


Lecture Notes in Bioinformatics 6398
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science



Eric Tannier (Ed.)

Comparative
Genomics

International Workshop, RECOMB-CG 2010
Ottawa, Canada, October 9-11, 2010
Proceedings

13



Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editor

Eric Tannier
INRIA Rhône-Alpes
Laboratoire de Biométrie et Biologie Evolutive
Université de Lyon 1
43, boulevard du 11 novembre 1918
69622 Villeurbanne, France
E-mail: Eric.Tannier@inria.fr

Library of Congress Control Number: 2010935849

CR Subject Classification (1998): F.2, G.3, E.1, H.2.8, J.3

LNCS Sublibrary: SL 8 – Bioinformatics

ISSN 0302-9743
ISBN-10 3-642-16180-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16180-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

The complexity of genome evolution has given birth to exciting challenges for
computational biologists. A various range of algorithmic, statistical, mathemat-
ical techniques to elucidate the histories of molecules are developed each year
and many are presented at the RECOMB satellite workshop on Comparative
Genomics. It is a place where scientists working on all aspects of comparative
genomics can share ideas on the development of tools and their application to
relevant questions.

This volume contains the papers presented at RECOMB-CG 2010, held on
October 9–11 in Ottawa. The field is still flourishing as seen from the papers
presented this year: many developments enrich the combinatorics of genome
rearrangements, while gene order phylogenies are becoming more and more ac-
curate, thanks to a mixing of combinatorial and statistical principles, associated
with rapid and thoughtful heuristics. Several papers tend to refine the models
of genome evolution, and more and more genomic events can be modeled, from
single nucleotide substitutions in whole genome alignments to large structural
mutations or horizontal gene transfers.

There were 35 submissions. Each submission was reviewed by at least 2, and
on average 2.9, program committee members. The committee decided to accept
24 papers. The program also included 6 invited talks:

Brenda Andrews, University of Toronto
Andrew G. Clark, Cornell University
Nicolas Corradi, University of Ottawa
Jan Dvorak, University of California at Davis
Aoife McLysaght, University of Dublin
Nicholas Putnam, Rice University

I would like to thank all the participants of the conference, and in addition
all the people who submitted a paper or a poster. Thanks also to the program
committee members and the other reviewers, who did a great amount of work
for the conference in a limited amount of time.

The work of the Program Committee was considerably facilitated by the
EasyChair website. RECOMB CG 2010 was supported in part by grants from
the Canadian Institute for Advanced Research, the Fields Institute for Re-
search in Mathematical Sciences, the Mathematics of Information Technology
and Complex Systems (MITACS) Network of Centres of Excellence, and the
Vice-President of Research of the University of Ottawa.

Thanks are due to Chunfang Zheng for website design and management, and
for implementation of the online registration process.

July 2010 Eric Tannier
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Genome Aliquoting Revisited

Robert Warren and David Sankoff

University of Ottawa, Ottawa, ON, Canada

Abstract. We prove that the genome aliquoting problem, the problem

of finding a recent polyploid ancestor of a genome, with breakpoint dis-

tance can be solved in polynomial time. We propose an aliquoting algo-

rithm that is a 2-approximation for the genome aliquoting problem with

double cut and join distance, improving upon the previous best solution

to this problem, Feijão and Meidanis’ 4-approximation algorithm.

Comparing two genomes with duplicated genes is difficult. None of the distances
used to compare genomes today (breakpoint distance, reversal distance, double
cut and join distance, etc. . . ) handle duplicated genes. However, in the special
case where all genes are duplicated the same number of times, there has been
some success.

Informally, the genome aliquoting problem is the problem of finding a genome
with one copy of every gene given a genome with exactly p copies of every gene
such that the distance between the given and resulting genomes is minimized
according to some distance metric. Thus, the genome aliquoting problem elimi-
nates the duplicate genes allowing a genome to be compared with other genomes
using an existing algorithm. Solving this problem will allow genomes which have
undergone a recent polyploidization event, common in plants, to be compared.

There have been a number of solutions to the genome aliquoting problem
where the genome has exactly two copies of every gene. This restricted version
of the problem is called the genome halving problem and was first introduced in
[3]. It was solved for reversal and translocation distance in [3,1] and for double
cut and join distance in [10,6].

The genome aliquoting problem was introduced in [9] along with a sketch of
a heuristic algorithm for the problem under double cut and join distance. [4]
provided an exact solution under single cut or join distance which is also a 4-
approximation algorithm under double cut and join distance. In this paper, we
provide an exact polynomial-time algorithm under breakpoint distance which is
also a 2-approximation algorithm under double cut and join distance. Since our
algorithm is similar to that presented in [9] it also bounds that heuristic as a
2-approximation for double cut and join distance.

1 Duplicated Genomes

The fundamental elements that we study are genes. We represent each gene as
a pair of extremities such that a gene x is represented by its head �x , which

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 1–12, 2010.
� Springer-Verlag Berlin Heidelberg 2010



2 R. Warren and D. Sankoff

corresponds to the 3′ end of the gene, and its tail �x, which corresponds to the
5′ end of the gene. A genome is represented by a multiset of 2-multisets and 1-
sets of extremities, called adjacencies and telomeres respectively, such that, for
each gene, the genome contains exactly the same number of heads as tails. The
functions G(G) and E(G) return the set of all genes or extremities respectively
of a genome G. The collection of copies of the same gene are called a gene family
with the size being the number of copies in the genome (i.e. the number of heads,
or, alternatively, the number of tails, that appear in a genome).

Genomes with one or more gene families with size greater than one are chal-
lenging to manipulate. Not only must there be the same number of heads and
tails but to understand the layout of the genome we must know for duplicated
genes which head corresponds to which tail, otherwise the layout of the genome
is not unique. Similarly, to compute the distance of two genomes we must know
which copy in one genome matches which copy in another genome. Genomes
where this information is known are called ordered genomes. In such genomes
we distinguish members of the same gene family by a subscript such that each
head corresponds to the tail with the same subscript, e.g. �a1 corresponds to �

a1.
Similarly, if we know the ordering between two genomes then each extremity
in one genome must correspond to the extremity with the same subscript in
the other genome, e.g. �a1 in one genome must correspond to �a1 in the other
genome. By default we assume most genomes are ordered with themselves but
the challenge of comparing genomes with duplicated genes comes from finding an
ordering between two genomes as different orderings change the distance. Thus,
to compare genomes with duplicated genes we must find an ordering between
them that minimizes their distance.

For most situations, ordered genomes are all that is needed. However, ordered
genomes can be difficult to use, e.g. {�a1,

�

b1} ∩ {�a2,
�

b2} = ∅ and yet, frequently,
it is desirable to perceive them as equal. Since these problems tend to occur
frequently in our work we introduce the concept of an unordered genome where
no effort is made to distinguish the genes. Let G̃ be the unordered counterpart
of an ordered genome G. Similarly, if α is an element of G then α̃ is an element
of G̃ and if S is a subset of G then S̃ is a subset of G̃. Unordered extremities are
distinguished from ordered extremities by the absence or presence respectively of
a subscript. Transforming an ordered genome to an unordered genome is trivial
but the reverse can be very difficult and is problem specific.

A concept that helps solve the genome aliquoting problem is :

Definition 1. We define perfection between two elements of a genome to be
that the two elements are the same or are disjoint. For adjacencies we also have
the special requirement that they are not of the form {x, x} for some extremity x.
Since there are two types of elements, adjacencies and telomeres, two elements
α and β can be in one of the following three configurations:

– let α and β be a pair of adjacencies. They are perfect if and only if they are
disjoint or the same and neither are of form {x, x} for some extremity x;

– let α and β be a pair of telomeres. Since all telomeres are either the same
or disjoint all pairs of telomeres are perfect;
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– let α be an adjacency and β be a telomere, since they cannot be the same
they must be disjoint in order to be perfect. Also, α must not be of the form
{x, x} for some extremity x;

A genome, or any set of adjacencies and telomeres, is perfect if and only if all
pairs of elements are perfect.

For example, given a genome G = {{�a1}, {
�

a1,
�

b1}, {
�

b1,
�

d1}, {
�

d1,
�

e1}, {�e1,
�

b2},

{�b2}, {�a2}, {
�

a2,
�c1}, {

�

c1,
�

c2}, {�c2,
�

d2}, {
�

d2,
�

e2}, {�e2}} its corresponding unordered
genome is G̃ = {{�a }, {�a,

�

b}, {�b ,
�

d}, {�d , �e}, {�e ,
�

b}, {�b }, {�a }, {�a,�c }, {�c, �c},
{�c ,

�

d }, {�d, �e}, {�e }}. In G̃, the adjacencies {�a,
�

b} and {�b ,
�

d} are perfect be-
cause they are disjoint but {�a,

�

b} and {�a,�c } are not perfect because they are
neither disjoint nor equal (they have �a in common but do not share the other
extremity). The adjacency {�c, �c} can never be perfect because it is of the form
{x, x} for some extremity x. The telomere {�a } is perfect when compared with
both {�a } and {�e } since it is equal to the former and disjoint with the latter.
{�e } is not perfect when compared with {�e ,

�

b} because they are not disjoint.
In biology, a polyploid is a genome with multiple copies of the same chro-

mosome. A perfect unordered genome where all gene families are of the same
size shares this property and, hence, is called a polyploid. Similarly, an ordered
genome G whose corresponding unordered genome G̃ is a polyploid is a polyploid.

Definition 2. Given an ordered genome G with all gene families of size p, the
genome aliquoting problem is to find a polyploid H with all gene families of size
p ordered in relation to G such that the distance between G and H is minimal.

2 Breakpoint Distance

A breakpoint (BP) is a difference in adjacencies or telomeres between two genomes,

e.g. in G = {{�a1}, {
�

a1,
�

b1}, {
�

b1,
�

d1}, {
�

d1,
�

e1}, {�e1,
�

b2}, {
�

b2}, {�a2}, {
�

a2,
�c1},

{�c1,
�

c2}, {�c2,
�

d2}, {
�

d2,
�

e2}, {�e2}} and H = {{�a1}, {
�

a1,
�

b1}, {
�

b1,
�c1}, {

�

c1,
�

d1},

{
�

d1,
�e1}, {

�

e1,
�
a2}, {

�

a2,
�

b2}, {
�

b2,
�c2}, {

�

c2,
�

d2}, {
�

d2,
�e2}, {

�

e2}}, {
�

b1,
�

d1} is a break-
point in G since there is no equivalent element in H but {�a1} is not a breakpoint
because it is in both genomes. Extending this notion to entire genomes we arrive
at the following definition:

Definition 3. The breakpoint distance, introduced in [7], between two genomes
G and H is the number of breakpoints between G and H.

The breakpoint distance is easy to calculate. From [8], given two genomes G
and H , let A(G, H) be the set of adjacencies shared between G and H and let
T (G, H) be the set of telomeres then the breakpoint distance between G and H
can be calculated using the following equation:

DBP (G, H) = |G(G)| − |A(G, H)| − |T (G, H)|
2

(1)



4 R. Warren and D. Sankoff

For example, given two duplicated genomes G={{�a1}, {
�

a1,
�

b1}, {
�

b1,
�

d1}, {
�

d1,
�

e1},

{�e1,
�

b2}, {
�

b2}, {�a2}, {
�

a2,
�c1}, {

�

c1,
�

c2}, {�c2,
�

d2}, {
�

d2,
�

e2}, {�e2}} and H = {{�a1},

{ �

a1,
�

b1}, {
�

b1,
�c1}, {

�

c1,
�

d1}, {
�

d1,
�e1}, {

�

e1,
�
a2}, {

�

a2,
�

b2}, {
�

b2,
�c2}, {

�

c2,
�

d2}, {
�

d2,
�e2},

{�e2}} the breakpoint are underlined; since A(G, H) = 1 and T (G, H) = 1 and
G(G) = 8, DBP (G, H) = 6.5.

3 Quasi Maximum Perfect and Covering Sets

Since polyploids are perfect genomes where every gene family has the same
size, our strategy to aliquote a genome G is to find a perfect subset of G and
then transform it into a perfect genome. Because manipulating G directly is
challenging, we will manipulate its unordered counterpart G̃ instead.

There are many possible perfect subsets of G̃ and we need to choose the one
which will minimize the distance. From Equation 1 we can see that the distance
is minimized by maximizing the number of adjacencies and telomeres present
in both genomes. Thus, we define the weight of a perfect set P in relation to a
genome G̃ to be:

W(P ) = A(G̃, P ) +
T (G̃, P )

2
(2)

Define a maximum perfect set P as a perfect subset of G̃ with maximum weight.
While it is impossible to compute the distance using an unordered genome, it

is easy to see that, once transformed into a genome and reordered, a maximum
perfect subset of G̃ will minimize the distance. However, not all maximum perfect
sets can be transformed into an ordered genome that can be compared with G.
In addition to being ordered, to be compared two genomes must have the same
set of extremities and it is possible to construct a maximum perfect set that is
missing extremities from G̃. Thus, we introduce the notion of a covering set. A
set C covers an unordered genome G̃ if and only if it contains at least one copy
of every extremity in G̃.

Unfortunately, we cannot always find a maximum perfect and covering subset
of G̃, for some unordered genomes no such subset exists. To solve the problem we
remove the restriction that it must be a subset. However, without the restriction
that the perfect set has to be a subset of G̃, the idea of a maximum perfect set
does not make any sense; we could add an infinite number of adjacencies and
telomeres to the set if they do not have to come from the genome. Thus, we
introduce a quasi maximum perfect set : one with a maximum perfect set as a
subset but with additional elements not from G̃. All maximum perfect sets are
also quasi maximum perfect sets, although the reverse is not true.

It is easy to transform a quasi maximum perfect and covering set with respect
to a genome G̃ into a polyploid that, if ordered, could be compared with G: we
simply increase the number of copies of each element. Algorithm 1 does exactly
this, although we omit the proof of its correctness due to space constraints.
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Algorithm 1. Replicate

Input: P quasi maximum perfect and covering set with respect to a genome G̃
and p, the size of the gene families in G̃.

Output: A polyploid H̃ with all gene families of size p.

foreach α ∈ P do1

if the multiplicity of α is not p then2

add α to (or remove α from) H̃ until the multiplicity is p3

end4

end5

return P6

4 Reorder Genes

How a genome is reordered can affect the distance. However, with a quasi maxi-
mum perfect and covering set with respect to G̃ as a base, it is easy to reorder the
resulting polyploid such that its distance to G is minimal. Algorithm 2 reorders
the genome and the following theorem proves its correctness:

Theorem 1. Given a genome G with all gene families of size p, let P be a quasi
maximum perfect and covering set with respect to G̃ and let H̃=Replicate(P, p),
then DBP (G, H) where H = Reorder(H̃, G) is minimal.

Proof. DBP (G, H) is minimal if there does not exist an other genome H ′ such
that DBP (G, H ′) < DBP (G, H). Assume towards contradiction that such an H ′

does exist.
Let E be the set of elements that are identical between H and G and let E′

be the set of elements that are identical between H ′ and G. We observe that
because H and H ′ are polyploids Ẽ and Ẽ′ must be a perfect.

From Equation 1 only adjacencies and telomeres that are the same in both
genomes reduce the distance. Since DBP (G, H ′) < DBP (G, H),W(Ẽ′) >W(Ẽ).

A quasi maximum perfect set must have a maximum perfect set as a subset;
let M ⊆ P be such a maximum perfect set of G̃. Since E is a subset of H it
follows that Ẽ must be a subset of H̃ . Thus, M and Ẽ are subsets of H̃ and, in
fact, we will prove that M = Ẽ by assuming towards contradiction that M �= Ẽ.

M �= Ẽ if and only if the multiplicity of all elements in M is not equal to the
multiplicity of all elements in Ẽ. Let α be an element that has different multiplic-
ities in both M and Ẽ. Since M is a maximum perfect set of G̃ all of its elements
can have a multiplicity of at most p and, because M is a maximum, the multi-
plicity of α in M is equal to the multiplicity of α in G̃. Since Replicate(P, p)
creates H̃ by setting all the elements of P , which includes all of the elements of
M , to multiplicity p, the multiplicity of α in H̃ is greater than or equal to that
of M . It follows that the multiplicity of α in M is the multiplicity of α in G̃∩ H̃ .
From Lines Lines 2 – 6 in Algorithm 2 Reorder(H̃, G) we can conclude that

G̃ ∩ H̃ = ˜(G ∩H). By definition, E = G ∩H , hence, ˜(G ∩H) = Ẽ. Therefore,
the multiplicities of α in M and in Ẽ are equal; a contradiction. Thus, M = Ẽ.
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Algorithm 2. Reorder

Input: A polyploid H̃ with all gene families of size p and a genome G with all

gene families of size p where E(G̃) = E(H̃).

Output: A polyploid H with all gene families of size p such that DBP (G, H) is

minimal.

H ← ∅1

foreach element α ∈ G do2

if α̃ ∈ H̃ then3

add α to H4

end5

end6

E ← E(G) \ E(H)7

foreach element α̃ ∈ H̃ do8

if α̃ is an adjacency then9

let {x, y} = α̃ where x, y are extremities10

while there exists an i such that xi ∈ E and a j such that yj ∈ E do11

add {xi, yj} to H12

remove xi from E13

remove yj from E14

end15

else16

let {x} = α̃ where x is an extremity17

while there exists an i such that xi ∈ E do18

add {xi} to H19

remove xi from E20

end21

end22

end23

return H24

W(Ẽ′) >W(M) follows from the facts that M = Ẽ andW(Ẽ′) >W(Ẽ). But
M is a maximum perfect set; a contradiction. Hence, H must be minimal. ��

5 Fully Modified Clique Graphs

We have reduced the problem of aliquoting a genome to that of finding a maxi-
mum perfect and covering set. To find the maximum perfect and covering set, we
construct a graph from the genome that highlights its important information.

Definition 4. A fully modified weighted clique graph of a genome G̃, denoted
CG(G̃), is defined as follows:

– For each gene family x in G̃, CG(G̃) has four vertices, one labeled �x , one la-
beled �x and two without labels, called null vertices, of which one is connected
to the vertex labelled with �x and the other to the vertex labeled with �x;
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– For each adjacency {x, y} in G̃ where x �= y, there is an edge between the
vertices labeled x and y with weight equal to the multiplicity of {x, y} in G̃;

– For each telomere {x} in G̃, the edge between the vertex labeled x and its
adjacent null vertex has weight equal to half of the multiplicity of {x} in G̃;

– All other edges in CG(G̃) have weights of 0.

null

�a

null

�

b

null

�c

null

�

d

0 0

0 0

2

1 1

2

null

�a

null

�c

null

�

b

.5

0

1

2

1

null
�

d
1.5

Fig. 1. An example of a fully modified weighted clique graph. The five bold edges

represent all the edges that belong to the maximum weight matching of this graph.

For example, the modified weighted clique graph of the genome G̃ = {{�a},
{�a ,

�

b}, {�b ,�c }, {�c,�a }, {�a,�c }, {�c,
�

d }, {�d}, {�d}, {�d , �c}, {�c , �a}, {�a ,
�

b}, {�b },
{�b }, {�b,

�

d }, {�d}} is depicted in Figure 1.
In the fully modified weighted clique graph, edges correspond to adjacen-

cies or telomeres. Thus, the problem is to choose edges from the fully modified
weighted clique graph such that the corresponding adjacencies and telomeres
form a maximum perfect and covering set. From Definition 4 it is clear that the
adjacencies or telomeres corresponding to any two edges in the fully modified
weighted clique graph are perfect if and only if the edges share no vertex in
common or correspond to the same edge (since there are no loops, there are no
edges that correspond to adjacencies of the form {x, x} for some extremity x).
Finding a set of edges that share no vertices in common is the famous maximum
matching problem, although, since our edges are weighted, in this case we are
actually more interested in the maximum weight matching problem [5].

Given a matching, Algorithm 3 constructs its corresponding perfect set. How-
ever, it is the quality of the matching that determines the quality of the perfect
set. The fully modified weighted clique graph was defined such that the weight
of the maximum weight matching is equal to the weight of the perfect set de-
fined by Algorithm 3. Thus, given a maximum weight matching, Algorithm 3
will construct a maximum perfect set:
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Algorithm 3. PerfectSet

Input: A genome G̃ and a matching M .

Output: A perfect set P .

P ← ∅1

foreach edge e ∈M do2

let e = {u, v} for vertices u and v3

if v is a null vertex then4

add the telomere that corresponds to u to P5

else if u is a null vertex then6

add the telomere that corresponds to v to P7

else8

add the adjacencies that corresponds to u and v to P9

end10

end11

return P12

Lemma 1. Given a genome G̃, let M be a matching of CG(G̃) and let P =
PerfectSet(G̃, M). If M is a maximum weighted matching then P must be a
quasi maximum perfect set.

Proof. Assume towards contradiction that M is a maximum weight matching
but P is not a quasi maximum perfect set then there must exist a perfect set
P ′ such that W(P ) < W(P ′). Let M ′ be the matchings that correspond to P ′,
since the weight of the perfect set and its corresponding matching are the same,
W(M) <W(M ′). But M is a maximum weight matching, a contradiction. ��

While in many cases the maximum weight matching will correspond to a quasi
maximum perfect set that also covers the genome, simply finding a maximum
weight matching of the fully modified weighted clique graph does not guarantee
that the perfect set will be covering. Fortunately, any matching can be easily
modified by Algorithm 4 so that this is the case:

Algorithm 4. ExtendedMaximumWeightMatching

Input: A fully modified weighted clique graph CG(G̃) of a genome G̃.

Output: A maximum weight matching M of CG(G̃) where every non-null

vertex in CG(G̃) is incident with an edge in M .

M ←MaximumWeightMatching(CG(G̃))1

foreach non-null vertex v in CG(G̃) do2

if v is not incident with an edge in M then3

let u be the null vertex adjacent to v4

add {u, v} to M5

end6

end7

return M8
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Lemma 2. Given a genome G̃, M = ExtendedMaximumWeightMatching
(G̃) is a maximum weight matching such that P = PerfectSet(G̃, M) covers
G̃.

Proof. Since every non-null vertex corresponds to an extremity in a genome, the
perfect set will only be covering if every non-null vertex is incident with an edge
in the matching from which the perfect set was created.

Algorithm 4 first finds any maximum weight matching M ′. If every non-null
vertex is incident with an edge in M ′ then the algorithm does not modify the
matching and the result is a maximum weight matching whose corresponding
perfect set covers G̃.

Each non-null vertex has a null vertex to which only it is adjacent. For non-null
vertices not incident in an edge in the maximum weight matching, Algorithm
4 adds the edge between this vertex and its null counterpart to the matching.
Clearly, the resulting perfect set will cover G̃. Thus, we must ensure that the
resulting set of edges is still a matching of maximum weight.

The resulting set of edges must be a matching since the non-null vertex is not
incident with any edges in the matching and the null vertex is only adjacent with
the non-null vertex. It must be a maximum weight matching since all weights in
a fully modified weighted clique graph are non-negative.

Therefore, M = ExtendedMaximumWeightMatching(G̃) is a maximum
weight matching such that P = PerfectSet(G̃, M) covers G̃. ��

From Lemma 1 and Lemma 2 we can conclude the following theorem:

Theorem 2. Let M = ExtendedMaximumWeightMatching(G̃) and P =
PerfectSet(G̃, M), where G̃ is an unordered genome. P is a quasi maximum
perfect and covering set of G̃.

6 Implementation

Algorithm 5 is the complete breakpoint aliquoting algorithm bringing together
all the algorithms discussed in the previous sections. It follows from Theorem 2
and Theorem 1 that Algorithm 5 produces the optimal breakpoint aliquoting.

Most of the algorithms discussed in this paper run in linear time, however,
the best known algorithm for computing the maximum weight matching runs in

Algorithm 5. BreakpointAliquoting

Input: A genome G with all gene families of size p.

Output: A polyploid H with all gene families of size p.

M ← ExtendedMaximumWeightMatching(CG(G̃))1

P ← PerfectSet(G̃, M)2

H̃ ← Replicate(P, p)3

H ← Reorder(H̃, G)4

return H5
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O(ev log v) time[5] where e is the number of edges and v is the number of vertices.
If we have a genome with n gene families of size p, the fully modified weighted
clique graph will have 4n vertices and (2p−2)n edges. Thus, our algorithm runs
in O(pn2 log n) time.

7 Double Cut and Join Distance

Double cut and join distance and breakpoint distance are closely related. BP
distance counts the number of different elements between two genomes. For
the most part this is the same as DCJ distance; it generally takes one DCJ
operation to correct one difference between two genomes. However, sometimes
a DCJ operation corrects two differences instead of one and the DCJ distance
must take this into account; this is the only difference between the two distances
and it occurs infrequently with most data sets encountered in practice.

For a detailed explanation of DCJ distance we refer the reader to [2]. How-
ever, to understand this section we must briefly explain how DCJ distance is
computed. An adjacency graph is a bipartite graph with two sets of vertices la-
beled with the elements of the two genomes that are to be compared respectively.
There is an edge connecting two vertices for each extremity in common between
their corresponding adjacencies. Recall that to be compared using a distance
algorithm like DCJ, both genomes must have the same genes, hence the same
extremities, and, in the case of genomes with duplicated genes, must be ordered.

From the adjacency graph, the DCJ distance can be computed:

DDCJ(G, H) = |G(G)| − c− i

2
(3)

where c is the number of cycles and i is the number of paths with an odd number
of edges in the adjacency graph.

The following theorem gives the relation between the DCJ and BP distances:

Theorem 3. Given two genomes G and H:

DDCJ(G, H) ≤ DBP (G, H) ≤ 2 · DDCJ (G, H) (4)

�a
�

b
�a,

�

b �c,
�

d �c
�

d, �e �e

�a �a,
�

b
�

b, �c �c ,
�

d
�e �

d,�e

Fig. 2. An example of an adjacency graph
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Proof. First, forDDCJ(G, H) ≤ DBP (G, H), observe that every adjacency shared
between the two genomes causes a cycle of size 2 in the adjacency graph. It fol-
lows that |A(G, H)| is equal to the number of cycles of size 2 in the adjacency
graph and, hence, less than or equal to the number of cycles in the adjacency
graph. By similar reasoning, |T (G, H)| is equal to the number of paths of size 1
in the adjacency graph and, hence, less than or equal to the number of paths in
the adjacency graph. It follows that |A(G, H)|+ |T (G,H)|

2 ≤ c + i
2 where c is the

number of cycles and i the number of odd paths in the adjacency graph. Since
this factor decreases the distance, it follows that DDCJ(G, H) ≤ DBP (G, H).

Second, for DBP (G, H) ≤ 2 · DDCJ(G, H), we will assume the most extreme
case, where |A(G, H)| + |T (G,H)|

2 = 0 but the number of cycles and paths in
the adjacency graph is otherwise maximal. This produces the worst possible BP
distance, |G(G, H)|, but it is otherwise a maximal DCJ distance.

To determine the maximum number of cycles and paths in the adjacency
graph, observe that every edge in the adjacency graph corresponds to one ex-
tremity shared between the genomes. Since |A(G, H)| + |T (G,H)|

2 = 0 it follows
that there are no cycles of size 2 and odd paths of size 1, so the smallest cycles
and odd paths are of size 4 (since all cycles are even) and 3 respectively. Thus,
the maximum number of cycles and odd paths is |G(G,H)|

2 . Thus, in the worst
case scenario, BP distance is equal to twice the DCJ distance. ��

Because BP distance can be equal to the DCJ distance, it is possible that the
genome that results from Algorithm 5 could represent optimal aliquoting for
both BP and DCJ. Because DBP (G, H) ≤ 2 · DDCJ(G, H),the distance between
the original genome and its optimal BP aliquoting is no more than twice the
distance between the original genome and its optimal DCJ distance. Thus,

Theorem 4. Algorithm 5 is a 2-approximation for the genome aliquoting prob-
lem using DCJ distance.

8 Conclusion

Since the input to our algorithm is of size pn where p is the size of the gene fam-
ilies and n is the number of gene families, our algorithm runs in sub-cubic time.
Thus, there exists a polynomial time algorithm that solves the genome aliquoting
problem for BP distance. However, our algorithm is not without limitations.

The output of our algorithm consists of a mixture of linear and circular chro-
mosomes with the only restriction being that adjacencies of the form {x, x} for
some extremity x are not permitted. In many cases it is desirable to restrict the
output to something more similar to the input. For example, if the input consists
of linear chromosomes then the output should consist of linear chromosomes. We
believe it is possible to modify the output of our algorithm to provide the de-
sired output in most cases without changing the distance. Some of the genome
halving algorithms do precisely this [3,1]. On the other hand, sometimes circular
chromosomes with adjacencies of the form {x, x} are desirable in the output,
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in which case it might be possible, in some cases, to get a better result than
produced by our algorithm.

It remains an open problem whether or not a polynomial time algorithm for
the genome aliquoting problem with DCJ distance exists. However, as we have
shown a good approximation algorithm does exist. We remain optimistic that a
polynomial time algorithm for DCJ distance can be found in the future.
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Abstract. We study two problems in the double cut and join (DCJ)

model: sorting – transforming one multilinear genome into another and

halving – transforming a duplicated genome into a perfectly duplicated

one. The DCJ model includes rearrangement operations such as reversals,

translocations, fusions and fissions. We can also mimic transpositions or

block interchanges by two operations: we extract an appropriate segment

of a chromosome, creating a temporary circular chromosome, and in the

next step we reinsert it in its proper place. Existing linear-time algo-

rithms solving both problems ignore the constraint of reincorporating

the temporary circular chromosomes immediately after their creation.

For the restricted sorting problem only a quadratic algorithm was known,

whereas the restricted halving problem was stated as open by Tannier,

Zheng, and Sankoff. In this paper we address this constraint and show

how to solve the problem of sorting in O(n log n) time and halving in

O(n3/2) time.

1 Introduction

During evolution, genomes undergo large-scale mutations: a segment of DNA can
get reversed, or moved to another position. In genome rearrangement problems
we try to find a shortest sequence of operations transforming one genome into
another. Such a sequence explains the differences between the genomes and its
length can be used to estimate the evolutionary distance.

The double cut and join (DCJ) operation, introduced by Yancopoulos et al. [1],
models most of the large-scale mutation events, such as reversals, translocations,
fusions, and fissions in a unified way. Furthermore, transpositions and block
interchanges can be simulated by two operations: an appropriate segment of a
chromosome is extracted, creating a temporary circular chromosome, which is
then reinserted at the proper place in the next step.

The sorting algorithm given by Yancopoulos et al. [1] running in quadratic
time guarantees that each new circular chromosome is immediately reincorpo-
rated, thus mimicking transpositions and block interchanges.

Bergeron et al. [2] restated the model and gave a simple linear-time algorithm
for DCJ sorting ignoring the reincorporation constraint. However, the algorithm

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 13–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



14 J. Kováč, M.D.V. Braga, and J. Stoye

finds a sequence of DCJ operations without any explicit mention of the under-
lying operations (reversals, translocations, block interchanges, etc.) and many
circular chromosomes may coexist in intermediate stages of the sorting process.
Such sorting sequences are not biologically plausible e.g. in eukaryotic organisms
that typically have only linear chromosomes.

In this work we revisit the original study of Yancopoulos et al. [1]. We borrow
techniques from other studies on sorting by reversals and block interchanges [3,
4, 5] and propose a new algorithm that sorts multichromosomal linear genomes
in the DCJ model, reincorporates circular chromosomes and runs in O(n log n)
time.

Furthermore, we present a new result on the halving problem. In the halving
problem we imagine a genome that underwent a whole genome duplication and
then evolved by large-scale rearrangements. Given a present genome in which
all markers are in two copies (paralogs), we try to reconstruct the genome right
after the duplication, where each chromosome has its perfectly duplicated copy.

If no restriction on the linearity of chromosomes is imposed and no guarantee
concerning circular reintegration is required, we can use linear-time algorithms
proposed by Warren and Sankoff [6] and Mixtacki [7]. However, given a multi-
linear genome, these algorithms may predict some circular chromosomes in the
ancestral genome. In the worst case, these algorithms may even produce Ω(n)
circular chromosomes given a single linear chromosome of length n. Again, this
is not biologically plausible, when organisms with linear genomes are considered.

The restricted halving problem has not been studied previously and is stated
as open in [8]. In this paper we propose an algorithm to solve the halving problem
for multichromosomal linear genomes with circular reincorporation in O(n3/2)
time.

The paper is organized as follows: in Section 2 we introduce the DCJ model
and review the previous results, and in Section 3 we describe efficient data struc-
tures representing multilinear genomes. We solve the restricted versions of sorting
and halving problems in Sections 4 and 5, respectively, and conclude in Section 6.

2 Preliminaries

Genome model. In the DCJ model, genomes Π and Γ consist of the same
set of markers (genes, synteny blocks). Every marker g has two ends, called
extremities, which we denote g- and g+.

Each extremity p is either adjacent to some other extremity q (two consecutive
markers on a chromosome), or it is a telomere – the end of a linear chromosome.
In the first case we say the extremities form an adjacency pq, in the second case
we have a telomeric adjacency p◦. Thus a genome is a set of adjacencies such
that every extremity is in exactly one (possibly telomeric) adjacency.

For genome Π we can draw a genome graph GΠ where vertices are extremities
and edges connect either adjacent extremities or two extremities of the same
marker. Every vertex in this graph has degree 1 or 2, so the components of GΠ

are paths and cycles. These components represent chromosomes – linear and
circular, respectively.
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a b c

b

a

c

abc

Fig. 1. To interchange blocks a and c (left) in the DCJ model we cut before a and

after b and create a temporary circular chromosome (middle). The next operation cuts

between a and b and after c and reincorporates the blocks in the correct order (right).

DCJ operation. A double cut and join operation acting on adjacencies pq and
rs replaces them by either adjacencies pr, qs, or ps, qr (the adjacencies pq and
rs can be telomeric or even an empty chromosome ◦◦). We say the operation
cuts pq and rs and joins either pr, qs, or ps, qr. By these operations we can
mimic every common rearrangement operation in genomes: To invert a segment,
we cut at its ends and join reversed. By cutting and joining adjacencies on
different linear chromosomes, we get a translocation. By cutting two telomeric
adjacencies p◦ and q◦ and joining pq we can fuse two chromosomes into one or
create a circular chromosome from a linear one (as a byproduct we get an empty
chromosome ◦◦). By two DCJ operations we can mimic transpositions and block
interchanges: We first cut out an appropriate segment and by joining its ends
create a temporary circular chromosome. In the next step we reincorporate it
into the original chromosome (see Fig. 1).

DCJ distance and scenarios. A sequence of k DCJ operations transforming
a given genome Π into Γ is called a DCJ scenario of length k. A scenario of
minimum length is called optimal and its length is the DCJ distance between Π
and Γ, denoted d(Π, Γ). A sequence of k DCJ operations transforming Π into Π′

is optimal (with respect to Γ), if d(Π, Γ) = d(Π′, Γ) + k.
The distance and a sorting scenario can be calculated using an adjacency

graph AG(Π, Γ). This is a bipartite graph where vertices are adjacencies of Π
and Γ; an adjacency in Π is connected with an adjacency in Γ, if they share
an extremity. Since every adjacency is connected with one (telomeric) or two
other adjacencies, this graph consists of paths and cycles only. If Π and Γ share
a common adjacency, this corresponds to a cycle of length 2 or path of length 1
(common telomere) in the adjacency graph. Note that when Π and Γ are equal,
their adjacency graph consists of 2-cycles and 1-paths only.

The following theorem gives the DCJ distance between two genomes:

Theorem 1 (Bergeron et al. [2]). Given two genomes Π and Γ on n markers,
let c be the number of cycles and po the number of odd length paths in the
adjacency graph AG(Π, Γ). Then the distance between Π and Γ is

d(Π, Γ) = n− (c + po/2) .

Halving problem. In the halving problem we imagine a genome that under-
went a whole genome duplication and then evolved into genome Γ. We are given
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Γ and our goal is to reconstruct the genome before the whole genome duplication.
More formally: In a duplicated genome, every marker g has two copies – g-

1g
+
1 and

g-
2g

+
2 . If p is an extremity, we will denote by p̄ the other copy – the paralogous

extremity. Similarly, if x = pq is an adjacency (possibly telomeric), then x̄ = p̄q̄
is the paralogous adjacency, and if C is a chromosome (set of adjacencies), then
C is the set of paralogous adjacencies.

We say that genome Θ is perfectly duplicated, if for each adjacency pq in Θ,
adjacency p̄q̄ is also in Θ and p �= q̄. This is the same as saying that if we ignore
the subscripts (1’s and 2’s), every linear chromosome has an identical copy and
every circular chromosome has either an identical copy, or is itself composed of
two successive identical copies.

The genome halving problem can be stated as follows: Given a duplicated
genome Γ, find a perfectly duplicated genome Θ such that d(Θ, Γ) is minimal.

The halving distance and scenario can be calculated using an analogy of
an adjacency graph – a natural graph NG(Γ) introduced by El-Mabrouk and
Sankoff [9]. Vertices of this graph are adjacencies of Γ, and two adjacencies are
connected by an edge, if they share a paralogous extremity. The natural graph
consists of paths and cycles only, and Θ is perfectly duplicated if and only if
NG(Θ) consists of 2-cycles and 1-paths only.

The following theorem gives the DCJ halving distance:

Theorem 2 (Mixtacki [7]). Let Γ be a duplicated genome with 2n markers.
The minimal distance between Γ and any perfectly duplicated genome Θ is

d(Γ, Θ) = n− (ce + 
po/2�),

where ce is the number of even cycles and po the number of odd paths in the
natural graph NG(Γ, Θ).

Linear chromosomes. From now on we will be interested in genomes with lin-
ear chromosomes only. These multilinear genomes are more comfortably written
as signed permutations: Choose a direction of a linear chromosome, and list the
markers from left to right; write −→g , if extremity g- is before g+ and←−g otherwise.
Thus chromosome (−→1 ,

−→3 ,
←−2 ) (which is the same as (−→2 ,

←−3 ,
←−1 )) corresponds to

the set of adjacencies { ◦1-, 1+3-, 3+2+, 2-◦ }. We will write −g for the reversed
marker g, i.e. −←−g = −→g and −−→g =←−g .

Restricted sorting and halving. Given multilinear genomes, we call a sorting
or halving DCJ scenario restricted, if every DCJ operation that creates a circular
chromosome is immediately followed by another operation that reintegrates it
into the original chromosome. Such scenarios can be viewed as sequences of
reversals, translocations, fusions, fissions (with weight 1) and block interchanges,
which have weight 2, i.e. count as two operations. In the restricted sorting and
halving problems, we are searching for restricted scenarios of minimal length.
Note that in both cases the distance remains the same as in their unrestricted
versions.
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3 Data Structures for Handling Permutations

Our algorithms use two efficient data structures for handling permutations de-
scribed by Kaplan and Verbin [10] and Han [11].

Tree-based data structure. The following data structure from [10] can be
traced back to Chroback et al. [12]. It supports the following three operations in
logarithmic time: find the ith marker in a linear chromosome, return the position
of marker g and perform a reversal operation.

Linear chromosomes can be represented by a balanced tree supporting opera-
tions split and merge (e.g. red-black tree or splay tree). The order is the same as
the left-to-right order of markers on the chromosome. In each node of the tree
we store one marker, its orientation, number of descendants and a reverse flag.
A reverse flag being “on” signifies that the whole subtree is reversed. The re-
verse flag of node v can be cleared (“pushed down”) by changing v’s orientation,
swapping its children and flipping their reverse flags.

Reversing a segment from i to j can be implemented as follows:

1. Find the ith and jth marker (using the information about sizes of subtrees
and reverse flags).

2. Split the tree into three parts: T1 with markers before i, T3 with markers
after j and T2 with the segment from i to j.

3. Flip the reverse flag in the root of T2, and
4. Merge T1, T2 and T3.

We store a lookup table with a pointer to the corresponding node of a tree for
every marker. In this way we can find the position of any marker in logarithmic
time.

This data structure can be easily extended to multiple linear chromosomes
and to support different operations such as translocations or block interchanges.
Actually, we do not need to have one tree per chromosome: simply concatenate
the chromosomes with a delimiter between them and in each node store the
number of delimiters in its subtree. This way given a marker g we can tell on
which chromosome it is by counting the number of delimiters before g and all
the rearrangement operations can be performed using a few reversal operations.1

Block-based data structure. The second data structure by Kaplan and
Verbin [10] is a two-level version of the previous one. This is the data structure
used in the subquadratic algorithms for sorting by reversals [13] and sorting by
translocations [14].

As with the previous data structure, we concatenate all the chromosomes using
delimiters. We divide the whole sequence into blocks of size between 1

2

√
n log n

and 2
√

n logn. Note that there are O(
√

n/ logn) blocks and one block can con-
tain several chromosomes. In each block we store an array of markers and a
1 For example block interchange can be mimicked by 4 reversals; if we add sufficiently

many delimiters at the end of the sequence (representing empty chromosomes), we

can also mimic fusions and fissions.
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tree-based data structure storing their paralogs ordered by positions of the par-
alogs in the genome. Furthermore, for each block we keep the number of markers
in it and a reverse flag which signifies that the whole block is reversed. We have
an additional lookup table with blocks and indices of the markers, so that we
can tell the position of a given marker in constant time.

Finding the ith marker can be done trivially in O(
√

n/ log n) time and can be
improved to O(log n) by building a balanced tree over the blocks.

Reversal of a segment can be implemented in O(
√

n log n) time as follows:

1. Find the two endpoints and split the two blocks (if necessary) so that the
endpoints of the reversal correspond to the endpoints of blocks (we can
temporarily break the invariant about the block size; the trees with paralogs
are rebuilt from scratch in O(

√
n log n) time).

2. Reverse the order of the blocks between the endpoints and flip their reverse
flags.

3. For each block (inside and outside the reversal) take its tree with paralogs
T and split it into three parts: T2 with paralogs within the reversal, T1 with
paralogs before and T3 with paralogs after the reversal. If a block is outside
the reversal, flip the reverse flag in the root of T2, otherwise flip the flags
in roots of T1 and T3. Merge T1, T2 and T3. Since there are O(

√
n/ log n)

blocks and all the split and merge operations can be done in O(log n) time,
this step can be implemented in O(

√
n log n) time.

4. Split and merge blocks so that the size of each one is between 1
2

√
n logn and

2
√

n logn.

Again, we can simulate any other DCJ operation by a constant number of re-
versals.

The neat thing about this block-based data structure is that we actually
maintain the markers according to two orders – by their position in the genome
and by the position of their paralogs. This property can be used to implement
the following query used in our halving algorithm in O(

√
n log n) time: Given

a chromosome C and two markers i and j on a possibly different chromosome,
find the right-most marker on C that has a paralog between markers i and j:

1. Temporarily split the blocks at the ends of chromosome C, so that C is
contained in several whole blocks.

2. Find the rightmost block within C containing a marker with paralog between
i and j. Since the paralogs are stored in balanced trees, the membership
questions can be answered in O(log n) time and there are O(

√
n/ log n)

blocks.
3. In this block find the required marker by a sequential search in O(

√
n log n)

time.
4. Merge the temporarily split blocks.

Note that only a slightly more complicated data structure achieving time com-
plexity O(

√
n) for the same operations was given by Han [11]. We refer the

interested reader to this paper.
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4 Restricted DCJ Sorting

Previous work. Bergeron et al. [2] gave a linear-time algorithm for DCJ sort-
ing disregarding the constraint of reincorporating circular chromosomes imme-
diately. The solution can be easily adapted to a quadratic algorithm for the
restricted version: after each step check whether a circular chromosome was cre-
ated and if so, find the appropriate DCJ operation acting on adjacencies in
the circular and the original linear chromosome that reintegrates the circular
chromosome. It is not obvious how to do this fast (say in polylogarithmic time).

Yancopoulos et al. [1] proposed to transform Π into Γ by restricted sorting in
four stages: 0. Add caps to the ends of linear chromosomes. 1. By translocations,
fusions and fissions transform Π into Π′ such that chromosomes in Π′ and Γ
have the same marker contents. 2. Perform oriented reversals to get Π′′ with
all markers in the same direction as in Γ. 3. Finally, use block interchanges to
transform Π′′ into Γ.

Stages 2 and 3 can be implemented in O(n log n) time using the data structure
described in Section 3 [5,4]. Thus a unichromosomal restricted DCJ sorting can
be solved in O(n log n) time. However, it is not obvious how to implement stage 1
in a fast way.

Capping. The ends of linear chromosomes, telomeres, produce some difficulties
and nasty special cases. Capping is an elegant technique to deal with them: we
adjoin new markers (caps) to the ends so that we do not change the distance
and we do not have to worry about telomeres any more.

We find all the paths in the adjacency graph AG(Π, Γ). Paths of odd length
have one end in Π and one in Γ – simply adjoin a new marker (properly oriented)
to the two telomeres. This increases the number of markers by one, but instead
of an odd path we have a cycle and a 1-path, so the distance does not change.
For paths starting and ending in Π add two new markers to the ends of Π and
a new chromosome consisting of just these two markers (properly oriented) to
Γ. The case with a path starting and ending in Γ is symmetric. The number of
markers increases by 2, but instead of an even path, we have a cycle and two
odd paths, so the distance does not change. Capping of all chromosomes can be
done in linear time.

Our algorithm. The algorithm is based on the following observation:

Observation 1. Let g, h be two markers that are adjacent in Γ, but not in Π.
If g and h are on different chromosomes in Π, there is a translocation that puts
them together. This is an optimal operation in the DCJ model. If g and h are on
the same chromosome and have a different orientation, there is a reversal that
puts them together. This is an optimal operation in the DCJ model. Transposition
and block interchange take two DCJ operations. These operations are optimal if
they create two new non-telomeric common adjacencies and destroy none.

This is simply because, even more generally, k operations that create k new
non-telomeric adjacencies and destroy none create k new cycles in the adjacency
graph, and thus decrease the distance by k.
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Theorem 3. A restricted optimal DCJ scenario transforming multilinear genome
Π into Γ can be found in O(n log n) time.

Proof. Cap all chromosomes first. Without loss of generality we may assume
that the markers in chromosomes of Γ are consecutive numbers (−→k0, . . . ,

−−−−→
k1 − 1),

(−→k1, . . . ,
−−−−→
k2 − 1), . . . ,(−−→ks−1, . . . ,

−−−−→
ks − 1) where 0 = k0 < k1 < k2 < · · · < ks = n

(otherwise renumber the markers).
We will be transforming Π into Γ gradually “from left to right”: once we have

transformed the beginning of a chromosome in Π to −→ki ,
−−−→
ki + 1, . . . ,

−→
j , we extend

it by moving j + 1 next to −→j .
There are several cases we need to consider:

1. If −−−→j + 1 is already next to −→j , we are done.
2. If j +1 is on a different chromosome than −→j , we can always use a transloca-

tion. In the rest of the proof we assume that j+1 is on the same chromosome,
to the right of −→j .

3. If −→j and ←−−−j + 1 have different orientation, we can use a reversal.

Otherwise, following [3], find the marker m with the highest number between−→
j and −−−→j + 1 and find m + 1.

4. If m + 1 is on a different chromosome, we can use a translocation to move
it next to m; this operation also moves −−−→j + 1 to another chromosome, so we
can use another translocation to move it next to −→j .

Otherwise the situation is −→j , . . . , m, . . . ,
−−−→
j + 1, . . . , m+1 (since m is the highest

number between −→j and −−−→j + 1 and the part of the chromosome to the left of −→j
is already sorted, m + 1 must be to the right of −−−→j + 1).

5. If m and m + 1 have different orientation, we can use a reversal to move
m+1 next to m; this will also change the orientation of −−−→j + 1, so in the next
step we can use another reversal to move ←−−−j + 1 next to −→j .

6. Finally, if m and m + 1 have the same orientation, we interchange blocks
−→
j ,
[
. . . ,−→m

]
, . . . ,

[−−−→
j + 1, . . .

]
,
−−−→
m + 1 � −→

j ,
−−−→
j + 1, . . . ,−→m,

−−−→
m + 1

if both −→m and −−−→m + 1 have positive direction and
−→
j ,
[
. . .
]
,←−m, . . . ,

[−−−→
j + 1, . . . ,←−−−m + 1

]
� −→

j ,
−−−→
j + 1, . . . ,←−−−m + 1,←−m,

if ←−m and ←−−−m + 1 have both negative direction. By two operations we move−−−→
j + 1 to −→j and −→m to −−−→m + 1.

Every step can be implemented in O(log n) time using an extended version of
the data structure from Section 3. We need the data structure to support the
following operations: 1. Given a marker, find the chromosome that contains
it. 2. Given interval i, . . . , j find the marker with the highest number on the
chromosome between i and j (store the highest number in the subtree in each
node). 3. Perform a DCJ operation (this can be done by splitting, merging trees
and lazy reversals as described). �
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Perfect DCJ scenarios. Bérard et al. [15] studied the problem of finding a
scenario transforming genome Π into Γ that does not break a given set of common
intervals. An interval in genome Π is a set of markers such that the subgraph
of GΠ induced by their extremities is connected. Intervals of Π have zero or two
borders – adjacencies such that one extremity is inside and one outside. Let I
be any set of markers with zero or two borders. A DCJ operation preserves I,
if I still has zero or two borders in the resulting genome. They showed that for
nested sets of common intervals (when the intervals do not overlap) the shortest
scenario can be found in polynomial time and for weakly separable sets the
problem is NP-hard, but fixed parameter tractable.

Since their algorithm uses algorithms for DCJ distance and sorting as a black
box, one can use it in conjunction with our algorithm to get perfect restricted
DCJ scenarios.

5 Restricted DCJ Halving

Previous work. The halving problem in the DCJ model was studied by War-
ren and Sankoff [6] and corrected and simplified by Mixtacki [7]. However, the
restricted version of the halving problem has not been studied and is stated as
open by Tannier, Zheng, and Sankoff [8].

The simple approach that works for sorting – do a DCJ operation, test whether
a circular chromosome was created and reincorporate it – does not work for
halving: In some cases the circular chromosome cannot be reincorporated. For
example take chromosome (11, 12, 21, 22) – after excision of circular chromosome
[11, 12] it is not possible to reincorporate it and the algorithm of Mixtacki [7]
ends with two (perfectly duplicated) circular chromosomes [11, 12] and [21, 22].
On the other hand, by fission and translocation we can get

(11

∣∣ 12, 21, 22) � (11

∣∣ ), (12, 21

∣∣ 22) � (11, 22), (12, 21) .

By giving an algorithm for the restricted halving problem we also show that the
halving distance is the same in the restricted and the unrestricted case.

Capping. Find all paths in the natural graph NG(Γ). If the length of path is
odd, adjoin two paralogous copies of a new marker at both ends. This will create
a new 1-path and close the odd path into an even cycle. Thus we will have an
extra marker and an extra cycle, the distance is unchanged. If the length of the
path is even, we adjoin two different new markers at the ends and create a new
linear chromosome consisting of its paralogous copies. The number of markers
is increased by 2, but also the number of odd paths increases by 2 and number
of even cycles increases by 1, so the distance is unchanged.

Our algorithm. An analogy of Observation 1 from the previous section holds
also for the DCJ halving problem:

Observation 2. Reversals and translocations that create one and block inter-
changes that create two new non-telomeric common adjacencies and destroy none
are optimal.
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Theorem 4. A restricted optimal DCJ halving scenario transforming duplicated
genome Π into perfectly duplicated genome Θ can be found in O(n3/2) time. The
distance is the same as the unrestricted halving distance.

Proof. Cap all chromosomes first. This can be done in linear time. Take any
chromosome C1; let i be its first marker (cap). Then there are two cases: the
paralog i is either on a different chromosome C2, or it is at the end of C1 reversed.

In general, we have either two chromosomes C1 and C2 starting with paral-
ogous markers, say i, . . . , j and i, . . . , j (with the same orientation), or there is
chromosome C starting and ending with paralogous markers (in the opposite
orientation).

Case I. The transformation will again go “from left to right”: once we have C1

starting with markers i, . . . , j, k and C2 starting with i, . . . , j, �, we either move
k next to j in C2, or � next to j in C1.

If � is not in C1, we can use a translocation. Otherwise, if j, � and j, � have
different orientation, we can use a reversal to move � next to j. The situation is
symmetric and the same holds for k.

The only hard case arises when j, k, � are on one chromosome, j, k, � on an-
other, j, k have the same orientation as j, k and j, � the same as j, �. Then we
can write the two chromosomes as

C1 = (i, . . . , j, k, x1, . . . , xp) and C2 = (i, . . . , j, y1, . . . , yq, k, z1, . . . , zr) .

We find marker y between j and k such that its paralog y is the rightmost
among the x-markers on chromosome C1. (Note that such a marker exists, since
at least y1 = � is a marker between j and k with paralog in C1.) Let y = xt and
let z = xt+1 – then z is either one of the z-markers on the second chromosome
C2, or it does not lie on C2 at all. In the latter case we perform two translocations
moving first z to y and then k to j, in the former we perform (depending on
the mutual orientation of y, z and y, z) either two reversals or one of the two
indicated block interchanges:

(i, . . . , j,
[
y1, . . . , y

]
, . . . , yq,

[
k, z1, . . .

]
, z, . . . , zr+1)

or (i, . . . , j,
[
y1, . . .

]
, y, . . . , yq,

[
k, z1, . . . , z

]
, . . . , zr+1) .

This way we put k next to j and y next to z at the same time.
Case II. Chromosome C starts and ends with paralogous markers i, . . . , j:

C = (i, . . . , j, k, . . . . . . ,−�,−j, . . . ,−i) .

The transformation will go “from outside to the middle”: we either move k next
to j or � next to j.

Again, if one of the markers is on a different chromosome, or has opposite
orientation, we can move it by a translocation or a reversal to its proper place.

Otherwise, find the leftmost marker m between k and −k such that m is not
between k and −k. If such an m exists, let n be the marker preceding m; note
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that n is between k and −k. Depending on the orientation of n, m and n, m
and whether m is in C or on a different chromosome, we perform either two
translocations, two reversals, or a block interchange moving k to j and n to m.
The situation is symmetric and we can try the same with �.

Finally, if in either case such an m does not exist, we have chromosome

C = (i, . . . , j, k, x1, . . . , x2p, −k, y1, . . . , yq, �, z1, . . . , z2r, −�,−j, . . . ,−i),

where I = {x1, . . . , x2p} and J = {z1, . . . , z2r}, possibly empty, are closed under
taking paralogs – these intervals either contain both paralogs g and g or neither
one. In this case we first recursively reorder markers in I and J and transform
C into

C′ = (i, . . . , j, k, k1, . . . , kp,
[
−kp, . . . ,−k1,−k

]
, y1, . . . , yq,

�, �1, . . . , �r,
[
−�r, . . . ,−�1,−�

]
, −j, . . . ,−i),

(the case analysis is the same as Case II) and then perform the indicated block
interchange.

At the end we may end up with several chromosomes of the form C −C, which
should be fissioned in two perfectly duplicated chromosomes.

This method shows that the halving distance is the same as the unrestricted
distance and the algorithm can be easily implemented in quadratic time. For a
more efficient algorithm we need the data structure that supports the following
operations: 1. Given a marker find the chromosome that contains it. 2. Given an
interval i, . . . , j, find the right-most marker on a given chromosome that has a
paralog in the interval i, . . . , j. 3. In a given interval i, . . . , j find the leftmost/
rightmost marker m such that m is not in the interval. 4. Perform all the DCJ
operations. Using the block-based data structure from Section 3 and the improve-
ment by Han [11] every operation can be performed in O(

√
n) time. �

6 Conclusion

In this work we revisited the restricted DCJ model for multichromosomal linear
genomes, where a temporary circular chromosome is immediately reincorporated
after its excision. We improved the quadratic algorithm by Yancopoulos et al. [1]
and proposed an algorithm that runs in O(n log n) time.

Furthermore we solved an open problem from [8] by giving an algorithm for
the restricted halving problem. The algorithm shows that the halving distance
for the restricted version is the same as the distance for the unrestricted ver-
sion and given a multilinear duplicated genome an optimal multilinear perfectly
duplicated genome can always be found.

This is not the case for example in the median problem which we did not study
and is still open: Consider three linear genomes (1, 2, 3), (2, 1, 3) and (2, 3, 1).
Their median in the unrestricted case consists of linear chromosome (2, 3) and
circular [1]. The circular genome [1] can be reincorporated into any of the given
chromosomes by one operation giving the median score 3. This score however
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cannot be achieved in the restricted model. Generalizing this pattern, we can get
genomes of length 3n with unrestricted median score 3n and restricted median
score 4n.
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Abstract. Given a phylogenetic tree involving Whole Genome Dupli-

cation events, we contribute to the problem of computing the rearrange-

ment distance on a branch of a tree linking a duplication node d to a

speciation node or a leaf s. In the case of a genome G at s containing

exactly two copies of each gene, the genome halving problem is to find a

perfectly duplicated genome D at d minimizing the rearrangement dis-

tance with G. We generalize the existing exact linear-time algorithm for

genome halving to the case of a genome G with missing gene copies. In

the case of a known ancestral duplicated genome D, we develop a greedy

approach for computing the distance between G and D that is shown

time-efficient and very accurate for both the rearrangement and DCJ

distances.

1 Introduction

Inferring the structure of ancestral genomes is a major step towards answering
numerous biological questions such as the mechanisms of evolution, the variation
in rearrangement and loss rates among the different branches of a phylogenetic
tree, and the consequence of such variations on the genetic and physiological
specificities of species. Even though manual approaches can not be avoided when
analyzing specific biological datasets, the availability of automated methods can
largely facilitate and orient the study [19]. In this context, since 1995, the compu-
tational biology community working on genome rearrangements has contributed
to provide many accurate and rapid algorithms dedicated to the evolutionary
study of a set of genomes represented as ordered sequences of genes [8,17,21].
However, most of these methods can not be applied to genomes with multiple
gene copies, in particular genomes arising from whole genome duplication events.

Whole genome duplication (WGD) is a spectacular evolutionary event that has
the effect of simultaneously doubling all the chromosomes of a genome. Right after
a WGD, the resulting genome contains a complete set of duplicated chromosomes.
However, this initial perfect duplicate status is obscured by subsequent rearrange-
ment events and gene losses, eventually leading to an extant rearranged duplicated
genome (RD genome) containing exactly two copies of each gene, or a rearranged
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duplicated genome with losses (RDL genome), containing at most two copies of
each gene. Evidence of WGD events has shown up across the whole eukaryote
spectrum, from the protist Giardia to the yeast species [12], including most plant
lineages [10], several fishes [22], amphibians [23], and mammalian species [18].

Consider a set of genomes that have been subject to WGD events during their
evolution and a phylogenetic tree reflecting the speciation events leading to these
genomes. Then, under the assumptions that WGD is the only mechanism lead-
ing to gene duplicates and that at least one gene reflects the doubling status
of each genome, WGD events can be placed on the phylogenetic tree as new
internal nodes, called WGD nodes [25]. The rearrangement phylogeny problem
seeks for ancestral gene orders leading to a most “plausible” evolutionary sce-
nario. The parsimony approach is based on inferring gene orders at the internal
nodes of the tree so that the sum of distances among all branches is minimized.
When studying genome rearrangements, the most natural distance between two
gene orders (distance on a branch) is the minimum number of rearrangements
required to transform one gene order into the other. The rearrangements that
have been most studied are inversions and reciprocal translocations (including
fusion and fission). In the case of two genomes G and H with no gene dupli-
cates and the same gene content, a key result is the Hannenhalli and Pevzner
(HP) formula [15,21] for computing the rearrangement distance, leading to a
polynomial-time algorithm. Another distance that has been extensively studied
in the last years is the Double-Cut-and-Join (DCJ) distance which includes all
known rearrangement events and gives rise to simpler formal results [5,6,24].

In the case of genomes with no gene duplicates, one of the main approaches to
the rearrangement phylogeny problem is based on iterating an algorithm for the
median problem to all overlapping triplets of the phylogenetic tree [7,8,16]. A
prerequisite for applying such methodology to a phylogeny with WGD nodes is
to be able to compute the distance on a branch of the phylogeny. However, this is
far from being straightforward, as the orthology relationship between duplicated
genes is not set. In particular, computing the distance between an RD genome G
and a perfectly duplicated genome D (called the double distance in [11,20]) has
been shown to be NP-hard for the DCJ distance [20]. When the ancestral genome
D is unknown, the genome halving problem seeks for a perfectly duplicated
genome D minimizing the rearrangement distance between G and D. In 2003,
we have presented the first formal result related to genome duplication, which
is an exact linear-time algorithm for solving the genome halving problem [9].

In this paper, we contribute to solving a number of problems related to the
computation of the rearrangement and DCJ distances on a branch of a phyloge-
netic tree connecting a first WGD node to a speciation node or a leaf, in both
cases of a known and an unknown preduplicated genome (label of the WGD
node). In the case of an unknown ancestral genome, our result is a generaliza-
tion of the genome halving algorithm to a genome G with missing gene copies
(i.e. G is an RDL genome instead of an RD genome). In the case of a known
ancestral genome D, we present a very efficient and accurate greedy heuristic
for computing both the rearrangement and DCJ distance between G and D.
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2 Preliminaries

Let Σ be a set of n genes. A string is a sequence of genes from Σ, where each
gene is signed (+ or −) depending on its orientation. The reverse of a string X =
x1x2 . . . xr is the string −X = −xr −xr−1 . . . − x1. A chromosome is a string,
and a genome is a collection of chromosomes. A unichromosomal genome has a
single chromosome, and a multichromosomal genome has at least two nonnull
chromosomes C1, C2, . . . CN . A circular chromosome is a string x1 . . . xr, where
x1 is considered to follow xr . A chromosome that is not circular is linear . To
represent its endpoints, we add an “artificial gene”, denoted O, at each extremity.
In other words, a linear chromosome is a string of the form Ox1 . . . xrO.

In this paper, we consider both uni- and multichromosomal genomes. As most
unichromosomal genomes are formed by a circular chromosome, and most multi-
chromosomal genomes are formed by linear chromosomes, only circular unichro-
mosomal genomes, and linear multichromosomal genomes are considered.

2.1 Evolutionary Events and Genomic Distances

The following evolutionary events apply to both uni- and multichromosomal
genomes, except translocations (only relevant to the multichromosomal case).

– A reversal (or inversion) is an operation that replaces some proper substring
of a chromosome into its reverse.

– A translocation between two chromosomes X = X1X2 and Y = Y1Y2 is
an operation transforming the two chromosomes into X1Y2, Y1X2, or into
X1(−Y1), (−Y2)X2. Two special cases of reciprocal translocations are fusions
(if one of the two chromosomes generated by the translocation is an empty
string) and fissions (if one of the two input chromosomes is the empty string).

– A Whole Genome Duplication (WGD) is an operation transforming a multi-
chromosomal genome G = {C1, C2, . . . CN} into a multichromosomal genome
D = {C1, C

′
1, C2, C

′
2, . . . CN , C′

N} containing 2N chromosomes where, for
each 1 ≤ i ≤ N , Ci = C′

i. In the case of a circular genome G rep-
resented by the string x1x2 . . . xr , a WGD transforms G into a circular
genome D represented by either of the two strings : x1x2 . . . xrx

′
1x

′
2 . . . x′

r ,
or x1x2 . . . xr − x′

r . . .− x′
2 − x′

1 where, for each 1 ≤ j ≤ r, xj = x′
j .

– Finally, a loss is an operation removing a chromosome proper substring.

A rearrangement will refer to an inversion or a translocation event. The rearrange-
ment distance between two genomes G and H (with the same gene content or
not), denoted dR(G, H), is the minimum number of rearrangements required in
a scenario transforming G into H . In the case of genomes with single gene copies,
computing the inversion and/or translocation distance has been shown to be a
polynomial-time problem, and the best developed method runs in linear time [3,4].

Another distance that has been extensively studied in the last years is the
DCJ distance [5,6,24]. Given a genome G, a Double-Cut-and-Join (DCJ) is an
operation that “cuts” two adjacencies pq and rs in a genome, and replaces them
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with either pr and qs, or ps and qr. The DCJ distance is an “artificial” one
in the sense that some DCJ operations are not relevant from a biological point
of view. However, it is interesting from a theoretical point of view as it leads
to a unifying formula including all previously studied rearrangement events, as
well as transpositions, for which no polynomial-time exact method is known.
Computing the DCJ distance is a linear-time problem.

2.2 Genome Definitions

Let G be a genome defined on a set Σ of genes, i.e. g is in G iff g ∈ Σ.
• G is a singleton genome iff each gene is present exactly once in G.
• G is a rearranged duplicated (RD) genome iff each gene is present exactly twice.
• G is a perfectly duplicated genome (or duplicated genome for short) iff:

– The multichromosomal case: G is an RD genome containing an even number
2N of chromosomes, with two identical copies of each chromosome. If D is
the set of the N different chromosomes, then we write G = (D ⊕D).

– The circular case: G is an RD genome and there is a string D such that G
is exactly D followed by D (we write G = D⊕D), or D followed by −D (we
write G = D ⊕−D).

• G is a rearranged duplicated genome with losses (RDL genome) iff each gene
in Σ is present at least once and at most twice in G.
• G is a duplicated genome with losses (DL genome) if each gene of Σ is present
in one or two copies in G, and if a duplicated genome D can be obtained from G
by an appropriate insertion of an additional copy of each singleton (gene present
in one copy in G).

A DL genome A is said to be induced by an RDL genome G if each gene in
Σ has the same copy number in A and G.

Let G be an RD genome and H be an RDL genome. We can define the
evolutionary cost E(G, H) as the minimum number of inversions, translocations
and losses required to transform G into H .

2.3 The Breakpoint Graph

In a series of papers published in 1995 [13,14,15], Hannenhalli and Pevzner (HP)
developed polynomial-time algorithms for computing the rearrangement distance
(inversion only, translocation only, or inversion+translocation) between two sin-
gleton genomes G and H on Σ. They all depend on a bicolored graph B(G, H),
called the breakpoint graph, constructed as follows (Tesler’s formalism [21]).

Graph B(G, H): If gene x of Σ has a positive sign, replace it by the pair xtxh,
and if it is negative, replace it by xhxt. Then the set V of vertices of B(G, H)
is the set of xt and xh for all x in Σ. Any two vertices of V that are adjacent
in some chromosome in G, other than xt and xh deriving from the same x, are
connected by a black edge (thick lines in Figure 2(b)), and any two adjacent
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vertices in H are connected by a gray edge (thin lines in Figure 2(b)). Notice
that adjacencies to O are not represented.

In the case of circular chromosomes, each vertex in V is incident to exactly
one black and one gray edge, and thus the graph uniquely decomposes into
c(G, H) disjoint cycles of alternating edge colors.

In the case of G and H being multichromosomal genomes, let an endpoint
vertex of G (resp. of H) be a vertex of V adjacent to O in G (resp. in H). Then
any vertex has degree zero if it is an endpoint in both G and H , one if it is an
endpoint in exactly one of the two genomes or two otherwise. Thus, the graph
decomposes into c(G, H) cycles and p(G, H) paths of alternating edge colors.
Note that a path may contain only one vertex and no edges. We denote by pGG

(resp. pHH) the number of paths linking two endpoints of G (resp. of H). If G
and H have the same number of chromosomes, then pGG = pHH . Otherwise,
suppose w.l.o.g. that G has more chromosomes than H , then pHH ≤ pGG.

The rearrangement distance: Although somehow different algorithms are required
for sorting by translocation only, inversion only or inversion+translocation, all
results in [13,14,15] (revisited by Tesler [21] for multichromosomal genomes) can
be summarized by a unique formula given below:

HP: dR(G, H) = n + N − C(G, H) + h(G, H)

where n is the number of genes, N is the number of chromosomes of G, and
C(G, H) = c(G, H) + p(G, H) − pGG. In the case of circular genomes, N =
p(G, H) = pGG = 0. As for h(G, H), it is a correction parameter that has a
different value depending on the considered model. In all cases, it is related
to the decomposition of B(G, H) into components (maximal sets of crossing
cycles). A component is termed good if it can be transformed into a set of cycles
of size 1 by increasing the number of cycles at each step, and bad otherwise. The
parameter h(G, H) reflects the number of bad components of the graph. As the
probability for a component to be bad is low, the value of h(G, H) is usually low
compared to the dominating parameter C(G, H).

The DCJ distance: Based on the breakpoint graph, the DCJ distance between
G and H can be expressed as follows [5,20]:

DCJ: dDCJ (G, H) = n−
(

c(G, H) +
peven

2

)

where peven is the number of paths with an even number (≥ 0) of edges.

3 Genome Halving with Losses

Given an RD genome G, the genome halving problem is to find a duplicated
genome D minimizing the rearrangement distance with G. In other words, we
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define dR(G) as the minimum rearrangement distance between G and any du-
plicated genome D. Then the problem is to find a duplicated genome D such
that dR(G) = dR(G, D).

In [9] we have developed an exact linear-time algorithm, called Algorithm
Dedouble, for the reversals-only version of the problem, the translocations-only
version, and the version with both reversals and translocations. The approach
was to start from a partial breakpoint graph B(G), i.e. the breakpoint graph with
the set of edges restricted to the black edges representing G, and to complete this
graph with a set of “valid” gray edges, i.e. gray edges representing a duplicated
genome D, maximizing the number of cycles and paths (parameter c(G, D) and
p(G, D) in the HP formula). The second step was then to perform modifications
on the obtained graph in order to remove bad components that can be avoided,
and obtain a duplicated genome D minimizing the rearrangement distance with
G (i.e. minimizing the HP formula).

M1:

M2:

G

G A

D = (Dpre ⊕Dpre)

D = (Dpre ⊕Dpre)

Dpre

Dpre

WGD

WGDLossInv, Trans

Inv, Trans, Loss

RDL genome

RDL genome DL genome Duplicated genome

Duplicated genome

Singleton genome

Singleton genome

Fig. 1. Evolutionary models M1 and M2 considered for a present-day rearranged dupli-

cated genome with losses G. Direction of evolution is represented by arrows orientation.

Here, we seek to generalize Algorithm Dedouble to a present-day genome G
containing both duplicated genes and singletons, i.e. to an RDL genome. Let G
be an RDL genome. We assume that G has evolved from an ancestral singleton
genome through a WGD, and a sequence of inversions, translocations and loss
events. We are then interested in finding such a pre-duplicated singleton genome
Dpre minimizing the number of rearrangements needed to obtain G (see model
M1 in Figure 1). Note that we do not attempt to minimize the number of losses.

The following theorem allows to reduce the evolutionary model to a simpler
one (model M2 in Figure 1), where all losses occur first, followed by all rear-
rangement events.

Theorem 1. Let G be an RDL genome and D be a duplicated genome. Then
there exists a DL genome A induced by G such that dR(G, A) = dR(G, D).

Proof: Removed for space reason. Will be included in a full version of this paper.

Corollary 1. Let G be an RDL genome, and A be a DL genome induced by G
minimizing the cost dR(G, A). If D is the duplicated genome obtained from A,
then dR(G) = dR(G, D).
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Proof: Let A be a DL genome induced by G minimizing the cost dR(G, A), and D
be the duplicated genome obtained from A. Then we have dR(G, D) = dR(G, A).
Suppose dR(G) �= dR(G, A), i.e. dR(G, A) > dR(G). Let D′ be a duplicated
genome such that dR(G, D′) = dR(G). Then, from Theorem 1, there is a DL
genome A′ such that dR(G, A′) = dR(G, D′) = dR(G). And thus dR(G, A′) <
dR(G, A), which is a contradiction with the fact that A minimizes the rearrange-
ment cost. ��

Therefore, finding a duplicated genome D such that dR(G) = dR(G, D) can
be reduced to the problem of finding a DL genome A induced by G such that
dR(G, A) is minimal over all DL genomes induced by G. In other words, loss
events can be ignored.

To find such DL genome A, we use a generalization of Algorithm Dedouble,
called Algorithm Dedouble-RDL(G), that proceeds as follows:

1. Consider the RD genome G′ obtained from G by “gluing” singletons to an
adjacent gene. More precisely, consider a given orientation for chromosomes.
Then, for each maximum sequence S of singletons in G: (1) if S is a chro-
mosome, then just remove this chromosome; (2) otherwise, if S is connected
to a left extremity of a chromosome, then replace its successor x (the gene
representing the right adjacency of S in G) by the artificial gene x′ = Sx;
(3) otherwise, if S is not connected to a left extremity of a chromosome,
then replace its predecessor x (possibly already updated in step (2)) by a
new artificial gene x′ representing the sequence xS.

2. Use Algorithm Dedouble to infer a duplicated genome A′ from G′.
3. Recover a DL genome A from A′ by replacing each of its artificial genes by

its corresponding sequence of singletons, and by adding all removed chromo-
somes of G (formed exclusively by singletons).

The following theorem immediately follows from the fact that Algorithm Dedouble
outputs a doubled genome A′ minimizing the distance to G′, and that singletons
are preserved in the same order in G and A.

Theorem 2. Let G be an RDL genome and A be the DL genome resulting from
Algorithm Dedouble-RDL(G). Then dR(G, A) = dR(G).

4 An Algorithm for the Double Distance

Let G be an RD genome and D = (Dpre ⊕ Dpre) be a duplicated genome.
The problem of computing the DCJ distance between G and D has been shown
to be an NP-hard problem [20], contrary to the polynomial-time complexity
of computing the distance between two singleton genomes. This difference in
complexity is the result of the missing one-to-one orthology relationship between
the gene copies. In other words, given a labeling of the genes in G, the problem
is to find a labeling of the genes in D leading to a minimum distance between
G and D.
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Consider a given beginning gene, in the case of a circular genome, or a given
order and left-to-right orientation of chromosomes in the case of a multichro-
mosomal genome G. Then, for each gene x (present in two copies in G and
also in D), label the first occurrence of x in G as x1 and the second as x2. Let
B(G) be the partial breakpoint graph for G. To complete this partial graph,
each double adjacency (xr , ys) in D (where r, s ∈ {t, h}) should be represented
in the completed graph B(G, D) by either of the following pairs of gray edges:
{(xr

1, y
s
1), (xr

2, y
s
2)}, or {(xr

1, y
s
2), (xr

2, y
s
1)}. Each of these two cases leads to a dif-

ferent labeling of the gene copies in D. The problem is then to choose the pairs of
gray edges allowing to minimize the HP formula in the case of the rearrangement
distance, or the DCJ formula in the case of minimizing the DCJ distance.

Here, we focus on maximizing the dominating value C(G, D) in the HP formula.
In the case of genome halving, this simplification has been called the Weak Genome
Halving Problem [2]. We similarly define our simplified problem as follows:

Weak Double Distance Problem. For a given labeled RD genome G and
a duplicated genome D, find a labeling of gene copies in D that maximizes the
parameter C(G, D) in the breakpoint graph B(G, D) of the labeled genomes G
and D.

Notice that, in the case of a circular genome, a labeling of D maximizing the
parameter C(G, D) also maximizes the DCJ formula, as C(G, D) = c(G, D) in
this case. In the multichromosomal case, a labeling of D maximizing C(G, D) is
likely to also maximize the DCJ formula, though there is no guarantee for that.

Clearly, the “best” exhaustive approach trying all possible labelings for D has
a worst running-time complexity in O(n.2n) for n = |Σ|. Indeed, D has 2n pos-
sible labelings, and for each labeling, the most efficient approach for computing
the rearrangement distance between G and D is linear.

4.1 Circular Genomes

Let G be a circular RD genome and D be a circular duplicated genome. We
consider the contracted breakpoint graph representation CB(D, G) defined as
follows: the set of vertices of CB(D, G) is V = {xr, for all x ∈ Σ and r ∈ {t, h}}.
Any two vertices which are adjacent in D (except the extremities of a same gene)
are connected by two parallel gray edges, and any two adjacent in G (except the
extremities of a same gene) are connected by a black edge (see Figure 2 (a)).
Such representation has previously been used in the context of genome halving
for circular [1] and multichromosomal genomes [11], with the difference that each
gray edge was represented exactly once. It follows that each vertex of CB(D, G)
is adjacent to exactly two gray edges and two black edges.

Then, for each cycle of alternating edge color (just called cycle in the rest of
this paper) in CB(D, G), there is a labeling of D giving rise to a corresponding
cycle in B(G, D). This observation leads to a greedy approach for labeling the
genome D, or equivalently completing the partial graph B(G). Formally, a com-
pleted graph B(G, D) is a graph obtained from B(G) by adding gray edges such
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Fig. 2. (a) The contracted breakpoint graph CB(D, G) constructed for the circular RD

genome G = (u,−v, u, v) and the circular duplicated genome D = (u, v)⊕ (u, v). Gray

edges (thin lines) represent genome D and black edges (thick lines) represent genome G.

(b) The breakpoint graph B(G, D) corresponding to the labeling G = (u1,−v1, u2, v2)

and D = (u1, v1) ⊕ (u2, v2). Given the above labeling of G, the labeling of D, leading

to 3 cycles, is optimal. The resulting rearrangement distance is 1.

that each vertex of B(G, D) is adjacent to exactly 2 edges (one black and one
gray), and such that the set of gray edges represent a given labeling of genome
D (Figure 2 (b)).

The general idea of Algorithm Complete-Graph(G,D) given in Figure 3 is: at
each step, pick a cycle of minimum size from CB(D, G), construct the corre-
sponding cycle in B(G), and then remove from CB(D, G) all used edges. The
algorithm stops when the partial graph is completed.

Algorithm Complete-Graph(G,D)
1. For CSize = 1 to n Do ;

2. For CV ertex = bl
1 to bl

n Do
3. If CB(D, G) is empty (i.e. no edges left)

4. Return ;

5. If there is a cycle CCB of size CSize beginning at CV ertex Then
6. Construct the corresponding cycle CB in B(G);

7. Remove from CB(D, G) all edges of CCB;

8. End If
9. End For
10. End For

Fig. 3. A greedy approach for completing the partial graph B(G) with gray edges rep-

resenting the genome D. Here, n = |Σ| is the number of different genes, and b1, b2, . . . bn

is a left-to-right ordering of the black edges of CB(D, G). For each i, bl
i is the vertex

representing the left adjacency of bi. The size of a cycle is the number of black (or

equivalently gray) edges of the cycle.

The following proposition immediately follows from the fact that all gray edges
of CB(D, G) are placed in B(G).

Proposition 1. Given a circular RD genome G and a circular duplicated genome
D, the output of Algorithm Complete-Graph (G,D) is a completed graph B(G, D).
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As each vertex is adjacent to two black edges, finding a cycle of size k beginning
at a given vertex of CB(D, G) (line 5) can be done in O(2k) time. Therefore, the
algorithm has a worst running-time complexity bounded by Σn

k=1n.2k, which is
not better than the exhaustive approach in O(n.2n). However, as demonstrated
in the experimental part of this paper, it is actually a much faster approach in
practice. This is due to the edge removal step (line 7), which allows to reduce
the graph quickly, and to stop the process after a small number of iterations.

4.2 Multichromosomal Genomes

In the case of G and D being multichromosomal genomes, we define the con-
tracted breakpoint graph CB(D, G) as before, except that it contains an addi-
tional vertex O such that any endpoint vertex in D is connected to O by two gray
edges, and any endpoint vertex in G is connected to O by a black edge. It follows
that, except O that is adjacent to 2NG black edges and 2ND gray edges, NG

being the number of chromosomes of G, and ND the number of chromosomes of
D, each other vertex is adjacent to exactly two gray edges and two black edges.

Algorithm Complete-Graph(G,D) can be used in the case of multichromosomal
genomes if we replace line 3 with “ If CB(D, G) is acyclic”. The output of the
algorithm is then an acyclic partially completed graph, where the only remaining
paths connect two vertices that are both endpoints of G, or both endpoints of D
(as a path connecting two endpoints of two different genomes would have been
closed by Algorithm Complete-Graph (G,D) to form a cycle). Then, to complete
the graph B(G), it suffices to add the remaining paths of CB(D, G).

Due to the 2(NG +ND) edges incident to O, the worst-time complexity is the
one for circular genomes multiplied by NG.ND, i.e. O(n.NG.ND.2n). Hopefully
in practice, n is not a tight upper bound as exploration eventually stops for
much smaller cycle sizes.

5 Results

We focus on testing the performance of our greedy method for computing the
double distance. We generated datasets through simulated evolutions between a
duplicated genome D and an RD genome G for both circular and multichromo-
somal genomes, as follows.

Simulated datasets: We first determine n, the number of genes, and N , the num-
ber of chromosomes in D. Then, we generate D, and a series of rearrangement
events are performed on D to obtain G. Those are simply the rearrangements
allowed by our model, namely inversions only in the case of circular genomes or
inversions and translocations (including fusions and fissions) in the case of mul-
tichromosomal genomes. The number of events, μ, is a parameter chosen prior
to the data generation, and the size of each rearrangement is chosen randomly.
As for the rates of rearrangement operations, we chose (Inv : Trans : Fus+Fiss)
= (5 : 4 : 1) to follow the rates reported in a lineage where a WGD occurred [12].
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In order to validate the distances obtained with our greedy approach, we use
an exact algorithm described below.

Exact algorithm: Let L (resp. L∗) be a complete (resp. partial) labeling of the
gene copies of D, and B(G, DL∗) the breakpoint graph where the only defined
gray edges are those adjacent to the genes of L∗. The idea is to compute a lower
bound for dR(G, D) as we progressively construct L∗. More precisely, if at one
step we have c cycles and p paths in B(G, DL∗), we know that the number of
cycles in B(G, DL) will be at most equal to c + p. Thus it is possible to use the
following lower bound in a branch and bound strategy: dR(G, D) ≥ n− c− p.

Due to the high running-time complexity of the exact method, validation with
the exact distance can only be done for “simple” datasets obtained with a low
number of genes and a low number of rearrangements.

5.1 Time Efficiency

Since the running-time complexity is function of n for the exact approach, we
generated genomes containing different number of genes to evaluate the time
efficiency of our greedy heuristic. For the exact method, n varies from 10 to
100, with an increment of 10. The parameters μ and N are arbitrarily fixed
to 15 and 4 respectively. For the greedy heuristic, n varies from 100 to 1000
with an increment of 100. With μ fixed to 15, the running-time of the heuristic
does not vary (below 0.001 seconds for all values of n). Thus, the number of
rearrangements has been changed to μ = n in order to see a variation in the
running-time. For each of those n values, multiple datasets were generated and
the running time was averaged.

We can clearly observe the exponential running-time of the exact approach
when the number of genes increases (see Figure 4 Left). In contrast, our greedy
algorithm is less limited by the genome size and more by the number of rear-
rangements. In Figure 4 Right, we can see that even for datasets with a high
number of rearrangements (μ = n), the running-time is less than the anticipated
worst-time complexity and remains under, or close to 1 second.
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Fig. 4. Left: Running-time of the exact algorithm computing the double distance be-

tween D and G with various numbers of genes and a fixed number of rearrangements

(μ=15). Right: Running-time of the heuristic approach to compute the double distance

with various numbers of genes and rearrangements (μ = n).
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5.2 Heuristic Accuracy

Comparison with the exact approach. We now test whether our greedy heuristic
infers an accurate rearrangement distance by comparing its results against those
of the exact approach. Recall that because of the high running-time complexity
of the exact approach, we can only perform this algorithm on simple datasets
exhibiting low numbers of genes and rearrangements. The genomes are generated
with n fixed to 25, N to 4 and μ varying from 0 to 50 by increments of 5. For
each value of μ, 500 datasets were simulated. The error rate is the proportion of
datasets for which the exact method found a more accurate distance than our
greedy algorithm. Results are averaged over all datasets showing a comparable
number of rearrangement events.

As observed in Figure 5, the error rate of the greedy approach is close to 0
when the number of rearrangements is less than 25. Notice that the distance in-
ferred by the greedy algorithm is in average really close to the optimal distance
for both types of genomes (circular and multichromosomal). When the distance
is not the same, it differs in average by 1 rearrangement. Naturally, the error
rate of the greedy approach is more apparent when the number of rearrange-
ments increases. This behavior is due to the fact that when a high number of
rearrangements is performed, different cycles of equal size can be selected and a
choice must be made affecting the remaining set of cycles. As stated before, in
this experiment we seek to optimize the rearrangement distance, but we obtain
similar results if we seek to optimize the DCJ distance (results not shown).

Complex datasets. As a final experiment, simulations were performed with n =
1000, N = 8 and μ varying from 0 to 1000. The distances obtained with our
greedy approach are compared with μ. Results shown in Figure 6 demonstrate
that our method infers distances close to the number of rearrangement events
performed on the original genome (for circular and multichromosomal genomes).
However, when the number of rearrangement events increases, our approach
underestimates that value. As in the comparison with the exact approach, the
results are similar with the DCJ distance (results not shown).
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genomes (Right)
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Fig. 6. Inferred rearrangement distances with complex datasets for circular genomes

(Left) and multichromosomal genomes (Right)

6 Conclusion

We presented a linear time algorithm to solve the genome halving problem for
genomes with missing gene copies. We also presented a greedy heuristic to com-
pute the distance between an RD genome and a duplicated genome for the rear-
rangement and DCJ distances. Our experiments on simulated datasets showed
that our greedy approach is time-efficient and accurate.

The proposed heuristic for the double distance could be easily generalized to
compute the distance between two RD genomes. Moreover, it could be adapted
to genomes that have undergone more than one WGD, but with an increase in
running-time complexity, as the number of possible labelings for a gene would
increase. Our algorithm could then be used for the rearrangement phylogeny
problem with one or many WGDs, but without gene losses. However, there is
evidence of massive gene losses in lineages that have undergone a whole genome
duplication event [12]. Thus, another interesting future work will concern the
generalization of Algorithm Complete-Graph(G,D) to an RDL genome G. Notice
that the approach of Algorithm dedouble-RDL can not be used directly (i.e. re-
moving the singleton genes from G and the corresponding copies in D, and
reinserting them after having completed the breakpoint graph) because of the
constraints imposed by the duplicated genome D.
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Abstract. In comparative genomics studies, finding a minimum length sequences
of reversals, so called sorting by reversals, has been the topic of a huge literature.
Since there are many minimum length sequences, another important topic has
been the problem of listing all parsimonious sequences between two genomes,
called the All Sorting Sequences by Reversals (ASSR) problem. In this paper,
we revisit the ASSR problem for uni-chromosomal genomes when no duplica-
tions are allowed and when the relative order of the genes is known. We put the
current body of work in perspective by illustrating the fundamental framework
that is common for all of them, a perspective that allows us for the first time to
theoretically compare their running times. The paper also proposes an improved
framework that empirically speeds up all known algorithms.

1 Introduction

In this paper we focus on minimum length sequences of reversals that transform one
genome into another. When no duplicate genes are allowed, genomes can be represented
as permutations. For unsigned permutations, when only the order of genes is known,
the sorting by reversal problem is NP-hard [7]. In 1995 Hannenhalli and Pevzner [11]
showed that the signed versions of the problems can be solved in polynomial time.
Since then, many refinements and speed improvements have been developed; the fastest
known algorithms that find an optimal sequence are [13,16].

In 2002, Siepel and Ajana et al. [1,12] proposed O(n3) algorithms to list all sorting
reversals. They called the problem of listing such reversals the All Sorting Reversals
(ASR) problem since sorting reversals are the reversals that produce a permutation that
is one step closer to the target permutation. By applying their algorithms repetitively,
Siepel was able to generate All Sorting Sequences by Reversals (ASSR) that trans-
form one genome into another. Recently, their methods have been improved due to an
average-case O(n2) algorithm for the ASR problem [14].

Bergeron et al. [3] adopted the concept of traces [9] so as to group sequences into
equivalence classes based on the commuting properties of reversals, which can be rep-
resented conveniently by a normal form. However, they provided no algorithm to do so.
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In 2007, Braga et al. [4,6], combined the results of Siepel and of Bergeron et al. by de-
veloping an algorithm that enumerates the normal form of every trace and provides the
count of the number of sorting sequences. The implemetation of their algorithm (called
“baobabLUNA”) was shown to run much faster than that of Siepel in experiments.

More recent work by Baudet et al. [2] also uses normal forms of traces to represent
classes of sorting sequences. However, their approach visits the normal forms in an
economical way, a manner that allows them to generate normal forms depth-first as
apposed to the inherently breadth-first approach of Braga. As a result, their algorithm
eliminates the need for a potentially exponential amount of memory (or extensive disk
use as in Braga’s implementation of her algorithm). This also led to a speed-up of up
to 11x on some input [2]. The drawbacks of their algorithm are that it cannot count
the total number of solutions represented by the traces (counting the number of linear
extensions of a poset is #P-complete [10]) and that it cannot always find traces when
certain constraints are imposed on the sorting sequence [5].

In this paper we first survey the state of the art for solving the ASSR problem, illus-
trate the general framework that is common for all approaches, and experimentally and
theoretically compare them. We then propose a new framework for solving the ASSR
problem that empirically speeds up all known algorithms. Section 2 starts by giving
definitions. Section 3 describes the general framework that is common for all current
approaches. Section 4 details the particularities of each approach within the standard
framework. We then prove that the algorithm of Baudet et al. is always faster than that
of Braga. Section 5 proposes a new framework for exploring all sequences that is based
on grouping permutations corresponding to partial solutions. It motivates the method
and then discusses the application of the framework to each of the previous approaches.
Section 6 provides the experimental setup and results showing the speed-up that can be
achieved by applying the new model. Finally Section 7 concludes the paper.

2 Background

Consider a signed permutation π = π1, . . . ,πn on the integers from 1 to n. Define a
(signed) reversal ρ as a subset of {1,. . . ,n}, where the elements are ordered increasingly
and appear contiguously in π. That way, reversals can be compared by a lexicographic
order. Applying the reversal ρ, where ρ is a subset of elements from πi to π j that appear
contiguously in the permutation π gives:

π◦ρ = π1, . . . ,−π j, . . . ,−πi, . . . ,πn.

The reversal distance d(π1,π2) is the smallest k such that π2 = π1 ◦ ρ1 ◦ ρ2 ◦ · · · ◦ ρk.
Without loss of generality, since I = π−1

2 ◦π1 ◦ρ1 ◦ρ2 ◦ · · · ◦ρk, we consider π2 = I =
1,2, . . . ,n to be the identity permutation, and in that case, d(π1,π2) = d(π1, I) = d(π1).
Thus, a reversal ρ is a sorting reversal on π if d(π ◦ρ) = d(π)− 1. Siepel [12] called
the problem of finding all individual sorting reversals the All Sorting Reversals (ASR)
problem.

We can also define a sorting i-sequence as a sequence of sorting reversals s = (ρ1 ◦
ρ2◦· · ·◦ρi ) such that d(π◦s)= d(π)− i. Thus, a sorting sequence is an i-sequence such
that d(π) = i, and enumerating all such minimum length sorting sequences is called the
All Sorting Sequences by Reversal (ASSR) problem.
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3 The Current Framework for ASSR Approaches

Assume that we are sorting a permutation π with a reversal distance d(π). An i-solution
is a partial solution for the ASSR problem that represents a minimum length sorting
sequence(s) of length i. Let the i-level be the set of all i-solutions. So every i-solution
in an i-level will generate a permutation with distance equal to d(π)− i.

The current framework for solving the ASSR problem applies Siepel’s O(n3) algo-
rithm for ASR1 repeatedly. This framework, ASSR-FW, can be described as follows.
For each i-solution:

– Step 1: Generate the set of (i+ 1)-solutions in the following two steps:

• Apply Siepel’s ASR algorithm to the permutation corresponding to the i-solution,
generating the next O(n2) sorting reversals.
• Append each sorting reversal to the i-solution to generate a list of O(n2) (i+1)-

solutions.

– Step 2: Add the (i+ 1)-solutions to the (i+ 1)-level.

These two steps are repeated iteratively until all d(π)-solutions are obtained.

4 Representations of Sorting Solutions

Current approaches for solving the ASSR problem enumerate sorting solutions as either
sorting sequences or in a more compact form as normal forms of traces. In the following
sub-sections we will discuss each of these representations and their differences, using
the ASSR-FW as described in the previous section.

4.1 Generating Sorting Solutions Using Sorting Sequences

Siepel [12] was the first to enumerate all sorting solutions as sequences of sorting re-
versals. His algorithm (SE) design is basically the ASSR-FW described in Section 3,
where solutions are represented as sequences. According to the ASSR-FW, the number
of i-sequences at the i-level will be at most n2 ∗ n2 ∗ · · · ∗n2 i times. This implies that at
any i-level there are at most n2i i-sequences. Thus, the SE algorithm has to repeat the
two steps in ASSR-FW O(n2i) times for each i-level. Adding up the time complexity
for all levels, SE lists all sorting sequences in O(n2n+3) [6] time.

The algorithm is only feasible for small distances due to the huge number of se-
quences generated. For example, for the permutation (−10, 9,−8, 5, 11,−4, 2, 6, −7, 3, 1),
the number of solutions is 8278540!.

1 The framework we present in Section 5 also uses this algorithm. Our recent result [14] shows
that ASR can be solved in O(n2) time on average, which would introduce a significant speed-up
on all known algorithms for the ASSR problem. In this paper, we focus on the improvement
gained through our new framework although using the two together is sure to provide even
stronger results.
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4.2 Generating Solutions Using Normal Forms of Traces

Since the number of sorting sequences is huge, Bergeron et. al. [3] proposed that for
a given signed permutation π, the set of all sorting sequences can be classified into
equivalence classes. They adapted the concept of traces to sorting sequences. However
the authors did not provide an algorithm to enumerate the classes without enumerating
all the sequences.

Two reversals are said to overlap if they intersect but neither is contained in the
other. For example, in the permutation π = (2, 4, 1, -3), the reversals {2,4} and {1,3,4}
overlap, while {2,4} and {1,2,4} do not. If we identify a sequence of reversals with
a word on the alphabet of reversals, an equivalence relation on these words can be
established and forms classes, or “traces”, of solutions. A trace is an equivalence class
of sorting sequences of reversals, where the equivalence relation is defined as follows:
if ρ and θ are reversals and do not overlap, then the words ρθ and θρ are equivalent.
We say that ρ and θ commute. Under this relation, two sorting sequences are said to
be equivalent if one can be obtained from the other by a sequence of commutations of
non-overlapping reversals.

For the permutation π = (2, 4, 1, -3), consider the solution given by the sequence
of reversals {1,3,4}{4}{1,2,3}{2,3}. Here, {1,3,4} and {4} commute, so {1,3,4}{4}
{1,2,3}{2,3} and {4}{1,3,4}{1,2,3}{2,3} are equivalent. These two permutations,
along with 6 others, form a trace. The concept of traces is well studied in combina-
torics [9]. The number of subwords in a trace is its height, and the number of solutions
a trace represents is its size.

A theorem by Cartier and Foata [8] states that, for any trace, there is a unique word
that is in normal form.

Definition 1 (normal form). A trace T is in normal form if it can be decomposed into
subwords s = u1

∣∣ . . .
∣∣ um such that:

– every pair of elements of a subword ui commute;
– for every element ρ of a subword ui(i > 1), there is at least one element θ of the

subword ui−1 such that ρ and θ do not commute;
– every subword ui is a nonempty increasing word under the lexicographic order.

For example, the permutation π = (2, 4, 1, -3) has two normal forms representing sort-
ing sequences: {1,3,4}{4}

∣∣ {1,2,3}{2,3} and {1,4}{2}
∣∣ {1,2}{3,4}. The two normal

forms of the traces describes the entire set of 16 sequences in a compact way.
Braga et al. [4,6] developed an algorithm (BR) to generate normal forms of traces.

BR is also basically the ASSR-FW as described in Section 3, where solutions are repre-
sented as normal forms of traces, NFtraces. Their idea was based on the fact that each
(i−1)-NFtrace is a prefix for an i-NFtrace.

Again, as in the ASSR-FW, for each i-NFtrace, BR [4] applies Siepel’s ASR algo-
rithm to generate the next sorting reversals. These sorting reversals are then inserted
into the normal form in the appropriate position to build a normal form of length i+ 1.
The costly operation here is inserting the new normal form into the exponentially large
set of (i + 1)-NFtraces. The BR algorithm lists all sorting solutions as d(π)-NFtraces.
Since we can count the number of times a particular normal form is inserted into the
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set of (i + 1)-NFtraces, we can count the number of sorting sequences leading to any
normal form.

It was shown empirically that the BR algorithm had a great impact on the speed of
enumerating traces. The savings come from the fact that the number of i-NFtraces at
each i-level in BR is much smaller than the number of i-sequences at the same i-level in
SE. Accordingly, the number of times the two steps in ASSR-FW are repeated is much
smaller in BR than that in SE. The complexity of BR depends on the total number of i-
NFtraces at each i-level. Since each i-NFtrace is a prefix of a d-NFtrace, this number is
bounded by the number of d-NFtraces times the number of prefixes of each i-NFtrace.
The complete analysis was done in [6], where the i-NFtraces were represented as posets,
and where it was proved that the complexity of BR is bounded by O(Nnkmax+4), where
N is the number of d-NFtraces and kmax is the maximum width of any normal form.

BR is a general algorithm in that many constraints can be applied to the sorting
sequences it considers [5]. Unfortunately, the BR algorithm needs a potentially expo-
nential amount of memory or extensive disk use, making it feasible only for distances
up to 13 [4].

4.3 Generating Solutions Using Normal Forms of Traces with Appended Sorting
Reversals

More recent work by Baudet et al. [2] generates normal forms of traces in a more precise
way. As with BR, their algorithm (BD) follows the ASSR-FW representing i-solutions
as i-NFtraces. To improve memory usage, they made use of the fact that not all sorting
reversals calculated by Siepel’s ASR algorithm are needed for every i-NFtrace.

Let an appended sorting reversal to a NFtrace be a sorting reversal that, when added
to the normal form, will be the last reversal in the NFtrace. For example, for π = (2, 4,
1, -3) with NFtraces {1,3,4}{4}

∣∣ {1,2,3}{2,3} and {1,4}{2}
∣∣ {1,2}{3,4} . The set of

1-NFtraces is {{1,3,4},{4},{1,4},{2}}. For the 1-NFtrace {1,3,4} the sorting reversal
{4} is an appended sorting reversal, while for the 1-NFtrace {4} the sorting reversal
{1,3,4} is a non-appended sorting reversal.

Baudet et al. changed BR in two ways. First, they add a sorting reversal to an i-
NFtrace only if that reversal is an appended sorting reversal. Second, they generated
i-NFtraces in a depth-first manner. As a result of the first improvement, every (i + 1)-
NFtrace added to the (i+1)-level will be unique; each (i+1)-NFtrace can be visited in
exactly one way by appended reversals. This decreases the time needed since there is
no longer a search for duplicate (i+ 1)-NFtraces in the (i+ 1)-level. As a result of the
second improvement, the algorithm requires only O(n3) space, whereas BR keeps all
i-NFtraces. They used a stack of stacks to process these prefixes in a depth-first manner.

We now examine the connection between BR and BD in more detail.

Remark 1. The number of i-NFtraces, 1≤ i≤ d, that BR and BD visit are the same.

This can be seen by again noting that for every i-NFtrace, there is exactly one series of
appended sorting reversals that will create it. Remark 1 highlights the fact that Siepel’s
ASR algorithm is called the same number of times by BR and BD so that the only
difference is that BD will generate a given i-NFtrace exactly once, whereas BD could
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generate the same i-NFtrace an exponential (in the size of the permutation) number of
times.

BD also lends itself to a simple worst-case analysis. This is the first analysis for the
problem of ASSR to give a bound on the time required to list each trace.

Theorem 1. For a permutation of length n at distance d from the identity, the time that
it takes BD to list a normal form is O(n42n).

Proof. Call an i-NFtrace that has no appended sorting reversals (in the set computed
by Siepel’s ASR algorithm) a dead-end. We show that for each d−NFtrace BD finds,
there are O(2n) dead-ends. Assume a d −NFtrace T has only one subword (i.e. all
sorting reversals commute), then for every subset of i (1 ≤ i ≤ d) reversals from T ,
there exists a dead-end i−NFtrace. So the number of dead-ends corresponding to T is
the same as the number of substrings of a string, 2d . Now take a d−NFtrace S with
more than one subword. The number of substrings corresponding to S is fewer than the
number of substrings corresponding to T since the existence of more than one subword
indicates that at least two reversals do not commute. This, along with the fact that each
dead-end visited costs O(n4), gives us the desired bound. ��

An issue with the BD algorithm is that it cannot count the total number of sorting se-
quences corresponding to the generated normal forms (counting the number of linear
extensions on a poset is #P-complete [10]). Also, it cannot work when certain con-
straints are put on the sorting sequences; since it directly enumerates the normal forms
of the traces, it cannot find traces that have compliant sorting sequences when the nor-
mal form itself does not comply with a particular constraint.

5 Permutation Grouping: An Improved Framework for ASSR

In the ASSR-FW described in Section 3, Siepel’s ASR algorithm is called for every
i-solution at each i-level. In this section, we propose a new framework for the ASSR
problem (ASSR-PG-FW), where i-solutions are grouped at each i-level according to
the corresponding permutations that they generate. The proposed ASSR-PG-FW en-
sures that the ASR algorithm is called exactly once for each permutation that is gen-
erated throughout the course of the algorithm. The theorem below motivates this new
approach.

Lemma 1. Consider the permutations along a sorting sequence π0,π1, . . . ,πd from π0

to πd. The number of i-NFtraces that when applied to π0 yields πi is monotonically
increasing with i.

Proof. Call T the set of i-NFtraces that yield πi when applied to π0. There is exactly
one reversal ρ such that πi ◦ρ = πi+1. By inserting ρ into each of the normal forms for
T we get a unique (i+ 1)-NFtrace because each pair of normal forms in T differ by at
least one reversal and we add the same element to all of them. ��

Theorem 2. The ratio of the number of i-NFtraces to the number of permutations at an
i-level is monotonically increasing with i.
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Fig. 1. The average ratio between the number of normal forms of traces to the number of permu-
tations visited during a run of BR, for permutations chosen uniformly at random

Proof. The proof follows directly from Lemma 1.

Figure 1 shows the average ratio (over 20 runs) of the number of normal forms of traces
to the number of permutations for 7≤ n≤ 14.

5.1 The ASSR-PG-FW

Let us first define the following notation:

– i-plevel: all permutations that are generated at distance d(π)− i by any i-solution.
– i-p: a permutation in the i-plevel.
– i-S: the set of optimal sorting reversals obtained by applying Siepel’s ASR algo-

rithm to an i-p.
– i-pgroup: a group of i-solutions, where each i-solution in that group generates the

same permutation i-p. Each i-p has one group.

The new framework, ASSR-PG-FW, can be modeled as follows:
For each i-p with corresponding i-pgroup, generate a set of (i + 1)-solutions in the
following two steps:

– Step 1: generate i-S for the i-p.
– Step 2: for each reversal ρ in i-S:
• insert ρ in each i-solution in its corresponding i-pgroup to generate a set of

(i+ 1)-solutions.
• generate (i+ 1)-p = i-p ◦ ρ. Then we have the following two cases:

Case 1 (i+1)-p is a new permutation: create a new group (i+1)-pgroup using the
generated set of (i+ 1)-solutions.

Case 2 (i + 1)-p has already been generated: append the generated set of (i + 1)-
solutions to the corresponding (i+ 1)-pgroup.

These two steps are repeated iteratively until all optimal sorting d(π)-solutions are in
the d(π)-pgroup and the d(π)-plevel will have only the identity permutation.
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5.2 ASSR-PG-FW Algorithms

In order to process permutations, we use a hash table to store the permutation groups
that can be generated at each i-plevel. The key for the hash table is the permutation
i-p, and the data is the corresponding i-pgroup. This will help to test whether a given
permutation has already been generated and to easily add solutions to their correspond-
ing groups. Variations of the ASSR-PG approaches will again depend on how sorting
solutions are represented. We have the following algorithms:

– Solutions are represented as sorting sequences (SE-PG). The SE algorithm [12]
can be updated so it conforms to the proposed framework, where solutions are
represented as sequences. Additional savings will come from the fact that the ASR
algorithm will be applied once per permutation rather than once per i-sequence
generated.

– Solutions are represented as normal forms of traces, where normal forms are gen-
erated using all sorting reversals (BR-PG). Again, the BR algorithm [4] can be
easily updated so that it conforms to the proposed framework, where solutions are
represented as normal forms of traces. When using normal forms of traces, Braga
et al. has to sort each i-pgroup to remove any repetitions. Since the number of NF-
traces per group in BR-PG is much smaller than the number of NFtraces per level
in BR, savings will be also achieved in sorting the NFtraces per group versus per
level. Savings will come from the fact that Siepel’s ASR algorithm will be applied
once per permutation rather than once per i-NFtrace.

– Solutions are represented as normal forms of traces, where normal forms are gen-
erated with appended sorting reversals (BD-PG). The BD algorithm [2] is the best
known algorithm for solving the ASSR problem. However, the BD algorithm still
calls the ASR algorithm more than once per permutation generated during the sort-
ing process. We can update BD to optimize these calls and at the same time rep-
resent solutions as normal forms of traces that have been generated by appended
sorting reversals as described in Section 4.3. However, the BD-PG algorithm will
process the normal forms of traces in a breadth-first manner, grouping together
those that generate the same permutation at each level.

To analyze the time complexity of these algorithms with high precision, the ratio of
the number of solutions to the number of permutations at each level would have to be
known. This will vary depending on the permutation so an average-case analysis may be
the best we can hope for. We do not attempt such an analysis here. However, empirical
results will be provided in Section 6 showing the savings that can be obtained when
applying the new ASSR-PG-FW for each of the three approaches.

6 Empirical Results

Extensive experiments were done to compare the original ASSR-FW to the enhanced
ASSR-PG-FW. Starting from the original Java source code for Braga et al. (baoba-
bLUNA), we implemented the new techniques with the same Java objects. All the tests



Listing All Parsimonious Reversal Sequences: New Algorithms and Perspectives 47

Fig. 2. The time in seconds comparing BR and BR-PG, where d1 = �(n + 1)/2�, d2 = �3n/4�,
and d3 = n

were performed using a single core of a 2.2GHz Quad-Core AMD Opteron(tm) Proces-
sor 8354 with 512 KB of cache and 132G of memory.

We used the same experimental setup as Baudet et al. [2]. We generated random
permutations with size range between 5 ≤ n ≤ 26. For each value of n, we considered
permutations with reversal distances d1 = �(n+1)/2�, d2 = �3n/4�, and d3 = n. Since
hurdles have a small probability of occurrence in random permutations [15], Braga et
al. and Baudet et al. considered only the permutations that have no hurdles. We did the
same.

To show the advantages of the proposed ASSR-PG-FW, for each set of permutations
with parameters (n,d), we compared each approach when the original ASSR-FW is
applied to the same approach when the ASSP-PG-FW is applied. In other words, we
conduct three sets of experiments, where set 1 compares SE with SE-PG, set 2 compares
BR with BR-PG, and set 3 compares BD with BD-PG.

The proposed ASSR-PG-FW shows time improvements for all three base methods.
Figure 2, shows the results comparing BR and BR-PG. Note the logarithmic scale.
Improvements in time performance is up to 70%. Figure 3 shows time performance
in seconds comparing BD and BD-PG, where applying the new framework decreases

Fig. 3. The time in seconds comparing BR-PG, BD, and BD-PG, where d1 = �(n+1)/2�, d2 =
�3n/4�, and d3 = n
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BD time by up to 50%. The results shows that BR-PG cannot beat BD or BD-PG. The
number of paths explored in the latter algorithms is much smaller, because only normal
forms with reversals added at the end are explored. Results for comparing SE and SE-
PG are not shown, but our experiments show that applying the new ASSR-PG-FW
greatly decreases the time required by SE.

7 Conclusions

We revisited the problem of finding All Sorting Sequences by Reversals (ASSR). We
showed that all approaches for solving the problem can be situated in the same funda-
mental framework, the ASSR-FW. This allowed us to compare all current approaches.
We also proposed an enhanced framework, the ASSR-PG-FW, for solving the same
problem by grouping partial solutions according to the corresponding permutations
that they generate. The ASSR-PG-FW ensures that the All Sorting Reversals (ASR)
algorithm is called exactly once for each permutation that is generated throughout the
course of the algorithms. Extensive experiments were done that empirically demon-
strate the speed-up that can be achieved by applying the ASSR-PG-FW. The results
showed that by applying the new framework, we achieved an algorithm that beats the
fastest known algorithm to solve the ASSR problem.
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Abstract. Perfection has been used as a criteria to select rearrange-

ment scenarios since 2004. However, there is a fundamental bias towards

extant species in the original definition: ancestral species are not bound

to perfection. Here we develop a new theory of perfection that takes

an egalitarian view of species, and apply it to the complex evolution of

mammal chromosome X.

1 Introduction

In mathematical biology, the genome sorting problem is to find a sequence of
rearrangement operations that transforms one genome into another. The type of
rearrangement operations is fixed, and a sorting sequence of operations is called
a scenario. Given two genomes, there can be an exponential number of scenarios,
which makes difficult the choice of one particular scenario, even among those of
minimum length. Parsimony is only one of the criteria that can be used for the
selection of a scenario, and there are many alternatives that are worth exploring.

Here we consider the problem of perfect sorting which was initially stated
roughly as follows: given two genomes, find a sorting scenario between the
genomes that preserves common genomic segments in intermediate states of
the transformation. Such scenarios are called perfect and this problem was first
introduced under the inversion rearrangement model by [7] who showed the NP-
hardness of the problem. It was later shown that for some classes of instances,
the problem could be solved in polynomial time [1,2,6,12]. More recently [3],
the problem was explored under the double-cut-and-join (DCJ) rearrangement
model, using a less stringent definition of perfection that allows temporary cir-
cular chromosomes.

In this paper, we address the problem of perfect sorting by DCJ under the
initial definition of perfection. We also reexamine the original idea of perfection
which applies only to the two compared extant species. What about all interme-
diate species that are generated by the scenario? Any good biological argument
in favor of perfect scenarios would apply to any pair of these intermediate species.
In this paper, we intend to correct this injustice.

We introduce a new, more restrictive class of perfection, called ultra-perfection
with the corresponding problem: given two genomes, find a sorting scenario such
that any sub-scenario is perfect. Our main results are the description of combi-
natorial properties of ultra-perfection that leads to a polynomial time algorithm

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 50–61, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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for computing ultra-perfect scenarios between genomes, and the construction of
a near ultra-perfect scenario between human, mouse and rat chromosome X.

The paper is organized as follows: in Section 2, we give the definitions of
genomes, common intervals, rearrangement scenarios and ultra-perfection. In
Section 3, we characterize ultra-perfection in terms of commutation of inversion
scenarios, which leads to an algorithm for computing ultra-perfect scenarios. In
section 4, we study the ultra-perfection of scenarios between the human and
rodent chromosomes X. We conclude in Section 5 with remarks on the scenario
described for human and rodents chromosome X, and on the algorithmic com-
plexity of finding ultra-perfect or near ultra-perfect scenarios between several
species.

2 Models and Definitions

In this section, we give the main definitions and notation that are used in the pa-
per: genomes, inversions, double-cut-and-join operations, commuting inversions,
perfect and ultra-perfect scenarios.

2.1 Genomes

Genomes are compared by identifying homologous segments along their DNA
sequences, called blocks, organized in circular or linear chromosomes. A genome
is circular (resp. linear) if it is only composed of circular (resp. linear) chromo-
somes. Each genome contains exactly one occurence of each block, and the order
and orientation of the blocks may differ between genomes. A linear chromosome
will be represented by an ordered sequence of signed integers, one for each block,
flanked by the unsigned block ◦ at each end, and a circular chromosome will be
represented by a circularly ordered sequence of signed integers. For example,
genome (−5 7 1 −3 2) (◦ −6 4 8 9 ◦) consists of one circular chromosome
and one linear chromosome.

An adjacency in a genome is a pair of consecutive blocks. Since a chromosome
can be read in two directions; the adjacencies (x y) and (−y −x) are equivalent.
Moreover, since the block ◦ is unsigned, the adjacencies (◦ y) and (−y ◦) are
equivalent. An interval in a genome is a set of blocks that appear consecutively
in the genome. A common interval between genomes A and B is an interval
that exists in both A and B. A maximal common interval between A and B is
a common interval that is not included in any other common interval between
A and B.

2.2 Rearrangement Scenarios

In this paper, we consider two models of rearrangements: the inversion model
and the double-cut-and-join model. An inversion of a set of contiguous blocks
reverses the order of those blocks and change their signs. A double-cut-and-join
(DCJ) operation on a genome A cuts two different adjacencies in A and glues
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pairs of the four exposed extremities to form two new adjacencies, no other
adjacency is altered. The circularization of a linear chromosome (◦ x . . . y ◦) is
the DCJ operation that cuts adjacencies (◦ x) and (y ◦) to produce (y x) and
(◦ ◦), thus creating the circular chromosome (x . . . y). The opposite operation
called a linearization is a DCJ operation that transforms a circular chromosome
into a linear chromosome.

For example, a DCJ operation on genome (−5 7 1 −3 2) (◦ −6 4 8 9 ◦)
that cuts the adjacencies (2 −5) and (−6 4) to form (2 4) and (−6 −5) would
produce genome (◦ −6 −5 7 1 −3 2 4 8 9 ◦). Note that we consider the empty
chromosome (◦ ◦) to belong to any genome so that the DCJ on the circular
genome (−5 7 1 −3 2) which cuts adjacencies (7 1) and (◦ ◦) will produce
the linear genome (◦ 1 −3 2 −5 7 ◦).

Let A and B be two genomes. A scenario from A to B is a sequence of
rearrangements that transforms A into B. An inversion scenario from A to B
contains only inversions, and DCJ scenario contains only DCJ operations. Since
an inversion can always be realized by one DCJ operation, an inversion scenario
is always a DCJ scenario.

Note that the application of an inversion on a given genome only affects a
single chromosome of the genome. Thus, an inversion scenario on a genome A
can always be decomposed into a set of independent inversion scenarios, each
acting on a single chromosome of genome A. In the following, we will restrict
our study of inversion scenarios to unichromosomal genomes.

2.3 Perfection and Commutation

The following definition of perfection is used in [1,2,7,12]:

Definition 1 (Perfection). A rearrangement scenario from genome A to
genome B is perfect if all common intervals of A and B are also intervals
in the intermediate genomes of the scenario.

For the purposes of this paper we introduce a new, more restrictive class of
perfection that we call ultra-perfection.

Definition 2 (Ultra-Perfection). A rearrangement scenario from genome A
to genome B is ultra-perfect if all sub-scenarios are perfect.

The difference between the two notions is illustrated by the following example.
Consider the two genomes (◦ −3 −1 4 2 ◦) and (◦ 1 2 3 4 ◦) that have
no common intervals, except trivial ones. Definition 1 implies that any inver-
sion scenario between the two genomes is perfect. However, as we will show in
Section 3, none of these scenario is ultra-perfect. In particular, the following
scenario creates the common interval {2, 3, 4} between chromosomes C2 and C4,
but destroys it in C3:

C1 = (◦ −3 −1 4 2 ◦)
C2 = (◦ −3 −2 −4 1 ◦)
C3 = (◦ −3 −2 −1 4 ◦)
C4 = (◦ 1 2 3 4 ◦)
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As we will see, the notion of ultra-perfection is intimately related with commu-
tation of inversions. We first recall the definition of commutation used in [1]:
two sets of blocks commute if they are either disjoint or one is included in the
other. Two inversions commute if their associated sets of blocks commute. An
inversion scenario is commuting if all pairs of inversions contained in the scenario
commute.

When considering circular chromosome, the definition of commutation must
be adapted. Indeed, in a circular chromosome containing the set of blocks G,
an inversion associated to a set S ⊂ G produces the same result as an inversion
associated to the set G\S. We thus introduce the circularly commuting property
defined as: given a set G of blocks, two subsets S and T of G commute circularly
if S and T commute, or G \ S and T commute.

Note that in [3] a less stringent definition of perfection is used for DCJ sce-
narios. In this version, the notion of common interval is relaxed to allow subsets
of common intervals to form circular chromosomes.

3 Ultra-Perfect Scenarios

We now consider the problem of computing an ultra-perfect scenario between
two genomes. In Section 3.1, we show that each maximal common interval can be
considered independently. This implies an ultra-perfect scenario that first sorts
each substring associated with a maximal common interval, and then sorts the
whole genome in its final configuration. Section 3.2 then describes conditions
for the existence of ultra-perfect DCJ scenarios between substrings associated
to each maximal common interval.

Throughout the section we refer to a substring of a genome associated with
an interval as a segment of the genome. The segment of a genome A induced by
an interval I is denoted AI .

3.1 Independent DCJ Sorting of Maximal Common Intervals

The following proposition states that, in any ultra-perfect DCJ scenario between
genomes A and B, the segments induced by maximal common intervals of A and
B are sorted independently.

Proposition 1. Let I be a maximal common interval between genomes A and
B. If S is an ultra-perfect DCJ scenario from A to B, then there exists an equal
length ultra-perfect scenario S′ = SIT such that SI is an ultra-perfect DCJ
scenario transforming AI into BI .

Proof. Let C be a genome obtained by applying some (possibly empty) prefix
of S, and D be the genome obtained by applying some subsequent operations
of S on C. Since S is ultra-perfect, I is an interval of C and D. Say that the
operation transforming the intermediate genome C into the intermediate genome
D modifies I if CI �= DI .
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Let f be an operation of S such that f modifies I and the operation e preceding
f does not modify I. If f cuts no adjacency created by e, then simply switch
the order of e and f . Otherwise we replace e and f by two DCJs e′ and f ′ such
that e′ precedes f ′, through the following process: say e cuts the adjacency (u v)
and (y x), u being a block belonging to I, to create (u x) and (y v), and that
f then cuts (u x) and (t s) to create (u s) and (t x). Then take DCJs e′ and
f ′ such that e′ cuts the adjacency (u v) and (t s) to create (u s) and (t v), and
f ′ cuts (t v) and (y x) to create (t x) and (y v). In this way, any operations
modifying I can be moved to the beginning of the DCJ scenario. Each move does
not effect the ultra-perfection of the scenario since e′ cannot create an interval
that is later broken: any new interval created by e′ (and later broken by some
DCJ g) would have to include some elements of I and some adjacent elements
to I. But this implies the existence of a larger interval that would be broken by
g in the original scenario.

Moreover, at the end of this process, the scenario obtained can be decomposed
into two sequences SI and T such that all operations in SI modify I but no
operation in T modifies I. Then, SI is an ultra-perfect DCJ scenario between
the segments AI and BI . ��

3.2 Ultra-Perfect Scenarios between Unichromosomal Genomes

Proposition 1 implies that, for each maximal common interval I of A and B, the
ultra-perfect sorting of AI into BI can be examined independently from the rest
of the scenario. We now give characterizations of the existence of ultra-perfect
DCJ scenarios between unichromosomal genomes A and B by establishing prop-
erties of commuting inversion scenarios.

Ultra-perfect inversion scenarios. First we characterize ultra-perfect inver-
sion scenarios.

Proposition 2. An inversion scenario between two linear genomes is ultra-
perfect if and only if the scenario is commuting.

Proof. [2] shows that a commuting inversion scenario is always perfect. So, if a
scenario S is commuting, then all sub-scenarios of S are commuting and thus
perfect. Commutation then implies ultra-perfection.

Next, let S be an ultra-perfect scenario. Suppose that S is not commuting.
Then there exists two inversions in S, e preceding f , such that e and f do not
commute but e and f commute with all inversions in S between e and f .

Say, without loss of generality, that the genome looks like UV WXY before
applying inversion e where U , V , W , X , and Y represent sets of blocks. In this
configuration e = {V, W} and f = {V, X}, and all inversions in the scenario
between e and f , then, do not change the relative order of V ,W , and X to each
other (since they commute with e and f). So e creates the order WV X while
f creates the order WXV . But this contradicts the hypothesis that S is ultra-
perfect since the interval {W, X} is destroyed by e and recreated by f . ��
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In [2], it was shown that the commuting inversion scenarios between linear
genomes could be characterized in terms of the structure of a tree, called the
strong interval tree, representing the set of all common intervals. The strong
interval tree of two linear genomes is a tree whose vertices are the common
intervals that commute with any other common interval and there is an edge
(I, J) between two vertices if J ⊂ I and there exist no third vertex K such
that J ⊂ K ⊂ I. The strong interval tree was first described in [8,11,4] and
inspired from a data structure called the PQ-tree. PQ-trees are used to rep-
resent all consecutive-ones orderings of the columns of a matrix that has the
consecutive-ones property.

In the remainder of the section we develop the counterpart characterization
for DCJ scenarios by relating ultra-perfect DCJ scenarios to a tree representing
the set of all common intervals between two circular genomes. We present the
circular common interval tree that is the circular analogue of the strong interval
tree. Circular common interval trees are inspired from an analogous structure of
a PQ-tree, called a PC-tree. The PC-tree was introduced in [9,10] where it was
used to represent all circular-ones orderings of the columns of a matrix that has
the circular-ones property.

Circular common interval tree. Here, we define a tree representing the set of
all common intervals between two circular genomes. Let G be a set of n blocks,
and A and B be two circular genomes on G. A circular common interval of A
and B is either a singleton block, or a subset I of G such that I is a common
interval between A and B, and |I| �= n − 1. The circular strong intervals of A
and B are the circular common intervals of A and B that commute circularly
with any other circular common interval.

The circular common interval tree of two circular genomes is then defined as
follows:

Definition 3. The circular common interval tree of two circular genomes A
and B, denoted by T (A, B) is defined as follows: the vertices of T (A, B) are the
circular strong intervals of A and B that commute with any other circular strong
interval; a vertex J is a child of a vertex I if J ⊂ I, and there exist no third
vertex K such that J ⊂ K ⊂ I.

For example, let us consider the following circular genomes A = ( 2 4 3 1 5 ) and
B = ( 1 2 3 4 5 ). The circular common intervals of A and B are {1, 5}, {1, 5, 2},
{4, 3}, {2, 4, 3}, and the singletons {1} . . .{5}. The circular strong intervals are
all the circular common intervals. The vertices of the circular common interval
tree T (A, B) are {1, 5}, {4, 3} and the singletons. T (A, B) is depicted in Figure
1.a.

Given a vertex I of T (A, B), two orderings, either both circular, or both linear,
of the set of children of I can be inferred from the orderings in A and B of the
set of blocks composing I. Following the notation of [2], the vertex I is linear
if both orderings are identical or reciprocal, otherwise the vertex I is prime. If
I is a linear vertex, I has a positive sign if both orderings are identical, and a
negative sign if they are reciprocal (see Figure 1 for an example).
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Fig. 1. The circular common interval trees of a. A and C, and b. B and C where

genomes A, B, C are A = ( 2 4 3 1 5 ), B = ( 2 4 1 3 5 ), and C = ( 1 2 3 4 5 ).

Rectangular nodes correspond to linear vertices and round nodes to prime vertices.

The signs of linear vertices are indicated by a + or − symbol.

A circular common interval tree is definite if its vertices are linear. For ex-
ample, in Figure 1, the left-hand circular common interval tree is definite, while
the right-hand one is not definite.

The definition of linear or prime vertices, and definite trees, also hold for the
strong interval tree of two linear genomes. Given a vertex I of the strong interval
tree of two linear genomes A and B, if I is linear (resp. prime), we also say that
the common interval I between A and B is linear (resp. prime).

Ultra-perfect DCJ scenarios. In [2], it was shown that the existence of a
perfect inversion scenario between unichromosomal linear genomes A and B
was conditioned on properties of the strong interval tree of A and B: there
exists a commuting scenario if and only if the strong interval tree is definite. In
the following, we give the equivalent theorem for DCJ scenarios with circular
common interval trees: there exists an ultra-perfect DCJ scenario if and only if
the circular common interval tree is definite. We start by stating an obvious but
useful property of ultra-perfect DCJ scenarios.

Property 1. Let A and B be unichromosomal genomes on the same set of blocks
G. G is a common interval between A and B. So, if a DCJ scenario S from
A to B is ultra-perfect, then any operation in S is either an inversion, or a
circularization, or a linearization.

The circular version of a unichromosomal genome A is A itself if A is already
a circular genome, otherwise it is the circular genome obtained by applying the
circularization DCJ on A. We denote by Ac the circular version of a genome A.

Theorem 1. Let A and B be two unichromosomal genomes with the same set
of blocks. There exists an ultra-perfect DCJ scenario from A to B if and only if
the circular common interval tree of Ac and Bc is definite.

Proof. Let T = T (Ac, Bc) be a circular common interval tree of Ac and Bc.
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First, if T is definite, then an inversion scenario S composed of inversions
whose associated sets are the vertices of T that have a sign different from their
parents is a commuting inversion scenario from Ac to Bc. So, S is an ultra-perfect
scenario. Say e S f is the DCJ scenario from A to B where e is the eventual
circularization transforming A into Ac and f is the eventual linearization trans-
forming Bc into B. It is easy to see that e S f is an ultra-perfect scenario from
A to B.

Now, if T is not definite, let I be a vertex of T that is prime. Since a DCJ
scenario from A to B contains only inversions, circularization and linearization,
then there exists no ultra-perfect DCJ scenario that sorts AI into BI . ��

For example, consider the linear genomes A = (◦ 3 1 5 2 4 ◦) and B =
(◦ 1 2 3 4 5 ◦). The circular common interval tree of of the circular versions
of A and B is depicted in Figure 1. Since it is a definite tree, then there exists
the following ultra-perfect DCJ scenario:

(◦ 3 1 5 2 4 ◦) circularization (4 −5 −1 2 3) inversion of {1}
(3 1 5 2 4) inversion of {4, 3} (4 −5 1 2 3) inversion of {5}
(−4 1 5 2 −3) inversion of {1, 5} (4 5 1 2 3) linearization
(−4 −5 −1 2 −3) inversion of {4} (◦ 1 2 3 4 5 ◦)
(4 −5 −1 2 −3) inversion of {3}

4 Ultra-Perfection Meets Reality

The study of perfect rearrangement scenarios was, in large part, motivated by
scenarios of inversions linking the human, mouse and rat chromosomes X [1].
In that first study, the presence of prime intervals arising from the comparison
between human and rodents was largely ignored, since any inversion scenario
that sorts a prime interval is perfect. In the framework of ultra-perfection, it
makes sense to revisit this fundamental example.

In this section, we will show that, although no ultra-perfect scenario exists
between human and rodents, there exist a scenario which is minimally disruptive.
We will first describe a framework for dealing with imperfection. We will then
show that it is possible to construct a unique scenario for the human, mouse and
rat chromosome X that is the closest possible to ultra-perfection.

4.1 Imperfect Sorting

When no ultra-perfect scenario exists, we wish to define a way to score scenarios
that are nearly ultra-perfect. There is no easy or straightforward way to do
this: the competing parameters include broken common intervals, overlapping
inversions, prime intervals and parsimony. In this section, we propose a first
measure that is relatively simple to define, and that allows to compare scenarios
that would otherwise be difficult to rank.

Our first simplification is that, when trying to build a scenario for two or
more species, each common interval should be sorted independently. Since linear



58 A. Ouangraoua, A. Bergeron, and K.M. Swenson

common intervals are rather easy to sort with an ultra-perfect scenario, we focus
on the sorting of individual prime common intervals.

A scenario S between two or more species can be represented as an unrooted
tree whose nodes are the genomes, and whose branches are the rearrangement
operations. Removing an operation r from a scenario S is done by cutting the
branch labeled by r yielding two subtrees called subscenarios. We have:

Definition 4. The imperfection score of a scenario S is the minimum num-
ber of operations that can be removed from S such that each of the remaining
subscenarios is ultra-perfect.

Our goal is to find, among all possible scenarios with minimum imperfection
score, one that is of minimum length.

It turns out that the data on human, mouse, and rat chromosomes X is a
very interesting instance of this problem: there are prime common intervals in
both the Human-Mouse and the Human-Rat strong interval trees. The prime
common interval in the Human-Mouse comparison is maximal, but there is no
ultra-perfect scenario since the induced permutation [2], (◦ −4 6 1 −3 −5 2 ◦),
does not have a commuting scenario, even with circularization.

The following permutations, obtained from the blocks of [5], model the ho-
mologous blocks of the human, mouse, and rat chromosomes X :

H = (◦ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ◦)
M = (◦ −6 −5 4 13 14 −15 16 1 −3 9 −10 11 12 −7 8 −2 ◦)
R = (◦ −13 −4 5 −6 −12 −8 −7 2 1 −3 9 10 11 14 −15 16 ◦)

We first apply single block inversions (they have no impact on the perfection of a
scenario) that create an adjacency in one genome that already exists in the other
two. There are 5 of them in the chromosome data: {4} and {15} applied to the
human chromosome, {7} and {10} applied to the mouse chromosome, and {6}
applied to the rat chromosome. The resulting chromosomes are the following,
renamed with a subscript that indicates how far the new chromosome is from
the original.

H+2 = (◦ 1 2 3 −4 5 6 7 8 9 10 11 12 13 14 −15 16 ◦)
M+2 = (◦ −6 −5 4 13 14 −15 16 1 −3 9 10 11 12 7 8 −2 ◦)
R+1 = (◦ −13 −4 5 6 −12 −8 −7 2 1 −3 9 10 11 14 −15 16 ◦)

Next, there are three adjacencies that are shared by the rodents, but are not
in the human lineage, and that require inversions longer than single blocks:
(1 −3), (4 13) and (−3 9). The corresponding inversions associated to the sets,
{2, 3}, {4, 5, 6, 7, 8, 9, 10, 11, 12} and {2, 9, 10, 11, 12} can be applied to the H+2

genome to yield H+5 = (◦ 1 −3 9 10 11 12 2 −8 −7 −6 −5 4 13 14 −15 16 ◦).
In the next section, we will construct an ultra-perfect scenario for the three

permutations H+5, M+2 and R+1. Since the first two inversions applied to the
H+2 chromosome are commuting, the imperfection score of the global scenario
will be 1, obtained by removing inversion {2, 9, 10, 11, 12}, which is the best that
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can be achieved. The scenario between H+2 and H+5 is also parsimonious, since
it constructs 3 adjacencies present in both the mouse and rat genome, implying
that any alternate solution should have the same length. Up to commutation
of the two initial inversions, it is easy to show that this is the only solution
constructing the 3 adjacencies.

4.2 The Ultra-Perfect Median of Three Genomes

After applying the inversions of the preceding section, the three genomes are the
following, where adjacencies common to all three chromosomes are indicated by
dots:

H+5 = (◦ 1 · −3 · 9 · 10 · 11 12 2 −8 · −7 −6 · −5 · 4 · 13 14 · −15 · 16 ◦)
M+2 = (◦ −6 · −5 · 4 · 13 14 · −15 · 16 1 · −3 · 9 · 10 · 11 12 7 · 8 −2 ◦)
R+1 = (◦ −13 · −4 · 5 · 6 −12 −8 · −7 2 1 · −3 · 9 · 10 · 11 14 · −15 · 16 ◦)

It is convenient, at this point, to relabel the blocks so that the remaining differ-
ences are more apparent. There are six blocks that we label with respect to the
H+5 genome order:

1︷ ︸︸ ︷
1 · −3 · 9 · 10 · 11

2︷︸︸︷
12

3︷︸︸︷
2

4︷ ︸︸ ︷
−8 · −7

5︷ ︸︸ ︷
−6 · −5 · 4 · 13

6︷ ︸︸ ︷
14 · −15 · 16

This yields the new representation:

H+5 = (◦ 1 2 3 4 5 6 ◦)
M+2 = (◦ 5 6 1 2 −4 −3 ◦)
R+1 = (◦ −5 −2 4 3 1 6 ◦)

Given three genomes, deciding if an ultra-perfect scenario connecting them exists
begins with a simple check. Indeed, the median of three genomes belongs to all
implied pairwise scenarios, thus must share all common intervals of all pairs of
genomes. Formally we have:

Proposition 3. The median M of an ultra-perfect scenario linking three per-
mutations A, B and C contains all common intervals of A and B, of A and C,
and of B and C.

In order to apply Proposition 3 to the mammal chromosomes, we first com-
pute their common intervals:

H+5 and M+2: {1,2}, {3,4}, {5,6}, {2,3,4}, {1,2,3,4}
H+5 and R+1: {3,4}, {2,3,4}, {1,2,3,4}, {2,3,4,5}, {1,2,3,4,5}
M+2 and R+1: {1,6}, {2,4}, {3,4}, {2,3,4}, {1,2,3,4}, {1,2,3,4,6}

The – unique – permutation that contains all these intervals is a circular chromo-
some! Its block order, ( 5 6 1 2 −4 −3 ), is the circularization of the mouse
genome. It is then a simple exercise to transform the median into each genome.
The whole scenario has 7 inversions, 5 of them inverting single blocks; the re-
maining 2 inversions are {3, 4} towards the human chromosome, and {2, 3, 4}
towards the rat chromosome, see Figure 2.
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1

3

2

45

6

(o 5 6 1 2 -4 -3 o)

H+5=

M+2=

R+1=

(o 1 2 -4 -3 5 6 o)

(o 1 2 3 4 5 6 o)
{3, 4}

(o -5 3 4 -2 -1 -6 o)

(o -5 2 -4 -3 -1 -6 o)

(o -5 -2 -4 -3 -1 -6 o)

(o -5 -2 4 -3 -1 -6 o)

(o -5 -2 4 3 -1 -6 o)

(o -5 -2 4 3 1 -6 o)

(o 5 -2 4 3 1 6 o)

{2, 3, 4}

{2}

{4}

{3}

{1}

{6}

Fig. 2. An ultra-perfect scenario between chromosomes H+5, M+2 and R+1. The lo-

cation where the circular median is cut is shown by thin arrows. The set of inverted

blocks is shown between each pair of permutations.

5 Discussion and Conclusions

The search for an ultra-perfect scenario for the human, mouse and rat chromo-
some X lead to a surprising circular median, deduced by combinatorial
techniques. We are certainly not inferring that actual species had circular chro-
mosomes X. The fact that the number of blocks is quite small, n = 6, might be
the simplest explanation: more than half of the random trios of permutations
on six elements have a circular median. However, the remarkable preservation of
the circular order of blocks between the human and mouse chromosome X asks
for a more satisfying answer. Are there some biological mechanisms that would
allow rearrangement operations that preserve a circular order? Among the well
known combinatorial operations with this property are the shift operation, or a
double centromeric inversion.

On the algorithmic side, the circular common interval tree allows us to eas-
ily find the set of inversions of an ultra-perfect scenario between two genomes;
ultra-perfect DCJ scenarios are essentially ultra-perfect inversion scenarios on a
circular version of the genomes. In the case of multiple genomes, the existence
and computation of an ultra-perfect scenario should be easy to characterize using
the sets of inversions corresponding to pairwise genomes. In the case of nearly
ultra-perfect scenario, methods still have to be developed but most efforts will
likely lead to hardness results. However, interesting instances of the problem,
such as rearrangements between human and rodents, are still quite manageable
by manual techniques, and should get easier with the sequencing of additional
rodent genomes. It is also relatively easy to score scenarios: the scenario pro-
posed by GRIMM [13] for the human, mouse and rat chromosome X has an
imperfection score of 2.
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Finally we argue that perfection without ultra-perfection remains, at best, a
mathematical exercise. On the other hand, reality is neither perfect, nor ultra-
perfect. In this paper we explored some definitions of near ultra-perfection, fully
aware that much remains to be done.
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Abstract. A previous work of Braga, Willing and Stoye compared two

genomes with unequal content, but without duplications, and presented a

new linear time algorithm to compute the genomic distance, considering

double cut and join (DCJ) operations, insertions and deletions. Here we

derive from this approach an algorithm to sort one genome into another

one also using DCJ, insertions and deletions. The optimal sorting scenar-

ios can have different compositions and we compare two types of sorting

scenarios: one that maximizes and one that minimizes the number of

DCJ operations with respect to the number of insertions and deletions.

1 Introduction

The approach of sorting a genome by double cut and join (DCJ) operations, in-
troduced by Yancopoulos et al. in 2005 [10], has been the topic of many studies in
the latest years [3,7,8]. In particular, linear time algorithms have been proposed
to compute the DCJ distance and to find an optimal DCJ sorting sequence [1].

A DCJ allows us to represent most large scale mutation events, such as
inversions, translocations, fusions and fissions, that can occur in genomes. A
related approach is the one that considers only inversions in unichromosomal
genomes [6]. Since a DCJ or an inversion cannot perform an insertion or a dele-
tion, most of the studies under these models consider genomes with the same
content.

In 2001, El-Mabrouk [5] introduced an approach to compare unichromosomal
genomes with unequal content, considering inversions, insertions and deletions,
such that a block of contiguous markers can be inserted (or deleted) at once.
Recently Braga et al. [4] studied a similar problem and proposed a linear time
algorithm to compute the genomic distance with DCJ, insertions and deletions
between genomes with unequal content, but without duplications. Braga et al. [4]
borrowed some ideas from a study of Yancopoulos and Friedberg [9], but allowed
a block of contiguous markers to be inserted (or deleted) at once, as well as the
related approach of El-Mabrouk [5].

Here we derive from the approach of Braga et al. [4] an algorithm to sort one
genome into another one with DCJ, insertions and deletions. We show that the
optimal sorting scenarios can have different compositions with respect to the
number of each type of operation and propose two types of sorting scenarios:
one that minimizes the number of DCJ operations (respectively maximizing the
number of insertions and deletions) and one that minimizes the number of in-
sertions and deletions (respectively maximizing the number of DCJ operations).

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 62–73, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



On Sorting Genomes with DCJ and Indels 63

2 DCJ-Indel Distance

In this section we summarize the results given in [4], that allow us to compute
the genomic distance considering DCJ operations, insertions and deletions.

We analyze genomes with unequal gene content but without duplications.
Given two genomes A and B, denote by G the “reduced” genome [5], that is
the set of markers that occur once in A and once in B. Moreover, the set A
contains the markers that occur only in A and the set B contains the markers
that occur only in B. Observe that the sets G, A and B are disjoint. Each genome
is possibly composed of linear and circular chromosomes and can be represented
by a set of strings as follows. From each chromosome C of each genome, we can
build a string s, obtained by the concatenation of all markers in C, read in any
of the two directions. Each marker g is a DNA fragment and is represented by
the symbol g, if it is read in direct orientation, or by the symbol g, if it is read
in reverse orientation. Each end of a linear chromosome is called a telomere,
represented by the symbol ◦. Thus, if C is linear, it is represented by ◦s◦. If C
is circular, it is simply represented by s (we can start to build s in any symbol
of C). An example of a pair of genomes is given in Fig. 1.

A � � � � � � � � �a x e c d y b z w

B � � � � �a b c d e

Fig. 1. For genomes A = {◦axec◦, ◦dyb◦, ◦zw◦}, composed of three linear chromo-

somes, and B = {◦abcde◦}, composed of one single chromosome, we have G =

{a, b, c, d, e}, A = {x, y, z, w} and B = ∅

2.1 Adjacency Graph, the DCJ Operation and DCJ Distance

First we recall some concepts given in [4], that are generalizations of definitions
introduced by Bergeron et al. [1].

For each marker g ∈ G, denote its two extremities by gt (tail) and gh (head).
Given a genome A, a G-adjacency in A is in general a linear string v = γ1�γ2,
such that γ1 and γ2 are telomeres or extremities of markers in G and �, the
substring composed of the markers that are between γ1 and γ2 in A, contains
no marker that also belongs to G. The substring � is said to be the label of v,
and the extremities γ1 and γ2 are said to be G-adjacent. If � is a non-empty
string, v is said to be labeled, otherwise v is said to be clean. Observe that
a G-adjacency γ1�γ2 can also be represented by γ2�γ1. Moreover, a labeled G-
adjacency u = ◦�◦ indicates that A contains a linear chromosome composed only
of markers that are not in G, that is, u corresponds to a whole linear chromosome.
In the same way, if s is a circular chromosome in A composed only of markers
that are not in G, then s is also a G-adjacency. This is the only special case
of G-adjacency in which we have a circular instead of a linear string.
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Two genomes A and B can be also represented by the sets VG(A) and VG(B),
containing their G-adjacencies. For the genomes in Figure 1, we have G =
{a, b, c, d, e}, VG(A) = {◦at, ahxet, ehct, ch◦, ◦dt, dhybt, bh◦, ◦zw◦} and VG(B) =
{◦at, ahbt, bhct, chdt, dhet, eh◦}. Observe that, since B = ∅, VG(B) contains only
clean adjacencies.

A cut performed on a genome A separates two adjacent markers of A. A cut
affects a G-adjacency v of VG(A) as follows: if v is linear, the cut is done between
two symbols of v, creating two open ends in two separate linear strings; if v is
circular, the cut creates two open ends in one linear string. A double-cut and
join or DCJ applied on a genome A is the operation that performs two cuts
in VG(A), creating four open ends, and joins these open ends in a different way.
As an example, considering the genome A from Fig. 1 and G = {a, b, c, d, e}, if
we apply a DCJ on ahxet and dhybt of VG(A) we can create ahbt and dhyxet.

The problem of sorting A into B can be studied with the help of the following
graph, introduced by Bergeron et al. [1]. The adjacency graph AG(A, B) is the
graph that has a vertex for each G-adjacency in VG(A) and a vertex for each G-
adjacency in VG(B). Then, for each g ∈ G, we have one edge connecting the
vertex in VG(A) and the vertex in VG(B) that contain gh and one edge connecting
the vertex in VG(A) and the vertex in VG(B) that contain gt. Due to the 1-to-1
correspondence between the vertices of AG(A, B) and the G-adjacencies in VG(A)
and VG(B), we can identify each adjacency with its corresponding vertex.

The graph AG(A, B) is a collection of connected components and can have
cycles and paths, that alternate vertices in VG(A) and VG(B) [1]. A path that
has one endpoint in VG(A) and the other in VG(B) is called an AB-path. In
the same way, both endpoints of an AA-path are in VG(A), as well as both
endpoints of a BB-path are in VG(B). Furthermore, AG(A, B) can have two extra
types of components: each G-adjacency that corresponds to a linear (respect.
circular) chromosome is a linear (respect. circular) singleton. Linear singletons
are particular cases of AA-paths and BB-paths. When A = B = ∅, the adjacency
graph is composed only of clean G-adjacencies and has no singletons. In this case
the graph is said to be clean. An example of an adjacency graph is given in Fig. 2.

Singletons, AB-paths composed of one single edge, and cycles composed of
two edges are said to be DCJ-sorted. Longer paths and cycles are said to be
DCJ-unsorted. The procedure of using DCJ operations to turn AG(A, B) into
DCJ-sorted components is called DCJ-sorting of A into B. The DCJ distance
of A and B, denoted by dDCJ (A, B), corresponds to the minimum number of
steps required to do a DCJ-sorting of A into B and can be easily obtained:

� � � � � � � �

A ◦at ahxet ehct ch◦ ◦dt dhybt
bh◦ ◦zw◦

� � � � � �

B ◦at ahbt bhct chdt dhet eh◦

�
�
��

�
�
��

���������

�
�
��

���������

�
�
��

�
�

��

����������

�
�

��

����������

Fig. 2. For genomes A = {◦axec◦, ◦dyb◦, ◦zw◦} and B = {◦abcde◦}, the adjacency

graph contains one cycle, two AA-paths (one is a linear singleton) and two AB-paths
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� � � � � �

�1 �4 �5

� � � � � �

︸ ︷︷ ︸
A-run

�2 �3︸ ︷︷ ︸
B-run

︸ ︷︷ ︸
A-run

�
�
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�
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�
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�
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�
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�

Fig. 3. An AB-path with 3 runs. Only the labels of the G-adjacencies are represented.

Theorem 1 ([1]). Given a genome A over GA and a genome B over GB , we
have dDCJ(A, B) = n−c− b

2 , where n is the number of markers in G = GA∩GB,
and c and b are, respectively, the number of cycles and AB-paths in AG(A, B)

Bergeron et al. [1] observed that the number of AB-paths in AG(A, B) is even
and that an optimal DCJ either increases the number of cycles by one, or the
number of AB-paths by two (decreasing the DCJ distance by one). In the same
way, a neutral DCJ does not affect the number of cycles and AB-paths in the
graph, while a counter-optimal DCJ either decreases the number of cycles by
one, or the number of AB-paths by two. The problem of finding an optimal
sequence of operations that do a DCJ-sorting of A into B can be solved with a
simple greedy linear time algorithm [1].

2.2 Indel Operations and DCJ-Indel Distance

The markers in A and B are represented in the adjacency graph as labels and
singletons, and, in order to completely sort genome A into genome B, the mark-
ers in A have to be deleted, while the markers in B have to be inserted. No
classical DCJ operation is able to perform an insertion or a deletion. Moreover,
no operation is able to delete and insert at the same time (such an event would
be a replacement, that is not accepted in the model we consider). An operation
is thus either a DCJ, or an insertion, or a deletion. We refer to insertions and
deletions as indel operations. A DCJ and an indel operation have the same cost
and the DCJ-indel distance of A and B, denoted by did

DCJ(A, B), is the minimum
number of DCJ and indel operations required to transform A into B.

Given a component C of AG(A, B), we can obtain a string �(C) by the con-
catenation of the labels of the G-adjacencies of C in the order in which they
appear. Cycles, AA-paths and BB-paths can be read in any direction, but AB-
paths should always be read from A to B. If C is a cycle and has labels in both
genomes A and B, we should start to read in a labeled G-adjacency v of A,
such that the first labeled vertex before v is a G-adjacency in B; otherwise C
has labels in at most one genome and we can start anywhere. Each maximal
substring of �(C) composed only of markers in A (respectively in B) is called an
A-run (respectively a B-run). Each A-run or B-run can be simply called run.
A component composed only of clean G-adjacencies has no run and is said to
be clean, otherwise the component is labeled. We denote by Λ(C) the number of
runs in a component C. A path can have any number of runs, while a cycle has
zero, one, or an even number of runs. Fig. 3 shows an AB-path with 3 runs.
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Observe that a G-adjacency with a non-empty label � can be cut in at least
two different positions, either before or after �. Since the position of the cut
does not change the effect of the DCJ operation on dDCJ(A, B), we can choose
to cut at positions that allow the concatenation of the labels of the original
G-adjacencies. As a consequence, an A-run can be first accumulated with op-
timal DCJ operations and later deleted at once from genome A. In the same
way, a B-run can be first inserted at once as a cluster in genome A and later
split with optimal DCJ operations [4], as we can see in Fig. 4. This gives di-
rectly the following upper bound to the DCJ-indel distance: did

DCJ (A, B) ≤
dDCJ(A, B) +

∑
C∈AG(A,B) Λ(C). However, since a DCJ operation can merge

runs in the components of AG(A, B), this upper bound can be improved.
Given two genomes A and B and a component C ∈ AG(A, B), we denote

by dDCJ(C) the minimum number of operations required to do a separate
DCJ-sorting in C, applying DCJs only on vertices of C (or vertices that result
from DCJs applied on vertices that were in C). It is possible to do a separate
DCJ-sorting using only optimal DCJs in any component of AG(A, B) [3], thus
dDCJ(A, B) =

∑
C∈AG(A,B) dDCJ(C). The optimal DCJs sorting C can merge

runs in C and we denote by λ(C) the minimum number of runs that can be
obtained with a separate DCJ-sorting in C using optimal DCJs:

Proposition 1 ([4]). Given a component C in AG(A, B), we have λ(C) =
�Λ(C)+1

2 �, if Λ(C) ≥ 1. Otherwise λ(C) = 0.

The number λ allows to define an exact formula for the DCJ-indel distance [4].
If λ0 and λ1 are, respectively, the sum of the number λ for the components of the
adjacency graph before and after a DCJ ρ, let Δλ(ρ) = λ1 − λ0. Moreover, let
Δdcj(ρ) be respectively 0, +1 and +2 depending whether ρ is optimal, neutral
or counter-optimal, and Δd(ρ) = Δdcj(ρ) + Δλ(ρ).

By the definition of λ, any optimal DCJ ρ acting on a single component has
Δλ(ρ) ≥ 0. Furthermore, if a component C is DCJ-unsorted, it is always possible
to find an optimal DCJ acting only on C with Δλ(ρ) = 0. We also know that
any neutral or counter-optimal DCJ acting on a single component has Δλ ≥ −1,

(i) (ii)

� � � � �� �a x e c d y b

↓ translocation

� �� � � � �a x y b d e c

↓ deletion

� � � � �a b d e c

↓ translocation

� � � � �a b c d e

↓ fusion

� � � � �a b c d e

� � � � �a b c d e

↓ fission

� � � � �a b c d e

↓ translocation

� � � � �a b d e c

↓ insertion

� �� � � � �a x y b d e c

↓ translocation

� � � � �� �a x e c d y b

Fig. 4. (i) An optimal scenario sorting {◦axec◦, ◦dyb◦} into {◦abcde◦}. The first op-

eration (translocation) accumulates x and y, so that they can be deleted at once. (ii)

Conversely, while sorting {◦abcde◦} into {◦axec◦, ◦dyb◦}, we can insert a cluster at

once and later split it with a translocation.
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Table 1. Path recombinations that have Δd ≤ −1 [4]. Optimal recombinations are in

the left, neutral recombinations in the right.

sources resultants Δλ Δdcj Δd

AAAB + BBAB AB• + AB• −2 0 −2

AAA + BBAB AB• + ABAB −1 0 −1
BBA + AAAB AB• + ABBA −1 0 −1
AAB + BBAB AB• + ABBA −1 0 −1
BBB + AAAB AB• + ABAB −1 0 −1

AAA + BBA AB• + AB• −1 0 −1
AAB + BBB AB• + AB• −1 0 −1

sources resultants Δλ Δdcj Δd

AAAB + AAAB AAA + AAB −2 +1 −1
BBAB + BBAB BBA + BBB −2 +1 −1

AAAB + ABAB AB• + AAA −2 +1 −1
AAAB + ABBA AB• + AAB −2 +1 −1
BBAB + ABAB AB• + BBB −2 +1 −1
BBAB + ABBA AB• + BBA −2 +1 −1

ABAB + ABBA AB• + AB• −2 +1 −1

consequently we have Δd ≥ 0 in these cases [4]. Let did
DCJ(C) = dDCJ(C)+λ(C)

be the number of steps required to sort separately a component C [4]. This gives
a tight upper bound to the distance formula:

Lemma 1 ([4]). Given two genomes A and B without duplications, we have

did
DCJ(A, B) ≤ dDCJ(A, B) +

∑
C∈AG(A,B)

λ(C).

Proof. We can sort the components separately with
∑

C∈AG(A,B) did
DCJ(C) steps,

which corresponds exactly to dDCJ(A, B) +
∑

C∈AG(A,B) λ(C). ��
An exact formula can be derived from the upper bound given by Lemma 1
and a particular type of DCJ operation that acts on two components and is
called recombination. The two components in which the cuts are applied are
called sources and those obtained after the joinings are called resultants of the
recombination. We know that any recombination ρ has Δλ(ρ) ≥ −2 [4].

Any recombination applied to a vertex of an AA-path and a vertex of a BB-
path is optimal [3]. A recombination applied to vertices of two different AB-paths
can be either neutral, when the result is also a pair of AB-paths, or counter-
optimal, when the result is a pair composed of an AA-path and a BB-path. All
other types of path recombinations are neutral and all recombinations involving
at least one cycle are counter-optimal. Any counter-optimal recombination has
Δd ≥ 0, thus only path recombinations can have Δd ≤ −1.

Now let A (respectively B) be a sequence with an odd (≥ 1) number of runs,
starting and ending with an A-run (respectively B-run). We can then make any
combination of A and B, such as AB, that is a sequence with an even (≥ 2)
number of runs, starting with an A-run and ending with a B-run. An empty
sequence (with no run) is represented by ε. Each one of the notations AAε, AAA,
AAB, AAAB, BBε, BBA, BBB, BBAB, ABε, ABA, ABB, ABAB and ABBA
represents a particular type of path (AA, BB or AB) with a particular structure
of runs (ε, A, B, AB or BA). Table 1 gives the recombinations with Δd ≤ −1.
We denote by AB• an AB-path that can not be a source of a recombination in
Table 1, such as ABε, ABA and ABB. And in Table 2 we list recombinations
with Δd = 0 that create at least one source of recombinations in Table 1.

Considering that some resultants of recombinations can be used in other re-
combinations of Table 1, Braga et al. [4] identified relevant recombination groups,
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Table 2. Recombinations that have Δd = 0 and create resultants that can be used in

recombinations with Δd ≤ −1 [4].

sources resultants Δλ Δdcj Δd

AAA + ABBA ABε + AAAB −1 +1 0
AAB + ABAB ABε + AAAB −1 +1 0
BBA + ABAB ABε + BBAB −1 +1 0
BBB + ABBA ABε + BBAB −1 +1 0

sources resultants Δλ Δdcj Δd

AAA + BBB ABε + ABAB 0 0 0
AAB + BBA ABε + ABBA 0 0 0

ABAB + ABAB AAA + BBB −2 +2 0
ABBA + ABBA AAB + BBA −2 +2 0

called P , Q, T , S, M and N -recombinations (see Table 5 in the Appendix).
An approach that greedily maximizes the number of P , Q, T , S, M and N -
recombinations, in this order, has been proposed, so that the exact formula for
the DCJ-indel distance can be computed in linear time [4]:

Theorem 2 ([4]). Given two genomes A and B without duplications, we have

did
DCJ(A, B) = dDCJ(A, B) +

∑
C∈AG(A,B)

λ(C)− 2P − 3Q− 2T − S − 2M −N,

where the number of P , Q, T , S, M and N -recombinations are computed by the
algorithm given in [4].

3 DCJ-Indel Sorting

Here we analyze the problem of sorting genome A into B with DCJ and in-
del operations. Consider a DCJ ρ applied on γ1�1γ4 and γ3�2γ2, that creates
γ1�1�2γ2 and γ3γ4. We represent such an operation as ρ = ({γ1�1|γ4, γ3|�2γ2} →
{γ1�1|�2γ2, γ3|γ4}). Furthermore, if ρ is the deletion of � from the G-adjacency
γ1�γ2, we represent this as ρ = (γ1|�|γ2 → γ1|γ2). In the same way, the insertion
of block � in the G-adjacency γ1γ2 is represented as (γ1|γ2 → γ1|�|γ2).

Particular cases happen when we have circular singletons. A DCJ involving
two G-adjacencies such that at least one is a circular singleton always result in
only one G-adjacency: ({|�1|, γ1|�2γ2} → γ1|�1|�2γ2) or ({|�1|, |�2|} → |�1|�2|).
Conversely, a DCJ operation with two cuts in one G-adjacency always result in
two G-adjacencies, such that at least one is a circular singleton: (γ1|�1|�2γ2 →
{|�1|, γ1|�2γ2}) or (|�1|�2| → {|�1|, |�2|}). A deletion of a circular singleton � is
represented by (�→ ∅) and its insertion is (∅ → �).

Given any operation ρ = (X → Y ), we define the inversion of ρ as ρ−1 =
(Y → X). Observe that the inversion of a deletion is an insertion, and vice-versa.
We can also extend this notation to a sequence of operations: given a sequence
s = ρ1ρ2 . . . ρn, we have s−1 = ρ−1

n ρ−1
n−1 . . . ρ−1

2 ρ−1
1 .

The approach presented in the previous section allows operations on both A
and B, in order to be able to concatenate labels in G-adjacencies of both genomes.
Regarding the operations applied on B, this can be seen as a backtracing to find
the best moment to do a cluster insertion in A, as shown in Fig. 5.
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(i) (ii)

�� �� �y b a x c

↓ inversion

� �� � �a b y x c

deletion ↓
� ��a b c

inversion ↓
� � �a b c

� � � � �z a w b c

↓ inversion

�� � � �z w a b c

↓ deletion

� � �a b c

�� �� �y b a x c

↓ inversion

� �� � �a b y x c

deletion ↓
� ��a b c

inversion ↓
� � �a b c

↓ insertion

�� � � �z w a b c

↓ inversion

� � � � �z a w b c

Fig. 5. (i) Two sequences of lengths 3 and 2, sorting A = {◦ybaxc◦} and B =

{◦zawbc◦} into {◦abc◦}. (ii) A corresponding sequence of length 5 sorting A into B.

Proposition 2. Given two genomes A and B, any pair of sequences s1 and s2

composed of DCJ and indel operations acting on both genomes A and B, trans-
forming respectively A and B into an intermediate genome I, has a corresponding
sequence s1s

−1
2 that transforms A into B.

Proof. Since s1 sorts A into I and s−1
2 sorts I into B, s1s

−1
2 sorts A into B. ��

Observe that, according to the presented approach, the operations applied on A
are sorting operations with respect to B and the operations applied on B are
sorting operations with respect to A. Thus, if s1 is the sequence of operations
applied on A and s2 is the sequence of operations applied on B, then s1s

−1
2 is an

optimal sequence of operations sorting A into B. Indeed, if this was not the case,
at least one operation in s1 or s2 would be non-sorting, which is a contradiction.

3.1 Sorting with a Minimum Number of DCJ Operations

First we will derive a sorting algorithm directly from the formula given in The-
orem 2. In general lines the algorithm constructs incrementally two sequences

(i) (ii)

� � � � �� �a x e c d y b

↓ translocation

� �� � � � �a x y b d e c

↓ deletion

� � � � �a b d e c

↓ translocation

� � � � �a b c d e

↓ fusion

� � � � �a b c d e

↓ insertion

� � � � � �a u b c d e

↓ insertion

� � � � � � �a u b c d v e

� � � � �� �a x e c d y b

↓ translocation

� � �� � � �a x y d c e b

↓ deletion

�� � � �a d c e b

↓ fusion

�� � � �a d c e b

↓ insertion

� �� � � � �a u v d c e b

↓ inversion

� �� � � � �a u v d c b e

↓ inversion

� � � � � � �a u b c d v e

Fig. 6. Two optimal scenarios sorting {◦axec◦, ◦dyb◦} into {◦aubcdve◦}. (i) Minimizing

DCJs gives 3 DCJs and 3 indels. (ii) Minimizing indels gives 4 DCJs and 2 indels.
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of operations, s1 and s2, such that the operations in s1 are applied on A and
the operations in s2 are applied on B (although we do not explicitly identify in
the pseudo-code which operations are in s1 and which operations are in s2). As
previously stated, an optimal sequence sorting A into B is given by s1s

−1
2 .

Algorithm 1. Sorting genome A into B with minimum number of DCJs

1. Apply all P , Q, T , S, M and N-recombinations, in this order.

2. For each component C ∈ AG(A,B):

(a) Split C with optimal DCJs (that have Δλ = 0) until only components

that have at most 2 runs are obtained and the total number of runs in

all new components is equal to λ(C).

(b) Accumulate all runs in the smaller components derived from C with

optimal DCJ operations (that have Δλ = 0).

(c) Apply optimal DCJ operations (that have Δλ = 0) in the smaller

components derived from C until only DCJ-sorted components exist.

(d) Delete all runs in the DCJ-sorted components derived from C.

The given algorithm does the minimum number of DCJs with Δλ ≤ −1 (only
those that are in recombinations of step 1). All other operations applied are
optimal DCJs with Δλ = 0 and indels. As a consequence, this gives a sorting
scenario that minimizes the number of DCJs, with respect to indels.

However, the space of solutions of the sorting problem contains scenarios with
different compositions and, using the same number of steps, one could look for a
scenario with less indels and more DCJ operations. Fig. 6 shows examples of two
different approaches: the algorithm given above, that minimizes the number of
DCJs, and a second approach, that minimizes the number of indels. The second
approach will be presented in the following.

3.2 Sorting with a Minimum Number of Indels

In order to design an algorithm to sort a genome A into a genome B minimizing
the number of indels, we need to use the DCJs with lower Δλ, among those with
Δd = 0. Thus, instead of using optimal DCJs with Δλ = 0, as in steps 2(a,b,c)
of the previous algorithm, we shall maximize the use of counter-optimal DCJs
with Δλ = −2 and neutral DCJs with Δλ = −1.

First we will analyze the operations acting on a single component. In this
case, any counter-optimal DCJ has Δλ ≥ 0. The same happens with any neutral
DCJ acting on a single component C with Λ(C) ≤ 3 [4]. Only neutral DCJs
acting on a single component with at least 4 runs can have Δλ = −1:

Proposition 3. Given a component C with Λ(C) ≥ 4, the best we can get with
a neutral DCJ operation ρ acting only on C is ΔΛ(ρ) = −2 and Δλ(ρ) = −1.

Proof. When the component has Λ ≥ 4, the operation ρ can cut after the first
and before the last run, and simply invert this segment. In this case we get
ΔΛ(ρ) = −2, resulting in λ1 = � (Λ(C)−2)+1

2 � = �Λ(C)+1
2 �− 1 = λ0− 1. (Since we

can apply only two cuts and two joins, it is not possible to do better). ��
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Table 3. Further neutral and counter-optimal recombinations with Δd = 0 (in addition

to those listed in Table 2). Each operation here has a resultant of the same type of one

of its sources.

sources resultants Δλ Δdcj Δd

YAB + C∗
1 C∗

1 −2 +2 0

SA + C∗
2 C∗

2 −1 +1 0
SB + C∗

3 C∗
3 −1 +1 0

ABAB + ABAB ABε + ABAB −1 +1 0
ABBA + ABBA ABε + ABBA −1 +1 0

sources resultants Δλ Δdcj Δd

AAA + P∗
1 AAε + P∗

1 −1 +1 0
AAB + P∗

2 AAε + P∗
2 −1 +1 0

BBA + P∗
3 BBε + P∗

3 −1 +1 0
BBB + P∗

4 BBε + P∗
4 −1 +1 0

ABA + P∗
5 ABε + P∗

5 −1 +1 0
ABB + P∗

6 ABε + P∗
6 −1 +1 0

* The components C1, C2, C3, P1, P2, P3, P4, P5 and P6 can be:

C1: YAB , AAAB, AAABA, AABAB, BBAB, BBABA,
BBBAB, ABAB, ABBA, ABABA or ABBAB

C2: SA, YA, YAB, AAA, AAAB, AABAB, BBA,
BBAB , BBBAB, ABA, ABAB, ABBA or ABBAB

C3: SB, YB, YAB , AAB, AAAB, AAABA, BBB,
BBAB , BBABA, ABB, ABAB, ABBA or ABABA

P1: AAAB, AAA or ABAB
P2: AAAB, AAB or ABBA
P3: BBAB , BBA or ABBA
P4: BBAB , BBB or ABAB
P5: AAA, BBA, ABAB , ABBA or ABA
P6: AAB, BBB , ABAB, ABBA or ABB

Algorithm 2: Sorting genome A into B with minimum number of indels

1. Apply all P , Q, T , S, M and N-recombinations, in this order.

2. While there is a DCJ ρ, such that ρ is either a counter-optimal recombi-

nation from Table 3, or a neutral recombination from Table 2 or 3, or an

optimal recombination from Table 2, apply ρ. [After this step, there is at most

one component with 2 or more runs; the others have at most one run.]

3. For each component C ∈ AG(A,B):

(a) While Λ(C) ≥ 4, apply a neutral DCJ on C with Δλ = −1 (Prop. 3).

(b) If Λ(C) = 3 (C is a path), merge the last and the first runs of C extracting

a cycle with all runs (optimal DCJ with Δλ = 0).

(c) Accumulate all runs in the smaller components derived from C with

optimal DCJ operations that have Δλ = 0.

(d) Apply optimal DCJ operations in the smaller components derived from

C until only DCJ-sorted components exist (these DCJs have Δλ = 0).

(e) Delete all runs in the DCJ-sorted components derived from C.

Proposition 3 guarantees that, with neutral DCJs, we can merge runs in any
component C with Λ(C) ≥ 4, such that in the end of the process C has only 2
or 3 runs. In order to maximize the use of these neutral DCJs, a good strategy
is to first regroup runs efficiently in one component. This can be done using
recombinations with Δd = 0, as those listed in Table 2. Additional recombina-
tions with Δd = 0 are listed in Table 3, in which YAB is a cycle with at least
one A-run and one B-run, and SA and SB are circular singletons in genomes A
and B, respectively. All recombinations in Table 3 regroup all remaining runs in
one single component, thus they should be applied before the neutral DCJs from
Proposition 3. The same happens with the neutral and optimal recombinations
in Table 2. (Instead of using the 2 counter-optimal recombinations of Table 2
we use the 2 neutral recombinations of Table 3 that have the same sources, but
regroup all remaining runs in one component.)

From the previous observations we can derive an algorithm to sort a genome
A into a genome B minimizing the number of insertions and deletions.
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Table 4. Comparing R. bellii (1.52 Mbp) with six other species of Rickettsia

species Mbp did
DCJ MIN DCJs MIN indels

DCJs+indels DCJs+indels

R. felis 1.55 493 312 + 181 389 + 104
R. massiliae 1.36 448 276 + 172 340 + 108
R. africae 1.28 426 260 + 166 322 + 104

species Mbp did
DCJ MIN DCJs MIN indels

DCJs+indels DCJs+indels

R. conorii 1.27 414 261 + 153 313 + 101
R. prowazekii 1.11 314 197 + 117 216 + 98
R. typhi 1.11 309 195 + 114 212 + 97

3.3 Experiments

We compared the two approaches using a database of seven well annotated
genomes of Rickettsia bacteria [2]. Six of the species available in [2] are closely
related. The exception is R. bellii, which shows a high level of rearrangement
with respect to the others. We compared R. bellii with the other six species, using
both approaches, one that minimizes DCJ operations and one that minimizes
indels. The results are presented in Table 4.

The purpose of these experiments is to show the contrast of the number
of clusters that can be obtained with the two approaches. In the particular
case of this dataset, we observed that, while the number of indels varies from
114 to 181 with the algorithm that maximizes indels, we found a much smaller
variation (from 97 to 108) with the algorithm that minimizes indels. However, a
careful biological analysis of the data would be necessary to verify whether these
differences could indicate which approach is better.

4 Final Remarks

In this work we developed algorithms to sort one genome into another one using
DCJ and indel operations. We show that, in the space of solutions of this prob-
lem, the optimal sorting scenarios can have different compositions with respect
to the number of each type of operation. We took a first step in the exploration
of this solution space proposing approaches that give two different types of sort-
ing scenarios: one that minimizes the number of DCJ operations (respectively
maximizing the number of insertions and deletions) and one that minimizes
the number of insertions and deletions (respectively maximizing the number of
DCJ operations). However, the characterization of the whole space of solutions
remains an open problem.
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Appendix: P , Q, T , S, M and N -Recombinations

Table 5. The groups of P , Q, T , S, M and N-recombinations, identified by Braga et
al. [4] with the help of Tables 1 and 2. The column scr indicates the contribution of

each path in the distance decrease.

sources resultants Δd scr

P AAAB + BBAB 2AB• −2 −1

Q 2AAAB + BBA + BBB 4AB• −3 −3/4
2BBAB + AAA + AAB 4AB• −3 −3/4

T AAAB + BBA + ABAB 3AB• −2 −2/3
AAAB + BBB + ABBA 3AB• −2 −2/3
BBAB + AAA + ABBA 3AB• −2 −2/3
BBAB + AAB + ABAB 3AB• −2 −2/3
2AAAB + BBA 2AB• + AAB −2 −2/3
2AAAB + BBB 2AB• + AAA −2 −2/3
2BBAB + AAA 2AB• + BBB −2 −2/3
2BBAB + AAB 2AB• + BBA −2 −2/3

sources resultants Δd scr

S AAA + BBA 2AB• −1 −1/2
AAB + BBB 2AB• −1 −1/2
ABAB + ABBA 2AB• −1 −1/2
BBAB + AAA AB• + ABAB −1 −1/2
AAAB + BBA AB• + ABBA −1 −1/2
BBAB + AAB AB• + ABBA −1 −1/2
AAAB + BBB AB• + ABAB −1 −1/2
AAAB + ABAB AB• + AAA −1 −1/2
AAAB + ABBA AB• + AAB −1 −1/2
BBAB + ABAB AB• + BBB −1 −1/2
BBAB + ABBA AB• + BBA −1 −1/2
AAAB + AAAB AAB + AAA −1 −1/2
BBAB + BBAB BBB + BBA −1 −1/2

sources resultants Δd scr

M 2ABAB + AAB + BBA 4AB• −2 −1/2
2ABBA + AAA + BBB 4AB• −2 −1/2

N ABAB + AAB + BBA 3AB• −1 −1/3
ABBA + AAA + BBB 3AB• −1 −1/3

sources resultants Δd scr

N 2ABAB + AAB 2AB• + AAA −1 −1/3
2ABAB + BBA 2AB• + BBB −1 −1/3
2ABBA + AAA 2AB• + AAB −1 −1/3
2ABBA + BBB 2AB• + BBA −1 −1/3
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Abstract. Given two genomes with duplicate genes, Zero Exemplar
Distance is the problem of deciding whether the two genomes can be

reduced to the same genome without duplicate genes by deleting all but

one copy of each gene in each genome. Blin, Fertin, Sikora, and Vialette

recently proved that Zero Exemplar Distance for monochromosomal

genomes is NP-hard even if each gene appears at most two times in each

genome, thereby settling an important open question on genome rear-

rangement in the exemplar model. In this paper, we give a very simple

alternative proof of this result. We also study the problem Zero Ex-
emplar Distance for multichromosomal genomes without gene order:

from one direction, we show that this problem is NP-hard even if each

gene appears at most two times in each genome; from the other direc-

tion, we show that this problem admits a polynomial-time algorithm if

only one of the two genomes has duplicate genes, and is fixed-parameter

tractable if the parameter is the maximum number of chromosomes in

each genome.

1 Introduction

Given two genomes with duplicate genes, Genome Rearrangement with
Gene Families [11] is the problem of deleting all but one copy of each gene
in each genome, so as to minimize some rearrangement distance between the
two reduced genomes. The minimum rearrangement distance thus attained is
called the exemplar distance between the two genomes. For example, each of the
following two monochromosomal genomes

G1 : −4 +1 +2 +3 −5 +1 +2 +3 −6
G2 : −1 −4 +1 +2 −5 +3 −2 −6 +3

has at most two copies of each gene, and each of the following two reduced
genomes

G′
1 : −4 +1 +2 −5 +3 −6

G′
2 : −4 +1 +2 −5 +3 −6

has exactly one copy of each gene. Recall that in the study of genome rearrange-
ment, a gene is usually represented by a signed integer: the absolute value of the
� Supported in part by NSF grant DBI-0743670.

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 74–82, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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integer (the unsigned integer) denotes the gene family to which the gene belongs;
the sign of the integer denotes the orientation of the gene in its chromosome.
Then a chromosome is a sequence of signed integers, and a genome is a collection
of chromosomes.

Genome Rearrangement with Gene Families is not a single problem
but a whole class of related problems, because the choice of rearrangement dis-
tance is not unique. This choice becomes irrelevant, however, when we ask the
fundamental question: Is the distance zero? In the example above, the two re-
duced genomes G′

1 and G′
2 are identical, thus the exemplar distance between the

two original genomes G1 and G2 is zero for any reasonable choice of rearrange-
ment distance.

In this paper, we study the most basic version of the problem Genome Re-
arrangement with Gene Families: Given two sequences of signed integers,
Zero Exemplar Distance (for monochromosomal genomes) is the problem of
deciding whether the two sequences have a common subsequence including each
unsigned integer exactly once in either positive or negative form.

Due to its generic nature, the problem Zero Exemplar Distance has been
extensively studied by several groups of researchers [5,4,2] focusing on different re-
arrangement distances, and, not surprisingly, has acquired severaldifferent names.
Except for trivial distinctions, Zero Exemplar Distance is essentially the same
problem as Zero Exemplar Conserved Interval Distance [5], Exemplar
Longest Common Subsequence [4], and Zero Exemplar Breakpoint
Distance [2].

It is easy to check that Zero Exemplar Distance can be solved in poly-
nomial time if only one of the two genomes has duplicate genes. On the other
hand, if both genomes contain duplicate genes, then even if each gene appears
at most three times in each genome, the problem Zero Exemplar Distance
is already NP-hard, as shown independently in three papers [5,4,2]. The quest
for the exact boundary between polynomial solvability and NP-hardness led to
the following open question first raised by Chen et al. in 2006:

Question 1 (Chen, Fowler, Fu, and Zhu, 2006 [5]). Is the problem Zero Ex-
emplar Distance for monochromosomal genomes still NP-hard if each gene
appears at most two times in each genome?

This question was finally settled in the affirmative by Blin et al. in 2009:

Theorem 1 (Blin, Fertin, Sikora, and Vialette, 2009 [3]). Zero Exem-
plar Distance for monochromosomal genomes is NP-hard even if each gene
appears at most two times in each genome.

In Section 2, we give a very simple alternative proof of this theorem.
Both the previous proof of Theorem 1 [3] and our alternative proof depend

crucially on the order of the genes in the chromosomes. One may naturally
wonder whether the complexity of Zero Exemplar Distance would change
if gene order is not known. Note that genome rearrangement distances such as
the syntenic distance [8] can be defined in the absence of gene order.
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Now model each chromosome as a set of unsigned integers instead of a
sequence of signed integers. Then Zero Exemplar Distance for multichromo-
somal genomes without gene order is the following problem: Given two collec-
tions G1 and G2 of subsets of the same ground set S of unsigned integers, decide
whether both G1 and G2 can be reduced, by deleting elements from subsets and
deleting subsets from collections, to the same collection G′ of subsets of S such
that each unsigned integer in S is contained in exactly one subset in G′, i.e., G′

is a partition of S. For example,

G1 : {1, 2, 3} {2, 3, 4} {4, 5}
G2 : {1, 2} {2, 3, 4} {3, 4, 5} {1, 5}
G′ : {1, 2} {3} {4, 5}

In Section 3, we prove the following theorem:

Theorem 2. Zero Exemplar Distance for multichromosomal genomes
without gene order is NP-hard even if each gene appears at most two times
in each genome. On the other hand, this problem admits a polynomial-time algo-
rithm if only one of the two genomes has duplicate genes, and is fixed-parameter
tractable if the parameter is the maximum number of chromosomes in each
genome.

As decision problems, Zero Exemplar Distance for monochromosomal
genomes and for multichromosomal genomes without gene order are clearly in
NP. Thus, following the NP-hardness results in Theorem 1 and Theorem 2, these
two decision problems are both NP-complete. Moreover, the NP-hardness results
in Theorem 1 and Theorem 2 imply that unless NP = P, the corresponding min-
imization problems of computing the exemplar distance between two genomes
do not admit any approximation. We refer to [5,6,4,2,1] for related results.

2 Alternative Proof of Theorem 1

We prove that Zero Exemplar Distance for monochromosomal genomes is
NP-hard by a reduction from the well-known NP-complete problem 3SAT [9].
Let (V, E) be a 3SAT instance, where V = {v1, . . . , vn} is a set of n boolean
variables, E = {e1, . . . , em} is a conjunctive boolean formula of m clauses, and
each clause in E is a disjunction of exactly three literals of the variables in V .
We will construct two sequences (genomes) G1 and G2 over 2n+6m+1 distinct
unsigned integers (genes):

variable genes Two genes xi, yi for each variable vi, 1 ≤ i ≤ n;
clause genes Three genes aj , bj, cj for each clause ej, 1 ≤ j ≤ m;
literal genes Three genes rj , sj , tj for the three literals of each clause ej, 1 ≤

j ≤ m;
separator gene One gene z.
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In our construction, all genes appear in the positive orientation in the two
genomes, so we will omit the signs in our description. The two genomes G1

and G2 are represented schematically as follows:

G1 : 〈v1〉 . . . 〈vn〉 z 〈e1〉 . . . 〈em〉
G2 : 〈v1〉 . . . 〈vn〉 z 〈e1〉 . . . 〈em〉

For each variable vi, the variable gadget 〈vi〉 consists of one copy of xi and two
copies of yi in G1, two copies of xi and one copy of yi in G2, and, for each literal
of the variable in the clauses, one copy of the corresponding literal gene (rj , sj ,
or tj for some clause ej) in each genome. Let pi,1, . . . , pi,ki be the literal genes
for the positive literals of vi, and let qi,1, . . . , qi,li be the literal genes for the
negative literals of vi. The genes xi, yi, pi,1, . . . , pi,ki , qi,1, . . . , qi,li in the variable
gadget 〈vi〉 are arranged in the following pattern in the two genomes:

G1〈vi〉 : yi pi,1 . . . pi,ki xi qi,1 . . . qi,li yi

G2〈vi〉 : pi,1 . . . pi,ki xi yi xi qi,1 . . . qi,li

For each clause ej , the clause gadget 〈ej〉 consists of two copies of each clause
gene aj , bj, cj and one copy of each literal gene rj , sj , tj . These genes in 〈ej〉 are
arranged in the following pattern in the two genomes:

G1〈ej〉 : rj aj bj cj sj aj bj cj tj

G2〈ej〉 : aj rj bj aj sj cj bj tj cj

This completes the construction. It is easy to check that each gene appears at
most two times in each genome, and that each genome includes exactly 3n +
12m + 1 genes including duplicates. We give an example:

Example 1. For a 3SAT instance of 4 variables and 2 clauses e1 = {r1 = v1, s1 =
¬v2, t1 = ¬v3} and e2 = {r2 = ¬v1, s2 = v3, t2 = v4}, the reduction constructs
the following two genomes:

G1 : y1r1x1r2y1 y2x2s1y2 y3s2x3t1y3 y4t2x4y4

z r1a1b1c1s1a1b1c1t1 r2a2b2c2s2a2b2c2t2
G2 : r1x1y1x1r2 x2y2x2s1 s2x3y3x3t1 t2x4y4x4

z a1r1b1a1s1c1b1t1c1 a2r2b2a2s2c2b2t2c2

The assignment v1 = true, v2 = false, v3 = false, v4 = true satisfies the 3SAT
instance and corresponds to the following common reduced genome:

G′ : r1x1y1 y2x2s1 y3x3t1 t2x4y4 z a1b1c1 r2a2s2b2c2

The reduction clearly runs in polynomial time. It remains to prove the following
lemma:

Lemma 1. The 3SAT instance (V, E) is satisfiable if and only if the two
genomes G1 and G2 have a common subsequence G′ including exactly one copy
of each gene.
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We first prove the direct implication. Suppose that the 3SAT instance (V, E) is
satisfiable. We will compose a common subsequence G′ of the two genomes G1

and G2 from a common subsequence of each variable gadget 〈vi〉, the separator
gene z in the middle, and a common subsequence of each clause gadget 〈ej〉.
Consider a truth assignment that satisfies the 3SAT instance. For each variable
vi, take the subsequence pi,1 . . . pi,ki xiyi if vi is set to true, and take the sub-
sequence yixi qi,1 . . . qi,li if vi is set to false. For each clause ej , at least one of
its three literals is true; correspondingly, at least one of the three literal genes
rj , sj , tj has been taken from some variable gadget 〈vi〉. Now take a subsequence
from the clause gadget 〈ej〉 following one of three cases:

1. If rj has been taken, then take the subsequence ajbjsjcjtj .
2. If sj has been taken, then take either the subsequence rjbjajcjtj or the

subsequence rjajcjbjtj .
3. If tj has been taken, then take the subsequence rjajsjbjcj .

Here an underlined literal gene is omitted from the subsequence taken from the
clause gadget 〈ej〉 if its other copy has already been taken from some variable
gadget 〈vi〉. The common subsequence G′ thus composed clearly includes exactly
one copy of each gene.

We next prove the reverse implication. Suppose that the two genomes G1 and
G2 have a common subsequence G′ including exactly one copy of each gene. We
will find a satisfying assignment for the 3SAT instance (V, E) as follows. Due to
the strategic location of the separator gene z in the two genomes, each literal
gene must appear in the common subsequence either before z in both genomes,
in some variable gadget 〈vi〉, or after z in both genomes, in some clause gadget
〈ej〉. The crucial property of the clause gadget 〈ej〉 is that it cannot have a
common subsequence including exactly one copy of each clause gene aj, bj , cj

unless at least one of the three literal genes rj , sj , tj is omitted. A literal gene
omitted from the common subsequence of the clause gadget 〈ej〉 has to appear
in the common subsequence of some variable gadget 〈vi〉, where the two variable
genes xi and yi must appear in the order xiyi if the literal is positive and appear
in the order yixi if the literal is negative. Now set each variable vi to true if the
two variable genes xi and yi appear in the common subsequence G′ in the order
xiyi, and set it to false otherwise. Then each clause gets at least one true literal.
This completes the proof.

3 Proof of Theorem 2

We prove that Zero Exemplar Distance for multichromosomal genomes
without gene order is NP-hard by a reduction again from 3SAT. Let (V, E)
be a 3SAT instance, where V = {v1, . . . , vn} is a set of n boolean variables,
E = {e1, . . . , em} is a conjunctive boolean formula of m clauses, and each clause
in E is a disjunction of exactly three literals of the variables in V . Without loss of
generality, assume that no clause in E contains two literals of the same variable
in V . We will construct two genomes G1 and G2 over n + 9m distinct genes:
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variable genes. One gene xi for each variable vi, 1 ≤ i ≤ n;
clause genes. Six genes aj , bj, cj , a

′
j , b

′
j, c

′
j for each clause ej, 1 ≤ j ≤ m;

literal genes. Three genes rj , sj , tj for the three literals of each clause ej , 1 ≤
j ≤ m.

For each variable vi, let pi,1, . . . , pi,ki be the literal genes for the positive literals
of vi, and let qi,1, . . . , qi,li be the literal genes for the negative literals of vi. G1

includes one subset and G2 includes two subsets of genes including xi:

G1〈vi〉 : {pi,1, . . . , pi,ki , xi, qi,1, . . . , qi,li}
G2〈vi〉 : {pi,1, . . . , pi,ki , xi} {xi, qi,1, . . . , qi,li}

For each clause ej, G1 includes six subsets and G2 includes seven subsets of
clause/literal genes:

G1〈ej〉 : {aj, bj} {bj, cj} {cj, aj} {a′
j , rj} {b′j, sj} {c′j, tj}

G2〈ej〉 : {aj, bj , cj} {aj , a
′
j, rj} {bj, b

′
j , sj} {cj, c

′
j , tj} {a′

j} {b′j} {c′j}

This completes the construction. It is easy to check that each gene appears at
most two times in each genome, G1 includes exactly n + 15m genes including
duplicates, and G2 includes exactly 2n + 18m genes including duplicates. We
give an example:

Example 2. For a 3SAT instance of 4 variables and 2 clauses e1 = {r1 = v1, s1 =
¬v2, t1 = ¬v3} and e2 = {r2 = ¬v1, s2 = v3, t2 = v4}, the reduction constructs
the following two genomes:

G1 : {r1, x1, r2} {x2, s1} {s2, x3, t1} {t2, x4}
{a1, b1} {b1, c1} {c1, a1} {a′

1, r1} {b′1, s1} {c′1, t1}
{a2, b2} {b2, c2} {c2, a2} {a′

2, r2} {b′2, s2} {c′2, t2}
G2 : {r1, x1} {x1, r2} {x2} {x2, s1} {s2, x3} {x3, t1} {t2, x4} {x4}

{a1, b1, c1} {a1, a
′
1, r1} {b1, b

′
1, s1} {c1, c

′
1, t1} {a′

1} {b′1} {c′1}
{a2, b2, c2} {a2, a

′
2, r2} {b2, b

′
2, s2} {c2, c

′
2, t2} {a′

2} {b′2} {c′2}

The assignment v1 = true, v2 = false, v3 = false, v4 = true satisfies the 3SAT
instance and corresponds to the following common reduced genome:

G′ : {r1, x1} {x2, s1} {x3, t1} {t2, x4}
{a1} {b1, c1} {a′

1} {b′1} {c′1}
{c2} {a2, b2} {a′

2, r2} {b′2, s2} {c′2}

The reduction clearly runs in polynomial time. It remains to prove the following
lemma:

Lemma 2. The 3SAT instance (V, E) is satisfiable if and only if the two
genomes G1 and G2 have a common reduced genome G′ including exactly one
copy of each gene.
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We first prove the direct implication. Suppose that the 3SAT instance (V, E) is
satisfiable. We will compose a common reduced genome G′ of the two genomes G1

and G2 as follows. Consider a truth assignment that satisfies the 3SAT instance.
For each variable vi, take the subset {pi,1, . . . , pi,ki , xi} if vi is set to true, and
take the subset {xi, qi,1, . . . , qi,li} if vi is set to false. For each clause ej , at least
one of its three literals is true; correspondingly, at least one of the three literal
genes rj , sj , tj has been taken from a subset that contains some variable gene
xi. Now take some subsets of clause/literal genes following one of three cases:

1. If rj has been taken, then take the subsets {aj}, {bj, cj}, {a′
j}, {b′j, sj}, {c′j, tj}.

2. If sj has been taken, then take the subsets {bj}, {cj, aj}, {a′
j, rj}, {b′j}, {c′j, tj}.

3. If tj has been taken, then take the subsets {cj}, {aj, bj}, {a′
j, rj}, {b′j, sj}, {c′j}.

Here an underlined literal gene is omitted from the subset taken from the clause
gadget 〈ej〉 if its other copy has already been taken from a subset that contains
some variable gene xi. The reduced genome G′ thus composed clearly includes
exactly one copy of each gene.

We next prove the reverse implication. Suppose that the two genomes G1 and
G2 have a common reduced genome G′ including exactly one copy of each gene.
We will find a satisfying assignment for the 3SAT instance (V, E) as follows.
The crucial property of the clause gadget 〈ej〉 is that it cannot have a common
reduced genome including exactly one copy of each clause gene aj , bj , cj , a

′
j, b

′
j , c

′
j

unless at least one of the three literal genes rj , sj , tj is omitted. A literal gene
omitted from the clause gadget 〈ej〉 has to appear in a subset in G′ that contains
some variable gene xi. By the construction of the variable gadgets, this subset
contains, besides xi, either literal genes for positive literals, or literal genes for
negative literals. Now set each variable vi to true if the subset in G′ that contains
xi also contains at least one literal gene for a positive literal, and set it to false
otherwise. Then each clause gets at least one true literal. This completes the
NP-hardness proof.

3.1 Two Algorithms

We present two algorithms for Zero Exemplar Distance for multichromoso-
mal genomes without gene order. Let k1 and k2, respectively, be the numbers of
chromosomes in G1 and G2. Let A1, . . . , Ak1 be the k1 chromosomes in G1. Let
B1, . . . , Bk2 be the k2 chromosomes in G2. Let k = max{k1, k2}. Let n be the
total number of genes in G1 and G2, i.e., n =

∑k1
i=1 |Ai|+

∑k2
j=1 |Bj |.

We first present a polynomial-time algorithm for a special case of the prob-
lem in which only one of the two genomes has duplicate genes. Assume without
loss of generality that G1 has no duplicate genes. Then the problem is simply
deciding whether G1 can be obtained from G2 by deleting genes from chromo-
somes and deleting chromosomes altogether, which is possible if and only if each
chromosome in G1 is a subset of a distinct chromosome in G2. This leads to the
following simple algorithm based on matching in bipartite graphs:



The Zero Exemplar Distance Problem 81

Algorithm A1

1. Construct a bipartite graph G = (V1 ∪ V2, E) with vertices V1 =
{A1, . . . , Ak1} and V2 = {B1, . . . , Bk2}, and with an edge between Ai ∈ V1

and Bj ∈ V2 if and only if Ai ⊆ Bj .
2. Compute a maximum-cardinality matching M in the graph G.
3. If the cardinality of M is equal to k1, return yes. Otherwise, return no.

The correctness of Algorithm A1 is obvious. We now analyze its time complexity.
Step 1 can be easily implemented in O(n2) time. The resulting bipartite graph
has k1 + k2 ≤ 2 max{k1, k2} = 2k vertices. Using the standard Hopcroft-Karp
algorithm for bipartite matching [10], step 2 can be implemented in O(k5/2)
time. Thus the overall time complexity is O(n2 + k5/2), which is polynomial.

We next present a fixed-parameter tractable algorithm for this problem with-
out any assumption on the distribution of duplicate genes. Refer to [7] for basic
concepts in parameterized complexity theory. The parameter of our algorithm is
k = max{k1, k2}:

Algorithm A2

1. Add k − k1 empty chromosomes Ak1+1, . . . , Ak to G1, or add k − k2 empty
chromosomes Bk2+1, . . . , Bk to G2, such that G1 and G2 have the same
number k of chromosomes.

2. For each permutation π of 〈1, . . . , k〉, compute Cπ = ∪k
i=1(Ai ∩Bπ(i)).

3. If for some permutation π the set Cπ includes all the genes, return yes.
Otherwise return no.

To see the correctness of Algorithm A2, note that each chromosome of the com-
mon reduced genome (if it exists) is obtained from each input genome as a
subset of a distinct chromosome. This gives rise to a match between two chro-
mosomes from the two input genomes. All other unmatched chromosomes do
not contribute to the common reduced genome and are deleted. To handle the
matching and the deletion of the chromosomes in a uniform way, we can think of
each chromosome deleted from one genome as matched to a chromosome deleted
from the other genome or to an empty chromosome. Thus by padding the two
genomes to the same number of chromosomes, we only need to consider per-
fect matchings as permutations. The overall time complexity of Algorithm A2 is
O(k! n2), with O(n2) time for each of the k! permutations.

We remark that the problem Zero Exemplar Distance for multichromoso-
mal genomes without gene order is unlikely to have a fixed-parameter tractable
algorithm if the parameter is the maximum number of genes in any single chro-
mosome. This is because 3SAT remains NP-hard even if for each variable there
are at most five clauses that contain its literals [9]. As a result, the number of
genes in each chromosome need not be more than some constant in our reduction
from 3SAT.
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3 Départment d’informatique et de recherche opérationnelle,
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Abstract. Motivated by the trend of genome sequencing without completing the
sequence of the whole genomes, Muñoz et al. recently studied the problem of
filling an incomplete multichromosomal genome (or scaffold) I with respect to a
complete target genome G such that the resulting genomic distance between I ′

and G is minimized, where I ′ is the corresponding filled scaffold. We call this
problem the one-sided scaffold filling problem. In this paper, we follow Muñoz
et al. to investigate the scaffold filling problem under the breakpoint distance for
the simplest unichromosomal genomes. When the input genome contains no gene
repetition (i.e., is a fragment of a permutation), we show that the two-sided scaf-
fold filling problem is polynomially solvable. However, when the input genome
contains some genes which appear twice, even the one-sided scaffold filling prob-
lem becomes NP-complete. Finally, using the ideas for solving the two-sided
scaffold filling problem under the breakpoint distance we show that the two-sided
scaffold filling problem under the genomic/rearrangement distance is also poly-
nomially solvable.

1 Introduction

Due to the advancement of genome sequencing technology, it is possible to sequence
more organisms for genomic analysis. (Throughout this paper, a multichromosomal
genome is represented as sequences of genes, while a unichromosomal genome is just
represented as a sequence of genes.) Interesting and somehow contradicting, the cost
of finishing genome sequencing has not decreased at the same rate compared with the
cost of random sequencing [1]. This means that many genomes released are not com-
pletely finished. It would be unsuitable to use these incomplete genomes (scaffolds) for
genomic analysis, simply due to the errors they could introduce.

Therefore, a natural problem is to fill the missing genes into scaffolds, with combina-
torial algorithms. As one must find a biologically meaningful way of filling scaffolds, it
makes sense to make use of some complete genomes (from some close species). Muñoz
et al. [10] recently carried out this idea on filling an incomplete multichromosomal scaf-
fold I to have I ′, such that the genomic distance [13] between I ′ and a given (complete)
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genome G is minimized. (The genomic distance is also called rearrangement distance,
which is the minimum number of allowed rearrangement operations transforming one
genome into the other.) We call this the one-sided scaffold filling problem. Basically,
the one-sided scaffold filling can be solved in polynomial time; in fact, linear time when
the breakpoint graph on I and G is constructed [10].

In [10], much effort has been put on several practical issues. For instance, what if the
missing genes can only be inserted in certain locations? What if some missing genes in
I are not really missing (i.e., they should not appear in G)? However, the corresponding
two-sided problem is not tackled in [10].

In this paper, we follow Muñoz et al. to investigate the scaffold filling problem un-
der the breakpoint distance for the simplest unichromosomal genomes. When the input
genome contains no gene repetition (i.e., is a fragment of a permutation), we show
that the two-sided scaffold filling problem is polynomially solvable. However, when
the input genome contains some genes which appear twice, even the one-sided scaffold
filling problem becomes NP-complete. The latter problem has a close connection with
the Minimum Common String Partition (MCSP) problem [2,3,4,7,8,9].

This paper is organized as follows. In Section 2, we give necessary definitions. In
Section 3, we present the polynomial time algorithm for the scaffold filling problem. In
Section 4, we show the NP-completeness proof for the one-sided scaffold filling prob-
lem when gene duplications are allowed. In Section 5, we show how to adapt our ideas
in Section 3 to solve the two-sided scaffold filling problem under the rearrangement
distance (i.e., for multichromosomal genomes) in polynomial time. In Section 6, we
conclude the paper.

2 Preliminaries

We first present some necessary definitions.
Given alphabet Σ, a string S is called a permutation if each element in Σ appears

exactly once in S. We also use c(S) = Σ to denote the set of elements in permutation
S. An (unsigned) unichromosomal genome is just a permutation over Σ.

A scaffold is an incomplete permutation, i.e., with some missing elements. We use
+ to denote permutation scaffold filling, e.g., for a permutation A and an element set
X such that c(A)∩X = ∅, if A∗ is a resulting permutation after filling all the elements
in X into A, then A∗ = A + X . Similarly, we use − to denote element elimination
from the permutation. Given two permutations A and B, if c(A) = c(B), then A and
B are related. Given two related permutations A and B, two consecutive elements ai

and ai+1 in A form an adjacency if they are also consecutive in B (i.e., as aiai+1 or
ai+1ai), otherwise they form a breakpoint. The number of breakpoints in A, which is
equal to that of B, is the breakpoint distance between A and B, denoted as bd(A, B).
Note that our breakpoint definition and the corresponding results all work when the
letters (or genes) are possibly signed.

The (two-sided) scaffold filling problem is defined as follows.

Scaffold Filling under the Minimum Permutation Breakpoint Distance (SF-PBD)
Input: two incomplete permutations A and B and two sets of elements X and Y , where
X = c(B)− c(A) and Y = c(A) − c(B).
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Question: minimize bd(A + X, B + Y ).
In the above definition, when either X or Y is empty, we have the one-sided scaffold

filling problem. Note that if A and B were related (i.e., c(A) = c(B)), then we would
have X = Y = ∅.

In practice, sometimes we need to deal with genomes with orthologous (duplicated)
genes. Let C(S) be a multiset to denote all the appearances of all the elements. We still
use + to denote string scaffold filling.

Scaffold Filling under the Minimum String Breakpoint Distance (SF-SBD)
Input: two strings A and B and two multisets of elements X and Y where X = c(B)−
c(A) and Y = c(A) − c(B).
Question: minimize bd(A + X, B + Y ).

For this problem, when some of the genes can appear more than once, we will show
that even the one-sided scaffold filling problem is NP-complete. This problem has a
close connection with the Minimum Common String Partition problem. We present the
details of our results under the breakpoint distance in the next two sections.

3 Polynomial Algorithm for SF-PBD

In this section we present a polynomial algorithm for scaffold filling under the permu-
tation breakpoint distance.

Lemma 1. Given two incomplete permutations A and B, let X = c(B) − c(A) and
Y = c(A)− c(B) be the sets of elements to be filled into A and B respectively. If there
is an adjacency aiai+1 in the two related permutations A − Y and B −X , then there
exists a scaffold filling such that every two consecutive elements between ai and ai+1

(in A + X and B + Y ) form an adjacency.

Proof. To obtain A+X and B +Y , we just need to insert the elements in X into A and
insert the elements in Y into B respectively. As aiai+1 is an adjacency in A − Y and
B−X , we have the full freedom to insert the respective elements in X +Y in between
ai and ai+1 such that they all form adjacencies in A + X and B + Y . ��

Lemma 2. Given two permutations A and B, let X = c(B) − c(A) and Y = c(A) −
c(B) be the sets of elements to be filled into A and B respectively. If there is a break-
point bibi+1 in A − Y , then in any scaffold filling, there is at least one breakpoint
between bi and bi+1 in A + X .

Proof. As shown in the previous lemma, we insert the respective elements in X + Y
into A−Y to obtain A+X . When we insert some respective elements in between bi and
bi+1, if these inserted elements contain a breakpoint then the lemma is proven. If the
inserted elements contain no breakpoint, then they must introduce at least a breakpoint
right before bi+1 or right after bi. ��

Lemma 3. Given two permutations A and B, let X = c(B) − c(A) and Y = c(A) −
c(B) be the sets of elements to be filled into A and B respectively. If there is a break-
point bibi+1 in A − Y , then there exists a scaffold filling such that there is only one
breakpoint between bi and bi+1 in A + X .
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Proof. As shown in the previous lemma, we just insert the respective elements in X+Y
in between bi and bi+1. If the breakpoint in B−X has one letter in agreement with bi or
bi+1, say bib

′, then we just make sure that the inserted elements contain no breakpoint,
the only breakpoint hence introduced is right before bi+1 (or right after bi in A + X , if
the corresponding breakpoint in B −X has the form of b′bi+1). ��

Theorem 1. Given two permutations A and B, let X = c(B)− c(A) and Y = c(A)−
c(B) be the sets of elements to be filled into A and B respectively. Then bd(A−Y, B−
X) = bd(A + X, B + Y ) and the corresponding A + X and B + Y can be computed
in O(n2) time.

Proof. Following the previous lemmas, it is easy to see that bd(A − Y, B − X) =
bd(A+X, B+Y ). The corresponding algorithm is as follows. First, we identify A−Y
and B − X , and compute the breakpoint distance bd(A − Y, B − X). Second, we
insert the respective elements from Y into A − Y and B − X such that the number
of breakpoints (in A and B −X + Y ) does not change. Then, we insert the respective
elements from X into A and B −X + Y , still maintaining the number of breakpoints.
Eventually, we obtain A + X and B + Y accordingly. The quadratic running time is
dominated by finding the correspondence between the identical characters in A and B.

��

An example of the above algorithm is as follows.

A = acefh, B = adbhge

X = {d, b, g}, Y = {c, f}

A− Y = aeh, B −X = ahe, bd(A− Y, B −X) = 1

A + X = acdbegfh, B + Y = acdbhfge, bd(A + X, B + Y ) = 1.

We comment that our algorithm also works when in A and B there are predefined
adjacencies one could not break, as long as these adjacencies have no conflict. For
example, we have A = · · · ac · · · gh · · · and B = · · · ea · · · fg · · ·, with predefined
adjacencies in boxes. When we fill e, f into A and c, g into B, the algorithm still works
as the predefined adjacencies are not in conflict. However, if A = · · · bac · · · ghf · · ·
and B = · · · bae · · · gfh · · ·, then our result does not hold anymore. In [10], this is
related to insert missing genes only in between contigs (i.e., not anywhere), which is a
problem needing further study.

4 Hardness of SF-SBD

In this section, we prove that SF-SBD is NP-complete; in fact, even the one-sided scaf-
fold filling problem is NP-complete, when each gene is allowed to appear at most twice.

We make a reduction from the maximum independent set problem on cubic graphs
(3-MIS). The main idea of this proof is from the NP-hardness proof by Goldstein et
al. for 2-MCSP (Minimum Common String Partition with each letter appears at most
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twice in an input string) [7]. We try to add more separators and adapt the proof for our
purposes. For completeness, we describe the MCSP problem as follows.

Define that two strings A and B are related if each element appears the same number
of times in A and B. A partition of a string A is a sequence P = (P1, P2, . . . , Pm)
of strings, called the blocks, whose concatenation is equal to A. Given a partition
P of a string A and a partition Q of a string B, we say that the pair (P, Q) is a common
partition of A and B if Q is a permutation of P . A minimum common string partition is
a common partition of two strings A and B with the minimum number of blocks. Two
related strings always have a minimum common string partition. Note that the break-
point distance of two related strings is equal to the size of minimum common string
partition minus one. An example is as follows. A = 01101110111, B = 01110011111,
the three optimal blocks are 011, 01110, 111.

Given a cubic graph G = (V, E) as an input for 3-MIS, for each vertex v ∈ V , we
create two substrings Av and Bv.
Av =
dvxv1yv2avbvxv2yv3cvdvevxv3yv4bvevzvfvgvxv4yv5fvhvkvxv5yv6gvlvxv6yv1hv

Bv =
bvyv1xv1cvdvyv2xv2avbvevyv3xv3dvevfvhvyv4xv4fvgvlvyv5xv5hvkvyv6xv6gv

In both Av and Bv, xviyv(i+1)mod 6 for 1 ≤ i ≤ 5, xv6yv1 , and yvixvi for 1 ≤ i ≤ 6
are separators and are not adjacencies following our definition of breakpoints. Av and
Bv contain 29 and 28 letters respectively, with zv not appearing in Bv. Among other
letters, av , cv, kv and lv only appear once in Av .

For each edge (u, v) ∈ E, we locally modify Au, Bu, Av and Bv . Before that a few
terms will be needed. The letters av and cv in Av are called the left sockets of Av and
the letters kv and lv in Av are the right sockets. Initially, all sockets are free.

As in [7], we orient the edges of G in such a way that each vertex has at most two
incoming edges and at most two outgoing edges. This can be done as follows: find a
maximal set (with respect to inclusion) of edge-disjoint cycles in G, and in each cycle,
orient the edges to form a directed cycle. The remaining edges form a forest. For each
tree in the forest, choose one of its nodes of degree one to be the root, and orient all
edges in the tree away from the root. This orientation will clearly satisfy the desired
properties.

Consider an edge
−−−→
(u, v) and a free right socket su of Au and a free left socket sv of

Av . Define R = fuhu if su = ku, and R = gu if su = lu; S = dvev if sv = cv , and
S = bv if sv = av. We do the following modifications:

(1) insert S to the immediate right of su in Au; in other words, change Rsu into
RsuS;

(2) replace svS with su in Av; in other words, change svS into su;
(3) replace sv with su in Bv .
(4) Bu is unchanged.

After this modification process, all relevant sockets will become non-free or used.

The final instance of SF-SBD is composed of strings A, B and a set Z , where A =⋃
v∈V Avpvqvrvwv , B =

⋃
v∈V Bvrvpvwvqv , and Z = {zv|v ∈ V }. More precisely,
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A and B can be considered as a concatenation of Avpvqvrvwv’s and Bvrvpvwvqv’s
with orders insignificant. We need to insert the elements in Z into B.

The reduction can be completed with the following lemmas.

Lemma 4. If there is an edge (u, v) ∈ E, after the above modification, Au and Av

cannot both contain 6 adjacencies with respect to B.

Proof. If Au contains 6 adjacencies with respect to B, they must be

{(aubu), (cudu), (euzu), (zufu), (huku), (gulu)}.

If R = gu and S = bv, after the modification (gulu) and (lubv) cannot be an adjacency
at the same time. (The claim is also true when R = gu and S = dvev .) Symmetrically,
if R = fuhu and S = bv, after the modification (huku) and (kubv) cannot be an
adjacency at the same time. (The claim is also true when R = fuhu and S = dvev.)
Therefore, as long as there is an edge between u and v, Au and Av cannot both contain
6 adjacencies with respect to B. ��

Lemma 5. Let G be a cubic graph on n vertices. There exists an independent set I
of size k in G if and only if there exists a scaffold filling such that there are 5n+k
adjacencies between A and B + Z .

Proof. For a vertex v ∈ V , if v ∈ I then there can be 6 adjacencies in Av . This can be
done as follows: insert zv between ev and fv in Bv, i.e.,
Bv + {zv} =
bvyv1xv1cvdvyv2xv2avbvevyv3xv3dvevzvfvhvyv4xv4fvgvlvyv5xv5hvkvyv6xv6gv.

Otherwise, if v is not in I , there are at most 5 adjacencies in Av , following Lemma 4.
All the separators xvi , yvi and pv, qv, rv and wv cannot form an adjacency. Therefore,
we have 6k + 5(n− k) = 5n + k adjacencies between A and B + Z .

The converse can be proved using a similar argument. If there are 5n+k adjacencies
between A and B + Z , following Lemma 4, exactly 6k adjacencies are from some Av

where v is in an independent set. Consequently, there is an independent set of G with
size k. ��

As it is obvious that SF-SBD is in NP, with Lemma 5, we hence have the following
theorem.

Theorem 2. SF-SBD is NP-complete.

5 Two-Sided Scaffold Filling under the Rearrangement Distance

In this section, we show how to adapt the ideas in Section 3 to solve the two-sided
scaffold filling problem under the rearrangement distance, when the genomes are mul-
tichromosomal and the genes are signed.
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Rearrangement Distance

The rearrangement distance or genomic distance D(G1, G2) is a metric counting the
number of genomic rearrangement operations necessary to transform one signed mul-
tichromosomal genome G1 containing n distinct genes into another, G2. The + or −
sign indicates the “reading direction” of a gene, left-to-right or right-to-left.

For a comprehensive repertoire of operations, which we need not elaborate here, Yan-
copoulos et al. [13] showed that D could be calculated efficiently using the breakpoint
graph [11] of G1 and G2 as follows:

1. Replace each positively-signed gene g on a chromosome by the vertex pair gt, gh;
replace a negative−g by gh, gt.

2. Each pair of successive genes in the genome defines one edge connecting the pair
of vertices that are adjacent in the vertex order. E.g., if i j − k are neighboring
genes on a chromosome then the two edges they define are {ih, jt} and {jh, kh}.
This leaves two unconnected vertices at the ends of each chromosome. Define an
edge incident to each such vertex in genome G1 and G2 connecting it to a new
vertex, all labelled T1 in G1 and T2 in G2.

3. Color the edges of G1 and G2 blue and red, respectively.
4. Identify (i.e., superimpose) each vertex in G1 with the identically labelled vertex in

G2.
5. Make a cycle of any path ending in two T1 or two T2 vertices, connecting them by

a red or blue edge, respectively, while for a path ending in a T1 and a T2, collapse
them to form one T vertex.

6. Each vertex is now incident to one blue and one red edge. This bicolored graph,
the breakpoint graph, decomposes uniquely into κ alternating cycles. If n′ is the
number of blue edges, D(G1, G2) = n′ − κ (see [13]) and the optimizing rear-
rangements are rapidly recovered by operations on the graph.

Bundles

Now consider the case where the genes in G2 are a subset of the genes in G1. We say
some genes are missing from G2. The one-sided scaffold filling problem is to insert the
missing genes in G2, thus forming Ḡ2, in such a way as to minimize D(G1, Ḡ2). In
[10], it was shown that the one-sided scaffold filling problem under the rearrangement
distance can be solved in polynomial time, in fact, in linear time once the breakpoint
graph is constructed.

We can still construct the breakpoint graph, except that some vertices, called free
ends, will only be incident to a blue edge and thus paths in the graph can end not only
in T vertices but also in free ends. When this happens, step 5 in the breakpoint graph
construction cannot be completed, and the decomposition and calculation in step 6 are
blocked.

A bundle is a subset of the paths in this partial breakpoint graph of G1 and G2.
(Partial because some paths are not cycles nor do they end in a T .) Each bundle is
associated with one or more of the missing genes. The vertices corresponding to each
missing gene, its free ends, must be in the same bundle and must be endpoints of one
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or two paths. To simplify the exposition, we assume that no bundle consists entirely of
blue edges, i.e., no chromosome in G1 has all its genes absent from G2. This case is
easily handled separately, and does not affect the distance calculations.

To construct a bundle, we initiate it with any path not already in any bundle and
ending with a free end. Then if a path containing free end gt is in a bundle B, then
we also include the path with gh as a free end, and vice versa. There can be zero or
two T vertices in a bundle. We now present the details on the two-sided scaffold filling
problem under the rearrangement distance. It is not hard to show the following lemma.

Lemma 6. If genomes G1 and G2 both contain the same n genes, and if m ≥ 1 genes
are inserted anywhere into both G1 and G2 to get Ḡ1 and Ḡ2, then D(Ḡ1, Ḡ2) ≥
D(G1, G2).

In a one-sided scaffold filling problem for G1 and G2, suppose there are r cycles in the
partial breakpoint graph and suppose this graph determines β bundles. Let G1 be the
genome formed by deleting from G1 the genes already missing from G2.

Lemma 7. Let κ be the number of cycles in the breakpoint graph of G1 and G2. Then
β = κ + r.

Proof. If at and ah are a pair of free ends in a bundle, incident to blue edges (at, x)
and (ah, y), remove at and ah and replace (at, x) and (ah, y) by (x, y). Repeat until
there are no more free ends in the bundle. This process converts a bundle into a cycle.
Repeated across all bundles it also removes all the missing genes. Therefore the number
of cycles in the partial breakpoint graph plus the number of bundles determined by this
graph equals the number of cycles in the breakpoint graph of G1 and G2. ��

It was shown in [10] how the one-sided scaffold filling problem can be solved by com-
pleting each bundle separately, i.e., by inserting the missing genes or drawing the red
edges between free ends within each bundle. It turns out that we have the following
theorem [10].

Theorem 3. For a bundle with ν paths, there are ν + 1 cycles produced by completing
the bundle, while ν genes inserted in G2.

The following corollary follows immediately.

Corollary 1. After completing all the bundles with (ν1, ν2, · · · , νβ) paths, there are
m = ν1 + ν2 + · · ·+ νβ genes inserted and the number of cycles is m + β.

Therefore, we have the following main result.

Theorem 4. D(G1, Ḡ2) = D(G1, G2).

Proof. The breakpoint graph of G1 and Ḡ2) has m more blue edges than the breakpoint
graph of G1 and G2, corresponding to the insertion of the m missing genes. But since
it had r cycles before bundle completion, the breakpoint graph of G1 and Ḡ2) has
r + m + β cycles, from Corollary 1. This is m more than the r + β cycles in the
breakpoint graph of G1 and G2 (Lemma 7). By definition of the distance D, we have
D(G1, Ḡ2) = D(G1, G2) ��
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For two-sided scaffold filling, we thus have the following exact algorithm for the case
when G1 contains genes G + X and G2 contains genes G + Y , where G, X and Y are
disjoint sets of genes.

1. Remove all the genes in set X from G1 to get G′
1, containing only the genes in G.

2. Apply one-sided scaffold filling to G2 and G′
1, inserting all the genes in Y into G′

1,
producing genome G′′

1 .
3. Restore genes in set X to G′′

1 . The insertion points are only constrained by the gene
order in G1. The new genome, G′′′

1 contains all the genes in G, X, and Y .
4. Apply one-sided scaffold filling to G′′′

1 and G2, inserting all the genes in X into
G2.

Because the distance between the two genomes reduced to the genes in G is a lower
bound for the distance between any two genomes enlarged through gene insertion, by
Lemma 6, and because steps 2 and 4 do not increase this distance, by Theorem 4, and
because step 3 is as general as possible while respecting the gene order of G1, the
correctness of the algorithm is verified.

As for the one-sided scaffold filling, once the breakpoint graph is constructed, the
remaining steps run in linear time.

6 Concluding Remarks

In this paper, we investigate the scaffold filling problems under both the breakpoint and
rearrangement distances. A very interesting open problem is when the missing genes
can be only inserted in between contigs (i.e., in some predefined locations); our current
method cannot generate any result with some performance guarantee. Another problem
is dealing with the cases when gene duplications are allowed. Our NP-completeness
proof implies that this is closely related to the Minimum Common String Partition
problem, for which the existence of an FPT algorithm [5] is not known yet. In [4,8],
several special cases were shown to admit exact algorithms, but when using the optimal
number of blocks in the final solution as the only parameter, we do not know whether
an FPT algorithm exists or not.
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Abstract. Tree reconciliation methods aim at estimating the evolution-

ary events that cause discrepancy between gene trees and species trees.

We provide a discrete computational model that considers duplications,

transfers and losses of genes. The model yields a fast and exact algorithm

to infer time consistent and most parsimonious reconciliations. Then we

study the conditions under which parsimony is able to accurately infer

such events. Overall, it performs well even under realistic rates, transfers

being in general less accurately recovered than duplications. An imple-

mentation is freely available at http://www.atgc-montpellier.fr/MPR.

1 Introduction

Duplications, losses and transfers are evolutionary events that shape genomes
of eukaryotes and prokaryotes. They result in discrepancies between gene and
species trees. Tree reconciliation aims at estimating the course of these events in
order to explain the observed incongruences of gene and species trees. A recon-
ciliation defines an embedding of a gene tree G into a species tree S, and thus lo-
cates duplications, transfers and losses. Reconciliation methods find applications
in various areas such as functional annotation in genomics [3], coevolutionary
studies in ecology [10], and studies on poputation areas in biogeography.

Probabilistic models have been proposed to reconcile trees [15,13], but heavy
computing times still limit their use to relatively small sets of taxa and small
collections of genes. An alternative approach relies on the more tractable com-
binatorial principle of parsimony [4]. Yet, with the advent of next generation
sequencing technologies, that flood molecular biology with new genomes, even
combinatorial methods might become too computationally expensive to han-
dle phylogenomic databases, that regularly deal with several dozen thousands
of gene families [11]. In this paper, we propose a combinatorial reconciliation
method that has the potential to keep pace with new sequencing technologies.

More formally, we consider the Most Parsimonious Reconciliation (MPR)
problem: given a species tree S, a gene tree G and respective costs for duplication,

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 93–108, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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transfer and loss events (respectively denoted D, T, and L events), compute a
time-consistent reconciliation that has a minimum cost. Time consistency means
that T events happen only horizontally, i.e. between coexisting species, and the
cost of a reconciliation is the sum of the costs of the events implied by the
embedding of G into S. For instance, when D, T, and L events have cost 5, 10, 1
respectively, the reconciliation of Fig. 1 (left) costs 23.

When only DLS events are considered (S refers to a speciation), the MPR
problem can be solved in linear time w.r.t. the size of G for binary trees [17]
and remains tractable when S is polytomous [16]. However, when T events are
considered, the MPR problem is NP-complete, even for reconciling two binary
trees [14]. This strong contrast in complexity is explained by the difficulty of
managing the chronological constraints among nodes of S that are induced by T

events. When not constraining T events, time inconsistent scenarios can ensue
(see Fig. 1; right), as remarked in [14]. These authors solve a variant of the MPR
problem with a fast O(|S|2 · |G|) algorithm, but that does not handle the time
consistency constraints and considers losses a posteriori. A promising approach
is to alter the definition of MPR to accept a dated tree S as input [9,1,10,5,15].
Dates for nodes of S can be obtained by relaxed molecular clock techniques
working from gene trees and molecular sequences. Relative dates are sufficient
for reconciliation, hence they are little limited by the possible absence of fossil
records for the studied species [8]. Given a dated tree S, time consistency can be
ensured locally by only considering T events whose donor and receiver branches
have intersecting time intervals [10]. However, two locally consistent T events
can be globally inconsistent, which then needs to be fixed by altering afterwards
the position of the proposed T [10], but this approach does not guarantee to solve
MPR exactly. To ensure global consistency, branches of S can be subdivided into
time slices transversal to all edges. Then, slices are explored one after the other,
and only combinations of T events in a same time slice are considered. This
recently led to two exact algorithms, one running in O((|S| · |G|)4) [7] and one
claiming a complexity of O(|S|2 · |G|) [5,6].

We propose here a formal modelization that leads to a fast exact algorithm
solving the time consistent MPR problem for a dated species tree in O(|S′| · |G|),

z
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Fig. 1. Two scenarios for a gene tree G (plain lines) along a species tree S (tubes),

where the symbol ◦ represents loss. (Left) A time consistent scenario. (Right) A scenario

that is not time consistent: the transfer from the donor at t3 (resp. t4) to a receiver at

t1 (resp. t2) implies that u predates (resp. follows) w.
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where S′ is a subdivision of S in at most O(|S|2) nodes. Then, we rely on an
implementation of this fast algorithm to obtain a first insight for the question:
Is parsimony relevant to infer the true evolutionary scenario of a gene family?

2 Methods

2.1 Basic Definitions and Notations

Let T be a tree with nodes V (T ) and branches E(T ), and such that only its
leaves are labeled. Let r(T ), L(T ), and L (T ) respectively denote its root node,
the set of its leaf nodes, and the set of taxa labelling its leaves. We will adopt the
convention that the root is at the top of the tree and the leaves at the bottom.

An edge of T is denoted (u, v) ∈ E(T ), where u is the parent of v. For a node
u of T , Tu denotes the subtree of T rooted at u, up its parent, (up, u) its parent
edge, and T(up,u) denotes the subtree of T rooted at edge (up, u). Given a subset
of leaves K ⊆ L(T ), the homeomorphic tree of T connecting K, denoted TK , is
the smallest binary tree induced from T such that L(TK) = K. T is a dated
tree if it is associated with a date function θT : V (T )→ R such that for any two
nodes x, x′ ∈ V (T ), if x′ is a strict descendant of x then θT (x′) < θT (x).

An internal node u of T has one or two children, where {u1} and {u1, u2}
respectively denote its child set. It is important to point out that because T is
an unordered tree, the children u1 and u2 of u are interchangeable. Given two
nodes u, u′ of T , u′ is said to be a (resp. strict) descendant of u if u is on the path
from u′ to r(T ) (resp. and u �= u′). An internal node u of T is said to be artificial
when it has one and only one child. Contracting an artificial node means that
the node is removed from the tree and that its two adjacent edges are merged.
A tree T ′ is said to be a subdivision of a tree T if the recursive contraction of
all artificial nodes of T ′ yields T .

A species tree S is a rooted binary tree such that each element of L (S)
represents an extant species labeling exactly one leaf of S (there is a bijection
between L(S) and L (S)). A date function θS for S (as defined above) ensures
that ∀x ∈ L(S), θS(x) = 0. A gene tree G is a rooted binary tree. From now
on, we consider a species tree S and a gene tree G such that L (G) ⊆ L (S) and
where L : L(G) → L(S) denotes the function that maps each leaf of G to the
unique leaf of S with the same label (leaves of G are labeled with the species
from which genes were sampled). To distinguish between G and S, the term edge
refers to G and the term branch refers to S.

We introduce below the concept of a scenario describing the evolution of a
gene that starts at node r(S) and evolves along S according to DTLS events.
Such a scenario generates a completed gene tree denoted Go, whose leaf set is
formed of contemporary genes (denoted LC(Go)) but also of lost genes (denoted
LL(Go)), see Fig. 1 and 2. Note that L(Go) = LC(Go) ∪ LL(Go).

Definition 1. Given an observed gene tree G and a species tree S, with its time
stamp function θS, a DTLS scenario for G along S is denoted (Go, M, θGo),
where Go is a completed gene tree, M : V (Go)→ V (S) maps each node of Go to
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a node of S, and θGo : V (Go) → [0, θS(r(S))] is a date function that associates
each node of Go to a time stamp of S. The scenario associates a DTLS event to
each node u ∈ V (Go) \ LC(Go) as described below (where u1 and u2 are the two
children of u and x = M(u)).

1. If u is a leaf of LL(Go), then it corresponds to an L event.
2. If M(u1) = x1, and M(u2) = x2, then u is an S event happening at x in S′.
3. If M(u1) = x and M(u2) = x, then u is a D event along the branch (xp, x).
4. If M(u1) = x, M(u2) = y, and y is neither an ancestor nor a descendant of

x, then u is a T event, where (xp, x) and (yp, y) respectively correspond to
the donor and the receiver branches.

A DTLS scenario is said to be consistent if and only if (1) the homeomorphic
gene tree Go

LC(Go) is isomorphic to G and (2) for a T event (i.e. Def. 1 (4))
[θS(x), θS(xp)] ∩ [θS(y), θS(yp)] �= ∅.

The cost of such a scenario is denoted Cost(Go, M, θGo) = dδ+ tτ + lλ, where
d, t, and l respectively denote the number of D, T, and L events, and δ, τ , and
λ are their respective costs.

Consider a species tree S with a time stamp function θS , an observed gene tree
G, the leaf-association function L : L(G) → L(S), and costs δ, τ , resp. λ for
D, T resp. L events. Given these inputs, the optimization problem considered
in the present paper, called MPR, is to compute a consistent DTLS scenario
(Go, M, θGo) for G along S that minimizes Cost(Go, M, θGo).

2.2 A Tractable Model of Reconciliation

To obtain a tractable model, we discretize time by subdividing the species tree
into time slices (similarly as done in [1,13]), then define a limited number of cases
for events to happen, that still allows us to infer a most parsimonious scenario.

Definition 2. (see Fig. 3) Given a species (binary) tree S and a time stamp
function θS : V (S) → R, let S′ be the subdivision of S constructed as follows:
for each node x ∈ V (S) \ L(S) and each branch (yp, y) ∈ E(S) s.t. θS(yp)

r(G)

a1 b1c1 d1

u w

r(Go)

a1 b1c1 d1

u w

Fig. 2. (Left) An observed gene tree G with four leaves a1, b1, c1, and d1, respectively

belonging to the contemporary species A, B, C, and D (see Fig. 1). (Right) A completed

gene tree Go, with L(Go) = LC(Go) ∪ LL(Go), where LC(Go) = {a1, b1, c1, d1}, and

LL(Go) is formed of the three nodes labelled ◦. G is the homeomorphic tree Go
K , where

K = LC(Go).
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> θS(x) > θS(y), an artificial node is inserted along the branch (yp, y) at time
θS(x). This subdivision allows us to define a time stamp function θ′S′ for S′ only
from its topology: for any x ∈ V (S′), θ′S′(x) is the number of edges separating x
from one of its descendant leaves (which leaf does not matter as they are all at
the same distance from x).

The time stamp of a branch (xp, x) of S′ is denoted θ′S′(xp, x) = θ′S′(x). More-
over, for a time t, let Et(S′) = {(xp, x) ∈ E(S′) : θ′S′(xp, x) = t} denote the set
of branches of S′ located at time t.

Definition 3. Consider a gene tree G and a species tree S with a time stamp
function θS, and let S′ be the subdivision of S and θ′S′ : V (S′) → N be the
corresponding time stamp function. A reconciliation between G and S is denoted
α and maps each edge (up, u) ∈ E(G) onto an ordered sequence of branches of
S′, denoted α(up, u), where � denotes its length and αi(up, u) its i-th element for
1 ≤ i ≤ �. Each branch αi(up, u), denoted below (xp, x), respects one and only
one of the following constraints (see Fig. 4).

First, consider the case that (xp, x) is the last branch α�(up, u) of the sequence
α(up, u). If u is a leaf of G, then x is the unique leaf of S′ that has the same
label as u (that is x = L(u)) (Contemporary taxa mappings). Otherwise, one of
the cases below is true.

– {α1(u, u1), α1(u, u2)} = {(x, x1), (x, x2)} (S event);
– α1(u, u1) and α1(u, u2) are both equal to (xp, x) (D event);
– {α1(u, u1), α1(u, u2)} = {(xp, x), (x′

p, x
′)}, where (x′

p, x
′) is any branch of

S′ other than (xp, x) and located at time θ′S′(xp, x) (T event).

If (xp, x) is not the last branch α�(up, u) of the sequence (i.e. i < �), one of
the following cases is true.

– x is an artificial node of S′ with a single child x1, and the next branch
αi+1(up, u) is (x, x1) (∅ event);

– x is not artificial and αi+1(up, u) ∈ {(x, x1), (x, x2)} (SL event);
– αi+1(up, u) = (x′

p, x
′) is any branch of S′ other than (xp, x) and located at

time θ′S′(xp, x) (TL event).

A B C D

x

y

z

(a) A species tree S

A B C D
0

1

2

3

x

y

z

x′ x′′

y′

(b) The subdivision S′ of S

Fig. 3. The species tree S and its subdivision S′. The artificial nodes of S′ are repre-

sented by gray circles and denoted y′, x′, and x′′, where θ′
S′(x) = θ′

S′(x′) = θ′
S′(x′′)

and θ′
S′(y) = θ′

S′(y′).
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A reconciliation α between the gene tree G of Fig. 2 (left) and the subdivision
S′ of Fig. 3b is depicted in Fig 1(left), where the path α(w, b1) along S′ associated
to the edge (w, b1) is [(y, x′), (y′, x), (x, B)]. Observe that the extended gene tree
Go (see Fig. 2; right) is a by-product of the reconciliation α.

Note that T events only happen between branches in a same time slice, hence
only time-consistent scenarios are generated by this model. We now argue that
the model allows to infer most parsimonious scenarios (see Def. 1). First, note
that each loss is coupled with either a speciation (SL) or a transfer (TL). Indeed,
any most parsimonious reconciliation embedding G into S′ only needs to use a
loss when it meets a speciation node of S′ where G goes into only one descending
tube, or when leaving a tube due to a transfer, with no part of G remaining in
the donor tube. Considering a lone loss as a seventh event in Fig. 4 would lead
us to examine reconciliations that are not most parsimonious, as this would only
allow us to replace – in a Go tree generated by the current model – a single
l ∈ LL(Go) by a subtree with no extant species (as the structure of G is common
to both these completed gene trees). Such a subtree contains at least two losses
and is hence less parsimonious than leaving leaf l in the Go proposed with the
current model. Then, any combination of DTLS events resulting from a scenario
(Def 1) can be reproduced by the model of Def. 3, safe for combinations that
would obviously not lead to most parsimonious scenarios: a speciation of a gene
where its two sons go extinct before reaching the leaves of S′; a gene duplication
where at least one of its sons goes extinct; a transfer where the transfered gene
lineage goes extinct.

Last, note that all cases considered in Def. 3 (see Fig. 4) allow us to progress
either in the time slices of S′ or along the edges of G. This is because a TL case
can not be followed by a second one in a most parsimonious scenario (see Prop. 1
in appendix). Thus, the model offers all ingredients for a dynamic programming
algorithm that finds a most parsimonious and time consistent scenario, while still
running in time polynomial in |S′| and |G|. In other words, this model allows to
solve the MPR problem exactly and in a tractable way.

Note that since the model places each loss immediately after another event
(speciation or transfer), it is not able to generate a most parsimonious scenario
σ = (Go, M, θo

G) where a lineage is lost after being alive for several slices in
a same tube (without meeting a speciation node). However, it can generate a
scenario σ′ = (Go, M̄ , θ̄o

G) that can be seen as a canonical representative of σ:
both scenarios share the same Go and have the same number and localization of
D, T, and L events in S (σ and σ′ only differ in the position of some L in the
subdivided species tree S′).

2.3 An Efficient Algorithm to Solve MPR

In this section, we propose a polynomial time and space algorithm that uses
the tractable reconciliation model of Def. 3 to solve the MPR problem (see
Algorithm 1).

Consider an edge (up, u) ∈ E(G), a branch (xp, x) ∈ E(S′), and the time
t = θ′S′(xp, x). Let Cost(u, x) denote the minimal cost over all reconciliations



An Efficient Parsimony Reconciliation Algorithm with D, T, L Events 99

21

1 2

p

u u

u

x

x

xx

(a) Speciation (S)

21

p

u u

u

x

x

(b) Duplication (D)

21

p
′
p

′

u u

u

x

xx

x

(c) Transfer (T)

1

p

u

x

x

x

(d) ∅ event

1 2

p

u

x

x

xx

(e) Speciation + Loss (SL)

p

′
p

′

u

x

x
x

x

(f) Transfer+Loss (TL)

Fig. 4. The six DTLS events of Def. 3, where an edge (up, u) of Go is mapped onto a

branch (xp, x) of the sequence α(up, u). The extended gene tree Go is embedded in the

subdivision S′ of a species tree S, where an edge of G corresponds to a plain line, a

branch of S′ corresponds to a dotted tube (white zone), and a node of S′ corresponds

to a gray zone.

between G(up,u) and the forest of subtrees of S′ rooted with a branch located
at time t, and such that (xp, x) is the first branch in the sequence associated
to (up, u) (that is α1(up, u) = (xp, x); see Def. 3). Assuming that the gene tree
G and the species tree S are rooted with an artificial branch, Cost(r(G), r(S′))
corresponds to the minimal cost over all reconciliations between G and S. The
dynamic programming algorithm (see pseudo-code in Algorithm 1) fills the ma-
trix Cost : V (G) × V (S′) → N through two embedded loops: one that visits
all edges according to a bottom-up traversal of G and one that visits all time
stamps of S′ in backward time order (i.e. starting from 0). For the edge (up, u)
and the time stamp t currently considered (respectively in lines 3 and 4), two
consecutive loops over all branches (xp, x) ∈ Et(S′) compute the minimal cost of
mapping (up, u) onto (xp, x) according to the six events S, D, T, ∅, SL, and TL

(see Fig. 4). For a branch (xp, x) ∈ Et(S′), the first loop (lines 5 to 20) computes
the minimal cost among the first five events. TL events can be considered sep-
arately (lines 21 to 24) as they may never be immediately followed by a second
TL in a most parsimonious scenario (as implied by Property 1 in Appendix).
Cost(u, x) is the minimum of the values computed in these two loops.

The case of Fig. 4c is considered at lines 13 to 15 where the cost of a T event
starting at (xp, x) is computed for edge (up, u). Assuming that (u, u1) (resp.
(u, u2)) is the transfered gene lineage, a subroutine called BestReceiver computes
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Algorithm 1. Computes Cost(r(G), r(S′)) according to the DTL costs, respec-
tively denoted δ, τ , and λ.
1. Construct the subdivision S′ of S as described in Def. 2

2. The matrix Cost : V (G) × V (S′) → N is initialized as follows: if u ∈ L(G),

x ∈ L(S′), and L(u) = x, then Cost(u, x)← 0. Else, Cost(u, x)←∞.

3. for all (up, u) ∈ E(G) according to a bottom-up traversal do
4. for all t∈{0, 1, . . . , θ′

S′(r(S′))} in backward time order do
5. for all branch (xp, x) ∈ Et(S

′) do

6. if u ∈ L(G), x ∈ L(S′), and L(u) = x then
7. Skip lines 8 to 20 and go to the next iteration of the loop at line 5 {Base

case}
8. Costg ←∞, for each g ∈ {S, D, T, ∅,SL}
9. if u has two children then

10. if x has two children then
11. CostS ← min{Cost(u1, x1)+Cost(u2, x2), Cost(u1, x2)+Cost(u2, x1)}
12. CostD ← Cost(u1, x) + Cost(u2, x) + δ

13. (yp, y)← BestReceiver((u,u1), t, (xp, x))

14. (zp, z)← BestReceiver((u,u2), t, (xp, x))

15. CostT ← min{ Cost(u1, x) + Cost(u2, z), Cost(u1, y) + Cost(u2, x) }+ τ

16. if x has a single child then
17. Cost∅ ← Cost(u, x1)

18. if x has two children then
19. CostSL ← min{Cost(u, x1), Cost(u, x2)}+ λ

20. Cost(u, x)← min{Costg : g ∈ {S, D, T, ∅, SL}}
21. for all branch (xp, x) ∈ Et(S

′) do
22. (x′

p, x′)← BestReceiver((up, u), t, (xp, x))

23. CostTL ← Cost(u, x′) + τ + λ
24. Cost(u, x)← min{ Cost(u, x), CostTL }
25. return Cost(r(G), r(S′))

the branch (yp, y) (resp. (zp, z)) that minimizes Cost(u1, y) (resp. Cost(u2, z))
over all branches of S′ located at the same time t, other than (xp, x). The same
subroutine is used at line 22 for the TL case of Fig. 4f. A similar optimization
to compute the optimal receiver for a transfer was found independently in [13].

Algorithm 1 computes the cost of a most parsimonious reconciliation. Back-
tracking in the computations of values in the dynamic programming table yields
a most parsimonious reconciliation (in the sense of Def. 3), which readily allows
to obtain a most parsimonious scenario (see Def. 1), as we argued in Section. 2.2.
This algorithm achieves fast running times, in part due to a factorization of the
computations of the best receivers (see Appendix for details).

Theorem 1. The MPR problem can be solved in Θ(|S′| · |G|) time and space.
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3 Experimental Results

To assess the performance of parsimony, we calculated the most parsimonious
reconciliations for a large scale simulated data set that was obtained using a
probabilistic model of duplication, transfer, and loss. In our simulations, we
started with a single gene at the root of the species tree and generated gene trees
according to a Poisson process characterized by rates of duplication, transfer
and loss. We compiled two different data sets called ds1 and ds2, aiming both
to simulate a relatively large phylogenetic time scale (a bacterial or archean
phylum) with realistic loss rates as well as to explore a wide range of duplication
and transfer rates. For further details on ds1 and ds2, see the Appendix.

For each data set, we used a single cost per event corresponding to the inverse
of the average rate of this event during the simulation process (i.e., for ds1

δ = 1/0.18). According to those costs and for each pair of gene and species trees,
we used Algorithm 1 to compute one of the most parsimonious reconciliations
denoted αp.

Note that the real reconciliation αR may contain the record of events that
cannot be recovered by a reconciliation for G, since no traces of them exist. For
instance, subtrees whose leaves are all lost, D events followed straightaway by an
L event, or several TL events in a row. Thus, we post-processed the DTL events
of αR, removing hidden parts of αR of the above kinds, but potentially leaving
other unrecoverable parts.This leads to obtain a reconciliation α′

R.
We first study under which conditions the parsimony criterion can correctly

estimate the DTL events that lead to an observed gene tree G. This can be
simply achieved by comparing the costs of the real scenario and that of a most
parsimonious one. As soon as the two costs strongly differ, the parsimony is no
longer a reasonable approach. Recall that the cost of a reconciliation α can be
computed as Cost(α) = dδ + tτ + lλ, where d, t and l are the number of D, resp.
T, resp. L implied by α. The relative over cost of α′

R in terms of parsimony score
compared to that of a most parsimonious one is defined below:

OverCost(α′
R, αP ) =

Cost(α′
R)− Cost(αP )

Cost(αP )
.

Since several most parsimonious scenarios can exist, that Cost(α′
R) = Cost(αP )

does not imply αP = α′
R. Fig. 5 shows the extent of this over cost depending

on the duplication and transfer rates and tree heights. We can see that the over
cost is really small for all combinations of duplication and transfer rates we
investigated, but does increase with the height of the gene trees. This can be
related to hidden events that we failed to identify and remove from α′

R.
We now proceed to investigate quantitatively whether parsimony is able to

correctly infer the position of DTL events.
Recall that a reconciliation α of a gene tree G defines DTL events associated

to internal nodes and edges of G. As the position of duplication and transfer
events in Go allow to locate losses, we only focus below on D and T events. Let
D(α) ⊆ V (G) \ L(G) denote the subset of internal nodes of G that correspond
to a D event and T(α) ⊆ E(G) the subset of edges of G that correspond to a T

event. It is important to point out that D(α) and T(α) alone do not resolve where
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Fig. 5. Over cost of simulated scenarios compared to that of most parsimonious ones

for combinations of heights, transfer and duplication rates, i.e. ds1 (a) and ds2 (b).

High values show cases where parsimony criterion is inadequate.
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and false positive (c,d) to estimate and localize D events, for combinations of heights,

transfer and duplication rates, i.e. ds1 (a,c) and ds2 (b,d)

in S the event has taken place, hence are not sufficient to determine whether a
DTL event is common to two reconciliations. Let DS(α) denote the set of pairs
(u, (xp, x)) ∈ D(α) × E(S) such that α places u on the branch (xp, x) of S. Let
TS(α) denote the triplet set ((up, u), (xp, x), (yp, y)) ∈ T(α) × E(S)2 such that
(up, u) is a T event from the donor (xp, x) to the receiver (yp, y) branches in S.

Given a most parsimonious reconciliation αP , its accuracy to retrieve the D

and T events of the real (simulated) reconciliation α′
R is evaluated by the ratios

of false positive and false negative events defined as follows:

FPE(α′
R, αP ) =

|ES(αP )−ES(α′
R)|

|ES(αP )|

FNE(α′
R, αP ) =

|ES(α′
R)−ES(αP )|

|ES(α′
R

)| ,
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where E = D, T. Figures 6 and 7 show those ratios for various combinations of
D, T rates and tree heights.

In Fig. 6, we can see that FPD is close to zero for all combinations of dupli-
cation and transfer rates: almost all parsimonious duplications are correct (i.e.,
present in α′

R). The high values of FND can be explained by several reasons.
First, α′

R can contain hidden events that cannot be detected by reconciliation
approaches. Second, fixing δ = τ causes the misidentification of some D events
replaced by T events in the inference. This would also explain the high ratio of
false positive transfers with such rates (see Fig. 7). Finally, this can be due to
the wrong most parsimonious reconciliation proposed among the several possible
ones. This also explains the quite high level of false negatives for T events.
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4 Conclusion

We presented a new model for reconciling gene and species trees. This model
leads to a fast and exact algorithm to compute a time consistent and most par-
simonious reconciliation while accounting for duplications, losses and transfers.
Simulations showed that the parsimony criterion performs satisfactorily under
realistic conditions at the phylum level. At the inter-phlyum level, transfers are
more difficult to recover and the existence of several most-parsimonious reconcil-
iations might be a decisive factor there. This needs further scrutiny. Moreover,
running times are on average 1.09s (resp. 1.38s) for low (resp. high) rates of
events for trees on 100 species. This clearly scales the reconciliation approach up
to the phylogenomic stage, where several tens of thousand genes are considered.
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Many things remain to be done, among others to allow for multifurcating gene
and species trees and to measure the accuracy of the reconciliation approach for
orthology prediction (where the localization of events is not needed, increasing
the accuracy of the method w.r.t. our results) compared to other methods.
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A Some Proofs

Property 1. Consider a parsimonious reconciliation α between G and S, an edge
(up, u) of G and a time t. The sequence α(up, u) contains at most two branches
of S′ located at time t. If there are two such branches denoted αi(up, u) and
αj(up, u), then they are adjacent in the sequence α(up, u) (i.e. |i− j| = 1).

Proof. The adjacency of the two branches follows immediately from Def. 3
(relying on the fact that both happen at time t).

Assume that α contains two TL events for (up, u) described as follows: there
are three adjacent branches αi(up, u), αi+1(up, u) and αi+2(up, u) in Et(S′),
which respectively corresponds (according to Def. 3) to the donor of the first
TL event, the receiver (resp. donor) of the first (resp. second) TL event, and the
receiver of the second TL event.

As the cost of a single TL event between αi(up, u) and αi+2(up, u) is smaller
than the cost for the previous two TL events, α is not a parsimonious reconcili-
ation. �

Proof of the Complexity of the Algorithm

Proof of the Time Complexity. We claim the algorithm runs in O(n′m)
where n′ is the size of the subdivides species tree S′ and m is the size of G.

The loop over the edges of G (line 3) runs for Θ(m) iterations. The loop over
the times t of S′ (line 4) together with the two loops over branches Et(S′) in
sequence (line 5 and 21) run for Θ(n′) iterations. Thus, lines 6 to 20 and lines
22 to 24 are run Θ(n′m) time globally. For the nodes u ∈ V (G) and x ∈ V (S′)
currently visited, we now have to prove that Cost(u, x) can be computed in
constant time, which is obviously the case for the cost associated to the S, D, ∅,
and SL events (see lines 11, 12, 16, and 18, respectively). We prove below how
the cost associated to a T event (lines 13 to 15) can be computed in constant
time, considering that both genes are conserved (we omit the case for a TL

combination at lines 22 to 24, as it is solved using the same optimization idea).
Consider a T event from a donor (xp, x) ∈ Et(S′), assuming w.l.o.g. that

(u, u1) is conserved in the lineage (xp, x) while (u, u2) is transfered. The algo-
rithm needs to compute the optimal receiver (i.e. that leading to a minimum
cost) for (u, u2) in Et(S′) \ {(xp, x)}. As currently stated, i.e. in the most read-
able form, Algorithm 1 allows to compute the best receiver in Θ(|Et(S′)|) time
by a simple loop over the branch set Et(S′) (line 14; subroutine BestReceiver).
However, slightly modifying the statement of the algorithm allows to compute
the best receiver in constant time at line 14 (and similarly lines 13 and 22). To
achieve this, immediately before the loop over the branch set Et(S′) (line 5),
add another loop on Et(S′) to find the first and second optimal receivers for
(u, u2) in Et(S′) and denote (x′

p, x
′) and (x′′

p, x
′′) these respective receivers.

Second, when a donor (xp, x) ∈ Et(S′) is visited during the loop at line 5, the
optimal receiver for (u, u2) in Et(S′) \ {(xp, x)} is the first optimal receiver if
(xp, x) �= (x′

p, x
′), and the second one otherwise. Hence line 13 now requires con-

stant time, while adding the additional loop mentioned above doesn’t cost more
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than the already existing loop of line 5. As a result, the overall time complexity
of the algorithm is in Θ(n′m). Note that [13] independently uses a similar idea
to obtain a fast reconciliation algorithm.

Proof of the Space Complexity. The size of the whole matrix Cost(u, x) is
in Θ(n′m), all other variables used in the algorithm are constant in size, and the
space complexity is then immediate. �

Sketch of the Proof for the Correctness of the Algorithm

Given a tree T , define the height of a node u ∈ V (T ), denoted h(u), as the length
of the unique path from u to r(T ), and the height of T , denoted h(T ), is the
maximal height over all its nodes.

Consider the edge (up, u) and the time stamp t examined at an iteration of
the main loops (respectively in lines 3 and 4) in the algorithm. For any branch
(xp, x) ∈ Et(S′), we now explain how the two loops compute Cost(u, x) by
considering all six events seperately. First, for the S and D events (lines 11
and 12 resp.), the consistency of the corresponding cost is ensured because for
any child u′ ∈ {u1, u2} and any branch (x′

p, x
′) of S′, Cost(u′, x′) is previously

computed during the bottom-up traversal of G. Second, for the ∅ and SL events
(lines 17 and 19 resp.), the optimality is verified because for any branch (x′

p, x
′) ∈

Et−1(S′), Cost(u, x′) is computed during the iteration for the time (t− 1) of S′.
The cases for the T and TL events use the optimal receivers for (up, u) and its

two descendant edges, all located at time t. The bottom-up traversal of G im-
plies that Cost(u′, x′) is computed for all children u′ ∈ {u1, u2} and all branches
(x′

p, x
′) ∈ Et(S′). Thus, for a donor (xp, x) ∈ Et(S′), BestReceiver

((u′
p, u

′), t, (xp, x)) computes (in linear time in the size of Et(S′)) the best re-
ceiver for the transfered edge (u′

p, u
′). For the two descendant edges (u, u1) and

(u, u2), the best receiver are respectively computed at lines line 13 and 14. For a
T event (line 15) with (xp, x) as the donor, the consistency of the corresponding
cost is ensured following the same reasons as for a D event together with the
availability of these two best receivers.

Considering a TL event with (xp, x) as the donor, Property 1 implies that the
minimal cost of mapping (up, u) onto an optimal receiver (x′

p, x
′) ∈ Et(S′) \

{(xp, x)} corresponds to any of the five events considered in the third loop (line
5). Thus, when BestReceiver computes such an optimal receiver (line 22), its
optimality is ensured together with that for the cost of a TL event (line 23) and
the final cost (line 24).

This conclude the sketch to prove the correctness of Algorithm 1. Moreover,
it is important to point out that a scenario in which a node u ∈ V (G) has its
two descendant edges (u, u1) and (u, u2) both transfered is implicitly considered
by our combinatorial model of reconciliations. Indeed, given u ∈ V (G) and a
branch (xp, x) ∈ Et(S′) that is the last one of the sequence α(up, u), assume
that this association corresponds to a T event for u, where u1 is conserved by
the donor (xp, x) and u2 is given to a receiver (see T event in Def. 3). Given
that the first branch α1(u, u1) equals (xp, x) in the sequence associated to u1, a
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reconciliation allows the next branch of this sequence (i.e. α2(u, u1)) to be any
branch in Et(S′) \ {(xp, x)} (see TL event in Def. 3).

B Simulated Data Sets

B.1 Simulated Species Trees

We generated a sets of 10 random ultrametric species trees with 100 species
using a standard birth death process with PhyloGen [12] (the ratio of birth to
death rate was 1.25). All species trees were normalized to a common height h,
with time measured from the leaves of the species tree at t = 0 to its root at
t = h. The time order of the internal nodes (speciation events), and hence S,
was uniquely determined by the branch lengths of the tree.

B.2 Simulated DTL Scenarios

Starting with a single gene at time t = h at the root of S, we generated evolu-
tionary scenarios according to a Poisson process characterized by rates of dupli-
cation, transfer and loss. At time t, each extant gene underwent duplication with
rate rδ or loss at rate rλ. Transfers to each branch of the species tree at time t
occurred at rate rτ , with the donor gene drawn uniformly from genes extant at
time t except the branch considered.

Instances of the above Poisson process correspond to a completed gene tree
Go and a simulated reconciliation, denoted αR, that includes a complete record
of the DTLS events that gave rise to it. The gene tree G, obtained from Go

by removing the extinct subtrees of Go, is used as the input to the parsimony
algorithm.

Csűrös and Miklós recently provided estimates of the relative magnitude of
duplication, transfer and loss rates in the domain of Archaea. For our purposes,
there results can be summarized by the average ratio of 23% duplication, 1%
gain, and 76% loss, and an approximate loss rate of 1.5 (assuming a tree with
unit height). As many transfer scenarios do not leave behind a clear signal in the
phylogenetic profile of a gene family, the gain rate can potentially underestimates
the rate of transfer and overestimates the rate of duplication.

To explore a wide as possible set of parameters we chose two different ways
of varying the rates of duplication, transfer, and loss.

In the first data set, denoted ds1, we chose a fixed loss rate of rλ = 0.7 (with
tree height h = 1) and varied values of both rδ and rτ in the interval [0.01, 0.35],
choosing 11 values of each parameter, resulting in 11 × 11 sets of rates. This
choice of parameters aims to simulate a relatively large phylogenetic time scale,
corresponding to, e.g. a bacterial or archean phylum, with realistic loss rates,
while making no assumption about the ratio of transfer and loss events, and
only requiring rδ + rτ ≤ rλ. We generated 5 gene trees per species tree and per
parameter set (6,050 in total).

In the second data set, denoted by ds2, we chose to fix the ratio of rδ + rτ

to rλ as follows: rλ/(rδ + rτ + rλ) = 0.7 (motivated by the results of Csűrös
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and Miklós [2]). This choice of parameters aims at investigating the accuracy
of parsimony on different phylogenetic scales, using 4 different tree heights h =
0.2, 0.4, 0.8 and 1.6. We varied the transfer rate rτ ∈ [0, 0.3] in 11 steps (with
consequently rδ = 0.3 − rτ ). We generated 20 gene trees, per species tree and
per rate parameter set (8,800 in total).

C Complementary Experimental Results

In some context, such as sequence orthology prediction, only the tagging of the
nodes of G is important. Thus another way to account for errors is to compare the
tagging inferred by a parsimony reconciliation with the tagging due to the real
scenario. Fig. 8 shows error ratios when false positive and negative are judged on
the fact that the internal nodes of the gene tree are assigned to the correct event
they represent in the simulated scenario (i.e. one of DTLS). It can be noted that
both error levels for transfers decrease remarkably when accounting for transfers
in this way (compare with Fig. 7).
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Fig. 8. Ratios of false negative (a-b) and false positive (c-d) for T events, for various

combinations of heights, transfer and duplication rates, i.e. ds1 (a-c) and ds2 (b-d)

when considering a transfer to be common to αR′ and αP as soon as the same branch

of G is transferred, i.e., without looking at place where the receiver is in S
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Abstract. In a horizontal gene transfer (HGT) event a gene is transferred be-
tween two species that do not share an ancestor-descendant relationship. Typ-
ically, no more than a few genes are horizontally transferred between any two
species. However, several studies identified pairs of species between which many
different genes were horizontally transferred. Such a pair is said to be linked by
a highway of gene sharing. We present a method for inferring such highways.
Our method is based on the fact that the evolutionary histories of horizontally
transferred genes disagree with the corresponding species phylogeny. Specifi-
cally, given a set of gene trees and a trusted rooted species tree, each gene tree
is first decomposed into its constituent quartet trees and the quartets that are in-
consistent with the species tree are identified. Our method finds a pair of species
such that a highway between them explains the largest (normalized) fraction of
inconsistent quartets. For a problem on n species, our method requires O(n4)

time, which is optimal with respect to the quartets input size. An application of
our method to a dataset of 1128 genes from 11 cyanobacterial species, as well as
to simulated datasets, illustrates the efficacy of our method.

1 Introduction

Horizontal gene transfer (HGT) (also called lateral gene transfer) is an evolutionary
process in which genes are transferred between two organisms that do not share an
ancestor-descendant relationship. HGT plays an important role in bacterial evolution
by allowing them to transfer genes across species boundaries. This transfer of genes be-
tween divergent organisms first became a research focus when the transfer of antibiotic
resistance genes was discovered [1,2]. Microbiologists soon realized that the sharing of
genes between unrelated species resulted in evolutionary patterns very different from
those found in multi-cellular animals. Since then, the problem of detecting horizontally
transferred genes has been extensively studied; see, for example, [3] for a review.

An important problem in understanding microbial evolution is to infer the HGT
events (i.e., the donor and recipient of each HGT) that occurred during the evolution of
a set of species. This problem is generally solved in a comparative-genomics framework
by employing a parsimony criterion, based on the observation that the evolutionary his-
tory of horizontally transferred genes does not agree with the evolutionary history of
the corresponding set of species. This is illustrated in Fig. 1(b). More formally, given a
gene tree and a species tree, the HGT inference problem is to find the minimum number
of HGT events that can explain the incongruence of the gene tree with the species tree.

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 109–120, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Horizontal gene transfers and highways. (a) A species tree depicting three HGT events
(dotted arcs) and a highway (bold red horizontal edge). The highway represents many individual
HGT events all occurring between the same two (present-day or ancestral) species. (b) The cor-
responding gene tree for Gene1. Because of the HGT of Gene1 from species d into species g, the
copy of that gene in g is most closely related to the one in d. Therefore, in the tree for Gene1, the
species g appears next to d. (Here we assume that Gene1 was not transferred on the highway.)

The HGT inference problem is known to be NP-hard [4,5] and, along with some of its
variants, has been extensively studied [5,6,7,8,9,10,11,12].

In general, one expects at most a few genes to have been horizontally transferred
between any given pair of species. However, Beiko et al. [9] demonstrated that some
pairs of species portray a multitude of horizontal gene transfer events. Such pairs are
said to be connected by a highway of gene sharing [9]. Highways of gene sharing point
towards major events in evolutionary history; well corroborated examples of this phe-
nomenon are the uptake of endosymbionts into the eukaryotic host, and the many genes
transferred from the symbiont to the hosts nuclear genome [13]. Recent proposals for
evolutionary events that may be reflected in highways of gene sharing are the role of
Chlamydiae in establishing the primary plastid in the Archaeplastida (red and green
algae, plants and glaucocystophytes) [14], and the evolution of double membrane bac-
teria through an endosymbiosis between clostridia and actinobacteria [15]. Detecting
these highways of gene sharing is thus an important biological problem and is crucial
for inferring past symbiotic associations that shaped the evolution of organisms.

Given a rooted species tree, any two species (nodes) in it that are not related by an
ancestor-descendant relationship define a horizontal edge connecting those two nodes.
Any HGT event must take place along a horizontal edge in one of its two directions (see
Fig. 1(a)). A horizontal edge along which an unusually large number of HGT events
have taken place (say 10% of the genes) will be called a highway of gene sharing or
simply a highway. The only existing method for detecting highways is the one employed
originally by Beiko et al. [9]. That method takes as input a species tree and a set of
gene (protein) trees, and computes, for each gene tree, the HGT events affecting that
gene on the species tree. This is done by solving the HGT inference problem for each
gene tree. The HGT events that are inferred in the HGT scenarios for a significant
fraction of the gene trees are postulated as the highways. However, this approach suffers
from several serious drawbacks. First, the HGT inference problem is NP-hard, and thus,
difficult to solve exactly (and must often be solved using heuristics). Second, there
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may be multiple (in fact, exponentially many) alternative optimal solutions to the HGT
inference problem [10]. And third, when the rate of HGT is relatively high, there is
little reason to expect that the number of HGT events should be parsimonious; i.e., the
HGT inference problem, even if solved exactly and yielding only one optimal solution,
may not infer the actual HGT events. In this work we propose an alternative approach
to detecting highways that does not rely on inferring individual HGT events. Moreover,
our formulation allows exact solution of the problem in polynomial time. Our method
thus avoids all of the aforementioned pitfalls.

As in [9], the input to our method is a trusted rooted species tree for some set of
species, and a set of gene trees on genes taken from those species. Since it is often diffi-
cult to accurately root gene trees, we assume that the input gene trees are unrooted. Our
method is based on the observation that highways, by definition, affect the topologies of
many gene trees. Thus, the idea is to combine the phylogenetic signals for HGT events
from all the gene trees and use the combined signal to infer the highways, thereby avoid-
ing the need to infer individual HGT events. We achieve this by employing a quartet
decomposition of the gene trees. In particular, our method decomposes each gene tree
into its constituent set of quartet trees and combines the quartet trees from all the gene
trees to obtain a single weighted set of quartet trees. The intuition is that quartet trees
that disagree with the species tree may indicate HGT events and thus the collective ev-
idence from all quartet trees could pinpoint possible highways. The combined set of
quartet trees is then analyzed against the given species tree to infer the highways of
gene sharing. Decomposing the gene trees into quartet trees allows us to cleanly merge
the phylogenetic signals for HGT events from all the different gene trees into a single
summary signal, from which exact and efficient inference of the highways is possible.

To find highways, our method iteratively finds a horizontal edge that explains the
largest fraction of inconsistent quartet trees. Essentially, for each (weighted) quartet
tree inconsistent with the species tree, we identify the horizontal edges that can ex-
plain it by an HGT event (in either direction) along them. The horizontal edge that
explains the most (normalized) inconsistency is proposed as a highway. (Normaliza-
tion is needed since the structure of the species tree and the location of the horizontal
edge in it influence the number of inconsistent quartet trees that edge may explain.) We
give a dynamic programming algorithm that, given the weighted set of quartet trees,
finds the best highway in O(n4) time. Since there may be Ω(n4) input quartet trees,
our algorithm is asymptotically optimal with respect to that input. In contrast, a naı̈ve
enumeration algorithm would require O(n6) time. Our efficient algorithms allow our
method to be applied to fairly large datasets; for example, we can analyze a dataset of
1000 gene trees with 200 taxa within a day on a personal computer. We demonstrate the
utility of our method on simulated data as well as on a dataset of 1128 genes from 11
cyanobacterial species [16], where its results match prior biological observations. For
lack of space, proofs and some algorithmic details are omitted from this manuscript.

2 Basic Definitions and Preliminaries

Given a rooted or unrooted tree T , we denote its node set, edge set, and leaf set by
V (T ), E(T ), and Le(T ) respectively. For the remainder of this paragraph, let T denote
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a rooted tree. Given T , the root node of T is denoted by rt(T ). Given a node v ∈ V (T ),
we denote the parent of v by paT (v), its set of children by ChT (v), and the subtree of
T rooted at v by T (v). We define ≤T to be the partial order on V (T ) where u ≤T v
if v is a node on the path between rt(T ) and u. Given a non-empty subset L ⊆ Le(T ),
we denote by lcaT (L) the least common ancestor (LCA) of all the leaves in L in tree
T . Given a rooted tree T , a horizontal edge on T is a pair of nodes {u, v}, where
u, v ∈ V (T ), such that u, v �= rt(T ), u �≤ v, v �≤ u, and paT (u) �= paT (v). We denote
by H(T ) the set of all horizontal edges on T . Horizontal edges represent potential hor-
izontal gene transfer events; the (directed) horizontal edge (u, v) represents the HGT
event that transfers genetic information from the edge (paT (u), u) to (paT (v), v). Thus,
the horizontal edge {u, v} represents the HGT events (u, v) and (v, u). Also note that,
while any particular HGT event is directional, we address the problem in which hori-
zontal edges are undirected because highways can be responsible for transfer of genetic
material in both directions. Throughout this work the term tree refers to a binary tree.

Our formulation and solution to the highway detection problem rely on the concept
of quartets and quartet trees. A quartet is a four-element subset of some leaf set and a
quartet tree is an unrooted tree whose leaf set is a quartet. The quartet tree with leaf
set {a, b, c, d} is denoted by ab|cd if the path from a to b does not intersect the path
from c to d. Given a rooted or unrooted tree T , let X be a subset of Le(T ) and let T [X ]
denote the minimal subtree of T having X as its leaf set. We define the restriction of
T to X , denoted T |X , to be the unrooted tree obtained from T [X ] by suppressing all
degree-two nodes (including the root, if T is rooted). We say that a quartet tree Q is
consistent with a tree T if Q = T | Le(Q), otherwise Q is inconsistent with T . Observe
that, given any T and any quartet X = {a, b, c, d} from Le(T ), X induces exactly one
quartet tree in T , that is, the quartet tree T |X . Also observe that this quartet tree must
have one of three possible topologies: ab|cd, ac|bd, or ad|bc.

3 Detecting Highways

Our goal is to detect the highways of gene sharing in the evolutionary history of a
set of species S. To that end, we are given a set of unrooted gene trees {T1, . . . , Tm},
and a rooted species tree S showing the evolutionary history of S. Thus, Le(S) = S,
and Le(Ti) ⊆ S for 1 ≤ i ≤ m. The idea is to infer the highways by inspecting the
differences in the topologies of the gene trees compared to the species tree. The highway
detection problem can thus be stated as follows: Given a species tree S and a collection
of gene trees, find the horizontal edges on S that correspond to highways.

Throughout this manuscript, S denotes the given species tree, and n denotes the
number of species in the analysis, i.e., n = | Le(S)|.

Our solution to the highway detection problem is based on decomposing each input
gene tree T into its constituent set of

(| Le(T )|
4

)
quartet trees. To understand the intuition

behind using quartet trees, consider the scenario depicted in Fig. 2. The tree on the left
is a species tree on six species, along with two HGT events of two different genes. Con-
sider the HGT event (C, E) that transfers Gene1. This HGT event causes the topology
of the corresponding gene tree to deviate from the topology of the species tree. Essen-
tially, according to the standard subtree transfer model of horizontal gene transfer (see,
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Fig. 2. The tree on the left is a species tree showing the evolutionary history of a set of six species.
Two HGT events (C, E) and (b, c), shown by the dotted arcs, are also depicted on this species
tree. The two other trees show the evolutionary histories of Gene1 and Gene2.

e.g., [17,9,8]), this HGT event causes the subtree rooted at node E to be pruned and then
regrafted along the edge (B, C), as shown in the figure. Let us decompose both trees
into their constituent set of quartet trees: Each tree generates

(
6
4

)
= 15 quartet trees.

Note that four of the fifteen quartets induce different quartet trees in the two trees; in
the gene tree, these appear as ac|ef , ad|ef , bc|ef and bd|ef . In general, different HGT
events produce gene trees with different sets of inconsistent quartet trees. Thus, given
the species tree, and the set of the four inconsistent quartet trees from the gene tree on
Gene1, we could have inferred the HGT event (C, E) that affected Gene1.

3.1 The Method in Detail

Our method proceeds iteratively, inferring one highway per iteration, as follows.

Step 1: Decompose each input gene tree T into its constituent set of
(| Le(T )|

4

)
quar-

tet trees, and combine the quartet trees from the different gene trees into a single
weighted set, Φ, of quartet trees.

Step 2: Remove from Φ all those quartet trees that are consistent with S.
Step 3: Compute the HGT score of each edge in H(S). This HGT score for an edge is

computed based on Φ, and is explained in detail below.
Step 4: Select the highest scoring horizontal edge as a highway.
Step 5: Remove from Φ all those quartet trees that are explained by the proposed high-

way, and go to Step 3 to start the next iteration.

The (raw) HGT score of a horizontal edge is simply the total weight of the quartet trees
from Φ that are explained by a HGT along that edge (in either direction). Thus, this
raw score of a horizontal edge captures the number of quartet trees from the input gene
trees that support horizontal gene transfer along that edge. However, not all horizontal
gene transfers affect the same number of quartet trees. Consider the example shown in
Fig. 2. As seen previously, the HGT event (C, E) causes four of the quartet trees in
the corresponding gene tree to become inconsistent. Consider the HGT event (b, c) that
transfers Gene2. This HGT event causes ten of the quartet trees in the gene tree built
on Gene2 (shown on the right in Fig. 2) to become inconsistent; these are ad|bc, ae|bc,
af |bc, ac|de, ac|df , ac|ef , bc|de, bc|df , bc|ef and de|cf . Thus, considering only the
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raw scores of the horizontal edges would lead to overestimation of the quantity of HGT
along certain horizontal edges and underestimation of this quantity for other horizontal
edges, leading to incorrect inference of highways.

To overcome this bias we modify the score of each horizontal edge by dividing its
raw score by a normalization factor: The maximum number of distinct quartet trees
that could be explained by a horizontal gene transfer (in either direction) along that
edge. More precisely, let Ψ be the set of all possible quartet trees on the leaf set Le(S).
Given a horizontal edge {u, v}, let Q1 denote the set of quartet trees in Ψ that become
consistent due to the HGT event (u, v), and let Q2 denote the set of quartet trees in Ψ
that become consistent due to the HGT event (v, u). The normalization factor for {u, v}
is defined to be |Q1 ∪Q2|. After normalization, the HGT scores of all horizontal edges
can be directly compared to one another.

The number of iterations in the method can either be fixed at the beginning or, prefer-
ably, be decided on the fly, based on the distribution of the horizontal edge scores com-
puted in the current iteration.

4 The Highway Scoring Problem

This iterative quartet based method involves four computational steps: (i) Computing
the initial set of weighted quartet trees from the gene trees, (ii) removing the quartet
trees that are consistent with S, (iii) computing the (normalized) HGT score of each
edge in H(S), and (iv) identifying and removing those quartet trees that are explained
by the proposed highway. It is relatively straightforward to show (details omitted for
brevity) that step (i) can be executed in O(mn4) time, where m is the number of input
gene trees, and steps (ii) and (iv) can be executed in O(n4) time. The main compu-
tational challenge here is (iii), i.e., computing the (normalized) HGT score of each
horizontal edge. In this section we focus on this main problem.

Given a rooted species tree S and a set Φ of weighted quartet trees (that are incon-
sistent with S) on the leaf set Le(S), the Highway Scoring (HS) problem is to find the
(normalized) HGT score of each edge in H(S).

The naı̈ve way to solve the HS problem would be to consider each edge in H(S)
one-at-a-time and to check which of the quartet trees from Φ are explained by that edge.
Checking whether a quartet tree is explained by a horizonal edge can be accomplished
in O(1) time. Since there are Θ(n2) candidate horizontal edges and O(n4) quartet trees
in Φ, the complexity of computing just the raw score of each horizontal edge is still
O(n6). In this section we show that the HS problem can be solved in O(n4) time. The
time complexity of our algorithm is thus optimal.

Recall that each horizontal edge actually represents two HGT events. We denote the
set of all these HGT events on S by

−→
H (S). Thus, for any horizontal edge {u, v} ∈

H(S), there are two HGT events (u, v) and (v, u) in
−→
H (S).

Given a horizontal edge {u, v}, if Q1 and Q2 denote the sets of quartet trees that
are explained by the HGT events (u, v) and (v, u) respectively, then, the raw score of
{u, v} is |Q1∪Q2|, which is |Q1|+|Q2|−|Q1∩Q2|. First, in Section 4.1, we show how
to compute the raw score of each horizontal event (i.e., how to compute |Q1| and |Q2|),
and then, in Section 4.2, we show how to compute |Q1 ∩ Q2| and thus obtain the raw
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scores of horizontal edges. In Section 4.2, we also show how to reuse these algorithms
to compute the normalization factor for each horizontal edge.

4.1 Computing the Raw Scores of HGT Events

For any given quartet tree Q ∈ Φ, there may be several HGT events from
−→
H (S) that

could explain Q; we denote this set of HGT events by
−→
H (S, Q). Since S is fixed,

throughout the remainder of this work we will abbreviate H(S),
−→
H (S) and

−→
H (S, Q)

to H ,
−→
H and

−→
H (Q) respectively. Our algorithm relies on an efficient characterization

of the HGT events that can explain a given quartet. This characterization appears in the
next lemma; but first, we need some additional definitions and notation.

Notation and Definitions. We denote the raw score of an HGT event (u, v) ∈ −→H by
RS(u, v). Given any two nodes p, q ∈ V (S), let p → q denote the path between them
in S, and let V (p → q) denote the set of nodes on this path (including p and q). A
subtree-path (SP) pair on S is a pair 〈S(v), p → q〉, where v, p, q ∈ V (S), such that
the subtree S(v) and the path p → q are node disjoint and none of the nodes in p → q
is an ancestor or descendant of v. Given an SP pair σ = 〈S(v), p → q〉, the set of all

HGT events (u, v) from
−→
H such that u ∈ S(v) and v ∈ V (p→ q) is denoted by

−→
H (σ).

Similarly, a subtree-complement-path (SCP) pair on S is a pair 〈S(v), p → q〉, where
v, p, q ∈ V (S), such that V (p → q) ⊆ V (S(v)). We define V (S(v)) to be the set
[V (S) \ V (S(v))] ∪ {v}. Given an SCP pair σ = 〈S(v), p → q〉, the set of all HGT

events (u, v) from
−→
H such that u ∈ V (S(v)) and v ∈ V (p → q) is denoted, as before,

by
−→
H (σ). If σ is an SCP pair, then we say that S(v) is the subtree-complement of σ,

and it refers to the subtree of S induced by V (S(v)).

Lemma 1. Given any quartet tree Q ∈ Φ, there exist four SP/SCP pairs, denoted
σ1, σ2, σ3, σ4, such that

−→
H (Q) =

−→
H (σ1) ∪

−→
H (σ2) ∪

−→
H (σ3) ∪

−→
H (σ4). Moreover, the

four sets
−→
H (σ1),

−→
H (σ2),

−→
H (σ3) and

−→
H (σ4) are pairwise disjoint.

In fact, after an initial O(| Le(S)|) preprocessing step, we can compute the four SP/SCP
pairs for any given quartet tree in O(1) time. Our algorithm performs a nested tree
traversal of S. Before we begin this nested tree traversal we (i) perform a pre-processing
step, which precomputes certain values on the tree S, and (ii) perform a tree decoration
step during which we decorate the nodes of S with information about the four SP/SCP
pairs for each quartet tree in Φ. Next we describe these two steps in detail.

The preprocessing step. The first step in the algorithm is to preprocess the tree S so
that, given any two nodes from V (S), we can compute their LCA within O(1) time [18].
This preprocessing step also allows us to label the nodes of S in such a way that given
any two nodes u, v ∈ V (S) we can check if v ∈ V (S(u)) in O(1) time. We also
associate with each v ∈ V (S) a counter, denoted by counterv , initialized to zero, and
a set pathv initialized to be empty.

Decorating the tree. For each quartet tree Q ∈ Φ, we identify the four SP/SCP pairs
σ1 = 〈S(v1), p1 → q1〉, σ2 = 〈S(v2), p2 → q2〉, σ3 = 〈S(v3), p3 → q3〉, and
σ4 = 〈S(v4), p4 → q4〉. One of the end points of the path in each of these SP/SCP
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pairs must be a leaf node (see proof of Lemma 1). By convention, we let the qis, for
i ∈ {1, 2, 3, 4}, denote these leaf nodes. We mark these four paths on S as follows: For
each i ∈ {1, 2, 3, 4}, if σi is an SP pair then add the triple (Q, vi, SP ) to the sets pathqi

and pathpa(pi); if σi is an SCP pair, add the triple (Q, vi, SCP ) to the sets pathqi and
pathpa(pi). Here SP/SCP is included as a binary label to indicate the type of the pair.

The tree decoration step, described above, marks the endpoints of the four paths in
the SP/SCP pairs of any quartet. Our algorithm performs a post-order traversal of S
and, at each node v, calls the procedure Augment(v) described below. This procedure
marks the corresponding subtrees/subtree-complements for all the paths that appear in
the set pathv, and computes a value valu at each u ∈ V (S) \ {rt(S)}. This value valu
is the weight of all quartet trees Q from Φ such that (i) (Q, x, Γ ) ∈ pathv and (ii) if Γ
is SP then u ∈ V (S(x)), and, if Γ is SCP then u ∈ V (S(x)). The reason for computing
these valu’s becomes clear in the context of Lemma 2.

Procedure Augment(v) {v ∈ V (S)}
1: for each x ∈ V (S) do
2: Set counterx to 0.
3: for each triple (Q, y, Γ ) ∈ pathv do
4: if Γ is SP then
5: Increment countery by the weight of Q.
6: if Γ is SCP then
7: Increment counterrt(S) by the weight of Q and, decrement countery1 and

countery2 by the weight of Q, where {y1, y2} = Ch(y).
8: for each u ∈ V (S) \ {rt(S)} do
9: Set valu to

∑
x∈V (rt(S)→u) counterx.

Our algorithm is based on the following key lemma.

Lemma 2. Suppose S has been decorated and procedure Augment(v) has been exe-

cuted for some v ∈ V (S). Consider any (u, v) ∈ −→H .

1. If v ∈ Le(S), then RS(u, v) = valu.
2. If v �∈ Le(S), then RS(u, v) = RS(u, v1)+RS(u, v2)−valu, where v1, v2 ∈ Ch(v).

Nested tree traversal. Once the pre-processing and tree decoration steps have been
executed, the algorithm performs a nested tree traversal of S and computes the raw
score of each HGT event from

−→
H according to Lemma 2. More formally, the algorithm

proceeds as follows:

Algorithm ComputeScores
1: for each v ∈ V (S) in a post-order traversal of S do
2: Perform procedure Augment(v).
3: for each u ∈ V (S) \ {rt(S)} do
4: if (u, v) is a valid HGT event, i.e., (u, v) ∈ −→H , then
5: if v ∈ Le(S) then
6: Set RS(u, v) to be valu.
7: else
8: Set RS(u, v) to be RS(u, v1)+RS(u, v2)−valu, where v1, v2 ∈ Ch(v).
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The preprocessing step, tree decoration step, and Algorithm ComputeScores require
O(n), O(Φ), and O(n2 + |Φ|) time respectively. Thus, we have the following lemma.

Lemma 3. The raw scores of all HGT events in
−→
H can be computed in O(n2 + |Φ|)

time.

4.2 Raw Scores of Horizontal Edges and Normalization Factors

Our goal now is to compute the raw score of each horizontal edge in H . For any edge
{u, v} ∈ H , let its raw score be denoted by RS{u, v}. Observe that RS{u, v} =
RS(u, v) + RS(v, u)− common{u, v}, where common{u, v} is the total weight of the
quartet trees that are counted in both RS(u, v) and RS(v, u). A variant of the algorithm
described above enables us to compute the value common{u, v} for each horizontal
edge {u, v} ∈ H in O(n2 + |Φ|) time. Thus, we can compute the raw score of each
horizontal edge in O(n2 + |Φ|) time.

Recall that the normalization factor for a horizontal edge is simply the maximum
number of distinct quartet trees that could be explained by that edge. Thus, we can
reuse the algorithm that computes the raw scores of horizontal edges by running it on
a set that contains all the possible 3 ×

(
n
4

)
quartet trees, each with weight 1. Thus, we

have the following theorem.

Theorem 1. The highway scoring problem can be solved in O(n4) time.

5 Experimental Analysis

Cyanobacterial dataset. We first applied our method to a dataset of 1128 genes from
11 cyanobacterial species [16]. The existence of a highway on this set of species was
postulated in [16,19] and thus this dataset serves for method validation. Each of the
1128 gene trees had at least nine of the 11 species (see [16] for further details). As the
trusted species tree, shown in Fig. 3, we used the rooted tree constructed on the 16S
ribosomal RNA sequence from these species [20]. To account for uncertainty in the
topologies of the gene trees, for each gene tree we used only those quartet trees that
were present in at least 80% of the bootstrap replicates of that gene tree [16]. Our final
weighted set had 799 different quartet trees with a total weight of 214,729. The total
number of inconsistent quartet trees was 469 and their total weight was 23,042. There
were 118 candidate horizontal edges. Fig. 4(a) shows the histogram of the normalized
scores for these horizontal edges in the first application of the algorithm. The highest
scoring edge is extremely well separated from the next candidate in terms of the scores
(Fig. 4(a)). It is marked in Fig. 3. A priori, it is surprising that this highway connects
two different genera that are distinguished by different light harvesting machineries,
but the high rate of transfer between marine Synechococcus and Prochlorococcus has
been previously observed and discussed [16,19]. The discovered highway thus matches
perfectly with prior biological observations.

We performed further analysis of this dataset with the aim of discovering other novel
highways. In the second iteration, our method proposes the second highway shown
in Fig. 3. Though the normalized score of this highway is much smaller (179.4) than
that of the first highway (508.6), it is significantly higher than the scores of the other
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Fig. 3. The 16SrRNA tree on the 11 cyanobacterial species, with detected highways marked

Fig. 4. Highway detection statistics. (a) histogram of edge scores for the first highway on the
cyanobacterial dataset. (b) Simulation results: the number of times (out of 50) an implanted high-
way edge is detected in simulated datasets with varying levels of noise.

edges (only two other edges have scores above 100). Like the first, this second highway
also represents transfer between the small marine cyanobacteria, likely mediated by
cyanophage. Further analysis also suggests the presence of a third highway (normalized
score: 157.2, second-highest score: 97.7) along one of two possible horizontal edges,
shown in Fig. 3. These two horizontal edges produce the same unrooted tree and are
hence indistinguishable in our quartet-based model.

Simulated datasets. We used simulations to test the effect of HGT abundance on the
ability to infer highways. Each simulated dataset consisted of a randomly generated
species tree on 25 taxa and 1000 gene trees. For the experiment, we randomly chose a
highway on the species tree, and randomly assigned 10% of the 1000 genes as having
been transferred along this highway, with equal probability for each transfer direction.
Next, we simulated varying levels of “noise” on the species tree in the form of random
HGT events, each affecting a gene sampled at random without replacement (includ-
ing the genes that were transferred on the chosen highway). We simulated noise at five
different levels: 0 HGTs (i.e., no noise), 250 HGTs, 500 HGTs, 750 HGTs and 1000
HGTs. For each noise level, we created 50 different datasets (different species tree,
highway, and random HGTs) and measured the number of times (out of 50) that the
implanted highway is reported as one of the top three highest scoring edges by our
method. As shown in Fig. 4(b), our method tends to identify the planted highway, even
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in datasets with high levels of noise; for instance, when there are 750 random HGTs
(7.5 times the number of highway transfers) only 20% of the implanted highways were
not included among the top three edges. By 1000 HGTs, performance has deteriorated.
Interestingly, even when there is no noise in the data, the method does not always iden-
tify the implanted highway as its top-scoring edge. This is probably because of the way
we normalize the scores. Our normalization factor is independent of direction, while the
actual HGT events that take place along the highway are directed. This can cause some
biases, which can make the normalized score of some nearby horizontal edges slightly
higher than the score of the actual highway. Still, as the experiment demonstrates, even
with relatively high levels of noise our algorithm usually brings to the top the correct
highway, and further analysis of the top candidates can reveal the true highway.

6 Discussion

In this paper we addressed the problem of inferring highways of gene sharing, a fun-
damental problem in understanding the effects and dynamics of horizontal gene trans-
fer, and crucial to inferring past symbiotic associations that shaped the evolution of
organisms. Our new systematic approach and efficient algorithms for the highway de-
tection problem facilitate accurate and in-depth analysis of relatively large datasets. The
method detects the fingerprints of highways by looking at combined data from all the
input gene trees summarized as quartet tree counts. We thus avoid the computational
burden and uncertainty of inferring individual HGT events for each gene. Our exper-
imental results demonstrate that our method is effective at detecting highways and is
robust to noise in the data. We were able to identify the established highway in the
cyanobacterial dataset, and our analysis identified two additional putative highways. As
the experiments on the simulated data indicate, even in the presence of substantial noise
our method reports the true highway among the few top-scoring edges.

While we demonstrate the effectiveness of our method, it still has some limitations.
For example, if the dataset contains two highways that are closely related to one another
then the method may only detect one of them (since many of the inconsistent quartet
trees from one highway may also support the other highway). More generally, while the
normalized scoring of the horizontal edges that we propose takes care of the variation
in the number of candidate quartets of different edges, perhaps a better normalization
could highlight the correct highways even more strongly. Similarly, the quartic running
time is quite high and may be limiting for very large datasets. Further testing of the
method in both simulations and on real datasets is also needed, and it might be instruc-
tive to compare it to alternative non-quartet-based methods. Finally, a statistical analysis
of highway and HGT score distributions could provide more quantifiable significance,
which we still lack.
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Abstract. The study of genome rearrangement is much harder than

the corresponding problems on DNA and protein sequences, because of

the occurrences of numerous combinatorial structures. By explicitly ex-

ploring these combinatorial structures, the recently developed adequate

subgraph theory shows that a family of these structures, adequate sub-

graphs, are informative in finding the optimal solutions to the rearrange-

ment median problem. Its extension gives rise to the tree scoring method

GASTS, which provides quick and accurate estimation of the number of

rearrangement events, for any given topology. With a similar motivation,

this paper discusses and provides solid but somewhat initial results, on

combinatorial structures that are informative in phylogenetic inference.

These structures, called rearrangement phylogenetic patterns, provide

more insights than algorithmic approaches, and may provide statistical

significance for inferred phylogenies and lead to efficient and robust phy-

logenetic inference methods on large sets of taxa.

We explore rearrangement phylogenetic patterns with respect to both

the breakpoint distance and the DCJ distance. The latter has a sim-

ple formulation and well approximates other edit distances. On four

genomes, we prove that a contrasting shared adjacency, where a gene

forms one adjacency in two genomes and a different adjacency in the

other two genomes, is a rearrangement phylogenetic pattern. Phyloge-

netic inferences based on the numbers of this pattern, are very accurate

and robust against short internal edges, tested on 55,000 datasets simu-

lated by random inversions. Further analysis shows that the numbers of

this pattern well explain the variations in the number of rearrangement

events over different topologies.

1 Introduction

Genome rearrangement information, revealed in comparison of gene orders from
related species, has been used for phylogenetic study for decades [11,8,3]. These
methods, under the parsimony framework, make inferences of tree topologies
and gene orders on internal nodes simultaneously. Such a detailed consideration
gives extremely accurate phylogenetic inferences and provides good estimation

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 121–136, 2010.
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of ancestral genome architectures [16,9,13,1]. However, due to the occurrences of
numerous combinatorial structures, these problems are generally very difficult
to solve [4,10,5,14].

We recently developed the adequate subgraph theory [17,15] in studying the
rearrangement median problem. The theory explicitly explores the combinato-
rial structures and proves that a family of these structures, adequate subgraphs,
are informative in finding optimal solutions. This theory allows us to solve the
rearrangement median problem using a decomposition approach: detect the oc-
currence of an adequate subgraph, decompose the original problem into two
smaller subproblems, and repeat this iteratively. In the case that no known ad-
equate subgraphs can be detected, a branch-and-bound method or heuristics
can be used to find optimal or heuristic solutions, respectively. An extension of
this theory gives rise to a tree scoring method, GASTS, which minimizes the
number of rearrangement events needed to explain a given data for a given tree
topology [16] using a local optimization approach. GASTS scores very quickly
and accurately, with typical errors within 0.1%, on trees with up to thousands of
genomes and with thousands of genes in each genome.1 To infer the phylogeny,
we just need to find the topology with the smallest GASTS score.

The goal of this paper is to explore rearrangement phylogenetic patterns which
are the combinatorial structures containing phylogenetic information. Under the
parsimony framework, a combinatorial structure is said to be a rearrangement
phylogenetic pattern, if we can prove that this structure always gives smaller
scores (numbers of rearrangements or summarized distances over the tree) on
one fixed topology but not on the others. In other words, we say a rearrangement
phylogenetic pattern differentiates tree topologies. The topology with the smaller
score is called the preferred topology.

We want to investigate whether and to what degree, we can make phylogenetic
inferences by only inspecting the rearrangement phylogenetic patterns presented
in the given data. Long-term goals of this topic are to analyze the probabilistic
properties of these rearrangement phylogenetic patterns, to derive statistical
tests for the significance of inferred results, and then to design efficient and
robust phylogenetic inference methods for large numbers of taxa.

This paper focuses on problems with four signed genomes. Although only
genomes with circular chromosomes are discussed, our results also can be ap-
plied to genomes with multiple linear chromosomes. We are aware that, given
the computational difficulties and the numerous combinatorial structures in the
rearrangement problems, this paper only presents some initial results. Hence it
is not the goal of this paper to design better methods than the full parsimony
methods, although our new methods do have very good accuracies.

In the rest of the section, we briefly introduce common pairwise distance
measures, as they are the basis of most phylogenetic methods discussed in this
paper. In Section 2, we introduce the full parsimony tree scoring method GASTS,
two distance based methods and four-point metric, and phylogenetic invariants

1 A study of the performance of GASTS can be found at

http://sites.google.com/site/andrewweixu/gasts.

http://sites.google.com/site/andrewweixu/gasts
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Fig. 1. The breakpoint graph of two circular genomes (1,-8,-3,4,7,5,2,6) and

(1,2,3,4,5,6,7,8), in blue and red colors respectively. There are 8 genes in each genome,

and there is one color-alternating cycle and no common adjacency in the breakpoint

graph.

methods. In Section 3, we give results on what structures are and are not rear-
rangement phylogenetic patterns, and then introduce two phylogenetic scoring
functions and their inference methods. In Section 4, we present comparison re-
sults of various phylogenetic inference methods.

1.1 Pairwise Distance Measures

In measuring the genomic distance between two genomes, there are two types
of measures: observational distances, such as the breakpoint distance; edit dis-
tances, which are the smallest numbers of operations needed to transform one
genome into the other given a set of allowed operations, such as the inversion dis-
tance [7], its generalization—the HP distance [6] and a further generalization—
the DCJ distance [18,2]. This paper focus on the breakpoint distance and the
DCJ distance, as the latter well approximates the other edit distances.
Breakpoint graph. The breakpoint graph is an important graph tool to study
a pair of genomes. For each gene g, a pair of vertices −g and +g are used to
represent its two endpoints, also called extremities. For each genome, adjacencies,
which are pairs of extremities from neighboring genes, are represented by edges
connecting the corresponding vertices; each genome is assigned a different color,
and all edges from each genome are given that color. The breakpoint graph
naturally decomposes into a set of color-alternating cycles, and we use c to
denote their total number. Fig. 1 shows the breakpoint graph for the two genomes
(1,−8,−3, 4, 7, 5, 2, 6) and (1, 2, 3, 4, 5, 6, 7, 8).

The breakpoint distance. A breakpoint occurs when an adjacency exists
in one genome but not in the other. The number of breakpoints between two
genomes is their breakpoint distance. The breakpoint distance has an intuitive
explanation. To transform one genome into the other, we can cut the first genome
into small fragments, rearrange and paste them back into the second genome.
And the breakpoint distance is just the minimum number of cuts we need in
this process. If n denotes the number of genes in each genome and a denotes the
number of adjacencies shared by both genomes, then the breakpoint distance is
simply dBP = n − a.

The DCJ distance. The DCJ operation was first introduced in [18] and further
studied in [2]. The DCJ distance provides a general rearrangement framework,
including all common rearrangement operations, and a simple mathematical for-
mula: dDCJ = n − c.
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2 Full Parsimony Methods, Distance Based Methods and
Phylogeny Invariants

In this section, we briefly introduce three types of existing phylogenetic infer-
ence methods. The first type of methods are the full parsimony methods, which
infer phylogeny and gene orders of internal nodes simultaneously, under either
the breakpoint distance or some edit distance. In this paper, we consider the
DCJ distance, as there exists a very quick and accurate tree scoring method,
GASTS. Phylogenetic methods based on GASTS have been shown to be very
accurate [16]. The second type of methods are distance-based methods. Given a
data with n extant species and a distance measure, we can easily convert these
sequences or gene orders into a n by n distance matrix with n(n−1)

2 independent
variables, and reconstruct the phylogeny from this matrix. This kind of method
has a charm of simplicity. To another end, the third type of methods, phylogeny
invariants, explicitly explore various patterns and their occurrence frequencies in
the data. Given an evolution model, algebraic relations (invariants) of the prob-
abilities of these patterns can be derived, and are used to make phylogenetic
inferences.

2.1 Full Parsimony Methods

The full parsimony methods are computationally challenging. But due to the re-
cent development of the adequate subgraph theory and its extension, the scoring
method GASTS can quickly find accurate estimation of the minimum numbers
of rearrangements on thousands of genomes with thousands of genes in each
genome. To infer the correct phylogeny for a given quartet problem with four
taxa: A, B, C and D, we just need to compute the tree scores SGASTS (we call
them phylogenetic score functions in this paper) for the three topologies AB|CD,
AC|BD and AD|BC and return the topology T̂GASTS with the smallest GASTS
score.

2.2 Distance Based Methods and Four-Point Metric

Assume the correct topology of the quartet problem is depicted by Fig. 2. If the
distance between any two species is equal to the length of their path on the tree,
e.g. dAD = v1 + v5 + v4, then the following four point metric holds:

dAB + dCD < dAC + dBD = dAD + dBC . (1)

Fig. 2. The underlying tree for the four species A, B, C and D
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This relation can be easily verified and it can be used to test whether the distance
is additive. A weak version of this relation not requiring the equality can be used
to make phylogenetic inference. The distance sum can be thought of as the sum of
the distances between sibling species on the tree. Denote dAB|CD = dAB + dCD,
dAC|BD = dAC + dBD and dAD|BC = dAD + dBC as the distance sums for
the corresponding three topologies. The inferred topology is the one with the
smallest distance sum, as the others use the internal edge twice and hence have
larger values.

Furthermore, the length of the internal edge can be estimated by:

v̂5 =
1
2

[
max {dAB + dCD, dAC + dBD, dAD + dCB}

−min {dAB + dCD, dAC + dBD, dAD + dCB}
]
. (2)

The estimated internal length also indicates the significance of the inferred phy-
logeny: a small internal edge is likely to arise from noisy data and a large internal
edge is likely to show the true phylogeny. In reconstructing large trees, this in-
formation is used to resolve conflicting conclusions on internal edges or subtrees.

We apply both the breakpoint distance dBP and the DCJ distance dDCJ for
genome rearrangement data. For a topology T = AB|CD, the two phyloge-
netic score functions SBP,T and SDCJ,T denote dBP,AB + dBP,CD and dDCJ,AB +
dDCJ,CD respectively. Phylogenetic inferences T̂BP and T̂DCJ give the topologies
which minimize SBP,T and SDCJ,T . In many situations, it is more convenient to
compute the number of shared adjacencies a and the number of color-alternating
cycles c. We use Sa and Sc to denote the corresponding phylogenetic score func-
tions; the inferred phylogeny is the one maximizing Sa or Sc.

Under the breakpoint distance, an adjacency shared by three or all four
genomes contributes once or twice to the Sa scores of all three topologies. So
it does not provide phylogenetic information, and it is sufficient to only count
the number of adjacencies shared by exactly two of the four genomes. Then, for
each topology, say T = AB|CD, Sa,T is redefined as the number of adjacencies
shared only by A and B or C and D. Alekseyev and Pevzner [1] suggested using
Sa to infer phylogeny.

2.3 Phylogeny Invariants

Phylogeny invariant methods directly examine patterns and their occurrence
frequencies presented in the data. These methods are easier to understand on
sequence data. Given 4 DNA sequences A, B, C and D, the pattern presented at
site i can be, the first two nucleotides of Ai, Bi, Ci and Di take the same value,
say G, and the last two nucleotides take another value, say T . Given a topology
(on which, edge lengths are unknown and irrelevant), a set of algebraic relations
(invariants) about the expected frequencies can be derived. To infer phylogeny,
we find the topology that best fits these invariants in a statistical sense.

On 4 DNA or protein sequences, we may observe 44 = 256 or 204 = 1.6× 105

different configurations. By the following encoding method, these configurations
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can be reduced to 15 patterns2. For a site i, we assign x to Ai, y to the first
character different from x among Bi to Di, z to the first character different from
x and y, and so on. The 15 patterns on four sequences are:

xxxx
xyxx, xxyx, xxxy, xyyy

xxyy, xyxy, xyyx
xxyz, xyxz, xyzx, xyyz, xyzy, xyzz

xyzw.

Sankoff and Blanchette [12] explored how to apply invariants methods on gene
order data. The characters they used are the adjacencies in the gene orders: the
successors for any gene extremity g (an endpoint of a gene, represented by a
vertex in the breakpoint graph) on different gene orders. Here g plays a similar
role as a site i in sequence data, and its successors in the gene orders have a
similar role as nucleotides or amino acids. Sankoff and Blanchette first derived
stochastic probabilities for a gene h to take position i after k random inversions.
From these probabilities, they found 11 phylogenetic invariants in the case of
five species.

Phylogeny invariants methods and our new methods are similar, in the way
that both methods explore directly the patterns presented in the data. But
phylogeny invariants methods are probabilistic methods, which concern about
expected probabilities and statistics tests. Our new methods are under the par-
simony framework.

3 Rearrangement Phylogenetic Patterns

In this section, we explore rearrangement phylogenetic patterns on four genomes.
Under the parsimony framework, given a distance measure, a rearrangement
phylogenetic pattern is a pattern that always gives smaller scores on one fixed
topology but not on the others. In other words, a rearrangement phylogenetic
pattern differentiates different topologies. We consider rearrangement phyloge-
netic patterns with regard to both the breakpoint distance and the DCJ distance,
with the latter closely related to the inversion distance and its generalization,
the HP distance.

Genome rearrangement problems have far more combinatorial structures than
the corresponding problems on sequences, thus they are much harder to study,
especially for the ones concerning three or more genomes [4,10,5,14]. This paper
initiates the discussion on rearrangement phylogenetic patterns, with the em-
phasis on small sized patterns. As a learnt experience from adequate subgraphs
for the median problem, combinatorial structures of small sizes alone may pro-
vide sufficient information on solving the problem. Furthermore, rearrangement
phylogenetic patterns of small sizes will be amenable for further probabilistic
analysis, which will provide statistical significance for phylogenetic inference.
2 This number is given by the Bell number, B(n), with the leading terms 1, 2, 5, 15,

52, 203 and the recurrence equation B(n + 1) =
∑n

k=0

(
n
k

)
B(n).
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In Subsection 3.1 we present some negative results, which exclude some com-
binatorial structures from being rearrangement phylogenetic patterns. Surpris-
ingly, adjacencies shared by two or more genomes, which constitute the basis
of SBP or Sa, are not rearrangement phylogenetic patterns. This conclusion is
also verified by the observations in Section 4. In Subsection 3.2, we introduce a
class of rearrangement phylogenetic patterns and prove that they differentiate
different topologies with regard to both the breakpoint distance and the DCJ
distance. Then we introduce two related phylogenetic score functions and their
phylogenetic inference methods.

3.1 Patterns Which Are Not Rearrangement Phylogenetic Patterns

Theorem 1. Out of the 15 patterns discussed in Subsection 2.3, the following
6 patterns are not rearrangement phylogenetic patterns with regard to either the
breakpoint distance or the DCJ distance: xxxx, xyxx, xxyx, xxxy, xyyy, and
xyzw.

Proof. Under the breakpoint distance (or the DCJ distance), the first, the next
four and the last patterns contribute 5, 4 and 2 pairwise shared common adja-
cencies (or same numbers of color-alternating cycles), respectively. Hence these
patterns do not differentiate the three topologies. ��

This theorem tells us that an adjacency shared by 1, 3 or 4 genomes does not
contain any phylogenetic information. The next theorem states that an adjacency
shared only by 2 genomes, described by the six patterns xxyz, xyxz, xyzx, xyyz,
xyzy, and xyzz, does not contain phylogenetic information either, with regard
to the breakpoint distance or the DCJ distance.

Fig. 3. A counter example showing an adjacency shared by two genomes is not a re-

arrangement phylogenetic pattern. The optimal configurations for the three topologies

are shown next to the nodes.

Theorem 2. A pairwise shared adjacency is not a rearrangement phylogenetic
pattern.

Proof. We prove this by showing two counter examples: a simple one and a
complicated one.

Counter Example I. In Fig. 3 genome A and B share a common adjacency
(g, x), genome C has the adjacency (g, y), and genome D has (g, z), where g, x, y
and z are gene extremities. In the optimal solutions, the two internal nodes both
contain (g, x). Hence all three topologies contribute 3 pairwise shared adjacencies
or 3 color-alternating cycles.
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Fig. 4. Another counter example showing adjacencies shared by two genomes are not

rearrangement phylogenetic patterns. Genome A and B share two adjacencies and

Genome C form two different adjacencies on the same four extremities (A). (B), (C),

(D) and (E) show optimal configurations of the internal nodes for the three topologies

AB|CD, AC|BD and AD|BC. Note that AB|CD has two optimal configurations. The

configurations are shown next to the nodes. Solid black edges represent adjacencies

for the first internal node and dashed black edges represent adjacencies for the second

internal node.

Counter Example II. In Fig. 4.(b) genome A and B share two common ad-
jacencies and genome C has two different adjacencies on these four gene ex-
tremities. Subfigures (B)–(E) show the configurations taken by the two internal
nodes, where the optimality of these configurations can be easily proved (either
by the adequate subgraph theory or similar techniques applicable for the break-
point distance). Note that for the first topology AB|CD, there are two locally
optimal configurations, and at least one of them is part of a global optimal con-
figuration. All three topologies contribute 6 pairwise shared adjacencies and 7
color-alternating cycles.

Therefore, adjacencies shared by only two genomes are not rearrangement
phylogenetic patterns. ��

3.2 Rearrangement Phylogenetic Patterns and Contrasting Shared
Adjacencies

A contrasting shared adjacency, is when a gene extremity g forms one adjacency
on two genomes and another adjacency on the other two genomes. Related to the
patterns discussed in Subsection 2.3, a contrasting shared adjacency corresponds
to xxyy, xyxy, xyyx.

In the two counter examples used to prove Theorem 2, the two internal nodes
take the same configuration in the optimal configurations. When this happens
on all three topologies, the two scores Sa and Sc will always be the same. For a
pattern to be phylogenetic, the internal nodes have to be different in the optimal
configurations. The next theorem shows that a contrasting shared adjacency has
such a property.

Theorem 3. If a contrasting shared adjacency forms an adjacency (g, x) on
genome A and B and (g, y) on genome C and D, then we have the following
conclusions:
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1. the configurations of the two internal node on the topology AB|CD are dif-
ferent;

2. the contrasting shared adjacency differentiates the three topologies and AB|CD
is the preferred one, with regard to both the breakpoint distance and the DCJ
distance;

3. the contrasting shared adjacency is a rearrangement phylogenetic pattern.

Proof. Fig. 5 shows the optimal configurations of the internal nodes for all three
topologies. The optimality can be easily shown by the adequate subgraph theory
(or similar techniques for the breakpoint distance) and so is the fact that the two
nodes on AB|CD take different configurations. Furthermore, on AB|CD there
are 4 pairwise shared adjacencies and color-alternating cycles; while on the other
two topologies, there are only 3 pairwise shared adjacencies and color-alternating
cycles. Hence a contrasting shared adjacency is a rearrangement phylogenetic
pattern and AB|CD is the preferred topology with regard to both the breakpoint
distance and the DCJ distance. ��

Fig. 5. Contrasting shared adjacency, where Genome A and B share one adjacency

(g, x) and Genome C and D share another adjacency (g, y). (B), (C) and (D) show op-

timal configurations of the internal nodes for the three topologies AB|CD, AC|BD and

AD|BC. The configurations are shown next to the nodes. Solid black edges represent

adjacencies for the first internal node and dashed black edges represent adjacencies for

the second internal node.

3.3 Multi-paths, Multi-cycles and Two New Phylogenetic Score
Functions

A multi-path (a multi-cycle) is a path (a cycle) only consisting of multi-edges.The
size of a multi-path (a cycle) is the number of multi-edges it contains, which is
denoted by l. We say a multi-path (a multi-cycle) is consistent with a topology
T = AB|CD, if its adjacencies are pairwise shared by either genomes A, B
or genomes C, D. In the breakpoint distance based method, a multi-path (a
multi-cycle) of size l contributes l units toward SBP,T .

We have shown, in proving Theorem 3, two contrasting adjacencies (g, x) and
(g, y) together force the two internal nodes to take different configurations. In
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counting how many units of phylogenetic information a multi-path (a multi-
cycle) contains, we argue that it should be equal to the maximum number of
non-overlapping3 contrasting shared adjacencies contained in that path (cycle),
which is � l

2� units of phylogenetic information4.
We define the phylogenetic score function SCA,T as the maximum number of

non-overlapping contrasting shared adjacencies consistent with the topology T .
This can be explicitly expressed as:

SCA,T =
∑

p consistent with T

⌊
|p|
2

⌋
, (3)

where p is a multi-path or multi-cycle and |p| is its size. And the corresponding
phylogenetic inference T̂CA is the topology T with the maximum SCA,T .

Under the DCJ distance, we have the following result for multi-cycles. This re-
sult means, a multi-cycle of size l = 2k (always an even number) only contributes
k − 1 units of phylogenetic information, instead of k.

Theorem 4. A multi-cycle of size l = 2k contributes 4k + 1 color-alternating
cycles on its consistent topology and contributes 3k + 2 color-alternating cycles
on other two topologies.

As the difference in the number of cycles is k− 1, it will be better to assign only
k − 1 units of phylogenetic information to the multi-cycle.

Remark 1. For a multi-cycle with 2k multi-edges, if we treat these multi-edges
as simple edges, the DCJ distance defined on this cycle is also k − 1. Although
the two k − 1s coincide, they come from two different problems. If the distance
measure is additive, the distance on the wrong topology will count the internal
edge twice, and the extra counting explains the difference in the total distances.

With this modification, we have a new phylogenetic score function SMCA,T :

SMCA,T =
∑

multi-path p consistent with T

⌊
|p|
2

⌋
+

∑
multi-cycle p consistent with T

|p|
2

− 1.

(4)
And the corresponding phylogenetic inference T̂MCA is just the topology with
the largest SMCA.

4 Testing the Accuracies of Phylogenetic Inference
Methods on Simulated Data

We generated various groups of simulation data to compare the accuracies of
various phylogenetic inference methods. Simulated genomes were generated ac-
cording to the tree shown in Fig. 2 but with only two parameters: e1 = v5 and
3 Non-edge-overlapping, to be more accurate.
4 The notation �x� denotes the largest integer which is no larger than x.
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e2 = v1 = v2 = v3 = v4. The edge lengths e1 and e2 denote the number of
random inversions applied. In the first group of data, e1 and e2 varied among
5, 10, 20, 30 and 40. In the second group of data, to study the effect of short
internal edges, we let e1 take very short lengths: 1, 2, 3, 4 and 5, and let e2 take
values among 5, 10, 20, 30, 40, 50 and 60. We generated 1,000 datasets for each
parameter combination; thus we generated a total of 55,000 simulation datasets.
We used genomes of single circular chromosome containing 200 genes, so that we
finished the whole test very quickly: for each dataset, all phylogenetic inferences
finished within a couple of seconds.

4.1 Comparing Accuracies of Various Inference Methods

We compared the accuracies of five phylogenetic inference methods (T̂MCA, T̂CA,
T̂GASTS, T̂BP and T̂DCJ) on the first group of data. We used a strict criteria to
calculate accuracies: a method makes a correct inference only when the true
topology is given as the unique result. For example, if the inference of a method
contains two topologies, even with the true one included, we still treat this
inference as wrong. Under this strict criteria, accuracies would appear low, but
the comparison results are not affected.

Table 1 shows the comparison results for e1 = 5, 10 and 20. Results for e1 =
30 and 40 are not shown, as the accuracies were all 100%. Overall, these methods
were very accurate, except when the internal edge was small and the outer edges
were large. With no surprise, the full parsimony method T̂GASTS had the best
accuracy, leading the second best method by up to 7 percentage points. The two
new phylogenetic inference methods T̂MCA and T̂CA had the second best accu-
racies, better than the next best method by up to another 7 percentage points.
Among the two, T̂MCA was slightly better than T̂CA. This shows that special
modification regarding the DCJ distance measure has a marginal advantage.
The next best method was T̂BP, leading T̂DCJ by nearly 5 percentage points.
However, there was a trend that their difference decreases as the internal edge
length increases.

4.2 Tests on Challenging Cases with Short Internal Edges and Long
Outer Edges

Fig. 6 shows the comparison results on cases with e1 =1,2,3 and 5, e2 =5, 10,
20, 30, 40, 50 and 60. Results for e1 = 4 are not shown, as they are similar
to the ones for e1 = 5. As the cases with short internal edges and long outer
edges are very difficult, it is not surprising to see accuracies as low as 40%. On
the contrary, it is a little surprising to see the two new methods T̂MCA and T̂CA

had nearly 50% accuracies on the extremely difficult cases where the outer edges
were 60 times the length of the internal edge. As the chance to make a correct
inference by chance is no larger than 33% (as ties are not regarded as correct),
these results were fairly good.

Another obvious observation is, the accuracies increase quickly with the length
of the internal edge length. When e1 = 1, the accuracies started from 90%
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Table 1. Comparison of 5 phylogenetic inference methods on the first group of datasets.

The internal edge length e1 and the outer edge length e2 took values among 5, 10, 20,

30 and 40 random inversion. Accuracies are measured strictly where any tie is treated

as incorrect.

e1 e2 T̂MCA T̂CA T̂GASTS T̂BP T̂DCJ

5 5 100 100 100 99.9 99.7

5 10 100 99.9 100 99.6 98.8

5 20 98.1 97.0 98.5 94.9 90.6

5 30 88.0 88.2 93.0 81.5 78.6

5 40 80.2 79.9 87.7 72.4 68.8

10 5 100 100 100 100 100

10 10 100 100 100 100 100

10 20 100 99.9 100 99.9 99.2

10 30 99.0 98.5 100 97.7 95.8

10 40 94.8 94.1 99.1 93.2 88.7

20 20 100 100 100 100 100

20 30 100 100 100 100 100

20 40 99.6 99.6 100 99.3 99.6

(e2 = 5) and quickly dropped to 40%–50% (e2 = 60); when e1 = 5, they increase
to 100% (e2 = 5) or 55%–75% (e2 = 60).

The two new methods T̂MCA and T̂CA had the best overall performance. They
remained the best, until e1 increased to 4 and 5, where they were only second to
the full parsimony method T̂GASTS. T̂GASTS performed poorly when e1 = 1, fairly
when e1 = 2, and well when e1 ≥ 3. T̂BP had decent performance, better than
T̂DCJ. We can explain the fact that the three adjacency-related methods had the
best performance for e1 = 1 by the following argument. The single inversion on
the internal edge leaves two breakpoints. The trace of these breakpoints may
be erased by random inversions on the four outer edges. In order to correctly
reconstruct this inversion, DCJ based methods need both breakpoints to remain.
Adjacency-related methods can work even if only one breakpoint remains.

4.3 How Do the Phylogenetic Score Functions Correlate to the
Number of Rearrangements

On the first group of datasets, we further investigated how the phylogenetic
score functions correlate to the number of rearrangements. The number of re-
arrangements on the true topology can be easily calculated during simulation,
however this is not feasible on the other two topologies. As GASTS can very
accurately estimates the number of rearrangements on a given topology, we use
the GASTS scores to approximate the real numbers of rearrangements. We then
calculated how the other phylogenetic score functions deviated from the GASTS
scores. We denote the three topologies as Ti with i = 1, 2 and 3, where T1 is
the true topology. We calculated the deviations for SMCA, SCA, SBP, SBP

2 , SDCJ

and SDCJ
2 . The two fractional scores are considered, because of the factor of 2 in

Equation 2.
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Fig. 6. Comparison of 5 phylogenetic inference methods on datasets with very small

internal edges. The length e1 of these edges varied among 1, 2, 3, 4 and 5 random

inversions. Accuracies are measured strictly where any tie is treated as incorrect.

Let P represent any of the above 6 phylogenetic score functions. The deviation
diff(P ) calculates the discrepancy between the difference in SP and the difference
in SGASTS over different topologies on the same datasets. It is given by the
following formula:

diff(P ) =
1

2000

1000∑
i=1

{| (SP,T1 − SP,T2) − (SGASS,T1 − SGASS,T2) |

+| (SP,T1 − SP,T3) − (SGASS,T1 − SGASS,T3) |}. (5)

Table 2 shows the results. The two score functions SBP and SDCJ deviated
significantly from the GASTS scores; but their fractional versions had much
better performance. SDCJ

2 had very small deviations, only second to SMCA. SMCA

had an excellent performance, with very small deviations from the GASTS scores,
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Table 2. Deviations between six phylogenetic score functions and the GASTS score.

The deviation is defined by Equation 5. As the GASTS score well approximates the

number of rearrangements for any given tree, these deviations show how well these six

phylogenetic score functions reflect the variation of the number of rearrangements over

different topologies. The deviations for SMCA are in bold font, if they are smaller than

2. e1 and e2 are the lengths of internal and outer edges, respectively.

e1 e2 diff(SMCA) diff(SCA) diff(SBP) diff(
SBP

2
) diff(SDCJ) diff(

SDCJ
2

)

5 5 0.1435 3.1985 12.465 3.8337 4.8845 0.4315

5 10 0.3970 2.2015 10.664 3.089 4.8190 0.8970

5 20 1.0155 1.5345 8.4615 2.6680 5.454 1.7460

5 30 1.5490 1.6580 7.2310 2.6550 6.1460 2.4405

5 40 2.1055 2.1435 6.6230 2.8687 7.0365 2.9890

10 5 0.2410 6.0200 24.127 7.2652 9.6765 0.5550

10 10 0.6345 3.8970 20.876 5.7495 9.4910 1.0505

10 20 1.6520 1.8600 14.825 3.4027 8.9575 1.8160

20 5 0.4670 10.687 44.850 12.969 19.125 0.7430

20 10 1.2020 6.2245 38.051 9.7300 18.644 1.2835

20 20 3.1775 2.4450 26.761 4.8037 17.483 2.0010

30 5 0.6205 13.855 62.395 17.191 28.235 0.8870

30 10 1.7490 7.9415 53.082 12.777 27.477 1.3840

40 5 0.9020 16.229 77.793 20.449 37.253 1.0150

40 10 2.4585 8.7070 65.984 14.852 36.190 1.5275

especially when the total number of events were small. This shows that SMCA

can well explain the difference in the number of rearrangements over different
topologies. And the reason that its deviations increased is: the gap between SMCA

and SGASTS was mainly caused by large rearrangement phylogenetic patterns,
which occurred more frequently when the number of events got larger; these
large rearrangement phylogenetic patterns are not considered in our paper. The
closely related score function SCA had much worse performance and this justifies
our special consideration on multi-cycles.

5 Conclusion and Future Work

In this paper, we explore rearrangement phylogenetic patterns for the genome
rearrangement quartet problem. A rearrangement phylogenetic pattern is a com-
binatorial structure, which contains phylogenetic information, and by examining
their occurrences, phylogenetic inferences can be made. As the first solid study
of this subject, we prove what are or are not genome rearrangement phyloge-
netic patterns, with regard to the breakpoint distance and the DCJ distance and
under the parsimony framework. We define two phylogenetic score functions as
the numbers of the observed rearrangement phylogenetic patterns, and based on
them we design two phylogenetic inference methods. Tested on simulated data,
these new methods demonstrated good accuracies, only second to the full parsi-
mony method, and remarkable robustness when the internal edge of the tree is



On Exploring Genome Rearrangement Phylogenetic Patterns 135

extremely short. All these observations imply that, rearrangement phylogenetic
patterns indeed carry a significant amount of phylogenetic information and this
is a promising alternative approach to study phylogenetic problems.

There are many open problems to explore. On the quartet problem, discover-
ing of more rearrangement phylogenetic patterns of larger sizes or the patterns
specialized for linear chromosomes will certainly increase the power for phylo-
genetic inferences; analyzing the probabilistic properties of these patterns will
allow us to develop statistic tests for the significance of the inferences. The topic
of discovering rearrangement phylogenetic patterns can go beyond four genomes.
The question of how to use these rearrangement phylogenetic patterns and their
probabilistic properties to design efficient and accurate methods for phylogenetic
problems with large numbers of taxa, will be very interesting but challenging.
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Abstract. The rapid accumulation of whole-genome data has renewed interest
in the study of genomic rearrangements. Comparative genomics, evolutionary
biology, and cancer research all require models and algorithms to elucidate the
mechanisms, history, and consequences of these rearrangements. However, even
simple models lead to NP-hard problems, particularly in the area of phyloge-
netic analysis. Current approaches are limited to small collections of genomes
and low-resolution data (typically a few hundred syntenic blocks). Moreover,
whereas phylogenetic analyses from sequence data are deemed incomplete un-
less bootstrapping scores (a measure of confidence) are given for each tree edge,
no equivalent to bootstrapping exists for rearrangement-based phylogenetic
analysis.

We describe a fast and accurate algorithm for rearrangement analysis that
scales up, in both time and accuracy, to modern high-resolution genomic data. We
also describe a novel approach to estimate the robustness of results—an equiv-
alent to the bootstrapping analysis used in sequence-based phylogenetic recon-
struction. We present the results of extensive testing on both simulated and real
data showing that our algorithm returns very accurate results, while scaling lin-
early with the size of the genomes and cubically with their number. We also
present extensive experimental results showing that our approach to robustness
testing provides excellent estimates of confidence, which, moreover, can be tuned
to trade off thresholds between false positives and false negatives. Together, these
two novel approaches enable us to attack heretofore intractable problems, such
as phylogenetic inference for high-resolution vertebrate genomes, as we demon-
strate on a set of six vertebrate genomes with 8,380 syntenic blocks.
Availability: a copy of the software is available on demand.

1 Introduction

Genomic rearrangements have been studied by biologists since their discovery in the
late 1910s (see [25]). In 1987 Day and Sankoff [7] proposed two major problems about
rearrangements: the edit distance—given two genomes and a model of rearrangements,
find the shortest sequence of rearrangements that transforms one input genome into the
other; and the median—given three genomes, construct a fourth genome that minimizes
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the sum of its pairwise distances to the other three. The edit distance, which underlies
most distance-based phylogenetic reconstruction methods, is computable in linear time
for most models, while the median, which underlies maximum parsimony and most
Bayesian and maximum likelihood reconstruction methods, is NP-hard for most mod-
els [10]. Phylogenetic reconstruction from rearrangement data attracted attention, as
rearrangements are “rare genomic events” [21] and thus might help resolve difficult
questions about ancient branching patterns in evolution, but the computational com-
plexity of parsimonious approaches precluded widespread application of the approach.
However, as whole-genome data multiplies everywhere, phylogenetic reconstruction
based on rearrangements is becoming a necessity for work in comparative genomics.

In earlier work [13], we described a method for estimating very precisely the true
evolutionary distance between two genomes under rearrangements in the absence of
duplications and losses, when every genome shares the same collection of genes. While
the limitation to identical gene content would be severe, whole-genome data is typically
given in terms of syntenic blocks rather than genes; and syntenic blocks can be selected
to obey these limitations: they are shared among the genomes and are not duplicated.
We show in this paper how our true distance estimator can be used to reconstruct highly
accurate phylogenetic trees from high-resolution genomic data using simple distance
methods.

A major drawback of phylogenetic reconstruction based on rearrangements has been
the lack of any way to assess the robustness of the reconstructed edges. In phyloge-
netic analysis from sequence data, such an assessment is de rigueur and is carried out
through a bootstrapping process, formally proposed in 1985 by Felsenstein [8], in which
replicates of the multiple sequence alignment are produced by random sampling with
replacement of the columns, a tree is built from each replicate, and each edge of the
original tree assigned a score that is simply the fraction of replicate trees that contain
this same edge. While the interpretation of bootstrapping scores remains uncertain (see,
e.g., [24]), the practice of providing such scores is nearly universal. However, the same
bootstrapping process cannot be applied to rearrangement data, since a rearrangement
is a single character. (Jackknifing, in which some taxa are dropped, remains viable, but
the relatively small number of taxa in most analyses, together with the fact that drop-
ping certain taxa can lead to poor reconstruction due to insufficient taxon sampling [33],
severely limit the power of the approach.)

In this paper, we propose an entirely new approach to the assessment of the ro-
bustness of a reconstruction, in which we take advantage of the additive nature of true
evolutionary distances. This approach is fast, uses exactly the same reconstruction algo-
rithm as produced the original tree, allows the user to trade off sensitivity for specificity
(not possible in the conventional approach to phylogenetic bootstrapping), and produces
support values that correlate well with error measures.

2 Background

Rearrangement data was used in phylogenetic analysis 80 years ago by Sturtevant and
Dobzhansky [26]. Sankoff and Blanchette [4] introduced the first algorithmic approach
to the reconstruction of a phylogenetic tree from rearrangement data, BPAnalysis. The
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algorithm seeks the tree and internal genomes which together minimize the total num-
ber of breakpoints—adjacencies present in one genome, but absent in the other. Moret
et al. [17] reimplemented this approach in their GRAPPA tool and extended it to inver-
sion distances—inversions are the best documented of the hypothesized mechanisms
of genomic rearrangements. This work focused on unichromosomal genomes; to han-
dle multichromosomal genomes, Bourque and Pevzner [5] proposed MGR, based on
GRAPPA’s distance computations. Whereas BPAnalysis and GRAPPA search all trees
and report the one with the best score (an approach that limits GRAPPA to trees of 15
taxa unless combined with the DCM approach [28], in which case it scales up to 1,000
taxa), MGR uses a heuristic sequential addition method to grow the tree one species
at a time. The heuristic approach trades accuracy for scalability, yet MGR does not
scale well—in particular, it cannot be used to infer a phylogeny from modern high-
resolution data, as even just a few such genomes may require days or weeks of compu-
tation. Yet to date MGR (and its more recent derivative MGRA [1]) had remained the
only tool available for the analysis of multichromosomal genomic rearrangements. All
such parsimony-based approaches must produce good approximations to the NP-hard
problem of computing the rearrangement median of three genomes, which limits their
scalability.

Distance-based methods, in contrast, run in time polynomial in the number and size
of genomes. Moreover, methods like Neighbor-Joining (NJ) [22] provably return the
true tree when given true evolutionary distances. Their speed has long been a major
attraction, but the distances that can be computed with sequence data are often far
from the true evolutionary distances, particularly on datasets with markedly divergent
genomes. Pairwise distances are often computed as edit distances, that is, as minimum-
cost distances under the assumed model of evolution. However, even with detailed mod-
els, such an edit distance typically underestimates the true distance and that underesti-
mation worsens as the true distance grows. The result is poor trees (see, e.g., [16] for
examples from rearrangement data). The true evolutionary distance—the actual number
of evolutionary events between the two genomes—is at once an abstraction and impos-
sible to measure; however, it can be estimated using statistical techniques, something
that has long been done with sequence data (see, e.g., [27]).

Distance estimators have been used for rearrangement data. For unichromosomal
genomes under inversions, transpositions, and inverted transpositions, Wang and
Warnow [30] showed how to estimate a true evolutionary distance from the break-
point distance (the number of disrupted gene adjacencies), later deriving exact formu-
las [29]. For unichromosomal genomes evolving under inversions only, an experimental
approach was used by our group to derive the EDE estimate from the inversion edit dis-
tance [16], yielding greatly increased accuracy in tree estimation under both distance
and parsimony methods.

For multichromosomal genomes, all of the rearrangement operations can be mod-
eled by a single operation called “Double-Cut-and-Join” (DCJ) [3, 32]. One DCJ op-
eration makes two cuts, which can be in the same chromosome or in two different
chromosomes, producing four cut ends, and then rejoins the four cut ends (in three pos-
sible ways) to mimic different kinds of rearrangements. We have described a statistical
method, using exact formulas, to estimate the true evolutionary distance between two
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genomes under the DCJ model [13], an estimator that we recently refined to include
gene duplication and loss events [14].

Nonparametric bootstrapping has become the standard method used in phylogenetic
analysis to assess the robustness of the reconstruction. In phylogenetic reconstruction,
bootstrapping provides support values for branches (or clades) in the estimated tree. The
classical bootstrapping method for sequence data by Felsenstein [8] samples columns
with replacement from a multiple sequence alignment to create a new alignment called
the bootstrap replicate. Each replicate thus contains the same number of species and
the same number of columns per species, but some columns in the original alignment
may be duplicated and others omitted in the sampling process. The result is a shift
in column bias, with some replicates possibly losing many significant characters and
others losing possibly confusing ones. From each replicate a tree (the bootstrap tree)
can be reconstructed using any of the available reconstruction techniques. The support
value of a branch in the inferred tree is the proportion of the bootstrap trees that contain
this branch. For sequence data, experiments suggest that the derived support values are
good estimators of accuracy [9].

The agreement among the bootstrap trees is subject to very complex processes and
cannot be directly understood as a statistical measure. Yet practitioners have found it
very useful—and the absence of any equivalent measure for reconstructions based on
rearrangement data has been a major problem. Small-scale attempts have been made
to use a simple jackknife (leave-one-out), but the relatively small number of taxa in
typical datasets limits the power of the test; Tang and his group have recently completed
a study of a more elaborate strategy that leaves out a combination of both selected
genomes and selected genes [23]. For the most part, however, current phylogenetic
work with rearrangement data has focused on comparing its results with trees produced
from sequence data for the same organisms.

3 Phylogenetic Reconstruction and Accuracy Testing

For reconstruction, we use the distance-based Neighbor Joining (NJ) method. Given a
matrix of pairwise distances between taxa, NJ reconstructs the phylogeny (including
the internal branch lengths) by iteratively joining a closest pair of leaves according to a
suitable metric, replacing the two leaves by a “cherry” (the pair of leaves connected to
an internal node), computing distances from the cherry to all other leaves, and iterating
until only three leaves remain. When the distance matrix is additive, NJ guarantees the
reconstruction of the true tree [22].

We study the accuracy of the reconstructed trees and their internal branch lengths
through extensive simulations—conducted by generating several trees, simulating evo-
lution on these trees, and using the leaf permutations as inputs to the reconstruction
method. The reconstructed trees are compared with the “true” trees to test the accuracy
of the method.

We use the Robinson-Foulds (RF) metric [20] to measure the topological accuracy
of inferred trees. Every edge e in a leaf-labeled tree defines a bipartition on the leaves:
removing e disconnects the tree and thus partitions the set of leaves. If T is the true
tree, and T ′ is the inferred tree, then the false positives are the bipartitions of T ′ not
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present in T , and the false negatives are the bipartitions of T not in T ′. Divide each
count by n−3, the number of internal edges in a binary tree on n leaves: the results are
the false positive and false negative rates. The RF distance between two binary trees is
the average of the number of false negatives and false positives; the RF error rate is the
average of the false negative and false positive rates.

The accuracy of branch length estimation is measured by the average branch length
error for each inferred tree: Σ|ei− ti|/Σti where ei and ti are the edge lengths of edge i
in the inferred tree and true tree, respectively, and the summation is over all edges of
the trees.

4 Bootstrapping for Rearrangement-Based Phylogenetic
Reconstruction

The classical bootstrapping method cannot be applied directly to rearrangement data
because the entire permutation (genome) is a single character in the space of permu-
tations. However, bootstrapping is just one of many possible tests of robustness or re-
peatability; we therefore design such a test for distance-based reconstructions that takes
advantage of the unique characteristics of rearrangement data. The rationale behind our
bootstrapping method is to introduce perturbations in the leaf genomes and to recon-
struct bootstrap trees from the perturbed leaf genomes. (Note that sampling characters
with replacement from leaf sequences, as is done with DNA sequence data, also results
in “perturbed” sequences.)

Our method is based on the same two properties used in sequence-based bootstrap-
ping. First, the perturbed data must remain a valid input for phylogenetic reconstruction.
Therefore we perturb the leaf genomes by applying random DCJ operations, thus en-
suring that the new genomes remain valid inputs; the number of DCJ operations applied
to each genome is chosen from a Gaussian distribution, so that the level of perturbation
can vary from leaf to leaf. Second, the expected pairwise distance after perturbation
must remain close to the distance between the corresponding pair of leaves before per-
turbation. In our case, if x DCJ operations are applied to leaf i to yield leaf i′ and y DCJ
operations are applied to leaf j to yield leaf j′ (where i and j are in the input dataset
and i′ and j′ in the replicate), and if x and y are not too large, then the expected distance
between i′ and j′ is approximately (x + y) larger than the distance between i and j. To
enforce this second property, we produce a distance matrix in which the distance be-
tween i′ and j′ is d(i′, j′)−(x+y), where d(i′, j′) is the estimated true distance between
i′ and j′.

Our procedure produces new distance matrices on the full set of taxa; on each such
matrix, it applies NJ to produce a bootstrap tree; and from these trees, it computes
support values as in the sequence-based bootstrap.

5 Experimental Design

5.1 Testing Phylogenetic Reconstruction

Our simulation studies follow the standard procedure in phylogenetic reconstruction
(see, e.g., [11]): we generate model trees under various parameter settings, then use each
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model tree to produce a number of “true trees” on which we evolve artificial genomes
from the root down to the leaves (by performing randomly chosen DCJ operations on
the current genome) to obtain datasets of leaf genomes for which we know the complete
history. We then reconstruct trees and branch lengths for each dataset by computing a
distance matrix using our DCJ-based true distance estimator and then using this matrix
as input to NJ. We then compute Robinson-Foulds distances and error rates as well as
branch-length errors.

A model tree consists of a rooted tree topology and corresponding branch lengths.
The trees are generated by a three-step process. We first generate birth-death trees us-
ing the tree generator in the software R [19] (with a birth rate of 0.001 and a death
rate of 0), which simulates the development of a phylogenetic tree under a uniform,
time-homogeneous birth-death process. The branch lengths in this tree are ultrametric,
so, in the second step, the branch lengths are modified to eliminate the ultrametricity.
Choosing a parameter c, for each branch we sample a number s uniformly from the
interval [−c,+c] and multiply the original branch length by es (for the experiments in
this paper, we set c = 2). Thus, each branch length is multiplied by a possibly different
random number. Finally, for each branch we rescale its length to achieve a target diam-
eter D for the model tree; each branch length now represents the expected number of
rearrangements on that branch. From a single model tree, a set of trees is generated for
simulation studies by retaining the same topology and varying the branch lengths by
sampling, for each branch in the tree, from a Poisson distribution with a mean equal to
that of the corresponding branch length in the model tree.

All experiments are conducted by varying three main parameters: the number of
leaves, the number of genes, and the target diameter. The number of leaves in the trees
simulated are 100 and 500, the number of genes are 5,000 and 10,000 and the target
diameters range from 0.5n to 4n, where n is the number of genes. For each setting of
the parameters, 100 model trees are generated and from each model tree 10 datasets are
created. The error rates for RF and branch length shown in the next section are averages
over these 1,000 trees.

We also test our reconstruction technique on a real dataset: genomes of 6 species
from the Ensembl Mercator/Pecan alignments with 8,380 common markers. We se-
lected these genomes for their size, to demonstrate the scalability of our approach, but
also because, among vertebrate genomes, they are the best assembled: other vertebrate
genomes in the alignment have anywhere from twice to ten times more contigs than the
actual chromosomal number of the species.

5.2 Testing the Bootstrapping Method

To test our bootstrapping method, we generate datasets as described above, using 100
leaves, a diameter of 10,000, and genomes of size 5,000. From each inferred tree 100
bootstrap trees are generated. To test different amounts of perturbations, we use Gaus-
sian distributions with means of 0.005n, 0.01n, 0.02n, 0.05n, 0.1n, 0.15n, and 0.2n and
standard deviations of, respectively, 0.00125n, 0.0025n, 0.005n, 0.02n, 0.04n, 0.06n,
and 0.08n, where n is the number of genes in the dataset. We average the results ob-
tained from 100 such datasets for each set of parameters for the Gaussian distribution.
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6 Results and Discussion

6.1 Simulation Studies of the Phylogenetic Reconstruction

Fig. 1 shows RF error rates for various trees. On the left are rates for trees with 100
and 500 species, with genomes of size 5,000 and target diameters ranging from 2,500
to 20,000. The error rates are below 10% in all but the oversaturated cases. On the right
are rates for trees of 100 species, with genomes of size 5,000 and 10,000 and diameters
varying from half the number of genes to four times that number. As expected, error
rates are significantly reduced by an increase in the size of the genome—because the
larger number of genes reduces the relative error in the estimated distances.

The corresponding average branch-length errors are shown in Fig. 2. Interestingly,
the average error in branch length grows more slowly than the RF error rate with in-
creasing evolutionary diameters.
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Fig. 1. RF error rates on trees of 100 and 500 leaves with genomes of size 5,000 (left) and on
trees of 100 leaves with genomes of size 5,000 and 10,000 (right)
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(left) and on trees of 100 leaves with genomes of size 5,000 and 10,000 (right)
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Overall, these simulations (and many others not shown) confirm that the high pre-
cision of our distance estimator makes it possible to reconstruct accurate phylogenies
with what is perhaps the simplest of all reconstruction methods, and certainly one of
the fastest.

6.2 A Dataset of High-Resolution Vertebrate Genomes

Fig. 3 shows the reconstructed phylogeny of 5 mammals and chicken, along with boot-
strap scores for the 3 internal edges of the tree. Building this phylogeny and computing
the bootstrap scores (using 100 replicates built with a 10% perturbation rate) took under
a second of computing time on a desktop computer; contrast this very fast computa-
tion with the fact that no other tool today can handle this size of genome (over 8,000
syntenic blocks) at all, not even in weeks or months of computation. Moreover, the
tree is much as expected: the two edges on which the community agrees have perfect
bootstrap support, while the more controversial edge creating a primate-carnivore clade
has low support—low enough, by normal standards, to be considered untrustworthy.
Many studies [15, 18, 2] and most current trees place primates in a clade with rodents
rather than with carnivores, although a number of studies support the topology in our
figure [12, 31, 6]. Rearrangement data cannot be used at this early stage to settle the ro-
dents vs. carnivores question, but it is encouraging to see that the reconstruction agrees
with studies based on sequence data, both on well supported and on poorly supported
edges.

Fig. 3. Reconstructed phylogeny of man, rat, mouse, opossum, dog, and chicken (dotted edges
indicate long branches not shown at scale)

The excellent scaling properties of our method and its support for bootstrapping
mean that it is now possible to study the use of rearrangement data in phylogenetic
reconstruction, so as to improve our understanding of the evolutionary processes at
work, parameterize the model, and eventually make whole-genome rearrangement data
into a source of information for systematics on a par with today’s sequence data.
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6.3 Simulation Studies of the Bootstrapping Method

Fig. 4 shows the distribution of bootstrap scores for false positives (edges present in
the inferred tree but not in the true tree) on the left and for true positives (edges that
appear in both the inferred and the true trees) on the right, binned into three categories:
well supported edges (with scores above 90%), poorly supported edges (with scores
below 75%), and candidate edges in a “gray” zone of support (from 75% to 90%). The
percentages on the vertical axis indicate the distribution of false (on the left) or true (on
the right) positives into these three bins. As expected, larger perturbations reduce the
support for false positives, but they also reduce the support for true positives. However,
the increase in the number of false positives that are placed in the “poorly supported”
bin (below 75%) on the left is much more pronounced than the decrease in the number
of true positives placed in the “well supported” bin (over 90%) on the right, indicating
that perturbation rates as high as 15–20% remain quite usable.
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Fig. 4. False positives (left) and True positives (right)

The Receiver-Operator-Characteristic (ROC) curve in Fig. 5 (left) clarifies the issue,
showing that changing the level of perturbation simply traces a curve in the ROC space.
In this plot, a point is a particular bootstrapping test, defined by its sensitivity and speci-
ficity; in the system of coordinates of our figure, therefore, a perfect test would yield
a point at the upper left-hand corner of the diagram. Let E be the set of edges in the
true tree. The set Tt defined for a threshold t consists of those edges in the inferred tree
which are contained in more than t% of the bootstrap trees. Sensitivity is the proportion
of true edges that are also in Tt , |Tt ∩E|/|E|, while specificity is the proportion of edges
in Tt that are true edges, |Tt ∩E|/|Tt |. In our figure, each perturbation rate is represented
by 6 points, obtained by selecting values of 95, 90, 85, 80, and 75 for the threshold t.
The curve shows that larger perturbations are better at specificity but worse at sensitiv-
ity. To keep false positives really low and just lose a few true positives one can achieve
a trade-off at around 10% perturbation rate.
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Fig. 5. ROC curve (left) and negative correlation of bootstrap scores and RF distance (right)

Finally, the plot of bootstrapping scores vs. RF distances in Fig. 5 (right) shows that
trees with high average bootstrap scores are indeed very close to the true tree. That is,
regardless of the choice of perturbation rate and its implications on the sensitivity, the
average bootstrap score shows a negative correlation with the RF distance. (The data
shown in Fig. 5 is for a perturbation rate of 10%.)

7 Conclusions

We have described a very fast, distance-based, phylogeny reconstruction method for
high-resolution rearrangement data and a matching bootstrapping procedure. Both take
advantage of some of the unique characteristics of whole-genome rearrangement data,
given in terms of syntenic blocks: the absence of duplicates, the equal content among all
genomes, and, most importantly, the lack of both homoplasy and saturation in such data,
especially when used with high-resolution data. Our simulations demonstrate the accu-
racy of the reconstruction method and the usefulness of the bootstrapping procedure,
and a proof-of-concept application to a small collection of high-resolution vertebrate
genomes yields results in line with current findings.

Our methods scale to data of very high resolution (tens of thousands of syntenic
blocks) and, because of the very fast running times of distance methods, to large collec-
tions of genomes. Therefore, they can be used to study rearrangement data and deepen
our understanding of the evolution of the genome, as well as to turn rearrangement data
into a genuine source of phylogenetic information.
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Stéphane Aris-Brosou1,2

1 Department of Biology and Center for Advanced Research in Environmental

Genomics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
2 Department of Mathematics and Statistics, University of Ottawa

sarisbro@uottawa.ca

Abstract. The severity of influenza epidemics, which can potentially

become a pandemic, has been very difficult to predict. However, past ef-

forts were focusing on gene-by-gene approaches, while it is acknowledged

that the whole genome dynamics contribute to the severity of an epi-

demic. Here, putting this rationale into action, I describe a simple mea-

sure of the amount of reassortment that affects influenza at a genomic

scale during a particular year. The analysis of 530 complete genomes of

the H1N1 subtype, sampled over eleven years, shows that the proposed

measure explains 58% of the variance in the prevalence of H1 influenza in

the US population. The proposed measure, denoted nRF , could therefore

improve influenza surveillance programs at a minimal cost.

1 Introduction

In March 2009, a new influenza A virus emerged in Mexico and in the United
States, and spread quickly to the rest of the world in the following weeks. On
May 11, the World Health Organization declared the situation as the first pan-
demic of the 21st century (e.g., [21]). A number of studies have now confirmed
that this particular virus emerged following a series of particular exchanges of
genetic material between viruses circulating in different hosts (e.g., [21]). One
lesson learned during this outbreak is that nobody expected this very particu-
lar virus to emerge and to cause a human pandemic. This lack of perspective
can essentially be attributed to the very traditional way the dynamics of these
genomes are monitored: by studying the history (phylogeny) of each segment
(i) independently and (ii) over a long period of time simultaneously analyzing
several years (e.g., [12, 15,21]). The objective of this work is to provide us with
a simple tool that can be used to assist surveillance programs by monitoring the
dynamics of influenza viruses at the genomic level, (i) integrating the informa-
tion about the history of all segments simultaneously and (ii) on a yearly basis
in order to be able to track the dynamics of these genomes in time.

Influenza viruses are the etiologic agents of the ‘flu’, a seasonal illness that in
a ‘regular’ season kills 250,000-500,000 people, globally [18]. The virus itself is

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 149–160, 2010.
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made of a protein capsid that encloses its genome, along with a few structural
proteins. The influenza genome is composed of eight segments of negative-sense
single-stranded RNA molecules, each of which encodes 1-2 proteins for a total
of 12 proteins [24]. By approximate order of decreasing size, these genes code
for polymerase subunits (PB2, PB1 and PA), the hemagglutinin (HA) and neu-
raminidase (NA) antigens, a nucleoprotein (NP), a ribonucleoprotein exporter
(NS2, also called NEP), an interferon antagonist (NS1), an ion channel protein
(M2) and a matrix protein (M1). The last two of the twelve proteins, PB2-F1 [5]
and PB1-N40 [24], are less well characterized. Five major different types of in-
fluenza viruses are recognized, A B and C being the three most common. The
bases of the division into types is made according to genetic information (phy-
logenies), mutation rates (A > B > C) or host range (A: a large number of
vertebrates, B: humans and seals, C: humans and swines).

Influenza A viruses are the principal source of epidemics in the human pop-
ulation, and unlike the other two common types, are further subdivided into
subtypes. This subtype classification is based on the type of HA and NA pro-
teins, and therefore genes, that each virus is made of. Almost all combinations
can be formed between the 16 known subtypes of HA (H1-H16) and the nine
that are known for NA (N1-N9) [11, p.157]. All of these subtypes are present in
wild waterfowl, but the most prevalent subtypes in the human population are
H1N1 and H3N2 [18].

Because of their structure as single-stranded RNA molecules and as segmented
genomes, influenza A viruses evolve quickly under two general mechanisms: anti-
genic drift and antigenic shift [14]. Antigenic drift is caused by the accumulation
of mutations, which occur at a high rate (∼ 10−3 substitutions per site per
year [18]) due to the lack of a proof-reading mechanism during replication of the
viral genome, while antigenic shift is due to the exchange of segments when at
least two different viruses, potentially of different subtypes, co-infect the same
cell. Such an exchange is called reassortment. With the potential to generate
new combinations of antigenes and potentially new subtypes, reassortment is
the main source of antigenic novelty [15,14], and has been directly implicated in
the emergence of the 2009 pandemic [21]. However, the methods used to quan-
tify reassortments are virtually inexistent. The current practice consists, first, in
estimating a phylogenetic tree for each individual segment for a set of genomes
sampled through many years, and then, in reconciling these trees, optimally us-
ing a cophylogenetic method [4] in order to obtain a snapshot of the history of
reassortment. Although this approach allows us to reconstruct what happened a
posteriori [21], it does not allow us to quantify the dynamics of influenza genomes
in real time. Hence, the predictive power of the current approach is vanishingly
small.

Here I describe a method that permits the quantification of the dynamics of
viruses with segmented genomes, and apply it to a follow-up of H1N1 influenza
A viruses through the eleven years between 2000 and 2010. The method, called
nRF , is based on a measure of the dissimilarity of gene trees estimated for the
different segments of the genome. To use nRF , I further introduce the notion
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of a genome tree, which is a tree whose leaves represent the different genes con-
stituting the influenza genome, and whose topology represents the amount of
reassortment occurring between the different segments. If reassortment actu-
ally drives the evolution of influenza genomes [14], we should expect to observe
a correlation between a quantitative measure of reassortment, namely, nRF ,
and prevalence (proportion of affected individuals in a given population) of the
viruses under study. I show here that the nRF measure is able to explain 58%
of the variance in prevalence of H1 influenza in the US population.

2 Methods

2.1 Rationale

Under the assumptions that (i) reassortment drives the evolution of influenza
genomes [14] and (ii) there is no recombination [3, 2], the motivation is to find
a measure of reassortment, at the scale of the genomes, which are sampled on a
yearly basis. For now, I further assume that all the phylogenetic inferences below
return the “true” tree, an assumption to which I come back later in section 2.3.

In the absence of reassortment, all ten segments should have exactly the same
phylogeny. Therefore, if we compute the pairwise distances between estimated
gene topologies, for instance with the Robinson and Foulds (RF) distance [19],
we should obtain a matrix of pairwise distances full of zeros. Briefly, the RF
distance, also called the symmetric distance, is the number of branch partitions
that differ between two topologies.

On the other hand, if a segment has undergone a reassortment event, then
its estimated phylogeny should differ from the others’. The matrix of pairwise
distances computed as above should now contain a row and a column of nonzero
entries. If we use this matrix of pairwise distances between the gene trees to build
a new tree, that I call here a genome tree, its total tree length will be a measure of
the amount of reassortment that occurred between the different segments (genes,
in actuality). Reciprocally, the proposed measure can also be understood as a
measure of linkage, in the sense that segments transmitted together will cluster
together in the estimated genome tree.

Because different years can have different numbers of sampled genomes, RF
distances should be scaled by their maximum value, 2(n − 3) for a tree with n
leaves, within each year, so that they become comparable across several years.
Hereafter, I denote this measure nRF for normalized RF distance.

The hypothesis of interest is then that a correlation should be observed be-
tween nRF and a measure of prevalence of influenza A H1N1 in the human
population. To test this hypothesis, I used data on the US population affected
by H1 viruses from 2000-2010, as available at the US Centers for Disease Con-
trol website (www.cdc.gov/flu/weekly). Note that these data are theoretically
for all H1 viruses, which include several subtypes; this is related to the assay
used to type samples; in practice however, the circulation of subtypes other than
H1N1 is negligible in the human population. Because (i) the prevalence data is
available by season (in the Northern hemisphere: weeks 40-20), while the genome

www.cdc.gov/flu/weekly
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data collected for this study run from week 1-52 (see below) and (ii) I specifically
want to test for the predictive power of the method, I shifted the prevalence data
to compare nRF during year y with prevalence during y, rather than the season
running between week 40 of year y to week 20 of year y + 1.

2.2 Algorithm

The procedure is divided into six steps:

1. sample influenza genomes for one particular year;
2. extract protein-coding sequences (CDSs) within each segment, translate to

amino acid sequences [9], align [6] and back-translate to DNA alignments
[22];

3. for each CDS, reconstruct phylogenetic trees under maximum likelihood with
a mixture of NNI and SPR searches [10], assuming the GTR +Γ model of
substitution [26, p.33, 44] (optimally: select the most appropriate model of
evolution for each data set [16]);

4. compute the matrix of RF distances [8] for each pair of trees and scale by
2(n− 3) (for n sequences in alignment) to obtain nRF ;

5. reconstruct the Neighbor-Joining tree [8] from the matrix of pairwise RF
distances to visualize “correlation” among CDSs [optional];

6. compute the tree length of the NJ tree built on normalized RF distance.

The procedure is repeated for as many years as desired or, in practice,
years for which there are “enough” available data (≥ 4 genomes, since with
< 4 genomes there is only one single unrooted topology and the phyloge-
netic problem becomes nonexistent). Perl scripts were written to make most
of these steps automatic. Unless otherwise specified, the default settings were
used for all the programs cited in the above algorithm. Computations were dis-
tributed with the ForkManager library (available at search.cpan.org/dist/
Parallel-ForkManager/).

Branch lengths can affect the comparison of two trees in the following way.
Consider the two rooted trees ((1, 2) ,3) and (1, (2, 3)). They have different
topologies, but if we consider their respective branch lengths, then the same
two trees ((1:0.1, 2:0.1):0.001, 3:0.1) and (1:0.1, (2:0.1, 3:0.1):0.001) are actually
very similar. Although the trees considered here are all unrooted, a similar effect
of branch lengths could artificially increase the effect of reassortment from the
perspective of the RF distance. Therefore, in addition to the RF distance, I also
computed the Branch Score Distance or BSD [13,8]. As with nRF , I denote the
scaled measure nBSD.

2.3 Measure of Support

In order to estimate confidence intervals for both nRF and nBSD, I performed a
bootstrap analysis [7] during step 3 in the algorithm given above. Here I used 100
replicates to keep computations to a minimum while demonstrating the concept.
Optimally, one to ten thousand replicates would be preferable.

search.cpan.org/dist/Parallel-ForkManager/
search.cpan.org/dist/Parallel-ForkManager/
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Steps 4–end of the algorithm are then repeated on each bootstrap replicate.
For simplicity’s sake, I considered that a bootstrapped genome would be formed
by the bootstrap replicates taken replicate by replicate: bootstrapped genome 0,
denoted bG

0 , was formed by the set of bootstrapped genes {bPB2
0 , bPB1

0 , . . . bNS1
0 },

bG
1 was constructed as {bPB2

1 , bPB1
1 , . . . bNS1

1 }, etc.. This matches the null as-
sumption of independence between segments (genes, here), although it might be
preferable to take physical linkage into account for the genes on segments 7 on
the one hand (genes M2 and M1) and 8 on the other hand (genes NS2 and NS1).

The bootstrapped trees were summarized by computing the majority-rule con-
sensus tree [7,8], constructed from the bipartitions that appeared in at least 50%
of the bootstrapped replicates. Just like with the computation of bootstrapped
nRF distances, a bootstrap genome was formed by the bootstrap replicates taken
replicate by replicate.

2.4 Sampled Genomes

All publicly-available complete influenza A genomes of subtype H1N1 were ex-
tracted from the National Center for Biotechnology Information (available at
www.ncbi.nlm.nih.gov, [1]) for the eleven years spanning 2000-2010. As of May
26, 2010, a total of 2,435 genomes were available (2000: 80 genomes; 2001: 118;
2002: 8; 2003: 26; 2004: 8; 2005: 25; 2006: 19; 2007: 326 [100 of which were ran-
domly chosen for computational expediency]; 2008: 70; 2009: 1706 [100 of which
were randomly chosen]; 2010: 49), sampling across swine and human hosts dis-
tributed around the world. Alignments were visually inspected and edited where
necessary [23], with a particular attention to genes on segments 2, 7 and 8, which
are occasionally misannotated; dubious entries were discarded, which demanded
to check that each year had sequences from exactly the same individuals. As a
result, the final data sets had the following sizes: 2000: 69; 2001: 96; 2002: 7;
2003: 18; 2004: 7; 2005: 19; 2006: 16; 2007: 100; 2008: 54; 2009: 100; 2010: 44, for
a total number of genomes equal to 530. Over the sampled years, the distribu-
tion of genomes coming from the US was very uneven (actual numbers: 2000: 2;
2001: 24; 2002: 0; 2003: 13; 2004: 0; 2005: 1; 2006: 6; 2007: 89; 2008: 11; 2009: 44;
2010: 36), with years 2000, 2002, 2004 and 2005 having too few US genomes to
perform any phylogenetic study (hence the worldwide genome sampling adopted
here). Because the PB2-F1 and PB1-N40 genes are small and not always present
and / or correctly annotated, I focused on the ten ‘canonical’ genes: PB2, PB1,
PA, HA, NP, NA, M2, M1, NS2 and NS1. Note that the M genes are both on
the same segment (# 7); likewise, the NS genes are both on segment # 8. All
alignments used in this study are available at www.bioinformatics.uottawa.
ca/stephane.

3 Results

3.1 Genome Dynamics

Figure 1 shows the trees based on nRF , the proposed measure for monitor-
ing genome dynamics. A number of results are clear from that figure. First,

www.ncbi.nlm.nih.gov
www.bioinformatics.uottawa.ca/stephane
www.bioinformatics.uottawa.ca/stephane
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Fig. 1. Genome trees estimated over the eleven years sampled. RF distances

were estimated between the gene trees for the ten ‘canonical’ protein-coding genes of

influenza A genomes, and genome trees were reconstructed from the from the pairwise

RF distances by NJ. Bootstrap support values not shown (see Figure 2).
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Fig. 2. Majority-rule consensus of the 100 bootstrapped genome trees esti-
mated over the eleven years sampled. Internal branch lengths are nonzero only
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reassortment is a rampant process affecting these viruses every year. In the
eleven years analyzed here, all the genome trees have a nonzero tree length.

Second, there is extensive variation in the amount of reassortment observed
from year to year, with tree lengths in unit of normalized RF distance ranging
from 0.05 in 2004 to 0.42 in 2009 (which, according to the confidence intervals
calculated below, is significant). Despite the fact that 2004 is the year where only
seven genomes were analyzed and 2009 comprises 100 genomes (see Methods),
a robust linear regression [27] shows that there is no evidence for an association
between tree lengths and the size of the data sets analyzed at the 1% level
(P = 0.037). This result shows that the nRF measure is robust to sample size.

Third, linkage or reassortment patterns are expected, such as those for the M
and NS genes, which are respectively encoded on segments 7 and 8. This is visible
on trees where the M2/M1 and NS2/NS1 genes cluster together. But in most
years (eight years out of eleven, or 73% of the time for the M genes), the pattern
is due to very short internal branch lengths, and is probably artifactual. Indeed,
when the consensus trees are computed over the 100 bootstrap replicates (Figure
2), almost all evidence of linkage disappears. Some exceptions exist, such as in
2006 and 2007, but the consensus trees show that (i) all segments are extensively
exchanged among individual viruses, so that no clear linkage seems to exist, and
(ii) the year of the H1N1 pandemic, 2009, was no exception: this particular
pandemic was not preceded and does not exhibit any particular linkage between
segments or the genes encoded on these segments.

3.2 nRF and nBSD as Predictors of Prevalence

Figure 3 shows the estimated nRF values plotted against the yearly log preva-
lence of H1 infections in the US population. The linear model fitted to these
data is highly significant (F1,9 = 14.59; P = 0.0041; adjusted R2 = 0.576).
This means that more than half (58%) of the prevalence of influenza H1 in the
US is determined by the genome dynamics at the global scale as measured by
nRF . A robust linear regression gives similar results (P = 0.0006, R2 = 0.181;
P (M-bias) = 0.7402, P (LS-bias) = 0.8850), and this regression remained highly
significant even after removing the 2004 data (P = 7 × 10−6, R2 = 0.271;
P (M-bias) < 0.0001, P (LS-bias) = 0.7294). Therefore, the regression is not
solely driven by this point (see Figure 3), and the predictive power of nRF is
not an artifact of the sampled data.

We also fitted the same kind of model with nRF of H1 viruses against the
prevalence of H3 viruses. In this case, nRF carries no predictive power for this
influenza subtype (F1,9 = 3.22; P = 0.1063; adjusted R2 = 0.182), as expected
since H1 and H3 are different subtypes.

However, contrary to the expectation that including knowledge of branch
lengths might improve prediction, there was still some significant predictive
power with nBSD (F1,9 = 10.12; P = 0.0111), but R2 decreased to 0.477 (com-
pared to 0.576 with nRF ). This lack of significance at the 1% level is probably
due to the rate heterogeneity across segments, which can be substantial [18]; in-
deed, in presence of such rate heterogeneity, estimated branch lengths are going
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nR
F

Fig. 3. nRF as a function of the log prevalence of H1 subtypes. The broken

line represents the fitted regression (P = 0.0041). Vertical bars: 2 standard deviations;

horizontal bars: upper and lower 5% quantiles of the distribution of prevalence over a

calendar year.

to be dramatically different from one segment to the other, which is expected to
increase BSD if the tree topologies compared share at least one branch biparti-
tion.

4 Discussion

This work represents a proof of concept demonstrating the possibility of monitor-
ing the severity of epidemics based on a simple measure. The measure described,
nRF , intuitively relies on our understanding of the basic biology of RNA viruses,
in that reassortment of segmented viral genomes generates new properties with
respect to antigenicity, pathogenicity, virulence etc., all of which can compro-
mise the integrity of the immune system of their hosts, and potentially lead to
epidemics or pandemics. Our results demonstrate that nRF is a powerful proxy
for prevalence, at least in the case of influenza A viruses of subtype H1 over the
eleven years and 530 genomes studied here.

One of the reasons why the method has good predictive power is because
intra-segmental recombination is negligible in influenza A viruses [3, 2]. If this
were not the case, then recombination would affect each individual gene tree and
would confound the reassortment signal. As a result, the method described here
only applies to non-recombining segmented viral genomes such as influenza A
viruses. Independent tests of the nRF measure should be performed on other
such viruses, which probably include most single-stranded negative sense seg-
mented RNA viruses [17] (for a full list of segmented RNA viruses, see [11, p.4]),
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for which we have prevalence data; potential candidates include the Rift Valley
Fever virus [20], as well as Ebolavirus and Marburgvirus or Lyssavirus (rabies).
An extension to recombining genomes is however possible through the use of
ancestral recombination graphs [25].

In the context of the influenza data analyzed here, a number of points might
demand to be refined in order to fully demonstrate the power of the approach.
First, sampling was done on a yearly basis, not on a seasonal basis, and genomes
were sampled on a global scale while compared to prevalence data from the US
only. Yet, I was able to demonstrate the existence of a significant (P = 0.0041)
and reasonably good predictive power (R2 = 0.576). This suggests two mutu-
ally exclusive interpretations: (i) the approach returns a random result, which
is unlikely given both the size of the data analyzed (eleven years, 530 complete
genomes) and the robustness of the results to the use of robust linear regression;
(ii) prevalence in the US is representative of the global dynamics of influenza
A subtype H1, and that the nRF method is quite powerful in predicting the
severity of an epidemic as measured by prevalence. Second, intra-host dynamics
were not studied, as a few genomes from swine hosts were present in the data
analyzed here. It is likely that the inclusion of these genomes from swine hosts
did not affect the results because most of the genomes (93.21%) were coming
from human hosts. Third, the rates of evolution, in units of substitutions per
site per year, were not analyzed in correlation with the nRF measure of genome
dynamics. Considering rates of evolution in conjunction with nRF would rep-
resent a further development of the method. Note however that all the three
points above are linked to the sampling scheme used in this work, and therefore
do not affect the approach described to monitor genome dynamics through time
by means of nRF . A last potential caveat is the expected correlation between
prevalence and sequencing effort: it can indeed be expected that years of high
prevalence lead to an increased surveillance effort and hence to the deposition
of a larger number of genomes in publicly-available databases, such as in 2009
with the H1N1 pandemic. Although there was no significant association between
the length of genomes trees and the number of fully sequenced genome in public
repositories (section 3.1), more independent data sets should be examined to
further demonstrate the power of the nRF measure.

Could we have predicted the 2009 pandemic? Maybe, in the sense that nRF
measures for 2009 (evaluated from data sampled between the end of the 2008-
2009 season and the beginning of 2009-2010 season) were relatively high. Yet, the
question of the existence of a threshold for nRF above which the emergence of a
pandemic becomes likely is still open, as nRF measures for 2001 were also high
(Figure 3), albeit significantly lower than in 2009, and no pandemic occurred
back in 2001.

Finally, in the wake of the 2009 pandemic, it has been realized that the current
surveillance system failed to track the emerging pathogens [21]. The approach
and results presented here demonstrate that even in the absence of such informa-
tion on genomes from the past, it is still possible to implement a cost-effective
warning system based on the nRF of currently circulating genomes, provided
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that the surveillance programs track full influenza genomes rather than limiting
their effort to HA and NA sequencing.
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Abstract. Chaining fragments is a crucial step in genome alignment.
Existing chaining algorithms compute a maximum weighted chain with
no overlaps allowed between adjacent fragments. In practice, using local
alignments as fragments, instead of MEMs, generates frequent overlaps
between fragments, due to combinatorial reasons and biological factors,
i.e. variable tandem repeat structures that differ in number of copies be-
tween genomic sequences. In this paper, in order to raise this limitation,
we formulate a novel definition of a chain, allowing overlaps propor-
tional to the fragments lengths, and exhibit an efficient algorithm for
computing such a maximum weighted chain. We tested our algorithm
on a dataset composed of 694 genome couples and accounted for signifi-
cant improvements in terms of coverage, while keeping the running times
below reasonable limits.

1 Introduction

In biology, genome comparison is used for gene annotation, phylogenetic stud-
ies, and even vaccine design [12,2,8]. Many bioinformatics programs for whole
genome comparison involve a fragment chaining step, which seeks to maximize
the total length of the chained fragments (eg, [7]). Given the set of n shared ge-
nomic intervals, i.e. fragments, the Maximum Weighted Chain problem (MWC)
is solved in O(n log n) time by dynamic programming when overlaps between
adjacent fragments are forbidden [10,1]. Alternatively, Felsner et al. showed that
this problem is a special case of the Maximum Weighted Independent Set prob-
lem in a trapezoid graph, which they solve by a sweep line algorithm over an
equivalent box order representation of the graph [6]. These algorithms [1,6] can
be extended to handle fixed length overlap between adjacent fragments, but
this is not sufficient to deal with the large differences in fragment length ob-
tained even with small bacterial genomes [14]. Moreover, with those definitions
the weight does not account for overlaps. An O(n log n) time algorithm for the
MWC with Fixed Length Overlaps problem was designed and used for map-
ping spliced RNAs on a genome [13], but the fixed bound on overlaps remains
a limitation. To raise this limitation, we formulate the MWC with Proportional
Length Overlaps problem (MWC-PLO) and exhibit the first chaining algorithms
allowing for overlaps that are proportional to the fragment lengths, and whose
chain weight function accounts for overlap. Following Felsner et al., we use the

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 161–172, 2010.
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box representation of a trapezoid graph and adapt the sweep line paradigm to
this problem.

Small overlaps are often caused by equality over a few base pairs of fragment
ends due to randomness, since the alphabet has only four letters. To handle such
cases, one could set a constant, large enough, maximal allowed overlap threshold.
However, biological structures like tandem repeats (TR) that vary in number of
copy units generate overlaps that are large relatively to the fragments involved.
To illustrate this case, let u, v, w be words and assume the sequences of two
genomes Ga, Gb are Ga = uvvw and Gb = uvvvw, i.e. contain a variable TR of
motif v. Then, uvv generates a local alignment between Ga and Gb, as well as
vvw, but both fragments overlap over v in both Ga and Gb. Since v can be large,
such cases cannot be circumvented with fixed length overlaps: only proportional
overlaps can handle these.

The paper is organised as follows. Section 2 presents the chaining problem
without overlaps, while Section 3 defines chaining with proportional overlaps
and sets the dynamic programming framework and algorithm that solves it. In
Section 4 we exhibit a sweep line algorithm for this question, prove its correctness
and discuss the complexities. We study its performance in Section 5 and conclude
in Section 6.

2 Preliminaries

Boxes are axis parallel hyper-rectangles in Rk, where each genome is associated
with one axis. For simplicity, we consider the two dimensional case where k = 2,
i.e. comparing two genomes. The length on a genome of the fragment associated
with a box is the projection of that box on the corresponding axis.

Let α ∈ {1, 2} index the axis, and for any point x ∈ R2 let Pα(x) denote
its projection on axis α. Let I be an interval of R and I be a set of disjoint
intervals of R; we denote by |I| the length of I and by |I| the sum of the lengths
of intervals in I. Let B be a box of R2. The upper, resp. lower, corner of B
is denoted by u(B), resp. l(B). By extension, the interval corresponding to the
projection of B on axis α is denoted Pα(B). Let < denote the classical dominance
order between points of R2.
Definition 1 (Overlap free box dominance order). Let Bx, By be two boxes
of R2. We say that By dominates Bx, denoted Bx � By, if l(By) dominates
u(Bx) in R2. If neither Bx dominates By, nor By dominates Bx, then Bx and
By are incomparable.
Felsner et al. showed how to transform a trapezoid graph into a box order, i.e.
a set of boxes equipped with the dominance order � such that pairs of incom-
parable boxes are in one-to-one correspondance with trapezoid pairs linked by
edges of the graph. Hence, the Maximum Weighted Independent Set problem in
a trapezoid graph is equivalent to the MWC problem in the corresponding box
order [6]. Given an order, recall that a chain is a set of mutually comparable ele-
ments, and a maximal element in a set is one with no other element dominating
it. Each chain has exactly one maximal element.
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3 A Novel Tolerance Definition for the Maximum
Weighted Chain Problem in a Box Order

To formulate a MWC with Proportional Length Overlaps problem (MWC-PLO)
in our framework, we need to redefine the dominance order to accept overlaps
that are proportional to the boxes’ projection lengths, and to propose a weight
function that truly measures the coverage on each genome. By coverage, it is
generally meant the total length of the genomic intervals covered by the selected
fragments [9]. This requires that the chain weight counts only once a subinterval
covered by several overlapping fragments.

Let r ∈ [0, 1[ represent the maximal allowed overlap ratio between any two
boxes.

Definition 2 (r tolerant dominance order). Let Bu and Bv be two boxes. Bv
dominates Bu on axis α in this tolerant dominance order, denoted by Bu�r,αBv,
if and only if

Pα(u(Bu))− Pα(l(Bv)) ≤ rmin(|Pα(Bu)| , |Pα(Bv)|).
Now, we denote by Bu �r Bv the fact that Bv dominates Bu if and only if for
each α ∈ {1, 2} Bu �r,α Bv.
It can be easily shown that the dominance between boxes implies the dominance
between their upper, resp. lower, corners. Moreover, this tolerant dominance
order is transitive.

Property 1. Let Bt, Bu two boxes such that Bt�rBu. Then l(Bt) < l(Bu) and
u(Bt) < u(Bu).

Property 2. The dominance order �r is transitive.

From Property 1, one deduces the following corollary, which will help to compute
efficiently the weight of overlapping boxes in a chain.

Corollary 1. Let Bt, Bu, Bv be three boxes such that Bt �r Bu �r Bv. Then:
(Bt ∩Bv) ⊂ (Bu ∩Bv).
We define the weight of a box as the sum of lengths of its projections on all axis,
and the weight of a chain of boxes as the sum of the coverages on each axis.

Definition 3 (Weight of a box, of a chain). Let B be a box and α ∈ [1, 2]. Its
weight on axis α is wα(B) := |Pα(B)|, and its weight is w(B) :=

∑2
α=1 wα(B).

Let m ∈ N and C := (B1�r . . .�rBm) be a chain of m boxes. The weight of C
on axis α, denoted Wα(C), is

Wα(C) :=

∣
∣
∣
∣
∣

m⋃

i=1
Pα(Bi)

∣
∣
∣
∣
∣
,

while its weight is W (C) :=
∑2
α=1Wα(C).
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Note also that the weight of a box only depends on the endpoints of its projection
on each axis, and hence, can be computed in constant time. Clearly, it can be
easily seen that

Wα(C) = wα(Bm) +
m−1∑

j=1

∣
∣
∣
∣
∣
∣
Pα(Bj) \

m⋃

l=j+1

Pα(Bl)

∣
∣
∣
∣
∣
∣

= wα(Bm) +
m−1∑

j=1
|Pα(Bj) \ Pα(Bj+1)| by Corollary 1. (1)

The following easy property will also prove useful.

Property 3. Let Bt, Bu two boxes such that Bt�rBu. Then

– Bt ∩Bu is an, eventually empty, axis parallel rectangle of R2, and
– for α ∈ [1, 2], |Pα(Bt) \ Pα(Bu)| = |Pα(Bt) \ Pα(Bt ∩Bu)| = wα(Bt) −
wα(Bt ∩Bu).

Now, we can define the MWC-PLO problem. Let B′ := {B2, . . . Bn−1} be the set
of input boxes. For convenience, we add two dummy boxes, B1, Bn, such that
for all 1 < i < n: B1�rBi�rBn. Additionally, we set w(B1) = w(Bn) := 0.
Now, the input consists in B := {B1, . . . , Bn}.
Definition 4 (MWC with Proportional Length Overlaps). Let r ∈ [0, 1[ and
B := {B1, . . . , Bn} a set of boxes. The MWC with Proportional Length Overlaps
problem is to find in B, according to the dominance order �r, the chain C that
starts with B1 and ends in Bn and whose weight W (C) is maximal.

The notation of r, B, andW (C) are valid throughout the paper. For any 1 ≤ i ≤
n, let us denote by Ci the set of chains ending in Bi, and by W (Bi) the weight
of the maximal weighted chain in Ci (not to be confounded with w(Bi)). From
now on, all the considered boxes belong to B unless otherwise specified.

3.1 A Dynamic Programming Framework

Let us show that MWC-PLO can be solved by a dynamic programming al-
gorithm. Equation 1 suggests a recurrence equation to compute W (Bi), with
W (B1) = 0 and for all 1 < i ≤ n:

W (Bi) = max
Bj : Bj�rBi

W (Bj) +
2∑

α=1
|Pα(Bi) \ Pα(Bj)| . (2)

Obviously, this implies that for all 1 ≤ j < n the value of W (Bj) will be reused
for computing W (Bi) for every box Bi such that Bj�rBi. Thus, MWC-PLO
consists of overlapping subproblems, which suits to the framework of dynamic
programming [4, chap. 15]. However, it is correct to use Equation 2 only if
our problem satisfies the condition of optimal substructures [4, chap. 15]. In
Theorem 1, we show this is true.
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Theorem 1 (Optimality of substructures). Let m, i1, . . . , im be integers be-
longing to [1, n], and let D := (Bi1 , . . . , Bim) be an optimal weighted chain among
the chains in Cim . Thus, D′ := (Bi1 , . . . , Bim−1 ) is an optimal weighted chain
among those in Cim−1 .

The MWC with Proportional Length Overlaps can thus be solved by a dynamic
programming algorithm, which uses two n-element arrays: W [.] and Pred[.] to
store for all 1 ≤ i ≤ n resp. the values of W (Bi) and the predecessor of Bi in
an optimal weighted chain ending in Bi. This algorithm takes O(n2) time and
O(n) space; in Section 4 we prove a more efficient algorithm for MWC-PLO.

Theorem 2. A dynamic programming algorithm (Algorithm DP) solves the
MWC with Proportional Length Overlaps problem inO(n2) time andO(n) space.

4 A Sweep Line Algorithm for MWC with Proportional
Length Overlaps

Here, we exhibit a sweep line algorithm for the MWC with Proportional Length
Overlaps problem (see Algorithm 1), prove it and study its complexity.

4.1 Outline of the Algorithm

Following Felsner et al., we give a sweep line algorithm in which a vertical line
sweeps the boxes in the plane by increasing x-coordinates of their corners, stop-
ping at the lower left and upper right corners of each box. To avoid visiting, as in
Algorithm DP, all possible predecessors when computing the best chain ending in
Bx, we maintain a set, A, of active boxes that can compete for being the optimal
predecessor in that chain. But as predecessors can overlap Bx, this computation
involves several steps, meaning thatW [Bx] and Pred[Bx] can be updated several
times before getting their final value; this differs from Algorithm DP.

Let P be an array containing the 2n points corresponding to l() and u()
corners of the n boxes in B. Points in P are ordered on their x-coordinates; among
the points having identical x-coordinates, lower corners are placed before upper
corners. For each point, we store to which box and to which corner it corresponds
to. In Algorithm 1, the main loop sweeps the points of P and processes in a
different manner lower (lines 8-11) and upper corners (lines 12-24). We say a box
Bx is open when the sweep line is located between l(Bx) and u(Bx) inclusive,
closed when the line has passed u(Bx), and future when it lies before l(Bx).
These states are exclusive of each other, and partition at each moment B in
three disjoint sets (see Figure 1a). All open boxes at each point are kept in a
set O (lines 9, 13). The weight of a chain ending in, say Bi, and passing by a
predecessor of Bi, Bx, can only be computed when Bx is closed (when W [Bx]
has reached its final value). If P1(u(Bx)) < P1(l(Bi)) then this can be done when
stopping at l(Bi) (lines 10-11), while if Bx overlaps Bi on x-axis, then this is
done when stopping at u(Bx), and at the same time for all open boxes having Bx
as predecessor (lines 14-18). These two cases partition the possible predecessors
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(a) (b)

Fig. 1. (a) Example of boxes in each disjoint set forming a partition of B, when sweep-
ing a point p. (b) Partition of the search space of possible predecessors of Bi, according
to the location of their upper corners, in two areas Ab(Bi) and Ao(Bi). Ab(Bi) and
Ao(Bi) partition the rectangle delimited by a solid line: Ab(Bi) is at left from the
dashed line, and Ao(Bi) at its right.

of Bi according to the location of their upper corners in two areas Ab(Bi) and
Ao(Bi) (cf. Figure 1b).

As above mentioned, we maintain in A the set of interesting predecessors for
all future boxes. Boxes in A are active boxes. Hence, once closing a box (stopping
at its upper corner), we test whether it should be turned active and inserted in
A (lines 19-21). The current box, Bi, is inserted only if we cannot find a better
predecessor in A. Afterwards, if Bi has been added, currently active boxes are
investigated to determine if they are less interesting than Bi, in which case they
are deleted from A (lines 22-24). Active boxes are consulted when opening a
box Bi, for computing the best chain ending in Bi with a predecessor in Ab(Bi)
(lines 10-11).

4.2 Correctness of the Algorithm
For 1 ≤ i ≤ n, we show that W [Bi] and Pred[Bi] store the weight and the
predecessor of Bi in a maximum weighted chain ending in Bi. First, several
simple invariants emerge from Algorithm 1. I1: At any point, the set O contains
all open boxes. I2: Both W [Bi] and Pred[Bi] store their final values once u(Bi)
has been processed, since they are not altered after that point. I3: Hence, at any
point all active boxes (i.e. boxes in A), which are closed boxes, satisfy I2. For
conciseness, as W [Bi] and Pred[Bi] are computed jointly, from now on we deal
only with W [Bi]. Since potential predecessors of Bi are partitioned in Ab(Bi)
(Figure 2a) and Ao(Bi) (Figure 2b), we will prove two invariants: I4: partial
optimality over Ab(Bi) at lower corners, and I5: optimality at upper corners.

I4: partial optimality over Ab(Bi) at lower corners. We show that after process-
ing l(Bi), W [Bi] stores the weight of a maximum weighted chain ending in Bi
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Algorithm 1. MWC_Tolerance_Box_Order (P)
Data: r ∈ [0, 1[, B a set of n boxes, P an array with the 2n box corners
Result: W a vector of weights, with W [Bn] the weight of the best chain in B,

Pred a vector containing the previous boxes in the chain
begin1
sort_on_x_coordinate(P);2
A ←− B1;3
W [B1]←− 0;4
Pred[B1]←− null;5
O ←− ∅;6
foreach p ∈ P in ascending order on x-coordinate do7

if p is a lower corner ( i.e. ∃Bi : p = l(Bi)) then8
O ←− O ∪ {Bi};9

Pred[Bi]←− arg max
Bj�rBi,Bj∈A

(W [Bj ] +
2∑

α=1
|Pα(Bi) \ Pα(Bj)|);

10

W [Bi]←−W [Pred[Bi]] +
2∑

α=1
|Pα(Bi) \ Pα(Pred[Bi])|;

11
else /* p is an upper corner, i.e. ∃Bi : p = u(Bi) */12
O ←− O \ {Bi};13
foreach Bk ∈ O with Bi�rBk do14

wk ←−W [Bi] +
2∑

α=1
|Pα(Bk) \ Pα(Bi)|);

15
if wk > W [Bk] then16
W [Bk]←− wk;17
Pred[Bk]←− Bi;18

B ←− arg max
u(Bj)<u(Bi),Bj∈A

(W [Bj ]);
19

if W [Bi] ≥W [B] or |P2(Bi)| > |P2(B)| then20
A←− A ∪ {Bi};21
foreach Bk ∈ A with P2(u(Bk)) > P2(u(Bi)) do22

if W [Bk] < W [Bi] and (|P2(Bk)| < |P2(Bi)| or23
P2(l(Bk)) > P2(u(Bi))) then
A ←− A \ {Bk};24

traceback(Pred[Bn]);25
end26

with predecessor in Ab(Bi). Given line 10, this is equivalent to showing that no
better chain ending inBi passes through a potential predecessor that does not be-
long to A at that point, which we prove by contradiction. While processing l(Bi),
A contains a subset of boxes in Ab(Bi), but obviously none fromAo(Bi). Let B be
a closed box of B\A such that B�rBi and w(Bi)−w(B ∩Bi)+W [B] > W [Bi],
in other words, B makes a better predecessor for Bi than those in A. From
B�rBi, we get

P2(u(B)) − P2(l(Bi)) ≤ rmin(|P2(B)| , |P2(Bi)|) . (3)
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As only two possibilities exist for B not belonging to A, we distinguish two
exclusive cases.

B was not turned active when sweeping u(B) (lines 19-21). B did not satisfy the
condition on line 20. Let B′ := arg max

Bj∈A:u(Bj)<u(B)
(W [Bj ]). Our hypothesis means

that u(B′) < u(B) and

W [B] < W [B′] (4)
|P2(B)| ≤ |P2(B′)| . (5)

For B does not overlap Bi and u(B′) < u(B), we have B′ does not overlap
Bi on the x-axis. From u(B′) < u(B), we get P2(u(B′)) < P2(u(B)); this with
equations 3 and 5 yields

P2(u(B′))− P2(l(Bi)) < P2(u(B))− P2(l(Bi))
≤ rmin(|P2(B)| , |P2(Bi)|)
≤ rmin(|P2(B′)| , |P2(Bi)|) . (6)

Equation 6 and B′ not overlapping Bi on the x-axis imply B′�rBi. Finally,
from equations 4, 5, and u(B′) < u(B) we obtain:

W [B] +
2∑

α=1
(wα(Bi)− wα(Bi ∩B)) < W [B′] +

2∑

α=1
(wα(Bi)− wα(Bi ∩B′)),

and thus B′ makes a better predecessor for Bi than B, a contradiction.

B was inactivated when sweeping u(Bk) for some box Bk ending before l(Bi)
(lines 22-24). The hypothesis means that B was deleted from A for it satisfied
P2(u(Bk)) < P2(u(B)), W [B] < W [Bk], and at least one of the conditions (a)
|P2(B)| < |P2(Bk)| or (b) P2(u(Bk)) < P2(l(B)).
a) As above (see Eq. 6), from Equation 4, from |P2(B)| < |P2(Bk)|, and
P2(u(Bk)) < P2(u(B)), we get

P2(u(Bk))− P2(l(Bi)) < rmin(|P2(Bk)| , |P2(Bi)|) . (7)

Moreover, as Bk does not overlap Bi on the x-axis, we obtain Bk�rBi.
As P2(u(Bk)) < P2(u(B)), Bk and B do not overlap Bi on x-axis, and
W [B] < W [Bk], we finally derive

W [B] +
2∑

α=1
|Pα(Bi) \ Pα(B)|) < W [Bk] +

2∑

α=1
|Pα(Bi) \ Pα(Bk)|) . (8)

b) By hypothesis, we know that P2(u(Bk)) < P2(l(B)) < P2(l(Bi)), and since
neither Bk nor B overlap Bi on the x-axis, we directly obtain Bk � Bi
(Bi ∩Bk = ∅). Thus, W [B] < W [Bk] also implies Equation 8.

With either condition (a) or (b), Bk makes a better predecessor for Bi than B,
a contradiction.

Finally, after processing l(Bi),W [Bi] stores the weight of a maximum weighted
chain ending in Bi with predecessor in Ab(Bi), which concludes the proof of I4.
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(a) (b)

Fig. 2. (a) When the sweep line passes l(Bi), Pred[Bi] is a partial optimum on the set
of possible predecessors of Bi lying in Ab(Bi). In the example, B3 is the best current
predecessor of Bi. (b) When the sweep line passes u(Bk), Pred[Bi] is a partial optimum
on the set of possible predecessors of Bi from Ab(Bi) ∪ {B ∈ Ao(Bi)/P1(u(B)) <
P1(u(Bk))}.

I5: optimality at upper corners. We show that after processing u(Bi), W [Bi]
stores W (Bi) (a Maximum Weighted Chain with a predecessor in Ab(Bi) ∪
Ao(Bi)). As all predecessors of Bi are closed, let us denote by B, the right most
predecessor of Bi on the x-axis: B := arg maxBj�rBi(P1(u(Bj))).

1. If u(B) ∈ Ab(Bi) then all predecessors of Bi are contained in Ab(Bi). Hence,
this situation was handled when processing l(Bi), and Invariant I4 regarding
the partial optimality at lower corners, ensures that W [Bi] stores W (Bi).

2. If u(B) ∈ Ao(Bi), W [Bi] has been correctly updated (lines 14-18), while Bi
was open, when sweeping u(Bk) for each box Bk ∈ B such that Bk�rBi and
u(Bk) ∈ Ao(Bi).

Hence, all predecessors of Bi have been taken into account, and W [Bi] stores
W (Bi). This concludes the proof of I5, and closes the correctness proof.

4.3 Time and Space Analysis

Obviously, the sets O and A contain at most n boxes, and thus require to-
gether with arrays Pred[.] and W [.], O(n) space. We use balanced binary search
trees (BST) to store A and O, with boxes at the leaves ordered on P2(u(.)),
resp. P1(l(.)). Hence, the amortized time needed for all insertions, deletions,
and rebalancing is O(n log n). However, looking for the active boxes that can be
deleted at each execution of the outer loop (lines 22-24) may force us to exam-
ine all boxes in A. As this is the more complex operation in the outer loop, we
obtain an O(n2) worst case time complexity. Algorithm 1 maintains the subset
of potential predecessors in A instead of searching through the whole box set
as in Algorithm DP. The experimental running times observed when perform-
ing 694 whole genome comparisons show that this difference yields substantial
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Fig. 3. (a) Differences in coverage obtained on bacterial genome comparisons between
our algorithm and the classical chaining. The difference expresses which percentage of
the genomes are additionally covered when allowing for overlaps. The results presented
in a box-and-whiskers plot show the improvement in coverage brought by the accep-
tance of overlaps in the chain: in 50% of the cases it covers 15% more of the genomes.
(b) Running times in seconds of our algorithm: in 75% of the cases the algorithm needs
less than 10 seconds.

improvements: Algorithm 1 takes seconds, sometimes minutes, where Algorithm
DP, which is truly quadratic, takes minutes, hours, or even days, for values of n
ranging from 71 to 1, 000, 000 fragments.

5 Results

An issue is whether allowing for overlaps improves the chain weight (here, the
genome coverage) when comparing genomes, and at which computational cost.
To investigate this issue, we compared the running times and coverages obtained
without (using Chainer [1]) and with proportional overlaps (using Algorithm 1)
on 694 pairwise genome comparisons. Our comparison set consists in all pairwise
genome comparisons of strains of the same bacteria (intra-species comparisons)
as of Jan 2010: it comprises 346 different genomes from 87 species retrieved from
Genome Reviews database [5]. First, we searched for local alignments between
genome pairs using YASS with default parameters [11]. The output local align-
ments are the fragments given as input to the chaining step, for which we ran in
parallel Chainer and Algorithm 1, with the weight of a fragment on each genome
being the length of the aligned sequence. We authorized overlaps measuring up
to 10% of the fragments’ lengths (r = 0.1). Hence, the total chain weight, i.e.
the sum of the chained fragments lengths minus the overlaps, computed by the
chaining step gives the genome coverage, which we report as a percentage of the
genome length. Of course as both chaining algorithms provide an optimal solu-
tion in their setup, the coverage with overlaps is larger than without overlaps.

Figure 3a plots the difference of coverages between both algorithms (e.g., a
value of 10 means that chaining with overlaps covers 10% of the genome more
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than without overlaps). The box-and-whiskers plot shows that the improvement
has a median of 15% and reaches values up to 60%. Since bacterial genomes
have a median length of 2.8 Mbp, a difference of one percent means at least 28
Kbp of additionally aligned sequences. Knowing that in average 87% of these
genomes are coding and bacterial genes are 1 Kbp long [15], 15% more coverage
will involve 365 additional genes compared to a solution without overlaps; this is
important from the biological perspective. Chainer takes < 1 s. in average and
at most 17 s. We plot the running times of Algorithm 1 in Figure 3b: below 10
seconds in 75% of the comparisons, and between 3 and 54 minutes in only 30
cases (those with > 1 million fragments). Thus, allowing for overlaps improves
the coverage significantly at a reasonable cost.

A biological question regards the causes of such overlaps. For example, when
comparing strains CP000046 and BA000018 of S. aureus the classical chaining
results in a coverage of 65%, where Algorithm 1 yields a 94% coverage. In fact,
the chain obtained without allowing overlaps is interrupted by 17 holes of more
than 10 kbp each. For 14 of these holes, at least one large fragment (average size
37 kbp) was not included in the chain, because of an overlap with an adjacent
fragment on one or both genomes. All overlaps measure between 1 bp and 1.8
kbp in length (average at 218 bp). This example shows that overlaps’ lengths
cannot be easily bounded by a constant. Large overlaps are due to variable
tandem repeat structures that differ in number of copies between the strains.
Correctly aligning such structures without breaking the region in two overlapping
fragments requires a more general alignment model and specific algorithms [3].

6 Conclusion

To fulfil new needs in computational biology, we extended the classical frame-
work of Maximum Weighted Chain by authorizing overlaps between fragments in
the computed chain, and formalized the Maximum Weighted Chain with Propor-
tional Length Overlaps problem where overlaps are proportional to the fragment
lengths. Difficulties arise from the fact that the weights of overlaps are deduced
from the chain weight. We exhibited the first two algorithms for this problem,
which both solve it in quadratic time in function of the number of fragments.
Experiments on real data sets show that i/ overlaps improve significantly the
coverage of genomes (median of 15%), ii/ our sweep line algorithm outperforms
the truly quadratic dynamic programming solution in practice. However, the
study of the average time complexity of the sweep line algorithm remains open.
Comparing with fixed overlaps, as well investigating the robustness with respect
to ratio of allowed overlaps are future lines of research.
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Abstract. Comparison of closely related bacterial genomes has revealed

the presence of highly conserved sequences forming a ”backbone” that is

interrupted by numerous, less conserved, DNA fragments. Segmentation

of bacterial genomes into backbone and variable regions is particularly

useful to investigate bacterial genome evolution. Several software tools

have been designed to compare complete bacterial chromosomes and a

few online databases store pre-computed genome comparisons. However,

very few statistical methods are available to evaluate the reliability of

these software tools and to compare the results obtained with them. To

fill this gap, we have developed two local scores to measure the robust-

ness of bacterial genome segmentations. Our method uses a simulation

procedure based on random perturbations of the compared genomes.

The scores presented in this paper are simple to implement and our re-

sults show that they allow to discriminate easily between robust and

non-robust bacterial genome segmentations when using aligners such as

MAUVE and MGA.

1 Introduction

The number of complete bacterial genomes in public databases has exponentially
increased since the late 90s. The availability of this large amount of data has
yielded the development of new comparative-based approaches to investigate
bacterial genome evolution at different scales (e.g., genomes, operons, genes).
Genome comparison has proved its usefulness in many domains such as gene
prediction [1], detection of regulatory regions and functional motifs [2], and as-
sembly of new genomes [3].

Among the about 500 bacterial species for which a complete genome is
available, more than 100 present at least two sequenced strains. Several ap-
proaches exist to compare closely related genomes. Among them, alignment of
whole genome DNA sequences, at the nucleotide level, allows both coding and
non-coding regions to be investigated. In a pioneering work, Hayashi et al. [4]
compared the two complete genomes of the enterohemorrhagic Escherichia coli
O157:H7 Sakai strain and the E. coli K-12 MG1655 laboratory strain. An exten-
sive investigation of the alignment result revealed a sequence corresponding to

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 173–187, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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around 80% of the genome length that is highly conserved between the two E.
coli strains. This sequence, denoted the backbone, is interrupted by several DNA
fragments that are not conserved in the two strains and that are called variable
segments. The backbone/variable segment structure is named segmentation or
mosaic structure of bacterial genomes [4,5].

Determination and analysis of the segmentation are of crucial interest to inves-
tigate the molecular mechanisms involved in the dynamics of bacterial genome
evolution. Indeed, it has been shown that segments from the backbone are en-
riched in functional DNA motifs and consequently are particularly relevant to
infer them [2]. Moreover, sequences from the backbone may correspond, in a
large part, to the common ancestral chromosome of the compared strains [6].
Variable segments that may correspond to strain specificities are often associ-
ated with DNA exchange and mobile elements such as transposons or prophages
[7] and can be used to investigate biological questions about bacterial physiology
and pathogenicity [8]. Nature and origin of variable segments are diverse. They
can be either strain specific or just too divergent to be identified as homologous.
For a detailed description of variable segment diversity, see [9]. The determina-
tion of the backbone/variable segment structure has direct implications on all
subsequent analyses, and thus needs to be made with accuracy.

Segmentation computation is essentially based on alignment of complete
genome sequences [5]. Aligning sequences containing several million of nu-
cleotides is a challenging task that requires specific algorithms. Moreover, besides
the length of the sequences, the main difficulty relies on the fact that bacterial
genomes evolve through various genetic mechanisms including point mutations,
genetic rearrangements and horizontal gene transfers, which generate extremely
dynamic genomes, even in closely related bacteria.

In the early 2000s, Miller pointed out the challenges and the difficulties to
design specific algorithms to align complete genome sequences as well as the
necessity to develop statistical methods to evaluate their reliability [10]. The
software tool MUMmer [11,12], launched in 1999, was probably the first pub-
lished complete genome aligner. To date, there exist about 20 different computer
tools to compare and align genomes [13]. Most of the efforts so far, have been
focused on the design of fast and efficient algorithms, whereas less attention has
been paid to statistically assess their consistency [10,14]. Consequently, several
major problems still remain in complete genome alignment methods. Thus, for
example, most of the algorithms produce a unique solution that is optimal with
respect to a specific algorithmic criterion whereas sub-optimal solutions that
could be biologically more relevant are systematically ignored. Evidences of spu-
rious alignments have also been reported [15]. In addition, it has been shown
that small variations in the setting of algorithm parameters can have dramatic
impacts on the alignment results [5]. Such drawbacks can lead to important dif-
ferences between alignments produced by different algorithms [16] and even by
the same aligner [5].

Because complete genome aligners suffer from a lack of reliability and may pro-
duce non-robust alignments, it is crucial to evaluate whether the segmentations
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derived from them are robust. There only exist a few studies that aim at assessing
the quality of genome segmentations. They are usually dedicated to evaluating
the relevance of the elements that are assigned to conserved regions. Thus, for
example, Prakash and Tompa [15] developed a score to discriminate regions that
are well aligned from those that are suspiciously aligned. Swidan and Shamir [17]
proposed two measurements to quantitatively assess the biological reliability of
the backbone. However, all these approaches overlook the fact that the proposed
segmentation could be non-robust.

Here we present the development of a method to measure the robustness of
segmentations obtained from the comparison of two closely related genomes. It is
based on a simulation procedure that randomly perturbs the compared genomes.
It allows the computation of two local scores of robustness, one at the nucleotide
scale, and the other one at the segment scale. Our results show that the scores
are simple to implement and to interpret. They can be easily used to discriminate
between robust and non-robust segmentations.

2 Methods

2.1 Segmentation Determination

Segmentation into backbone/variable segments is computed from the comparison
of closely related genomes. The process can be divided into four steps [5].

1) Alignment of the complete genome sequences. Specific algorithms called
anchor-based aligners are generally used [5]. They first identify all the highly
conserved regions between the compared sequences. These regions are chained,
i.e. they are sorted and some of them are selected to anchor the compared
genomes together. The result is a succession of extremely conserved segments
interrupted by more distant fragments called gaps.

2) Iteration of the anchor-based alignment on the gaps to extend the anchoring
obtained in step 1. This step is optional.

3) ”Last chance” local alignment. Local alignment methods are used on the
remaining gaps to extend the complete genome alignment. This step is also
optional.

4) Determination of segment boundaries. Anchored fragments and elements
that are enough conserved to be aligned are joined together to form the backbone.
The remaining gaps are considered as variable segments.

2.2 Simulation Procedure

The robustness of a process corresponds to its capacity to cope well with exter-
nal or internal perturbations [18]. Therefore, the robustness of a computational
method can be defined as its ability to maintain stable results when confronted
to perturbations either of its parameters or of the input data.

Segmentation determination is essentially based on complete genome align-
ment (step 1). Thus, a reliable approach to perturb segmentation computation
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is to disturb directly this crucial step. Our assumption is that if the alignment
procedure is reliable, it will be relatively insensitive to a moderate level of ran-
dom perturbations of the aligned genomes. In particular, the modification of a
subset of the conserved regions that are used to anchor the genome alignments
should not lead to major changes on the whole genome alignments.

Consequently, we decided to perturb these conserved regions. More precisely,
to target these conserved regions, we used maximal exact matches (MEMs).
MEMs correspond to exactly conserved sub-sequences that cannot be extended
neither from their left nor from their right [11].

We developed the following simulation procedure:

1) Retrieval of all the MEMs between the two compared genomes. Only the
MEMs with a minimal length of 20 nucleotides, from both the direct and the re-
verse strand, are considered for perturbation, in order to avoid spurious matches
[19].

2) Random sampling of a proportion p of MEMs from the complete MEM list
obtained in step 1. The value of p has to be set by the user. Both genomes are
evenly perturbed with p/2 MEMs drawn from each genome.

3) Perturbation of the nucleotides corresponding to the MEMs selected in
step 2. Three types of perturbations are used: i) Deletions, a MEM sequence
is simply deleted; ii) Inversions, a MEM sequence is reverse-complemented and
reinserted at the same position; iii) Double translocations, two MEM sequences
are switched. Note that both genomes are perturbed in equal proportion.

4) Computation of a new segmentation with the perturbed genomes. Because
this ”perturbed segmentation” will be compared to the ”original segmentation”,
it is necessary to use the same method for the two segmentations (i.e., same
complete genome aligner, same parameter setting).

5) Iteration of steps 2 to 4. The procedure is repeated N times to ensure the
statistical reliability of the scores (defined in subsection 2.3).

6) Computation of the robustness scores (see details in subsection 2.3).

We used different perturbation strategies (see step 3)because each of them impacts
differently on the perturbation step. For example, while deletions only suppress
MEM sequences, inversions and translocations can reveal new MEMs. Transloca-
tions also change MEM locations in the compared genomes, affecting the chaining
step. The three types of perturbations were used in equal proportions.

2.3 Score Definition

Robustness is measured from the evaluation of the differences between the origi-
nal segmentation and the segmentations computed with the perturbed genomes.
Two scores are derived, one focusing on the nucleotides and the other one on
the segments.

Nucleotide score. Considering the nucleotide i from one of the original
genomes, either from a backbone or a variable segment of the original segmen-
tation, the nucleotide score is defined as follows:
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Snuc(i) =
#{simulations|i ∈ variable segment}

#{total simulations} . (1)

It is equal to the proportion of simulations in which the nucleotide i is assigned
to a variable segment. Thus, Snuc varies between 0 and 1. If Snuc(i) is near 1
then i is likely to belong to a variable segment. Conversely, if Snuc(i) is near 0,
i is likely to belong to a backbone segment.

Segment score. Considering segment g from the original segmentation (i.e.,
the non-perturbed segmentation), the segment score is defined by:

Sseg(g) =
1
|g|
∑
i∈g

Snuc(i), (2)

where |g| denotes the number of nucleotides in segment g. It is equal to the
average of the nucleotide scores of the nucleotides belonging to segment g. If
Sseg(g) is close to 1 then the segment g is likely to be a robust variable segment.

2.4 Implementation

The anchor-based tool MUMmer (version 3) [12] was used for retrieving the
MEMs from the compared genomes for the perturbation procedure. The com-
plete simulation procedure and the score computations were performed with Perl
(Perl 5.8.8). The source code is available upon request. The graphical exploration
of our results was mainly performed with the genome-browser MuGeN (version
20060919) [20] and R (version 2.8.0).

2.5 Dataset

Numerous pairs of bacterial genomes retrieved from the MOSAIC database [5]
were tested. For illustration purposes, three representative pairs were selected
and are presented in Table 1. The two Streptococcus pyogenes strains are very
close, the Escherichia coli strains are moderately close, and the Pseudomonas
syringae strains are distant. The genomic distance between these genomes was
evaluated with the MUMi index [21]. Briefly, it is based on the evaluation of the
cumulative size of maximal unique matches (MUMs) compared to the lengths of
the compared genomes. MUMi varies between 0 and 1, the smaller the MUMi,
the closer the compared genomes (see details in Table 1). Segmentations of these
three pairs were computed using two different aligners, MGA (version 2) [22]
and MAUVE Aligner (version 1.2.3) [23]. Parameter settings used for these two
tools were those proposed by Chiapello et al. [5,24]. Table 2 summarizes the
information concerning the obtained segmentations for the first strain of each
pair.
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Table 1. Pairs of genomes compared in this study. Length: total genome length (in

nucleotides), MUMi: MUMi index of the pair, #MEMs: number of MEMs of length

higher than 20 bp shared by the pair.

ID Species Strains Length MUMi #MEMs

P1 Streptococcus pyogenes MGAS9429 1836467 0.006 1773

MGAS2096 1860355

P2 Escherichia coli MG1655 K-12 4639675 0.248 58288

O157:H7 Sakai 5498450

P3 Pseudomonas syringae 1448A 5928787 0.666 117669

B728a 6093698

Table 2. List of segmentations studied in this paper. These segmentations correspond

to the first strain of the pairs of genomes presented in Table 1. #BS: number of back-

bone segments, #VS: number of variable segments, BL: cumulative length of the back-

bone, BC: coverage of the backbone i.e. ratio between the backbone length and the

complete genome length in %.

ID ID pair Strain Software #BS #VS BL BC

S1 P1 MGAS9429 MGA 63 62 1536000 83.64%

S2 P1 MGAS9429 MAUVE 67 66 1761765 95.93%

S3 P2 MG1655 K-12 MGA 641 640 4098265 88.33%

S4 P2 MG1655 K-12 MAUVE 817 816 4091213 88.17%

S5 P3 1448A MGA 2870 2871 3181778 58.73%

S6 P3 1448A MAUVE 6176 6175 4303198 72.58%

3 Results

3.1 Calibration of the Simulation Process

In our method, two user-defined parameters have to be set: 1) the proportion
p of MEMs to perturb and 2) the number N of simulations. When perturbing
MEM positions in the compared genomes, we aim at maximizing the impact of
perturbations in the segmentation computation procedure. In other words, we
need to use a p high enough to perturb all the nucleotides belonging to a MEM
at least once. However, if p is too high, some nucleotides will be systematically
perturbed in all the N simulations and their score will be meaningless. As shown
in Fig. 1, when p ≤ 0.1 for N = 1000, almost no nucleotides are perturbed in all
simulations for the three pairs of genomes. For higher values of p, the number of
nucleotides that are systematically perturbed rapidly increases for the pairs P2
and P3. Consequently, we decided to set p = 0.1 for the three pairs of genomes.
This analysis can be performed for any comparison of interest to select a specific
value of p for each pair of genomes or, as done in this study, to determine a p
value suitable for all the pairs. The computation of the scores is based on multiple
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Fig. 1. Selection of the proportion p of MEMs to be perturbed for the three pairs

of genomes. Each curve gives the number of nucleotides that have been systematically

perturbed in each simulation (N = 1000) with respect to the proportion p of perturbed

MEMs. P1, S. pyogenes (circles), P2, E. coli (squares), and P3, P. syringae (triangles).

simulations and requires a sufficient number N of simulations to be statistically
reliable. In this work, we used N = 1000 that provided a good tradeoff between
computation time and accuracy of the score.

3.2 The Nucleotide Score

Computation of the nucleotide scores was performed for the segmentations listed
in Table 2. In each segmentation, we identified nucleotides whose score suggested
that their assignment to a backbone or variable segment was highly sensitive to
perturbations. To facilitate the analysis, we plotted the score for each nucleotide
along the genome thus generating a score profile. Here we show different repre-
sentative examples of score profiles and their interpretation.

Profiles of robust regions. Fig. 2A focuses on a region composed of a variable
segment (in gray) surrounded by two backbone segments (in black), from the
segmentation S3. It shows that nucleotides included in the variable segment have
a score equal to 1 while those that belong to the backbone have a score around
0.1. The score profile at the boundaries of the segments is extremely sharp.

This kind of profile is representative of globally robust regions. Variable seg-
ments are associated with high nucleotide scores, near 1, while nucleotides from
backbone fragments have very low scores. Note that the scores of the nucleotides
belonging to a robust backbone rarely reach 0 but generally vary around 0.1.
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Fig. 2. Representative examples of nucleotide score profiles. The nucleotide score is

plotted below the original segmentation, in which the backbone and variable segments

are represented in black and gray, respectively. (A) a robust region from segmentation

S3, (B) non-robust backbone segment from segmentation S6, (C) non-robust variable

segment from segmentation S1, (D) Uncertain boundary determination from segmen-

tation S3.

This is due to the fact that most nucleotides of the backbone belong to MEMs
and are therefore likely to be perturbed during the simulation process. Con-
sequently, a nucleotide that is robustly assigned to the backbone has a score
expected around the value of p. This does not mean that backbone segments are
generally less robust than variable segments.

The robustness score evaluates the difference between the original segmenta-
tion and the segmentations computed with the perturbed genomes. A robustly
assigned nucleotide is expected to be identically assigned in the original segmen-
tation and almost all perturbed segmentations. We suggest considering that a
nucleotide is robustly assigned if its assignment is identical in the original seg-
mentation and in at least 90% of the simulations. Consequently, nucleotides of a
robust variable segment would have scores above 0.9, and nucleotides of a robust
backbone segment would have scores below p + 0.1 (0.2).

Thus, the profile presented in Fig. 2A suggests that this part of the segmen-
tation of S3 is strongly robust.

Profiles of non-robust regions. The segmentation portion displayed in Fig.
2B is composed of three backbone segments and two variable segments. The
nucleotides of the two surrounding backbone fragments (left and right) have
a low score, around 0.1, and thus, are robustly assigned. Those from the two
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variable segments have score values almost equal to 1, suggesting that these two
segments are robustly estimated too. The nucleotides of the backbone segment
located between the two variable segments (in the middle) have scores near 1.
This means that they are predicted in a variable segment in almost all the 1000
simulations. Consequently, this backbone fragment is absolutely not robust and
should correspond to a variable segment.

Fig. 2C shows a part of the segmentation of S1. The scores of the nucleotides
in this variable segment are rather low, with values around 0.8/0.7, which suggest
that this variable segment is not robust.

These two examples illustrate the shapes of score profiles that are obtained
while considering non-robust regions. Obviously, several other situations of non-
robust region could be observed.

Robustness of segment boundaries. Fig. 2D focuses on a region composed
of two backbone segments and one variable segment. Although the scores of
the nucleotides of the variable segment are globally high, suggesting that this
segment is robust, score profiles at the junctions of the segment are not as sharp
as those plotted in Fig. 2A. This implies that the nucleotides located at the
boundaries of this segment are less robustly assigned than the others. Such a
profile highlights the fact that determination of the junction positions between
the segments cannot be always accurately determined.

3.3 The Segment Score

The segment score associates one score value to each segment of the original
segmentation for both backbone and variable segments. Its aim is to facilitate
the analysis of the global segmentation robustness.

Fig. 3A displays the distribution of the segment score values obtained for
the segmentation of S3. The distribution of the score values shows two distinct
peaks, one for the variable segments (in gray) and one for the backbone segments
(in black). Most of the variable segments have a score ranging from 0.9 to 1 and
most of the backbone segments have a score ranging from 0 to 0.2. This suggests
that most of the variable and backbone segments are robust. Thus, although
there are few segments having intermediate score values, a rapid inspection of
Fig. 3A allows us to conclude that the segmentation S3 is globally robust. This is
clearly not the case for the segmentation S1 whose distributions of the backbone
and variable segment scores are presented in Fig. 3B. These distributions are
more spread out and consequently are not well separable. Almost one third of
the variable segments have a segment score value below 0.8 indicating that they
are not robust. About 20% of backbone segments have a score above 0.3. This
implies that they are also non-robust. Thus, examination of Fig. 3B yields the
conclusion that this segmentation is not globally robust.

The examples presented here clearly suggest that the segment score may be
employed as an easy-to-use method to quickly evaluate the global robustness of
segmentations.
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Fig. 3. Distribution of segment score values. (A) Segmentation S3: example of a glob-

ally robust segmentation. (B) Segmentation S1: example of a non-robust segmentation.

3.4 Comparing Segmentations with the Robustness Scores

Segmentation computation of a given pair of genomes can be performed using
different aligner tools, providing one segmentation per alignment method. Two
segmentations of the same pair of genomes may yield significantly different re-
sults as shown in Table 2. In this subsection, we assess whether our scores can be
used to understand the potential disparities between segmentations and possibly
to determine the best one.

Comparison of the six segmentations listed in Table 2 allowed us to illustrate
this point. There were three possible comparisons: S1 vs. S2, S3 vs. S4 and S5
vs. S6. For each comparison, the first segmentation was computed with MGA
and the second one with MAUVE. We analyzed the differences between these
pairs of segmentations. To do so, we identified all the nucleotides that were as-
signed to the backbone in one of the segmentations while they were assigned
to a variable segment in the other segmentation. Thus, we considered two dis-
tinct situations: 1) A nucleotide was assigned to a variable segment in the first
segmentation (MGA) while it was assigned to the backbone in the second seg-
mentation (MAUVE); 2) the reverse situation, a nucleotide was assigned to the
backbone in the first segmentation while it was assigned to a variable segment
in the second segmentation. For each comparison, we counted the number of
nucleotides corresponding to situation 1 and 2. We also computed the average
nucleotide score (subsection 2.3) over all nucleotides in each situation. This is
summarized in Table 3.
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Table 3. Comparisons of segmentation pairs: S1 vs. S2, S3 vs. S4, and S5 vs. S6.

#Nucleotides: number of nucleotides assigned by MGA to variable segments in the first

segmentation but assigned by MAUVE to the backbone in the second segmentation

(situation 1) and the converse situation (situation 2). Score: average nucleotide score,

the score values of the nucleotides that were assigned to variable segments appear in

bold.

Situation 1 Situation 2 Total

S1 vs. S2

#Nucleotides 226064 299 226363

Score S1 (MGA) 0.755 0.301

Score S2 (MAUVE) 0.068 0.736

S3 vs. S4

#Nucleotides 18584 25636 44220

Score S3 (MGA) 0.939 0.319

Score S4 (MAUVE) 0.314 0.851

S5 vs. S6

#Nucleotides 975750 154490 1130240

Score S5 (MGA) 0.999 0.173

Score S6 (MAUVE) 0.085 0.988

Identification of segmentation errors: S1 vs. S2. Although S1 and S2 have
almost the same number of segments, the cumulative backbone length of S2 is
much higher than the one of S1 (see Table 2). More than 226000 nucleotides
are assigned to the backbone in S2 while they are assigned to variable segments
in S1 (situation 1). Average nucleotide scores of these nucleotides indicate that
the backbone assignment is more robust in S2 (average score of 0.068) than the
variable segment assignment in S1 (average score of 0.755).

Analysis of the non-robust variable segments of S1 revealed that these seg-
ments were associated with large overlapping MEMs. Indeed, when comparing
very closely related genomes, long MEMs (> several kb) can overlap together.
This induces problems in the chaining step of the alignment for MGA because
its chaining algorithm discards overlapping MEMs [22]. Thus, comparing ex-
tremely close genomes with MGA might produce unexpected variable segments.
Our method is able to detect this problem, assigning a low robustness to these
variable segments and indicating that S2 is globally more robust than S1.

Comparing very similar segmentations: S3 vs. S4. Although S4
(MAUVE) contains more segments than S3 (MGA), these segmentations have
identical backbone coverage around 88% (see Table 2) and thus, these segmen-
tations are very similar. Segment score distributions of S3 and S4 reveal that
these segmentations are globally robust (see Fig. 3A and data not shown). In
this case two similar segmentations produced by two distinct aligner tools are
associated with a similar robustness score indicating that our method does not
tend to favor particularly one algorithm over the other.
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The robustness score is also relevant to compare the slight differences between
S3 and S4. About 18000 nucleotides correspond to situation 1 and 25000 to
situation 2 representing about 0.5% of the genome length in both cases (see Table
3). Table 3 indicates that in both situations, variable segments are more robust,
with average scores equal to 0.939 and 0.851, than backbone with average scores
around 0.3. Consequently, for the nucleotides in situation 1, the assignment
made by MGA (S3) is globally more robust than the one made by MAUVE
(S4). Conversely, MAUVE seems to provide a more robust segmentation than
MGA for the nucleotides in situation 2.

Selection of the best suited aligner: S5 vs. S6. There is a large differ-
ence between the backbone lengths of segmentations S5 and S6 (see Table 2).
Backbone of S6 is about 35% longer than the one of S5. However, Table 3 shows
that in both situations, backbone segments have average scores less than 0.2 and
variable segments have average scores greater than 0.9. This means that, in both
situations, the two segmentations are robust. Consequently, from this result, it is
not obvious to decide which segmentation is the best one. Investigation of these
comparisons revealed that the dissimilarities were associated with rearranged
regions between these genomes. Since MGA does not treat rearrangements, it
systematically ignores rearranged regions and classifies them into variable seg-
ments yielding to robust, yet biologically not relevant, variable segments. It is
important to note that our score is dedicated to evaluate how a segmentation
is sensitive to perturbations on the original sequences. In this trivial example,
MGA is incorrectly used, producing robust variable segments when considering
conserved rearranged regions. This example shows that before computing seg-
mentations, it is crucial to perfectly know the compared genomes and to clearly
identify the limitations of the aligner tool used.

4 Discussion

For the first time, an attempt has been made to statistically assess the robust-
ness of bacterial genome segmentations at different scales, from nucleotides to
entire segments and even to the whole segmentation. The two proposed scores
provide useful information, are easy to implement and their interpretation is in-
tuitive. Their computation can be performed with any aligner tool and does not
require any external data. We also have clearly shown that these scores are able
to identify both robust and non-robust fractions of segmentations. Comparison
of segmentations obtained with different aligner tools and their corresponding
robustness scores provide fruitful information to identify inaccuracies.

The distance between the compared genomes is not a limitation for computing
our scores. Indeed, although segmentations are usually computed on closely re-
lated genomes, the distance between the compared genomes can vary (see MUMi
index in Table 1). This involves important variations in the number of MEMs
that are retrieved between the sequences (see #MEMs in Table 1). However,
we showed that our scores can be used in a wide range of distances between
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the compared genomes. As a consequence, our method can be extended to the
comparison of bacterial genomes at the inter-species level, provided that the
compared sequences are close enough to be aligned. Last, it is possible to adapt
the method for the comparison of eukaryotic genomes, for example, by defining
additional perturbation types such as duplications or transpositions, but with
some limitations due to the computation time required to align such large se-
quences.

Although homologous regions are expected to belong to the backbone, some of
them can be assigned to variable segments. Indeed, homologous regions are more
or less diverged along the chromosomes. This implies that the most diverged ones
can be either classified as backbone or as variable segments depending on the
aligner tool used and on the parameter setting. Such regions are expected to
show a low robustness.

The lack of robustness of a segmentation or a part of it can be due to different
reasons. First, non-robust segments are often associated with repeated regions
that are known to be often incorrectly treated by aligner tools [25]. Problems
can also arise from the chaining algorithm or from calibration of the parameters
of the complete genome aligner. Indeed, variations of some parameter values,
such as the minimal length of MEMs to retrieve, have an important impact on
the alignment results [5]. Last, computation of segmentations often requires the
use of local alignment tools to investigate specific short regions. This step of the
segmentation determination can also be at the origin of low robustness [15]. The
two scores proposed here do not determine directly the reason explaining the
lack of robustness of a segmentation but they allow to easily identify the non-
robust regions and hence, they facilitate investigations to determine the origin
of this behavior.

The scores presented here can be used at a larger scale to compare and to
categorize simultaneously several segmentations. They can be calculated for stan-
dalone comparisons [4], but they could also be directly integrated into databases
that store numerous pre-computed complete genome comparisons such as xBASE
[26] and MOSAIC [5,24] to provide an evaluation of the robustness of their con-
tents. In this context, the development of a unique global segmentation score or
a statistical test directly derived from the segment scores should be useful.

Our scores raise many questions about genome structure, segmentation deter-
mination and alignment algorithms. Currently, the method is implemented only
for pairwise comparisons at the intra-species level. However, further improve-
ments are in progress to adapt the approach to multiple genome comparisons.
The most challenging task is to determine the optimal number of MEMs to
perturb by accounting for the combinatorial aspect that this process implies.
Preliminary investigations showed that this issue can be addressed by using a
subset of MEMs called ”rare multiMEMs” corresponding to MEMs that are
repeated a limited number of times between the compared genomes [27].

The originality of our method relies on the fact that we investigate the robust-
ness of a segmentation rather than its biological relevance as it has been done in
other studies. Our scores are therefore complementary to other measures such
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as the number of backbone segments that disrupt orthologous genes proposed
by Swidan and Shamir [17]. They could even be used jointly to better assess the
reliability of genome segmentations.
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Abstract. An approximate nested tandem repeat (NTR) in a string T is a com-
plex repetitive structure consisting of many approximate copies of two substrings
x and X (“motifs”) interspersed with one another. NTRs have been found in real
DNA sequences and are expected to have applications for evolutionary studies,
both as a tool to understand concerted evolution, and as a potential marker in
population studies.

In this paper we describe software tools developed for database searches for
NTRs. After a first program NTRFinder identifies putative NTR motifs, a con-
firmation step requires the application of the alignment of the putative NTR
against exact NTRs built from the putative template motifs x and X. In this paper
we describe an algorithm to solve this alignment problem in O(|T|(|x| + |X|))
space and time. Our alignment algorithm is based on Fischetti et al.’s wrap-around
dynamic programming.

1 Introduction

An approximate nested tandem repeat (NTR) in a string T is a complex repetitive
structure consisting of many approximate copies of two substrings x and X (“motifs”)
interspersed with one another. The name derives from the fact that an NTR may be
thought of as two tandem repeats nested within one another.

Approximate nested tandem repeats have been found in real DNA sequences, such as
that of Colocasia esculenta, the ancient staple food crop taro (Matroud et al. [6]). The
intergenic spacer (IGS) region in the taro ribosomal DNA contains an NTR consisting
of eleven approximate copies of a 48 bp motif, interspersed within a tandem repeat
consisting of 96 approximate copies of an 11 bp motif. The NTR found in taro, used as
a genetic marker, offers the potential to elucidate the prehistory of the early agriculture
of this ancient food crop, as mutation events appear to be accumulating on a thousand-
year time scale. NTRs in general also offer an opportunity to investigate concerted
evolution whereby mutations are propagated throughout the many hundreds of copies
of the IGS region in the taro genome.

To develop a fuller understanding of the nature of the NTR, we have developed
software to find them [6]. This comprises two phases. The first phase is the detection

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 188–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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phase where the sequence is scanned and candidate NTRs are detected then the two
consensus motifs X and x that form the NTR are constructed. The second phase is the
verification phase where the putative NTR is aligned against all patterns of the form

xs0Xt0xs1Xt1 · · ·xskXtk .

Such an alignment is needed to find the extent and structure of the NTR (that is, to find
the exponents si, ti occurring above), and may also be used to evaluate the fit of the
template motifs x and X. We call this problem the motif alignment problem for NTRs,
to distinguish it from the variant alignment problem that arises at later stages of the
analysis.

The variant alignment problem is the problem of aligning two different NTRs with
the same or similar motifs, such as might be found in different varieties of the same
plant, with a view to finding the extent of their shared evolutionary history. At that stage
of the analysis the copy variants of the template motifs will be treated as the characters
to be aligned; clearly, a good solution to the motif alignment problem is a necessary
prerequisite for this.

The purpose of this paper is to present an algorithm to solve the motif alignment
problem for approximate NTRs, given a sequence T, and the motifs x and X identi-
fied by our NTR search algorithm NTRFinder [6]. Our alignment algorithm runs in
O(|T|(|x|+ |X|)) space and time, and plays a key rule in the verification of the putative
NTR. It is based on the wrap-around dynamic programming technique introduced by
Fischetti et al. [3] to solve the corresponding problem for (ordinary) tandem repeats.
We show it can be readily adapted for use with more complex repetitive structures built
from three or more motifs (discussed in Section 4.4).

2 Related Work

Many algorithms have been introduced to solve the problem of finding the similarity
among sequences (see [4] for an overview); String similarity algorithms under edit dis-
tance (where insertion, deletion and mutation is allowed) were investigated recently
where dynamic programming (DP) technique is one common approach to produce an
optimal solution. This approach uses a scoring function that plays a critical role in the
final alignment output.

Different alignment problems have been studied in the past. Some studied the align-
ment of two entire strings A and B [8], while others studied the alignment in sub-
strings of the strings A and B [10]. Another alignment problem was studied where all
the occurrences of string B in string A (See [7] for a survey). Another useful align-
ment problem is finding the substring of T which best matches a substring of xs for
s > 1. To solve this problem, Fischetti et al. introduced the wrap-around dynamic
programming [3] which has O(mn) space and time complexity. This algorithm was
used by different tandem repeat finder programs to verify and produce the final report
[1,2,5,11].

Standard tandem repeat software will generally not find more than one band of an
NTR. The algorithm of Hauth and Joseph [5] searches for NTRs with motifs limited
to lengths of up to 6 nucleotides. The current implementation of our algorithm [6]
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NTRFinder searches for motifs of up to 100 nucleotides. Xstream [9] is a program
which finds NTRs which are also tandem repeats, so that the number of repeats of the
interspersed motif is fixed. NTR-Finder is the only software that can locate the NTR of
taro IGS that we are investigating.

3 Definitions

3.1 Alphabets and Strings

An alphabet is a nonempty set Σ of symbols or characters, and a string over Σ is a
finite sequence of elements of Σ. We write Σ∗ for the set of all strings over the alphabet
Σ, and |S| for the length of the string S.

Given a string S and integers i, j such that 0 < i ≤ j ≤ |S|, we will write S[i] for
the ith character of S, and S[i, j] for the substring consisting of the ith to jth characters
of S. Given a second string T, the concatenation of S and T is the string ST, where

(ST)[i] =

{
S[i] if i ≤ |S|,
T[i− |S|] if i > |S|.

In applications to DNA sequences Σ is typically the set {A, G, C, T}, and we will use
this alphabet in examples. However, our algorithm is not restricted to this case.

3.2 Tandem Repeats and Nested Tandem Repeats

An exact tandem repeat is a string of the form Xl for some l ≥ 2. Thus, an exact
tandem repeat is a string comprised of two or more contiguous exact copies of the
same substring X. This substring is called the motif of the tandem repeat. We obtain
an approximate tandem repeat by allowing approximate rather than exact copies of the
template motif X. More precisely, an approximate tandem repeat is a string of the form
X1X2 · · ·Xl, where d(X,Xi) ≤ k|X| for each i, for some fixed k < 1 and template
motif X. Where the value of the parameter k is important we may say that we have a
k-approximate tandem repeat (k-TR). For simplicity of notation, we will write X̃l to
mean an approximate tandem repeat, consisting of l approximate copies of X.

Given two motifs X and x such that d(X,x)� 0, an exact nested tandem repeat is
a string of the form

xs0Xt0xs1Xt1 · · ·xsnXtn ,

where n > 1, si ≥ 1 for each i, and ti ≥ 1 for i = 1, . . . , n − 1. We again obtain an
approximate nested tandem repeat by allowing the copies of the motifs X and x to be
approximate rather than exact. Thus, an approximate nested tandem repeat is a string of
the form

x̃s0X̃t0 x̃s1X̃t1 · · · x̃snX̃tn ,

where n > 1, si ≥ 1 for each i, ti ≥ 1 for i = 1, . . . , n−1, and such that x̃s0 x̃s1 · · · x̃sn

is an approximate tandem repeat with motif x, and X̃t0X̃t1 · · · X̃tn is an approximate
tandem repeat with motif X.



The Motif Alignment Problem for NTRs 191

Note that the definition of an approximate nested tandem repeat includes exact nested
tandem repeats as a special case. “Nested tandem repeat” or “NTR” by itself will always
mean an approximate nested tandem repeat, unless explicitly stated otherwise.

Remark. The definition of an NTR given here is slightly more general than that given
in Matroud et al. [6]. In that paper, a nested tandem repeat is required to satisfy ti ≤ 1
for each i.

3.3 Alignment

Given an alphabet Σ, let Σ̄ be the alphabet Σ ∪ {−}, where “−” (“gap”) is a character
that does not belong to Σ. We define φ : Σ̄∗ → Σ∗ to be the function that deletes all
gaps.

Given two strings A,B ∈ Σ∗, an alignment of A and B is a choice of a pair of
strings (Ā, B̄) ∈ Σ̄∗ × Σ̄∗ satisfying the following conditions:

A1. φ(Ā) = A and φ(B̄) = B;
A2. |Ā| = |B̄|; and
A3. there is no index i for which Ā[i] = B̄[i] = −.

Thus, Ā and B̄ are obtained from A and B respectively by inserting gaps in such a way
that the resulting strings have the same length, and do not both have a gap in the same
position.

To score an alignment we use a scoring matrix σ, which specifies the reward or
penalty for aligning any two characters of Σ̄ against each other. See Table 1 for an
example. We will assume throughout that σ penalises gaps (that is, σ(−, α) and σ(α,−)
are both negative for all α ∈ Σ̄), and we set σ(−,−) = −∞ to reflect condition A3
above. Given an alignment (Ā, B̄) for which |Ā| = |B̄| = L, the alignment score of
(Ā, B̄) is then defined to be

σ(Ā, B̄) =
L∑

i=1

σ(Ā[i], B̄[i]).

An optimal global alignment is an alignment of A and B which maximises the align-
ment score over all such alignments. See Navarro [7] for a survey of this and other
alignment problems.

Table 1. A sample scoring matrix for DNA sequences. This matrix rewards matching characters
from Σ with a score of +1, and penalises mis-matching characters from Σ with a score of −1.
The penalty for aligning a gap against a character from Σ is −2. The value σ(−,−) = −∞
reflects condition A3, which prohibits a gap being aligned against a gap.

σ − A C G T

− −∞ −2 −2 −2 −2

A −2 1 −1 −1 −1

C −2 −1 1 −1 −1

G −2 −1 −1 1 −1

T −2 −1 −1 −1 1
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4 The Motif Alignment Problem for Approximate Nested Tandem
Repeats

4.1 The Problem

The motif alignment problem for approximate nested tandem repeats is the following:

Given
1. a string T and motifs x and X over the alphabet Σ, and
2. a scoring matrix σ defined over Σ̄ × Σ̄,

find an optimal alignment of T against substrings of strings of the form

xs0Xt0xs1Xt1 · · ·xskXtk .

Thus, given a string T that is presumed to contain an approximate nested tandem repeat
with motifs x and X, and a scoring matrix σ, the problem is to find a optimal alignment
of T against substrings of exact nested tandem repeats with motifs x and X.

4.2 Solution to the Problem via Nested Wrap-Around Dynamic Programming

The motif alignment problem for NTRs is closely related to the corresponding problem
for tandem repeats, which was solved by Fischetti et al. [3] using wrap-around dynamic
programming. We solve the problem by adapting their technique. The key differences
are the introduction of a second matrix, to hold information relating to the second motif,
and a modification to the update rule used between the first and second passes.

In what follows we let n = |T|, m = |x|, and l = |X|. An optimal alignment will
be calculated using two matrices D(1) and D(2). The matrix D(1) is (m+1)× (n+1),
and will record scores related to aligning portions of T against x, while the matrix D(2)

is (l + 1) × (n + 1), and will record scores related to aligning portions of T against
X. Both matrices will be indexed starting from 0, and we will denote the (i, j) entry
of D(k) by D(k)[i, j]. We write D

(k)
i,j for the upper-left (i + 1) × (j + 1) submatrix of

D(k).
The score matrices D(1) and D(2) are filled as follows:

1. We initialise the two matrices by setting

D(k)[0, j] := 0, D(k)[i, 0] := 0

for all i, j and k.
2. We compute each column of the matrices (starting from j = 1) in two rounds. In

the first round we compute D(1)[i, j] using the recursive function

D(1)[i, j] := max

⎧⎨
⎩

D(1)[i− 1, j − 1] + σ(x[i],T[j]),
D(1)[i− 1, j] + σ(x[i],−),
D(1)[i, j − 1] + σ(−,T[j])

⎫⎬
⎭ .

We then compute D(2)[i, j] in a similar fashion.
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Alignment:
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Fig. 1. Visualisation of the algorithm applied to the string T = GTCACGAACAGAGTC, with template
motifs x = GTC, X = ACAGA. The matrix D(1) lies in the (x,T) plane, while D(2) lies in the
(X,T) plane. The majority of the matrix entries have been omitted for clarity. Solid arrows
represent the optimal alignment path, while dashed arrows indicate that the value at its tail is fed
to the location at its head. The corresponding alignment appears below the diagram.

In the second round, we update both D(1)[0, j] and D(2)[0, j] with the value max
{D(1)[m, j], D(2)[l, j]}, and then update D(1)[i, j] for 1 ≤ i ≤ m using the for-
mula above, which simplifies to

D(1)[i, j] := max{D(1)[i, j], D(1)[i− 1, j] + σ(x[i],−)}

during the second round. The entries D(2)[i, j] for 1 ≤ i ≤ l are then updated in a
similar fashion.

Pseudo-code for the matrix-filling algorithm appears as Algorithm 1 below.
Once the matrices are filled, an optimal alignment is found using the standard trace-

back procedure for dynamic programming (see for example Fischetti et al. [3]), be-
ginning from the largest entry in the righthand columns of D(1), D(2). The algorithm
clearly has space complexity O(n(m + l)), and the matrices D(1) and D(2) are filled in
time O(n(m + l)).

4.3 Correctness of the Algorithm

We now prove by induction that the matrices D(1) and D(2) have been calculated cor-
rectly to produce the optimal alignment. In what follows let NTR(x,X) denote the set
of all strings N that occur as substrings of exact NTRs with motifs x and X.

Suppose that the two sub-matrices D
(1)
m,j−1 and D

(2)
l,j−1 have been correctly computed

for some j ≥ 1. That is, assume that D(1)[i, j − 1] is the optimal alignment score of
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Data: Strings T, X, x and scoring matrix σ
Result: Matrices D(1), D(2) containing optimal alignment scores with respect to σ of

alignments of T against substrings of exact NTRs with motifs X and x
for j = 0 to |T| do

for i = 0 to |x| do
D(1)[i, j] := 0

end
for i = 1 to |X| do

D(2)[i, j] := 0

end
end
for j = 1 to |T| do

for i = 1 to |x| do
D(1)[i, j] := max{D(1)[i− 1, j − 1] + σ(x[i],T[j]),
D(1)[i− 1, j] + σ(x[i],−), D(1)[i, j − 1] + σ(−,T[j])}

end
for i = 1 to |X| do

D(2)[i, j] := max{D(2)[i− 1, j − 1] + σ(X[i],T[j]),
D(2)[i− 1, j] + σ(X[i],−), D(2)[i, j − 1] + σ(−,T[j])}

end
D(1)[0, j] := max{D(1)[|x|, j], D(2)[|X|, j]}
D(2)[0, j] := max{D(1)[|x|, j], D(2)[|X|, j]}
for i = 1 to |x| do

D(1)[i, j] := max{D(1)[i, j], D(1)[i− 1, j] + σ(x[i],−)}
end
for i = 1 to |X| do

D(2)[i, j] := max{D(2)[i, j], D(2)[i− 1, j] + σ(X[i],−)}
end

end

Algorithm 1. Pseudo-code for our nested wrap-around dynamic programming
algorithm for the motif alignment problem for NTRs

any alignment of T[1, j−1] against a string N ∈ NTR(x,X) that ends with a suffix of
x[1, i], and similarly that D(2)[i, j − 1] is the optimal alignment score of any alignment
of T[1, j−1] against a string N ∈ NTR(x,X) that ends with a suffix of X[1, i]. When
i = 0 our assumption is that

D(1)[0, j − 1] = D(2)[0, j − 1] = max{D(1)[m, j − 1], D(2)[l, j − 1]},

so that this common value is the optimal score of an alignment of T[1, j − 1] against a
string N ∈ NTR(x,X) ending in either x[m] or X[l].

Consider an alignment (N̄, S̄) of S = T[1, j] against a string N ∈ NTR(x,X)
ending in x[1, i] or X[1, i]. We consider three cases, according to the final characters of
S̄ and N̄:

1. If S̄ ends in T[j] and N̄ in x[i], then deleting these characters gives an alignment
of T[1, j − 1] against a string N′ ∈ NTR(x,X) ending in x[i− 1] if i > 1, or in
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either x[m] or X[l] if i = 1. It follows that

σ
(
N̄, S̄

)
≤ D(1)[i− 1, j − 1] + σ(x[i],T[j]),

with equality when N̄ and S̄ are obtained by appending x[i] and T[j] to an optimal
alignment at D(1)[i− 1, j − 1]. A similar argument applies if N̄ ends in X[i].

2. If S̄ ends in T[j] and N̄ in a gap, then deleting these characters gives an alignment
of T[1, j − 1] against N. If N ends in x[i] then

σ
(
N̄, S̄

)
≤ D(1)[i, j − 1] + σ(−,T[j]),

with equality when N̄ and S̄ are obtained by appending “−” and T[j] to an optimal
alignment at D(1)[i, j − 1]. A similar argument applies if N ends in X[i].

3. If S̄ ends in a gap then we may express S̄ in the form

S̄ = S̄′(−)s,

where s ≥ 1 is as large as possible. Let N̄ = N̄′M with |M| = s. Then
(
N̄′, S̄′)

is an alignment of one the types considered in cases 1 and 2 above, so

σ
(
N̄, S̄

)
= σ
(
N̄′, S̄′)+ σ(M, (−)s)

≤ D(k′)[i′, j] + σ(M, (−)s)

for integers i′ ≥ 1 and k′ ∈ {1, 2} determined by the tail of N′.
For conciseness let Y1 = x and Y2 = X. Then the string M is an element of
NTR(x,X) of length s ending with Yk[i] and beginning with

M[1] =

{
Yk′ [i′ + 1] if i′ < |Yk′ |,
x[1] or X[1] if i′ = |Yk′ |.

So what we must show is that for such strings we have

D(k)[i, j] ≥ D(k′)[i′, j] +
s∑

a=1

σ(M[a],−).

By the update rules we have

D(k′′)[a, j] ≥ D(k′′)[a− 1, j] + σ(Yk′′ [a],−)

for k′′ = 1, 2 and a ≥ 1, so the necessary inequality will be true by induction
provided we can show that we still have

D(k′′)[0, j] = max{D(1)[m, j], D(2)[l, j]} (1)

after the second update round. This equality follows from the fact that the larger
of D(1)[m, j], D(2)[l, j] is unchanged during the second round. Indeed, if the value
D(1)[m, j] is changed during the second round then it must have been increased to

D(1)[m, j] = D(1)[0, j] +
m∑

b=1

σ(x[b],−),
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and this is strictly less than D(1)[0, j], because σ(α,−) < 0 for all α. A similar
argument applies to D(2)[l, j], so the larger of these is unchanged and remains the
maximum.

By the above we have σ(N̄, S̄) ≤ D(k)[i, j]. It remains to show that there
is in fact an alignment with score D(k)[i, j] when D(k)[i, j] = D(k)[i− 1, j] +
σ(Yk[i],−). Consider the trace back procedure beginning from D(k)[i− 1, j]. This
must eventually reach an (i′, j)-entry of either D(1) or D(2) that derives from col-
umn j − 1 (since for example the largest entry in each column of each matrix must
be derived this way), and we obtain the desired alignment by appending suitable
strings to an optimal alignment at this point.

Cases 1–3 above show that D(1)[i, j] and D(2)[i, j] have been correctly computed for
i ≥ 1, and equation (1) shows that D(1)[0, j] and D(2)[0, j] have been too. It follows
by induction that both matrices D(1) and D(2) have been correctly computed.

4.4 Extension to Nested Tandem Repeats with Three or More Motifs

Our algorithm is easily adapted to the motif alignment problem for more complex NTRs
built from three or more motifs X1,X2, . . . ,Xr. Let |Xk| = mk for each k, and again
let |T| = n, where T is the text containing the NTR. For each k = 1, . . . , r we in-
troduce an (mk + 1) × (n + 1) matrix D(k), and we initialise these as in Section 4.2.
After the jth column of each matrix has been filled as in the first round above we update
D(k)[0, j] with max{D(i)[mi, j]|i = 1, . . . , r} for each k, and then run a second round
as above to update the jth column of each matrix. Once the matrices have been filled, an
optimal alignment may then be found using the standard trace-back procedure. The time
and space complexity for the k-motif alignment algorithm is O(T (|m1| + |m2|..[mr])
as it takes 2×mk to fill each matrix D(k). In the case where the motifs have the same
length then the complexity would be O(|T | ∗ (2 ∗ k ∗ |m|)).

5 Conclusion

In this paper, we presented an algorithm to solve the problem of the alignment of nested
tandem repeats. This algorithm has O(|T|(|x| + |X|)) time complexity. The nested
WDP alignment is incorporated in the program NTRFinder [6] we are developing, as
part of the verification phase. It has been tested on both simulated and real data and has
proved to be very effective.
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Abstract. An important question in genome evolution is whether there

exist fragile regions (rearrangement hotspots) where chromosomal rear-

rangements are happening over and over again. Although nearly all re-

cent studies supported the existence of fragile regions in mammalian

genomes, the most comprehensive phylogenomic study of mammals (Ma

et al. (2006) Genome Research 16, 1557-1565) raised some doubts about

their existence. We demonstrate that fragile regions are subject to a

“birth and death” process, implying that fragility has limited evolution-

ary lifespan. This finding implies that fragile regions migrate to different

locations in different mammals, explaining why there exist only a few

chromosomal breakpoints shared between different lineages. The birth

and death of fragile regions phenomenon reinforces the hypothesis that

rearrangements are promoted by matching segmental duplications and

suggests putative locations of the currently active fragile regions in the

human genome.

1 Introduction

In 1970 Susumu Ohno [35] came up with the Random Breakage Model (RBM)
of chromosome evolution, implying that there are no rearrangement hotspots in
mammalian genomes. In 1984 Nadeau and Taylor [34] laid the statistical foun-
dations of RBM and demonstrated that it was consistent with the human and
mouse chromosomal architectures. In the next two decades, numerous studies
with progressively increasing resolution made RBM the de facto theory of chro-
mosome evolution.

RBM was refuted by Pevzner and Tesler, 2003 [38] who suggested the Fragile
Breakage Model (FBM) postulating that mammalian genomes are mosaics of
fragile and solid regions. In contrast to RBM, FBM postulates that rearrange-
ments are mainly happening in fragile regions forming only a small portion of the
mammalian genomes. While the rebuttal of RBM caused a controversy [7, 43, 44],
Peng et al., 2006 [36] and Alekseyev and Pevzner, 2007 [2] revealed some flaws
in the arguments against FBM. Furthermore, the rebuttal of RBM was followed
by many studies supporting FBM [6, 8, 9, 12, 14, 17, 19, 20, 21, 24, 27, 28, 29,
30, 31, 39, 40, 41, 46, 47, 49, 51].

Comparative analysis of the human chromosomes reveals many short adjacent
regions corresponding to parts of several mouse chromosomes [16]. While such

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 198–215, 2010.
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a surprising arrangement of synteny blocks points to potential rearrangement
hotspots, it remains unclear whether these regions reflect genome rearrangements
or duplications/assembly errors/alignment artifacts. Early studies of genomic
architectures were unable to distinguish short synteny blocks from artifacts and
thus were limited to constructing large synteny blocks. Ma et al., 2006 [25]
addressed the challenge of constructing high-resolution synteny blocks via the
analysis of multiple genomes. Remarkably, their analysis suggests that there is
limited breakpoint reuse, an argument against FBM, that led to a split among
researchers studying chromosome evolution and raised a challenge of reconciling
these contradictory results. Ma et al., 2006 [25] wrote: “a careful analysis [of
the RBM vs FBM controversy] is beyond the scope of this study” leaving the
question of interpreting their findings open.

Various models of chromosome evolution imply various statistics and thus can
be verified by various tests. For example, RBM implies exponential distribution
of the synteny block sizes, consistent with the human-mouse synteny blocks ob-
served in [34]. Pevzner and Tesler, 2003 [38] introduced the “pairwise breakpoint
reuse” test and demonstrated that while RBM implies low breakpoint reuse, the
human-mouse synteny blocks expose rampant breakpoint reuse. Thus RBM is
consistent with the “exponential length distribution” test [34] but inconsistent
with the “pairwise breakpoint reuse” test [37]. Both these tests are applied to
pairs of genomes, not taking an advantage of multiple genomes that were re-
cently sequenced. Below we introduce the “multispecies breakpoint reuse” test
and demonstrate that both RBM and FBM do not pass this test. We further
propose the Turnover Fragile Breakage Model (TFBM) that extends FBM and
complies with the multispecies breakpoint reuse test.

Technically, findings in [25] (limited breakpoint reuse between different lineages)
are not in conflict with findings in [38] (rampant breakpoint reuse in chromosome
evolution). Indeed, Ma et al., 2006 [25] only considered inter-reuse between dif-
ferent branches of the phylogenetic tree and did not analyze intra-reuse within
individual branches of the tree. TFBM reconciles the recent studies supporting
FBM with the Ma et al., 2006 [25] analysis. We demonstrate that data in [25]
reveal rampant but elusive breakpoint reuse that cannot be detected via count-
ing repeated breakages between various pairs of branches of the evolutionary tree.
TFBM is an extension of FBM that reconciles seemingly contradictory results in
[6, 8, 9, 12, 14, 17, 19, 20, 21, 24, 27, 28, 29, 30, 31, 39, 40, 41, 46, 47, 49, 51] and
[25] and explains that they do not contradict to each other. TFBM postulates that
fragile regions have a limited lifespan and implies that they can migrate between
different genomic locations. The intriguing implication of TFBM is that few re-
gions in a genome are fragile at any given time raising a question of finding the
currently active fragile regions in the human genome.

While many authors have discussed the causes of fragility, the question what
makes certain regions fragile remains open. Previous studies attributed fragile
regions to segmental duplications [5, 18, 42, 50], high repeat density [32], high
recombination rate [33], pairs of tRNA genes [10, 23], inhomogeneity of gene
distribution [36], and long regulatory regions [17, 30, 36]. Since we observed
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the birth and death of fragile regions, we are particularly interested in features
that are also subject to birth and death process. Recently, Zhao and Bourque,
2009 [50] provided a new insight into association of rearrangements with seg-
mental duplications by demonstrating that many rearrangements are flanked
by Matching Segmental Duplications (MSDs), i.e., a pair of long similar regions
located within a pair of breakpoint regions corresponding to a rearrangement
event. MSDs arguably represent an ideal match for TFBM among the features
that were previously implicated in breakpoint reuses. TFBM is consistent with
the hypothesis that MSDs promote fragility since the similarity between MSDs
deteriorates with time, implying that MSDs are also subjects to a “birth and
death” process.

2 Results

2.1 Rearrangements and Breakpoint Graphs

For the sake of simplicity, we start our analysis with circular genomes consist-
ing of circular chromosomes. While we use circular chromosomes to simplify the
computational concepts discussed in the paper, all analysis is done with real
(linear) mammalian chromosomes (see Alekseyev, 2008 [1] for subtle differences
between circular and linear chromosome analysis). We represent a circular chro-
mosome with synteny blocks x1, . . . , xn as a cycle (Fig. 1) composed of n directed
labelled edges (corresponding to the blocks) and n undirected unlabeled edges
(connecting adjacent blocks). The directions of the edges correspond to signs
(strands) of the blocks. We label the tail and head of a directed edge xi as xt

i

and xh
i respectively. We represent a genome as a genome graph consisting of

disjoint cycles (one for each chromosomes). The edges in each cycle alternate
between two colors: one color reserved for undirected edges and the other color
(traditionally called “obverse”) reserved for directed edges.

Let P be a genome represented as a collection of alternating black-obverse
cycles (a cycle is alternating if the colors of its edges alternate). For any two black
edges (u, v) and (x, y) in the genome (graph) P we define a 2-break rearrangement
(see [3]) as replacement of these edges with either a pair of edges (u, x), (v, y), or
a pair of edges (u, y), (v, x) (Fig. 2). 2-breaks extend the standard operations of
reversals (Fig. 2a), fissions (Fig. 2b), or fusions/translocations (Fig. 2c) to the
case of circular chromosomes. We say that a 2-break on edges (u, x), (v, y) uses
vertices u, x, v and y.

Let P and Q be “black” and “red” genomes on the same set of synteny blocks
X . The breakpoint graph G(P, Q) is defined on the set of vertices V = {xt, xh |
x ∈ X} with black and red edges inherited from genomes P and Q (Fig. 1). The
black and red edges form a collection of alternating black-red cycles in G(P, Q)
and play an important role in analyzing rearrangements (see [11] for background
information on genome rearrangements). The trivial cycles in G(P, Q), formed
by pairs of parallel black and red edges, represent common adjacencies between
synteny blocks in genomes P and Q. Vertices of the non-trivial cycles in G(P, Q)
represent breakpoints that partition genomes P and Q into (P, Q)-synteny blocks.
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The 2-break distance d(P, Q) between circular genomes P and Q is defined
as the minimum number of 2-breaks required to transform one genome into the
other. In contrast to the genomic distance [13] (for linear genomes), the 2-break
distance for circular genomes is easy to compute [48]:

Theorem 1. The 2-break distance between circular genomes P and Q is b(P, Q)−
c(P, Q) where b(P, Q) and c(P, Q) are respectively the number of (P, Q)-synteny
blocks and non-trivial black-red cycles in G(P, Q).

2.2 Inter- and Intra- Breakpoint Reuse

Figure 3 shows a phylogenetic tree with specified rearrangements on its branches
(we write ρ ∈ e to refer to a 2-break ρ on an edge e). We represent each genome
as a genome graph (i.e., a collection of cycles) on the same set V of 2n vertices
(corresponding to the endpoints of the synteny blocks). Given a set of genomes
and a phylogenetic tree describing rearrangements between these genomes, we
define the notions of inter- and intra-breakpoint reuses. A vertex v ∈ V is inter-
reused on two distinct branches e1 and e2 of a phylogenetic tree if there exist
2-breaks ρ1 ∈ e1 and ρ2 ∈ e2 that both use v. Similarly, a vertex v ∈ V is intra-
reused on a branch e if there exist two distinct 2-breaks ρ1, ρ2 ∈ e that both use
v. For example, a vertex ch is inter-reused on the branches (Q3, P1) and (Q2, P3),
while a vertex fh is intra-reused on the branch (Q3, Q2) of the tree in Fig. 3.
We define br(e1, e2) as the number of vertices inter-reused on the branches e1

and e2, and br(e) as the number of vertices intra-reused on the branch e. An
alternative approach to measuring breakpoint intra-reuse is to define weighted
intra-reuse of a vertex v on a branch e as max{0, use(e, v)− 1} where use(e, v)
is the number of 2-breaks on e using v. The weighted intra-reuse BR(e) on the
branch e is the sum of weighted intra-reuse of all vertices.1

Given simulated data, one can compute br(e) for all branches and br(e1, e2)
for all pairs of branches in the phylogenetic tree. However, for real data, re-
arrangements along the branches are unknown, calling for alternative ways for
estimating the inter- and intra-reuse.

Cycles in the breakpoint graphs provide yet another way to estimate the
inter- and intra-reuse. For a branch e = (P, Q) of the phylogenetic tree, one
can estimate br(e) by comparing the reversal distance d(P, Q) and the number
of breakpoints b(P, Q) between the genomes P and Q. It results in the lower
bound bound(e) = 4 · d(P, Q) − 2 · b(P, Q) for BR(e) [37] that also gives a
good approximation for br(e). On the other hand, one can estimate br(e1, e2)
as the number bound(e1, e2) of vertices shared between non-trivial cycles in
the breakpoint graphs corresponding to the branches e1 and e2 (similar ap-
proach was used in [22] and later explored in [25, 31]). Assuming that the
genomes at the internal nodes of the phylogenetic tree can be reliably recon-
structed [4, 25, 26, 45], one can compute bound(e) and bound(e1, e2) for all (pairs
of) branches. Below we show that these bounds accurately approximate the intra-
and inter-reuse.
1 We remark that if no vertex is used more than twice on a branch e then BR(e) =

br(e).
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2.3 Analyzing Breakpoint Reuse (Simulated Genomes)

We start from analyzing simulated data based on FBM with n fragile regions
present in k genomes that evolved according to a certain phylogenetic tree (for
the varying parameter n). We represent one of the leaf genomes as the genome
with 20 random circular chromosomes and simulate hundred 2-breaks on each
branch of the tree.

Figure 4 represents a phylogenetic tree on five leaf genomes, denoted M , R, D,
Q, H , and three ancestral genomes, denoted MR, MRD, QH . Table 1(left panel)
presents the results of a single FBM simulation and illustrates that bound(e1, e2)
provides an excellent approximation for inter-reuses br(e1, e2) for all 21 pairs of
branches.2 While bound(e) (on the diagonal of Table 1, left panel) is somewhat
less accurate, it also provides a reasonable approximation for br(e).

Below we describe analytical approximations for the values in Table 1(left
panel). Since every 2-break uses 4 out of 2n vertices in the genome graph, a
random 2-break uses a vertex v with the probability 2

n . Thus, a sequence of t

random 2-breaks does not use a vertex v with the probability (1− 2
n )t ≈ e−

2t
n (for

t n). For branches e1 and e2 with respectively t1 and t2 random 2-breaks, the
probability that a particular vertex is inter-reused on e1 and e2 is approximated
as (1−e−

2t1
n )·(1−e−

2t2
n ). Therefore, the expected number of inter-reused vertices

is approximated as 2n·(1−e−
2t1
n )·(1−e−

2t2
n ). Below we will compare the observed

inter-reuse with the expected inter-reuse in FBM to see whether they are similar
thus checking whether FBM represents a reasonable null hypothesis. We will use
the term scaled inter-reuse to refer to the observed inter-reuse divided by the
expected inter-reuse. If FBM is an adequate null hypothesis we expect the scaled
inter-reuse to be close to 1.

Similarly, a sequence of t random 2-breaks uses a vertex v exactly once with
the probability t · 2

n ·
(
1− 2

n

)t−1 ≈ 2t
n e

2(t−1)
n . Therefore, the probability of a

particular vertex being intra-reused on a branch with t random 2-breaks is ap-
proximately 1 − e−

2t
n − 2t

n e
2(t−1)

n , implying that the expected intra-reuse is ap-

proximately 2n ·
(
1− e−

2t
n − 2t

n e
2(t−1)

n

)
. We will use the term scaled intra-reuse

to refer to the observed intra-reuse divided by the expected intra-reuse. Our sim-
ulations showed that the scaled intra- and inter-reuse for 21 pairs of branches
are all close to 1 (data are not shown).

We also performed a similar simulation, this time varying the number of 2-
breaks on the branches according to the branch lengths specified in Fig. 4. Again,
the lower bounds provide accurate approximations in the case of varying branch
lengths. Similar results were obtained in the case of evolutionary trees with
varying topologies (data are not shown). We therefore use only lower bounds to
generate Table 1(right panel) rather than showing both real distances and the
lower bounds as in Table 1(left panel).

2 We remark that bound(e1, e2) = br(e1, e2) if simulations produce the shortest rear-

rangement scenarios on the branches e1 and e2. Table 1(left panel) illustrates that

this is mainly the case for our simulations.
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In the case when the branch lengths vary, we find it convenient to represent
data as a plot that illustrates variability in the scaled inter-use. We define the
distance between branches e1 and e2 in the phylogenetic tree as the distance
between their midpoints, i.e., the overall length of the path, starting at e1 and
ending at e2, minus d(e1)+d(e2)

2 . For example, d(M+, H+) = 56+170+58+28−
56+28

2 = 270 (see Fig. 4). The x-axis in Fig. 5 represents the distances between
pairs of branches (21 pairs total), while y-axis represents the scaled inter-reuse
for pairs of branches at the distance x.

2.4 Surprising Irregularities in Breakpoint Reuse in Mammalian
Genomes

The branch lengths shown in Fig. 4 actually represent the approximate numbers
of rearrangements on the branches of the phylogenetic tree for Mouse, Rat,
Dog, macaQue, and Human genomes (represented in the alphabet of 433 “large”
synteny blocks exceeding 500, 000 nucleotides in human genome [4]). For the
mammalian genomes, M, R, D, Q, and H , we first used MGRA [4] to reconstruct
genomes of their common ancestors (denoted MR, MRD, and QH in Fig. 4)
and further estimated the breakpoint inter-reuse between pairs of branches of the
phylogenetic tree. The resulting Table 2 reveals some striking differences from
the simulated data (Table 1, right panel) that follow a peculiar pattern: the larger
is the distance between two branches, the smaller is the amount of inter-reuse
between them (in contrast to RBM/FBM where the amount of inter-reuse does
not depend on the distance between branches). The statement above is imprecise
since we haven’t described yet how to compare the amount of inter-reuse for
different branches at various distances. However, we can already illustrate this
phenomenon by considering branches of similar length that presumably influence
the inter-reuse in a similar way (see below).

We notice that branches M+, R+, and QH+ have similar lengths (varying
from 56 to 68 rearrangements) and construct subtables of Table 1(right panel)
(for n = 900) and Table 2 with only three rows corresponding to these branches
(Table 3). Since the lengths of branches M+, R+, and QH+ are similar, FBM
implies that the elements belonging to the same columns in Table 3 should be
similar. This is indeed the case for simulated data (small variations within each
column) but not the case for real data. In fact, maximal elements in each column
for real data exceed other elements by a factor of 3-5 (with an exception of the
MR+ column). Moreover, the peculiar pattern associated with these maximal
elements (maximal elements correspond to red cells) suggests that this effect is
unlikely to be caused by random variations in breakpoint reuses. We remind the
reader that red cells correspond to pairs of adjacent branches in the evolutionary
tree suggesting that breakpoint reuse is maximal between close branches and is
reducing with evolutionary time. A similar pattern is observed for the other pairs
of branches of similar length: adjacent branches feature much higher inter-reuse
than distant branches. We also remark that the most distant pairs of branches
(H+ and M+, H+ and R+, Q+ and M+, Q+ and R+ in the yellow cells)
feature the lowest inter-reuse. The only branch that shows relatively similar
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inter-reuse (varying from 58 to 80) with the branches M+, R+, and QH+ is the
branch MR+ which is adjacent to each of these branches.

Below we modify FBM to come up with a new model of chromosome evolu-
tion, explaining the surprising irregularities in the inter-reuse across mammalian
genomes.

2.5 Turnover Fragile Breakage Model: Birth and Death of Fragile
Regions

We start with a simulation of 100 rearrangements on every branch of the tree
in Fig. 4. However, instead of assuming that fragile regions are fixed, we assume
that after every rearrangement x fragile regions “die” and x fragile regions are
“born” (keeping a constant number of fragile regions throughout the simulation).
We assume that the genome has m potentially “breakable” sites but only n of
them are currently fragile (n ≤ m) (the remaining n − m sites are currently
solid). The dying regions are randomly selected from n currently fragile regions,
while the newly born regions are randomly selected from m− n solid regions.

The simplest TFBM with a fixed rate of the “birth and death” process is
defined by the parameters m, n, and turnover rate x (FBM is a particular case
of TFBM corresponding to x = 0, while RBM is a particular case of TFBM
corresponding to x = 0 and n = m). While this over-simplistic model with a
fixed turnover rate may not adequately describe the real rearrangement process,
it allows one to analyze the general trends and to compare them to the trends
observed in real data.

The leftmost subtable of Table 4 with x = 0 represents an equivalent of
Table 1(left panel) for FBM and reveals that the inter-reuse is roughly the same
on all pairs of branches (≈ 110 for n = 500,≈ 70 for n = 900,≈ 50 for n = 1300).
The right subtables of Table 4 represent equivalents of the leftmost subtable for
TFBM with the turnover rate x = 1, 2, 3 and reveal that the inter-reuse in yellow
cells is lower than in green cells, while the inter-reuse in green cells is lower than
in red cells.

Fig. 6 shows the scaled inter-reuse averaged over yellow, green, and red cells
that reveals a different behavior between FBM and TFBM. Indeed, while the
scaled inter-reuse is close to 1 for all pairs of branches in the case of FBM, it
varies in the case of TFBM. For example, for n = 900, m = 2000, and x = 3,
the inter-reuse in yellow cells is ≈ 40, in green cells is ≈ 45, and in red cells is
≈ 56. In the following sections we describe an accurate formula for estimating
the breakpoint inter-reuse in the case of TFBM that accurately approximates
the values shown in Fig. 6.

Our simulations demonstrate that the distribution of inter-reuses among green,
red, and yellow cells differs between FBM and TFBM. We argue that this distri-
bution (e.g., the slope of the curve in Fig. 6) represents yet another test to con-
firm or reject FBM/TFBM. However, while it is clear how to apply this test to
the simulated data (with known rearrangements), it remains unclear how to com-
pute it for real data when the ancestral genomes (as well as the parameters of the
model) are unknown. While the ancestral genomes can be reliably approximated
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using the algorithms for ancestral genome reconstruction [4, 25, 26, 45], estimat-
ing the number of fragile regions remains an open problem (see [38]). Below we
develop a new test (that does not require knowledge of the number of the fragile
regions n) and demonstrate that FBM does not pass this test while TFBM does,
explaining the surprisingly low inter-reuse in mammalian genomes.

2.6 Multispecies Breakpoint Reuse Test

Given a phylogenetic tree describing a rearrangement scenario, we define the
multispecies breakpoint reuse on this tree as follows. For two rearrangements
ρ1 and ρ2 in the scenario, we define the distance d(ρ1, ρ2) as the number of
rearrangements in the scenario between ρ1 and ρ2 plus 1. For example, the
distance between 2-breaks r4 and r6 in the tree in Fig. 3 is 4. We define the
(actual) multispecies breakpoint reuse as a function

R(�) =

∑
ρ1,ρ2 : d(ρ1,ρ2)=� br(ρ1, ρ2)∑

ρ1,ρ2 : d(ρ1,ρ2)=� 1

that represents the total breakpoint reuse between pairs of rearrangements ρ1, ρ2

at the distance � divided by the number of such pairs. Here br(ρ1, ρ2) stands for
the number of vertices used by both 2-breaks ρ1 and ρ2.

Since the rearrangements on branches of the phylogenetic tree are unknown,
we use the following sampling procedure to approximate R(�). Given genomes
P and Q, we sample various shortest rearrangement scenarios between these
genomes by generating random 2-break transformations of P into Q. To generate
a random transformation we first randomly select a non-trivial cycle C in the
breakpoint graph G(P, Q) with the probability proportional to |C|/2−1, i.e., the
number of 2-breaks required to transform such a cycle into a collection of trivial
cycles (|C| stands for the length of C). Then we uniformly randomly select a
2-break ρ from the set of all

(|C|/2
2

)
= |C|(|C|−2)

8 2-breaks that splits the selected
cycle C into two and thus by Theorem 1 decreases the distance between P and
Q by 1 (i.e., d(ρP, Q) = d(P, Q) − 1). We continue selecting non-trivial cycles
and 2-breaks in an iterative fashion for genomes ρ · P and Q and so on until P
is transformed into Q.

The described sampling can be performed for every branch e = (P, Q) of the
phylogenetic tree, essentially partitioning e into length(e)= d(P, Q) sub-branches,
each featuring a single 2-break. The resulting tree will have

∑
e length(e) sub-

branches, where the sum is taken over all branches e.
For each pair of sub-branches, we compute the number of reused vertices

across them and accumulate these numbers according to the distance between
these sub-branches in the tree. The empirical multispecies breakpoint reuse (the
average reuse between all sub-branches at the distance �) is defined as the actual
multispecies breakpoint reuse in a sampled rearrangement scenario. Our tests
on phylogenetic trees with varying topologies demonstrated a good fit between
the actual, empirical, and theoretical R(l) curves (data are not shown).

For the five mammalian genomes, the plot of R(�) is shown in Fig. 7. From this
empirical curve we estimated the parameters n ≈ 196, x ≈ 1.12, and m ≈ 4017
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(see the next section) and displayed the corresponding theoretical curve. We
remark that the estimated parameter n in TFBM is expected to be larger than
the observed number of synteny blocks (since not all potentially breakable regions
were broken in a given evolutionary scenario).

We argue that the empirical multispecies breakpoint reuse curve R(�) com-
plements the “exponential length distribution” [34] and “pairwise breakpoint
reuse” [38] tests as the 3rd criterion to accept/reject RBM, FBM, and now
TFBM. One can use the parameters n and x (estimated from empirical R(�)
curve) to evaluate the extent of the “birth and death” process and to explain
why Ma et al., 2006 [25] found so few shared breakpoints between different
mammalian lineages. In practice, the “multispecies breakpoint reuse test” can
be applied in the same way as the Nadeau-Taylor “exponential length distri-
bution test” was applied in numerous papers. The Nadeau-Taylor test typically
amounted to constructing a histogram of synteny blocks and evaluating (of-
ten visually) whether it fits the exponential distribution. Similarly, the “multi-
species breakpoint reuse test” amounts to constructing R(�) curve and evaluating
whether it significantly deviates from a horizontal line suggested by RBM and
FBM. The estimated parameters of the TFBM model (see the next section) can
be used to quantify the extent of these deviations.

TFBM also raises an intriguing question of what triggers the birth and death
of fragile regions. As demonstrated by Zhao and Bourque, 2009 [50], the dispro-
portionately large number of rearrangements in primate lineages are flanked by
MSDs. TFBM is consistent with the Zhao-Bourque hypothesis that rearrange-
ments are triggered by MSDs since MSDs are also subject to the “birth and
death” process. Indeed, after a segmental duplication the pair of matching seg-
ments becomes subjected to random mutations and the similarity between these
segments dissolves with time (a pair of segmental duplications “disappears” after
≈ 40 million years of evolution if one adopts the parameters for defining segmen-
tal duplications from [15]). The mosaic structure of segmental duplications [15]
provides an additional explanation of how MSDs may promote breakpoint re-
uses and generate long cycles typical for the breakpoint graphs of mammalian
genomes.

2.7 Computing Multispecies Breakpoint Reuse in the TFBM Model

Let Fragile and Solid be the sets of n initial fragile regions and m−n initial solid
regions respectively. In TFBM, the sets Fragile and Solid change in accordance
with the turnover rate x, i.e., after every 2-break x randomly chosen regions
(corresponding to 2x vertices in the breakpoint graph) from Fragile are moved
to Solid, and vice versa. For a vertex in the set Fragile, we evaluate the probability
P (�) that this vertex still belongs to Fragile after � 2-breaks. After every 2-break,
a vertex from Fragile moves to Solid with the probability x

n , while a vertex from
Solid moves to Fragile with the probability x

m−n . Therefore,

P (�+1) = P (�) ·
(
1− x

n

)
+(1−P (�)) · x

m− n
=
(

1− xm

n(m− n)

)
·P (�)+

x

m− n
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with P (0) = 1. Solution to this recurrence is P (�) = m−n
m

(
1− xm

n(m−n)

)�

+ n
m .

We now compute the expected reuse between 2-breaks ρ1 and ρ2 separated by �
other 2-breaks. Since every 2-break uses 4 vertices, the probability that it uses
a particular vertex in Fragile is 2

n . Since the 2-break ρ1 used 4 vertices, the
expected reuse between ρ1 and ρ2 is:

R(�) = 4 · 2
n
· P (�) =

8 · (m− n)
n ·m

(
1− xm

n(m− n)

)�

+
8
m

.

This formula fits the simulated data well, thus opening a possibility to determine
the parameters m, n, and x for given real genomes. In particular, n and x can
be determined from the value and slope of R(�) at � = 0, since R(0) = 8

n and
R′(0) ≈ − 8x

n2 (assuming xm
n(m−n)  1).

2.8 Fragile Regions in the Human Genome

Let us imagine the following gedanken experiment: 25 million years ago (time
of the human-macaque split) a scientist sequences the genome of the human-
macaque ancestor (QH) and attempts to predict the sites of (future) rearrange-
ments in the (future) human genome. The only other information the scientist
has is the mouse, rat, and dog genomes. While RBM offers no clues on how to
make such a prediction, FBM suggests that the scientist should use the break-
points between one of the available genomes and QH as a proxy for fragile
regions. For example, there are 552 breakpoints between the mouse genome (M)
and QH and 34 of them were actually used in the human lineage, resulting in
only 34/552 ≈ 6% accuracy in predicting future human breakpoints (we use
synteny blocks larger than 500K from [4]).

TFBM suggests that the scientist should rather use the closest genome to
QH to better predict the human breakpoints. That can be achieved by first
reconstructing the common ancestor (MRD) of mouse, rat, dog, and human-
macaque ancestor and then using the breakpoints between MRD and QH as a
proxy for the sites of rearrangements in the human lineage. 18 out 162 break-
points between MRD and QH were used in the human lineage, resulting in
18/162 ≈ 11% accurate prediction of human breakpoints, nearly doubling the
accuracy of predictions from distant genomes.

Now let us imagine that the scientist somehow gained access to the extant
macaque genome. There are 68 breakpoints between Q and QH and 10 of them
were used in the human lineage, resulting in 10/68 ≈ 16% accurate prediction
of human breakpoints, again improving the accuracy of predictions.

These estimates indicate that TFBM can be used to improve the prediction
accuracy of future rearrangements in various lineages and demonstrate that the
sites of recent rearrangements in the human and other primate lineages represent
the best guess for the currently active fragile regions in the human genome.

We therefore focus on the incident branches H+, Q+, and QH+ and construct
the breakpoint graphs G(H, QH), G(Q, QH), and G(QH, MRD). We further
superimposed these three graphs to find out breakpoints that were inter-reused
on the branches H+, Q+, and QH+. Figure 8 shows the positions of these
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recently affected breakpoints (projected to the human genome) that, according
to TFBM, represent the best proxy for the currently active fragile regions in the
human genome. Various ongoing primate genome sequencing projects will soon
result in an even better estimate for the fragile regions in the human genome.

3 Discussion

Since every species on Earth (including Homo sapiens) may speciate into mul-
tiple new species, one can ask a question: “How will the human genome evolve
in the next million years?” TFBM suggests the putative sites of future rear-
rangements in the human genome. The answer to the question “Where are the
(future) fragile regions in the human genome?” may be surprisingly simple: they
are likely to be among the breakpoint regions that were used in various primate
lineages.

Nadeau and Taylor, 1984 [34] proposed RBM based on a single observation:
the exponential distribution of the human-mouse synteny block sizes. There is
no doubt that jumping to this conclusion was not fully justified: there are many
other models (e.g., FBM) that lead to the same exponential distribution of the
“visible” synteny block sizes. Currently, there is no single piece of evidence that
would allow one to claim that RBM is correct and FBM is not.

While Pevzner and Tesler, 2003 [38] revealed large breakpoint reuse (support-
ing FBM and contradicting RBM), Ma et al., 2006 [25] discovered low breakpoint
inter-reuse (contradicting FBM), calling for yet another generalization of FBM.
The proposed TFBM model not only passes both “exponential length distribu-
tion” test (motivation for RBM) and “pairwise breakpoint reuse” test (moti-
vation for FBM) but also explains the puzzling discovery of limited breakpoint
inter-reuse in [25]. We therefore argue that TFBM is a more accurate model of
chromosome evolution, allowing one to approximate the currently active fragile
regions in the human genome.

Needless to say, TFBM, similarly to RBM and FBM (or various models of
point mutations, e.g., Jukes-Cantor model), is a simplistic model of chromosome
evolution that is only an approximation of the real evolutionary process. More-
over, in the current paper we considered TFBM only for the case of 2-breaks
and did not include other rearrangements such as transpositions. However, it is
fair to assume that transpositions are as likely to happen on incident branches
as on distant branches, implying that they cannot possibly cause the reduced
breakpoint inter-reuse on distant branches. In addition to limitations of TFBM
as a model, there exists a concern whether computation of empirical multispecies
breakpoint reuse (that requires reconstruction of ancestral genomes) may be af-
fected by errors in reconstruction of ancestral genomes. While various tools for
ancestral genome reconstruction (such as MGRA [4] and inferCARs [25]) were
shown to be quite accurate (in particular, they produce nearly identical results
while using very different algorithms), it is a challenging open problem to eval-
uate the multispecies breakpoint reuse without explicitly computing ancestral
genomes.
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The key point of this paper is the birth and death process of fragile regions
rather than a specific model aimed at estimating the hidden parameters of this
process. TFBM is merely an initial and over-simplistic attempt to estimate these
parameters. The parameters predicted by TFBM (e.g., the number of active frag-
ile regions) are currently difficult to superimpose with scarce information about
rearrangements in only 7 reliably completed mammalian genomes, not unlike the
parameters of RBM derived in 1984 when no high-resolution comparative mam-
malian genomic architectures were available. However, similarly to comparative
mapping efforts in early 1990s that confirmed the Nadeau-Taylor estimates, we
believe that imminent sequencing of over 400 primate species will soon provide
the detailed information about chromosomal fragility in human genome and will
allow one to verify the TFBM parameters.

Similarly to the discovery of breakpoint reuse in 2003 [38], there is currently
only indirect evidence supporting the birth and death of fragile regions in chro-
mosome evolution. However, we hope that, similarly to FBM (that led to many
follow-up studies supporting the existence of fragile regions), TFBM will trigger
further investigations of the fragile regions longevity.
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Table 1. Left panel: The number of intra- and inter-reuses between 7 branches of

the tree in Fig. 4, each of length 100, for simulated genomes with n fragile regions

(n = 500, 900, 1300). The diagonal elements represent intra-reuses while the elements

above diagonal represent inter-reuses. In each cell with numbers x : y, x represents the

observed reuse while y represents the corresponding lower bound. The cells of the table

are colored red (for adjacent branches like M+ and R+), green (for branches that are

separated by a single branch like M+ and D+ separated by MR+), and yellow (for

branches that are separated by two branches like M+ and H+ separated by MR+

and QH+). Right panel: The estimated number of intra- and inter-reuses bound(e)
and bound(e1, e2) between 7 branches with varying branch lengths as specified in Fig. 4

(data simulated according to FBM with n fragile regions).

branch lengths = 100 branch lengths as in Fig. 4

n = 500 M+ R+ D+ Q+ H+ MR+ QH+ M+ R+ D+ Q+ H+ MR+ QH+
M+ 63:70 106:106 103:103 97:97 108:108 98:98 113:113 23 48 71 16 22 99 41
R+ 57:70 103:103 108:108 98:98 102:102 122:122 34 83 19 25 116 49
D+ 65:74 104:104 125:125 104:104 106:106 78 26 37 171 74
Q+ 58:68 126:126 120:120 120:120 2 9 39 16
H+ 56:62 113:113 116:116 6 51 22

MR+ 71:84 104:104 186 102
QH+ 54:60 25

n = 900 M+ R+ D+ Q+ H+ MR+ QH+ M+ R+ D+ Q+ H+ MR+ QH+
M+ 37:38 70:70 83:83 90:90 72:72 76:76 87:87 13 30 44 9 13 67 25
R+ 47:50 67:67 63:63 74:74 68:68 49:49 20 53 11 16 79 31
D+ 37:38 69:69 62:62 78:78 84:84 46 17 24 121 45
Q+ 32:36 76:76 75:75 94:94 1 4 24 9
H+ 40:44 64:64 68:68 4 34 13

MR+ 42:44 64:64 113 70
QH+ 28:28 14

n = 1300 M+ R+ D+ Q+ H+ MR+ QH+ M+ R+ D+ Q+ H+ MR+ QH+
M+ 42:46 46:46 52:52 51:51 47:47 62:62 39:39 8 21 33 7 9 52 19
R+ 31:34 53:53 66:66 54:54 48:48 56:56 13 39 8 11 60 24
D+ 25:26 64:64 62:62 60:60 64:64 34 12 17 91 34
Q+ 22:22 58:58 50:50 50:50 1 3 19 7
H+ 30:30 57:57 72:72 2 25 10

MR+ 31:34 42:42 81 51
QH+ 19:20 9

Table 2. The estimated number of

intra- and inter-reuses bound(e) and

bound(e1, e2) between 7 branches of the

phylogenetic tree in Fig. 4 of five mam-

malian genomes (real data)
M+ R+ D+ Q+ H+ MR+ QH+

M+ 84 68 20 4 5 58 15
R+ 96 22 3 6 60 17
D+ 174 17 19 98 64
Q+ 12 10 25 18
H+ 22 23 18

MR+ 292 80
QH+ 70

Table 3. Subtables of Table 1(right

panel) for n = 900 (top part) and Ta-

ble 2 (bottom part) featuring branches

M+, R+, and QH+ as one element of

the pair
M+ R+ D+ Q+ H+ MR+ QH+

M+ 13 30 44 9 13 67 25
R+ 30 20 53 11 16 79 31

QH+ 25 31 45 9 13 70 14

M+ 84 68 20 4 5 58 15
R+ 68 96 22 3 6 60 17

QH+ 15 17 64 18 18 80 70

Table 4. The breakpoint intra- and inter-reuse (averaged over 100 simulations) for five

simulated genomes M, R, D, Q, H under TFBM model with m = 2000 synteny blocks,

n fragile regions, the turnover rate x, and the evolutionary tree shown in Fig. 4 with

the length of each branch equal 100
x = 0 (FBM) x = 1 x = 2 x = 3

n = 500 M+ R+ D+ Q+ H+ MR+ QH+ M+ R+ D+ Q+ H+ MR+ QH+ M+ R+ D+ Q+ H+ MR+ QH+ M+ R+ D+ Q+ H+ MR+ QH+
M+ 67 110 109 109 110 111 108 64 93 75 66 65 92 77 63 78 57 45 46 79 57 58 69 47 36 36 68 46
R+ 69 110 110 108 109 107 67 76 65 65 92 78 63 57 46 45 78 58 60 47 36 37 69 46
D+ 69 109 108 109 109 66 76 77 91 90 62 56 58 78 77 58 46 47 68 69
Q+ 68 108 109 110 65 92 77 93 61 79 57 76 60 68 48 66
H+ 71 107 109 66 78 94 61 58 79 60 48 67
MR+ 70 109 65 91 62 77 57 69
QH+ 68 65 61 59

n = 900 M+ R+ D+ Q+ H+ MR+ QH+ M+ R+ D+ Q+ H+ MR+ QH+ M+ R+ D+ Q+ H+ MR+ QH+ M+ R+ D+ Q+ H+ MR+ QH+
M+ 42 71 72 71 71 71 71 40 64 58 53 54 65 60 39 60 51 45 45 59 51 37 55 45 39 39 56 44
R+ 41 72 71 72 72 73 39 59 53 54 65 58 38 51 45 45 61 51 38 45 39 39 56 45
D+ 40 73 72 70 72 41 60 59 65 65 38 50 51 58 60 38 46 46 56 54
Q+ 39 73 71 73 39 64 58 64 38 59 49 60 37 55 46 56
H+ 41 71 71 38 59 64 38 49 59 37 46 55
MR+ 40 74 40 66 40 61 37 55
QH+ 41 39 40 37

n = 1300 M+ R+ D+ Q+ H+ MR+ QH+ M+ R+ D+ Q+ H+ MR+ QH+ M+ R+ D+ Q+ H+ MR+ QH+ M+ R+ D+ Q+ H+ MR+ QH+
M+ 28 54 52 54 52 53 55 27 48 46 45 44 49 47 27 46 44 40 39 48 41 28 45 40 37 38 45 40
R+ 28 53 53 54 53 52 29 45 44 44 48 48 28 43 40 41 46 44 27 41 38 37 44 39
D+ 31 52 51 53 54 28 46 47 50 49 29 42 42 47 46 27 39 41 44 46
Q+ 28 52 55 53 29 50 46 50 28 49 42 47 27 46 39 45
H+ 29 53 52 28 47 49 27 42 46 27 41 44
MR+ 27 53 29 49 27 48 27 46
QH+ 29 28 28 27
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Fig. 4. The phylogenetic tree T on five

genomes M , R, D, Q, and H . The

branches of the tree are denoted as M+,

R+, D+, Q+, H+, MR+, and QH+.
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Abstract. In chordates, long-range cis-regulatory regions are involved

in the control of transcription initiation (either as repressors or en-

hancers). They can be located as far as 1 Mb from the transcription start

site of the target gene and can regulate more than one gene. Therefore,

proper characterization of functional interactions between long-range

cis-regulatory regions and their target genes remains problematic. We

present a novel method to predict such interactions based on the analysis

of rearrangements between the human and 16 other vertebrate genomes.

Our method is based on the assumption that genome rearrangements

that would disrupt the functional interaction between a cis-regulatory

region and its target gene are likely to be deleterious. Therefore, conser-

vation of synteny through evolution would be an indication of a func-

tional interaction. We use our algorithm to classify a set of 1,406,084

putative associations from the human genome. This genome-wide map

of interactions has many potential applications, including the selection of

candidate regions prior to in vivo experimental characterization, a better

characterization of regulatory regions involved in position effect diseases,

and an improved understanding of the mechanisms and importance of

long-range regulation.

1 Introduction

Transcription initiation is controlled by distinct genomic regions that act as
binding platform for transcription factors. Accurate regulation is crucial to many
biological processes such as development, tissue specific expression or response
to external stimuli. In vertebrates, distinct cis-regulatory regions, with their own
specificity, take part in complex cross-talking processes that result in proper gene
regulation. Alteration of those regions or disruption of the synteny between cis-
regulatory regions and their target genes can have dramatic phenotypic effects
often leading to diseases [1].

Long-range cis-regulatory regions are located over 1.5 kb upstream or down-
stream from the transcription start site and regulate genes at distances reaching
1Mb [2]. Those long-range regulators comprise various type of regions such as
enhancers, silencers or insulators. Long-range regulatory regions may regulate
many genes, act in an orientation independent manner, and more importantly

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 216–227, 2010.
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regulate target genes over very large distances. Consequently, predicting the pu-
tative target gene(s) of a given cis-regulatory region is a difficult task. Such
predictions would meet with various interests such as determining what tran-
scription factor regulation what genes or help associate cis-regulatory genetic
variation to expression variation.

Following the publication of the human genome sequence, we have witnessed
an increasing number of vertebrate genome sequencing projects reaching com-
pletions for genomes ranging from teleost fish to mammals.This, combined with
fast and accurate genomic DNA alignment programs [3,4], boosted the field of
comparative genomics. Of specific interest in our context are methods allowing
the identification of about 100,000 non-coding evolutionarily conserved regions
(e.g. PhastCons [5]), most of which apparently regulatory regions but being lo-
cated very far from the start of any annotated transcript. Although there is now
ample evidence linking these regions to regulatory functions [6], computational
approaches have rarely attempted to predict the gene targets of these regulatory
regions.

Studies of genome evolution and genome rearrangements have also greatly
benefited from the increase in genomic data. Of particular interest is the fact
that evolutionary rearrangements (those rearrangements that become fixed in
a population during evolution) have been shown to occur more frequently in
certain genomic regions [7,8] and not uniformly at random as previously modeled
[9]. The likelihood of a genome rearrangement becoming fixed in a population is
strongly dependent on the fitness of the mutated individuals. In the context of
long-range regulation, a rearrangement disrupting the physical link between a
regulatory region and its target gene (i.e. involving a breakpoint between the two
loci) will usually be deleterious to some extent, and would rarely become fixed
in a population. Therefore evolutionary rearrangements are thought to largely
involve breakpoints located in regions of the genome where they will not disrupt
long-range regulation [10,11].

The idea of using conservation of synteny to link regulatory regions to their
target genes was first introduced by Flint et al. who used it to map interactions
within the α-globin cluster [12]. Ahituv et al. used the same principle to make
association predictions in the complete human genome based on its compari-
son to the mouse, chicken, and frog genomes [13]. A similar approach was used
by Sun et al. based on a slightly larger set of six vertebrate genomes [14], by
Vavouri et al., using paralogous regions [15], and by Dong et al. [16], who devel-
oped Synoth, a useful web server based on these ideas. Although conceptually
similar to the approach proposed here, their approach requires perfect synteny
conservation and is not based on a phylogenetic model of evolution, which limits
its applicability in cases where the number of genomes being compared is larger
(and thus more informative), as is available today. Clearly, there is a need for a
new method that would allow the prediction of associations between regulatory
regions and their target gene in a manner that can take advantage of large sets
of phylogenetically-diverse genomes and that is applicable to the vast major-
ity of human cis-regulatory regions that are not conserved outside mammals.
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We therefore propose a new computational method based on the study of the
conservation of the genomic proximity of 1,406,084 pairs of human genes and
cis-regulatory regions in 16 other vertebrate genomes to assess the likelihood of
functional interaction for each. The result is a genome-wide map of predicted
functional interactions between long-range cis-regulatory regions and their pu-
tative target genes in the human genome.

2 Results

2.1 Orthology Mapping

We assess the functional interaction between genes and putative cis-regulatory
regions based on the conservation of their physical proximity on chromosomes
in various vertebrate genomes. The gene set is composed of 25,575 human genes
(EnsEMBL genes version 54 [17], excluding pseudogenes), consisting of a total
of 257,985 exons. The set contains 21,404 protein coding genes, 1664 miRNAs,
1334 snRNAs, 717 snoRNAs, and 444 rRNAs.

Various functional studies have shown that non-coding regions under purifying
selection are enriched for elements with regulatory properties (e.g. [6]). Our set
of putative cis-regulatory regions is composed of 123,905 human non-coding
conserved regions (99,512 intergenic and 24,393 intronic) from the UCSC 28-
way conserved regions [18,5] (see Methods). In this paper, we work under the
assumption that these non-coding conserved elements (NCEs) have a regulatory
function, although a small fraction of them is expected to have other functions
or to be non-functional.

Genomes were selected for this analysis based on the following criteria: (i)
Evolutionary distance from human: Highly diverged species have undergone
more genome rearrangements and are thus more informative for this study; (ii)
Genome coverage: Complete and accurate genome assemblies are required to
assess synteny conservation; genomes sequenced at low coverage were thus ex-
cluded. The 16 species selected (see Figure 1 (c)) include 8 mammals, 2 birds,
one reptile, one batrachian, and 5 fish. We next mapped both types of human ele-
ments (exons and NCEs) to these genomes by taking advantage of whole genome
alignments (”liftover chains” [19]; see Methods). As evolutionary distance from
human becomes larger, an increasing fraction of human elements fail to map to
other genomes, either because they simply do not exist there or because they
have diverged beyond recognition. As expected, protein coding genes exhibit a
deeper overall conservation level than other types of transcribed or putative cis-
regulatory regions. For example, 47 to 54 % of human protein coding exons map
to teleost fish whereas only 1-7% of non-coding RNAs and only 2% of non-coding
conserved regions map to these species. For future analyses, the level of conser-
vation of each gene and NCE was defined as the ancestral node corresponding to
the last common ancestor (e.g. eutherian, amniote, or gnathostomate ancestor)
of the set of extant species where it exists.
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2.2 A Map of Functional Interaction between Regulatory Elements
and Target Genes

Our algorithm to identify functional NCE-gene associations is summarized in
Figure 1. First, only the 1,406,084 pairs of human NCE and gene separated by
at most 1 Mb are considered as potentially functional1. A pair of a human gene
and a human NCE is labelled associated in a given species S if: i/ if both regions
have been mapped to S, ii/ they lie on the same chromosome, and iii/ they are
within at most DS bp from each other, where DS is a species-specific distance
threshold analogous to the 1Mb threshold for human but scaled based on the
size of the genome of S (see Methods). A pair that is not associated can be either
separated (both components exist but have been separated by a rearrangement,
or only the NCE remains conserved) or incomplete (either the NCE or both
elements could not be mapped to S).

Danio rerio
Tetraodon nigroviridis
Takifugu rubripes
Oryzias latipes
Gasterosteus aculeatus
Xenopus tropicalis
Anolis carolinensis
Gallus gallus
Taeniopygia guttata
Ornithorhynchus anatinus
Monodelphis domestica
Canis lupus familiaris
Bos taurus
Homo sapiens
Cavia porcellus
Rattus norvegicus
Mus musculus

A

B

D

1Mb 1Mb

1Mb 1Mb

EM algorithm

Human

Mouse

Chicken

Zebrafish

Human predicted 
functional associations 

Gene

Non-coding
conserved regions

Candidate
association

C

Fig. 1. Steps undertaken to calculate functional interaction scores.(A) All

pairs composed of a human NCE and a human gene in the same physical proximity

are retrieved (candidate associations). (B) The physical association of each candidate

pair is assessed in 16 other vertebrate genomes. (C) The ancestral association status

of each pair is inferred using a variant of the Fitch algorithm. (D) A likelihood ratio

score (functionally associated vs non-functionally associated models) is associated to

each candidate pair.

1 We do not mean to imply that functional interactions cannot happen over larger

distances; however, the vast majority of interactions are expected to be within this

range.
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From the mapping data, the ancestral association status (associated, sepa-
rated, or incomplete) of each pair is first inferred for each ancestral node of
the phylogenetic tree using a variant of the Fitch algorithm [20] (see Methods).
An expectation-maximization (EM) algorithm is subsequently used to learn (in
an unsupervised manner) two models: one for functionally associated pairs, and
one for non-functionally associated pairs (see Figure 1, sections C and D). Each
model specifies the probability of maintaining or breaking a human association
at each node of the phylogenetic tree. The functional interaction score for each
pair is obtained as the log-likelihood ratio of the two models. Refer to Methods
for full details.

The distribution of functional interaction score is tri-modal (see Figure 2, A).
The first peak (score < −10) includes 327,511 human pairs for which functional
interaction can be clearly ruled out based on evolutionary evidence - we call
these pairs confidently non-associated. Pairs scoring from -10 to 49 belong to
a grey zone where evolutionary evidence is inconclusive - 910,465 pairs fall in
this category. As the genomes of more vertebrate species become sequenced, the
number of these inconclusive cases should be reduced. Finally, the 168,108 pairs
with score over 49 are called confidently associated pairs.

As shown in Figure 2 (B), the functional interaction score of a NCE-gene pair
depends on the conservation level of its two constituents. For example, large
positive scores can only be reached by pairs where both the gene and the NCE
are conserved back to gnathostomate ancestor. Indeed, confidently associated
pairs almost exclusively involve NCEs and genes that are conserved at least
as far back as the amniote ancestor. Pairs where either the gene or the non-
coding conserved region is only conserved within eutherians generally obtain
scores closer to zero.

Figure 2 (C) shows the distribution of the number of NCEs associated to a
given gene, and the distribution of the number of genes associated to a given
NCE. Most NCEs cannot be confidently associated to any given gene because
of the lack of evolutionary evidence. Excluding those, an NCE is predicted to
be linked to an average of 1.5 genes. Note that this average reflects evolutionary
evidences but may not correspond to what would be observed in vivo.

2.3 Regulatory Complexity

Our map of predicted gene-NCE functional interactions allows studying several
aspects of gene regulation. We first classified genes based on the number of NCEs
predicted to be functionally interacting with them (confidently associated pairs).
We say that a gene has a complex regulation if at least 20 NCEs are predicted
to interact with it, a simple regulation if it is linked to 1 to 5 NCEs (we will
use this set of genes as the background), and a basic regulation if no NCE is
associated to it2. 619 (3.0%) genes have a basic regulation, 3921 (15.6%) genes
have a simple regulation, and 2395 (11.6%) genes have a complex regulation.

2 Genes predicted to be associated to 6-19 NCEs are of course interesting too but will

not be considered in this analysis.
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Fig. 2. Functional association score distribution. (A) Distribution of scores for

all candidate associations. (B) For each score bin, the proportion of pairs at a given

conservation level is given. In the legend, the conservation level is given first for the

gene then for the non-coding region. (C) Distribution of the number of NCEs predicted

to interact with a gene. (D) Distribution of the number of genes predicted to interact

with a NCE.

Gene ontology analyses. Genes with basic and complex regulation were tested for
enrichment in biological processes compared to those with simple regulation using
the Babelomics platform [21] (see Table 1). Genes with complex regulation show
an enrichment for genes involved in transcription and development (trans/dev) bi-
ological processes3. Genes involved in transcription and developmental processes
have complex spatio-temporal expression pattern. Such regulation is permitted by
many cis-regulatory regions, which allow specific expression in different tissues at
different developmental time [22]. Such genes are also known to be located in the
vicinity of, and remain in synteny with, gene deserts, regions known to contain a
large number of cis-regulatory regions [23].

When compared to genes with simple regulation (1-5 associated NCEs), the
genes with basic regulation (0 associated NCEs) show enrichment for GO biolog-
ical processes involved in neurological processes and adaptive processes including
”response to biotic stimulus”, ”defense response”, ”immune response” and ”cell
communication”.Similar enrichments have previously been observed in highly

3 Genes performing these functions are known to be more evolutionary conserved than

other types of biological processes. Since highly conserved genes are more likely to

be associated with surrounding NCEs (see Figure 2, B), to control for conservation

bias, we undertook the same analysis restricting the background set to only genes

predating tetrapoda divergence. The results obtained show significant p-values for

similar trans/dev GO categories.
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Table 1. GO analysis of the set of genes with complex regulation. Enrich-

ment for level 3 GO biological processes is calculated with a double fisher-test on the

Babelomics plateform (after correction for multiple hypothesis testing), using the set

of genes with simple regulation as background.

GO category (level 3) % of genes

with complex

regulation

% of genes in

background

set

Fold

increase

Corr.

p-value

reproductive process 2.56 1.19 2.2 1.1e-2

multicellular organismal dev. 25.2 15.49 1.6 8.7e-13

anatomical structure dev. 21.72 15.37 1.4 4.7e-06

cellular developmental process 19.89 15.1 1.3 5.7e-4

regulation of biological process 41.06 31.55 1.3 1.2e-08

macromolecule metabolic process 54.48 47.08 1.1 5.3e-05

primary metabolic process 62.36 55.65 1.1 2.2e-04

cellular metabolic process 63.45 56.88 1.1 2.6e-4

cellular component org. and biog. 18.06 21.79 -1.2 2.3e-2

establishment of localization 17.75 23.1 -1.3 2.9e-4

evolutionary rearranged regions [11,10]. Indeed, most genes with basic regula-
tion lie within heavily rearranged regions, which explains why no association are
detected.

Differences in levels of regulatory complexity are also observed for differ-
ent types of transcripts (protein-coding, snoRNA, miRNA). Small nucleolar
RNAs (snoRNA) are predicted to interact with an average of only 12.4 NCEs
whereas miRNA have nearly twice as many, with 22.7 (p-value = 0.018, two-
sided Wilcoxon rank sum test). Protein coding genes stand in between with a
mean of 16.9. The number of other types of RNA genes was too small for this
analysis.

miRNAs are short 22 nucleotides RNA molecules transcribed by RNA poly-
merase II that regulate the stability and translation of mRNAs . miRNAs play
a key role in cellular differentiation and are tightly regulated during develop-
ment.Their regulation, similarly to developmental genes, is probably under the
complex control of various NCEs. In contrast, snoRNAs are mainly involved in
rRNA nucleotide modifications (although it seems that some show tissue speci-
ficity and developmental regulation).Therefore, snoRNA are less likely to be
tightly regulated as their main role is to participate in housekeeping functions.

Associated modules are enriched for enhancer regions. Similarly to our gene-
centered analysis, we analyzed NCEs depending on the number of genes they
were predicted to interact with. A certain fraction of NCEs have a function
other that of being cis-regulatory regions (e.g. unannotated protein coding or
RNA exons). However, one would expect that, if our interaction predictions are
correct, these non-regulatory NCEs would not be predicted to interact with many
other genes, except perhaps in the case of additional exons. On average, a NCE
is associated to 1.5 genes, with a maximum of 51 genes (see Figure 2, D). We
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Table 2. Overlap with histone modification data by module type. Percent-

age of niRNA and hiRNA overlapping regions marked with various types of histone

modifications. P-values are calculated with a two-sided Fisher test.

Chromatin annotation niNCE (%) hiNCE (%) Fold increase P-value
H3K4Me1 (enhancers) 0.9 12 14 < 2.2× 10−16

H3K4Me3 (promoters) 0.2 8.1 40.5 < 2.2× 10−16

CTCF 0.6 2.6 4.3 1.7× 10−13

created two sets of modules depending on the number of genes with which they
have been predicted to interact. The first set is composed of 4604 (3.7%) NCEs
that are not predicted to interact with any genes - we call them non-interacting
NCEs (niNCEs). The second set, highly interacting NCEs (hiNCEs), is composed
of 3770 (3.0%) NCEs that are predicted to BE functionally associated to at least
10 genes.

Different types of histone modifications have been associated to active chro-
matin as well as to different types of cis-regulatory regions [24]. We tested the
overlap of both hiNCE and niNCE with genomic regions exhibiting such modifi-
cations as well as with regions characterized as CTCF binding sites, as detected
by Chip-Seq experiments [25].

The set of hiNCE (the most likely to be functional cis-regulatory regions)
has higher overlap with H3K4Me1 and H3K4Me3 histone marks [24,25] (respec-
tively corresponding to enhancer and promoter regions) than the niNCE dataset
(see Table 2). This difference is highly significant in all cases. This result could
be biased by the higher average level of conservation of hiNCEs compared to
niNCEs. However, even when we control for this by taking into consideration
only NCEs that predate tetrapoda divergence, the overlap with H3K4Me1 and
H3K4Me3 regions remains significative with respectively fold increase of 7.8 (p-
value = 8.9 × 10−11) and 30.3 (p-value = 3.4 × 10−11). These results suggest
that niNCEs and hiNCEs play different roles. Since this classification is only
based on our interaction predictions, this constitutes an indirect validation of
our predictions.

3 Discussion and Conclusion

Linking long-range regulatory elements to the gene(s) they regulate is a chal-
lenge that remains mostly unsolved for both experimental and computational
biologists. Indeed, there currently exists no high-throughpout experiment that
can unambiguously identify target genes for a given long-range cis-regulatory
region.

Conservation of synteny between a NCE and a gene may be due to the pres-
ence of a functional interaction between the two or to the lack of divergence time
for genome rearrangements to have separated them. At the time of the study,
we were limited to the comparison of the human genome to that of 16 other ver-
tebrates whose genomes are assembled in supercontigs of size at least 10Mb. As
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seen on Figure 2, a large number of NCE-gene pairs, especially those involving
eutherian-specific NCEs, receive low-confidence scores due to the insufficient evo-
lutionary evidence. The level of divergence (away from human) of the genomes
considered impacts the amount of information a new sequence provides. Fish
genomes have undergone a lot of rearrangements - which is good for our study
-, but only 2% of human NCEs can be traced back to these species. Placental
mammal genomes share most NCEs with human, but have typically undergone
a small number of rearrangements. Improved resolution can only be obtained by
increasing the number of genomes compared, at various degrees of divergence
(especially marsupials, birds, and reptiles). With whole genome sequencing be-
coming increasingly cheap, we expect that the accuracy of our approach will
quickly increase significantly.

4 Methods

4.1 Data Selection and Orthology Mapping

We retrieved human non-coding conserved regions from the human 28-way [18]
alignment dataset available on the UCSC genome browser [19], excluding any
region with any overlap with EnsEMBL exons, mRNAs, or repeatMasker regions.
Only regions with a score over 400 and a length over 100 bp are retained for
further analysis. Exons were retrieved from the Ensembl (version 54) human
gene prediction dataset (but excluding predictions labelled as pseudogenes)[17].

Both human non-coding conserved regions and coding regions were mapped
using liftover [19] (with blastz nets) to the following genomes: mouse,rat,guinea
pig,dog cow, opossum, platypus,chicken, zebra finch, lizard, frog, zebrafish, stick-
elback, tetraodon, fugu and medaka.

The mapping process of both coding and non-coding regions is composed of
two steps. First, all human non-coding conserved regions and exons are mapped
to the 16 target genomes. Second, each mapped region is mapped back to hu-
man. Only hits which map back to the same original region in human are kept
(reciprocal best hits). In the case of multi-exon genes, they are considered to be
mapped to a given genome if at least one of their exons is. Each human gene
and non-coding conserved region is thus mapped to either zero or exactly one
position in the genome of each other species.

4.2 Predicting Functional Interaction between Genes and
Non-coding Regions

Let GS and NS be the set of genes and non-coding conserved regions that have
been mapped from human to species S. Let PS ⊆ GS×NS be the set of all pairs
of gene and non-coding region from species S that are located at most δS base
pairs apart (on the same chromosome) in the genome of S. Note that genes can
be paired with several non-coding regions (or to none at all), and non-coding
conserved regions can be paired with several genes (or to none at all). We are
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interested in classifying the pairs from Phuman into functionally associated or
non-functionally associated, based on the presence of the pair in the 16 other
species. We set δhuman to 1 Mb and adjust the distance thresholds for other
species in proportion to their genome size, relative to human: δS = 1.25Mb ·
( GenomeSize(S)/GenomeSize(human)). Note that we use a constant of 1.25 Mb
instead of 1 Mb to deal more gracefully with boundary cases where a pair may,
for example, be located 0.99 Mb apart in human and 1.01 Mb apart in another
species (if both species have similar length). For any pair (g, n) ∈ Phuman, we
define the conservation status of that pair in species S as:

CS(g, n) =

⎧⎨
⎩

conserved if (g, n) ∈ PS

separated if (n ∈ NS and g /∈ GS) or (g, n) /∈ PS

missing if n /∈ NS

4.3 Inference of Ancestral Association Status

The ancestral status Cu(g, n) ∈ {conserved, separated, missing} of each pair
(g, n) ∈ Phuman is reconstructed for each ancestral node u of the phylogenetic
tree, using a variant of the Fitch algorithm [20] for parsimonious reconstruction.
Briefly, in an initial bottom-up phase, the set of possible states at each ancestral
node is inferred based on those at its two children, following the Fitch algorithm.
The state of the root of the tree is then obtained (breaking ties in favor of the
”separated” state) and the information is propagated down the tree to obtain
ancestral states at each node.

4.4 Expectation-Maximization Algorithm

We now present two probabilistic models for pairs of NCEs and genes. The ΘF

model describes pairs that are functionally associated and for which there is
selective pressure to maintain the pairing. The ΘNF model describes the evo-
lution of pairs that are not functionally associated. Each model M ∈ {F, NF}
is specified as follows: ΘM = (ρM

1 , ρM
2 , ..., ρM

2n−2), where ρM
u is the probability

distribution over states at node u with model M, i.e. ρM
u (a) is the probability of

observing state a at node u (a ∈ {conserved, separated, missing}).
Let A(g, n) ∈ {functional, non-functional} of each pair in (g, n) ∈ Phuman be

the true (but unknown) functional status of pair (g, n). Because the true asso-
ciation status of each pair is unknown, parameters of each model are estimated
in an unsupervised manner using an EM-like algorithm to find maximum like-
lihood estimators, based on the complete set of pairs Phuman considered. The
algorithm alternates between predicting the functional status of each pair (based
on the likelihood ratio of the two models) and revising the parameters of the
two models based on the predicted classification. Iterating the algorithm yields
estimates for the parameters and assigns log-likelihood ratio scores to each pair
in Phuman. See below for more details.
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EM algorithm
Input: A phylogenetic tree T , where each leaf and internal node u is labeled with a

set Pu of putatively associated pairs of genes and NCE. One leaf if labeled ”human”.

Output: A label A(g,n) ∈ {F, NF} for each pair (g, n) ∈ Phuman, and a model

ΘM = (ρM
1 , ρM

2 , ..., ρM
2n−2) that maximizes the likelihood of the observed data.

for all (g, n) ∈ Phuman do
A(g, n)← F or NF randomly

end for
repeat

for all M ∈ {F, NF} do
for all a ∈ {conserved, separated, missing} do

for all u ∈ V (T ) do

P M
u (a) =

|{(g,n):A(g,n)=M and Cu(g,n)=a}|+1
|{(g,n):A(g,n)=M}|+3

end for
end for

end for
for all (g, n) ∈ Phuman do

LLR(g, n) =

∏
(u)∈V (T ) P F

u (Cu(g,n))∏
(u)∈V (T ) P NF

u (Cu(g,n))

if LLR(g, n) ≥ 1 then A(G, n)← F
else A(G, n)← NF

end for
until Convergence
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Abstract. Background: Genomic rearrangements have been studied since the
beginnings of modern genetics and models for such rearrangements have been
the subject of many papers over the last 10 years. However, none of the extant
models can predict the evolution of genomic organization into circular unichromo-
somal genomes (as in most prokaryotes) and linear multichromosomal genomes
(as in most eukaryotes). Very few of these models support gene duplications and
losses—yet these events may be more common in evolutionary history than rear-
rangements and themselves cause apparent rearrangements.

Results: We propose a new evolutionary model that integrates gene duplica-
tions and losses with genome rearrangements and that leads to genomes with
either one (or a very few) circular chromosome or a collection of linear chromo-
somes. Moreover, our model predictions fit observations about the evolution of
gene family sizes as well as existing predictions about the growth in the number
of chromosomes in eukaryotic genomes. Finally, our model is based on the ex-
isting inversion/translocation models and inherits their linear-time algorithm for
pairwise distance computation.

1 Introduction

Genomic rearrangements have been studied since the beginnings of modern genetics
(starting in the 1920s with the classic work of Sturtevant and Dobzhansky [19,20]) and
models for such rearrangements have been the subject of many papers over the last 20
years (for a review, see [4]). However, none of the extant models predicts the evolution
of genomic organization into circular unichromosomal genomes (as in most prokary-
otes) and linear multichromosomal genomes (as in most eukaryotes). In addition, hardly
any of these models support gene duplications and losses alongside rearrangements; yet
duplications and losses may be more common in evolutionary history than rearrange-
ments and, moreover, they themselves cause apparent rearrangements.

In this paper, we propose a new evolutionary model, based on the classical inver-
sion/translocation (HP) [6] and double-cut-and-join (DCJ) [2,23] models, that integrates
gene duplications and losses with genome rearrangements and that leads to genomes
with either a single (or a very few) circular chromosome or a collection of linear chro-
mosomes. Moreover, our model predictions fit observations (as presented by Lynch

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 228–239, 2010.
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[16]) about the evolution of gene family sizes, as well as existing predictions (by Imai’s
group [11]) about the growth in the number of chromosomes in eukaryotic genomes.
Finally, our model inherits the algorithmic results developped for previous models, such
as a linear-time distance computation [1,2,3].

2 Background

Evolutionary events that affect the gene order of genomes include various rearrange-
ments, which affect only the order, and gene duplications and losses, which affect both
the gene content and, indirectly, the order. (Gene insertion, corresponding to lateral gene
transfer or neofunctionalization of a gene duplicate, can be viewed as a special case of
duplication.)

Rearrangements themselves include inversions, transpositions, block exchanges,
circularizations, and linearizations, all of which act on a single chromosome, and translo-
cations, fusions, and fissions, which act on two chromosomes. These operations are sub-
sumed in the double-cut-and-join (DCJ) [2,23], which has formed the basis for much
algorithmic research on rearrangements over the last few years. A DCJ operation makes
two cuts, which can be in the same chromosome or in two different chromosomes, pro-
ducing four cut ends, then rejoins the four cut ends in any of the three possible ways. The
DCJ model is more general than the HP model, because it applies equally well to circu-
lar and linear chromosomes. However, the DCJ model still falls short in two respects.
First, if the two cuts are in the same chromosome, one of the two nontrivial rejoinings
causes a fission, creating a new circular chromosome; however, circular chromosomes
do not normally arise in organisms with linear chromosomes, while most prokaryotic
genomes consist of a single circular chromosome. This unrealistic operation can be
corrected by forcing reabsorption of circular intermediates right after their introduction
[23]. But this additional constraint creates dependencies among blocks of steps, which
introduces difficulties in the estimation of the true distances (see [13]). Secondly, DCJ
is a model of rearrangements: it does not take into account evolutionary events that alter
the gene content and also, indirectly, the gene order, such as duplications and losses.

Genome evolution appears driven by very general mechanisms. For instance, for
a wide variety of genomic properties, the number of families of a given size usually
declines with the size of the family, following some asymptotic power law, the most
common family size being one. Such scaling holds for gene families [7], protein folds
and families (encoded in genomes) [12], and pseudogene families and pseudomotifs
[15]. Several evolutionary models [5,7,17,22], all based on gene duplication, have been
proposed to explain the observed biological data. More recently, Lynch [16] observed
that the frequency distributions of family sizes observed in different species tend to bow
downward rather than obey a power law. He gave a simple birth/death model to account
for these observations. In this model, each gene (including duplicated ones) has pre-
generation probability D (for duplication) of giving rise to a new copy, such that the
average birth rate of a family of x members is Dx. The model also assumes that the
presence of at least one member of the gene family is essential (i.e., complete loss of
the gene family is not possible), but all excess copies have a probability L (for loss) of
being eliminated. With D/L ratios consistent with actual estimates for eukaryotic genes,
the equilibrium probability distribution of gene family sizes is close to the observations.
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Our model of genomic evolution includes all of the operations from DCJ model,
except the aforementioned operation that creates circular intermediates, and hence sub-
sumes the HP model [6]; it also takes gene duplications and losses into account, all in
a single step. The new evolutionary model respects the distinction between prokary-
otic and eukaryotic genomes and also agrees with current predictions about genomic
evolution, such as the distribution of sizes of gene families and the number of chromo-
somes in eukaryotic genomes. In earlier work, we described a method for estimating
precisely true evolutionary distance between two genomes under this model using the
independence among steps [14].

2.1 Genomes as Gene-Order Data

We denote the tail of a gene g by gt and its head by gh. We write +g to indicate an
orientation from tail to head (gt → gh),−g otherwise (gh→ gt). Two consecutive genes
a and b can be connected by one adjacency of one of the following four types: {at ,bt},
{ah,bt}, {at ,bh}, and {ah,bh}. If gene c lies at one end of a linear chromosome, then
we have a corresponding singleton set, {ct} or {ch}, called a telomere. A genome can
then be represented as a multiset of genes together with a multiset of adjacencies and
telomeres. For example, the toy genome in Fig. 1, composed of one linear chromo-
some, (+a, +b, -c, +a, +b, -d, +a), and one circular one, (+e, - f ), can be repre-
sented by the multiset of genes {a,a,a,b,b,c,d,e, f} and the multiset of adjacencies and
telomeres {{at}, {ah,bt}, {bh,ch}, {ct ,ah}, {ah,bt}, {bh,dh}, {dt ,ah}, {ah}, {eh, f h},
{et , f t}}. Because of the duplicated genes, there is no one-to-one correspondence be-
tween genomes and multisets of genes, adjacencies, and telomeres. For example, the
genome composed of the linear chromosome (+a,+b, -d,+a,+b, -c,+a) and the cir-
cular one (+e, - f ), would have the same multisets of genes, adjacencies and telomeres
as that in Fig. 1.

2.2 Preliminaries on the Evolutionary Model

We use two parameters: the probability of occurrence of a gene duplication, pd , and
the probability of occurrence of a gene loss, pl—the probability of occurrence of a
rearrangement is then just pr = 1− pd − pl . The next event is chosen from the three
categories according to these parameters.

For rearrangements, we select two elements uniformly with replacement from the
multiset of all adjacencies and telomeres and then decide which rearrangement event
we apply to these two elements. We have eight cases in all (refer to Fig. 2).

Fig. 1. A very small genome G
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(a)

(b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Possible rearrangements

Select two different adjacencies, or one adjacency and one telomere, in the same
chromosome (Fig. 2a). For example, select two different adjacencies {ah

i−1,a
t
i} and

{ah
j ,a

t
j+1} on one linear chromosome A = (a1 . . .ai−1ai . . .a ja j+1 . . .an). Reversing

all genes between ai and a j yields (a1 . . .ai−1-a j . . . -aia j+1 . . .an). Two adjacencies,
{ah

i−1,a
t
i} and {ah

j ,a
t
j+1}, are replaced by two others, {ah

i−1,a
h
j} and {at

i,a
t
j+1}.

This operation causes an inversion(another possible operation in DCJ model to
creat a new circular chromosome is forbidden in our model).

Select two adjacencies, or one adjacency and one telomere, in two linear chromo-
somes (Fig. 2b). For example, select two adjacencies, {ah

i ,a
t
i+1} from one linear

chromosome A = (a1 . . .aiai+1 . . .an) and {bh
j ,b

t
j+1} from another linear chromo-

some B = (b1 . . .b jb j+1 . . .bm). Now exchange the two segments between these two
chromosomes C and D. There are two possible outcomes, (a1 . . .ai b j+1 . . .bm) and
(b1 . . .b j ai+1 . . .an) or (a1 . . .ai -b j . . . -b1) and (-bn . . . -b j+1 ai+1 . . .an). Two ad-
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jacencies, {ah
i ,a

t
i+1} and {bh

j ,b
t
j+1}, are replaced by {ah

i ,b
h
j+1} and {at

i+1,b
t
j} or

{ah
i ,b

h
j} and {at

i+1,b
t
j+1}. This operation causes a translocation.

Select two different adjacencies, or one adjacency and one telomere, in one circu-
lar chromosome and one linear chromosome (Fig. 2c). For example, select two
adjacencies, {ah

i ,a
t
i+1} from one linear chromosome A = (a1 . . .aiai+1 . . .an) and

{ch
j ,c

t
j+1} from one circular chromosome C = (c1 . . .c jc j+1 . . .cm). Now merge

the circular chromosome C into the linear chromosome A. There are two possible
outcomes, linear chromosomes (a1 . . .ai c j+1 . . . cmc1 . . . c jai+1 . . .an) or (a1 . . .ai

-c j . . . -c1-cm . . . -c j+1 ai+1 . . .an). Two adjacencies, {ah
i ,a

t
i+1} and {ch

j ,c
t
j+1}, are

replaced by {ah
i ,c

h
j+1} and {at

i+1,c
t
j} or {ah

i ,c
h
j} and {at

i+1,c
t
j+1}. This operation

causes a fusion of a circular chromosome with a linear chromosome.
Select two adjacencies in two circular chromosomes (Fig. 2d). For example, select

two adjacencies, {ch
i ,c

t
i+1} from one circular chromosome C = (c1 . . .cici+1 . . .cm)

and {dh
j ,d

t
j+1} from another circular chromosome D = (d1 . . .d jd j+1 . . .dn). Now

merge these two circular chromosomes C and D into one new circular chromo-
some. There are two possible outcomes, circular chromosomes (c1 . . .ci d j+1 . . .
dmd1 . . . d j ci+1 . . .cm) or (c1 . . .ci -d j . . . -d1-dm . . . -d j+1 ci+1 . . .cm). Two adjacen-
cies, {ch

i ,c
t
i+1} and {dh

j ,d
t
j+1}, are replaced by {ch

i ,d
h
j+1} and {ct

i+1,d
t
j} or {ch

i ,d
h
j }

and {ct
i+1,d

t
j+1}. This operation causes a fusion of two circular chromosomes.

Select the same adjacency twice in one linear chromosome (Fig. 2e). For ex-
ample, select the adjacency {ah

i ,a
t
i+1} twice from linear chromosome A =

(a1 . . .aiai+1 . . .an). Then split C into two new linear chromosomes, (a1 . . .ai)
and (ai+1 . . .an). The adjacency {ah

i ,a
t
i+1} is replaced by two telomeres {ah

i } and
{at

i+1}. This operation causes a fission of a linear chromosome.
Select the same adjacency twice in one circular chromosome (Fig. 2f). For exam-

ple, select the adjacency {ch
i ,c

t
i+1} twice from circular chromosome C = (c1 . . .

cici+1 . . . cm). Then linearize C into a linear chromosome, (ci+1 . . . cmc1 . . . ci). The
adjacency {ch

i ,c
t
i+1} is replaced by two telomeres {ch

i } and {ct
i+1}. This operation

causes a linearization of a circular chromosome.
Select two telomeres in two linear chromosomes (Fig. 2g). For example, select telom-

eres {ah
n} and {bt

1} from two different linear chromosomes A = (a1 . . .aiai+1 . . .an)
and B = (b1 . . .b jb j+1 . . .bm). Then concatenate these two linear chromosomes into
a single new chromosome (a1 . . . aiai+1 . . . an b1 . . . b jb j+1 . . . bm). Two telomeres,
{ah

n} and {bt
1}, are replaced by one adjacency {ah

n,b
t
1}. This operation causes a

fusion of two linear chromosomes.
Select two telomeres in one linear chromosome (Fig. 2h).1 For example, select telom-

eres {at
1} and {an

n} from linear chromosome A = (a1 . . .aiai+1 . . .an) (See Fig. 2h).
Then circularize the linear chromosome by connecting its two ends. Two telomeres,
{at

1} and {ah
n}, are replaced by by one adjacency, {at

1,a
h
n}. This operation causes a

circularization of a linear chromosome.

As mentioned earlier, we do not include a fission that creates a circular intermedi-
ate. This decision is based on outcomes, not a mechanism; as is the DCJ model itself:

1 Selecting one telomere twice is assimilated to selecting both telomeres of the linear chromo-
some.
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that is, the model operations may or may not correspond to actual evolutionary events,
but running the model produces simulated genomes that more closely resemble actual
genomes.

For gene duplication, we uniformly select a position to start duplicating a short seg-
ment of chromosomal material and place the new copy to a new position within the
genome. We set Lmax as the maximum number of genes in the duplicated segment and
assume that the number of genes in that segment is a uniform random number be-
tween 1 and Lmax. For example, select one segment ai+1 . . .ai+L to duplicate and insert
the copy between one adjacency {bh

j ,b
t
j+1}. Such an operation duplicates L genes and

L− 1 adjacencies, removes one adjacency, and adds two new adjacencies; thus genes
ai+1, . . ., ai+L−1 and ai+L are added to the multiset of genes, the adjacency {bh

j ,b
t
j+1}

is removed, and L + 1 new adjacencies, {bh
j ,a

t
i+1}, {ah

i+1,a
t
i+2}, . . ., {ah

i+L,b
t
j+1}, are

added. For gene loss, we uniformly select one gene from the set of all candidate genes
and delete it, restricting gene loss to the deletion of a single gene copy at a time, follow-
ing Lynch [16]. For example, if we delete gene ai in the chromosome (. . .ai−1aiai+1 . . .),
one copy of ai is removed from the multiset of genes, while two adjacencies, {ah

i−1,a
t
i}

and {ah
i ,a

t
i+1}, are replaced by one adjacency, {ah

i−1,a
t
i+1}.

3 Results

3.1 Model Restricted to Rearrangements

Edit distance computation
The edit distance between two genomes is the minimum number of allowed evolution-
ary operations necessary to transform one genome into the other.

Consider two genomes with equal gene content and no duplicate genes. If both
genomes consist of only linear chromosomes, the model of Hannenhalli and Pevzner [6]
allows the computation of the edit distance under inversions, translocations, fusions,
and fissions, hereafter the HP distance. The edit distance in our model can be no larger
than the HP distance, since our model includes all operations in the HP model and more
(circularizations and linearizations).

In fact, the two edit distances are equal for genomes composed of only linear chro-
mosomes. Suppose there are intermediate circular chromosomes in some sorting path
in our model; then we can always find pairs of operations, one to circularize a linear
chromosome and the other to linearize that circular chromosome, that can be replaced
by a fission and a fusion in the HP model. So any optimal sorting path in our model can
be transformed into an optimal sorting path of equal length in the HP model; therefore
the edit distance in our model is equal to the HP distance—although the number of
optimal sorting paths may be different.

If two genomes have both linear and circular chromosomes, the edit distance in our
model can be no smaller than the DCJ distance [2], since the DCJ model includes all
operations in our model and more. Bergeron et al. [3] gave a linear-time algorithm
to compute the extra cost of not resorting to “forbidden” DCJ operations to compute
the HP distance; their algorithm also applies to our model. Thus for any two genomes
with equal gene content and no duplicate genes, the edit distance in our model can be
computed in linear time.
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3.2 Genome Structure Prediction

In this section, we prove that our new model respects the distinction between eukaryotic
and prokaryotic genomes.

Theorem 1. Let the ancestral genome have one circular chromosome with n genes. Af-
ter O(n) rearrangements events, with probability 1−n−O(1), the final genome contains
a single circular chromosome or a collection of O(logn) linear chromosomes.

Proof. We examine the effect of rearrangements on the genome structure. Given the
original genome with one circular chromosome, only one of our eight cases can result
in a linearization: select the same adjacency twice (Fig. 2f). Once we have only linear
chromosomes, two cases can directly result in a change in the number of linear or cir-
cular chromosomes: select the same adjacency twice (Fig. 2e) and select two telomeres
(Fig. 2h). The probability for selecting the same adjacency twice is O(1/n); that for
selecting two telomeres is O(t2/n2), where t is the number of telomeres. Every time we
select the same adjacency twice, we increase the number of linear chromosomes by 1.
Let the indicator variable Xi represent whether or not we select the same adjacency
twice at the ith step and write k for the number of evolutionary events. Set X = ∑k

i=1 Xi

and let µ be the expectation of X . The Chernoff bound shows

Pr(X > (1 + δ)µ) <
(
eδ/(1 + δ)1+δ)µ

In our case, k = O(n), µ = O(1), δ = O(logn), so that we get

Pr(X > O(logn)) < n−O(1)

Let the indicator variable Yi represent whether or not we select two telomeres at the ith
step. Since t = 2X , t is bounded by O(logn) with probability 1− n−O(1). Thus, with
probability 1−n−O(1), we have

Pr(Yi = 1) < O((logn)2/n2),

Now set Y = ∑k
i=1 Yi. We have

Pr(Y > 0)�
k

∑
i=1

Pr(Yi = 1) < n−O(1).

Overall, then, with probability 1− n−O(1), X < O(logn) and Y = 0, which means that
the final genome structure has either a collection of O(logn) linear chromosomes or a
single circular chromosome. ��

Thm. 1 tells us that, if the original genomic structure starts from a circular chromosome,
most current genomes will contain a single circular chromosome or a collection of linear
chromosomes. However, if the initial genome structure was, e.g., a mix of linear and
circular chromosomes, would such a structure be stable through evolution? We can
characterize all stable structures in our model under some mild conditions.
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Theorem 2. Let the ancestral genome have n genes and assume that there are positive
constants c1 and α such that each chromosome in the ancestral genome has at least c1nα

genes. Let c2 be some constant obeying c2 > 2c1. After c2n1−α logn rearrangements,
with probability 1−O(n−α logn), the final genome contains either a single circular
chromosome or a collection of linear chromosomes.

Proof. In our evolutionary model, consider the case of selecting two adjacencies or
one adjacency and one telomere in two different chromosomes. If one of the two
chromosomes is circular, a fusion will merge the circular chromosome into the linear
chromosome (Fig. 2c). If both chromosomes are circular, a fusion will merge the two
chromosomes into a single circular chromosome (Fig. 2d). We use a graph representa-
tion, G, for the genome structure, where each circular chromosome is represented by a
vertex Ai and all of the linear chromosomes (if any) are represented by a single vertex B
. In the evolutionary process, if two adjacencies or one adjacency and one telomere are
selected in two different chromosomes, connect the vertices of these two chromosomes.
We first ignore circularizations of linear chromosomes (Fig. 2h), then the genome ends
up with a single circular chromosome or a collection of linear chromosomes if and
only if the corresponding graph G is connected finally. We therefore bound the prob-
ability that the graph G is not connected after c2n1−α logn rearrangements. If G is not
connected, there is at least one bipartition of the vertices into S1 and S2 in which no
edge has an endpoint in each subset. Assume there are g1 and g2 genes in S1 and S2,
respectively; then min{g1,g2} � c1nα and g1 + g2 = n. Since there are at most 1

c1
n1−α

chromosomes, we can write

Pr(G is not connected) <

( (g1
2

)
+
(g2

2

)
c2n1−α logn

)/( (g1+g2
2

)
c2n1−α logn

)
< (1− c1n1−α)c2n1−α logn < O(n−2α)

Let indicator variable Xi represent whether or not we select the same adjacency twice

at the ith step (Fig. 2e,f) and set X = ∑c2n1−α logn
i=1 Xi. We have

Pr(Xi = 1) � 1/n

Pr(X > 0) �
c2n1−α logn

∑
i=1

Pr(Xi = 1) = O(n−α logn).

Now we bound the probability of selecting two telomeres in the same linear chromo-
some (Fig. 2h), which causes circularization of this chromosome. For each linear chro-
mosome, there are four possible ways of selecting two corresponding telomeres. Since
the number of linear chromosomes l is bounded by 1

c1
n1−α, there are at most 4

c1
n1−α

ways to circularize one linear chromosome in all (n+ l)2 ways of selecting two adjacen-
cies or telomeres. Again, let indicator variable Yi represent circularization of one linear

chromosome at the ith step and set Y = ∑c2n1−α logn
i=1 Yi. We have

Pr(Y > 0) �
c2n1−α logn

∑
i=1

Pr(Yi = 1)

� 4c2 logn
/

c1n2α < O(n−2α logn)
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Thus, with probability 1−O(n−α logn), we have: G is connected, X = 0, and Y = 0,
so that the final genome contains either a single circular chromosome or a collection of
linear chromosomes. ��

The restriction on the minimum size of chromosomes in the ancestral genomes is very
mild, since the parameter α can be arbitrarily small.

Our model also predicts, for genomes composed of a collection of linear chrom-
somes, convergence to a certain number of chromosomes, which depends on the total
number of genes.

Theorem 3. Assume there are n genes and fewer than 1+
√

1+4n
2 linear chromosomes in

the original genome. The number of linear chromosomes increases during rearrange-

ments, converging to 1+
√

1+4n
2 .

Proof. Assume there are l linear chromosomes in the original genome. In our model,
the number of linear chromosomes increases by 1 with probability 1

n+l and decreases

by 1 with probability ( l
n+l )

2. Since we have l < 1+
√

1+4n
2 , an increase is more likely.

The stable equilibrium follows from the equation 1
n+l = ( l

n+l )
2. ��

These theorems are not affected by duplications and losses, as long as the latter are
reflected in the sizes of chromosomes and the total number of genes.

3.3 Sizes of Gene Families

Of most concern in a duplication and loss model is the distribution of the sizes of the
gene families, since that is one of the few aspects of the process that has been observed
to obey general laws. Our sole aim in this section is to demonstrate through simulations
that our model, which uses the duplication/loss model of Lynch, yields distributions
consistent with what Lynch suggested [16].

Our experiments start with a genome with no duplicated genes. This genome is
then subjected to a prescribed number k, varying from from 0 to 10 times the num-
ber of genes, of evolutionary events chosen according to pd and pl to obtain different
genomes Gk. We test a large number of different choices of parameters on varying sizes
of genomes; as the results are consistent throughout, we report two cases: (a) 1’000
genes with L = 10, pd = 0.2, and pl = 0.8; and (b) 10’000 genes with L = 10, pd = 0.4,
and pl = 0.6. The data in Fig. 3 summarizes 1’000 runs for each parameter setting. (The
parameters chosen correspond to those used in our distance estimation model [14].) The
shape of the distributions of gene family sizes is generally similar to the observations
presented by Lynch [16].

4 Discussion and Conclusions

Thm. 1 and Thm. 2 together show that our model respects the distinction between the
organization of most prokaryotic genomes (one circular chromosome) and that of most
eukaryotic genomes (multiple linear chromosomes). In contrast, the HP model [6] deals
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Fig. 3. Probability distribution of the size of gene families, for various numbers of events, in-
creasing from the leftmost (#events = #genes) to the rightmost (#events = 10×#genes)

with only linear chromosomes, while the DCJ model [2,23] (assuming uniform distri-
bution of all possible DCJ operations) predicts that over half of modern genomes con-
sisting of only circular chromosomes will have more than one circular chromosome.

There is evidence about the linearization of circular chromosomes during bacterial
evolution [21] and the increase in the number of chromosomes of eukaryotic groups
by centric fission [8,9], both of which accord with Thm. 3. According to the minimum
interaction theory of Imai et al. [10], genome evolution in eukaryotes proceeds as a
whole toward increasing the number of chromosomes. Their theory predicts that the
highest number of chromosomes in mammals should be 166, while their simulations
yield a range of 133–138 for this number [11]. The latter range agrees with our model
(as well as the models in [6,2,23], if we assume that the two cuts are uniformly selected)
if the number of genes is around 20’000, a fairly typical value for mammals.

Fig. 3 shows that our model of gene duplications and losses readily generates distri-
butional forms close to the observations presented by Lynch [16]. Different parameters
for gene duplications and losses, and the number of evolutionary events, influence the
the distributions of gene family sizes: such information can help us improve the esti-
mation of the actual number of evolutionary events as well as infer the parameters for
duplications and losses in our model [14].

According to our model, more rearrangements, gene duplications, and gene losses
will linearize circular chromosomes, increase the number of linear chromosomes, and
increase the number of genes—i.e., will favor a shift from a prokaryotic architecture to
a eukaryotic one. However prokaryotic architectures exist in large numbers today. The
reason is to be found in population sizes. In a large population, as with most prokary-
otic organisms, most alleles are likely to be eliminated by purifying selection, whereas,
in a small population, neutral or even deleterious mutations can be fixated more eas-
ily. Thus many forms of mutant alleles that are able to drift to fixation in multicellular
eukaryotes are eliminated by purifying selection in prokaryotes as population sizes de-
creased dramatically in the transition from prokaryotes to multicellular eukaryotes [16].
Similarly, the fixation of rearrangements, gene duplications, and gene losses (all “rare
genomic events” [18]) in prokaryotic species is also more difficult compared to that
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in eukaryotes. Thus, in our model, prokaryotes tend to have one circular chromosome
and a small number of genes, while eukaryotes tend to have multiple linear chromo-
somes and a large number of genes, in response to a reduction in purifying selection.
Our model of gene rearrangement, duplication, and loss is the first to give rise naturally
to such a structure; and it does so independently of the choice of parameters, which
influence only the tapering rate of the size of gene families.
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Abstract. We present the tool SIB that simulates genomic inversions

in bacterial chromosomes. The tool simulates symmetric inversions but

allows the appearance of nonsymmetric inversions by simulating small

syntenic blocks frequently observed on bacterial genome comparisons.

We evaluate SIB by comparing its results to real genome alignments. We

develop measures that allow quantitative comparisons between real pair-

wise alignments (in terms of dotplots) and simulated ones. These mea-

sures allow an evaluation of SIB in terms of dendrograms. We evaluate

SIB by comparing its results to whole chromosome alignments and max-

imum likelihood trees for three bacterial groups (the Pseudomonadaceae
family and the Xanthomonas and Shewanella genera). We demonstrate

an application of SIB by using it to evaluate the ancestral genome re-

construction tool MGR.

1 Introduction

Genome rearrangements are one of the most important large-scale evolutionary
phenomena in genomes. In bacteria, inversions have long been recognized as one
of the most frequently observed rearrangements. In particular, inversions sym-
metric to the origin of replication (meaning that the endpoints of the inversion
are equally distant from the origin of replication) have been proposed as the
primary mechanism that explains the ‘X’ patterns that are frequently seen when
two circular chromosomes of closely related species are aligned [3]. A recent study
using Yersinia genomes [2] has added evidence that such symmetric inversions
are “over-represented” with respect to other kinds of inversions.

An emerging area in the computational analysis of evolutionary phenomena is
that of ancestral genome reconstruction. Several programs have been proposed
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Fig. 1. MUMmer pairwise alignment of Pseudomonadaceae chromosomes. Dots rep-

resent matches between the chromosome sequences. Red dots depict matches in the

same orientation in both chromosomes, whereas blue dots depict matches in opposite

orientation.

such as BPAnalysis [12], GRAPPA [9], BADGER [7], and MGR [1]. Because gen-
erally we do not have access to ancestral genomes, in order to evaluate whether
a reconstruction is good or not simulation tools are essential. In this paper we
propose a novel simulation tool for the study of symmetric inversions in bacterial
circular chromosomes; we call our tool SIB.

A simulation tool such as the one we propose evidently needs to model the
evolution of bacterial genomes. This modeling is difficult for several reasons: in
spite of the apparent predominance of symmetric inversions, bacterial genomes
undergo other kinds of rearrangements, as well as insertions, deletions, and du-
plications. Moreover, genome alignments of different groups of bacteria reveal
differing patterns of rearrangements. For these reasons we decided to create a
simulation tool whose aim is to reproduce the ‘X’ pattern in alignments more
clearly observed in certain bacterial groups. We chose the following groups as
a basis for our model: the Pseudomonadaceae family, the Xanthomonas genus,
and the Shewanella genus, all of them part of the γ-proteobacteria taxonomical
class. Another criterion we used in this choice was the availability of reason-
ably distinct fully sequenced genomes in each group. Figure 1 shows examples
of genome alignments for members of the Pseudomonadaceae family.

2 Pairwise Chromosome Comparisons and Dotplot
Measures

Table 1 contains information about the genome groups we consider in this study.
All genomes in this list have just one circular chromosome. Some members have
small (less than 100 kbp) plasmids; we do not take plasmids into consideration.

For pairwise comparisons of chromosomes we used the tool MUMmer [6].
MUMmer searches for maximal exact matches between two DNA sequences. It
is possible to plot the results using a standard ‘dotplot’ format (see Figure 1).

In order to characterize in a quantitative fashion a pairwise alignment from
the point of view of symmetric inversions our primary reference is the disposition
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Table 1. Bacterial groups used in this work. In each group all fully sequenced genomes

available from GenBank as of May, 2010 were used, with the exception of Cellvibrio
japonicus Ueda107 (NC 010995.1). Even though the NCBI taxonomy places it under

the Pseudomonadaceae family, the pairwise comparisons we obtained suggest that it

is (relatively) very distant from the other members: its MUMmer alignment to other

members results in too few matches.

Bacterial group number of genomes Chromosome size range (Mbp)

Pseudomonadaceae 18 4.6 – 7.1

Xanthomonas 9 3.8 – 5.2

Shewanella 9 4.3 – 5.9

of matches in these dotplots. The dotplots show that most of the matches occur
near the primary diagonal (y = x) or near the secondary anti-diagonal (y = L−x,
where L is the chromosome length) as shown in Figure 1. The basic explanation
we use for these patterns is the one proposed by Eisen et al. [3].

In the genome rearrangement literature that focuses on mathematical mod-
els of genomes, a chromosome is usually represented as a permutation π =
(±π1 ± π2 . . . ± πn), for πi ∈ I, 0 < πi ≤ n and i �= j ↔ πi �= πj , where
each πi represents a gene, and that gene is assumed to be shared by the genomes
being compared, with n being the total number of genes shared. Our inputs are
DNA sequences, not strings of genes; on the other hand, our primary reference
for modeling purposes are the dotplots, thus we also need to deal with discrete
entities present in chromosomes, but not necessarily genes. We handle this situ-
ation by converting MUMmer matches into points in the following way. Because
bacterial genomes have on average one gene for every 1,000 bp (or 1 kbp), we
split all matches reported by MUMmer into 1 kbp segments (and each of them
becomes a point). Matches that are at least 0.5 kbp long are considered to have
1 kbp. Matches shorter than 0.5 kbp are discarded. Another simplification we
adopt is to discard duplications (matches have to be unique). Thus, the dotplots
on which we based the evolutionary model of SIB are the ones that result from
this process (processed dotplots). The removal of duplicated matches is not a con-
cern for the genomes we studied. The duplication removal step did not remove
more than 10 elements in every pairwise comparison we analyzed.

Eisen et al. [3] proposed a measure for MUMmer alignment plots to deter-
mine if faint ‘X’ patterns were stastistically significant or not. Their measure
takes into account the density of points near the two main diagonals. In order to
compare simulated scenarios with our processed dotplots originating from real
data we developed measures that also take into account density of points near
the two main diagonals. We define three regions of interest. Region 1 is the strip
along the main diagonal defined by two parallel diagonals, one on each side. We
define similarly a Region 2 to be the analogous strip for the anti-diagonal. We
require that each of these strips contain 25% of the total dotplot area. We further
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define Region 3 to be everything that is outside Regions 1 and 2. We define
density as the ratio between the number of points found in a region to the total
number of points present.

MUMmer results in two kind of matches: forward matches, in which regions
on the plus strands of both chromosomes are matched, and reverse matches, in
which a region in the plus strand of one chromosome is matched to a region
in the minus strand in the other chromosome. In Figure 1 forward matches are
colored red, and reverse matches are colored blue. Thus we define d1 to be the
density of points of the forward kind that are in Region 1; d2 to be the density
of points of the reverse kind that are in Region 2; and d3 to be the density of
points of both kinds that are in Region 3.

We have used the densities d1, d2 and d3 to compare processed dotplots to
dotplots resulting from simulations, as described next.

3 The Simulation Tool

The evolutionary model that is built-in in SIB resulted from careful observation
of pairwise comparisons between Pseudomonadaceae chromosome sequences. We
now explain the details of this model.
Inversions. Although symmetric inversions seem to be the dominant genomic
rearrangement event in bacteria, it is known that nonsymmetric inversions can
also happen. There are two kinds of nonsymmetric inversions: one that spans the
origin of replication and one that does not span the origin. Darling et al. [2] call
these inter-replichore inversions and intra-replichore inversions, respectively. In
results presented here we have used only symmetric inversions, but nonsymmetric
inter-replichore inversions can be generated because of unbreakable segments (see
below).

For symmetric inversions, SIB has as a parameter the distance between the
endpoints and the origin, the inversion length. We model these lengths by a nor-
mal distribution, N�(μ�, σ�), where μ� is the mean length and σ� is its standard
deviation. In the simulations presented here we have used the empirically de-
rived values of μ� = n/3 and σ� = n/5, where n is the number of points in the
simulation.
Unbreakable segments. Another fact that emerges from chromosome sequence
comparisons of bacterial species is that even widely separated species will gen-
erally contain small syntenic blocks, that is, groups of genes (generally between
2 to 10) whose order is conserved across species [18, 5, 14]. We model this phe-
nomenon by determining that each genome contains consecutive points that form
an “unbreakable segment”. When a symmetric inversion endpoint is inside an
unbreakable segment, we create an asymmetry by extending the endpoint to the
border of the segment in order to include the segment as a whole. The (desirable)
side effect of this feature is that some points, after the inversion, will appear in
areas outside the main diagonal strips.
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We model number and size of unbreakable segments by a normal distribution
Nun(μun, σun), where μun is the mean size of an unbreakable segment and σun

is the respective standard deviation. We have used the values μun = 3 and
σun = 10. These values were derived from the Pseudomonadaceae processed
dotplots.
Number of points. The number of points is also a parameter of the simula-
tion. For the results we present we have adopted the value 2,500, which is (in
round numbers) the average number of points we have observed in processed
Pseudomonadaceae dotplots.
Simulated scenarios. SIB can simulate the evolution of all nodes in a tree
whose topology is provided by the user using the Newick format. Parameters
that control these evolutionary scenarios are: the depth of the tree and the
number of inversions between a parent node and its children.

4 Comparison between Real Dotplots and Simulations

For the purposes of comparing our simulated results with processed dotplots,
we create a simulation scenario in the following way. It is a 2-branch simula-
tion, and the number of generations between the root and the two leaf nodes is
4,000. Between any two levels (two generations) 5 inversions take place on each
branch. Thus we can obtain a pairwise comparison of the left and right branches
at any level along the simulation. Because the simulation incorporates pseudo-
randomness in the lengths of inversions and size of unbreakable segments, each
simulation run with the same parameter values can produce a different result
(and hence a different scenario).

We have carried out all pairwise MUMmer comparisons between all pairs of
genomes in each of the three bacterial groups of Table 1. Each one of these
dotplots was converted to a point in 3-dimensional space given by the values of
d1, d2 and d3 (defined in the previous section). Each level in a simulated scenario
also results in a point in 3D space. We can thus determine the closest simulated
dotplot to any given processed dotplot by simply finding the simulated dotplot
with smallest Euclidean distance to the processed dotplot.
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In Figure 2 we show three dotplots obtained from one of these scenarios. Us-
ing the method described in the previous paragraph we associate each processed
dotplot to the closest simulated dotplot obtained from 10 different simulated
scenarios. In Figure 3 we show the resulting histograms of distances for each of
the three bacterial groups. The best histogram is the one for the Pseudomon-
adaceae, since the vast majority of distances was zero. The histograms for the
other two groups were not as good, but most distances obtained were small.
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As another test of our simulations we inferred a dendrogram from simulated
data in the following way. The association between a processed dotplot and its
closest simulated dotplot allows us to associate each processed dotplot with the
number of inversions used to generate the simulated dotplot that is closest. That
number of inversions can be seen as a distance between the two chromosomes that
originated the processed dotplot. Using the resulting distance matrix as input for
the program neighbor (which implements the neighbor-joining algorithm [11])
available in the package PHYLIP [4] we generated a dendrogram for each of the
three bacterial groups. These dendrograms are shown in Figures 4, 5 and 6.

Are these dendrograms good or not? We have compared each to the best phy-
logenetic tree that we could find for each of the three bacterial groups. These
trees are shown in Figures 7, 8, and 9 (sources are given in figure legends). We
show only the topology of each tree. These three trees were generated by max-
imum likelihood methods using concatenation of protein sequences. Note also
that the sets of genomes in the Pseudomonadaceae and Xanthomonas trees are
not exactly the same as the sets we used (more genomes have become avail-
able since the Pseudomonadaceae tree was published [13] and the published
Xanthomonas tree [8] contains two unfinished genomes). A comparison between
each dendrogram and its respective tree shows that we obtained best results for
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the Pseudomonadaceae family. The discrepancies we observed include: the fluo-
rescens clade grouped with the putida clade instead of the syringae clade; and P.
mendocina paired with the aeruginosa clade, rather than being an outgroup for
all except P. stutzeri and A. vinelandii. The Xanthomonas comparison shows a
discrepancy in the grouping of the X. citri clade with the campestris clade rather
than the oryzae clade. Finally a noteworthy discrepancy in the Shewanella den-
drogram is that S. oneidensis was placed at the base of the tree.
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The topological similarity between our dendrograms and the maximum likeli-
hood trees was also assessed by using the method presented by Vienne et al. [16].
This methods tests the null hypothesis that trees are not more topologically
similar than expected by chance. In the case of Pseudomonadaceae the result-
ing p-value is 7 × 10−6; the p-values for both Xanthomonas and Shewanella is
1.3 × 10−2. This confirms that our results for Pseudomonadaceae were much
better than for Xanthomonas and Shewanella. In presenting these comparisons
we are taking the maximum likelihood trees as ground truth, but it is of course
possible that even they may contain errors.

It is important to mention that the creation of the dendrograms is an indirect
way of computing the inversion distance between any two real genomes for which
there is a processed dotplot. It is also possible to compute the distance directly
using our notion of points and an algorithm for signed inversion distance [15].
However, because of the differences between various members of each bacterial
group (differences in size and in number of matched regions) it is far from clear
how these direct distances are to be related to one another in an uniform way
so as to be usable for dendrogram creation.

Based on the histogram of distances and on the dendrograms obtained we
conclude that SIB does a good (albeit not perfect) job of simulating the evolution
of inversion rearrangements in the chromosomes of the three bacterial groups
under study. The results for the Pseudomonadaceae family were better than for
the other two. We believe that this was the case primarily because our empirical
parameter values were derived from Pseudomonadaceae comparisons.

SIB was implemented using the Python programming language. The simula-
tions presented here were run on a standard desktop computer (2.4 GHz Intel
core 2 Duo machine with 2 GB memory). The approximate time spent to gener-
ate a complete binary tree simulation with depth 4 and a total number of 4, 000
symmetric inversions between the root and the leaves is about 15 seconds. Simu-
lations of 2-branch scenarios with 4,000 inversions also take 15 seconds. Distance
calculation was the most expensive computation, taking on average about two
hours, but that of course is not part of the simulation per se.
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5 Evaluation of One Reconstruction Program

In this section we present results of an evaluation of the MGR program [1] using
SIB. MGR tries to reconstruct ancestral chromosomes assuming that the only
possible rearrangement event is a general unconstrained inversion and using a
parsimony criterion to infer inversion events.

Because MGR takes time prohibitively long with 2,500 points, we decided
to evaluate it under a simple evolutionary case, described in Figure 10. In this
case, there are just 150 inversions between the root and leaves A and B, and
300 inversions between the root and leaf C. The reconstruction problem for this
case is also known as the median problem [10].

A

B
C

root

Fig. 10. Simple evolutionary scenario used to evaluate the program MGR

Fig. 11. Dotplots that result from comparing the reconstructed ancestor and the three

descendants A, B and C (above) and corresponding correct dotplots (below)

We generated 10 different scenarios for the case described above. On average,
the MGR reconstruction requires 380 inversions along all branches, as compared
to the total of 600 inversions actually performed. This suggests that the parsi-
mony criterion may not be a good criterion when reconstructing inversion history
in bacteria.

In figure 11, we show the dotplots relative to the comparison of the recon-
structed root with all leaves, for one specific scenario (the results are similar
for other scenarios). Below each dotplot we show the actual dotplot that should
have been obtained.
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We can also compare the roots (in different scenarios) reconstructed by MGR
to the actual roots in terms of breakpoint distance. If the reconstruction were
perfect that distance would be zero. On average we obtained the value 119.

These results shows that MGR fails to reconstruct correctly the ancestors in
our simulation. To the extent that our simulation is faithful to actual evolution
in bacteria this suggests that MGR would not reconstruct correctly chromoso-
mal ancestors either. This result is not surprising given the evolutionary model
embedded in our simulation and the evolutionary model assumed by MGR, with
its emphasis on the reconstruction of the most parsimonious scenario.

We have tried to test other reconstruction tools with SIB data, but MGR was
the only one that was able to handle the input sizes described here.

6 Conclusion

In this work we presented the first simulation tool for the study of genomic in-
versions in bacterial genomes. The tool is in a preliminary stage of development.
There are numerous improvements that can be made. Our method for analyz-
ing X patterns in dotplots can be substantially improved by actually detecting
the main matched backbone. We plan to model the backbone by a Longest In-
creasing Subsequence problem and combine the result with a regression analysis.
This can be done for both forward and reverse matches. Such a method will be
able to deal with situations when there are significant nonsymmetric inversions
or when large deletions are present. This will allow us in turn to improve the
evolutionary model, in particular explicitly modeling nonsymmetric inversions.
Detailed study of the Xanthomonas and Shewanella results will probably result
in revised models for inversion lengths and unbreakable segment number and
lengths, and their associated parameter values. Care must be exercised in imple-
menting all these changes because our experience so far has already shown that
better modeling of one specific aspect sometimes yields worse overall results.

More detailed comparisons of our dendrograms and published phylogenetic
trees may result in additional improvements, which could incorporate some no-
tion of clade confidence. This would be akin to what is obtained from bootstrap
analysis in phylogenetic reconstruction. The tool and its code are freely available
at http://www.ic.unicamp.br/∼udias/sib.
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Abstract. In comparative genomics, various combinatorial models can be used
to specify gene clusters — groups of genes that are co-located in a set of genomes.
Several approaches have been proposed to reconstruct putative ancestral gene
clusters based on the gene order of contemporary species. One prevalent and
natural reconstruction criterion is consistency: For a set of reconstructed gene
clusters, there should exist a gene order that comprises all given clusters.

In this paper, we discuss the consistency problem for different gene cluster
models on sequences with restricted gene multiplicities. Our results range from
linear-time algorithms for the simple model of adjacencies to NP completeness
for more complex models like common intervals.

1 Introduction

The exploration of the ancestral history of different species can give valuable informa-
tion about their evolution. In whole-genome comparison, one commonly considers the
order of the genes or other markers within the genome to study changes and similarities
in the structure of different genomes.

Genes belonging to the same gene family are represented by the same identifier. To
simplify matters, the term ‘gene’ will be used to refer to the corresponding gene family
identifier. One simple way to model genomes is to use permutations. However, this ap-
proach includes the assumption that every gene occurs exactly once in each considered
genome. To allow for duplications and deletions, a relaxation to sequences of genes is
necessary. A convenient way to account for the orientation of a gene within the genome
is to use signed permutations or signed sequences, respectively.

Evolutionary processes can rearrange a gene order. The gene composition of some
regions, however, is preserved and can be found in several related genomes. These seg-
ments, denoted as gene clusters, often contain functionally or evolutionarily associated
genes [14, 16]. Whenever the genomes of several species comprise the same gene clus-
ter, it was presumably inherited from a common ancestor. Recent studies [1, 2, 7, 19]
build on this idea to reconstruct ancient gene clusters and to infer ancient gene orders.
More precisely, the internal nodes of a given phylogenetic tree are labeled with sets
of gene clusters, based on the gene orders of contemporary species at the leaves of the
tree. Beside the pure identification of gene clusters, such reconstructed scenarios for the
origin of the clusters and the development of the gene order can give valuable informa-
tion about underlying evolutionary processes, the ancestral history of the species, and
functional and evolutionary relations of genes.

E. Tannier (Ed.): RECOMB-CG 2010, LNBI 6398, pp. 252–263, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Proposed reconstruction approaches differ in the underlying models for gene order
and gene clusters, and in the applied methodology. However, a general aim is to ensure
consistency: For a set of putative ancient gene clusters, there should exist at least one
gene order that comprises all given clusters. Otherwise, the reconstruction result would
be inconsistent with respect to the genome model.

The goal of reconstructing consistent labelings was first introduced by Bergeron et
al. [2] who presented an algorithm that reconstructs sets of framed common intervals on
permutations. Adam et al. [1] applied the parsimony principle as an objective function
to reconstruct common intervals on permutations. A heuristic is used to reach consis-
tency. Recently, Chauve and Tannier [7] proposed a methodology to reconstruct the
gene order of the amniote genome, based on consistent labelings of common intervals
and adjacencies. In our previous work [19], we introduced an algorithmical framework
that is not restricted to a specific model but instead follows an oracle-based approach to
compute most parsimonious consistent labelings for various models.

All of the above methods have been successfully applied to real data and proven
to yield reasonable and valuable results. They all rely on permutation-based models,
which enable efficient algorithms and data structures. In particular, the verification of
consistency can be solved in polynomial time and space using data structures like PQ-
trees or PC-trees [10]. Some reconstruction approaches could be easily adapted to the
model of sequences without duplications which allows genes to be missing in some
genomes but still requires each gene to occur at most once in each genome.

In this paper, we discuss consistency for sequence-based gene cluster models. Par-
ticularly, we consider the simple model of adjacencies, the classical model of common
intervals [20], and two variants of the latter. For each of these models we address the
problem: Given a set of gene clusters and a maximum copy number for each gene, de-
cide whether there exists a valid gene order that contains all the clusters. Our results
range from algorithms that verify consistency for adjacencies in linear time to the con-
firmation of NP completeness for the more complex models.

The paper has been organized in the following way. First, we formally introduce
the Consistency Problem in Section 2. Then, in Section 3, we give an efficient solution
for the gene cluster model of both signed and unsigned adjacencies. In Section 4, we
present NP completeness results for the model of common intervals and its variants,
before we finish with some discussions and conclusions in Section 5. The technical
details of the NP completeness proofs can be found in [21, Appendix A].

2 The Consistency Problem

Assume a set of putative gene clusters, assigned to an ancestral node in a given tree.
These ancient clusters in turn imply a set of putative ancient genomes: all those which
contain all the given clusters. Depending on the gene cluster model used, this set of
genomes can be empty if some of the clusters derived from different contemporary
species are in contradiction with others. For example, when we model gene order as per-
mutations, there is no valid gene order comprising the three adjacencies {a, b}, {a, c}
and {a, d}, because, according to the model, gene a can only occur once and thus only
be neighbor of two other genes.
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. . .,2,1,3,. . .
⇒ {1,2}, {1,3}

. . .,2,1,4,. . .
⇒ {1,2}, {1,4}

. . .,3,1,4,. . .
⇒ {1,3}, {1,4}

{1,2}
{1,3}
{1,4}

⇒ . . .,2,1,3,. . .,1,4,. . .

Fig. 1. Example for an artifact that arises when gene clusters are reconstructed on the basis of
gene orders, where any gene can occur arbitrarily often. Any most parsimonious labeling would
assign all three adjacencies to the lowermost internal node, implying at least two copies of gene 1.

In a more general case, we represent genomes as sequences of genes or other ge-
nomic markers. In a sequence, any element can occur multiple times or not at all, which
in the context of gene order comparison corresponds to paralogous genes and gene
deletions, respectively.

If we allow each gene to appear arbitrarily often in any genome, the question for
consistency would become redundant: Any set of gene clusters is consistent since there
is a valid gene order containing all assigned clusters. For instance, we can simply create
a short sequence of genes according to each cluster separately and then concatenate
these sequences to an absurd yet valid gene order. Such a construction is possible for any
gene cluster model. As a consequence, consistency always holds and does not contribute
to a specification of reasonable reconstruction results.

Even if we replace the naive concatenation approach and instead construct preferably
compact valid gene orders, we cannot avoid to include some genes multiple times. In
some cases, this causes side effects. In the example given in Figure 1, the classical
parsimony principle is applied to assign gene clusters to the inner nodes of a given tree,
minimizing the number of gains and losses of clusters. Although a gene is contained
in all input genomes only once, it is reconstructed to occur multiple times for ancestral
nodes. In this simple example, we consider a subsequence of only three genes in each
input genome and obtain a segment of five genes for the examined internal node. In
general, such artifacts imply unnaturally long genomes for higher levels in the tree.

To preclude this unwanted effect, we refine the concept of consistency. Instead of
simply restricting the total length of a genome, we limit the multiplicity of each indi-
vidual gene.

In the following problem definition, we intentionally refrain from specifying a con-
crete model of gene clusters and instead use the imprecise notion of a sequence con-
taining a cluster. For instance, in the simple model of gene adjacencies, a sequence g
contains a gene cluster {a, b} if and only if the genes a and b occur adjacently in g.

Definition 1 (Consistency Problem). Let GN := {1, . . . , N} be the set of genes and
m : GN → N assign a maximum copy number to each gene. Further, let C be a set of
gene clusters. The consistency problem is to decide if C is consistent with respect to m,
i.e. whether there exists a sequence s over GN for which the following properties hold:

(i) s contains each gene g at most m(g) times, and
(ii) s contains all gene clusters c ∈ C.
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Whenever we want to consider consistency as a reconstruction criterion, we have to
provide a solution for the above problem. As we will see in the following sections, the
problem complexity highly depends on the specific cluster definition.

In our framework, we assume that the gene multiplicities are given. Nevertheless, we
want to sketch some ways to specify m(g) for the internal nodes in the phylogenetic
tree.

For some specific datasets, we can rely on knowledge about the genomic history. For
instance, several studies suggest two whole genome duplications in the evolution of the
Chordate genome in the teleost fishes lineage [13]. Such information can be used to
deduce the ancestral number of genes.

Otherwise, the most accurate but also elaborate approach would be to deploy gene-
tree species-tree reconciliation [17] to reconstruct the history of the genes in terms of
speciation events, gene duplications and gene losses. Less extensive and more suitable
for our needs, one could also utilize approaches which do not require any further data
or pre-knowledge. Probability-based methods [8] could be applied to effectively and re-
liably infer ancestral gene multiplicities mv(g) for all internal nodes v, given the copy
number at the leaves. Or, we could apply the concept of parsimony and minimize the
amount of copy number differences. A less restrictive solution is to define the multiplic-
ity of a gene g for node u in a bottom-up fashion as the maximum over the multiplicities
of its child nodes v1, . . . , vk : mu(g) := max

i=1,...,k

(
mvi(g)

)
.

Instead of performing a separate preprocessing step to fix the thresholds in advance,
one could also try to include the gene multiplicity into the overall objective of the re-
construction. However, in general, optimizing for a combination including an original
objective, consistency, and the gene copy number would be an intricate task due to the
strong interdependencies of the subcriteria.

3 An Efficient Solution for Adjacencies

Probably the simplest formalization of co-localization of genes is the concept of ad-
jacencies, i.e. two directly neighboring genes. This elementary pattern of gene order
conservation, also known as gene pairs or neighboring genes, has been widely used
in whole genome comparison. Especially in the field of gene order reconstruction, this
model is one of the most prevalent concepts [4, 7, 15].

3.1 Unsigned Adjacencies

In the following, we formalize the concept of adjacencies and present a method to ef-
ficiently solve the consistency problem for adjacencies on sequences, i.e. to decide if
there exists a sequence that contains a set of given adjacencies while considering each
gene g at most m(g) times. To model the problem, we use a graph theoretic approach.

Definition 2 (Unsigned Adjacencies on Sequences). Let GN := {1, . . . , N} be a set
of genes. An adjacency {a, b} of the genes a, b ∈ GN is contained in a sequence s over
GN if and only if a and b occur adjacently at least once in s.
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Definition 3 (Gene Order Graph). Let GN = {1, . . . , N} be a set of genes and C be a
set of pairs {a, b} with a, b ∈ GN . Then, the gene order graph of C, denoted by GN (C),
is the graph with the vertex set {vg | g ∈ GN} and the edge set

{
{va, vb} | {a, b} ∈ C

}
.

The gene order graph of a set of adjacencies C can be constructed in O(N + |C|) time
and space. In this process, we keep track of the degree of each node vg , denoted by
deg(vg). Then, the following lemma allows us to check for consistency of C in O(N)
steps and thus in a total running time and with a space requirement of O(N + |C|).

Lemma 1. Let GN = {1, . . . , N} be a set of genes and let m : GN → N assign
a maximum copy number to each gene. Further, let C be a set of pairs {a, b} with
a, b ∈ GN and GN (C) = (V, E) be the gene order graph of C. Then, C is consistent
with respect to m if and only if the following conditions hold:

(i) deg(vg) ≤ 2m(g) for all vertices vg ∈ V , and
(ii)

∑
vg∈c

(
2m(g)− deg(vg)

)
> 0 for each connected component c in GN (C).

Proof. Assume we have given GN , m, C and GN (C) as required by the lemma. We
extend the gene order graph GN = (V, E) to a multigraph HN = (V ′, E′), where the
new vertex set contains one additional node v0, i.e. V ′ = V ∪ {v0}. The multiset of
edges E′ contains all edges in E with multiplicity one and further auxiliary edges: For
each vertex vg �= v0 with deg(vg) < 2m(g) we add the edge {v0, vg} with multiplicity
2m(g)− deg(vg) to E′.

If condition (i) of the lemma holds, then all nodes in the obtained extended graph
have even degree: All vertices vg �= v0 are filled up to a degree of 2m(g) and v0

is incident to
∑

vg∈V

(
2m(g)− deg(vg)

)
=
∑

vg∈V 2m(g) − 2|C| edges. Further,
condition (ii) implies that for each connected component of GN , in the extended graph,
at least one edge connects this subgraph to v0. Hence, HN is connected.

Conditions (i) and (ii) imply that HN is Eulerian. That means, there is a path starting
and ending in v0 which contains all edges, especially the edges of the original gene order

Fig. 2. An example to illustrate the proof of Lemma 1. Consider the set of genes G7 with the
multiplicities m(g) = 2 for g ∈ {2, 5} and otherwise m(g) = 1, and the set C =

{{1, 2},
{1, 3}, {2, 3}, {2, 4}, {5, 6}, {5, 7}, {6, 7}} of unsigned adjacencies. The gene order graph
G7(C) is depicted including the extensions described in the proof. The solid edges corre-
spond to the original edges as defined by the given adjacencies, and the dashed lines rep-
resent the auxiliary edges. The obtained extended graph contains, for instance, the Eulerian
cycle (v0, v2, v1, v3, v2, v4, v0, v5, v6, v7, v5, v0), which corresponds to the valid gene order
(2, 1, 3, 2, 4, 5, 6, 7, 5).
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graph, exactly once. Since each node vg �= v0 has a degree of 2m(g), it is traversed
exactly m(g) times. Each such Eulerian path corresponds to a sequence of genes that
contains all adjacencies in C and each gene g exactly m(g) times, as exemplified in
Figure 2. Thus, C is consistent with respect to m.

On the contrary, if condition (i) is not satisfied, there is at least one gene g that is
contained in more given adjacencies than its multiplicity m(g) allows. And, if condition
(ii) does not hold for any connected component c, the maximal number of adjacencies
of all genes in c is exhausted and the genes cannot be put into a linear order, i.e. a cycle
containing v0, with the remaining genes. In both cases, the existence of a valid gene
order is precluded and thus, consistency is disproven. ��

3.2 Signed Adjacencies

A slightly more sophisticated variant of the adjacency model is motivated by the ob-
servation that the orientation of genes can play a role in co-expression and also in gene
order conservation [11].

Definition 4 (Signed Adjacencies on Signed Sequences). Let GN := {1, . . . , N} be
a set of genes. A signed adjacency {a, b} of the genes a, b ∈ {g,−g | g ∈ GN} is
contained in a sequence s over GN if and only if a is directly followed by −b, or b by
−a at least once in s.

Example 1. Consider the model of signed adjacencies for N = 4. The signed adjacency
{2,−3} is contained in both sequences s1 = (1, 2, 3, 4) and s2 = (4, 1,−3,−2). No
other signed adjacencies of the genes 2 and 3 are contained in any of the two sequences.

We transfer the general idea from the unsigned to the signed case. To this end, we adjust
the definition of the gene order graph. Now, each gene g is represented by two nodes in
the graph, where each such pair is connected by m(g) edges.

Definition 5 (Signed Gene Order Graph). Let GN = {1, . . . , N} be a set of genes
and let m : GN → N assign a maximum copy number to each gene. Further, let C
be a set of pairs {a, b} with a, b ∈ {g,−g | g ∈ GN}. Then, the signed gene or-
der graph of C, denoted by Gs

N (C), is the multigraph with the vertex set {vg, v−g |
g ∈ GN} and the multiset of edges

{
{vg, v−g} with multiplicity m(g) | g ∈ GN

}
∪{

{va, vb} with multiplicity one | {a, b} ∈ C
}

.

Similarly to the unsigned case, we can construct the graph in O(N + |C|) time.

Lemma 2. Let GN = {1, . . . , N} be a set of genes and let m : GN → N assign a
maximum copy number to each gene. Further, let C be a set of signed adjacencies {a, b}
with a, b ∈ {g,−g | g ∈ GN} and Gs

N (C) = (V, E) be the signed gene order graph of
C. Then, C is consistent with respect to m if and only if the following conditions hold:

(i) deg(vg) ≤ 2m(|g|) for all vertices vg ∈ V , and
(ii)

∑
vg∈c

(
2m(|g|)− deg(vg)

)
> 0 for each connected component c in Gs

N (C).
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(a) (b)

Fig. 3. Illustration of the relation of improper and proper Eulerian cycles in an extended signed
gene order graph as described in the proof of Lemma 2

Proof. We proceed analogously to the unsigned case described in the proof of Lemma 1:
We extend the signed gene order graph Gs

N = (V, E) to a multigraph Hs
N = (V ′, E′),

where the new vertex set contains one additional node v0, i.e. V ′ = V ∪ {v0}. The
multiset of edges E′ contains all edges in E with multiplicity one and further auxiliary
edges: For each vertex vg �= v0 with deg(vg) < 2m(|g|) we add the edge {v0, vg} with
multiplicity 2m(|g|)− deg(vg) to E′.

Then, again, the conditions (i) and (ii) of Lemma 2 imply the existence of an Eu-
lerian path in Hs

N (C). But in this case, the correspondence of such a path to a valid
gene order is not trivial. When the pair of nodes representing gene g is traversed by
a path (. . . , v−g, vg, . . .), this relates to a signed gene order (. . . , g, . . .), whereas a
path (. . . , vg, v−g, . . .) correlates to a signed gene order (. . . ,−g, . . .). By definition,
Hs

N (C) includes m(|g|) edges {vg, v−g}. An Eulerian cycle passes each of these edges,
but not necessarily in the above mentioned way. It might also be of the form (. . . , vf ,
v−g, vg, v−g, vh . . .) with f �= g �= h, which does not represent a signed gene order. In
this case, m(|g|) ≥ 2 and due to the construction of the extended graph, there are m(|g|)
edges {vg, v−g} and at least m(|g|) edges {vg, vh}with h �= −g. Hence, the considered
Eulerian cycle has to pass node vg again in the form . . . , vi, vg, vj , . . . with i �= −g �= j,
as shown in Figure 3(a). However, whenever this situation arises, it is always possible
to construct an alternative Eulerian cycle (v0, . . . , v−g, vg, . . . , v−g, vg, . . . , v0), as de-
picted in Figure 3(b). If this modification is performed for all such improperties, the
obtained Eulerian cycle is proper in the sense that it represents a signed gene order
(. . . , g, . . . , g, . . .). Thus, conditions (i) and (ii) imply not only the existence of an Eu-
lerian path but also the existence of a valid signed gene order and hence consistency of
C with respect to m. The reverse direction of the lemma holds analogously to Lemma 1.

��

Based on the definition of a gene order graph, Lemmas 1 and 2 provide algorithms to
solve the consistency problem on adjacencies on sequences in time and space linear in
the number of genes and in the number of given adjacencies. Both the models and the
lemmas can easily be modified to allow one circular gene order or even several circular
chromosomes. Only the connectivity requirement has to be relaxed correspondingly.

4 NP Completeness for Common Intervals

To find larger conserved regions, we now address a model for gene clusters that, in con-
trast to adjacencies, generally span more than two genes: Common intervals, segments
of the genome containing the same set of genes in an arbitrary order but not interrupted
by other genes.
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4.1 Basic Common Intervals

In line with other studies, we base our definition on the notion of character sets, which
enables us to formalize the cluster model in a straightforward way. Since we will utilize
this term for models on signed sequences later on, we directly define it for the general,
signed case. Although, in our framework, a common interval is defined on a single gene
order, we stick to the term common to not confuse the reader familiar with this gene
cluster model by redefining the same concept under a different name.

Definition 6 (Character Set). Let s = (a1, . . . , a|s|) be a signed sequence. Then, the
character set of s, denoted CS(s), is the set of all elements in s: CS(s) :=

{
|a| | a ∈

{a1, . . . , a|s|}
}

.

Definition 7 (Common Intervals on Sequences). Let GN := {1, . . . , N} be a set of
genes. Then, a common interval c ⊆ GN with |c| > 1 is contained in a sequence s over
GN if and only if s contains a substring s′ such that CS(s′) = c.

Recall that we want to find an answer to the question: Given a set of common intervals
C and a multiplicity threshold function m, is there a valid gene order that contains all
elements of C and meets the restrictions imposed by m? As we will show now, this
problem is NP complete.

Theorem 1. The consistency problem for common intervals on sequences is NP com-
plete.

Proof (Sketch). One can easily formulate an algorithm that verifies a given solution, i.e.
a proper gene order, for correctness in polynomial time, which shows that the problem
belongs to the complexity class NP.

NP hardness is proven by reduction from the following variant of the Hamiltonian
cycle problem: Let G = (V ∪W, E) be a connected, undirected, bipartite graph with
|V | = |W | ≥ 3, E ⊆

{
{v, w} | v ∈ V, w ∈ W

}
and deg(u) = |{e ∈ E|u ∈ e}| ≤ 3

for all u ∈ V ∪W . Decide whether there exists a Hamiltonian cycle in G, i.e. a path
in G that starts and ends in the same vertex v′ ∈ V and in-between contains each
vertex v ∈ V \{v′} exactly once. This problem is known to be NP complete [12]. By
reducing it to the consistency problem for common intervals in polynomial time, we get
NP hardness of the latter problem.

For a given graph as stated in the problem definition, we construct an instance of the
consistency problem as follows: For each node, depending on its degree, and for each
edge, depending on the graph structure, we add certain elements to the set of genes
and define certain common intervals. We restrict the multiplicity of the genes such that
common intervals have to overlap in a valid gene order in specific substrings. Each
of these substrings corresponds to a node or an edge in the graph, and overlapping
substrings correspond to paths in the graph. Finally, we show that the substrings can be
combined to a complete, valid sequence if and only if there is a Hamiltonian cycle in
the graph. Details are given in [21, Appendix A.2]. ��
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4.2 Variants of Common Intervals

Beside its classical definition, there are different generalizations of common intervals
on sequences discussed in the literature, such as r-window clusters and max-gap clus-
ters [9], or approximate gene clusters [6,18]. Since the consistency problem is NP com-
plete for basic common intervals, any generalization is NP hard as well.

In contrast to generalizations, there are also other cluster models which are restricted
variants of common intervals. In the following, we will discuss such models, in partic-
ular framed and nested common intervals.

Framed Common Intervals

This gene cluster model, common intervals framed by two genes whose orientations
have to be conserved, has first been introduced on permutations as conserved inter-
vals [3]. In gene order reconstruction, framed common intervals on permutations have
been the first model to formally state the problem of finding putative ancestral sets of
gene clusters preserving consistency [2].

Definition 8 (Framed Common Intervals on Signed Sequences). Let GN :=
{1, . . . , N} be a set of genes. A framed common interval [a I b] consists of two extrem-
ities a and b with |a|, |b| ∈ GN , and a set of inner elements I ⊆ GN . We say that [a I b]
is contained in a signed sequence s, if and only if in s, a is followed by b or −b by −a,
and the character set of the substring between the extremities is equal to I .

According to this definition, a gene can be extremity and inner element, or even left and
right extremity at the same time. Apart from that, analogously to basic common inter-
vals, a cluster can occur multiple times in one genome, and one gene can be contained
several times in one cluster occurrence, as illustrated by the following example.

Example 2. Consider the model of framed common intervals for N = 6 and sequence
s = (5, 4,−2,−1, 2,−3, 6). Beside others, the framed common interval [4 {1, 2}−3],
is contained in s as illustrated by the box diagram below, where the occurrences of the
extremeties and the inner elements are surrounded by rectangles:

s = ( +5, +4, −2, −1, +2, −3, +6 ) .

The obvious relationship of basic and framed common intervals allows to infer an im-
portant correlation of these models with respect to the consistency problem: Any in-
stance of this problem for common intervals can be reduced to an instance for framed
common intervals. Based on this, we can deduce the following statement.

Theorem 2. The consistency problem for framed common intervals on signed sequences
is NP complete.

Proof (Sketch). To show NP hardness, we reduce the consistency problem for common
intervals to the consistency problem for framed common intervals in polynomial time.
To this end, we introduce two additional genes with a certain multiplicity and, for each
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basic common interval, we create a framed common interval including these genes as
framing and inner elements. Then, any valid gene order for one problem instance can
be transformed into a valid gene order for the other instance by removing occurrences
of the additional genes or inserting them, respectively. Details are given in [21, Ap-
pendix A.3]. ��

Nested Common Intervals

Hoberman and Durand [9] discussed nestedness as a desired property of gene clusters
and proposed a first algorithm to identify respective clusters. Recently, nested common
intervals were formally defined and studied in [5].

Definition 9 (Nested Common Intervals on Sequences). Let GN := {1, . . . , N} be a
set of genes. The structure of a nested common interval is defined recursively. A nested
common interval is either

(i) an unordered pair of genes {a, b} with a �= b, which is contained in a sequence s
over GN if and only if a and b are adjacent in s, or

(ii) a tupel (c, a) of a nested common interval c and a gene a, which is contained in
a sequence s if and only if, in s, a is adjacent to a substring s′ of s such that
CS(c) = CS(s′) and c is contained in s′,

where the character set of a nested common interval is the set of all contained genes:
CS({a, b}) := {a, b} and CS((c, a)) := CS(c) ∪ {a}.
Similar to the other cluster models discussed above, any nested common interval may
occur multiple times in one genome and one gene may be contained multiple times in
the occurrence of a cluster in one genome. Analogously to framed common intervals,
one gene may be incorporated in the definition of one cluster several times.

Example 3. Consider the model of nested common intervals for N = 6 and sequence
s = (5, 4, 2, 1, 2, 3, 6). Then, beside others, the nested common interval (({2, 3}, 1), 4)
is contained in s as illustrated below, where the occurrences of the subclusters are indi-
cated by lines:

(5, 4, 2, 1, 2, 3, 6) .

Even the strict assumption of nestedness is not strong enough to allow an efficient ver-
ification of consistency.

Theorem 3. The consistency problem for nested common intervals on sequences is NP
complete.

Proof (Sketch). NP hardness is proven similarly to Theorem 1. The common intervals
used in that proof can be replaced by certain nested common intervals such that the
argumentation holds similarly. Details are given in [21, Appendix A.4]. ��

Further Variations and Restrictions

Our NP completeness results also hold for further variations of the above models:
defined on circular sequences, restricted in size, basic and nested common intervals
containing each gene at most once etc. These results are detailed in [21] and will be
discussed elaborately in the full version of this paper.
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5 Conclusion

In this paper, we have discussed the consistency problem, i.e. the decision whether there
exists a valid gene order comprising a given set of gene clusters. We have discussed this
question for different gene cluster models on sequences with restricted gene multiplic-
ities. In summary, we identified a severe border between gene cluster models for which
we can verify consistency efficiently and those for which we cannot. The complexity
rises drastically from linear for adjacencies to NP hard for more general cluster models,
even if they are strongly restricted.

This raises the question for a sequence-based gene cluster model that, on the one
hand, allows some degree of flexibility and, on the other hand, offers a polynomial-
time algorithm to verify consistency. The integration of such a model into any of the
existing reconstruction methods could increase sensitivity. Actually, first results on both
simulated and real data indicate that within segments of conserved gene content, the
order of the genes is conserved almost exactly [21]. Thus, a model covering only single
missing or additional genes, or the reversal of two neighboring genes could already
enhance reconstruction results strongly.

Another way to find a practical solution for flexible models is not to be deterred by
the NP hardness results. In fact, the reduction procedures on which the proofs are based
produce instances of the consistency problem where the multiplicity for some genes
grows with the instance size. This suggests to reconsider the problems in the context of
fixed parameter tractability. However, our first investigations in this direction were not
promising. Moreover, the maximum copy number of genes observed in real data can be
large in general.

We implemented the gene order graph to model adjacencies on sequences and in-
tegrated this gene cluster model into our unified reconstruction framework, presented
in [19], available from the web site bibiserv.techfak.uni-bielefeld.de/
rococo/. An elaborate description of the method and the results can be found in [21].
We refrain from reporting detailed results here because these are concerned more with
the reconstruction method than with the general concept of consistency discussed in
this paper. Nevertheless, we would like to mention the following overall findings. Sim-
ulations showed that estimating the gene multiplicities using the simple maximum ap-
proach does not significantly decrease the accuracy of the reconstruction compared to
using the “real” simulated copy numbers. Furthermore, we applied our method on ge-
nomic data of Corynebacteria using different gene cluster models: Common intervals
on permutations and adjacencies on sequences. A comparison of the results revealed
a large overlap. Nevertheless, many conserved segments could only be identified by
either of the approaches. This highlights the importance of studying gene cluster recon-
struction with respect to different, especially flexible models for gene clusters and the
relaxed model of sequences for gene order.
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Abstract. Whole genome comparison based on the analysis of gene
cluster conservation has become a popular approach in comparative ge-
nomics. While gene order and gene content as a whole randomize over
time, it is observed that certain groups of genes which are often function-
ally related remain co-located across species. However, the conservation
is usually not perfect which turns the identification of these structures,
often referred to as approximate gene clusters, into a challenging task.
In this paper, we present a polynomial time algorithm that computes
approximate gene clusters based on reference occurrences. We show that
our approach yields highly comparable results to a more general approach
and allows for approximate gene cluster detection in parameter ranges
currently not feasible for non-reference based approaches.

1 Introduction

Whole genome comparison on the level of gene order has become an important
field of comparative genomics. It is well known that genomes evolve not only
on the level of nucleotide sequence but also by means of large-scale rearrange-
ments operations, such as inversions and transpositions, as well as changes in
the gene content. Focusing on this large-scale structure, genomes are usually
modeled as strings of integers so that genes belonging to the same gene family
are represented by the same integer. If no selective pressure was acting on whole
genome evolution, gene order and gene content would randomize over time. In
practice, we observe a low overall gene order conservation between species that
is contrasted by a number of small, well-conserved segments, often referred to
as gene clusters. Such local aberrations from genome randomization are known
to provide highly informative signals for functional analysis. The identification
of these structures can be a challenging task as conservation patterns may be
highly variable across species. Due to micro-rearrangements, gene order can vary
across cluster occurrences, and due to gene insertions and gene losses, cluster
occurrences may be interrupted by genes that do not belong to the cluster, and
contain only a subset of the clustered genes. To cope with such variations, dif-
ferent approximate gene cluster models have been proposed in the last years.

One of the first formal gene cluster models are common intervals which allow
for variable gene order and multiple gene copies within cluster occurrences, but
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not for differences in the set of contained genes. Due to this restriction, the com-
putation of gene clusters under the common intervals model runs in polynomial
time with respect to the maximum genome length n.

The most-widely used gene cluster model that covers gene insertions are max-
gap clusters [2,4]. This model allows for an arbitrary number of gaps in every
cluster occurrence, each up to a fixed length, that can be filled with intermittent
genes. The asymptotic complexity of identifying max-gap clusters increases ex-
ponentially with the number of compared genomes, but practical running times
were shown to be feasible [6]. The treatment of gene losses in the max-gap model
is as follows: Any gene that is lost in a cluster occurrence is counted as an inter-
mittent gene in those occurrences where it is still present. Therefore, the set of
genes representing a gene cluster reduces to the minimal consensus of genes that
occur in all cluster occurrences. Moreover, gap sizes may have to be increased
artificially to bridge seemingly intermittent genes.

Recently, a number of set distance based models arose, e. g. median gene
clusters [3], that extend the concept of common intervals towards approximate
conservation of gene content. The basic idea is to define a maximum distance δ
between a consensus gene set and its approximate occurrences that can be freely
distributed over gene losses and insertions located anywhere in the approximate
cluster occurrences. A reported gene cluster is not a minimal consensus but a set
of genes that is optimized in the sense that the total distance to its approximate
occurrences is minimized. In principle, this approach allows for the detection of
gene clusters with diverse conservation patterns in a large number of genomes.
However, the search space grows exponentially, either with distance threshold
δ [9] or the number of compared genomes k [3]. Practical computation times
are feasible for many, but not all, interesting parameter ranges. The exponential
time complexity is caused by the optimality criterion imposed on the consensus
gene set. If a gene cluster is not represented by the optimal consensus set but a
close set that has a reference occurrence in the given genomes, i. e. one without
intermittent or missing genes, the search space becomes polynomially bounded.
The computation of such reference based conservation patterns was studied by
Amir et al [1]. However, it is possible to construct a counter example for which
their graph-based, O(kn3 + output size) time and O(kn3) space, algorithm does
not detect the complete solution set [5].

In this paper, we show that the complete set of reference-based approximate
cluster occurrences can be identified in time O(k2n2(δ+1)2+output size), δ  n,
using O(kn2) space. To assess the relevance of our reference-based gene cluster
model and the performance of our algorithm, we compare it to a related approach
that solves the general approximate gene cluster problem.

2 Basic Definitions and Notation

We model a genome as a string over a finite alphabet Σ = {1, . . . , σ} of gene
family ids, such that genes belonging to the same homology family are repre-
sented by the same integer. Given a string S, we denote its length by |S| and
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refer to its ith character by S[i], 1 ≤ i ≤ |S|. We say that character c ∈ Σ occurs
at position i in S if and only if S[i] = c. To capture the character content of
S regardless of sequential arrangement and multiple character occurrences, we
define the character set of S as CS(S) = {S[i] | 1 ≤ i ≤ |S|}. To simplify
notation, we assume that a string S is extended on both ends by a terminal
character 0 /∈ Σ, i.e. S[0] = S[|S|+ 1] = 0. We define S[i, j] to be the substring
of S that starts with its ith and ends with its jth character, 1 ≤ i ≤ j ≤ |S|.
The corresponding index interval [i, j] is called a location of C ⊆ Σ if and only if
C = CS(S[i, j]). We distinguish different types of intervals in a string S. We call
an interval [i, j] with j ≥ i left-maximal if S[i− 1] /∈ CS(S[i, j]), right-maximal
if S[j + 1] /∈ CS(S[i, j]) and maximal if it is both left- and right-maximal.

Definition 1. Given a set of strings S = {S1, . . . , Sk}, k ≥ 2, we call a k-tuple
of maximal intervals ([i1, j1], . . . , [ik, jk]) common intervals of S if and only if
there is a C ⊆ Σ with:

C = CS(S1[i1, j1]) = . . . = CS(Sk[ik, jk]).

Such character sets correspond to perfectly conserved gene clusters. To quantify
differences in the gene content of approximate gene cluster occurrences, we use
the symmetric set distance which defines the distance between two sets C and C′

as the cardinality of their symmetric difference: D(C, C′) = |C \C′|+ |C′ \C|.
This measure constitutes a metric and therefore meets all intuitive notions of
a distance measure such as validity of the triangle inequality. We extend the
concept of character set locations towards approximate conservation: Given an
integer δ ≥ 0, we say an interval [i, j] in a string S is a δ-location of a character
set C if and only if D(C, CS(S[i, j])) ≤ δ and C ∩CS(S[i, j]) �= ∅. We distinguish
additional subtypes of maximal intervals: Given a character set C, we say a
maximal interval [i, j] in S with CS(S[i, j]) ∩ C �= ∅ is closed with respect to
C, or C-closed for short, if and only if S[i − 1] /∈ C and S[j + 1] /∈ C. For
the next subtype of maximal intervals, we define the left-most essential position
i∗ of [i, j] with respect to C as the smallest index i′, i ≤ i′ ≤ j, such that
S[i′] ∈ C. Analogously, we define the right-most essential position j∗ of [i, j]
with respect to C as the largest index j′, i ≤ j′ ≤ j, such that S[j′] ∈ C.
Interval [i∗, j∗] is called the C-essential subinterval of [i, j]. The characters at
positions i∗ and j∗ are called left-most essential character, respectively right-
most essential character, with respect to C. These concepts are used to define
the second subtype of maximal intervals which comprises all maximal intervals
[i, j] with CS(S[i, j])∩C �= ∅ for which CS(S[i, j]) = CS(S[i∗, j∗]) holds. Intervals
of the form of [i, j] are called compact with respect to C or C-compact for short.
If a maximal [i, j] is both closed and compact with respect to C, we call it
optimal with respect to C, or C-optimal for short. A C-optimal δ-location of C
is called an optimal δ-location. The idea behind this definition is to define an
optimal placement of an approximate cluster occurrence. In particular, one can
show the following:

Observation 1. The number of optimal δ-locations of a character set C ⊆ Σ
in a string S of length n is in O(n(δ + 1)) for all δ ≥ 0.
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Proof. We count how many optimal δ-locations of C can have the same left-most
position a in S. For that purpose, we show that every two such intervals [a, b1]
and [a, b2], b1 < b2, contain a different number of characters from Σ \ C. We
have S[b1 + 1] /∈ C and S[b1 + 1] /∈ CS(S[a, b1]), while S[b1 + 1] ∈ CS(S[a, b2]).
However, it also holds that every c ∈ CS(S[a, b1])\C is contained in CS(S[a, b2]).
Therefore, the number of characters from Σ \ C cannot be the same in the two
intervals. Moreover, a δ-location of C can have only between 0 and δ characters
from Σ \C. Thus, there are at most δ+1 optimal δ-locations of C with left-most
position a and O(n(δ + 1)) optimal δ-locations of C in the complete string. ��

We now have all the prerequisites to define the problems studied in this paper.
At first, we study the detection of optimal δ-locations:

Problem 1. Given two strings S1 and S2 over an alphabet Σ and a dis-
tance threshold δ, find for each maximal [i, j] in S1 all optimal δ-locations of
CS(S1[i, j]) in S2.

For δ = 0, this is problem is equivalent to common intervals detection. For
approximate gene cluster detection in multiple genomes the definition can be
extended as follows:

Problem 2. Given a set of strings S = {S1 . . . , Sk} over an alphabet Σ, a dis-
tance threshold δ and a quorum parameter q ≤ k, find each C ⊆ Σ with
C = CS(S�[i�, j�]) for some 1 ≤ � ≤ k, 1 ≤ i� ≤ j� ≤ |S�| that has δ-locations in
at least q different strings and report all its optimal δ-locations in S1 . . . , Sk.

We call character sets of the form of C conserved reference sets and their optimal
δ-locations reference-based approximate common intervals.

3 Computation of Optimal δ-Locations

The algorithm presented in the following adopts the basic search strategy of
the Connecting Intervals (CI) Algorithm for the computation of common inter-
vals [10]. Therefore, we begin with a short review of this algorithm.

3.1 The Connecting Intervals Algorithm

The CI Algorithm uses two static data structures that are computed in a pre-
processing step: an array of length |Σ| called Pos that lists for each character
c ∈ Σ its occurrences in S2 from left to right, and a |S2|× |S2| table named Num
that stores for every interval in S2 how many different characters are contained,
i. e. Num[i, j] = |CS(S2[i, j])|. For an example, see Figure 1.

The basic idea of the CI Algorithm is that while going systematically through
all maximal intervals [i, j] in S1, referred to as reference intervals in the following,
one iteratively generates and extends marked intervals in S2 that consist only
of characters occurring in the current reference character set CS(S1[i, j]) using
array Pos for their identification. An example of this procedure is given in



268 K. Jahn

Fig. 1. Example of data structures Pos and Num for alphabet Σ = {1, 2, 3, 4, 5, 6, 7}
and two strings S1 = 1 2 4 6 4 3 1 5 6 2 and S2 = 5 7 3 2 4 3 2 6 5 3 6 4

Fig. 2. Iterative generation of reference intervals in S1 for start position 2 and cor-
responding interval marking in S2 for S1 = 1 2 4 6 4 3 1 5 6 2 and S2 =

5 7 3 2 4 3 2 6 5 3 6 4

Figure 2. Common intervals are retrieved by comparing the character content of
CS(S1[i, j]) and the marked intervals in S2. Since by construction the character
sets of the marked intervals are subsets of CS(S1[i, j]), this can be tested by
comparing their sizes, using the table Num, and the current size of CS(S1[i, j]).
Only those intervals in S2 that were extended by an occurrence of the most
recent element of the reference character set need to be considered for this test.
Other intervals do not contain this character and thus have a smaller character
set. It can be shown that this algorithm detects all common intervals in time
O(n2) using O(n2) space.

3.2 Extension of the Connecting Intervals Algorithm

The changes necessary to the CI Algorithm to compute optimal δ-locations are
presented together with the pseudocode given in Algorithm 1. The presented
algorithm is a further development of the filter step in the median gene cluster
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Algorithm 1. Computation of optimal δ-locations
1: for i = 1, . . . , |S1| do
2: j ← i , C ← ∅
3: while j ≤ |S1| and [i, j] is left-maximal do
4: c← S1[j]
5: while [i, j] is not right-maximal do
6: j ← j + 1

7: end while
8: for each interval [a, b] ∈ C do
9: remove [a, b] from C unless it is optimal δ-location of CS(S1[i, j])

10: end for
11: for each position p in S2 with S2[p] = c do
12: mark position p in S2

13: find unmarked positions l1, . . . , lδ+1 and r1, . . . , rδ+1 around p
14: for each interval [lx+1, ry−1] with 1 ≤ x, y ≤ δ+1 do
15: if [lx+1, ry−1] is optimal δ-location and not contained in C then
16: add [lx+1, ry−1] to C
17: end if
18: end for
19: end for
20: if C �= ∅ then
21: output ([i, j], C)
22: end if
23: j ← j+1

24: end while
25: unmark all positions in S2

26: end for

computation scheme where for a given δ only the existence of a δ-location is
tested. To solve Problem 1 we need to enumerate all optimal δ-locations.

We adopt the iterative generation of reference intervals from the original CI
Algorithm, where for a fixed i the maximal intervals starting at i are processed
one after the other for increasing values of j (lines 1 to 7). Also the marking of
intervals in S2 that consist only of characters from the current reference char-
acter set C = CS(S1[i, j]) (line 12) is useful for this purpose: Since approximate
locations need to have character sets that intersect with C, these intervals are
starting points for detecting C-optimal δ-locations. However, unlike with perfect
locations, it is not sufficient to consider only recently extended maximal marked
intervals. For δ > 0, intervals that are partially unmarked and/or contain no oc-
currence of c, the character most recently added to C, can as well be C-optimal
δ-locations.

However, we observe that it is not necessary to compute optimal δ-locations
from scratch for every reference character set. For a fixed left border i successive
reference intervals [i, j′] and [i, j] with CS(S1[i, j]) = CS(S1[i, j′])∪{c} can share
some optimal δ-locations as the example in Figure 3 shows. Therefore, we store
the optimal δ-locations of one reference character set in a list C and test for
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Fig. 3. Optimal δ-locations of two successive reference character sets in two example
strings S1 and S2 for distance threshold δ = 3. Shared optimal δ-locations are printed
bold

the following reference character set which of these intervals can be inherited.
Only in the case where the left border of the reference interval is shifted, C is
emptied as the generation of reference character sets starts anew (line 2). The
optimal δ-locations that can be inherited to the next reference character set can
be characterized as follows:

Observation 2. Let C, C′ ⊆ Σ with C = C′ ∪ {c} and c /∈ C′. Every interval
[a, b] in a string S over Σ that is an optimal δ-location of C′ is also an optimal
δ-location of C if and only if either:

(i) c ∈ CS(S[a, b]), or

(ii) c /∈ CS(S[a, b]), c �= S[a− 1], c �= S[b + 1] and D(C′, CS(S[a, b])) < δ.

Proof. (i) Since [a, b] is C′-optimal and contains an occurrence of c, it is C-
optimal. Moreover, D(CS(S[a, b]), C) < D(CS(S[a, b]), C′) < δ holds. (ii) ⇒:
From [a, b] being C-closed and from c ∈ C follows directly that S[a−1] /∈ C and
S[b + 1] /∈ C. Furthermore, we have D(C, CS(S[a, b])) ≤ δ. Removing a single
character from C that is not contained in CS(S[a, b]) reduces the distance by
one. Therefore, D(C′, CS(S[a, b])) < δ holds. ⇐: It follows from c �= S[a−1],
c �= S[b+1] and C = C′ ∪ {c} that [a, b] is C-optimal. Furthermore, we have
D(C′, CS(S[a, b])) < δ. Adding a single character to C′ increases this distance by
at most one so that it cannot exceed δ. Therefore, [a, b] is an optimal δ-location
of C. ��

Testing the elements of C for the conditions given in Observation 2, we can
remove all non-inheritable intervals (line 9). Next, we show how we can compute
the optimal δ-locations that cannot be inherited from the previous reference
character set. These intervals are characterized as follows:

Observation 3. Let C, C′ ⊆ Σ with C = C′ ∪ {c} and c /∈ C′. Every interval
[a, b] in a string S over Σ that is an optimal δ-location of C is an optimal
δ-location of C′ if and only if either:
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(i) c /∈ CS(S[a, b]), or

(ii) c ∈ CS(S[a, b]), D(CS(S[a, b]), C) < δ and ∃ p�, p, pr : a ≤ p� < p < pr ≤ b,
S[p�] ∈ C′, S[p] = c, and S[pr] ∈ C′.

Proof. (i) With [a, b] being C-optimal, S[a−1] and S[b+1] are not in C and
therefore not in C′. Due to c /∈ CS(S[a, b]), [a, b] has the same left- and right-
most essential positions with respect to C and C′. Thus [a, b] is C′-optimal.
Also, D(CS(S[a, b]), C′) = D(CS(S[a, b]), C) − 1 ≤ δ − 1 holds. Hence, [a, b] is
an optimal δ-location of C′.
(ii)⇒: From D(CS(S[a, b]), C′) ≤ δ follows D(CS(S[a, b]), C) < δ because c ∈ C
and c ∈ CS(S[a, b]), but c /∈ C′. Let p� and pr be left-most/right-most essen-
tial positions of [a, b] with respect to C′. Then S[p�] �= c, S[pr] �= c and ∃p
with p� < p < pr and S[p] = c due to C′-optimality and c ∈ CS(S[a, b]). ⇐:
D(CS(S[a, b]), C′) ≤ δ holds, as D(CS(S[a, b]), C′) = D(CS(S[a, b]), C) + 1 and
D(CS(S[a, b]), C) < δ. It follows from p� < p < pr that c is contained in the
C′-essential subinterval of [a, b]. Since C and C′ differ only in c, [a, b] has to be
C′-optimal ��

An important result of this observation is that only intervals with an occurrence
of c need to be considered for the computation of non-inheritable optimal δ-
locations. Moreover, we can infer that there are exactly two types of them:
intervals whose character set has exactly distance δ to C, and intervals with left-
most and/or right-most essential character c that contain no “inner occurrences”
of c, i.e. positions that are separated from both interval boundaries by characters
from C other than c. Only these intervals need to be computed anew for every
reference interval.

To detect these non-inheritable optimal δ-locations, we identify for each oc-
currence p of c in S2 all intervals around p that contain at most δ different
unmarked characters. All other intervals either contain no occurrence of c or
have a distance to C greater than δ. To find these intervals, we compute posi-
tions to the left and right of p with increasing numbers x, y ≥ 1 of unmarked
characters (line 13):

lx = lx(p) = max({l |S2[l, p] contains xdifferent unmarked characters} ∪ {0})
ry = ry(p)= min({r |S2[p, r] contains y different unmarked characters} ∪ {|S2|+1}).
By definition, the substrings S2[lx +1, ry−1] contain at most x+y−2 different
characters not occurring in S1[i, j]. (The number is smaller if the same unmarked
characters occur left and right of p.) Clearly, not all of them are C-optimal or
fulfill the distance constraint, as the example in Figure 4 illustrates. But together,
they form a superset of the C-optimal δ-locations around p. Thus, we only need
to test every interval of the form [lx + 1, ry − 1] for being an optimal δ-location
for the reference interval [i, j] and add it to C if it passes this test and cannot
be inherited from the previous reference character set (line 16).

It follows from Observations 2 and 3 that once all occurrences of c have been
processed, C contains all optimal δ-locations of C. To avoid that intervals with
multiple occurrences of c are redundantly inserted, we add a rule by which only
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Fig. 4. All intervals of the form [lx+1, ry−1] for p = 12, δ = 3. For intervals that are
not an optimal δ-location of CS(S1[3, 11]) the missing property is given.

intervals in which p is the left-most occurrence of c are added to C. From the
previous considerations, it follows directly that the presented algorithm solves
Problem 1.

3.3 Implementation Details and Data Structures

Before we can analyze the time complexity of Algorithm 1, we need to have a
closer look at some of the involved operations and the data structures that can
be employed for their efficient implementation. A more detailed description can
be found in [5].

Precomputation of l1, . . . , lδ+1 and r1, . . . , rδ+1: We begin with the identi-
fication of unmarked positions around the newly marked positions in S2 (line 13).
An efficient approach to detect these positions, was recently introduced in the
context of median gene cluster computations [3]. It was shown that the values
lx and ry, 1 ≤ x, y ≤ δ+1, can be precomputed for all positions p in S2 once the
left border i of the next class of reference intervals [i, j], j ≥ i, is fixed. These
values are stored in two δ × |S2| tables L and R such that L[p][x] = lx(p) and
R[p][y] = ry(p) holds. Once i is shifted to i + 1, L and R need to be updated
which was shown to be possible in time O(n(δ + 1)). For a complete run of Al-
gorithm 1 the time spent on computing and maintaining L and R accumulates
to O(n2(δ + 1)).

Identification of left- and right-most essential positions: To test the
candidate intervals [lx +1, ry−1] for being C-compact, we need to know their
C-essential subintervals. We observe that the left-most essential position of an
interval depends only on its left border and C while the right-most essential
position depends only on the right border and C. Therefore, we need to determine
for each lx and ry only one left-most (respectively right-most) essential position
that is valid for all intervals with left border lx +1, respectively right border
ry−1. We precompute and update these values parallel to the values of lx and ry

using two additional tables L′ and R′ that are of the same format as L and R. It
can be shown that these tables can be maintained along with L and R without
increasing the asymptotic time complexity [5].



Efficient Computation of Approximate Gene Clusters 273

Testing intervals for being optimal δ-locations: Next, we show how a
candidate interval [lx +1, ry−1] can be tested for being optimal δ-location of
C (line 15). First, we test for interval maximality. This test can be done in
constant time if we compute in a preprocessing for every position p in S2 the
next and previous occurrence of S2[p] in S2 and store this information in two
static arrays of length |S2|. Every maximal interval of the form [lx+1, ry−1] is
automatically C-closed, because neither S2[lx] nor S2[ry ] can be contained in C.
C-compactness can be tested in constant time by comparing the entries in Num
for [lx+1, ry−1] and its C-essential subinterval. To test the distance constraint, we
compute D(CS(S1[i, j]), CS(S2[lx+1, ry−1])) which equals |C|−|CS(S2[lx+1, ry−
1])| plus twice the number of different unmarked characters in S2[lx+1, ry−1].
|CS(S2[lx+1, ry−1])| can be looked-up in Num and |C| can be tracked during
reference interval generation. If candidate intervals [lx+1, ry−1] are enumerated
systematically, also the number of unmarked characters is available such that
the complete distance computation takes constant time. Finally, we need to test
whether [lx + 1, ry − 1] is already contained in C. Rather than testing condition
(ii) of Observation 3, we generate first a separate list of the newly detected C-
optimal δ-locations and then merge it with the inherited C. Both lists can be
kept sorted based on the index positions of their elements if the occurrences of
c in S2 and the corresponding [lx + 1, ry − 1] are always processed from left to
right.

The second step where intervals are tested for being optimal δ-locations is
in line 9 of Algorithm 1. To identify intervals in C that contain an occurrence
of c, we perform a combined iteration through C and Pos[c]. For the intervals
that contain no occurrence of c, condition (ii) of Observation 2 can be tested in
constant time if we track for each interval the distance between its character set
and the current C. To achieve this, we remember the initial distance when the
element is added to C an increment it by one each time it does not contain an
occurrence of the recent c.

3.4 Complexity Analysis

We now have all prerequisites to analyze the complexity of Algorithm 1. It
follows from the analysis of the CI Algorithm that the generation of reference
intervals in S1 and the marking of character occurrences in S2 is in O(n2).
The first interesting step in Algorithm 1 is the iteration through C to remove
intervals that are not an optimal δ-location of the new reference character set
(lines 8 to 10). The complete cost for the combined iterations through C and
Pos[c] is O(n2 + output size). This is because every c ∈ Σ is O(n) times the
most recent element in C and n ·

∑
c∈Σ |Pos[c]| = n2, while the elements of C

belong to the output for the previous reference character set. The next step is
the computation of the non-inherited optimal δ-locations (lines 11 to 19). Every
position p in S2 gets at most O(n) times newly marked, such that in total the
for-loop in line 11 is executed O(n2) times. Using tables L and R, the unmarked
positions l1, . . . , lδ+1 and r1, . . . , rδ+1 are immediately available. As we have
seen above, the precomputation and maintenance of these data structures is in
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time O(n2(δ + 1)). It follows the processing of candidate intervals of the form
[lx+1, ry−1]. For each occurrence p, there are O((δ+1)2) many of these intervals,
while there are |Pos[c]|many occurrences of each c in S2. With every position p in
S2 being marked at most n times, O

(
n·
∑

c∈Σ

(
|Pos[c]|·(δ+1)2

))
= O(n2(δ+1)2)

intervals are considered during the complete run of Algorithm 1. Using the data
structures described above, testing a single candidate for being an optimal δ-
location of C takes constant time. Finally, the list of new optimal δ-locations is
merged with C. As both lists are sorted, the time spent on this operation equals
the length of the new list plus the length of C. Since all elements of C are optimal
δ-locations of the current C, this accumulates to O(n2(δ + 1)2 + output size) for
the complete run of the algorithm. Concerning space complexity, table Num is
the most costly data structure. Based on these findings, we claim the following
theorem:

Theorem 1. Using the data structures described above, Algorithm 1 solves
Problem 1 in time O(n2(δ + 1)2 + output size) using O(n2) space.

4 Reference-Based Approximate Common Intervals

The extension of Algorithm 1 to solve Problem 2 is straight-forward. As the
search space of conserved reference sets is limited to character sets that have a
location in one of the input genomes, we can reuse the reference interval gener-
ation to traverse the search space. We only need to run it one after the other on
all strings in S. To compute optimal δ-locations of a reference character set and
to decide whether they are distributed over enough strings, we need to run the
rest of the algorithm in parallel on the remaining strings tracking not only the
optimal δ-locations in each string but also a counter for the number of strings
that contain a δ-location of the current reference character set C. If this number
is at least q, C is reported along with its optimal δ-locations. The time complex-
ity of the adapted algorithm increases to O(k2n2(δ + 1)2 + output size), while
the space complexity increases to O(kn2).

5 Experimental Results

The experimental evaluation of the presented approach was performed on a test
set containing the genomes of five γ-proteobacteria that we downloaded from the
NCBI database [8]: Buchnera aphidicola APS, Escherichia coli K12, Haemophilus
influenzae Rd, Pasteurella multocida Pm70, and Xylella fastidiosa 9a5c.

For grouping genes into homology families, we employed the GhostFam
tool [11]. Using the standard parameters, this program distributed the 11, 184
genes occurring in the studied genomes into 5086 gene families of sizes between
1 and 63. All computations were performed on an 8 × 2.6 GHz AMD Opteron
8218 Dual-Core processor with 32 GB main memory.

The main focus of our evaluation is on the impact that the requirement of a
reference occurrence has on approximate gene cluster prediction. To this end, we
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estimated how many approximate gene clusters with a general consensus set for
a given distance threshold have a reference-based consensus set that complies
with the same distance threshold. To increase comparability to our pair-wise
distance constrained reference gene clusters, we modified the sum-distance based
median gene cluster algorithm [3] such that it computes for a combination of
approximate gene cluster occurrences from k genomes, ([i1, j1], . . . , [ik, jk]), the
optimal consensus set that minimizes the largest pairwise distance between the
gene contents of the approximate occurrences and the consensus set C.

max
1≤�≤k

D(C, CS(S�[i�, j�])) ≤ max
1≤�≤k

D(C′, CS(S�[i�, j�])) for all C′ ⊆ Σ.

This corresponds to the computation of a so-called center set that is equivalent
to the closest string problem [7]. Such a center set does not necessarily have a
reference occurrence in the given genomes which leads to an exponential search
space size as basically all combinations of the form ([i1, j1], . . . , [ik, jk]) need to
be processed. However, in practice, filter techniques can be employed that rule
out a large number of interval combinations without testing them explicitly if it
is clear that their consensus will exceed the pre-defined distance threshold δ.

We ran the modified program for different combinations of δ and s, a mini-
mum size threshold for the center-based consensus set. To estimate how far off
the closest reference occurrence is, we computed for each ”successful” interval
combination, i. e. one whose center set complies with the distance threshold δ,
the smallest distance to a reference-based consensus chosen among the character
sets of the k intervals:

dist = min
�

max
m

D(CS(S�[i�, j�]), CS(Sm[im, jm]))

Afterwards, we computed the fraction of successful interval combinations for
which such a reference based consensus set complies with the center distance
threshold δ or with a slightly increased threshold. We observe that for the vast
majority of interval combinations the best reference-based consensus complies
with the initial distance threshold. All other combinations have a reference-based
consensus that complies with a slightly increased distance threshold.

To assess the practical performance of our program for reference gene cluster
computation, we ran it for all distance threshold values between 1 and 12 and
a fixed minimum cluster size s = 4. As the minimum cluster size is not used in
the main part of the algorithm, but only to filter afterwards too small reference
gene clusters, we do not distinguish runtimes for different values of s. We observe
that runtimes increase slowly with increasing values of δ and range from 36s to
42s. The number of detected reference-based gene clusters ranges from 339 to
5410 when counting only those reference occurrences that are not nested into a
larger one. Among the predicted clusters are many known gene clusters like the
operon for ATP biosynthesis and the cell division and cell wall biosynthesis gene



276 K. Jahn

Table 1. Computation of approximate gene clusters with a center-based consensus.
The output size (# non nested interval combinations) refers to the number of interval
combinations that have a center-based consensus for the given distance threshold δ and
are not completely nested into another interval combination. Additionally, the fraction
of these interval combinations that have a reference-based consensus for the initial δ
or slightly higher values is shown. No results are given for computations that did not
finish within 24 hours.

δ = 1 δ = 2 δ = 3 δ = 4
s = 4 running time 4s 59m 16s > 24h > 24h

# non nested interval combinations 162 2.6 · 104 - -
reference-based consensus for δ 100.0% 99.8% - -
reference-based consensus for δ + 1 - 99.9% - -
reference-based consensus for δ + 2 - 100.0% - -

s = 6 running time 4s 32s 6h 0m > 24h
# non nested interval combinations 61 856 1.6 · 104 -
reference-based consensus for δ 100.0% 99.6% 97.8% -
reference-based consensus for δ + 1 - 99.9% 99.8% -
reference-based consensus for δ + 2 - 100.0% 100.0% -

s = 8 running time 3s 6s 12m 51s > 24h
# non nested interval combinations 16 181 2560 -
reference-based consensus for δ 100.0% 100.0% 98.0% -
reference-based consensus for δ + 1 - - 100.0% -

s = 10 running time 3s 5s 14s 3h 21m
# non nested interval combinations 9 71 1120 1.2 · 104

reference-based consensus for δ 100.0% 100.0% 97.1% 90.3%
reference-based consensus for δ + 1 - - 100.0% 96.8%
reference-based consensus for δ + 2 - - - 99.4%
reference-based consensus for δ + 3 - - - 100.0%

cluster, but also some clusters for which no obvious classification exists. We are
currently doing deeper analysis of these predictions.

6 Conclusion

In this paper, we presented a polynomial-time algorithm for the detection of
approximate gene clusters in multiple genomes. The limitation of the search
space to polynomial size was achieved by the use of a gene cluster model that
requires the existence of a reference occurrence. Unlike a previous algorithm,
our algorithm detects the complete solution set of reference-based approximate
common intervals.

We evaluated the relevance and performance of our approach on real genome
data. In this initial study, we have shown that our gene cluster predictions are
highly comparable to a more general approach that does not rely on reference
occurrences, while using only a fraction of the running time. Only for a very
small fraction of gene cluster predictions, the reference-based cluster version
can only be found if the distance threshold is slightly increased. Since runtimes
increase only slowly with δ, this is not a problem in practice. In general, the
polynomial time complexity of our algorithm raises the opportunity to search
for approximate gene clusters with very diverse conservation patterns that are
not detectable with those parameter settings currently feasible for non-reference
based approaches.
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Abstract. The Gapped Consecutive-Ones Property (C1P) Problem, or

the (k, δ)-C1P Problem is: given a binary matrix M and integers k and δ,
decide if the columns of M can be ordered such that each row contains at

most k blocks of 1’s, and no two neighboring blocks of 1’s are separated by

a gap of more than δ 0’s. This problem was introduced in [3]. The classical

polynomial-time solvable C1P Problem is equivalent to the (1, 0)-C1P

problem. It has been shown that for every unbounded or bounded k ≥ 2

and unbounded or bounded δ ≥ 1, except when (k, δ) = (2, 1), the (k, δ)-
C1P Problem is NP-complete [10,6].

In this paper we study the Gapped C1P Problem with a third param-

eter d, namely the bound on the maximum number of 1’s in any row of

M , or the bound on the maximum degree of M . This is motivated by

problems in comparative genomics and paleogenomics, where the genome

data is often sparse [4]. The (d, k, δ)-C1P Problem has been shown to be

polynomial-time solvable when all three parameters are fixed [3]. Since

fixing d also fixes k (k ≤ d), the only case left to consider is the case

when δ is unbounded, or the (d, k,∞)-C1P Problem. Here we show that

for every d > k ≥ 2, the (d, k,∞)-C1P Problem is NP-complete.

1 Introduction

Let M be a binary matrix with m rows and n columns. A block in a row of m is
a maximal sequence of consecutive entries containing 1. A gap is a sequence of
consecutive 0’s that separates two blocks, where the size of a gap is the length
of this sequence of 0’s. The degree of a row of m is the number of 1’s in that row.
Matrix M is said to have the Consecutive-Ones Property (C1P) if its columns
can be permuted such that each row contains one block (there are no gaps in this
case). Deciding if a binary matrix has the C1P can be done in linear time [11].

Among its many applications, the C1P has been widely used in molecular
biology, in relation with physical mapping [1] and the reconstruction of ancestral
genomes [4]. However, a common problem in such applications is that matrices
obtained from experiments do not have the C1P, often due to small errors in
� Research supported by NSERC Discovery Grant.
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the data [6,4]. It is this lack of robustness of the C1P to small changes that led
researchers to consider relaxing the consecutivity condition of the 1’s in each row,
but rather to allow gaps, with some restriction on the nature of these gaps [6,3].
In [3], the authors defined the Gapped C1P Problem, or the (k, δ)-C1P Problem:
given binary matrix M and two integers k and δ, to decide if the columns of
M can be ordered such that each row contains at most k blocks, and no two
neighboring blocks of 1’s are separated by a gap of size more than δ. They
showed that for every k ≥ 2, δ ≥ 1, (k, δ) �= (2, 1), the (k, δ)-C1P Problem is
NP-complete [10], leaving open only the complexity of the (2, 1)-C1P case. The
problem remains NP-complete even if one of the two parameters is unbounded:
(i) for every k ≥ 2, the (k,∞)-C1P Problem is NP-complete [6], and (ii) for
every δ ≥ 1, the (∞, δ)-C1P Problem is NP-complete [10].

The above NP-completeness results involve constructions with rows of large
degree, however matrices obtained from experiments are often sparse [4]. This
could give hope that problems are polynomial-time solvable for real data. For-
mally, we have the (d, k, δ)-C1P Problem: given matrix M where the bound
on the maximum degree of any row of M is d, decide if it has the (k, δ)-C1P.
We call a permutation π of the columns of M that witness this property a
(d, k, δ)-consecutive order; that the matrix M ′ resulting from this permutation
is (d, k, δ)-consecutive, or that it is consecutive w.r.t. π; and that M is (d, k, δ)-
C1P, or has the (d, k, δ)-C1P. If all three parameters are fixed, the problem is
related to the classical Graph Bandwidth Problem, and thus can be solved in
polynomial time using a variant of an algorithm of Saxe [13,3].

In this paper we study the complexity of the (d, k, δ)-C1P Problem when
one or more of these parameters are unbounded. The cases with d unbounded
were considered in [10]. Since fixing d also fixes k (k ≤ d), the only case left to
consider is the case when δ is unbounded, or the (d, k,∞)-C1P Problem. Here we
show that in every non-trivial case, this problem is NP-complete, i.e., for every
d > k ≥ 2, the (d, k,∞)-C1P Problem is NP-complete. Since d is the bound
on the maximum number of 1’s in any row of M , it is enough to show that for
every d ≥ 3, the (d, d− 1,∞)-C1P Problem is NP-complete. Indeed, a matrix of
bounded maximum degree d is also of bounded maximum degree d′, for d′ ≥ d.
However, for every d > k ≥ 2, the complexity of the (d, k,∞)-C1P Problem for
d-uniform matrices (each row has degree d) remains open. Note that if d = 2, the
problem becomes the C1P Problem, and if d ≤ k, then any order of the columns
of M is a valid solution, since no row can have more than d blocks of 1’s.

This paper is structured as follows. In Section 2, we show an auxiliary result
on fixing the order of selected columns of a matrix with one swap allowed, which
we then use in Section 3 to show that for all d ≥ 4, the (d, d − 1,∞)-C1P
Problem is NP-complete, by giving a reduction from 3SAT. In Section 4, we
show that the (3, 2,∞)-C1P Problem is NP-complete, by showing equivalence
to a new hypergraph covering problem, and then showing that this problem is
NP-complete. Note that the first proof does not work for d = 3 and the second
proof is not easily adaptable for d ≥ 4. Finally, in Section 5, we conclude the
paper with some remarks and discuss future work.
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2 Fixing a Block of Columns with One Swap

In this section we present a theorem that provides a key building block in our
NP-completeness constructions: namely that a set of rows can be added to a
binary matrix M that ensures that a selected set S of columns in M remains
“together” and in fixed order, except that exactly two columns of S may swap
positions, in any (d, d − 1,∞)-consecutive order of M . We will use this in the
following section in the reduction from 3SAT, where these two possible orders
of the columns in S will represent the truth values of a variable.

To state the result we need the following definitions. We say that columns
S = {c1, . . . , ck} appear together in an order π of the columns of M if between
any two columns in S there are only columns from S in π. To specify a row in
binary matrix M , we use the convention of only listing in the square brackets,
the columns that contain 1 in this row. For example, [1, 5, 8] represents a row
with ones in columns 1, 5 and 8, and zeroes everywhere else. This list might also
contain a set of columns. For example, if S = {2, 4, 6} then [S, 7] is equivalent
to [2, 4, 6, 7].

Theorem 1. For every d ≥ 3 and every 1 < j < 2d − 2, given matrix M on
n ≥ 2d columns,

(
2d
d

)
− d − 2 rows of degree d can be added to M to force 2d

selected columns to appear together and in fixed order (or the reverse order), with
the exception that the j-th and (j + 2)-nd selected columns may swap positions,
in any (d, d − 1,∞)-consecutive order of M .

Proof. Let S = {1, . . . , 2d} be the set of 2d selected columns. An order of the
columns of M is called normal if the selected columns appear together and in
the order 1, . . . , 2d or its reversal, and is called (j, j + 2)-swapped if the selected
columns appear together and in the order 1, . . . , j − 1, j + 2, j + 1, j, j + 3, . . . , 2d
or its reversal. Let Nd be the set of all normal orders of M and Sd,j be the set of
all (j, j + 2)-swapped orders. The basic idea of the construction is very simple:
we will construct matrix Md,j (on n ≥ 2d columns) by adding all rows which (i)
have d 1’s in the columns in S and 0’s everywhere else and (ii) are (d, d− 1,∞)-
consecutive w.r.t. all normal and (j, j + 2)-swapped orders of Md,j. Note that
since in any normal ((j, j + 2)-swapped) order the selected columns appear to-
gether, if a row is (d, d−1,∞)-consecutive w.r.t. one normal ((j, j + 2)-swapped)
order then it is (d, d− 1,∞)-consecutive w.r.t. all such orders. The difficult part
will be to show that every (d, d − 1,∞)-consecutive order of the constructed
matrix is either normal or (j, j + 2)-swapped. In what follows, we will first con-
struct the set of rows which satisfy the above conditions (i) and (ii), and then
prove the claim for this set of rows.

First, we will identify the rows with d 1’s in the selected columns which are
not (d, d − 1,∞)-consecutive w.r.t. at least one normal order. We will call such
rows Nd-forbidden. In general, given a set of orders P of a matrix, a row is
P-forbidden if it contains d 1’s in selected columns and zeroes everywhere else,
and it is not (d, d − 1,∞)-consecutive w.r.t. at least one order in P . Let FP
be the set of all P-forbidden rows. There are

(
2d
d

)
unique rows containing 1’s

in d selected columns and zeros in all other columns. Let Rd be the set of all
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of these rows. Note that, by definition, for any P , FP ⊆ Rd. The Nd-forbidden
rows are exactly the rows which do not contain 1’s in any pair (i, i + 1) of
consecutive selected columns. Since they contain d 1’s in selected columns and
selected columns appear together in any normal order, they can have at most
one gap of size 2, and the remaining gaps are of size 1 (in any normal order). In
addition, if they have a gap of size 2, they contain 1’s in columns 1 and 2d. Hence,
in each Nd-forbidden row, the columns containing 1’s form a (possibly empty)
progression of odd numbered selected columns followed by a (possibly empty)
progression of even numbered selected columns. If in an Nd-forbidden row both
progressions are non-empty, then there is a gap of size 2 between the last 1 of
the first progression, and the first 1 of the second progression. Formally, the Nd-
forbidden rows are f

(d)
i = [1, 3, . . . , 2i − 1, 2i + 2, 2i + 4, . . . , 2d] (a progression

of i odd numbered columns followed by a progression of d − i even numbered
columns of S), where i = 0, . . . , d, i.e., FNd

= {f (d)
i | i = 0, . . . , d}. Note that

f
(d)
0 = [2, 4, . . . , 2d] and f

(d)
d = [1, 3, . . . , 2d − 1].

Next, we are going to identify the Sd,j-forbidden rows. These rows can be
easily obtained from the Nd-forbidden rows by swapping values in columns j

and j + 2 in each of these rows. Note that if row f
(d)
i ∈ FNd

contains the same
value in columns j and j + 2 then the row stays the same after swapping these
values. The values of row f

(d)
i in columns j and j + 2 differ if and only if the gap

of size 2 in f
(d)
i contains either j or j + 2. This happens only if j = 2i−1 or j = 2i

(depending on parity of j), i.e., if i = �j/2	. Hence, there is exactly one row in
FSd,j

\FNd
and it can be obtained from f

(d)
�j/2� by swapping values in the columns

j and j + 2. This row is f (d,j) = [1, 3, . . . , j − 2, j + 2, j + 3, j + 5, . . . , 2d], if j
is odd, and f (d,j) = [1, 3, . . . , j − 1, j, j + 4, j + 6, . . . , 2d], if j is even. Hence,
FNd∪Sd,j

= FNd
∪FSd,j

= FNd
∪ {f (d,j)}. The constructed matrix Md,j contains

all rows in Rd \ FNd∪Sd,j
. In what follows we will refer to rows FNd∪Sd,j

simply
as the forbidden rows. Table 1 shows the forbidden rows for d = 3 and j = 2.

Let π be any (d, d−1,∞)-consecutive order of matrix Md,j. Let si be the i-th
selected column in π, for every i = 1, . . . , 2d. We will prove two claims about π.

Table 1. Forbidden rows FN3∪S3,2 which are not used to construct matrix M3,2. The

first four rows are theN3-forbidden rows and f
(3)
0 , f

(3)
2 , f

(3)
3 , f (3,2) are the S3,2-forbidden

rows. Note that the last row can be obtained from row f
(3)
1 by swapping values in

selected columns 2 and 4.

1 2 3 4 5 6 non-selected columns

f
(3)
0 0 1 0 1 0 1 0

f
(3)
1 1 0 0 1 0 1 0

f
(3)
2 1 0 1 0 0 1 0

f
(3)
3 1 0 1 0 1 0 0

f (3,2) 1 1 0 0 0 1 0
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Claim 1. Columns 1 and 2d are the first and the last selected columns in π,
i.e., {s1, s2d} = {1, 2d}.

Proof. Assume that column 1 /∈ {s1, s2d}. Consider the rows obtained from
the Nd-forbidden rows by permuting values according to π, i.e., rows f

(d)
i,π =

[s1, s3, . . . , s2i−1, s2i+2, s2i+4, . . . , s2d], where i = 0, . . . , d. Since these rows are
not (d, d− 1,∞)-consecutive w.r.t. π, as adding (non-selected) columns with 0’s
between selected columns cannot create a pair of adjacent 1’s, they are {π}-
forbidden. At least two of these rows have a 0 in column 1: if column 1 is in an
even position (when considering only the order of selected columns in π), i.e., if
s2k=1 for some integer k, take rows f

(d)
d−1,π and f

(d)
d,π, otherwise take rows f

(d)
0,π and

f
(d)
1,π . At least one of them is not forbidden, since column 1 contains a 0 only in one

forbidden row (f (d)
0 ). It follows that the order π is not (d, d− 1,∞)-consecutive,

a contradiction. Hence, 1 ∈ {s1, s2d} (and by symmetry, also 2d ∈ {s1, s2d}). ��

Claim 2. If j < 2d− 3, then π is . . . , 1, “ . . . , 2d − 1, . . . , 2d, . . . (or the reverse
order), where “ . . . ” represents any sequence of non-selected columns, and “. . . ”
any sequence of columns.

Proof. First, assume that 2d − 1 /∈ {s2, s2d−1}. Consider the {π}-forbidden rows
f

(d)
i,π defined in the proof of Claim 1. At least two of them contain a 1 in column

2d − 1: if k is even, take rows f
(d)
0,π and f

(d)
1,π , otherwise take rows f

(d)
d−1,π and f

(d)
d,π.

Since j < 2d−3, there is only one forbidden row (f (d)
d ) with a 1 in column 2d − 1.

Hence, one of these two rows is not forbidden, which leads to a contradiction,
since this row is {π}-forbidden. Hence, 2d − 1 ∈ {s2, s2d−1}.

It follows, by Claim 1, that the only other possible order (up to reversal)
is . . . , 1, . . . , 2d − 1, . . . , 2d, . . . . Consider row r = [s1, s3, . . . , s2d−1]. Obviously,
this row is {π}-forbidden. Since r contains 0’s in columns s2d = 2d and s2 =
2d − 1, it is not forbidden, a contradiction. The claim follows. ��

In what follows, we will show by induction on d that for any j ∈ {2, . . . , 2d− 3},
any (d, d−1,∞)-consecutive order of Md,j is either normal or (j, j + 2)-swapped.
The base case can be easily checked by enumeration of all 6! · 25 types of orders
of M3,j (6! orders of selected columns and 25 possibilities depending on whether
pairs of adjacent selected columns are separated by at least one non-selected
column or not).

Claim 3. For any j = 2, 3, any (3, 2,∞)-consecutive order of M3,j is either
normal or (j, j + 2)-swapped.

Now, as the induction hypothesis: assume that the property holds for d′ (d′ ≥ 3)
and any j′ ∈ {2, . . . , 2d′ − 3}. We will show that it also holds for d = d′ + 1
and any j ∈ {2, . . . , 2d − 3}. Since d ≥ 4, by symmetry, we can assume that
j < 2d − 4 = 2d′ − 2. Consider a submatrix M ′ of Md,j constructed as follows.
First, keep only rows with 0 in column 2d − 1 and 1 in column 2d. Then, remove
columns 2d − 1 and 2d, cf. Figure 1. We will show that M ′ = Md′,j . It is easy to
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2d − 1 2dMd,j

0

...

0
1

...

1

0...
0
1...
1
0...
0
1...
1

M ′

Fig. 1. An illustration of the construction of matrix M ′ (shaded area) from Md,j

see that every row in M ′ is in Rd′ : we removed exactly one of d = d′ + 1 1’s by
removal of columns 2d − 1 and 2d, cf. Figure 1. The rows chosen from Md,j must
have a pair of adjacent 1’s in any normal (respectively, any (j, j + 2)-swapped)
order. Neither of the two 1’s in this pair can be in columns 2d − 1 or 2d, since
these two columns are the last two selected columns in all such orders. Hence,
the adjacent pair of 1’s is not removed by removal of columns 2d − 1 and 2d. It
follows that each row in M ′ is (d′, d′ − 1,∞)-consecutive w.r.t. all normal and
(j, j + 2)-swapped orders of selected columns {1, . . . , 2d′}. Hence, every row in
M ′ is in Md′,j . On the other hand, for every row in Md′,j , adding column 2d − 1
containing 0 and column 2d containing 1 will produce a row which is in Rd,
and is (d, d − 1,∞)-consecutive w.r.t. all normal and (j, j + 2)-swapped orders.
Hence, M ′ = Md′,j .

Now, consider a (d, d − 1,∞)-order π of Md,j. By Claim 2, we can assume
that the order of columns in π is

. . . , 1, . . . , 2d − 1, . . . , 2d, . . . .

Let π′ be the restriction of π obtained by removing columns 2d − 1 and 2d.
Since 2d − 1 and 2d are the last selected columns in π and they contained 0
and 1, respectively, in every row chosen to construct M ′, M ′ is (d′, d′ − 1,∞)-
consecutive w.r.t. π′. By the induction hypothesis, π′ is normal or (j, j + 2)-
swapped, and hence, in π, selected columns in {1, . . . , 2d − 2} appear together
and in the order 1, . . . , 2d − 2 or 1, . . . , j − 1, j + 2, j + 1, j, j + 3, . . . , 2d − 2 (up
to reversal). Now, it is enough to show that there are no non-selected columns
between columns 2d − 2 and 2d − 1, and between 2d − 1 and 2d.

Consider the row [2, 4, . . . , 2d − 4, 2d − 2, 2d − 1]. This row is in Md,j, since
it is in Rd and it is (d, d − 1,∞)-consecutive w.r.t. all normal and (j, j + 2)-
swapped orders (recall that we assume that j < 2d − 4). However, if there is a
non-selected column between columns 2d − 2 and 2d − 1 in π, this row is {π}-
forbidden. Similarly, the row [1, 3, . . . , 2d − 5, 2d − 1, 2d] shows that there is no
non-selected column between 2d − 1 and 2d in π. Hence, in π is either normal
or (j, j + 2)-swapped, which proves the induction step. ��
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3 Complexity of the (d, d − 1, ∞)-C1P Problem

Here, we prove that for every d ≥ 4, the (d, d − 1,∞)-C1P Problem is NP-
complete by reducing from 3SAT.

Theorem 2. For every d ≥ 4, the (d, d − 1,∞)-C1P Problem is NP-complete.

Proof. Consider d ≥ 4. Since the (d, d−1,∞)-C1P Problem is clearly in NP, the
remainder of this proof is showing that the problem is NP-hard. Given a 3SAT
formula φ on n variables and m clauses, we construct a matrix Mφ with 2dn+3m
columns that has the (d, d − 1,∞)-C1P if and only if φ is satisfiable. For every
variable xi of φ, add the 2d columns x1

i , . . . , x
2d
i to Mφ and the

(
2d
d

)
− d− 2 rows

from Theorem 1 so that these 2d columns appear appear together and in fixed
order, except that columns x3

i or x5
i may swap positions, in any (d, d − 1,∞)-

consecutive ordering of Mφ. The normal order will correspond to this variable
being true, and the order where x3

i and x5
i are swapped will correspond to this

variable being false. For every clause cj of φ, add the 3 new columns from the
set Cj = {c1

j , c
2
j , c

3
j} to Mφ. For each variable xi in the clause cj we add row

[x2
i , x

k
i , x9

i , x
11
i , . . . , x2d−1

i , Cj \ {c�
j}] to Mφ, where k = 3 if xi has a positive

occurrence in cj and k = 5 otherwise, and � is the position of xi in cj. The set
of rows added to Mφ for clause c2 = {x1 ∨ ¬x4 ∨ x5} when d = 4 is illustrated
in Figure 2.

x1
1

0
0
0

x2
1

1
0
0
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1

1
0
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0
0
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0
0
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1

0
0
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0
0

x1
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0
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1
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0
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0
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0
1
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0
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0
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0
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0
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0
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0
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0
0
0
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2

0
1
1
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2

1
0
1

c3
2

1
1
0

Fig. 2. The 3 rows of Mφ encoding clause c2 = {x1 ∨ ¬x4 ∨ x5} when d = 4

If, in a (d, d−1,∞)-consecutive ordering of Mφ, the �-th literal of cj (xi or ¬xi)
is false, the columns x2

i and xk
i are separated by columns with 0’s, and hence,

columns in Cj \ {c�
j} must be adjacent, otherwise there are d − 1 gaps in the

row for this literal, i.e., it is not (d, d− 1,∞)-consecutive. Since, in any ordering
of the 3 columns of Cj , at least one pair of columns in Cj is not adjacent, at
least one literal of cj must be set to true. Note in Figure 2 that if more than one
literal of c2 is true, then columns c1

2, c
2
2 and c3

2 do not have to appear together
in a (4, 3,∞)-consecutive ordering of Mφ. It is easy to see that φ is satisfiable if
and only if there is (d, d − 1,∞)-consecutive ordering of Mφ.

Since the number of columns and rows added to Mφ is linear in the number
of variables and clauses of φ, this construction can be done in polynomial-time,
and thus the (d, d − 1,∞)-C1P Problem is NP-hard. ��

The above construction requires at least 4 ones per row: two in the variable block
and two in the clause block. However, the problem is NP-complete also in the
case when d = 3, but requires a different construction. We present this in the
next section.



The Complexity of the Gapped Consecutive-Ones Property Problem 285

4 The (3, 2, ∞)-C1P Problem

We will first show that the following hypergraph covering problem is NP-complete.
Note that a hypergraph H = (V, E) is 3-uniform when all of its hyperedges are
3-edges, that is, hyperedges that contain exactly three vertices.

Definition 1. A graph covering of a 3-uniform hypergraph H = (V, E) is a
graph G = (V, E′) such that there exists a surjective (onto) map m : E → E′,
such that for every h ∈ E, m(h) ⊂ h. Here, we say that edge m(h) covers the
hyperedge h.

Informally, a graph covering of a 3-uniform hypergraph is a graph constructed
by picking one edge from each hyperedge.

Problem 1 (3-Uniform Hypergraph Covering By Paths Problem (3-
UHC-P Problem)). Given a 3-uniform hypergraph H = (V, E), is there a
graph covering of H which consists only of disjoint paths?

Variations of this problem were defined in [7,8,9]. The first variation allowed
the hypergraph to have also 2-edges and 4-edges (4-edges were covered by two
parallel edges) and required that the graph covering contains only disjoint edges
and vertices. This variation was shown to be polynomial-time solvable and pro-
vided an algorithm for a special version of haplotyping problem via galled-tree
networks [7]. The second variation required all connected components of the
graph covering to be paths of length at most 3. This variation was shown to
be NP-complete [9]. A slightly more complex version of this was then used to
show that in general the haplotyping problem via galled-tree networks is NP-
complete [8].

We will show that our version of hypergraph covering problem is NP-complete.
Later in this section we will show that this problem is equivalent to the (3, 2,∞)-
C1P Problem, thus showing that the (3, 2,∞)-C1P Problem is also NP-complete.

Theorem 3. The 3-UHC-P Problem is NP-complete.

Proof. Clearly, the problem is in NP. We will show it is also NP-hard by reduction
from 3SAT(3), a restricted version of 3SAT, proved NP-complete by Papadim-
itriou [12], in which every variable has exactly two positive and one negative
occurrence in the clauses.1 We will call a graph covering of a hypergraph a valid
covering if it consists only of disjoint paths. Note that a valid covering does not
contain vertices of degree 3 or more and does not contain cycles. Given 3SAT(3)
formula φ with variables X = {x1, . . . , xn} and clauses C = {c1, . . . , cm}, we
now construct a 3-uniform hypergraph Hφ on at most 12n + 15m hyperedges
which contains, among other vertices, a vertex for each literal of φ (there are 3n
such vertices) that has a valid covering if and only if φ is satisfiable.
1 We remark that the exact formulation of 3SAT(3) in [12] allows also variables with

one positive and two negated occurences, but these can easily be converted to the

other type of variables by replacing them with their negations in all clauses. Clearly,

this does not affect the complexity of the problem.
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Fig. 3. (a) A simple dependency on coverings of two touching hyperedges enforced by

a copy of D (depicted as a diamond). (b) The 2-clause and (c) 3-clause gadgets for

clause ci.

First we give an important building block that is used throughout this con-
struction: the complete 3-uniform hypergraph D on 4 vertices. In any valid
covering of D, there is no isolated vertex. Indeed, assume for contradiction that
v is the isolated vertex in a valid covering G. Let u1, u2, u3 be the remaining
three vertices. Then there is a pair ui, uj such that {ui, uj} is not an edge in G.
However, no edge is covering hyperedge {v, ui, uj}, a contradiction. We will use
several copies of D in the construction to introduce a dependency on coverings of
touching hyperedges and depict them as diamonds in the figures. For instance,
consider the hypergraph in Figure 3(a). Since in any valid covering G of this
hypergraph, v is a member of an edge in D, at most one of the hyperedges h1

and h2 can “pick” an edge involving v, otherwise vertex v would have degree 3
or more.

Now to the main construction. Consider the instance φ of 3SAT(3) with vari-
ables X = {x1, . . . , xn} and clauses C = {c1, . . . , cm}. We say that a clause
selects one of its literals in a truth assignment of φ if this literal has value true
in this assignment. Obviously, a truth assignment of φ is a satisfying truth as-
signment if and only if every clause selects at least one literal and for every
x ∈ X , at most one of x and ¬x is selected. We design a hypergraph Hφ com-
posed of clause gadgets which will guarantee the first condition and variable
gadgets which will ensure the second condition.

Figure 3(b)–(c) depicts the 2-clause and 3-clause gadgets, respectively. Given
a valid covering of the clause gadget for clause ci with literals c1

i , c2
i (and c3

i for a
3-clause), we say that it this gadget selects a literal vertex cj

i , if cj
i is a member

of two edges in the clause gadget. Note that in both clause gadgets at least one
of the literal vertices is selected. This is obvious for the 2-clause gadget. For the
3-clause gadget, if none of the literal vertices is selected in a valid covering of
this gadget, then in the three hyperedges in Figure 3(c), no picked edge involves
c1
i , c

2
i or c3

i . But this creates a cycle, a contradiction. Now, all 3n literal vertices
cj
i from the set of clause gadgets for C will appear in the variable gadgets, and

if a literal vertex cj
i is selected by a clause gadget then it cannot be a member of
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Fig. 4. (a) The variable gadget for variable with positive occurrences cp
i and cq

j and

negated occurrence cr
k in the clauses. The dashed edge is always picked in any valid

covering. (b) Grey edges are picked when this variable is set to false in a satisfying

assignment of φ. (c) Grey edges are picked when the variable is set to true.

any edge in the variable gadget, otherwise cj
i has degree 3 or more. The variable

gadget for each x ∈ X will use this property to ensure that literal vertices x and
¬x are not selected at the same time.

Figure 4(a) depicts the variable gadget for variable x ∈ X with the two
positive occurrences cp

i and cq
j , and one negated occurrence cr

k of this variable x
in the clauses. Note that if both a positive and the negated literal vertices of x
are selected by a clause gadget in a valid covering of Hφ, then it forces a cycle
in the variable gadget of x, a contradiction. It follows that if Hφ has a valid
covering then φ is satisfiable.

Conversely, if φ has a satisfying assignment τ , let us pick one literal for each
clause which makes it satisfied in τ and build the covering of Hφ as follows. In
each clause gadget, (i) in each hyperedge of this clause gadget that contains a
literal vertex, pick an edge containing the literal vertex if this literal was selected
for this corresponding clause, and (ii) for each diamond, choose any of the 3 valid
coverings of this diamond that consist of 2 parallel edges. In the variable gadgets,
pick the edges as depicted in Figure 4(b) if the variable has value false in τ and
otherwise, pick the edges as depicted in Figure 4(c). By selecting edges in this
fashion, every hyperedge of Hφ is covered by an edge, and each literal vertex is
adjacent to at most two edges in the covering, one of them lying in the diamond.
Hence, there is no vertex of degree 3 and no cycles in this covering, i.e., this
covering is valid.

Since the number of hyperedges used in the construction is at most 15m+12n,
i.e., linear in the size of φ, this construction can be done in polynomial-time, and
hence, the 3-UHC-P Problem is NP-hard. ��

The following lemma shows the correspondence between the (3, 2,∞)-C1P Prob-
lem and the 3-UHC-P Problem. A 3-uniform hypergraph H = (V, E) can be rep-
resented by a binary matrix BH with |V | columns and |E| rows, where for each
hyperedge h ∈ E, we add a row with 1’s in the columns corresponding to ver-
tices in h and 0’s everywhere else. Obviously, there is one-to-one correspondence
between 3-uniform hypergraphs and such matrices.
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Lemma 1. A 3-uniform hypergraph H = (V, E) can be covered by disjoint paths
if and only if matrix BH has the (3, 2,∞)-C1P.

Proof. Assume first that H has a covering G that consists of disjoint paths.
Then there is a Hamiltonian path P on V containing all edges of G. This path
defines an order on the vertices in V . Consider the ordering of the columns of
matrix BH based on this order (V is the set of columns of BH). It is easy to see
that this ordering is (3, 2,∞)-consecutive.

Conversely, assume that matrix BH is (3, 2,∞)-consecutive w.r.t. order π =
vi1 , . . . , vin . Consider the following covering G of H : for every hyperedge pick
the edge between two adjacent columns/vertices in π. Note that every picked
edge is {vij , vij+1} for some j. Hence, G consists of disjoint paths. ��
By Theorem 3 and Lemma 1 it follows that the (3, 2,∞)-C1P Problem is NP-
complete.

Theorem 4. The (3, 2,∞)-C1P Problem is NP-complete.

5 Conclusion

In this work, we have studied the weakest formulation of the C1P Problem with
gaps: in the (d, d − 1,∞)-C1P Problem it is required that only two of the d 1’s
in each row are adjacent, while the other 1’s can end up arbitrarily far away
from this pair. It is thus surprising that this problem is still NP-complete for
any d ≥ 3 as we have shown in Sections 3 and 4. This closes the case of the
complexity of the (d, k, δ)-C1P Problem, with the exception of the (∞, 2, 1)-C1P
case, or just the (2, 1)-C1P case [10], which remains open.

There are three directions we would like to follow in the future work: (i) Is
it possible to find a nice characterization of non-(d, k, δ)-C1P matrices in terms
of forbidden structures, such as Tucker submatrices [14], especially, for small
values of d? It has recently been shown that such a characterization could be
used in the design of algorithms related to the C1P [5,2]. (ii) Can we generalize
the hypergraph covering problem to d-uniform hypergraphs and selection of p
edges from each hyperedge? If finding such coverings under the same condition
(cover is a collection of paths) remains NP-complete, it could provide a stronger
and more elegant proof of the results in this paper (in particular, it could show
that the (d, k,∞)-C1P Problem is NP-complete for d-uniform matrices). We
have some preliminary results in this direction. Considering other conditions
on the covering could also give rise to a set of new interesting problems. (iii)
Assuming that k is close to d, for each row there are many orders of columns
which make this row (d, k,∞)-consecutive. Hence, for a small number of rows,
random instances of matrices have the (d, k,∞)-C1P almost always. We would
like to investigate the ratios between the number of rows and columns for which
this is the case.
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Abstract. We consider the following problem: given a forest of gene

family trees on a set of genomes, find a first speciation which splits these

genomes into two subsets and minimizes the number of gene duplications

that happened before this speciation. We call this problem the Minimum

Duplication Bipartition Problem. Using a generalization of the Minimum

Edge-Cut Problem, known as Submodular Function Minimization, we

propose a polynomial time and space 2-approximation algorithm for the

Minimum Duplication Bipartition Problem. We illustrate the potential

of this algorithm on both synthetic and real data.

1 Introduction

Gene duplication is a fundamental evolutionary mechanism for important groups
of eukaryotes such as vertebrates [3], insects [15], plants [19] or fungi [23]. Gene
duplications, together with gene losses, result in gene families, which can contain
several copies of a same gene in a given genome. Recent advances in methods
for reconstructing phylogenetic trees for individual gene families, have resulted
in large sets of accurate gene trees for eukaryote species, such as TreeFam [24].
Phylogenomics aims at reconstructing the evolution of species (genomes) by
inferring a species tree for the set of genomes from a set of gene trees. The Min-
imum Duplication Problem (MD Problem), also known as the Gene Duplication
Problem, is to infer, from a set of gene trees, a species tree that induces an evo-
lutionary history with a minimum number of gene duplications. This problem is
NP-hard, and is neither fixed-parameter tractable (FPT) nor approximable with
a constant ratio [2,12]. Recent advances in local search heuristics proved to be
useful [1] and have been applied on several eukaryotic datasets with interesting
results (see [19,25]), but with no optimality guarantee.

Recently, Chauve and El-Mabrouk [7,20] described a formal link between the
Minimum Duplication Problem and a problem of supertrees, where, given a set
of uniquely leaf-labeled gene trees (there is at most one copy of each gene in
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each genome), the goal is to reconstruct a species tree that disagrees with the
minimum number of gene trees [6]. This problem — a version of the MD Problem
restricted to uniquely leaf-labeled trees — is NP-hard too, even in the simple
case where each gene tree is a rooted triplet [4]. For supertree problems, greedy
heuristics based on the principle of computing successive optimal speciations,
modeled as edge-cuts in a graph whose vertices are the considered species, are
now standard [18,21]. In such heuristics, each Minimum Edge-Cut splits the
set of considered species into two subsets that correspond to a speciation that
results in two distinct lineages. Computing an optimal first speciation (a first
speciation that disagrees with the least number of rooted triplets) is tractable,
as the Minimum Edge-Cut problem is tractable. A complete species tree can
then be obtained from a series of locally optimal speciations.

In the present work we consider the Minimum Duplication Bipartition (MDB)
Problem: given a set of gene trees (where a gene occurs any number of times), find
a bipartition of the considered genes (corresponding to a speciation) that mini-
mizes the number of duplications that happened before this speciation. A first
motivation for this problem is that it leads, as for supertree problems, to a nat-
ural greedy heuristics to reconstruct a species tree from a set of gene trees. Also,
solving the Minimum Duplication Bipartition Problem can provide valuable in-
formation on the combinatorial nature of early speciations for large eukaryotic
datasets with respect to gene duplications. Our main result is a polynomial time
2-approximation algorithm for the Minimum Duplication Bipartition Problem
that generalizes the Minimum Edge-Cut approach used in supertrees and relies
on Submodular Function Minimization [10]. Although our focus here is mostly
theoretical, and explores the combinatorial structure of parsimonious first speci-
ations, we also provide experimental results, on small datasets, which illustrate
the potential of our approach.

We first define, in Section 2, gene trees, species trees, duplications, and the
optimization problems considered in this paper as well as our motivation to
introduce the MDB Problem. In Section 3 we describe our 2-approximation
algorithm1. Our experimental results are described in Section 4.

2 Preliminaries: Objects, Problems, Background

In this section and the sequel, G = {1, 2, . . . , k} is a set of integers representing
k different species (genomes).

Gene and species trees, bipartitions. A species tree on G is a tree with exactly
k leaves, where each i ∈ G is the label of a single leaf. A tree is binary if every
internal vertex has exactly two children. A gene tree on G is a binary tree where
each leaf is labeled with an integer from G. A gene tree is a formal representation
of a phylogenetic tree of a gene family, where each leaf labeled i represents a
gene which is a member of the gene family located on genome i. A gene tree is
uniquely leaf-labeled if no two leaves have the same label. A gene tree is a rooted
triplet if it has exactly three leaves.
1 Missing proofs are available at

http://www.cecm.sfu.ca/~cchauve/SUPP/RECOMBCG10.



292 A. Ouangraoua, K.M. Swenson, and C. Chauve

Given a tree T and a vertex x of T whose leaves are labeled by integers from
G, we denote by L(x) (resp. L(T )) the subset of G defined by the labels of the
leaves of the subtree of T rooted at x (resp. the leaves of T ). If x is not a leaf,
we denote by x� and xr the two children of x.

A bipartition B on a set S is a partition of S into two subsets. We represent
a bipartition by a, possibly non-binary, species tree on S containing exactly
three internal vertices — the root v and its two children v� and vr — such that
L(v�) ∩ L(vr) = ∅.

Reconciliation between Gene Trees and Species Trees. The Lowest Common An-
cestor Mapping (LCA mapping) is central in the problem of reconciling a gene
tree and a species tree. Given a gene tree T and a species tree S on G, the LCA
mapping M maps vertices of T to vertices of S as follows: for a vertex x of T ,
M(x) = v is the unique vertex of S such that L(x) ⊆ L(v) and v is either a leaf
of S or L(x) is not included in the leaf set of any child of v. In other words, v is
the deepest among all possible. A vertex x of T is then a duplication with respect
to S if M(x) = M(xr) and/or M(x) = M(x�); otherwise, x is called a speciation
with respect to S (see Figure 1). The same definitions apply to a forest F of gene
trees on G. The duplication cost of F given S denoted by d(F, S) is the number
of vertices of F that are duplications with respect to S. Note that the definitions
of duplication and speciation apply to a species tree that is a bipartition on the
set G, as these definitions do not depend on the species tree being binary.

If L(x�)∩L(xr) �= ∅, then x is a duplication vertex with respect to any species
tree S on G. Such a vertex is called an apparent duplication. Vertices of F that
are not apparent duplication are called non-apparent duplication.

Inferring parsimonious species trees and speciations. It is well known that d(F, S)
is the minimum number of gene duplication events required in any evolutionary
scenario that resulted in F (see [7,11] and references there), which leads to the
following optimization problem called the Minimum Duplication Problem (MD
Problem): given a gene tree forest F find a species tree S such that d(F, S) is
minimum.

The MD Problem is NP-hard [16], even in the case where every gene tree is a
uniquely leaf labeled and rooted triplet [4], in which case it is in fact equivalent to

Fig. 1. A gene tree T and a species tree S on a set of genome G = {1, 2, 3, 4}. The

LCA mapping from vertices of T to vertices of S is indicated by dashed lines linking

vertices. The vertices of T that are duplications with respect to S are represented by

square vertices; the black colored square vertices correspond to pre-duplications while

the grey colored square vertices are the duplications that are not pre-duplications.

Here, the first speciation of S is the bipartition with root v such that L(vl) = {1, 3}
and L(vr) = {2, 4}. a, b and g are apparent duplications.
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a supertree problem called the Minimum Rooted Triplet Inconsistency (MRTI)
Problem. This link with supertrees is important as recent hardness results on
the MRTI Problem imply that first, the MD Problem is W[2]-hard, and thus not
FPT [2,12] — contrary to what was believed ten years ago [22] — but also that
it cannot be approximated within a constant ratio unless P=NP [6]. Hence, for
solving the MD Problem, one has to rely on exponential time algorithms such
as [13] or local-search methods with no optimality guarantee [1,25].

In [7], it was shown that the MD Problem is in fact a slight variant of a su-
pertree problem (see also [20] that explores the link between gene duplications
and supertrees). Greedy heuristics for hard supertree problems based on com-
puting successive speciations events have proved to be effective [21], and in [7],
an application of such a heuristic showed promising results on synthetic data.
This motivates the introduction of the main problem we study in this paper.

Given a gene tree forest F on G and a bipartition B on G with root v, a
duplication x of F with respect to B is said to precede the first speciation with
respect to B if M(x) = v. Such vertices are called pre-duplications (e.g. a, b and
e in Figure 1). We denote by d1(F, B), the number of pre-duplications of F with
respect to B.
Minimum Duplication Bipartition Problem (MDB Problem):
Input: A gene tree forest F on G;
Output: A bipartition B on G such that d1(F, B) is minimum.

Before discussing previous works, we state an obvious, but very useful, prop-
erty related to duplication vertices of a forest of gene trees F on G.

Property 1. Let x be a vertex of F . Given a bipartition B on G with root v, x
is a pre-duplication with respect to B if and only if there exists a pair {s, t} ⊆
L(v�) × L(vr) such that {s, t} ⊆ L(x�) or {s, t} ⊆ L(xr).

As far as we know, the MDB problem was introduced in [22], where an exponen-
tial time algorithm was proposed. It was also shown in [7], although not formally
stated, that if there exists a bipartition such that all pre-duplications are appar-
ent duplications, then such a bipartition can be computed in polynomial time
and space. The hardness of the MDB Problem is still open, but preliminary re-
sults showing the hardness of a slight variant using quadruplets as input gene
trees (G. Blin and S. Vialette, personal communication), suggest it may be NP-
complete. In [8], it was shown that if F contains a single gene tree, the MDB
Problem is 3-approximable. However, in the more general case of a forest F with
t gene trees, the approximation ratio is not constant: if a parsimonious first spe-
ciation implies d duplications, then the algorithm described in [8] computes a
first speciation that can imply up to 2d+ t duplications. In the present work, we
show that the MDB Problem can be approximated with a constant ratio of 2 in
polynomial time and space.

Related optimization problems. Given a connected graph G = (V, E), an edge-cut
of G is an edge set E′ ⊆ E whose removal disconnects the graph G. A bipartition
B with root v on the set of vertices of G induces a unique edge-cut of G, denoted
by EG(B), composed of the edges (s, t) ∈ E such that s ∈ L(v�) and t ∈ L(vr).
So EG(B) = {(s, t) ∈ E | s ∈ L(v�), t ∈ L(vr)}. Hence, a subset X of V induces
a bipartition on V with root v such that L(v�) = X and L(vr) = V − X . We
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denote this bipartition by BV (X) and the edge-cut of G induced by BV (X) is
denoted by EG(X) (EG(X) = EG(BV (X))).

The Minimum Edge-Cut (MEC) Problem asks for a bipartition on the vertices
of G inducing an edge-cut of G of minimum cardinality. If the edges of G are
labeled on a given set Σ of labels, given an edge-cut E′ of G, the label-set of E′

denoted by label(E′) is the subset of Σ composed of the labels of the edges in
E′. The following cut problem is a natural generalization of the MEC Problem
and is essential in our algorithm:
Minimum Labeled-Edge-Cut (MLEC) Problem:
Input: A connected edge-labeled graph G = (V, E);
Output: A bipartition B on V such that the cardinality of label(EG(B)) is
minimum.

A set function is a function f : 2V → R defined from the set of the 2|V |

subsets of a finite set V onto the real numbers R. The set V is called the ground
set of f . The Set Function Minimization Problem asks to find a non-empty
subset X of V such that f(X) is minimum. A submodular function is a set
function f with ground set V such that for any subsets A and B of V , f(A) +
f(B) ≥ f(A ∪ B) + f(A ∩ B). Several combinatorial optimization problems
have been linked to submodular functions [10], in particular the MEC Problem.
Given a submodular function f , the following optimization problem, which is
tractable [14], is a special case of the Set Function Minimization Problem:
Submodular Function Minimization (SFM) Problem:
Input: A submodular function f : 2V → R with ground set V ;
Output: A non-empty subset X of V such that f(X) is minimum.

A hypergraph is a pair (V, E) where V is a set of vertices and E is a set of
non-empty subsets of V called hyperedges. Given a hypergraph G = (V, E), a
bipartition B on V with root v induces a hyperedge-cut of G defined by the
following subset of E:
EG(B) = {e ∈ E | e ∩ L(v�) �= ∅ and e ∩ L(vr) �= ∅}.
Minimum Hypergraph Cut (MHC) Problem:
Input: A hypergraph G = (V, E);
Output: A bipartition B on V such that the cardinality of EG(B) is minimum.

3 A 2-Approximation Algorithm for the MDB Problem

3.1 A Set Function Minimization Problem

In the following, given a gene tree forest, we label arbitrarily its internal vertices
with a set Σ of labels in such a way that no two internal vertices have the same
label.

Given a gene tree forest F , we define the edge-labeled graph H(F ) = (V, E)
associated to F as follows (see Figure 2): V = L(F ) and there is an edge labeled
with a ∈ Σ between two vertices s and t of H(F ) if and only if there exists an
internal vertex x of F labeled with a such that {s, t} ⊆ L(x�) or {s, t} ⊆ L(xr).
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Fig. 2. A gene tree T on the set of genomes G = {1, 2, 3, 4} and the corresponding edge-

labeled graph H(T ). Apparent duplication vertices of T appear as square vertices.

Lemma 1. Let F be a gene tree forest on G. If B is a bipartition on L(F ), then
the set of labels of the pre-duplications of F with respect to B is exactly the set
label(EH(F )(B)).

The MLEC Problem can be reduced to a Set Function Minimization Problem
as follows: given an edge-labeled graph G = (V, E), we define the cut-set function
fG : 2V → R as a function from the set of the subsets of V onto R such that, for
any subset X of V , fG(X) is the cardinality of the set of labels label(EG(X)).
It is easy to see that solving the MLEC Problem on G can be achieved by
minimizing fG. In the following, given a gene tree forest F , we simply denote by
fG the cut-set function induced by an edge-labeled graph G(F ) associated to F .

Unfortunately, the cut-set function fG associated to an edge-labeled graph
G is not always a submodular function. For example (Figure 3), consider a
single gene tree T with four leaves {1, 2, 3, 4} and three internal vertices a, b
and c whose sets of children are respectively {b, c}, {1, 3} and {2, 4}. The edge-
labeled graph H(T ) associated to T has four vertices {1, 2, 3, 4} and only two
edges (1, 3) and (2, 4) labeled with a. If we consider the subsets A = {1, 4} and
B = {2, 4} of the set of {1, 2, 3, 4}, we see that fH(T )(A) = 1, fH(T )(B) = 0,
fH(T )(A ∪ B) = 1 and fH(T )(A ∩ B) = 1. Then, fH(T )(A) + fH(T )(B) = 1 <
fH(T )(A∪B)+fH(T )(A∩B) = 2, and fH(T ) is not a submodular function which
proves the following property:

Property 2. There exist gene trees forest F such that the cut-set function fH ,
where H = H(F ), is not a submodular function.

Fig. 3. Illustration of Property 2: a gene tree T (left) and the corresponding graph

H(T ) (right), and two vertex sets A and B that contradict the submodularity of the

cut-set function fH

3.2 Submodular Function Minimization

In this section, we prove our main result.
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Fig. 4. Illustrations of the definition of the six sets of labels ABi,j(G) (1 ≤ i < j ≤ 4)

associated to two subsets A and B of the set L(F ) of leaves of a gene tree forest F and

an edge-labeled graph G whose set of vertices is L(F ): the A and B are represented

by two squares and the solid black lines correspond to edges of G whose labels belong

to one of the six sets according to membership of their extremities to the sets ABi

(1 ≤ i ≤ 4)

Theorem 1. Let F be a gene tree forest with n vertices, on a set G of k genomes.
If a most parsimonious bipartition B∗ on L(F ) has cost d1(F, B∗) = d, then it
is possible to compute in time O(kn) a bipartition B s.t. d(F, B) ≤ 2d.

The approximation results from transforming the graph H(F ) associated to a
gene tree forest F in order to obtain a new edge-labeled graph J(F ) such that
the set function fJ is a submodular function.

Characterization of non-submodularity. Given two subsets A and B of L(F ),
we define the following four subsets of L(F ): AB1 = A − B, AB2 = B − A,
AB3 = L(F )− (A∪B) and AB4 = A∩B. Note that the intersection of any two
of these subsets is empty, and the union of all of them is L(F ).

Given an edge-labeled graph G whose set of vertices is L(F ), we then define six
sets of labels AB1,2(G), AB1,3(G) AB1,4(G), AB2,3(G), AB2,4(G) and AB3,4(G)
as follows: given two integers i and j such that 1 ≤ i < j ≤ 4, the set ABi,j(G)
is the set of labels of edges (s, t) in G such that s ∈ ABi and t ∈ ABj (see
Figure 4).

In the following, given a gene tree forest F , two subsets A and B of L(F ),
and the edge-labeled graph H(F ) associated to F , we simply denote any set
ABi,j(H(F )) by ABi,j .

Lemma 2. Let F be a gene tree forest and fH be the cut-set function associated
to H(F ). If fH is not a submodular function then there exist two subsets A and B
of L(F ) and an internal vertex x of F labeled with a ∈ Σ that is a non-apparent
duplication, such that at least one of the two following configurations holds:

– (1) a ∈ AB1,3 ∩ AB2,4 and a �∈ AB1,2 ∪ AB1,4 ∪ AB2,3 ∪ AB3,4 or
– (2) a ∈ AB2,3 ∩ AB1,4 and a �∈ AB1,2 ∪ AB1,3 ∪ AB2,4 ∪ AB3,4.

Modification of the edge-labeled graph H(F ). We now present a modification
of H(F ) that leads to our 2-approximation algorithm for the MDB Problem.
The goal is to modify H(F ) into a new edge-labeled graph J(F ) such that the
two configurations of Lemma 2 never hold, leading to a cut-set function that is
submodular. The transformation is as follows: for each vertex x of F (say labeled
with a ∈ Σ) that is not an apparent duplication, reassign to edges (s, t) of H(F )
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Fig. 5. A gene tree T on the set of genomes G = {1, 2, 3, 4} and the corresponding

modified edge-labeled graph J(F ), where modified labels are displayed in grey color.

Apparent duplication vertices of T appear as square vertices.

labeled with a such that {s, t} ⊆ L(xr), a new label that is different from a (see
Figure 5).

More precisely, given a gene tree forest F we now label each non apparent
duplication vertex of F with an ordered pair of labels in Σ, and define the edge-
labeled graph J(F ) = (V, E) as follows (see Figure 5): the set V of vertices of
J(F ) is L(F ), and there is an edge (s, t) labeled a ∈ Σ in J(F ) if and only if
there exists an internal vertex x of F such that:

– either {s, t} ⊆ L(x�) or {s, t} ⊆ L(xr) and x is an apparent duplication
labeled with a,

– or {s, t} ⊆ L(x�) and x is a non-apparent duplication labeled with (a, a′),
– or {s, t} ⊆ L(xr) and x is a non-apparent duplication labeled with (a′, a).

Lemma 3. Given a gene tree forest F , the cut-set function fJ associated to
J(F ) is a submodular function.

Proof of Theorem 1. For any bipartition B on L(F ), the cardinality of label
(EH(B)) (resp. label(EJ (B))) is denoted by dH(B) (resp. dJ(B)).

We first prove that, for any bipartition B on L(F ) with root v, dH(B) ≤
dJ(B) ≤ 2 ∗ dH(B). It is relatively straightforward. First, note that EH(B) =
EJ (B) since J(F ) differs from H(F ) only in the fact that the labels of some
edges have been changed. Next, a label a ∈ label(EH(B)) corresponds to at
least one but at most two labels in label(EJ(B)): if a is the label of an apparent
duplication, then we have a ∈ label(EH(B)) ⇔ a ∈ label(EJ (B)); if a is the
label of a non-apparent duplication x, then the vertex x has two labels — a and
a′ — such that one or both belong to label(EJ (B)). This proves that dH(B) ≤
dJ(B) ≤ 2 ∗ dH(B).

Now, let B′ be a bipartition on L(F ) inducing an optimal labeled edge-cut
of H(F ) (i.e dH(B′) is minimum). For any bipartition B on L(F ), if dH(B) >
2 ∗ dH(B′) then B cannot induce an optimal labeled edge-cut of J(F ): indeed,
if dH(B) > 2 ∗ dH(B′), as dH(B) ≤ dJ (B) and dJ(B′) ≤ 2 ∗ dH(B′), we have
dJ(B) > 2 ∗ dH(B′) ≥ dJ(B′). Hence, for any bipartition B on L(F ) that is
optimal for J(F ), we have dH(B) ≤ 2 ∗ dH(B′). This completes the proof that
computing an optimal labeled edge-cut for J(F ) achieves a ratio 2 approximation
for the MDB Problem.

The complexity stated in Theorem 1 follows. The O(kn) time complexity is
derived from the reduction of the minimization of the function fJ to the MHC
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Problem as follows. Given a graph G = (V, E) with edges labeled on a set Σ
of labels, we define the hypergraph Gh = (Vh, Eh) such that Vh = V and, for
each label a ∈ Σ, Gh contains an hyperedge composed of all vertices s in V that
belong to an edge labeled by a. Given a gene tree forest F and a bipartition B
on L(F ), if we consider the graph J = J(F ), it is obvious that the cardinality
of label(EJ (B)) is equal to the cardinality of EJh

(B). Hence, the minimization
of fJ can be reduced to the MHC Problem on Jh. The time complexity given in
the theorem then follows from the algorithm described in [17] solving the MHC
Problem on a hypergraph G in time and space O(kn) where k (resp. n) is the
number of vertices (resp. hyperedges) of G.

Additional remarks. If there exists at least one parsimonious first speciation B′

such that all the corresponding pre-duplications are apparent duplications in F ,
then our algorithm computes a parsimonious bipartition, and not an approxi-
mation. Indeed, in such a case, B′ induces an optimal cut for both H(F ) and
J(F ). Note however that this does not imply that the cut-set function for H(F )
is submodular.

Conversely, the approximation ratio of 2 is tight, as illustrated in Figure 6.
This example is easily expanded to any size by extending the top and bottom
rows of the graph J(F ), adding pairs of labeled edges between the rows and
the suitable number of unlabeled edges between the vertices of the top row and
between the vertices of the bottom row.

Fig. 6. The forest F is built from trees corresponding to the labeled and unlabeled

edges in J(F ). For a pair of edges in J(F ) labeled with two labels a, a′, say (p, q) and

(u, v), we add to F the tree ((p, q), (u, v)). For an unlabeled edge (u, v), we add to F
the tree ((u, v), v). The tree Ta,a′ (resp. T(1,3)) corresponds to the pair of edges labeled

with a, a′ (resp. the unlabeled edge (1, 3)).

4 Experimental Results

We performed three different experiments2. First, on several datasets of simu-
lated gene families on 12 species (genomes) we studied the ability of the greedy
approach — that infers a species tree by computing successive parsimonious
speciations — to recover the exact species tree, using an exhaustive explo-
ration of all possible speciations at each step (which was possible due to the
fact we considered only 12 species). Next, on the same simulated datasets, we
replaced the exhaustive exploration of all possible speciations at each step by
our 2-approximation algorithm for computing a parsimonious speciation. Last,
we performed the same experiment, using only the approximation algorithm on
a large dataset of gene families on 23 fungal genomes.
2 Data and results available at http://www.cecm.sfu.ca/~cchauve/SUPP/RECOMBCG10
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Datasets. We uploaded from the Fungal Orthogroup Repository3 the 6808 fungal
gene trees containing genes belonging to at least three different species, among
23 fungal species.

We also analyzed the four synthetic datasets that were studied in [7]; each
dataset contains 100 gene trees. Each gene tree was generated from a single
ancestral gene with duplication (birth) and loss (death) rates computed using
the software CAFE [9] from real Drosophilia gene families [15].

To balance the fact that each gene tree originates from a single ancestral
gene (and then has no duplication before the first speciation), and to consider
datasets including gene families generated with different duplication/loss rates,
we created duplications that happened before the first speciation by clustering
the 400 gene trees of the four datasets into 100 clusters of random size, and for
every such cluster of a given size, say k, we generated a random binary tree with
k leaves and replaced each leaf of this tree by a gene tree of the cluster, which
amounts to creating around 4 duplications that precede the first speciation. We
repeated this experiment ten times, generating ten different datasets.

Results. On each of the simulated datasets, we first observed that the greedy
heuristic that computes successive parsimonious speciations using an exhaustive
exploration lead to the exact species tree, i.e. the one that had been used to
generate the synthetic gene trees. Despite the relatively modest size of our syn-
thetic datasets (12 species), it illustrates the potential of this greedy heuristic
in a phylogenomics context, especially as the heuristic described in [7] inferred
a slightly incorrect species tree for the two datasets with the highest duplica-
tion/loss rates. Moreover, we observed that our approximation algorithm pro-
vided the exact species tree every time. We believe this result can be explained
by the fact that most duplications that occurred during the generation of the
gene trees are apparent duplications.

Due to the large number of species in the real data set — 6808 fungal gene trees
from 23 species — we applied only our approximation algorithm. We observed
that the inferred species tree is the one widely accepted in yeasts phylogenomics4.
We also noticed that a significant number of speciations satisfied the property
that all the associated pre-duplications were apparent duplications. Such spe-
ciations are then parsimonious (see the discussion at the end of the previous
section). Moreover, aside from one branch (leading to node 28 of the species
tree, where 103 pre-duplications are non-apparent) all other branches are asso-
ciated with very few such non-apparent pre-duplications, which suggests that
they might be parsimonious. Providing the gene trees we analyzed are correct,
this clearly suggests that traces of most duplications that occurred during yeast
evolution are still visible today.

5 Conclusion

We showed that computing a parsimonious first speciation in the gene duplica-
tion model can be approximated in polynomial time with a ratio of 2. As far as
3 Version 1.1, http://www.broadinstitute.org/regev/orthogroups/
4 The species tree can be seen at

http://www.cecm.sfu.ca/~cchauve/SUPP/RECOMBCG10.
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we know this is the first time a constant approximation algorithm is proposed in
relation with the problem of inferring species trees using gene duplications. This
result was obtained by describing the problem in terms of edge-cuts in particular
graphs, which can be computed in polynomial time through submodular function
minimization. This algorithm is also a natural generalization of the classical min-
imum edge-cut algorithm that is used in supertree consistency problems, which
is highlighted by its link with the Submodular Function Minimization Problem.
Our preliminary experiments showed that both the approach of inferring a species
tree by computing successive parsimonious speciations and our approximation al-
gorithm for computing such speciations are promising, and we plan to apply them
on larger datasets, like those that will soon be available from [5,26].

From a theoretical point of view, the hardness of the Minimum Duplication
Bipartition Problem is still an open problem, but we conjecture the problem is
NP-complete. It is interesting to note that, as for to the Gene Duplication Prob-
lem, when there is a parsimonious first speciation whose pre-duplications are all
apparent duplications, it can be detected in polynomial time. Also when F con-
tains only uniquely leaf-labeled rooted triplets, the graph H(F ) does not need to
be augmented as every label appears only once, and computing a parsimonious
first speciation can be done by computing a minimum edge-cut in H(F ). How-
ever, as we showed in the proof of Property 1, this tractability property no longer
holds when quadruplets whose root is a non-apparent duplication are considered
instead of triplets, as the cut-set function is no longer submodular. The role of
non-apparent duplications, especially with respect to the non-submodularity of
the cut-set function of H(F ), seems to be fundamental to the hardness of the
problem, in particular to the understanding of which families of gene tree forests
are tractable or fixed-parameter tractable.
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Ph.D. thesis, Univ. Montpellier II, France (2008)

13. Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. In:

RECOMB 2000, pp. 138–146. ACM Press, New York (2000)

14. Iwata, S., Orlin, J.B.: Simple combinatorial algorithm for submodular function

minimization. In: SODA 2009, pp. 1230–1237. SIAM, Philadelphia (2009)

15. Hahn, M.W., Han, M.V., Han, S.-G.: Gene family evolution across 12 Drosophilia

genomes. PLoS Genet. 3, e197 (2007)

16. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. Comput. 30,

729–752 (2000)

17. Mak, W.-K.: Faster Min-Cut Computation in Unweighted Hypergraphs/Circuit

Netlists. In: VLSI Design, Automation and Test, 2005 (VLSI-TSA-DAT), pp. 67–

70. IEEE, Los Alamitos (2005)

18. Page, R.D.M.: Modified mincut supertrees. In: Guigó, R., Gusfield, D. (eds.) WABI
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