes that rank high by
� at a small di�usion probability for the blog data. This correspondence is not that clear
for the Wikipedia data but the correlation of the rankings by � (at a large di�usion prob-
ability) and � (at a small di�usion probability) is much larger than the corresponding
correlation by the other two measures (� and �). This implies that the super-mediators
at a small di�usion probability become influential at a large di�usion probability. Since
the F-measure can be evaluated by the observed information sample data alone and
there is no need to know the network structure, this fact can be used to predict which
nodes become influential when the di�usion probability switches from a small value for
which we have enough data to a large value for which we do not have any data yet.

4.4 Characterization of Super-Mediator and Discussions

If we observe that some measure evaluated for a particular value of di�usion probabil-
ity gives an indication of the influential nodes when the value of di�usion probability is
changed, it would be a useful measure for finding influential nodes for a new situation. It
is particularly useful when we have abundant observed set of information di�usion sam-
ples with normal di�usion probability and we want to discover high ranked influential
nodes in a case where the di�usion probability is larger. For example, this problem set-
ting corresponds to predicting the influential nodes for the unexperienced rapid spread
of new information, e.g. spread of new acute contagion, because it is natural to think
that we have abundant data for the spread of normal moderate contagion.

The measure based on � ranks high those nodes that are also influential where the
di�usion probability is di�erent from the current value if nodes are not sensitive to the
di�usion probability, i.e. a measure useful to estimate influential nodes from the known
results when the di�usion probability changes under such a condition. The measure
based on � ranks high those nodes that are easily influenced by many other nodes.
It is a measure useful to estimate influential nodes from the known results if they are
the nodes easily influenced by other nodes. In our experiments, the influential nodes
by � for the much larger di�usion probability, i.e. p � 0�2 (blog data) and p � 0�04
(Wikipedia data) were almost the same as the high ranked ones by any one of the three
measures �, � and � for p � 0�1 (blog data) and p � 0�02 (Wikipedia data), although
we have to omit the details due to the space limitation.

In the previous subsection we showed that the super-mediators at a small di�usion
probability become influential at a large di�usion probability. In a situation where there
are relatively large number of active nodes, the probability that more than one parent try
to activate their same child increases, which mirrors the situation where the di�usion
probability is e�ectively large. It is the super-mediators that play the central role in these
active node group under such a situation. This would explain why the super-mediators
at a small di�usion probability become influential nodes at a large di�usion probability.

5 Conclusion

We found that the influence degree for the IC model exhibits a distribution which is a
mixture of two distributions (power-law like distribution and lognormal like

Discovery of Super-Mediators of Information Di�usion in Social Networks 157

distribution). This implied that there are nodes that may play di�erent roles in informa-
tion di�usion process. We made a hypothesis that there should be nodes that play an
important role to pass the information to other nodes, and called these nodes “super-
mediators”. These nodes are di�erent from what is usually called “influential nodes”
(nodes that spread information as much as possible). We devised an algorithm based on
maximum likelihood and linear search which can eÆciently identify the super-mediator
node group from the observed di�usion sample data, and proposed a measure based on
recall and precision to rank the super-mediators. We tested our hypothesis by applying it
to the information di�usion sample data generated by two real networks. We found that
the high ranked super-mediators are also the high ranked influential nodes when the dif-
fusion probability is large, i.e. the influential nodes also play a role of super-mediator for
the other source nodes, but not necessarily so when the di�usion probability is small,
and further, to our surprise, that when the high ranked super-mediators are di�erent
from the top ranked influential nodes, which is the case when the di�usion probability
is small, those super-mediators become the high ranked influential nodes when the dif-
fusion probability becomes larger. This finding will be useful to predict the influential
nodes for the unexperienced spread of new information from the known experience, e.g.
prediction of influential nodes for the spread of new acute contagion for which we have
no available data yet from the abundant data we already have for the spread of moderate
contagion.

Acknowledgments

This work was partly supported by Asian OÆce of Aerospace Research and Develop-
ment, Air Force OÆce of Scientific Research under Grant No. AOARD-10-4053, and
JSPS Grant-in-Aid for Scientific Research (C) (No. 20500147).

References

1. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: A complex systems look at the
underlying process of word-of-mouth. Marketing Letters 12, 211–223 (2001)

2. Newman, M.E.J., Forrest, S., Balthrop, J.: Email networks and the spread of computer
viruses. Physical Review E 66, 35101 (2002)

3. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–
256 (2003)

4. Watts, D.J.: A simple model of global cascades on random networks. Proceedings of National
Academy of Science, USA 99, 5766–5771 (2002)

5. Watts, D.J., Dodds, P.S.: Influence, networks, and public opinion formation. Journal of Con-
sumer Research 34, 441–458 (2007)

6. Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information di�usion through
blogspace. SIGKDD Explorations 6, 43–52 (2004)

7. Domingos, P.: Mining social networks for viral marketing. IEEE Intelligent Systems 20, 80–
82 (2005)

8. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social
network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2003), pp. 137–146 (2003)

158 K. Saito et al.

9. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. In: Proceed-
ings of the 7th ACM Conference on Electronic Commerce (EC 2006), pp. 228–237 (2006)

10. Kimura, M., Saito, K., Nakano, R.: Extracting influential nodes for information di�usion on
a social network. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence
(AAAI 2007), pp. 1371–1376 (2007)

11. Kimura, M., Saito, K., Nakano, R., Motoda, H.: Extracting influential nodes on a social
network for information di�usion. In: Data Mining and Knowledge Discovery, vol. 20, pp.
70–97. Springer, Heidelberg (2010)

12. Kimura, M., Saito, K., Motoda, H.: Minimizing the spread of contamination by blocking
links in a network. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI 2008), pp. 1175–1180 (2008)

13. Kimura, M., Saito, K., Motoda, H.: Blocking links to minimize contamination spread in a
social network. ACM Trans. Knowl. Discov. Data 3(2), Article 9, 9:1–9:23 (2009)

14. Kimura, M., Saito, K., Motoda, H.: EÆcient estimation of influence functions fot SIS model
on social networks. In: Proceedings of the 21st International Joint Conference on Artificial
Intelligence, IJCAI 2009 (2009)

15. Saito, K., Kimura, M., Motoda, H.: Discovering influential nodes for sis models in social net-
works. In: Gama, J., Costa, V.S., Jorge, A.M., Brazdil, P.B. (eds.) DS 2009. LNCS (LNAI),
vol. 5808, pp. 302–316. Springer, Heidelberg (2009)

16. Kimura, M., Saito, K., Nakano, R., Motoda, H.: Finding influential nodes in a social network
from information di�usion data. In: Proceedings of the International Workshop on Social
Computing and Behavioral Modeling (SBP 2009), pp. 138–145 (2009)

17. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Learning continuous-time information dif-
fusion model for social behavioral data analysis. In: Zhou, Z.-H., Washio, T. (eds.) ACML
2009. LNCS, vol. 5828, pp. 322–337. Springer, Heidelberg (2009)

18. Saito, K., Kimura, M., Ohara, K., Motoda, H.: Behavioral analyses of information di�usion
models by observed data of social network. In: Chai, S.-K., Salerno, J.J., Mabry, P.L. (eds.)
Advances in Social Computing. LNCS, vol. 6007, pp. 149–158. Springer, Heidelberg (2010)

19. Goyal, A., Bonchi, F., Lakshhmanan, L.V.S.: Learning influence probabilities in social net-
works. In: Proceedings of the third ACM international conference on Web Search and Data
Mining, pp. 241–250 (2010)

20. Bakshy, E., Karrer, B., Adamic, L.A.: Social influence and the di�usion of user-created con-
tent. In: Proceedings of the tenth ACM conference on Electronic Commerce, pp. 325–334
(2009)

21. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-
e�ective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD 2007), pp. 420–429
(2007)

22. Chen, W., Wang, Y., Yang, S.: EÆcient influence maximization in social networks. In: Pro-
ceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD 2009), pp. 199–208 (2009)

23. Mitzenmacher, M.: A brief history of generative models for power law and lognormal distri-
butions. Internet Mathematics 1, 226–251 (2004)

Integer Linear Programming Models for
Constrained Clustering

Marianne Mueller and Stefan Kramer

Technische Universität München, Institut für Informatik, 85748 Garching, Germany

Abstract. We address the problem of building a clustering as a subset
of a (possibly large) set of candidate clusters under user-defined con-
straints. In contrast to most approaches to constrained clustering, we
do not constrain the way observations can be grouped into clusters, but
the way candidate clusters can be combined into suitable clusterings. The
constraints may concern the type of clustering (e.g., complete clusterings,
overlapping or encompassing clusters) and the composition of clusterings
(e.g., certain clusters excluding others). In the paper, we show that these
constraints can be translated into integer linear programs, which can be
solved by standard optimization packages. Our experiments with bench-
mark and real-world data investigates the quality of the clusterings and
the running times depending on a variety of parameters.

1 Introduction

Constraint-based mining approaches aim for the incorporation of domain knowl-
edge and user preferences into the process of knowledge discovery [6]. This is
mostly supported by inductive query languages [5, 12, 16, 13, 4]. One of the
most prominent and important instances of constraint-based mining is con-
strained clustering. Since its introduction (incorporating pairwise constraints
into k-Means [20]), constrained clustering has been extended to various types
of constraints and clustering methods [3]. Most of the approaches constrain the
way observations can be grouped into clusters, i.e., they focus on building clus-
ters under constraints. In this paper, we consider a different problem, namely
that of building clusterings from a (possibly large) set of candidate clusters un-
der constraints. In other words, we address the following problem: Given a set
of candidate clusters, find a subset of clusters that satisfies user-defined con-
straints and optimizes a score function reflecting the quality of a clustering.
Clearly, both approaches are not mutually exclusive, but just represent differ-
ent aspects of finding a good clustering under constraints. In fact, the problem
of constructing suitable clusterings requires a suitable set of cluster candidates,
which can be the result of, e.g., constrained clustering under pairwise constraints
[20] or itemset classified clustering [19].

The process of building suitable clusterings can be constrained by the user in
various ways: The constraints may concern the completeness of a clustering, the
disjointness of clusters, or they may concern the number of times examples are
covered by clusters. Moreover, some clusters may preclude others in a clustering,

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 159–173, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

160 M. Mueller and S. Kramer

or clusters may require others. Constraints of the latter type can be formulated as
logical formulae. The quality of a clustering to be optimized can then be defined
as the mean quality of the clusters, their median quality, or their minimum
quality. The paper presents a set of possible constraints along those lines and
shows how they can be mapped onto integer linear program models. In this
way, users can obtain tailor-made clusterings without being concerned with the
technical details, much in the spirit of constraint-based mining and inductive
query languages in general [6, 5]. Doing so, it is also possible to take advantage
of a huge body of literature on the subject and advanced optimization tools.

2 Constrained Clustering

In this section, we present the possible constraints that can be applied to a
clustering. First, we have to introduce some notation: Let X = {e1, ..., em} be a
set of examples, and B a set of base clusters (i.e., cluster candidates potentially
to be included in a clustering). Furthermore, the number of examples is denoted
by m = |X |, and the number of base clusters by n = |B|. Then a set of clusters
C = {C1, ..., Ck} ⊆ B denotes a clustering. Moreover, we are given an objective
function f : 2B → R which scores a given clustering according to its quality.
Finally, we are given constraints Φ(C) that restrict the admissible subsets of B,
either with respect to the sets of instances (e.g., whether they are overlapping or
encompassing one another) or with respect to known interrelationships between
the clusters (e.g., cluster C1 precludes cluster C2 in a clustering). The overall
goal is then to find a clustering C ⊆ B satisfying the constraints Φ(C) and
optimizing the objective function f .

Next, we discuss the different types of constraints on clusterings. First, we
present set-level constraints, i.e., constraints in the form of logical formulae that
control the clusters that can go into a clustering depending on other clusters.
Second, we present clustering constraints, that is, constraints that determine the
form of a clustering, for instance, whether the clusters are allowed to overlap.
Third, three different optimization constraints [13] will be introduced, which
determine the objective function to be optimized.

2.1 Set-Level Constraints

In the following, let a literal Liti be either a constraint Cj ∈ C or Cj /∈ C.
For convenience, we will call Cj ∈ C an unnegated literal and Cj /∈ C a negated
literal. Then we can have three types of constraints:

– Conjunctive constraints setConstraint(C, Lit1 ∧Lit2 ∧ ...∧Litl): This type
of constraint ensures that certain clusters are included or excluded from a
clustering. Clusters referred to by unnegated literals have to be included,
clusters referred to by negated literals have to be excluded.

– Disjunctive constraints setConstraint(C, Lit1∨Lit2∨ ...∨Litl): This type of
constraint ensures that at least one of the conditions holds for a clustering.
If all literals are unnegated, for instance, it is possible to state that at least
one of the listed clusters has to participate in a clustering.

Integer Linear Programming Models for Constrained Clustering 161

– Clausal constraints setConstraint(C, Lit1 ∧Lit2 ∧ ...∧Litl−1 → Litl): This
type of constraint states that if all conditions from the left-hand side are
satisfied, then also the condition on the right-hand side has to be satisfied.
For instance, it is possible to say that the inclusion of one cluster has to
imply the inclusion of another (e.g., Ci ∈ C → Cj ∈ C) or that one clusters
makes the inclusion of another impossible (e.g., Ci ∈ C → Cj /∈ C).

These constraints can be translated easily into linear constraints (see Section 3).
Arbitrary Boolean formulae could, in principle, be supported as well. However,
they would require the definition of new variables, thus complicating the defi-
nition of the optimization problem. Note that instance-level constraints in the
style of Wagstaff et al. [20], must-link and cannot-link, can easily be taken into
account as well: However, here the constraints would effectively reduce the set
of clusters that are put into the set of candidate clusters B. If we enforced those
constraints on some set of candidate clusters B, then we would discard those
individual clusters not satisfying the constraints, and restrict B to some subset
B′ ⊆ B in the process.

Also note that the set of base clusters B can be the result of other data mining
operations. For instance, consider the case of itemset classified clustering [19],
where the potential clusters in one feature space (view) are restricted to those
that can be described by frequent itemsets in another feature space (view). This
is the setting that will be explored in Section 4 on experimental results.

2.2 Clustering Constraints

This section describes constraints that determine the basic characteristics of
clusterings:

– completeness(C, minCompl, maxCompl): This constraint determines the de-
gree of completeness of a clustering. More formally, it ensures that for clus-
tering C, it holds that minCompl ≤ |∪Cj∈CCj |

|X| ≤ maxCompl.
– overlap(C, minOverlap, maxOverlap): This constraint determines the al-

lowed degree of overlap between clusters of a clustering. Let coverage(ei, C)
be a function determining the number of clusters in a clustering C
containing example ei: coverage(ei, C) = |{Cj |Cj ∈ C ∧ ei ∈ Cj}|. Further-
more, let numberOverlaps(C) =

∑
ei∈X, coverage(ei,C)>1(coverage(ei, C) −

1) be a function counting the number of times instances are covered more
than once (with multiple overlaps of one instance counted multiple
times). Then the constraint overlap(C, minOverlap, maxOverlap) is satis-
fied if minOverlap ≤ numberOverlaps(C)

|X| ≤ maxOverlap.1

– encompassing(C, F lag): This constraint determines whether the clusters are
allowed to encompass each other, i.e., whether the clusters are allowed to

1 This is related to the notion of disjointness of clusters, but minimum overlap and
maximum overlap seem more intuitive than minimum disjointness and maximum
disjointness.

162 M. Mueller and S. Kramer

form a hierarchy. If Flag = no, then it holds that there is no pair Ci, Cj ∈ C
such that Ci ⊂ Cj .

– numberClusters(C, minK, maxK): This constraint restricts the number of
clusters that can be part of a solution: minK ≤ |C| ≤ maxK.

– exampleCoverage(C, minCoverage, maxCoverage): This constraint limits
the number of times an example can be covered by clusters. Formally, it holds
that for each ei ∈ X : minCoverage ≤ coverage(ei, C) ≤ maxCoverage.

2.3 Optimization Constraints

This section introduces the optimization constraints [13] used in our approach.
The quality of a clustering is defined as an aggregate over the qualities of its
clusters.

– maxMeanQuality(C): This constraint implies that the mean quality of the
clusters contained in a clustering is optimized.

– maxMinQuality(C): This constraint implies that the minimum quality of
the clusters contained in a clustering is optimized.

– maxMedianQuality(C): This constraint implies that the median quality of
the clusters contained in a clustering is optimized.

Those optimization constraints are just the most basic ones that are conceivable.
In fact, it is easy to combine the quality of a clustering with any of the above
clustering constraints, for instance, not excluding overlapping clusters, but pe-
nalizing too much overlap. The same is possible for completeness (penalizing
lack of completeness). Note that if cluster quality is defined as within-cluster
distance, it is necessary to invert this quantity (e.g., by changing the sign) for
our purposes. When translated into an integer linear model, the optimization
constraints determine the objective function used.

2.4 Combining Constraints

Given the constraints introduced above, it is now possible to combine them in
queries for clusterings. More precisely, a query can now be formed by a pair
(Φ, f()), where Φ is a logical conjunction of set-level and clustering constraints,
and f() is one of the three optimization constraints from the previous section.

As an example, consider the following query: q = (numberClusters(C, 2, 5) ∧
overlap(C, 0.1, 0.2) ∧ completeness(C, 0.9, 1.0) ∧ setConstraint(C, C1 ∈ C →
C2 ∈ C)∧ setConstraint(C, C1 ∈ C → C3 /∈ C), maxMeanQuality(C)). It aims
to find a clustering containing between 2 and 5 clusters, with an allowed overlap
between 0.1 and 0.2, a desired completeness between 0.9 and 1.0, and such that
the inclusion of cluster C1 implies the inclusion of C2 and the exclusion of C3.
The possible clusterings are optimized with respect to their mean cluster quality.

3 Method

In this section, we describe how to translate the introduced constraints into
linear constraints. In Section 3.1 and 3.2 we focus on the clustering constraints

Integer Linear Programming Models for Constrained Clustering 163

Table 1. Problem with 7 examples and 5 base clusters. Matrix A and vector w for the
given promblem.

:=

1

2 i

d

d

:=Cj

e
j

5

4

2

3

1 1 2 3

7

6

4

5

i A: C1 C2 C3 C4 C5

e1 1 1 0 0 0
e2 1 1 0 0 0
e3 1 1 1 0 0
e4 0 1 0 1 1
e5 0 0 0 1 1
e6 0 0 1 0 1
e7 0 0 1 0 1
w: 1.33 1.3 1.55 1 1.75

restricted to the optimization constraint maxMeanQuality(C), in Section 3.3
we handle alternative optimization constraints and in Section 3.4 we present the
translation of set-level constraints. The constraints are used to form an integer
linear program, which can then be solved by any package for ILP optimization.

First, we define an m× n-matrix A (m being the number of examples and n
being the number of base clusters as introduced above) with:

aij =
{

1 if cluster Cj contains example ei,
0 otherwise, (1)

and w ∈ Rn, where wj is the within-cluster distance2, which is defined as the
mean of the pairwise distances between the examples covered by the cluster Cj .

Table 1 shows an example for m = 7 examples and n = 5 candidate clusters.
The matrix A and the vector w are displayed in Table 1. Here, wj is the mean
of the pairwise Euclidian distances between the examples covered by cluster Cj .

3.1 Modeling Clustering Constraints: Disjoint Clustering

Let our objective be to determine the disjoint clustering C with the minimal
mean within-cluster distance, i.e., C has to satisfy (completeness(C, minCompl,
1) ∧ overlap(C, 0, 0), maxMeanQuality(C)). This is also known as the Weighted
Set Packing Problem [14], which is NP-complete. This task can be defined as
the optimization problem shown in Table 3.

The goal is to minimize the mean of the within-cluster distance (w) over all k
selected clusters, which is equivalent to maximizing the mean of the inner cluster
similarities (wmax − w) of all k selected clusters, where wmax := maxj wj .

2 Note that minimizing the within-cluster distance is equivalent to maximizing the
between-cluster distance for a fixed k. In our setting, k varies between minK and
maxK. As our clustering approach is strongly constrained by the given set of base
clusters, there is no or only little bias towards a k near maxK. For instance, smaller
base clusters may not provide the required completeness, thus, a solution with larger
base clusters and a smaller k may be preferred.

164 M. Mueller and S. Kramer

Table 2. Optimal clusterings for the example introduced in Table 1

minCompl maxOverlap selected sets mean(w)
1 0 {C1, C5} 1.54

6/7 0 {C1, C5} 1.54
5/7 0 {C1, C4} 1.17
1 1/7 {C1, C3, C4} 1.29
1 2/7 {C2, C3, C4} 1.28

5/7 2/7 {C2, C4} 1.15

Table 3. Optimization task for determining the optimal disjoint clustering

maximize 1
k
(wmax − w)T x

subject to (i) Ax ≤ 1

(ii) Ax ≥ y (v) x ∈ {0, 1}n

(iii) 1T x = k (vi) y ∈ {0, 1}m

(iv) 1T y ≥ m · minCompl

Since we would like to formulate a linear program, it is not possible to optimize
over the variable k that appears in the denominator of the objective function.
However, we can keep the problem linear by treating k as a constant and resolve
the optimization problem with varying values for k.

We introduce a vector x expressing which clusters are selected (i),(v):

xj =
{

1 if cluster Cj is selected,
0 otherwise. (2)

The vector y contains information about which examples are covered by the
selected clusters: If yi = 1 then ei is covered by a selected cluster (ii).3

The clustering is further subject to the constraints that each example must
not be covered by more than one clustering (i) and that at least m ·minCompl
examples have to be covered (iv). For the example in Table 1, we obtain the
solutions presented in the first three rows of Table 2.

3.2 Modeling Clustering Constraints: Clustering with Overlaps

We can relax the constraint of disjointness by allowing some of the selected
clusters to overlap. This means that some examples can be covered by more
than one cluster: C has to satisfy (completeness(C, minCompl, 1) ∧ overlap(C,
0,maxOverlap), maxMeanQuality(C)). This can be realized by the optimization
task in Table 4.
3 Note: if we set minCompl < 1, it is possible that yi = 0 for some example ei,

even though ei is covered by the selected clusters. However, this does not affect the
solution.

Integer Linear Programming Models for Constrained Clustering 165

Table 4. Optimization task for determining the optimal clustering with up to
maxOverlap multiply covered examples

maximize 1
k
(wmax − w)T x

subject to (i) Ax = y (vi) 1T v ≤ n · maxOverlap

(ii) 1T x = k (vii) x ∈ {0, 1}n

(iii) z ≥ 1 − y (viii) y ∈ Nm
0

(iv) 1T z ≤ (m − m · minCompl) (ix) v ∈ Nm
0

(v) v ≥ y − 1 (x) z ∈ {0, 1}m

The goal is still to maximize the mean of the inner cluster similarity of the k
selected sets. Again, we have the constraint that at least m ·minCompl examples
have to be covered (iv). In this setting we allow that some examples can be
covered by more than one set. We restrict the number of allowed overlaps to
maxOverlap (vi). This yields an integer-valued vector y, where yi = number
of sets that cover example ei (y(i) = coverage(ei, C)). Furthermore, we need
the vector v, where vi = number of overlaps of the example ei.4 To model
the constraint that demands at least minCompl examples to be covered, we
introduce a vector z such that if zi = 0 then example ei is covered.

For the example in Table 1, we obtain the solutions presented in the lower
part of Table 2 where maxOverlap > 0.

3.3 Modeling Optimization Constraints

So far we have shown integer linear models that determine the optimal cluster-
ing C with respect to maxMeanQuality(C). In this section we will show how to
model the optimization constraints maxMinQuality(C) and maxMedianQual-
ity(C). The optimization task in Table 4 is modified in the following way:

maxMinQuality(C): Instead of maximizing the mean 1
k (wmax − w)T x, the

aim is now to maximize the objective function dmin, that is the lowest in-
ner cluster similarity. For this purpose, we introduce the additional constraint
dmin ≤ wmax−wjxj for each j, making sure that dmin takes the intended value.
With this objective, we can remove the constraint 1T x = k.

maxMedianQuality(C): Here, the objective is to maximize dmed, which means
to maximize the median quality. Again, we can remove the constraint 1T x = k.
We need to introduce the following additional constraints:

(xi) xl ∈ {0, 1}n (xiv) xl + xr ≤ 1 (xvii) (wmax − wj)xlj ≤ dmed, ∀j
(xii) xr ∈ {0, 1}n (xv) 1T xr − 1T xl ≤ 1 (xviii) dmed ≤ wmax − wjxrj , ∀j

(xiii) x = xl + xr (xvi) 1T xl − 1T xr ≤ 0

4 If the optimal C contains less overlaps than n·maxOverlap, vi may take higher values
than the actual # overlaps of ei. (v) However, this does not affect the solution.

166 M. Mueller and S. Kramer

The intuitive explanation for the introduced vectors xl and xr is as follows.
To determine the median inner cluster similarity we partition the selected clus-
ters into two sets whose cardinalities differ by at most 1 (constraints (xv) and
(xvi)). The clusters that have a lower quality than the median-cluster quality
are those having an xl value of 1 (constraint (xvii)), and the clusters that have
a higher quality than the median-cluster quality are those having an xr value of
1 (constraint (xviii)).

Note that for the case of an even number of sets, this model maximizes the
upper median, i.e., the set at the (k

2 +1)th position. If the goal is to maximize the
lower median, i.e., the set at the k

2 th position, we need to modify the constraints
(xv) and (xvi) to: (xv) 1T xr − 1T xl ≥ 1 and (xvi) 1T xr − 1T xl ≤ 2.

3.4 Modeling Set-Level Constraints

Finally, we explain how set-level constraints can be dealt with, and based on
this, how the encompassing(C, F lag) constraint can be solved. For convenience,
we define a transformation operator τ on literals, which gives τ(Cj ∈ C) = xj

in case of unnegated and τ(Cj /∈ C) = (1− xj) in case of negated literals.

– Conjunctive constraints setConstraint(C, Lit1∧Lit2∧ ...∧Litl). This states
that certain clusters have to be included or cannot be included in a clustering.
These constraints can directly be transformed into equality constraints of the
form xj = 1 for Cj ∈ C and xj = 0 for Cj /∈ C.

– Disjunctive constraints setConstraint(C, Liti∨Lit2∨...∨Litl). This gives rise
to an additional linear constraint of the following form:

∑l
i=1 τ(Liti) ≥ 1.

– Clausal constraints setConstraint(C, Liti ∧Lit2 ∧ ... ∧Litl−1 → Litl). This
gives rise to an additional linear constraint τ(Litl)− (

∑l−1
i=1 τ(Liti)) ≥ 2− l.

For instance, setConstraint(C, C1 ∈ C ∧ C2 /∈ C → C3 ∈ C) gives rise to
the constraint x3 − x1 − (1− x2) ≥ −1, i.e., x3 − x1 + x2 ≥ 0, which is only
violated for x1 = 1, x2 = 0, x3 = 0.

Using these set-level constraints, it is now possible to solve the encompassing(C,
Flag) constraint: If Flag = no, then for each Ci ∈ B and Cj ∈ B with Ci ⊂ Cj ,
the following set constraint has to be set: setConstraint(C, Ci /∈ C∨Cj /∈ C). In
other words, it will be translated into a linear constraint (1− xi)+ (1− xj) ≥ 1,
i.e., xi + xj ≤ 1.

4 Experiments and Results

We implemented the two linear models of Table 3 and Table 4 and tested their
performance on three datasets. For optimization, we use the Xpress-Optimizer
[8], which combines common methods, such as the simplex method, cutting plane
methods, and branch and bound algorithms [18].

For the first batch of experiments we use a dataset on dementia patients pro-
vided by the psychiatry and nuclear medicine departments of Klinikum rechts

Integer Linear Programming Models for Constrained Clustering 167

der Isar of Technische Universität München. It consists of two types of data:
structured data (demographic information, clinical data, including neuropsycho-
logical test results) and image data (PET scans showing the patient’s cerebral
metabolism).5 We include 257 data records.

Our experimental setting is similar to the usual approach in medicine: select
a subset of patients fulfilling specific predefined criteria and compare the images
associated with those patients. Automating this process results in determining
frequent itemsets based on the structured non-image data. This can easily be
achieved with the Apriori algorithm [1]. First we select a subset of patients
covered by one frequent itemset. Then we evaluate the similarity of their PET
scans by the mean of the pairwise weighted Euclidean distance [15]. In this
way, we obtain a mean distance wj for each itemset Cj . To tackle outliers,
i.e., PET scans that are very distant from all other PET scans, we remove those
data records, before generating itemsets. Otherwise each outlier affects the mean
distance of each itemset it is covered by. For the given dataset, three outliers are
removed. For a relative minSupport of 0.1, we obtain 5, 447 itemsets.

We measure how the mean within-cluster distance6 performs for different pa-
rameter settings. For each setting, we run the optimization task for all k ∈
{2, . . . , �(maxOverlap + 1) · n ·minSupport}7 and decide for the best solution
of these runs. For example, for our data with m = 254, a minSupport of 0.1 and
maxOverlap = 0.15, we run it for all k ∈ {2, . . . , 10}. We test on six different val-
ues for maxOverlap (0, 0.025, 0.05, 0.1, 0.15, 0.2) with minCompl varying from
1.0 to 0.4. For each parameter setting, we are interested in the clustering with
the lowest mean(w), comparing the solutions of different k values (Figure 1).
For most parameter settings, the best clustering consists of 3 or 4 clusters. Only
when we allow an overlap > 0.1, we obtain optimal clusterings with k = 5. Fig-
ure 2 shows the mean(w) of the best clustering for each parameter setting. The
left diagram shows results for disjoint clusterings (maxOverlap=0) and the right
one results for clustering with overlaps. Overall, our experiments show that the
quality of the resulting clustering can be increased by relaxing the completeness
constraint, allowing overlapping clusters, and allowing smaller base clusters.

4.1 Scalability

In a second batch of experiments, we focus on the scalability of our approach.
This is known to be a big challenge for integer linear programs. We experiment
on two publicly available datasets on thyroid disease8 (m = 2,659 examples,
16 categorical and 6 numerical attributes9) and on forest cover type10 (m =
5 For a detailed description of the data see [15].
6 Note: our base clusters have a minimal size of n · minSupport. Thus, we avoid that

the clustering can consist of singleton clusters with a within-cluster distance of 0.
7 Due to the minimal cluster size, there is no solution possible for a larger k.
8 http://archive.ics.uci.edu/ml/machine-learning-databases/

thyroid-disease/
9 We discretized the numerical attribute age into five (equally sized) values. Also, we

removed examples with no numerical attribute values.
10 http://archive.ics.uci.edu/ml/datasets/Covertype

http://archive.ics.uci.edu/ml/machine-learning-databases/thyroid-disease/
http://archive.ics.uci.edu/ml/machine-learning-databases/thyroid-disease/
http://archive.ics.uci.edu/ml/datasets/Covertype

168 M. Mueller and S. Kramer

0.4 0.5 0.6 0.7 0.8 0.9 1
19

20

21

22

23

24

25

minCompl

m
ea

n(
w

)

maxOverlap = 0

0.4 0.5 0.6 0.7 0.8 0.9 1
19

20

21

22

23

24

25

minCompl

m
ea

n(
w

)

maxOverlap = 0.025

0.4 0.5 0.6 0.7 0.8 0.9 1
19

20

21

22

23

24

25

minCompl

m
ea

n(
w

)

maxOverlap = 0.05

0.4 0.5 0.6 0.7 0.8 0.9 1
19

20

21

22

23

24

25

minCompl

m
ea

n(
w

)

maxOverlap = 0.1

0.4 0.5 0.6 0.7 0.8 0.9 1
19

20

21

22

23

24

25

minCompl

m
ea

n(
w

)

maxOverlap = 0.15

0.4 0.5 0.6 0.7 0.8 0.9 1
19

20

21

22

23

24

25

minCompl

m
ea

n(
w

)

maxOverlap = 0.2

k= 2

k= 3

k= 4

k= 5

k= 6

k= 7

k= 8

k= 9

k= 10

Fig. 1. Mean within-cluster distance (y-axis) for varying maxOverlap, minCompl (x-
axis), and k parameters and minSupport = 0.1

0.4 0.5 0.6 0.7 0.8 0.9 1
20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

minCompl

m
ea

n(
w

)

Optimal Disjoint Clusterings

minsupp = 0.3

minsupp = 0.2

minsupp = 0.1

minsupp = 0.05

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
19.5

20

20.5

21

21.5

22

22.5

23

23.5

24

maxOverlap

m
ea

n(
w

)

minCompl = 1
minCompl = 0.95
minCompl = 0.9
minCompl = 0.8
minCompl = 0.7
minCompl = 0.6

Fig. 2. Mean within-cluster distance (y-axis) for varying minCompl (left diagram) of
the optimal disjoint clusterings with varying minSupport and for varying maxOverlap
(right diagram) with a minSupport of 0.1

10,000 examples, 44 binary and 10 numerical attributes). The pairwise Euclidian
distances are computed on the normalized numerical attributes. On the thyroid
(cover type) dataset, we determine n=12,134 (n=709) frequent itemsets with
a minSupport of 0.1 (0.05) on the categorical attributes. We did experiments
on the entire thyroid dataset and two subsets: one with m=500 examples and
n=12,134 base clusters, and the other one with m=1,000 examples and again
n=12,134 base clusters.

As in the previous experiments, we tested different values for k, minCompl,
and maxOverlap. For all tested parameter settings on the dementia data set,
time varies from 0.4 seconds (s) to almost 15 hours per problem instance, with
10 minutes on average and 31.7 s for the median.11 On the thyroid dataset (see
Table 5), the majority (86.8%) of problems is solved in less than 500 s and 36%
in less than 60 s (minimum is 7.4 s). We interrupt runs that take longer than
six hours and mark them with an ×.

11 On a 512 MB RAM (900 MHz) machine.

Integer Linear Programming Models for Constrained Clustering 169

Table 5. Running times (in seconds) of the thyroid dataset for varying parameters. ∗
indicates that no solution exists for these parameters. × indicates that the experiment
was stopped after six hours.

Parameters number of examples Parameters number of examples
k maxO minC 500 1000 2659 k maxO minC 500 1000 2659
2 0 1 8.8 15.1 70.3 2 0.05 1 25.1 40.4 84.6
4 0 1 *8.1 *13.5 *49.8 4 0.05 1 *21.4 *38.8 *101.5
5 0 1 10.5 14.7 58.2 5 0.05 1 26 42 92.9
2 0 0.9 31.7 58.3 135 2 0.1 1 21.3 40.4 107.1
4 0 0.9 *105.4 *169.2 *420.0 4 0.1 1 *28.8 *63.3 *186.7
5 0 0.9 20.8 159 264.9 5 0.1 1 42.6 69.3 206.7
2 0 0.8 38.6 168.9 176.4 2 0.05 0.9 157.5 296.5 346.8
4 0 0.8 356.6 116.3 547.5 4 0.05 0.9 × × ×
5 0 0.8 23.7 53.9 281.7 5 0.05 0.9 119.1 14382.3 ×

Table 6. Running times for cover type (mO = maxOverlap mC = minCoverage)

k mO mC mO mC mO mC mO mC mO mC mO mC mO mC
0 1 0 0.9 0 0.8 0.05 1 0.1 1 0.05 0.9 0.1 0.9

2 0.8 3.9 4.0 2.1 2.1 5368.5 641.4
4 0.8 3.7 4.0 2.1 2.1 × 1168.6
5 0.8 3.6 3.7 2.1 2.2 6441.8 ×

The following observations from more than 500 runs on the benchmark (thy-
roid and cover type) and the real-world dataset (dementia) shed some light on
the behavior of the optimizer depending on some key parameters:

– The running times appear to scale roughly linearly in the number of base
clusters n (see Figure 3) and the number of examples m (see rows in Table 5).

– Relaxing the maxOverlap constraint from zero (disjoint clusters) to slightly
larger values typically leads to an (often sharp) increase in the running times.
However, they may decrease again for larger values (compare Figure 4).

– A similar observation can be made for minCompl: Relaxing the completeness
requirement from one to slightly smaller values typically leads to an (often
sharp) increase in the running times. However, further reducing minCompl
often does not change the running times too much (compare Figures 3 and
4). Setting minCompl = 1 is easier to solve because the problem solver has
to search only in the solution space where yi = 1 for all i (compare (iv) in
Table 3).

– On the thyroid and the cover type dataset, allowing overlaps in combination
with a lower minCompl increases the runtime dramatically (compare results
for minCompl = 0.9 and maxOverlap = 0.05 in Table 5 and 6). For those
settings no optimal solution could be obtained in reasonable time.

– The behavior in terms of k (between minK and maxK) is highly non-
monotonic: A problem instance may be extremely hard for a certain k,

170 M. Mueller and S. Kramer

2 3 4 5 6 7

10
0

10
2

10
4

minCompl =1
maxOverlap = 0

k

tim
e

in
 s

ec
on

ds

2 3 4 5 6 7

10
0

10
1

10
2

10
3

10
4

minCompl =0.9
maxOverlap = 0

k
2 3 4 5 6 7

10
0

10
1

10
2

10
3

10
4

minCompl =0.7
maxOverlap = 0

k

n = 68,460

n = 5,447

n = 326

n = 62

Fig. 3. Runtime (in seconds) of disjoint clustering on dementia data for different k and
different numbers of base clusters n

0 0.02 0.04 0.06 0.08 0.1

10
1

10
2

10
3

10
4

dementia, k=3

maxOverlap

tim
e

in
 s

ec
on

ds

0 0.02 0.04 0.06 0.08 0.1

10
1

10
2

10
3

10
4

dementia, k=4

maxOverlap

tim
e

in
 s

ec
on

ds

0 0.02 0.04 0.06 0.08 0.1

10
2

10
3

10
4

thyroid, k=3

maxOverlap

tim
e

in
 s

ec
on

ds

0 0.02 0.04 0.06 0.08 0.1

10
2

10
3

10
4

thyroid, k=4

maxOverlap

tim
e

in
 s

ec
on

ds

0.7 0.75 0.8 0.85 0.9 0.95 1

10
1

10
2

10
3

10
4

dementia, k=3

minCompl
tim

e
in

 s
ec

on
ds

0.7 0.75 0.8 0.85 0.9 0.95 1

10
1

10
2

10
3

10
4

dementia, k=4

minCompl

tim
e

in
 s

ec
on

ds

0.7 0.75 0.8 0.85 0.9 0.95 1

10
2

10
3

10
4

thyroid, k=3

minCompl

tim
e

in
 s

ec
on

ds

0.7 0.75 0.8 0.85 0.9 0.95 1

10
2

10
3

10
4

thyroid, k=4

minCompl

tim
e

in
 s

ec
on

ds
Fig. 4. Effect of varying maxOverlap values on the runtime for k = 3 (first column)
and k = 4 (second column) and minCompl ∈ {0.7, 0.8, 0.9, 1.0}. Effect of varying
minCompl values on the runtime for k = 3 (third column) and k = 4 (fourth column)
and maxOverlap ∈ {0, 0.05, 0.1}.

whereas it may become easy again for k + 1. This may be explained by
the “puzzle” that has to be solved: It may be impossible to reach a certain
required completeness for a smaller number of larger “tiles”. However, given
a larger number of smaller “tiles”, it may become possible again. The precise
behavior is clearly dependent on the available base clusters.

Experiments with set-level constraints (detailed results not shown) indicate that
they either make a problem insolvable (which can be determined very fast) or do
not impact running times, because they constitute only a very small fraction of
the constraints. Simple set-level constraints like Cj ∈ C, however, simplify the
set of base levels a priori and thus speed up the overall process.

In summary, our experiments on three datasets showed that the running times
depend on the structure of the problems (k, minCompl, maxOverlap) stronger
than on their size (dimensions of the A matrix, number of constraints). Although
the majority of tested problem instances was computable within a reasonable time,
we found some instances that were more difficult to compute than others. For the
latter cases, it may be an option to set a runtime limit and output a near-optimal
solution.

Integer Linear Programming Models for Constrained Clustering 171

5 Related Work

Constrained clustering has been extensively investigated over the past few years.
Basu et al. [3] give a detailed overview of the state of the art in this area.
Many contributions focus on incorporating background knowledge in the form
of instance-level constraints (e.g., [20]). More recent work investigates set-level
and other types of constraints (e.g, [9]). Davidson et al. [9, 10] study the compu-
tational complexity of finding a feasible solution for clustering with constraints
and show that finding a feasible solution is NP-complete for a combination of
instance-level and cluster-level constraints. Clustering has been approached with
linear programs before [11, 17]. However, these approaches start from a num-
ber of instances they want to assign to clusters, whereas our approach starts
from a set of possible base clusters. Demiriz et al. [11] use linear programs to
solve k-means with the constraint that each cluster has to contain a minimum
number of points. This approach is extensible to pairwise constraints. In their
experiments they show that it is feasible to solve constrained clustering by linear
programming even for large datasets.

Itemset classified clustering has been introduced by Sese et al. [19]. They start
from a dataset with feature attributes and objective attributes. In our case,
the PETs-voxels correspond to the objective attributes and the psychological
data corresponds to the feature attributes. Sese et al. focus on 2-clusterings and
maximize the interclass variance between the two groups. Our approach handles
a more general setting and can also find k-clusterings with k > 2.

Although it may appear related at first glance, the approach is different from
clustering approaches for association rules (e.g., by An et al. [2]) in its goal of
constrained clustering (not summarization of pattern mining results). However,
set covering and set packing approaches may also be useful for summarizing
itemsets and association rules.

Chaudhuri et al. [7] mention the weighted set packing problem in the context
of finding a partition consisting of valid groups maximizing a benefit function.
In contrast to our approach, they solve the problem in a greedy fashion and thus
do not aim for a global optimum.

6 Discussion and Conclusion

We presented an approach to constrained clustering based on integer linear pro-
gramming. The main assumption is that a (possibly large) set of candidate clus-
ters is given in advance, and that the task is then to construct a clustering
by selecting a suitable subset. The construction of a suitable clustering from
candidate clusters can be constrained in various ways. Clustering constraints
allow specifying the degree of completeness of a clustering, the allowed over-
lap of clusters, and whether encompassing clusters are acceptable (hierarchical
clusterings). In contrast, set-level constraints let the user explicitly state logi-
cal formulae that must hold for clusterings to be valid, for instance, that two
clusters are mutually exclusive or that one cluster requires another in a cluster-
ing. Set-level constraints restrict the combinations of admissible clusters without

172 M. Mueller and S. Kramer

reference to the instances. The overall quality of a clustering can be optimized
in various ways: by optimizing the minimum, the mean and the median of the
individual clusters’ qualities in a clustering.

Our provided framework is very general and flexible and hence can be adapted
to the user’s needs. The user may start with the default values of minCompl =
1.0 and maxOverlap = 0. In case she wants to increase the quality of the re-
sulting clustering, she can relax the completeness constraint to a lower value
of minCompl and/or allow for some multiply covered examples by increasing
the maxOverlap parameter. Additionally, set-level constraints may be used to
exclude or include certain clusters.

Given such a set of constraints, it is then possible to map it onto a program
for integer linear programming. In this sense, the presented work stands in the
tradition of other approaches to constraint-based mining and inductive query
languages, where the technical complexity of the task is hidden from the users
and they can still freely combine mining primitives according to their interests
and preferences [6, 5, 12, 16, 13, 4].

Although integer linear programming is known to be an NP hard problem,
there are fast solvers available today, making use of a wide range of different
solution strategies and heuristics. Generally speaking, the base set of candidate
clusters still has to be relatively small (compared to the power set of instances)
to keep the optimization feasible. Vice versa, the set of constraints should not
be excessively large. Contrary to the intuition, however, that the running times
should depend heavily on the number of instances and the number of available
clusters, we found in our experiments that the scalability in these two parameters
was not as critical as expected. Other parameters, like the degree of allowed
overlap, showed a much greater impact on the running times.

From a more general point of view, it is clear that problem instances with
excessive running times exist, and we also encountered such instances in our
experiments. In future work, we plan to address this issue by near-optimal so-
lutions, which are an option offered by many optimization packages like Xpress-
Optimizer. One possible approach could be based on a user-defined time limit:
If the optimal solution can be found within the time frame, it is returned and
flagged as optimal. If the time limit is exceeded and a solution was found, the
best solution could be returned and flagged as near-optimal. If no solution was
found within the given time, the user is informed about this outcome. In this
way, the system remains transparent about the quality of its solutions.

References

[1] Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Pro-
ceedings of the 20th VLDB Conference, pp. 487–499 (1994)

[2] An, A., Khan, S., Huang, X.: Objective and subjective algorithms for grouping
association rules. In: Third International Conference on Data Mining, pp. 477–480
(2003)

[3] Basu, S., Davidson, I., Wagstaff, K.: Constrained Clustering: Algorithms, Appli-
cations and Theory. Chapman & Hall/CRC Press, Boca Raton (2008)

Integer Linear Programming Models for Constrained Clustering 173

[4] Bonchi, F., Giannotti, F., Pedreschi, D.: A Relational Query Primitive for
Constraint-Based Pattern Mining. In: Constraint-Based Mining and Inductive
Databases, pp. 14–37 (2004)

[5] Boulicaut, J.F., Masson, C.: Data mining query languages. In: Maimon, O.,
Rokach, L. (eds.) The Data Mining and Knowledge Discovery Handbook, pp.
715–727 (2005)

[6] Boulicaut, J.F., Jeudy, B.: Constraint-based data mining. In: Maimon, O.,
Rokach, L. (eds.) The Data Mining and Knowledge Discovery Handbook, pp. 399–
416 (2005)

[7] Chaudhuri, S., Sarma, A.D., Ganti, V., Kaushik, R.: Leveraging Aggregate Con-
straints for Deduplication. In: Proceedings of the International Conference on
Management of Data (SIGMOD), pp. 437–448 (2007)

[8] Dash Optimization: XPRESS-MP, http://www.dash.co.uk
[9] Davidson, I., Ravi, S.: Clustering with Constraints: Feasibility Issues and the k-

Means Algorithm. In: Proceedings of the Fifth SIAM International Conference on
Data Mining (SDM 2005), pp. 138–149 (2005)

[10] Davidson, I., Ravi, S.: The complexity of non-hierarchical clustering with instance
and cluster level constraints. Data Mining and Knowledge Discovery 14(1), 25–61
(2007)

[11] Demiriz, A., Bennett, K., Bradley, P.S.: Using assignment constraints to avoid
empty clusters in k-means clustering. In: Basu, S., Davidson, I., Wagstaff, K.
(eds.) Constrained Clustering: Algorithms, Applications and Theory (2008)

[12] De Raedt, L.: A Perspective on Inductive Databases. SIGKDD Explorations 4(2),
66–77 (2002)

[13] Dzeroski, S., Todorovski, L., Ljubic, P.: Inductive Queries on Polynomial Equa-
tions. In: Boulicaut, J.F., De Raedt, L., Mannila, H. (eds.) Constraint-Based Min-
ing and Inductive Databases, pp. 127–154. Springer, Heidelberg (2004)

[14] Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York
(1979)

[15] Hapfelmeier, A., Schmidt, J., Mueller, M., Perneczky, R., Kurz, A., Drzezga, A.,
Kramer, S.: Interpreting PET Scans by Structured Patient Data: A Data Mining
Case Study in Dementia Research. In: Eighth IEEE International Conference on
Data Mining, pp. 213–222 (2008)

[16] Nijssen, S., De Raedt, S.: IQL: A Proposal for an Inductive Query Language. In:
Džeroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 189–207. Springer,
Heidelberg (2007)

[17] Saglam, B., Sibel, F., Sayin, S., Turkay, M.: A mixed-integer programming ap-
proach to the clustering problem with an application in customer segmentation.
European Journal of Operational Research 173(3), 866–879 (2006)

[18] Schrijver, A.: Theory of Linear and Integer Programming. John Wiley&Sons, West
Sussex (1998)

[19] Sese, J., Morishita, S.: Itemset Classified Clustering. In: Proceedings of the 8th
European Conference on Principles and Practice of Knowledge Discovery in
Databases, pp. 398–409 (2004)

[20] Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained K-means Cluster-
ing with Background Knowledge. In: Proceedings of the Eighteenth International
Conference on Machine Learning, pp. 577–584 (2001)

http://www.dash.co.uk

Efficient Visualization of Document Streams

Miha Grčar1, Vid Podpečan1, Matjaž Juršič1, and Nada Lavrač1,2

1 Jožef Stefan Institute, Ljubljana, Slovenia
2 University of Nova Gorica, Nova Gorica, Slovenia

Abstract. In machine learning and data mining, multidimensional scal-
ing (MDS) and MDS-like methods are extensively used for dimension-
ality reduction and for gaining insights into overwhelming amounts of
data through visualization. With the growth of the Web and activities
of Web users, the amount of data not only grows exponentially but is
also becoming available in the form of streams, where new data instances
constantly flow into the system, requiring the algorithm to update the
model in near-real time. This paper presents an algorithm for document
stream visualization through a MDS-like distance-preserving projection
onto a 2D canvas. The visualization algorithm is essentially a pipeline
employing several methods from machine learning. Experimental verifi-
cation shows that each stage of the pipeline is able to process a batch
of documents in constant time. It is shown that in the experimental set-
ting with a limited buffer capacity and a constant document batch size,
it is possible to process roughly 2.5 documents per second which corre-
sponds to approximately 25% of the entire blogosphere rate and should
be sufficient for most real-life applications.

1 Introduction

Visualization is an extremely useful tool for gaining overviews and insights into
overwhelming amounts of data. Handling vast streams is a relatively new chal-
lenge emerging mainly from the self-publishing activities of Web users (e.g.
blogging1, twitting, and participating in discussion forums). Furthermore, news
streams (e.g. Dow Jones, BusinessWire, Bloomberg, Reuters) are growing in
number and rate, which makes it impossible for the users to systematically fol-
low the topics of their interest.

This paper discusses an adaptation of a document space visualization algo-
rithm for document stream visualization. A document space is a high-dimensional
bag-of-words space in which documents are represented as feature vectors. To
visualize a document space, feature vectors need to be projected onto a 2-
dimensional canvas so that the distances between the planar points reflect the
cosine similarities between the corresponding feature vectors.
1 Technorati <http://technorati.com/> tracks approximately 100 million blogs,

roughly 15 million of them are active. Around 1 million blog posts are published
each day (i.e. around 10 each second).

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 174–188, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://technorati.com/

Efficient Visualization of Document Streams 175

When visualizing static document spaces, the dataset can be fairly large (e.g.
a couple of millions of documents) thus it is important that it can be processed in
a time that is still acceptable by the application (e.g. a couple of hours). On the
other hand, when dealing with streams, new documents constantly flow into the
system, requiring the algorithm to update the visualization in near-real time. In
this case, we want to ensure that the throughput of the visualization algorithm
suffices for the stream’s document rate.

The contribution of our work is most notably a new algorithm for document
stream visualization. In addition, we implicitly show that a set of relatively
simple “tricks” can suffice for transforming an algorithm for static data pro-
cessing to an algorithm for large-scale stream processing. Specifically, we rely
on the “warm start” of the iterative optimization methods and on parallelization
through pipelining. The former means that we use the solution computed at time
t− 1 as the initial guess at time t, which results in faster convergence (see Sec-
tions 4.2, 4.3, and 4.5), while the latter refers to breaking up the algorithm into
independent consecutive stages that can be executed in parallel (see Section 3).

The paper is organized as follows. In Section 2, we first discuss related work.
Section 3 presents the algorithm for document space visualization that we adapt
for document stream visualization in Section 4. We present the experimental
results in Section 5. Specifically, we measure the throughput of different stages of
the stream visualization pipeline. Section 6 concludes the paper with a summary
and provides ideas for future work.

2 Related Work

The proposed stream visualization algorithm belongs to the family of temporal
pooling algorithms [1]. These techniques maintain a buffer (a pool) of data in-
stances: new instances constantly flow into the buffer, while outdated instances
flow out of the buffer. The content of the buffer is visualized to the user and the
visualization is at all times synchronized with the dynamic content of the buffer.
In [1], the authors discuss TextPool, a system for document stream visualization
based on temporal pooling. They extract salient terms from the buffer and con-
struct the term co-occurrence graph. They employ a force-directed graph layout
algorithm to visualize the graph to the user. Our work differs mostly in the
fact that we initially2 layout documents rather than words and that we employ
MDS-like projection rather than force-based graph layout. Furthermore, while
[1] focuses on the perception of motion, we provide technical details and per-
formance evaluation. Even so, our “use” of motion fits relatively well with the
guidelines provided in [1].

In contrast to temporal pooling, some researchers consider visualizing a doc-
ument collection aligned with a timeline and thus emphasizing the dynamics of
trends. ThemeRiver [2] visualizes thematic variations over time for a given time
period. The visualization resembles a river of colored “currents” representing
2 Note that we too can visualize salient words on top of the computed document

layout.

176 M. Grčar et al.

different topics. A current narrows or widens to indicate a decrease or increase
in the strength of the corresponding topic. The topics of interest are predefined
by the analyst as a set of keywords. The strength of a topic is computed as
the number of documents containing the corresponding keyword. Shaparenko et
al. build on top of this idea to analyze the dataset of NIPS3 publications [3].
They identify topics automatically by employing the k -means clustering algo-
rithm. Our approach differs from “topic flows” mainly in the fact that we are not
concerned with visualizing topic trends through time but rather topics (repre-
sented by dense clouds of documents) and their interrelatedness (represented by
proximity of document clouds) in a real-time online fashion. We therefore aim
to support real-time surveillance rather than temporal analysis.

Krstajić et al. [4] just recently presented a system for large-scale online visual-
ization of news collected by the European Media Monitor (EMM). EMM collects
and preprocesses news from several news sources, most notably it extracts named
entities which are then used in the visualization phase. Each named entity corre-
sponds to one topic in a ThemeRiver-like visualization. They complement their
topic flow visualization with a named-entity co-occurrence graph visualization.
The system processes roughly 100,000 news per day in an online fashion. Our
work differs from [4] mostly in the fact that we do not rely on the data being
preprocessed with a named-entity extractor. Furthermore, as already pointed
out, we employ a MDS-like projection of documents onto a planar canvas rather
than visualizing the term or entity co-occurrence graph.

Document Atlas [5] employs document space visualization to provide an
overview of a static document corpus. It is based on Latent Semantic Indexing
(LSI) [6] for dimensionality reduction and Multi-Dimensional Scaling (MDS) [7]
for projection onto a canvas. In this paper, we mostly build on top of the work
on static document corpora visualization presented by Paulovich et al. [8]. In
the following section, we thus discuss their work in more detail.

3 Document Corpora Visualization Pipeline

The static document corpus visualization algorithm presented in [8] utilizes sev-
eral methods to compute a layout. In this section, we make explicit that these
methods can be percieved as a pipeline, which makes an important reinterpreta-
tion when designing algorithms for large-scale processing of streams. Throughout
the rest of this section, we present our own implementation of each of the pipeline
stages. The visualization pipeline is illustrated in Figure 1. In contrast to the
work presented in [8], we provide details on the document preprocessing, argue
for a different way of selecting representative instances, and concretize the al-
gorithms for projection of representative instances, neighborhoods computation,
and least-squares interpolation, respectively.

3 Conference on Neural Information Processing Systems (NIPS) is a machine learn-
ing and computational neuroscience conference held every December in Vancouver,
Canada.

Efficient Visualization of Document Streams 177

Layout

Neighborhoods
computation

Stress
majorization

Least-squares
interpolation

k-means
clustering

Document
preprocessing

Document
corpus

Fig. 1. Document space visualization pipeline

3.1 Document Preprocessing

To preprocess documents (i.e. convert them into a bag-of-words representation),
we followed a typical text mining approach [9]. The documents were tokenized,
stop words were removed, and the tokens (i.e. words) were stemmed. Bigrams
were considered in addition to unigrams. If a term appeared in the corpus less
than 5 times, it was removed from the vocabulary. In the end, TF-IDF vectors
were computed and normalized. From each vector, the lowest weighted terms
of which cumulative weight accounted for 20% of the overall cumulative weight
were removed (i.e. their weights were reset to 0).

3.2 k-Means Clustering

To segment the document space, we implemented the k -means clustering al-
gorithm [10]. The purpose of the clustering step is to obtain “representative”
instances. In [8], it is suggested to take the medoids of the clusters as the repre-
sentative instances. However, we decided to take the centroids rather than the
medoids. In the least-squares interpolation process (the final stage of the visual-
ization pipeline), each non-control point is required to be directly or indirectly
linked to a control point. If the control points are represented by the centroids,
each non-control point is guaranteed to have at least one non-orthogonal neigh-
bor which is a control point. This prevents the situations in which a point or a
clique of points is not linked to a control point and thus cannot be positioned.
We believe that this change to the original algorithm results in visually more
pleasing layouts (we do not provide experimental evidence to support or reject
this claim as this is beyond the scope of this work).

k -means clustering is an iterative process. In each iteration, the quality of
the current partition is computed as the average cosine similarity between a
document instance and the centroid to which the instance was assigned. If the
increase in quality, from one iteration to another, is below a predefined threshold
(εCL), the clustering process is stopped.

3.3 Stress Majorization

In the final stage of the pipeline, the least-squares solver interpolates between
coordinates of the projected representative instances in order to determine pla-
nar locations of the other instances. Since the number of representative instances

178 M. Grčar et al.

is relatively low, it is possible to employ computationally expensive methods to
project them onto a planar canvas. We therefore resorted to the stress majoriza-
tion method which monotonically decreases the stress function in each iteration
[11]. The stress function (energy of the model) is given in Eq. 1 and reflects the
quality of the layout: the lower the stress the better the layout.

stress =
∑
i<j

d−2
i,j (‖pi − pj ‖ − di,j)

2 (1)

In the equation, pi is the location (both coordinates) of point i, ‖pi − pj‖ is
the Euclidean distance between points i and j, and di,j is the optimal distance
between points i and j. In our case, di,j equals to 1− cosSim(vi,vj), that is the
cosine distance between data instances vi and vj . The iterative majorization
process for Eq. 1 results in O(kn3) time complexity where k is the number of
iterations and n is the number of points. Therefore, we employed the localized
variant as described in [11], where in each iteration, the positions of all points
except one are fixed. The localized variant of stress majorization is described in
Eq. 2.

pi =

∑
i<j d−2

i,j

(
pj + di,j(pi−pj)

‖pi−pj‖

)
∑

i<j d−2
i,j

(2)

Similar to k -means clustering, stress majorization is an iterative process. If the
reduction in stress, from one iteration to another, is below a predefined threshold
(εSM), the layout computation process is stopped.

3.4 Neighborhoods Computation

For the interpolation step, it is also necessary to determine k nearest neighbors
of each data instance. The basic idea of the algorithm is simple: for each data
instance, (a) compute the similarities to all other instances and (b) select k
nearest instances from the list.

Part (b) of the naive algorithm can be efficiently implemented by choosing
one of the best performing selection algorithms (e.g. the Median of Medians al-
gorithm) which are guaranteed to have O(n) worst case time complexity (here, n
denotes the number of instances). Provided that we need to execute this selection
for each data instance, we get O(n2) combined time complexity.

Efficient implementation of part (a) is more intriguing and is possible due
to the fact that we use the cosine similarity measure to determine similarities
between data instances. Computing cosine similarity between two instances is
equivalent to computing the dot product of the two corresponding vectors (pro-
vided that the vectors are normalized). When multiplying two arbitrary vectors,
the standard implementation of the dot product has a time complexity pro-
portional to the average length of a sparse vector in a document collection,
O(avgLen(vi)). Since we need to compute n dot products for each instance, the
time complexity sums up to O(n2avgLen(vi)) for all the instance pairs.

Efficient Visualization of Document Streams 179

It is possible to reduce the time complexity of (a) and therefore of the whole
k nearest neighbors computation to O(n2avgMatch(vi,vj)) by employing Al-
gorithm 1, where avgMatch(vi,vj) stands for the number of elements (words)
that two vectors (documents) share on average in a document collection. In our
practical experiments, we noticed that avgMatch(vi,vj) is usually an order of
magnitude smaller than avgLen(vi) which represents a substantial speed boost
in practice.

Algorithm 1. Fast algorithm for computing neighborhoods
1. Build an inverted index invIdx so that invIdx(ek) = {vj : vj ∈ C, ek ∈ vj}, where

ei represents a particular vector element (i.e. a word), vi a particular vector (i.e.
a document), and C the document corpus.

2. For each instance vi do
(a) create a dense vector di of length |C| and fill it with zeros,
(b) for each ek ∈ vi do

for each vector vj ∈ invIdx(ek) do di[j] = di[j]+weight(ek,vi)·weight(ek,vj),
(c) select k nearest neighbors of vi with respect to di.

Note that when computing neighborhoods in the document corpus visualiza-
tion pipeline, we need to add the representative instances (i.e. the centroids re-
sulting from the k -means process) to the dataset. The centroids are thus treated
in the exact same way as the documents. If nD is the number of documents in
the corpus and nC is the user-defined number of centroids, then n = nD + nC

when computing neighborhoods.

3.5 Least-Squares Interpolation

The final stage of the pipeline employs a least-squares solver to compute the
layout of the non-control points by interpolating between the coordinates of the
control points. To construct a system of linear equations required for the in-
terpolation process, we need the coordinates of the control points (obtained by
the stress majorization algorithm) and the k nearest neighbors of the document
instances and centroids (the neighborhoods are computed by the k -NN algo-
rithm). The basic idea is that each point can then be described as the center of
its neighbors as given in Eq. 3 [12]. In Eq. 3, (xi, yi) denotes a planar point and
Ri denotes the set of its k nearest neighbors (note that a point is not its own
nearest neighbor).

xi = 1
|Ri|

∑
(xj ,yj)∈Ri

xj

yi = 1
|Ri|

∑
(xj ,yj)∈Ri

yj

(3)

Eq. 3 can be expressed as a system of sparse linear equations (denoted with
AX = B in Figure 2). Matrix A is an n × n matrix, n = nD + nC , in which
each row represents Eq. 3 for a particular point. X is a vector of length n and

180 M. Grčar et al.

contains pairs of coordinates (xi, yi) which represent the solution of the system,
i.e. the coordinates of all the points. B is a vector of length n and contains values
(0, 0).

…
…

…

(0,0)

(0,0)

…
…

…

(0,0)

(0,0)

-1/k 1 -1/k -1/k

1

1

1

1

1

1

1

1

1

1

=
…

…

A

A′

B

B′

X

1

1

1

1

Fig. 2. System of sparse linear equations for projection of vectors onto a plane. The
shaded sections denote the rows and columns that correspond to the centroids (i.e.
representative instances).

In addition to equations AX = B which describe the neighborhoods, we add
equations which incorporate the coordinates of the control points (denoted with
A′X = B′ in Figure 2). Such combined system is given in Eq. 4. Matrix A′ is
a r × n matrix, r = nC , in which each row represents a control point. B′ is a
vector of length r and contains the actual coordinates of the control points, i.e.
(x∗

i , y
∗
i). [

An×n

A′
r×n

]
Xn×2 =

[
Bn×2
B′

r×2

]
(4)

In our document stream visualization framework, the LSQR solver, developed
by Paige and Saunders [13], was used to solve Eq. 4. The solution is a set of
planar points corresponding to the high-dimensional feature vectors.

4 Visualization of Document Streams

This section discusses the adaptations of the document corpus visualization
pipeline for document stream visualization. All stages of the pipeline are modified
in a way which allow fast sequential updates, thereby allowing us to efficiently
process document streams. The online document stream visualization pipeline
is illustrated in Figure 3. The document stream flows into the buffer of limited
capacity and thus outdated documents are gradually removed from the buffer
following the FIFO (first in, first out) principle (the buffer can thus be perceived
as a queue). The model required for the visualization and the visualization itself
are at all times synchronized with the content of the buffer.

Before going into details of how separate stages of the pipeline are imple-
mented, let us establish common notions required for the configuration of the
pipeline:

Efficient Visualization of Document Streams 181

• Let nC denote the number of clusters computed in the k -means clustering
process. This corresponds exactly to the number of representative instances (i.e.
centroids) that are positioned using the stress majorization procedure.
• Let ui be the number of documents that enter the buffer and ti the number

of documents that are removed from the buffer at time step i. For the sake of
simplicity, we will assume that u

.= ui
.= ti at each i.

• Let nN be the number of closest neighbors that are assigned to each in-
stance. The neighborhoods are used to construct the system of linear equations.
Furthermore, let nE be the extended neighborhood size, satisfying nE ≥ nN .
We will use extended neighborhoods to speed up the process of updating neigh-
borhoods (see Section 4.4).
• Let nQ

i be the number of instances in the buffer at time step i. For the sake
of simplicity, we will assume that nQ .= nQ

i at each i.
• Finally, let εCL, εSM , and εLS be the stopping criteria for the clustering

algorithm, stress majorization method, and least-squares interpolation method,
respectively.

In the next subsections, we provide online variants of the document prepro-
cessor, k -means algorithm, stress majorization optimization method, k-nearest
neighbors algorithm, and least-squares interpolation method.

Neighborhoods
computation

Stress
majorization

Least-squares
interpolation

k-means
clustering

Document
preprocessing

Buffer
(FIFO)

Document
stream

Outdated
documents

Δ

Layout

Fig. 3. Document stream visualization pipeline

4.1 Online Document Preprocessing

Online document preprocessing can be seen as a queue of term frequency (TF)
bag-of-word vectors. When a number of vectors are removed from the queue,
the vocabulary is updated accordingly: global document frequency (DF) values
are decreased appropriately. If a global DF value reaches zero, the correspond-
ing word is removed from the vocabulary. When a batch of new TF vectors is
enqueued, on the other hand, global DF values are increased accordingly and
new words (i.e. those not yet contained in the vocabulary) are added to the
vocabulary.

At any time, any TF vector in the queue can be converted into its normalized
TF-IDF representation by taking the global DF values into account. In this pro-
cess, the original TF vector is not altered and remains at its original position in
the queue. Note that a single TF vector can have many different TF-IDF repre-
sentations, depending on the state of the vocabulary at the time a TF-IDF vector

182 M. Grčar et al.

is computed (when the queue changes, the global DF values normally change;
this results in different TF-IDF values in the affected vectors). In the presented
online visualization process, each TF-IDF vector is computed immediately after
the corresponding TF vector is enqueued.

4.2 Online k-Means Clustering

The online k -means clustering algorithm takes into account the centroids and
the assignments of instances to the centroids from the preceding step. After
the centroids are updated due to the removal of the outdated instances and
assignment of the newly arrived instances (this is a relatively fast operation),
the online k -means clustering algorithm proceeds with the usual k -means loop.

Assuming that the perturbation of the buffer is small and the set of data
instances is much larger (u � nQ), the centroids are proven to be stable [14]
which means that the k -means algorithm will converge rapidly on the perturbed
set of data instances. Specifically, if the perturbation is limited by O(

√
nQ)

where nQ is the number of data instances in the buffer, the online variant of the
k -means algorithm is expected to converge rapidly.

4.3 Online Stress Majorization

Taking into account the stability and rapid convergence of the online variant of
the k -means clustering algorithm, it is easy to see that stress majorization of the
set of representative data instances (centroids) is also fast. Since the perturbation
of particles (centroids) in our stress majorization optimization problem is small,
the overall increase in stress is small as well, which guarantees that only very
small number of recomputations of particles’ positions (according to Eq. 4) is
needed.

4.4 Online Neighborhoods Computation

In the first step, the neighborhoods are computed in the standard way by using
the algorithm discussed in Section 3.4. For each instance i, the nE most similar
neighbors are retained in a sorted list Li. In addition, each instance i holds the
references to the instance with the highest queue index, maxi, and the instance
with the lowest queue index, mini, in the extended list of neighbors. Finally,
let minSimi denote the minimum similarity between i and any j ∈ Li. In each
subsequent online step, these sorted lists are updated so that they contain at
least nN closest neighbors; maxi, mini, and minSimi are updated with respect
to the changes in the lists.

The online k -NN procedure starts by removing the outdated instances from
the queue. The outdated instances are, on the one hand, the outdated bags-of-
words and, on the other, the centroids that have been changed in the online
k -means step. Next, the removed instances need to be removed from the lists of
neighbors as well. The algorithm thus goes through all the remaining instances

Efficient Visualization of Document Streams 183

and for each instance first checks if mini or maxi was removed from the queue.
If and only if this is true, Li is thoroughly examined and all the instances that
were removed from the queue are also removed from the list. maxi, mini, and
minSimi are updated with respect to the changes in Li. If the size of the list
falls below nN , a special flag fullUpdatei is set, indicating that the list should
be fully updated.

Next, the newly arrived instances need to be enqueued and the lists need to
be updated accordingly. Apart from the new bags-of-words obtained from the
stream, the updated centroids are also enqueued. The online k -NN procedure
then goes through all the enqueued instances and updates the corresponding
lists of nearest neighbors. For each instance i, the algorithm first checks if i is
a newly enqueued instance or if the flag fullUpdatei is set. If and only if one
of these two conditions is true, Li is computed in a usual way as explained in
Section 3.4. The list is sorted and the nE nearest neighbors are retained. On
the other hand, if Li is not required to be fully updated, only the similarities
between i and each of the newly enqueued instances are computed (again, by
using the algorithm discussed in Section 3.4) and put into a list, L′

i. Then, if and
only if at least one of the computed similarities is greater than minSimi, the
lists Li and L′

i are merged and the resulting list is sorted and trimmed so that
it contains at most nE neighbors. In either case, after the list changes, maxi,
mini, and minSimi are updated to reflect the changes in the list.

The discussed procedure results in updated neighborhoods. Each neighbor-
hood contains between nN and nE nearest neighbors. The first nN most similar
neighbors of each instance are passed on to the next stage of the pipeline, where
the system of linear equations is constructed.

4.5 Online Coordinates Interpolation

Modifying the coordinates interpolation step to work with streams is a relatively
trivial task. We construct the system of linear equations in exactly the same way
as in the original visualization algorithm.

In addition, we take the coordinates from the previous step into account when
solving the system in the least-squares sense. In this work, we employ the LSQR
algorithm [13] which is based on a conjugate gradient iterative method that
starts with an initial guess for the solution and iteratively modifies the solution
vector towards the optimal solution. In our online visualization process, the
coordinates of points at time step i + 1 are similar to those at time step i. This
results from the fact that most of the data instances and similarities between
them are unchanged and thus the instances tend to move only marginally from
their previous positions. Since the coordinates correspond to the solution of the
least-squares solver, the coordinates from the preceding step can be used as a
good initial guess for the solution. The only set of instances to which we are
unable to assign coordinates from the preceding step corresponds to the batch
of documents that entered the system at step i. We simply initialize that part
of the solution vector to zeros.

184 M. Grčar et al.

4.6 Boundary Cases

Special care needs to be taken at the start when the buffer is filling up. While
the number of instances in the buffer is smaller than or equal to the number
of desired control points, nQ

i ≤ nC , the k -means clustering step is skipped and
the instances are projected onto a plane with the online variant of the stress
majorization algorithm. There is no need for the interpolation step via the least-
squares solver thus the last stage of the pipeline is skipped as well. Immediately
after nQ

i exceeds nC , the instances processed at time step i− 1 are perceived as
initial centroids for the k -means procedure and the online variants of k -means
and stress majorization are executed. The neighborhoods computation and least-
squares interpolation are performed in a standard (i.e. offline) way, setting up
the pipeline for the normal online processing from this point on.

Needles to say, while nQ
i ≤ nC , the instances are not flowing out of the buffer.

Even after nQ
i has exceeded nC , all the instances are retained in the buffer (i.e.

ui > 0, ti = 0) as long as the oldest buffered instances are not outdated. When the
oldest instances become outdated, they start flowing out of the buffer (i.e. ui > 0,
ti > 0). From this point on, if documents are flowing in at a relatively constant
rate, we can assume that u

.= ui
.= ti or, in other words, nQ .= nQ

i at each i.

5 Implementation and Testing

We implemented the online document stream visualization pipeline in C# on top
of LATINO4, our software library providing a range of data mining and machine
learning algorithms with the emphasis on text mining, link analysis, and data
visualization. The only part of the visualization pipeline that is implemented in
C++ (and not in C#) is the least-squares solver.

To measure the throughput of the visualization pipeline, we processed the
first 30,000 news (i.e. from 20.8.1996 to 4.9.1996) of the Reuters Corpus Vol-
ume 1 dataset5. Rather than checking if the visualization pipeline is capable
of processing the stream at its natural rate (i.e. roughly 1.4 news documents
per minute), we measured the maximum possible throughput of the pipeline at
constant u (document inflow batch size) and nQ (buffer capacity). In our exper-
iments, the buffer capacity was set to nQ = 5,000, the document batch size to
u = 10, the number of clusters and thus representative instances to nC = 100,
the k -means convergence criterion to εCL = 10−3, the stress majorization con-
vergence criterion to εSM = 10−3, the size of neighborhoods to nN = 30, the
size of extended neighborhood to nE = 60, and the least-squares convergence
criterion to εLS = 10−10.

Figure 4 shows the time that packets spent in separate stages of the pipeline
(in milliseconds) when streaming the news into the system chronologically. The

4 LATINO (Link Analysis and Text Mining Toolbox) is open-source—mostly under
the LGPL license—and is available at http://latino.sourceforge.net/

5 Available at http://trec.nist.gov/data/reuters/reuters.html

http://latino.sourceforge.net/
http://trec.nist.gov/data/reuters/reuters.html

Efficient Visualization of Document Streams 185

Fig. 4. Time spent in separate stages of the pipeline when streaming the news into the
system in chronological order

timing started when a particular packet (i.e. a batch of documents and the cor-
responding data computed in the preceding stage) entered a stage and stopped
when it has been processed6. We measured the actual time rather than the pro-
cessor time to get a good feel for the performance in real-life applications. Our
experiments were conducted on a simple laptop computer with an Intel processor
running at 2.4 GHz, having 2 GB of memory. The purpose of the experiment
was to empirically verify that each stage of the pipeline processes a packet in
constant time provided that nQ is constant. However, the chart in Figure 4 is not
very convincing as the time spent in some of the stages seems to increase towards
the end of the stream segment (e.g. the k -means clustering algorithm takes less
than 3 seconds when 10,000 documents are processed and slightly over 4 seconds
when 30,000 documents are processed). Luckily, this phenomenon turned out to
be due to some temporal dataset properties. Specifically, for some reason which
we do not explore in this work (e.g. “big” events, changes in publishing policies,
different news vendors...), the average length of news documents in the buffer
has increased over a certain period of time. This resulted in an increase of non-
zero components in the corresponding TF-IDF vectors and caused dot product
computations to slow down as on average more scalar products were required
to compute a dot product. In other words, the positive trends in consecutive
timings of the k -means clustering and neighborhoods computation algorithms
are coincidental and do not imply that the pipeline will eventually overflow.

To prove this, we conducted another experiment in which we randomly shuffled
the first 30,000 news documents and thus fed them into the system in random
order. Figure 5 shows the time spent in separate stages of the pipeline when
streaming the news into the system in random order. From the chart, it is possible
to see that each of the pipeline stages is up to the task. After the number of

6 Even if the next pipeline stage was still busy processing the previous packet, the
timing was stopped in this experimental setting.

186 M. Grčar et al.

instances in the buffer has reached nQ, it is possible to clearly observe that the
processing times are kept in reasonable bounds that do not increase over time,
which implies constant processing time at each time step. The gray series in
the chart represent the actual times while the black series represent the moving
average over 100 steps (i.e. over 1,000 documents).

Fig. 5. Time spent in separate stages of the pipeline when streaming the news into the
system in random order

In addition to measuring processing times in separate pipeline stages, we com-
puted the delay between packets exiting the pipeline in a real pipeline-processing
scenario. We simulated the pipeline processing by taking the separate processing
times into account. Note that in order to actually run our algorithm in a true
pipeline sense, we would need a machine that is able to process 5 processes in
parallel (e.g. a computer with at least 5 cores). Let s1, s2, s3a, s3b, and s4 cor-
respond to separate stages of the pipeline, that is to document preprocessing,
k -means clustering, stress majorization, neighborhood computation, and least-
squares interpolation, respectively. Note that the stages s3a and s3b both rely
only on the preprocessing in s2 and can thus be executed in parallel. These two
stages can be perceived as a single stage, s3, performing stress majorization and
neighborhood computation in parallel. The time a packet spends is s3 is equal
to the longer of the two times spent in s3a and s3b. Figure 6 shows the delay
between packets exiting the pipeline. From the chart, it is possible to see that
after the buffer has been filled up, the delay between two packets—this corre-
sponds to the delay between two consecutive updates of the visualization—is
roughly 4 seconds on average. This means that we are able to process a stream
with a rate of at most 2.5 documents per second. Note that this roughly corre-
sponds to 25% of the entire blogosphere rate and should be sufficient for most
real-life applications. Note also that each packet, i.e. each visualization update,
is delayed for approximately 9.5 seconds on average from the time a document
entered the pipeline to the time it exited and was reflected in the visualization.
Furthermore, since nQ = 5,000, at 2.5 documents per second, the visualization

Efficient Visualization of Document Streams 187

Fig. 6. The delay between packets exiting the pipeline

represents an overview of half an hour worth of documents and is suitable for
real-time applications such as public sentiment surveillance in financial market
decision-making.

6 Conclusions

In this paper, we presented an online algorithm for document stream visual-
ization through a distance-preserving MDS-like projection onto a 2D canvas.
The algorithm can be executed as a 4-stage pipeline, which greatly increases
the processing speed. We showed that in a particular setting with limited buffer
capacity and constant document batch size, the pipeline can efficiently handle
25% of the entire active blogosphere, which should be sufficient for most real-life
applications. Also important to note is that the achieved visualization nicely
transitions from one frame to another which enables the user to visually track a
point (i.e. a document) gradually moving in the 2D space.

As part of future work, we plan to evaluate the pipeline in several more
experimental settings, to better understand how different values of nQ and u
influence the maximum throughput of the pipeline. Furthermore, we aim to
optimize the slowest stages of the pipeline. Our experiments indicate that k -
means clustering and neighborhoods computation are the slowest stages in the
current implementation. Luckily, these two algorithms are trivially parallelizable.

In addition, we plan to evaluate the visualization itself both from the perspec-
tive of the distance-preserving projection and in an application scenario. We will
compare the quality of the online projection to that of MDS and other offline MDS-
like techniques. On the other hand, we plan to employ the presented algorithm in
the European project FIRST (Large-scale information extraction and integration
infrastructure for supporting financial decision making) starting in October 2010.
In FIRST, we will assess the usefulness of the presented visualization technique
in the financial market decision-making process.

188 M. Grčar et al.

References

1. Albrecht-Buehler, C., Watson, B., Shamma, D.A.: Visualizing Live Text Streams
Using Motion and Temporal Pooling. IEEE Computer Graphics and Applica-
tions 25/3, 52–59 (2005)

2. Havre, S., Hetzler, B., Nowell, L.: ThemeRiver: Visualizing Theme Changes over
Time. In: Proceedings of InfoVis 2000, pp. 115–123 (2000)

3. Shaparenko, B., Caruana, R., Gehrke, J., Joachims, T.: Identifying Temporal Pat-
terns and Key Players in Document Collections. In: Proceedings of TDM 2005, pp.
165–174 (2005)

4. Krstajić, M., Mansmann, F., Stoffel, A., Atkinson, M., Keim, D.A.: Processing On-
line News Streams for Large-scale Semantic Analysis. In: Proceedings of DESWeb
2010 (2010)

5. Fortuna, B., Grobelnik, M., Mladenić, D.: Visualization of Text Document Corpus.
Informatica, pp. 270–277 (2005)

6. Deerwester, S., Dumais, S., Furnas, G., Landuer, T., Harshman, R.: Indexing by
Latent Semantic Analysis. Journal of the American Society of Information Sci-
ence 41/6, 391–407 (1990)

7. Groenen, P.J.F., van der Velden, M.: Multidimensional Scaling. Econometric In-
stitute Report EI 2004-15, Netherlands, April 6 (2004)

8. Paulovich, F.V., Nonato, L.G., Minghim, R.: Visual Mapping of Text Collections
through a Fast High Precision Projection Technique. In: Proceedings of the 10th
Conference on Information Visualization, pp. 282–290 (2006)

9. Salton, G.: Developments in Automatic Text Retrieval. Science 253, 974–979 (1991)
10. Hartigan, J.A., Wong, M.A.: Algorithm 136: A k-Means Clustering Algorithm.

Applied Statistics 28, 100–108 (1979)
11. Gansner, E.R., Koren, Y., North, S.C.: Graph Drawing by Stress Majorization, pp.

239–250 (2004)
12. Sorkine, O., Cohen-Or, D.: Least-Squares Meshes. In: Proceedings of Shape Mod-

eling International, pp. 191–199 (2004)
13. Paige, C.C., Saunders, M.A.: Algorithm 583: LSQR: Sparse Linear Equations and

Least Squares Problems. ACM Transactions on Mathematical Software 8, 195–209
(1982)

14. Rakhlin, A., Caponnetto, A.: Stability of k-Means Clustering. In: Advances in
Neural Information Processing Systems, pp. 1121–1128 (2007)

Bridging Conjunctive and Disjunctive Search Spaces for
Mining a New Concise and Exact Representation of

Correlated Patterns

Nassima Ben Younes, Tarek Hamrouni, and Sadok Ben Yahia

URPAH, Computer Science Department, Faculty of Sciences of Tunis, Tunis, Tunisia
benyounes.nassima@gmail.com,

{tarek.hamrouni,sadok.benyahia}@fst.rnu.tn

Abstract. In the literature, many works were interested in mining frequent pat-
terns. Unfortunately, these patterns do not offer the whole information about the
correlation rate amongst the items that constitute a given pattern since they are
mainly interested in appearance frequency. In this situation, many correlation
measures have been proposed in order to convey information on the dependencies
within sets of items. In this work, we adopt the correlation measure bond, which
provides several interesting properties. Motivated by the fact that the number of
correlated patterns is often huge while many of them are redundant, we propose
a new exact concise representation of frequent correlated patterns associated to
this measure, through the definition of a new closure operator. The proposed rep-
resentation allows not only to efficiently derive the correlation rate of a given
pattern but also to exactly offer its conjunctive, disjunctive and negative supports.
To prove the utility of our approach, we undertake an empirical study on several
benchmark data sets that are commonly used within the data mining community.

Keywords: Concise representation, Correlated pattern, bond measure, Closure
operator, Equivalence class, Conjunctive support, Disjunctive support.

1 Introduction and Motivations

In data mining, frequent pattern mining from a data set constitutes an important step
within the overall knowledge extraction process. Since its inception, this key task grasped
the interest of many researchers since frequent patterns constitute a source of informa-
tion on the relations between items. Unfortunately, the number of mined patterns from
a real-life database is often huge. As a consequence, many concise representations of
frequent patterns appeared in the literature. These representations are associated to dif-
ferent quality measures. However, the most used one is the frequency measure (aka the
conjunctive support or, simply, support) since it sheds light on the simultaneous appear-
ances of items in the data set. Beyond this latter measure, recently some works [8,13]
have taken into account another measure, called disjunctive support, which conveys in-
formation about the complementary occurrences of items. However, the size of these
representations remains voluminous and many frequent patterns, having weakly corre-
lated items, are often extracted. Moreover, whenever the minimum support threshold,

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 189–204, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

190 N. Ben Younes, T. Hamrouni, and S. Ben Yahia

denoted minsupp, is set very low, a huge number of patterns will be generated. Addition-
ally, within the mined set of patterns, a large portion of them is redundant or uninforma-
tive. In this situation, setting a high value of minsupp can solve this problem, however
many interesting patterns will be missed. Therefore, in order to overcome this problem
and to reduce the size of representations, many correlation measures were proposed in
the literature [11,12,15,18,24]. The mined correlated patterns have then been proven
to be interesting for various application domains, such as text mining, bioinformatics,
market basket study, and medical data analysis, etc.

To choose the appropriate measure w.r.t. a specific aim, there are various criteria
which help the user in his choice. In our case, we are interested in the bond measure
[18]. Indeed, in addition to the information on items correlations conveyed by this mea-
sure, it offers valuable information about the conjunctive support of a pattern as well
as its disjunctive and negative supports. In spite of its advantages that can be exploited
in several application contexts, few studies were dedicated to the bond measure. One
of the main reasons of this negligence is that the extraction of correlated patterns w.r.t.
bond, is proved to be more difficult than that of correlated patterns associated to other
measures, like all-confidence, as mentioned in [15]. In this paper, we will study the
behavior of the bond measure w.r.t. some key criteria. We then introduce a new exact
concise representation of frequent correlated patterns associated to this measure. This
representation – based on a new closure operator – relies on a simultaneous exploration
of both conjunctive and disjunctive search spaces, whose associated patterns are re-
spectively characterized through the conjunctive and disjunctive supports. Indeed, in a
rough manner, this new representation can be considered as a compromise between both
exact representations based, respectively, on the frequent closed patterns [19] and the
disjunctive closed patterns [8]. Thus, it also offers the main complementary advantages
of these representations, such as the direct derivation of the conjunctive and disjunctive
supports of a given pattern. Interestingly enough, the proposed representation makes
it also possible to find the correlation dependencies between items of a given data set
without the costly computation of the inclusion-exclusion identities [5]. To the best of
our knowledge, this representation is the first one proposed in the literature associated
to the bond measure.

The remainder of the paper is organized as follows: Section 2 presents the back-
ground used throughout the paper. We also discuss related work in Section 3. Section 4
details the fbond closure operator and its main properties. Moreover, it presents the new
concise representation of frequent correlated patterns associated to the bond correlation
measure. The empirical evidences about the utility of our representation are provided
in Section 5. The paper ends with a conclusion of our contributions and sketches forth-
coming issues in Section 6.

2 Key Notions

In this section, we briefly sketch the key notions used in the remainder of the paper.

Definition 1. - Data set - A data set is a triplet D = (T , I,R) where T and I are,
respectively, a finite set of transactions and items, and R ⊆ T × I is a binary rela-
tion between the transaction set and the item set. A couple (t, i) ∈ R denotes that the
transaction t ∈ T contains the item i ∈ I.

Bridging Conjunctive and Disjunctive Search Spaces 191

Example 1. In the remainder, we will consider the running data setD given in Table 1.

Table 1. An example of a data set

A B C D E F

1 × × ×
2 × × ×
3 × × × × × ×
4 × × × ×
5 × × ×

A pattern can be characterized by three kinds of supports presented by Definition 2.

Definition 2. - Supports of a pattern - Let D = (T , I,R) be a data set and I be a
non-empty pattern. We mainly distinguish three kinds of supports related to I:
- Conjunctive support: Supp(∧I) = | {t ∈ T | (∀ i ∈ I, (t, i) ∈ R)} |
- Disjunctive support: Supp(∨I) = | {t ∈ T | (∃ i ∈ I, (t, i) ∈ R)} |
- Negative support: Supp(¬I) = | {t ∈ T | (∀ i ∈ I, (t, i) /∈ R)} |

Example 2. Let us consider the data set of Table 1. We have Supp(∧(BE)) = | {3, 4} |
= 2. (1) Supp(∨(BE)) = | {2, 3, 4} | = 3. Moreover, Supp(¬(BE)) = | {1, 5} | = 2.

Note that Supp(∧∅) = |T | since the empty set is included in all transactions, while
Supp(∨∅) = 0 since the empty set does not contain any item [13]. Moreover, ∀ i ∈ I,
Supp(∧i) = Supp(∨i), while in the general case, for I ⊆ I and I �= ∅, Supp(∧I) ≤
Supp(∨I). A pattern I is said to be frequent if Supp(∧I) is greater than or equal to a
user-specified minimum support threshold, denoted minsupp [1]. The following lemma
shows the links that exist between the different supports of a non-empty pattern I . These
links are based on the inclusion-exclusion identities [5].

Lemma 1. - Inclusion-exclusion identities - The inclusion-exclusion identities ensure
the links between the conjunctive, disjunctive and negative supports of a non-empty
pattern I .

Supp(∧ I) =
∑

∅⊂I1⊆I

(− 1)| I1 | - 1 Supp(∨ I1) (1)

Supp(∨ I) =
∑

∅⊂I1⊆I

(− 1)| I1 | - 1 Supp(∧ I1) (2)

Supp(¬I) = | T | − Supp(∨ I) (The De Morgan’s law) (3)

An operator is said to be a closure operator if it is extensive, isotone and idempotent [6].
We present patterns that help to delimit the equivalence classes induced by the conjunc-
tive closure operator fc [19] and the disjunctive closure operator fd [8], respectively.

Definition 3. [19] - Conjunctive closure of a pattern - The conjunctive closure of a
pattern I ⊆ I is: fc(I) = max⊆{I ′ ⊆ I | (I ⊆ I ′) and (Supp(∧ I ′) = Supp(∧ I))} =
I ∪ {i ∈ I\I| Supp(∧ I) = Supp(∧ (I ∪ {i}))}.

1 We use a separator-free form for the sets, e.g., BE stands for the set of items {B, E}.

192 N. Ben Younes, T. Hamrouni, and S. Ben Yahia

A minimal element within a conjunctive equivalence class is called minimal generator
and is defined as follows.

Definition 4. [19] - Minimal generator - A pattern I ⊆ I is said to be minimal gener-
ator if and only if Supp(∧ I) < min{Supp(∧ I\{i}) | i ∈ I}.

The following definition formally introduces a disjunctive closed pattern.

Definition 5. [8] - Disjunctive closure of a pattern - The disjunctive closure of a pat-
tern I ⊆ I is: fd(I) = max⊆{I1 ⊆ I|(I ⊆ I1) ∧ (Supp(∨ I) = Supp(∨ I1))} = I ∪
{i ∈ I\I| Supp(∨ I) = Supp(∨ (I ∪ {i}))}.

The antipode of a disjunctive closed pattern within the associated disjunctive equiva-
lence class is called essential pattern and is defined as follows.

Definition 6. [4] - Essential pattern - A pattern I ⊆ I is said to be essential if and
only if Supp(∨ I) > max{Supp(∨ I\{i}) | i ∈ I}.

Definition 7 and Definition 8 introduce some properties that are interesting for the eval-
uation of quality measures, while Definition 9 and Definition 10 describe interesting
pruning strategies that will be used in the remainder for reducing the number of gener-
ated patterns.

Definition 7. [16] - Descriptive or statistical measure - A measure is said to be de-
scriptive if its value is invariant w.r.t. the total number of transactions. Otherwise, it is
said to be a statistical measure.

Definition 8. [21] - Symmetric measure - A measure μ is said to be symmetric if ∀X ,
Y ⊆ I, μ(XY) = μ(Y X).

Definition 9. [17] - Anti-monotone constraint - Let I ⊆ I. A constraint Q is said to
be anti-monotone if ∀I1 ⊆ I: I satisfies Q implies that I1 satisfies Q.

Definition 10. [24] - Cross-support patterns - Given a threshold t ∈]0, 1[, a pattern
I ⊆ I is a cross-support pattern w.r.t. t if I contains two items x and y such that
Supp(∧ x)
Supp(∧ y)

< t.

3 Related Work

Several works in the literature mainly paid attention to the extraction of frequent pat-
terns. Nevertheless, the conjunctive support, used to estimate their respective frequency,
only conveys information on items co-occurrences. Thus, it is not enough for giving the
information about other kinds of items relations like their complementary occurrences
as well as their mutual dependencies and inherent correlations. In order to convey in-
formation on the dependencies within sets of items and, then, to overcome the limits of
the use only of the frequency measure, many correlation and similarity measures have
been proposed. These latter measures were then applied in different fields like statistics,
information retrieval, and data mining, for analyzing the relationships among items. For

Bridging Conjunctive and Disjunctive Search Spaces 193

example, lift and χ2 are typical correlation measures used for mining association rules
[3], while any-confidence, all-confidence and bond [18] are used in pattern mining to as-
sess the relationships within sets of patterns. There are also many other interestingness
measures and metrics studied and used in a variety of fields and applications in order
to select the most interesting patterns w.r.t. a given task. In order to select the right
measure for a given application, several key properties should be examined. Recent
studies have identified a critical property, null-invariance, for measuring associations
among items in large data sets, but many measures do not have this property. Indeed,
in [23], the authors re-examine a set of null-invariant, i.e., uninfluenced by the number
of null transactions, interestingness measures and they express them as a generalized
mathematical mean. However in their work, the authors only considered the applica-
tion of the studied measures only for patterns of size two. Moreover, other studies are
based on the analysis of measures w.r.t. some desirable properties, such as the nice
property of anti-monotonicity, like carried out in [14]. In this respect, anti-monotone
measures are extensively used to develop efficient algorithms for mining correlated pat-
terns [12,15,18,24]. However, almost all dedicated works to correlated patterns do not
address the problem of the huge number of mined patterns while many of them are
redundant. To the best of our knowledge, only the work proposed in [12] allows the
extraction of a concise representation of frequent correlated patterns based on the all-
confidence measure. Furthermore, the proposed works only rely on the exploration of
the conjunctive search space for the extraction of the correlated patterns and no one was
interested in the exploration of the disjunctive search space.

In addition, our work can also be linked with that proposed in [20]. This latter work
presents a general framework for setting closure operators associated to some measures
through the introduction of the so-called condensable function. In comparison to our
work, that of [20] does not propose any concise representation for frequent correlated
patterns using the condensable measure bond. In addition, the authors neither studied
the structural properties of this measure nor paid attention to the corresponding link
between the patterns associated to this measure and those characterizing the conjunctive
search space and the disjunctive one. All these points are addressed in the following.

4 New Concise and Exact Representation of Frequent Correlated
Patterns

We concentrate now on the proposed representation of frequent correlated patterns. We
firstly introduce a structural characterization of the bond measure and, then, detail the
associated closure operator on which the representation is based.

4.1 Structural Characterization of the bond Measure

We study, in this subsection, different interesting properties of the bond measure. In the
literature, other equivalent measures to bond are used in different application contexts
such as Coherence [15], Tanimoto coefficient [22], and Jaccard [10]. With regard to data
mining, the bond measure is similar to the conjunctive support but w.r.t. a subset of the
data rather than the entire data set. Indeed, semantically speaking, this measure conveys

194 N. Ben Younes, T. Hamrouni, and S. Ben Yahia

the information about the correlation of a pattern I by computing the ratio between
the number of co-occurrences of its items and the cardinality of its universe, which is
equal to the transaction set containing a non-empty subset of I . It is worth mentioning
that, in the previous works dedicated to this measure, the disjunctive support has never
been used to express it. Indeed, none of these works highlighted the link between the
denominator – the cardinality of the universe of I – and the disjunctive support. Thus,
we propose a new expression of bond in Definition 11.

Definition 11. - The bond measure - The bond measure of a non-empty pattern I ⊆ I
is defined as follows: bond(I) = Supp(∧ I)

Supp(∨ I)

The use of the disjunctive support allows to reformulate the expression of the bond
measure in order to bring out some pruning conditions for the extraction of the pat-
terns fulfilling this measure. Indeed, as shown later, the bond measure satisfies several
properties that offer interesting pruning strategies allowing to reduce the number of gen-
erated pattern during the extraction process. Note that the value of the bond measure
of the empty set is undefined since its disjunctive support is equal to 0. However, this

value is positive because limI �→∅ bond (I) = |T |0 = +∞. As a result, the empty set will
be considered as a correlated pattern for any minimal threshold of the bond correlation
measure. To the best of our knowledge, none of the literature works was interested in
the properties of this measure in the case of the empty set.

The following proposition presents interesting properties verified by bond.

Proposition 1. - Some properties of the bond measure - The bond measure is descrip-
tive and symmetric.

Proof. The numerator of the bond measure represents the conjunctive support of a pat-
tern I , while the denominator represents its disjunctive support. Being the ratio between
two descriptive and symmetric measures, bond is also descriptive and symmetric.

Several studies [21,23] have shown that it is desirable to select a descriptive measure
that is not influenced by the number of transactions that contain none of pattern items.
The symmetric property fulfilled by the bond measure makes it possible not to treat all
the combinations induced by the precedence order of items within a given pattern. Note-
worthily, the anti-monotony property, fulfilled by the bond measure as proven in [18], is
very interesting. Indeed, all the subsets of a correlated pattern are also necessarily cor-
related. Then, we can deduce that any pattern having at least one uncorrelated proper
subset is necessarily uncorrelated. It will thus be pruned without computing the value
of its bond measure. In the next proposition, we introduce the relationship between the
bond measure and the cross-support property.

Proposition 2. - Cross-support property of the bond measure - Any cross-support pat-
tern I ⊆ I, w.r.t. a threshold t ∈]0, 1[, is guaranteed to have bond(I)< t.

Proof. Let I ⊆ I and t ∈]0, 1[. If I is a cross-support pattern w.r.t. the threshold t,

then ∃ x and y ∈ I such as Supp(∧ x)
Supp(∧ y) < t. Let us prove that bond(I) < t: bond(I) =

Supp(∧ (I))
Supp(∨ (I)) ≤

Supp(∧ (xy))
Supp(∨ (xy)) ≤

Supp(∧ (xy))
Supp(∨ y) ≤ Supp(∧ x)

Supp(∨ y) = Supp(∧ x)
Supp(∧ y) < t.

Bridging Conjunctive and Disjunctive Search Spaces 195

The cross-support property is very important. Indeed, any pattern, containing two items
fulfilling the cross-support property w.r.t. a minimal threshold of correlation, is not
correlated. Thus, this property avoids the computation of its conjunctive and disjunctive
supports, required to evaluate its bond value.

The set of frequent correlated patterns associated to bond is defined as follows.

Definition 12. - The set of frequent correlated patterns - Considering the support
threshold minsupp and the correlation threshold minbond, the set of frequent corre-
lated patterns, denoted FCP, is equal to: FCP = {I ⊆ I | bond(I) ≥ minbond and
Supp(∧I) ≥ minsupp}.
The following proposition establishes the relation between the values of the bond mea-
sure as well as the conjunctive and disjunctive supports of two patterns linked by set
inclusion.

Proposition 3. Let I and I1 be two patterns such as I ⊆ I1 ⊆ I. We have bond(I) =
bond(I1) if and only if Supp(∧I) = Supp(∧I1) and Supp(∨I) = Supp(∨I1).

Proof. The bond correlation measure of a pattern is the ratio between its conjunctive
and disjunctive supports. So, if there is two patterns I and I1 ⊆ I, with I ⊆ I1, and
if they have equal values of the bond measure, they also have equal values of the con-
junctive and disjunctive supports. Indeed, to have a

b
= c

d
(where a, b, c, and d are four

positive integers), three cases are possible: (a = c and b = d) or (a > c and b > d) or
(a < c and b < d), such that a × d = b × c. So, when we add an item i to the pattern
I , its conjunctive and disjunctive supports vary inversely proportionally to each other
such that ∀i ∈ I, Supp(∧I) ≥ Supp(∧ (I∪{i})) and Supp(∨I) ≤ Supp(∨ (I∪{i})).
Thus, the unique possibility to have

Supp(∧ I)
Supp(∨ I)

=
Supp(∧ (I ∪ {i}))
Supp(∨ (I ∪ {i})) occurs when

Supp(∧ I) = Supp(∧ (I ∪ {i})) and Supp(∨ I) = Supp(∨ (I ∪ {i})). In an incre-

mental manner, it can be easily shown that whenever
Supp(∧ I)
Supp(∨ I)

=
Supp(∧ (I ∪ I1))
Supp(∨ (I ∪ I1))

,

Supp(∧ I) = Supp(∧ (I ∪ I1)) and Supp(∨ I) = Supp(∨ (I ∪ I1)).

4.2 Closure Operator Associated to the bond Measure

Since many correlated patterns share exactly the same characteristics, an interesting
solution in order to reduce the number of mined patterns is to find a closure operator
associated to the bond measure. Indeed, thanks to the non-injectivity property of the
closure operator, correlated patterns having common characteristics will be mapped
without information loss into a single element, namely the associated closed correlated
pattern. The proposed closure operator is given by the following definition.

Definition 13. - The fbond operator - Let D = (T , I, R) be a data set. Let fc and fd

be, respectively, the conjunctive closure operator and the disjunctive one. Formally, the
fbond operator is defined as follows:

fbond : P(I) → P (I)

I �→ fbond(I) = I ∪ {i ∈ I\I| bond(I) = bond(I ∪ {i})}
= {i ∈ I| i ∈ fc(I) ∩ fd(I)}

196 N. Ben Younes, T. Hamrouni, and S. Ben Yahia

The fact that the application of fbond to a given pattern is exactly equal to the intersec-
tion of both its conjunctive and disjunctive closures, associated respectively to the fc

and fd operators (cf. Definition 3 and Definition 5), results from Proposition 3.

Example 3. Consider the data set illustrated by Table 1. We have: since fc(AB) = AB
and fd(AB) = ABE, then fbond(AB) = AB. Since fc(AC) = ABCE and fd(AC) =
ABCDEF, then fbond(AC) = ABCE.

The next proposition proves that fbond is a closure operator.

Proposition 4. The fbond operator is a closure operator.

Proof. Let I , I ′ ⊆ I be two patterns. fbond(I) = fc(I) ∩ fd(I) and fbond(I ′) =
fc(I ′) ∩ fd(I ′). Let us prove that the fbond operator is a closure operator.

(1) Extensivity: Let us prove that I ⊆ fbond(I){
fc is a closure operator⇒ I ⊆ fc(I)
fd is a closure operator⇒ I ⊆ fd(I)

⇒
{

I ⊆ (fc(I) ∩ fd(I))⇒
{

I ⊆ fbond(I).

Thus, the fbond operator is extensive.

(2) Isotony: Let us prove that I ⊆ I ′ ⇒ fbond(I) ⊆ fbond(I ′)

I ′ ⊆ I ⇒
{

fc(I ′) ⊆ fc(I)
fd(I ′) ⊆ fd(I)

⇒
{

(fc(I ′) ∩ fd(I ′)) ⊆ (fc(I) ∩ fd(I))

⇒
{

fbond(I ′) ⊆ fbond(I).
Thus, the fbond operator is isotone.

(3) Idempotency: Let us prove that fbond(fbond(I)) = fbond(I)

According to (1), we have fbond(I) ⊆ fbond(fbond(I)). We will prove by absurdity
that fbond(fbond(I)) = fbond(I).

Suppose that fbond(I) ⊂ fbond(fbond(I)). This is equivalent to bond(I) �=
bond(fbond(I)).

However, this is impossible because bond(fbond(I)) = bond(I) (cf. Proposition 3).
Thus, fbond(fbond(I)) = fbond(I), i.e., the fbond operator is idempotent.

According to (1), (2) and (3), the operator fbond is a closure operator.

Definition 14. - Closed pattern by fbond - Let I ⊆ I be a pattern. The associated
closure fbond(I) is equal to the maximal set of items containing I and having the same
value of bond as that of I .

Example 4. Consider our running data set. We have the maximal set of items which
have an equal value of the bond measure than AF is ABCDEF. Then, fbond(AF) =
ABCDEF

The next definition introduces the set of frequent closures while Definition 16 presents
the minimal patterns associated to fbond.

Definition 15. The set FCCP of frequent closed correlated patterns is equal to:FCCP
= { I ∈ FCP | bond(I) > bond(I ∪ {i}), ∀ i ∈ I\I}.

Bridging Conjunctive and Disjunctive Search Spaces 197

Definition 16. - Frequent minimal correlated pattern - Let I ∈ FCP. The pattern I is
said to be minimal if and only if ∀ i ∈ I, bond(I) < bond(I\{i}) or, equivalently, � I1
⊂ I such that fbond(I) = fbond(I1).

Example 5. Consider our running data set illustrated by Table 1 for minsupp = 1 and
minbond = 0.30. The pattern CE is a minimal one since bond(CE) < bond(C)
and bond(CE) < bond(E). Moreover, the pattern CE is correlated and frequent since
bond(CE) = 0.50 > 0.30 and Supp(∧(CE)) = 2 ≥ 1.

The next proposition links a minimal pattern with the key notions of minimal gener-
ator (cf. Definition 4) and essential pattern (cf. Definition 6) of the conjunctive and
disjunctive search spaces, respectively.

Proposition 5. Every minimal generator (resp. essential pattern) is a minimal pattern.

Proof. Let I ⊆ I be a minimal generator (resp. essential pattern). ∀ i ∈ I , Supp(∧I) <
Supp(∧(I\{i})) and Supp(∨I)≥ Supp(∨(I\{i})) (resp. Supp(∨I) > Supp(∨(I\{i}))

and Supp(∧I)≤Supp(∧(I\{i}))). Thus, in both cases, Supp(∧ I)
Supp(∨ I) <

Supp(∧ (I \ {i}))
Supp(∨ (I \ {i})) .

As a result, bond(I) �= bond(I\{i}) and, hence, I is a minimal pattern.

It is important to note that a minimal pattern can be neither an essential pattern nor a
minimal generator. This is illustrated through the following example.

Example 6. Consider our running data set illustrated by Table 1. According to Example
5, CE is a minimal pattern, although it is neither a minimal generator (since Supp(∧
(CE)) = Supp(∧ E)) nor an essential pattern (since Supp(∨ (CE)) = Supp(∨ C)).

In the remainder, we will consider the empty set as a frequent minimal correlated pattern
given that the values of its conjunctive support and that of its bond measure exceed both
minsupp and minbond thresholds, respectively (the conjunctive support of the empty set
is equal to |T | ≥ minsupp and the value of its bond measure tends to +∞ when I tends
to ∅). Besides, we will consider the closure of the empty set as equal to itself. Let us note
that these considerations are important and allow the set of frequent minimal correlated
patterns to be flagged as order ideal (aka downward closed set) [6], without having any
effect neither on the supports of the other patterns nor on their closures.

Proposition 6. The set FMCP of the frequent minimal correlated pattern is an order
ideal. Thus, it fulfills the following properties:

- If X ∈ FMCP, then ∀ Y ⊆ X , Y ∈ FMCP, i.e., the constraint “be a frequent
minimal correlated pattern” is anti-monotone.

- If X /∈ FMCP, then ∀ Y ⊇ X , Y /∈ FMCP, i.e., the constraint “not to be a
frequent minimal correlated pattern” is monotone.

Proof. The proof results from the following fact: for i ∈ I and for all X ⊆ Y ⊂ I,
if bond(X ∪ {i}) = bond(X), then bond(Y ∪ {i}) = bond(Y), i.e., if (X ∪ {i}) is
not a minimal pattern, so (Y ∪ {i}) is also not minimal. The constraint “not to be a
minimal pattern” is hence monotone, w.r.t. set inclusion. We deduce that the constraint
“be a minimal pattern” is anti-monotone. Moreover, the constraint “be a frequent min-
imal correlated pattern” is anti-monotone since resulting from the conjunction of three

198 N. Ben Younes, T. Hamrouni, and S. Ben Yahia

anti-monotone constraints: “to be frequent”, “to be correlated”, and “to be minimal”.
Conversely, the constraint “not to be a frequent minimal correlated pattern” is mono-
tone. We then deduce that the set FMCP is an order ideal.

The closure operator fbond induces an equivalence relation on the power-set of the set of
items I, which splits it into disjoint subsets, called fbond equivalence classes. In each
class, all the elements have the same fbond closure and the same value of bond. The
minimal patterns of a bond equivalence class are the smallest incomparable members,
w.r.t. set inclusion, while the fbond closed pattern is the largest one.

To establish the link with the conjunctive and disjunctive search spaces, an fbond

equivalence class as well as conjunctive and disjunctive classes are given in Figure 1.
The equivalence class associated to the bond measure can then be considered as an
intermediary representation of both conjunctive and disjunctive ones.

D i s j u n c t i v e
p a t t e r n s

D i s j u n c t i v e c l o s e d
p a t t e r n

A C
A D

B F
B D

A F
B C

C D
D E

A B C D E F
(5)

A C E F
A B C D E

A B C

E s s e n t i a l p a t t e r n s

D i s j u n c t i v e e q u i v a l e n c e
c l a s s

M i n i m a l g e n e r a t o r s C o r r e l a t e d m i n i m a l p a t t e r n s

 C o r r e l a t e d c l o s e d
p a t t e r n

D E

C o r r e l a t e d
p a t t e r n s

B F

A B C D E F
(1 ; 5)

A B F

C D E
A B C D F

e q u i v a l e n c e
 c l a s s

A F

b o n df

A C D
B C D

C o n j u n c t i v e c l o s e d
 p a t t e r n

B F
A F

D E

A B C D E F
(1)

A B F

C E F

C o n j u n c t i v e
p a t t e r n s

B C D F

C o n j u n c t i v e e q u i v a l e n c e
c l a s s

E F
A C D

B C D

Fig. 1. Structural characterization of the equivalence classes associated respectively (from left to
right) to the fc, fbond, and fd closure operators w.r.t. the data set given in Table 1.

4.3 New Concise Representation Associated to the bond Measure

Based on the fbond closure operator, we can design two representations which cover the
same frequent correlated patterns. The first is based on the frequent closed correlated
patterns, whereas the second one is based on the frequent minimal correlated patterns.
In this work, we focus on the first one, since it is considered more concise thanks to
the fact that a fbond equivalence class always contains only one closed pattern, but
potentially several minimal patterns. Let us define the new concise representation of
frequent correlated patterns based on the frequent closed correlated patterns associated
to the bond measure.

Definition 17. The representation RFCCP based on the set of frequent closed corre-
lated patterns associated to fbond is defined as follows:

RFCCP = {(I, Supp(∧I), Supp(∨I)) | I ∈ FCCP }.

Example 7. Consider our running data set illustrated by Table 1. For minsupp = 2 and
minbond = 0.60, the representation RFCCP of the FCP set is equal to: {(∅, 5, 0), (C,
4, 4), (D, 4, 4), (E, 2, 2), (F, 3, 3), (AB, 3, 3), (CF, 3, 4), (DF, 3, 4), (ABE, 2, 3),
(CDF, 3, 5)}.

Bridging Conjunctive and Disjunctive Search Spaces 199

The next theorem proves that the proposed representation is an exact one of frequent
correlated patterns.

Theorem 1. The representation RFCCP constitutes an exact concise representation
of the FCP set.

Proof. Thanks to a reasoning by recurrence, we will demonstrate that, for an arbitrary
pattern I ⊆ I, its fbond closure, fbond(I), belongs to FCCP if it is frequent correlated.
In this regard, let FMCPk be the set of frequent minimal correlated patterns of size
k and FCCPk be the associated set of closures by fbond. The hypothesis is verified for
single items i inserted in FMCP1, and their closures fbond(i) are inserted in FCCP1 if
Supp(∧i) ≥ minsupp (since ∀ i∈ I, bond(i) = 1≥ minbond). Thus, fbond(i) ∈ FCCP.
Now, suppose that ∀I ⊆ I such as |I| = n. We have fbond(I) ∈ FCCP if I is frequent
correlated. We show that, ∀I ⊆ I such as |I| = (n+1), we have fbond(I) ∈ FCCP if I
is frequent correlated. Let I be a pattern of size (n + 1). Three situations are possible:
(a) if I ∈ FCCP, then necessarily fbond(I) ∈ FCCP since fbond is idempotent.
(b) if I ∈ FMCPn+1, then fbond(I) ∈ FCCPn+1 and, hence, fbond(I) ∈ FCCP.
(c) if I is neither closed nor minimal – I /∈ FCCP and I /∈ FMCPn+1 – then ∃I1 ⊂ I
such as |I1| = n and bond(I) = bond(I1). According to Proposition 3, fbond(I) =
fbond(I1), and I is then frequent correlated. Moreover, using the hypothesis, we have
fbond(I1) ∈ FCCP and, hence, fbond(I) ∈ FCCP.

It is worth noting that maintaining both conjunctive and disjunctive supports for each
pattern belonging to the representation allows to avoid the cost of the evaluation of the
inclusion-exclusion identities. Indeed, this evaluation can be very expensive, in partic-
ular in the case of long correlated patterns to be derived. For example, for a pattern
containing 20 items, the evaluation of an inclusion-exclusion identity will involve the
computation of the supports of all its non-empty subsets, i.e., 220 - 1 terms (cf. Lemma
1, page 191). Such an evaluation will be mandatory if we retain only one support and
not both. It will then be carried out in order to derive the non-retained support to com-
pute the value of the bond measure for each pattern. Thus, contrarily to the main concise
representations of the literature, the regeneration of the whole frequent correlated pat-
terns from the representation RFCCP can be carried out in a very simple and effective
way. Indeed, in an equivalence class associated to the bond measure, patterns present the
same value of this measure and consequently the same conjunctive, disjunctive and neg-
ative supports. Then, to derive the information corresponding to a frequent correlated
pattern, it is enough to locate the smallest frequent closed correlated pattern which cov-
ers it and which corresponds to its closure by fbond. Thus, we avoid the highly costly
evaluation of the inclusion-exclusion identities.

Note however that the closure operator associated to the bond measure induces a
strong constraint. Indeed, the fbond operator gathers the patterns having the same con-
junctive and disjunctive supports (cf. Proposition 3). Consequently, the number of pat-
terns belonging to a given equivalence class associated to this operator is in almost all
cases lower than those resulting when the conjunctive and the disjunctive closure oper-
ators are separately applied. Fortunately, the pruning based on both thresholds minsupp
and minbond drastically reduces the size of our concise representation, as shown in the
next section.

200 N. Ben Younes, T. Hamrouni, and S. Ben Yahia

5 Experimental Results

In this section, our objective is to show, through extensive experiments, that our con-
cise representation based on frequent closed correlated patterns provides interesting
compactness rates compared to the whole set of frequent correlated patterns. All ex-
periments were carried out on a PC equipped with a 2 GHz Intel processor and 4 GB
of main memory, running the Linux Ubuntu 9.04 (with 2 GB of swap memory). The
experiments were carried out on benchmark data sets2.

We first show that the complete set of frequent correlated patterns (FCP) is much
bigger in comparison with both that of frequent correlated closed patterns (FCCP) and
that of frequent minimal correlated patterns (FMCP) especially for low minsupp and
minbond values. In this respect, Figure 2 presents the cardinalities of these sets when
minsupp varies and minbond is fixed, while, in Figure 3, cardinalities are shown when
minbond varies and minsupp is fixed.

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 262144

 524288

 55 60 65 70 75 80 85 90

S
iz

e

minsupp(%)

Connect(minbond=0.25)

|RFCCP|
|FMCP|

|FCP|

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 262144

 55 60 65 70 75 80 85 90

S
iz

e

minsupp(%)

Chess(minbond=0.40)

|RFCCP|
|FMCP|

|FCP|

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 262144

 55 60 65 70 75 80 85 90

S
iz

e

minsupp(%)

Pumsb(minbond=0.20)

|RFCCP|
|FMCP|

|FCP|

 64

 256

 1024

 4096

 16384

 65536

 262144

 30 35 40 45 50 55 60 65

S
iz

e

minsupp(%)

Pumsb*(minbond=0.25)

|RFCCP|
|FMCP|

|FCP|

 256

 512

 1024

 2048

 4096

 8192

 0 5 10 15 20 25 30 35 40

S
iz

e

minsupp(%)

Mushroom(minbond=0.30)

|RFCCP|
|FMCP|

|FCP|

 4096

 8192

 16384

 32768

 65536

 0 2 4 6 8 10 12 14 16 18 20

S
iz

e

minsupp(%)

Mushroom(minbond=0.20)

|RFCCP|
|FMCP|

|FCP|

 2048

 4096

 8192

 16384

 32768

 65536

 131072

 262144

 10 15 20 25 30 35 40 45 50

S
iz

e

minsupp(%)

Accidents(minbond=0.30)

|RFCCP|
|FMCP|

|FCP|

 256

 512

 1024

 2048

 0 0.2 0.4 0.6 0.8 1

S
iz

e

minsupp(%)

T10I4D100K(minbond=0.25)

|RFCCP|
|FMCP|

|FCP|

 256

 512

 1024

 2048

 0 1 2 3 4 5

S
iz

e

minsupp(%)

T40I10D100K(minbond=0.25)

|RFCCP|
|FMCP|

|FCP|

Fig. 2. Number of patterns generated when minsupp varies and minbond is fixed

The obtained results show that the size of FCCP is always smaller than that of
FMCP over the entire range of the support and bond thresholds. For example, consid-
ering the PUMSB data set for minsupp = 50% and minbond = 0.5: |FMCP| = 68, 532,
while |RFCCP| = 40, 606, with a reduction reaching approximately 41%. These results

2 Available at http://fimi.cs.helsinki.fi/data

http://fimi.cs.helsinki.fi/data

Bridging Conjunctive and Disjunctive Search Spaces 201

are obtained thanks to the closure operator fbond which gathers into disjoint subsets, i.e.,
fbond equivalence classes, patterns that have the same characteristics.

The key role of this operator is all the more visible when we compare the number of
the whole set of correlated patterns with that of the proposed representation. In this re-
spect, Figures 2 and 3 show that FCCP mining generates a much smaller set than that of
frequent correlated patterns. Interestingly enough, compression rates increase propor-
tionally with the decrease of the minsupp and minbond values. It is hence a desirable
phenomenon since the number of frequent correlated patterns increases dramatically as
far as one of both thresholds decreases. For example, let us consider the PUMSB* data

set, and minbond fixed at 0.25%: for minsupp = 60%:
|FCP|

|RFCCP| = 167
124 = 1.34, while

for minsupp = 35%:
|FCP|

|RFCCP| = 116, 787
4, 546 = 25.69 � 1.34. In fact, in general, only

single items can fulfill high values of thresholds. In this situation, the set of frequent
correlated patterns only contains items which are in most cases equal to their closures.
However, when thresholds are set very low, a high number of frequent correlated pat-
terns, which are in general not equal to their respective closures, is extracted.

Noteworthily, the size reduction rates brought by the proposed representation, w.r.t.
the size of the FCP set, are closely related to the chosen minsupp and minbond

 1024

 4096

 16384

 65536

 262144

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

S
iz

e

minbond

Connect(minsupp=65%)

|RFCCP|
|FMCP|

|FCP|

 1024

 2048

 4096

 8192

 16384

 0.55 0.6 0.65 0.7 0.75 0.8

S
iz

e

minbond

Chess(minsupp=10%)

|RFCCP|
|FMCP|

|FCP|

 128
 256
 512

 1024
 2048
 4096
 8192

 16384
 32768
 65536

 131072
 262144

 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

S
iz

e

minbond

Pumsb(minsupp=50%)

|RFCCP|
|FMCP|

|FCP|

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

S
iz

e

minbond

Pumsb*(minsupp=40%)

|RFCCP|
|FMCP|

|FCP|

 32
 64

 128
 256
 512

 1024
 2048
 4096
 8192

 16384
 32768
 65536

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
iz

e

minbond

Mushroom(minsupp=15%)

|RFCCP|
|FMCP|

|FCP|

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
iz

e

minbond

Mushroom(minsupp=0.5%)

|RFCCP|
|FMCP|

|FCP|

 64

 256

 1024

 4096

 16384

 65536

 262144

 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
iz

e

minbond

Accidents(minsupp=15%)

|RFCCP|
|FMCP|

|FCP|

 512

 1024

 2048

 4096

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
iz

e

minbond

T10I4D100K(minsupp=0.05%)

|RFCCP|
|FMCP|

|FCP|

 512

 1024

 2048

 4096

 8192

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
iz

e

minbond

T40I10D100K(minsupp=0.10%)

|RFCCP|
|FMCP|

|FCP|

Fig. 3. Number of patterns generated when minbond varies and minsupp is fixed

202 N. Ben Younes, T. Hamrouni, and S. Ben Yahia

values (cf. Figure 2 (resp. Figure 3) for a variation of the fixed value of minbond (resp.
minsupp) for the MUSHROOM data set). Note that rates vary depending on the data set
characteristics and are, hence, more important for some data sets than for others. In
this respect, for CONNECT, PUMSB and PUMSB*, the obtained rates are more interest-
ing than for CHESS, MUSHROOM and ACCIDENTS. This is explained by the fact that
for the first three data sets, which contain strongly correlated items, the fbond operator
produces equivalence classes containing a high number of patterns. Thus, the number
of closures is much more reduced compared to that of the whole set of patterns, even
for high values of minsupp and minbond. While for the latter three data sets, items are
relatively less correlated than for the three first ones, which decreases the number of
patterns having common characteristics, and hence the same closure.

For the two data sets T10I4D100K and T40I10D100K, the size of the representa-
tion RFCCP is almost equal to that of the FCP set. This is due to the nature of these
data sets, which contain a large number of items but only a few of them frequently
occur. Moreover, most of them are weakly correlated with each other. This makes the
size reduction rates brought by the representation meaningless in such data sets. It is
important to note that, these two data sets are the “worst” for the fbond closure operator
as well as for the conjunctive and disjunctive closure operators (cf. [7,8] for experimen-
tal results associated to these two latter operators). In addition, the number of frequent
correlated patterns that are extracted from these data sets is relatively reduced for each
used value of minsupp and minbond.

6 Conclusion and Perspectives

In this work, we studied the behavior of the bond correlation measure according to
some key properties. In addition, we introduced a new closure operator associated to
this measure and we thoroughly studied its theoretical properties. Based on this opera-
tor, we characterized the elements of the search space associated to the bond measure.
Then, we introduced a new concise representation of frequent patterns based on the
frequent closed correlated patterns. Beyond interesting compactness rates, this repre-
sentation allows a straightforward computation of the conjunctive, disjunctive and neg-
ative supports of a pattern. In nearly all experiments we performed, the obtained results
showed that our representation is significantly smaller than the whole set of frequent
correlated patterns.

Other avenues for future work mainly address a thorough analysis of the computa-
tional time required for mining our representation and, then, for the derivation process
of the whole set of frequent patterns. In this respect, efficient algorithms for mining
conjunctive closed patterns (like LCM and DCI-CLOSED [2]) and disjunctive closed
patterns (like DSSRM [9]) could be adapted for mining frequent closed correlated pat-
terns. Other important tasks consist in applying the proposed approach in real-life ap-
plications and extending it by (i) generating association rules starting from correlated
frequent patterns, and, (i) extracting unfrequent (aka rare) correlated patterns associ-
ated to the bond measure by selecting the most informative ones.

Bridging Conjunctive and Disjunctive Search Spaces 203

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the
20th International Conference on VLDB 1994, Santiago, Chile, pp. 487–499 (1994)

2. Ben Yahia, S., Hamrouni, T., Mephu Nguifo, E.: Frequent closed itemset based algorithms: A
thorough structural and analytical survey. ACM-SIGKDD Explorations 8(1), 93–104 (2006)

3. Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing association rules
to correlations. In: Proceedings of the ACM SIGMOD International Conference on SIGMOD
1997, Tucson, Arizona, USA, pp. 265–276 (1997)

4. Casali, A., Cicchetti, R., Lakhal, L.: Essential patterns: A perfect cover of frequent patterns.
In: Proceedings of the 7th International Conference on DaWaK, Copenhagen, Denmark, pp.
428–437 (2005)

5. Galambos, J., Simonelli, I.: Bonferroni-type inequalities with applications. Springer, Heidel-
berg (2000)

6. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999)
7. Hamrouni, T.: Mining concise representations of frequent patterns through conjunctive

and disjunctive search spaces. Ph.D. Thesis, University of Tunis El Manar (Tunisia)
and University of Artois (France) (2009), http://tel.archives-ouvertes.fr/
tel-00465733

8. Hamrouni, T., Ben Yahia, S., Mephu Nguifo, E.: Sweeping the disjunctive search space to-
wards mining new exact concise representations of frequent itemsets. Data & Knowledge
Engineering 68(10), 1091–1111 (2009)

9. Hamrouni, T., Ben Yahia, S., Mephu Nguifo, E.: Optimized mining of a concise representa-
tion for frequent patterns based on disjunctions rather than conjunctions. In: Proceedings of
the 23rd International Florida Artificial Intelligence Research Society Conference (FLAIRS
2010), pp. 422–427. AAAI Press, Daytona Beach, Florida, USA (2010)

10. Jaccard, P.: Nouvelles recherches sur la distribution florale. Bulletin de la Société Vaudoise
des Sciences Naturelles 44, 223–270 (1908)

11. Ke, Y., Cheng, J., Yu, J.X.: Efficient discovery of frequent correlated subgraph pairs. In:
Proceedings of the 9th IEEE International Conference on Data Mining, Miami, Florida, USA,
pp. 239–248 (2009)

12. Kim, W.Y., Lee, Y.K., Han, J.: CCMINE: Efficient mining of confidence-closed correlated
patterns. In: Proceedings of the 8th International Pacific-Asia Conference on KDD, Sydney,
Australia, pp. 569–579 (2004)

13. Kryszkiewicz, M.: Compressed disjunction-free pattern representation versus essential pat-
tern representation. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp.
350–358. Springer, Heidelberg (2009)

14. Le Bras, Y., Lenca, P., Lallich, S.: Mining interesting rules without support requirement:
a general universal existential upward closure property. Annals of Information Systems 8,
75–98 (2010)

15. Lee, Y.K., Kim, W.Y., Cai, Y.D., Han, J.: CoMine: Efficient mining of correlated patterns. In:
Proceedings of the 3rd IEEE International Conference on Data Mining, Melbourne, Florida,
USA, pp. 581–584 (2003)

16. Lenca, P., Vaillant, B., Meyer, P., Lallich, S.: Association rule interestingness measures: Ex-
perimental and theoretical studies. In: Quality Measures in Data Mining, Studies in Compu-
tational Intelligence, vol. 43, pp. 51–76. Springer, Heidelberg (2007)

17. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery.
Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

18. Omiecinski, E.R.: Alternative interest measures for mining associations in databases. IEEE
Transactions on Knowledge and Data Engineering 15(1), 57–69 (2003)

http://tel.archives-ouvertes.fr/tel-00465733
http://tel.archives-ouvertes.fr/tel-00465733

204 N. Ben Younes, T. Hamrouni, and S. Ben Yahia

19. Pasquier, N., Bastide, Y., Taouil, R., Stumme, G., Lakhal, L.: Generating a condensed rep-
resentation for association rules. Journal of Intelligent Information Systems 24(1), 25–60
(2005)

20. Soulet, A., Crémilleux, B.: Adequate condensed representations of patterns. Data Mining
and Knowledge Discovery 17(1), 94–110 (2008)

21. Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for associa-
tion patterns. In: Proceedings of the 8th ACM SIGKDD International Conference on KDD,
Edmonton, Alberta, Canada, pp. 32–41 (2002)

22. Tanimoto, T.T.: An elementary mathematical theory of classification and prediction. Techni-
cal Report, I.B.M. Corporation Report (1958)

23. Wu, T., Chen, Y., Han, J.: Re-examination of interestingness measures in pattern mining:
a unified framework. Data Mining and Knowledge Discovery (2010) doi: 10.1007/s10618-
009-0161-2

24. Xiong, H., Tan, P.N., Kumar, V.: Hyperclique pattern discovery. Data Mining and Knowledge
Discovery 13(2), 219–242 (2006)

Graph Classification Based
on Optimizing Graph Spectra

Nguyen Duy Vinh1, Akihiro Inokuchi1,2, and Takashi Washio1

1 The Institute of Scientific and Industrial Research, Osaka University
2 PRESTO, Japan Science and Technology Agency
{inokuchi,washio}@ar.sanken.osaka-u.ac.jp

Abstract. Kernel methods such as the SVM are becoming increasingly
popular due to their high performance in graph classification. In this
paper, we propose a novel graph kernel, called SPEC, based on graph
spectra and the Interlace Theorem, as well as an algorithm, called OPT-
SPEC, to optimize the SPEC kernel used in an SVM for graph classifi-
cation. The fundamental performance of the method is evaluated using
artificial datasets, and its practicality confirmed through experiments
using a real-world dataset.

Keywords: Graph Kernel, Interlace Theorem, Graph Spectra.

1 Introduction

A natural way of representing structured data is to use graphs. As an example,
the structural formula of a chemical compound is a graph where each vertex
corresponds to an atom in the compound, and each edge corresponds to a bond
between two atoms therein. By using such graph representations, a new research
field has emerged from data mining, namely graph mining, with the objective
of mining information from a database consisting of graphs. With the potential
to find meaningful information, graph mining has raised great interest, and re-
search in the field has increased rapidly in recent years. Furthermore, since the
need for classifying graphs has increased in many real-world applications, e.g.,
analysis of proteins in bioinformatics and chemical compounds in cheminfor-
matics [11], graph classification has also been widely researched worldwide. The
main objective of graph classification is to classify graphs of similar structures
into the same classes. This originates from the fact that instances represented by
graphs usually have similar properties if their graph representations have high
structural similarity.

Kernel methods such as the SVM are becoming increasingly popular due to
their high performance in graph classification [10]. Most graph kernels are based
on the idea of an object decomposed into substructures and a feature vector

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 205–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

206 N.D. Vinh, A. Inokuchi, and T. Washio

containing counts of the substructures. Since the dimensionality of feature vec-
tors is typically very high and includes the subgraph isomorphism matching
problem that is known to be NP-complete [4], kernels deliberately avoid explicit
computations of feature values and employ efficient procedures.

One of the representative graph kernels is the Random Walk Kernel [12,10],
which computes k(gi, gj) in O(|g|3) for graphs gi and gj , where |g| is the number
of vertices in gi and gj. The kernel returns a high value if the random walk
on the graph generates many sequences with the same labels for vertices and
edges, i.e., the graphs are similar to each other. The Neighborhood Hash Kernel
(NHK) [6] is another recently proposed kernel that computes k(gi, gj) in O(|g|d)
for gi and gj, where d is the average degree of the vertices. The NHK uses
logical operations such as the exclusive-OR on the label set of the connected
vertices. The updated labels given by repeating the hash, propagate the label
information over the graph and uniquely represent the high order structures
around the vertices beyond the vertex or edge level. An SVM with two graph
kernels works very well with benchmark data consisting of graphs with common
small subgraphs (consisting of 1-6 vertices).

In many real-world applications using graph structured data, large subgraphs
have a greater significance than small ones, because they contain more use-
ful structural information. However, existing algorithms employing graph ker-
nels, including the Random Walk Kernel and Neighborhood Hash Kernel, do
not achieve good performance when classifying graphs whose classes depend on
whether the graphs contain some large common subgraphs. The main reason
for this is that the core principle of kernel algorithms is the use of a very small
number of neighbor vertices when characterizing each vertex. Our experiments
show that these two graph kernels do not work well with this kind of graph, and
thus the application thereof is limited.

Based on the background, in this paper we aim to solve a classification prob-
lem of graphs where the binary class of each graph is defined by whether it
contains some graphs in a large graph set as induced subgraphs. For this pur-
pose, we propose a new graph kernel, called SPEC, and an algorithm, referred
to as OPTSPEC (OPT imizing graph SPECtra for graph classification) which
optimizes the classification performance of SPEC when included in an SVM.
The key feature of our algorithm is the use of graph spectra and the Interlace
Theorem [7,8] for constructing the SPEC graph kernel. The graph spectrum of
a graph is a vector consisting of eigenvalues of a matrix representing the graph,
while the Interlace Theorem gives conditions of the largest common subgraph
of two graphs by comparing their graph spectra. This theorem provides a very
sensitive measure to identify graphs with large common subgraphs. Thus, an
SVM using the SPEC kernel, which takes full advantage of this theorem, can
efficiently classify graphs based on whether or not they contain some graphs in
a large graph set as induced subgraphs. The cost of calculating graph spectra
for a graph composed of |g| vertices is O(|g|3), and therefore, our kernel requires
only O(|g|3) computation time to compute k(gi, gj) for graphs gi and gj.

Graph Classification Based on Optimizing Graph Spectra 207

2 Problem Definition

A labeled graph g is represented as g = (V, E, L, l), where V = {v1, · · · , vz} is a
set of vertices, E = {(v, v′) | (v, v′) ∈ V × V } is a set of edges1, and L is a set of
labels such that l : V ∪E → L. If an edge exists between two vertices, the vertices
are said to be adjacent. The number of vertices in a graph g is referred to as the
size of the graph, and is denoted as |g|. Given two graphs g = (V, E, L, l) and
g′ = (V ′, E′, L′, l′), g′ is called a subgraph of g, if there exists an injective function
φ : V ′ → V that satisfies the following three conditions for ∀v, v1, v2 ∈ V ′.

1. (φ(v1), φ(v2)) ∈ E, if (v1, v2) ∈ E′,
2. l′(v) = l(φ(v)),
3. l′((v1, v2)) = l((φ(v1), φ(v2))).

In addition, a subgraph g′ of g is an “induced subgraph”, where φ(v1) and φ(v2)
are adjacent in g, if and only if v1 and v2 in V (g′) are adjacent in g′.

Classification problem of graphs is defined as follows. Given training examples
{(gi, yi)} (i = 1, · · · , n), where each example is a pair of a labeled graph gi and
class yi ∈ {+1,−1} that the graph belongs to, the objective of the learning
machine is to learn a function f to predict the classes of test examples correctly.
As mentioned in Section 1, in this paper, we focus on the classification of graphs
whose class labels are determined by whether or not they contain some large
induced subgraphs belonging to a given graph set S. In concrete terms, the class
label 1 is assigned to graphs containing some graph in S as an induced subgraph,
while the class label -1 is assigned to the other graphs2.

3 Graph Kernel for Large Graph Classification Problems

In this section, we present our method for constructing the SPEC graph kernel
to measure similarity between two graphs efficiently. Based on graph spectra
and the Interlace Theorem, the SPEC kernel is very sensitive when working
with graphs containing large common subgraphs. As a result of this sensitivity,
an SVM employing the SPEC kernel is expected to have high accuracy in the
classification of graphs.

3.1 Matrix Representation of Graphs

Matrices are a very useful representation of graphs, because we can obtain useful
information about the topological structure of a graph from its matrix represen-
tation. In fact, there are various kinds of matrices that can be used to represent

1 Although this paper focuses on undirected graphs only, we discuss in Section 6 that
the proposed method is also applicable to directed graphs without loss of generality.

2 In Section 6, we also discuss the classification of graphs whose class labels are deter-
mined by whether or not they contain some large common subgraphs as “general”
subgraphs, but not “induced” subgraphs.

208 N.D. Vinh, A. Inokuchi, and T. Washio

Fig. 1. Coding table and adjacency matrix

a graph, each of which captures different features of the graph. The most basic
matrix representation of a graph is the adjacency matrix. In this paper, for a
graph g = (V, E, L, l) containing |g| vertices, its adjacency matrix representation
M(g) is a |g| × |g| matrix whose elements are given by

M(g)i,j =
{

c(w(i, j)) if {vi, vj} ∈ E, 1 ≤ i, j ≤ |g|,
0 otherwise,

(1)

where M(g)i,j is the (i, j)-th element of M(g) and w(i, j), called the graph
substructure, is a combination of labels [l(vi) l({vi, vj}) l(vj)] expressing the
structure between two vertices vi and vj , which corresponds to an element the
adjacency matrix. Moreover, c(w(i, j)) is a code characterizing the graph sub-
structure w(i, j) and is represented by a real number. All graph substructures
and their corresponding codes are collated into a table called the Coding table.
Furthermore, we call the vector consisting of all the codes the matrix genera-
tor vector x. Because we assume that the graph g is an undirected graph, the
adjacency matrix of g is symmetric. Moreover, the eigenvalues of M(g) are real.

For example, the adjacency matrix M(g) of the graph g in Fig. 1 is created
based on the Coding table and the matrix generator vector x = (1, 2, 3, 4, 5)T .
Let us consider the two vertices v3 with label 1 and v4 with label 2 in g in
our discussion of the construction of M(g). Because there is an edge with label
2 connecting these two vertices, the graph substructure corresponding to these
two vertices is w(3, 4) = [1 2 2]. Therefore, since the Coding table assigns the
value 3 to the graph substructure [1 2 2], the two elements M(g)3,4 and M(g)4,3
of M(g) have the value 3. On the other hand, since there is no edge connecting
the two vertices v1 and v4 in g, the value 0 is assigned to M(g)1,4 and M(g)4,1.

3.2 Graph Spectrum and Interlace Theorem

We can calculate the graph spectrum of a matrix representing a graph, such as
an adjacency matrix. The graph spectrum of a graph is a vector consisting of
ordered eigenvalues of the matrix representing the graph. Due to the nature of
matrices, a graph spectrum is known to be one of the graph invariants. This
arises from the fact that the eigenvalues of a matrix remain constant when its
rows and columns of the matrix are exchanged. Using graph spectra, we can
compute ranges for the eigenvalues of matrices of common induced subgraphs
that may exist in two arbitrary graphs by the following theorem.

Graph Classification Based on Optimizing Graph Spectra 209

Fig. 2. Example of calculating the ranges of a common subgraph spectrum

Theorem 1 (Cauchy’s Interlace Theorem [7,8]). Let λ1 ≤ λ2 ≤ ... ≤ λp be
eigenvalues of a symmetric matrix A of size p×p, and let μ1 ≤ μ2 ≤ ... ≤ μm be
eigenvalues of a symmetric matrix B of size m×m (m < p). If B is a principal
submatrix of A, then

λk ≤ μk ≤ λk+p−m, k = 1, ..., m. (2)

�
If gs of size m is an induced subgraph of g of size p, M(gs) is a principal submatrix
of M(g). Therefore, if gs is an induced subgraph of g, Eq. (2) holds for eigenvalues
of the matrices M(g) and M(gs). In the remainder of this paper, we simply
denote the i-th eigenvalue of the graph spectrum of a graph g as γi(g) (1 ≤ i ≤
|g|), and the graph spectrum of g as γ(g) = {γ1(g), · · · , γ|g|(g)}.

By utilizing the Interlace Theorem, we can either compute the range of the
k-th eigenvalue of the spectrum of common induced subgraphs contained in
two given graphs or decide that the graphs do not contain a common induced
subgraph of size m. This is illustrated in Fig. 2. Each hatched rectangle in the
first, second, and third parts of Fig. 2 represents the range that eigenvalues of a
spectrum of an induced subgraph with 3 vertices in g1, g2, and g3, respectively,
can take. The ranges of eigenvalues which the graph spectrum of a common
induced subgraph gs of g1 and g2 can take are limited to the intersections of the
corresponding ranges given by g1 and g2, as shown by rectangles in the fourth
part of Fig. 2. On the other hand, g1 and g3 cannot contain gs with 3 vertices
as a common induced subgraph, because the ranges given by g1 and g3 do not
have any intersection for the second eigenvalue of the graph spectrum of gs.

Interlace Theorem is very sensitive to large induced subgraphs of a graph. Let
the graph spectrum of a graph g be γ(g) = {γ1(g), · · · , γ|g|(g)}, and an induced
subgraph of size m in g be gm

s . A range that the k-th eigenvalue of the graph
spectrum of gm

s can take is [γk(g), γk+|g|−m(g)]. Thus, width of a range that the
k-th eigenvalue of the graph spectrum of gm′

s (m < m′) can take is no more than
that of gm

s , because k + |g| −m′ < k + |g| −m and γk+|g|−m′(g) ≤ γk+|g|−m(g).
Therefore, the theorem is very sensitive to large induced subgraphs of a graph.

Given two arbitrary graphs gi and gj, one of the problems we intend to solve
in this paper is the construction of a graph kernel k(gi, gj) that can measure the
similarity between the two graphs efficiently, especially when they contain large
common induced subgraphs. For this purpose, we employ graph spectra and the

210 N.D. Vinh, A. Inokuchi, and T. Washio

Interlace Theorem described above, since a good kernel is the key to the success
of an SVM in the classification of graphs.

3.3 Graph Kernel for Large Graph Classification

First, we describe the kernel function, the kernel matrix characterized by a ker-
nel, and their requirements. Given two graphs gi and gj, let k(gi, gj) denote
a kernel function between graphs gi and gj . If gi and gj have high similarity,
k(gi, gj) should be large. Given a graph dataset {(gi, yi)} (1 ≤ i ≤ n) and a
kernel function k(·, ·), we compute each element of a kernel matrix K as

Ki,j = Kj,i = k(gi, gj) (1 ≤ i, j ≤ n).

To be applicable to an SVM, the graph kernel must be a PSD (positive semi-
definite) kernel [13]. Let k1 and k2 be arbitrary PSD kernel functions, x and y
be arbitrary vectors, and A be a |x|× |y| matrix where |x| is the dimensionality
of the vector x. Moreover, let x = (xT

a , xT
b)T , where x is a concatenation of xa

and xb. k(x, y) is another PSD kernel if one of the following holds:

k(x, y) = exp(k1(x, y)), (3)
k(x, y) = xT Ay, (4)
k(x, y) = k1(xa, ya) + k2(xb, yb), or (5)
k(x, y) = k1(xa, ya)× k2(xb, yb). (6)

To construct our graph kernel, we consider two graphs gi and gj whose graph
spectra are given by

γ(gi) = {γ1(gi), · · · , γ|gi|(gi)} and γ(gj) = {γ1(gj), · · · , γ|gj |(gj)},

respectively. By the Interlace Theorem, if a common induced subgraph gs of size
m is contained in the graphs gi and gj , the range that γk(gs) (1 ≤ k ≤ m ≤
min(|gi|, |gj|)) can take is the intersection of

[γk(gi), γk+|gi|−m(gi)] and [γk(gj), γk+|gj |−m(gj)]. (7)

Consider a matrix 1
cmax

M(gs) of gs where cmax is the maximum absolute value
among elements in M(gs). Since it is a random symmetric matrix with elements
of absolute value at most 1, the probability that the k-th eigenvalue of 1

cmax
M(gs)

deviates from its median by more than t is at most 4e−t2/32k2
, where 1 ≤ k ≤

m [1]. On the other hand, if the eigenvalues are uniformly spaced, the average
interval d between two of the eigenvalues is at most d = 2(m−1)

m−1 = 2, since m

eigenvalues of 1
cmax

M(gs) whose diagonal elements are 0 as defined by Eq. (1)
must exist in [−(m − 1), (m − 1)]. Comparing the interval d with the standard
deviation 4k of the distribution of the eigenvalues [1], the standard deviation is
large enough for all k. Since the eigenvalues do not extremely concentrate around
the median and are widely distributed, there is a strong possibility that γk(gs)

Graph Classification Based on Optimizing Graph Spectra 211

exists in the intersection of the rages (7) when the width of the intersection
is large. Furthermore, if the possibility that γk(gs) exists in the intersection
increases for all k, the possibility that gs is included as an induced subgraph in
gi and gj also increases according to the Interlace Theorem. Therefore, we define
the SPEC (graph SPECtra) kernel based on the widths of the intersections of
the ranges (7) to measure the similarity between two graphs.

If gi and gj contain common induced subgraphs of size m, the two ranges (7)
for every k must intersect each other. This can only be satisfied when

γk(gi) ≤ γk+|gj |−m(gj) and γk(gj) ≤ γk+|gi|−m(gi), (8)

because γk(gi) > γk+|gj |−m(gj) and γk(gj) > γk+|gi|−m(gi) cannot be satisfied
simultaneously. Eq. (8) is equivalent to

(γk+|gj |−m(gj)− γk(gi))(γk+|gi|−m(gi)− γk(gj)) ≥ 0, (9)

and by taking the exponential of Eq. (9), we obtain the following inequality.

h(·) = exp(γk+|gj |−m(gj)γk+|gi|−m(gi) + γk(gi)γk(gj))
× exp(−γk+|gj |−m(gj)γk(gj)) exp(−γk+|gi|−m(gi)γk(gi)) ≥ 1.

h(·) can be further rewritten as h(·) = exp(λ′T
mkθ′

mk)× (φλmk
φθmk

), where

λ′
mk =

[
γk(gi)

γk+|gi|−m(gi)

]
, θ′

mk =
[

γk(gj)
γk+|gj |−m(gj)

]
,

φλmk
= exp(−γk+|gi|−m(gi)γk(gi)), and

φθmk
= exp(−γk+|gj |−m(gj)γk(gj)).

We can easily see that the former exponential term in the rhs includes the inner
product of λ′

mk and θ′
mk in its exponent. Since the inner product is a PSD

kernel function in the event that A is an identity matrix in Eq. (4), this term is
a PSD kernel function based on Eq. (3). Besides, when |x| = |y| = 1 and A = 1,
Eq. (4) mentions that the product of two independent scalars is a PSD kernel.
Therefore, the latter product term of two φs is also a PSD kernel function based
on Eq. (4). These observation shows that h(·) which is a product of the former
and the latter terms is a PSD kernel based on Eq. (6). We restate h(·) as

k′
mk(λmk, θmk) = exp(λ′T

mkθ′
mk)× (φλmk

φθmk
),

where λmk =

⎡⎣ γk(gi)
γk+|gi|−m(gi)

γk(gi)γk+|gi|−m(gi)

⎤⎦ and θmk =

⎡⎣ γk(gj)
γk+|gj |−m(gj)

γk(gj)γk+|gj |−m(gj)

⎤⎦ .

Since the ranges (7) must intersect each other for “all k” (k = 1, · · · , m) when
gi and gj contain a common subgraph gs of size m, we take the product of k′

mk

over all k, and have a new PSD kernel function:

km(λm, θm) =
m∏

k=1

k′
mk(λmk, θmk),

212 N.D. Vinh, A. Inokuchi, and T. Washio

where λm = [λT
m1, λ

T
m2, · · · , λT

mm]T and θm = [θT
m1, θ

T
m2, · · · , θT

mm]T ,

based on Eq. (6). Furthermore, since the ranges (7) must intersect each other
for “at least one of m” (m = 1, · · · , min(|gi|, |gj |)) when gi and gj contain an
arbitrary common subgraph gs, we take a summation of km over all m which
tends to be large when some km is large, and provide a new PSD kernel function:

k(gi, gj) = k(λ, θ) =
min(|gi|,|gj|)∑

m=1

km(λm, θm), (10)

where λ = [λT
1 , λT

2 , · · · , λT
m]T and θ = [θT

1 , θT
2 , · · · , θT

m]T ,

based on Eq. (5). k(λ, θ) is expected to have a high score when measuring the
similarity between the graphs, especially where gi and gj have large common
induced subgraphs. We call this kernel function the SPEC kernel, and use it in
an SVM to classify graphs.

By summarizing the above discussion, the following lemmas are derived.

Lemma 1. The SPEC kernel is a PSD kernel. �

Lemma 2. The SPEC kernel k(gi, gj) is computed in O(|g|3) where |g| is the
maximum number of vertices in gi and gj. �

Proof. To obtain the eigenvalues from the adjacency matrices of gi and gj re-
quires computation time of O(|g|3). In addition, we require O(|g|2) computation
time to compute Eq. (10) from the eigenvalues. Therefore, the SPEC kernel
k(gi, gj) can be computed in O(|g|3). �

4 Optimizing Graph Spectra for Large Graph
Classification

In the previous section, we gave the details of the SPEC kernel, constructed
especially for the classification of graphs with large common induced subgraphs.
In this section, we propose a new algorithm, called OPTSPEC to obtain high
classification accuracy for graphs using the SPEC kernel.

4.1 Basic Idea for Optimizing Graph Spectra

The SPEC kernel k(gi, gj) between graphs gi and gj is computed from eigenvalues
of adjacency matrices M(gi) and M(gj) defined by Eq. (1), and the eigenvalues
depend on a matrix generator vector x defining elements of M(gi) and M(gj).
Therefore, k(gi, gj) depends on a matrix generator vector x. Even if the value of
only a single element of x is changed, it leads to a change in the graph spectra
of gi and gj, and thus the intersection of the ranges (7) is also changed, as
well as the value of the kernel function k(gi, gj). In other words, by choosing a
suitable matrix generator vector x, there is a possibility to accurately measure
the similarity between two arbitrary graphs using the Interlace Theorem.

Graph Classification Based on Optimizing Graph Spectra 213

Fig. 3. Example of using different matrix generator vectors x1 and x2

Figure 3 shows an example of a difference between two matrix generator vec-
tors in the computation of graph spectra. Given graphs g1 and g2, two graph
spectra γ′(g1) and γ′(g2) are calculated using the matrix generator vector x1
shown in the second column of the table in Fig. 3, and two graph spectra γ′′(g1)
and γ′′(g2) are calculated using another vector x2 shown in the third column
of the table in Fig. 3. From this example, we can see that the graph spectra of
g1 and g2 are completely different. Moreover, while the largest common induced
subgraph of g1 and g2 is the subgraph consisting of 3 vertices (v12, v13, and v14
in g1 and v22, v23, and v24 in g2), we cannot conclude this fact by using γ′(g1)
and γ′(g2) and the Interlace Theorem. The ranges of γ′

1(gs) for a subgraph gs of
size 4 in g1 and g2 are [-7.76,-2.78] and [-6.44,-2.78], respectively, and their inter-
section for γ′

1(gs) is [-6.44,-2.78]. Similarly, the intersections for γ′
2(gs), γ′

3(gs),
and γ′

4(gs) are calculated as [-2.78,0], [0,2.78], and [2.78,6.44], respectively. Since
the intersections for four elements of γ′(gs) exist, we cannot conclude the cor-
rect size of the largest induced subgraph gs between g1 and g2. On the other
hand, the ranges of γ′′

1 (gs) for a subgraph gs of size 4 in g1 and g2 are [-7.41,-7]
and [-5.21,-0.34], respectively. These non-intersecting ranges exclude a common
induced subgraph of size 4 in g1 and g2.

As shown in the above example, if we choose an unsuitable matrix generator
vector x, it is hard to correctly know the existence of a common induced sub-
graph of two arbitrary graphs gi and gj and the maximum size of their common
induced subgraph. Thus, the importance of a proper selection of x is very clear.
In the next subsection, we propose a method for choosing a suitable matrix
generator vector x based on an optimization technique.

4.2 Algorithm for Optimizing Graph Spectra for Classification

The data handled in this paper is graphs whose class labels are determined by
whether or not they contain some large induced subgraphs belonging to a given
graph set S, and the problem we intend to solve in this paper is the construction

214 N.D. Vinh, A. Inokuchi, and T. Washio

a classifier for the graphs using an SVM and the SPEC kernel. Although using
a suitable matrix generator vector x is expected to achieve high performance of
the SVM with the SPEC kernel, obtaining the suitable matrix generator vector is
difficult by hand-tuning. We, then, empirically optimize the matrix generator vec-
tor x using training examples together with the training of the SVM. If a suitable
matrix generator vector is chosen to compute the SPEC kernel, we can correctly
measure the similarity between graphs with the kernel, and the number of misclas-
sified training examples is reduced using an SVM with the SPEC kernel. There-
fore, we optimize the matrix generator vector x so that the number of examples
misclassified by an SVM is reduced using training examples.

We propose the OPTSPEC algorithm for optimizing a matrix generator vector
based on the framework of Generalized Multiple Kernel Learning (GMKL) [14].
GMKL minimizes the number of misclassified training examples by alternately
learning parameters of an SVM and a parameter x of the kernel function. Given
a set of training examples, the OPTSPEC algorithm aims at minimizing the
distance between boundaries on support vectors and the number of misclassified
training examples in the classification of graphs as follows.

min
x

T (x) s.t. x ≥ 0 (outer loop) (11)

where T (x) = min
w

1
2
wT w +

C

2

n∑
i=1

max(0, 1− yif(gi))

+ r(x), (inner loop) (12)

where w is a parameter learned by the SVM, C is a constant value specified by
the user, f is a function to be learned as mentioned in Section 2, and r is a regu-
larizer to incorporate a scale parameter within T (x) in form of r(x) = ||x||2−1.
In OPTSPEC, the constraint x ≥ 0 is relaxed so that the learned kernel is PSD
as mentioned in [14]. The optimal kernel is learned by optimizing over x in the
outer loop, while the matrix generator vector x remains fixed and the param-
eter w are learned using an SVM in the inner loop. In the calculation of the
outer loop, the matrix generator vector x is updated to another matrix gener-
ator vector x− α(∂T

∂x1
, ∂T

∂x2
, · · · , ∂T

∂x|x|
)T using the Steepest Descent method. In

this computation, since T (x) which contains the number of misclassified training
examples 1

2

∑n
i=1 max(0, 1−yif(gi)) in its second term is a discrete function, we

cannot calculate its differentials. To overcome this difficulty, we employ sensitiv-
ity analysis to calculate ∂T

∂xi
= T (x+τΔxi)−T (x)

τΔxT
i Δxi

(i = 1, · · · , |x|) for each element
xi, one by one, where

ΔxT
i =

(1 · · · i− 1 i i + 1 · · · |x|
0 · · · 0 1 0 · · · 0

)
.

The computations in the inner loop using an SVM and the outer loop using
the Steepest Descent method are alternately continued, while the number of
misclassified examples is reduced.

Graph Classification Based on Optimizing Graph Spectra 215

5 Experiments

The proposed method was implemented in Java. All experiments were done on
an Intel Xeon L5240 3 GHz computer with 2 GB memory and running Microsoft
Windows 2008 Server. We compared the accuracy of the training and the pre-
diction performance of OPTSPEC with those of SVMs using the Random Walk
Kernel and Neighborhood Hash Kernel. In the remainder of this paper, for sim-
plicity, we refer to the SVMs using Random Walk Kernel and Neighborhood Hash
Kernel as RWK-SVM and NHK-SVM, respectively. We varied parameters λ =
{0.9, 0.8, · · · , 0.2, 0.1, 0.01, 0.001} which represents the termination probability
for the random walk kernel and R = {1, 2, · · · , 9, 10, 20, · · · , 90, 100, 150, 200}
which represents maximum order of neighborhood hash for Neighborhood Hash
Kernel. For RWK-SVM and NHK-SVM, we show the best prediction accuracy
for various λ and R in the next subsections. For learning from the kernel matri-
ces generated by the above graph kernels, we used the LIBSVM package3 using
10-fold cross validation. The performance of the proposed method was evaluated
using artificial and real-world data.

Table 1. Default parameters for the data generation program

Avg. size Proportion of size of Prob. of # of vertex
of graphs induced subgraphs edge existence and edge labels

Default values |g| = 100 pV = 0.7 p = 5% |L| = 3

5.1 Experiments on Artificial Datasets

We generated artificial datasets of graphs using the four parameters listed in
Table 1. For each dataset, 50 graphs, each with an average of |g| vertices, were
generated. Two vertices in a graph were connected with probability p of the
existence of an edge, and one of |L| labels was assigned to each vertex or edge in
the graph. In parallel with the dataset generation and using the same parameters
p and |L|, three graphs gs1, gs2, and gs3 with an average of pV ×|g| vertices were
also generated for embedding in the 50 graphs as common induced subgraphs.
gs1 was randomly embedded in half of the 50 graphs. The embedding process
was then repeated using gs2 and gs3. Finally, the class label 1 was assigned to
the graphs containing gs3, which was the last to be embedded, while the class
label -1 was assigned to the other graphs. Even under this tough condition in
which graphs have high similarity, i.e., they contain parts of gs1 and/or gs2 as
common induced subgraphs, a good classifier should be able to classify graphs
labeled according to whether or not they contain gs3 correctly.

First, we varied only pV to generate various datasets with the other parame-
ters set to their default values. The proportion of subgraphs embedded in each
dataset to the average size of the graphs was varied from 0.1 to 0.9. The values in
Table 2 denote the average and standard deviation of the accuracy of the three
3 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

216 N.D. Vinh, A. Inokuchi, and T. Washio

Table 2. Results for various pV : accuracy (standard deviation)

pV NHK-SVM RWK-SVM OPTSPEC BoostOPTSPEC
Training Test Training Test Training Test Training Test

0.1 95% (4%) 58% (17%) 52% (1%) 34% (13%) 68% (10%) 60% (16%) 82% (10%) 56% (28%)
0.3 74% (6%) 30% (24%) 52% (2%) 28% (13%) 67% (10%) 57% (17%) 79% (10%) 54% (26%)
0.5 80% (6%) 50% (22%) 52% (2%) 30% (13%) 83% (9%) 72% (19%) 93% (4%) 70% (25%)
0.7 99% (2%) 54% (22%) 52% (2%) 30% (13%) 86% (20%) 74% (31%) 96% (4%) 86% (14%)
0.9 100% (0%) 48% (24%) 51% (2%) 32% (13%) 98% (6%) 96% (8%) 100% (0%) 92% (10%)

Table 3. Results for various |g|: accuracy (standard deviation)

|g| NHK-SVM RWK-SVM OPTSPEC Boost OPTSPEC
Training Test Training Test Training Test Training Test

36 99% (2%) 70% (22%) 89% (3%) 86% (13%) 92% (6%) 88% (22%) 99% (1%) 94% (14%)
60 90% (3%) 60% (18%) 52% (2%) 28% (13%) 90% (10%) 64% (25%) 98% (2%) 82% (15%)
100 99% (2%) 54% (22%) 52% (2%) 52% (2%) 86% (20%) 74% (31%) 96% (4%) 86% (14%)
180 91% (2%) 68% (20%) 51% (1%) 38% (6%) 85% (15%) 72% (27%) 98% (3%) 80% (16%)
360 100% (0%) 38% (28%) – – 93% (3%) 90% (14%) – –

classifiers in the experiments. RWK-SVM did not perform well with either the
training or test datasets. Although the accuracy of NHK-SVM is high for the
training datasets, it was unable to classify graphs correctly in the test datasets.
On the other hand, the accuracy of OPTSPEC is high for the test dataset, es-
pecially with a high pV , compared with both NHK-SVM and RWK-SVM. Since
the accuracy of OPTSPEC is constantly higher than 50%, we combined our
OPTSPEC algorithm with AdaBoost [3] to create a strong learner. The experi-
mental results of OPTSPEC combined with AdaBoost are shown in the last two
columns of Table 2. By combining OPTSPEC with AdaBoost, the classification
performance of OPTSPEC was enhanced particularly for the training data.

In the remaining sections, we set pV to 0.7 as its default value to emphasize
the classification performance of OPTSPEC for graphs labeled by whether or not
they contain gs3. Table 3 gives the experimental results for datasets generated
by varying the values of |g| and keeping the other parameters set to their default
values. The average size |g| of the graphs in the datasets was varied between
36 and 360. In the table, “–” indicates that results were not obtained due to
intractable computation times exceeding 3 hours. The accuracy of OPTSPEC
is comparable with that of NHK-SVM and RWK-SVM for small |g|. However,
as |g| increases, so the accuracy of NHK-SVM and RWK-SVM decreases, while
the accuracy of OPTSPEC remains high. This arises from the fact that NHK-
SVM and RWK-SVM make use of only small structures in the graphs to calculate
their kernel functions, and therefore, they are unable to perform well with graphs
containing large common induced subgraphs. On the other hand, in OPTSPEC,
the possibility of a large common graph is identified in the computation of SPEC
and then the matrix generator vector x is optimized based on GMKL.

Tables 4 and 5 give the experimental results for datasets generated by varying
values of |L| and p, respectively, while keeping the other parameters set to their
default values. The number of labels |L| in the graphs was varied between 1
and 5 in Table 4, while the probability p of the existence of an edge between

Graph Classification Based on Optimizing Graph Spectra 217

Table 4. Results for various |L|: accuracy (standard deviation)

|L| NHK-SVM RWK-SVM OPTSPEC Boost OPTSPEC
Training Test Training Test Training Test Training Test

1 76% (3%) 40% (16%) 52% (1%) 28% (10%) 83% (18%) 55% (19%) 82% (10%) 56% (28%)
2 82% (5%) 44% (17%) 52% (2%) 32% (13%) 83% (7%) 74% (25%) 95% (3%) 80% (19%)
3 99% (3%) 54% (22%) 52% (2%) 52% (2%) 84% (11%) 70% (22%) 96% (4%) 86% (14%)
4 84% (3%) 38% (24%) 53% (1%) 26% (13%) 86% (20%) 74% (31%) 99% (3)% 96% (8%)
5 95% (2%) 70% (22%) 52% (2%) 30% (16%) 98% (3%) 98% (6%) 100% (0%) 96% (8%)

Table 5. Results for various p: accuracy (standard deviation)

p NHK-SVM RWK-SVM OPTSPEC Boost OPTSPEC
Training Test Training Test Training Test Training Test

2.5 88% (3%) 46% (22%) 52% (1%) 32% (10%) 93% (4%) 80% (16%) 99% (2%) 86% (14%)
5 99% (2%) 54% (22%) 52% (2%) 52% (2%) 84% (11%) 70% (22%) 96% (4%) 86% (14%)
10 89% (3%) 66% (28%) 52% (1%) 36% (8%) 92% (4%) 92% (10%) 99% (2%) 92% (14%)
20 76% (5%) 44% (23%) 52% (1%) 34% (13%) 94% (5%) 80% (16%) 98% (4%) 92% (14%)

two vertices was varied between 2.5 and 20 in Table 5. Table 4 shows that the
accuracies of OPTSPEC and Boost OPTSPEC remains high for both training
and test datasets as the number of labels in the graphs increases. This originates
from the fact that the size of the matrix generator vector x becomes large when
the number of labels in the graphs increases, which leads to high probability of
discovering a suitable vector x. Table 5 shows that the accuracies of OPTSPEC
and Boost OPTSPEC are high. This is because most of the elements in the
adjacency matrices become non-zero when p increases, which also leads to high
probability of discovering a suitable vector x. On the other hand, similar to the
previous experiments, accuracy results for RWK-SVM are low, and the accuracy
of NHK-SVM for the test data is also low compared with that of OPTSPEC,
while the accuracy of NHK-SVM being high for the training datasets.

5.2 Experiment with Real-World Graphs

To assess the practicability of our proposed method, we experimented on the
email-exchange history data of the Enron company [2]. We transformed the mail
exchange history per week data to one graph, and, having preprocessed the data
as described below, obtained a dataset consisting of 123 graphs for 123 weeks.
Each person in the company is represented by a single vertex labeled with his
or her position in the company, for example “CEO”, “Director”, “Employee”,
“Lawyer”, “Manager”, “President”, “Trader” and “Vice President”. An edge
connecting two vertices is included if the corresponding individuals exchanged
emails for a week. The maximum size of the graphs in the dataset is 70, and
the average edge existence probability is 4.9%. Since our aim is to evaluate the
proposed method using large graphs, we chose 50 large graphs from the 123,
corresponding to 50 continuous weeks.

Because it is very difficult to understand the common graphs contained in the
graphs, we transformed the dataset by randomly choosing two graphs gs1 and
gs2 from the 50 graphs of Enron data, and embedded these graphs within the

218 N.D. Vinh, A. Inokuchi, and T. Washio

Table 6. Results for the Enron Dataset: accuracy (standard deviation)

Dataset NHK-SVM RWK-SVM OPTSPEC Boost OPTSPEC
Training Test Training Test Training Test Training Test

D1 99% (2%) 60% (18%) 52% (1%) 28% (16%) 85% (14%) 72% (20%) 98% (3%) 92% (14%)
D2 100% (0%) 62% (21%) 52% (1%) 30% (13%) 91% (7%) 88% (13%) 99% (1%) 92% (14%)
D3 100% (0%) 68% (20%) 51% (0%) 40% (0%) 96% (9%) 92% (10%) 99% (4%) 98% (6%)

other graphs. This embedding process is similar to the generation of artificial
datasets described in the previous subsection. Accordingly, the graphs containing
gs2 were given the class label 1, while the remaining graphs were given the class
label -1. Since the embedded graphs were chosen from the Enron data, they also
express the email exchanges for one week, and have an identical character to the
other graphs in the dataset. Therefore, the characters of the embedded graphs
do not change much. To obtain the exact performance of the proposed method,
we chose three pairs of gs1 and gs2, and embedded the three pairs in the graphs
to create three datasets, respectively. We denote the datasets as D1, D2, and
D3, respectively. The numbers of vertices and edges of the embedded graphs in
each dataset are as follows:

– D1: gs1: 25 vertices, 25 edges. gs2: 28 vertices, 26 edges.
– D2: gs1: 25 vertices, 25 edges. gs2: 22 vertices, 16 edges.
– D3: gs1: 22 vertices, 16 edges. gs2: 27 vertices, 26 edges.

Table 6 gives the accuracy of the four methods with the three datasets. OPT-
SPEC and Boost OPTSPEC outperformed NHK-SVM and RWK-SVM on all
three datasets. We confirmed that Boost OPTSPEC performed very well in
improving the accuracy of OPTSPEC with the real-world data. In contrast, al-
though NHK-SVM classified the training data with high accuracy, i.e., over 85%,
it did not predict the test graphs very well.

6 Discussion

Based on the various experiments, Boost OPTSPEC achieved the best perfor-
mance for datasets with a variety of different specifications. For graphs whose
class label is decided by whether or not they contain some large induced sub-
graphs in a given set, Boost OPTSPEC predicted the class of the test graphs
with very high accuracy. By comparing the accuracy of Boost OPTSPEC and
OPTSPEC, it is clear that the boosting method effectively increases the perfor-
mance of OPTSPEC, thus enabling a powerful classifier for classifying graphs
containing large common induced subgraphs. In contrast, although NHK-SVM
showed high accuracy in the training process, the classifier was unable to perform
the prediction well in almost all the experiments. RWK-SVM and NHK-SVM
classifiers performed well only in the experiments with small graphs. The reason
for this is that the two classifiers make use of very small structures in the graphs
to measure the similarity between them, and therefore do not perform well in
cases where the graphs contain large common induced subgraphs.

Graph Classification Based on Optimizing Graph Spectra 219

Fig. 4. Conversion of a graph g to another graph g′

In this paper, we focused on the common induced subgraphs within the
graphs. Our SPEC kernel can be applied to classify graphs whose classes are
determined by whether or not the graphs contain some specified common graph
as general subgraphs using the following matrix representation. Given a graph
g = (V, E, L, l), the graph is converted to another graph g′ = (V ′, E′, L′, l′),
where V ′ = V ∪ E, E′ ⊆ V × E, L′ = L and an edge e′ between v ∈ V and
e ∈ E exists in g′ if v is directly linked to another vertex by e in g.

l′(v′) =
{

l(v) if v′ corresponds to a vertex v in g,
l(e) otherwise if v′ corresponds to an edge e in g.

Since a general subgraph in g corresponds to an induced subgraph in g′, the graph
g′ is represented by an adjacency matrix of size (|V | + |E|) × (|V | + |E|) using
Eq. (1). Computing a kernel matrix using this matrix representation requires
O((|V | + |E|)3) computation time. For example, the graph g with 3 vertices
and 3 edges in Fig. 4 is converted to the another graph g′ with 6 vertices. In
this conversion as shown in Fig. 4, the graph gs which is a general subgraph
of g becomes an induced subgraph g′s of g′. Therefore, the Interlace Theorem
holds between adjacency matrices M(g′s) and M(g′), and the SPEC kernel can
be computed from the adjacency matrices.

On the other hand, when given data are directed graphs, an adjacency matrix

M(g) of each directed graph g is converted to M ′(g) =
(

0 M(g)
M(g)T 0

)
to create

a symmetric matrix. Therefore, the Interlace Theorem holds between adjacency
matrices M ′(gs) and M ′(g) where gs is an induced subgraph of g, and the SPEC
kernel can be computed from the adjacency matrices. In this case, computing
the kernel matrix is O((2|V |)3) = O(|V |3). Therefore, the proposed method can
be applied to directed graphs whose classes are determined by whether or not
the graph contains some common graphs as general subgraphs.

7 Conclusion

In this paper, we proposed a novel graph kernel named as SPEC based on graph
spectra and the Interlace Theorem. We also proposed the OPTSPEC algorithm
for optimizing the SPEC kernel used in an SVM for graph classification. We
developed a graph classification program and confirmed the performance and
practicability of the proposed method through computational experiments using
artificial and real-world datasets.

220 N.D. Vinh, A. Inokuchi, and T. Washio

Acknowledgment

We would like to thank Mr. Shohei Hido of IBM Research and Prof. Kouzo
Ohara of Aoyama Gakuin University for their help and advice.

References

1. Alon, N., Krivelevich, M., Vu, V.H.: On the Concentration of Eigenvalues of Ran-
dom Symmetric Matrices. Israel Journal of Mathematics 131(1), 259–267 (2001)

2. Enron Email Dataset, http://www.cs.cmu.edu/~enron/
3. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of On-Line Learn-

ing and an Application to Boosting. Journal of Computer and System Sci-
ences 55(1), 119–139 (1997)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

5. Gärtner, T., Lloyd, J.W., Flach, P.A.: Kernels and Distances for Structured Data.
Machine Learning 57(3), 205–232 (2004)

6. Hido, S., Kashima, H.: A Linear-Time Graph Kernel. In: Proc. of Int’l Conf. on
Data Mining, pp. 179–188 (2009)

7. Hwang, S.: Cauchy’s Interlace Theorem for Eigenvalues of Hermitian Matrices.
American Mathematical Monthly 111, 157–159 (2004)

8. Ikebe, Y., Inagaki, T., Miyamoto, S.: The monotonicity theorem, Cauchy’s interlace
theorem, and the Courant-Fischer theorem. American Mathematical Monthly 94,
352–354 (1987)

9. Kashima, H., Inokuchi, A.: Kernels for graph classification. In: Proc. of ICDM
Workshop on Active Mining (2002)

10. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized Kernels Between Labeled
Graphs. In: Proc. of Int’l Conf. on Machine Learning, pp. 321–328 (2003)

11. Schölkopf, B., Tsuda, K., Vert, J.: Kernel Methods in Computational Biology. The
MIT Press, Cambridge (2004)

12. Schölkopf, B., Smola, J.: Learning with kernels. MIT Press, Cambridge (2002)
13. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge

University Press, Cambridge (2004)
14. Varma, M., Rakesh Babu, B.: More Generality in Efficient Multiple Kernel Learn-

ing. In: Proc. of Int’l Conf. on Machine Learning, vol. 134 (2009)
15. Vishwanathan, S.V.N., Borgwardt, K.M., Schraudolph, N.N.: Fast Computation

of Graph Kernels. In: Proc. of Annual Conf. on Neural Information Processing
Systems, pp. 1449–1456 (2006)

http://www.cs.cmu.edu/~enron/

Algorithm for Detecting Significant Locations
from Raw GPS Data

Nobuharu Kami1, Nobuyuki Enomoto2,
Teruyuki Baba1, and Takashi Yoshikawa1

1 System Platforms Research Laboratories, NEC Corporation, Kanagawa, Japan
2 Appliance Business Development Div., NEC BIGLOBE, Ltd., Tokyo, Japan

Abstract. We present a fast algorithm for probabilistically extracting
significant locations from raw GPS data based on data point density.
Extracting significant locations from raw GPS data is the first essential
step of algorithms designed for location-aware applications. Assuming
that a location is significant if users spend a certain time around that
area, most current algorithms compare spatial/temporal variables, such
as stay duration and a roaming diameter, with given fixed thresholds to
extract significant locations. However, the appropriate threshold values
are not clearly known in priori and algorithms with fixed thresholds are
inherently error-prone, especially under high noise levels. Moreover, for
N data points, they are generally O(N2) algorithms since distance com-
putation is required. We developed a fast algorithm for selective data
point sampling around significant locations based on density informa-
tion by constructing random histograms using locality sensitive hashing.
Evaluations show competitive performance in detecting significant loca-
tions even under high noise levels.

1 Introduction

The widespread use of GPS-enabled mobile devices, such as smart phones, en-
ables easy collection of location data and accelerates development of a variety
of location-aware applications. A typical application is to visualize a geographi-
cal trajectory of activities including traveling, shopping, and sporting, and many
utility tools for displaying trajectories on an online map [1] are available so users
can edit and open their traces to the public.

Perhaps, the most essential first step in editing raw GPS data would be to
extract points of interest that represent significant locations such as shopping
centers, restaurants and famous sightseeing spots. In fact, most websites show
not only a plain trajectory but also a set of reference points so that readers can
grab a summary of the activities. It is obviously time consuming if users have
to memorize and manually set those points and find the corresponding locations
in a set of many data points. One of the major goals of this paper is to sup-
port people using such online applications that display automatically extracted
reference points along with the trajectory from uploaded GPS data.

Many algorithms designed for understanding user behavior by mining GPS
data often automatically extract significant locations. Assuming that a location

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 221–235, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

222 N. Kami et al.

is significant if one remains there for a long time, most of the current algorithms
try to distinguish between ”staying” and ”moving” segments by comparing spa-
tial/temporal variables, such as stay duration and roaming diameter, or velocity
and acceleration, with fixed threshold values. In doing so, significant locations
are extracted by locating stay locations. However, any fixed-threshold-based ap-
proach is in practice error-prone, and finding an optimal choice of threshold
values is often difficult since the appropriate upper/lower bound to distinguish
the staying segments from the moving segments depends on GPS data and is
not known in priori. Threshold values optimized for one data set does not nec-
essarily work for another. The problem becomes more serious when spatial noise
level is high, which often happens to actual GPS data. In practice, we often
have to tune parameters for each case and set an excessive margin to be on
the safe side at the cost of computation time and accuracy. However, we also
have to be careful not to choose excessively large threshold values that may even
degrade the detection quality due to crosstalk between neighboring significant
locations. Furthermore, since those algorithms are basically designed for offline
processing, computation time is not well considered. Most of the algorithms are
O(N2) algorithms for N data points since they require direct distance compu-
tation between those data points. Obviously, it is preferable to analyze as many
datasets as possible for high-quality extraction; therefore, quick computation is
important even for offline processing.

To tackle these issues, we take the approach of probabilistically detecting
peak locations in density distribution of data points for extracting significant
locations. This is based on the observation that noise is generally distributed
around the center; therefore, peak locations in density distribution are often
close to the stay location, independent of the width of noise distribution. We
can also use density information for scoring the detected locations in order of
importance because density at one location generally reflects the number of data
points there, and thereby how long one stays.

For detecting peak locations, we developed a probabilistic algorithm for selec-
tively sampling data points from high-density regions. By doing so, the obtained
subset of the original GPS data is a set of sampled data points where high-
density regions are spatially well separated. It is easy to divide such datasets
into clusters with low computation cost such that each cluster contains data
points sampled from each high-density region. Once we obtain a set of clusters,
the final task is to identify the most representative point in each cluster as a ref-
erence point and rank it by giving a scoring metric in order of density reflected
by importance.

We propose a density-dependent random sampling algorithm for selectively
sampling from only high-density regions. The core idea is to construct random
histograms using locality sensitive hashing (LSH). Our algorithm is inspired by
the randomized algorithm developed in [2] for constructing random histograms
representing feature sets of multimedia objects. We take advantage of random
histograms for density-dependent random sampling. In the rest of this paper, we

Algorithm for Detecting Significant Locations from Raw GPS Data 223

describe the algorithm design in Section 2, evaluation in Section 3, and related
work in Section 4 followed by conclusion in the final section.

2 Algorithm Design

The goal of our algorithm is to return a set of waypoints as output in response to
input GPS data X . An waypoint is a reference point that designates each signifi-
cant location and contains information regarding both the geographical location
and the importance. This section describes the mechanism of the algorithm in
detail.

2.1 Design Overview

Given a GPS data set, high-density locations often indicate significant locations
because they imply that one stays for a long time at those locations, and spatial
noise distribution is often strongly centered at the actual location. This observa-
tion implies that detecting high density points and scoring them by their density
is good for extracting waypoints.

An ordinary histogram, which is constructed by dividing the space into small
bins (cells), is strongly affected by a binning process that determines the ap-
propriate size and boundary value for each bin. To prevent the binning process
being dependent on an input data set, we instead map GPS data points into an
auxiliary space using LSH [4][5], a function for mapping two data points to the
same value with probability that reflects the similarity (distance) between them.
If we take the value to which each data point is mapped by LSH as the label of
bins, we can construct a histogram whose high-frequency bin contains the data
points sampled from a high-density region since data points around the center
of this region are close.

Once we obtain a subset of data points selectively sampled from high-frequency
bins, it is easy to cluster them such that each cluster contains data points coming
only from a single stay location. We call this cluster a waypoint region. The final
task after we obtain a set of waypoint regions is to extract a waypoint for each
waypoint region by identifying the most representative point in each waypoint
region and compute a scoring metric reflecting density information so we can
rank them in order of importance.

Figure 1 illustrates an overview of operations flow of the algorithm. The flow
is comprised of the following three steps.

Density-dependent random sampling: samples data points with probability re-
flecting the density information by creating histograms using LSH such that all
the high-density regions of the sampled data points are geographically sparse
and well separated.

Waypoint region construction: clusters the sampled data points and constructs a
set of waypoint regions such that each waypoint region satisfies a given clustering
policy such as maximum cluster size and stay location resolution (minimum
distance between a pair of closest stay locations).

224 N. Kami et al.

Extracting and scoring waypoints: extracts waypoints by identifying the most
representative point among all data points in each waypoint region and computes
a scoring metric reflecting density information at those points for the purpose
of ranking.

Fig. 1. Overview of operations flow. Given raw GPS data, proposed algorithm (a)
performs random sampling from high-density regions, (b) constructs waypoint regions
by clustering sampled data points, and (c) extracts and scores waypoint for each cluster

2.2 Density-Dependent Random Sampling

We first define the labeling function that maps each data point x ∈ X to a label
space L, a set of labels of histogram bins, and develop a method of constructing
random histograms using this function. Note that we simplify input GPS data
X as a sequence of periodically recorded location vectors, X =

{
x ∈ RD

}
. The

dimension is D = 3 in general but when temporal information such as temporal
distance is necessary, we can extend the dimension as x′ = (x, ct) with c being
a scaling coefficient so we can handle all entries in the same way.

LSH sketch to base C. LSH is a probabilistic method of hashing objects such
that two similar objects will likely collide into the same bucket in response to
the degree of similarity. Let F be an LSH family for L2 distance (refer to [6] for
details of LSH family definition). A hashing function, f ∈ F , is implemented by
taking advantage of the property of p-stable distribution [5], and LSH sketch [2]
[3] takes only the least significant bit of the hash value represented in the binary
numeral system. We extend the base of this LSH sketch to the general value C,
which is a positive integer greater than or equal to 2:

f(x) =
⌊

a · x + r

W

⌋
mod C , (1)

Algorithm for Detecting Significant Locations from Raw GPS Data 225

where r is a real number drawn from a uniform distribution U [0, W), a is a
D-dimensional vector whose entries are independently drawn from a normal
distribution, and W is a parameter called window size. Note that when C = 2,
it reduces to a binary LSH sketch in [2].

Slight modification of the argument on the original LSH described in [5] results
in an analytical form of collision probability for two vectors with distance d:

p(d) = Pr [f(x) = f(y) | |x− y| = d]

=
∫ W

0

1
d

∑
k∈Z

φ

(
kCW + t

d

)(
1− t

W

)
dt , (2)

where Z is a set of integers and φ(t) denotes the probability density function
of the absolute value of the normal distribution. Figure 2(a) plots the collision
probability p(d) of two vectors with distance d for B = 1 and C = 2, 3, 5. We
can see that it almost linearly decreases in response to an increase in d until d
reaches a certain value where it then shows a plateau. We call f(x) an atomic
label of vector x, and concatenation of B independent atomic labels constructs
a label of vector x as 〈f1(x), · · · , fB(x)〉. The collision probability of two vectors
with the same label is given by [p(d)]B , which is illustrated in Figure 2(b) for B =
1, 3, 5 and C = 2. The collision probability quickly converges to Pres ∼ C−B .
This residual probability Pres means that no matter how far apart two vectors
are located, they could collide with probability Pres. Therefore, by controlling
(B, C, W), we can adjust the shape of the probability that two arbitrary vectors
with distance d collide (have a same label). The benefit of introducing parameter
C is to provide more powerful controllability and reduce computation time by
adjusting both bit length B and the base number C. Without C, the desired
value of Pres is obtained only by increasing B, which also increases computation
time since it increases the number of loops for label computation in a program
code.

Random histograms of GPS data. Let h(x) = 〈f1(x), · · · , fB(x)〉 be a label-
ing function that maps X to a label space L ⊆ {0, 1, · · · , CB−1}, where a label l is
expressed in the decimal numeral system using the formula l =

∑B
b=1 fb(x)Cb−1.

If we interpret L as a set of bin labels, computation of h(x) for x ∈ X deter-
mines to which bin x is registered. Let H = {h = 〈f1, · · · , fB〉|fi ∈ F} be a set
of labeling functions and Λh∈H,l(X) = {x ∈ X |l = h(x)} be a set of data points
mapped to l by h chosen at random from H. Then, we can construct a table (a
set of bins) of X , Λh(X) = {Λh,l(X)}l∈L.

We can also define the frequency distribution (called random histogram) of X

over L as a vector point in |L|-dimensional vector space, ϕh(X) =
∑|L|

i=0 λliei,
where λli = |Λh,li(X)| is the frequency of the bin labeled by li, and {ei}i=1,···,|L|
is a standard basis of the |L|-dimensional vector space. Without loss of general-
ity, we can assume that L =

{
l1, · · · , l|L|

}
is in descending order of λl such that

for any i < j, we get λli ≥ λlj . Then, given the positive integer Q, we can define
a sampling operation SQ[Λh(X)] in such a way that it returns a set of bins with

226 N. Kami et al.

frequency being among Q-highests in Λh, i.e., {Λh,li}i=1,···,Q. Since histogram
construction is a probabilistic operation, sometimes we may fail to sample a
large enough number of data points from a high-density region; therefore, we
need to augment the sampling quality. To this end, we maintain a supertable,
ΞH(X) = 〈SQ[Λh1(X)], · · · , SQ[ΛhN (X)]〉, by concatenating N independent ta-
bles, each of which is constructed by a labeling function chosen at random from
H. Note that although a large enough value of Q and N ensures good accuracy,
choosing these optimal values, N in particular, requires careful consideration
because values that are too large directly affect computation time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
ol

lis
io

n
P

ro
ba

bi
lit

y

Distance d/W

B=1, C=2
B=1, C=3
B=1, C=5

(a)B = 1 and C = 2, 3, 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
ol

lis
io

n
P

ro
ba

bi
lit

y

Distance d/W

B=1,C=2
B=2, C=2
B=5, C=2

(b)B = 1, 3, 5 and C = 2

Fig. 2. Collision probability of two vectors with distance d

2.3 Waypoint Region Construction Using Cluster Analysis

Unless we take W that is too large, most of the data points x ∈ Λh,li(X) for
i = 1, · · · , Q are distributed around a single stay location, and the most centered
point among them would be a good waypoint for the corresponding significant
location. Yet, there is still small probability that the bin contains some irrelevant
data points that disturb the extraction quality.

To exclude those ”noise” points and group the data points such that each
group contains data points coming only from a single stay location, we execute a
cluster analysis on the sampled data set. To this end, we use Ward’s method [7],
a common hierarchal clustering method that works well on our sampled dataset
because the dense regions are already well separated by density-dependent ran-
dom sampling. To appropriately terminate hierarchical clustering, which keeps
merging two closest clusters in a one-by-one manner until a given goal condition
is satisfied, we need to pre-define the goal condition such that the desired way-
point regions are obtained. We describe the goal condition Θ using two parame-
ters; resolution ζ of clusters, which designates the shortest permissible distance
between two most adjacent clusters, and radius ρ of clusters, the maximum al-
lowable distance from a centroid of a cluster for a data point to be grouped in
that cluster. The distance between a pair of clusters is defined by the distance
between their centroids, which reflects the distance between two corresponding
significant locations, and ρ should be determined by the radius indicating the

Algorithm for Detecting Significant Locations from Raw GPS Data 227

possible drift distance from an actual stay location due to a user roaming or
noise. Note that ρ can be loosely set using a typical quantity of the standard
deviation of noise as we will see in Section 3.

One major drawback in using this cluster analysis is long computation time
due to distance computation between all pairs of data points. Therefore, we first
separate the sampled dataset into two groups of datasets, High and Low such
that a High dataset contains at most M data points registered to bins with high
frequency and Low contains all others. M is the largest number of data points
permissible for quick clustering. After obtaining the datasets, we perform cluster
analysis only over the High dataset and construct ”nuclei” and then individually
register data points in the Low dataset to the nearest nuclei to obtain waypoint
regions R = {Ri}, where Ri is each resulting cluster comprised of a set of data
points in X . Initial nucleation over a limited number of data points is aimed to
eliminate the dependency on the sequence of registering data points to the result,
especially when density distribution of the input data set shows poor structure
with few broad peaks.

We should also note that the clustering described here is optional and can be
skipped if computation time is a major concern. It is rare that we obtain bins
containing irrelevant data points unless two significant locations are too close or
the density distribution of the input dataset is too broad and vague in structure.
If the purpose is only to eliminate coincidentally registered data points far from
a relevant stay location, skipping the hierarchical clustering (i.e. M = 0) and
only eliminating data points that violate the clustering policy Θ will often re-
turn a good result. This is quicker because it only requires distance computation
between a to-be-added data point and a centroid of each cluster for finding the
closest cluster to register.

2.4 Extracting and Scoring Waypoints

Given a set of waypoint regions R, and the positive integer K, the final step of the
algorithm is to extract a set of K waypoints, Ω = {ωi}i=1,···,K , by identifying
the most representative point in each waypoint region Ri and rank them by
associating a scoring metric that reflects the density at each location. ωi =
(ri, si) contains information regarding location, ri ∈ RD, and scoring metric,
si = (si,1, si,2) ∈ R × R. Suppose we are to extract a waypoint ω = (r, s)
for a given waypoint region Ra. Then, r should be the location of the data
point in Ra that minimizes the sum of the distance to all data points, i.e.,
r = arg min

x∈Ra

∑
y∈Ra\{x} |x− y|2, which reduces to the data point that is closest

to x̄ = 1
|Ra|

∑
x∈Ra

x.
On the other hand, scoring metric s of the waypoint ω should reflect the

density at r. Observing that the number of data points in Ra and sample variance
of distance between r and other data points in Ra reflect the density at r, we
define the scoring metrics as s1 = |Ra| and s2 = 1

|Ra|−2

∑
x∈Ra\{r} |x− r|2,

where as s1 is large and s2 is small, the density at the location is higher and
thereby ω is more important. Note that we define that the first metric s1 has

228 N. Kami et al.

priority over the second metric s2. By computing a waypoint ωi = (ri, si) for
all waypoint regions Ri, we can sort a set of waypoints in descending order of
importance using the scoring metrics si,1 and si,2, and obtain K-most important
waypoints, Ω = {ωi}i=1,···,K .

3 Evaluation

3.1 Evaluation Using Artificially Generated Datasets

Using an artificially generated dataset whose noise level is under control, we eval-
uate the performance and noise tolerance in parameter setting of the proposed
algorithm ADDRS and compare it to a typical fixed-threshold-based algorithm.

Dataset generation algorithm. The artificially generated dataset Xa is a
history of periodically recorded locations that contain KXa ”staying” periods
alternating with KXa + 1 ”moving” periods. In generating Xa, we first prepare
for KXa time slots {τi} whose duration τi is drawn from the Poisson distribution
with average τs and randomly allocate these slots without any overlap in Xa with
the total number of time steps being NXa . Each time slot τi indicates the staying
period in which one stays at a single location and other parts of the dataset
represent the moving period. In the moving period, the location vector ψ(t) is
updated by the randomly generated step vector δΔψm(t) such that ψ(t + 1) =
ψ(t) + δΔψm(t). The step width δ is drawn from the Poisson distribution with
average δ0, and Δψm(t) is a unit vector whose direction is determined by random
rotation whose angle is drawn from the uniform distribution U [−θmax, θmax],
where θmax is the maximum possible angle between the previous and next steps.
When the system enters into the staying period at time t0, ψ(t) keeps being
updated by the formula ψ(t) = ψ(t0) + σΔψs(t) until the system consumes
the time slot allocated for the staying period and re-enters the moving period.
The second term σΔψs(t), where σ represents the noise level and Δψs(t) is
drawn from the two dimensional normal distribution, indicates the spatial noise
introduced to an actual stay location due to a weak signal, e.g., one staying
inside a building.

Performance measures. Let Ωr = {ri}i=1,···,K be a set of waypoint locations
extracted by an algorithm and Ψ = {ψi}i=1,···,KXa

be a set of actual stay loca-
tions, i.e., an answer for Ωr. Then we can define two quality measures for Ωr;
distance δ(Ωr, Ψ) and detection ratio �(Ωr, Ψ). δ(Ωr, Ψ) quantifies the distance
between Ωr and Ψ , i.e., a set distance. Since each waypoint should correspond to
each actual stay location, we should use a set distance for one-to-one matching
defined by,

δ(Ωr , Ψ) = min
1
Δ

∑
ri∈Ωr

∑
ψi∈Ψ

ari,ψi |ri − ψi| (3)

s.t. ∀ψi ∈ Ψ,
∑

ri∈Ωr

ari,ψi ≤ 1 ,

Algorithm for Detecting Significant Locations from Raw GPS Data 229

∀ri ∈ Ωr,
∑

ψi∈Ψ

ari,ψi ≤ 1 ,

∀ri ∈ Ωr, ∀ψi ∈ Ψ, ari,ψi ∈ {0, 1} ,

Δ = min {|Ωr|, |Ψ |} =
∑

ri∈Ωr

∑
ψi∈Ψ

ari,ψi .

The coefficient ari,ψi = 1 means that a member ri is matched to a member
ψi. Note that the number of matchings is Δ = min {|Ωr|, |Ψ |}, whereas each
member can be used at most once. We take the average in (3), to prevent a
situation in which the number of extracted waypoints is too small due to poor
extraction ability, which reduces to the shorter distance, i.e., a good matching.
� is another quality measure for indicating how many actual stay locations are
detected. Since Δ indicates the number of matchings, � is simply defined as
� = Δ/|Ψ |. Using δ(Ωr , Ψ) and �(Ωr, Ψ), tolerance πp = [πp,l, πp,u] in a given
parameter p is defined by a range in p that achieves δ(Ωr, Ψ) ≤ σ and � = 1,
where σ is the spatial noise level defined above. This definition states that as
long as p ∈ πp, we can find any actual stay location with an average distance
being at most σ from each corresponding waypoint.

Noise tolerance. Given NXa , KXa , τs, δ0, and θmax, we prepare for input
datasets with various noise levels by controlling σ. For comparison, we also im-
plemented a fixed-threshold-based algorithm AFT , similar to the one described
in [10], which is simple and intuitive but shows considerably good performance
at least under low noise levels. AFT is a deterministic algorithm that has two
parameters; roaming distance lth and stay duration tth. lth represents the maxi-
mum distance that determines the region where one can stray to be counted as
a ”stay”, and tth is the minimum duration one must stay in the segment to be
qualified as a ”stay”. By comparing these two parameters to the given dataset
Xa, we can detect segments corresponding to waypoint regions with a longer
duration than tth and a diameter of the staying region less than lth, and the
waypoint in each segment is extracted in the same way.

Obviously, lth strongly affects the detection quality, and these parameter set-
tings are difficult, especially when the spatial noise level is high and unknown.
A large enough lth can cover all data points coming from each stay location but
data points coming from two geographically close stay locations may be mixed.
On the other hand, a too small lth can detect no stay segment when tth is large,
and if tth is too small, it will detect too many stay segments, most of which
are of little importance. In addition, large lth and tth leads to an increase in the
number of data points and thereby increases the computation time since all pairs
of those data points must be compared to lth. Therefore, the tolerance in the
spatial parameter setting will become small when noise level is high, and careful
parameter tuning is required for maximizing detection quality. The parameters
in ADDRS corresponding to lth are Θ = (ζ, ρ), which determine to which way-
point region each sampled data point should be registered. Although both lth and
Θ require an estimate of the stretch in spatial noise distribution, finding good Θ
in ADDRS is not as difficult as finding the appropriate lth in AFT . Since ADDRS

230 N. Kami et al.

samples data points selectively from around each stay location, small ζ and ρ
work even under high noise levels, and the crosstalk between data points coming
from two neighboring stay locations is also suppressed. In short, tolerance in ζ
or ρ is wide even against strong spatial noise.

To observe how well ADDRS detects waypoints and how much ADDRS eases
the difficulty in parameter setting, we compared our algorithm ADDRS to AFT

using datasets with noise levels σ = {100, 200, 300, 400, 500, 600} and measured
the tolerance in setting parameters ρ for ADDRS and lth for AFT . Note that we
only controlled ρ by setting ζ = 2ρ for simplicity and all other parameters were
configured at the loosely optimized point. Table 1 summarizes the parameter
values used for the evaluation. Figures 3(a) and 3(b) plot both the average
values of δ(Ωr,alg., Ψ) and �(Ωr,alg., Ψ) over ten independently generated Xa for
σ = 200 and σ = 500, respectively. Ψ indicates a set of actual stay locations in
Xa, and Ωr,alg. indicates the output of each algorithm Aalg. for alg. = DDRS or
FT . Note that we also executed ten independent trials for evaluating ADDRS for
each dataset since it is a probabilistic algorithm and requires taking the average
δ(Ωr,alg., Ψ) and �(Ωr,alg., Ψ) over the trials for fair comparison. Note that each
Xa is generated in such a way that it contains at least one pair of neighboring
stay locations whose distance is upper-bounded by around 2σ ∼ 3σ to limit the
upper bound of tolerance πp for p = lth and ρ.

Basically, the optimal point ρ∗ and l∗th, which is around the center of the
tolerance πp for p = ρ and lth, respectively, increase in response to the increase
in σ, but the upper/lower bound of the tolerance in both parameters shows a
different response. For all σ, small lth degrades both δ(Ωr,FT , Ψ) and �(Ωr,FT , Ψ),
and the lower bound πp,l for p = lth is relatively large. This is because lth
that is too small detects only few stay locations as indicated by �(Ωr,FT , Ψ) ∼
0.1, where δ(Ωr,FT , Ψ) for such lth is too large to be displayed in the plot. On
the other hand, ADDRS shows good tolerance even for small ρ since it can
sample many data points even from regions with such a small radius. On the
opposite side of the spectrum, the upper bound of both parameters is basically
determined by the crosstalk between data points coming from the most adjacent
stay locations. However,ADDRS shows moderately better performance (a gentler
slope) because ADDRS samples few data points located around the ”edge” of
high-density regions and suppresses crosstalk. Furthermore, ADDRS took long
computation time when lth is large, whereas ADDRS did not show noticeable
difference in response to an increase in ρ. This is because AFT needs to compute
distance among many data points when lth is large. Figure 4 illustrates profiles
of the tolerance and dynamic range DR against σ ranging [100, 600], where DR
is a ratio of tolerance to the optimal point: DR = πp/p∗. ADDRS shows a wide
dynamic range due to small πρ,l even for large σ. A wide dynamic range is
important in parameter setting because it allows parameter setting to work for
a variety of input data sets. In fact, Figure 4 shows that there is a parameter
band [max{πρ,l(σ)}, min{πρ.u(σ)}], in which ρ works for all σ, whereas there is
no lth that is universally valid for all σ. Since it is, in practice, often difficult to
make a good estimate about the noise level contained in actual GPS datasets,

Algorithm for Detecting Significant Locations from Raw GPS Data 231

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200 1400
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
is

ta
nc

e

D
et

ec
tio

n
R

at
io

ρ

Distance
Detection Ratio

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
is

ta
nc

e

D
et

ec
tio

n
R

at
io

lth

Distance
Detection Ratio

(a) ADDRS(left) and AFT (right) for σ = 200

 0

 250

 500

 750

 1000

 1250

 1500

 0 500 1000 1500 2000 2500 3000 3500
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
is

ta
nc

e

D
et

ec
tio

n
R

at
io

ρ

Distance
Detection Ratio

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000 7000
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
D

is
ta

nc
e

D
et

ec
tio

n
R

at
io

lth

Distance
Detection Ratio

(b) ADDRS(left) and AFT (right) for σ = 500

Fig. 3. Performance comparison of distance δ(Ωr,alg., Ψ) and �(Ωr,alg., Ψ) between
alg. = ADDRS and alg. = AF T for (a)σ = 200 and (b)σ = 500. Points designate
average over ten different input datasets whereas error bars range from min to max
value. Note that tolerance is defined by region below dashed line representing reference
distance.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100 200 300 400 500 600 700

T
ol

er
an

ce

σ

lower bound of ρ
upper bound of ρ
lower bound of lth
upper bound of lth

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600 700

D
yn

am
ic

 R
an

ge

DDRS
FT

Fig. 4. Tolerance πp(left) and Dynamic range DR(right) for p = ρ in ADDRS and
p = lth in AF T for various σ

fixed-threshold-based algorithms require trial-and-error repetitions until an op-
timal parameter setting for each data can be found.

232 N. Kami et al.

3.2 Case Study: Extracting waypoints from Actual Travel Data

We applied the proposed algorithm to actual GPS data recorded when a person
traveled throughout Miyako island, in Okinawa prefecture, Japan. The traveler
basically traveled by car and stopped at several locations, such as sightseeing spots
distributed around the island. We examined how well the algorithm detected the
spots that the traveler actually visited. The GPS data contained 1617 data points,
each of which was recorded at about 15-second intervals. Figure 5(a) shows the tra-
jectory of the GPS data and the fourteen top-ranked waypoints extracted with the
algorithm. The algorithm successfully returned waypoints that corresponded well
to all major locations that the traveler actually visited; sightseeing spots, shops, a
gas station, a hotel, an airport, etc. Figure 5(b) illustrates an enlargement around
one waypoint, which encompasses Higashi-Hennazaki, the most eastern cape on
Miyako island, which is famous for panorama views of the ocean. We can see from
the sojourning trajectory in a localized region that the traveler stopped and spent
some time enjoying the landscape, and the waypoint is located around the cen-
ter of the region. For extracting the waypoints, the algorithm took a negligibly
short time and showed excellent responsiveness. Figure 5(c) illustrates a compari-
son between the (normalized) scoring metric (the first metric s1 of each waypoint)
and the (normalized) measured density at each location. By observing excellent
matching between s1 and the density at the corresponding location, we can con-
firm that the proposed algorithm successfully samples data points such that the
scoring metric reflects the density information.

4 Related Work

The recent widespread use of GPS-enabled devices encourages many location-
aware services, such as GeoLife project [8] to use algorithms for automatically
extracting significant locations for understanding users’ activity patterns. For
example, Ashbrook et al. [9] designed a fixed-threshold-based algorithm for de-
tecting significant locations from GPS data and using a set of those locations
for behavior prediction. Hariharan et al. [10], Liao et al. [11] [12], and Zheng
et al. [13] [14] [15] also developed a similar fixed-threshold-based algorithm for
detecting segments of GPS data and identifying the most representative point in
each segment. Although there are many variations, all these algorithms have the
basic principle of detecting locations where one stays at least for a certain time
in a limited region with a certain diameter using spatial/temporal thresholds.
However, fixed-threshold-based algorithms do not generally work well under high
noise levels, and the optimal parameter setting tends to be difficult.

Agamennoni et al. [16] developed a different algorithm for extracting signifi-
cant locations by introducing a score associated with each location using velocity
information and linking the top-scored locations to create clusters that desig-
nate significant locations. Although this algorithm shows good noise tolerance, it
still uses the velocity threshold to compute the score. Any fixed-threshold-based
algorithm is inherently error-prone where one cannot make a good guess about

Algorithm for Detecting Significant Locations from Raw GPS Data 233

Table 1. Parameters used for evaluation

NXa = 2000 # of data points for Xa

KXa = 10 # of stay locations for Xa

δ0 = 50 m average step width for Xa

τs = 30 min average stay duration for Xa

θmax = 5◦ maximum angle between the previous and next step direction
ζ = 2ρ cluster resolution for a given ρ (cluster radius)
N = 10 # of tables concatenation
B = 5 big length
C = 21 base number
W = ρ window size
Q = 10 # of bins for sampling
K = 15 # of extracted waypoints for display

tth = 10 min stay duration for AF T

(a) An overview of GPS data trajectory and ex-
tracted waypoints.

(b)[Enlargement] Higashi-Hennnazaki

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

(N
or

m
al

iz
ed

)S
co

rin
g

m
et

ric
/D

en
si

ty

Waypiont ID

Scoring metric s1
Density

(c)s1 and density

Fig. 5. Trajectory and extracted waypoints for actual travel data in Miyako island.
(a) overview of GPS trajectory and extracted waypoints. (b) Higashi-Hennnazaki, a
waypoint(enlargement). (c) Comparison between first scoring metric of each waypoint
and actually measured density (defined by number of data points in circle with radius
of 40 meters around measured point). All maps are displayed using Google Maps[1].

234 N. Kami et al.

the optimal quantity in the control variable. Furthermore, most studies do not
focus on computation time, even though a number of data points are generally
involved. Unlike the work described above, we took a probabilistic approach and
explored the way to make parameter setting easy even under high noise levels,
and made loose optimization work even when we did not precisely know the
optimal threshold value in the control variables.

5 Conclusion

We proposed an algorithm that automatically extracts waypoints, points of ref-
erence designating significant locations, from raw GPS data. In extracting way-
points, the proposed algorithm probabilistically detects high-density regions us-
ing random histograms constructed by LSH-based mapping for computing a
label of bins. Since it samples data points selectively from high-density regions,
it shows competitive performance in extracting waypoints from even input data
with high spatial noise level and also in computation time. Evaluations with
artificially generated data with various noise levels revealed that our algorithm
possesses competitive waypoint extraction ability as well as very wide tolerance
in parameter setting compared to the typical fixed-threshold-based algorithm.
This result implies that the proposed algorithm greatly eases the difficulty in pa-
rameter setting, and we can use the same parameter settings for input data with
a variety of noise levels. Since it does not require direct distance computation be-
tween data points, it shows excellent responsiveness even against an increase in
the number of data points. The case study performed for actual travel data also
shows excellent consistency between extracted waypoints and actually visited lo-
cations. Also, the location of each extracted waypoint agrees with the center of
high-density regions, and the scoring metric reflects actual density. We believe
that the proposed algorithm works well for many location-aware applications.

Acknowledgments. A part of this work is supported by National Institute of
Information and Communication Technology (NICT), Japan.

References

1. Google Maps, http://maps.google.com/
2. Dong, W., Wang, Z., Charikar, M., Li, K.: Efficiently Matching Sets of Features

with Random Histograms. In: Proceedings of the 16th ACM International Confer-
ence on Multimedia, pp. 179–188 (2008)

3. Dong, W., Charikar, M., Li, K.: Asymmetric Distance Estimation with Sketches for
Similarity Search in High-Dimensional Spaces. In: Proceedings of the 31st Annual
International ACM SIGIR Conference on Research and Development on Informa-
tion Retrieval, pp. 123–130 (2008)

4. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, pp. 604–613 (1998)

http://maps.google.com/

Algorithm for Detecting Significant Locations from Raw GPS Data 235

5. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, pp. 253–262 (2004)

6. Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In:
STOC 2002: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory
of Computing, pp. 380–388 (2002)

7. Ward, J.H.: Hierarchical grouping to optimize an objective function. Journal of the
American Statistical Association 58(301), 236–244 (1963)

8. GeoLife Project, http://research.microsoft.com/en-us/projects/geolife/
9. Ashbrook, D., Starner, T.: Using GPS to learn significant locations and predict

movement across multiple users. In: Personal and Ubiquitous Computing, vol. 7,
pp. 275–286 (2003)

10. Hariharan, R., Toyama, K.: Project Lachesis: Parsing and Modeling Location His-
tories. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS,
vol. 3234, pp. 106–124. Springer, Heidelberg (2004)

11. Liao, L., Fox, D., Kautz, H.: Location-based Activity Recognition using Relational
Markov networks. In: Proc. of the International Joint Conference on Artificial
Intelligence (2005)

12. Liao, L., Patterson, D.J., Fox, D., Kautz, H.: Building Personal Maps from GPS
Data. In: Annals of the New York Academy of Sciences, vol. 1093, pp. 249–265
(2006)

13. Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning Transportation Mode from Raw
GPS Data for Geographic Applications on the Web. In: Proceeding of the 17th
International Conference on World Wide Web, pp. 247–256 (2008)

14. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.: Understanding mobility based on
GPS data. In: Proceedings of the 10th International Conference on Ubiquitous
Computing, vol. 21, pp. 312–321 (2008)

15. Zheng, Y., Chen, Y., Xie, X., Ma, W.: Mining Interesting Locations and Travel
Sequences From GPS Trajectories. In: Proceedings of the 18th International Con-
ference on World Wide Web, vol. 21, pp. 791–800 (2009)

16. Agamennoni, G., Nieto, J.I., Nebot, E.: Mining GPS data for extracting signifcant
places. In: Proceedings of the 2009 IEEE International Conference on Robotics and
Automation (ICRA), pp. 855–862 (2009)

http://research.microsoft.com/en-us/projects/geolife/

Discovery of Conservation Laws via Matrix
Search

Oliver Schulte and Mark S. Drew�

School of Computing Science, Simon Fraser University,
Burnaby, B.C., Canada V5A 1S6
{oschulte,mark}@cs.sfu.ca

Abstract. One of the main goals of Discovery Science is the devel-
opment and analysis of methods for automatic knowledge discovery in
the natural sciences. A central area of natural science research concerns
reactions: how entities in a scientific domain interact to generate new
entities. Classic AI research due to Valdés-Pérez, Żytkow, Langley and
Simon has shown that many scientific discovery tasks that concern re-
action models can be formalized as a matrix search. In this paper we
present a method for finding conservation laws, based on two criteria for
selecting a conservation law matrix: (1) maximal strictness: rule out as
many unobserved reactions as possible, and (2) parsimony: minimize the
L1-norm of the matrix. We provide an efficient and scalable minimization
method for the joint optimization of criteria (1) and (2). For empirical
evaluation, we applied the algorithm to known particle accelerator data
of the type that are produced by the Large Hadron Collider in Geneva. It
matches the important Standard Model of particles that physicists have
constructed through decades of research: the program rediscovers Stan-
dard Model conservation laws and the corresponding particle families of
baryon, muon, electron and tau number. The algorithm also discovers
the correct molecular structure of a set of chemical substances.

1 Introduction: Reaction Data and Conservation Laws

As scientific experiments amass larger and larger data sets, sometimes in the
millions of data points, scientific data mining and automated model construc-
tion become increasingly important. One of the goals of Discovery Science is the
development and analysis of methods that support automatic knowledge discov-
ery in the sciences. The field of automated scientific discovery has developed
many algorithms that construct models for scientific data, in domains ranging
from physics to biology to linguistics [1,2,3]. From a cognitive science point of
view, automated scientific discovery examines principles of learning and induc-
tive inference that arise in scientific practice and provides computational models
of scientific reasoning [3], [1].
� This work was supported by Discovery Grants from NSERC (Natural Sciences and

Engineering Research Council of Canada) to each author. We thank the anonymous
referees for helpful comments.

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 236–250, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Discovery of Conservation Laws via Matrix Search 237

One of the key problems in a scientific domain is to understand its dynam-
ics, in particular how entities react with each other to produce new entities
[2,4,5,6,7,8]. Classic AI research established a general computational framework
for such problems. Many discovery problems involving reaction data can be for-
mulated as a matrix multiplication equation of the form

RQ = Y,

where R is a matrix representing reaction data for a set of known entities, the
vector Y defines constraints on the model given the data, and Q is a matrix
to be discovered [2,9]. One interpretation of the Q matrix is that it defines a
hidden or latent feature vector for each entity involved in the observed reactions;
these hidden features explain the observed interactions. So the matrix equation
framework is an instance of using matrix models for discovering latent features.
The framework models problems from particle physics, molecular chemistry and
genetics [2]. An important special case are conservation matrices which satisfy
a matrix equation of the form RQ = 0. Intuitively, a conservation equation says
that the sum of a conserved quantity among the reactants is the same as its
sum among the products of a reaction. This paper describes a new procedure
for finding conservation matrices.

Approach. There are infinitely many matrices that satisfy the conservation equa-
tion RQ = 0, so a model selection criterion is required. Valdés-Pérez proposed
using the L1-norm to select conservation law matrices, which is the sum of the
absolute values of the matrix entries [8,7]. The L1-norm is often used as a par-
simony metric for a matrix [10]. Seeking parsimonious explanations of data is
a fundamental principle of scientific discovery, widely applied in machine learn-
ing [11, Ch.28.3]. Schulte [9] recently introduced a new criterion for selecting a
hidden feature matrix Q: The matrix should be maximally strict, meaning that
Q should be consistent with the observed reaction phenomena, but inconsistent
with as many unobserved reactions as possible. The maximum strictness crite-
rion formalizes a basic principle of scientific discovery: it is not only important to
explain the processes that do occur in nature, but also why some processes fail
to occur [9]. In this paper we combine the two criteria and consider maximally
simple maximally strict (MSMS) matrices that have minimal L1-norm among
maximally strict matrices. The main algorithmic contribution of this paper is an
efficient new optimization scheme for this criterion that scales linearly with the
number of observed data points.

Evaluation. In principle, the theory and algorithms in this paper apply to matrix
search in any scientific domain. Here we focus on high-energy particle physics
(HEP) as the application domain, for several reasons. (1) The problem of analyz-
ing particle accelerator data is topical as a new set of data is expected from the
record-breaking energy settings of the Large Hadron Collider (LHC) in Geneva.
(2) An easily accessible source of particle accelerator data is the Review of Par-
ticle Physics [12], an authoritative annual publication that collects the current

238 O. Schulte and M.S. Drew

knowledge of the field. (3) Most of the previous work on discovering conservation
laws has analyzed particle physics data [6,8,7,9].

In particle physics, we compare our algorithm with the centrally important
Standard Model of particles [13,14]. The main concept of the Standard Model is
to view quarks as fundamental building blocks for all other entities in nature.
Since Gell-Mann introduced the quark model in his Nobel-prize winning work,
physicists have used it as a basis to develop, over decades of research, the Stan-
dard Model, which is consistent with virtually all known observations in particle
physics. One of the goals of the LHC is to probe new phenomena that test the
Standard Model and may require an extension or modification. A key component
of the Standard Model are conservation laws, in particular the conservation of
Electric Charge, and of the Baryon, Tau, Electron and Muon Numbers. Apply-
ing our program to data from particle accelerators, the combination of laws +
particle families found by the program is equivalent to the combination of laws
+ particle families in the Standard Model: both classify reactions as possible and
impossible in the same way. The algorithm agrees with the Standard Model on
the particle families corresponding to Baryon, Tau, Electron and Muon families,
in the sense that MSMS conservation matrices define these particle families.

We also apply our procedure to the chemistry reaction data set used in
the evaluation of the Dalton*system [1]. While this is a small data set, it
illustrates the generality of the matrix equation framework and of our con-
servation law discovery procedure by applying both in a second domain. The
procedure correctly recovers the molecular structure of a set of chemical sub-
stances given reactions among them. Our code and datasets are available online
at http://www.cs.sfu.ca/∼oschulte/particles/conserve zipfile.zip.

This paper addresses the problem of finding theories to explain reaction data
that have been accepted by the scientific community. A challenging and practi-
cally important extension is reconstructing raw sensory data with a data reaction
matrix that separates the true experimental signal from background noise [9,
Sec.1]. Matrix reconstruction methods often employ a minimization search with
an objective function that measures reconstruction quality; our work suggests
that incorporating the MSMS criterion may well improve reconstruction quality.

Contributions. The main contributions of this paper may be summarized as
follows.

1. The new MSMS criterion for selecting a set of conserved quantities given an
input set of observed reactions: the conserved quantities should be as simple
as possible, while ruling out as many unobserved reactions as possible.

2. An efficient minimization routine for finding an MSMS conservation law ma-
trix that scales linearly with the number of observed reactions (data points).

3. A comparison of the output of the algorithm on particle accelerator data
with the fundamental Standard Model of particles.

Paper Organization. We begin by reviewing previous concepts and results from
the matrix search framework. Then we define the MSMS selection criterion, and

Discovery of Conservation Laws via Matrix Search 239

describe a scalable local search algorithm for MSMS optimization. The output
of our procedure is compared with the Standard Model on actual particle accel-
erator data, and with the known molecular structure of chemical substances on
chemical reaction data.

Related Work. We review related work within the matrix search framework. For
discussions of this framework, please see [2,9]. Valdés-Pérez and Erdmann used
the L1-norm to select conservation matrices for particle physics data [8,7]; their
work is the most advanced in this problem. In contrast to the current paper,
it assumes that both observed and unobserved particle reactions are explicitly
specified, and it does not use the maximal strictness criterion. In empirical evalu-
ation, they found that their method failed to find more than a single conservation
law, and they proved analytically that this is difficult if not impossible to avoid
on their approach. Schulte introduced and applied the maximal strictness crite-
rion to develop an algorithm for inferring the existence of hidden or unobserved
particles [9]. His paper does not consider the parsimony of conservation matrices.
A combined system might first find hidden particles, and then apply the MSMS
criterion to find parsimonious laws that include the hidden particles. In effect
this is the setting of the experiments of this paper, where knowledge of the hid-
den particles in the Standard Model is part of the input. To our knowledge the
connection between groupings of entities, like particle families, and parsimonious
conservation laws is an entirely new topic in scientific discovery.

2 Selecting Maximally Simple Maximally Strict
Conservation Laws

We review the matrix framework for representing reaction data and conservation
laws, and illustrate it in particle physics and molecular chemistry. Then we define
the new matrix selection criterion that is the focus of this paper. At any given
time, we have a set r1, .., rm of reactions that scientists accept as experimentally
established so far. The arrow notation is standard for displaying reactions where
reacting entities appear on the left of the arrow and the products of the reaction
on the right. For example, the expression e1 + e2 → e3 + e4 denotes that two
entities e1, e2 react to produce another two entities e3, e4. For a computational
approach, we represent reactions as vectors, following Valdés-Pérez et al. [2].
Fix an enumeration of the known entities numbered as e1, . . . , en. In a given
reaction r, we may count the number of occurrences of an entity e among the
reagents, and among the products; subtracting the second from the first yields
the net occurrence. For each reaction r, let r be the n-dimensional reaction
vector whose i-th entry is the net occurrence of entity ei in r. In what follows we
simply refer to reaction vectors as reactions. The conserved quantities of interest
in this paper are integers, so a quantity can be represented as an n-dimensional
vector with integer entries; in what follows we simply refer to quantity vectors
as quantities or quantum numbers. A quantity q is conserved in reaction r
if and only if q is orthogonal to r. We combine m observed reactions involving

240 O. Schulte and M.S. Drew

Table 1. The representation of reactions and conserved quantities as n-dimensional
Vectors. The dimension n is the total number of particles, so n = 7 for this table.

Particle
Process/Quantum Number

1
p

2
π0

3
μ−

4
e+

5
e−

6
νμ

7
νe

μ− → e− + νμ + νe 0 0 1 0 -1 -1 -1
p → e+ + π0 1 -1 0 -1 0 0 0
p + p → p + p + π0 0 -1 0 0 0 0 0
Baryon Number 1 0 0 0 0 0 0
Electric Charge 1 0 -1 1 -1 0 0

n known entities to form a reaction data matrix Rm×n whose rows are the
observed reaction vectors. Similarly, combining q quantities assigned to n entities
produces a quantity matrix Qn×q whose columns are the quantity vectors.
In the context of discovering conserved quantities, we also refer to quantity
matrices as conservation law matrices or simply conservation matrices. The
conservation equation RQ = 0 holds iff each quantity in Q is conserved in each
reaction in R; in this case we say that Q is consistent with all reactions in R.

2.1 Example 1: Reactions and Conservation Laws in Particle
Physics

Table 1 illustrates the representation of reactions and quantum numbers as vec-
tors. Table 2 shows the main conservation laws posited by the Standard Model.
The table specifies the values assigned to some of the most important particles
for the five conserved quantities Electric Charge, Baryon Number, Tau Number,
Electron Number, and Muon Number. For future reference, we use their initial
letters to refer to these collectively with the abbreviation CBTEM. The table
shows n = 22 particles; our complete study uses n = 193.

Particle Families. Particle physicists use particle ontology to construct conser-
vation law models from data in a semantically meaningful way [14]. They use
the hidden feature vectors (quantum numbers) to group particles together as
follows: Each of the q numbers is said to correspond to a particle family, and
a particle is a member of a given family if it has a nonzero value for the corre-
sponding number. For instance, the physical quantity electric charge corresponds
to a particle family that contains all charged particles (e.g., it contains the elec-
tron with charge −1, and the proton with charge +1), and does not contain all
electrically neutral particles (e.g., it does not contain the neutron with charge
0). As Table 2 illustrates, the four BTEM families are disjoint, in the sense that
they do not share particles. For instance, the neutron n carries Baryon Number
1, and carries 0 of the three other families TEM. It is desirable to find conser-
vation models with disjoint particle families, for two reasons. (1) In that case
we can interpret the conservation of a quantity as stating that particles from
one family can cannot turn into particles from another family, which makes the
conservation model more intelligible and intuitively plausible. (2) The inferred

Discovery of Conservation Laws via Matrix Search 241

Table 2. Some common particles and conserved quantities assigned to them in the
Standard Model of particle physics. The table shows a conservation law matrix.

Particle Charge (C) Baryon# (B) Tau# (T) Electron# (E) Muon#(M)
1 Σ− -1 1 0 0 0
2 Σ

+
1 -1 0 0 0

3 n 0 1 0 0 0
4 n 0 -1 0 0 0
5 p 1 1 0 0 0
6 p -1 -1 0 0 0
7 π+ 1 0 0 0 0
8 π− -1 0 0 0 0
9 π0 0 0 0 0 0
10 γ 0 0 0 0 0
11 τ− -1 0 1 0 0
12 τ+ 1 0 -1 0 0
13 ντ 0 0 1 0 0
14 ντ 0 0 -1 0 0
15 μ− -1 0 0 0 1
16 μ+ 1 0 0 0 -1
17 νμ 0 0 0 0 1
18 νμ 0 0 0 0 -1
19 e− -1 0 0 1 0
20 e+ 1 0 0 -1 0
21 νe 0 0 0 1 0
22 νe 0 0 0 -1 0

particle families can be checked against particle groupings discovered through
other approaches, which provide a cross-check on the model [15,13].

2.2 Example 2: Chemical Reactions and Molecular Structure

The problem of discovering molecular structure from chemical reactions can also
be cast as a matrix search problem. Our discussion follows the presentation of
the Dalton*system by Langley et al. [1, Ch.8]. Consider chemistry research in
a scenario where n chemical substances s1, s2, .., sn are known. In the model of
the Dalton*system, Langley et al. take the known substances to be Hydrogen,
Nitrogen, Oxygen, Ammonia and Water. In what follows, we assume that the
reaction data indicate that various proportions of these substances react to form
proportions of other substances. For example, 200ml of Hydrogen combine with
100ml of Oxygen to produce 200ml of Water vapour, 400ml of Hydrogen combine
with 200ml of Oxygen to produce 400ml of Water, etc. In arrow notation, we
can express this finding with the formula

2Hydrogen + 1Oxygen → 2Water .

242 O. Schulte and M.S. Drew

Table 3. The Representation of Chemical Reactions as n-dimensional vectors. The
dimension n is the total number of substances. The entries in the vector specify the
proportions in which the substances react.

Substance
Reaction

1
Hydrogen

2
Nitrogen

3
Oxygen

4
Ammonia

5
Water

2 Hydrogen + 1 Oxygen → 2 Water
= 2s1 + s2 → 2s5

2 0 1 0 -2

3 Hydrogen + 1 Nitrogen → 2 Ammonia
= 3s1 + s2 → 2s4

3 1 0 -2 0

Table 4. The correct structural matrix for our five example substances in terms of
the three elements H, N, O. An entry in the matrix specifies how many atoms of each
element a molecule of a given substance contains.

Element
Substance

H N O

1 Hydrogen 2 0 0
2 Nitrogen 0 2 0
3 Oxygen 0 0 2
4 Ammonia 3 1 0
5 Water 2 0 1

Labelling the five substances s1, s2, ..., s5, this kind of reaction data can be rep-
resented as vectors, as with particle reactions. Table 3 shows the vector repre-
sentation for the two chemical reactions discussed by Langley et al. [1].

According to Dalton’s atomic hypothesis [1], the fixed proportions observed
in reactions can be explained by the fact that chemical substances are composed
of atoms of chemical elements in a fixed ratio. A chemical element is a substance
that cannot be broken down into simpler substances by ordinary chemical re-
actions. A structure matrix S is an s × q matrix with integer entries ≥ 0
such that entry Si,j = a indicates that substance si contains a atoms of ele-
ment ej. Table 4 shows the true structure matrix for our example substances
and elements. For example, the 4-th row in the matrix indicates that Ammonia
molecules are composed of 3H atoms and 1N atom, corresponding to the mod-
ern formula H3N for Ammonia. An elementary substance is different from the
element itself, for example Oxygen from O, because substances may consist of
molecules of elements, as the substance Oxygen consists of O2 molecules. The
connection with conservation laws is that chemical reactions conserve the total
number of atoms of each element. This means that given a reaction data matrix
R whose rows represent observed reactions, a structural matrix S should satisfy
the conservation equation RS = 0.

2.3 Selecting Conservation Law Matrices

The criterion of selecting a maximally strict maximally simple (MSMS) con-
servation law matrix combines the two main selection criteria investigated in

Discovery of Conservation Laws via Matrix Search 243

previous research. The construction of conservation laws searches for a solution
Q of the matrix equation RQ = 0 (here we use Q generically for quantity and
structure matrices). Valdés-Pérez and Erdmann [8] proposed selecting a solution
that minimizes the L1-norm |Q| that sums the absolute value of matrix entries:

|Qn×q| =
n∑

i=1

q∑
j=1

|Qij |.

The L1-norm is often used as a measure of simplicity or parsimony, for example
in regularization approaches to selecting covariance matrices (e.g., [10]). This
norm tends to select sparse matrices with many 0 entries. Another selection
principle was introduced by Schulte [9]: To select a conservation matrix Q that
rules out as many unobserved reactions as possible. Formally, a matrix Q is
maximally strict for a reaction matrix R if RQ = 0 and any other matrix Q′

with RQ′ = 0 is consistent with all reactions that are consistent with Q (i.e., if
rQ = 0, then rQ′ = 0). Each maximally strict conservation matrix Q classifies
reactions in the same way: a reaction is possible—conserves all quantities in
Q—if and only if it is a linear combination of observed reactions (rows in R).
The next proposition provides an efficient algorithm for computing a maximally
strict matrix. The nullspace of a matrix M is the set of vectors v mapped to 0
by M (i.e., Mv = 0).

Proposition 1 (Schulte 2009 [9]). Let R be a reaction matrix. A conservation
matrix Q is maximally strict for R ⇐⇒ the space of linear combinations of the
columns of Q is the nullspace of R.

The proposition implies that to find a maximally strict conservation matrix, it
suffices to find a basis for the nullspace of the reaction data. A basis for a linear
space V is a maximum-size linearly independent set of vectors from V . Using
the L1-norm to select among maximally strict conservation matrices leads to the
new criterion investigated in this paper.

Definition 1. A conservation matrix Q is maximally strict maximally sim-
ple (MSMS) for R if Q minimizes the L1-norm |Q|, subject to the constraint
that Q is maximally strict for R.

3 A Scalable Optimization Algorithm for Finding
Maximally Simple Maximally Strict Conservation Laws

Our goal is to find an integer basis Q for the nullspace of a given reaction
matrix R such that the L1-norm of Q is minimal. Valdés-Pérez and Erdman [8]
managed to cast L1-minimization as a linear programming problem, but this
does not work with the nonlinear nullspace constraint, and also assumes that
the user explicitly specifies a set of “bad” reactions that the matrix Q must rule
out. A summary of our method is displayed as Algorithm 1. We now discuss
and motivate the algorithm design, then analyze its runtime complexity. In the
following fix a reaction data matrix Rm×n that combines m reactions involving
n entities.

244 O. Schulte and M.S. Drew

Algorithm 1. Minimization Scheme for Finding a Maximally Simple Maximally
Strict Conservation Law Matrix
1. Given a set of input reactions R find an orthonormal basis V for the nullspace of

R. The basis V is an n × q matrix.
2. Let any linear combination of V be given by Q = V X, with X an q × q set of

coefficients.
Initialize X to X0 = I , where I is the identity matrix of dimension q.
Define I1(X) = |V X|, the L1-norm of the matrix V X.
Define I2(X) =

∑
(XT X − I)2.

3. Minimize I1 + αI2 over X, with α constant, subject to the following constraint:
(a) To derive an integer version Q̃, we assign Q = V X; q̂k = qk/max(qk), k = 1..q;

Q̂
(
Q̂ < ε

)
= 0; Q̃ = sgn(Q̂).

(b) Q̃ must have full rank: rank(Q̃) = q.

Search Space. The following design operates in a search space with small matrices
and facilitates the constraint check.

1. Compute a basis Vn×q for the nullspace of the input reaction matrix R. This
is a standard linear algebra problem with efficient solutions, and automati-
cally determines the dimensionality q of the set of quantum numbers as the
rank of the nullspace of R.

2. Now any solution Q can be written as Qn×q = Vn×qXq×q where X is a square
full-rank matrix. In other words, the search space comprises the invertible
change-of-basis matrices X that change basis vectors from Q to V . The
solution Q is maximally strict if and only if X has full rank. Change of basis
matrices are much smaller than conservation matrices, because typically q �
n. In the particle physics domain, n = 193 and q = 5.

Objective Function. Since our basic goal is to minimize the L1-norm of a solution
Q, a natural objective function for a candidate X is

I1(X) = |V X |,

the L1-norm of the matrix V X . However, this drives the search towards sparse
matrices X with 0 rows/columns that do not have the full rank q. To avoid the
reduction in the rank of Q, we add a second optimization contribution

I2 =
∑

(XT X − I)2. (1)

This score penalizes matrices with blank rows or columns. Also, if we start with
an orthonormal basis V , the score (1) is maximized by matrices X such that the
columns in Q = V X are orthogonal to each other and have length 1. Our final
objective function is a weighted combination of these two scores:

min
X (I1 + αI2) (2)

with free parameter α.

Discovery of Conservation Laws via Matrix Search 245

From Continuous to Integer Values. Carrying out the minimization search in
the space of continuous matrices creates a much faster algorithm than integer
programming. We use the following method to discretize a given set of continuous
quantum numbers. The method first decides which values should be set to 0, and
then maps the non-zero values to an integer.

Scaling. For each column q of Q, we divide by the maximum absolute value
max(q), obtaining a new set of scaled (real-valued) quantum numbers Q̂:

Q→ Q̂ | q̂ = q/max(q).

Pruning. We then set to zero any element of Q̂ with absolute value less than
a small ε. We chose ε = 0.01 as a simple default value.

Discretization. In each column, multiply the non-zero entries by the least com-
mon denominator to obtain integer entries (i.e., find the least integer multi-
plier such that after multiplication the entries are effectively integers).

Example. Applying the local search procedure to the chemistry input reactions
from Table 3, leads to a minimum matrix X such that

S = V X =

⎛⎜⎜⎜⎜⎝
2/3 0 0
0 1 0
0 0 1
1 1/2 0

2/3 0 1/2

⎞⎟⎟⎟⎟⎠ .

Multiplying the first column by 3 and the second and third by 2, yields the
correct structure matrix shown in Table 4.

Complexity Analysis and Scalability. The number of known entities n defines
the dimension of the data vectors; it is a constant in most application domains.
In our particle data set (described below), n = 193, which is a realistic number
for particle physics. The crucial growth factor for complexity analysis is the
number m of reactions or data points. For a given input matrix Rm×n, the
initial computation of the nullspace basis V can be done via a singular value
decomposition (SVD) of R. A general upper bound on the complexity of finding
an SVD is O(mn2) [16, Lecture 31], which is linear in the number of data points
m. Computing a nullspace basis is especially fast for reaction matrices as they
are very sparse, because only a small number of entities participate in any given
reaction. For instance, in the particle physics domain, the reaction data do not
feature more than 6 entities per reaction out of about 200 total entities, so about
97% of the entries in a reaction matrix will be zeros. The computation of the
nullspace basis can be viewed as preprocessing the reaction data to compress it
into a matrix Vn×q whose dimension does not depend on the number of data
points m.

The basis matrix Vn×q is the input to the minimization routine, where q is
the dimension of the nullspace of R. This dimension is bounded is bounded by
the dimension of the entire space n, so q < n and the size of the matrix V is

246 O. Schulte and M.S. Drew

less than n2. In practice, we expect to find relatively few conserved quantities
(5 quantities in the physics domain for about 200 particles), so we may consider
q � n to be a constant. In sum, the data preprocessing step scales linearly with
the number of data points, and the search space for the minimization routine
comprises matrices of essentially constant dimensions.

4 Implementation and Evaluation

We discuss the implementation of the minimization algorithm and the dataset
on which it was evaluated. The dataset is the same as that used by Schulte in
the study of finding hidden particles [9]. We report the results of applying the
minimization routine of Algorithm 1. Our Matlab code and data are available
online at http://www.cs.sfu.ca/∼oschulte/particles/conserve zipfile.zip.

Implementation. The objective function and constraints from Algorithm 1 are
implemented using the fmincon function in Matlab. Optimization is carried out
over float values for X , with the continuous objective function (2). A non-linear
rank constraint is applied on the quantum number answer set Q̃. The threshold
for rounding down a float to 0 was ε = 0.01. The Matlab function null computes
an orthonormal nullspace basis for the input data via SVD.

Selection of Particles and Reactions. The selection is based on the particle data
published in the Review of Particle Physics [12]. The Review of Particle Physics
is an authoritative annual publication that collects the current knowledge of the
field. The Review lists the currently known particles and a number of important
reactions that are known to occur. Our particle database contains an entry for
each particle listed in the Review, for a total of 193 particles. The reaction dataset
D includes 205 observed reactions. This includes a maximum probability decay
for each of the 182 particles with a decay mode listed. The additional reactions
are important processes listed in textbooks (see [9]).

4.1 Experimental Design and Measurements

We carried out several experiments on particle physics and chemistry data. Our
two main experiments compare the quantities and particle families introduced
by the MSMS algorithm with the Standard Model matrix S.

1. Apply the algorithm with no further background knowledge.
2. Apply it with the quantum number electric charge C as given in the Standard

Model.

In the context of particle physics, it is plausible to take electric charge as given
by background knowledge, for two reasons: (1) Unlike the quantities BTEM,
charge is directly measurable in particle accelerators using electric fields. So it
is realistic to treat charge as observed and not as a hidden feature of particles.
(2) The conservation of electric charge is one of the classical laws of physics that

Discovery of Conservation Laws via Matrix Search 247

had been established over a century before particle physics research began [14].
To implement adding C as background knowledge, we added it to the data D
and applied the minimization procedure to D + C as input; if V is a basis for
the nullspace of D + C, then V + C is a basis for the nullspace of D.

We ran the minimization routine for each of the two settings with a number
of values of the parameter α; we report the results for the settings α = 0, 10, 20
which are representative. If α = 0, the program minimizes the L1-norm directly.
For both the Standard matrix S and the program’s output Q we report the
following measures. (1) The runtimes. (2) The values of the objective function
I defined in Equation (2) and of the L1-norm. When the program found a valid
maximally strict solution, we recorded also (3) the number of particle families
recovered by the program, out of the 4 particle families defined by the quantities
BTEM in the Standard Model.

4.2 Results on Standard Model Laws and Families

Table 5 shows a summary of results for Experiment 1, and Table 6 a summary
for Experiment 2. We discuss first the quality of the solutions found, and then
the processing speed.

Solution Quality. Our discussion distinguishes two questions: (i) Does the MSMS
criterion match the Standard Model quantities, that is, do the conserved quanti-
ties in the Standard Model optimize the MSMS criterion on the available particle
accelerator data? The answer to this question does not depend on the parameter
α of Algorithm 1. (ii) Does Algorithm 1 manage to find an MSMS optimum?

Table 5. Summary of results for the dataset without charge given. The matrix Q is
the output produced by the MSMS Algorithm 1. The matrix S is the Standard Model
matrix. The objective function of Algorithm 1 is denoted by I.

α
Families
Recovered

Runtime
(sec) I(Q) I(S) L1(Q) L1(S) difference Q vs. S

20 4/4 16.44 22.67 22.31 22.21 21.96 C replaced by linear combination
10 4/4 15.74 22.20 22.31 21.96 21.96 C replaced by linear combination
0 n/a 6.95 15.92 22.31 15.92 21.96 invalid local minimum

Table 6. The same measurements as in Table 5 with electric charge C fixed as part
of the input

α
Families
Recovered

Runtime
(sec) I(Q) I(S) L1(Q) L1(S) difference Q vs. S

20 2/4 7.68 16.65 15.55 16.63 15.52 E,M replaced by linear combination
10 4/4 8.40 15.55 15.55 15.52 15.52 exact match
0 n/a 10.68 11.52 15.55 11.52 15.52 invalid local minimum

248 O. Schulte and M.S. Drew

This does depend on the parameter settings. The optimization algorithm is fast
and allows running the local minimization scheme with different parameter val-
ues to find a global minimum. However, our experiments suggest a consistently
successful default value (α = 10).

(1) We verified that the Standard Model quantities CBTEM are maximally
strict and maximally simple for the observed reaction matrix R, both with and
without charge given.
(2) In Experiment 1 (Table 5) we observed that all computed solutions recover
the quantities BTEM exactly (up to sign). The values of the objective function
are close to the L1-norms; the function of the I2 component is thus likely to
guide the initial stages of the search.
(3) The MSMS criterion does not uniquely determine charge because it is possi-
ble to replace the quantity C by a linear combination of C with one of the other
quantities without raising the L1-norm. In Experiment 2, the quantity electric
charge C was taken as given. The program recovered the BTEM families ex-
actly for the setting with α = 10. With α = 20, the program recovered two of the
families, B and T, but replaced E and M with suboptimal linear combinations
of E and M.
(4) The I2 component is essential for enabling the program to find a local mini-
mum that satisfies the full-rank constraint: With α = 0 the minimization routine
settles into a local minimum with a small L1-norm whose rank is too low. This
is consistent with the observation of Valdés-Pérez and Erdmann that minimiz-
ing the L1-norm with no further constraints produces just one quantum number
[8,7]. A value of α that is too large can cause failure to find an objective-function
global minimum. When charge is part of the input, this leads to a failure to min-
imize the L1-norm and to recover the correct particle families (Table 6).

Processing Speed. The measurements were taken on a Quad processor with 2.66
GHz and 8 Gbytes RAM. Overall, the runtimes are small. Computing an SVD
with 205 reactions and 193 particles takes about 0.05 seconds. In addition to our
theoretical analysis, the speed of SVD on our data set supports our expectation
that it will be fast even for data sets with 1000 times more reactions than ours.
The minimization operation also ran very fast (17 sec in the worst setting), which
shows that the optimization is highly feasible even for relatively large numbers
of entities (n = 193 in our dataset).

Recovering Particle Families: A Theoretical Explanation. The ability of the
MSMS criterion to recover the correct particle families is surprising because
the method receives data only about particle dynamics (reactions), not about
particle ontology. Schulte and Drew [17,18] provide a theoretical explanation of
this phenomenon: It can be proven using linear algebra that if there is some
maximally strict conservation law matrix with disjoint corresponding particle
families, then the particle families are uniquely determined by the reaction data.
Moreover, the conservation matrix corresponding to these particle families is the
unique MSMS optimizer (up to changes of sign).

Discovery of Conservation Laws via Matrix Search 249

We note that all results are robust with respect to adding more data points
consistent with the Standard Model, because the CBTEM quantities are max-
imally strict for our data set D already, hence they remain maximally strict for
any larger data set consistent with the Standard Model.

Learning Molecular Structure. Applying the minimization scheme to the chem-
istry reaction data of Table 3 recovers the correct structure matrix of Table 4.
The α optimization parameter was set to 10, and the runtime was about 2 sec.
While this dataset is small, it shows the applicability of our procedure in another
scientific domain that was previously studied by other researchers.

Summary. Our results show that the MSMS criterion formalizes adequately the
goals that scientists seek to achieve in selecting conservation theories: MSMS
theories explain why unobserved reactions do not occur [9, Sec.4], they mini-
mize the magnitude of conserved quantities, and by the theorem of Schulte and
Drew [17,18], they connect conservation laws with disjoint particle families. In
contrast, our algorithmic method for finding MSMS theories was derived from
efficiency considerations and does not match how physicists have gone about
finding conserved quantities: they started with plausible particle families, de-
rived conservation laws, then checked them against the data [18]. This amounts
to using domain knowledge to solve a computationally challenging problem. Our
minimization method could be used to check results derived from domain-specific
intuitions, or applied when domain knowledge is not available.

5 Conclusion and Future Work

We applied the classic matrix search framework of Raúl Valdés-Pérez et al. [2]
to two key problems in the analysis of particle reaction data: Finding conserved
quantities and particle families. Our approach is based on a new selection crite-
rion for conservation law theories: to select maximally strict maximally simple
models. Maximally strict models rule out as many unobserved reactions as possi-
ble, and maximally simple models minimize the L1-norm, the sum of the absolute
values of the matrix entries. We described an efficient MSMS optimization proce-
dure, that scales linearly with the number of datapoints (= observed reactions).
An analysis of particle accelerator data shows that the fundamental Standard
Model of particles is maximally strict and maximally simple. This means that
the MSMS criterion makes exactly the same predictions as the Standard Model
about which interactions among particles are possible, and it rediscovers four of
the standard particle families given our reaction data set (or any extension of
it that is consistent with the Standard Model). The MSMS criterion correctly
recovers the chemical structure of compounds on the data described by Langley
et al. [1, Ch.8]. In future work we plan to apply the algorithm to other par-
ticle data sets, such as those that will come from the Large Hadron Collider.
On new data that have been analyzed less exhaustively it may well be possible
for our algorithm to find new conservation theories, or at least to support their
discovery.

250 O. Schulte and M.S. Drew

References

1. Langley, P., Simon, H., Bradshaw, G., Zytkow, J.: Scientific Discovery: Computa-
tional Explorations of the Creative Processes. MIT Press, Cambridge (1987)

2. Valdés-Pérez, R., Żytkow, J.M., Simon, H.A.: Scientific model-building as search
in matrix spaces. In: AAAI, pp. 472–478 (1993)

3. Valdés-Pérez, R.: Computer science research on scientific discovery. Knowledge
Engineering Review 11, 57–66 (1996)

4. Rose, D., Langley, P.: Chemical discovery as belief revision. Machine Learning 1,
423–452 (1986)

5. Valdés-Pérez, R.: Conjecturing hidden entities by means of simplicity and con-
servation laws: machine discovery in chemistry. Artificial Intelligence 65, 247–280
(1994)

6. Kocabas, S.: Conflict resolution as discovery in particle physics. Machine Learning 6,
277–309 (1991)

7. Valdés-Pérez, R.: Algebraic reasoning about reactions: Discovery of conserved prop-
erties in particle physics. Machine Learning 17, 47–67 (1994)

8. Valdés-Pérez, R., Erdmann, M.: Systematic induction and parsimony of phenomeno-
logical conservation laws. Computer Physics Communications 83, 171–180 (1994)

9. Schulte, O.: Simultaneous discovery of conservation laws and hidden particles with
smith matrix decomposition. In: IJCAI 2009, pp. 1481–1487 (2009)

10. Schmidt, M., Niculescu-Mizil, A., Murphy, K.: Learning graphical model structure
using L1-regularization path. In: AAAI (2007)

11. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cam-
bridge University Press, Cambridge (2003)

12. Eidelman, S., et al. (Particle Data Group): Review of Particle Physics. Physics
Letters B 592, 1+ (2008)

13. Cottingham, W., Greenwood, D.: An introduction to the standard model of particle
physics, 2nd edn. Cambridge University Press, Cambridge (2007)

14. Ne’eman, Y., Kirsh, Y.: The Particle Hunters. Cambridge University Press, Cam-
bridge (1983)

15. Gell-Mann, M., Ne’eman, Y.: The eightfold way. W.A. Benjamin, New York (1964)
16. Bau, D., Trefethen, L.N.: Numerical linear algebra. SIAM, Philadelphia (1997)
17. Schulte, O., Drew, M.S.: An algorithmic proof that the family conservation laws

are optimal for the current reaction data. Technical Report 2006-03, School of
Computing Science, Simon Fraser University (2006)

18. Schulte, O.: The co-discovery of conservation laws and particle families. Studies in
the History and Philosophy of Modern Physics 39(2), 288–314 (2008)

Gaussian Clusters and Noise: An Approach
Based on the Minimum Description Length

Principle�

Panu Luosto1,3, Jyrki Kivinen1,3, and Heikki Mannila2,3

1 Department of Computer Science, University of Helsinki, Finland
2 Department of Information and Computer Science, Aalto University,

Helsinki, Finland
{Panu.Luosto,Jyrki.Kivinen}@cs.helsinki.fi,

Heikki.Mannila@aaltouniversity.fi

Abstract. We introduce a well-grounded minimum description length
(MDL) based quality measure for a clustering consisting of either spher-
ical or axis-aligned normally distributed clusters and a cluster with a
uniform distribution in an axis-aligned rectangular box. The uniform
component extends the practical usability of the model e.g. in the pres-
ence of noise, and using the MDL principle for the model selection makes
comparing the quality of clusterings with a different number of clusters
possible. We also introduce a novel search heuristic for finding the best
clustering with an unknown number of clusters. The heuristic is based
on the idea of moving points from the Gaussian clusters to the uniform
one and using MDL for determining the optimal amount of noise. Tests
with synthetic data having a clear cluster structure imply that the search
method is effective in finding the intuitively correct clustering.

1 Introduction

Finding hard clusters with underlying normal distributions from data is one of
the most fundamental clustering problems. By hard clustering we mean a par-
titioning of the data so that every element belongs to exactly one cluster. The
famous k-means problem can be seen as a special case of this type, even if its
probabilistic interpretation is somewhat artificial: the objective is to maximize
the likelihood of a mixture model of k spherical normal distributions with equal
weights and variances in the limiting case when the variances approach zero.
In a more general setting, there are at least two important challenges in apply-
ing Gaussian mixture models for clustering in practice. Firstly, real world data
seldom fit a pure model very well, and one might want to refine the model for
additional robustness. Secondly, one does not usually want to fix the number of
clusters arbitrarily but to find the k that fits the data at hand best.

� Supported by Academy of Finland grant 118653 (Algodan) and the PASCAL Net-
work of Excellence.

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 251–265, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

252 P. Luosto, J. Kivinen, and H. Mannila

We increase the robustness of the model by adding a component with a uni-
form distribution in an arbitrary box with axis-aligned edges. An obvious mo-
tivation for this are situations where there is uniform background noise in the
data. We assume that the true domain of the data is unknown in advance, and
we also find no reason to restrict our model so that the set in which the uniform
distribution gets positive values would always include all the data. In contrast,
our model is capable of adapting to situations where the noise is coming from
a separate source and Gaussian clusters may locate also outside the domain of
the noise. However, the clustering method that we present in the next section,
is not suitable for that kind of data. We discuss this in Sect. 7.

There is a strong tradition of determining the most appropriate model com-
plexity, in this case the number of clusters, with criteria like Bayesian information
criterion, Akaike information criterion, minimum message length and different
forms of minimum description length (MDL). See discussion about the differ-
ences of the methods in [3]. The modern form of MDL, normalized maximum
likelihood (NML), has many important optimality properties, but it is not di-
rectly usable for encoding of the data in our case for reasons that are explained
in detail in the Sects. 5 and 6. As our main contribution we introduce a practi-
cal and well-grounded quality measure for model selection. Our quality criterion
has a clear coding based interpretation, and according to the MDL principle,
we avoid arbitrary assumptions about the data. We also deal with the problems
that arise from the singularities of the code length function. As models we use
spherical and axis-aligned normal distributions, for which the code lengths are
easy to derive, but not general normal distributions with arbitrary covariance
matrices.

It is naturally possible to use our code length function for the selection of
the best clustering from a set of candidates with different number of clusters,
no matter which search method has been used. For example, the expectation
maximization (EM) algorithm [2] using a model with one uniform cluster would
be adequate for the purpose. As an alternative, we propose a simple heuristic in
which only normally distributed clusters are searched for first and the noise clus-
ter is determined then by removing points from the Gaussian clusters. Synthetic
data is used in experiments whose objective is to test if the code length and the
method work as expected when the intuitively correct clustering is known.

2 Search Method

Even if the main contribution of this paper lies in the code length function of the
clustering, we present our search method first. It requires a quality measure of
the clustering that takes the complexity of the model into account. This differs
from the typical situation, where the best clustering with a certain number of
clusters maximizes the likelihood of the data, and the MDL principle (or a similar
criterion) is used for choosing the best clustering out of a set of clusterings with
different number of clusters. In our case, the complexity of the model changes
within a single run of the method, which makes a maximum likelihood based
approach unfeasible.

Gaussian Clusters and Noise: An Approach Based on the MDL Principle 253

First, we search for k Gaussian clusters with a greedy version of the common
EM algorithm, which is somewhat simpler and faster than the standard EM
algorithm with soft cluster assignments. The value k should be larger than the
actual number of clusters we expect to find in the data. In a variant of the
method we also include a uniform component in the model of the EM algorithm.
The greedy EM algorithm gives us a mixture model in which every point belongs
to exactly one cluster. We estimate the weights of the clusters as well as their
parameters, and order the points according to ascending density in the model.
Then, using this ordering of the points, which we do not change any more, we
move points one by one from the Gaussian clusters into the uniform one. After
each move, we update the parameters of the Gaussian cluster that the point is
taken from and the uniform cluster that the point is moved into, but we do not
alter any other parameters or assignments of points to clusters. Notice that the
geometry of the uniform cluster is not fixed but the cluster may grow because of
the new point. After each move we also calculate the MDL of the corresponding
clustering. Naturally, every Gaussian cluster becomes empty at some point of
the method. At the end we have as many code lengths as there are points,
corresponding to clusterings with 0 to k Gaussian clusters. The clustering with
the shortest code length is returned.

The quality or the code length of the final clustering is dependent on the
initial number of Gaussian clusters, and we benefit from running the algorithm
with several different values of k, even if tests with synthetic data imply that the
method is not sensitive to the choice of k. Because using random seeding at the
EM phase of the method is advisable, the method should be run several times
with each k too.

We now give the pseudocode of the method. Steps 1 and 2 describe the seed-
ing phase. The D2 seeding of Arthur and Vassilvitskii [1] is a random seeding
algorithm that tends to pick initial centres lying far apart form each other.

Let xn = (x1, x2, . . . , xn) ∈ (Rd)n be a data sequence and let k ∈ {1, 2, . . . , n}
be the initial number of clusters. We consider the covariance matrices of normal
distributions that are either of the type σ2Id (spherical model) or of the type
diag(σ2

1 , σ2
2 , . . . , σ2

d) (axis-aligned model). Let x � y denote that x is a subse-
quence of y, and let |x| denote the length of the sequence x. If the model in the
EM algorithm has a uniform component, let the proportion of points belonging
to the uniform cluster in the beginning be β.

1. Choose k initial cluster centres c1, c2, . . . , ck using the D2 seeding.
2. For each i ∈ {1, 2, . . . , k}, set the cluster Si = (xi1, xi2, . . . , ximi) � xn so

that for all j ∈ {1, 2, . . . , mi}, it holds ‖xij − ci‖ = min
{
‖xij − ch‖ | h ∈

{1, 2, . . . , k}
}
. Every element of xn must belong to exactly one cluster. If

there are multiple possible cluster assignments here, the ties should be broken
randomly. If the model has a uniform component, the points determining
the smallest enclosing box of xn are assigned to the uniform cluster as well
as a uniformly at random picked subsequence of other points so that the
proportion of the points in the uniform cluster equals β.

254 P. Luosto, J. Kivinen, and H. Mannila

3. Run the greedy EM algorithm until the maximum likelihood converges.
4. Sort the points according to the ascending density in the model found. Let

the sorted sequence be (y1, y2, . . . , yn).
5. From now on, the model always includes a uniform component. If necessary,

add an empty uniform cluster. Calculate the MDL of the clustering according
to the model.

6. For each i ∈ {1, 2, . . . , n}:
(a) Move yi to the uniform cluster.
(b) Recalculate the parameters of the uniform cluster and the cluster yi used

to belong to; if the original cluster of yi became empty, decrement the
number of clusters in the model by one.

(c) Calculate and store the MDL of the new clustering.
7. Return the clustering that had the smallest MDL.

The order in which the points are moved to the uniform cluster does not change
after the step 4 in the previous method. A natural variant of the method would
be to update also the densities and the order of the points that are not yet in
the uniform cluster after each move. We do not consider this computationally
more demanding version in this paper.

3 Minimum Description Length Principle

In this section, we describe briefly some basic concepts of the MDL principle,
including the NML. The MDL principle [3,11] was first introduced by Rissanen
in [7] and then developed e.g. in [9,10]. Informally, the best clustering is in our
case the one that enables the most effective compression of the data and the
classification of the points into clusters according to the model classes used. By
a model class we mean a parametric collection of probability distributions. A
model class is only a technical means for encoding, the MDL principle does not
assume that the data is a sample from a probabilistic source. The most effective
way to encode a sequence of data xn ∈ (Rd)n according to a model class would
be using the maximum likelihood parameters. The problem is that the receiver
cannot know the right parameters in advance. In a two-part code, the maximum
likelihood parameters are encoded in the first part of the message, and the data
is encoded according to the maximum likelihood distribution in the second part.

Even if the two-part encoding scheme is easily understandable, it is not the
most effective one. When the parameters are continuous, two-part coding also
always includes the problem how the parameter space should be discretized op-
timally: if more bits are used for encoding of the parameters, the second part of
the code becomes shorter. Modern MDL favours one-part NML code because of
its optimality properties. If the NML code can be defined given a model class,
it is the best worst-case code. NML code also comes closest to the unreachable
optimum, the maximum likelihood code, in the probabilistic sense when the mean

Gaussian Clusters and Noise: An Approach Based on the MDL Principle 255

is taken with respect to the worst possible data generating distribution. In case
of a discrete probability distribution over a finite set X , the NML distribution
according to a certain model class is

PNML(x) =
P (x; θ̂(x))∑

y∈X P (y; θ̂(y))
, (1)

where θ̂(x) denotes the maximum likelihood parameters of x. Denoting the base-
2-logarithm as log, the corresponding code length of x is then − log PNML(x). The
quantity log

∑
y∈X P (y; θ̂(y)) is called the parametric complexity.

In this paper, we consider continuous distributions, and for deriving the NML
distribution we replace the sum in (1) by an integral. The normalizing integral di-
verges unfortunately in many interesting cases, including those that are relevant
for our data encoding. The NML with an infinite complexity is a problematic
subject, because there is no simple way to define the best possible code in that
case [3]. In our approach, we derive first a NML code length for the case when
the data is restricted, then remove the restricting parameters by using very flat
priors for them. We circumvent the calculation of difficult integrals by consider-
ing a limiting case where the conditional NML density grows unbounded. We do
not discuss the optimality properties of our codes more closely. Intuitively, they
appear quite effective however.

Following a common practice, we call also negative logarithms of probability
densities code lengths, even if the term is not to be taken literally. Comparing
negative logarithms of densities is equivalent with comparing actual code lengths
in the limit when the coding precision approaches infinity. In practical situations,
data are rational numbers and minimizing the negative logarithm of the density
is not exactly equal to finding the most effective way to encode the data. This
does not usually cause problems, but if the density can grow unbounded in the
neighbourhood of some point, the results may be surprising, especially when the
data is represented with greater precision than we find trustworthy. Therefore it
might be reasonable to fine-tune the model in order to limit the density. That is
what we do at the end of Sects. 5 and 6.

4 Outline of the Code Length Calculation

Let xn = (x1, x2, . . . , xn) ∈ (Rd)n be a sequence. We calculate the MDL for
a clustering of xn as the sum of the code length for the classification of the
points and the code length of the data given the classification. The classifica-
tion is encoded as a sequence of integers that indicate the cluster memberships.
We use the number 0 for the uniform cluster and numbers 1, 2, . . . , k for the
Gaussian clusters. In our model class the sequence consist of n independently
and identically-distributed categorical random variables, and we use NML code
for encoding. The numbers from 1 to k are only used as labels for the Gaussian

256 P. Luosto, J. Kivinen, and H. Mannila

clusters, for example (1, 0, 1, 2) and (2, 0, 2, 1) denote the same classification. In
order to have just one presentation for each classification, we use a canonical
numbering of the clusters. The classification sequences are interpreted as num-
bers with the radix k + 1, and the smallest possible number is used to denote a
classification (in our example 1012). Let n = (n0, n1, . . . , nk) be the cluster sizes
according to the canonical numbering scheme. The maximum likelihood of the
classification is then

PML(n) = k!
k∏

i=0

(ni

n

)ni

,

where we define 00 ≡ 1. Calculating the normalizing sum

C(k + 1, n) =
∑

m0,m1,...,mk∈{0,1,...,n}:
m0+m1+···+mk=n

n!
m0! m1! . . . mk!

k∏
i=0

(mi

n

)mi

(2)

efficiently is untrivial [5]. We use instead a very accurate Szpankowski approxi-
mation [12,5] for the natural logarithm of C(k + 1, n). According to it

ln C(k, n) =
k − 1

2
ln

n

2
+ ln

√
π

Γ (k/2)
+
√

2 k Γ (k/2)
3Γ ((k − 1)/2)

1√
n

+
(

3 + k(k − 2)(2k + 1)
36

− Γ 2(k/2) k2

9Γ 2((k − 1)/2)

)
1
n

+O(n−3/2) .

The code length of the classification of the points is − logPML(n)+log C(k+1, n).
In our coding context, the number of Gaussian clusters is not known to the

receiver in advance and has to be encoded in beginning of the message. But
we assume according to the MDL philosophy that all the possible values of
k ∈ {0, 1, . . . , n} are equally likely, hence the encoding of k yields always the
same number of bits. Therefore, we can ignore the code length that comes from
the encoding of the k while comparing code lengths of different clusterings.

We encode the subsequences of the clusters independently and concatenate
their code in the canonical cluster ordering after the classification part of the
code. In the decoding phase, we first decode the canonical representation of the
classification, then the subsequences of the individual clusters. The original data
sequence can be reconstructed from the subsequences using the classification.
In Sects. 5 and 6, we derive the code lengths for the uniform and Gaussian
components in detail. To be precise, we give only the densities whose negative
logarithms are called code lengths.

5 Code Length for the Uniform Cluster

Before proceeding to the derivation of the code length for the uniform cluster,
we introduce a very flat density function that is used as a prior for parameters

Gaussian Clusters and Noise: An Approach Based on the MDL Principle 257

in Sects. 5 and 6. The choice of the prior is an important part of the design of
the code length functions. In [8], Rissanen gives a density function for the reals
in the interval [1, ∞[. We generalize it without changing its asymptotic proper-
ties by adding a parameter b that defines how strongly the probability mass is
concentrated to the vicinity of the origin. Denote xy as x ↑ y for typographical
reasons. Let x ↑↑ 0 = 1 and let x ↑↑ y = x ↑ x ↑ . . . ↑ x︸ ︷︷ ︸

y copies

for x > 0, y ∈ N. Now

let b = 2 ↑ 2 ↑ . . . ↑ 2 ↑︸ ︷︷ ︸
k−1 copies of ‘2↑’s

δ where k ∈ N and δ ∈ [1, 2]. For x ∈ R+, we define the

density

fR+(x; b) =
1− ln 2
(ln 2)k

1
1 + log δ (ln 2− 1)

1
(x + b)h(x + b)

(3)

where

h(x) =

{
1 if log x ≤ 1

log x h(log x) otherwise.

It is straightforward to verify that (3) is indeed a density function. For the whole
real line we simply use the function fR(x; b) = fR+(|x|; b)/2.

Next, we derive a code length for the uniform component. Let the length of
the sequence xn be n ∈ {2, 3, . . . } for the time being. We denote the centre of the
smallest enclosing ball of xn as c(xn) = (min(xn) + max(xn))/2 and the radius
of that ball as r(xn) = (max(xn) − min(xn))/2. Our model class consists of
uniform distributions in rectangular boxes having axis-aligned edges. It suffices
to consider the one-dimensional case because in the model class the coordinates
are independent, and we get the density of a point by taking the product of the
densities of the coordinates. Formally, the one-dimensional model class is the set
of densities {f(·; c, r0) | c ∈ R, r0 > 0}, where

f(xn; c, r0) =

{
(2r0)−n if xn ∈ [c− r0, c + r0]n and r(xn) > 0

0 otherwise.

At the end of the section, we define code lengths also for sequences xn ∈ Rn

having r(xn) = 0.
We consider first a case in which the data is restricted to a certain set and the

NML can be defined. Let c0 ∈ R and let δ, r1, r2 > 0. Assume that r1 < r2. Let
the set of sequences to be considered be A = {xn ∈ Rn | c(xn) ∈ [c0 − δ, c0 +
δ], r(xn) ∈ [r1, r2]}. The maximum likelihood function for the sequences in A is
gML(xn) = (2r(xn))−n, and the corresponding normalizing integral is

258 P. Luosto, J. Kivinen, and H. Mannila

C(c0, δ, r1, r2) =
∫

xn∈A

gML(xn) dxn (4)

= n(n− 1)
∫∫

x1,x2∈R:
(x1+x2)/2∈[c0−δ,c0+δ],

(x2−x1)/2∈[r1,r2]

∫ x2

x1

· · ·

· · ·
∫ x2

x1

1
(x2 − x1)n

dxn dxn−1 . . . dx2 dx1

= 2n(n− 1)
∫ c0+δ

c0−δ

∫ r2

r1

1
4r2 dr dc (5)

= n(n− 1) δ

(
1
r1
− 1

r2

)
.

There was a coordinate change (x1, x2) = (c − r, c + r) at (5) in the previous
integration. Dividing the maximum likelihood by the normalizing integral yields
the NML density function

fNML(xn; c0, δ, r1, r2) =
1

(2r(xn))n

1
n(n− 1)

r1r2

r2 − r1

1
δ

(6)

if xn ∈ A.
The normalizing integral (4) diverges if we let A = Rn, which corresponds to

the situation c0 = 0, δ → ∞, r1 = 0 and r2 → ∞. The next step is therefore
to replace c0, δ, r1 and r2 with more general parameters that allow us to define
a non-zero density for all xn ∈ R having r(xn) > 0. We assume that r1 is
independent of δ and c0. Consider the parameters r1 and r2 first. Let t > 1
and r2(r1) = tr1. Requiring that r(xn) ∈ [r1, r2(r1)] = [r1, tr1], we replace the
coefficient (r1r2)/(r2 − r1) = (tr1)/(t− 1) in (6) with the integral∫ r(xn)

r(xn)/t

pr1(r)
tr

t− 1
dr ,

where pr1 is a continuous prior of the parameter r1. Letting t approach 1 from
above, we get

lim
t→1+

∫ r(xn)

r(xn)/t

pr1(r)
tr

t− 1
dr

= lim
t→1+

(
r(xn)− r(xn)

t

)
pr1(r(x

n))
t r(xn)
t− 1

= r(xn)2 pr1(r(x
n)) .

Next, we get rid of the coefficient 1/δ and the dependence on c0 in (6). Let
δ > 0 and let pc0 be a continuous prior density function of the parameter c0.
The integration goes over all such values of c0 that c(xn) ∈ [c0 − δ, c0 + δ]. In a
similar fashion as above, we substitute 1/δ with the limiting function

lim
δ→0+

∫ c(xn)+δ

c(xn)−δ

pc0(c)
1
δ

dc = 2pc0(c(x
n)) . (7)

Gaussian Clusters and Noise: An Approach Based on the MDL Principle 259

The final density function is thus

f(xn; pr1 , pc0) =
1

(2r(xn))n−2

pr1(r(xn)) pc0(c(xn))
2n(n− 1)

(8)

if xn ∈ Rn and r(xn) > 0.
For practical purposes, at least one problem has to be solved: how to encode

sequences consisting of equal points. In an axis-aligned box model the problem
arises when the coordinates of the points are equal in some dimension. We cannot
continuously extend (8) for the case r(xn) = 0, because f(xn; pr1 , pc0) grows
unbounded when r(xn) → 0. Our solution is to choose a special prior so that
f(xn; pr1 , pc0) has a constant value when r(xn) ∈]0, ε]. We give the prior in a
slightly restricted case. Let b = 2 ↑ 2 ↑ . . . ↑ 2 ↑︸ ︷︷ ︸

k−1 copies of ‘2↑’s

δ and let ε = 2 ↑ 2 ↑ . . . ↑ 2 ↑︸ ︷︷ ︸
k−1 copies of ‘2↑’s

α−b

where k ∈ N and α, δ ∈ [1, 2], α > δ. A continuous density giving fulfilling the
previous requirements is

pr1(r1) =

{
c fR+(ε; b) ε2−n rn−2

1 if r1 ∈ [0, ε[

c fR+(r1; b) if r1 ≥ ε ,

where fR+ is a density defined in (3) and c is a constant for normalization.
Because ∫ ε

0
fR+(x; b) dx =

∫ ε

0

1− ln 2
(ln 2)k

1
(x + b)h(x + b)

dx

=
1− ln 2
(ln 2)k

∫ b+ε

b

1
y h(y)

dy

=
1− ln 2
(ln 2)k

/ b+ε

y=b

(ln 2)k log(k) y

= (1− ln 2)(log α− log δ)

and ∫ ε

0
fR+(ε; b) ε2−n rn−2 dr =

fR+(ε; b)
n− 1

ε ,

we get

c =
(

1− (1− ln 2)(log α− log δ) +
fR+(ε; b)

n− 1
ε

)−1

.

We still need another density, if the length of the sequence is 1. A natural choice
is f((x); pr1 , pc0) = fR(x).

6 Code Lengths for Spherical and Axis-Aligned Gaussian
Clusters

In this section, we derive a code length function according to the model class
consisting of spherical normal distributions. Based on that, we get the code

260 P. Luosto, J. Kivinen, and H. Mannila

length according to the model class with axis-aligned normal distributions in a
trivial way. Deriving the NML at (10) resembles the one-dimensional case, see
[4] pp. 195–213 with considerations about restricting the parameters.1

Let xn = (x1, x2, . . . , xn) ∈ (Rd)n where n ∈ {2, 3, . . .}. Let ϕμ,σ2 denote the
density function of a normal distribution with the mean μ and the covariance
matrix σ2Id. Let μ̂ = μ̂(xn) = (1/n)

∑n
i=1 xi be the maximum likelihood mean

and σ̂2 = σ̂2(xn) =
∑n

i=1 ‖xi − μ̂‖2/(dn) the ML variance. Now, if xn is an
i.i.d sample from a N (μ, σ2Id) source, then μ̂ ∼ N (μ, (σ2/n)Id). The maximum
likelihood estimate of the variance can be written as

σ̂2(xn) =
σ2

dn

d∑
i=1

1
σ2

n∑
j=1

(xj(i)− μ̂(j))2︸ ︷︷ ︸
∼χ2(n−1)

where xj(i) and μ̂(i) denote the ith coordinate of xj and μ̂ respectively. It can be
seen that σ̂2(xn) is proportional to a sum of d independent χ2(n− 1) variables,
and that (dnσ̂(xn))/σ2 ∼ χ2(dn− d). Additionally, μ̂ and σ̂2 are independent.

The density of xn can be therefore factorized as

ϕμ,σ2 (xn) = ϕμ,σ2(xn | μ̂, σ̂2) ϕμ,σ2/n(μ̂) fχ2,dn−d

(
dn

σ2 σ̂2
)

dn

σ2

where fχ2,dn−d is the density function of a chi-square distribution with dn − d
degrees of freedom, and the product of the two last coefficients is the density of
σ̂2. We need the maximum likelihood factorization, which is

ϕμ̂,σ̂2(xn) = ϕμ̂,σ̂2(xn | μ̂, σ̂2) ϕμ̂,σ̂2/n(μ̂) fχ2,dn−d(dn)
dn

σ̂2

= ϕμ̂,σ̂2(xn | μ̂, σ̂2) Cd,n · (σ̂2)−(d/2)−1

where

Cd,n =
(

dn

2e

)(dn)/2

(dπ)−d/2
(

Γ

(
dn− d

2

))−1

.

Assume that μ̂ ∈ B(μ0, r) and σ̂2 ∈ [σ2
1 , σ2

2], where r > 0 and σ2
1 , σ2

2 > 0. Let
Θ(μ, σ2) = {yn ∈ (Rd)n | μ̂(yn) = μ, σ̂2(xn) = σ2}. We get the normalizing
integral

I(μ0, r, σ
2
1 , σ2

2) (9)

=
∫

μ∈B(μ0,r)

∫ σ2
2

σ2
1

∫
xn∈Θ(μ,σ2)

ϕμ,σ2(xn | μ, σ2)Cd,n(σ2)−(d/2)−1 dxn dσ2 dμ

= Cd,n Vd(r)
2
d

(
1
σd

1
− 1

σd
2

)
.

1 There are some minor mistakes in [4]: on p. 203 at (8.13) the arguments of the
exponential function have been written falsely; on p. 206 on the 6th line the result
should be kn4R/σ0.

Gaussian Clusters and Noise: An Approach Based on the MDL Principle 261

Dividing the maximum likelihood by I(μ0, r, σ
2
1 , σ2

2) yields the normalized max-
imum likelihood

fNML(xn; μ0, r, σ
2
1 , σ

2
2) = ϕμ̂,σ̂2(xn)

d

2 Cd,n

1
Vd(r)

σd
1σd

2

σd
2 − σd

1
. (10)

The normalizing integral (9) diverges if taken over (Rd)n. Similarly as in the
previous subsections, we use the continuous priors fμ0 and fσ1 for μ0 and σ1,
respectively, and we let σ2(σ1) = tσ1. We denote the square root of the sample
variance as σ̂(xn). Noting that

lim
r→0+

∫
μ∈B(μ̂(xn),r)

1
Vd(r)

fμ0(μ) dμ = fμ0(μ̂(xn))

and that

lim
t→1+

∫ σ̂(xn)

σ̂(xn)/t

σd(tσ)d

(tσ)d − σd
fσ1(σ) dσ = σ̂(xn)d+1 fσ1(σ̂(xn))

1
d

,

we have the final density

f(xn; gμ0 , gσ1)

=
1
2

(πd)(d−dn)/2 n−dn/2 Γ

(
dn− d

2

)
σ̂(xn)d−dn+1 fμ0(μ̂(xn)) fσ1(σ̂(xn)) .

Let Σ be any diagonal covariance matrix in the model N (μ, Σ). Because the
coordinates are independent, a density for this model can be formed by setting
d = 1 in the spherical model, which yields a one-dimensional model, and taking
a product of the coordinate densities. In the same way as at the end of Sect. 5,
we avoid singularities by a special prior

fσ1(σ) =

{
c fR+(ε; b) εd(1−n)+1 σd(n−1)−1 if σ ∈ [0, ε[

c fR+(σ; b) if σ ≥ ε

where

c =
(

1− (1− ln 2)(log α− log δ) +
fR+(ε; b)
d(n− 1)

ε

)−1

.

7 Experiments

Data. Empirical tests were made using synthetic data with a clear cluster struc-
ture. However, the uniform component is very dominant in the 2-dimensional
data sets with a large number of clusters, making the discovery of the clustering
challenging.

There were two main categories of 2, 5 and 20-dimensional synthetic data in
the experiments. In the category 1, all the the Gaussian clusters were surrounded

262 P. Luosto, J. Kivinen, and H. Mannila

by uniform background noise in an axis-aligned box. In the category 2, the
Gaussian clusters could also locate outside the box containing uniform noise. The
main categories were each divided into two subcategories in which the Gaussian
clusters were either spherical (S) or axis-aligned (A). The standard deviations
of the normal distributions were drawn uniformly at random from the interval
[1, 3] in all the cases. The number of Gaussian clusters varied from 1 to 20.
For each category (1S, 1A, 2S and 2A), dimension and number of Gaussian
clusters, 5 data sets were generated using different parameters of the generating
distributions.

We describe first the point generation in the category 1. The dimensions of
the box for the uniform background noise were drawn uniformly at random
from the interval [50, 200]. The location of the closest corner of the box to the
origin was drawn uniformly from the set [−50, 50]d where d is the number of
dimensions. Then the means of the Gaussian distributions were drawn uniformly
out of the box, ensuring however, that they do not lie too close to the border of
the box or to each other. To be precise, in the case of spherical Gaussians (1S),
the distance to the border was at least 3 times the standard deviation of the
Gaussian cluster, and the distance between two means at least 3 times the sum
of the standard deviations of the generating distributions. The category with
axis-aligned Gaussians (1A) was similar but for each cluster the maximum of
the standard deviations on the diagonal of the covariance matrix was used.

The sizes of the Gaussian clusters for point generation were drawn uniformly
at random from the set {50, . . . , 150}. The size of the uniform cluster was always
2 times the sum of the sizes of the Gaussian clusters. After the points had been
drawn at random from the distributions, they were classified so that each point
was assigned to the distribution in which the density of the points was largest.
Finally, the data set was accepted only if each resulting cluster had at least 30
points.

The point generation in the category 2 was otherwise similar to that in the
category 1, but the box that is determined at the beginning was not used for
the uniform cluster, but the means of the Gaussian clusters were drawn from
that box instead. A smaller box B was generated for the uniform distribution
by drawing a coefficient from the interval [0.2, 1.0] for each dimension, scaling
the dimensions of the original box with the coefficients and placing the box B
in a random location inside the original box.

Experiments and results. Three methods were tested. The first two cor-
responded to the description in Sect. 2 and they used either a pure Gaussian
mixture or a Gaussian mixture with a uniform component in the EM phase.
We refer to these methods as GEM-plus and GUEM-plus, respectively. For com-
parison, we also ran the greedy EM algorithm with a Gaussian mixture and a
uniform component as such, using our code length for choosing the best clus-
tering from several candidates corresponding to different parameter settings and
test runs of the EM algorithm. We call this method GUEM. We denote the
original number of Gaussian clusters of a data set as k and the number of Gaus-
sian clusters in the beginning of the method as m. With the GEM-plus method,

Gaussian Clusters and Noise: An Approach Based on the MDL Principle 263

we ran our method for each data set with the values m ∈ {1, 2, . . . , 50}. For
GUEM-plus and GUEM we used the values m ∈ {1, 2, . . . , 30} and proportions
of uniform points in the beginning β ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The method was
repeated 20 times for every parameter combination. Both the spherical and the
axis-aligned model were used in the clustering method with all the data sets.
However, the influence of the model was relatively small in these tests. The
quality of the discovered clustering was mainly estimated using an information
based distance [6]. The weakness of using this distance in our context is that
the uniform cluster is handled symmetrically with the other clusters. When the
plots of the two-dimensional clusterings were inspected visually, clusterings with
a distance at most 0.5 bits from the original clustering looked intuitively nearly
optimal.

The differences between the clusterings found by the three methods were
typically quite small, and a direct comparison is difficult because of the different
parameters. All the methods performed very well with 5 and 20-dimensional data
from category 1, and with 2-dimensional data from the same category at least
when k < 12. The 2-dimensional data with a large k had a very high density of
uniform noise, and often some of the original Gaussian clusters were classified
to the uniform component.

There were some interesting general observations. GEM-plus and GUEM-
plus seemed to be quite unsensitive to the choice of m. Fairly good results could
have been achieved just by using always the value m = 30. In contrast, GUEM
needed a larger number of different parameter combinations in order to find
good quality clusterings (Fig. 2). But also with GUEM m war mostly larger
than the final number of Gaussian clusters, because the clusters could become
empty in the greedy EM algorithm. Figure 1 illustrates which values of m led to
the best clusterings that GEM-plus found in the two-dimensional case, and how
the number of clusters in the final clustering corresponded to the “true” number
of clusters.

GEM-plus suited poorly for the clustering of two-dimensional data from the
category 2. The original uniform cluster was typically covered with many Gaus-
sian clusters. The reason for this seems to be clear. The addition of a single point
to the noise cluster can make the volume of the corresponding box much larger,
leading to a greatly increased code length for the points of the noise cluster.
Because the cluster cannot shrink thereafter, the method is extremely sensitive
with this kind of data to the order in which the points are removed from the
Gaussian clusters.

A minor but an apparent weakness of GUEM was that it often found cluster-
ings in 5 and 20-dimensional data in which there were several excess clusters each
containing only a very small number of points. As one would expect, GUEM-plus
could prune these tiny clusters quite well. The best method for higher dimen-
sional data was however in this test GEM-plus, for which the 20-dimensional
test setting appeared to be trivial.

264 P. Luosto, J. Kivinen, and H. Mannila

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

Fig. 1. The number of Gaussian clusters at the beginning (green crosses) and at the
end (red pluses) of the GEM-plus runs resulting to smallest MDLs for different data
sets. The “true” number of Gaussian clusters is on the x-axis. The 2-dimensional data
sets belonged to the category 1A and spherical Gaussian models were used in the search
method.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2 4 6 8 10 12 14 16 18 20

GUEM, 2-dim, m = 30
GUEM, 2-dim, best m

GEM-plus, 2-dim, m = 30
GEM-plus, 2-dim, best m

GUEM, 5-dim, best m
GEM-plus, 5-dim, best m

Fig. 2. The influence of m to the final clustering with GEM-plus and GUEM. Value
m = 30 is compared with the best m. The “true” number of clusters is on the x-
axis, the distance between the original and the discovered clustering in bits on the y-
axis (averages over 5 data sets). The four uppermost lines refer to 2-dimensional data
of the type 1S, search methods used axis-aligned Gaussian models. The two lowest
lines indicate that clustering of the corresponding 5-dimensional data was considerably
easier.

Gaussian Clusters and Noise: An Approach Based on the MDL Principle 265

8 Conclusion

We introduced a practical MDL based quality measure for a clustering consisting
of Gaussian clusters and a uniform component. Experiments with synthetic data
having a clear cluster structure hinted that the measure can be used succesfully
with different clustering methods. Our simple heuristics GEM-plus and GUEM-
plus had the remarkable quality in the experiments that they seemed to be quite
unsensitive to the initial number of Gaussian clusters, given with the parameter
m. Future plans include improving the clustering methods so that they would
work well with a wider range of different data.

References

1. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
SODA 2007: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete algorithms, Philadelphia, PA, USA, pp. 1027–1035. Society for Industrial
and Applied Mathematics (2007)

2. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological) 39(1), 1–38 (1977)

3. Grünwald, P.D.: The Minimum Description Length Principle. The MIT Press,
Cambridge (2007)

4. Grünwald, P.D., Myung, I.J., Pitt, M.A. (eds.): Advances in Minimum Description
Length Theory and Applications. The MIT Press, Cambridge (2005)

5. Kontkanen, P.: Computationally Efficient Methods for MDL-Optimal Density Es-
timation and Data Clustering. PhD thesis, University of Helsinki, Department of
Computer Science (2009)

6. Meilă, M.: Comparing clusterings–an information based distance. Journal of Mul-
tivariate Analysis 98(5), 873–895 (2007)

7. Rissanen, J.: Modeling by shortest data description. Automatica 14(5), 465–471
(1978)

8. Rissanen, J.: A universal prior for integers and estimation by minimum description
length. The Annals of Statistics 11(2), 416–431 (1983)

9. Rissanen, J.: Stochastic complexity. Journal of the Royal Statistical Society. Series
B (Methodological) 49(3), 223–239 (1987)

10. Rissanen, J.: Fisher information and stochastic complexity. IEEE Transactions on
Information Theory 42(1), 40–47 (1996)

11. Rissanen, J.: Information and Complexity in Statistical Modeling. Springer, New
York (2007)

12. Szpankowski, W.: Average case analysis of algorithms on sequences. John Wiley &
Sons, Chichester (2001)

Exploiting Code Redundancies in ECOC

Sang-Hyeun Park, Lorenz Weizsäcker, and Johannes Fürnkranz

Knowledge Engineering Group, TU Darmstadt, Germany
{park,lorenz,juffi}@ke.tu-darmstadt.de

Abstract. We study an approach for speeding up the training of error-correcting
output codes (ECOC) classifiers. The key idea is to avoid unnecessary compu-
tations by exploiting the overlap of the different training sets in the ECOC en-
semble. Instead of re-training each classifier from scratch, classifiers that have
been trained for one task can be adapted to related tasks in the ensemble. The
crucial issue is the identification of a schedule for training the classifiers which
maximizes the exploitation of the overlap. For solving this problem, we construct
a classifier graph in which the nodes correspond to the classifiers, and the edges
represent the training complexity for moving from one classifier to the next in
terms of the number of added training examples. The solution of the Steiner Tree
problem is an arborescence in this graph which describes the learning scheme
with the minimal total training complexity. We experimentally evaluate the al-
gorithm with Hoeffding trees, as an example for incremental learners where the
classifier adaptation is trivial, and with SVMs, where we employ an adaptation
strategy based on adapted caching and weight reuse, which guarantees that the
learned model is the same as per batch learning.

1 Introduction

Error-correcting output codes (ECOC) [5] are a well-known technique for handling
multiclass classification problems, i.e., for problems where the target attribute is a cate-
gorical variable with k > 2 values. Their key idea is to reduce the k-class classification
problem to a series of n binary problems, which can be handled by a 2-class classifi-
cation algorithm, such as a SVM or a rule learner. Conventional ECOC always use the
entire dataset for training each of the binary classifiers. Ternary ECOC [1] are a gener-
alization of the basic idea which allows to train the binary classifiers on subsets of the
training examples. For example, pairwise classification [8,9], which trains a classifier
for each pair of classes, is a special case of this framework.

For many common general encoding techniques, the number of binary classifiers
may exceed the number of classes by several orders of magnitude. This allows for
greater distances between the code words, so that the mapping to the closest code
word is not compromised by individual mistakes of a few classifiers. For example, for
pairwise classification, the number of binary classifiers is quadratic in the number of
classes. Thus, the increase in predictive accuracy comes with a corresponding increase
in computational demands at classification time. In previous work [11], we focused on
fast ECOC decoding methods, which tackled this problem. For example, for the special
case of pairwise classification, the quadratic complexity can be reduced to O(k log k)
in practice.

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 266–280, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Exploiting Code Redundancies in ECOC 267

In this paper, we focus on the training phase, where overlaps of training instances
in highly redundant codes are reduced without altering the models. This is done by
identifying shared subproblems in the ensemble, which need to be learned only once,
and by rescheduling the binary classification problems so that these subproblems can
be reused as often as possible. This approach is obviously feasible in conjunction with
incremental base learners, but its main idea is still applicable for the more interesting
case when SVMs are used as base learners, by reusing computed weights of support
vectors from related subproblems and applying an adapted ensemble caching strategy.

At first, we will briefly recapitulate ECOC with an overview of typical code designs
and decoding methods (section 2) before we discuss their redundancies and an algo-
rithm to exploit them in Section 3. The performance of this algorithm is then evaluated
for Hoeffding trees and for SVMs as base classifiers (Section 4). Finally, we will con-
clude and elaborate on possible future directions.

2 Error-Correcting Output Codes

Error-correcting output codes [5] are a well-known technique for converting multi-class
problems into a set of binary problems. Each of the k original classes receives a code
word in {−1, 1}n, thus resulting in a k × n coding matrix M . Each of the n columns
of the matrix corresponds to a binary classifier where all examples of a class with +1
are positive, and all examples of a class with −1 are negative. Ternary ECOC [1] are
an elegant generalization of this technique which allows 0-values in the codes, which
correspond to ignoring examples of this class.

As previously mentioned, the well known one-against-one and one-against-all de-
composition schemes for multiclass classification are particular codes within the frame-
work of ECOC. Other well-known general codes include:

Exhaustive Ternary Codes cover all possible classifiers involving a given number of
classes l. More formally, a (k, l)-exhaustive ternary code defines a ternary coding ma-
trix M , for which every column j contains exactly l values, i.e.,

∑
i∈K |mi,j | = l.

Obviously, in the context of multiclass classification, only columns with at least one
positive (+1) and one negative (−1) class are meaningful. These codes are a straight-
forward generalization of the exhaustive binary codes, which were considered in the
first works on ECOC [5], to the ternary case. Note that (k, 2)-exhaustive codes corre-
spond to pairwise classification.

In addition, we define a cumulative version of exhaustive ternary codes, which sub-
sumes all (k, i)-codes with i = 2 . . . l , so up to a specific level l. In this case, we speak
of (k, l)-cumulative exhaustive codes. For a dataset with k classes, (k, k)-cumulative
exhaustive codes represent the set of all possible binary classifiers.

Random Codes are randomly generated codes, where the probability distribution of the
set of possible symbols {−1, 0, 1} can be specified. The zero probability parameter
rzp ∈ [0, 1], specifies the probability for the zero symbol, p({0}) = r, whereas the
remainder is equally subdivided to the other symbols: p({1}) = p({−1}) = 1−r

2 . This
type of code allows to control the degree of sparsity of the ECOC matrix. In accordance
with the usual definition, we speak of random dense codes if rzp = 0, which relates to
binary ECOC.

268 S.-H. Park, L. Weizsäcker, and J. Fürnkranz

3 Redundancies within ECOC

3.1 Code Redundancy

Many code types specify classifiers which share a common code configuration. For
instance, in the case of exhaustive cumulative k-level codes, we can construct a sub-
classifier by setting some +1 bits and some −1 bits of a specified classifier to zero.
Clearly, the resulting classifier is itself a valid classifier that occurs in the ECOC matrix
of this cumulative code. Furthermore, every classifier f of length l < k, is subclassifier
of exactly 2 · (n− l) classifiers with length l+1, since there are n− l remaining classes
and each class can be specified as positive or negative. Such redundancies also occur
frequently in random codes with a probability of the zero-symbol smaller than 0.5, and
therefore also in the special case of random dense codes, where the codes consists only
of +1 and −1 symbols. On the other hand, the widely used one-against-one code has
no code redundancy, and the redundancy of the one-against-all code is very low.

In general, the learning of a binary classifier is independent of the explicit specifica-
tion, which class of instances is regarded as positive and which one as negative. So, from
a learning point of view, the classifier specified by a column mi = (m1i, . . . , mki) is
equivalent to −mi.

Formally, code redundancy can be defined as follows:

Definition 1 (Code Redundancy). Let fi and fj be two classifiers and (m1i, . . . , mki)
and (m1j , . . . , mkj) their corresponding (ternary) ECOC columns. We say fi and fj

are p−redundant, if for a ∈ {1 . . . k},

p = max(#{a |mai = maj, mai �= 0}, #{a |mai = −maj, mai �= 0})

Let d = max(dH(mi, mj), dH(−mi, mj)), where dH is the Hamming distance. Two
classifiers fi and fj are p-redundant, if and only if k−p = d−#{a ∈ {1 . . . k} |mai =
0 ∧ maj = 0}. Thus, in essence, classifier redundancy is the opposite of Hamming
distance except that bit positions with equal zero values are ignored. For convenience,
similarly to the symmetric difference of sets, we denote for two classifiers fi and fj the
set of classes which are only involved in one of their code configurations mi and mj

as fi fj . More precisely, fi fj = {ca | a ∈ {1 . . . k} ∧ |mai| + |maj | = 1}. In
addition, we speak of a specified classifier, if there exists a corresponding code-column
in the given ECOC matrix.

3.2 Exploitation of Code Redundancies

Code redundancies can be trivially exploited by incremental base learners, which are
capable of extending an already learned model on additional training instances. Then,
repeated iterations over the same instances can be avoided, since shared subclassifiers
only have to be learned once. The key issue is to find a training protocol that maximizes
the use of such shared subclassifiers, and therefore minimizes the redundant computa-
tions. Note that the subclassifiers do not need to be specified classifiers, i.e., they do not
need to correspond to a class code in the coding matrix.

This task may be viewed as a graph-theoretic problem. Let G = (V, E) be a weighted
directed graph with V = {nr} ∪ {fi} ∪ {fs}, i.e., each classifier fi and each possible

Exploiting Code Redundancies in ECOC 269

|B||B|

|A|+ |B|+ |C|

|B|+ |C|

|A|+ |B|+ |C|

|A|

|A|+ |C|

n2 ≈ AB|C

n4 ≈ A|C

n1 ≈ A|BC

nr

n3 ≈ B|C

Fig. 1. A sample training graph. Three classifiers f1 = A|BC, f2 = AB|C and f3 = B|C are
specified. The non-specified classifier f4 = A|C is added because it is the maximal common
subclassifier of f1 and f2. For each edge eij = (ni, nj) the weights depict the training effort for
learning classifier fj based on classifier fi (|A| is the number of training instances of class A).

subclassifier fs are in the set of nodes V . Furthermore, the special root node nr is
connected to every other node ni ∈ V with the directed edge (nr, ni). Besides, for each
two non-root nodes ni and nj , there exists a directed edge (ni, nj), if and only if ni is
subclassifier of nj . The weight of these edges is fj fi. For all edges (nr, ni), which
are incident to the root node, the weight is the number of training instances involved in
classifier fi.

To elaborate, incident edges to the root node depict classifiers which are learned by
batch learning. All other edges (ni, nj), which are edges between two (sub)-classifiers,
represent incremental learning steps. Based on the learned model of classifier fi, the
remaining training instances of fj fi are used to learn classifier fj . The multiple
possible paths to one particular classifier represents the possible ways to learn it. Each of
these paths describe a different partitioning of training costs, represented by the number
of edges (number of partitions) and edge weights (size of the partitions). Considering
only one classifier, the cost for all paths are identical. But, by considering that paths
of different redundant classifiers can overlap, and that shared subpaths are trained only
once, the total training cost can be reduced. Another view at this graph is the following:
every subgraph of G which is an arborescence consisting of all specified classifiers
is a valid scheme for learning the ensemble, in the sense that it produces exactly the
specified set of classifiers.

In this context, our optimization problem is to find a minimum-weight subgraph of
G including all classifier nodes fi, which relates to minimizing the processed training
instances for the set of specified classifiers and therefore total training complexity of
the ECOC ensemble. Note, this problem is known in graph theory as Steiner problem
in a directed graph, which is NP-hard [14].

Figure 1 shows an example of such a training graph for a 3-class problem, where
three classifiers f1 = A|BC, f2 = AB|C and f3 = B|C are specified by a given
ECOC matrix. A, B, C are symbol representatives for classes and A|B describes the
binary classifier which discriminates instances of class A against B. The standard

270 S.-H. Park, L. Weizsäcker, and J. Fürnkranz

Algorithm 1. Training Graph Generation
Require: ECOC Matrix M = (mi,j) ∈ {−1, 0, 1}k×n , binary classifiers f1, . . . , fn

1: V = {nr}, E = ∅

2: for each fi do
3: V = V ∪ {ni} # Integration of all classifiers
4: eri = (nr , ni)
5: w(eri) = I(fi)
6: E = E ∪ {eri}
7: end for
8: for l = k downto 2 do
9: F = {n ∈ V \{nr} | length(n) ≥ l , seen(n) = 0} # level-wise subclassifier generation

10: for each pair (ni, nj) ∈ F × F with i �= j do
11: ns = intersection(ni, nj) # generate shared subclassifier of fi and fj

12: if ns is valid then
13: if ns /∈ V then
14: V = V ∪ {ns} # classifier is new
15: ers = (nr, ns)
16: w(ers) = I(fs)
17: E = E ∪ {ers}
18: end if
19: esi = (ns, ni) , esj = (ns, nj)
20: w(esi) = I(fs � fi)
21: w(esj) = I(fs � fj)
22: E = E ∪ {esi, esj}
23: end if
24: end for
25: ∀n ∈ F.seen(n) = 1 # mark as processed, see also note in text
26: end for
27: return G = (V, E, w)

training scheme, which learns each classifier separately, can be represented as a sub-
graph G1 ⊆ G consisting of V1 = {nr, n1, n2, n3} and E1 = {er1, er2, er3}. This
scheme uses 2|A| + 3|B| + 3|C| training instances in total. An example where fewer
training instances are needed is G2 = (V1, E2) with E2 = {er1, er3, e32}, which ex-
ploits that classifier f2 can be incrementally trained from f3, resulting in training costs
2|A|+2|B|+2|C|. Another alternative is to add a non-specified classifier f4 = A|C to
the graph, resulting in G3 = (V, E3) with E3 = {er4, e41, e42, er3} with training costs
|A| + 3|B|+ 2|C|. It is easy to see that either G2 or G3 is the optimal Steiner Tree in
this example and that both process fewer training examples than the standard scheme.
Whether G2 or G3 is optimal, depends on whether |A| > |B|.

Since the optimal solution is in general hard to compute, we use a greedy approach.
We first have to generate the training graph. Then, we iteratively remove local non-
optimal edges, starting from the leaf nodes (specified classifiers) up to the root. Both
methods are described in detail in the following subsections.

Generation of Training Graph. We consider an algorithm which is particularly tai-
lored for exhaustive and exhaustive cumulative codes. Let F be the set of all classifiers
f of a specific length l, which is successively decreased from k down to 2. For each pair
(fi, fj) ∈ F×F the maximal common subclassifier fs is determined and eventually in-
tegrated into the graph. Then, these classifiers are marked as processed (seen(f) = 1)
and are not considered in the following steps of the generation algorithm. Level l is
decreased and the algorithm repeats. The processed classifiers can be ignored, because
for the systematic codes (exh. and exh. cumulative) all potential subclassifiers can be

Exploiting Code Redundancies in ECOC 271

Algorithm 2. Greedy Steiner Tree Computation
Require: Training Graph G = (V, E, w), binary classifiers f1, . . . , fn

1: let Q be an empty FIFO-queue
2: V̂ = ∅, Ê = ∅

3: for each fi do
4: Q.push(ni) , V̂ = V̂ ∪ {ni}
5: end for
6: while !Q.isEmpty() do
7: ni = Q.pop()
8: (nx, ni) = argmin(na,ni)∈E w((na, ni))

9: Ê = Ê ∪ (nx, ni) , V̂ = V̂ ∪ {nx}
10: if nx �= nr then
11: Q.push(nx)
12: end if
13: end while
14: return G̃ = (V̂ , Ê, w)

constructed using its immediate subclassifiers. This algorithm does not find all edges
for random codes or general codes, but only for their inherent systematic code struc-
tures. For the sake of efficiency and also considering that we employ a greedy Steiner
Tree Solving procedure afterwards, we neglect this fact.

A pseudo code is given in Algorithm 1. Note that there, the set F is populated with
classifiers of length greater equal than l instead of exactly l, considering the special case
that there can be multiple levels with zero classifiers or only one classifier. Also, clas-
sifiers should only be flagged as processed if they were actually checked at least once.
The complexity of this version is exponential, but it will be later reduced to quadratic
in combination with the greedy Steiner Tree algorithm.

In the beginning, for each specified classifier fi a corresponding node ni is generated
in the graph and connected with the root node by the directed edge (nr, ni). In the main
loop, which iterates over l = k down to 2, for each pair (fi, fj) of classifiers of length
l the maximum common subclassifier fs is determined. If it is valid (i.e., it is non-zero
and contains at least one positive and one negative class), two cases are possible:

– a corresponding node to fs already exists in the tree: fi and fj are included to the set
of childs of fs, that means, two directed edges esi and ejs with weights I(fi fs),
I(fj fs) respectively are created, where I(.) denotes the total number of training
instances for a given code configuration.

– There exists no corresponding node to the subclassifier fs: fs is integrated into the
tree by creating a corresponding node and by linking it to the root node with edge
ers of weight I(fs). In addition, the same steps as in the first case are applied.

Greedy Computing of Steiner Trees. A Steiner Tree is, essentially, a minimum span-
ning tree of a graph, but it may contain additional nodes (which, in our case, correspond
to unspecified classifiers). Minimizing the costs is equivalent to minimizing the total
number of training examples that are needed to train all classifiers at the leaf of the tree
from its root. As mentioned previously, we tackle this problem in a greedy way.

Let fi be a specified classifier and Ei the set of incident incoming edges. We compute
the minimum-weight edge and remove all other incoming edges. The outgoing node of
this minimum edge is stored to repeat the process on this node afterwards, e.g. by adding

272 S.-H. Park, L. Weizsäcker, and J. Fürnkranz

it into a FIFO-queue. This is done until all classifiers and connected subclassifiers have
been processed. Note, some subclassifiers are never processed, since all outgoing edges
may have been removed. A pseudocode of this simple greedy approach is depicted in
algorithm 2. In the following, we will refer to it as the min-redundant training scheme,
and to the calculated approximate Steiner Tree as Ĝ.

This greedy approach can be combined with the generation method of the training
graph, such that the resulting Steiner Graph is identical and such that the overall com-
plexity is reduced to polynomial time. Recall the first step of the generation method:
all pairs of classifiers of length k are checked for common subclassifiers and eventu-
ally integrated into G. After generating O(n2) subclassifiers, for each classifier fi (of
length k) the minimal incoming edge1 is marked. All unmarked edges and also the cor-
responding outgoing nodes, if they have no other child, are removed. In the next step of
the iteration, l = k− 1, the number of nodes with length l− 1 are now at most n, since
only maximally n new subclassifiers were included into the graph G. This means, for
each level, O(n2) subclassifiers are generated, where the generation/checking of a sub-
classifier has cost of Θ(k), since we have to check k bits. So, in total, each level costs
O(n2 · k) operations. And, since we have k levels, the total complexity is O(k2 · n2).
The implementation of the combined greedy method is straight-forward, so we omit a
pseudocode and we will refer to it as GSTEINER.

3.3 Incremental Learning with Training Graph

Given a Steiner Tree of the training graph, learning with an incremental base learner
is straight-forward. The specific training scheme is traversed in preorder depth-first-
manner, i.e. at each node, the node is first evaluated and then its subtrees are traversed
in left-to-right order. Starting from the root node, the first classifier f1 is learned in batch
mode. In the next step, if f1 has a child, i.e. f1 is subclassifier of another classifier f2,
f1 is copied and incrementally learned with instances of f2 f1, yielding classifier f2
and so on.

After the learning process, all temporary learned classifiers, which served as subclas-
sifiers and are not specified in the ECOC matrix, are removed, and the prediction phase
of the ECOC ensemble remains the same.

In this paper, we use Hoeffding Trees [6] as an example for an incremental learner.
It is a very fast incremental decision tree learner with anytime properties. One of its
main features is that its prediction is guaranteed to be asymptotically nearly identical to
that of a corresponding batch learned tree. We used the implementation provided in the
Massive Online Analysis Framework [2].

3.4 SVM Learning with Training Graph

While incremental learners are obvious candidates for our approach to save training
time, the problem actually does not demand full incrementality because we always add

1 The weights of the edges are identical to the corresponding ones in the fully generated training
graph, since it only depends on the total number of training instances, computable by the code
configuration of the subclassifier, and not on the actual partitioning.

Exploiting Code Redundancies in ECOC 273

batches of examples corresponding to different classes to the training set. Thus, the
incremental design of a training algorithm might retard the training compared to an al-
gorithm that can naturally incorporate larger groups of additional instances. Therefore,
we decided to study the applicability of this approach to a genuine batch learner, and se-
lected the Java-implementation of LIBSVM [4]. The adaption of this base learner con-
sists of two parts: First, the previous model (subclassifier) is used as a starting point for
the successor model in the training graph, and second, the caching strategy is adapted
to this scenario.

Reuse of Weights. A binary SVM model consists of a weight vector α containing the
weights αi for each training instance (xi, yi) and a real-valued threshold b. The latter is
derived from α and the instances without significant costs. The weights α are obtained
as the solution of a quadratic optimization problem with a quadratic form αT (yT Ky)α
that incorporates the inputs through pairwise evaluations Kij = k(xi, xj) of the kernel
function k. The first component to speed up the training is to use the weights α of the
parent model as start values for optimizing the child weights ᾱ. That is, we set ᾱi = αi,
if instance i belongs to the parent model and ᾱi = 0 otherwise.

The mutual influence of different instances on their respective weights is twofold.
There is a local mutual influence due to the fact that an instance can stand in the shadow
of another instance closer to the decision boundary. And there is a weaker, global mutual
influence that also takes effect on more unrelated instances communicating through the
error versus regularization trade-off in the objective.

If we add additional instances to the training set we might expect that there is only a
modest alternation of the old weights, because many of the new instances will have little
direct effect on the local influence among previous instances. On the other hand, if the
new instances do interfere with some subsets of the previous instances, the global influ-
ence can strongly increase as well. In any case, we are more interested in the question
whether the parent initialization of the weights does speed up the optimization step.

Cache Strategy. It is well-known that caching of kernel evaluations provides sig-
nificant speed-up for the learning with SVMs [10]. LIBSVM uses a Least-Recently-
Used (LRU) Cache, which stores columns of the matrix K respective its signed variant
Q = yT Ky. Since we use an ensemble of classifiers which potentially overlap in terms
of their training instances and therefore also in their matrices K , it is beneficial to re-
place their local caches, which only keep information for each individual classifier, with
an ensemble cache, which allows to transfer information from one classifier to the next.

Typically, each classifier receives a different subset of training instances Tl ⊂ T ,
specified by its code configuration. In order to transfer common kernel evaluations Kab

from classifier fi to another classifier fj , the cached columns have to be transformed,
since they can contain evaluations of irrelevant instances. Each Kab has to be removed,
if instances a or b are not contained in the new training set and also the possible change
in the ordering of instances has to be considered in the columns. The main difficulty
is the implementation of an efficient mapping of locally used instance ids to the entire

274 S.-H. Park, L. Weizsäcker, and J. Fürnkranz

training set and its related transformation steps, otherwise, the expected speed-up of an
ensemble caching strategy is undone.

Two ensemble cache strategies were evaluated, which are based on the local cache
implementation of LIBSVM. The first one reuses nearly all reusable cached kernel
evaluations from one classifier to another. For each classifier, two mapping tables ma(.)
and mo(.) are maintained, where ma associates each local instance number with its
corresponding global instance number in order to have a unique addressing used in
the transformation step. The table mo is the mapping table from the previous learning
phase. Before using the old cache for the learning of a new classifier, all cached entries
are marked (as to be converted). During querying of the cache two cases can occur:

– a cached column is queried: If the entry is marked, the conversion procedure
is applied. Using the previous and actual mapping table mo, ma, the column is
transformed to contain only kernel evaluations for relevant instances, which can be
done in O(|mo| · log |mo|). Missing kernel evaluations are marked with a special
symbol, which are computed afterwards. In addition, the mark is removed.

– an uncached column is queried: If the free size of the cache is sufficient, the
column is computed and normally stored. Otherwise, beforehand, the least recently
used entry is repeatedly removed until the cache has sufficient free space.

Since the columns are converted only on demand, unnecessary conversions are avoided
and their corresponding entries are naturally replaced by new incoming kernel eval-
uations due to the LRU strategy. But, this tradeoff has the disadvantage that kernel
evaluations that have been computed and cached at some point earlier may have to be
computed again if they are requested later. The marked entries are carried maximally
only over two iterations, otherwise it would be necessary for each additional iteration to
carry another mapping table. We denote this ensemble caching method as Short-Term
Memory (STM). One beneficial feature is the compatibility to any training scheme, in
particular to the standard and the min-redundant training scheme.

The second ensemble caching method is particularly tailored to the use with a min-
redundant training scheme. It differs from the previous one only in its transformation
step. Recall that the learning phase traverses the subgraph in preorder depth-first man-
ner. That means that during the learning procedure only the following two cases can
occur: either the current classifier fi is the child of a subclassifier fj , or the current
classifier is directly connected with the root node.

This information can be used for a more efficient caching scheme. For the first case,
the set of training instances of fi is superset of fj , i.e. Tj ⊆ Ti. That means, |Tj |
rows and columns can be reused and also importantly without any costly transforming
method. The columns and rows have to be simply trimmed to size |Tj| for the reuse in
the current classifier. Trimming is sometimes necessary, since they can contain further
kernel evaluations from previously learned sibling nodes, i.e. nodes which share the
same subclassifier fj . So, the cache for the current classifier is prepared by removing
Qab with a > |Tj | ∨ b > |Tj|. In the second case, we know beforehand that no single
kernel evaluation can be reused in the actual classifier. So, the cache is simply cleared.
We denote this ensemble cache method as Semi-Local (SL) cache.

Exploiting Code Redundancies in ECOC 275

4 Experimental Evaluation

4.1 Experimental Setup

As we are primarily concerned with computational costs and not with predictive accu-
racy, we applied pre-processing based on all available instances instead of building a
pre-processing model on the training data only. First, missing values were replaced by
the average or majority value for numeric or ordinal attributes respectively. Second, all
numeric values were normalized, such that the values lie in the unit interval.

Our experiment consisted of following parameters and parameter ranges:

– 6+2 multiclass classification datasets from the UCI repository [7], where 6 rela-
tively small datasets in terms of instances (up to ca. 4000) were used in conjunction
with LIBSVM and two large-scale datasets, pokerhand and covtype consisting of
581, 012 and 1, 025, 010 instances, were used with Hoeffding Trees. The number
of classes lie in the range between 4 and 11.

– 3 code types: exhaustive k−level codes, exhaustive cumulative k−level codes, ran-
dom codes of up to length 500 with k = 3, 4 and rzp = 0.2, 0.4

– 2 learn methods: min-redundant and standard training scheme
– 2 base learners: incremental learner Hoeffding Trees and batch learner LIBSVM

(no parameter tuning, RBF-kernel) for which following parameters were evaluated:
• 3 cache methods: two ensemble cache methods, namely STM and SL, and the

standard local cache of LIBSVM
• 4 cache sizes: 25%, 50%, 75%, 100% of the number of total kernel evaluations

All experiments with LIBSVM were conducted with 5-fold cross-validation and for
Hoeffding Trees a training-test split of 66% to 33% was used. The parameters of the
base learners were not tuned, because we were primarily interested in their computa-
tional complexity.2

4.2 Hoeffding Trees

Table 1 shows a comparison between the standard training scheme and the greedy com-
puted min-redundant scheme with respect to the total amount of training instances. It
shows that even with the suboptimal greedy procedure a significant amount of training
instances can be saved. In this evaluation, the worst case can be observed for dataset
covtype with 3-level exhaustive codes, for which the ratio to the standard training
scheme is 22%. In absolute numbers, this relates to processing 3.8 million training
instances instead of 17.2 million. In summary, the improvements range from 78% to
98% or in other words, 4 to 45 times less training instances are processed.

Table 2 shows the corresponding total training time. It shows that the previous sav-
ings w.r.t. the number of training instances do not transfer directly to the training time.
One reason is that the constant factor in the linear complexity of Hoeffding Trees re-
garding the number of training instances decreases for increasing number of training

2 Tuning of the SVM parameters of the base learners can be relevant here because it may af-
fect the effectiveness of reusing and caching of models. However, this would add additional
complexity to the analysis of total cost and was therefore omitted to keep the analysis simple.

276 S.-H. Park, L. Weizsäcker, and J. Fürnkranz

Table 1. Total number of processed training instances of standard and min-redundant training
scheme. The italic values show the ratio of both. The datasets pokerhand and covtype consist of
581, 012 and 1, 025, 010 instances respectively, from which 66% was used as training instances.

dataset standard min-redundant standard min-redundant

EXHAUSTIVE CUMULATIVE CODES

l = 3 l = 4
pokerhand 79,151,319 9,429,611 (0.119) 476,937,435 10,479,451 (0.022)
covtype 19,556,868 3,807,748 (0.195) 73,242,388 5,354,720 (0.073)

EXHAUSTIVE CODES

l = 3 l = 4
pokerhand 73,062,756 9,429,591 (0.129) 397,786,116 10,478,523 (0.026)
covtype 17,256,060 3,796,818 (0.220) 53,685,520 5,191,055 (0.097)

RANDOM CODES

rzp = 0.4 rzp = 0.2
pokerhand 258,035,711 10,205,330 (0.040) 311,051,271 8,990,547 (0.029)
covtype 153,519,616 6,744,692 (0.044) 95,483,532 5,300,005 (0.056)

Table 2. Training time in seconds. This table shows training performances for the standard and
the min-redundant learning scheme. The italic values shows the ratio of both.

dataset standard min-redundant standard min-redundant

EXHAUSTIVE CUMULATIVE CODES

l = 3 l = 4
pokerhand 261.27 127.33 (0.487) 1530.06 542.57 (0.355)
covtype 118.70 40.89 (0.344) 463.09 93.71 (0.202)

EXHAUSTIVE CODES

l = 3 l = 4
pokerhand 236.52 131.12 (0.554) 1337.00 522.18 (0.391)
covtype 101.50 34.65 (0.341) 330.97 83.58 (0.253)

RANDOM CODES

rzp = 0.4 rzp = 0.2
pokerhand 896.41 356.43 (0.398) 1089.99 537.11 (0.493)
covtype 1106.48 157.61 (0.142) 695.84 107.12 (0.154)

instances. Furthermore, some overhead is incurred for copying the subclassifiers before
each incremental learning step. In total, exploiting the redundancies yields a run-time
reduction of about 44.6%− 85.8%.

The running-time for GSTEINER (constructing the graph and greedily finding the
Steiner tree, without evaluation of the classifiers) is depicted in Table 3. For the system-
atic code types, exhaustive and its cumulative version, the used time is in general negli-
gible compared to the total training time. The only exception is for dataset pokerhand
with random codes and rzp = 0.2: About 106 seconds were used and contributes there-
fore one-fifth to the total training time in this case.

4.3 LibSVM

Table 4 shows a comparison of training times between LIBSVM and its adaptions with
weight reusing and ensemble caching strategies. M1 and M2 use the standard training
scheme, where M1 is standard LIBSVM with local cache and M2 uses the ensemble
caching strategy STM. M3 and M4 utilize a min-redundant training scheme with STM
and SL respectively. The underlined values depict the best value for each dataset and
code-type combination. The results confirm that the weight reuse and ensemble caching

Exploiting Code Redundancies in ECOC 277

Table 3. GSTEINER running time in seconds

EXH. CUMULATIVE EXHAUSTIVE RANDOM

l = 3 l = 4 l = 3 l = 4 rzp = 0.4 rzp = 0.2
pokerhand 0.82 4.63 4.56 3.57 22.09 105.97
covtype 0.24 3.01 0.14 0.17 0.67 0.52

Table 4. Training time in seconds using a cache size of 25%

optdigits page-blocks segment solar-flare-c vowel yeast

EXHAUSTIVE CUMULATIVE CODES

l = 3
M1 92.28 ± 0.36 8.73 ± 0.19 6.56 ± 0.05 3.47 ± 0.07 5.80 ± 0.02 5.43 ± 0.03
M2 80.70 ± 0.37 8.32 ± 0.37 6.00 ± 0.03 4.30 ± 0.08 4.90 ± 0.02 5.62 ± 0.02
M3 76.93 ± 0.60 6.90 ± 0.18 6.94 ± 0.05 3.13 ± 0.16 6.28 ± 0.04 5.77 ± 0.03
M4 53.37 ± 0.40 2.93 ± 0.27 4.19 ± 0.05 1.70 ± 0.25 3.51 ± 0.01 2.98 ± 0.02

l = 4
M1 833.12 ± 14.98 24.66 ± 0.43 33.98 ± 0.21 18.61 ± 0.35 47.61 ± 0.08 40.42 ± 0.09
M2 666.02 ± 1.54 21.19 ± 0.80 28.69 ± 0.14 22.94 ± 0.52 36.72 ± 0.08 41.19 ± 0.11
M3 680.75 ± 8.23 18.30 ± 0.51 36.91 ± 0.39 15.08 ± 1.71 51.61 ± 0.15 41.79 ± 0.10
M4 410.44 ± 6.08 5.32 ± 0.53 17.18 ± 0.13 8.59 ± 1.27 25.26 ± 0.06 22.01 ± 0.10

EXHAUSTIVE CODES

l = 3
M1 87.42 ± 0.35 7.63 ± 0.39 6.02 ± 0.03 3.17 ± 0.05 5.51 ± 0.03 5.11 ± 0.02
M2 75.28 ± 0.29 6.76 ± 0.12 5.48 ± 0.03 3.95 ± 0.07 4.58 ± 0.03 5.28 ± 0.01
M3 75.61 ± 1.04 7.09 ± 0.27 6.91 ± 0.04 3.13 ± 0.14 6.25 ± 0.03 5.83 ± 0.05
M4 53.13 ± 0.39 2.90 ± 0.21 4.13 ± 0.03 1.71 ± 0.25 3.48 ± 0.02 3.00 ± 0.02

l = 4
M1 735.76 ± 9.63 15.31 ± 0.49 27.13 ± 0.31 15.14 ± 0.28 41.78 ± 0.09 34.99 ± 0.08
M2 570.69 ± 1.93 12.72 ± 0.45 22.76 ± 0.13 18.72 ± 0.42 31.92 ± 0.06 35.73 ± 0.06
M3 646.6 ± 11.98 16.39 ± 0.44 34.24 ± 0.36 14.69 ± 1.59 49.75 ± 0.10 41.09 ± 0.10
M4 397.79 ± 5.07 4.76 ± 0.46 15.88 ± 0.09 8.45 ± 1.17 24.55 ± 0.10 21.71 ± 0.06

RANDOM CODES

rzp = 0.4
M1 1654.0 ± 22.6 25.7 ± 1.1 156.5 ± 1.7 34.7 ± 1.5 37.5 ± 0.6 46.9 ± 1.2
M2 1424.4 ± 32.8 24.3 ± 0.5 162.9 ± 0.8 46.1 ± 1.9 39.7 ± 0.7 52.1 ± 1.3
M3 1609.2 ± 44.3 22.6 ± 0.3 190.6 ± 3.8 39.9 ± 5.4 65.8 ± 2.3 79.1 ± 2.0
M4 1378.8 ± 34.4 5.7 ± 0.3 140.6 ± 3.0 25.9 ± 3.7 57.1 ± 2.5 64.5 ± 2.4

rzp = 0.2
M1 2634.6 ± 59.5 10.2 ± 0.3 123.0 ± 0.9 48.2 ± 2.0 49.6 ± 0.4 67.2 ± 1.2
M2 2281.7 ± 29.6 8.6 ± 0.5 129.7 ± 1.4 63.2 ± 3.1 53.0 ± 0.4 74.1 ± 1.3
M3 3049.0 ± 48.3 12.7 ± 0.2 157.9 ± 1.4 57.6 ± 13.3 153.0 ± 2.0 157.5 ± 2.1
M4 2594.0 ± 64.8 3.6 ± 0.2 128.5 ± 2.4 39.1 ± 9.4 144.6 ± 1.7 144.0 ± 2.2

techniques can be used to exploit code redundancies for LIBSVM. For exhaustive codes
and its cumulative variant, M4 dominates all other approaches and achieves an improve-
ment of 31.4%− 78.4% of the training time. However, the results for random codes are
not so clear.

For the datasets vowel and yeast both methods employing the min-redundant train-
ing schemes (M3 and M4) use significantly more time. This can be explained with the
relative expensive cost for generating and solving the Steiner Tree in these cases, as
depicted in Table 5 (89 and 52 sec for vowel and yeast). Contrary to the the results on
optdigits, for these datasets the tree generation and solving has a big impact on the
total training time. Nevertheless, this factor is decreasing for increasing number of in-
stances, since the complexity of GSTEINER only depends on k and n. Besides, based on
the results with various cache sizes, which we omit due to space restrictions (we refer to
[12] for all results), the cache size has a greater impact on the training time for random

278 S.-H. Park, L. Weizsäcker, and J. Fürnkranz

Table 5. GSTEINER running time for random codes in seconds

optdigits page-blocks segment solar-flare-c vowel yeast
rzp = 0.4 8.93 < 0.01 0.12 0.50 15.10 8.56
rzp = 0.2 53.60 < 0.01 0.12 1.26 89.34 52.80

Table 6. Training time in seconds of random codes using a cache size of 75%

optdigits page-blocks segment solar-flare-c vowel yeast

RANDOM CODES, CACHE=75%
rzp = 0.4

M1 1603.4 ± 22.2 25.8 ± 0.5 153.7 ± 1.5 34.3 ± 1.5 36.0 ± 0.6 45.6 ± 1.1
M2 1317.4 ± 16.3 23.0 ± 0.4 136.9 ± 1.0 45.1 ± 1.9 35.9 ± 0.6 51.2 ± 1.3
M3 1364.6 ± 53.6 22.4 ± 0.2 148.7 ± 1.3 35.8 ± 4.5 60.9 ± 2.0 82.6 ± 2.2
M4 1162.6 ± 27.6 5.5 ± 0.3 70.3 ± 0.4 7.9 ± 0.8 42.8 ± 2.0 27.4 ± 1.2

rzp = 0.2
M1 2507.0 ± 33.8 10.3 ± 0.3 119.8 ± 1.2 47.6 ± 2.0 47.6 ± 0.4 65.3 ± 1.2
M2 1826.2 ± 21.3 8.5 ± 0.6 98.7 ± 0.6 61.3 ± 3.1 44.3 ± 0.4 70.6 ± 1.2
M3 2093.7 ± 38.6 12.4 ± 0.2 116.9 ± 0.8 51.0 ± 11.0 139.9 ± 1.8 163.7 ± 2.6
M4 1632.5 ± 40.2 3.9 ± 0.1 56.8 ± 0.3 10.0 ± 1.6 118.6 ± 1.6 87.7 ± 2.2

codes than for the systematic ones. Table 6 shows as an example the performance for
random codes with a cache size of 75%. Notice the reduction of the training time for
the different methods in comparison to Table 4, where a cache size of 25% was used.
M4 achieves the best efficiency increase and by subtracting the time for generating and
solving the tree, M4 dominates again all other methods.

Table 7 shows the number of optimization iterations of LIBSVM, which can be seen
as an indicator of training complexity. The ratio values are averaged over all datasets
and show that the reuse of weights in the pseudo-incremental learning steps lead to a
reduction of optimization iterations. Once again, the effect on the ensemble caching
strategy can be seen in Table 8, showing a selection of the results, here for cache sizes
25% and 75%. The first column of each block describes the number of kernel evaluation
calls. The consistent reduction for min-redundant schemes M3 and M4 is accredited
to the weight-reusing strategy. Except for random codes with rzp = 0.2 and cache
size=25% all methods using an ensemble cache strategy (M2, M3 and M4) outperform
the baseline of LIBSVM with a local cache. Among these three methods, M3 and M4
both outperform M2 in absolute terms, but not relative to the number of calls. For the
special case (random codes, rzp = 0.2, M3, M4), one can again see the increased gain
of a bigger cache size for the min-redundant training schemes.

Even though all ensemble caching strategies almost always outperform the baseline
in terms of hit-miss measures, the corresponding time complexities of Table 4 show that
only M4, which uses a min-redundant training scheme and the SL caching strategy, is
reliably reducing the total training time. The rather costly transformation cost of STM
is the cause for the poor performance of M2 and M3.

5 Related Work

In [3], an efficient algorithm for cross-validation with decision trees is proposed, which
also exploits training set overlaps, but focuses on a different effect, namely that in this

Exploiting Code Redundancies in ECOC 279

Table 7. Comparison of LIBSVM Optimization iterations. The values show the ratio of optimiza-
tion iterations of a min-redundant training scheme with weight reusing to standard learning.

EXH. CUMULATIVE EXHAUSTIVE RANDOM

l = 3 l = 4 l = 3 l = 4 rzp = 0.4 rzp = 0.2
0.673 0.576 0.768 0.745 0.701 0.773

Table 8. Cache efficiency and min-redundant training scheme impact: averaged mean ratio values
of kernel evaluation calls (first column) and actual computed kernel evaluations (second column)
to the baseline: standard LIBSVM (M1). The values of M1 are set to 1 and the following values
describe the ratio of corresponding values of M2, M3 and M4 to M1.

EXH.CUMULATIVE EXHAUSTIVE RANDOM

l = 3 l = 4 l = 3 l = 4 rzp = 0.4 rzp = 0.2
CACHE = 25%

M2 1.00 0.68 1.00 0.61 1.00 0.66 1.00 0.60 1.00 0.83 1.00 0.84
M3 0.78 0.56 0.71 0.52 0.87 0.63 0.88 0.67 0.84 0.83 0.95 1.01
M4 0.78 0.56 0.71 0.51 0.87 0.63 0.88 0.65 0.84 0.83 0.95 1.00

CACHE = 75%
M2 1.00 0.59 1.00 0.48 1.00 0.56 1.00 0.44 1.00 0.64 1.00 0.56
M3 0.78 0.43 0.71 0.34 0.87 0.47 0.88 0.42 0.84 0.41 0.95 0.47
M4 0.78 0.44 0.71 0.32 0.87 0.48 0.88 0.41 0.84 0.42 0.95 0.49

case the generated models tend to be similar, such that often identical test nodes are
generated in the decision tree during the learning process. This approach is not appli-
cable here, since during the incremental learning steps, the inclusion of new classes
may lead to significant model changes. Here, a genuine incremental learner or in the
case of LIBSVM different approaches are necessary. However, the main idea, to reduce
redundant computations is followed also here.

Pimenta et al. [13] consider the task of optimizing the size of the coding matrix so
that it balances effectivity and efficiency. Our approach is meant to optimize efficiency
for a given coding matrix. Thus, it can also be combined with their approach if the
resulting balanced coding matrix is code-redundant.

6 Conclusion

We studied the possibility of reducing the training complexity of ECOC ensembles
with highly redundant codes such as exhaustive cumulative, exhaustive and random
codes. We proposed an algorithm for generating a so-called training graph, in which
edges are labeled with training cost and nodes represent (sub-)classifiers. By finding an
approximate Steiner Tree of this graph in a greedy manner, the training complexity can
be reduced without changing the prediction quality. An initial evaluation with Hoeffding
Trees, as an example for an incremental learner, yielded time savings in the range of
44.6% to 85.8%. Subsequently, we also demonstrated how SVMs can be adapted for
this scenario by reusing weights and by employing an ensemble caching strategy. With
this approach, the time savings for LIBSVM ranged from 31.4% to 78.4%. In general,
we can expect higher gains for incremental base learners whose complexity grows more
steeply with the number of training instances. The presented approach is useful for all
considered high-redundant code types, and also for random codes, for which the impact

280 S.-H. Park, L. Weizsäcker, and J. Fürnkranz

of the GSTEINER algorithm decreases with increasing training instances. In addition,
the generation of a min-redundant training scheme could be seen as a pre-processing
step, such that it is not counted or only counted once for the total training time of an
ECOC ensemble, because it is reusable and independent of the base learner.

However, this approach has its limitations. GSTEINER can be a bottleneck for prob-
lems with a high class count, since its complexity is O(n2 · k2) and the length n for
common code types such as exhaustive codes grow exponentially in the number of
classes k. And, this work considers only highly redundant code types, which are not
unproblematic. First, usually in conjunction with ECOC ensembles, one prefers diverse
classifiers, which are contrasting the redundant codes in our sense. The more shared
code configurations exist in an ensemble, the less independent are its classifiers. Sec-
ondly, these codes are not as commonly used as the low-redundant decompositions
schemes one-against-all and one-against-one.

Acknowledgments. This work was supported by the German Science Foundation
(DFG).

References

1. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multiclass to binary: A unifying approach
for margin classifiers. J. Mach. Learn. Res (JMLR) 1, 113–141 (2000)

2. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analy-
sis. J. Mach. Learn. Res., JMLR (2010), http://sourceforge.net/projects/
moa-datastream/

3. Blockeel, H., Struyf, J.: Efficient algorithms for decision tree cross-validation. J. Mach.
Learn. Res. (JMLR) 3, 621–650 (2003)

4. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Software,
available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm

5. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output
codes. J. Artif. Intell. Res. (JAIR) 2, 263–286 (1995)

6. Domingos, P., Hulten, G.: Mining high-speed data streams. In: KDD, Boston, MA, USA, pp.
71–80. ACM, New York (2000)

7. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
8. Friedman, J.H.: Another approach to polychotomous classification. Technical report, Depart-

ment of Statistics, Stanford University, Stanford, CA (1996)
9. Fürnkranz, J.: Round robin classification. J. Mach. Learn. Res. (JMLR) 2, 721–747 (2002)

10. Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C.,
Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, pp. 169–184. MIT
Press, Cambridge (1999)

11. Park, S.-H., Fürnkranz, J.: Efficient decoding of ternary error-correcting output codes for
multiclass classification. In: Buntine, W.L., Grobelnik, M., Mladenić, D., Shawe-Taylor, J.
(eds.) ECML/PKDD-09, Part II, Bled, Slovenia, pp. 189–204. Springer, Heidelberg (2009)

12. Park, S.-H., Weizsäcker, L., Fürnkranz, J.: Exploiting code-redundancies in ECOC for re-
ducing its training complexity using incremental and SVM learners. Technical Report TUD-
KE-2010-06, TU Darmstadt (July 2010)

13. Pimenta, E., Gama, J., Carvalho, A.: Pursuing the best ecoc dimension for multiclass prob-
lems. In: Wilson, D., Sutcliffe, G. (eds.) FLAIRS Conference, pp. 622–627. AAAI Press,
Menlo Park (2007)

14. Wong, R.: A dual ascent approach for steiner tree problems on a directed graph. Mathemati-
cal Programming 28(3), 271–287 (1984)

http://sourceforge.net/projects/moa-datastream/
http://sourceforge.net/projects/moa-datastream/
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Concept Convergence in Empirical Domains

Santiago Ontañón and Enric Plaza

IIIA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Catalonia, Spain
{santi,enric}@iiia.csic.es

Abstract. How to achieve shared meaning is a significant issue when
more than one intelligent agent is involved in the same domain. We
define the task of concept convergence, by which intelligent agents can
achieve a shared, agreed-upon meaning of a concept (restricted to empir-
ical domains). For this purpose we present a framework that, integrating
computational argumentation and inductive concept learning, allows a
pair of agents to (1) learn a concept in an empirical domain, (2) argue
about the concept’s meaning, and (3) reach a shared agreed-upon con-
cept definition. We apply this framework to marine sponges, a biological
domain where the actual definitions of concepts such as orders, families
and species are currently open to discussion. An experimental evaluation
on marine sponges shows that concept convergence is achieved, within a
reasonable number of interchanged arguments, and reaching short and
accurate definitions (with respect to precision and recall).

1 Introduction

How to achieve shared meaning is a significant issue when more than one intel-
ligent agent is involved in the same domain. In this paper we focus on empirical
domains, where intelligent agents are able to learn, in an individual way, the con-
cepts that are relevant to describe that domain from examples. In this scenario,
two or more agents will require some process for sharing, comparing, critiquing
and (eventually) agreeing on the meaning of the concepts of a domain. Our pro-
posal is that an agent communication process based on argumentation supports
the required aspects to find a shared, agreed-upon meaning of concepts.

For instance, in zoology, the definition of “manta ray” (the largest species of
ray) has been a subject of debate; another example is in the domain of astron-
omy, where the definition of “planet” has been subject of recent debate. If more
than one expert is to collaborate in these domains, they need to reach a shared
definition of these concepts. Notice that these examples do not deal with the is-
sue of ontology alignment (where different names or terms for the same concept
are aligned); rather, the debate is about the meaning and scope (with respect
to an empirical domain) of a particular concept. In this article we propose a
framework intended to model a particular kind of process to reach this shared
meaning we call concept convergence.

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 281–295, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

282 S. Ontañón and E. Plaza

We will define the task of concept convergence as follows: Given two or more
individuals which have individually learned non-equivalent meanings of a con-
cept C from their individual experience, find a shared, equivalent, agreed-upon
meaning of C. Two agents achieve concept convergence when (a) they share a
concept C within some shared terminology, (b) their individual meanings for
C are equivalent in a field of application, and (c) each agent individually ac-
cepts this agreed-upon meaning. Notice that concept convergence is less general
than the complex discussion on how many species of manta ray should be recog-
nized or how should be defined the concept of planet; however, it is more clearly
specified and we will show it can be automated for empirical domains1.

The task of concept convergence can be performed by the integration of com-
putational argumentation and inductive concept learning. We have developed
A-MAIL, a framework allows the agents to argue about the concept they learn us-
ing induction [7]. A-MAIL is a unified framework where autonomous agents learn
from experience, solve problems with their learnt hypotheses, autonomously gen-
erate arguments from experience, communicate their inductive inferences, and
argue about them in order to reach agreements with other agents.

The remainder of this paper is organized as follows. First we formally define
concept convergence. Then our empirical argumentation framework A-MAIL is
described. Then we motivate the usefulness of concept convergence in the bio-
logical domain of marine sponges, including an experimental evaluation of two
inductive agents arguing about definitions of several concepts. The paper closes
with related work, conclusions and future work.

2 Concept Convergence

Our approach integratesnotions and techniques from two distinct fields of study —
namely inductive learning and computational argumentation— to develop a new
approach to achieve concept convergence. We will define the meaning and defini-
tion of concepts in the framework of inductive concept learning, which is the pro-
cess by which given an extensional definition of a concept C then an intensional
definition of a concept C expressed in an ontology O is found.

Let E = {e1...eM} be a field of application composed of M individuals de-
scribed in an ontology O and let C ∈ O be a concept: an extensional description
of C is a subset of individuals E+ ⊂ E that are instances of C. E+ are called
(positive) examples of C, while the rest of the examples E− = E −E+ are called
counterexamples (or negative examples).

1 Notice that ontology alignment (or matching) is a related topic but it focuses on
determining correspondences between concepts [3]. As such, alignment’s main goal
is to establish a “concept name correspondence” relationship such that a semantic
interoperability is achieved by being capable of substituting a concept name by a
corresponding name. Concept convergence is different, we assume that the individual
members of a multiagent system have a common concept vocabulary, but they still
do not share a precise shared definition of some concept(s).

Concept Convergence in Empirical Domains 283

Object

SignConcept

(a) (b)

Ci
∼= CjCi Cj

E+
jE+

i

Fig. 1. (a) Semiotic triangle; (b) schema for two agents where a concept sign (C) is
shared (Ci

∼= Cj) while concept descriptions may be divergent (Ci 	∼= Ci)

Definition 1. An intensional definition C of a concept C is a well formed for-
mula built using the concepts in O such that it subsumes (") all positive examples
of C and no counterexample of C:

∀ei ∈ E+ : C " ei ∧ ∀ej ∈ E− : C �" ej

For simplicity, we will shorten the previous expression as follows: C " E+ ∧ C �"
E−. In this framework, we will define the task of concept convergence between 2
agents based on the notion of semiotic triangle. The well-known semiotic triangle
in Fig. 1(a) expresses meaning as the relationship between sign, concept, and
object. Specifically:

1. A sign is a designation of the concept in some ontology (in our framework
the name of the concept C ∈ O);

2. A concept is “A unit of thought constituted through abstraction on the basis
of properties common to a set of objects” [ISO 5963:1985] (in our framework
the intensional description C)

3. An object is a material or immaterial part of the perceived world (in our
framework, the objects in E)

Now, concept convergence between 2 agents means that each one has its own
semiotic triangle concerning a particular concept, as shown in Fig. 1(b). We as-
sume that both agents share the designation of the concept C in an ontology,
which in Fig. 1(b) is expressed by the equivalence Ci

∼= Cj . The agents do not
share their intensional definitions of the concept —which we’ll assume are con-
sistent with their extensional representations of concepts E+

i and E+
j . Moreover,

the agents do not share their individual collections of examples Ei and Ej .

Definition 2. Concept Convergence (between 2 agents) is defined as follows:

Given two agents (Ai and Aj) that agree on the sign C denoting a concept (Ci
∼=

Cj) and with individually different intensional (Ci �∼= Ci) and extensional
(E+

i �= E+
j) definitions of that concept,

Find a convergent, shared and agreed-upon intensional description (C′
i
∼= C′

j) for
C that is consistent for each individual with their extensional descriptions.

284 S. Ontañón and E. Plaza

E1 E2

p11 ∧ p2 → C

p3 ∧ p4 ∧ p5 → C

p6 ∧ p7 → C p′5 ∧ p′6 ∧ p′7 → C

p′3 ∧ p′4 → C

p′1 ∧ p′2 → C

Fig. 2. The relationship of concept definitions for two inductive agents

For example, in this paper we used the domain of marine sponge identifica-
tion. The two agents need to agree on the definition of the target concept C =
Hadromerida, among others. While in ontology alignment the focus is on estab-
lishing a mapping between the ontologies of the two agents, here we assume that
the ontology is shared, i.e. both agents share the concept name Hadromerida.
Each agent has experience in a different area (one in the Atlantic, and the other
in the Mediterranean), so they have collected different samples of Hadromerida
sponges, those samples constitute their extensional definitions (which are dif-
ferent, since each agent has collected sponges on their own). Now they want to
agree on an intensional definition C, which describes such sponges. In our ex-
periments, one such intensional definition reached by one of the agents is: C =
“all those sponges which do not have gemmules in their external features, whose
megascleres had a tylostyle smooth form and that do not have a uniform length
in their spikulate skeleton”.

2.1 Empirical Argumentation for Concept Convergence

Concept convergence in empirical domains is modeled by agents that perform
induction to achieve intensional definition of one or more concepts. Figure 2
shows the relationship of concept definitions for two inductive agents concerning
a concept C. Each agent has a sample of examples of C and examples that are
not C. The task of concept convergence is to find a shared and mutually accept-
able definition for C that is consistent with the examples each agent has. The
information exchanged during argumentation about how C should be defined
is the information that will enact a process of belief revision in each individual
agent until an agreed-upon definition is achieved. This paper focuses on 2-agent
argumentation, leaving concept convergence among more agents for future work.

In the A-MAIL framework, an intensional definition of a concept C is repre-
sented as a disjunctive description C = r1∨...∨rn, where each of the conjuncts ri

will be called a generalization, such that each positive example of C is subsumed
by at least one of the generalizations, and no generalizations subsume any coun-
terexample of C. When an example is subsumed by a generalization in C, we
will say that the example is covered. Each one of these generalizations is a well

Concept Convergence in Empirical Domains 285

formed formula representing a generalization of a set of examples. We assume
that a more-general-than relation (subsumption) exists among generalizations,
and when a generalization r1 is more general than another generalization r2 we
write r1 " r2. Additionally, if a generalization r is a generalization of an example
e, we will also say that r is more general than e, or that r subsumes or covers
e, noting it as r " e. Moreover, for practical purposes the intensional definitions
are allowed to subsume less than 100% of positive examples.

Concept convergence is assessed individually by an agent Ai by computing
the individual degree of convergence among two definitions Ci and Cj as:

Definition 3. The individual degree of convergence among two intensional def-
initions Ci and Cj for an agent Ai is:

Ki(Ci, Cj) =
|{e ∈ Ei|Ci " e ∧ Cj " e}|
|{e ∈ Ei|Ci " e ∨ Cj " e}|

where Ki is 0 if the two definitions are totally divergent, and 1 when the two
definitions are totally convergent. The degree of convergence corresponds to the
ratio between the number examples covered by both definitions (intersection)
and the number of examples covered by at least one definition (union). The
closer the intersection is to the union, the more similar the definitions are.

Definition 4. The joint degree of convergence of two intensional definitions Ci

and Cj is:
K(Ci, Cj) = min(Ki(Ci, Cj), Kj(Cj , Ci))

Concept convergence is defined as follows:

Definition 5. Two intensional definitions are convergent (Ci
∼= Cj) if K(Ci, Cj)

≥ 1− ε, where 0 ≤ ε ≤ 1 is a the degree of divergence allowed.

3 Empirical Argumentation

An argumentation framework AF = 〈A, R〉 is composed by a set of arguments A
and an attack relation R among the arguments. In our approach we will adopt
the semantics based on dialogical trees [1]. For a wider explanation the formal
model underlying our framework see [5].

There are two kinds of arguments in A-MAIL:

– A rule argument α = 〈r, C〉 is a pair where r is a generalization and C ∈
{C,¬C}. An argument 〈r, C〉 states that induction has found a rule such
that r → C (i.e. that examples covered by r belong to C), while 〈r,¬C〉
states that induction has found a rule such that r → ¬C (i.e. that examples
covered by r do not belong to C).

– An example argument α = 〈e, C〉 consists of an example e ∈ E , which can be
a positive or a negative example of C, i.e. C ∈ {C,¬C}.

286 S. Ontañón and E. Plaza

+ --++

r1

r2

e3 e4

α2 � α1α1 = 〈r1, C〉

α2 = 〈r2,¬C〉

Bi(α1) =
3 + 1
6 + 2

= 0.5 Bi(α2) =
3 + 1
4 + 2

= 0.66

-

〈e3, C〉 � α2

〈e4,¬C〉 � α1

Fig. 3. Exemplification of several arguments, their confidences, and attack relations

Moreover, we allow rules to cover some negative examples, while defining a con-
fidence measure as follows:

Definition 6. The confidence Bi(α) of a rule argument α for an agent Ai is:

Bi(α) =

⎧⎪⎨⎪⎩
|{e∈E+

i |α.r�e}|+1
|{e∈Ei|α.r�e}|+2 if α.C = C

|{e∈E−
i |α.r�e}|+1

|{e∈Ei|α.r�e}|+2 if α.C = ¬C

Bi(α) is the ratio of examples correctly covered by α over the total number
examples covered by α. Moreover, we add 1 to the numerator and 2 to the
denominator following the Laplace probability estimation procedure. Other con-
fidence measures could be used, our framework only requires some confidence
measure that reflects how much a set of examples endorses the argument.

Definition 7. A rule argument α is τ-acceptable for an agent Ai if Bi(α) ≥ τ ,
where 0 ≤ τ ≤ 1.

In our framework, only τ -acceptable generalizations are allowed for a predeter-
mined threshold τ . To ensure only highly quality rules are considered. Next, we
will define attacks between arguments.

Definition 8. An attack relation (α � β) between arguments α, β holds when:
1. 〈r1, Ĉ〉� 〈r2, C〉 ⇐⇒ Ĉ = ¬C ∧ r2 � r1, or
2. 〈e, Ĉ〉� 〈r, C〉 ⇐⇒ Ĉ = ¬C ∧ r " e

(where C, Ĉ ∈ {C,¬C})

Notice that a rule argument α only attacks another argument β if β.r � α.r,
i.e. when β is a strictly more general argument than α. This is required since
it implies that all the examples covered by α are also covered by β, and thus if
they support opposing concepts, they must be in conflict.

Figure 3 exemplifies some arguments and with their corresponding attacks.
Positive examples of the concept C are marked with a positive sign, whereas

Concept Convergence in Empirical Domains 287

negative examples are marked with a negative sign. Rule arguments are repre-
sented as triangles covering examples; when an argument α1 subsumes another
argument α2, we draw α2 inside of the triangle representing α1. Argument α1
has a generalization r1 supporting C, which covers 3 positive examples and 3
negative examples, and thus has confidence 0.5, while argument α2 has a gen-
eralization r2 supporting ¬C with confidence 0.66, since it covers 3 negative
examples and only one positive example. Two example arguments are shown:
〈e3, C〉 and 〈e4,¬C〉. Now, α2 � α1 because α2 supports ¬C, α1 supports C
and r1 � r2. Additionally 〈e3, C〉 � α2, since e3 is a positive example of C, α2
supports ¬C and r2 " e3.

Next we will summarily define when arguments defeat other arguments, based
on the idea of argumentation lines [1]. An Argumentation Line αn � αn−1 �
... � α1 is a sequence of arguments where αi attacks αi−1 and α1 is called the
root. Notice that odd arguments are generated by the agent whose generalization
is under attack (the proponent) and the even arguments are generated by the
agent attacking that generalization (the opponent).

Moreover, an α-rooted argumentation tree T is a tree where each path from
the root node α to one of the leaves constitutes an argumentation line rooted on
α. Therefore, a set of argumentation lines rooted in the same argument α1 can
be represented as an argumentation tree, and vice versa. Notice that example
arguments may appear only in the leaves of an argumentation tree. The example-
free argumentation tree T f corresponding to T is a tree rooted in α that contains
the same rule arguments of T but no example arguments.

In order to determine whether the root argument α is warranted (undefeated)
or defeated the nodes of the α-rooted tree are marked U (undefeated) or D
(defeated) according to the following (cautious) rules: (1) every leaf node is
marked U; (2) each inner node is marked U iff all of its children are marked D,
otherwise it is marked D.

Finally we will define the status of the argumentation among two agents Ai

and Aj at an instant t as the tuple 〈Rt
i, R

t
j , G

t〉, consisting of:

– Rt
i = {〈r, C〉|r ∈ {r1, ..., rn}}, the set of rule arguments representing the

current intensional definition Ct
i = r1 ∨ ... ∨ rn for agent Ai.

– Gt contains the collection of arguments generated before t by either agent,
and belonging to a tree rooted in an argument in Rt′

i , where t′ ≤ t.

Rt
j is the same for agent Aj . Now we can turn to integrate inductive learning

with computational argumentation.

3.1 Argument Generation through Induction

Agents need two kinds of argument generation capabilities: generating an initial
intensional definition from examples, and generating attacks to arguments.

When an agent Ai that wants to generate an argument β that attacks another
argument α, β has to satisfy four conditions: a) support the opposite concept
than α, b) have a high confidence Bi(β) (at least being τ -acceptable), c) satisfy

288 S. Ontañón and E. Plaza

ABUI

Generalization : g

Solution = 〈r, C〉 : (g � r) ∧ (Bi(r) ≥ τ) ∧ (� ∃α ∈ Q : α � 〈r, C〉)

Target : C ∈ {C,¬C}

Examples : E+
i ∪ E−

i

RuleArguments : Q

Fig. 4. ABUI is an inductive concept learning algorithm which can take additional
background knowledge, in the form of arguments, into account

β � α, and d) β should not be defeated by any argument previously generated
by any of the agents. Existing inductive learning techniques cannot be applied
out of the box for this process, because of the additional restrictions imposed.
For this purpose, we developed the Argumentation-based Bottom-up Induction
(ABUI) algorithm, capable of performing such task [7]. However, any algorithm
which can search the space of rules, looking for one which satisfies the four
conditions stated before would work in our framework.

ABUI is an inductive method for concept learning which, in addition to train-
ing examples, can take into account additional background knowledge in the form
of arguments (see Fig. 4). ABUI is a bottom-up inductive learning method, which
tries to generate rules that cover positive examples by starting from a positive
example and generalizing it as much as possible in order to cover the maximum
number of positive examples and while covering the minimum number of negative
examples possible. During this generalization process, ABUI only considers those
generalization which will lead to arguments not being defeated by any rule in
the background knowledge. Specifically, ABUI takes 4 input parameters: a target
concept C ∈ {C,¬C}, a set of examples E+

i ∪E−
i , a generalization g, and a set of

arguments Q which both agents have agreed to be true. ABUI finds (if it exists)
an argument β = 〈r, C〉 such that: (g " r)∧(Bi(r) ≥ τ)∧(�α ∈ Q : α � 〈r, C〉).

To generate a β such that β � α, the agent calls ABUI with g = α.r and with
the set of agreed upon arguments Q (the subset of arguments in Gt which are
undefeated).

– If ABUI returns an individually τ -acceptable β, then β is the attacking ar-
gument to be used.

– If ABUI fails to find an argument, then Ai looks for examples attacking α in
Ei. If any exist, then one such example is randomly chosen to be used as an
attacking argument.

Otherwise, Ai is unable to generate any argument attacking α.

3.2 Belief Revision

During argumentation, agents exchange arguments which contain new rules and
examples. The Belief Revision process of an agent Ai triggered at an instant t,
with an argumentation state 〈Rt

i, R
t
j , G

t〉 works as follows:

Concept Convergence in Empirical Domains 289

1. Each example argument in Gt
i is added to Ei, i.e. Ai expands its extensional

definition of C.
2. Since Ei might have changed, the confidence in any argument in Rt

i or Gt

might have changed. If any of these arguments becomes not individually
τ -acceptable they removed from Rt+1

i and Gt+1.
3. If any argument α in Rt

i became defeated, and Ai is not able to expand
the argumentation tree rooted in α to defend it, then the rule α.r will be
removed from Ci. As a consequence, some positive examples in Ei will not
be covered by Ci any longer. Then ABUI is called with the now uncovered
examples to find new rules that cover them and that will be added to Ci.

3.3 Concept Convergence Argumentation Protocol

The concept convergence argumentation process follows an iterative protocol
composed of a series of rounds, during which two agents argue about the indi-
vidual rules that compose their intensional definitions of a concept C. At every
round t of the protocol, each agent Ai holds a particular intensional definition
Ct

i, and only one agent will hold a token. The holder of the token can assert new
arguments in the current round. At the end of each round the token is passed
on to the other agent. This cycle continues until Ci

∼= Cj .
The protocol starts at round t = 0 and works as follows:

1. Each agent Ai communicates their current intensional definition by sharing
R0

i . The token goes to one agent at random, and the protocol moves to 2.
2. The agents share Ki(Ci, Cj) and Kj(Cj , Ci), their individual convergence

degrees. If Ci
∼= Cj the protocol ends with success; if no agent has produced

a new attack in the last two rounds then the protocol ends with failure;
otherwise it moves to 3.

3. If modified by belief revision, the agent with the token, Ai, communicates
its current intensional definition Rt

i. Then, the protocol moves to 4.
4. If any argument α ∈ Rt

i is defeated, and Ai can generate an argument α′ to
defend α, α′ is sent to Aj . Also, if any of the undefeated arguments β ∈ Rt

j

is not individually τ -acceptable for Ai, and Ai can find an argument β′ to
extend any β-rooted argumentation line, in order to attack β, then β′ is sent
to Aj . If any of these arguments was sent, a new round t+1 starts; the token
is given to the other agent, and the protocol moves back to 2. Otherwise the
protocol moves to 5.

5. If there is any example e ∈ E+
i such that Ct

j �" e, Ai sends e to Aj (since the
intentional definition of Aj does not cover e). A new round t + 1 starts, the
token is given to the other agent, and the protocol moves to 2.

Moreover, in order to ensure termination, no agent is allowed to send twice the
same argument. A-MAIL ensures that the convergence of the resulting concepts
is at least τ if (1) the number of examples is finite, (2) the number of rules that
can be generated is finite. Convergence higher than τ cannot be ensured, since
100×(1−τ)% of the examples covered by a τ -acceptable rule might be negative.

290 S. Ontañón and E. Plaza

Concept
Convergence

R0
1 = {α1, α2, α3, α4, α5, α6}

R10
1 = {α1, α2, α3, α5, α6, α9}

R0
2 = {β1, β2, β3, β5}

R10
2 = {β1, β2, β3, β5}

t = 0

t = 1
t = 2
t = 3
t = 4

t = 5
t = 6
t = 7
t = 8

A1 : α1, ..., α6

A2 : β1, ..., β5

A2 : β6 � α4

A1 : α7 � β6

A2 : β7 � α7

A1 : retract(α4)
A1 : α8

A2 : β8 � α8

A1 : e251 � β8

A2 : e26 � α8

A1 : α9

α1 α2 α3 α4 α5 α6

α7

α8 α9

β1 β2 β3 β4 β5

β6

β7

β8

e251

e26

A1 : retract(α8)

Fig. 5. An example concept convergence argumentation. Left hand side shows starting
point and result. The middle shows the list of messages exchanged during the protocol.
Right hand side shows the resulting argumentation trees.

Even when both agents use different inductive algorithms, convergence is assured
since by assumption they are using the same finite generalization space, and there
is no rule τ -acceptable to one agent that could not be τ -acceptable to the other
agent when both know the same collection of examples.

An example process of concept convergence is shown in Fig. 5. On the left
hand side are the arguments (concept definition) of each agent before and after.
In the middle, Fig. 5 shows the messages exchanged during the protocol, and on
the right hand side the argumentation trees used. We can see that in round t = 0
the agents just exchange the arguments that compose their concept definitions.
Then, in rounds 1, 2 and 3, the agents are arguing about the argument α4, when
ends up being defeated (shaded node). As a consequence, agent A1 retracts α4
and proposes a new one, α8 (dashed node). The agents argue about α8 in rounds
5 to 7, and eventually α8 is defeated. Finally, agent A1 retracts α8, and proposes
a new argument α9, which is accepted (not attacked) by A2. In this example,
A1 does not attack any argument in the definition of agent A2.

4 Concept Convergence for Marine Sponges

Marine sponge classification poses a challenge to benthologists because of the in-
complete knowledge of many of their biological and cytological features, and due
to the morphological plasticity of the species. Moreover, benthology specialists
are distributed around the world and they have experience in different benthos
that spawn species with different characteristics due to the local habitat condi-
tions. Due to these problems, the classification or sponges into different classes
is a challenging problem which is still under discussion among specialists.

The problem that we use as our test bed is that of learning which are the
features that distinguish the different orders of sponges among each other, i.e.
finding their intensional definition. We will focus on the scenario where two
different experts have collected sponges in different locations and that these
sponges are properly classified into their respective orders. Now, the two experts

Concept Convergence in Empirical Domains 291

grow: erect
line-form

sponge

external-features
spiculate-skeleton

external-features

growing

spiculate-skeleton

megascleres

growing

line-form

line-form

form:

megascleres

acanthose acanthose

axinellidae

sponge

external-features
spiculate-skeleton

growing

spiculate-skeleton

megascleres

growing

line-form

megascleres

acanthose acanthose

axinellidae

external-features

grow: erect
line-form

sponge

external-features
spiculate-skeleton

growing

spiculate-skeleton

megascleres

growing

megascleres

axinellidae

external-features

line-form

form:

branching

foliaceous

Fig. 6. Original concept definition learnt by an agent for the Axinellidae class, and
composed of three rules

are interested in having a specific agreed definition of each of the different order
of sponges, so that their classification is clear in the future.

We have designed an experimental suite with a collection of 280 marine
sponges pertaining to three different orders of the Demospongiae class (As-
trophorida, Hadromerida and Axinellidae), taken from the Demospongiae dataset
from the UCI repository. For our evaluation, we divide this collection of sponges
in two disjoint sets, and give each set to one agent, which corresponds to an
expert. Given a target order, say Axinellidae, each agent learns by induction a
definition which characterizes all the sponges belonging to that order, and does
not cover any sponge from any other order. After that, both agents argue about
those definitions to reach an agreement using A-MAIL. The expected result is
that the definition they reach after argumentation is better than the definitions
they found individually (it is in agreement with the data known to both agents),
and that it is achieved without exchanging large amounts of information.

Figure 6 shows an example definition of Axinellidae found by one agent in
our experiments. The definition is composed of three rules. The first one, for
instance states that “all the sponges which have a branching line-form growing
and acanthose in the megascleres in the spikulate-skeleton” are Axinellidae.

Figure 7 shows two arguments (α3 and β4) as generated in one of our experi-
ments by 2 agents while arguing about the definition of the Axinellidae order. An
agent A1 had proposed α3, stating that “all the sponges which have a branching
line-form growing and megascleres in the spikulate skeleton” are Axinellidae.
This was so, since this rule was consistent with A1 knowledge, i.e. with the set
of sponges A1 knew. However, this rule turned out to be too general, since it
covered some sponges known to the other agent, A2, which were not Axinellidae.
In order to attack this rule, agent A2 generated the argument β4, which states
that “all the sponges which have a branching line-form growing, a hand, and a

292 S. Ontañón and E. Plaza

sponge

external-features
spiculate-skeleton spiculate-skeleton

megascleres megascleres

axinellidae

line-form

form:

external-features

growing

growing

line-form

sponge

external-features
spiculate-skeleton

spiculate-skeleton

megascleres hadromerida

line-form

form:

external-features

consistency
hand
growing growing

line-form

consistency

hand

megascleres

smooth-form
characteristics megas-form

characteristics

shaft shaft

α3

β4
branching

branching

Fig. 7. Examples of arguments α3 and β4, where β4 is attacking argument α3

Table 1. Precision (P), Recall (R) and degree of convergence (K) for the intensional
definitions obtained using different methods

Concept Centralized Individual A-MAIL
P R P R K P R K

Axinellidae 0.98 1.00 0.97 0.95 0.80 0.97 0.95 0.89
Hadromerida 0.85 0.98 0.89 0.91 0.78 0.92 0.96 0.97
Astrophorida 0.98 1.00 0.97 0.97 0.93 0.98 0.99 0.97

shaft in the smooth form of the megascleres” are actually Hadromeridae. Since
A1 could not attack β4, α3 is defeated.

4.1 Experimental Evaluation

We perform concept convergence on each of the 3 orders in the marine sponges
data set: Astrophorida, Hadromerida and Axinellidae. In an experimental run,
we randomly split the data among the two agents and, given a target concept,
the goal of the agents was to reach a convergent definition of such concept.
We compare the results of A-MAIL with respect to agents which do not perform
argumentation (Individual), and to the result of centralizing all the examples and
performing centralized concept learning (Centralized). Comparing the results of
Individual agents and agents using A-MAIL provides a measure of the benefits
of A-MAIL, whereas comparing with Centralized gives a measure of the quality
of the outcome. All the results are the average of 10 executions, ε = 0.05 and
τ = 0.75. We used the same induction algorithm, ABUI, for all the experiments.

Table 1 shows one row for each of the 3 concepts we used in our evaluation;
for each one we show three values: precision, (P, how many examples covered
that are actually positive examples); recall, (R, how many positive examples
in the data set are covered by the definition); and convergence degree (K, as
defined in Definition 4). The first thing we see is that indeed A-MAIL is able
to increase convergence from the Individual setting. Moreover, for all concepts
except for Axinellidae the convergence degree is higher than 0.95 (i.e. 1 − ε).

Concept Convergence in Empirical Domains 293

Table 2. Comparison of the cost and quality of obtaining intensional definition from
examples using different settings. Cost is measured in time (in seconds), and for A-
MAIL, also the average number of example arguments (NE) and rule arguments (NR)
exchanged. Quality is measured by the average number of rules (R) in intensional
definitions.

Concept Centralized Individual A-MAIL

time R time R time R NE NR
Axinellidae 82.3s 7 40.8s 4.10 65.2s 6.65 10.7 15.6
Hadromerida 173.3s 11 75.6s 6.15 164.8s 9.2 18.5 32.6
Astrophorida 96.7s 6 47.7s 7.00 50.6s 4.1 4.1 9.7

100% convergence is not reached because τ = 0.75 in our experiments. This
means that acceptable rules can cover some negative examples, which allows
for the appearance of some divergence. Increasing τ could improve convergence
but makes finding rules by induction more difficult, and thus recall might suffer.
Finally, notice that argumentation also improves precision and recall that reach
values close to the ones achieved by Centralized.

Table 2 shows the average cost of each of the three settings. Column time
shows the average CPU time used in each execution; when there are 2 agents
(in the Individual and A-MAIL settings) individual time is obtained dividing 2.
The Centralized setting uses more time on average than either Individual or A-
MAIL settings. Table 2 also shows the average number of examples and of rule
arguments exchanged among the agents, showing that A-MAIL only requires the
exchange of a small amount of examples and arguments in order to converge.

Quality of solution is estimated by compactness of concept descriptions. The
definitions found by A-MAIL are more compact (have less rules) than the def-
initions found by a Centralized approach. For instance, for the concept As-
trophorida, the Centralized setting obtains a definition consisting of 6 rules,
whereas A-MAIL generates only 4.1 rules on average.

In summary, we can conclude that A-MAIL successfully achieves concept con-
vergence. In addition to improve the quality of the intensional definition (preci-
sion and recall), this is achieved by exchanging only a small percentage of the
examples the agents know (as opposed to the centralized strategy where all the
examples are given to a single agent, which might not be feasible in some ap-
plications). Moreover, the execution time of A-MAIL is on average lower than
that of a centralized strategy. An interesting implication of this is that A-MAIL
could be used for distributed induction, since it achieves similar results than a
centralized approach, but at a lower cost, and in a distributed fashion.

5 Related Work

In our approach to concept convergence, we used our A-MAIL framewok [7]. A-
MAIL is a framework which integrates inductive learning techniques with com-
putational argumentation. In previous work, we applied A-MAIL to the task of

294 S. Ontañón and E. Plaza

distributed inductive learning, where agents are interested in benefitting from
data known to other agents in order to improve performance. In this paper, we
have used A-MAIL for a different task: concept convergence, where the goal is
for two agents to coordinate their definitions of specific concepts. This process
can be used, as we have shown, to model the process of argumentation between
biology specialists about the definition of specific species. However, A-MAIL can
be used for other tasks such as joint deliberation (when agents what to reach an
agreement on a specific decision to a particular problem).

The integration of arguments into a machine learning framework is a recent
idea, receiving increasing attention, as illustrated by the argument-based ma-
chine learning framework [4]. The main difference between this framework and
A-MAIL is that in argument-based machine learning, arguments are given as the
input of the learning process, while A-MAIL generates arguments by induction
and uses them to reach agreements among agents.

Our work is also related to multiagent inductive learning. One of the earliest in
this area was MALE [9], in which a collection of agents tightly cooperated during
learning, effectively operating as if there was a single algorithm working on all
data. Similar to MALE, DRL [8] is a distributed rule learning algorithm based
on finding rules locally and then sending them to the other agents for evaluation.
The idea of merging theories for concept learning has been also studied in the
framework of Version Spaces [2].

6 Conclusions

This paper has presented the task of concept convergence. Concept convergence
is different from ontology alignment in that we are not trying to find correspon-
dence between ontologies, but reach shared definitions to known concepts. Since
concept convergence is a broad subject we have focused on empirical domains.
We have proposed to use inductive learning techniques to represent concepts and
computational argumentation to regulate the communication process. For this
purpose we have summarized A-MAIL, a framework that integrates inductive
learning and computational argumentation; this integration is achieved by (1)
considering rules learned by inductive learning as arguments, and (2) developing
inductive learning techniques that are able to find new generalizations that are
consistent with or attack a given set of arguments.

We have motivated the approach in the biological domain of marine sponges,
where definitions of taxonomic concepts are still under debate. Experiments in
this domain show that computational argumentation integrated with induction
is capable of solving the concept convergence task, and the process is efficient
(in the sense of the number of arguments that need to be exchanged).

As part of our future work, we intend to investigate more complex settings
of concept convergence, and other tasks than can be performed by integrating
induction with argumentation. Concerning concept convergence, we have started
by focusing on the 2-agent scenario, but we intend to investigate concept conver-
gence for n agents. Since computational argumentation is traditionally modeled

Concept Convergence in Empirical Domains 295

as a dialogue between 2 agents, moving to a n-agents scenario requires more com-
plex interaction models, such as those of committees (following argumentation-
based deliberation in committees as in [6]). Another avenue of research is con-
vergence on more than one concept; when these concepts are interdependent we
surmise our current approach would work when dependencies are not circular;
circular dependencies would require a more sophisticated approach.

Moreover, integrating induction with argumentation allows other kinds of
tasks, such are using argumentation among agents to improve the individual
inductive model [7]; another task is deliberative agreement, where 2 or more
agents disagree on whether a situation or object is an instance of a concept C
and user argumentation to reach an agreement on that issue.

Acknowledgments. This research was partially supported by projects Next-CBR
(TIN2009-13692-C03-01), Aneris (PIF08-015-02) and Agreement Technologies
(CONSOLIDER CSD2007-0022).

References

[1] Chesñévar, C.I., Simari, G.R., Godo, L.: Computing dialectical trees efficiently
in possibilistic defeasible logic programming. In: Baral, C., Greco, G., Leone, N.,
Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 158–171. Springer,
Heidelberg (2005)

[2] Hirsh, H.: Incremental version-space merging: a general framework for concept
learning. PhD thesis, Stanford University, Stanford, CA, USA (1989)

[3] Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: The state of the art. In:
Kalfoglou, Y., Schorlemmer, M., Sheth, A., Staab, S., Uschold, M. (eds.) Semantic
Interoperability and Integration, Dagstuhl Seminar Proceedings, Dagstuhl, Ger-
many, vol. 04391 (2005)

[4] Mozina, M., Zabkar, J., Bratko, I.: Argument based machine learning. Artificial
Intelligence 171(10-15), 922–937 (2007)

[5] Ontañón, S., Dellunde, P., Godo, L., Plaza, E.: Towards a logical model of induction
from examples and communication. In: Proceedings of the 13th International Con-
ference of the Catalan Association for Artificial Intelligence. Frontiers in Artificial
Intelligence. IOS Press, Amsterdam (in press, 2010)

[6] Ontañón, S., Plaza, E.: An argumentation-based framework for deliberation in
multi-agent systems. In: Rahwan, I., Parsons, S., Reed, C. (eds.) ArgMAS 2007.
LNCS (LNAI), vol. 4946, pp. 178–196. Springer, Heidelberg (2008)

[7] Ontañón, S., Plaza, E.: Multiagent inductive learning: an argumentation-based ap-
proach. In: ICML 2010. Omnipress (2010),
http://www.icml2010.org/papers/284.pdf

[8] Provost, F.J., Hennessy, D.: Scaling up: Distributed machine learning with cooper-
ation. In: Proc. 13th AAAI Conference, pp. 74–79. AAAI Press, Menlo Park (1996)

[9] Sian, S.S.: Extending learning to multiple agents: Issues and a model for multi-agent
machine learning (MA-ML). In: Kodratoff, Y. (ed.) EWSL 1991. LNCS, vol. 482,
pp. 440–456. Springer, Heidelberg (1991)

http://www.icml2010.org/papers/284.pdf

Equation Discovery for Model Identification in
Respiratory Mechanics of the Mechanically

Ventilated Human Lung�

Steven Ganzert1,��, Josef Guttmann2, Daniel Steinmann2, and Stefan Kramer1

1 Institut für Informatik I12, Technische Universität München, D-85748 Garching b.
München, Germany

2 Department of Anesthesiology and Critical Care Medicine, University Medical
Center, Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany

steven.ganzert@in.tum.de

Abstract. Lung protective ventilation strategies reduce the risk of ven-
tilator associated lung injury. To develop such strategies, knowledge
about mechanical properties of the mechanically ventilated human lung
is essential. This study was designed to develop an equation discovery
system to identify mathematical models of the respiratory system in
time-series data obtained from mechanically ventilated patients. Two
techniques were combined: (i) the usage of declarative bias to reduce
search space complexity and inherently providing the processing of back-
ground knowledge. (ii) A newly developed heuristic for traversing the
hypothesis space with a greedy, randomized strategy analogical to the
GSAT algorithm. In 96.8% of all runs the applied equation discovery sys-
tem was capable to detect the well-established equation of motion model
of the respiratory system in the provided data. We see the potential
of this semi-automatic approach to detect more complex mathematical
descriptions of the respiratory system from respiratory data.

Keywords: Equation discovery, declarative bias, GSAT algorithm, res-
piratory mechanics, mechanical ventilation, lung protective ventilation.

1 Introduction

Mechanical ventilation is the live-saving therapy in intensive care by all means.
However, inadequate ventilator settings can induce or aggravate lung injury dur-
ing mechanical ventilation. To prevent such ventilator associated lung injury
(VALI), lung protective ventilation strategies are essential. Such strategies have
been shown to considerably improve the outcome of critically ill patients [25]. A
prerequisite for such strategies is the analysis of the respiratory mechanics un-
der mechanical ventilation. Such analyses are generally based on mathematical
models to describe and interpret the associated mechanisms [11,2,3,15,1]. The
equation of motion (EOM) [14] is a commonly accepted mathematical model of
� http://wwwkramer.in.tum.de/Members/ganzert/publications/

ganzert etal ds2010 suppl material.pdf
�� Corresponding author.

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 296–310, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://wwwkramer.in.tum.de/Members/ganzert/publications/ganzert\protect _etal\protect _ds2010\protect _suppl\protect _material.pdf
http://wwwkramer.in.tum.de/Members/ganzert/publications/ganzert\protect _etal\protect _ds2010\protect _suppl\protect _material.pdf

Equation Discovery for Model Identification in Respiratory Mechanics 297

the respiratory system and provides the basis for most clinically applied methods
of respiratory mechanics analysis [30,22]. However, this model has restrictions
since it does not include aspects of non-linearity or inhomogeneity. Consequently,
refined methods and models are required to analyze respiratory mechanics. Es-
pecially monitoring techniques under the dynamic condition of continuous me-
chanical ventilation at bedside are of interest [23,13].

Equation discovery has been introduced [20] to identify functional relations
from parameters observed over the course of time. Equation discovery systems
have to face a variety of problems. Fitting time series is eminently affected by
the initial parameter settings within the fitting process and also by noise in the
data. Various attempts have been made to address this issue [26,27,18,33]. An-
other problem is the representation of the results. LAGRANGE [9], for example
is capable to generate models consisting of higher order differential equations,
however the task of solving them remains part of post-processing the results.
Another general problem in data mining and machine learning also affecting
equation discovery systems is the handling of vast search spaces. Several ap-
proaches have been introduced such as coping with irrelevant variables [10] and
detecting inconsistencies of units [10,17]. In the same context the use of declara-
tive bias, which is well known from the field of inductive logic programming [24],
was introduced to equation discovery [31].

The purpose of this study was to implement an equation discovery system ap-
plicable to model respiratory mechanics. An important system requirement was
the capability to process background knowledge given by previously developed
mechanical lung models and to present such background knowledge in a flexible
manner. This would be the methodological prerequisite to identify even more
elaborated models within respiratory data. Respiratory data from 13 mechani-
cally ventilated patients with normal lungs was analyzed. A previously developed
system [31] was modified. The original system traverses the hypothesis space in
a specific sequential order which showed to have a biased impact on the perfor-
mance of the system. The benchmark test for the modified system consisted of
the re-identification of a well known model of respiratory mechanics.

2 Medical Background: The EOM Model

The EOM for the respiratory system describes the relation between airway pres-
sure Paw, applied volume V and respiratory airflow V̇ by

Paw = V/C + V̇ × R + PEEP (1)

where C denotes the so-called compliance (volume distensibility) of the lung and
is defined by the quotient of volume change divided by pressure change, i.e. C =
ΔV/ΔP . R denotes the resistance of the respiratory system and PEEP (positive
end-expiratory pressure) the offset of the airway pressure at the end of expiration.
In medical practice, a commonly accepted strategy for lung protective ventilation
is to ventilate the lung in a pressure-volume range where lung compliance is
maximal. In this way, less pressure per milliliter of inflated gas volume is needed.

298 S. Ganzert et al.

Fig. 1. Sample data of one patient. (a) PEEP-wave maneuver with successively in-
creasing PEEP level in steps of 2 mbar up to a maximum plateau pressure of 45 mbar.
(b) Sample pressure curve of one breath at PEEP level of 14 mbar. As it is the last
breath before the next change of PEEP, this breath was used for analysis. The plateau
pressure level is approximated at the end of the zero-flow phase after inflation. (c), (d)
Corresponding flow and volume curve, respectively.

This can be obtained by adequately adjusting the pressure offset (i.e. PEEP)
and the breath-by-breath applied (tidal) volume at the ventilator.

3 Methodological Background: LAGRAMGE and GSAT

3.1 LAGRAMGE

Declarative bias was introduced to the field of equation discovery by Todorovski
and Džeroski with the LAGRAMGE system [31]. The system uses context free
grammars to reduce the hypothesis space. The grammars restrict the choice
of mathematical models by defining applicable model fragments. Parse trees —
representing mathematical equations — are derived from the given grammar and
span the hypothesis space. Briefly summarizing, the system operates as follows
on an input consisting of two parts:

- The data D = (M, V ar, vd) with M = {(t1..m, v1(t1..m), . . . , vk(t1..m))1..l} as
set of one ore more time series data sets (Fig. 1), V ar = {v1, v2, . . . , vk} as
set of domain variables and vd ∈ V ar as dependent variable.

- A context free grammar G = (N, T, P, S) with N as set of non-terminal sym-
bols, T as set of terminal symbols, P as set of production rules {p1, . . . , pl}
and S ∈ N as non-terminal start symbol (Fig. 2).

Model Evaluation. Each production rule p ∈ P is of the form A → α. A ∈ N
is called the left side and α ∈ (N ∪ T)∗ the right side of the production rule.
In the following, PA denotes the set of production rules {pA,1, . . . , pA,l} having

Equation Discovery for Model Identification in Respiratory Mechanics 299

A as left side. Each parse tree TS derivable from the grammar G with the non-
terminal start symbol S as root node represents a model, which is fit to the given
data by a fitting method F . The quality of the model is estimated by a heuristic
function Fh.

Model Refinement. TS is refined to T ′
S by choosing a non-terminal node A in

TS, applying the succeeding production rule pA,i+1 of the previously applied rule
pA,i and terminating the resulting subtree TA by iteratively applying the first
production rule pB,1 ∈ PB for all non-terminal leaf nodes B in the expanded
successor trees of TA until no more non-terminals are left in the leaves.

Beam Search. Applying a beam search [4] of width n, in each iteration suc-
cessively for all n beam elements, i.e. parse trees TS, each possible refinement T ′

S
is generated by separately refining each non-terminal node A in TS. From the
set of all refinements {T ′

S,1, · · · , T ′
S,m} of all beam elements unified with the set

of the beam elements {TS,1, · · · , TS,n} of the previous iteration, the n elements
with the lowest error in terms of Fh are stored in the beam for the next itera-
tion. The algorithm stops, if within an iteration none of the beam elements was
substituted.

Search Heuristic. Besides the reduction of the search space complexity, the
declarative bias applied in this system in terms of a context free grammar implies
a specific guidance through the hypothesis space. Preferring short hypothesis,
the production rules (and therefore the productions as well) of the grammar are
ordered by the minimal height of a parse tree TA derived with the production
rule pA,i ∈ PA at its root node A and thus the productions PA are rather or-
dered m-tuples PA = (p1, . . . , pm) than sets of m production rules {p1, . . . , pm}.
Furthermore, production rules having the same height are ordered by their in-
put sequence given by the grammar just like the domain variables, whose input
sequence is given by their listing in the time series data sets.

Fig. 2. Universal grammar G = (N, T, P, S) allowing to apply the four basic mathe-
matical operands +, −, × and ÷ with N = {E, F, T, V ar}, T = {+,−,×,÷, const, (,)},
S = E and P = {pE,1, . . . , pT,3} (e.g., pE,1 = E → E + F). Note the system specific
interpretation of the ’|’ symbol. In the LAGRAMGE system, production rules having
the same height are ordered by their listing sequence in the grammar. Therefore, ’|’
can be interpreted as ’before’-relation. In the modified system, ’|’ is used in its original
meaning of ’OR’.

300 S. Ganzert et al.

3.2 GSAT

The GSAT algorithm [29] was developed to solve hard satisfiability problems
(SAT) of propositional formulae in conjunctive normal form (CNF). In brief, it
iteratively processes two steps:

1. A truth assignment for the clause is randomly generated. The number of
tries, i.e. iterations, is limited by a maximum number of repetitions.

2. Find the variable with the largest increase in the total number of satisfied
clauses if its assignment is reversed and flip its assignment. Within one iter-
ation, this is repeated for a maximum number of flips.

In summary, GSAT performs as a local greedy search and the method has been
found to perform effectively in applications such as graph coloring, N-queens
encoding and Boolean induction problems.

4 Materials and Methods

4.1 System Modifications

The refinement of the parse trees as well as the processing of the beam search
has been modified. (The implementation of the modified system is provided for
download in the supplementary material.) Following GSAT, the improvement of
a model is processed in two steps:

1. Model refinement: Instead of choosing the production rules for the refinement
of a parse tree TS and the termination of the subtrees TA in the predefined
sequential order, these are selected randomly. Instead of terminating the
subtrees TA for all non-terminals A in the parse tree TS by application of the
first successor rule pA,i+1 of the previously applied rule pA,i, the succeeding
rule pA,j ∈ PA is randomly chosen. The in this way derived subtree TA is
terminated by iteratively applying a randomly chosen production rule pB,i ∈
PB to all non-terminal leaf nodes B in TA until no more non-terminal is left
in the leaves of TA and thus deriving T ′

S . Referring to GSAT, this mimics the
initial randomly generated truth assignment of the variables of a Boolean
formula. For detailed information, see algorithm 1 in the supplementary
material.

2. Search heuristic: For the model T ′
S refined in this way, the system tries to

minimize Fh. Successively for all non-terminals B in T ′
S , all pB,i ∈ PB are

applied and the in this manner derived subtrees TB are randomly refined
again as described above. After each of such a random refinement, Fh is
evaluated. T ′

S with the lowest error is determined as the refined model. Again
referring to GSAT, this mimics the step of flipping the variable assignment
with the objective of finding the variable with the largest increase in the
total number of satisfied clauses. For detailed information, see algorithm 2
in the supplementary material.

Equation Discovery for Model Identification in Respiratory Mechanics 301

Processing a beam search of width n, each single beam element TS is evaluated
separately. That is, not the maximum number of n improved models of TS com-
pared to all n beam elements are replaced within the beam. Instead, only the
actually evaluated beam element is replaced if applicable. The algorithm stops if
none of the beam elements TS,1..n can be improved or none of the elements can be
refined anymore. For detailed information, see algorithm 3 in the supplementary
material.

To avoid redundant model evaluations, the sequence seq(TS) = (i, . . . , q) of
applied production rules is stored in a lookup table during the derivation of
a parse tree TS. As during the iterative termination process the non-terminals
within the right side α ∈ (N∪T)∗ of a production rule A → α are identified from
left to right, each parse tree derivation can be identified by a unique sequence
of the applied production rule indices. Before evaluation of a refined parse tree,
the system checks for redundancy in the lookup table.

4.2 Patients and Data Sets

The study included data of 13 mechanically ventilated patients under preopera-
tive anesthesia. Data was obtained by automated respiratory maneuvers. During
such maneuvers, continuous mechanical ventilation was applied at successively
increasing PEEP-levels. Starting from 0 mbar, PEEP was increased in steps of 2
mbar up to a maximum plateau pressure of 45 mbar (Fig. 1, a, b). For detailed
information about the subjects and medication, see [12].

For analysis, the last breathing cycle before increasing the PEEP to the next
level was extracted from the data. Thus, each patient data set consisted of 11
to 14 (13.7 ± 0.95 [mean ± SD]) breathing cycles at different pressure levels.
Additionally to the airway pressure Paw, the flow V̇ and the volume V were
recorded as time series (Fig. 1c and d).

4.3 Experiments

The benchmark test to validate the modified system was to identify the EOM
model in the respiratory data. The performance of the modified system was
tested against the original algorithm. Special attention was paid to the effect of
different input sequences of the domain variables and production rules. The qual-
ity of a model was determined by two parameters. (i) A model equation should
represent the EOM model, i.e re-identify the EOM from the data. A model
was assumed to represent the EOM model, if after simplification the resulting
equation consisted of the three additive terms const× V/C, const× V̇ ×R and
const×PEEP (eqn.1) with optional constant multipliers const. Additional con-
stant additive terms were allowed to be included and thus a positively identified
model was of the form

Paw = [const ×] V/C + [const ×] V̇ × R + [const ×] PEEP [+ const]. (2)

Note that const, C and R could take both positive or negative values, but had to
lead to pure positive additive terms aside from the additional constant additive

302 S. Ganzert et al.

terms [+ const], which could also take negative values after simplification of the
equation. (ii) Secondly, the root mean squared error (RMSE) of the model fit to
the raw data should be minimized.

The input data sets consisted of time series data for the four domain variables
Paw, V̇ , V and PEEP with Paw as dependent variable. The PEEP level was
given as constant value during a single breathing cycle. The input sequence of
the independent variables, i.e. their listing in the data files, was permuted and
thus, for each patient the six sequences [(V̇ , V, Peep), (V̇ , P eep, V), (V, V̇ , Peep),
(V, Peep, V̇), (Peep, V̇ , V), (Peep, V, V̇)] were provided. The input grammar con-
sisted of a universal grammar, allowing to apply the four basic mathematical
operands +, −, × and ÷ (Fig. 2). While a parse tree depth of five would have
been sufficient to derive the EOM model, resulting in a search space size of 7300,
we allowed a maximum parse tree depth of six, increasing the search space com-
plexity to 14,674,005 different parse trees. The production rules were provided
in an initial sequence and its reverse [initial, reverse]. Consequently, twelve dif-
ferent input combinations of variable sequences in the data files and production
rule sequences in the grammar were analyzed for each of the 13 patient data
sets.

To identify the statistical correlation between the input sequence and the
quality of the analysis results, a two-factorial analysis of variance (ANOVA)
was performed. For both systems (original and modified) it was tested if (i) the
identification of the EOM and (ii) if the RMSE of the provided model solutions
depended on the input sequence of the variables and production rules. The me-
dian values of the RMSE calculated over all experimental runs were compared
by a Wilcoxon rank-sum test. The significance level was set to p < 0.05 for
’significant’ and p < 0.003 for ’highly significant’.

Data preprocessing and statistical analysis were performed by application of
the Matlab R© software package version R2006b (The MathWorks, Natick, MA).
The two versions of the applied equation discovery systems were implemented in
the C programming language. Experiments were run on a standard laptop com-
puter (1001.7 MiB memory, 1.83 GHz processor) running under the operating
system Ubuntu (version 8.04).

5 Results

5.1 Benchmark Test (i): Identification of the EOM

The original system identified the EOM in 37.2%, the modified system in 96.8%
of all runs. For the original system, the two factorial ANOVA revealed a highly
significant dependence of the identification rate from the input sequence of the
domain variables as well as from the input sequence of the production rules. The
interaction between these two factors was found to be statistically significant.
In contrast, the modified system did not show such dependencies. The original
system showed a higher variance of the results (see Fig. 3 and Table 1 in the
supplementary material).

Equation Discovery for Model Identification in Respiratory Mechanics 303

Fig. 3. Experimental results for (a) original and (b) modified system with respect to
identification of the EOM in the data. The identification rate indicates the percentage of
beam elements (i.e. models) representing the EOM upon termination of the algorithm.
The contour plot (interpolation for visualization purposes) represents the identification
rate for all thirteen patients with respect to the input sequences of the domain variables
and the production rules. The square markers indicate that at least one beam element
provides a positive identification of the EOM. The dependence of the original system on
the input sequences is indicated by the far more inhomogeneous gray scale coloration.
Some peaks can be clearly identified within the range of the initial input sequence of
the productions rules. Note that a darker color indicates a lower identification rate.

5.2 Benchmark Test (ii): RMSE of Model Fits

A statistically highly significant dependence of the RMSE on the input sequence
of the production rules was observed for the original system. The dependence
of the RMSE on the input sequence of the domain variables as well as the in-
teraction between the two factors was found to be statistically significant. The
modified system did not show such dependencies. The original system showed
a higher variance of the RMSE (see Fig. 4 and Table 2 in the supplementary
material). The modified system generated more precise models with respect to
the RMSE in the early as well as in the final state of the iterative model deriva-
tion process. The maximum number of iteration steps amounts to 27 for the
original and to 23 for the modified system (Fig. 5). The medians of the RMSE
are statistically significantly lower in the modified system (see insert of Fig. 5).

5.3 General Performance

The original algorithm performed about 20% more iterations than the modified
system before termination. The modified system evaluated 9 times more model

304 S. Ganzert et al.

Fig. 4. Experimental results for (a) original system and (b) modified system with
respect to the error variance of the generated models. The error variance is represented
by the median RMSE of all beam elements (i.e. models) upon termination of the
algorithm. The contour plot (interpolation for visualization purposes) represents this
median RMSE for all thirteen patients with respect to the input sequences of the
domain variables and the production rules. The square markers indicate that at least
one beam element provides a positive identification of the EOM. The independence
of the modified system on the input sequences is indicated by the more homogeneous
gray scale coloration. Note that (a) a brighter color indicates a lower RMSE, (b) the
interpolation is exclusively for better visualization, (c) adjacency of entries on the x-
and y-axis is arbitrary as they merely represent the datasets and sequential orders
respectively.

equations than the original system. About 24% of the model equations generated
by the modified system were redundant derivations and thus not re-evaluated
(see Table 3 in the supplementary material).

6 Discussion

The main results of this study are: (i) the modified equation discovery system
was able to identify the well-known EOM-model in real-world data obtained
from mechanically ventilated patients and (ii) the system’s performance was
independent of the input sequences of the model variables and the production
rules of the context free grammar representing domain-dependent background
knowledge.

Originally, equation discovery approaches were data-driven [26,21,5,16]. De-
pending on the size of the dataset and the hypothesis space, the trial-and-error
strategy of this domain-independent [27] policy to fit functional formulae is gen-
erally time-consuming. Besides this computational problem – inherent in most

Equation Discovery for Model Identification in Respiratory Mechanics 305

Fig. 5. RMSE (root mean squared error) during the course of iterations: the RMSE is
calculated as the median RMSE over all beam elements after each iteration. It is based
on the results for all patients and all twelve input sequence combinations (grammar
and domain variables). Note that the increase of the median RMSE for the original
system at the end of the presented curve is caused by the modality of calculating the
median over the results for all patients and input sequences, only separated by the
iteration step. (During a single run, the algorithm would stop before an increase of the
RMSE, i.e. a worsening of the model fit.) insert: Median of the RMSE for the original
and the modified system calculated over all results for all patients and independent
of the input sequences. As a Wilcoxon rank-sum test showed, the medians differ with
high statistical significance (** p < 0.003).

machine learning and data mining tasks – Schaffer [28] highlighted that it is not
the mere identification of relationships in data which equation discovery has to
deal with. In fact, equation discovery systems should exclusively identify relation-
ships of real scientific relevance, a problem which has not been considered for a
long time. He also raised concerns about systems being exclusively demonstrated
on few hand-selected cases often involving artificial data [27]. Consequently, the
E* algorithm he introduced was tested on a vast set of measured data. In spite of
searching an infinite space of possible functional formulae, the search space was
restricted to a fixed, finite set of potential relationships. In a way, this was a first
step to a knowledge-driven, domain-dependent approach in equation discovery.
Focussing on the reduction of search space complexity, declarative bias was intro-
duced to equation discovery [31]. Besides the benefit concerning computational
complexity, this approach provides the capability to process domain-dependent
background knowledge. Moreover, declarative bias represents such background
knowledge in a very flexible way and therefore provides the feasibility to describe
a problem task as a trade-off between exploration and exploitation: if the hy-
pothesis space is bounded by tight constraints in terms of detailed background
knowledge, the presented results might be scientifically more relevant while part
of the exploratory discovery aspect of finding new systematic relations in the
data might be lost. On the other hand, if the constraints are not tight enough,

306 S. Ganzert et al.

one has not only to face time constraints caused by a vast hypothesis space, but
potentially also a loss of relevance in the provided results.

For the domain-specific task to identify a physiological lung model in mea-
sured respiratory time series data, an equation discovery system had to: (i) be
able to handle background knowledge, (ii) derive (correct) results in the least
possible time and (iii) be able to handle noisy data in a robust way. Accord-
ing to (i), we found the LAGRAMGE system being well applicable to our task.
However, first experiments on simulated data revealed that the ordering of the
production rules according to the height of derivable parse trees implied a par-
ticular bias when traversing the hypothesis space which consequently affected
the identification of suitable models. We found two technical reasons responsible
for these effects. Firstly, in addition to the requested reduction of the hypothesis
space by the declarative bias, the hypothesis space was kind of ’cut’ in a second
way. The sequential application of the production rules implies the uniqueness
of the derivation paths. The refinement of a parse tree TS requires the termina-
tion of its subtree TA, to which the production rule pA,1 has been applied, by
applying the first production rule pB,1 to all nonterminals B in TA. Therefore,
if TS is not kept as one of the beam elements for the next refinement iteration,
none of the successor trees of TA applying rule pB,i�=1 instead of pB,1 to any of
the nonterminals B can be generated and thus are lost for evaluation. This effect
is even aggravated by the implementation of the beam search. Within an itera-
tion, the element with the highest error with respect to Fh of the actual beam
is immediately substituted with a refinement having a lower error. Therefore,
a refinement T ′

S is not exclusively compared to its origin TS, but always to the
set of all beam elements. This implies the possibility, that even if a refinement
could improve its origin in terms of Fh, it might not be stored in the beam for
further refinements. This property could be compensated to a certain degree by
a larger beam width, however resulting in an increasing memory demand. On the
other hand, if a beam element was not improved but also not substituted by the
refinement of another element, the same production rules are applied in the next
iteration step again and thus the same refinements are re-evaluated. Secondly,
the sequential transition of the hypothesis space might occasionally cause the
algorithm to meet the stopping criterion in a local minimum. Refining subtree
TA by applying production rule pA,i+1 might impair the model in terms of Fh
compared to the application of pA,i and thus TA might be excluded from further
refinements — depending on the beam width. However, refining TA by pA,i+2 in
turn might improve the model, but in this case is not processed anymore.

Thus, the task was to adequately modify the search heuristic of the algorithm.
Although being simple, the local greedy search performed by the GSAT algo-
rithm [29] has been shown to perform effectively. Yet, the performance of GSAT
was hard to explain. It has been speculated that the crucial factor is to have an
approximate solution which can be refined iteratively. We found this approach
perfectly matching our task: starting with a randomly generated model, i.e parse
tree, this was attempted to be improved by systematically applied random re-
finements of the iteratively derived parse trees. According to our results, this

Equation Discovery for Model Identification in Respiratory Mechanics 307

strategy to traverse the hypothesis space was found to be effective. The pre-
viously mentioned ’cutting’ of the hypothesis space – biased by the sequential
application of production rules and thus ordered parse tree refinements – could
obviously be avoided by the strategy of randomized parse tree refinements. Ap-
plied in context of the modified beam search, the system includes aspects of a
momentum and a lookahead: each single beam element is evaluated and replaced
as necessary. On the other hand, the stopping criterion is not met before none
of all beam elements can be improved with respect to the heuristic function.
In this way, individual elements are refined again (lookahead) although possibly
not having been improved in a preceding refinement iteration (momentum).

Testing our system on real-world data obtained from mechanically ventilated
patients without any preprocessing of the data in terms of noise reduction, the
results indicate a robust performance. The additional bias affecting the search
strategy was eliminated. The data noise as usually found in measured data of
physiological systems did not show any effect on the performance within our
experimental settings. However, caused by the momentum and the lookahaed,
the modified system evaluated a much higher number of models compared to
the original system. Resulting in an increased evaluation time, this is a hard
constraint concerning the potential application at bedside under the aspect of
individualized model inference for the patient as diagnostic support. Neverthe-
less, an average of about 8550 evaluated models is still a small fraction of the
overall number of more than 1.4 million models spanning the hypothesis space.

7 Related Work

To the best of our knowledge, this is the first application of an equation discov-
ery system to measured respiratory data from intensive care medicine. However,
efforts have been made to improve equation discovery systems which are capa-
ble to process domain-dependent background knowledge since they have been
introduced. Promoting the view of such ’domain-dependent’ equation discov-
ery, Langley et al. [19,7] introduced the approach of inductive process modeling
(IPM). IPM combines the objectives of model inference from time series data,
knowledge representation in established scientific formalisms and incorporation
of domain knowledge embedded in a simulation environment. The system in-
corporates LAGRAMGE to take advantage of declarative bias though not using
the full scope of LAGRAMGE’s abilities concerning the representation of back-
ground knowledge in terms of context free grammars. IPM combines processes
into a model, and background knowledge consists of the provision of generic pro-
cesses. Models are induced under the assumption that the combination of any set
of generic processes produces valid model structures. Consequently, the model
space might contain candidates non-compliant to the expectations of a domain
expert. Thus, Todorovski et al. [32] further developed the IPM approach to hi-
erarchical inductive process modeling (HIPM), where processes are represented
in a hierarchical order. A general problem in equation discovery – as well as in
the entire field of machine learning – is that of overfitting the data. An approach

308 S. Ganzert et al.

addressing this point explicitly is the FUSE (forming unified scientific explana-
tions) system [6]. A main aspect of FUSE is a data preprocessing step related
to bagging which enables the system to infer several different models by appli-
cation of HIPM. Amongst those, the subprocesses are ranked by their frequency
and combined into a final model. In another approach discussing overfitting in
equation discovery, De Pauw et al. [8] introduced a model identifiability measure
to generate models with an optimized complexity with respect to the given data.
Background knowledge is represented in form of an initial model being either
general or overly complex.

A main requirement on an equation discovery system applied to the specific
domain of modeling lung mechanics was a flexible representation of background
knowledge. The system should be capable to infer models from rather low-level
prior knowledge as well as from more detailed knowledge. This is important
to the domain expert, who might start modeling from scratch (no background
knowledge) or who might want to improve existing models (background knowl-
edge given). Although having proven to perform well in multiple applications,
we assume the aforementioned systems demand rather detailed prior insight into
the processes to be modeled. Again, the representation of background knowledge
by context free grammars is highly flexible and furthermore can be used for re-
ducing the search space. Depending on the amount of background knowledge
provided, the analysis of the data can be designed to have more exploratory
or more exploitative characteristics. It is arguable to which degree model com-
plexity could be influenced by an appropriate structure of the applied grammar
which in turn could help to reduce overfitting but potentially would require again
specific prior knowledge. It also arguable, if for some applications the order de-
pendent approach of the original LAGRAMGE system might even be helpful,
as it could be used as a specific feature to bring in background knowledge. As
our study was designed in the context of a specific real-world problem domain,
our approach was of a rather pragmatic character. We focused on improving the
robustness of the applied system concerning reproducibility of model inference
in the context of sparse prior knowledge, accepting the previously mentioned
drawbacks of a comparatively basic system. However, the optimization of model
complexity and the integration of a model identifiability measure is an impor-
tant aspect to be considered in future work, and further experiments could be
conducted with such a system incorporating the search strategy presented in
this study.

8 Conclusion

We presented an equation discovery approach based on the LAGRAMGE sys-
tem, being able to handle domain-dependent background knowledge. To decouple
the search heuristic for traversing the hypothesis space from the presentation of
the background knowledge, we implemented a randomized hill-climbing search
heuristic resembling the GSAT algorithm. This novel system was shown to be
well applicable in the domain of real-world time series data, as it was robust

Equation Discovery for Model Identification in Respiratory Mechanics 309

concerning the mode of the data input, the representation of background knowl-
edge and noise inherent in the measured data. This is a prerequisite for further
applications in respiratory physiology.

References

1. Bates, J.H.T.: A recruitment model of quasi-linear power-law stress adaptation in
lung tissue. Ann. Biomed. Eng. 35, 1165–1174 (2007)

2. Bates, J.H.T., Brown, K.A., Kochi, T.: Identifying a model of respiratory mechanics
using the interrupter technique. In: Proceedings of the Ninth American Conference
I.E.E.E. Engineering Medical Biology Society, pp. 1802–1803 (1987)

3. Beydon, L., Svantesson, C., Brauer, K., Lemaire, F., Jonson, B.: Respiratory me-
chanics in patients ventilated for critical lung disease. Eur. Respir. J. 9(2), 262–273
(1996)

4. Bisiani, R.: Beam search. In: Shapiro, S. (ed.) Encyclopedia of Artificial Intelli-
gence, pp. 56–58. Wiley & Sons, Chichester (1987)

5. Bradshaw, G.L., Langley, P., Simon, H.A.: Bacon.4: The discovery of intrinsic prop-
erties. In: Proceedings of the Third Biennial Conference of the Canadian Society
for Computational Studies of Intelligence, pp. 19–25 (1980)

6. Bridewell, W., Asadi, N.B., Langley, P., Todorovski, L.: Reducing overfitting in
process model induction. In: Proceedings of the 22nd International Conference on
Machine Learning, pp. 81–88 (2005)

7. Bridewell, W., Langley, P., Todorovski, L., Džeroski, S.: Inductive process model-
ing. Mach. Learn. 71, 1–32 (2008)

8. DePauw, D.J.W., DeBaets, B.: Incorporating model identifiability into equation
discovery of ode systems. In: Proceedings of the 2008 GECCO Conference Com-
panion on Genetic and Evolutionary Computation, pp. 2135–2140 (2008)

9. Džeroski, S., Todorovski, L.: Discovering dynamics: From inductive logic program-
ming to machine discovery. J. Intell. Inf. Syst. 4, 89–108 (1994)

10. Falkenhainer, B.C., Michalski, R.S.: Integrating quantitative and qualitative
discovery in the ABACUS system. In: Machine Learning: An Artificial Intelligence
Approach, pp. 153–190. Morgan Kaufman, San Mateo (1990)

11. Fung, Y.C.: Biomechanics. Mechanical Properties of Living Tissues. Springer, New
York (1981)

12. Ganzert, S., Möller, K., Steinmann, D., Schumann, S., Guttmann, J.: Pressure-
dependent stress relaxation in acute respiratory distress syndrome and healthy
lungs: an investigation based on a viscoelastic model. Crit. Care 13(6) (2009)

13. Grasso, S., Terragni, P., Mascia, L., Fanelli, V., Quintel, M., Herrmann, P., Heden-
stierna, G., Slutsky, A.S., Ranieri, V.M.: Airway pressure-time curve profile (stress
index) detects tidal recruitment/hyperinflation in experimental acute lung injury.
Crit. Care Med. 32(4), 1018–1027 (2004)

14. Haberthür, C., Guttmann, J., Osswald, P.M., Schweitzer, M.: Beatmungskurven -
Kursbuch und Atlas. Springer, Heidelberg (2001)

15. Hickling, K.G.: The pressure-volume curve is greatly modified by recruitment. a
mathematical model of ards lungs. Am. J. Respir. Crit. Care Med. 158(1), 194–202
(1998)

16. Koehn, B.W., Zytkow, J.M.: Experimenting and theorizing in theory formation.
In: Proceedings ACM SIGART International Symposium on Methodologies for
Intelligent Systems, pp. 296–307 (1986)

310 S. Ganzert et al.

17. Kokar, M.M.: Determining arguments of invariant functional descriptions. Mach.
Learn. 1(4), 403–422 (1986)

18. Križman, V., Džeroski, S., Kompare, B.: Discovering dynamics from measured
data. In: Working Notes of the MLnet Workshop on Statistics, Machine Learning
and Knowledge Discovery in Databases, pp. 191–198 (1995)

19. Langley, P., Sanchez, J., Todorovski, L., Džeroski, S.: Inducing process models
from continuous data. In: Proceedings the Nineteenth International Conference on
Machine Learning, pp. 347–354 (2002)

20. Langley, P.W.: Bacon: A production system that discovers empirical laws. In: Pro-
ceedings of the Fifth International Joint Conference on Artificial Intelligence, p.
344 (1977)

21. Langley, P., Zytkow, J.M.: Data-driven approaches to empirical discovery. Artif.
Intell. 40, 283–310 (1989)

22. Macintyre, N.R.: Basic principles and new modes of mechanical ventilation. In:
Crit Care Med: Perioperative Management, pp. 447–459. Lippincott Williams &
Wilkins, Philadelphia (2002)

23. Mols, G., Brandes, I., Kessler, V., Lichtwarck-Aschoff, M., Loop, T., Geiger, K.,
Guttmann, J.: Volume-dependent compliance in ARDS: proposal of a new diag-
nostic concept. Intens. Care Med. 25(10), 1084–1091 (1999)

24. Nédellec, C., Rouveirol, C., Adé, H., Bergadano, F., Tausend, B.: Declarative bias
in ILP. In: DeRaedt, L. (ed.) Advances in Inductive Logic Programming, pp. 82–
103. IOS Press, Amsterdam (1996)

25. Network, T.A.R.D.S.: Ventilation with lower tidal volumes as compared with
traditional tidal volumes for acute lung injury and the acute respiratory dis-
tress syndrome. the acute respiratory distress syndrome network. N. Engl. J.
Med. 342(18), 1301–1308 (2000)

26. Nordhausen, B., Langley, P.: A robust approach to numeric discovery. In: Proceed-
ings of the Seventh International Conference on Machine Learning, pp. 411–418
(1990)

27. Schaffer, C.: A proven domain-independent scientific function-finding algorithm.
In: Proceedings of the 8th National Conference on Artificial Intelligence, pp. 828–
833 (1990)

28. Schaffer, C.: Bivariate scientific function finding in a sampled, real-data testbed.
Mach. Learn. 12, 167–183 (1991)

29. Selman, B., Levesque, H.J., Mitchell, D.: A new method for solving hard satisfi-
ability problems. In: Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 440–446 (1992)

30. Tobin, M.J.: Ventilator monitoring, and sharing the data with patients. Am. J.
Respir. Crit. Care Med. 163(4), 810–811 (2001)

31. Todorovski, L., Džeroski, S.: Declarative bias in equation discovery. In: Proceedings
of Fourteenth Internationl Conference on Machine Learning, pp. 376–384 (1997)

32. Todorovski, L., Bridewell, W., Shiran, O., Langley, P.: Inducing hierarchical process
models in dynamic domains. In: Proceedings of the Twentieth National Conference
on Artificial Intelligence, AAAI 2005, pp. 892–897 (2005)

33. Zembowicz, R., Zytkow, J.M.: Automated discovery of empirical equations from
data. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1991. LNCS, vol. 542, pp. 429–
440. Springer, Heidelberg (1991)

Mining Class-Correlated Patterns for Sequence
Labeling

Thomas Hopf and Stefan Kramer

Institut für Informatik/I12, Technische Universität München, Boltzmannstr. 3,
D-85748 Garching bei München, Germany
mail@thomas-hopf.de, kramer@in.tum.de

Abstract. Sequence labeling is the task of assigning a label sequence
to an observation sequence. Since many methods to solve this problem
depend on the specification of predictive features, automated methods
for their derivation are desirable. Unlike in other areas of pattern-based
classification, however, no algorithm to directly mine class-correlated
patterns for sequence labeling has been proposed so far. We introduce
the novel task of mining class-correlated sequence patterns for sequence
labeling and present a supervised pattern growth algorithm to find all
patterns in a set of observation sequences, which correlate with the as-
signment of a fixed sequence label no less than a user-specified minimum
correlation constraint. From the resulting set of patterns, features for a
variety of classifiers can be obtained in a straightforward manner. The
efficiency of the approach and the influence of important parameters are
shown in experiments on several biological datasets.

Keywords: Sequence mining, correlated pattern mining, label problem,
sequence labeling, pattern-based classification, pattern growth.

1 Introduction

The task of assigning a label sequence to an observation sequence is a machine
learning problem which occurs in various areas such as predicting properties of
biological sequences or natural language processing [1]. For solving the prob-
lem, a variety of different methods can be employed including Hidden Markov
Models (HMMs, [2]), Conditional Random Fields (CRFs, [3]) or Support Vector
Machines (SVMs, [4,5]). While differing in their underlying approach, many of
these methods are similar regarding the fact that the relevant characteristics
of the primary input data have to be described by features (e.g. SVMs) or are
extracted by the model itself via feature functions (e.g. CRFs).

The fundamental idea of pattern-based classification is that patterns in the
data can be used to generate these features while yielding more accurate and
comprehensible models [6]. Ideally, the distribution of the used patterns differs
between classes, thus allowing for discrimination by the model. Considerable
research effort has been spent in this area towards the supervised mining of
itemsets and structured patterns discriminating between classes, where in both

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 311–325, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

312 T. Hopf and S. Kramer

cases one class label is associated with the itemset or structured object as a whole
(for an overview, see [6]). However, comparatively little attention has been paid
to the identification of sequential patterns for sequence labeling purposes, where
each position in the observation sequence is assigned its own label. Birzele and
Kramer devised a method for the prediction of protein secondary structure based
on the mining of frequent sequential amino acid patterns and subsequent post-
processing using a χ2 and a precision-recall filter [7]. But to the best of our
knowledge, no method to directly mine sequential patterns indicative of certain
sequence labels has been published so far.

In this paper, we introduce an algorithm to mine sequential patterns in obser-
vation sequences which correlate with the occurrence of certain sequence labels
according to a user-defined minimum correlation threshold. The algorithm is the
result of integrating approaches for correlated itemset mining [8,9] and pattern
growth based sequence mining [10].

The paper is organized as follows. Section 2 gives a brief overview of related
work, before Section 3 shortly recapitulates existing concepts for correlated pat-
tern mining on which our algorithm is based. Subsequently, we formalize the
problem of mining label-correlated sequence patterns and devise an algorithm
to solve the problem (Section 4). After giving an experimental validation on
biological sequences in Section 5, we conclude in Section 6.

2 Related Work

Our work is related to research in the areas of frequent sequential pattern mining
and correlation mining. The first algorithms for sequential pattern mining have
been introduced by Agrawal and Srikant [11,12] employing ideas from their ear-
lier Apriori algorithm [13]. Later work increased efficiency by employing different
approaches such as the vertical data format (SPADE [14]), pattern growth in
projected databases (PrefixSpan [10]) or depth-first search using bitmap repre-
sentations (SPAM [15]). Considerable research has also been targeted towards
the incorporation of different types of constraints [16].

The problem of correlation mining has been introduced first by Bay and Paz-
zani [17] and Morishita and Sese, who showed it is possible to compute a tight
upper bound on the value of convex correlation measures when mining the pat-
tern lattice [8]. Later contributions to the field have been made by Nijssen and
Kok [9] and Nijssen et al. [18] by transforming minimum correlation constraints
in ROC space. Note that correlation mining is also closely related to other prob-
lems such as subgroup discovery and emerging pattern mining [6].

At the interface of both fields, several methods for mining discriminative
subsequences exist [19,20]. However, a common property of all these meth-
ods is that sequences in the database are assigned one class label as a whole,
but not a sequence of labels corresponding to each element in the observation
sequence.

Mining Class-Correlated Patterns for Sequence Labeling 313

3 Existing Approaches for Correlated Pattern Mining

Since our method for mining label-correlated sequence patterns is based on the
work of Morishita and Sese [8] and Nijssen and Kok [9], we shortly review the
central ideas of these approaches.

The task of correlated pattern mining is to find rules p → t with μ(p →
t) satisfying a certain threshold θ, where μ is a correlation measure such as
accuracy, information gain or χ2, p is a pattern over the examples according to
some pattern language L, and t is a class label. While we restrict this paper
to the χ2 measure, other convex correlation measures could be used with both
approaches [8,9].

For a binary classification problem, consider a database D consisting of exam-
ples which belong either to the target class t, for which correlated patterns are
mined, or to the non-target class t. Selecting the subsets of examples belonging
to class t and t yields the target database (Dt) and non-target database (Dt).
The degree of correlation between the occurrence of a pattern p and a class label
t can be calculated from a contingency table [9]:

α1(p)n1 (1 − α1(p))n1 n1
α2(p)n2 (1 − α2(p))n2 n2

α1(p)n1 + α2(p)n2 n1 + n2 − α1(p)n1 − α2(p)n2 n1 + n2

Here, n1 and n2 denote the number of examples in class t and t. α1(p) is the
relative frequency of examples having class t covered by a rule p → t, whereas
α2(p) is the relative frequency of examples in class t covered by pattern p and
thus wrongly predicted to be in class t by the rule. N = n1 + n2 is the total
number of examples in the database. Using the entries of the table, the χ2 value
of a pattern p is given by

χ2(p) := χ2(α1(p)n1, α2(p)n2, n1, n2) :=
∑

i,j∈{1,2}

(Oij − Eij)2

Eij
(1)

where Ei1 = (α1(p)n1+α2(p)n2)ni/N , Ei2 = ((1−α1(p))n1+(1−α2(p))n2)ni/N ,
Oi1 = αi(p)ni and Oi2 = (1 − αi(p))ni. Unfortunately, the χ2 measure and
other correlation measures are neither monotonic nor anti-monotonic [8], which
prevents the use of the Apriori pruning strategy. However, Morishita and Sese
showed that the χ2 value of any superset q of an itemset p (q ⊇ p) is bounded
above by u(p) = max

{
χ2 (α1(p)n1, 0, n1, n2) , χ2 (0, α2(p)n2, n1, n2)

}
. This find-

ing allows to mine correlated itemsets in an anti-monotonic fashion by searching
for itemsets with u(p) ≥ θ (promising itemsets). Since any correlated itemset is
also promising, all correlated itemsets can be derived from the set of promising
itemsets. All supersets of promising itemsets have to be evaluated, because there
exists the possibility that some or all of them are correlated to a degree of no
less than θ. On the other hand, if an itemset p is not promising (u(p) < θ), all
supersets containing p can be pruned away, because χ2(q) ≤ u(p) < θ follows for
all {q | q ⊇ q}.

314 T. Hopf and S. Kramer

Nijssen and Kok showed that it is possible to transform a minimum corre-
lation constraint into a disjunction of minimum frequency constraints [9]. In
a binary setting with target class t, this allows to mine patterns fulfilling a
single induced minimum frequency constraint in the target database Dt using
any technique for frequent pattern mining. For the χ2 measure, this constraint is
θt = θN

N2−n1N+θn1
.The resulting set of frequent patterns has to be post-processed

by computing the missing entries in the contingency table in the non-target
database Dt for the calculation of the correlation value. All patterns having a
correlation of at least θ form the final result.

The central idea of our algorithm is to find all frequent (respectively promis-
ing) patterns according to the following

Lemma 1. A pattern can only be frequent (promising), if all of its prefixes are
frequent (promising).

This follows immediately from the anti-monotonicity of the minimum frequency
constraint and from the proof by Morishita and Sese that a pattern can only be
promising, if all of its subpatterns are promising [8]. The precise definition of a
prefix is given in the following section.

4 Mining Label-Correlated Sequence Patterns

In this section, we show how to mine label-correlated sequence patterns based
on the presented approaches for correlated itemset mining.

First, we need to formalize the problem of mining correlated sequence patterns
(Fig. 1) with the following definitions.

Definition 1. A region r = (a, b) is a set {a, . . . , b − 1} of relative offsets,
a, b ∈ Z, a < b. Together with an absolute sequence index j, r refers to the
absolute sequence indices {j + a, . . . , j + b − 1}.

A region describes a set of continuous positions relative to a central position
(Fig. 1) and can thus be used to generalize the concept of the sliding window,
where an offset indexes only one position. In our approach, a set of relevant
regions is defined in advance by the user.

Definition 2. Given a minimum correlation constraint (μ, θ), a set of labeled
sequences T = {(x(i), y(i))}, a pattern language L, a label alphabet Y and a
set of regions R, ∀r = (a, b) ∈ R, the task of mining label-correlated patterns
in the sequences (x, y) ∈ T is to find all patterns p ∈ L which induce a rule
“p matches x starting in {j + a, . . . , j + b − 1} −→ yj = t” for a fixed target
label t ∈ Y. “−→” means that the occurrence of yj = t is correlated with the
occurrence of p in r no less than θ according to the correlation measure μ.

We assume that all xj ∈ x are contained in the observation alphabet X to choose
an appropriate pattern language L. We define the pattern alphabet Σ ⊆ {σ |σ ∈
X+ ∧ ∀i, j, i �= j : σi �= σj} as subset of the set of all single literals from the
observation alphabet X and groups of at least two different literals, effectively

Mining Class-Correlated Patterns for Sequence Labeling 315

matching groups of regular expressions (e.g. DE means D or E). Patterns are
expected to consist of at least one element from the pattern alphabet, yielding
the pattern language L = {p | p ∈ Σ+}. We say a pattern p = σ0...σn matches
at position j of a sequence, iff ∀o = 0, . . . , n : xj+o ∈ σo. A pattern q is a prefix
of pattern p = σ0...σn, iff q = σ0...σl with l ∈ {0, . . . , n − 1}.

Fig. 1. Mining label-correlated patterns in sequences. In this example we consider
sequence position j and regions r1 = (−2, 0), r2 = (0, 1), r3 = (1, 2), referring to
observations {xj−2, xj−1}, {xj} and {xj+1}, respectively. For each region ri, the task
is to find patterns starting in the positions referred to by region ri that correlate with
the assignment of class label yj = t. Patterns of arbitrary length may only start in the
positions referred to by the region and can extend down to the end of the sequence.

To solve the problem of finding label-correlated sequence patterns with the
existing approaches for correlated pattern mining, the database of labeled se-
quences must be transformed into a database with one class label per entry
(Fig. 2). This transformation has to meet three requirements: First, the same
sequence pattern might have different correlation values in different regions.
Therefore, each given region r ∈ R has to be viewed as an independent mining
problem on a separate database D(r). Second, each transaction may only have
exactly one class label. Since we want to mine patterns which correlate with the
label at position j, the label of a database entry is yj. Third, when evaluating if
a pattern is present in the transaction for the absolute position j in some labeled
sequence (x, y) and a given region r = (a, b), the pattern may only start from
indices {j + a, . . . , j + b − 1} in x.

Based on these requirements, we define the size of the target and non-target
database as well as the frequency of a pattern in either database for each region.
For some region r = (a, b), the size of the target database is

|D(r)
t | =

∑
(x,y)∈T

|y|−1∑
j=0
yj=t

{
1 if (0 ≤ j + a) ∧ (j + b ≤ |y|)
0 otherwise

. (2)

Analogously, using yj �= t gives the size of the non-target database. We decide to
count only transactions where the positions indexed by the region fit completely
into the observation sequence. For statistical soundness, the decrease in possible
start positions due to longer patterns is not considered. Assuming Mp(x) is the
list of all absolute start positions of matches of p in an observation sequence x,

316 T. Hopf and S. Kramer

1

1

2

2

3 4 5 6 7 8

3

4 5 6

7 8
...
...

10 13 300

8 10
28 30

11 13

...
10 11
30 31

13 14

...
11 12

1514

8 9 11 12 14 2928

Fig. 2. Explicit sequence database transformation. The transformation builds one sep-
arate database D(ri) for each given region ri with tuples containing the sequence label,
the observation and valid starting positions for matches. For all positions j in the la-
beled sequences, one transaction is created per region database as long as the region
fits completely into the observation. Depending on the label yj , each transaction be-
longs to the target database (t) or to the non-target database (t). The regions in this
example are the same as given in Fig. 1.

the frequency of a pattern p in the target database for a region r = (a, b) is given
by

f
(r)
t (p) =

∑
(x,y)∈T

|y|−1∑
j=0
yj=t

⎧⎪⎨⎪⎩
1 if ∃m ∈ Mp(x) : (j + a ≤ m < j + b)

∧ (0 ≤ j + a) ∧ (j + b ≤ |y|)
0 otherwise

. (3)

Besides evaluating if there is at least one match starting in the positions referred
to by j and r, we ensure that the region fits completely into the observation
sequence to obtain counts which are consistent with the database sizes defined
by Equation (2). Accordingly, yj �= t yields the non-target database frequency
of pattern p. Based on Equations (2) and (3), it is possible to calculate the χ2

value for any pattern p in some region r.
The central idea of our algorithm (Alg. 1) is to exploit the prefix anti-monotonic

property (Lemma 1) to mine all correlated patterns recursively by pattern growth
in projected databases, employing the two major ideas of the PrefixSpan algo-
rithm [10]. It works as follows.

The algorithm is started by pg-mine(ε, R, ∅, T, t, θ, Σ) with the empty prefix
ε and the set of all specified regions R as initial parameters. First, the target
and non-target database sizes as well as the minimum frequency threshold for
each region r ∈ R are determined using Equation (2), whereas the else-case is
skipped in the initial call. Then, for each element σ of the pattern alphabet
Σ, all matches of σ to the observation sequences x(i) in T are determined and
stored in the match list Mσ as 4-tuples (i, j, Γij , Δij) containing the index of the
matched sequence i, the index of the start position j as well as the count and
correction terms Γij and Δij . The terms Γij and Δij are immediately calculated

Mining Class-Correlated Patterns for Sequence Labeling 317

Algorithm 1: pg-mine(prefix, R′, M, T , t, θ, Σ)
Data: Current prefix, frequent regions R′ of prefix, match list M of prefix

occurrences, dataset T = {(x(i), y(i))}, target class t ∈ Y, minimum
correlation threshold θ, pattern alphabet Σ

1 begin
2 if prefix = ε then // check if first function call (empty prefix)

3 ∀r ∈ R′ : calculate |D(r)
t |, |D(r)

t
| and θ

(r)
t // DB sizes, thresholds

4 else // non-empty prefix: check prefix extension of each match,

5 foreach m = (i, j, Γij , Δij) ∈ M do // append match to projection

6 if j + |prefix| < |x(i)| then // of symbols matching extension

7 ∀σ ∈ Σ : x
(i)
j+|prefix| ∈ σ : append m to Mσ

8 foreach σ ∈ Σ do // consider all possible prefix extensions

9 if prefix = ε then // empty prefix: create new match list for σ

10 Mσ =
[
(i, j, Γij , Δij) x

(i)
j ∈ σ

]
// incl count/correction terms

11 foreach (i, j, Γij , Δij) ∈ Mσ do // all occurrences of prefix·σ
12 foreach r ∈ R′ do // update counts for each region

13 f
(r)
t (σ) = f

(r)
t (σ) + Γij(r, t) − Δij(r, t,Mσ) // target DB

14 f
(r)

t
(σ) = f

(r)

t
(σ) + Γij(r, t) − Δij(r, t,Mσ) // non-target DB

15 R̃′ =
{

r ∈ R′ f
(r)
t (σ) ≥ θ

(r)
t

}
// determine frequent regions

// output pattern sequence and correlated regions (if any)

16 print
(
prefix · σ,

{
r ∈ R̃′ χ2

(
f

(r)
t (σ), f (r)

t
(σ), |D(r)

t |, |D(r)

t
|
)
≥ θ

})
17 if R̃′ 	= ∅ then // check if at least one region is frequent

18 pg-mine(prefix · σ, R̃′,Mσ, T, t, θ, Σ) // grow recursively

after obtaining all matches to an observation sequence x(i), as explained below.
Since the match list Mσ is created by matching sequence after sequence, it
is automatically sorted in ascending order according to i and j. The match
list contains all possible start positions of patterns having the prefix σ. When
growing the initial prefix σ by any σ′ ∈ Σ, usually only a subset of all matches
will also be matches for σσ′ and thus relevant for frequency calculation. This
allows to create projections of the initial match list Mσ which become smaller
and smaller after extending σ with additional symbols.

For a match m ∈ Mσ starting at position j of sequence i and some region
r = (a, b) ∈ R, Γij(r, t) and Γij(r, t) are the numbers of covered target and non-
target database transactions, i.e. how much the occurrence of match m increases
the target and non-target database frequencies of the current pattern for region
r. For example, consider two matches of σ occurring at indices j1=12 and j2=13
in x(i) and region r = (−2, 0). Moreover, let y

(i)
13 �= t, y

(i)
14 = t, y

(i)
15 = t. Then

the first match covers label positions 13 and 14 (Γij1 (r, t)=1, Γij1 (r, t)=1), the
second match covers positions 14 and 15 (Γij2(r, t)=2, Γij2 (r, t)=0). Formally,
Γij(r, t) is defined by

318 T. Hopf and S. Kramer

|
{
k |y(i)

k = t ∧ max(j −(b − 1),−a, 0) ≤ k ≤ min(j − a, |y(i)| − b, |y(i)| − 1))
}
|.

(4)
Accordingly, Γij(r, t) can be obtained by considering only k with y

(i)
k �= t. The

lowest valid index k of a covered label is given by maximization over the following
conditions: the lowest index which can be covered by a match (j − (b − 1)), the
complete fit of the region within the observation (−a) and that the index lies
within the label sequence (0). Analogously, the highest valid covered label index
follows from minimization over the highest index which can be covered by a
match(j − a), complete fit of the region within the observation (|y(i)| − b) and
that the index lies within the label sequence (|y(i)| − 1).

For some label sequence positions, neighboring matches in an observation
sequence might be counted multiple times, leading to statistical incorrectness.
In the example above, σ is counted twice for the one transaction of label index
14. Thus, it may be necessary to subtract correction terms Δij(r, t,Mσ) for each
match (note that this problem cannot occur for regions r = (a, a + 1) of size 1).
It is not known beforehand which of the initial matches will be contained in later
projections for prefix extensions. Due to this problem, we have to calculate the
correction information according to the following procedure.

Let M(i)
σ be the sublist of Mσ containing all matches of σ in sequence i

in ascending order according to the match starting position j. Then, for each
me ∈ M(i)

σ with e ∈ {0, ..., |M(i)
σ | − 2} we can calculate the correction function

Δij as follows. For each region r = (a, b), we determine the set of other matches
occurring after me in the i-th sequence which cover at least one position in
the label sequence together with me, i.e. the set {mf |mf ∈ M(i)

σ ∧ e < f ≤
|M(i)

σ |−1∧startf ≤ ende}, where startf = max(mf .j−(b−1),−a, 0) and ende =
min(me.j−a, |y(i)|−b, |y(i)|−1)). The corresponding necessary correction in the
target database frequency if me and mf are occurring together can be computed
as |{k |y(i)

k = t∧startf ≤ k ≤ ende}| and accordingly for the non-target database
by employing y

(i)
k �= t. These target and non-target frequency correction offsets

for all co-occurring mf are stored in a list (attached to me) which is sorted by
ascending f . One such list me.C

(r) is created independently per match me and
region r ∈ R.

The target and non-target database frequencies of a pattern can be calculated
by iterating over all matches and adding the affected target and non-target label
positions given by Γij(r, t) and Γij(r, t) for the current match and each region.
Multiple counts are removed subsequently by subtracting the correction function
Δij . Besides the region and whether to use the target or non-target label, the
correction function takes into account the current database projection Mσ (in
the beginning, the projection trivially is the full match list of σ). When correct-
ing the added database counts of a match me in region r by Δij(r, t,Mσ) and
Δij(r, t,Mσ), we have to search for the first match mf in me.C

(r) which also
occurs in the projection Mσ and subtract the corresponding target and non-
target database correction terms. Any other entry mf ′ in the list after mf which
also would co-occur with me (only possible for regions having b−a ≥ 3) must be

Mining Class-Correlated Patterns for Sequence Labeling 319

skipped since the corresponding correction takes place when the iteration pro-
ceeds to the next match mf . The right correction term for each match me can be
obtained with only few comparisons because me.C

(r) is sorted and the highest
co-occurring match index is known, which allows to leave out unnecessary com-
parisons. Using the target database frequencies, it is possible to determine the
regions R̃′ ⊆ R′ where the pattern σ fulfills the minimum frequency constraint
on the target database. The set of regions where the pattern is correlated no less
than the minimum correlation constraint θ can be determined by computing the
χ2 measure for all r ∈ R̃′. Together with the pattern sequence σ, the correlated
associated regions are immediately output as result (unless empty). The algo-
rithm is then applied recursively to the current prefix σ of length 1 by passing
the full match list Mσ as an argument.

In any recursive call (i.e., non-empty prefix), the else case (Line 4) first iter-
ates over all entries m of the given projection M to create one new projected
match database Mσ per symbol σ in the pattern alphabet. Checking which ex-
tension of the given prefix occurs for each match m, m is appended to all Mσ

where σ matches onto x
(i)
j+offset (i.e. σ is the single literal or is a matching group

containing the literal). Mσ then contains all occurrences of the prefix extended
by σ (prefix ·σ). Intuitively, the prefix is grown to longer patterns in projected
databases. Note that for the actual implementation, we use pseudo-projections
[10] containing pointers to the initial match list for efficiency reasons.

For each symbol σ, the frequencies of the prefix extended by σ can then be
determined using the new projections Mσ. This yields the subset R̃′ of given
regions R′ where the pattern is still frequent. In turn, calculating the correlation
measure for the pattern in all r ∈ R̃′ gives the regions where it is correlated. The
full pattern sequence (prefix ·σ) together with the correlated regions is written
to the output unless the region set is empty. Then, the algorithm is applied
recursively to the grown prefix if there is at least one frequent region. Hence,
a prefix is extended recursively until the frequency in the target database falls
below the minimum frequency threshold in all regions r ∈ R.

Another version of the algorithm using the approach of Morishita and Sese
(in the following smp) can be obtained by two slight modifications. First, there
is no necessity to calculate minimum frequency constraints (Line 3). Second, the
pruning of regions by the minimum frequency criterion is replaced by checking
the upper bound on the correlation value of any extension of the current pattern
(Line 15). This set of promising regions of the pattern c = prefix · σ is given by

R̃′ =

{
r ∈ R′ max

(
χ2(f (r)

t (c), 0, |D(r)
t |, |D(r)

t
|),

χ2(0, f
(r)
t

(c), |D(r)
t |, |D(r)

t
|)

)
≥ θ

}
. (5)

Instead of visiting all patterns fulfilling the minimum frequency constraint on the
target database, the algorithm now traverses all promising patterns. Note that
smp also finds patterns which are negatively correlated with the target label.
The approach by Nijssen and Kok (in the following fpp) finds such patterns in
some cases (patterns which are frequent in the target database, but have even
higher frequency in the non-target database). As we are interested in positively

320 T. Hopf and S. Kramer

correlated patterns and to give consistent results, our algorithm outputs only
positively correlated regions of patterns, i.e. those where the pattern is over-
represented in the target database (O11 > E11).

The correctness of both versions of the algorithm can be shown by adopting
the proof for the PrefixSpan algorithm [10]. Starting from the empty prefix
ε and all regions r ∈ R, due to the prefix anti-monotonicity of the problem
(Lemma 1) the algorithm visits all frequent (promising) patterns by extending
frequent (promising) prefixes. This holds for all regions, since for any pattern
sequence, the recursion proceeds until not a single region is frequent (promising)
anymore. As the correlation measure is calculated for all frequent (promising) re-
gions of a pattern, the algorithm finds all patterns in all regions with a minimum
correlation of θ.

After mining, the identified correlated patterns and the induced rules can be
transformed into features for many types of machine learning models for sequence
labeling in a straightforward manner.

5 Experiments

For the assessment of the efficiency and practicability of our approach, we per-
form a number of experiments on different problems related to labeling biological
sequences. The tasks involve protein secondary structure (sec), solvent accessi-
bility (acc), β-turn (beta) and transmembrane helix (tm) prediction on a variety
of datasets (Table 1). We define the alphabets Σ3 = {A, C , D, E, F, G, H, I,
K, L, M, N, P, Q, R, S, T, V, W, Y} consisting of single amino acid literals,
Σ2 = Σ3∪{HKR, DE, FYW, VIL, STDNGA, DENQRS, VILMFA}, which adds
groups of amino acids with similar chemical properties, and Σ1 = Σ2 ∪ {EAL,
VIYWF, PGND}, which also contains groups of amino acids frequently found in
helices, sheets and coils [7]. We evaluate several region sets which cover differ-
ent amounts of sequence around the central position with increasing region sizes
(w15-s1 = {(-7,6), . . . , (7,8)}, w15-s2 = {(-7,-5), . . . , (5,7)}, w30-s1 = {(-15,-
15), . . . , (15,16)}, w30-s2 = {(-15,-13), . . . , (13,15)}, w30-s3 = {(-15,-12), . . . ,
(12,15)}, w30-s4 = {(-15,-11), . . . , (13,17)}, w30-s5 = {(-15,-10), . . . , (10,15)}).

Both versions of our algorithm were implemented in C++ and compiled with
gcc using the -O3 compiler flag. All experiments were performed on a Sun
Fire X2200 M2 x64 dual-core node running Ubuntu Linux, using one single
AMD Opteron 2.6 GHz CPU and 8 GB RAM. The implementation and all
data are available for download from http://wwwkramer.in.tum.de/research/
data_mining/pattern_mining/sequence_mining. We performed extensive ex-
periments on combinations of the above parameters and datasets. Since the
underlying trends are similar for the different problems and due to lack of space,
we restrain this section to a discussion of the results for secondary structure
prediction (sec). Note that all figures show the aggregated information from one
run of the algorithm for each target label, i.e. the sum of runtimes and pattern
numbers and the maximum memory usage.

http://wwwkramer.in.tum.de/research/data_mining/pattern_mining/sequence_mining
http://wwwkramer.in.tum.de/research/data_mining/pattern_mining/sequence_mining

Mining Class-Correlated Patterns for Sequence Labeling 321

Table 1. Overview of used datasets. Sequence labels are: (sec) helix H, sheet E, coil
C; (acc) buried B, exposed E; (beta) turn T, non-turn N; (tm) inside I, membrane M,
outside O.

problem dataset sequences positions label distribution reference
sec scopsfr 939 157813 H (36.8%), E (22.8%), C (40.4%) [7]

cb513 513 84119 H (34.6%), E (22.7%), C (42.8%) [21]
cb396 396 62189 H (35.4%), E (22.7%), C (41.8%) [21]
rs117 117 21930 H (32.0%), E (22.5%), C (45.5%) [21]

acc cb513 513 84119 B (55.8%), E (44.2%) [21]
beta bteval 426 96339 T (24.6%), N (75.4%) [22]
tm tm160 160 63114 I (26.4%), M (24.1%), O(49.5%) [23]

As one would expect, we find that the runtime (Fig. 3(a)) increases with the
number of matching groups in the alphabet and lower correlation thresholds (in
the following, we will focus on experiments using the most complex alphabet Σ1).
The same holds for increasing region sizes (Fig. 3(b)) while keeping the amount of
covered sequence constant (w30-x). When using the corresponding set of regions
of the same size, but covering only 15 sequence positions (w15-x), the runtime is
lower because the influence of matches has to be evaluated for a smaller number
of regions (data not shown). In all performed experiments, the runtime closely
follows the number of mined patterns (Fig. 3(c)), i.e. the algorithm works well
for a wide range of minimum correlation thresholds. With regard to runtime,
the fpp-based algorithm outperforms its smp counterpart. To investigate this
difference, we log the number of recursive function calls to measure the amount
of traversed search space (Fig. 3(d)). Surprisingly, the number of recursive calls
is lower for smp which suggests that the imposed bound is stricter than the
minimum frequency constraint of fpp. Profiling of both variants shows that the
overhead for smp is generated by the higher number of χ2 value calculations
which are more expensive than checking a single frequency constraint.

A comparison of the results on datasets of increasing size (rs117, cb396, cb513,
scopsfr) suggests that memory usage of the algorithm scales linearly with increas-
ing dataset size (Fig. 4(a)). Memory usage is very similar for fpp and smp. Interest-
ingly, it also differs only slightly when using different χ2 thresholds, demonstrating
the effectiveness of using projections of the initial match list Mσ in the recursive
calls. As previously, the increase in runtime closely follows the increase in the num-
ber of identified patterns (Fig. 4(b), 4(c)). With increasing dataset size, we observe
a stronger increase in the number of patterns and therefore runtimes. The increase
is most pronounced for lower χ2 thresholds and larger region sizes (Fig. 4(c), 4(d)),
indicating additional information gain the larger the dataset is.

For a quantitative analysis of correlated patterns, we compute the coverage
of positions in the sliding window (w30-s1) by increasing per pattern the count
for each position a pattern overlaps, starting from the region(s) the pattern
matches in (Fig. 5(a)). Highest coverage is found for the central position in
the window, dropping rapidly from there. This corresponds well to the fact that

322 T. Hopf and S. Kramer
ti
m
e
[s
]

w30-s1

sm

sm

sm

(a) alphabet influence on runtime for
varying χ2 thresholds, cb513

ti
m
e
[s
]

w30-s1, fpp

w30-s1, smp

w30-s3, fpp

w30-s3, smp

w30-s4, fpp

w30-s4, smp

w30-s5, fpp

w30-s5, smp

(b) runtime for different χ2 thresholds
and region sets, cb513

w30-s1

w30-s3

w30-s4

w30-s5

(c) number of mined patterns for varying
χ2 thresholds and region sets, cb513

w30-s1, fpp

w30-s1, smp

w30-s3, fpp

w30-s3, smp

w30-s4, fpp

w30-s4, smp

w30-s5, fpp

w30-s5, smp

(d) number of recursive calls for different
χ2 thresholds and region sets, cb513

Fig. 3. Influence of alphabet, region set and χ2 threshold choice on runtime of the
algorithm and the number of identified label-correlated patterns

many methods for secondary structure prediction use a sliding window of size 15.
The length distribution of patterns (Fig. 5(a)) has its maximum in the range of
3 to 5 for different thresholds, which is concurrent with the locality of secondary
structure elements. Comparing the results for sec to the other problems (acc,
beta, tm), different distributions of pattern lengths and starting points can be
observed (data not shown). For instance, tm patterns are considerably longer
and numerous because of the distinct hydrophobic amino acid composition of
transmembrane segments.

In summary, we find that our algorithm scales well (1) with increasing dataset
sizes and (2) decreasing correlation thresholds. (3) Runtime is mostly deter-
mined by the number of identified sequential patterns, whereas (4) memory usage
mainly depends on dataset size, but not on the chosen correlation threshold.

Mining Class-Correlated Patterns for Sequence Labeling 323

m
a
x
m
e
m
o
ry

u
s
a
g
e
[M

B
]

w30-s1

(a) maximum memory usage for varying
dataset sizes and χ2 thresholds

w30-s1

(b) number of patterns for varying dataset
sizes and χ2 thresholds

ti
m
e
[s
]

w30-s1

sm

sm

sm

sm

(c) runtime for varying dataset sizes and
χ2 thresholds

ti
m
e
[s
]

w30-s1, fpp

w30-s1, smp

w30-s3, fpp

w30-s3, smp

w30-s4, fpp

w30-s4, smp

w30-s5, fpp

w30-s5, smp

(d) runtime for varying dataset sizes and
region sets

Fig. 4. Influence of dataset size on runtime, number of patterns and maximum memory
usage

region start index

ti
m
e
s
c
o
v
e
re
d
b
y
a
p
a
tt
e
rn

w30-s1

(a) coverage of positions in sliding window
pattern length

n
u
m
b
e
r
o
f
p
a
tt
e
rn
s

w30-s1

(b) pattern length distribution

Fig. 5. Quantitative description of patterns mined on cb513 with w30-s1 region set

324 T. Hopf and S. Kramer

6 Conclusion

In this paper, we formally introduced the novel task of mining label-correlated
sequence patterns. We presented an effective pattern growth based algorithm
to solve the problem and showed its effectiveness in various experiments. While
evaluated on biological sequences, the algorithm should be useful for many dif-
ferent variants of the sequence labeling problem. With only slight modifications,
it would also be possible to adopt the algorithm to a top-k setting, other con-
vex correlation measures or a multi-class setting with more than one target
label [8,9]. Another promising option should be to use combinations of adja-
cent sequence labels as target labels when applying the method together with
linear-chain CRFs, which can take into account previously assigned labels in
their feature functions. Moreover, additional prefix anti-monotonic constraints
and support for different thresholds on each region could be added to customize
the identification of interesting patterns depending on the investigated problem.

Acknowledgments. We would like to thank Jun Sese for providing the im-
proved AprioriSMP implementation and Anders Pedersen and Fabian Birzele
for providing various datasets.

References

1. Dietterich, T.G.: Machine learning for sequential data: a review. In: Caelli, T.M.,
Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR
2002. LNCS, vol. 2396, pp. 15–30. Springer, Heidelberg (2002)

2. Rabiner, L.R.: A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proc. of the IEEE 77(2), 257–286 (1989)

3. Lafferty, J., McCallum, A., Pereira, F.: Conditional Random Fields: probabilistic
models for segmenting and labeling sequence data. In: Proc. of the 18th Int. Conf.
on Machine Learning (ICML 2001), pp. 282–289. Morgan Kaufmann, San Francisco
(2001)

4. Vapnik, V.N.: Statistical learning theory. Wiley, New York (1998)
5. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods

for structured and interdependent output variables. Journal of Machine Learning
Research 6, 1453–1484 (2005)

6. Bringmann, B., Nijssen, S., Zimmermann, A.: Pattern-based classification: a uni-
fying perspective. In: ECML/PKDD-09 Workshop From Local Patterns to Global
Models (2009)

7. Birzele, F., Kramer, S.: A new representation for protein secondary structure pre-
diction based on frequent patterns. Bioinformatics 22, 2628–2634 (2006)

8. Morishita, S., Sese, J.: Traversing itemset lattices with statistical metric pruning.
In: Proc. of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (PODS 2000), pp. 226–236. ACM, New York (2000)

9. Nijssen, S., Kok, J.N.: Multi-class correlated pattern mining, extended version.
In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 165–187.
Springer, Heidelberg (2006)

Mining Class-Correlated Patterns for Sequence Labeling 325

10. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Qiming, C., Dayal, U., Hsu,
M.C.: PrefixSpan: mining sequential patterns efficiently by prefix-projected pat-
tern growth. In: Proc. of the 17th Int. Conf. on Data Engineering (ICDE 2001),
pp. 215–224. IEEE Computer Science, Washington (2001)

11. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proc. of the 11th Int. Conf.
on Data Engineering (ICDE 1995), pp. 3–14. IEEE Computer Society, Washington
(1995)

12. Srikant, R., Agrawal, R.: Mining sequential patterns: generalisations and perfor-
mance improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)
EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

13. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. of
the 20th Int. Conf. on Very Large Data Bases (VLDB 1994), pp. 487–499. Morgan
Kaufmann, San Francisco (1994)

14. Zaki, M.J.: SPADE: an efficient algorithm for mining frequent sequences. Machine
Learning 42, 31–60 (2001)

15. Ayres, J., Gehrke, J., Yiu, T., Flannik, J.: Sequential pattern mining using a bitmap
representation. In: Proc. of the 8th ACM SIGKDD Int. Conf. on Knowledge Dis-
covery and Data Mining (KDD 2002), pp. 429–435. ACM, New York (2002)

16. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007)

17. Bay, S.D., Pazzani, M.J.: Detecting change in categorical data: mining contrast
sets. In: Proc. of the 5th ACM SIGKDD Int. Conf. on Knowledge Discovery and
Data Mining (KDD 1999), pp. 302–306. ACM, New York (1999)

18. Nijssen, S., Guns, T., De Raedt, L.: Correlated itemset mining in ROC space: a
constraint programming approach. In: Proc. of the 15th ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, pp. 647–656. ACM, New York (2009)

19. Hirao, M., Hoshino, H., Shinohara, A., Masayuki, T., Setsuo, A.: A practical algo-
rithm to find the best subsequence patterns. In: Morishita, S., Arikawa, S. (eds.)
DS 2000. LNCS (LNAI), vol. 1967, pp. 141–154. Springer, Heidelberg (2000)

20. Fischer, J., Mäkinen, V., Välimäki, N.: Space efficient string mining under fre-
quency constraints. In: Proc. of the 8th Int. Conf. on Data Mining (ICDM 2008),
pp. 193–202. IEEE Computer Society, Washington (2008)

21. Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence meth-
ods for protein secondary structure prediction. Proteins 34(4), 508–519 (1999)

22. Kaur, H., Raghava, G.P.S.: An evaluation of beta-turn prediction methods. Bioin-
formatics 18, 1508–1514 (2002)

23. Sonnhammer, E.L.L., von Heijne, G., Krogh, A.: A Hidden Markov Model for
predicting transmembrane helices in protein sequences. In: Proc. of the 6th Int.
Conf. on Intelligent Systems for Molecular Biology (ISMB 1998), pp. 175–182.
AAAI Press, Menlo Park (1998)

ESTATE: Strategy for Exploring Labeled Spatial
Datasets Using Association Analysis

Tomasz F. Stepinski1, Josue Salazar1, Wei Ding2, and Denis White3

1 Lunar and Planetary Institute, Houston, TX 77058, USA
tom@lpi.usra.edu, salazar@lpi.usra.edu

2 Department of Computer Science, University of Massachusetts Boston, Boston,
MA 02125, USA
ding@cs.umb.edu

3 US Environmental Protection Agency, Corvallis, OR 97333, USA
white.denis@epa.gov

Abstract. We propose an association analysis-based strategy for ex-
ploration of multi-attribute spatial datasets possessing naturally aris-
ing classification. Proposed strategy, ESTATE (Exploring Spatial daTa
Association patTErns), inverts such classification by interpreting differ-
ent classes found in the dataset in terms of sets of discriminative patterns
of its attributes. It consists of several core steps including discriminative
data mining, similarity between transactional patterns, and visualiza-
tion. An algorithm for calculating similarity measure between patterns
is the major original contribution that facilitates summarization of dis-
covered information and makes the entire framework practical for real
life applications. Detailed description of the ESTATE framework is fol-
lowed by its application to the domain of ecology using a dataset that
fuses the information on geographical distribution of biodiversity of bird
species across the contiguous United States with distributions of 32 en-
vironmental variables across the same area.

Keywords: Spatial databases, association patterns, clustering, similar-
ity measure, biodiversity.

1 Introduction

Advances in gathering spatial data and progress in Geographical Information
Science (GIS) allow domain experts to monitor complex spatial systems in
a quantitative fashion leading to collections of large, multi-attribute datasets.
The complexity of such datasets hides domain knowledge that may be revealed
through systematic exploration of the overall structure of the dataset. Often,
datasets of interest either possess naturally present classification, or the clas-
sification is apparent from the character of the dataset and can be performed
without resorting to machine learning. The purpose of this paper is to introduce
a strategy for thorough exploration of such datasets. The goal is to discover
all combinations of attributes that distinguish between the class of interest and
the other classes in the dataset. The proposed strategy (ESTATE) is a tool for

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 326–340, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

ESTATE: Strategy for Exploring Labeled Spatial Datasets 327

finding explanation and/or interpretations behind divisions that are observed in
the dataset. Note that the aim of ESTATE is the reverse of the aim of classifi-
cation/prediction tools; whereas a classifier starts from attributes of individual
objects and outputs classes and their spatial extents, the ESTATE starts from
the classes and their spatial extents and outputs the concise description of at-
tribute patterns that best define the individuality of each class. The need for such
classification-in-reverse tool arises in many domains, including cases that may
influence economic and political decisions and have significant societal repercus-
sions. For example, a fusion of election results with socio-economic indicators
form an administrative region-based spatial dataset that can be explored us-
ing ESTATE to reveal a spatio-socio-economic makeup of electoral support for
different office seekers [24]. The framework can be also utilized for analyzing a
diversity of underlying drivers of change (temporal, spatial, and modal) in the
spatial system. An expository example of spatial change analysis – pertaining
to geographical distribution of biodiversity of bird species across the contiguous
United States – is presented in this paper.

The ESTATE interprets the divisions within the dataset by exploring the
structure of the dataset. The strategy is underpinned by the framework of as-
sociation analysis [1,13,36] that assures that complex interactions between all
attributes are accounted for in a model-free fashion. Specifically, we rely on the
contrast data mining [10,2], a technique for identification of discriminative pat-
terns – associative itemsets of attributes that are found frequently in the part of
the dataset affiliated with the focus class but not in the remainder of the dataset.
A collection of all discriminative patterns provides an exhaustive set of attribute
dependencies found only in the focus class. These dependencies are interpreted
as knowledge revealing what sets the focus class apart from the other classes.
The set of dependencies for all classes is used to explain the divisions observed
in the dataset.

The ESTATE framework consists of a number of independent modules; some
of them are based on existing techniques while others represent original con-
tributions. We present two original contributions to the field of data mining:
1) a novel similarity measure between itemsets that makes possible clustering
of transactional patterns thus enabling effective summarization of thousands of
discovered nuggets of knowledge, and 2) a strategy for disambiguation of class
labels in datasets when classification is not naturally present and needs to be
deduced from the character of the dataset.

2 Related Work

There is a vast literature devoted to classification/prediction techniques. In
the context of spatial (especially, geospatial) datasets many broadly used pre-
dictors are based on the principle of regression, including multiple regression
[26], logistic regression [32,7,15], Geographically Weighted Regression (GWR)
[4,12], and kernel logistic regression [31]. These techniques are ill-suited for our
stated purpose. A machine learning-based classifier could be constructed for the

328 T.F. Stepinski et al.

dataset in which all objects have prior labels (the entire dataset is the training
set). Denoting a classifier function as F : F (attributes) → class, its inverse
F−1 : F−1(class) → attributes would give a set of all of the objects (their
attribute vectors) mapped to a given class. However, the outcome of F−1 would
be of no help to our purpose because it does not provide any synthesis leading
to the understanding the common characteristics of the objects belonging to a
given class. The exception is the classification and regression tree (CART) clas-
sifier, whose hierarchical form of F allows interpretation of F−1. Indeed, the use
of regression trees was proposed [29] to map spatial divisions of class variable.
However, for the CART classifier to work in this role, the number of terminal
nodes needs to relatively small (because each node represent a cluster) but the
nodes need to have high class label purity. These requirements are rarely fulfilled
in real life applications. Moreover, the cluster description, as given by a series
of conditions on features that define a specific terminal node in the tree, com-
ments only on the small subset of the features and does not reveal interactions
between different features. In short, CART works well as a classifier but it’s less
than ideal as a data exploration tool. Another potential alternative to ESTATE
is to combine the GWR model with geovisual analytical exploration [8]. GWR
is a regression model that yields local estimates of the regression parameters.
Thus, the GWR assigns a vector of coefficients to each object in the dataset.
Resulting multivariate space can be explored visually in order to find structure
in the dataset. However, such strategy does not contrast the prior classes and the
resulting clusters are grouping together objects on the basis similar regression
models rather than similar attributes. ESTATE provides a natural, data-centric,
model-free approach to dataset exploration that, by its very design, offers ad-
vantages over the approaches based on regression.

The possibility of using transactionalpatterns for exploration of spatial datasets
received little attention. Application of association analysis to geospatial data was
discussed in [11,23], and another application, to the land cover change was dis-
cussed in [20]. These studies did not utilized discriminative pattern mining. In
addition, they lack any pattern synthesis techniques making the results difficult
to interpret by domain scientists.

One of the major challenges of association analysis is the explosive number
of identified patterns which leads to a need for pattern summarization. The
two major approaches to pattern summarization are lossless and lossy represen-
tations. Lossless compression techniques include closed itemsets [21] and non-
derivable itemsets [6]. In general, reduction in a number of patterns due to
a lossless compression is insufficient to significantly improve interpretability of
the results. More radical summarization is achieved via lossy compression tech-
niques including maximal frequent patterns [3], top-k frequent patterns [14],
top-k redundancy-aware patterns [27], profile patterns [34], δ-cover compressed
patterns [33], and regression-based summarization [17].These techniques have
been developed for categorical datasets where a notion of similarity between the
items does not exist. The datasets we wish to explore with ESTATE are ordinal.
We exploit the existence of an ordering information in the attributes of items to

ESTATE: Strategy for Exploring Labeled Spatial Datasets 329

define a novel similarity between the itemsets. Our preliminary work on appli-
cation of association analysis to exploration of spatial datasets is documented in
[9,25].

3 ESTATE Framework

The ESTATE framework is applied to a dataset composed of spatial objects
characterized by their geographical coordinates, attributes, and class labels. The
spatial dataset can be in the form of a raster (objects are individual pixels),
point data (objects are individual points), or shapefile (objects are polygons).
Information in each object is structured as follows o = {x, y; f1, f2, ..., fm; c},
where x and y are object’s spatial coordinates, fi, i = 1, . . . , m, are values of m
attributes as measured at (x, y), and c is the class label. From the point of view of
association analysis, each object (after disregarding its spatial coordinates and its
class label) is a transaction containing a set of exactly m items {f1, f2, ..., fm},
which are assumed to have ordinal values. The entire spatial dataset can be
viewed as a set of N fixed-length transactions, where N is the size of the dataset.

An itemset (hereafter also referred to as a pattern) is a set of items contained
in a transaction. For example, assuming m = 10, P = {2, , , , 3, , , , , } is a
pattern indicating that f1 = 2, f5 = 3 while the values of all other attributes are
not a part of this pattern. A transaction supports an itemset if the itemset is a
subset of this transaction; the number of all transactions supporting a pattern
is refereed to as a support of this pattern. For example, any transaction with
f1 = 2, f5 = 3 “supports” pattern P regardless of the values of attributes in
slots denoted by an underscore symbol in the representation of P given above.
The support of pattern P is the number of transactions with f1 = 2, f5 = 3.
Because transactions have spatial locations, there is also a spatial manifestation
of support which we call a footprint of a pattern. For example a footprint of P
is a set of spatial objects characterized by f1 = 2, f5 = 3.

The ESTATE framework consists of the following modules: (1) Mining for
associative patterns that discriminate between two classes in the dataset (Sec-
tion 3.1). (2) Disambiguating class labels so the divisions of objects into different
classes coincide with footprints of discriminative patterns (Section 3.2). (3) Clus-
tering all discriminative patterns into a small number of clusters representing
diverse motifs of attributes associated with a contrast between the two classes
(Section 3.3). (4) Visualizing the results in both attribute and spatial domains
(see the case study in Section 4).

3.1 Mining for Discriminative Patterns

Without loss of generality we consider the case of the dataset with only two
classes: c = 1 and c = 0. A discriminating pattern X is an itemset that has much
larger support within a set of transactions Op stemming from c = 1 objects than
within a set of transactions On stemming from c = 0 objects. For a pattern X to

330 T.F. Stepinski et al.

be accepted as a discriminating pattern, its growth rate, sup(X,Op)
sup(X,On) , must exceed

a predefined threshold δ, where sup(X,O) is the support of X in a dataset O.
We mine for closed patterns that are relatively frequent in O0

p. A pattern is
frequent if its support (in O0

p) is larger than a predefined threshold. Mining for
frequent patterns reduces computational cost. Further significant reduction in
computational cost is achieved by mining only for frequent closed patterns [22].
A closed pattern is a maximal set of items shared by a set of transactions. A
closed pattern can be viewed as lossless compression of all non-closed patterns
that can be derived from it. Mining only for closed patterns makes physical and
computational sense inasmuch as closed patterns give the most detailed motifs
of attributes associated with difference between the two classes.

3.2 Disambiguating Class Labels

In many (but not all) practical application, the class labels are implicit rather
than explicit. For example, biodiversity index is continuously distributed across
the United States without a naturally occurring boundary between “high bio-
diversity” (class c = 1) and “not-high biodiversity” (class c = 0) objects. This
introduces a question of what is the best way to partition the dataset into the two
classes? One way is to divide the objects using distribution-deduced threshold on
the class variable, another is to use the union of footprints of mined discrimina-
tive patterns. These two methods will result in different partitions of the dataset
introducing potential ambiguity to class labels. We propose to disambiguate the
labeling by iterating between the two definitions until the two partitions are as
close to each other as possible.

We first calculate the initial O0
p–O0

n partition using a threshold on the value
of the class variable. Using this initial partition, our algorithm mines for dis-
criminating patterns. We calculate a footprint of each pattern and the union of
all footprints. The union of the footprints intersects, but is not identical to the
footprint of O0

p. Second, we calculate the next iteration of the partition O1
p–O1

n
and the new set of discriminating patterns. The objects that were initially in
O0

n are added to O1
p if they are in the union of footprints of the patterns cal-

culated in first step, their values of class variable are “high enough”, and they
are neighbors of O0

p. Because of this last requirement, the second step is in itself
an iterative procedure. The requirement that incorporated objects have “high
enough” values of class variable is fulfilled by defining a buffer zone. The buffer
zone is easily defined in a dataset of ordinal values; it consists of objects having
a value one less than the minimum value allowed in O0

p. Finally, we repeat the
second step calculating Oi

p and its corresponding set of discriminating patterns
from the results of i−1 iteration until the iteration process converges. Note that
convergence is assured by the design of the process. The result is the optimal
Op–On partition and the optimal set of discriminating patterns.

ESTATE: Strategy for Exploring Labeled Spatial Datasets 331

Fig. 1. Graphics illustrating the concept of similarity between two patterns. White
items are part of the pattern, gray items are not the part of the pattern.

3.3 Pattern Similarity Measure

Despite considering only frequent closed discriminative patterns, the ESTATE
finds thousands of patterns. A single pattern provides a specific combination
of attribute values found in a specific subset of the c = 1 class of objects but
nonexistent or rare among c = 0 class objects. The more specific (longer) the
pattern the smaller is its footprint; patterns having larger spatial presence tend
to be less specific (shorter). Because of this tradeoff there is not much we can
learn about the global structure of the dataset from a single pattern; such pattern
provides either little information on regional scale or a lot of information on local
scale. In order to effectively explore the entire dataset we need to consider all
mined patterns each covering only relatively small spatial patch, but together
covering the entire domain of the c = 1 class. To enable such exploration we
cluster the patterns into larger aggregates of similar patterns by taking advantage
of ordering information contained in ordinal attributes of spatial objects. The
clustering is made possible by the introduction of a similarity measure between
the patterns. We propose to measure a similarity between two patterns as a
similarity between their footprints. Hereafter we will continue to refer to the
“pattern similarity measure” with the understanding that the term “pattern” is
used as a shortcut for the set of objects in its footprint.

Fig. 1 illustrates the proposed concept of pattern similarity. In this simple
example each object has four attributes denoted by A, B, C, and D, respectively.
Each attribute has only one of two possible values: 1 or 2. Pattern X = {1, 2, , }
is supported by 5 objects and pattern Y = {2, , 1, } is supported by 3 objects.
The similarity between patterns X and Y is the similarity between the two sets
of 4-dimensional vectors constructed from the values of items in transactions
belonging to respective footprints. Similarity of each dimension (attribute) is
calculated separately as a similarity between two sets of scalar entities. The
total similarity is the weighted sum of the similarities of all attributes.

The similarity between patterns X and Y is S(X, Y) =
∑m

i=1 wiSi(Xi, Yi),
where Xi, Yi indicate the ith attribute, wi indicates the ith weight (we use
wi = 1 in our calculations), and m is the number of attributes. The similarity
between ith attribute in the two patterns Si(Xi, Yi) is calculated using group

332 T.F. Stepinski et al.

average, a technique similar to the UPGMA (Unweighted Pair Group Method
with Arithmetic mean) [19] method of calculating linkage in agglomerative clus-
tering. The UPGMA method reduces to Si(Xi, Yi) = s(xi, yi) for attributes
which are present in both patterns (like an attribute A in an example shown
in Fig. 1); here xi and yi are the values of attributes Xi and Yi (xA = 1 and
yA = 2 in the example on Fig. 1) and s(xi, yi) is the similarity between those
values (see below). If the ith attribute is present in the pattern Y but absent in
the pattern X (like an attribute C in an example shown in Fig. 1) the UPGMA
method reduces to

S(−, Yi) =
n∑

k=1

PX(xk)s(zk, yi) (1)

where PX(xk) is the probability of ith attribute having the value xk in all objects
belonging to the footprint of X and n is the number of different values the ith
attribute can have. The UPGMA reduces to an analogous formula if the ith
attribute is present in the pattern X but it’s absent in the pattern Y (like an
attribute B in an example shown in Fig. 1). Finally, if the ith attribute is absent
in both patterns (like an attribute D in an example shown in Fig. 1) the UPGMA
gives

S(−i,−i) =
n∑

l=1

n∑
k=1

PX(xl)PY (yk)s(xl, yk) (2)

We propose to calculate the similarity between the two values of ith attribute
using a measure inspired by an earlier concept of measuring similarities between
ordinal variables using information theory [18]. The similarity between two or-
dinal values of same attribute s(xi, yi) is measured by the ratio between the
amount of information needed to state the commonality between xi and yi, and
the information needed to fully describe both xi and yi.

s(xi, yi) =
2 × log P (xi ∨ z1 ∨ z2 . . . ∨ zk ∨ yi)

log P (xi) + log P (yi)
(3)

where z1, z2, . . . , zk are ordinal values such that z1 = xi + 1 and zk = yi − 1.
Probabilities, P (), are calculated using the known distribution of the values of
ith attribute in Op.

Using a measure of “distance” (dist(X, Y) = 1
S(X,Y) −1) between each pair of

patterns in the set of discriminative patterns we construct a distance matrix. In
order to gain insight into the structure of the set of discriminative patterns we
visualize the distance matrix using clustering heat map [30]. The heat map is the
distance matrix with its columns and rows rearranged to place rows and columns
representing similar patterns near each other. We determine an appropriate order
of rows and columns in the heat map by performing a hierarchical clustering
(using an average linkage) of the set of discriminative patterns and sorting the
rows and columns by the resultant dendrogram. The values of distances in the
heat map are coded by a color gradient enabling the analyst to visually identify
interesting clusters of patterns.

ESTATE: Strategy for Exploring Labeled Spatial Datasets 333

Fig. 2. Biodiversity of bird species across the contiguous United States. Two categories
with the highest values of biodiversity (purple and red) are chosen as the initial high
biodiversity region. Missing data regions are shown in white.

4 Case Study: Biodiversity of Bird Species

We apply the ESTATE framework to the case study pertaining to the discov-
ery of associations between environmental factors and the spatial distribution
of biodiversity across the contiguous United States. Roughly, biodiversity is a
number of different species (of plants and/or animals) within a spatial region.
A pressing problem in biodiversity studies is to find the optimal strategy for
protecting the species given limited resources. In order to design such a strategy
it is necessary to understand associations between environmental factors and the
spatial distribution of biodiversity. In this context we apply ESTATE to discover
existence of different environments (patterns or motifs of environmental factors)
which associate with the high levels of biodiversity.

The database is composed of spatial accounting units resulting from tessella-
tion of the US territory into equal area hexagons with center-to-center spacing of
approximately 27 km. For each unit the measure of biodiversity (class variable)
and the values of environmental variables (attributes) are given. The biodiversity
measure is provided [35] by the number of species of birds exceeding a specific
threshold of probability of occurrence in a given unit. Fig. 2 shows the distri-
bution of biodiversity measure across the contiguous US. The environmental
attributes [28] include terrain, climatic, landscape metric, land cover, and en-
vironmental stress variables that are hypothesized to influence biodiversity; we
consider m=32 such attributes. The class variable and the attributes are dis-
cretized into up to seven ordinal categories (lowest, low, medium-low, medium,
medium-high, high, highest) using the “natural breakes” method [16].

Because of the technical demands of the ESTATE label disambiguation mod-
ule we have transformed the hexagon-based dataset into the square-based dataset.
Each square unit (pixel) has a size of 22 × 22 km and there are N=21039 data-
carrying pixels in the transformed dataset. The dataset does not have explicit

334 T.F. Stepinski et al.

Fig. 3. Clustering heat map illustrating pairwise similarities between pairs of patterns
in the set of 1503 discriminating patterns. The two bars below the heat map illustrate
size of the pattern size and its length, respectively.

labels. Because we are interested in contrasting the region characterized by high
biodiversity with the region characterized by not-high biodiversity we have par-
titioned the dataset into Op corresponding to c = 1 class and consisting initially
of the objects having high and highest categories of biodiversity and On corre-
sponding to c = 0 class and consisting initially of the objects having lowest to
medium-high categoriesof biodiversity.The label disambiguationmodule modifies
the initial partition during the consecutive rounds of discriminative data mining.

We identify frequent closed patterns discriminating between Op and On using
an efficient depth-first search method [5]. We mine for patterns having growth
rate ≥50 which are fulfilled by at least 2% of transactions (pixels) in Op. We also
keep only the patterns that consist of eight or more attributes; shorter patterns
are not specific enough to be of interest to us. We have found 1503 such patterns.
The patterns have lengths between 8 and 20 attributes; the pattern length is
broadly distributed with the maximum occurring at 12 attributes. Pattern size
(support) varies from 31 to 91 pixels; the distribution of pattern size is skewed
toward the high values and the maximum occurs at 40 pixels.

Fig. 3 shows a heat map constructed from a distance (dissimilarity) matrix
calculated for all pairs of patterns in the set of 1503 patterns that discriminate
between Op and On. The heat map is symmetric because distance between any
two patterns is calculated twice. Deep purple and red colors indicate similar pat-
terns whereas blue and green colors indicate dissimilar patterns. The heat map

ESTATE: Strategy for Exploring Labeled Spatial Datasets 335

Fig. 4. Bar-code representation of the five regimes (clusters) of high biodiversity. See
description in the main text.

clearly shows that the entire set of discriminative patterns naturally breakes into
four clusters as indicated by purple and red color blocks on the map. Indeed,
there are five top level clusters, but the fourth cluster, counting from the lower
left corner, has only 4 patterns and is not visible in the heat map at the scale
of Fig. 3. The patterns in each cluster identify similar combinations (motifs) of
environmental attributes that are associated with the region of high biodiver-
sity. The visual analysis of the heat map indicates that there are four (five if
we count the small 4-pattern cluster) distinct motifs of environmental attributes
associated with high levels of biodiversity. Potentially, these motifs indicate ex-
istence of multiple environmental regimes that differ from each other but are all
conducive to high levels of biodiversity.

The clusters can be characterized and compared from two different perspec-
tives. First, we can synthesis the information contained in all patterns belonging
to each cluster; this will yield combinations of attributes that set apart the region
associated with a given cluster from the not-high biodiversity region. Second, we
can synthesize the information about prevailing attributes in the region associ-
ated with a given cluster; this will reveal a set of predominant environmental
conditions associated with a given high biodiversity region (represented by a
cluster). Because clusters are agglomerates of patterns and regions are agglom-
erates of transactions, they can be synthesized by their respective compositions.
The biodiversity dataset has m = 32 attributes, thus each cluster (region) can
be synthesized by 32 histograms, each corresponding to a composition of a par-
ticular attribute within a cluster (region). Our challenge is to present this large
volume of information in a manner that is compact enough to facilitate imme-
diate comparison between different clusters.

In this paper we restrict ourself to synthesizing and presenting the predomi-
nate environmental conditions associated with each of the five clusters identified
in the heat map. Recall that the attributes are categorized into 7, 4, or 2 ordinal
categories, thus a histogram representing a distribution of the values taken by an
attribute in a given cluster consists of up to seven percentage-showing numbers.
Altogether, 173 numbers, ranging in values from 0 (absence of a given attribute
from cluster composition) to 1 (only a single value of a given attribute is present

336 T.F. Stepinski et al.

Fig. 5. Spatial footprints of five pattern clusters. White – not high biodiversity region;
gray – high biodiversity region; purple (cluster #1), light green (cluster #2), yellow
(clister #3), blue (cluster #4), and red (cluster #5) – footprints of the five clusters.

in a cluster) represents a summary of a cluster. We propose a bar-code rep-
resentation of such summary. Such representation facilitates quick qualitative
comparison between different clusters. Fig. 4 shows the bar-coded description
for the five clusters corresponding to different biodiversity regimes. A cluster
bar-code contains 32 fragments each describing a composition of a single at-
tribute within a cluster. In Fig. 4 these fragments are grouped into five thematic
categories: terrain (6 attributes), climate (4 attributes), landscape elements (5
attributes), land cover (14 attributes), and stress (3 attributes). Each fragment
has up to seven vertical bars representing ordered categories of the attribute its
represent. If a given category is absent within a cluster the bar is gray; black
bars with increasing thickness denote categories with increasingly large presence
in a cluster.

The five regimes of high biodiversity differs on the first four terrain attributes
and all climate attributes. The landscape metrics attributes are similar except for
regime #4. Many land cover attributes are similar indicating that a number of
land cover types, such as, for example, tundra, barren land or urban are absent
in all high biodiversity regimes. More in depth investigation of the bar codes
reveals that the regime #1 is dominated by the crop/pasture cover, the regime
#2 by the wood/crop cover, the regime #3 by the evergreen forest, and the
regimes # 4 and #5 are not dominated by any particular land cover. Finally,
environmental stress attributes are similar except for the federal land that is
more abundant within the regions defined by the regimes #3 and #4.

Spatial manifestation of the five clusters identified in the heat map are shown
in Fig. 5 where transactions (pixels) fulfilled by patterns belonging to different
clusters are indicated by different colors. Interestingly, different environmental
regimes (clusters) are located at distinct geographical locations. This geograph-
ical separation of the clusters is the result and not a build-in feature of our
method. In principle, footprints of different discriminative patterns may over-
lap, and footprints of the entire clusters may overlap as well. It is a property

ESTATE: Strategy for Exploring Labeled Spatial Datasets 337

of the biodiversity dataset that clusters of similar discriminative patterns have
non-overlapping footprints.

Note that in our calculations the label disambiguation module did not achieve
complete reconciliation between the region of high biodiversity and the union of
support of all discriminating patterns. The gray pixels on Fig. 4 indicate trans-
actions that are in the Op but are not in the union of support of all the patterns.
The ESTATE guarantees convergence of the disambiguation module but does
not guarantee the complete reconciliation of the two regions. However, perfect
correspondence is not required and, in fact, less than perfect correspondence pro-
vides some additional information. The gray areas on Fig. 4 represents atypical
regions characterized by infrequent combinations of environmental attributes.

5 Discussion

A machine learning task of predicting labels of class variable using explanatory
variables became an integral component of spatial analysis and is broadly utilized
in many domains including geography, economy, and ecology. However, many
interesting spatial datasets possesses natural labels, or their labels can be easily
classified without resorting to machine-learning methods. We have developed the
ESTATE framework in order to understand such naturally occurring divisions in
terms of dataset attributes. In a broad sense, the purpose of ESTATE is reverse
to the purpose of a classification.

ESTATE is a unique data exploration algorithm and thus it’s output is not
directly comparable to the outputs of other data exploration algorithms. As we
mentioned in section 3, regression tree cartography [29] is the approach most
similar in its goals to that of the ESTATE. The limited length of this paper
prevents the detailed comparison of the two approaches, especially because the
two methods yield different outputs that are not directly comparable. Classi-
fication rather than regression tree needs to be used in the tree cartography
method for closer correspondence to the ESTATE method. The methodology
suffers from shortcomings described in section 3: it is unable to yield a relatively
small number of label-pure terminal nodes. Thus, the two classes (for example,
high biodiversity and not-high biodiversity) cannot be clearly separated. Each
terminal node is characterized by a small number of conditions on few environ-
mental attributes. These are the attributes that most clearly divide the data at
any note of the tree. This makes sense for classification purposes, but not for
data exploration purposes. The ESTATE provides reacher and more precise de-
scription of the entire patterns of attributes that discriminate between the two
classes.

Many real life problems analyzable by ESTATE may be formulated in terms
of “spatial change” datasets (class labels change from one location to another).
Other real life problems, analyzable by ESTATE, may be formulated as “tem-
poral change” datasets (class labels indicate presence or absence of change in
measurements taken at different times), or “modal change” datasets (class la-
bels indicate agreement or disagreement between modeled and actual spatial

338 T.F. Stepinski et al.

system). An expository example given in Section 4 belongs to the spatial change
dataset type. The biodiversity dataset has “natural” classes inasmuch as it can
be divided into high and no-high biodiversity parts just on the basis of the dis-
tribution of biodiversity measure. Note that classes other than ”high” can be as
easily defined; for example, for a complete evaluation of the biodiversity dataset
we would also define a “low” class. Other datasets (see, for example, [24]) have
prior classes and require no additional pre-processing.

It is noted that ESTATE (like most other data discovery techniques) discovers
associations and not causal relations. In the context of the biodiversity dataset
it means that ESTATE has found five different environments that associate with
high biodiversity but it does not proof actual causality between those environ-
ments and high levels of biodiversity. It is up to the domain experts to review
the results and draw the conclusions. The causality is strongly suggested if the
experts believe that the 32 attributes used in the calculation exhaust the set of
viable controlling factors of biodiversity.

A crucial component of the ESTATE is the pattern similarity measure that en-
ables clustering of similar patterns into agglomerates. We stress that our method
does not use patterns to cluster objects, instead patterns themselves (more pre-
cisely their footprints) are the subject of clustering. This methodology can be
applied outside of the ESTATE framework for summarization of any transac-
tional patterns as long as their items consist of ordinal variables. Future research
would address how to extend our similarity measure to categorical variables.

Acknowledgements

This work was partially supported by the National Science Foundation under
Grant IIS-0812271.

References

1. Agrawal, R., Swami, A.N.: Fast algorithms for mining association rules. In: Proc.
VLDB, pp. 487–499 (1994)

2. Bay, S.D., Pazzani, M.J.: Detecting change in categorical data: Mining contrast
sets. In: Knowledge Discovery and Data Mining, pp. 302–306 (1999)

3. Bayardo Jr., R.J.: Efficiently mining long patterns from databases. In: SIGMOD
1998: Proceedings of the 1998 ACM SIGMOD International Conference on Man-
agement of Data, Seattle, Washington, United States, pp. 85–93 (1998)

4. Brunsdon, C.A., Fotheringham, A.S., Charlton, M.B.: Geographically weighted re-
gression: a method for exploring spatial nonstationarity. Geographical Analysis 28,
281–298 (1996)

5. Burdick, D., Calimlim, M., Gehrke, J.: Mafia: a maximal frequent itemset algorithm
for transactional databases. In: Proceedings of the 17th International Conference
on Data Engineering, Heidelberg, Germany (2001)

6. Calders, T., Goethals, B.: Non-derivable itemset mining. Data Min. Knowl. Dis-
cov. 14(1), 171–206 (2007)

ESTATE: Strategy for Exploring Labeled Spatial Datasets 339

7. Cheng, J., Masser, I.: Urban growth pattern modeling: a case study of Wuhan City,
PR China. Landscape and Urban Planning 62(4), 199–217 (2003)

8. Demar, U., Fotheringham, S.A., Charlton, M.: Combining geovisual analytics with
spatial statistics: the example of Geographically Weighted Regression. The Carto-
graphic Journal 45(3), 182–192 (2008)

9. Ding,W., Stepinski,T.F., Salazar, J.:Discovery of geospatial discriminating patterns
from remote sensing datasets. In: Proceedings of SIAM International Conference on
Data Mining (2009)

10. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and dif-
ferences. In: KDD 1999: Proceedings of the Fifth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, San Diego, California, United
States, pp. 43–52 (1999)

11. Dong, J., Perrizo, W., Ding, Q., Zhou, J.: The application of association rule mining
to remotely sensed data. In: 345 (ed.) Proc. of the 2000 ACM Symposium on
Applied Computing (2000)

12. Fotheringham, A.S., Brunsdon, C., Charlton, M.: Geographically Weighted Regres-
sion: the analysis of spatially varying relationships. Wiley, Chichester (2002)

13. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate
generation: A frequent-pattern tree approach. Data Mining and Knowledge Dis-
covery 8(1), 53–87 (2004)

14. Han, J., Wang, J., Lu, Y., Tzvetkov, P.: Mining top-k frequent closed patterns
without minimum support. In: ICDM 2002: Proceedings of the 2002 IEEE Inter-
national Conference on Data Mining, Washington, DC, USA, p. 211 (2002)

15. Hu, Z., Lo, C.: Modeling urban growth in Atlanta using logistic regression. Comput-
ers, Environment and Urban Systems 31(6), 667–688 (2007)

16. Jenks, G.F.: The data model concept in statistical mapping. International Year-
book of Cartography 7, 186–190 (1967)

17. Jin, R., Abu-Ata, M., Xiang, Y., Ruan, N.: Effective and efficient itemset pattern
summarization: regression-based approaches. In: KDD 2008: Proceeding of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Las Vegas, Nevada, USA, pp. 399–407 (2008)

18. Lin, D.: An information-theoretic definition of similarity. In: International Confer-
ence on Machine Learning, Madison, Wisconsin (July 1998)

19. McQuitty, L.: Similarity analysis by reciprocal pairs for discrete and continuous
data. Educational and Psychological Measurement 26, 825–831 (1966)

20. Mennis, J., Liu, J.W.: Mining association rules in spatio-temporal data: An analysis
of urban socioeconomic and land cover change. Transactions in GIS 9(1), 5–17
(2005)

21. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

22. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

23. Rajasekar, U., Weng, Q.: Application of association rule mining for exploring the
relationship between urban land surface temperature and biophysical/social pa-
rameters. Photogrammetric Engineering & Remote Sensing 75(3), 385–396 (2009)

24. Stepinski, T., Salazar, J., Ding, W.: Discovering spatio-social motifs of electoral
support using discriminative pattern mining. In: Proceedings of COM.geo. 2010
1st International Conference on Computing for Geospatial Reserch & Applications
(2010)

340 T.F. Stepinski et al.

25. Stepinski, T.F., Ding, W., Eick, C.F.: Controlling patterns of geospatial phenom-
ena. submitted to Geoinformatica (2010)

26. Theobald, D.M., Hobbs, N.T.: Forecasting rural land use change: a comparison of
regression and spatial transition-based models. Geographical and Environmental
Modeling 2, 65–82 (1998)

27. Wang, C., Parthasarathy, S.: Summarizing itemset patterns using probabilistic
models. In: KDD 2006: Proceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, pp.
730–735 (2006)

28. White, D., Preston, B., Freemark, K., Kiester, A.: A hierarchical framework for
conserving biodiversity. In: Klopatek, J., Gardner, R. (eds.) Landscape Ecological
Analysis: Issues and Applications, pp. 127–153. Springer, New York (1999)

29. White, D., Sifnenos, J.C.: Regression tree cartography. J. Computational and
Graphical Statistics 11(3), 600–614 (2002)

30. Wilkinson, L., Friendly, M.: The history of the cluster heat map. The American
Statistician 63(2), 179–184 (2009)

31. Wu, B., Huang, B., Fung, T.: Projection of land use change patterns using kernel
logistic regression. Photogrammetric Engineering & Remote Sensing 75(8), 971–
979 (2009)

32. Wu, F., Yeh, A.G.: Changing spatial distribution and determinants of land devel-
opment in Chinese cities in the transition from a centrally planned economy to
a socialist market economy: A case study of Guangzhou. Urban Studies 34(11),
1851–1879 (1997)

33. Xin, D., Han, J., Yan, X., Cheng, H.: Mining compressed frequent-pattern sets. In:
VLDB 2005: Proceedings of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, pp. 709–720 (2005)

34. Yan, X., Cheng, H., Han, J., Xin, D.: Summarizing itemset patterns: a profile-based
approach. In: KDD 2005: Proceedings of the eleventh ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining, Chicago, Illinois, USA, pp.
314–323 (2005)

35. Yang, K., Carr, D., O’Connor, R.: Smoothing of breeding bird survey data to
produce national biodiversity estimates. In: Proceeding of the 27th Symposium on
the Interface Computing Science and Statistics, pp. 405–409 (1995)

36. Zaki, M., Ogihara, M.: Theoretical foundations of association rules. In: 3rd ACM
SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
(1998)

Adapted Transfer of Distance Measures for
Quantitative Structure-Activity Relationships

Ulrich Rückert1, Tobias Girschick2, Fabian Buchwald2, and Stefan Kramer2

1 International Computer Science Institute,
Berkeley, USA

rueckert@eecs.berkeley.edu
2 Technische Universität München,

Institut für Informatik/I12,
85748 Garching b. München, Germany

{tobias.girschick,fabian.buchwald,stefan.kramer}@in.tum.de

Abstract. Quantitative structure-activity relationships (QSARs) are
regression models relating chemical structure to biological activity. Such
models allow to make predictions for toxicologically or pharmacologi-
cally relevant endpoints, which constitute the target outcomes of trials
or experiments. The task is often tackled by instance-based methods (like
k-nearest neighbors), which are all based on the notion of chemical (dis-
)similarity. Our starting point is the observation by Raymond and Willett
that the two big families of chemical distance measures, fingerprint-based
and maximum common subgaph based measures, provide orthogonal in-
formation about chemical similarity. The paper presents a novel method
for finding suitable combinations of them, called adapted transfer, which
adapts a distance measure learned on another, related dataset to a given
dataset. Adapted transfer thus combines distance learning and transfer
learning in a novel manner. In a set of experiments, we compare adapted
transfer with distance learning on the target dataset itself and inductive
transfer without adaptations. In our experiments, we visualize the per-
formance of the methods by learning curves (i.e., depending on training
set size) and present a quantitative comparison for 10% and 100% of the
maximum training set size.

1 Introduction

Quantitative structure-activity relationships (QSARs) are models quantitatively
correlating chemical structure with biological activity or chemical reactivity. In
technical and statistical terms, QSARs are often regression models on graphs
(molecular structures being modeled as graphs). QSARs and small molecules
are subject of very active research in data mining [1,2]. The task is often tackled
by instance-based and distance-based methods, which predict biological activity
based on the similarity of structures. As the success of those methods critically
depends on the availability of a suitable distance measure, it would be desirable
to automatically determine a measure that works well for a given dataset and

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 341–355, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

342 U. Rückert et al.

endpoint. Recently proposed solutions for other, related problems (general clas-
sification problems instead of domain-specific regression problems as discussed
here) include distance learning methods [3] and methods from inductive transfer
[4]. In distance learning, the distance measures (e.g., parameterized distances like
the Mahalanobis distance) are directly learned from labeled training distances.
Inductive transfer is concerned with transferring the bias of one learning task to
another, related task.

In this paper, we propose adapted transfer, a combination of distance learning
and inductive transfer. We learn the contributions of the distances on a task
related to our problem and then transfer them to our learning task at hand. The
approach is evaluated specifically for QSAR problems (regression on graphs).
In the experiments, we investigate how adapted transfer performs compared
to distance learning or inductive transfer alone, depending on the size of the
available training set. These questions are studied using five pairs of distinct
datasets, each consisting of two datasets of related problems.

For the distance measures, our starting point is the observation by Raymond
and Willett [5] that maximum common subgraph (MCS) based measures and
fingerprint-based measures provide orthogonal information and thus should be
considered as complementary. The reason for this may be that MCS-based mea-
sures aim to quantify the global similarity of structures, whereas fingerprint-based
measures rather quantify local similarity in terms of smaller, common substruc-
tures. We devised an approach that optimally combines the contributions of the
two types of measures, and thus balances the importance of global and local
similarity for chemical structures.

This paper is organized as follows: In the next section, we present the technical
details of learning and adapting distance measures for QSAR problems. Then the
datasets, preprocessing steps and the experimental setup are explained before
we present the results of the experimental evaluation. We relate the approach to
existing work before we give conclusions in the last section.

2 Distance Learning, Inductive Transfer and Adapted
Transfer

We frame the learning problem as follows. We are given a set of n labeled ex-
amples X := {(x1, y1), . . . , (xn, yn)}, where the examples xi ∈ X are arbitrary
objects taken from an instance space X and the yi ∈ R are real-valued target la-
bels. For the learning setting, we aim at finding a regression function r : X → R
that predicts the target label well on new unseen data. We measure the ac-
curacy of a predictor, by taking the squared difference between the predicted
target label y′ and the true target label y. In other words, we evaluate a predic-
tion using the squared loss l2(y, y′) = (y − y′)2. We also assume that we have a
distance function d : X × X → R at our disposal, which quantifies the distance
between two instances. More precisely, we demand that d(x, x) = 0 and that
d(x1, x2) < d(x1, x3), if x2 is more similar to x1 than x3. For ease of notation,
we store the distances between all training examples in one n × n matrix D,

Adapted Transfer of Distance Measures for QSARs 343

so that D = [dij] = d(xi, xj). One well known way to perform regression with
distance functions is the k-nearest neighbor rule. Given an unlabeled example
x, one determines the k nearest neighbors in the training data according to
the distance function and then predicts the average over the k neighbors. Let
Y := (y1, . . . , yn)T denote the target label vector and let W = [wij] be a n × n
neighbor matrix that has wij = 1

k if xj is among the k nearest neighbors of xi

and wij = 0 otherwise. With this, the vector of predicted target labels of the
training instances is simply Ŷ := WY .

Our main contribution, the adapted transfer, is based on the two building
blocks: distance learning and inductive transfer. Therefore, we introduce the
building blocks first, and describe our main contribution subsequently. In the
following we deal with settings, where we have more than one distance function
to rate the distance between examples. Rather than restricting ourselves to one
fixed function, we would like to use all available information for the prediction by
combining the m distance functions d1, . . . , dm. One simple way to do so is to take
the average: Ŷ = 1

m

∑m
i=1 WiY . In practice, however, one will often encounter

settings, in which some distances provide better information than the others.
In such settings it makes sense to use a weighted average Ŷ =

∑m
i=1 αiWiY ,

where the weight vector α = (α1, . . . , αm)T ∈ Rm with
∑m

i=1 αi = 1 specifies
to which extent each distance function contributes to the prediction. If we aim
at low empirical error on the training set, we can determine the optimal α by
minimizing the squared error on the training set:

α∗ := argmin
α

∥∥∥∥∥
m∑

i=1

αiWiY − Y

∥∥∥∥∥
2

(1)

subject to
m∑

i=1

αi = 1

0 ≤ αi ≤ 1 for i = 1, . . . , m

This is a standard quadratic program with linear constraints and can be solved
efficiently by standard convex optimization software.

To extend this setting, we use a different nearest neighbor matrix W than
that of the standard k-nearest neighbor approach. In the original definition,
this matrix makes a hard cut: the first k neighbors contribute equally to the
prediction, whereas the remaining examples are ignored. This appears to be a
somewhat arbitrary choice and one can envision many more fine-grained and
less restrictive prediction schemes. In principle, a matrix W must fulfill two
properties in order to lead to reasonable predictions: its rows must sum to one
and it must assign larger weights to more similar instances. In our experiments we
used a nearest neighbor approach with a distance threshold. Instead of choosing
a fixed number k of nearest neighbors, one selects a distance threshold t and
determines the set T of all neighbors whose distance to the test example is less
than t. Each example in T influences the prediction with weight 1

|T | .
Our second building block is inductive transfer. Inductive transfer is suitable

for settings where the amount of available training data is too small to determine

344 U. Rückert et al.

a good weight vector. Instead of learning a completely new weight vector α from
the (limited) target training data, we make use of an additional dataset, which is
assumed to have similar characteristics as the target data. We call this additional
dataset the source dataset to distinguish it from the target training set, so that
the inductive transfer takes place from source to target. In the Simple Transfer
setting, one induces a weight vector β only from the source data (by solving
(1) for the source dataset) and uses this β without modification for the actual
prediction. The actual training data provides the neighbors for the prediction,
but is not used for the computation of α.

Enhancing this Simple Transfer setting, the Adapted Transfer setting allows
for the transferred weight vector β to be adapted to the target training data.
This can be done in two ways:

– Bounded Adaptation. One induces a weight vector β from the source data,
but adapts it in a second step slightly to the target training data. For the
adaptation step, we would like to avoid overfitting on the (limited) training
data. Thus, we extend the optimization criterion (1) with the additional
criterion that the α may not differ too much from the transferred β. More
precisely, for a fixed ε > 0 we compute

α∗ := argmin
α

∥∥∥∥∥
m∑

i=1

αiWiY − Y

∥∥∥∥∥
2

(2)

subject to
m∑

i=1

αi = 1

|αi − βi| ≤ ε for i = 1, . . . , m

0 ≤ αi ≤ 1 for i = 1, . . . , m

– Penalized Adaptation. In this approach, we also adapt the weight vector β
induced from the source data. Instead of limiting the interval from which the
α can be taken, we add a regularization term to the optimization criterion
that penalizes αs that deviate too much from β. Formally, for C > 0, we
solve

α∗ := argmin
α

∥∥∥∥∥
m∑

i=1

αiWiY − Y

∥∥∥∥∥
2

+ C‖α − β‖2 (3)

subject to
m∑

i=1

αi = 1

0 ≤ αi ≤ 1 for i = 1, . . . , m

In the following sections, thesevariantswillbe evaluatedand tested experimentally.

3 Data and Experimental Setup

In this section we give an overview of the datasets, toxicological endpoints and
similarity measures used in the study, and we describe the experimental setup.

Adapted Transfer of Distance Measures for QSARs 345

3.1 Data

All of the datasets for our study were taken from the data section of the chemin-
formatics web repository1. Since we are interested in adapted transfer between
different datasets, we put a special focus on finding pairs of datasets with similar
or identical endpoints.2 Note that due to the wealth of data produced in all ar-
eas of science and industry today, the existence of related datasets is frequently
occurring and thus practically relevant. In fact, even in computational chem-
istry, the five pairs used in this paper are just a selection from a wider range of
possibilities.

For the first pair of datasets [6,7] abbreviated DHFR 4q (361 compounds)
and DHFR S. (673), the goal is to predict the dihydrofolate reductase inhibi-
tion of compounds as measured by the pIC50 value, that indicates how much
of a given substance is needed to block a biological activity by half. We had
to remove a number of instances, which were considered to be inactive in the
original publication and marked with default values. Overall the compounds in
this pair of datasets share a high similarity. Consequently, there often are only
local changes to the molecular graph structure and the graphs are very similar
on a global level. The second pair, CPDB m (444, mouse) and CPDB r (580,
rat) are generated from data obtained by the carcinogenic potency project3. The
compounds’ carcinogenicity is rated according to the molar TD50 value TDm

50 ,
where a low value indicates a potent carcinogen. The two datasets contained
several instances where the actual structure of the compound was missing. If
the molecule could be identified uniquely we downloaded the structure from the
NCBI PubChem database4. If this was not possible, the molecule was removed
from the set. The third pair of datasets [7], ER TOX (410) and ER LIT (381),
measure the logarithmized relative binding affinities (RBA) of compounds to the
estrogen receptor with respect to β-estradiol. All inactive compounds were re-
moved from the datasets as they all have the same value. The fourth pair, ISS m
(318, mouse) and ISS r (376, rat)[8], is similar to the second pair. The target
value under consideration is again the carcinogenic potency of a compound as
measured by the molar TD50 value. The two datasets contained several instances
where the actual structure of the compound was missing. If the molecule could
be identified uniquely via the given CAS number, we downloaded the structure
from the NCBI PubChem database. If this was not possible, the molecule was
removed from the set. The fifth and last pair of datasets [7,6], COX2 4q (282)
and COX2 S. (414), are used to predict the cyclooxygenase-2 inhibition of com-
pounds as measured by the pIC50 value. We had to remove a number of instances,
which were considered to be inactive in the original publication and marked with
default values. As in the first pair of datasets, the compounds contained in this

1 http://www.cheminformatics.org
2 In pharmacology and toxicology, an endpoint constitutes the target outcome of a

trial or experiment.
3 http://potency.berkeley.edu/chemicalsummary.html
4 http://pubchem.ncbi.nlm.nih.gov/

http://www.cheminformatics.org
http://potency.berkeley.edu/chemicalsummary.html
http://pubchem.ncbi.nlm.nih.gov/

346 U. Rückert et al.

dataset pair are highly similar. The preprocessed and cleaned datasets used in
our experiments are available for download on the authors’ website5.

3.2 Distances

For all ten datasets, we generated three different distance matrices. The first
and the second matrix are based on the Tanimoto distance metric for binary fin-
gerprints. The first set of fingerprints are occurrence fingerprints for frequently
occurring substructures. The substructures are closed free trees. The free trees
were calculated with the Free Tree Miner (FTM) [9] software so that approxi-
mately 1000 free trees were found. The resulting set was further reduced to the
set of closed trees, i.e., trees occurring in the same set of structures as one of the
supertrees were removed. The second fingerprint set is built of pharmacophoric
(binary) fingerprints containing more than 50 chemical descriptors computed
with the cheminformatics library JOELIB26. The third distance matrix is based
on a Tanimoto-like maximum common subgraph (MCS) based distance measure:

dmcs (x, y) = 1 −
(

|mcs (x, y)|
|x| + |y| − |mcs (x, y)|

)
, (4)

where |·| gives the number of vertices in a graph, and mcs(x, y) calculates
the MCS of molecules x and y. JChem Java classes were used for comput-
ing the maximum common subgraph (MCS), JChem 5.1.3 2, 2008, ChemAxon
(http://www.chemaxon.com).

4 Experiments

We consider a QSAR learning task given by a target training and test set. Ad-
ditionally, we assume that we can transfer information from a source dataset
containing related training data. The task is to induce a predictor from the tar-
get training set and the source dataset, which features good predictive accuracy
on the test set. To solve this task we propose a strategy called adapted transfer.
This approach combines adaptation and inductive transfer, as outlined in the
second section. We start with identifying the weight vector α that optimizes (1)
on the source dataset. Instead of using this weight vector directly, we adapt it
to better match with the target training data. This is done either within an
ε-environment by optimizing (2) or with a quadratic distance penalty by solving
(3). The resulting weight vector is then applied with the target training data in
a nearest-neighbor classifier.

To get reliable results, we repeat our experiments one hundred times, where
each run consists of a ten-fold cross-validation. This means we estimate the
methods’ success on one thousand different configurations of training- and test-
folds. To quantify predictive accuracy, we choose mean squared error, a standard
measure in regression settings. We evaluate the adapted transfer approaches
against three baseline strategies:
5 http://wwwkramer.in.tum.de/research
6 http://www-ra.informatik.uni-tuebingen.de/software/joelib

http://wwwkramer.in.tum.de/research
http://www-ra.informatik.uni-tuebingen.de/software/joelib

Adapted Transfer of Distance Measures for QSARs 347

Fig. 1. Graphical overview of the four strategies used in the experiments. Abbrevia-
tions: opt. = optimization, αi(best) = αi for best single distance.

– Best single distance. We perform an internal 5-fold cross validation on
the target training set to determine the best of the three distances. This
distance is then used to predict the target values for the target test set. The
source dataset is not used.

– Distance learning. We compute the solution to the optimization problem
(1) to determine the best linear combination α on the target training set.
The weighted combination of distances is then used as new distance for the
prediction on the test data. Again, the source dataset is not used.

– Simple transfer. Here, we optimize (1) on the source dataset instead of
the target training data. The weighted combination of distances is then used
as new distance for the prediction on the test data. Here, the target training
data is only used for the nearest-neighbor classifier, not for the adaptation
of the distance measure.

All four strategies are illustrated in Figure 1. All algorithms and methods were
implemented in MATLAB Version 7.4.0.336 (R2007a). We applied the MOSEK7

Optimization Software (Version 5.0.0.60) that is designed to solve large-scale
mathematical optimization problems.

4.1 Learning Curves

At their core, distance adaptation and inductive transfer methods are approaches
to improve predictive accuracy by fine-tuning the learning bias of a machine
7 MOSEK ApS, Denmark. http://www.mosek.com

http://www.mosek.com

348 U. Rückert et al.

learning scheme. Both can be expected to make a difference only if there is
not enough target training data available to obtain a good predictor. If this
is not the case and there is sufficient training data available, most reasonable
learning approaches will find good predictors anyway, and distance adaptation
or inductive transfer cannot improve its predictive accuracy significantly. To
evaluate this trade-off between the amount of available training data and the
applicability of transfer and adaptation approaches, we first present learning
curves rather than point estimates of a predictor’s accuracy for a fixed training
set size. More precisely, we repeat each experiment with increasing subsets of the
original target training data. We start by using only the first 10%, then 20%, and
so on until the complete training data is available. The corresponding learning
curves are given in Figures 2 and 3 for one representative parameter setting
producing typical results (nearest neighbor with distance threshold t = 0.2,
ε = 0.2 for the bounded adaptation and C = 10.0 for the penalized adaptation).
The plots are shown for six of the ten datasets (DHFR, CPDB and ER). While
the differences appear to level off for increasing training set sizes, there are clearly
differences at the beginning of the learning curves. The single best distance is
outperformed by other methods (outside the scale of the y-axis for CPDB), and
distance learning does not work well yet for small training set sizes. For a more
principled comparison, we now examine under which circumstances one approach
outperforms another significantly.

4.2 Comparison of Approaches

To investigate whether our adapted transfer strategy outperforms the presented
baseline approaches we first evaluate how the baseline approaches perform com-
pared to each other. The corresponding results are shown in Table 1. Second,
we investigate how the adapted transfer strategy competes (results shown in
Table 2). We conducted one hundred runs of tenfold cross-validation. For each
run, we noted whether the first or the second method performed better. We
tested if the resulting set of predictive accuracies were statistically significant
improvements or deteriorations at a significance level of 5%.

As a first experiment, we would like to address the question whether distance
learning improves predictive accuracy. More precisely, we compare whether hav-
ing a linear combination of the distances’ contributions optimizing criterion (1)
(distance learning strategy) outperforms the single best distance. The results are
given in Table 1. It shows that distance adaptation using a linear combination
significantly outperforms the single best distance in nine out of ten cases for
10% and eight out of ten cases for 100%. Thus, there is some empirical evidence
that a learning method, which adjusts its bias to better accommodate for the
underlying data, is more successful than an approach with a single fixed bias
(i.e. distance). The result also supports the observation by Raymond and Wil-
lett [5] that maximum common subgraph based measures and fingerprint-based
measures provide orthogonal information.

For the second experiment we would like to investigate whether inductive
transfer improves predictive accuracy. To do so, we compare the best single

Adapted Transfer of Distance Measures for QSARs 349

Fig. 2. Learning curves for nearest neighbour with dist. thr. t = 0.2

350 U. Rückert et al.

Table 1. A vs. B: • = A significantly better than B, ◦ = A significantly worse than
B; w = how often out of 100 times A “wins” against B

Distance learning vs. Best single distance

frac. trg. set 10% 100%
Short-hand w p-value w p-value
DHFR 4q 39 0.2445 17 8.9928e-15 ◦
DHFR S. 74 7.3586e-10 • 50 0.9916
CPDB m 100 3.8397e-50 • 100 5.0502e-62 •
CPDB r 100 5.1532e-51 • 100 3.1704e-67 •
ER TOX 96 3.1118e-30 • 99 8.1943e-37 •
ER LIT 69 2.3297e-06 • 66 5.3560e-06 •
ISS m 100 1.4792e-50 • 100 8.8650e-76 •
ISS r 100 1.5046e-46 • 100 3.5386e-44 •
COX2 4q 83 6.5791e-10 • 59 1.4442e-05 •
COX2 S. 56 0.0070 • 93 3.3759e-24 •
Simple transfer vs. Best single distance

DHFR 4q 68 1.9913e-06 • 40 0.1496
DHFR S. 72 5.6524e-09 • 47 0.1856
CPDB m 100 1.7442e-59 • 100 2.4231e-61 •
CPDB r 100 3.0277e-56 • 100 6.3283e-69 •
ER TOX 80 1.8104e-12 • 79 1.5431e-10 •
ER LIT 92 1.7692e-22 • 80 1.7956e-06 •
ISS m 99 1.4792e-50 • 100 4.7435e-26 •
ISS r 97 1.5046e-46 • 55 1.3118e-22 •
COX2 4q 91 6.5791e-10 • 34 7.5261e-04 ◦
COX2 S. 44 0.0070 • 78 0.0050 •

Distance learning vs. Simple transfer

DHFR 4q 14 2.9153e-17 ◦ 21 1.2097e-11 ◦
DHFR S. 44 0.8970 55 0.1030
CPDB m 13 1.5582e-38 ◦ 69 8.3637e-04 •
CPDB r 2 2.4788e-19 ◦ 26 1.1582e-04 ◦
ER TOX 73 5.3856e-09 • 84 1.0532e-12 •
ER LIT 12 6.5350e-20 ◦ 44 0.0067 ◦
ISS m 29 8.8116e-07 ◦ 100 1.4392e-42 •
ISS r 85 1.4217e-19 • 100 4.6961e-78 •
COX2 4q 15 6.0041e-13 ◦ 85 4.6009e-18 •
COX2 S. 52 0.0178 • 87 5.5511e-16 •

distance strategy with the simple transfer where the weights for the linear com-
bination are computed on the source dataset rather than the target training
data. Our experiments indicate (Table 1) that inductive transfer using a linear
combination significantly outperforms the single best distance in all cases for
10% and seven out of ten cases for 100%. Apparently, inductive transfer has the
same effect as distance learning.

Since both building blocks of our adapted transfer strategy, distance learn-
ing and inductive transfer, improve predictive accuracy, the next experiment
deals with the question under which circumstances one approach outperforms

Adapted Transfer of Distance Measures for QSARs 351

the other. The experiments indicate (Table 1) that inductive transfer is signifi-
cantly better than distance learning, if only few training data are available, but
the opposite is true, if all the available training data is used. Hence, one can say
that one should resort to inductive transfer methods, whenever there is compa-
rably few training data available and when the source data for the transfer is
of sufficiently good quality (as appears to be the case on all datasets except for
ER TOX, ISS r and COX2 Sutherland). Unfortunately, it is often hard to tell
in advance, whether the source data is good enough for successful transfer and
how the size of the available target data compares to the size of source data of
unknown quality.

In order to avoid this problem, we introduced a “mixed strategy”, which trans-
fers weights from the source dataset, but ensures that the actual weights differ
not too much from the ones, which can be obtained by distance adaptation on
the target data. We now compare the penalized adapted transfer approach to
its two building block baseline methods. Table 2 shows that adapted transfer
outperforms distance learning on small training data, but leads to no further
improvement, if there is sufficient amount of training data. On the other hand,
the mixed strategy performs better than simple transfer in settings with large
amounts of training data. When only few training data is present, its perfor-
mance is sometimes better and sometimes worse than the simple transfer (see
Table 2), possibly depending on the quality of the source data and the represen-
tativeness of the few training examples. In summary, these results indicate that
adapted transfer is a good compromise, which keeps the high predictive accu-
racy of distance adaptation on small and large training datasets, and improves
on simple transfer in settings with large amounts of training data. This holds for
both variants of the adapted transfer (bounded and penalized) which perform
comparably with a slight advantage for the penalized version.

4.3 Analysis of Optimized Weights

Figure 4 shows horizontally stacked bar-plots of the weights αi optimized in
the distance learning approach and of the weights αp

i optimized in the penal-
ized adaptation approach (mean over the hundred repetitions of ten fold cross-
validation). The weights α1 based on the sub-structural features are shown in
white, the pharmacophoric fingerprint based weights α2 in grey and the MCS-
based α3 in black. A general observation is that the strength of the adaptation
of the αis is consistent with the learning curves in Figures 2 and 3. Strong adap-
tation can, for example, be seen, e.g., in the DHFR 4q dataset at 10% and
at 100%. This effect can clearly be seen in the learning curves. Especially no-
table is that the MCS weights α3 (black) are significantly lower for the DHFR
and COX2 datasets. This reflects very nicely the fact that the compounds in
those four datasets are much less diverse. Less diverse compounds can be dis-
tinguished more easily with local than with global differences as represented by
the MCS-based weights α3.

352 U. Rückert et al.

Table 2. A vs. B: •/◦ = A significantly better/worse than B; w = “wins” of A

Penalized adapted transfer vs. Distance learning

DHFR 4q 75 3.6350e-11 • 84 1.7402e-18 •
DHFR S. 61 0.0363 • 54 0.6914
CPDB m 94 3.5594e-29 • 39 0.0160
CPDB r 50 0.9865 69 4.7849e-04 ◦
ER TOX 49 0.0244 • 48 0.8390
ER LIT 76 6.8167e-11 • 55 0.1088
ISS m 69 1.3269e-05 • 58 0.1663
ISS r 30 4.2098e-05 ◦ 81 2.6523e-13 •
COX2 4q 87 3.5753e-12 • 7 5.2729e-29 ◦
COX2 S. 55 0.4762 22 7.1220e-11 ◦
Penalized adapted transfer vs. Simple transfer

DHFR 4q 21 2.1467e-06 ◦ 54 0.1907
DHFR S. 61 0.0014 • 54 0.0229 •
CPDB m 17 9.5657e-13 ◦ 52 0.2353
CPDB r 5 1.3033e-28 ◦ 42 0.3879
ER TOX 82 8.5636e-12 • 81 3.5649e-13 •
ER LIT 28 5.6761e-06 ◦ 44 0.3060
ISS m 41 0.1454 100 1.1372e-41 •
ISS r 81 3.9968e-15 • 100 1.3256e-79 •
COX2 4q 21 5.9618e-09 ◦ 60 0.0033 •
COX2 S. 75 3.4792e-08 • 64 7.0540e-05 •

5 Related Work

A related approach for classification instead of regression has been proposed
by Woznica et al. [10]. The authors combine distances for different complex
representations of a given learning problem, and use the learned distance for
kNN classification. Hillel and Weinshall [11] learned distance functions by cod-
ing similarity in the context of image retrieval and graph based clustering. In
the study of Raymond and Willett [5] it was shown that graph-based (MCS)
and fingerprint-based measures of structural similarity are complementary; we
followed up on this observation in our study.

Weinberger and Tesauro [12] is another approach learning a distance metric
for regression problems. While this distance learning method (and many others)
optimize a parametrized distance measure (typically the Mahalanobis metric),
the approach presented in this paper optimizes contributions from various given
distance measures in the form of a neighbourhood matrix. Another major dif-
ference is that we explicitly aim for learning schemes for molecular structures
and not for general feature vectors. As we want to use an MCS-based distance
measure (which is not based on features) as an input, a meaningful experimental
comparison is not possible.

Adapted Transfer of Distance Measures for QSARs 353

Fig. 3. Learning curves for nearest neighbour with dist. thr. t = 0.2

Fig. 4. Graphical representation of the αi and αp
i at 10% and 100% of the training

data. α1 (cFTs) = white, α2 (joelib) = grey and α3 (MCS) = black

In 1995, Baxter [13] proposed to learn internal representations sampled from
many similar learning problems. This internal representation is then used to bias
the learner’s hypothesis space for the learning of future tasks stemming from
the same environment. A related topic in machine learning research is multi-
task learning. For example, Evgeniou et al. [14] study the problem of learning
many related tasks simultaneously using kernel methods and regularization. Our

354 U. Rückert et al.

approach differs in that it does not learn multiple tasks but only one. The related
tasks are used more in the sense of background knowledge that is used to bias
the generalisation problem, especially in cases where there is insufficient data on
the given learning task.

The presented approach is also related to multiple kernel learning [15], but
differs in two important points: First, one of the requirements of our application
domain is the use of a maximum common subgraph based similarity measure.
Although there are attempts to define positive semi-definite kernels on the ba-
sis of maximum common subgraphs [16], there is no convincing approach yet to
achieve this in a straightforward manner. Second, it is important to note that we
do not combine distance measures themselves linearly, but their contributions in
the form of neighbouring instances. Therefore, there is yet another level of indi-
rection between the distance measures and the way they are used and combined.
Simple linear combinations did not work well in preliminary experiments.

A recent approach by Zha et al. [17] learns distance metrics from training data
and auxiliary knowledge, in particular, auxiliary metrics possibly learned from
related datasets. The approach was defined for classification, not regression, and
tested on image data. Finally, the work by Erhal et al. [18] is similar in spirit, but
technically different, and also has a less comprehensive experimental evaluation.

6 Conclusion

In the paper, we proposed adapted transfer, a method combining inductive trans-
fer and distance learning, and evaluated its use for quantitative structure-activity
relationships. The method derives linear combinations of contributions of dis-
tance measures for chemical structures. Compared to inductive transfer and dis-
tance learning alone, the method appears to be a good compromise that works
well both with large and small amounts of training data. Technically, the method
is based on convex optimization and combines the contributions from representa-
tives of two distinct families of distance measures for chemical structures, MCS-
based and fingerprint-based measures. In the future, we are planning to test if
related learning tasks can be detected automatically, not based on the similarity
of the endpoint, but based on the structural similarity of their instances. This
would resemble other work on inductive transfer [4], but incorporate those ideas
in a more domain-specific manner.

Acknowledgements. This work was partially supported by the EU FP7 project
(HEALTH-F5-2008-200787) OpenTox (http://www.opentox.org).

References

1. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph
mining. In: Proc. of KDD 2004, pp. 158–167. ACM Press, New York (2004)

2. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Effi-
cient Graphlet Kernels for Large Graph Comparison. In: Proc. of AISTATS 2009
(2009)

Adapted Transfer of Distance Measures for QSARs 355

3. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighborhood Compo-
nent Analysis. In: Proc. of NIPS 2004, pp. 513–520 (2005)

4. Eaton, E., Desjardins, M., Lane, T.: Modeling transfer relationships between learn-
ing tasks for improved inductive transfer. In: Proc. of ECML PKDD 2008, pp.
317–332. Springer, Heidelberg (2008)

5. Raymond, J.W., Willett, P.: Effectiveness of graph-based and fingerprint-based
similarity measures for virtual screening of 2D chemical structure databases.
JCAMD, 59–71 (January 2002)

6. Sutherland, J.J., O’Brien, L.A., Weaver, D.F.: Spline-fitting with a genetic algo-
rithm: A method for developing classification structure-activity relationships. J.
Chem. Inf. Model 43(6), 1906–1915 (2003)

7. Sutherland, J.J., O’Brien, L.A., Weaver, D.F.: A comparison of methods for model-
ing quantitative structure-activity relationships. J. Med. Chem. 47(22), 5541–5554
(2004)

8. Benigni, R., Bossa, C., Vari, M.R.: Chemical carcinogens: Structures and experi-
mental data,
http://www.iss.it/binary/ampp/cont/ISSCANv2aEn.1134647480.pdf

9. Rückert, U., Kramer, S.: Frequent free tree discovery in graph data. In: SAC 2004,
pp. 564–570. ACM Press, New York (2004)

10. Woznica, A., Kalousis, A., Hilario, M.: Learning to combine distances for complex
representations. In: Proc. of ICML 2007, pp. 1031–1038. ACM Press, New York
(2007)

11. Hillel, A.B., Weinshall, D.: Learning distance function by coding similarity. In:
Proc. of ICML 2007, pp. 65–72. ACM Press, New York (2007)

12. Weinberger, K.Q., Tesauro, G.: Metric learning for kernel regression. In: Proc. of
AISTATS 2007 (2007)

13. Baxter, J.: Learning Internal Representations. In: Proc. COLT 1995, pp. 311–320.
ACM Press, New York (1995)

14. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel meth-
ods. J. Mach. Learn. Res. 6, 615–637 (2005)

15. Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel
learning. J. Mach. Lear. Res. 7, 1531–1565 (2006)

16. Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and
Kernel Machines. World Scientific Publishing Co., Inc, Singapore (2007)

17. Zha, Z.J., Mei, T., Wang, M., Wang, Z., Hua, X.S.: Robust distance metric learning
with auxiliary knowledge. In: Proc. of IJCAI 2009, pp. 1327–1332 (2009)

18. Erhan, D., Bengio, Y., L’Heureux, P.J., Yue, S.Y.: Generalizing to a zero-data
task: a computational chemistry case study. Technical Report 1286, Département
d’informatique et recherche opérationnelle, University of Montreal (2006)

http://www.iss.it/binary/ampp/cont/ISSCANv2aEn.1134647480.pdf

Incremental Mining of Closed Frequent Subtrees

Viet Anh Nguyen and Akihiro Yamamoto

Graduate School of Informatics, Kyoto University
Yoshida Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan

vietanh@iip.ist.i.kyoto-u.ac.jp,
akihiro@i.kyoto-u.ac.jp

Abstract. We study the problem of mining closed frequent subtrees
from tree databases that are updated regularly over time. Closed fre-
quent subtrees provide condensed and complete information for all fre-
quent subtrees in the database. Although mining closed frequent subtrees
is in general faster than mining all frequent subtrees, this is still a very
time consuming process, and thus it is undesirable to mine from scratch
when the change to the database is small. The set of previous mined
closed subtrees should be reused as much as possible to compute new
emerging subtrees. We propose, in this paper, a novel and efficient incre-
mental mining algorithm for closed frequent labeled ordered trees. We
adopt a divide-and-conquer strategy and apply different mining tech-
niques in different parts of the mining process. The proposed algorithm
requires no additional scan of the whole database while its memory us-
age is reasonable. Our experimental study on both synthetic and real-life
datasets demonstrates the efficiency and scalability of our algorithm.

1 Introduction and Motivations

In this paper, we examine a mining problem, called incremental tree mining. Tree
mining, an extension of the itemset mining paradigm [2], refers to the extraction
of all frequent trees in tree-structured databases. Due to its useful applications
in various areas such as bioinformatics [9], management of the web and XML
data [1], and marketing channel management [13], tree mining has attracted
noticeable attention from researchers in the data mining community. There have
been several efficient algorithms proposed in the previous works, see for example,
[3], [7], [11], [12]. These algorithms mine the entire database and output the set
of results. This static fashion, however, has limitation in application fields where
the data increasing continuously as the time moves on. For example, an online
shopping website where browsing behavior of each user is produced in the form of
trees may be browsed by hundreds of people every minute. In such situations, it
is undesirable to mine the incremented databases from scratch, and so naturally,
an incremental mining algorithm which reuses the results of past minings to
minimize the computation time must be adopted.

This paper develops an incremental mining algorithm for closed frequent la-
beled ordered trees. Closed subtrees are the maximal ones among each equivalent
class that consists of all frequent subtrees with the same transaction sets in a

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 356–370, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Incremental Mining of Closed Frequent Subtrees 357

tree database. In many cases, we only care about closed subtrees; given the set of
all closed frequent subtrees, we can always derive the set of all frequent subtrees
with their support. After a careful survey of the previous work, we found that
the essential technique used in many existing algorithms is to buffer the set of
semi-frequent patterns, those that are likely to become frequent in the new iter-
ation, in addition to the set of all frequent patterns, see for example [4], [6], [10].
For the case of closed tree mining, this technique could not be applied effectively
because even when all the new frequent patterns are found, filtering out those
that are closed is still expensive. We, instead, adopt a divide-and-conquer strat-
egy and treat each kind of new emerging closed tree patterns differently based
on their own characteristics. The key point of our algorithm is that it requires
no additional scan of the whole database. Besides, the memory for keeping in-
formation from previous mining iterations is still reasonable even for very low
minimum support thresholds.

Related Work. There is very few work on incremental mining for tree data
up to now. The reason may partly be the complexity of this problem. The main
challenge here is how to achieve fast response time, even real-time response
in some strict scenarios, with reasonable memory space usage. Asai et al. [4]
introduced an online algorithm for mining tree data streams, but their problem
setting in which data arrive continuously node-by-node may not be realistic
because in the real world, the most common case is that data is acquired in small
batches over the time. Further, only approximate answers are returned and no
accuracy guarantee on the result set is provided by the algorithm. Hsieh et al.
[10] proposed a complete algorithm but the problem setting is still the same
as that of Asai et al.. Bifet and Gavalda [5] presented an incremental mining
algorithm for frequent unlabeled rooted trees. After computes the set of new
closed subtrees of the additional batch, the algorithm checks the subsumption
of every subtree of the new detected closed subtrees against all closed subtrees
mined in the previous run. In mining labeled rooted trees, the number of closed
subtrees is often many times bigger than that of the unlabeled cases and the
subsumption checking for labeled trees is also often much more expensive than
the subsumption checking for unlabeled trees. These obstacles may make the
method propose in [5] not suitable for labeled trees.

The rest of the paper is organized as follows. Section 2 formally defines the
problem of incremental closed subtree mining. Section 3 describes the new incre-
mental algorithm. Section 4 reports the experimental results. Section 5 concludes
the paper.

2 Preliminaries

In this section, we introduce the notations and concepts used in the remainder
of the paper .

Rooted Labeled Trees. Let Σ = {l1, . . . , lm} be a set of labels. A rooted labeled
tree T = (V, E, r, L) on Σ is an acyclic connected graph, where V = {v1, . . . , vn}

358 V.A. Nguyen and A. Yamamoto

is a finite set of nodes, E ⊆ V ×V is a finite set of edges, r ∈ V is a distinguished
node that has no entering edges, called the root, and L is a labelling function
L : V → Σ assigning a label L(v) to each node v of T .

A rooted ordered tree is a rooted tree that has a predefined left-to-right or-
dering among the children of each node. In this paper, a tree means a rooted
ordered labeled tree. Let u, v be nodes in V . If u is on the path from the root
to v then u is an ancestor of v and v is a descendant of u. If (u, v) ∈ E, then
u is the parent of v and v is a child of u. Two nodes with the same parent are
siblings to each other. If a node v has no child, then v is called a leaf.

Tree Inclusion. Let S = (VS , ES , rS , LS) and T = (VT , ET , rT , LT) be two
trees on Σ. Then S is included in T , denoted by S � T , if there exists an
injective mapping ϕ : VS → VT such that

1. ϕ preserves the node labels: ∀v ∈ VS LS(v) = LT (ϕ(v)).
2. ϕ preserves the parent-child relation: (v1, v2) ∈ ES iff (ϕ(v1), ϕ(v2)) ∈ ET .
3. The left-to-right ordering among the children of a node v in S is a subordering

of the children of ϕ(v) in T .

If S � T holds, then we also say that S occurs in T , S is a subtree of T , T is a
supertree of S, and T contains S. The subtree defined above is called an induced
subtree [8]. In this paper, a subtree is sometimes called a pattern, and unless
otherwise specified, a subtree means an induced subtree.

Suppose VS has k nodes which are indexed with numbers 1, 2, . . . , k as v1, . . . ,
vk. The total occurrence of S in T w.r.t. ϕ is the list Total(ϕ) = (ϕ(v1), . . . ,
ϕ(vk)) ∈ (VT)k. The root occurrence of S in T w.r.t. ϕ is the node root(ϕ) =
(ϕ(rS)) ∈ VT . A root occurrence of S in T is also called an occurrence of S in
T .

Support of a Subtree and Frequent Subtrees. Let D denote a database of
a set of transactions, where each transaction s ∈ D is a tree. For a given pattern
t, let σt(s) = 1 if t is a subtree of s, and 0 otherwise. The support of a pattern t
in the database D is defined as supportD(t) =

∑
s∈D σt(s). A pattern t is called

frequent in D if supportD(t) is greater than or equal to a support threshold
minsupD. Let 0 ≤ σ ≤ 1 be a non-negative number called the minimum support
specified by a user, we have minsupD = σ · |D|, where |D| is the size of D.

Just as the item set mining, the monotone property holds that, for two patterns
s and t, s � t implies supportD(s) ≥ supportD(t).

Closed Subtrees. A subtree t is closed if and only if no proper supertree of t
has the same support that t has.

Incremental Mining Problem. Suppose a set of new tree transactions, Δ, is
to be added to the database D. The database D is referred to as the original
database, the database Δ as an increment database, and the database U = D∪Δ
as the updated database where ∪ denotes the union of two sets. The incremental
mining problem which we treat is to find all closed frequent subtrees in the
database U given D, Δ, and the minimum support σ. We denote the set of all
closed frequent subtrees mined from a database D as C(D).

Incremental Mining of Closed Frequent Subtrees 359

A

C

D B E

G F F

C

D B E

F F G

C

D B E

F

C

B E

F G

H

C

E

G H

T1 T2 T3 T4

G

(a) A database D, an increment database Δ and their union

D = {T1, T2, T3}

Δ = {T4}

U = {T1, T2, T3, T4}

C

B E

F G

C

D B E

F

G

C

B E

F G

C

D B E

F

C

E

G

C

E

G H

ct1 (3) ct2 (2) ct3 (3)

C

E

ct’1 (4) ct’2 (2) ct’3 (3) ct’4 (4) ct’5 (3) ct’6 (2)

(b) Sets of closed frequent subtrees mined from D and U, respectively

C(D)

1

2

3 5 7

4 6 8

1

2 4 6

3 5 7 8

1

2 3 5

4

6

8

9

10

7

2

3 4

1

C(U)

σ = 50%

Fig. 1. Running Example

Figure 1(a) shows the original tree database D comprised of three transactions
T1, T2, and T3, the incremental database Δ comprised of T4, and the updated
database U comprised of T1, T2, T3, and T4. Figure 1(b) shows the sets of closed
frequent subtrees, namely C(D) and C(U), for the databases D and U respec-
tively, when σ is set to 50%. The number in brackets denotes the support of a
closed subtree. This example is used as a running example in our paper.

3 The Mining Algorithm

In this section we discuss a divide-and-conquer method for incremental mining
of closed subtrees, where the set of closed subtrees will be divided into different
non-overlapping subsets, each of which can be obtained independently using its
own stored information from the previous mining iteration.

3.1 A Divide-and-Conquer Solution

The insertion of new transactions in Δ may give rise to new closed subtrees
which never appear before. Some existing closed subtrees mined from D may
have support count increased by Δ. There also are old closed subtrees which
remain completely unchanged by the insertion of Δ. In general, we can divide
C(U), the set of all closed subtrees mined from U = D ∪ Δ, into two subsets,
C(U) = C(U)|Δ ∪ C(U)|s, where

C(U)|Δ = {t ∈ C(U) | ∃ a transaction T ∈ Δ s.t. t � T },
C(U)|s = {t ∈ C(D) | supportU (t)=supportD(t) and supportU (t) ≥ minsupU}.

360 V.A. Nguyen and A. Yamamoto

The sets C(U)|Δ and C(U)|s are respectively the set of closed subtrees in C(U)
that occur in Δ, and that of closed subtrees in C(U) which are also closed
subtrees in C(D) with supports stay unchanged.

Proposition 1. It holds that C(U) = C(U)|Δ ∪ C(U)|s.

Proof. By definitions, we have C(U)|Δ ⊆ C(U) and C(U)|s ⊆ C(U) . Therefore,
C(U)|Δ ∪ C(U)|s ⊆ C(U). Suppose that there exists a closed subtree c s.t.
c ∈ C(U) and c /∈ C(U)|Δ ∪ C(U)|s. We have c /∈ C(U)|Δ and c /∈ C(U)|s.
Because c /∈ C(U)|Δ, then all support of c is from D, which means c remains
closed in U as in D, thus we have c ∈ C(U)|s, this contradicts with c /∈ C(U)|s,
then the proposition follows. ��

For the running example, we have C(U)|Δ = {ct′1, ct′4, ct′5, ct′6}, and C(U)|s =
{ct′2, ct′3}.

We can compute C(U) by computing C(U)|Δ and C(U)|s separately. However,
the computation is still expensive because the whole database U still need to be
scanned. For this reason, we try to further divide C(U)|Δ into smaller subsets
which can be computed efficiently with minimized access to the database. The
first subset is the one that contains closed subtrees that occur in C(D). Closed
subtrees in C(U)|Δ which do not occur in C(D) are divided into two parts: those
whose prefixes occur in C(D) and those whose none of their prefixes occur in
C(D). The subsets are formally defined as follows:

C(U)|oΔ = {t ∈ C(U)|Δ | t � C(D)},
C(U)|pΔ = {t ∈ C(U)|Δ | ∃i, i < size(t) ∀j ≤ i prefix(t, j) � C(D) and

prefix(t, j) � C(D)},
C(U)|rΔ = {t ∈ C(U)|Δ | ∀i ≤ size(t) prefix(t, i) � C(D)},

where i, j are positive integers, t � C(D) means that there exists a closed
subtree c ∈ C(D) s.t. t � c, t � C(D) if otherwise, and prefix(t, i) is the subtree
containing first i nodes in the pre-order traversal of t.

In summary, we have C(U) = C(U)|oΔ ∪ C(U)|pΔ ∪ C(U)|rΔ ∪ C(U)|s. In
fact, we do not need to find C(U)|s since it can be obtained together with
C(U)|oΔ. From the example of Figure 1, we have C(U)|oΔ = {ct′1, ct′4, ct′5},
C(U)|pΔ = {ct′6} where ct′6 is the prefix with length 3 of ct2 ∈ C(D), and
C(U)|rΔ = ∅.

3.2 Enumerating Frequent Subtrees

We adopt the rightmost extension technique which was originally proposed by
Asai et al. [3] and Zaki [14]. A subtree t of size k is extended to a tree of size k+1
by adding a new node only to a node on the rightmost path of t. The rightmost
path of a tree t is the unique path from the root to the rightmost node of t and
the node to be added is called a rightmost extension of t.

Figure 2 shows the basic idea of the rightmost extension technique. The sub-
tree t is extended in a bottom-up manner, starting from the rightmost node
up to the root of t. By systematically enumerating all frequent subtrees using

Incremental Mining of Closed Frequent Subtrees 361

ej

ei

vj

vi

rightmost node

rightmost-extensions

subtree t

Root

Fig. 2. The rightmost extension technique

C

D E

1

2

3

4

5

6

1

2

3

4

5

6

free extensions

rightmost-extensions

rightmost path

Fig. 3. Extensions of a subtree

the rightmost extension technique which starts from the empty tree ε, an enu-
meration tree is formed. Figure 4 shows the enumeration tree for the database
U = D ∪ Δ if we mine U from scratch. To apply the rightmost extension tech-
nique we have to record the occurrences of all nodes on the rightmost path of t.
However, in fact, only occurrences of the rightmost node of t need to be stored
because the occurrences of all other nodes on the rightmost path can be easily
computed by taking the parent of its child.

Free extensions, rightmost extensions and immediate supertrees. Here
we introduce some important notions that will be used for the purpose of pruning
and closure checking in the later parts of the paper. Given a subtree t, we call
a supertree t′ of t that has one more node than t an immediate supertree of t.
The additional node in t′ that is not in t representing the extension from t to
t′. Please notice that the extension represents not only the node label but also
the position. Based on their positions, extensions are parted into two categories:
rightmost extensions and free extensions as shown in Figure 3.

Delta frequent rightmost extensions. If we mine C(U) from scratch, for
each subtree t, we have to consider every possible rightmost frequent extension
of t. However, to mine C(U)|Δ, the number of possible rightmost extensions of
a subtree t can be greatly reduced since we have to care for those occurring in
Δ only. We call a node e an Δ-frequent rightmost extension of t if it satisfies
the following conditions: (i) e is a rightmost extension of t, (ii) t′ occurs in Δ
where t′ is the new subtree obtained by attaching e to t, and (iii) supportU (t′)
≥ minsupU . Here, t′ is called a candidate immediate supertree of t.

The Δ-frequent rightmost extensions of ε are frequent nodes that occur in
Δ. In Figure 4, Δ-frequent rightmost extensions of ε are nodes with lables C,
E, G, and H (t3, t5, t7, and t8 in the figure 4 respectively). Subtrees t1, t2, t4,
t6, t10 and t11 together with their descendants can be safely removed from the
enumeration tree.

Nodes in Δ that are infrequent in D but become frequent under the insertion
of Δ are those that will lead to C(U)|rΔ. Other nodes in Δ whose support is

362 V.A. Nguyen and A. Yamamoto

1312119

1615

C

C
B

C
D

C
E

C
B
F

C
B E

C
D B

C
D E

C
E
G

C
B
F

E
C
B E

G

C
D B

F

C
D B E

C
B
F

E

G

C
D B E

F

B D E F G

B
F

E
G

1 2 3 4 5 6

10

17 18

22 23 24 25

27 28

A H7 8

C
E
G H

C
E
H

E
G H

19 20

26

E
H

14

21

Fig. 4. The enumeration tree for the database U = D ∪ Δ

increased under the insertion of Δ will lead to C(U)|oΔ and/or C(U)|pΔ. To
compute Δ-frequent rightmost extensions of ε, we store the support counts of all
nodes, both frequent and infrequent, of the original database D. Each time when
the increment database Δ is received, those support counts will be updated.

The computing of subsets of C(U)|Δ are explained in following subsections.
We assume constant-time access to all parts of the database. More specifically
speaking, given an occurrence of a node v, the occurrence of its parent, its first
child, or its next sibling can be computed in constant time.

3.3 Computing C(U)|rΔ

Since neither c, a closed subtree c ∈ C(U)|rΔ, nor any of its prefixes are contained
in a closed subtree in C(D), the information of C(D) is useless to mine C(U)|rΔ.
We deal with this problem as follows. When mining C(D) in the original database
D, we store the occurrence lists of all infrequent nodes in D. When the increment
database Δ is received, it is scanned once to update all those occurrence lists.
New frequent nodes (nodes that are infrequent in D but become frequent in U)
now have enough information to grow until all the closed subtrees rooted at that
nodes are discovered.

Pruning. The rightmost extension technique enumerates all frequent subtrees,
however, not all of frequent subtrees are closed, and many of them can be effi-
ciently pruned under the conditions as shown in the following proposition.

Proposition 2. For a frequent subtree t, if there exists a free extension ef of t
such that ef occurs at all occurrences of t, then t together with all the descendants
of t in the enumeration tree can be pruned.

Incremental Mining of Closed Frequent Subtrees 363

Function Extend(t,D, Δ)
1: E ← ∅; stopF lag ← false;
2: for each node v on the rightmost path of t, bottom-up, do
3: for each Δ-frequent rightmost extension e of t do
4: t′ ← t plus e, with v as e’s parent;
5: E ← E ∪ t′;
6: if e occurs at all occurrences of t then stopF lag ← true;
7: if stopF lag then break;
8: return E;

Fig. 5. Compute candidate immediate supertrees of t

Proof. First, since ef is not a rightmost extension of t, it will never occur in any
of t’s descendants. Next, since ef occurs at all occurrences of t, it also occurs
at all occurrences of every descendant of t in the enumeration tree. Therefore, t
and all the descendants of t in the enumeration tree can not be closed because
we can always add ef to t (or to the descendant of t) to form an immediate
supertree with the same support. ��
We can early prune some rightmost extensions of a subtree t as follows. Let us
look at Figure 2 again. Both ei and ej are rightmost extensions of t with vi and
vj are the parents of ei and ej respectively. Let tj be the subtree obtained by
attaching ej to t. Since vj is a proper ancestor of vi, ei becomes a free extension
of tj . If ei occurs at all occurrences of t then ei occurs at all occurrences of tj .
By Proposition 2, tj together with all the descendants of tj in the enumeration
tree can be pruned, in other words, there is no need to extend the subtree
t with the extension vj in this case. Figure 5 shows the function for obtaining
candidate supertrees of a frequent subtree t with early pruning of some rightmost
extensions. This function is also used in mining C(U)|oΔ and C(U)|pΔ with some
modification.

Closure Checking. A frequent subtree t which is not pruned can still be not
closed. The following proposition, which also utilizes the notion of extensions,
can be used to determine whether a frequent subtree t is closed or not.

Proposition 3. For a frequent subtree t, if there exists an extension e of t such
that e occurs at all transactions of t, then t is not closed, otherwise t is closed.

Proof. Let t′ be the immediate supertree obtained by adding e to t. If e occurs
at all transactions of t then support(t′) = support(t), and thus t is not closed.
If there does not exist such an extension e then there does not exist a supertree
of t that has the same support with t, and thus t is closed. ��
In our running example, no closed subtree of C(U)|rΔ is generated because the
1-subtree t8 is pruned by Proposition 2 (at every occurrence of t8, there is a root
extension with label E). Note that the pruning technique of Proposition 2 is
equivalent to the pruning techniques based on the notions of blankets proposed
by Chi et al. [7].

364 V.A. Nguyen and A. Yamamoto

3.4 Computing C(U)|oΔ

For a frequent subtree t such that t � C(D), we denote by C(D)|t the set
of closed subtrees in C(D) that contain t. All frequent extensions, including
frequent rightmost extensions and frequent free extensions of t in D are preserved
in C(D)|t. Moreover, the support of t in D can be identified by C(D)|t because
there always exists a closed subtree in C(D)|t that occurs in the same transaction
set of t. This means that, we can grow the subtree t by using C(D)|t and Δ only,
without looking at the original database D. For example, we can use ct2, ct3 and
T4 to grow the subtree t3 in Figure 4. We have supportU (t3) = supportD(ct3) +
supportΔ(t3) = 3 + 1 = 4. Similarly, to grow t13, only ct2 and T4 are enough.

Pruning. We can still apply the pruning technique of Proposition 2. If there
exists a free extension e of t in C(D)|t∪Δ such that e occurs at all occurrences of
t in C(D)|t∪Δ then e occurs at all occurrences of t in D, by Proposition 2 we can
safely prune t and all descendants of t in the enumeration tree. For example, the
subtree t5 and its descendants t13, t14 are pruned because at every occurrence of
t5 in ct2, ct3 and T4, there is a root extension with label C. In general, the number
of closed subtrees in C(D)|t is much smaller than the number of transactions in
D that contain t, and thus, the check for pruning is fast.

Closure Checking. Let C(D)|ts be the set of all closed subtrees in C(D)|t that
are supertrees of t and occur in every transaction of t. If e is an extension of t
in any closed subtree in C(D)|ts then e occurs at all transactions of t in D. We
have the following proposition which is derived from Proposition 3.

Proposition 4. For a frequent subtree t, t � C(D), if there exists an extension
of e of t such that e occurs at all transactions of t in Δ and that e occurs in a
closed subtree c ∈ C(D)|ts then t is not closed, otherwise t is closed.

In the example of Figure 4, we have t7, t12, and t19 are closed subtrees that belong
to C(U)|oΔ. The number of closed subtrees in C(D)|ts is very small (often 1),
making the closure checking very fast compared with using the original database
D.

3.5 Computing C(U)|pΔ

Only C(D) and Δ are not enough to compute C(U)|pΔ. Our solution is to
use C(D) as a bridge to the original database D by keeping some additional
information together with C(D). By this, when growing a subtree t that occurs
in C(D), we are able to detect delta frequent rightmost extensions of t that occur
in D but not in C(D). For a node v of a closed subtree c ∈ C(D), the following
additional informations are kept:

1. CE(v): the list of occurrences of v in the database D, such that at each
occurrence o ∈ CE(v), v has some child node w at some tree T ∈ D and
that w is not a child node of v in the closed subtree c.

Incremental Mining of Closed Frequent Subtrees 365

G

C

B E

F G

C

D B E

F

ct1
ct2 ct3

1

1

2

3

4

5

CE1(4) = {(2, 6)}

1

2 3

4

5

CE1(5) = {(1, 7)}

H

C

F H

RE1(5) = {(3, 5)}
CE2(5) = {(2, 6)}

Node 5 of ct3 has posible child
extensions at position 7 of T1.

Node 5 of ct3 has posible child
extensions at position 6 of T2.
The occurrence (2, 6) is already
kept in ct2 that is generated
before ct3.

Fig. 6. Complement information of C(D)

2. RE(v): the list of occurrences of v in the database D such that at each
occurrence o ∈ CE(v), v has some right sibling node w at some tree T ∈ D
and that w is not a sibling node of v in the closed subtree c.

Note that we do not store all the possible extensions themselves which can be
very huge but only occurrences of nodes in closed subtrees which have potential
extensions. However, an occurrence of a node may occurs in more than one closed
subtrees that may lead to redundant computation. To avoid redundant, we use
the following simple but efficient solution.

Suppose that closed subtrees in C(D) are ordered by their generation times.
For a node v of a closed subtree c ∈ C(D), the list CE(v) is split into two parts,
CE1(v) and CE2(v), where CE1(v) contains occurrences that are detected for
the first time for c, and CE2(v) contains occurrences that are already kept in
some closed subtrees generated before c. Now, suppose that we are growing a
subtree t with C(D)|t = {ci1 , ci2 , . . . , cik

} where cij is generated before cik
for

j < k. Then ci1 .CE2(v) ∪ ci1 .CE1(v) ∪ ci2 .CE1(v) ∪ . . . ∪ cik
.CE1(v) contains

all occurrence of v in D at which v has possible child extensions and there is no
duplication among the groups. Here ci1 .CE2(v) means the list CE2 of the node
v of the closed subtree ci1 . In figure 6, the additional information of the node
with label E is given. We do the similar for RE(v).

Suppose t′ is a child of a subtree t in the enumeration tree where t occurs in
C(D) and t′ does not. Once the occurrences of the rightmost node of t′ in U are
known, the occurrences of all nodes on the rightmost path of t′ can be easily
computed. This means that we have enough information to grow t′ using the
rightmost extension technique.

Pruning. We can still apply Proposition 2 to check whether t′ or any descen-
dant of t′ can be pruned because this proposition does not require having the
occurrences of all nodes of t′. This is called partly pruning since we can compute
free extensions for those nodes whose occurrences are known only.

Closure Checking. Proposition 3 can be used to check if t′ (or a descendant of
t′) is not closed. If there exists an extension (at some nodes whose occurrences

366 V.A. Nguyen and A. Yamamoto

Algorithm ICTreeMiner(D,Δ, σ, C(D))
Input : an original database D, an increment database Δ, a minimum support σ, and
the set of closed subtrees C(D).
Output : all closed frequent subtrees of D ∪ Δ.
1: CS ← ∅; DS ← ∅;
2: Scan Δ once, find

C1: set of new frequent nodes;
C2: set of frequent nodes whose support increased by Δ;

3: for each t ∈ C1 do Grow rDelta(t,CS, D, Δ);
4: Scan C(D) once, for every subtree t ∈ C2 find occurrences of t in C(D), and find

C(D)|t: set of closed trees that contain t;
C(D)|ts: set of closed trees that contain t and have the same support as t;
C(D)|ti : set of closed trees that are identical with t;

5: for each t ∈ C2 do Grow oDelta(t, CS, DS, C(D)|t, C(D)|ts, C(D)|ti , D, Δ);
6: Delete closed subtrees in C(D) whose support is less than minsupU ;
7: return C(D) \ DS ∪ CS;

Fig. 7. The ICTreeMiner Algorithm

Procedure Grow rDelta(t,CS, D, Δ)
1: if ∃ a free extension ef of t s.t. ef occurs at all occurrences of t then return;
2: E ← Extend(t,D, Δ) ;
3: for each t′ ∈ E do Grow rDelta(t′, CS, D, Δ);
4: if � an extension e of t s.t. e occurs at all transactions of t then CS ← CS ∪ t;
5: return;

Fig. 8. The procedure for growing frequent subtrees that lead to C(U)|rΔ

are known) that occurs at every transaction of t′ then t′ is not closed. However,
if t′ survives the test of Proposition 3 it still can be not closed and must have to
pass the last test as follows.

For a subtree t ∈ C(U)|pΔ, by the definition of closed subtrees, t is closed
if and only if no proper supertree of t has the same support that t has. If s
is a proper supertree of t then we have s /∈ C(D) and s /∈ C(U)|oΔ because
t /∈ C(D) and t /∈ C(U)|oΔ itself, thus s can only occur in C(U)|pΔ or C(U)|rΔ.
However, if s ∈ C(U)|rΔ and support(s) = support(t) then there will exist a
root extension (for example, the free extension number 1 in Figure 3) of t that
occurs at every transaction of t. In this case, t is not closed by Proposition 3. So
we need to consider the case s ∈ C(U)|pΔ only. If s is not a descendant of t in
the enumeration tree then s is always generated before t due to the rightmost
extension method. We use a hash-based technique to check the closedness of t.
When a closed subtree c in C(U)|pΔ is detected, it is put into the hash table
HT (k), where k is the support of the subtree c. To check the subtree t, we simply
look up in the hash table HT (supportU (t)) to see if there exists a supertree of
t in the hash table; if so then t is not closed. This simple hash-based method is
efficient because the number of closed subtrees in C(U)|pΔ is often very small
as will be shown the experimental section.

Incremental Mining of Closed Frequent Subtrees 367

Procedure Grow oDelta(t, CS, DS, C(D)|t, C(D)|ts, C(D)|ti , D, Δ)
1: if ∃ a free extension ef of t s.t. ef occurs at all occurrences of t in C(D)|t ∪ Δ

then return;
2: E1 ← Extend(t,C(D)|t, Δ);
3: Find for each t′ ∈ E1

C(D)|t′ : set of closed trees that contain t′;
C(D)|t′s : set of closed trees that contain t′ and have the same support as t′;
C(D)|t′i : set of closed trees that are identical with t′;

4: E2 ← Extend p(t, C(D)|t, Δ);
5: for each t′ ∈ E1 do Grow oDelta(t′, CS, DS, C(D)|t′ , C(D)|t′s , C(D)|t′i , D, Δ);
6: for each t′ ∈ E2 do Grow pDelta(t′, CS, D, Δ);
7: if � an extension e of t s.t. e occurs at all transactions of t in Δ and e is found in

one closed subtree in C(D)|ts then
CS ← CS ∪ t;
DS ← DS ∪ C(D)|tl ;

8: return;

Fig. 9. The procedure for growing frequent subtrees that lead to C(U)|oΔ and C(U)|pΔ

Procedure Grow pDelta(t,CS, D, Δ)
1: if ∃ a free extension ef of t s.t. ef occurs at all occurrences of t then return;
2: E ← Extend(t,D, Δ) ;
3: for each t′ ∈ E do Grow pDelta(t′, CS, D, Δ);
4: if ∃ an extension e of t s.t. e occurs at all transactions of t then return;
5: if � a supertree of t in HT (supportU(t)) then
6: CS ← CS ∪ t;
7: insert t into HT (supportU(t));
8: return;

Fig. 10. The procedure for growing frequent subtrees that lead to C(U)|pΔ

In the example of Figure 4, t20 is pruned and t26 is detected as a closed subtree
of C(U)|pΔ. The final algorithm, named ICTreeMiner (Incremental Closed Tree
Miner) is summarized in Figures 7, 8, 9, and 10. In the algorithm, DS is the
set of closed frequent subtrees in C(D) whose support increased by the insertion
of Δ. In the example DS = {t7}. The function Extend p (line 4, Figure 9)
computes candidate intermidiate supertrees of a subtree t using the complement
information of C(D)|t.

4 Experiments

In this section, we present experimental results on synthetic and real-life datasets.
All experiments are measured on a 2.4GHz Intel Core 2 Duo CPU with 2GB of
RAM, running Windows XP. The algorithm is implemented in C++. For syn-
thetic dataset, we use the T 1M dataset generated by the tree generation pro-
gram provided by Zaki [14]. For T 1M , we set the number of distinct node labels

368 V.A. Nguyen and A. Yamamoto

0.020.040.060.080.1
0

10

20

30

40

50

Minimum support %

Ru
n

tim
e

(s
ec

)

 CMTreeMiner
ICTreeMiner

T1M Dataset

0.10.120.140.160.18
0

10

20

30

40

50

60

Minimum support %

Ru
n

tim
e

(s
ec

)

 CMTreeMiner
ICTreeMiner

CSLOGS Dataset

Fig. 11. Effect of varying the minimum support

N = 100, the total number of nodes M = 10, 000, the maximal depth D = 10,
the maximum fanout F = 10 and the total number of trees T = 1, 000, 000. For
real-life dataset, we use the CSLOGS dataset1 which contains web logs collected
over a month in the Computer Science Department at the Rensselaer Polytech-
nic Institute. This dataset consists of 59, 690 trees with total 772, 188 nodes. The
average depth and average fan-out of this dataset are 4 and 2.5, respectively.

We compare ICTreeMiner with CMTreeMiner, an efficient static algorithm for
mining closed frequent subtrees. First, we evaluate the response times by vary-
ing the minimum support. For each value of the minimum support, we take the
average value of 20 runtimes of ICTreeMiner. For T 1M , we take its first 900, 000
transactions as the original database. For CSLOGS, the original database con-
sists of its first 50, 000 transactions. The incremental database Δ for T 1M con-
sists of 10, 000 transactions taken arbitrarily from the rest of the T 1M dataset
whereas the incremental database Δ for CSLOGS has 500 transactions for each
test. The performance results are shown in Figure 11.

We can see that the proposed incremental algorithm ICTreeMiner is much
more efficient than the static algorithm that mines from scratch. This is because
when the size of the incremental database is much less than that of the original
database, the set C(U)|oΔ will contribute most of new frequent closed subtrees
of C(U)|Δ and can be mined very efficiently. Table 1 shows the statistic values
of ICTreeMiner for T 1M and CSLOGS. The second to last column shows the
number of subtrees checked by the subsumption checking when mining C(U)|pΔ

(line 5 in Figure 10). The last column shows the memory usage for storing com-
plement information of C(D). Here we can see that the memory usage is not
so big even for very low of minimum supports. However, the memory consump-
tion could be very high if the number of closed subtrees in C(D) is big and the
support of each closed subtree is high.

Secondly, we evaluate the scalability of our algorithm by varying the size of
the database and fixing the minimum support value. The values of the minimum
support are 0.12% and 0.1% for T 1M and CSLOGS, respectively. Each time

1 http://www.cs.rpi.edu/~zaki/software/

http://www.cs.rpi.edu/~zaki/software/

Incremental Mining of Closed Frequent Subtrees 369

Table 1. Some statistics of running ICTreeMiner on T1M and CSLOGS

Data set σ(%) |CU | |CU|Δ| |CU|iΔ| #subtrees checked Memory (MB)
T1M 0.10 254 136 136 0 29.46

0.08 307 164 163 0 30.23
0.06 392 208 206 0 31.88
0.04 652 289 285 1 34.84
0.02 1,793 465 461 1 39.79

CSLOGS 0.18 4,273 1,664 1,653 10 17.22
0.16 5,591 2,003 1,988 25 24.69
0.14 7,537 2,309 2,289 28 44.51
0.12 10,724 2,553 2,530 42 118.58
0.10 17,707 2,977 2,952 43 365.92

900 920 940 960 980
0

10

20

30

40

50

of transactions (*1000)

Ru
n

tim
e

(s
ec

)

 CMTreeMiner
ICTreeMiner

T1M Dataset

50 52 54 56 58
0

5

10

15

20

25

30

of transactions *1000)

Ru
n

tim
e

(s
ec

)

 CMTreeMiner
ICTreeMiner

CSLOGS Dataset

Fig. 12. Scalability testing

the database is updated, we run CMTreeMiner from scratch. The performance
results are shown in Figure 12. Its shows that both algorithms scale well with
the database size, but the incremental mining algorithm still slightly outperforms
the static one.

5 Conclusion

In this paper we have proposed an algorithm for mining closed frequent tree pat-
terns from tree databases that are updated regularly over time. The proposed al-
gorithm which adopted the divide-and-conquer technique outperforms the closed
subtree mining algorithms of the static manner especially when the change to
the database is small. For next work, we would like to test our algorithm on more
real-world datasets. We would also like to extend the ICTreeMiner algorithm to
handle databases of labeled rooted unordered trees and to mine embedded closed
subtrees as well.

370 V.A. Nguyen and A. Yamamoto

Acknowledgment

This work was partly supported by Kyoto University Global COE “Information
Education and Research Center for Knowledge-Circulating Society”.

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web. Morgan Kaufmann, San
Francisco (2000)

2. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proc. the ACM SIGMOD Intl. Conf. on Management
of Data, pp. 207–216 (1993)

3. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient
Substructure Discovery From Large Semi-structured Data. In: Proc. the Second
SIAM International Conference on Data Mining (SDM 2002), pp. 158–174 (2002)

4. Asai, T., Arimura, H., Abe, K., Kawasoe, S., Arikawa, S.: Online Algorithms for
Mining Semi-structured Data Stream. In: Proc. IEEE International Conference on
Data Mining (ICDM 2002), pp. 27–34 (2002)

5. Bifet, A., Gavalda, R.: Mining Adaptively Frequent Closed Unlabeled Rooted Trees
in Data Streams. In: Proc. the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-08), pp. 34–42 (2008)

6. Cheng, H., Yan, X., Han, J.: IncSpan: Incremental Mining of Sequential Patterns
in Large Database. In: Proc. the 10th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-04), pp. 527–532 (2004)

7. Chi, Y., Yang, Y., Xia, Y., Muntz, R.R.: CMTreeMiner: Mining Both Closed and
Maximal Frequent Subtrees. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD
2004. LNCS (LNAI), vol. 3056, pp. 63–73. Springer, Heidelberg (2004)

8. Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent Subtree Mining - An
Overview. In: Fundamenta Informaticae, vol. 66, pp. 161–198 (2005)

9. Hashimoto, K., Takigawa, I., Shiga, M., Kanehisa, M., Mamitsuka, H.: Mining Sig-
nificant Tree Patterns in Carbohydrate Sugar Chains. In: Proc. the 7th European
Conference on Computational Biology, pp. 167–173 (2008)

10. Hsieh, M., Wu, Y., Chen, A.: Discovering frequent tree patterns over data streams,
in Proc. SIAM International Conference on Data Mining (SDM 2006), pp. 629-633
(2006)

11. Nijssen, S., Kok, J.N.: Efficient Discovery of Frequent Unordered Trees. In:
Proc. the First International Workshop on Mining Graphs, Trees and Sequences
(MGTS2003), in conjunction with ECML/PKDD 2003, pp. 55-64 (2003)

12. Termier, A., Rousset, M.C., Sebag, M.: Dryade: A New Approach for Discovering
Closed Frequent Trees in Heterogeneous Tree Databases. In: Perner, P. (ed.) ICDM
2004. LNCS (LNAI), vol. 3275, pp. 543–546. Springer, Heidelberg (2004)

13. Wang, D., Peng, G.: A New Marketing Channel Management Strategy Based on
Frequent Subtree Mining. Communications of the IIMA 7(1), 49–54 (2007)

14. Zaki, M.J.: Efficiently Mining Frequent Trees in a Forest. In: Proc. the Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD 2002), pp. 71–80 (2002)

Optimal Online Prediction in Adversarial
Environments

Peter L. Bartlett

Computer Science Division and Department of Statistics, University of California at
Berkeley, Berkeley CA 94720, USA

bartlett@cs.berkeley.edu

In many prediction problems, including those that arise in computer security
and computational finance, the process generating the data is best modelled as
an adversary with whom the predictor competes. Even decision problems that
are not inherently adversarial can be usefully modeled in this way, since the as-
sumptions are sufficiently weak that effective prediction strategies for adversarial
settings are very widely applicable.

The first part of the talk is concerned with the regret of an optimal strategy
for a general online repeated decision problem: At round t, the strategy chooses
an action (possibly random) at from a set A, then the world reveals a function
�t from a set L, and the strategy incurs a loss E�t(at). The aim of the strategy
is to ensure that the regret, that is, E

∑
t �t(at) − infa∈A

∑
t �t(a) is small. The

results we present [1] are closely related to finite sample analyses of prediction
strategies for probabilistic settings, where the data are chosen iid from an un-
known probability distribution. In particular, we relate the optimal regret to a
measure of complexity of the comparison class that is a generalization of the
Rademacher averages that have been studied in the iid setting.

Many learning problems can be cast as online convex optimization, a special
case of online repeated decision problems in which the action set A and the loss
functions � are convex. The second part of the talk considers optimal strategies
for online convex optimization [2,3]. We present the explicit minimax strategy
for several games of this kind, under a variety of constraints on the convexity of
the loss functions and the action set A. The key factor is the convexity of the
loss functions: curved loss functions make the decision problem easier. We also
demonstrate a strategy that can adapt to the difficulty of the game, that is, the
strength of the convexity of the loss functions, achieving almost the same regret
that would be possible if the strategy had known this in advance.

References

1. Abernethy, J., Agarwal, A., Bartlett, P.L., Rakhlin, A.: A stochastic view of optimal
regret through minimax duality. arXiv:0903.5328v1 [cs.LG] (2009)

2. Abernethy, J., Bartlett, P.L., Rakhlin, A., Tewari, A.: Optimal strategies and min-
imax lower bounds for online convex games. UC Berkeley EECS Technical Report
EECS-2008-19 (2008)

3. Bartlett, P.L., Hazan, E., Rakhlin, A.: Adaptive online gradient descent. UC Berke-
ley EECS Technical Report EECS-2007-82 (2007)

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, p. 371, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, pp. 372–379, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Discovery of Abstract Concepts by a Robot

Ivan Bratko

University of Ljubljana, Faculty of Computer and Information Sc.,
Tržaška 25, 1000 Ljubljana, Slovenia
ivan.bratko@fri.uni-lj.si

Abstract. This paper reviews experiments with an approach to discovery
through robot’s experimentation in its environment. In addition to discovering
laws that enable predictions, we are particularly interested in the mechanisms
that enable the discovery of abstract concepts that are not explicitly observable
in the measured data, such as the notions of a tool or stability. The approach is
based on the use of Inductive Logic Programming. Examples of actually dis-
covered abstract concepts in the experiments include the concepts of a movable
object, an obstacle and a tool.

Keywords: Autonomous discovery, robot learning, discovery of abstract con-
cepts, inductive logic programming.

1 Introduction

In this paper we look at an approach to autonomous discovery through experiments in
an agent’s environment. Our experimental domain is the robot’s physical world, and
the subject of discovery are various quantitative or qualitative laws in this world.
Discovery of such laws of (possibly naive) physics enables the robot to make predic-
tions about the results of its actions, and thus enable the robot to construct plans that
would achieve the robot’s goals. This was roughly the scientific goal of the European
project XPERO (www.xpero.org).

In addition to discovering laws that directly enable predictions, we are in this paper
particularly interested in the mechanisms that enable the discovery of abstract con-
cepts. In XPERO, such abstract concepts are called “insights”. By an insight we mean
something conceptually more general than a law. One possible definition of an insight
in the spirit of XPERO is the following: an insight is a new piece of knowledge that
makes it possible to simplify the current agent’s theory about its environment. So an
insight may enhance the agent’s description language, and thus it should also make
further discovery easier because the hypothesis language becomes more powerful and
suitable for the domain of application.

What may count as an insight in the XPERO sense? Suppose the robot is exploring
its physical environment and trying to make sense of the measured data. Assume the
robot has no prior theory of the physical world, nor any knowledge of relevant
mathematics. But it can use one, or several, machine learning methods that may use a
general logic as a hypothesis language. Then, examples of insights would be the dis-
coveries of notions like absolute coordinate system, arithmetic operations, notion of

 Discovery of Abstract Concepts by a Robot 373

gravity, notion of support between objects, etc. These concepts were never explicitly
observed in the robot’s measured data. They are made up by the robot, possibly
through predicate invention, as useful abstract concepts that cannot be directly ob-
served. An insight would thus ideally be a new concept that makes the current domain
theory more flexible and enables more efficient reasoning about the domain.

The expected effect of an insight is illustrated in Figure 1. Initially, the robot starts
with a small theory, which will become better, and also larger, after first experiments
and learning steps. Newly discovered relations and laws of the domain are added to
the theory, so the theory keeps growing. Then, when an insight occurs, the insight
may enable a simplification of the theory, so the theory shrinks. A simplification is
possible because an insight gives rise to a better representation language which facili-
tates a more compact representation of the current knowledge. Then it may start
growing again. This process is reminiscent of the evolution of scientific theories.

In this paper I outline an approach to the discovery of abstract concepts by a robot
using Inductive Logic Programming (ILP), and give examples of actually discovered
abstract concepts in experiments. These include the concepts of movable object, an
obstacle, and a tool.

It should be noted that our scientific goals of discovering abstract concepts are con-
siderably different from typical goals in robotics. In a typical robotics project, the goal
may be to improve the robot’s performance at carrying out some physical task. To this
end, any relevant methods, as powerful as possible, will be applied. In contrast to this,
here we are less interested in improving the robot’s performance at some specific
task, but in making the robot improve its theory and “understanding” of the world.
We are interested in finding mechanisms, as generic as possible, that enable the gain-
ing of insights. For such a mechanism to be generic, it has to make only a few rather
basic assumptions about the agent’s prior knowledge. We are interested in minimizing
such “innate knowledge” because we would like to demonstrate how discovery and
gaining insights may come about from only a minimal set of “first principles”. Not all
machine learning methods are appropriate. Our aim requires that the induced insights
can be interpreted and understood, flexibly used in robot’s reasoning, and are not only
useful for making direct predictions.

2 The Experimental Setting

We assume that the robot’s discovery process takes the form of an indefinite “experi-
mental loop”. The robot starts with some initial knowledge (possibly zero). This is the
robot’s initial theory of the domain. Then it repeats the steps:

1. Perform experiments and collect observation data
2. Apply a ML method to the data, which results in a new theory
3. Design new experiments aiming at collecting most informative new data
4. Plan the execution of these experiments using the current theory of the domain
5. Go to step 1 to repeat the loop.

When designing next experiments, the robot has to estimate the potential benefits of
possible experiments. This can be done by using methods of active learning, but there

374 I. Bratko

may be an additional difficulty of finding a plan to execute these experiments. A new
experiment is defined by measurements to be taken in some situation, e.g. at some
robot’s position with respect to an object of interest. So each experiment defines a
goal for the robot to achieve. To achieve such goals, the robot has to plan sequences
of actions to be carried out. However, when looking for such plans, the robot uses
the current theory – nothing better is available at the moment. The current theory is an
imperfect model of the environment and may thus lead the robot to false or impossi-
ble plans.

The above described experimental loop is somewhat similar to that of reinforce-
ment learning. However, in our case the only reward is improved knowledge. So the
loop is driven by the robot’s “hunger for knowledge”. Also, we are interested in the
robot acquiring explicit symbolic knowledge that enables understanding and symbolic
reasoning.

Experiments with this experimental scenario, using a number of learning methods
at step 2 of the loop, are described in [1]. [2] is a comparison of the used ML tech-
niques w.r.t. a collection of learning tasks and criteria relevant for autonomous robot
discovery. ML methods used in these experiments include regression trees, decision
trees (implementations in Orange [3]), induction of qualitative trees with QUIN [4],
induction of equations with Goldhorn [5], Inductive Logic Programming with Aleph
[6] and Hyper [7], and statistical relational learning with Alchemy [8].

3 Gaining Insights through Predicate Invention in ILP

In this section I describe an approach to and experiments with the discovery of ab-
stract concepts using the mechanism of predicate invention in ILP. The experimental
scenario consisted of real or simulated mobile robot(s) pushing blocks in a plane.
Figure 2 shows two examples. In these experiments, the concepts of a movable object,
an obstacle, and a tool were discovered from measured data. These notions were ex-
pressed as new predicates.

First, let us consider how the concept of a movable object emerged. When given
commands to move specified objects by given distances, the robot was able to actu-
ally move some of the blocks, but some of the blocks could not be moved. After some
time, the robot had collected a number of experimental data recorded as ground facts
about predicates:

Fig. 1. Evolution of a theory during execution of experimental loop

 Discovery of Abstract Concepts by a Robot 375

Fig. 2. Two of various robotic experimental settings used in the experiments: a simulated
Khepera robot, and a real humanoid robot Nao [9]

• at(Obj,T,P), meaning object Obj was observed at position P at time T;
• move(Obj,P1,D,P2), meaning command "move Obj from P1 by distance

D" resulted in Obj at P2.

Here all positions are two-dimensional vectors. The robot's prior knowledge (commu-
nicated to the ILP program as “background knowledge”) consisted of the predicates:

• different(X,Y), meaning X and Y are not approximately equal;
• approx_equal(X, Y), meaning X ≈ Y;
• add(X, Y, Z), meaning Z ≈ X + Y.

376 I. Bratko

These relations are defined as approximations so that they are useful in spite of
noise in numerical data.

It should be noted that neither the observations nor the prior knowledge contain the
concept of mobility of objects, or any mention of it. There are no examples given of
movable and immovable objects. The ILP program Hyper [7] was used on this learn-
ing problem to induce a theory of moving in this world (that is learn predicate move/4
which would for a given command “move Obj from position P1 by distance D” pre-
dict the position P2 of Obj after the command has been executed). The induced the-
ory by Hyper was stated in logic by the following Prolog clauses:

 move(Obj,Pos1,Dist,Pos2):-

 approx_equal(Pos1, Pos2),
 not p(Obj).

 move(Ob,Pos1,Dist,Pos2):-
 add(Pos1,Dist,Pos2),
 p(Obj).

 p(Obj):-
 at(Obj,T1,Pos2),
 at(Obj,T2,Pos2),
 different(Pos1,Pos2).

In the clauses above, the variables were renamed for easier reading. The first clause
deals with immovable objects (after the move command, the position of the object
remains unchanged). The second clause handles movable objects. The point of
interest is that HYPER invented a new predicate, p(Object) which is true for objects
that can be moved. At least the “intention” is to define the movability property of an
object. The definition above says that an object is movable if it has been observed at
two different positions in time, which is not quite correct in general. The robot has
come up with a new concept never mentioned in the data or problem definition. The
new concept p(Object) enabled the learning system to divide the problem in the two
cases. A meaningful name of the newly invented predicate p(Object) would be
movable(Object).

In another experiment where many objects were present in the scene, the robot in-
vented another predicate which corresponds to the notion of obstacle. If an immov-
able object appears on the trajectory of a moving object then the stationary object
impedes the movement. The ILP learner found it useful to introduce a new predicate
whose definition corresponded to such an object – an obstacle. Again, the notion of
obstacle was never mentioned in the problem definition, nor in the learning data. The
learner just figured it out that such a new notion was useful for explaining the behav-
ior of objects in the robot’s world.

In another experiment, two robots, one stronger and one weaker, were experiment-
ing with block pushing. The concept of movability was this time relative to the par-
ticular robot. There were blocks that the stronger robot could move and the weaker
could not. In this case the new invented predicate was:

 Discovery of Abstract Concepts by a Robot 377

p(R, Obj) :–
 moving(R, T),
 contact(R, Obj, T).

This can be interpreted as: an object Obj is movable by robot R if there is time T
when R was observed to be moving while it was in contact with Obj. The touch sen-
sor is on when there is a force contact between the robot and the object, so in the case
of contact the robot must have been pushing the object.

The essential learning mechanism in these experiments was predicate invention in
ILP [12]. This capability further increases computational complexity of ILP, but it
enables a way of gaining insights. Details of these experiments are described by
Leban et al. [10]. That paper also explains a method for generating negative examples
needed by HYPER. In brief, negative examples are based on a kind of closed-world
assumption, namely that the results of robot’s actions are a function the action’s pa-
rameters. This idea however requires a refinement to produce critical negative exam-
ples. First, negative examples are generated from positive examples by random per-
turbations of the “function argument”. The learning from the given positive examples
and these negative examples typically results in an overly general intermediate theory.
When this theory is tested by prediction made on a positive example, typically more
than one answer is produced. But since we know the correct predictions for these
cases, the spurious predictions are easily recognised and added as additional negative
examples. Another, improved theory is then induced from the positive examples and
the so enhanced set of negative examples.

Further, more complex experiments led to the discovery of the notions of tool and
obstacle. In these experiments, a robot was carrying out block moving tasks whose
goals were of the kind: at(Block, Pos). These tasks required the robot’s planning of
sequences of actions that resulted in the specified goals. Figure 3 shows an example.
The robot’s planner constructed plans for solving a collection of such tasks. The plans
were constructed by search using CLP(R) to handle constraints that ensured collision-
free robot’s trajectories and align the robot with a block to be pushed. The plans were
also “explained” by a means-ends planner in terms of the goals that each action is
supposed to achieve. Macro operators were then learned from this collection of con-
crete plans as generalised subsequences of actions. The generalisation was accom-
plished by replacing block names by variables whenever possible. The robot then
induced a classification of macro operators in terms of logic definitions that discrimi-
nated between macro operators. At this stage two new concepts were invented that
can be interpreted as definitions of the concept of a tool and of an obstacle. For exam-
ple, the following definition defines that an object Obj has the role of a tool in a
macro operator:

tool(MacroOp, Obj) :-
 object(Obj),
 member(Action --> Goals, MacroOp), % Purpose of Action is Goals
 argument(Obj, Action), % Obj appears as an argument in Action
 not argument(Obj, Goals). % Obj does not appear as argument in Goals

378 I. Bratko

Essentially, this definition says that Obj has the role of a tool in a macro operator if
there is an action Action in the operator such that the purpose of Actions is Goals, and
Obj appears as one of the arguments that describe Action, and it does not appear as an
argument of Goals that Action achieves. Details on these experiments are documented
in [11].

 a c

 b
 robot

Fig. 3. A blocks moving task; the goal is to move block a to the right of the wall (shaded area
represents the wall). The robot cannot squeeze itself through the door, so it has to use block b as
a tool with which block a can be pushed through the door.

4 Concluding Remarks

In the paper, some experiments in the discovery of abstract concepts through predi-
cate invention in ILP in a simple robotic domain were reviewed. The approach is
based on enabling Hyper to invent new predicates by including initial “dummy” defi-
nitions of auxiliary predicates for which there are no examples given. We showed
examples where Hyper was able to invent such auxiliary predicates that represent the
notion of the object’s movability and the notion of a tool. In these experiments, the
number of examples sufficient to induce sensible definitions of such concepts was
typically relatively small, in the order of tens or hundreds. The data that was used for
learning was collected using both a simulated or a real robot and contained noise.

One critical question concerning the significance of the experimental results is of
course that of background knowledge: how much help was conveyed to the system by
providing useful and carefully selected background predicates? Although the question
of what is reasonably acceptable background knowledge is often raised, it needs prin-
cipled, in-depth study.

For the task of abstract discovery considered in this paper, in experiments with a
number of ML methods, ILP proved to be the only approach with potential of success.
This was analysed in [2]. The hypothesis language of ILP is typically predicate logic.
This is sufficiently expressive to enable, at least in principle, the applicability also to
tasks where the other approaches seem to be insufficient. In particular, such tasks are
the discovery of aggregate and functional notions. For example, the key mechanism in
discovery of aggregate and functional notions is that of predicate invention. In the
discovery and general handling of aggregate notions, the recursion facility is essential.
Also, the use of logic theories as background knowledge allows very natural transition
between the learning of theories in increasingly complex worlds.

 Discovery of Abstract Concepts by a Robot 379

The general problem with ILP is its high computational complexity. Predicate in-
vention in ILP [12] further increases complexity. Another deficiency is lack of quanti-
tative facilities in logic. The latter are typically added to the basic logic formalism of
ILP as background knowledge, most elegantly as CLP(R) (constraint logic program-
ming with real numbers). However, computational complexity which arises from the
main strength of ILP, that is the expressiveness of ILP’s hypothesis language, is the
critical limitation and it seems the situation in this respect is unlikely to change con-
siderably with more efficient algorithms for ILP learning. So, improvements can
mainly be expected from fundamentally enhancing the ways of applying this approach
in concrete situations. For example, one possibility to considerably reduce the com-
plexity is through the introduction of hierarchy of learning problems.

Acknowledgements

Research described in this paper was supported by the European Commission, 6th
Framework project XPERO, and the Slovenian research agency ARRS, Research
program Artificial Intelligence and Intelligent Systems. A number of people contrib-
uted to the related experimental work, including G. Leban and J. Žabkar.

References

1. Bratko, I., Šuc, D., Awaad, I., Demšar, J., Gemeiner, P., Guid, M., Leon, B., Mestnik, M.,
Prankl, J., Prassler, E., Vincze, M., Žabkar, J.: Initial experiments in robot discovery in
XPERO. In: ICRA’07 Workshop Concept Learning for Embodied Agents, Rome (2007)

2. Bratko, I.: An Assessment of Machine Learning Methods for Robotic Discovery. Journal
of Computing and Information Technology – CIT 16, 247–254 (2008)

3. Demšar, J., Zupan, B.: Orange: Data Mining Fruitful & Fun - From Experimental Machine
Learning to Interactive Data Mining (2006), http://www.ailab.si/orange

4. Šuc, D.: Machine Reconstruction of Human Control Strategies, Frontiers Artificial Intelli-
gence Appl., vol. 99. IOS Press, Amsterdam (2003)

5. Križman, V.: Automatic Discovery of the Structure of Dynamic System Models. PhD the-
sis, Faculty of Computer and Information Sciences, University of Ljubljana (1998)

6. Srinivasan, A.: The Aleph Manual. Technical Report, Computing Laboratory, Oxford Uni-
versity (2000),
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

7. Bratko, I.: Prolog Programming for Artificial Intelligence, 3rd edn. Addison-
Wesley/Pearson (2001)

8. Richardson, M., Domingos, P.: Markov Logic Networks. Machine Learning 62, 107–136
(2006)

9. Aldebaran robotics – Nao (2010), http://www.aldebaran-robotics.com/eng/
index.php

10. Leban, G., Žabkar, J., Bratko, I.: An experiment in robot discovery with ILP. In: Železný, F.,
Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 77–90. Springer, Heidelberg (2008)

11. Košmerlj, A., Leban, G., Žabkar, J., Bratko, I.: Gaining Insights About Objects Functions,
Properties and Interactions, XPERO Report D4.3. Univ. of Ljubljana, Faculty of Computer
and Info. Sc. (2009)

12. Stahl, I.: Predicate invention in Inductive Logic Programming. In: De Raedt, L. (ed.) Ad-
vances in Inductive Logic Programming, pp. 34–47. IOS Press, Amsterdam (1996)

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, p. 380, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Contrast Pattern Mining and Its Application for Building
Robust Classifiers

Kotagiri Ramamohanarao

Department of Computer Science and Software Engineering
The University of Melbourne

Kotagiri@unimelb.edu.au

Abstract. The ability to distinguish, differentiate and contrast between different
data sets is a key objective in data mining. Such ability can assist domain
experts to understand their data and can help in building classification models.
This presentation will introduce the techniques for contrasting data sets. It will
also focus on some important real world applications that illustrate how contrast
patterns can be applied effectively for building robust classifiers.

Towards General Algorithms for Grammatical
Inference�

Alexander Clark

Department of Computer Science
Royal Holloway, University of London

alexc@cs.rhul.ac.uk

Abstract. Many algorithms for grammatical inference can be viewed as
instances of a more general algorithm which maintains a set of primitive
elements, which distributionally define sets of strings, and a set of fea-
tures or tests that constrain various inference rules. Using this general
framework, which we cast as a process of logical inference, we re-analyse
Angluin’s famous lstar algorithm and several recent algorithms for the
inference of context-free grammars and multiple context-free grammars.
Finally, to illustrate the advantages of this approach, we extend it to
the inference of functional transductions from positive data only, and we
present a new algorithm for the inference of finite state transducers.

� The full version of this paper is published in the Proceedings of the 21th International
Conference on Algorithmic Learning Theory, Lecture Notes in Artificial Intelligence
Vol. 6331.

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, p. 381, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Blessing and the Curse
of the Multiplicative Updates

Manfred K. Warmuth�

Computer Science Department
University of California, Santa Cruz

CA 95064, U.S.A.
manfred@cse.ucsc.edu

Abstract. Multiplicative updates multiply the parameters by nonneg-
ative factors. These updates are motivated by a Maximum Entropy
Principle and they are prevalent in evolutionary processes where the
parameters are for example concentrations of species and the factors are
survival rates. The simplest such update is Bayes rule and we give an
in vitro selection algorithm for RNA strands that implements this rule
in the test tube where each RNA strand represents a different model.
In one liter of the RNA “soup” there are approximately 1020 different
strands and therefore this is a rather high-dimensional implementation
of Bayes rule.

We investigate multiplicative updates for the purpose of learning on-
line while processing a stream of examples. The “blessing” of these up-
dates is that they learn very fast because the good parameters grow
exponentially. However their “curse” is that they learn too fast and wipe
out parameters too quickly. We describe a number of methods developed
in the realm of online learning that ameliorate the curse of these updates.
The methods make the algorithm robust against data that changes over
time and prevent the currently good parameters from taking over. We
also discuss how the curse is circumvented by nature. Some of nature’s
methods parallel the ones developed in Machine Learning, but nature
also has some additional tricks.

� Supported by NSF grant IIS-0917397.

B. Pfahringer, G. Holmes, and A. Hoffmann (Eds.): DS 2010, LNAI 6332, p. 382, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Author Index

Aiguzhinov, Artur 16
Ariki, Yasuo 87

Baba, Teruyuki 221
Bannai, Hideo 132
Bartlett, Peter L. 371
Bifet, Albert 1
Boley, Mario 57
Bratko, Ivan 372
Buchwald, Fabian 341

Clark, Alexander 381

Ding, Wei 326
Drew, Mark S. 236

Enomoto, Nobuyuki 221

Foulds, James R. 102
Frank, Eibe 1, 102
Fürnkranz, Johannes 266

Ganzert, Steven 296
Girschick, Tobias 341
Grosskreutz, Henrik 57
Grčar, Miha 174
Gunn, Steve R. 42
Guttmann, Josef 296

Hamrouni, Tarek 189
Hatano, Kohei 132
Honda, Yuya 72
Hopf, Thomas 311

Imada, Keita 117
Inokuchi, Akihiro 205

Jones, Gareth 42
Juršič, Matjaž 174

Kami, Nobuharu 221
Kashihara, Kazuaki 132
Kimura, Masahiro 144

Kivinen, Jyrki 251
Kramer, Stefan 159, 296, 311, 341
Krause-Traudes, Maike 57

Lavrač, Nada 174
Lovell, Chris 42
Luosto, Panu 251

Mannila, Heikki 251
Motoda, Hiroshi 144
Mueller, Marianne 159

Nagano, Shinya 72
Nagy, Iulia 87
Nakamura, Katsuhiko 117
Nguyen, Viet Anh 356

Ohara, Kouzou 144
Ontañón, Santiago 281

Park, Sang-Hyeun 266
Plaza, Enric 281
Podpečan, Vid 174

Qin, ZhiGuang 27

Ramamohanarao, Kotagiri 380
Rückert, Ulrich 341

Saito, Kazumi 144
Salazar, Josue 326
Schulte, Oliver 236
Seki, Hirohisa 72
Serra, Ana Paula 16
Soares, Carlos 16
Steinmann, Daniel 296
Stepinski, Tomasz F. 326
Suzuki, Einoshin 27

Takeda, Masayuki 132
Tanaka, Katsuyuki 87
Tong, Bin 27

384 Author Index

Vinh, Nguyen Duy 205

Warmuth, Manfred K. 382
Washio, Takashi 205
Weizsäcker, Lorenz 266
White, Denis 326

Yahia, Sadok Ben 189
Yamamoto, Akihiro 356
Yoshikawa, Takashi 221
Younes, Nassima Ben 189

Zauner, Klaus-Peter 42

	Title
	Preface
	Organization
	Table of Contents
	Sentiment Knowledge Discovery in Twitter Streaming Data
	Introduction
	Mining Twitter Data: Challenges and Related Work
	The Twitter Streaming API

	Twitter Sentiment Analysis
	Streaming Data Evaluation with Unbalanced Classes
	Data Stream Mining Methods
	Experimental Evaluation
	The twittersentiment.appspot.com and Edinburgh Corpora
	Results and Discussion

	Conclusions
	References

	A Similarity-Based Adaptation of Naive Bayes for Label Ranking: Application to the Metalearning Problem of Algorithm Recommendation
	Introduction
	Learning Label Rankings
	The Naive Bayes Classifier
	Adapting NB to Ranking
	Metalearning
	Experiment Results
	Experimental Setup
	Results

	Conclusion
	References

	Topology Preserving SOM with Transductive Confidence Machine
	Introduction
	Preliminaries
	Transductive Confidence Machine
	Self-Organized Map

	TPSOM-TCM
	Nonconformity Measurement for SOM
	Topology Preservation for SOM
	Framework of TPSOM-TCM

	Experiments on UCI Data Sets
	Analysis of Experiments

	Experiments on Intrusion Detection
	Analysis of Experiments

	Conclusion
	References

	An Artificial Experimenter for Enzymatic Response Characterisation
	Introduction
	Hypothesis Manager
	Effective Separation of the Hypotheses
	Techniques
	Hypothesis Separation Results

	Artificial Experimenter
	Simulated Results
	Laboratory Evaluation
	Conclusion
	References

	Subgroup Discovery for Election Analysis: A Case Study in Descriptive Data Mining
	Introduction
	Approach
	Subgroup Discovery
	Application to Election Analysis
	Avoidance of Redundant Output
	Visualization

	Experiment
	Setup
	Results
	Comparison with the Traditional Approach
	Scalability

	Summary and Discussion
	References
	Description of the Data

	On Enumerating Frequent Closed Patterns with Key in Multi-relational Data
	Introduction
	Preliminaries
	Multi-relational Data Mining
	Mining Closed Patterns in Multi-relational Data

	Mining Closed Patterns with Key
	Key and Language Bias of Patterns
	Enumerating Key-Closed Patterns Using PPC-Extensions

	Reducing Search Space by a Literal Order w.r.t. Key
	Literal Order w.r.t. Key
	Experimental Results

	Concluding Remarks
	References

	Why Text Segment Classification Based on Part of Speech Feature Selection
	Introduction
	Related Work
	Previous Work
	Terminology
	Bag of Function Words - Method Outline
	LogitBoost
	Adaptation of the Bag of Function Words Method to English

	Proposed Method
	Adverb Extraction and Selection
	Verb and Verb & Noun Extraction and Selection
	Feature Selection Algorithms
	Classification Algorithms

	Experimental Settings and Results
	Datasets
	Feature Extraction
	Parameter Optimization
	Results
	Conclusion and Future Works

	References

	Speeding Up and Boosting Diverse Density Learning
	Introduction
	Diverse Density
	Existing Diverse Density Algorithms
	A New Approach: QuickDD
	Experimental Results
	Boosting Diverse Density Learning
	Conclusions
	References

	Incremental Learning of Cellular Automata for Parallel Recognition of Formal Languages
	Introduction
	Recognition of Languages by CA
	CA, OCA and Their Language Recognition
	Language Recognition Power of CA and OCA

	Learning Rule Sets of OCAs in Occam
	Representation of Cell States
	Rule Generation
	Searching for Rule Sets
	Example: Generation of Rules for Parentheses Language

	Extensions and Heuristics in Occam
	Don't Care State in Rules
	Hash Tables for Speeding-Up Search
	Enumerating and Deriving Strings from Rule Sets

	Experimental Results
	Learning OCAs Results
	Comparison with Learning CFGs
	Comparison with Learning CAs by SAT

	Conclusion
	References

	Sparse Substring Pattern Set Discovery Using Linear Programming Boosting
	Introduction
	Preliminaries
	1-Norm Soft Margin Optimization
	LPBoost
	Strings
	Our Problem

	Algorithms
	Data Structures
	Finding the Optimal Pattern

	Experiments
	Conclusion and Future Work
	References

	Discovery of Super-Mediators of Information Diffusionin Social Networks
	Introduction
	Information Diffusion Models
	Independent Cascade Model
	Linear Threshold Model
	Influence Degree

	Discovery Method
	Super-Mediator
	Clustering of Diffusion Samples
	Super-Mediator Discovery

	Experimental Evaluation
	Data Sets
	Influence Degree Distribution
	Super-Mediator Ranking
	Characterization of Super-Mediator and Discussions

	Conclusion
	References

	Integer Linear Programming Models for Constrained Clustering
	Introduction
	Constrained Clustering
	Set-Level Constraints
	Clustering Constraints
	Optimization Constraints
	Combining Constraints

	Method
	Modeling Clustering Constraints: Disjoint Clustering
	Modeling Clustering Constraints: Clustering with Overlaps
	Modeling Optimization Constraints
	Modeling Set-Level Constraints

	Experiments and Results
	Scalability

	Related Work
	Discussion and Conclusion
	References

	Efficient Visualization of Document Streams
	Introduction
	Related Work
	Document Corpora Visualization Pipeline
	Document Preprocessing
	k-Means Clustering
	Stress Majorization
	Neighborhoods Computation
	Least-Squares Interpolation

	Visualization of Document Streams
	Online Document Preprocessing
	Online k-Means Clustering
	Online Stress Majorization
	Online Neighborhoods Computation
	Online Coordinates Interpolation
	Boundary Cases

	Implementation and Testing
	Conclusions
	References

	Bridging Conjunctive and Disjunctive Search Spaces for Mining a New Concise and Exact Representation of Correlated Patterns
	Introduction and Motivations
	Key Notions
	Related Work
	New Concise and Exact Representation of Frequent Correlated Patterns
	Structural Characterization of the bond Measure
	Closure Operator Associated to the bond Measure
	New Concise Representation Associated to the bond Measure

	Experimental Results
	Conclusion and Perspectives
	References

	Graph Classification Based on Optimizing Graph Spectra
	Introduction
	Problem Definition
	Graph Kernel for Large Graph Classification Problems
	Matrix Representation of Graphs
	Graph Spectrum and Interlace Theorem
	Graph Kernel for Large Graph Classification

	Optimizing Graph Spectra for Large Graph Classification
	Basic Idea for Optimizing Graph Spectra
	Algorithm for Optimizing Graph Spectra for Classification

	Experiments
	Experiments on Artificial Datasets
	Experiment with Real-World Graphs

	Discussion
	Conclusion
	References

	Algorithm for Detecting Significant Locations from Raw GPS Data
	Introduction
	Algorithm Design
	Design Overview
	Density-Dependent Random Sampling
	Waypoint Region Construction Using Cluster Analysis
	Extracting and Scoring Waypoints

	Evaluation
	Evaluation Using Artificially Generated Datasets
	Case Study: Extracting waypoints from Actual Travel Data

	Related Work
	Conclusion
	References

	Discovery of Conservation Laws via Matrix Search
	Introduction: Reaction Data and Conservation Laws
	Selecting Maximally Simple Maximally Strict Conservation Laws
	Example 1: Reactions and Conservation Laws in Particle Physics
	Example 2: Chemical Reactions and Molecular Structure
	Selecting Conservation Law Matrices

	A Scalable Optimization Algorithm for Finding Maximally Simple Maximally Strict Conservation Laws
	Implementation and Evaluation
	Experimental Design and Measurements
	Results on Standard Model Laws and Families

	Conclusion and Future Work
	References

	Gaussian Clusters and Noise: An Approach Based on the Minimum Description Length Principle
	Introduction
	Search Method
	Minimum Description Length Principle
	Outline of the Code Length Calculation
	Code Length for the Uniform Cluster
	Code Lengths for Spherical and Axis-Aligned Gaussian Clusters
	Experiments
	Conclusion
	References

	Exploiting Code Redundancies in ECOC
	Introduction
	Error-Correcting Output Codes
	Redundancies within ECOC
	Code Redundancy
	Exploitation of Code Redundancies
	Incremental Learning with Training Graph
	SVM Learning with Training Graph

	Experimental Evaluation
	Experimental Setup
	Hoeffding Trees
	LibSVM

	Related Work
	Conclusion
	References

	Concept Convergence in Empirical Domains
	Introduction
	Concept Convergence
	Empirical Argumentation for Concept Convergence

	Empirical Argumentation
	Argument Generation through Induction
	Belief Revision
	Concept Convergence Argumentation Protocol

	Concept Convergence for Marine Sponges
	Experimental Evaluation

	Related Work
	Conclusions
	References

	Equation Discovery for Model Identification in Respiratory Mechanics of the Mechanically Ventilated Human Lung
	Introduction
	Medical Background: The EOM Model
	Methodological Background: LAGRAMGE and GSAT
	LAGRAMGE
	GSAT

	Materials and Methods
	System Modifications
	Patients and Data Sets
	Experiments

	Results
	Benchmark Test (i): Identification of the EOM
	Benchmark Test (ii): RMSE of Model Fits
	General Performance

	Discussion
	Related Work
	Conclusion
	References

	Mining Class-Correlated Patterns for Sequence Labeling
	Introduction
	Related Work
	Existing Approaches for Correlated Pattern Mining
	Mining Label-Correlated Sequence Patterns
	Experiments
	Conclusion
	References

	ESTATE: Strategy for Exploring Labeled Spatial Datasets Using Association Analysis
	Introduction
	Related Work
	ESTATE Framework
	Mining for Discriminative Patterns
	Disambiguating Class Labels
	Pattern Similarity Measure

	Case Study: Biodiversity of Bird Species
	Discussion
	References

	Adapted Transfer of Distance Measures for Quantitative Structure-Activity Relationships
	Introduction
	Distance Learning, Inductive Transfer and Adapted Transfer
	Data and Experimental Setup
	Data
	Distances

	Experiments
	Learning Curves
	Comparison of Approaches
	Analysis of Optimized Weights

	Related Work
	Conclusion
	References

	Incremental Mining of Closed Frequent Subtrees
	Introduction and Motivations
	Preliminaries
	The Mining Algorithm
	A Divide-and-Conquer Solution
	Enumerating Frequent Subtrees
	Computing C(U)|$_rΔ$
	Computing C(U)|$_oΔ$
	Computing C(U)|$_pΔ$

	Experiments
	Conclusion
	References

	Optimal Online Prediction in Adversarial Environments
	References

	Discovery of Abstract Concepts by a Robot
	Introduction
	The Experimental Setting
	Gaining Insights through Predicate Invention in ILP
	Concluding Remarks
	References

	Contrast Pattern Mining and Its Application for Building Robust Classifiers
	Towards General Algorithms for Grammatical Inference
	The Blessing and the Curseof the Multiplicative Updates
	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

