

Lecture Notes in Artificial Intelligence 6251
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Jürgen Dix Cees Witteveen (Eds.)

Multiagent System
Technologies

8th German Conference, MATES 2010
Leipzig, Germany, September 27-29, 2010
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Jürgen Dix
Clausthal University of Technology
Department of Computer Science
Clausthal-Zellerfeld, Germany
E-mail: dix@tu-clausthal.de

Cees Witteveen
Delft University of Technology
Department of Software Technology
Delft, The Netherlands
E-mail: c.witteveen@tudelft.nl

Library of Congress Control Number: 2010935210

CR Subject Classification (1998): I.2, D.2, C.2.4, I.2.11, H.4, F.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-642-16177-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-16177-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

These are the proceedings of the 8th International Workshop on Multi Agent
Systems Technologies (MATES 2010), held during 27–29 September in Leipzig,
collocated with the 40th Annual Conference of the Gesellschaft fur Informatik
e.V. (GI).

The main aim of the MATES conference series consists in bringing together
researchers from around the world and providing a fruitful discussion basis for
exchanging ideas and sharing the latest scientific results. Since its inception in
2003, MATES has been collocated with mainstream software engineering confer-
ences like the NetObjectDays as well as with the German Artificial Intelligence
Conference (KI) and has thus strived to address the full range of agent research
topics from practical applications and tools for agent technology to the theo-
retical foundations of multi-agent systems. In addition to the broad range of
topics covered by MATES, special areas of interest (hot topics) within the field
of multi-agent systems have been identified in recent years and have influenced
the conferences.

Multi-agent systems are communities of problem-solving entities that can per-
ceive and act upon their environment in order to achieve both their individual
goals and their joint goals. The work on such systems integrates many technolo-
gies and concepts from artificial intelligence and other areas of computing as well
as other disciplines. In recent years, the agent paradigm has gained popularity,
due to its applicability to a full spectrum of domains, such as search engines,
recommendation systems, educational support, e-procurement, simulation and
routing, electronic commerce and trade, etc.

These proceedings feature 18 regular papers (from a total of 34 papers sub-
mitted), as well as abstracts of two invited talks, given by Felix Brandt (TU
München) and Michal Pěchouček (Czech Technical University in Prague).

Felix Brandt considered in his talk Tournament Solutions and Their Applica-
tions to Multiagent Decision Making the important problem of decision-making
in multiagent systems. There are several broad areas, such as adversarial, collec-
tive, or coalitional decision making that have gained interest in the past years. It
was shown in the talk how tournament solution concepts, based on binary domi-
nance relations, can be applied. The overview was accompanied by a complexity
analysis.

Michal Pěchouček talked about Research Challenges in Simulation Aided
Design of Complex Multi-Agent Systems, based on joint research with Michal
Jacob. In recent years more and more complex systems and infrastructures ac-
company and interact with us. These systems are based on complex networks
with mutual interactions and feedbacks, giving rise to dynamic, non-linear emer-
gent behavior. The following open research challenges were discussed during
the talk: (i) automated construction, calibration, and synchronization of the

VI Preface

simulation models, ii) scalability and fidelity of the simulation, (iii) introduc-
tion of mixed-mode simulation, and (iv) development and rapid prototyping
support.

The regular papers of MATES 2010 have been classified in the following
categories/sessions, in the order of their presentation at the conference.

Models and Specifications: This session consists of three papers. The first
paper, by Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes, “A Model
Driven Development of Platform-Neutral Agents,” considers the problem of
automatic transformation of software agent designs into implementations
for different agent platforms. More specifically, they transform a particular
agent metamodel into Malaca.

The second paper, by Mohamed Amin Laouadi, Farid Mokhati, and Has-
sina Seridi presents “A Novel Formal Specification Approach for Real Time
Multi-Agent System Functional Requirements.” The idea is to translate ex-
tended AUML diagrams describing RTMAS’ functional requirements into
a RT-Maude specification. This approach combines the advantages of the
graphical modeling formalism Agent UML and the formal specification lan-
guage RT-Maude.

The last paper in this session, by Joost Broekens, Maaike Harbers, Koen
Hindriks, Karel van den Bosch, Catholijn Jonker, and John-Jules Meyer, “Do
You Get It? User-Evaluated Explainable BDI Agents,” was about explaining
to humans the behavior of autonomous agents. This is important for e.g.,
disaster training, tutor and pedagogical systems, agent development and
debugging, gaming, and interactive storytelling.

Trust, Norms, and Reputation: We have three papers in this session. Miriam
Heitz, Stefan König, and Torsten Eymann consider trust and reputation
mechanisms in their paper “Reputation in Multi Agent Systems and the In-
centives to Provide Feedback.” Many transactions on the Internet are subject
to fraud and cheating, so there is a need for incentive mechanisms to get users
to report their experiences honestly.

Natalia Criado, Estefania Argente, and Vicent Botti extend BDI architec-
tures by norms in “Normative Deliberation in Graded BDI Agents.” This is
done by adding both a recognition and a normative context so that agents
can use norms in their decision making.

Roberto Centeno, Holger Billhardt, and Sascha Ossowski treat a similar
problem in their paper “Inducing Desirable Behavior through an Incentives
Infrastructure”: How can one make sure that heterogenous agents, possibly
built on different platforms, act in a certain manner? The authors introduce
an incentive infrastructure to formulate agents’ preferences.

Models, Tools, and Architectures: In the first paper of this session,
“SONAR/OREDI: A Tool for Creation and Deployment of Organization
Models” by Michael Köhler-Bußmeier and Endri Deliu, a middleware concept
for support of organizational teamwork is discussed using Sonar, a Petri-net
based specification formalism for multi-agent organizations.

Preface VII

Christian Hahn, Sven Jacobi, and David Raber in their paper “Enhancing
the Interoperability between Multiagent Systems and Service-Oriented Archi-
tectures through a Model-Driven Approach” present a model-driven approach
for the integration of service-oriented architectures and multi-agent systems
and provide a real-world industry scenario showing the relevance of their
approach.

The final paper in this session, by Alexander Pokahr, Lars Braubach, and
Kai Jander, titled “Unifying Agent and Component Concepts - Jadex Active
Components,” discusses a new software concept called active components,
a system architecture for them, and an implementation in the Jadex Active
Component Infrastructure.

Applications I: There are three papers in this session. The first paper by Ferdi
Grootenboers, Mathijs de Weerdt, and Mahdi Zargayouna, titled “Impact of
Competition on Quality of Service in Demand Responsive Transit” deals
with enhancing the QoS of transportation companies offering demand re-
sponsive transportation. The authors set up a multi-agent environment to
simulate the assignment of rides to companies through an auction on QoS
and the inserting of rides using an online optimization tool, showing that in
this way service can be improved, while costs only increased moderately. Ste-
fano Bromuri, Michael Schumacher, and Kostas Stathis in their contribution
“Towards Distributed Agent Environments for Pervasive Healthcare” show
how by applying the concept of agent environment, a pervasive GRID can
be defined for roaming agents that monitor continuously the health status
of patients.

Finally, Adriaan ter Mors, Cees Witteveen, Jonne Zutt, and Fernando
Kuipers in their paper “Context-Aware Route Planning” show how conflict
resolution in multi-agent traffic applications can be shifted from resolution
during plan execution to resolution during the planning phase. They discuss
a planning method where each agent is aware of the results of route planning
by other agents.

Coordination and Learning: The first contribution is this session is the pa-
per “Social Conformity and Its Convergence for Reinforcement Learning”
by Juan A. Garcia-Pardo, Jose Soler, and Carlos Carrascosa. In this paper a
social reinforcement mechanism is discussed that allows agents to adapt bet-
ter to environmental changes. Here, social reinforcement enables an agent to
take into account the opinion of other agents on its actions. The convergence
of the approach is shown and the authors show that socially aware agents
adapt better than traditional agents.

The second paper “Colypan: A peer-to-Peer Architecture for a Project
Management Collaborative Learning System” by Hanaa Mazyad and Insaf
Tnazefti-Kerkeni also deals with learning. Here, the authors focus on a
project based learning environment where a multi-agent system supported
by a peer-to-peer networking infrastructure constitutes a truly collaborative
learning environment.

In the third paper titled “Preference Generation for Autonomous Agents,”
Umair Rafique and Shell Ying Huang deal with the problem of learning

VIII Preface

preferences. They discuss a preference generation method that allows an
agent to learn new preferences about an object based on its existing prefer-
ences about similar objects.

In the last paper of this session Robert Junges and Franziska Klügl deal
with learning in a very general setting. In their paper “Agent Architec-
tures for a Learning-Driven Modeling Methodology in Multiagent Simula-
tion,” they introduce a learning-driven methodology that exploits learning
architectures for generating suggestions for agent behavior models based on a
given environmental model. They discuss several criteria that such a suitable
learning agent architecture must fulfill.

Applications II: We have two papers in this second session about applications
of multi-agent systems. First, Juan M. Alberola, Ana Garcia-Fornes, and
Agust́ın Espinosa in their paper “Price Prediction in Sports Betting Mar-
kets” discuss an agent approach where an agent participates in the sport
market focusing on the task of learning the price movements in order to
make predictions of future prices. The agent then tries to identify and learn
pattern price movements in order to predict the price movements of new
events using an underlying case based reasoning system.

In their paper “Modelling Distributed Network Security in a Petri Net
and Agent-Based Approach,” Simon Adameit, Tobias Betz, Lawrence Cabac,
Florian Hars, Marcin Hewelt, Michael Köhler-Bußmeier, Daniel Moldt, Dim-
itri Popov, José Quenum, Axel Theilmann, Thomas Wagner, Timo Warns,
and Lars Wüstenberg discuss an approach aiming to provide a novel way of
handling and managing distributed network security through the means of
agent-based software. Their model is based on the Paose (Petri net-based
and agent-oriented software engineering) software development approach of
the Herold research project. This project aims to provide a novel way of
handling and prototyping distributed network security.

We thank all the authors of submissions for MATES 2010 for submitting
papers and for revising their contributions to be included in these proceedings.
We are very grateful to the members of the MATES 2010 steering committee,
program committee, and the additional reviewers. Their service ensured the high
quality of the accepted papers.

A special thank-you goes to the local organizers in Leipzig for their help and
support. We are very grateful to them for handling the registration and a very
enjoyable social program. A special thank-you to Mrs. Alexandra Gerstner for
her continual and enduring support and availability in all organizational matters.

July 2010 Jürgen Dix
Cees Witteveen

Organization

Program Co-chairs

Jürgen Dix Clausthal University of Technology, Germany
Cees Witteveen Delft University of Technology, The Netherlands

Doctoral Consortium Chair

Ingo J. Timm Goethe-Universität Frankfurt, Germany

Steering Committee

Matthias Klusch DFKI, Germany
Winfried Lamersdorf Universität Hamburg, Germany
Jörg P. Müller Technische Universität Clausthal, Germany
Paolo Petta University of Vienna, Austria
Rainer Unland Universität Duisburg-Essen, Germany
Gerhard Weiss University Maastricht, The Netherlands

Program Committee

Klaus-Dieter Althoff Universität Hildesheim, Germany
Federico Bergenti Università degli Studi di Parma, Italy
Ralph Bergmann Universität Trier, Germany
Vicent Botti Universidad Politécnica de Valencia, Spain
Lars Braubach Universität Hamburg, Germany
Longbing Cao TU Sydney, Australia
Torsten Eymann Universität Bayreuth, Germany
Klaus Fischer DFKI, Germany
Maria Ganzha Elblag University of Humanities and Economy,

Poland
Paolo Giorgini Università degli Studi di Trento, Italy
Christian Guttmann Monash University, Australia
Koen Hindriks TU Delft, The Netherlands
Benjamin Hirsch Technische Universität Berlin, Germany
Stefan Kirn Universität Hohenheim, Germany
Franziska Klügl Örebro University, Sweden
Gabriela Lindemann Humboldt Universität zu Berlin, Germany
Stefano Lodi Università di Bologna, Italy
Beatriz López Universitat de Girona, Spain

X Organization

Viviana Mascardi Università degli Studi di Genova, Italy
Mirjam Minor Universität Trier, Germany
Daniel Moldt Universität Hamburg, Germany
Jörg P. Müller Technische Universität Clausthal, Germany
Peter Novák Czech Technical University, Czech Republic
Andrea Omicini Università di Bologna, Italy
Sascha Ossowski Universidad Rey Juan Carlos, Spain
Marcin Paprzycki Polish Academy of Sciences, Poland
Adrian Paschke Freie Universität Berlin, Germany
Alexander Pokahr Universität Hamburg, Germany
Alessandro Ricci Università di Bologna, Italy
Abdel Badeh Salem Ain Shams University, Egypt
Amal El Fallah Seghrouchni University Pierre and Marie Curie, France
Ingo J. Timm Goethe-Universität Frankfurt, Germany
Rainer Unland Universität Duisburg-Essen, Germany
Wiebe van der Hoek University of Liverpool, UK
László Zsolt Varga MTA SZTAKI, Hungary
Yingqian Zhang Erasmus University Rotterdam, The Netherlands

Additional Reviewers

Rehab Alnemr
Estefańıa Argente
Kerstin Bach
Kamel Barkaoui
Tristan Behrens
Daniel Briola
Roberto Centeno
Sebastian Hudert

Régis Newo
Christoph Niemann
Miguel Rebollo
Daniel Schmalen
Adriaan ter Mors
Matteo Vasirani
Jǐŕı Vokř́ınek

Table of Contents

Invited Talks

Tournament Solutions and Their Applications to Multiagent Decision
Making . 1

Felix Brandt

Research Challenges in Simulation Aided Design of Complex
Multi-agent Systems . 2

Michal Pěchouček and Michal Jakob

Models and Specifications

A Model Driven Development of Platform-Neutral Agents 3
Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes

A Novel Formal Specification Approach for Real Time Multi-Agent
System Functional Requirements . 15

Mohamed Amin Laouadi, Farid Mokhati, and
Hassina Seridi-Bouchelaghem

Do You Get It? User-Evaluated Explainable BDI Agents 28
Joost Broekens, Maaike Harbers, Koen Hindriks,
Karel van den Bosch, Catholijn Jonker, and
John-Jules Meyer

Trust, Norms and Reputation

Reputation in Multi Agent Systems and the Incentives to Provide
Feedback . 40

Miriam Heitz, Stefan König, and Torsten Eymann

Normative Deliberation in Graded BDI Agents . 52
Natalia Criado, Estefania Argente, and Vicent Botti

Inducing Desirable Behaviour through an Incentives Infrastructure 64
Roberto Centeno, Holger Billhardt, and Sascha Ossowski

Models, Tools and Architectures

SONAR/OREDI: A Tool for Creation and Deployment of Organisation
Models . 76

Endri Deliu and Michael Köhler-Bußmeier

XII Table of Contents

Enhancing the Interoperability between Multiagent Systems and
Service-Oriented Architectures through a Model-Driven Approach 88

Christian Hahn, Sven Jacobi, and David Raber

Unifying Agent and Component Concepts: Jadex Active Components . . . 100
Alexander Pokahr, Lars Braubach, and Kai Jander

Applications I

Impact of Competition on Quality of Service in Demand Responsive
Transit . 113

Ferdi Grootenboers, Mathijs de Weerdt, and Mahdi Zargayouna

Towards Distributed Agent Environments for Pervasive Healthcare 125
Stefano Bromuri, Michael Ignaz Schumacher, and Kostas Stathis

Context-Aware Route Planning . 138
Adriaan W. ter Mors, Cees Witteveen, Jonne Zutt, and
Fernando A. Kuipers

Coordination and Learning

Social Conformity and Its Convergence for Reinforcement Learning 150
Juan A. Garćıa-Pardo, Jose Soler, and Carlos Carrascosa

COLYPAN: A Peer-to-Peer Architecture for a Project Management
Collaborative Learning System . 162

Hanaa Mazyad and Insaf Tnazefti-Kerkeni

Preference Generation for Autonomous Agents . 173
Umair Rafique and Shell Ying Huang

Evaluation of Techniques for a Learning-Driven Modeling Methodology
in Multiagent Simulation . 185

Robert Junges and Franziska Klügl

Applications II

Price Prediction in Sports Betting Markets . 197
Juan M. Alberola, Ana Garcia-Fornes, and Agustin Espinosa

Modelling Distributed Network Security in a Petri Net- and
Agent-Based Approach . 209

Simon Adameit, Tobias Betz, Lawrence Cabac, Florian Hars,
Marcin Hewelt, Michael Köhler-Bußmeier, Daniel Moldt,
Dimitri Popov, José Quenum, Axel Theilmann, Thomas Wagner,
Timo Warns, and Lars Wüstenberg

Author Index . 221

Tournament Solutions and Their Applications to
Multiagent Decision Making

Felix Brandt

Institut für Informatik
Technische Universität München

brandtf@in.tum.de

Abstract. Given a finite set of alternatives and choices between all
pairs of alternatives, how to choose from the entire set in a way that is
faithful to the pairwise comparisons? This simple, yet captivating, prob-
lem is studied in the literature on tournament solutions. A tournament
solution thus seeks to identify the “best” elements according to some bi-
nary dominance relation, which is usually assumed to be asymmetric and
complete. As the ordinary notion of maximality may return no elements
due to cyclical dominations, numerous alternative solution concepts have
been devised and axiomatized.

Many problems in multiagent decision making can be addressed using
tournament solutions. For instance, tournament solutions play an impor-
tant role in collective decision-making (social choice theory), where the
binary relation is typically defined via pairwise majority voting. Other
application areas include adversarial decision-making (theory of zero-
sum games) and coalitional decision-making (cooperative game theory)
as well as multi-criteria decision analysis and argumentation theory.

In this talk, I will present an overview of some of the most common
tournament solutions such as the uncovered set, the minimal covering
set, and the bipartisan set and analyze them from an algorithmic point
of view.

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, p. 1, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Research Challenges in Simulation Aided Design
of Complex Multi-agent Systems

Michal Pěchouček and Michal Jakob

Agent Technology Center, Department of Cybernetics,
Czech Technical University in Prague

pechoucek@fel.cvut.cz
http://www.agents.cz

In today’s world, we are increasingly surrounded by and reliant on complex sys-
tems and infrastructures. Often, these systems behave far from the optimum
or even highly undesirable. Roads in our cities are congested, plane trips fre-
quently delayed, computer networks routinely overrun by worms and electricity
grids fail in split-second cascade reactions. Our systems have become massively
interwoven and interdependent making both highly positive and negative chain
reactions possible in critical systems. The systems that surround us, that provide
us with communication, energy resources and support our safety and comfort
are increasingly decentralized, interconnected and autonomous, with more and
more decisions originating at the level of individual subsystems rather than be-
ing imposed top-down. These systems are characterized by large numbers of
geographically dispersed active entities with a complex network of mutual in-
teractions and feedbacks, together giving rise to dynamic, non-linear emergent
behavior which is very difficult to understand and even more difficult to control.

Creation of mechanisms controlling the operation of above described mas-
sively connected autonomous systems cannot be on intuition alone - we need
tools and techniques which could provide us with foresight regarding the effect
on the control mechanism and policies we want to put in place. Scalable, high-
fidelity agent-based modeling simulation is the right modeling framework using
which such foresight can be obtained. Such simulations will provide experimental
computational environment supporting the analysis, design, construction, vali-
dation and deployment of multi-agent control systems that are tightly connected
with real-world heterogeneous distributed systems. Simulation-aided design of
such systems will not only accelerate the development of such system, but will
also provide the researchers with a laboratory environment for studying prob-
lems and concepts of the future, for which current technology and society is not
ready yet.

Before the vision of simulation-aided design can be made a reality realized,
however, the following open research challenges need to be addressed and will be
discussed during the talk: (i) automated construction, calibration and synchro-
nization of the simulation models, (ii) scalability and fidelity of the simulation,
(iii) introduction of mixed-mode simulation and (iv) development and rapid
prototyping support.

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, p. 2, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 3–14, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Model Driven Development of Platform-Neutral Agents

Inmaculada Ayala, Mercedes Amor, and Lidia Fuentes

E.T.S.I. Informática, Universidad de Málaga
{ayala,pinilla,lff}@lcc.uma.es

Abstract. The automatic transformation of software agent designs into
implementations for different agent platforms is currently a key issue in the
MAS development process. Recently several approaches have been proposed
using model driven development concepts to specify generic agent metamodels
and/or define a set of transformation rules from the design phase for different
agent implementation platforms. Although for some systems this is acceptable,
in the context of Ambient Intelligence, this could be a serious limitation
because of the variety of devices involved in these systems ranging from
desktop computers to lightweight devices. In this paper we propose to transform
PIM4Agents, a generic agent metamodel used at the design phase, into Malaca,
an agent specific platform-neutral metamodel for agents. With only one set of
transformations it is possible to generate a partial implementation in Malaca,
which can be deployed in any kind of device and can interact with any FIPA
compliant agent platform.

Keywords: AOSE, MDD, Malaca, Code generation, AmI.

1 Introduction

There are plenty of proposals that try to bridge the classical gap between design and
implementation of multiagents systems (MAS) [1, 2, 4]. The most relevant ones have
been published recently, showing that this is still a hot and open issue. What
characterizes the majority of these proposals is that they generate code for a single Agent
Platform (AP)[2] (or as much for a small and predetermined set of APs[1]). While for
some systems this is acceptable, in the context of other booming research areas such as
Ambient Intelligence (AmI) this could be a serious limitation as is shown later.

The main characteristic of AmI and similar environments is the variety of devices
involved in these systems that range from desktop computers to devices with limited
set of resources (e.g. sensors, PDAs, mobile phones). In order to face the resource
limitations of devices present in AmI environments, several classical APs already
provide efficient versions specially well suited for running in lightweight devices
typical of AmI environments (e.g. LEAP[5], µFIPA-OS[6]). Due to the boom of AmI
systems, it is expected that new lightweight devices and adequate APs for these new
devices for will appear in the next few years. Consequently, code generation
processes for APs must be extensible to incorporate new APs developed for new
devices and operating systems.

This also means that agents of an AmI system must be able to communicate
and cooperate with agents running on devices with different APs. Concretely in

4 I. Ayala, M. Amor, and L. Fuentes

this paper we will analyse the case study of the Vehicular Ad-Hoc Network
(VANET) systems. In AmI environments, and specifically in VANET systems,
where standardization is not yet possible, it is not reasonable to suppose that all
the devices will have the same AP installed, since traffic sensors, external
services dynamically discovered on the road, mobile phones belonging to
different users and so on, will normally bring their own operating system or AP.
On the other hand, even when different versions of the same platform are used,
like JADE and JADE-LEAP, it is not guaranteed that the same agent can be
executed in all of them. If an agent was developed for JADE without considering
the possibility of porting it to the CLDC/MIDP environment, it could contain a
JADE API or even standard Java code not supported in the CLDC/MIDP profile.
Therefore, the development of MAS for AmI environments is not affordable using
the traditional agent development processes that normally consider the generation
of agents for a single AP.

Model Driven Development (MDD) [7] is an advanced software technology that
can naturally address the generation of agents for diverse APs, by means of
transformations between platform independent models (PIM) and platform specific
models (PSM). Several recent works already apply MDD to automate the generation
of agent implementations, but only DSML4MAS [2] defines a generic metamodel
from which agents are generated for different APs. But as we will show in the next
section, the effort of including a new platform is considerable.

In order to deal with the diversity of APs in AmI environments we propose to use
Malaca [8], a platform-neutral agent architecture, able to be executed in different APs
and devices. We have defined a MDD process that using only one set of
transformations rules, automatically generates agents capable of running on different
APs. In our approach we use the PIM4Agents metamodel [2] as a PIM and Malaca as
PSM. We have chosen PIM4Agents since it is rich enough to represent the domain
specific concepts of different application domains, including the AmI environments.
In this context, the main advantage of having platform neutral agent architecture is
that the model driven process is significantly simplified since we only have a single
target metamodel. The choice of the AP used by each agent of the MAS is postponed
until the deployment phase, and additionally the interoperability between Malaca
agents is guaranteed.

The structure of the paper is as follows: Section 2 presents our motivating case
study, it provides a brief overview of our approach, describes the VANET case study
and how it is modelled using PIM4Agents. Section 3 shows the transformation rules
implemented in ATL to transform agents from the PIM4Agents metamodel to
Malaca, we illustrate how to use them with the VANET case study and describe the
deployment process. Section 4 discusses the results of our approach and compares it
with the PIM4Agents approach. Finally, Section 5 provides related work and Section
6 draws some conclusions.

2 Motivating Case Study

2.1 Our Approach

As stated before, several approaches already apply MDD to derive agents for different
platforms, normally following a similar schema to the one shown on the left hand side

 A Model Driven Development of Platform-Neutral Agents 5

of Fig. 1. One of the most representatives is the DSML4MAS approach, which
provides a set of mapping functions to transform PIM4Agents models to JACK and
JADE in two steps. This means that other APs, which have emerged recently for AmI
systems are not currently covered by this proposal. Furthermore, including a new AP
in this proposal is a very complex task, since it requires defining a new set of
transformation rules, transforming PIM4Agents into the metamodel of the new AP,
and another set transforming the new AP metamodel into code.

Fig. 1. The overall picture: From PIM4Agents metamodel to Malaca metamodel.

As shown in the right hand side of Fig. 1, the process proposed in this paper has
substantially simplified the MDD process by using Malaca, a platform-neutral agent
architecture as the single target metamodel (i.e. PSM). For the PIM we studied the
feasibility of using one of the works proposed recently [1, 3]. Finally we decided to
use PIM4Agents since this metamodel meets the following requirements: (i) it is
possible to represent concepts from different agent types (e.g. BDI, reactive agents),
(ii) it is easy to specify MAS for different domains, such as AmI; (iii) the DDE tool
[13] helps to specify different views of MAS.

We would like to emphasize that in our proposal, the set of transformations rules
was implemented only once, since the Malaca model is not modified for each new AP.
This is because Malaca applies aspect-orientation1 to separate the delivery of messages
and depending on the AP used, a distribution aspect is implemented using an external
plug-in. So, the integration of a new AP in our proposal is performed by developing a
new plug-in including agent platform-specific code, requiring less effort and no
expertise on specific transformation languages (perhaps) unfamiliar to programmers.

Another distinctive feature of Malaca is that the agent internal architecture is
described explicitly, using the domain specific language MaDL [8], based on XML.
This means that once a Malaca agent is generated, it is possible to configure
deployment-specific information using the MaDL language. One example of this
configuration information is the choice of the AP for each MAS agent, which is
required by heterogeneous AmI environments. Another example is the configuration
of a functional component of the Malaca architecture as a Web service. So, access to
Web services, which normally occurs in many AmI environments, is integrated
naturally into the Malaca architecture.

1 Aspect-Oriented Software Development (AOSD), http://aosd.net

6 I. Ayala, M. Amor, and L. Fuentes

2.2 Case Study

To illustrate our approach we will use a VANET application as the use case scenario.
A VANET is a form of Mobile ad-hoc network, which provides communication to
vehicles on the road and between these vehicles and nearby fixed equipment, usually
referred to as on road equipment.

Vehicles are equipped with a network interface, GPS receiver, different sensors
and an on-board computer. Integrating these elements into a motor vehicle allows
comfort-related applications to be developed, whose purpose is to provide valuable
and useful services for the vehicle occupants during a road trip; information such as,
for example, the weather forecast at a particular destination or where the closest gas
station is. In most cases, this information is obtained from different information
sources, external to the vehicle, which can be deployed in different kinds of devices
and locations. For instance, in the case study the driver application is provided with
information on the weather and the location of gas stations. Specifically for this paper,
part of the application (the user interface and some functionality) is executed in a
lightweight device (an on-board computer – if available, a PDA or a mobile phone).
The weather forecast is provided by a web service running on a web server accessible
via the Internet. Locating gas stations in the vicinity requires retrieving such
information from devices near the current location of the vehicle. These devices may
be either a PC or a lightweight device.

The case study has been modeled as a MAS including two kinds of agents: agents
for vehicles (VehicleAgent) and agents for gas stations (GasStationAgent). A
VehicleAgent is executed in the vehicle and it provides the user with weather forecast
information and it locates gas stations in the vicinity. A GasStationAgent is the agent
that represents a gas station and it interacts with an agent in the vehicles to negotiate
the provision of the service following an interaction protocol.

2.3 Multi-agent System Design with the DDE Tool

In this section, the first step of our approach (to model a system in PIM4Agens using
the DSML4MAS approach) is shown. An overview of the design of the VANET
system is provided and the concepts of the PIM4Agents metamodel are explained.
PIM4Agents is structured into several aspects each focusing on a specific viewpoint
of a MAS and these viewpoints are represented in the DDE Tool.

The first viewpoint in the design process of our application is MAS viewpoint,
which specifies the main building blocks of the MAS and their relationships. Fig. 2
shows the MAS viewpoint of the VANET system in the DDE Tool. The
representation of the agents, organizations and roles is straightforward in the
PIM4Agents model. In order for agents to interact, they must be members of an
Organization. Agents involved in the services exchange (GasStationAgent and
VehicleAgent) are members of the OnRoadServiceOrganization. This service has two
roles; to model the service providers and the clients. To model the agent execution
environment, PIM4Agents has two kinds of elements: (i) Environment includes the
set of object that can be accessed by the agent (OnRoadServices in Fig. 2); (ii)
SOAEnvironment, a special kind of Environment to model a web services that the
agent can access (ForecastService to model the weather forecast web service).

 A Model Driven Development of Platform-Neutral Agents 7

Fig. 2. PIM4Agents Multi-Agent system diagram in DDE Tool

The agent viewpoint is the second step in the design process and it deals with
related agent issues. An agent in PIM4Agents is an entity which can perform
particular roles and behaviours and the agent has certain capabilities that represent a
set of behaviours. This viewpoint shows how agents are associated to the roles
performed in the organization and their plans. For the VANET case study,
GasRequestPlan and GasResponsePlan are the plans used by the MAS agents to
request the refuelling and to negotiate the service provision. Moreover,
GetForecastPlan is a plan to get the weather forecast information in the VehicleAgent.

The collaboration and organization viewpoints deal with the design of interactions,
but for space reasons, this paper is only focused on the design of the interaction
protocol itself. The design of the protocol is done using the interaction viewpoint.
This involves a set of actors interacting within a protocol and a set of message flows
specifying how the exchange of messages takes place. Fig. 3 shows the protocol
diagram of the RequestResponseProtocol, which covers the interaction between the
Requester and Responder actors in the location of a gas station according to the user
preferences. Requester sends a Request that can be answered by Responders with a
Propose or a Refuse message. At run-time, the Requester is performed by
VehicleAgent, while the GasStationAgent acts as Responder.

Fig. 3. RequestResponseProtocol in DDE Tool

The behaviour viewpoint describes the plans. Plans are composed of simple atomic
tasks like sending messages using complex control structures and they show how
information flows between those constructs. This viewpoint is represented by plan
diagrams in the DDE Tool. As an example, the plan for requesting a gas station
(GasRequestPlan) is presented in Fig. 4. This plan is executed by the VehicleAgent
when the user decides to make a gas request and also represents the execution of the
RequestResponseProtocol for this agent. The plan starts with the agent preparing
request data, and then it sends a Request, which contains user preferences, to agents
for gas stations. The next step is to wait for agents’ responses, if the answer is a
Propose message, then this is processed by ProcessProposeResponse, otherwise it is

8 I. Ayala, M. Amor, and L. Fuentes

Fig. 4. GasRequestPlan in DDE Tool

processed by ProcessRefuseResponse. The VANET system also includes plan
diagrams for getting the weather forecast and responding to a gas request.

3 Generation and Deployment of Malaca Agents

3.1 Generation of a Multi-agent System for VANETs

In the Malaca metamodel two main parts can be distinguished: the specification of the
agent architecture in an agent description language (MaDL) and the specification of
interaction protocols using a specific high level language (ProtDL). Table 1
summarizes the main mappings between PIM4Agents concepts and MaDL concepts
and Table 2 does the same for ProtDL concepts. The mapping rules list included is
not an exhaustive one. Detailed information about these rules can be found in [9]. We
have only included those that help readers to comprehend the most relevant model
mappings required for the use case scenario. Some mapping rules are applied
automatically (simple ATL rules), while others must be invoked by other rules (ATL
lazy rules).

Table 1. Mapping process between the PIM4Agents concepts and MaDL concepts

Target Source Explanation
R1:AgentDescription Agent Each Agent in PIM4Agents is mapped to an Agent in

MaDL.
R2:Functionality InternalTask Each InternalTask from a Plan associated to an

Agent in PIM4Agents is a componentDescription in
Functionality.

R3:Coordination Protocol Each Protocol associated to an Agent by means of a
Collaboration is mapped to a Coordination.

R4:RuntimeDirectives AgentInstance Each AgentInstance with its agentType is mapped to
an MaDL description with the same name in
RuntimeDirectives.

R5:Distribution JADE-mts by default.
R6:Representation FIPA-ACL by default.

 A Model Driven Development of Platform-Neutral Agents 9

Table 2. Mapping process between the PIM4Agents concepts and ProtDL concepts

Target Source Explanation
R7:Protocol Protocol Each Protocol from PIM4Agents is mapped to a

Protocol in ProtDL.
R8:Actor RoleDescription Each Actor is mapped to a RoleDescription

associated to a specific Protocol
R9:MessageFlo,
MessageFlow

StateTransitionRule From two MessageFlow concepts this rule creates
a StateTransitionRule that begins in the first
MessageFlow and ends in the second one.

R10:MessageFlo
w, MessageFlow

TransitionDescription From two MessageFlow concepts this rule creates
a TransitionDescription that begins in the first
MessageFlow and ends in the second one.

R11:Plan, String RoleDescription Creates a RoleDescription from a Plan and a
String that is the name for the Role.

R12:Activity,
Activity

StateTransitionRule From two Activity concepts this rule creates a
StateTransitionRule that begins in the first
MessageFlow and ends in the second one.

R13:Activity,
Activity

TransitionDescription

From two Activity concepts this rule creates a
TransitionDescription that begins in the first
Activity and ends in the second one.

R14:InternalTask ProcessComponent Each InternalTask is mapped to a
ProccesComponent that has an AtomicProcess
whose type is DoActionType.

R15: InvokeWS ProcessComponent Each InternalTask is mapped to a
ProccesComponent that has an AtomicProcess
whose type is DoActionType.

R16:Split ProcessComponent Each Split is mapped to a ProccesComponent that
has a CompositeProcess whose type is SplitType.

R17:Protocol,
Organization

Protocol Each Protocol which is from an Organization is
mapped to a Protocol.

With the data provided in diagrams presented in Section 2.3, transformation rules

have the necessary information to generate MaDL and ProtDL specifications for
VehicleAgent and GasStationAgent. The first applied rule is R1; it generates the basic
structure of a Malaca agent that is named AgentDescription. This concept contains
elements related to the agent architecture: Functionality, Interaction, InitialContext
and RuntimeDirectives. InitialContext contains information about agent knowledge
and actions to be performed by agents on start up. With the information provided by
the design phase, this concept has to be completed using the MAD Tool2.
RuntimeDirectives contains information on the agent name and on whether the
protocols are used on demand or on startup. If users wish to make a deployment
diagram in the DDE Tool, R4 maps name in AgentInstance to agentName in
runtimeDirectives. Functionality has the information about the components that an
agent can use during its execution. This concept is derived using R2, but the only
information provided by DSML4MAS is component name, so this is the only
information about the component that is derived by R2. The Interaction concept has

2 http://caosd.lcc.uma.es/softwareAgents/malacaTools.htm

10 I. Ayala, M. Amor, and L. Fuentes

the necessary information to make interaction between agents possible, in other
words, how to represent and to distribute messages, and the interaction protocols. To
get the Interaction field, R3, R5 and R6 are applied. R5 and R6 are used to provide
information by default and R3 generates the necessary information to link the ProtDL
specification that will be generated by the rules from Table 2. Fig. 5 (left side) shows
a partial view of the generated MaDL specification for VehicleAgent, the figure has a
caption which indicates rules used to generate it.

R1
R2

R5
R3

R6

R4

R17

R11

R13
R14
R15
R16

R12

Fig. 5. MaDL specification for VehicleAgent and ProtDL specification for RequestResponse

Fig. 3 shows the protocol diagram of the RequestResponseProtocol, which covers
the interaction between the Requester and Responder actors in the location of a gas
station according to the user preferences. The first applied rule is R17; this rule
generates an empty ProtDL specification and calls other rules to complete it. A
ProtDL specification is composed of a set of message descriptions and a set of role
descriptions that describe an agent protocol execution using a finite state machine.
The role description structure is mapped using R11; it takes a name of role and a plan
associated to this and then calls R12 and R13 which generate the finite state machine.
A finite state machine in ProtDL consists of transitions rules and executions.
Transitions rules are generated by R12 and executions by R13, executions are very
similar to the PIM4Agents plan so the mapping between these two concepts is
straightforward. A partial view of the generated code is shown in Fig. 5 (right side).

3.2 Deployment

As a result of the MDD process we obtained a set of MaDL and ProtDL descriptions.
Finally, the deployment phase takes each agent architecture description to add agent-
specific implementation details, with the aid of the MAD tool.

In Malaca, the deployment phase consists of configuring the appropriate
components and aspects implementations. This means that now we have to bind the
component and aspect types to specific implementations. Since Malaca is
implemented as an aspect-oriented and component-based framework, this encourages
the reuse of pre-built components and aspects from a repository. This means that
some of the component and aspect implementations needed may be already available
in a repository. Otherwise the agent developer must implement the necessary agent
building blocks, and add them to the repository in order to facilitate their later reuse.

 A Model Driven Development of Platform-Neutral Agents 11

Going back to our example, first we need to configure the distribution aspect for
each agent. Configuring the distribution aspect implies deciding which AP to use. For
the VehicleAgent agent we select the JADE LEAP/MIDP and for the GasStationAgent
agent the JADE LEAP/J2SE. For the rest of the aspects, the Malaca framework
provides a default implementation, which could be modified if necessary.

Secondly, we need to select the components implementations that provide the
agent functionality. In our example, the developer has to configure the suitable
implementation for the components services tagged as <componentDescription> (see
Fig. 5). In this case, part of the services are provided by a component implemented as
a Java class (vanet.service.GasServiceComponent), while the services related to the
provision of the weather forecast are provided by accessing a (external) web service
(accessible at http://map.lcc.uma.es:19592/WeatherWS/WeatherWSService?WSDL).
This selection completes the agent description in MaDL (see

Fig. 6 for the complete description of the weather forecast services).

Fig. 6. MaDL description of the ForecastService component (MaDTool snapshot)

4 Discussion

This section evaluates the contributions of this paper and provides a critical
discussion of the benefits of our approach comparing with current MDD agent
generation processes, focusing on the DSML4MAS process.

(1) Cost of including a new agent platform
Let us consider the scenario of extending a DSML4MAS-like process with a new AP.
In first place the metamodel of the target AP must be available. Otherwise, the
developer must specify this metamodel in a variant of MOF. This effort could be
considerable; requiring very in-depth knowledge of the internal architecture of the
new AP. Secondly, the set of mappings from the PIM4Agents to the new AP
metamodel must be implemented in a transformation language like ATL. Normally,
programmers are still not familiar with these kinds of languages, so additional
learning time/effort could be necessary. Finally, the generation of executable code in

12 I. Ayala, M. Amor, and L. Fuentes

the target AP must be accomplished by implementing a second set of mapping rules.
These mapping rules must be implemented in a model-to-text transformation
language, like MOFScript. As can be seen, the effort of including a new AP is
considerable, especially because the developer must acquire knowledge both in agent
models and in many novel MDD languages (e.g. MOF, ATL, MOFScript).

On the other hand, in our approach the developer (or normally, we, the Malaca
providers) must implement a new plug-in in charge of instantiating the corresponding
platform-dependent communication subsystem (which uses the specific Message
Transport Service (MTS) provided by the AP), and related data, for example the
classes representing ACL messages. This plug-in receives the incoming messages and
delivers outgoing messages to an AP, hiding platform specific dependencies. The
development of this plug-in consists of implementing a high-level interface
MTSAdapter to send and receive messages. After creation, this plug-in gets a valid ID
and registers the agent in the corresponding AP. Then every time it is required, the
plug-in uses the MTS of the AP to send and receive messages. In our approach any
expert programmer will be able to implement this plug-in in a short time (for instance,
the JADE-LEAP for MIDP AP takes us half a day). So, we consider that the effort
and skills necessary to incorporate a new platform is much lower in our approach.

(2) Optimization of the generated code
Now we will analyse the code generated by both approaches. Normally, the code
obtained by automatic generation is not optimized. Specifically, for this case study, 91
classes were generated with the DDE tool for JADE, and only 9 classes for Malaca.
There is such a big difference because the code generated by DDE includes several
dummy classes with empty methods (e.g. the action() method of behavioural JADE
classes). Concretely 34.06 % of the generated 91 classes is dummy code. One
negative consequence of dummy classes is that it increases the number of indirections
required for example to invoke a behavioural method. In lightweight devices where
memory and computation resources are scarce, this is not acceptable since the code
must be highly optimized to consume the least amount of resources. Since in our
approach we do not generate code, we only have to concentrate on Malaca framework
optimization, whose code can be optimized independently of the execution AP.

(3) Limitations for the AmI domain
An AmI environment is often made up of different devices, which could contain
agents running on top of different APs. With Malaca it is possible to generate agents
cooperating in the same MAS for different AP where the interoperability is
guaranteed. Also, agents generated with a DSML4MAS-like process for a general
purpose AP (e.g. JADE) may not be executable in other versions of the platform for
lightweight devices (e.g. JADE LEAP for CLDC/MIDP device profile). For example,
in DSML4MAS the transformation rules related with organizations and the ontology
must be redefined for the MIDP profile, since LEAP uses a different set of classes.
Then, the code for the same agent must be generated by a different set of
transformation rules and completed by the agent designer several times for each AP,
which is not desirable. Finally, the web services often needed in AmI environments
are naturally integrated in Malaca, which is not the case of other approaches.

 A Model Driven Development of Platform-Neutral Agents 13

5 Related Work

There are some approaches that apply MDD concepts to AOSE in different contexts.
The Gaia methodology [9] defines a specific mapping to JADE as PSM, but it is not
an automatic process. Different agent oriented methodologies, such as MaSE [10]
support a complete tool-aided life cycle process from early requirements to code
generation. Moreover, in some of them, such as INGENIAS [12], the life-cycle is an
MDD process. MDD is also approached for agents in mobile devices in [1]. It takes
Agent-π, a metamodel for mobile devices. It also applies MDD and provides
transformations to two mobile-specific PSMs, Andromeda and JADE-Leap for
Android. However, this metamodel can not be considered generic since it does not
contain important agent concepts like organization in MAS. Additionally, target APs
do not make interoperability possible between agents in different kinds of devices.

In general, although the intention of these approaches was to cover the
implementation phase, they have the same disadvantages as PIM4Agents approach:
(i) a different transformation is needed for every PSM; (ii) the generation code
process does not take into account the integration with web services although the
target AP has constructions for this issue (JADE); and (iii) the implementation of
agents in JADE and other OO agent architectures is difficult to maintain and reuse.
The problem is that normally the agent internal architecture consists of a collection of
highly-coupled objects, making it difficult to extend.

6 Conclusions

MDD is the most natural approach to automate the derivation of agent
implementations from high level agent models, considering different target APs. The
process presented in this paper significantly simplifies this process by using Malaca, a
platform-neutral agent architecture. This enhancement is particularly important for
AmI environments, since new devices are continuously appearing and this is expected
to continue. With Malaca it is possible to configure agents to be executed in different
target APs for different mobile and lightweight devices, as required by most AmI
environments. We have evaluated our proposal by comparing it with a DSML4MAS-
like process, concluding that (1) in our approach including a new AP requires less
effort and user skills, (2) generated agents are more optimized than in other
approaches (3) Malaca agents are interoperable even with different profiles of AmI
devices (e.g. MIDP). We have used PIM4Agents as the PIM, but we plan to extend
this metamodel with new properties like context-awareness and learning, which are
very useful for AmI environments and are already present in the Malaca architecture.

Acknowledgments. This work has been supported by the Spanish Ministry Project
RAP TIN2008-01942 and the regional project FamWare P09-TIC-5231.

References

1. Agüero, J., Rebollo, M., Carrascosa, C., Julián, V.: Agent Design Using Model Driven
Development. In: PAAMS’09, AISC, vol. 55, pp. 60–69 (2009)

2. Molesini, A., Denti, E., Omicini, A.: From AO Methodologies to MAS Infrastructures:
The SODA Case Study. In: Artikis, A., O’Hare, G.M.P., Stathis, K., Vouros, G.A. (eds.)
ESAW 2007. LNCS (LNAI), vol. 4995, pp. 300–317. Springer, Heidelberg (2008)

14 I. Ayala, M. Amor, and L. Fuentes

3. Hahn, C., Madrigal-Mora, C., Fischer, K.: A platform-independent metamodel for
multiagent systems. Auton Agent Multi-Agent Syst. 18, 239–266 (2009)

4. Amor, M., Fuentes, L., Vallecillo, A.: Bridging the gap Between Agent–Oriented Design
and Implementation Using MDA. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE
2004. LNCS, vol. 3382, pp. 93–108. Springer, Heidelberg (2005)

5. Federico, B., Agostino, P.: Leap: a FIPA platform for handheld and mobile devices. In:
Agent Theories, Architectures, and Languages, ATAL-2001 (2001)

6. Tarkoma, S., Laukkanen, M.: Supporting software agents on small devices. In:
Proceedings of the (AAMAS’02), New York, USA, pp. 565–566 (2002)

7. Stephen, J., Mellor, A.N., Clark, T.F.: Guest Editors’ Introduction: Model-Driven
Development. IEEE Software 20(5), 14–18 (2003)

8. Amor, M., Fuentes, L.: Malaca: A component and aspect-oriented agent architecture.
Information and Software Technology 51, 1052–1065 (2009)

9. Ayala, I., Amor, M., Fuentes, L.: Towards the automatic derivation of Malaca agents using
MDE. In: 11th International Workshop on AOSE, pp. 61–72 (2010)

10. Moraitis, P., Spanoudakis, N.I.: The Gaia2Jade process for multi-agent systems
development. Applied Artificial Intelligence 20(2-4), 251–273 (2006)

11. DeLoach, S.A., Wood, M.: Developing Multiagent Systems with agentTool. In: 7th
International Workshop on Agent Theories, Architectures, and Languages (2000)

12. Pavón, J., Gómez-Sanz, J., Fuentes, R.: Model Driven Development of Multi-Agent
Systems. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 284–
298. Springer, Heidelberg (2006)

13. Warwas, S., Hahn, C.: The DSML4MAS development environment. In: 8th International
Conference on Autonomous Agent and Muliagent Systems (2009)

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 15–27, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Novel Formal Specification Approach for Real
Time Multi-Agent System Functional Requirements

Mohamed Amin Laouadi1, Farid Mokhati2, and Hassina Seridi-Bouchelaghem1

1 Computer Science Department, Badji Mokhtar University, Annaba,
Algeria. LabGED Laboratory

Laouadiamin@yahoo.fr, seridi@labged.net
2 Computer Science Department, Oum El-Bouaghi University, Algeria

mokhati@yahoo.fr

Abstract. A novel formal functional requirements specification approach for
real-time multi-agent system is presented in this paper. The methodology of
our approach consists in translating extended AUML diagrams describing RT-
MAS’ functional requirements into a RT-Maude specification. The proposed
approach considers jointly functional, static and dynamic aspects of real-time
multi-agent systems. The functional aspects are described by a temporal
AUML use case diagram and the static aspects are represented using a
temporal AUML class diagram. Whereas the dynamic aspects are described
using state chart (individual behavior) and an extended AUML protocol
(collective behavior) diagrams. The aims of this approach are, on the one hand,
to combine the advantages of the graphical modeling formalism Agent UML
and the formal specification language RT-Maude in a single technique, and, on
the other hand, to integrating the formal validation of the consistency of the
models, since the analysis phase. The approach is illustrated using a concrete
example.

Keywords: Formal specification, Real-time Multi-Agent System, Functional
Requirements, Agent UML, RT-Maude, Supply Chain Management (SCM).

1 Introduction

A recent trend in the development of distributed real-time systems is the use of real-
time multi-agent system. In contrast to conventional MAS, the real time MAS reflect
intrinsic real-time systems characteristics, more precisely, the time constraints. For
many years, MAS designers have development methodologies and modeling language
without reflects the different temporal restrictions that these systems may have.
Moreover, even the proposed methodologies for the development of real time MAS
as: 'RT-Message' [1], 'BDI-ASDP extended for real time’ [2] and 'Development
Method of Lichen Zhang' [3], are inadequate. They have certainly made important
responses in the development process of real-time MAS. However, the
methodological aspect is not yet mastered. Indeed, none of these methodologies takes
into account the functional requirements formalization of the future system.

16 M.A. Laouadi, F. Mokhati, and H. Seridi-Bouchelaghem

Formalizing the functional requirements of real-time MAS is in our opinion, an
importance way for verification and validation activities. Furthermore, the MAS
design requires the involvement with software engineering techniques. The main
objective of this work is to offer a generic approach for a use case oriented
specification of real time MAS functional requirements. Among these techniques:
UML [4] is probably the best known and most widely used languages for object-
oriented modeling. The MAS developers have recently the same facilities in particular
the language Agent UML [5] [6]. However, there is currently no work applying Agent
UML to real-time MAS specification and both to real time applications.

The proposed methodology differs from other modeling methodologies by the use
of the AUML language extensions presented in [6] [7] [8], which have an agent-
oriented development view inspired from object-oriented development. The AUML
language is from our own point of view the future industry standard for agents
oriented systems development. AUML models describe several complementary views
of the same system but suffer as UML of a lack of formal semantics. AUML models
may therefore contain inconsistencies which are difficult to detect manually.

Formal methods represent an interesting solution to this problem. The formal
specifications will have the effect of eliminating the ambiguities in the models
interpretation. The Agent UML combination with the RT-Maude formal specification
language will formally validate developed AUML models.

This work takes place in the context of Software Engineering and Distributed
Artificial Intelligence and aims to support the verification and validation of real-time
MAS as an important discipline of Agent Based Software Engineering. Therefore, the
main interest in this work is to describe, as a first step, the functional requirements of
real time MAS using the graphical modeling formalism Agent UML, and translate
these descriptions in RT-Maude.

The remainder of this paper is organized as follows: In section 2 we give a brief
overview of major related works. Section 3 is devoted to the formal specification
language RT-Maude. In section 4, we present the AUML extensions. Section 5 gives
the proposed translation process. Section 6 illustrates the translation and validation
processes using a case study. Finally, we give a conclusion and some future work
directions in section 7.

2 Related Works

Several methodological proposals for software development exist and can be applied
to agents systems. Inspired from knowledge based systems domain [9], or directly
focusing the agents’ properties [10], or object-oriented development methodologies
and languages extensions as UML [6] but only a few of these methodologies are
taking into account the agent temporal behavior [2].

Among these methodologies that directly addressing the design of real-time multi-
agent systems, we are interested by: the Methodology RT-Message [1], the extended
BDI-ASDP methodology for real time [2] and the development method of Lichen
Zhang [3]. For a description of real-time agents, these three methodologies use
different models namely: domain model, role model, and timed model (Table 1.)

 A Novel Formal Specification Approach for RT-MAS Functional Requirements 17

Table 1. Real-Time Agent identification Approaches

 Domain
Model

Role Model Timed Model Functional
Requirements

The RT- Message
Methodology [1]

Extended BDI ASDP
methodology for real
time [2]

Zhang development
method[3]

The RT-Message methodology [1], uses a domain model to define the concepts

inherent to the environment where agents are located. The main result of this model is
a domain diagram which is basically a class diagrams containing all the relevant
variables and entities in the development process, like it was proposed in Zhang [3].
However, in the extended BDI-ASDP methodology for real time [2], a symbolic
model of the environment is defined based on the decomposition of the problem with
Beliefs, desires and intentions that represent agent’s information, motivations and
decisions.

The concept of role is only present in RT-Message [1], where the roles are
identified independently of the agent system. Regarding the modeling of temporal
constraints of real-time agents, each methodology offers an approach: for the RT-
Message case, extensions made on the different models imported from the
MESSAGE method [11] [12] allow analyzing the MAS for real-time environments.
For example, ''the Goal / Task model'' has been modified to incorporate a taxonomy of
goals (Goal taxonomy) which takes into account temporal criteria. When specifying
the goal’s different types, it is necessary to extend the goal and task patterns of the
method ''message'' for integrating the real-time features. The artifacts obtained are a
set of 'implications diagrams' showing the relationship between goals and tasks.
Subsequent, in extended BDI-ASDP for real time, proposed by Melián et al. [2], the
temporal constraints modeling is done through ''the timing diagrams'' specified in
UML 2.0. To satisfy the need to model real-time systems by the agent approach,
Zhang [3] proposed to extend UML by introducing a new stereotype, called
<<agents>>. The timing characteristics are specified as an instance of this stereotype
called <<TimeAspect>>. This stereotype uses a timed model developed
independently, according to the principle of AOP (Aspect Oriented Programming), to
express the temporal aspect of a real-time system.

However, the real-time MAS modeling is frequently linked to functional
specifications in the sense that those specifications provide a basis for describing the
functional requirements of agents, applying a set of software engineering techniques.
These functional descriptions are often modeled by UML that is the most widely
deployed standard, providing multiple notations. This concept has been neglected in
these analyzed methodologies (Table 1).

In fact, these methodologies don’t focus on the real time MAS functional
requirements formalization during their development process. Hence, it is important
that they will supplemented by methods that strongly encourage the formalization of

18 M.A. Laouadi, F. Mokhati, and H. Seridi-Bouchelaghem

the functional requirements captured in the analysis for the upstream phases of
software engineering process.

3 Real Time Maude

Real-Time Maude is a programming language (an extension of Maude [13]) that was
designed to exploit the concepts of the real-time rewrite theory. A real-time rewrite
theory is a Maude rewrite theory, which also contains the specification of [14]:

• sort Time to describe the time domain,
• sort GlobalSystem with a constructor '{_}'': {_} : System -> GlobalSystem
• And a set of tick rules that model the elapsed time in the system that have the

following form: {t} => {t'} in time if condition μ

Where μ is a term which may contain variables, of sort Time that denotes the length of
the rule, and the terms t and t' are terms of sort System, which denotes the state of the
system. The rewriting rules that are not tick rules are rules supposed to take a time
instant zero. The initial state must always have the form {t''}, where t'' is a term of
sort System, so that the form of tick rules ensures that time flows uniformly in all parts
of the system. Real-time rewrite theories are specified in Maude as timed modules or
timed object-oriented modules.

4 Extended Agent UML

We present in this section some extensions to AUML diagrams in order to describe
functional requirements of real-time MAS.

4.1 Temporal AUML Use Case Diagrams

Given that, the analysis based on use cases proven in specifying the requirements of
MAS [15], [16], [17]. This motivated us to apply these same techniques but with some
modifications on real-time multi-agent system modeling. By using the extension
mechanism of ''stereotyping'' offered by the language Agent UML, use case diagrams
will be enriched by the following 'five stereotypes':

• The stereotypes « Agent Use Case » (Fig. 1.a) and « Temporal Agent Use Case »
(Fig. 1.b) are used to denote respectively, a use case that represent a functionality
performed by agents and a use case that interact with real-time agents.

 (a) (b)

Fig. 1. Stereotyped use cases

« Agent Use Case »
Use case name

« Temporal Agent Use Case »
Use case name

 A Novel Formal Specification Approach for RT-MAS Functional Requirements 19

• The stereotypes « Agent » (Fig 2.a), « External Agent » (Fig 2.b) and « Real Time
Agent » (Fig. 2.c) describe in this order: the agents within the system, external
agents to the system and real time agents which are internal agents.

 (a) (b) (c)

Fig. 2. Agent notations

4.2 Temporal AUML Class Diagrams

The two levels of abstraction proposed by Huget [8] are studied, when designing class
diagrams: ''the conceptual level and implementation level''. The first level is unchanged
and gives a high view of MAS, while 'second level' gives in detail the agents contents
and modified as follows: to all compartments proposed in [8], a new compartment
called ''temporal constraints'' is added (Fig. 3).

« Real Time Agent »

role1, role2, …..., rolen
Temporal constraint1 (soft/hard)…..

statechart1…statechartn

attribut1……attributn
operation1…operationn

protocol1: role…protocoln : role

Fig. 3. The used AUML class diagram

To describe agents’ individual and collective behaviors we use respectively the AUML
state-chart and protocol diagrams.

5 The Proposed Approach

The proposed translation process aims to translate the AUML diagrams described
above (Section 4) for describing real time MAS functional requirements to RT-Maude
formal specifications. This process is divided into three major steps (Fig. 4): (1)
Description of real-time multi-agent system functional requirements using AUML
diagrams, (2) inter-diagrams validation, and (3) Generation of RT-Maude formal
description.

The first step is the usual analysis phase of software development process. The
second step aims to validate the coherence between the designed models. The last
step is the systematic generation of RT-Maude source code from the considered
AUML diagrams. The formal framework proposed (Fig. 5) is composed of several
modules: nine functional modules, seven object-oriented modules, and four timed

« Agent » « External Agent » « Real Time Agent »

20 M.A. Laouadi, F. Mokhati, and H. Seridi-Bouchelaghem

object-oriented modules. For reason of limitation of space, we present only the
main modules of the proposed framework. The Module STATE describes agents’
states; the ACTION module describes the actions types that an agent can use. These
two last modules and the CONDITION module (which is used to define the type
Condition) are imported into STATE-OPERATIONS module to define the
operations related to agent’s states.

Fig. 4. Methodology of the approach

Fig. 5. Generated Modules

AGENTi-BEHAVIOR modules that import STATE-OPERATIONS module are
used to illustrate the behavior of individual agents. In order to respect interactions
between the different agents, connections between them are performed through the
LINKED-Behavior module, which reuses AGENTi-BEHAVIOR modules. The
identification mechanism for agents is defined by the IDENTIFICATION module, and
message structure description exchanged between the various agents is done via
MESSAGE module that imports the IDENTIFICATION, and ACTION modules.

Communicating agents are generally endowed with a Mailbox containing the
received messages of other agents and a list of its acquaintances. For that, we define
the functional modules MAILBOX and ACQUAINTANCE-LIST to manage
respectively Mailboxes and acquaintance lists of agents. Agents’ roles are defined in
the module ROLE. To describe the sending/ receiving operations, we define module
MESSAGE-MANAGEMENT which imports AQUAINTANCE-LIST and MESSAGE
modules.

The object oriented module EXTERNAL-AGENT-CLASS (Fig. 6) is used to define
the base class of external agents, with attributes CurrentState and AcqList (line [1])

 A Novel Formal Specification Approach for RT-MAS Functional Requirements 21

 (omod EXTERNAL-AGENT–CLASS is

 protecting STATE . protecting MESSAGE-MANAGEMENT .

 class ExtAgent | CurrentState : State, AcqList :
AcquaintanceList . ---[1] endom)

Fig. 6. The O.O Module EXTERNAL-AGENT-CLASS

which represent the agent’s current state and its acquaintances list. This module
imports STATE, and MESSAGE-MANAGEMENT modules.

In the object oriented module AGENT-CLASS (Fig. 7), we define the internal
agents’ base class structure. This class (line [1]) has as attributes: PlayRole,
CurrentState, MBox and AcqList to contain in this order: the role played by the agent,
its current state, its mailbox and its acquaintances list. This module imports all the
modules: STATE, ROLE, MAILBOX, and MESSAGE-MANAGEMENT.

(omod AGENT-CLASS is protecting STATE. protecting ROLE.

protecting MAILBOX . protecting MESSAGE-MANAGEMENT .

class Agent | CurrentState : State, PlayRole : Role,
AcqList: AcquaintanceList, MBox : MailBox .--[1] endom)

Fig. 7. The O.O Module AGENT-CLASS

To describe the real-time agents, we have defined the RealTimeAgent class with the
attribute Clock (line [1]) in the timed object oriented module REAL-TIME-AGENT-
CLASS (Fig. 8) as a subclass of Agent Class (line [2]).

(tomod REAL-TIME-AGENT-CLASS is extending AGENT-CLASS .

class RealTimeAgent | Clock : Time . ---[1]

subclass RealTimeAgent < Agent . ---[2] endtom)

Fig. 8. The Timed O.O Module REAL-TIME-AGENT-CLASS

To each use case is associated one timed O.O module USE-CASEi (Fig. 9), which has
the same name as the corresponding use case. In each module USE-CASEi are defined
the rewriting rules describing the different interaction scenarios between the agents
defined in the different AUML Protocol diagrams, instances of the use case. Note that
these rules may be instantaneous rules or tick rules, conditional or unconditional.

(tomod USE-CASEi is inc EXTERNAL-AGENTS . inc AGENTS .

including REAL-TIME-AGENTS. including LINKED-BEHAVIORS.

rl [1] : Configuration1 => Configuration2. …

rl [m] : Configuration 2m-1 =><Configuration2m. endtom)

Fig. 9. The Timed O.O Module USE-CASEi

22 M.A. Laouadi, F. Mokhati, and H. Seridi-Bouchelaghem

Once generated, all USE-CASEi modules are imported in the timed object oriented
module RTMAS-FUNCTIONAL-REQUIREMENTS (Fig. 10) which describes all
system’s functional requirements.

(tomod RTMAS-FUNCTIONAL-REQUIREMENTS is

including USE-CASE1. … including USE-CASEm. endtom)

Fig. 10. The Timed OO Module RTMAS-FUNCTIONAL-REQUIREMENTS

The tick rule used to ensure the progress of time in the system is given in Fig. 11,
where we have defined the message Timer to change the real time agent clock
defined by the attribute Clock (line [1]). Obviously, this change also depends on the
agent’s current state: if the agent is in its wait state and the Timer has not reached
the value zero, the clock is incremented by 1, until that this condition will no longer
be valid.

crl [tick] :{Timer(TimeOut) < A : RealTimeAgent |
CurrentState : S, Clock : T, PlayRole: Initiator> --[1]
REST:Configuration} => { Timer(TimeOut monus 1)

< A : RealTimeAgent |CurrentState: S, Clock : T plus 1>
REST:Configuration } in time 1

if (TimeOut > zero)and(S==AgentState(WaitI, ordinary)).

Fig. 11. The Tick Rule

6 Case Study: Supply Chain Management (SCM)

The supply chain management has been realized using a multi-agent system [18]. The
agent decomposition that we select for this application is as follows (Fig. 12): different
types of agents are involved in this application, there are two external agents: (1) the
Client who passes, modifies and deletes the orders, (2) the Provider of materials for the

Fig. 12. AUML Use Case Diagram of SCM

 A Novel Formal Specification Approach for RT-MAS Functional Requirements 23

realization of products, and six internal agents (Order-Acquisition, Dispatcher,
Resource, Transporter, Logistics and Scheduler). Logistics and Scheduler are real time
agents. These agents interact with the three temporal agent use cases: Place Order,
Modify Order, and Delete Order. The use case Place Order is linked to the use case-
Modify Order by the relationship "Include" and to Delete-Order use case by the
relationship "Extend".

Fig.13. illustrates the temporal AUML Class diagram of the SCM. This diagram
gives a detailed view of agents and their relationships. For example in the Real Time
Agent 'Logistics' class, the following six compartments are defined: Role (Logistics),
Attributes (Acqlist, MBox), Operations (Request-Plan), Protocols (Create-Order,
Modify- Order, and Delete-Order), statecharts (Logistics), Temporal Constraint (Time
of Negotiation).

Fig. 13. AUML class diagram of SCM

As example of state-chart of real-time agents, we give in the Fig.14 the internal
behavior of the real-time agent Logistics.

Fig. 14. AUML State-Chart diagram of the real time agent Logistics

The different interaction scenarios that implement the three above use cases are
described using AUML protocol diagrams. We only present the protocol diagram of
the use case Place-order (Fig.15), where different interaction modes are used (AND,
exclusive OR) and the notions of reference and alternate (Alt, Ref).

24 M.A. Laouadi, F. Mokhati, and H. Seridi-Bouchelaghem

Fig. 15. AUML protocol diagram corresponding to use case Place-Order

6.1 Translation Process Application

The generated description implies the modules STATE, ACTION, CONDITIONS,
STATE-OPERATION, MESSAGE-MANAGEMENT, IDENTIFICATION,
MESSAGE, MAILBOX, ACQAINTANCE-LIST, EXTERNAL-AGENT-CLASS-
AGENT-CLASS, and REAL-TIME- AGENT-CLASS, which remain unchanged with
the definition of the other modules: EXTERNAL-AGENTS (Fig. 16), AGENTS (Fig.
17), 'PLACE-ORDER' (Fig. 18), RTMAS-FUCTIONAL-REQUIREMENTS (Fig. 19)
... etc.

(omod EXTERNAL-AGENTS is

extending EXTERNAL-AGENT-CLASS. inc STRING. inc NAT.

subclass Client Provider < ExtAgent .

class Client |Order : String, Deadline: Nat. Cost: Nat.

class Provider |PriceConstraint: Nat,Cost : Nat. endom)

Fig. 16. The OO Module EXTERNAL-AGENTS

(omod AGENTS is extending AGENT-CLASS. inc STRING. Inc
NAT. subclass Transporter Dispatcher < Agent.

class Transporter |DelayConstraint : Nat,Deadline: Nat.

class Dispatcher| DelayConstraint: Nat, Deadline : Nat.
endom)

Fig. 17. The OO module AGENTS

 A Novel Formal Specification Approach for RT-MAS Functional Requirements 25

(tomod PLACE-ORDER is inc EXTERNAL-AGENTS . inc AGENTS .
inc REAL-TIME-AGENTS. inc LINKED-BEHAVIORS. … endtom)

Fig. 18. The Timed O.O Module PLACE-ORDER

(tomod RTMAS-FUNCTIONAL-REQUIREMENTS is inc PLACE-ORDER

inc MODIFY-ORDER . inc DELETE-ORDER . endtom)

Fig. 19. The Timed O.O Module RTMAS-FUNCTIONAL-REQUIREMENS

6.2 Generated Description Validation

The RT-Maude offers a great flexibility in terms of simulation of a specification, in
particular, concerning the choice of the initial configuration. This choice plays a
primordial role in the validation of the description of a system. Using all the system’s
description, we can validate a part of the system without involving the rest. In this
example of' SCM, we considered : (1) the behavior that starts by passing an order by
the external agent Client and finishes by satisfying the requirements of the other
agents, (2) the decision taken by the client for deleting a passed order, and (3) the
incapacity of internal agents to treat a passed order. Fig. 20 illustrates the timed O.O
module SUPPLY-CHAIN-MANAGEMENT, which imports the module RTMAS-
FUNCTIONAL-REQUIREMENTS and contains an initial configuration. This later
describes agents in their initial states with empty mail boxes. Real time agents’ clocks
are initialized to zero. Two messages are defined TimerOfNeg, and TimerOfSched,
with the event Event("client", AgentState(StartC),IsInitialized) that starts the SCM
process.

Fig. 20. Initial Configuration

The result of the unlimited rewriting (with no time limit) of such a configuration is
illustrated by Fig.21. This result configuration shows the agents in their success states
which explains that the constraints imposed by the client have been accepted.
Subsequently, the client also passes to its success state.

26 M.A. Laouadi, F. Mokhati, and H. Seridi-Bouchelaghem

Fig. 21. Result of the unlimited rewriting of the initial configuration

7 Conclusion and Future Work

Using formal notations to specify RT-MAS' requirements makes it possible to produce
precise descriptions. This also offers a better support to their verification and validation
processes. In this paper, we presented a novel and generic approach supporting the
formal description and validation of RT-MAS’ functional requirements. The proposed
approach allows translating functional aspect (described by extended AUML use case),
static aspects (described by extended AUML class diagram), and dynamic aspects
(described by AUML protocol diagrams together with AUML state-chart diagrams) of
RT-MAS into a RT-Maude formal specification. As future work directions, we plan to
extend our approach by integrating possibilities offered by RT-Maude to verify some
properties of the specification of RT-MAS’ functional requirements.

References

1. Julián, V., Soler, J., Moncho, M.C., Botti, V.: Real-Time Multi-Agent System
Development and Implementation (2004)

2. Melián, S.F., Marsá, I., Ukrania, M., Miguel, D.-R., Carmona, A.-L.: Extending the BDI
ASDP methodologie for Real Time (2005)

3. Zhang, L.: Development Method for Multi-Agent Real Time Systems. Faculty of
Computer Science and Technology Guangdong University of Technology. International
Journal of Information Technology 12(6) (2006)

4. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide.
Addison-Wesley, Reading (1999)

5. Bauer, B., Muller, J.P., Odell, J.: An extension of UML by protocols for multiagent
interaction. In: International Conference on MultiAgent Systems (ICMAS’00), Boston,
Massachussetts, pp. 207–214 (2000)

6. Odell, J., Parunak, H.V.D., Bauer, B.: Extending UML for Agents. In: Wagner, G.,
Lesperance, Y., Yu, E. (eds.) Proceedings of the Agent-Oriented Information Systems
Workshop at the 17th National Conference on Artificial Intelligence, Austin, Texas. ICue
Publishing (2000)

7. Huget, M.P.: Extending agent UML protocol diagrams. In: Giunchiglia, F., Odell, J.J.,
Weiss, G. (eds.) AOSE 2002. LNCS, vol. 2585, pp. 150–161. Springer, Heidelberg (2003)

 A Novel Formal Specification Approach for RT-MAS Functional Requirements 27

8. Huget, M.P.: Agent UML class diagrams revisited. Technical Report, Department of
Computer Science, University of Liverpool, p. 1–13 (2002)

9. Ferber, J.: Les systèmes Multi-Agents: vers une intelligence collective, Inter edn., Paris,
France (1995)

10. Omicini, A.: Soda: Societies and infrastructures in the analysis and design of agent-based
systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957, pp.
185–193. Springer, Heidelberg (2001)

11. Message,
http://www.eurescom.de/public/projects/P900-series/p907/

12. Message, Metamodel,
http://www.eurescom.de/~public-webspace/
P900-series/P907/MetaModel/index.Htm

13. Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti-Oliet, N., Meseguer, J., Talcott, C.:
Maude Manual (version 2.2). In: SRI International, Menlo Park, CA 94025, USA (2005)

14. Olveczky, P.C.: Real-Time Maude 2.3 Manual. Department of Informatics, University of
Oslo (2007)

15. Heinze, C., Papasimeon, M., Goss, S.: Specifying Agent behaviour with use Case (2000)
16. Papasimeon, M., Heinze, C.: Specifying Requirement in Multi-agent System with use

Cases (2000)
17. Bauer, B., Odell, J.: UML 2.0 and Agents: How to Build Agent-based Systems with the

New UML Standard (2005)
18. Shen, W., Norrie, D.-H.: Agent-Based Systems for Intelligent Manufacturing: A State-of-

the-Art Survey. Knowledge and Information Systems 1, 129–156 (1999)

Do You Get It? User-Evaluated Explainable BDI Agents

Joost Broekens1, Maaike Harbers2, Koen Hindriks1,
Karel van den Bosch3, Catholijn Jonker1, and John-Jules Meyer2

1 Delft University of Technology
2 Utrecht University

3 TNO Institute of Defence, Security and Safety, The Netherlands

Abstract. In this paper we focus on explaining to humans the behavior of
autonomous agents, i.e., explainable agents. Explainable agents are useful for
many reasons including scenario-based training (e.g. disaster training), tutor and
pedagogical systems, agent development and debugging, gaming, and interactive
storytelling. As the aim is to generate for humans plausible and insightful ex-
planations, user evaluation of different explanations is essential. In this paper we
test the hypothesis that different explanation types are needed to explain different
types of actions. We present three different, generically applicable, algorithms
that automatically generate different types of explanations for actions of BDI-
based agents. Quantitative analysis of a user experiment (n=30), in which users
rated the usefulness and naturalness of each explanation type for different agent
actions, supports our hypothesis. In addition, we present feedback from the users
about how they would explain the actions themselves. Finally, we hypothesize
guidelines relevant for the development of explainable BDI agents.

1 Introduction

Explaining to users how AI systems come to their conclusions is an area of research
with a history in expert systems and planning (see e.g., [1][2]). In this paper we focus
on explaining to humans the behavior of autonomous agents. Explainable agents that
use natural language for their explanations are useful in many domains. In scenario-
based training (e.g. disaster or military training) the agents in the training should be
able to explain the rationale for their actions so that students can understand why the
training unfolds as it does [3]. In tutor and pedagogical systems, natural dialog between
the user and system has been shown to increase the training effect of such systems [4].
Debugging tools for BDI agent programs might benefit from a natural way of interac-
tion involving asking why agents perform certain actions instead of looking at execution
traces and internal mental states [5]. In gaming and interactive storytelling [6][7], hav-
ing automatic mechanisms to generate explanations of agent actions (the ”story”) could
enhance the flexibility and appeal of the storyline.

Humans understand and explain (vocalize) their own and others’ behavior in terms
of folk psychology, that is, in terms of its underlying mental states like beliefs, desires
and intentions [8]. To automatically generate similar explanations of agent behavior,
it is convenient to have explicit representations of agent beliefs, goals and plans. This
can be accomplished by using a BDI-based (belief desire intention) agent programming

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 28–39, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Do You Get It? User-Evaluated Explainable BDI Agents 29

approach. Behavior in BDI agents is motivated by goals (desires), and selected based
on whether or not an agent believes a particular behavior will satisfy a goal or subgoal.
Behavior is then committed to (an action or sequence of actions is planned) transform-
ing it into an intention. The outcome of a BDI agent’s reasoning, i.e., its actions, can
then be explained by the goals and beliefs that were responsible for it. Our approach
to generating explanations is based on using the already available (relations between)
mental constructs in the agent program that generates the agent behavior. It was found,
that humans usually provide action explanations that only contain one or two mental
concepts [9]. Thus, in particular when agents are complex, providing as explanation
the complete trace of beliefs and goals underlying an action is undesirable. Instead, an
explanation based on a selection of beliefs and goals underlying the action is needed.

Our hypothesis is that different actions require different types of explanations, i.e., an
interaction effect exists between type of explanation and action on the perceived quality
of an explanation. We present a study in which users evaluate three algorithms that each
automatically generate a different type of explanation for 10 different agent actions. For
each action and explanation type subjects rated usefulness and naturalness.

In Section 3 we distinguish different action types, and we present three generically
applicable algorithms for automatically generating different explanation types for BDI
agent actions. In Section 5 we present a quantitative analysis of a user evaluation experi-
ment (n=30) to assess the usefulness and naturalness of the generated explanation types
for different agent actions. We also present feedback from the users about how they
would explain the actions themselves. Finally, in the discussion we hypothesize guide-
lines for the kind of information that should be modeled in the BDI agent if meaningful
explanations are to be generated. First we discuss related work in the next section.

2 Related Work

In the introduction we have mentioned several application domains of explainable
agents. Most of the related work is in virtual training systems. We now briefly review
explainable agent approaches in this domain.

Debrief is the first system that explains agent behavior [10]. Debrief is implemented
as part of a fighter pilot simulation and allows trainees to ask an explanation about
any of the artificial fighter pilot’s actions. To generate an answer, Debrief modifies the
recalled situation repeatedly and systematically, and observes the effects on the agent’s
decisions. Based on the observations, Debrief explains which factors must have been
responsible for the agent’s decisions.

Another account of explainable agents is the XAI (eXplainable Artificial Intelli-
gence) explanation component [11]. The XAI system has been incorporated into a
simulation-based training for commanding a light infantry company. After a training
session, trainees can select a time and an agent, and ask questions about the agent’s
state, e.g. its location or health.

A second version of the XAI system was developed to overcome the shortcomings
of the first. It is claimed that the new XAI system supports domain independency, mod-
ularity and the ability to explain the motivations behind agents’ actions. The system is
described in [12] and [3], where it is applied to a tactical military simulator, and a virtual
trainer for soft skills such as leadership, teamwork, negotiation and cultural awareness,

30 J. Broekens et al.

respectively. For the generation of explanations, the system depends on information that
is made available by the simulation.

Both Debrief and the first XAI system lack the ability to provide explanations in-
volving the motivations behind an agent’s actions. The XAI system only provides in-
formation about an agent’s physical state, and not about its mental. Debrief does provide
explanations in terms of an agent’s beliefs, but never gives explanations including its
underlying goals and intentions. The second XAI system can provide explanations in
terms of an agent’s goals, but only if those are represented as such in the simulation,
which is often not the case [13]. If the agent’s goals are not represented in the simula-
tion, a hand-built XAI representation of the behaviors has to be made. Consequently,
changes in the agent specification must also be reflected in the explanation component.

3 Explainable Agent Model

In this section we describe an explainable agent model that can provide different types
of explanations about agent behavior. The basic principle of the model is that the mental
concepts responsible for an agent’s action are also used to explain that action. Because
not all mental concepts underlying an action are needed to explain that action, we also
present three different explanation algorithms that select a mental concept that is most
appropriate to generate an explanation.

As mentioned in the introduction, BDI-based agent programming languages allow
for the explicit representation of an agent’s mental state, and actions are the result of
a deliberation process on the agent’s mental concepts. In our study, we have used the
BDI language GOAL [14]. A GOAL agent program consists of six different sections,
including the agent’s knowledge, beliefs, goals, action rules, action specifications and
percept rules. Together, the knowledge, beliefs and goals of an agent make up its mental
state. Although GOAL distinguishes itself from other BDI-based languages in the exact
way agents are specified and executed, we would like to stress that the explanation
approach presented in this paper can also be applied to other BDI-based agents.

To explain agent behavior by the underlying mental concepts, we need two things.
First, the agent’s past goals and beliefs must be accessible when the explanation is
constructed. Second, when there is a request to explain an action, the proper goals and
beliefs explaining that action must be selected. We have implemented an explanation
module that satisfies these two requirements.

3.1 Tree-Based Behavior Log

The explanation module includes a mechanism to construct a behavior ”log”, to which
an agent’s goals and beliefs are updated. The explanation module can be connected to
any GOAL agent, and during run-time of the agent, the explanation module examines
and logs the execution of the agent program.

The behavior ”log” in the explanation module is a tree structure that is constructed
while the agent reasons and performs actions based on its agent program (so formally
it is not a log, as in a timed list of actions). It is made such that it automatically

Do You Get It? User-Evaluated Explainable BDI Agents 31

Fig. 1. Example behavior ”log” (goal tree) of a BDI agent

construct a goal tree based on the actual behavior of the agent, see e.g. Figure 2 repre-
senting a particular execution of the agent program as used in the experiment (please
also see our notes at the end of Section 3.2). The algorithm (in text) is as follows: The
agent’s initial goal becomes the top node of the tree (Goal A in Figure 1). If the pro-
gram decides to adopt a goal in order to achieve another goal, this is represented as a
subgoal (Goal B and C). The adoption conditions of a goal, i.e., beliefs that determine
whether the agent program should adopt a subgoal, are represented along the branches
of the tree (Belief 1-7). The agent’s actions form the leaves of the tree (Action a-e).
This algorithm automatically constructs a tree structure that is different depending on
the actual behavior and choices of the agent.

In addition to this tree, one has to supply the behavior log with goal-relation in-
formation. Currently we add this manually, but this information could be explicitly
represented, or extracted from the agent program. Goals can have three different rela-
tions to their subgoals (relation I-III): all, one and seq. A goal with an all relation to
its subgoals/actions means that all subgoals/actions must be fulfilled in arbitrary order
to achieve the goal, relation one means that exactly one of the subgoals/actions must
be fulfilled to achieve the goal, and relation seq (from sequential) means that all sub-
goals/actions must be fulfilled in a particular fixed order. Based on these relations, we
distinguish the following three types of actions.

– All action: relation to parent goal is of type all
– One action: relation to parent goal is of type one
– Seq action: relation to parent goal is of type seq

To summarize, we distinguish three different action types, where the action type de-
pends on the relation to an action’s parent goal and its siblings. In the next section we
present three explanation algorithms that generate different types of explanations.

3.2 Explanation Algorithms

When a user requests an action explanation, an explanation algorithm is applied to the
behavior log. Based on the log, the algorithm determines the goals and beliefs that are
reasons for the action. Then, it selects beliefs and goals relevant for the explanation. We
propose three algorithms for constructing three different types of explanation.

32 J. Broekens et al.

Algorithm I. The first explanation algorithm explains actions by the goal that motivated
the selection of the action. It generates a sentence that looks like ”Because I want to
<goal>”. We expect that this algorithm delivers useful explanations for actions of the
type all, meaning that the action and all its sibling actions have to be executed in order
to achieve their parent goal. For example, if relation II in Figure 1 would be of the type
all, we expect that action b is best explained by goal B.

Algorithm II. The second algorithm explains an action by its enabling condition, i.e. the
belief because of which it was executed. It generates a sentence that looks like ”Because
I believe that <belief condition>”. We expect that these explanations are useful in
particular for actions of the type one, meaning that only one of a goal’s children actions
needs to be executed to achieve it. In Figure 1 for example, if relation III would be of
the type one, we expect that belief 6 provides the explanation for action d. Namely,
belief 6 determined that action d was chosen to achieve goal C and not action e.

Algorithm III. In the third algorithm, an action is explained by the first action or task
that must follow after the action. Thus, if an action is part of a sequence of actions that
must be executed in a particular order to achieve a goal, the action can be explained by
the next action in the sequence. It generates a sentence that looks like ”Because I want
to <next goal>”. We expect that this algorithm will deliver most useful explanations
for actions of the type seq. For instance, if relation II is of the type seq, action b is
explained by action c according to this algorithm. In other words, action b enables the
execution of action c. If an action is not part of such a sequence, the algorithm considers
the parent goal of the action, and checks whether this goal is part of a sequence of goals.
In Figure 1, if relation II is not of the type seq, relation I is considered and if that is a
seq relation, goal C is given as the explanation for action b. If the top goal is reached
without finding a relation of the type seq, the top goal is provided as an explanation.

Note that the execution of GOAL agents that are designed according to a hierarchical
goal model will result into a goal tree, i.e. there is one main goal and each goal has a lim-
ited number of subgoals or actions. As the explanation module automatically constructs
a goal-condition-subgoal structure based on the execution trace of the agent, other agent
programs may result into less regular tree-shaped graphs, e.g. one main goal with many
subgoals, several separated trees when multiple independent initial goals are present,
or several partly connected trees when multiple dependent initial goals are present. In
principle, the explanation algorithms can be applied to all kinds of goal graphs to gen-
erate explanations, but we expect that the explanation algorithms will in general deliver
more useful explanations when applied to a proper tree. The assumption of a hierarchi-
cal goal model is plausible, as it is based on existing knowledge elicitation methods.
Namely, hierarchical task analysis (HTA), which is a well-accepted cognitive task anal-
ysis technique [15].

Also note that explanations could be asked for during runtime, as the goal tree is
build up continuously. Although in this paper we assume the agent has executed its
complete program, as long as the tree contains enough information for the explanation
algorithm to generate an explanation, it does not need to be complete.

Do You Get It? User-Evaluated Explainable BDI Agents 33

Fig. 2. Cooking agent behavior log. Grey boxes denote the 11 actions used in the experiment.

4 Experimental Setup

To evaluate how users perceive the different explanation types for different actions,
we have to test these in an application domain. We have chosen for a cooking agent
that bakes pancakes and explains its actions. The reason for choosing a domain like
this is that for average users to evaluate whether an explanation is useful and natural,
the user must be familiar with the domain. He/she has to judge the explanation. This
excludes more sophisticated domains such as disaster or negotiation training, as users
are typically less familiar with these. Picking a domain limits the generalizability of our
results, and we will come back to this issue in the discussion.

The cooking agent (Figure 2) was programmed in GOAL, and executed. To evaluate
the effect of the different explanation types for the three action types, the agent program
was constructed such that it included actions of all types. Action 2, 3, 4 and 5 are of type
all (actions that all need to be executed), action 1, 6 and 10 are of type one (mutually
exclusive actions), and action 7, 8, 9 and 11 are of type seq (actions that all need to be
executed in a particular order). For all three explanation types, a list of explanations for
all actions was generated. Post analysis excluded action 11 from the statistical result
analysis as this action was misplaced in the tree (see Results section).

To investigate our hypothesis, we followed a between subject 10x3 design (10 ac-
tions, 3 algorithms) with dependent variables usefulness, naturalness. Subjects were
randomly assigned to the different conditions with exactly 10 subjects per condition
(n=30, 12 female, age(avg=32, stdev=9), cooking skills (5-point Likert scale, avg 3.6),
average education level between Bachelor and Master, subjects were a balanced mix
of family, friends, colleagues and students of the first two authors). All subjects scored

34 J. Broekens et al.

all actions for a particular condition, resulting in 10 measurements per action per con-
dition. The first two authors each administered 15 tests, no effect of experimenter bias
was found during analysis of the data.

The procedure for gathering feedback from the subjects was organized as follows.
Subjects were told to read the instructions (stating that the study was about developing
smart agents for virtual training purposes), after which they received the first feedback
form. On this form subjects wrote down their own explanations for the 11 actions listed
on the form (see also the gray boxes in Figure 2), as if they were the cook explaining
how to bake pancakes to a student. This feedback was aimed at extracting the ”ideal”
explanations as perceived by the user, and to help subjects get into the right context.
We do not evaluate this qualitative data in this paper. When finished, subjects received
the second form. This form asked for 5-point likert feedback on the naturalness of each
action’s automatically generated explanation (1=not natural, 5=very natural). Subjects
took the role of observer when judging the naturalness of the explanation. Naturalness
was explained as follows: ”With a natural explanation we mean an explanation that
sounds normal and is understandable, an explanation that you or other people could
give”. When finished, a similar form was presented for 5-point likert feedback about
the usefulness of the explanations. Subjects were asked to imagine they were the stu-
dent learning to cook while judging the usefulness. Useful was explained as follows:
”Indicate how useful the explanations would be for you in learning how to make pan-
cakes”. Finally, subjects were presented with the goal tree (the graphical representation
of the behavior log as shown in 2). We asked users to indicate all elements in the tree
they deemed useful for giving an explanation of each of the 11 actions, by putting the
action number next to the element. Subjects were asked to imagine they were the cook
while numbering elements. This feedback was aimed at extracting information about
what could be a good and feasible version of an explanation algorithm, given our way
of automatically generating tree-based behavior logs.

5 Results

To test our main hypothesis, i.e., different actions require different types of explana-
tions, we performed a 10x3 2-way MANOVA with explanation type (3 conditions) and
action (10 conditions) as independent variables, and usefulness and naturalness as de-
pendent variables. The MANOVA test is used to identify if signifiant differences in
means of dependent variables are introduced by variation in independent (experimental)
variables. Values of independent variables define groups, in our case 3x10=30 groups.
Analysis showed a main effect of algorithm type (F (4, 538) = 3.973, p < 0.01), a
main effect of action (F (18, 538) = 1.917, p < 0.05), and an interaction effect be-
tween action and algorithm (F (36, 538) = 2.638, p < 0.001). Post hoc testing (Tukey)
for the influence of action alone on naturalness and usefulness revealed no signifi-
cant differences between the actions on both measures. This indicates that the actions
are equal with respect to explainability, meaning that no action is easier to explain
than another. The same post hoc testing for the influence of algorithm type revealed
only a significant effect on the perceived usefulness. Algorithm I (parent goal as ex-
planation) performed significantly better (p < 0.01) than the other two algorithms
(Mean(I) = 3.1, Mean(II) = 2.5, Mean(III) = 2.5). This indicates that there

Do You Get It? User-Evaluated Explainable BDI Agents 35

is a significant influence of explanation type on the perceived usefulness of the expla-
nation, and that explaining an action with its parent goal (Algorithm I) is the best default
method. However, the interaction effect indicating that different actions need different
explanations (supporting our main hypothesis), is more important, as we will see next.

In Figure 3 an overview is given of the average naturalness and usefulness of the
actions per algorithm type. In Figure 4 an overview is given of the number of times
subjects indicated a particular element in the tree-based user feedback.

As can be seen, actions 1, 2, 6 and 9 score high on both measures when the parent
goal is given as explanation (Algorithm I), while actions actions 3, 4, and 5 score high
on both measures when the next action or goal is given as explanation (”I want to
mix the ingredients”, Algorithm III), and actions 7 and 10 score high when the enabling
condition (belief) is given as explanation (algorithm II). Action 8 does not score well on
either of the algorithms. Action 11 is explained well by Algorithm III (next goal/action),
but this is a side effect of two factors. First, action 11 was misplaced, it should have
been under ”I want to eat pancakes”, as also indicated by the tree-based user feedback.
Second, Algorithm III defaults to the top level goal when no next steps are available in
the sequence, which in our case happened to be the most logical option for explanation.
We exclude action 11 from our analysis.

Actions 2, 3, 4 and 5 are actions of the type all; they are all needed in arbitrary order to
achieve the parent goal. For 3, 4 and 5, the parent goal is not very descriptive, when the
action has already been read (I put X in the bowl - because I want to put all ingredients in
the bowl). As can be seen in Figure 4 subjects included in their own choice of elements
the goal numbered 13 (”I want to make pancake mix”), indicating that subjects indeed
need a more descriptive goal. Action 2 is well explained by its parent goal, as indicated
by the naturalness and usefulness feedback as well as the tree-based feedback.

Actions 1, 6 and 10 are actions of the type one. Action 1 and 6 score high on using the
parent goal as explanation, but in addition to that they seem to require extra information
for an adequate explanation. In Figure 3 we can see that for action 1 and 6 subjects
use the goal two levels up in the hierarchy. Action 10 is well explained by Algorithm
II (enabling condition). This is reflected in the tree-based feedback, as for action 6 and
10 subjects use the enabling conditions for the action and for the parent goal. Action 6
thus has a rather complex explanation structure using two goals and two conditions.

As indicated by the tree-based feedback, enabling conditions in combination with
the parent goal are also used for action 7, 8, and 9; all three actions are actions in a
sequence, type seq. However, action 8 and 9 use only the enabling condition for the
action itself, while action 7 uses both the enabling condition for the action itself as well
as the enabling condition for the action’s parent goal. We will interpret these results in
more detail in the discussion.

Finally, we have conducted correlations between the subject demographics and use-
fulness and naturalness. We found four significant correlations. Two of the correlations
were positive: the one between usefulness and naturalness (p < 0.001, r = 0.491), and
the one between cooking skill and usefulness (p < 0.001, r = 0.145). The first corre-
lation is as expected: natural explanations are more useful and vice versa. The second
is somewhat counterintuitive: more experienced cooks judge the explanations slightly
more useful. This could be due to the fact that a better cook is better able to understand

36 J. Broekens et al.

Fig. 3. Average naturalness (left) and usefulness (right) of actions (1-11) per condition (1-3)

Fig. 4. Distribution of tree elements used to generate explanations for different actions (1-11) as
given by the subjects. Elements number from 1 to 43 and refer to numbers in Figure 2.

the explanation in the first place, but as the correlation coefficient is rather small, we do
not pay further attention to this in this paper. Furthermore, we found two negative cor-
relations: between action number and naturalness (p < 0.001, r − 0.200), and between
action number and usefulness (p < 0.01, r = −0.178). As actions were always scored
from top to bottom, and this corresponds to the action number, this might indicate two
different things: for the later actions it is more difficult to automatically generate explana-
tions, or, subjects got tired of scoring explanations. This issue needs future experiments.

6 Discussion

We first discuss the results in more detail. Then we summarize the discussion by hy-
pothesizing guidelines for the development of explainable BDI agents that generate
explanations based on their behavior and mental processes. We end the discussion with
several limitations of our study, such as the choice of domain and the choice of partic-
ular actions, subgoals and the linkage between them in the goal tree.

Our results indicate two things. First, the results support our main hypothesis: differ-
ent actions need different explanation types, as indicated by the 2-way ANOVA showing
significant interaction between action and type of explanation. Second, our expectations

Do You Get It? User-Evaluated Explainable BDI Agents 37

on how action types and explanation algorithms are related are too simplistic. We ex-
pected that all actions (AND relation with siblings) would be explained best by the
action’s parent goal, that seq actions (AND and sequence relation with siblings) would
be explained best by the next action/goal in the sequence, and one actions (XOR rela-
tion with siblings) would be best explained by their enabling condition. Looking at the
tree-based feedback, most of the actions seem to need at least one additional element for
explanation, in addition to their parent goal. The kind of additional information seems
to depend on the action’s role in the process and the action’s type (seq, all, or one).

First consider the actions of type all: action 2, 3, 4 and 5. Of all actions, only action
2 is explained well by only one element, its parent goal. Action 3, 4 and 5 are well
explained by the next action in the sequence (Figure 3), but when subjects produce
their own tree-based feedback (Figure 4), they choose for a combination of the parent
goal and the parent’s parent goal. We currently can not explain this inconsistency, but
it does indicate that neither the enabling condition nor the parent goal are descriptive
enough in this particular case.

Now consider actions 1, 6 and 10 which are of type one. The way this type of action
is modeled in the tree is such that the parent goal presents a choice, while the enabling
condition of the action’s parent explains why the choice has to be made. For this action
type, the parent goal is not descriptive enough to provide a satisfying explanation. In-
stead, both the enabling condition of the action and the enabling condition of the parent
goal are needed (Figure 4).

Finally, consider the actions 7, 8, 9, and 10 which are part of the same sequence
(note that 7, 8 and 9 are of type seq, but 10 is of type one). According to the tree-based
feedback (Figure 4), these actions should be explained by their parent goal and their
enabling condition, contrary to our expectation that such actions would need the next
action/goal in the sequence. In addition, action 7 and 10 also need the enabling condition
of their parent’s goal in their explanations. A possible explanation for this difference is
that action 8 and 9 are in the middle of a sequence. Their parent goal explains what is
to be done, and the enabling condition explains where we are in the process. Action 10
does need its parent goal and its enabling condition because it is an action of type one.
The enabling condition of its parent goal needs to be given because it is also, though
implicitly, part of the sequence involving action 7 to 10. Action 7 can be explained in
the same way. It is the first action of a next phase in the process (baking). Phase in this
case is defined as either preparation for baking, or baking. The parent goal of action 7
is about that next phase, but it does not explain why we ended up in this phase. This
is what the parent goals’ enabling condition is about, hence, action 7 needs again two
enabling conditions (it’s own and that of its parent goal).

According to studies in psychology, humans explain intentional behavior using rea-
sons while they explain unintentional behavior using causes [16]. Furthermore, when
behavior was made possible by opportunity, skill or by removal of an obstacle, people
tend to use a description of enabling factors for explaining the behavior (e.g., why does
a person start driving when waiting for a traffic light? Because the light turns green).
Obviously, all of our agent behavior is intentional, but for a human, actions of the type
one (OR, XOR) could well be considered driven by opportunity in our case (having
ingredients at home or not, having a mixer or not). It is therefore in line with [16] that

38 J. Broekens et al.

these actions need their enabling condition for explanation. Also the actions in sequence
7-10 need an enabling condition. When performing an action sequence, the whole se-
quence is intentional, but the actions within the sequence are controlled by external
factors or the logic of the process. These can thus be considered non-intentional, and it
is therefore again in line with [16] that also these actions need their enabling condition.

6.1 Guidelines

We now sum up this discussion and present several guidelines relevant for the develop-
ment of explainable BDI agents. The guidelines are hypotheses, and should be tested in
further research. First, as the parent goal of an action seems essential in its explanation,
explanation methods should first attempt to use this. This also suggests that explainable-
agent programmers should make these parent goals as meaningful as possible in light of
an explanation. Second, actions that start a new phase in a process need additional ex-
planation in the form of the enabling conditions for the action and the parent goal. Third,
care should be taken when explaining XOR choices (one action type) using a common
parent goal as ”abstract action”, because such a parent goal is often non descriptive.
This means that either the explanation method must take this into account (e.g., by us-
ing agent-program meta information), or such choices should be modeled differently.
Fourth, sequenced actions need to be ”chained” using their enabling condition, so that
the user can position the action in the sequence.

6.2 Limitations and Future Work

We have chosen a domain that is well-known to the subjects because we wanted all
subjects to be able to judge the naturalness and usefulness of the explanations. Our
current aim was not to investigate if these explanations actually result in, e.g., a better
training session. In future work we plan to perform similar experiments with subjects
that are not familiar with the domain (e.g., a disaster training) to test whether generated
explanations increase the understanding of these subjects.

Furthermore, the particular agent program used to represent beliefs, goals and re-
sulting action selection, produces a particular hierarchical goal structure. Although we
expect similar structures are ubiquitous in programs, more research is needed on relax-
ing these structural constraints.

A similar issue is the particular instantiation of our BDI program. Our results might
be limited to our specific goal tree. However, we have taken care to construct the goal
hierarchy such that it contains duplication of action types at different places. Therefore,
we feel that similar results for action explanation at two different places indicates that
the result is generic for that action type.

7 Conclusion

In this paper we have presented a study involving user evaluations of explanations about
agent behavior. We distinguished three action types and three algorithms automatically
generating different explanation types. We investigated which explanation types are
preferred for which actions. Our hypothesis that different actions require different types

Do You Get It? User-Evaluated Explainable BDI Agents 39

of explanations, as generated by different explanation algorithms, was supported by
the results. We found that an action should always be explained by its parent goal,
and depending on the action type, particular additional information is needed. We have
abstracted this and other findings into four guidelines relevant for the development of
explainable BDI agents and explanation algorithms.

Acknowledgements

This research has been supported by the GATE project, funded by the Netherlands
Organization for Scientific Research (NWO) and the Netherlands ICT Research and
Innovation Authority (ICT Regie), as well as STW (NWO) VICI-project 08075.

References

1. Cortellessa, G., Cesta, A.: Evaluating mixed-initiative systems: An experimental approach.
In: ICAPS’06, pp. 172–181 (2006)

2. Gilbert, N.: Explanation and dialogue. The Knowledge Engineering Review 4(03), 235–247
(1989) 10.1017/S026988890000504X

3. Core, M., Traum, T., Lane, H., Swartout, W., Gratch, J., Van Lent, M.: Teaching negotia-
tion skills through practice and reflection with virtual humans. Simulation 82(11), 685–701
(2006)

4. Graesser, A.C., Chipman, P., Haynes, B.C., Olney, A.: Autotutor: an intelligent tutoring sys-
tem with mixed-initiative dialogue. IEEE Transactions on Education 48(4), 612–618 (2005)

5. Broekens, J., DeGroot, D.: Formalizing cognitive appraisal: from theory to computation. In:
Trapple, R. (ed.) Cybernetics and Systems 2006, Vienna, Austrian, Society for Cybernetics
Studies, pp. 595–600 (2006)

6. Cavazza, M., Charles, F., Mead, S.J.: Character-based interactive storytelling. IEEE Intelli-
gent Systems 17(4), 17–24 (2002)

7. Theune, M., Faas, S., Heylen, D.K.J., Nijholt, A.: The virtual qstoryteller: Story creation
by intelligent agents. In: TIDSE 2003: Technologies for Interactive Digital Storytelling and
Entertainment, Darmstadt, pp. 204–215. Fraunhofer IRB Verlag (2003)

8. Keil, F.: Explanation and understanding. Annual Reviews Psychology 57, 227–254 (2006)
9. Harbers, M., Van den Bosch, K., Meyer, J.: A study into preferred explanations of virtual

agent behavior. In: Ruttkay, Z., Kipp, M., Nijholt, A., Vilhjálmsson, H. (eds.) IVA 2009.
LNCS, vol. 5773, pp. 132–145. Springer, Heidelberg (2009)

10. Johnson, W.: Agents that learn to explain themselves. In: Proc. of the 12th Nat. Conf. on
Artificial Intelligence, pp. 1257–1263 (1994)

11. Van Lent, M., Fisher, W., Mancuso, M.: An explainable artificial intelligence system for
small-unit tactical behavior. In: Proc. of IAAA 2004. AAAI Press, Menlo Park (2004)

12. Gomboc, D., Solomon, S., Core, M.G., Lane, H.C., van Lent, M.: Design recommendations
to support automated explanation and tutoring. In: Proc. of BRIMS 2005, Universal City, CA
(2005)

13. Core, M., Lane, H., Van Lent, M., Gomboc, D., Solomon, S., Rosenberg, M.: Building ex-
plainable artificial intelligence systems. In: AAAI (2006)

14. Hindriks, K.: Programming Rational Agents in GOAL. In: Multi-Agent Programming: Lan-
guages, Tools and Applications, pp. 119–157. Springer, Heidelberg (2009)

15. Schraagen, J., Chipman, S., Shalin, V. (eds.): Cognitive Task Analysis. Lawrence Erlbaum
Associates, Mahway (2000)

16. Malle, B.: How people explain behavior: A new theoretical framework. Personality and So-
cial Psychology Review 3(1), 23–48 (1999)

Reputation in Multi Agent Systems and the
Incentives to Provide Feedback

Miriam Heitz, Stefan König, and Torsten Eymann

University of Bayreuth
Chair of Information Systems Management

95440 Bayreuth, Germany
miriam.heitz@gmail.com

http://www.bwl7.uni-bayreuth.de

Abstract. The emergence of the Internet leads to a vast increase in the
number of interactions between parties that are completely alien to each
other. In general, such transactions are likely to be subject to fraud and
cheating. If such systems use rational software agents to negotiate and
execute transactions, mechanisms that lead to favorable outcomes for
all parties instead of giving rise to defective behavior are necessary to
make the system work: trust and reputation mechanisms. This paper an-
alyzes different incentive mechanisms helping these trust and reputation
mechanisms in eliciting users to report own experiences honestly.

Keywords: Reputation, Incentives.

1 Introduction

Think of e-commerce systems in which completely rational agents automatically
search for providers and negotiate terms of trade after detecting a need. Since
these agents are set up to maximize the profit of the party they are acting for,
they will cheat on their trading partners and refrain from paying for services
that have already been delivered, if the rules of the game are not designed in
such a way that cheating reduces their expected future gains from trade.

Reputation mechanisms can play a major role in making reliable promises be-
tween rational and anonymous actors possible. Such systems transform once-off
interactions between agents in repeated interactions, and hence make coopera-
tion a rational strategy.

Reputation mechanisms promise to signal whether a partner is trustworthy
or not. They can facilitate “to promote cooperative and honest behavior among
self-interested economic agents” [1, p. 210]. The mechanisms need feedback from
the agents engaged in trade. Unfortunately, it is not in the best interest of
a rational agent to report feedback, since that would provide a competitive
advantage to the other agents. Suppose, for example, that a trading partner
cheated on an agent. Why should this agent report the cheating? If it competes
with the agents that would benefit from the report, it would provide them with
valuable information that gives them a competitive advantage. If, on the other

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 40–51, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.bwl7.uni-bayreuth.de

Reputation in Multi Agent Systems and the Incentives to Provide Feedback 41

hand, the interaction went well, and the agent gave positive feedback, that would
increase the reputation of the trading partner and therefore diminish its own.
In an unregulated environment it is not rational for agents to report feedback
either way.

In consequence, a trust establishing mechanism has to be implemented with
two features: first, it has to encourage rational agents to give honest feedback.
Second, it has to serve as a tool to communicate hidden characteristics of and
feedback about the transaction partner’s behavior. We assume that only the
buyers (trustors) rate the behavior of the providers (trustees), because of ad-
vanced payment. This is done for reasons of simplicity and could also be the
other way around, within the same system (see e.g. [2] for a detailed discussion
on that).

This paper will discuss and analyze several trust and reputation mechanisms
that exhibit these characteristics. It does not intend to give a exhaustive survey
of trust and reputation models. Therefore we refer for example to [3–8]

This paper is organized as follows: chapter 2 will exemplify four incentive
setting reputation mechanisms for multi agent environments. Chapter 3 will
compare the introduced mechanisms and stress the advantages of each. Finally,
chapter 4 concludes with an overview of the reputation mechanisms and the
incentives that are necessary to make it rational to report feedback truthfully.

2 Implementing Incentive Setting Reputation
Mechanisms in Multi Agent Systems

Reputation mechanisms have to fulfill two main functions. They have to elicit
feedback from rational agents which will not submit feedback without incentives
and secondly, they have to be able to detect untrustworthy and further trust-
worthy feedback. In the following we introduce four approaches that attempt to
solve these two problems.

2.1 Liu and Issarny: An Incentive Compatible Reputation
Mechanism for Ubiquitous Computing Environments

Liu and Issarny [9] introduce a reputation mechanism which has the following ob-
jectives: It needs to be able to distinguish between trustworthy and untrustwor-
thy agents and also between honest and dishonest recommenders. Additionally,
it should achieve to enforce honest recommendations. If untrustworthy feedback
is given, it penalizes the dishonest behavior and punishes any exploitation of
the system. Therefore only honest recommendations are taken into account. Old
reputation values need to be discounted over the past because they become ir-
relevant when behavior of the target changes. Hence, more weight is given to
recent experiences. The authors assume the beta distribution of reputation for
modeling reputation. It expresses the probability for having an event T the next
time. There are two possible outcomes T and −T , with r and s being the ob-
served numbers of T and −T respectively. The advantages of beta reputation

42 M. Heitz, S. König, and T. Eymann

include the simple estimation of the trustworthiness of an entity by calculating
α

α+β , with α = r + 1 and β = s + 1 these are assumed to be two independent
events. Only newcomers hold a value of 0. The aggregation of observation is due
to dynamic adjustment by addition and accumulation of more experiences. The
time fading factor ρ stresses recent experiences compared to older ones:

α′ = 1 + (α − 1) × ρΔT (1)

β′ = 1 + (β − 1) × ρΔT (2)

There are two roles, the trusting entity (trustor) a and a trusted entity (trustee)
o. In the following, the trustee will always be the provider and the trustor al-
ways the consumer. Hence, Repa(o) is o’s reputation from a’s point of view. The
authors differentiate between three different kinds of reputation. The Service
reputation (SRep) combines direct experiences one agent has with experiences
of another agent. Therefore, it is updated after each new experience. Overall
reputation (ORep) describes direct experiences an agent had from transactions
if they are significant enough to derive a trust decision. This is the case, if the
accumulation (sp + sn − 2) exceeds a certain threshold, whereas sp represents
positive and sn negative experiences. Otherwise the trustor asks other entities
for recommendations. Then the combination of own direct experiences and rec-
ommendations from others makes up the ORep of the trustee. An example will
clarify this: entity a asks entity r for recommendations about o. Then r gives
Recr(o) = (rp, rn). a checks if the recommendation is trustworthy in two steps:
(1) Is r honest? If rp

rp+rn
is high enough, r is considered honest. (2) The RRep is

evaluated with (rp +rn−2) to ensure it relies on sufficient evidence. If those two
criteria are met by the recommendation of r, the recommendation is taken into
account and weighted according to the formula: wr = E(Beta(rp, rn)) = rp

rp+rn
.

This is done for each recommendation. The complete ORep is then calculated
from the sum of all those:

ORep = δ × SRep + (1 − δ) ×
∑

r∈R(Recr(o) × wr)∑
r∈R(wr)

(3)

δ represents the weight given to each recommendation. It is usually greater
than 0.5 due to the fact that own direct experiences are more valuable than
recommendations from other entities.

Recommendation reputation (RRep) evalutes the usefulness of a recommen-
dation from another agent. It is exclusively made up of direct experiences using
recommendations. It has the form (cp, cn) and is equal to the SRep for honest
recommenders. The beta reputation provides now a simple calculation to check
whether an agent is an active recommender: rp +rn−2. The value is expected to
be high for active recommenders. To check whether an agent is providing honest
recommendations the value of f(p|rp, rn) is expected to be high, too.

The higher the first value (rp), the more positive values were observed. The
higher the sum, the higher is the number of recommendations the agent has

Reputation in Multi Agent Systems and the Incentives to Provide Feedback 43

given. The two values δh and δa are the thresholds for trustworthiness (honesty)
and activeness in providing recommendations respectively. Therefore a provider
would be considered active if rp+rn−2 ≥ δa, and honest if rp

rp+rn
≥ δh. This leads

to five distinct states of a recommender: active truthteller, inactive truthteller,
active liar, inactive liar and newcomer. The stages change due to behavior, ac-
tivity and inactivity. RRep decays if an agent does not provide recommendations
and moves it from an active liar or truthteller to the inactive counterpart or even
a newcomer. The distinction between five groups of recommenders is crucial for
the reputation propagation because the groups are treated differently in granting
access to reputation information. Hence, these five states set incentives to share
honest recommendations with other agents.

If an agent o then asks agent a for recommendations, agent a first evaluates
the state of the agent o and if it has a significant number of direct experiences. If
it does and agent o is an honest recommender it sends back the recommendation
immediately. In the case that agent o is considered inactive, it sends back the
recommendation with probability of diff = δa − (rp + rn − 2). The distinction
between inactive liars and truthteller is made by the fact that inactive recom-
menders do not necessarily withhold their recommendations. “The less active an
entity is, the less possible that it receives helpful recommendations from others”
[9, p. 304]. Therefore all rational entities will try to appear as active truthtellers.

2.2 Jøsang and Ismail: The Beta Reputation System

Jøsang et al.[10] use a different family of continuous probability distribution, the
gamma distribution. The following function is used to categorize agents:

f(p|α, β) =
Γ (α + β)

Γ (α) + Γ (β)
pα−1(1 − p)β−1 (4)

where 0 ≤ p ≤ 1 and α, β < 0. The expectation value within the restrictions
p �= 0 if α < 1 and p �= 1 if β > 0 is similar to Liu et al.. There are two possible
outcomes, here called x and x, which are corresponding to T and −T in Liu et
al.’s beta reputation. The observed number of x is called r and of x is s, both
of them need to be greater or equal to zero (r, s ≥ 0). The probability density
function of observing outcome x in the future can be expressed as a function
of past observations by setting: α = r + 1 and β = s + 1 where r, s ≥ 0. With
the beta function the authors are trying to visualize that the relative frequency
of outcome x in the future is somewhat uncertain and that the most likely
value corresponds to E(p). Hence, the reputation function predicts the expected
relative frequency with which x will happen in the future. rX

T and sX
T represent

the positive and negative feedback tuple about target T provided by entity X.
Those tuples are called reputation parameters. The probability expectation value
of reputation function is accordingly

E(ϕ|p(rX
T , sX

T)) =
rX
T + 1

rX
T + sX

T + 2
(5)

This again is similar to Liu et al. where it is defined as E(p) = α
(α+β) .

44 M. Heitz, S. König, and T. Eymann

The accumulation of feedback is similar to Liu et al., too. When feedback
from entity X (rX

T , sX
T) and entity Y (rY

T , sY
T) about target T is received, the

r-parameters and the s-parameters are added up as follows:
rX,Y
T = rX

T + rY
T and sX,Y

T = sX
T + sY

T . This leads to the updated reputation
function E(ϕ|p(rX,Y

T , sX,Y
T)). Jøsang et al. add that the independence between

the ratings must be assumed so that no feedback can count twice. The authors
present two different kinds of discounting. Beliefs are discounted, because “feed-
back from highly reputed agents should carry more weight than feedback from
agents with low reputation rating” [10, p. 6]. Therefore, they introduce wA

T which
reflects the opinion of A about target T. The opinion consists of belief, disbelief
and uncertainty.

In addition to belief discounting the authors introduce reputation discount-
ing in order to discount “feedback as a function of the reputation of the agent
who provided the feedback” [10, p. 6].The authors take into account that a rec-
ommendation must not necessarily be true and consider the opinion the agent
has about the target and the recommender. ϕ(p|rX:Y

T , sX:Y
T) is the reputation

function of T given a recommendation from Y, which is discounted by agent X.
This means that the given function is T’s discounted reputation function by X
through Y:

rX:Y
T =

2rX
Y rY

T

(sX
Y + 2)(rY

T + sY
T + 2) + 2rX

Y

(6)

sX:Y
T =

2rX
Y sY

T

(sX
Y + 2)(rY

T + sY
T + 2) + 2rX

Y

(7)

Similar to Liu et al. [9] Jøsang et al. introduce a forgetting factor which discounts
old feedback in order to adapt to behavior changes of the ratee.

2.3 Buchegger and Boudec: A Robust System for P2P and Mobile
Ad-hoc Networks

Buchegger and Boudec [11] create a reputation system which detects misbe-
havior, but does not set any direct incentives to submit reputation. The only
incentives set are used to enforce correct feedback and to maintain a good per-
sonal reputation. Like the other introduced reputation mechanisms so far, it uses
Bayesian estimation to detect false reports.

The reputation of a given agent (which the authors call node) is the collection
of ratings about this agent. This information is kept and maintained by others
instead of being stored in a centralized institution. Hence, the reputation system
is fully distributed. Reputation values appear in three different kinds. First of all
the reputation rating (Ri,j) which indicates the opinion of agent i about agent
j’s behavior in the system. The trust rating (Si,j) expresses agent i’s opinion
about how honest agent j is. These two ratings and additionally the first hand
information (Fi,j) from agent i on agent j make up the reputation of agent j
maintained by agent i. The three kinds of reputation values are represented in
tuples so that e.g. Fi,j has the parameters (α, β) of the beta distribution by
agent i in its Bayesian view of agent j’s behavior, initially set to (1,1). When

Reputation in Multi Agent Systems and the Incentives to Provide Feedback 45

agent i makes a first hand experience with agent j it updates Fi,j and Ri,j . From
time to time the first hand ratings are published and participants can include
them in their reputation ratings about other agents. In order to integrate the
published rating, agent i has to estimate if the other agent. is trustworthy. If
agent k is considered trustworthy or the submitted Fk,j is close to Ri,j , the
first hand information Fk,j is accepted and used to slightly modify Ri,j . If it
does not satisfy one of these criteria, Ri,j is not updated. In every case the
trust rating Ti,k is updated. The trust rating slightly improves if Fk,j is close to
Ri,j or slightly worsens if not. Then it helps to maintain an opinion about the
honesty of a agent. During the publication process only Fi,j is submitted; Ti,j

and Ri,j are never disseminated. Trust ratings help the agents to estimate how
honest another agent is. They are updated whenever a report about an agent is
published.

This process works as follows: Agent i believes that every other agent provides
false reports with a certain probability. Let the probability of agent k providing
false reports be φ. In order to estimate the expectation of the distribution of
φ agent i uses the prior Beta(γ, δ). The trust rating Ti,j is therefore equal to
(γ, δ). This is set initially to (1,1). In order to test a rating a deviation test
is used to estimate if agent k is already considered trustworthy or not. If the
deviation test succeeds s = 1, s = 0 otherwise. After the test the trust rating is
updated with a discount factor v: γ := vγ + s and δ := vδ + (1 − s). Similar to
the first hand observations the reputation ratings have the form Ri,j which has
the parameters (α′, β′), initially set to (1,1). Ri,j is always updated when a first
hand observation is made (Fi,j is updated) and when Rk,j from another agent
is published and accepted. The update of Ri,j due to a new Fi,j functions just
like updating Fi,j so that α′ := uα′ + s and β′ := uβ′ + (1 − s). An inactivity
update, in order to enable time fading just removes the last part of the two
equations: α′ := uα′ and β := uβ′. If agent i receives a first hand observation
Fk,j from agent k about agent j, agent i tries to find out if this information is
correct by taking trust and compatibility into account. Agent i will then check
if agent k reaches the threshold for honest recommendations (defined below).
If it does, it will include Fk,j in Ri,j as follows. Fk,j is modified by a factor w
which is a small positive constant that allows agent i to give the feedback from
agent k a different weight than its own reputation ratings. Fk,j is then added to
Ri,j : Ri,j := Ri,j + wFk,j . If agent k is considered untrustworthy, it will apply
a deviation test. E(Beta(α, β)) is defined as the expectation of the distribution
Beta(α, β). What they do then is to compare the expectations of the distribution
of the tuples from Fk,j and Ri,j .

If the deviation test is positive, agent i will not consider the first hand infor-
mation Fk,j because it is incompatible. Otherwise Fk,j is used to update Ri,j as
if Fk,j would have been considered trustworthy. For the decision making process
all the information from first hand experiences is taken into account which means
that all Ri,j and Ti,j are updated. To make a final decision, the beta distribution
is used once again. This is similar to the method used for the reputation rating.
The first estimation is done for Ri,j = (α′, β′). They consider E(Beta(α′, β′)) for

46 M. Heitz, S. König, and T. Eymann

θ so that normal behavior would satisfy: E(Beta(α′, β′)) < r. Misbehaving would
be indicated when E(Beta(α′, β′)) ≥ r. The same is done for Ti,j = (γ, δ). It is
considered trustworthy for: E(Beta(γ, δ)) < t. In the case of E(Beta(γ, δ)) ≥ t
agent i would consider agent j as untrustworthy.

2.4 Jurca and Faltings: Towards Incentive Compatible Reputation
Management

The reputation mechanism represented by Jurca and Faltings [12] introduces a
mechanism to detect false feedback and additionally a framework of incentives
which makes it rational to report truthfully for rational agents. They do this by
introducing a side payment scheme which is maintained by broker agents. Those
are called R-Agents and they are the only ones who can trade with reputation
values. The following assumptions are made by Jurca et al.:

1. Payments are only conducted by R-Agents. No side payments occur between
any normal agents.

2. All agents behave rationally.
3. There are n agents in the system with ai for i = 1...N .

In this mechanism agents can acquire information on another agent at the
cost of F from an R-Agent. After a transaction between two agents, other than
R-Agents, the agents can sell reputation information for C. Suitable values for
F and C will be estimated below. Agents are only allowed to sell reputation to
an R-Agent about an agent that they have purchased information about before.
The agents buy systematically reputation information before interacting with
another agent in Jurca et al.’s scenario.

In contrast to the reputation mechanisms introduced so far, Jurca et al. use a
single real number representation of the reputation information ri. It can have
the value 0 for defecting and 1 for cooperative behavior. Reputation can be

calculated by ri =
∑ k

j=1 reportj

N . So that the reputation value is computed as
the average of all the reports about that specific agent. The reportj , j = 1...k
represents all the reports on that agent ai.

In order to make the mechanism incentive compatible, the following features
of the model are assumed by the authors:

1. Agents which report truthfully at all times should not lose any money as a
result of an interaction with another agent: E[F] ≤ E[C|truthful report]

2. Agents which do not report truthfully should gradually lose their money as
a result of an interaction with another agent: E[F] ≥ E[C|false report]

R-Agents will pay only for reports which match the next report about the con-
cerned agent. This is done because — as we will see below — it is optimal for
a rational agent to report truthfully because it will be paid at least in 50% of
the cases. This was calculated by considerating of the probabilities of different
behavior schemes:

– agent ai cooperates in two consecutive rounds: p2
i

– agent ai defects in two consecutive rounds: (1 − pi)2

Reputation in Multi Agent Systems and the Incentives to Provide Feedback 47

– agent ai cooperates then defects: pi(1 − pi)
– agent ai defects then cooperates: pi(1 − pi)

This means that the probability of acting in the same way in two consecutive
rounds is: (1 − pi)2 + p2

i <=> 1 − 2pi + 2p2
i which is bound by [0.5,1]. The

probability for a change in behavior in two consecutive rounds is: 2pi(1 − pi)
which is bound by [0,0.5]. Then Jurca et al. assume that other agents report the
truth and that ai will behave in the same way in the next round. Hence, it is
rational for the agent to report truthfully because it is paid with a probability of
not less than 0.5. Those assumptions are slightly different from the ones made
by Buchegger et al. [11], because they introduce a function that estimates a
time span in which the agent believes that the transaction partner acts the same
way over multiple rounds. The assumption that the behavior is the same in
consecutive rounds is needed for the calculation of the payoff by Jurca et al..
Hence, their mechanism is more static. In later works they have eliminated this
assumption and created a more flexible mechanism (see [13–15]).

Agents purchase information about a prospective interaction partner but can
only sell information if they did interact with that agent. Business only takes
place if both agents agree. Hence, the agent can expect a payoff after analyzing
three possible situations:

case 1. When the reputation of ai that the agent purchased from an R-Agent
is too low, it will not interact with that agent and can therefore not sell any
information. The payoff is 0.

case 2. When business has taken place and it submits a report to a R-Agent
but it is considered false because the other agent has changed its behavior
in the next round. The payoff is 0.

case 3. When business is conducted and the other agent behaves accordingly
in the next round, the payoff equals C.

The expected payoff can be computed as: E[payoff] = 0 · Pr(case 1) + 0 ·
Pr(case 2) + C · Pr(case 3)

As stated above agents only interact with other agents if they expect a
profit. This means that the probability that an agent will trust and inter-
act with another agent q is equal to the probability of a positive outcome
Out: q = Prob(Out > 0). Out = 1

2 [(1 − pi) · f(I
2) + pi · f(I)] − I

2 is the business
payoff function when I units have been invested. In this function Out > 0 is
equal to pi > θ if a monotone increasing function is assumed. θ is a constant
that the authors use which depends only on the business payoff function. The
constant is used to define q which equals the probability that pi is greater than θ:
q = Pr(pi > θ). In order to estimate the payoff now, we need the probability
that the agents interact with another. The probabilities for cases 1 and 2 are
given by Jurca et al. but are not considered here to make it simpler because the
payoff would be 0 in those two cases (for explanation see above). The payoff can
be estimated with

Pr(case 3) = q2(1 − 2pj + 2p2
j) (8)

48 M. Heitz, S. König, and T. Eymann

So that the average value of the payoff and therefore the price is

E[payoff] = C ·
∑

Nj = 1q2(1 − 2p + 2p2
j

N
= F (9)

With this function we can compute the average payoff for the seller and the price
for the buyer (F) with the help of the payments made to acquire the reputation
(C).

3 An Analysis of Incentives in Reputation Models

The four introduced reputation mechanism tried to encourage participants to
submit ratings by different methods. This section will compare these incentives
and focus on the differences between them.

In 2.1 we discussed Liu and Issarny’s approach to work with three different
reputation values ORep, RRep and SRep in order to estimate the trustworthiness
of an agent. We have seen that the agents rate their partners due to the reputa-
tion values and divide them into the groups (called states of the recommender)
active truthteller, inactive truthteller, active liar, inactive liar and newcomer.
This represents incentives because if an agent sends a request for information
(second hand recommendation) it is given an answer according to his state.
Therefore, all rational agents will try to become a truthteller which is active in
order to receive the most answers to their requests.

Jøsang and Ismail in 2.2 is introduced in this paper, because it is fairly easy
to implement but still rests on a sound statistical basis. Additionally, the au-
thors present three different discounting methods (reputation discounting, belief
discounting and forgetting) that give a detailed approach how to rate feedback
from other agents. Similar to Liu et al. [9], Jøsang et al. introduce a forgetting
factor which discounts old feedback in order to adapt to behavior changes of
the ratee. In order to estimate the trustworthiness of feedback from an agent
the three factors belief, disbelief and uncertainty are taken into account and are
weighted with the opinion the agent has about the feedback provider and the
target agent. Jøsang et al. add that their model does not provide objectivity be-
cause honesty cannot be enforced with this reputation mechanism which is also
true for Liu et al. but is treated differently because Liu et al. make use of RRep
to enforce honesty in rational agents. The incentives set by Jøsang et al. are
similar to Liu et al. [9] because they both establish a meta-rating reflecting an
indication how truthful the agent reports. Liu et al. call it recommendation rep-
utation (RRep) and Jøsang et al. call it belief. The mechanism does not set any
further incentives than that and has to be modified further to be fully satisfying
for a MAS with rational agents.

We have shown in 2.3 that Buchegger and Boudec also introduce a reputa-
tion rating and a trust rating that estimates how truthful another agent reports.
This meta rating allows different treatment if the other agent asks for feedback
or when their feedback is incorporated for decision purposes. Liu et al. go a step

Reputation in Multi Agent Systems and the Incentives to Provide Feedback 49

further than Buchegger et al. at this point, because they do not automatically
publish recommendations, but evaluate the other agent and send back a recom-
mendation only with a certain probability, according to the state of the asking
agent. In Buchegger’s approach, recommendations are published automatically
and all agents have access. Their incentives are not as clear cut as with the
other authors but a close examination shows that Buchegger uses a very pre-
cise estimation on how honest the provider of information is and can therefore
detect false reports very quickly and refrain from conducting business with the
concerning agent. That makes the stored recommendations (direct and indirect)
more valuable and therefore sets an incentive to behave properly.

Finally in 2.4, we show Jurca and Faltings achieve to incorporate both: elicita-
tion of honest feedback and setting incentives to provide feedback by payments.
The authors introduce R-Agents which are broker agents. They serve as a me-
diator who collect feedback and sell it to other agents. After the transaction
with the agent which the other agent had bought feedback about, it can sell
that information to the R-Agent again. Additionally, the submitted reports are
checked if they are honest or not and only paid for if they appear honest.

Table 1. Summary of Reputation Mechanisms

Liu and Issarny
[9]

Jøsang and Ismail
[10]

Buchegger and
Boudec [11]

Jurca and Falt-
ings [12]

Ratings

Three different
kinds: RRep, SRep
and ORep

Reputation rating
rx

t (from X about
T)

Two kinds: Reputa-
tion rating Ri,j and
Trust rating Ti,j

(from i about j)

Reputation rating

Elicitation
of honest
feedback

Judging feedback
upon trust rating
of the provider
and estimating the
probability of such
behavior with the
beta reputation.

Considering the
opinion about the
provider of infor-
mation in order to
discount the feed-
back accordingly.

Deviation test
checks if the feed-
back is considered
honest.

R-Agents check the
feedback with the
behavior of the con-
cerning agent in the
following round.

Incentives

Rating the agents
and establish-
ing five states of
recommenders;
information is
shared according to
those with different
probabilities favor-
ing active, honest
recommenders →
incentives through
meta-reputation.

No clear incentives. Incentives through
meta reputation
ratings but not
fully implemented
(as done by Liu and
Issarny).

Payments if report
is considered hon-
est.

The table 1 summarizes the main characteristics of each of the reputation
mechanisms. Summarizing, we can state that three main types of incentives
could be identified: (1) The honest evaluator gets more information than the
dishonest evaluator, (2) the influence of each rating bases on the evaluator’s
behavior before or (3) the evaluator is paid for accurate evaluations.

50 M. Heitz, S. König, and T. Eymann

4 Conclusion and Future Work

Each of the four approaches that were presented here stresses a very important
aspect which should be considered in a “perfect” reputation mechanism. From
Liu and Issarny we have to take into account the three ratings. From Jøsang
and Ismail we would incorporate the three different kinds of discounting feed-
back in order to rate feedback precisely according to the trustworthiness of the
recommender and our opinion about the target agent. Buchegger and Boudec
would contribute a factor that allows an estimation of how stable a target agent’s
behavior is. This is important for discounting of feedback and taking behavior
changes into account.

Finally, Jurca and Faltings provide the incentive setting payment mechanism
that rewards submission of honest feedback. By combining the strengths of all
the approaches, one could design a reputation mechanism that elicits feedback
successfully and eliminates untrustworthy behavior through a very precise de-
tection of it.

Further work has been carried out by many involved researchers. Especially the
work of Jurca and Faltings has been improved by going beyond the ideas consid-
ered in this paper leading to more sophisticated incentive frameworks [13–17].

The problems, which still arise in reputation mechanisms are manifold and
cannot be solved by the reputation mechanism alone. Future work should take
the following aspects into account:

Since detection of false feedback is not always accurate, it should be considered
whether liars should be punished or not. However, the system might sometimes
punish even truthful agents e.g. if a trustor experienced a defection but the
trustee has never defect before and does not defect in the consecutive round.
The system will identify the truthful feedback most likely as untrustworthy and
punish the “liar”. Hence, the system would discourage giving feedback because
there is a small probability that even truthful reporting is punished. This case
is especially relevant if the reporting agent is not payed but rated with a trust
rating as in sections 2.1 and 2.3. Another problem in such reputation mechanisms
is connected to the identity of the participants. In an anonymous system we can
never be sure that a participant with a very bad reputation, who exploited the
system by defecting, starts over by re-entering the system with a “fresh identity”.
A further problem that cannot be addressed by the reputation mechanism itself
but must be solved by other institutions is collusion. Agents could try to achieve
a better reputation value by making minimal transactions and rate each other
positively in order to establish a high reputation they can exploit in the following
interactions. One could imagine to weigh the feedback according to the amount
of money transferred within the transaction. Still, collusion can take place and
has to be inhibited by independent institutions.

This work itself should be extended to a reputation incentive framework in
future. Such a framework could help reputation system designers to identify
incentives in dependence of the system’s context. In order to substantiate this
framework, the incentive mechanisms have to be applied in different (simulated)
environments.

Reputation in Multi Agent Systems and the Incentives to Provide Feedback 51

References

1. Dellarocas, C.: Reputation mechanisms. In: Handbook on Economics and Informa-
tion Systems (2006)

2. König, S., Hudert, S., Eymann, T., Paolucci, M.: Towards reputation enhanced
electronic negotiations for service oriented computing. In: Proceedings of the
CEC/EEE 2008, Washington, DC, pp. 285–292 (2008)

3. Artz, D., Gil, Y.: A survey of trust in computer science and the semantic web.
Web Semant. 5(2), 58–71 (2007)

4. Balke, T., König, S., Eymann, T.: A survey on reputation systems for artifcial
societies. University of Bayreuth, Bayreuther Arbeitspapiere zur Wirtschaftsinfor-
matik 46 (October 2009)

5. Josang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decision Support Systems 43(2), 618–644 (2007)

6. Marti, S., Garcia-Molina, H.: Taxonomy of trust: categorizing p2p reputation sys-
tems. Computer Networks 50(4), 472–484 (2006)

7. Resnick, P., Kuwabara, K., Zeckhauser, R., Friedman, E.: Reputation systems.
ACM Commun. 43(12), 45–48 (2000)

8. Sabater, J., Sierra, C.: Review on computational trust and reputation models.
Artif. Intell. Rev. 24(1), 33–60 (2005)

9. Liu, J., Issarny, V.: An incentive compatible reputation mechanism for ubiqui-
tous computing environments. International Journal of Information Security 6(5),
297–311 (2006)

10. Josang, A., Ismail, R.: The beta reputation system. In: Proceedings of the 15th
Bled Electronic Commerce Conference (2002)

11. Buchegger, S., Boudec, J.L.: A robust reputation system for P2P and mobile ad-hoc
networks. In: Proceedings of the Second Workshop on the Economics of Peer-to-
Peer Systems (2004)

12. Jurca, R., Faltings, B.: An incentive compatible reputation mechanism. In: Pro-
ceedings of the IEEE Conference on E-Commerce, pp. 285–292 (2003)

13. Jurca, R.: Obtaining reliable feedback for sanctioning reputation mechanisms.
Journal of Artificial Intelligence Research (JAIR) 29, 391–419 (2007)

14. Jurca, R.: Truthful reputation mechanisms for online systems. PhD, Ecole Poly-
technique Federale de Lausanne (2007)

15. Jurca, R., Faltings, B.: Incentives for expressing opinions in online polls. In: Pro-
cedings of the 9th ACM Conference on Electronic Commerce, pp. 119–128. ACM,
Chicago (2008)

16. Jurca, R., Faltings, B.: Minimum payments that reward honest reputation feed-
back. In: Proceedings of the 7th ACM Conference on Electronic Commerce, pp.
190–199. ACM, New York (2006)

17. Jurca, R., Faltings, B.: Robust Incentive-Compatible, Feedback Payments, pp.
204–218 (2007)

Normative Deliberation in Graded BDI Agents

Natalia Criado, Estefania Argente, and Vicent Botti

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

Camino de Vera s/n. 46022 Valencia (Spain)
{ncriado,eargente,vbotti}@dsic.upv.es

Abstract. Norms have been employed as a coordination mechanism
for Open MAS, but to become effective, they must be internalized by
agents; i.e. these agents must be able to accept norms while maintaining
their autonomy. Nevertheless, traditional BDI agent architectures only
represent beliefs, intentions and desires. In this paper, the multi-context
BDI agent architecture has been extended with a recognition context
and a normative context in order to allow agents to acquire norms from
their environment and consider norms in their decisions.

1 Introduction

Open Multi-agent Systems (MAS) are characterised by a high uncertainty and
limited trust in their performance [1], since they are formed by heterogeneous
and autonomous agents which are situated in a dynamic environment. For these
reasons, Open MAS require mechanisms which guide agent behaviours and con-
trol the system performance. Normative multi-agent systems (NMAS) have been
proposed as a solution to these needs [2]. Norms, to become effective as a coor-
dination mechanism, must be recognised as norms by agents. In addition, agents
must be able to accept norms while maintaining their autonomy [3].

This work has been motivated by the fact that proposals on agent architec-
tures which support normative reasoning ([4,5]) do not consider norms as dy-
namic objects which may be acquired and recognised by agents. On the contrary,
these proposals consider norms as static constraints that are hard-wired on agent
architectures. Thus, agents obey blindly norms since they are not autonomous
for making a decision about norm compliance.

Therefore, there is a need to develop normative autonomous agents capable
of reasoning about norms; i.e. recognising norms, evaluating the effect of norms
and their consequences and taking a decision about norm compliance [6]. These
reasoning capabilities require pragmatic decision making procedures rather than
obeying fixed theories or rules. Traditionally, this complex issue has been ad-
dressed by adapting cognitive theories to the MAS field [7]. For this reason, in
this paper we propose an extension of the BDI agent architecture, in particular
the multi-context graded BDI architecture [8], with recognition and normative
reasoning capabilities in order to allow agents to consider norms in their deci-
sion making process. The fact that mental attitudes of agents are graded will

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 52–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Normative Deliberation in Graded BDI Agents 53

not only make the model semantics richer, but it will also help agents to make
better decisions. In this sense, it allows them to reason in uncertain and dynamic
environments which are controlled by norms.

Along this paper a running example scenario of the management of water in a
basin, named m-Water [9], is employed. The m-Water problem addresses scenar-
ios where there are conflicts over different basin waters, in many cases, caused
by potential or actual water scarcity. This problem is approached by building
an Open MAS that is designed as a regulated environment (i.e. a NMAS) where
autonomous agents are the water users in a closed basin. In particular, our case
study is formed by an irrigator which belongs to an irrigation community. This
community represents an organization which acts on behalf of its members by
defending their rights and interests. However, each community can impose some
norms or restrictions to its members. This case study illustrates how a concrete
irrigator agent makes a decision between his own motivations and the norms
imposed by his irrigation community.

This paper is structured as follows: first the background of the multi-context
BDI proposal is summarised. Section 3 explains our conceptual model of norms.
Next, the proposed BDI architecture is described in Section 4. This proposal has
also been evaluated experimentally in Section 5. Finally, this work is concluded
with a discussion of related works.

2 Background: Multi-context BDI

A multi-context system [10] is defined as a set of interconnected units 〈{ui}i∈I , Δ〉.
Each unit ui ∈ {ui}i∈I is a tuple 〈Li, Ai, Δi〉, where Li, Ai and Δi are the
language, axioms and inference rules defining the logic of each unit, respectively.
Δ is the set of bridge rules between the units; i.e. inference rules whose premises
and conclusions belong to different contexts; e.g. u1 : φ, u2 : ψ ⇒ u3 : θ.

A general BDI agent is defined as a multi-context agent architecture in [8]. It
is mainly formed by (Figure 1 grey units): mental units to characterize beliefs,
intentions and desires; and functional units for planning and communication.

2.1 BDI Contexts

In particular, the BDI architecture presented in [8] brings support to graded
mental propositions. The main idea beyond this work is to employ a weight
to represent the certainty or desirability degree of a mental proposition. Next,
mental contexts are described:

– Belief Context (BC). It is formed by propositions belonging to the BC-Logic
[8]; i.e. logic propositions such as (Bγ, δ) : δ ∈ [0, 1]; where Bγ represents
a belief about proposition γ of an agent, γ ∈ LDL is a dynamic logic [11]
proposition and δ represents the certainty degree associated to this belief.

– Desire Context (DC). It is formed by propositions belonging to the DC-Logic
[8]; i.e. logic propositions such as (D∗γ, δ) : δ ∈ [0, 1]; where D γ represents
a desire about proposition γ ∈ LDL of an agent; δ represents the desirability

54 N. Criado, E. Argente, and V. Botti

degree; ∗ ∈ {+,−} represents positive desires and negative desires, respec-
tively. Thus, degrees of positive or negative desires allow setting different
levels of preference or rejection.

– Intention Context (IC). It is formed by propositions belonging to the IC-
Logic [8]; i.e. logic propositions such as (Iγ, δ) : δ ∈ [0, 1]; where Iγ represents
an intention about proposition γ ∈ LDL of an agent and δ is the certainty
degree assigned to this intention.

Fig. 1. Multi-Context BDI Architecture is formed by the grey contexts and dash lines
(bridge rules). The normative extensions are the white contexts and bold bridge rules.

Functional units have been also defined [8]: the Planner Context (PC) allows
agents to decide the intended set of actions, according to their desires; and the
Communication Context (CC) communicates agents with their environment.

In the m-Water scenario, the irrigator agent represents a farmer who
wants to pick up high quality vegetables. Thus, he has two different irrigation
possibilities: to irrigate all of his cultivation daily or to irrigate only a half of
his cultivation. Logically, he believes that it is more probable to obtain a good
crop if all his land is irrigated:
((B[fullIrrigation]highQuality, 0.75) and (B[halfIrrigation]highQuality, 0.5).
In addition, the irrigator agent beliefs that there is a rather possibility of drought
according to the meteorological conditions, i.e. (B drought, 0.6). He also wants
to obtain high quality vegetables from his plantation: (D+highQuality, 1);
and he does not desire to be fined: (D−payF ine, 0.8). Finally, he has two
different cultivation plans: one which contains the full irrigation action, i.e.
plan(fullIrrigation); and another which performs the action corresponding to
the irrigation of a half of his cultivation, i.e. plan(halfIrrigation).

2.2 Bridge Rules

Several bridge rules have been defined in the existing literature in order to de-
termine different types of BDI agents. Next, only those bridge rules which have
an impact on the normative reasoning process are described.

Normative Deliberation in Graded BDI Agents 55

Deriving Concrete Desires. This bridge rule allows abstract or generic desires
to be concreted into more realistic ones according to the agent beliefs (Figure 1
Rule 1):

DC : (D∗ϕ, δϕ), BD : (B[α]ϕ, δφ) ⇒ DC : (D∗[α]ϕ, fD(δϕ, δφ)) (1)

More concretely, generic agent desires (D∗ϕ, δϕ) derive more realistic desires
(D∗[α]ϕ, fD(δϕ, δφ)); taking into account the existence of actions that allow them
to be reached (B[α]ϕ, δφ). Thus, the preference degree of the concrete desire relies
on the original desirability (δϕ) and the possibility of achieving it by means of
action α (δφ). This is calculated by fD function; if we define it as the product
of these two values we obtain the expected satisfaction or disgust value.

In the case of the irrigator agent, he refines his abstract desires into more
realistic ones according to his beliefs:

DC : (D+ highQuality, 1), BC : (B [fullIrrigation]highQuality, 0.75) ⇒
DC : (D+ [fullIrrigation]highQuality, 0.75)

DC : (D+ highQuality, 1), BC : (B [halfIrrigation]highQuality, 0.5) ⇒
DC : (D+ [halfIrrigation]highQuality, 0.5)

Deriving Agent Intentions From Positive Desires. The set of preferred
formulas which are reachable by some existing plan will derive the intended
formulas of the agent (Figure 1 Rule 2):

DC : (D+[α]ϕ, δ), DC : (D+α, δ+
α), DC : (D−α, δ−

α), PC : plan(Ω), α ∈ Ω,

DC : (D−[α]ψ1, δψ1), ..., DC : (D−[α]ψnδψn), (δ + δ+
α) ≥ (

n∑
k=1

δ
ψk+δ

−
α

)

⇒ (IC : (I[α]ϕ, fI (δ + δ+
α ,

n∑
k=1

δψk
+ δ−

α))

(2)

In particular, those positive desires (D+[α]ϕ, δ) which can be achieved by
an action α belonging to a plan (plan(Ω)) will generate a new intention
(I[α]ϕ, fI(δ + δ+

α ,
∑n

k=1 δψk
+ δ−α)) if the desirability degree of both the ac-

tion and the state (δ + δ+
α) is greater than the sum of the negative effects of

the action (
∑n

k=1 δψk
+ δ−α). Finally, fI is a function that combines both posi-

tive and negative effects of an action; in this case it is defined as: fI(δ+, δ−) =
min(max(0, δ+ − δ−), 1)

In the m-Water scenario, the derived specific desires allow the irrigator agent
to determine which actions will be intended according to the existing plans:

DC : (D+ [fullIrrigation]highQuality, 0.75), PC : plan(fullIrrigation), 0.75 > 0 ⇒
IC : (I[fullIrrigation]highQuality, 0.75)

DC : (D+ [halfIrrigation]highQuality, 0.5), PC : plan(halfIrrigation), 0.5 > 0 ⇒
IC : (I[halfIrrigation]highQuality, 0.5)

Deriving Actions From Intentions. Finally, that intention which has the
maximum degree (I[α]ϕ, δmax) will define the next action to be performed by
the agent (act(α)) (Figure 1 Rule 3):

IC : (I[α]ϕ, δmax) ⇒ CC : act(α) (3)

In the m-Water scenario, the irrigator agent will perform the most intended
action: IC : (I[fullIrrigation]highQuality, 0.75) ⇒ CC : (act(fullIrrigation))

56 N. Criado, E. Argente, and V. Botti

3 Normative Model Proposal

In this section we propose a model of norms for NMAS. This model classifies
norms into two categories: Constitutive and Deontic norms. Constitutive norms
allow giving an abstract meaning to facts, environmental elements, etc. Deontic
norms define a deontic control over an action or a state of affairs. They also
allow defining the enforcing mechanisms in terms of punishments and rewards
carried out by representative agents of the NMAS. Thus, deontic norms define
a practical connection between a regulation and its consequences.

Definition 1 (Normative Context). The set of norms (N) of a NMAS is
defined as: N = NConstitutive ∪ NDeontic

Definition 2 (Constitutive Norm). A constitutive norm nc ∈ NConstitutive

is defined as nc = 〈A, E, α → γ〉 where:

– A, E are wff that determine the norm validity period, i.e. they define the
activation and expiration conditions, respectively;

– α → γ is the norm condition where α represents a concept or set of basic
concepts and γ represents the new abstract concept defined by the norm;

Definition 3 (Deontic Norm). A deontic norm nd ∈ NDeontic is defined as
nd = 〈D, A, E, C, S, R〉 where:

– D ∈ {Obligation, Prohibition};
– A, E are wff that determine the norm validity period;
– C is a logic formula that represents the normative goal or action that must

be carried out in case of obligations, or that must be avoided in case of
prohibition norms.

– S, R are expressions which describe the actions (sanctions S and rewards R)
that will be carried out in case of norm violation or fulfillment, respectively.
They are enforcement mechanisms employed for persuading agents to fulfill
norms.

This model uses a closed world assumption where everything is considered as
permitted by default. Therefore, permissions are not considered in this paper,
since they can be defined as normative operators that invalidate the activation
of an obligation or prohibition.

In the m-Water scenario, the irrigator agent is affected by norms as a con-
sequence of being a member of an irrigator community. In this example the
community forbids agents to irrigate all their cultivation if a drought state has
been declared in this area, so any agent which violates this norm will be sanc-
tioned by paying a fine. Thus, the following deontic norm is defined:

〈Prohibition, drought,−, fullIrrigation, payFine, −〉

Next section illustrates our Normative BDI architecture. It enables the defi-
nition of agents with capabilities for acquiring norms belonging to the pro-
posed normative model and mechanisms for considering norms in their reasoning
processes.

Normative Deliberation in Graded BDI Agents 57

4 Normative BDI Architecture

Taking as a reference the graded BDI agent architecture (see Section 2), our
proposal consists in extending it by adding new units and bridge rules in order
to allow agents to make decisions with norms.

The work described in [12] analyses the psychological architecture subserving
norms, among other contributions. This architecture is formed by two closely
linked innate mechanisms: one responsible for norm acquisition, which is re-
sponsible for identifying norm implicating behaviour and inferring the content
of that norm; and the other in charge of norm implementation, which maintains
a database of norms and generates motivations to comply with those norms.
Thus, the norm acceptance problem deals with: norm recognition and norm de-
cision [3]. In this sense, norms are not previously implemented on agents’ minds,
but agents are able to acquire new norms and deliberate about norm compli-
ance autonomously. This fact allows agent societies to generate and acquire new
norms in response to changes in the dynamic environment. Accordingly, our pro-
posal consists in extending the general BDI multi-context agent architecture by
adding two functional contexts (Figure 1, white units): the Recognition Context
(RC), which is responsible for the norm identification process; and the Normative
Context (NC), which allows agents to consider norms in their decision making
processes. In this sense, norms affect agents in two manners: i) firstly, when a
norm is recognised and accepted then it is considered in order to define new
plans; and ii) when accepted norms are active then their instances are employed
for selecting the most suitable plan that complies with norms. This paper tackles
with this last effect of norms.

4.1 Recognition Context (RC)

Basically, the norm decision process starts when the RC derives a new norm
through analysing its environment. The RC context receives the environmental
facts, both observed and communicated, and identifies the set of norms which
control the agent environment. As argued in [5], the inherent dynamical and
uncertain features of open systems makes mandatory for agents to be capable
of recognising norms autonomously. The definition of this module is beyond the
scope of this paper. Thus, for this paper it will be considered as a black box
which receives cues for detecting norms as input and generates norms as output.

This context is formed by expressions which are defined as (RC α, δ); where α
is a first order formula which represents a norm belonging to our normative model
(described in the previous section). On the other hand, δ ∈ [0, 1] is the certainty
degree ascribed to the recognised norm. These recognised abstract norms are
translated into a set of inference rules included into the NC.

In the m-Water scenario, once the irrigator becomes a member of the com-
munity, he is informed by a representative about norms which affect him. Thus,
the agent assigns the maximum certainty degree to the norm recognition:

(RC 〈Prohibition, drought,−, fullIrrigation, payFine, −〉, 1)

58 N. Criado, E. Argente, and V. Botti

4.2 Normative Context (NC)

In our approach norms are not static constraints implemented on agents. On
the contrary, agents are able to acquire and accept norms dynamically in an
autonomous way. Thus, performance of the NC is: i) mental contexts inject
formulas inside the NC; ii) the NC carries out an inference process in order to
reason about norms considering the current mental state; and iii) BDI units are
modified according to the new mental propositions derived from norms.

The NC is formed by expressions like �γ; where γ is a first-order logic formula,
an inference rule, which relates mental attitudes of an agent. The expression �γ
means that γ is embedded in the normative context as a term; i.e. modal logic
expressions are modelled as first order theories. γ corresponds to a translated
norm from the RC.

NC logic consists of the axiom schema K, closure under implication, together
with the consistency axiom. Therefore, contradictory norms are allowed; i.e. it
is possible to define �γ∧�¬γ. This fact is interesting for our work since agents
are usually controlled by conflicting norms addressed at the different roles played
by the agent or there may be a conflict among agent goals and norms. However,
contradictory predicates such as �γ∧¬�γ are not allowed, i.e. expressions that
claim that certain norm exists and not exists are not allowed.

4.3 Normative Bridge Rules

Updating the RC Rule. Agent observations and communications which it
perceives from its environment (input(β)) are included into the RC as a new
term or theory (�input(β)) (see Figure 1 Rule 4):

CC : input(β) ⇒ RC : �input(β)� (4)

Updating the NC Rules. Both agent desires and beliefs (γ) are included into
the normative context as first order formulas �γ in order to determine when a
norm is active (Figure 1 Rules 5 and 6):

BC : γ ⇒ NC : �γ� (5)

DC : γ ⇒ NC : �γ� (6)

Norm Transformation Rule. Inside the recognition unit new norms are ac-
quired. Those abstract recognised norms (RC α, δα) are transformed into an
inference rule (ϕ → ψ) (see Figure 1 Rule 7). The definition of this inference
rule depends on the concrete type of norm which is being translated. Next, bridge
rules for translating each type of norm are described:

– Constitutive Norm Transformation Rule:

RC : (RC 〈count − as, A, E, α → γ〉, δnr) ⇒
NC : �(B A, δA) ∧ (B¬E, δE) ∧ (Φ α, δα) → (Φ γ, f(δα, factivation(δA, δE , δnr)))�

where Φ ∈ {B, D+, D−}

Normative Deliberation in Graded BDI Agents 59

If an agent considers that the norm is currently active ((B A, δA) ∧
(B¬E, δE)) and the basic fact α, affected by the constitutive norm, is an
agent belief or desire (Φα, δα) then a new belief or desire will be inferred cor-
responding to the new abstract fact, i.e. (Φγ, f(δα, factivation(δA, δE , δnr)))
where factivation is a function that combines the belief degrees related to the
norm conditions (δA and δE) and the certainty degree of the norm (δnr). The
certainty degree, which is related to the norm activation, together with the
certainty or desirability degree assigned to the basic fact (δα) are employed
by the function f in order to assign a degree to the new mental proposi-
tion γ. The concrete definition of both factivation and f functions is problem
dependent and beyond the scope of this paper.

– Deontic Norm Transformation Rule: a characteristic feature of norm inter-
nalization is that norms become part of the goals of the agent. In this sense,
the process of norm internalization has been defined in [7] as a dynamic
relation between the norms and desires. Accordingly, the bridge rule for
transforming deontic norms is defined as follows:

RC : (RC 〈D, A, E, C, S, R〉, δnr) ⇒
NC : �(B A, δA) ∧ (B¬E, δE) ∧ (D∗C, δC) ∧ (D−S, δS) ∧ (D+R, δR) →

(D∗C, f(fcompliance(δC , δS , δR), factivation(δA, δE , δnr)))�

Basically, a deontic norm is translated by this bridge rule into an inference
rule which adds a new desire (D∗C) if the norm is active according to the
current state. ∗ ∈ {+,−} is the sign ascribed to the new desire inferred from
the norm. In case of obligation norms a positive desire of achieving the norm
condition is inferred. On the contrary, a prohibition is transformed into an in-
ference rule which asserts a negative desire if the norm is active. The degree of
the new desire is defined as f(fcompliance(δC , δS , δR), factivation(δA, δE , δnr))
where f is a function that combines the certainty degrees assigned to norm
activation (factivation) and the desirability of norm compliance assigned to
the norm compliance function (fcompliance). In this case, fcompliance takes as
input parameters the desirability of the norm condition (δC) and the degrees
assigned by the agent to the sanction (D−S, δS) and reward (D+R, δR). This
function can implement different strategies for norm compliance, such as ego-
ism, fearful and so on. However, in [13] the definition of different strategies
for norm compliance is illustrated.
In the m-Water case-study, once the norm has been recognised by the RC it
is transformed into an inference rule inside the NC (Bridge Rule 7):

RC : (RC 〈Prohibition, drought,−, fullIrrigation, payFine, −〉, 1) ⇒
NC : �(B drought, 0.6) ∧ (D−payFine, 0.8) → (D−fullIrrigation, 0.48)�

On the one hand, the norm activation function takes as input the certainty
value assigned to the occurrence of the norm activation condition (0.6) and
the confidence value assigned to the norm recognition (1). In this example,
factivation has been implemented as the product of its not null parameters:

factivation(δA, δE , δnr) = δA × δE × δnr = 0.6

60 N. Criado, E. Argente, and V. Botti

On the other hand, the fcompliance function only considers the undesirability
of the sanction (0.8) since there is not any desire related to the norm condi-
tion and no reward has been defined by the norm. fcompliance has been also
defined here as the product of its not null parameters:

fcompliance(δC , δS, δR) = δC × δS × δR = 0.8

Finally, these two values are combined by f function which has been im-
plemented as the product of both values. Thus, inside the NC a new desire
derived from the prohibition norm is inferred:

NC : �(D−fullIrrigation, 0.48)�

Updating Mental Context Rules. After performing the inference process
for creating new beliefs (�(B γ, δ)) and desires (�(D∗ γ, δ)) derived from norm
application, the normative context must update mental contexts (Figure 1 Rules
8 and 9):

NC : �(B γ, δ)�, δ > δthres ⇒ B : (B γ, δ) (7)

NC : �(D∗ γ, δ)�, δ > δthres ⇒ D : (D∗γ, δ) (8)

In order to avoid the propagation of insignificant terms, only those new terms
whose degree exceeds δthres will be transformed into mental objects. The defini-
tion of this threshold is also problem dependent.

In the m-Water scenario, the inferred normative desire is inserted into the DC
(Bridge Rule 9), being δthreshold = 0.4:

NC : �(D−fullIrrigation, 0.48)� ∧ 0.48 > δthres ⇒ DC : (D−fullIrrigation, 0.48)

Normative Decision Making. In our case-study, the IC is updated through
Bridge Rule 2 creating a new intention whose intentionality has been reduced
(0.75 − 0.48) since the action has a negative desire:

DC : (D+ [fullIrrigation]highQuality, 0.75), DC : (D−fullIrrigation, 0.48),
PC : plan(fullIrrigation), 0.75 > 0.48 ⇒ IC : (I[fullIrrigation]highQuality, 0.27)

Finally, the intention update implies the modification of the agent behaviour.
More concretely, the agent has two different intentions:
((I[halfIrrigation]highQuality, 0.6) and (I[fullIrrigation]highQuality, 0.27)).
According to Bridge Rule 3, the most intended action will be carried out. Thus,
the agent fulfils the norms imposed by its community and changes its irrigation
policy. As a result, he has to irrigate half of his land so as to avoid being fined.

To provide an evaluation of this proposal, the next section details a set of
experimentations which have been carried out.

5 Case Study Execution

In order to provide an evaluation of the proposal a set of simulations of the case-
study have been carried out. These simulations consist of a scenario formed by a
set of irrigator agents (A) which are in a drought situation. More concretely, each

Normative Deliberation in Graded BDI Agents 61

agent needs a fixed Daily N eed of W ater (DNW : A → N) along its Cultivation
Period (CP : A → N). The total amount of Available W ater (AW), the water
needs and cultivation periods are assigned to agents randomly in each simulation.
In each iteration (i.e. each day), agents should decide their irrigation policy; i.e.
they must choose to irrigate all their cultivation or a half of it, according to the
amount of water available in the community.

For each simulation, the average satisfaction of the irrigator agents has been
measured with respect to the seriousness of the drought. Individual Daily
Satisfaction of an agent (IDS : A × N → [−1, 1]) is calculated as the rela-
tionship among the amount of water employed for I rrigating (I : A × N → N)
this day and the required amount of water. However, the situations in which
there is not water for irrigating are penalised by assigning a value of -1 to in-
dividual satisfaction. The seriousness (Se) of the drought is calculated as one
minus the quotient among the available amount of water and the total amount of
water which is required. Finally, the average satisfaction (S) of agents belonging
to the irrigation community depends on the individual satisfactions of agents,
their cultivation periods and the total amount of available water.

IDS(a, d) =

⎧⎨
⎩

undefined if d > CP (a)
−1 if I(a, d) = 0

I(a,d)
DNW (a) otherwise

Se = 1 − AW∑
a∈A

DNW (a) × CP (a)

S =

∑
a∈A

CP (a)∑
d=1

IDS(a, d)

CP (a)
AW

In each experimentation, irrigator communities are formed by agents which
belong to only one of these three categories: i) classic BDI agents, which are
non-normative and they always irrigate all their cultivation if there is enough
water; ii) normative agents, which always irrigate a half of their plantation since
there is a drought situation; and iii) graded normative agents which consider how
restrictive the situation is; i.e. they decide to irrigate a half of their cultivation
if there is a serious drought (the amount of required water is more than twice
the available amount).

Figure 2 shows the results obtained in the experimentations, comparing the se-
riousness of the drought situation (Se) and the average satisfaction (S) of agents
belonging to the irrigation community. In communities formed by non-normative
agents there is not an equal employment of resources (i.e. they try to irrigate all
their land if there is enough water), so the satisfaction level decreases linearly
as the seriousness increases. In addition, in those societies formed by normative
agents which do not represent the drought state as a graded proposition there
is an underutilization of resources when the situation is not very critical. They
obey norms automatically and, as a consequence, they do never irrigate all their
cultivation even if there is enough water. Finally, societies formed by graded
normative agents obtain better satisfaction results in general, since agents are
able to apply restriction policies only when the situation is highly critical. In
light drought situations, in which there is a 20% of water shortage, an egoist

62 N. Criado, E. Argente, and V. Botti

Fig. 2. Average agent satisfaction S (vertical axis) with respect to the seriousness of
the drought situation Se (horizontal axis)

employment of resources (i.e. the non-normative agent behaviour) can achieve
a better level of satisfaction for the whole society. However, when the water
shortage exceeds the 20% societies formed by graded BDI agents achieve better
satisfaction levels.

6 Discussion

Regarding recent works on normative reasoning, the BOID architecture [4] repre-
sents obligations as mental attributes and analyses the relationship and influence
of such obligations on agent believes, desires and intentions. This approach is
very similar to the work proposed here. However, our approach overlaps the main
drawbacks of the BOID proposal in different ways: i) our normative model does
not only consider obligation norms but it gives support to constitutive and de-
ontic norms; ii) it employs graded BDI logics for representing mental attitudes,
which allows agents to face with uncertain and conflicting mental states; and
iii) it considers norms as dynamic entities that agents should acquire from their
environment. In relation with this last feature, the EMIL proposal [5], which has
developed a framework for autonomous norm recognition, might be employed
for complementing the RC component of our normative BDI architecture. Thus,
agents would be able to acquire new norms by observing the behaviour of other
agents which are situated in their environments. The main advantage of our pro-
posal with respect to EMIL is that our agent architecture allows agents to decide
based on their own motivations and interests whether to comply the norms or
not. On the contrary, EMIL agents obey all recognised norms automatically by
deriving new normative goals.

In this paper, the multi-context BDI agent architecture is extended with a
recognition and a normative context in order to allow agents to acquire new
norms from their environment and consider them in their decision making pro-
cess. The fact that mental attitudes of agents are quantified allows them to reason
in open environments which are controlled by norms. In this sense, graded modal-
ities allow agents to represent uncertain knowledge about the current state of the
world. Moreover, graded intentions and desires enable agents to make decisions

Normative Deliberation in Graded BDI Agents 63

according to their satisfaction criterion. This is specially interesting when de-
signing normative agents whose behaviour can be affected by conflicting norms.
Thus, the desirability degrees of desires and intentions allow agents to decide be-
tween norm violation or fulfilment according to their priorities. As future work
we plan to work on carrying out an experimental analysis of different norm com-
pliance strategies. Finally, we will continue by analysing the effect of norms on
the definition of feasible plans for the achievement of the agent’s goals.

Acknowledgments

This work was partially supported by the Spanish government under grants
CONSOLIDER-INGENIO 2010 CSD2007-00022, TIN2009-13839-C03-01 and
TIN2008-04446 and by the FPU grant AP-2007-01256 awarded to N. Criado.

References

1. Artikis, A., Pitt, J.: A formal model of open agent societies. In: AGENTS, pp.
192–193. ACM, New York (2001)

2. Boella, G., Torre, L., Verhagen, H.: Introduction to the special issue on normative
multiagent systems. Auton. Agents Multi-Agent Syst. 17(1), 1–10 (2008)

3. Conte, R., Castelfranchi, C., Dignum, F.: Autonomous norm acceptance. In: Rao,
A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp.
99–112. Springer, Heidelberg (1999)

4. Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., van der Torre, L.: The boid archi-
tecture - conflicts between beliefs, obligations, intentions and desires. In: AAMAS,
pp. 9–16. ACM Press, New York (2001)

5. Andrighetto, G., Campenńı, M., Cecconi, F., Conte, R.: How agents find out norms:
A simulation based model of norm innovation. In: NORMAS, pp. 16–30 (2008)

6. Castelfranchi, C.: Prescribed mental attitudes in goal-adoption and norm-adoption.
Artif. Intell. Law 7(1), 37–50 (1999)

7. Conte, R., Andrighetto, G., Campenǹı, M.: On norm internalization. a position
paper. In: EUMAS, pp. 1–13 (2010)

8. Casali, A., Godo, L., Sierra, C.: A logical framework to represent and reason about
graded preferences and intentions. In: K.R. (ed.) KR, pp. 27–37. AAAI Press,
Menlo Park (2008)

9. Botti, V., Garrido, A., Giret, A., Noriega, P.: Managing water demand as a regu-
lated open mas. In: COIN, pp. 1–10 (2009)

10. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do
without modal logics. Artificial Intelligence 65(1), 29–70 (1994)

11. Meyer, J.: Dynamic logic for reasoning about actions and agents. In: Logic-Based
Artificial Intelligence, pp. 281–311. Kluwer Academic Publishers, Dordrecht (2000)

12. Sripada, C., Stich, S.: A framework for the psychology of norms. The Innate Mind:
Culture and Cognition, 280–301 (2006)

13. Criado, N., Argente, E., Botti, V.: Rational Strategies for Autonomous Norm Adop-
tion. In: COIN, pp. 9–16 (2010)

Inducing Desirable Behaviour through an Incentives
Infrastructure�

Roberto Centeno, Holger Billhardt, and Sascha Ossowski

Centre for Intelligent Information Technologies (CETINIA)
University Rey Juan Carlos - Spain

{roberto.centeno,holger.billhardt,sascha.ossowski}@urjc.es

Abstract. In open multiagent systems, where agents may join/leave the system
at runtime, participants can be heterogeneous, self-interested and may have been
built with different architectures and languages. Therefore, in such a type of sys-
tems, we cannot assure that agents populating them will behave according to the
objectives of the system. To address this problem, organisational abstractions,
such as roles and norms, have been proposed as a promising solution. Norms are
often coupled with penalties and rewards to deter agents from violating the rules
of the system. But, what happens if a current population of agents does not care
about these penalties/rewards. To deal with this problem, we propose an incen-
tives infrastructure that allows to estimate agents’ preferences, and can modify
the consequences of actions in a way that agents have incentives to act in a cer-
tain manner. Employing this infrastructure, a desirable behaviour can be induced
in the agents to fulfil the preferences of the system.

1 Introduction

A particular type of MultiAgent Systems (MAS from now on) are Open MAS. These
systems are usually designed from a global perspective and with a general purpose
in mind. However, at design time, the agents that will populate the system might be
unknown, heterogeneous, self-interested and the number of them may vary dynamically,
due to they can join/leave the system at runtime.

With this in mind, designers cannot assume agents will behave according to the pref-
erences of the system. In order to address this problem, organisational structures have
been proposed as a promising solution. In these approaches, authors use organisational
abstractions such as roles, norms, etc. [1–3] so as to regulate the activity of the partic-
ipants. Therefore, the normative systems emerge as a key concept for regulating MAS
[1–3]. However, norms, from the point of view of agents, are just information that tell
them what actions they are (not) allowed to perform in the system. Thus, in order to be
effective, norms should be coupled with detection mechanisms – to detect when they
are not obeyed – and with penalties/rewards – to be applied when they are violated. In
most cases, systems, as well as the norms and their penalties/rewards, are designed be-
fore knowing the agents that will populate them. In this sense, the question arises what

� The present work has been partially funded by the Spanish Ministry of Education and Science
under projects TIN2006-14630-C03-02 (FPI grants program) and “Agreement Technologies”
(CONSOLIDER CSD2007-0022, INGENIO 2010).

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 64–75, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Inducing Desirable Behaviour through an Incentives Infrastructure 65

happens if a current population of agents is not sensitive to these penalties/rewards.
Then, norms can not be effectively enforced.

To deal with this problem, hard norms can be defined, which agents are not able to
violate because the system relies on mechanisms to avoid such violations. For instance,
in Electronic Institutions [1], by means of their infrastructure (Ameli [4]), agents are
only able to perform actions which are acceptable in the current state. Nevertheless, in
some domains the use of this kind of norms is not feasible due to their complexity and
size, it could be impossible to take into account all possible exceptions. Therefore, it
is often easier and more efficient to define norms based on penalties/rewards, instead
of using hard norms. However, as we said before, these penalties/rewards should be
effective for the current population of the system.

Addressing this situation, we propose an incentive mechanism, following the work
presented by Centeno et al. in [5], that allows to estimate agents’ preferences, and can
modify the consequences of actions in a way that agents have incentives to act in a
certain manner. Employing this infrastructure, a desirable behaviour can be induced in
agents to fulfil the preferences of the system.

The rest of the paper is organised as follows, Section 2 provides a formalisation of the
model and describes the problem we address. In Section 3 an incentives infrastructure
is presented by describing its components. Section 4 shows the experimental results;
finally Section 5 puts forward some related work and presents conclusions and some
lines of future work.

2 The Model

In our work we assume that agents are rational utility maximizers. Following the work
presented by Centeno et al. in [5], a rational agent is modelled as a tuple 〈S, O, g,
per, U , t, s0〉; where S is the set of internal states of the agent; O is the observation
space; g : O × S → S is the agent’s state transition function; per : X → O is
the perception function; U : S → R is the utility function that assigns a value to
each possible internal state; and t the agent’s decision function such that t : S →
A follows the principle of maximising the expected utility (MEU). That is, t(s) =
argmaxa∈Aeu(a, s) = argmaxa∈A

∑
s′∈S U(s′) · Ps(s′|s, a), where eu(a, s) is the

expected utility of performing the action a in the state s; U(s′) is the utility of the
state s′ estimated by the agent; and Ps(s′|s, a) is the agents’ estimate, at state s, of
the probability that state s′ will occur when executing action a in state s. The utility
function of an agent is defined over the possible internal states, so, it is local to the
agent and, thus, has to be defined with respect to what the agent observes from its
environment. Therefore, the utility function is a means to solve the decision problem,
from the agents own perspective, rather than as a measure of its performance in solving
some given task as seen from the outside.

Agents are embedded in a MAS that specifies the environment in which they per-
form. We model a MAS as a tuple 〈Ag, A, X , Φ, ϕ , U , x0〉; where Ag is a set of agents,
|Ag| denotes the number of agents; A is a possibly infinite action space that includes all
possible actions that can be performed in the system; X is the environmental state space;
Φ : X ×A|Ag| ×X → [0. . 1] is the MAS transition probability distribution, describing

66 R. Centeno, H. Billhardt, and S. Ossowski

how the environment evolves as a result of agents’ actions; ϕ : Ag ×X × A → {0, 1}
is the agents’ capability function describing the actions agents are able to perform in a
given state of the environment (physical restrictions); U : X → R is the global utility
function of the system that assigns a value to each environmental state; and, finally,
x0 ∈ X stands for the initial state.

MAS are usually designed with a general purpose in mind – the global objective of
the system. In this model, such an objective is represented by means of a set of pref-
erences which are captured through the utility function U . From the point of view of
the designer, the problem consists of how to optimize the global utility of the system
assuming that agents will try to optimize their own individual utilities. In [5] propose to
introduce organisational mechanisms in the system, with the aim of influencing the be-
haviour of agents. In particular, we focus on incentive mechanisms that change the con-
sequences agents’ actions may have. The rationale behind this approach is that changing
the consequences of actions may produce variations in the expected utility of agents,
what, in fact, can be seen as the introduction of penalties or rewards. Accordingly, incen-
tive mechanisms are formalised as a function Υinc : X ′ → [X ×A|Ag| ×X → [0. . 1]]
that changes the consequences of actions (i.e., the transition probability distribution Φ),
taking into account the partial view the mechanism has about the environment (X ′).

Based on this model, we make the following assumptions:

Assumption 1. The action space in the system is finite.

Assumption 2. Agents are utility maximisers. The utility functions of both, the global
system and the agents, capture the utility at a long term, for instance by Bellman’s
Principle of Optimality [6]. That is, agents are able to calculate how good/bad is an
action and they always choose the action that maximises their utility in the next state.

Assumption 3. The environment of a system can be discretized by a finite set of at-
tributes: X = {X1, X2, . . . , Xn}. An environmental state xi ∈ X can be modelled as
a set of tuples xi,j = 〈attribute, value〉 that assigns a value to each attribute.

Assumption 4. As consequence of assumption 3, the utility of an environmental state
is the output of a multi-attribute utility function [7].

Assumption 5. The attributes are additively independent. That is, the utility function

of the system can be expressed as: U(xi) =
n∑

j=1

wj · ui,j where ui,j is the utility of the

attribute xi,j and wj is the weight of attribute Xj in the global utility function.

Assumption 6. All the participants in the system share the same ontology. This means
that from the system level and from the perspective of the agents attributes refer to the
same concepts. For example, the car agent ai owns would be denoted in the same way
from the agents and from the system as car agentai .

Following the model and taking into account assumption 3, changes in the MAS tran-
sition probability distribution (Φ) can be produced by changes in the probabilities of
transiting to environmental states in which some of the attributes have been modified.
Also, the agents’ perception functions per become functions that given an environmen-
tal state – a set of attributes –, creates an observation consisting of a subset of that

Inducing Desirable Behaviour through an Incentives Infrastructure 67

attributes. Similarly, an incentive mechanism Υinc modifies the system transition prob-
ability distribution taking into account the partial view the mechanism has about the
system: the subset of attributes the mechanism is able to perceive.

2.1 The Problem

As we have said previously, an incentive mechanism is defined as a function Υinc that
given a partial view of the system – a subset of attributes –, modifies the consequences
of actions – the system transition probability distribution. So, the problem of designing
an incentive mechanism boils down to address the following issues:

1. Deciding when the incentive mechanism should change the consequences of an
action. In the model, this means which values of its the partial view of the world
X ′ will fire the mechanism.

2. Selecting the action(s) whose consequences should be modified by the mechanism,
that is, which actions in A should be incentivized/punished.

3. Deciding which agent(s) will be affected by the incentive.
4. Deciding the modification the mechanism should perform in order to influence the

behaviour of an agent. In our model this corresponds to the environmental states
that may be reached as consequences of actions in the transition probability distri-
bution Φ.

Summarising, the problem of designing an incentive mechanism requires to learn which
attributes should be modified, so as to make the consequences of a particular action
more or less attractive for an agent. This includes the estimation of agents’ preferences,
as well as, to decide how the consequences of an action should be changed in order to
incentivize it.

3 Incentives Infrastructure

The objective of an incentive mechanism is to induce agents to perform an action(s),
that maximises the utility of the system, by modifying the consequences of such ac-
tions. Since agents are autonomous and independent entities, we cannot assume the
system will know agents’ preferences. Thus, the objective of the incentive mechanism
is twofold: i) discovering agents’ preferences; and ii) selecting the appropriate incentive
to induce agents to behave in a certain manner. With this objective in mind, we propose
an incentives infrastructure able to deal with those issues.

Similar to the use of governor agents in Electronic Institutions [4], we propose an in-
frastructure where interactions between external agents and the system are mediated by
institutional agents called incentivators. Each external agent has assigned an incentiva-
tor and all actions selected by the agents will be performed in the system through their
incentivators. Incentivator agents are in charge of both, discovering the preferences of
their associated external agent, and modifying the consequences of certain actions with
the aim to promote desired behaviour. Figure 1 shows the proposed architecture of both
the infrastructure and an incentivator.

68 R. Centeno, H. Billhardt, and S. Ossowski

MAS

Incentivators Layer

Incentivators' Communication Layer

Inc₁ Inc₂ Inc₃ Incn

Ag₁ Ag₂ Ag₃ Agn

Agent

 Incentivator
Action

Selector

Attribute
Selector

Incentive
Generator

Informative
Mechanism

Monitoring
Module

action

information
about

consequences
(incentive)

ω
Value

Selector

Fig. 1. Incentives Infrastructure and Incentivators architecture

An incentivator is responsible for an external agent by using the following modules:

– Action Selector: this module has the objective of selecting the action that, if it would
be performed by the agent in the current state, would be the best action for the
system (e.g., regarding the systems global utility function).

– Attribute and Value Selector: these modules are in charge of determining the next
incentive. That is, they decide which attribute will be modified and the new value
of this attribute, as consequence of a particular action.

– Incentive Generator: this module receives a modification of an attribute from the
attribute and value selector modules and a candidate action for modifying its con-
sequences in the current environmental state. Taking into account this information
it should decide if the proposed modification, applied as a consequence of the se-
lected action, is still beneficial1 for the system.

– Monitoring Module: it observes the actual activity of the agent and tends to model
the agent’s preferences.

– Informative Mechanism: the incentivator provides information to the agent about
the potential consequences of its actions (e.g. the incentives associated to an action).

3.1 Discovering Agent’s Preferences

An incentivator has to know or at least has to estimate an agent’s preferences in order
to be able to incentivize certain actions. Here we assume that agents may have different
and a priori unknown preferences.

A possible approach for identifying agents’ preferences is either to ask agents a set of
questions or to give them a questionnaire asking directly about their preferences. Taking
into account the answers given, their utility functions are estimated [8]. However, this
approach might be difficult to apply in an open multiagent system where agents are
autonomous and the system is not able to impose any actions.

We propose a mechanism that learns an agent’s preferences from monitoring its be-
haviour in response to given incentives.

An incentivator is endowed with a structure where an agent’s preferences are esti-
mated. More formally, we define a preferences vector as: ωagi = [ω1, . . . , ωn], where:

– n is the number of attributes in the system, such that it corresponds with the at-
tributes that compounds an environmental state;

1 With beneficial we mean that the system improves its utility with regard to the current state.

Inducing Desirable Behaviour through an Incentives Infrastructure 69

– ωj is the weight agent agi has estimated on the utility of attribute Xj ; we assume
n∑

j=1

ωj = 1;

– ωagi is the estimated preferences vector for agent agi.

For instance a vector ωag1 = [0.1, 0.2, 0.7] means that the environmental state is com-
posed of three attributes and that agent ag1 is interested 0.1 in the attribute X1, 0.2 in
the attribute X2 and 0.7 in the X3.

The task of the incentivator is to estimate the preferences vector of its assigned exter-
nal agent. In order to do that, we use Q-learning with immediate rewards and ε-greedy
action selection [9]. In the scope of this learning method, the action space Zi of the
incentivator for agent agi is composed of the attributes it can modify as consequence
of its action. More formally: Zi ⊆ {X1, . . . , Xn}, where Xj are the attributes that
compose an environmental state.

The idea behind this approach is that the incentivator estimates the preferences of an
agent by modifying an attribute as consequence of an action and observing if the agent
is induced to perform such an action. Thus, when an incentivator takes the action zj ,
that means to modify the attribute Xj , during the learning process, it receives a reward
that rates that action, and it updates its action-value function estimation as follows:

Qt+1(zj) = Qt(zj) + α · [Rt(zj) −Qt(zj)] (1)

where α is the learning rate and Rt(zj) is the reward. As reward the incentivator focuses
on how the agent reacts to the modification proposed. It rates the action positively when
the agent performs the action the incentivator wanted to, and negatively in other case:

Rt(zj) =
{

+1 if agent performed the action
-1 i.o.c.

(2)

In order to discover new attributes in which the agent could be interested in, incenti-
vators select a random attribute modification with small probability ε, and exploit the
attribute with a the highest Q-value, the attribute in which the agent is most interested
in (greedy action), with probability (1 − ε).

The next step in the learning process is to learn the most appropriate value of a
selected attribute, in order to incentivize the agent. This task is carried out by the Value
Selector Module. Similarly to the attribute selection process, this task is developed by
using Q-learning with immediate rewards and ε-greedy action selection. In this case,
the action space Yi of the value selector module is composed of the different values
the attribute proposed by the attribute selector may take. Formally, Yi = {valuej ∈[
valuemin

Xi
, valuemax

Xi

]}, where valuej stands for the set of different values the attribute
Xi may take. The update and reward functions are the same as before (formulas 1 and
2). So, observing how the agent reacts to the new consequences the incentivator is able
to estimate the attributes and their appropriate values that affect the utility of an agent.
Obviously, the incentivator can only modify those attributes it is capable and has enough
permission to change.

Summarising, as a result of the tasks carried out by those modules, a modification of
an attribute of the environmental state is proposed. Formally, x∗

i,j = 〈attribute, value〉,
where attribute is selected by the attribute selector, and value by the value selector.
The next step is to select the action to incentivize.

70 R. Centeno, H. Billhardt, and S. Ossowski

3.2 Selecting the Action to Incentivize

At the same time that an incentivator is selecting the next incentive, it has to select
the action to incentivize. This task is carried out by the Action Selector. This module
follows an intuitive approach, trying to induce the action that gives the highest utility
for the system. The incentivator, on behalf of the system, wants the agent to perform
the action that would lead to the state with the best utility from a system perspective.

Therefore, what the incentivator has to do is to estimate the result of each possible
action the agent is able to perform, and calculate the utility of the system in each result-
ing state. The simulation of the result of an action is domain-dependent, so it depends
on the particular system we are dealing with. Note that in the current work we focus on
how to induce a desirable behaviour in an agent. For this reason, when the incentivator
estimates the result of an action performed by its agent, it will not take into account
possible conflicts among other actions performed by other agents in the same state.

The domain-dependent algorithm executed by the action selector module returns a
list of actions ranked by an estimation over the utility the system would get in case the
agent performs each possible action. Formally, it is represented by �agi

xj
= 〈a1, . . . , an〉

such that eu(−−−−−−→xj , agi, a1) ≥ . . . ≥ eu(−−−−−−→xj, agi, an), where:

– �agi
xj

stands for the list of actions agent agi is able to perform in the environmental
state xj , sorted by the expected utility of the system;

– eu(−−−−−−→xj , agi, ak) is the expected utility of the system in the state reached as conse-
quence of the action ak, performed by the agent agi, in the state xj .

As soon as this list is calculated, and the incentive (x∗
i,j) is proposed, both parameters

are introduced in the incentive generator in order to decide whether this combination is
still beneficial for the system.

3.3 Testing the Proposed Incentive

When a new incentive is proposed it could be necessary to assure that such an incentive
is not damaging the objective of the system. That is, the changes in the environment
proposed as an incentive could produce undesirable states for the global system. To
evaluate whether or not the new consequences of the action are still the best option
(not only for the agent but also for the system) is the task of the Incentive Generator
Module. The result of this process may be the rejection of the proposed incentive (x∗

i,j)
if the result would be even worse for the system than if the agent performs the worst
action (from the point of view of the system).

The decision is taken by the algorithm 1. Summarizing, it focuses on finding an
action to incentivize, such that if the agent performs this action, and the proposed in-
centives are applied in the resulting state, the expected utility of the system is greater
or equal than if the agent performs the same action (without the changes in the envi-
ronment). Another case when the action should be incentivized, is when the expected
utility of the system with the new consequences is greater or equal than if the agent
performs the following best action, with regard to the utility of the system. The possible
solutions of the algorithm are either the best action to incentivize by using the incentive
proposed, or no action that means that is better not to give the incentive proposed to the
agent.

Inducing Desirable Behaviour through an Incentives Infrastructure 71

Algorithm 1. deciding if the proposed incentive is given or not
Input: �agi

xj
, x∗

i,k

Output: as ∈ �agi
xj

such that as is the best action to incentivize
1 for s = 1 to n do
2 as ← �agi

xj
[s] ;

3 as+1 ← �agi
xj

[s + 1] ;

4 if (eu(
−−−−−−−−−−−→
(xjx

∗
i,k), agi, as) ≥ eu(−−−−−−→xj, agi, as))∨

(eu(
−−−−−−−−−−→
(xjx

∗
i,k)agi, as) ≥ eu(−−−−−−−−→xj , agi, as+1)) then

5 return as;
6 end if
7 end for
8 return as ← ∅ ;

3.4 Monitoring and Informing the Agent

As we said in previous sections, in order to discover the agent’s preferences the incen-
tivator observes the reaction of the agent regarding a proposed incentive for a given
action. In particular, the incentivator monitories the action the agent actually performs
and evaluates if this action is the same as the action selected by the incentivator. It
then uses this information to provide the required feedback for the Q-learning algo-
rithms presented before. It could be possible that an agent actually performed an action
because its own interests (and not because of the incentives). However, the incenti-
vator does not have any way to distinguish such a situation. We assume that the ex-
ploration/exploitation process in the Q-learning algorithms will detect such cases and
converges to an estimation of the agent’s correct preferences. In order to enable agents
to reason about incentives, the incentivator informs the agents about the consequences
of their actions (the incentives that may apply). Before an agent selects its new action
to perform, it can query the informative mechanism about the incentives that apply to
which action.

4 Experimental Results

To evaluate the incentives infrastructure proposed in this work we have designed and
implemented a small “toy“ example. The system is composed of a grid NxN, where
each column is filled with a different colour: red, black or blue (see figure 2). Ratio-
nal agents are situated in such a grid, being able to move around it, moving a position
up, down, left or right. That is, the action space of the system is: A = {moveUp,
moveDown, moveLeft, moveRight, skip}. An agent’s position changes when it
performs one of these action (except for skip). Furthermore, each agent has assigned
an amount of money that is reduced by one unit when it changes its position. On the
other hand, the system has also an amount of money that is increased by the money
that agents spend on moving around the grid. An environmental state is composed
of the following attributes: X = {agent1Position, ... , agent1Money,..., gridSize,
squaresColours1,..., systemMoney} where their possible values are i) the position,
in terms of coordinates, of each agent; ii) the current money each agent owns; iii) the

72 R. Centeno, H. Billhardt, and S. Ossowski

size of the grid (the parameter N); iv) the current colour of each square (red, black or
blue); and iv) the amount of money owned by the system. The environment is designed
in a deterministic way, i. e. two o more agents can be in the same position.

Fig. 2. Grid representation and action space of an agent

The objective of the system is that agents are in the central position, as well as, to get
as much money as possible. These preferences are expressed by means of the following

utility function: U(xj) = UsystemMoney(xj)·w0+
|Ag|∑
k=1

UagentkPosition(xj)·wk where the utility

over the position of each agent is measured as how far they are from the central position
– by using the Manhattan distance –; and the money of the system is measured such
that the more money the system gets the more utility it obtains. On the other hand, the
objective of the agents is threefold, to reach a corner, to stay in a particular colour and to
save as much money as possible. It is expressed by the general utility function: Uak

(xj) =

UagentkPosition(xj) ·w1 +UsquaresColoursagentk Position
(xj) ·w2 +UagentkMoney(xj) ·w3, where

the utility of their position is measured as how far they are from the corner they want to
reach; the utility of the colour is 1 when they are on a square with the preferred colour
(0 in other case); and the utility of the money is measured like in the case of the system.

In order to evaluate and compare our approach, we design a normative system to reg-
ulate the system described before. Such a system defines a global norm that is known by
all participants and says that “it is prohibited to go beyond a established area from the
central point of the grid”. This norm is coupled with penalties that reduce the agents’
money when they violate the norm. We assume perfect (100%) detection of norm viola-
tions and fines are applied automatically. Thus, the system fulfils its original objectives:
agents should stay as close as possible to the central position, and on the other hand, the
system gets money if agents violate the norm. In comparison to the normative approach,
we endowed the same system with the incentives infrastructure and where incentiva-
tors have enough permissions to modify the attributes squaresColoursj (changing
the colour of a particular square to black, red or blue) and agentkMoney (increas-
ing/decreasing the money of agents). When an incentivator gives/takes money to/from
an agent, this money is taken/given from/to the system.

We have set up the system with the parameters specified in the table 1, carrying
out two different experiments. In experiment 1, the weights of the parameters of the
utility functions of both agents and system are selected randomly. When the system is
regulated by the normative system, the allowed area is established to 10 squares from
the central point and a fine of 50 units of money is applied when agents violate it.

Inducing Desirable Behaviour through an Incentives Infrastructure 73

Table 1.

Exp1 Exp2

Grid/Agents/Steps 200/30/100 200/30/100

UAg Random(w1, w2, w3) w1, w2 = 0.45 w3 = 0.1

UMAS Random(w0, wk) Random(w0, wk)

Norm Limit/Penalty 10/ − 50 10/ − 50

agentiMoney0/agentiMoney∗ Random(1.000)/ ± 5% Random(1.000)/ ± 5%

agentiPosition0/corner to reach (100, 100)/Random(4) (100, 100)/Random(4)

Figures 3(a) and 3(b) plot the utility of both the system and the agents in experiment
1. The blue line represents the case when the system is regulated by the norm while the
red line represents the results when using the incentives infrastructure. Both the system
and agents get better results, with regard to their utility in the case in which the system
is regulated by the incentive infrastructure. In case of agents’ utility we can observe
clearly, how their utility increases in both situations, however when the normative sys-
tem is working and the system is in the time-step 10, agents’ utility decrease constantly.
It happens due to some agents at this time are in the limit of going out of the established
area (10 squares from the central point) and they decide to go beyond it violating the
norm; and the system penalizes them decreasing their money. After that, their utility
starts rising up again due to they are closer to the corner they want to reach. Regard-
ing the system’s utility, we can observe that in both situations the utility starts in the
maximum possible. This is because the agents’ initial position is in the central point of
the grid. As agents are moving around the grid, the system looses utility, but this loss
is lower when the incentive infrastructure is working. This is because incentivators are
able to incentivize their agents to stay closer to the central position.

0 10 20 30 40 50 60 70 80 90 100
time

0.55

0.6

0.65

0.7

0.75

0.8

ut
ili

ty

Normative System
Incentive System

(a) Agents’ Utility Exp1

0 10 20 30 40 50 60 70 80 90 100
time

0.5

0.6

0.7

0.8

0.9

1

ut
ili

ty

Normative System
Incentive System

(b) System’s Utility Exp1

0 10 20 30 40 50 60 70 80 90 100
time

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

ut
ili

ty

Normative System
Incentive System

(c) Agents’ Utility Exp2

0 10 20 30 40 50 60 70 80 90 100
time

0.5

0.6

0.7

0.8

0.9

1

ut
ili

ty

Normative System
Incentive System

(d) System’s Utility Exp2

Fig. 3.

74 R. Centeno, H. Billhardt, and S. Ossowski

Figures 3(c) and 3(d) plot the results obtained after executing the system with the
parameters defined in experiment 2. In this case, the system is populated with agents
that do not care so much about the money (parameter w3 = 0.1 in agents’ utility func-
tion). The system’s utility is quite similar with both mechanisms, norms and incentives,
even so, the system looses less utility when it is regulated by the incentives infrastruc-
ture. Comparing the two experiments, we can conclude that the approach presented
in this work, based on an incentives infrastructure works better to regulate a system
when it is populated by agents unknown at a design time. Besides, not just the system
performs better (regarding its utility); also the agents obtain more utility because the
incentives infrastructure is able to discover their preferences and applies personalised
incentives/penalties.

5 Conclusion

In this paper we have presented an incentives model and infrastructure that is able to
i) discover the agents’ preferences that might be based on different attributes of the
environment; and ii) provide the suitable incentive by modifying the consequences of
a particular action, such that desirable behaviours are induced. The incentives infras-
tructure is designed by using institutional agents called incentivators. Each incentivator
is in charge of one external agent. In particular, it tries to discover the preferences of
its agent, decides which would be the most desired action regarding the systems objec-
tives, and incentivizes its agent to do that desired action. Incentivators use reinforcement
learning techniques (Q-learning with immediate rewards and ε-greedy action selection)
to learn the best incentivation policy for the agents they are in charge of.

The concept of norm appears as a main piece where there is no control over agents in
order to regulate their activities. Norms define control policies to establish and reinforce
agents to accomplish the objective of the system. So, the main objective is to restrict
the agents’ action space such that they behave how the system wants them to behave.
Some approaches, like [1], focus on defining the set of allowed actions in each possible
state of the system, such that agents are just allowed to perform valid actions. However,
there exist domains (e.g. traffic, e-commerce, etc.) where due to their complexity and
size, it is very difficult to define all possible valid actions for each state. For this reason,
other approaches, like [2], propose to couple norms with penalties/rewards which gives
agents the possibility to violate a norm. These penalties/rewards are usually designed
off-line, where participants of the system are still unknown. Therefore, designers have
to assume two main assumptions: i) agents, that will populate the system, are interested
in a particular attribute (e.g. the money); and ii) the grade that a modification in this
attribute affects agents such that they are deterred to perform certain actions. In order
to avoid these assumptions, other approaches, like [10, 11], are emerged to induce de-
sirable behaviours to agents participating in a system. One difference between these
approaches and the one presented in this paper, is that the authors in [10, 11] focus on
how to discover an appropriate reward to teach a particular policy to an agent. In our
work, we consider incentives as something that could be positive or negative, that is, it
is a modification in the consequences of an action. In fact, the valuation of such mod-
ifications depend on the agents. Some agents may consider as a positive modification

Inducing Desirable Behaviour through an Incentives Infrastructure 75

what others consider to be negative. Another difference is that in [10, 11] the authors
assume that all agents might be incentivized by adding a reward; that is only one pos-
sible attribute is considered. In comparison, we try to discover which attributes affect
each individual agent in order to provide a personalised incentive.

In this work, we have only considered scenarios where the actions performed by
agents do not influence the actions or the utility of other agents at the same time. How-
ever, this is a simplifying assumption. In our future work, we want to deal with cases
where agents do influence each other. In particular, we will use multiagent learning tech-
niques, to coordinate incentivators in order to be able to induce a desired joint action of
the agents in the system. That is why the infrastructure architecture allows incentivators
to communicate each others. Furthermore, we would like to apply the approach in a real
world domain, e.g. peer-to-peer applications.

References

1. Esteva, M., Rodriguez, J., Sierra, C., Garcia, P., Arcos, J.: On the formal specification of
electronic institutions. In: Sierra, C., Dignum, F.P.M. (eds.) AgentLink 2000. LNCS (LNAI),
vol. 1991, pp. 126–147. Springer, Heidelberg (2001)

2. Dignum, V., Vazquez-Salceda, J., Dignum, F.: OMNI: Introducing social structure, norms
and ontologies into agent organizations. In: Bordini, R.H., Dastani, M.M., Dix, J., El Fallah
Seghrouchni, A. (eds.) PROMAS 2004. LNCS (LNAI), vol. 3346, pp. 181–198. Springer,
Heidelberg (2005)

3. DeLoach, S., Oyenan, W., Matson, E.: A capabilities-based theory of artificial organizations.
J. Autonomous Agents and Multiagent Systems 16, 13–56 (2008)

4. Esteva, M., Rosell, B., Rodrı́guez-Aguilar, J., Arcos, J.: AMELI: An agent-based middleware
for electronic institutions. In: Proc. of AAMAS, vol. 1, pp. 236–243 (2004)

5. Centeno, R., Billhardt, H., Hermoso, R., Ossowski, S.: Organising mas: A formal model
based on organisational mechanisms. In: Proc. of SAC, pp. 740–746 (2009)

6. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
7. Keeney, R., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs.

Cambridge University Press, Cambridge (1993)
8. Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Regret-based utility elicitation in

constraint-based decision problems. In: Proc. of IJCAI, pp. 929–934 (2005)
9. Watkins, C.: Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge, UK

(1989)
10. Zhang, H., Parkes, D.: Value-based policy teaching with active indirect elicitation. In: Proc.

of AAAI, pp. 208–214. AAAI Press, Menlo Park (2008)
11. Dufton, L., Larson, K.: Multiagent policy teaching. In: Proc. of AAMAS 2009 (2009)

SONAR/OREDI: A Tool for Creation and
Deployment of Organisation Models

Endri Deliu and Michael Köhler-Bußmeier

University of Hamburg, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
koehler@informatik.uni-hamburg.de

Abstract. The need for handling the increasing complexity in software
systems has allowed the introduction and establishment of an organisa-
tional paradigm as an alternative in software modelling and development.
Especially within the multi-agent systems community, organisational
concepts are enjoying increasing popularity for efficiently structuring
multi-agent behaviour. Organisational specifications and their implemen-
tation as multi-agent systems lack however a streamlined transition be-
tween each other. In this paper we address this problem by introducing
a software tool capable of creating and editing organisation models as
well as deploying such models as multi-agent systems. The tool is built on
Sonar, a formal organisational specification based on Petri nets. By uni-
fying in one tool the organisational specification and deployment process
quick reaction cycles to incremental changes of system design become
possible.

1 Introduction

Important influxes from sociology and organisation theory have begun delineat-
ing what may dissolve the trade-off between agent autonomy and multi-agent
system reliability and predictability. Between the system and the agents com-
posing it, other levels of control have been introduced which are mainly derived
from sociological concepts. The concept of organisation is used as an umbrella
term for groups of agents and their dependencies, interaction channels or rela-
tionships (cf. [1] for an survey or organisational approaches to agent systems).
As a result, an organisational perspective on multi-agent systems has gradually
emerged which focuses on organisational concepts such as groups, communities,
organisations, etc., in contrast to the former focus of multi-agent systems on the
agent’s state and its relationship to the agent’s behaviour (cf. [2]).

Modelling agent organisations requires a modelling language that is able to
express most (possibly all) of the notions that the concept of organisation encom-
passes in an intuitive and easily understandable way. Petri nets are well suited
for use in modelling systems and simultaneously offer a complete formal frame.
In this context, a framework for the development of concurrent and distributed
software systems has been built as a multi-agent system basing on reference
nets [3], a high level Petri net formalism. Our multi-agent architecture Mulan
(multi-agent nets) [4,5] provides the framework’s reference architecture used for

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 76–87, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Sonar/Oredi: Creation and Deployment of Organisation Models 77

the the multi-agent system. Mulan is built on Java and reference nets and can
be executed in Renew [3], a Petri net editor and simulator.

In this work, Oredi (organisation editor), a Petri net based tool will be pre-
sented. It enables editing organisation models as well as deploying such models
as multi-agent systems, e.g. as Mulan systems. Oredi is built on top of Re-
new and relies on Sonar (self organising net architecture reference), a formal
organisational specification for electronic institutions based on Petri nets. Sec-
tion 2 will shortly introduce the main concepts of Sonar which are supported by
Oredi. In Section 3, the deployment of Sonar organisation models into agent
organisations with Oredi is presented.

2 Sonar: A Formal Model of Organisations

In the following we give a short introduction into our modelling formalism, called
Sonar. A detailed discussion of the formalism can be found in [6], its theoretical
properties are studied in [7]. A Sonar-model encompasses:

1. A set of interaction models (called distributed workflow nets, short: DWF
nets) based on a data ontology and a role model;

2. An organisational model that defines a network of organisational sub-units
(usually called positions) and their resources together within a net model,
that describes the team-based delegation of tasks;

3. A stratification model that assigns a hierarchy level n to all components;
4. A set of transformation rules together with a model metric;
5. A refinement/abstraction operation to build nested Sonar-models.

Fig. 1. A Sonar-Model

Figure 1 illustrates the basic relationships between the Sonar interaction
model, the role/delegation model and the position network. The example de-
scribes the relationship between some positions (drawn as grey boxes: broker,
virtual firm, requester, etc.) in terms of their respective roles (Producer, Con-
sumer etc.) and associated delegation links. In this scenario, we have a requester

78 E. Deliu and M. Köhler-Bußmeier

and two suppliers of some product. Coupling between them is provided by a bro-
ker.1 From a more fine-grained perspective, the requester and one of the suppliers
consist of delegation networks themselves. For example, in the case of the virtual
firm supplier, we can identify a management level and two subcontractors. The
two subcontractors may be legally independent firms that integrate their core
competencies in order to form a virtual enterprise (e.g. separating fabrication of
product parts from their assembly). The coupling between the firms constitut-
ing the virtual enterprise is apt to be tighter and more persistent than between
requester and supplier at the next higher system level, which provides more of
a market-based and on-the-spot connection.2

agent position

role

resource

team

interaction

organisation*

*

consists of

* participates in

owns modifies

*

generates

implements

executes

consists of

* *is member of *

Fig. 2. Basic Sonar Concepts and their Relationships

In general an organisation consists of (sub)organisations and atomic organisa-
tions, called positions. Positions are staffed by agents. Staffed agents have access
to resources owned by the position and they implement the roles assigned to the
position. Agents interact in teams in which they play roles. Interaction proto-
cols describe the possible interaction processes between roles. As a byproduct
of their interaction resources, including data or knowledge are modified. These
basic concepts and their relationships are illustrated in Figure 2.

A distributed workflow net (DWF net) is a multi-party version of the well-
known workflow nets [8] where the parties are called roles. Roles are used in
DWF nets to abstract from concrete agents. For example, the two roles Pro-
ducer and Consumer have the same form of trading interaction no matter which
agent is producing or consuming. The right side of Figure 1 shows the DWF net
PC that describes the interaction between both roles: First the producer exe-
cutes the activity produce, then sends the produced item to the consumer, who
receives it. The consumer sends an acknowledge to the producer before he con-
sumes the item.3 Technically speaking roles are some kind of type for an agent
1 Note that for this simplified model brokerage is an easy job, since there are exactly

two producers and one consumer. In general, we have several instances for both
groups with a broad variety of quality parameters making brokerage a real problem.

2 This coupling is usually expressed using the refinement/abstraction operator of
Sonar, but is omitted here for simplicity reasons.

3 To simplify the presentation we have omitted all data-related aspects in our discus-
sion of distributed workflow nets. In Sonar each DWF net uses data object based
on the model’s ontology. Cf. [9,10] for details.

Sonar/Oredi: Creation and Deployment of Organisation Models 79

describing its behaviour. Note that agents staffed to positions usually implement
several roles.

An organisation net is a Petri net N = (P, T, F) where each task is modelled
by a place p and each task implementation (delegation/execution) is modelled
by a transition t. Each place p is labelled by a role R(p) and each transition t
with a DWF net D(t). Each place and each transition is assigned to the position
O it belongs to. This is illustrated by surrounding boxes in Figure 1.

In general a delegation t comes along with a behaviour refinement. In our ex-
ample, the position requester implements the role Cons by generating subtasks
for the roles Cons 1, DM, and Cons 2. These subtasks are handled by the posi-
tions sub 1, adm, and sub 2 that implement their respective roles according to
the DWF PC 2 (not shown here) which decomposes the behaviour of role Cons
into the composition of Cons 1, DM, and Cons 2. In well formed organisations
it is guaranteed that the service generated from the refined DWF PC 2 and the
roles Cons 1, DM, and Cons 2 has the same communication behaviour as the
service generated from the original DWF PC and the role Cons.

Team formation can be expressed in a very elegant way: If one marks one
initial place of an organisation net Org with a token, each firing process of the
Petri net models a possible delegation process. More precisely, the token game is
identical to the team formation process (cf. Theorem 4.2 in [7]). Team formation
generates a team net and a team DWF.

As another aspect, Sonar-models are equipped with transformation rules.
Transformation rules describe which modifications of the given model are al-
lowed. They are specified as graph rewrite rules [11]. The minimal requirement
for rules in SonarÂ is that they must preserve the correctness of the given
organisational model.

3 Deploying SONAR Organisations

Oredi contains an editing tool for Sonar formal organisations. It is built as a set
of Renew plugins. Oredi users can create Sonar formal organisations without
being directly aware of their underlying constraints. The process of creating
formal organisations involves two steps. The first step being the creation of DWF
nets and some additional models, that represent refinement relationships between
roles. The second step is the creation of organisation nets and the assignment of
DWF nets and roles to transitions and places, respectively. The completion of
both steps leads users to organisational models. Each step is handled in separate
editors. Thus, an editor for modelling DWF nets is used first. Then the results
of the first step are loaded in a second editor where the organisation is modelled.

At the end of the modelling process, Oredi supports the deployment of
the modelled organisation as an agent organisation consisting of Organisation
Agents, Organisation Position Agents (OPA), and Organisation Member Agents
(OMA) we describe in the following section.

80 E. Deliu and M. Köhler-Bußmeier

3.1 Agent Organisations as OPA/OMA Networks

Now that we have obtained a picture of what constitutes a formal organisation
according to our approach, we can elaborate on the activities of a multi-agent
systems behaving according to a Sonar-model. The basic idea is quite straight-
forward: With each position of the Sonar-model we associate one dedicated
agent, called the organisational position agent (OPA).

Figure 3 illustrates our specific philosophy concerning MAS organisations util-
ising the middleware approach. In Sonar, we describe a formal organisation in
terms of interrelated organisational positions.

Fig. 3. An Organisation as an OPA/OMA Network

An OPA network embodies a formal organisation. An OPA represents an or-
ganisational artifact and not a member/employee of the organisation. However,
each OPA represents a conceptual connection point for an organisational mem-
ber agent (OMA). An organisation is not complete without OMAs. It depends
on domain agents that actually carry out organisational tasks, make decisions
where required and thus implement/occupy the formal positions. Note that an
OMA can be an artificial as well as a human agent. An OPA both enables and
constrains organisational behaviour of its associated OMA. Only via an OPA
an OMA can effect the organisation and only in a way that is in conformance
with the OPA’s specification. In addition, the OPA network as a whole relieves
its associated OMAs of a considerable amount of organisational overhead by au-
tomating coordination and administration. To put it differently, an OPA offers
its OMA a “behaviour corridor” for organisational membership. OMAs might of
course only be partially involved in an organisation and have relationships to
multiple other agents than their OPA (even to agents completely external to the
organisation). From the perspective of the organisation, all other ties than the
OPA-OMA link are considered as informal connections.

To conclude, an OPA embodies two conceptual interfaces, the first one be-
tween micro and macro level (one OPA versus a network of OPAs) and the
second one between formal and informal aspects of an organisation (OPA versus
OMA). We can make additional use of this twofold interface. Whenever we have
a system of systems setting with multiple scopes or domains of authority (e.g.
virtual organisations strategic alliances, organisational fields), we can let an OPA
of a given (sub-)organisation act as a member towards another OPA of another

Sonar/Oredi: Creation and Deployment of Organisation Models 81

organisation. This basically combines the middleware perspective with a holonic
perspective (cf. [15]) and is not as easily to be conceptualised in the context of
other middleware approaches that take a less distributed/modular perspective.
In this paper the aspect of holonic systems is not discussed any further – cf. [16]
for an in depth discussion.

All OPAs share a common structure which we call the generic OPA (GOPA).
An OPA O is an instance of this GOPA that is parametrised by that part of
the organisational model that describes O, i.e. its inner structure (subtask and
delegation/execution activities) and all the surrounding OPAs. The architecture
of the GOPA is discussed in [17].

3.2 Deploying SONAR Organisations as OPA/OMA Networks

Oredi supports the deployment of Sonar formal organisations as OPA/OMA
networks. The formal organisation net is exported in a XML format. The XML
file generated from the organisation net is parsed and the deployment process
begins. The generation of the XML file and its subsequent parsing was conceived
to provide a platform and application independent solution to deploy Sonar or-
ganisations. As such, the generated XML file contains all formal information of
the Sonar-model and can be used for deployment in any multi-agent platform.
Here, we opted for an implementation of the deployment steps in our Mulan-
architecture [4,5] as it supports building multi-agent systems with reference nets.
This allowed using Petri nets both as a modelling as well as a programming tech-
nology thus easing and streamlining the gap between modelling and development.
So, Mulan is our first choice, but of course any agent oriented languages would
have done too.

Fig. 4. Deployment of Sonar-Models

Deploying a Sonar organisation as OPA/OMA networks involves

1. the generation of an organisation agent, serving as a platform for the OPAs,
2. the generation all the OPAs, and
3. the assignment of OMAs to OPAs.

After these phases team processes such as team formation, team plan formation,
and team plan execution can follow as specified in [6]. The whole compilation is

82 E. Deliu and M. Köhler-Bußmeier

sketched in Figure 4. In this work, only the generation of the organisation agent
and the OPAs and the assignment of OMAs is handled. For a discussion of the
teamwork cf. [18,17].

Organisational positions of the organisation net are deployed as OPAs.4 The
generated OPAs know the identity of their neighbour OPAs and communicate
with them through a set of encrypted messages. The assignment of OMAs to
OPAs is made in a market based fashion with OPAs making open position an-
nouncements and interested OMAs competing for the employment for the open
positions. The communication between OPAs and OMAs is also encrypted.

Deployment of Organisation Agents and OPAs in Mulan. Oredi de-
ploys formal organisation as Mulan OPAs. Mulan is a FIPA [19] compliant
architecture. At first, a Mulan platform is generated where one or more agent
organisations can be embedded. The position agents generated for each position
in the Sonar organisation net are placed inside the created platform. Addition-
ally, suitable Mulan protocols handle agent conversations. Mulan agents can
use protocols proactively or reactively as a response to specific messages. The
decision which protocol to use for a specific received message is made in the
knowledge base where a mapping between message templates and protocols is
consulted.

OPAs have the complete information of their corresponding positions in the
Sonar organisation net specified in the XML file. This information includes the
position’s relative place in the organisation (knowledge about neighbour posi-
tions), the roles they are implementing/delegating and their tasks. Generating
OPAs out of an organisation net specification is accomplished in agent-oriented
fashion by an initial agent. The initial agent is called the organisation agent as
it has a global view on all positions. The organisation agent is responsible for
the generation of the OPAs and their initialisation with information extracted
from the formal organisation net specification.

The information needed from an OPA includes which other OPAs are its
neighbours. This requires the identity of the neighbours. At least in Mulan,
the identity of agents and their location can only be known after the creation of
these agents. This means that information about the neighbour positions has to
be provided for an OPA only after, not during its creation. Thus, the informa-
tion about the place of a position agent in an organisation is conveyed through
a conversation with the organisation agent. During the conversation, in order
to make sure that the messages come from the right parties they are signed
with a cryptographic mechanism which requires that parties know their respec-
tive keys. In Figure 5, an AUML sequence diagram displays the conversation
between OPAs and the organisation agent during which the organisation agent
communicates to the positions all relevant information extracted from the or-
ganisation net specification. In FIPA terminology, conversations between agents
are called protocols. Mulan protocols describe the behaviour of agents during
4 In fact, the OPAs are compiled into a complete specification for the GOPA instance.

This specification is complete in the sense that all remaining, open design aspects
are gathered in the implementation of the OMAs.

Sonar/Oredi: Creation and Deployment of Organisation Models 83

conversations. The AUML diagram in Fig. 5 also serves as an overall sketch
of the used Mulan protocols which can be generated automatically from the
AUML diagrams. Cf. [5] for an overview of the Mulan tool family.

.........
Organization Position 1 Position 2 Position n

request local structure

request local structure

request local structure

local structure

local structure

local structure

Fig. 5. The organisation agent communicating the information extracted from the
respective positions to the generated OPAs

The conversation displayed in Fig. 5 is based on the assumption that the
OPAs already know the identity of their organisation agent. However, the or-
ganisation agent does not know the identities of its OPAs. OPAs send a message
with their identifiers to their organisation agent requesting their local structure
which should include all the relevant information extracted from the respective
positions in the Sonar organisation net such as the neighbours, the implement-
ing and delegating roles, the tasks, etc. After receiving the requests for the local
structure and the identifiers from all the position agents, the organisation agent
proceeds and sends the respective local structure to each position agent. The
conversation partners know their respective crypto keys so all the messages of
the conversation are signed with the private keys of the sending parties. However,
the aspect of authentication has been left out from Fig. 5 for simplicity.

Assignment of OMAs to OPAs. After the generation of the OPAs and
the communication of the local structures to them, the assignment of OMAs
to OPAs is started. The approach for the assignment process is leaned on [20].
As the organisation agent represents some kind of a service provider and logical
platform to the OPAs and the potential OMAs, it assumes at this point the
management of the assignment of OMAs to OPAs. If an OPA has an open
position (either because its OMA resigned or it has been fired), the OPA sends
a request to the organisation agent to start the procedure for the occupation
of the open position. The organisation agent publishes a job description for the
open position to a central registry component named Directory Facilitator (DF)
– see FIPA Agent Management Specification. A DF is a mandatory component
of an agent platform in FIPA that provides a yellow pages directory service to

84 E. Deliu and M. Köhler-Bußmeier

Member Position Organization DF Agent 1 Agent n
......

resign

finish ongoing
activities

finished

dismissed

open position
new job description search for job

search result

applications

sorry

hire(key)

apply(position, abilities, cost, key)

apply(position, abilities, cost, key)

Fig. 6. The assignment of an agent as a member to a position agent

agents. Agents can advertise their services through the DF. In Mulan the DF
is also an agent with which the organisation agent can communicate.

The external agents that are interested in occupying open positions in the
organisation can search through the DF and apply to the organisation agent for
a specific open position. The initial assignment of OPAs with OMAs is a special
case where all OPAs have open positions. The diagram in Fig. 6 displays the case
when the resignation of a member triggers the start of the procedure to assign
a new member for the position. The organisation agent sends a description for
a new job to the DF. The job description contains the identifier of the vacant
OPA, the requirements that applicants have to fulfil, and a time period during
which applications for the job are accepted. Agents that find that job description
interesting after a search in the DF, apply to the organisation agent. Their
application includes the description of the job for which they are applying, their
crypto key, their personal abilities as a response to the requirements specified in
the job description, and the costs for their service. The applications are received
from the organisation agent.

After the application period for a vacant position expires, the organisation
agent sends all received applications to the respective position agent, the OPA
selects the new member and lets it know the key for the authentication during
their future communication as well as the fact that it has been hired. In the case
of resignation from a member, the member is dismissed only after finishing its
ongoing activities on behalf of the organisation. Even if a new member may have
been hired since the resignation request of the old member, the old member is
dismissed only after finishing all its ongoing activities. This means that a position
can have more than one member agents for limited time periods. An alternative
way for an agent to get the list of open positions within an organisation is to send
a message to the organisation agent itself with a request for the open positions
that the organisation has.

Sonar/Oredi: Creation and Deployment of Organisation Models 85

For handling the communication for both the generation of the OPAs and
the assignment of OMAs to OPAs an ontology was developed. The ontology was
developed with Protégéand was employed as a domain specific shared vocabulary
throughout the conversations between the agents involved in the two phases.

3.3 Related Work

Our approach lies in the research area of organisation centred design of multi-
agent systems. There is a recent collection on approaches to agent systems in
[1]. Among them we like to mention OPERA [21], MOISE [22], and ISLANDER
[23].(Of course there are a lot of approaches on agent-oriented software engi-
neering, like GAIA [24], but those usually do not explicitly rely in the metaphor
of the organisation.) These methodologies are equipped with their middleware:
OperettA [12], S-MOISE+ [13], and Amelie [14].

We provide a more detailed comparison of our SONAR-approach to MOISE
and ISLANDER in [25] where we also derive conclusions concerning best fits
between different approaches and application contexts. Compared to other mid-
dleware layers, we advocate complete distribution. Instead of introducing one or
more middleware managers that watch over the whole organisation (cf. the man-
ager in S-MOISE+) or at least over considerable parts (cf. institution, scene,
transition managers in Amelie), we associate each position with its own organ-
isational position agent (OPA).

4 Conclusion and Outlook

Oredi, the tool presented in this paper, is a Petri net based software tool for
modelling Sonar organisations as well as for deploying these models to agent
organisations. By providing a tool that carries out specification as well as de-
ployment of formal organisations a close link between these two phases of system
development has been provided. With Oredi users can build Sonar organisa-
tions through a combination of graphical interfaces, a set of interaction con-
straints and context based suggestions without being required to possess active
knowledge of the formal rules underlying the models’ specifications. The deploy-
ment of formal organisation models is based on the decoupling of the elements
of the multi-agent system that specify the organisational structure from those
that act as members of the organisation. Positions in the formal organisation are
deployed as agents (OPAs) and are embedded within the organisation agent, all
implemented as Mulan agents. Oredi provides the specification and implemen-
tation of the assignment of OMAs to OPAs. Provided the necessary capabilities,
any agent, developed in any programming language, can be assigned to an OPA
as its OMA and take over the execution of the necessary tasks.

Besides, the deployment of formal organisation nets as agent organisations
can also be extended to include the team formation, team plan formation and
team plan execution phases as the corresponding theoretical foundations have
already been provided in [18,17,26].

86 E. Deliu and M. Köhler-Bußmeier

In the future extensions of Oredi both the modelling and the deployment
phases will be subject to further development. A special focus should be laid
on the modularisation of the Oredi models – using the refinement operation of
Sonar – as it can allow the distribution of the modelling process. Formal organ-
isations can be partitioned into modules which can be developed and maintained
in separate files by different parties.

This modularisation will support the holonic approach taken in Sonar where
not only positions are part of an organisation, but also (sub-)organisations. Or-
ganisations can be linked to each other by delegation relationships. Linking or-
ganisations can be achieved by adding extra graphical components to Oredi
that represent the link to other sub-organisations.

References

1. Dignum, V. (ed.): Handbook of Research on Multi-Agent Systems IGI Global.
Information Science Reference (2009)

2. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: An organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
AOSE 2003. LNCS, vol. 2935, pp. 214–230. Springer, Heidelberg (2004)

3. Kummer, O., Wienberg, F., Duvigneau, M., et al.: An extensible editor and simu-
lation engine for Petri nets: Renew. In: Cortadella, J., Reisig, W. (eds.) ICATPN
2004. LNCS, vol. 3099, pp. 484–493. Springer, Heidelberg (2004)

4. Köhler, M., Moldt, D., Rölke, H.: Modeling the behaviour of Petri net agents. In:
Colom, J.-M., Koutny, M. (eds.) ICATPN 2001. LNCS, vol. 2075, pp. 224–241.
Springer, Heidelberg (2001)

5. Cabac, L., Dörges, T., Rölke, H.: A monitoring toolset for Petri net-based agent-
oriented software engineering. In: van Hee, K.M., Valk, R. (eds.) ATPN 2008.
LNCS, vol. 5062, pp. 399–408. Springer, Heidelberg (2008)

6. Köhler-Bußmeier, M., Wester-Ebbinghaus, M., Moldt, D.: A formal model for or-
ganisational structures behind process-aware information systems. In: Jensen, K.,
van der Aalst, W.M.P. (eds.) Transactions on Petri Nets. LNCS, vol. 5460, pp.
98–114. Springer, Heidelberg (2009)

7. Köhler, M.: A formal model of multi-agent organisations. Fundamenta Informati-
cae 79, 415–430 (2007)

8. Aalst, W.v.d.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.)
ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

9. Köhler, M., Ortmann, J.: Formal aspects for service modelling based on high-level
Petri nets. In: International Conference on Intelligent Agents, Web Technologies
and Internet Commerce, IAWTIC 2005 (2005)

10. Köhler, M., Moldt, D., Ortmann, J.: Dynamic service composition: A petri-net
based approach. In: Conference on Enterprise Information Systems (ICEIS 2006),
pp. 159–165 (2006)

11. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer, Heidelberg (2006)

12. Okouya, D., Dignum, V.: Operetta: a prototype tool for the design, analysis and
development of multi-agent organizations. In: AAMAS 2008, pp. 1677–1678 (2008)

13. Hübner, J.F., Sichman, J.S., Boissier, O.: S-Moise: A middleware for developing
organised multi-agent systems. In: International Workshop on Organizations in
Multi-Agent Systems (OOOP 2005), pp. 107–120 (2005)

Sonar/Oredi: Creation and Deployment of Organisation Models 87

14. Esteva, M., Rodriguez-Aguilar, J., Rosell, B., Arcos, J.: Ameli: An agent-based
middleware for electronic institutions. In: AAMAS 2004, pp. 236–243 (2004)

15. Fischer, K., Schillo, M., Siekmann, J.: Holonic multiagent systems: A foundation
for the organization of multiagent systems. In: Mařík, V., McFarlane, D.C., Val-
ckenaers, P. (eds.) HoloMAS 2003. LNCS (LNAI), vol. 2744, pp. 71–80. Springer,
Heidelberg (2003)

16. Wester-Ebbinghaus, M., Moldt, D.: Modelling an open and controlled system unit
as a modular component of systems of systems. In: International Workshop on
Organizational Modelling (OrgMod 2009), pp. 81–100 (2009)

17. Köhler-Bußmeier, M., Wester-Ebbinghaus, M.: Sonar: A multi-agent infrastructure
for active application architectures and inter-organisational information systems.
In: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (eds.) MATES 2009.
LNCS (LNAI), vol. 5774, pp. 248–257. Springer, Heidelberg (2009)

18. Köhler, M., Wester-Ebbinghaus, M.: Organizational models and multi-agent system
deployment. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.)
CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 307–309. Springer, Heidelberg (2007)

19. FIPA: FIPA 97 Specification, Part 1 - Agent Management. Technical report, Foun-
dation for Intelligent Physical Agents (1998), http://www.fipa.org

20. Köhler-Bußmeier, M.: SONAR: Eine sozialtheoretisch fundierte Multiagentensys-
temarchitektur. In: Selbstorganisation und Governance in künstlichen und sozialen
Systemen. Lit Verlag, Münster (2009)

21. Dignum, V., Dignum, F., Meyer, J.J.: An agent-mediated approach to the support
of knowledge sharing in organizations. Knowledge Engineering Review 19, 147–174
(2004)

22. Boissier, O., Hannoun, M., Sichman, J.S., Sayettat, C.: MOISE: An organizational
model for multi-agent systems. In: 7th Ibero-American Conference on AI, pp. 156–
165. Springer, Heidelberg (2000)

23. Esteva, M., de la Cruz, D., Sierra, C.: Islander: an electronic institutions editor.
In: Falcone, R., Barber, S.K., Korba, L., Singh, M.P. (eds.) AAMAS 2002. LNCS
(LNAI), vol. 2631, pp. 1045–1052. Springer, Heidelberg (2003)

24. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The Gaia methodology. ACM Trans. Softw. Eng. Methodol. 12, 317–370 (2003)

25. Wester-Ebbinghaus, M., Köhler-Bußmeier, M., Moldt, D.: From multi-agent to
multi-organization systems: Utilizing middleware approaches. In: Artikis, A., Pi-
card, G., Vercouter, L. (eds.) ESAW 2008. LNCS, vol. 5485, pp. 46–65. Springer,
Heidelberg (2009)

26. Köhler-Bußmeier, M., Wester-Ebbinghaus, M.: A petri net based prototype for
mas organisation middleware. In: Workshop on Modelling, Object, Components,
and Agents (MOCA 2009), pp. 29–44 (2009)

http://www.fipa.org

Enhancing the Interoperability between
Multiagent Systems and Service-Oriented

Architectures through a Model-Driven Approach

Christian Hahn1,2, Sven Jacobi2, and David Raber1

1 DFKI GmbH
Stuhlsatzenhausweg 3

66123 Saarbrücken, Germany
2 Saarstahl AG

Hofstattstrasse 106
66330 Völklingen, Germany

Abstract. Service-orientation has become the leading paradigm for
modern IT system design and development as service-oriented system
design has great potential for improving the efficiency and quality of the
IT systems. This paper presents a model-driven approach for the generic
integration of service-oriented architectures (SOA) and multi-agent sys-
tems (MAS). In fact, a model transformation from SoaML—a meta-
model for SOA—to Pim4Agents—a platform independent metamodel
for MAS—is utilized for integration. The relevance of this approach is
proven by applying it to a real-world industry scenario.

1 Introduction

Service-oriented architectures (SOAs) promote services as the basic building
blocks, which provide access to any type of problem solving facility regardless of
its technical realization via a standardized interface [1]. This facilitates the inter-
operability among heterogeneous components and resources, enable the seamless
integration of previously separated systems, and support the reuse and substi-
tution of system components by decoupling the usage of IT facilities from their
actual implementation [4].

Despite the various efforts on SOA technology development in industry, re-
search, and in international standardization bodies, the provision of sophisticated
development support for SOA-based landscapes remains a grand challenge. A
promising approach for this is the model-driven engineering approach in accor-
dance to OMG’s Model-Driven Architecture (MDA) [9]. This approach supports
the design and development of IT systems on the business-oriented computa-
tional independent model (CIM) level, the architecture-oriented platform inde-
pendent model (PIM) level, and the platform specific model (PSM) level on the
basis of standardized metamodels.

Although there are several recent and ongoing activities on developing MDA-
based techniques for supporting the design, development, and maintenance of

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 88–99, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Enhancing the Interoperability between Multiagent Systems 89

SOAs, there does not exist a standardized metamodel for describing services
along with the relevant aspects on their provision and usage in a SOA land-
scape. Existing efforts are restricted to the modeling support for services, but
do not provide modeling and development support for integrated systems that
encompass other technologies, e.g. agent technology, in addition to services.

This paper is structured as follows: Section 2 presents related work in the area
of integrating SOAs and MASs. Section 3 then discusses our model-driven ap-
proach for the integration of MASs and SOAs. Followed by Section 4, validating
the approach based on a real-world scenario from the steel industry. Section 5
then discusses the general benefits of using agent-based systems in general and
Dsml4Mas in particular for the service execution. Finally, Section 6 concludes
this paper.

2 Related Work

The similarities between agent architectures and SOAs have already been recog-
nized (e.g. [14]). However, there is still an ongoing discussion about the relation
between Web services and agents. In [2], the authors propose three relationships
between agents and services: no conceptual distinction, bi-directional integra-
tion, and agents invoke Web services. However, in our view, only the last two
paradigms can actually be kept, as the authors of [12] pointed out fundamental
differences between both paradigms, making the first relationship indefensible.

The concepts of an agent is nowadays often used in the context of SOAs.
Especially, in a business context, agents are integrated in a service-oriented en-
vironment, where the agents mainly provide and invoke services. In the following,
related work in this respect is given.

In [10], the authors presented a framework called WS2JADE that allows in-
tegrating Web services and JADE. The integration is performed through rep-
resenting a Web service by a gateway agent. This allows deploying, composing,
and controlling Web services as agent service at run-time. In [11], an agent-based
approach to the service composition in JACK1 is discussed.

Apart from the wealth of literature about business process modeling, enter-
prise application integration and SOAs, a model-driven approach for the integra-
tion of MASs and SOAs has—to our knowledge—not yet been investigated. [3],
for instance, discusses a mapping between BPMN (Business Process Modeling
Notation) models to BDI agents. However, an integration of agents and Web
services is no considered.

3 Model-Driven Service Integration into Multiagent
Systems

This section discusses the relevant technologies necessary for the model-driven
integration of SOAs and MASs.
1 JACK is a commercial agent development platform that is online available at
http://aosgrp.com/index.html

http://aosgrp.com/index.html

90 C. Hahn, S. Jacobi, and D. Raber

Fig. 1. An overview of the SHAPE model transformation architecture and framework

3.1 Model Transformation Architecture

Our new approach bases on the model transformation architecture (cf. Fig. 1)
developed in the EU-project SHAPE2 (Semantically-enabled Heterogeneous Ser-
vice Architecture and Platforms Engineering). It illustrates the core language
used within the project, their relationship to the abstraction levels CIM, PIM
and PSM, as well as their relationship to other languages defined through model
transformations. The model-to-model transformations are implemented in ATL3

(Atlas Transformation Language), the model-to-text transformations are imple-
mented using MOFScript4.

On the highest level, business models encompass business rules, processes,
services and other issues such as contracts involving humans and organizations
to achieve business goals. These conform to the metamodel of CIMFlex [13].
The middle layer contains the Service-oriented Architecture Modeling
Language (SoaML5) standardized by the OMG and extensions for semantically-
enabled heterogeneous architectures like Dsml4Mas or Web Service Architec-
tures (WSA). This model transformation architecture allows the realization of
one of the main goals of SHAPE namely to provide a transformation engine that
maps business models to SOA models, which are then transferred to the various
execution platforms, like JACK and JADE on the agent side or Web Service
Modeling Ontology (WSMO) on the service side.

3.2 Service-Oriented Architecture Modeling Language

Although there are several recent and ongoing activities on developing MDA-
based techniques for supporting the design, development, and maintenance of
SOAs (e.g. [8]), there does not exist a standardized metamodel for describing

2 http://www.shape-project.eu/
3 http://www.sciences.univ-nantes.fr/lina/atl/
4 http://www.eclipse.org/gmt/mofscript/
5 http://www.omg.org/docs/ad/08-05-03.pdf

http://www.shape-project.eu/
http://www.sciences.univ-nantes.fr/lina/atl/
http://www.eclipse.org/gmt/mofscript/
http://www.omg.org/docs/ad/08-05-03.pdf

Enhancing the Interoperability between Multiagent Systems 91

services along with the relevant aspects on their provision and usage in a service-
oriented system landscape. In 2006, the OMG started standardization process
for SOA by issuing a request for proposal for an UML Profile and Metamodel
for Services. The main objectives of this new standard for services is (i) to en-
able interoperability and integration at the model level, (ii) to enable SOAs on
existing platforms through the MDA initiative, and (iii) to allow for flexible plat-
form choices. The resulting Service-Oriented Architecture Modeling Language is
based on the UML 2.0 metamodel and provides minimal extensions to UML.
The modeling concepts of SoaML are as follows:

Participant. The key concept of a service is a capability offered by one entity
or entities to others through well-defined interfaces. Those entities are called
Participants. In SoaML, capabilities are provided or required by Participants
through the interaction points, i.e. the UML Ports. To express that a Participant
acts as service provider, the certain UML Port is stereotyped as Service. In
contrast, if the capabilities are required by the Participant, the UML Port is
stereotyped as Request.

ServiceInterface. The capabilities and needs of a Service or Request port
are defined by its type, which is either a ServiceInterface, or in simple cases, a
UML Interface. The ServiceInterface stereotype is like an interface, but has the
additional feature that it can specify a bi-directional service, where both, the
provider and consumer, have responsibilities to send and receive messages. The
ServiceInterface specifies the roles that will be performed by the entities involved
in order to provide/request a certain service and the behaviors that specify the
interaction between service provider and requester in terms of message exchange.

ServiceContract. A key part of a service is the ServiceContract that defines
the choreography that interacting Participants must agree to for the service to
be enacted. The ServiceContract is the full specification of a service, which in-
cludes all information, choreography and any other characteristics of the service.
A Participant plays a role in the larger scope of a ServicesArchitecture and, con-
sequently, also either plays the provider or requester role within the contained
ServiceContracts. The choreography of a ServiceContract allows specifying how
the roles interact from a global perspective, internal processes are omitted.

ServicesArchitecture. A ServicesArchitecture provides a top-down view on a
composed service. It is a network of participant roles providing and requesting
services to fulfill a purpose. It defines the requirements for the types of Partic-
ipants and service realizations that fulfill those roles. The ServicesArchitecture
is defined as UML Collaboration to specify the set of roles collaborating un-
der certain conditions. In the context of SoaML, the roles are normally filled
with Participants playing a certain position in this ServicesArchitecture. A role
defines how entities are involved in that collaboration (how and why they col-
laborate) without depending on what kind of entity is involved (e.g. a person,
organization or system).

92 C. Hahn, S. Jacobi, and D. Raber

ParticipantArchitecture. A ParticipantArchitecture provides a bottom-up
view on a composed service. It defines the roles necessary to compose the ser-
vice as well as the ServiceContracts that define in which manner the roles are
interacting. To the outside, a ParticipantArchitecture provides and requires in-
terfaces.

Agent. The concept Agent extends Participant with the ability to be active,
participating components of a system. Hence, the purpose of an Agent in SoaML
is to specify a classification of autonomous entities (agent instances) that can
adapt to and interact with their environment, and to specify the features, con-
straints, and semantics that characterize those agent instances. Agent extends
Participant with the ability to be active, participating components of a system.
They are specialized because they have their own thread of control or lifecycle.

3.3 Domain-Specific Modeling Language for MAS

The domain-specific modeling language for MAS (Dsml4Mas) includes the core
features of a language like an abstract syntax, concrete syntax as well as a for-
mal semantics. Furthermore, model transformations to the agent-programming
language JACK and JADE are provided that allow the execution of the design
made with Dsml4Mas. A detailed discussion on Dsml4Mas is given in [6].

The abstract syntax of Dsml4Mas is defined by the a platform independent
metamodel for MAS (Pim4Agents). In order to support an evolution of the
Pim4Agents metamodel, it is structured into several views each focusing on
a specific viewpoint of MASs: The agent view defines how to model single au-
tonomous entities, the capabilities they have to solve tasks and the roles they play
within the MAS. Moreover, the agent view defines to which resources an agent
has access to and which kind of behaviors (i.e. plans) it can use to solve tasks and
achieve goals. The organization view defines how single autonomous agents are ar-
ranged to more complex organizations that may be defined on the base of various
different structures, each of them may be adequate for a certain problem solving
scenario. Organizations in Pim4Agents can be either an autonomous acting en-
tity like an agent (i.e. organization concept is a specialization of agent), or simple
groups that are formed to take advantage of the synergies of its members. The
concept of collaboration defines in which manner an organization is used in terms
of binding actors of interaction protocols to domain roles of organizations. The
role view covers the abstract representationsof functional positions of autonomous
entities within an organization or other social relationships. In general, a role in
Pim4Agents can be considered as set of features defined over a collection of enti-
ties participating in a particular context. The features of a role can include (but is
not limited to) activities, permissions, responsibilities, and protocols. A role offers
two specializations, i.e. the domain role is use to describe the necessary functional-
ities needed by organizations, whereas actors illustrate the participants of interac-
tion protocols. The interaction view focuses on the exchange of messages between
autonomous entities or organizations from a global perspective in terms of agent
interaction protocols. The behavior view describes how the internal behavior (i.e.

Enhancing the Interoperability between Multiagent Systems 93

plans) of intelligent entities can be defined in terms of combining simple actions to
more complex control structures or plans that are used for achieving predefined ob-
jectives or goals. The behavioral view contains basic concepts from workflow lan-
guages as well as particular tailored concepts for describing more agent-oriented
processes. The environment view contains any kind of entity that is situated in
the environment and the resources that are shared between agents, roles or orga-
nizations to meet their objectives. The core environment mainly deals with how
to define objects in terms of their attributes and operations. The multiagent view
gives an overview on the core building blocks (e.g. agents, organizations, etc.) of
the MAS. Finally, the deployment view describes the run-time agent instances in-
volved in the system and how these are assigned to domain roles required by an
organization.

3.4 Model-Driven Integration of Service Oriented Architectures
and Multiagent Systems

MASs do not exist in pure isolation, hence, mechanisms need to be explored to
combine MASs with other available software engineering approaches. As SOAs
and their corresponding modeling language SoaML describes IT system in a
very abstract manner, they provide a nice opportunity to illustrate how to uti-
lize agent-based computing in service-oriented environments. The technique se-
lected for combining SOAs and MASs bases on MDA. By comparing SoaML
and Pim4Agents, we derive a number of basic mapping rules summarized in
the remainder.

Mapping rule 1 deals with the mapping between ServicesArchitecture and Or-
ganization. Both concepts nicely correspond to each other, as both refer to roles
that interact in accordance to some predefined processes or protocols. However,
and this is the main difference between both constructs, a ServicesArchitecture
does not perform any role to the outside. Hence, the generated organization
is more or less utilized as a social structure providing the space for interaction.
Moreover, the organization itself does neither own any plan nor perform any role
to the outside and, hence, should not be considered as an autonomous entity in
the MAS, but rather as a form of grouping the necessary autonomous entities
to fulfill the service.

In the same way as a ServicesArchitecture specifies the top-down view on
a service, applying service choreographies to describe the interaction between
its roles, a ParticipantArchitecture defines how a service is orchestrated. Since
an Organization in Pim4Agents offers mechanisms to describe the interaction
from a global as well as from a local perspective, an Organization is also the
best match for a ParticipantArchitecture as defined by mapping rule 2.

In contrast to a ServicesArchitecture, a ParticipantArchitecture illustrates
a concrete entity in the system described. Thus, the target Organization may
perform a DomainRole, which is either required inside a ServicesArchitecture,
ServiceContract, or even in other ParticipantArchitectures. As previously men-
tioned in Section 3.2, the main purpose of a ServiceContract is to define the
roles that agreed on the contract and how these interact with each other, which

94 C. Hahn, S. Jacobi, and D. Raber

is expressed through any kind of UML behavior6. Hence, for representing a Ser-
viceContract in Pim4Agents, the right choice is a Collaboration, which defines
how the DomainRoles of its Organization are bound to the particular Actors of
the Organization’s Interactions. This is reflected by mapping rule 3.

Apart form ServiceContracts, we also apply mapping rule 3 when transform-
ing a UMLL Collaboration, as a Collaboration is the generalization of a Ser-
viceContract. For generating Interactions, we only introduce Actors, but do not
make any assumption about the ACLMessages that are exchanged by the Actors
within an Interaction. However, as SoaML does not use the concept of ACLMes-
sage, we only define Messages that are part of the Environment of Dsml4Mas.
How this is done in detail is defined by mapping rule 9.

As previously mentioned, a CollaborationUse in SoaML defines how to use a
ServiceContract in terms of role bindings. Consequently, it clearly defines, which
roles of a ServicesArchitecture are bound to which roles of the particular Service-
Contracts. An ActorBinding in Pim4Agents represents a similar concept, as it
defines, which DomainRole is bound to which Actor of an Interaction. As the
ActorBindings are contained by Collaborations, we map the CollaborationUse
as follows:

The semanticsofCollaborationUse (SoaML)andCollaboration (Pim4Agents)
nicely correspond to each other, as both are used to describe how a ServiceContract
(SoaML) and Organization (Pim4Agents) are used for a specific purpose. There-
fore, mapping rule 5 is straightforward and describes how the bindings are mapped
from a CollaborationUse to a Collaboration.

For modeling service choreography and orchestration in SoaML, UML Activ-
ity Diagrams are used as they allow to model a process from the perspective of
a single entity, but also offer the concept of a partition to describe how several
entities interact with each other. As specified by mapping rule 6, for mapping
UML Activity Diagrams, we instantiate a number of Plans in Pim4Agents. The
actual number depends on whether the activity diagram is partitioned through
the UML ActivityPartition concept (i.e. choreography) or not (i.e. orchestra-
tion). In case of the former, for each partition one Plan is generated, in case of
the latter, only a single Plan is generated. Mapping rule 6 specifies which kind of
information from UML Activity Diagrams is extracted to fill the body of a Plan.
The concepts used within an UML Activity Diagram can mainly be transformed
into corresponding Plan concepts in an one-to-one fashion.

A UML Interface defines a collection of operations and/or attributes that
ideally defines a set of processes. In order to represent this in an adequate manner
in Pim4Agents, the concept of a Capability depicts the perfect match, as both,
operations as well as attributes can be included into one of its Plans.

Messages that need to be exchanged in Pim4Agents are derived from the
UML ControlFlows (cf. mapping rule 8) that are specified across the partitions
in a UML Activity Diagram.

6 UML behaviors can be described in four different ways: Activity UML Diagram, Use
Case UML Diagram, Interaction UML diagram, and State Machine UML diagram.
However, UML Activity Diagrams are the most common used within SoaML.

Enhancing the Interoperability between Multiagent Systems 95

Fig. 2. Service-oriented architecture of Saarstahl AG

The mapping rules presented in this section, define a feasible transformation
between SoaML and Pim4Agents. In the next section, we demonstrate how
these transformations are applied to generate a corresponding Pim4Agents
model. This model is further transformed to generate JADE code. For this pur-
pose, we applied the model transformations described in [5]. This allows us to
generate nearly 100% executable code with only minor manual adjustments.

4 Service-Oriented Supply Chain of the Saarstahl AG

Saarstahl AG is a German steel manufacturer with a substantial presence on the
global market. The overall SOA architecture of the Saarstahl AG is as follows:
All actors except the customer belong to the Saarstahl system. The customer is
able to purchase products of Saarstahl by filling a purchase order form which
is transfered to the sales department. The sales department then registers the
order in the Saarstahl system which produces a production schedule for the or-
der. Scheduling is done by the planning department, which validated the order’s
feasibility of production with the help of the technical inspection. The result is
then reported to the sales department which informs the customer. If the or-
der is feasible, the planning department activates the processing on the scheduled

96 C. Hahn, S. Jacobi, and D. Raber

date. The first step of processing is to search the inventory for available material
fitting the order’s requirements. Available material is then assigned to the order.
If there is not enough material available the planning department schedules a
melting job at the steelworks. After material has been produced, the planning
department validates the quality requirements. When the order quantity is com-
pletely allocated the order is transfered to the rolling mills management system.
This represents the final step of the Saarstahl use case. Even if the complete ar-
chitecture of Saarstahl has been modeled with SoaML, due to space restriction,
we mainly focus on the Saarstahl architecture in the remainder of this section.

4.1 Saarstahl Architecture on SoaML

The ServiceArchitecture of the Saarstahl use case is depicted in Fig. 2. Every
component (e.g. SalesDepartment, RollingMill, Steelwork, etc.) is modeled as
Participant. Each Participant offers several services, where a service is modeled
by an interface typed as ServiceCapability and instantiated by a class typed as
ServiceInterface. The SaarstahlArchitecture itself encapsulates the internal ser-
vices and offers an ordering service for the customers to the outside. The most
important Participants of the SaarstahlArchitecture are the Order, SalesDepart-
ment, PlanningDepartment, Steelwork, RollingMill and the ProductInventory.
The interaction between the different participants is defined through service
contracts. The exchange of message itself is defined through UML Activities.
The PreProductionContract, for instance, is defined between the partners Sales-
Department, Order and TechnicalInspector. The SaarstahlImp further includes
the run-time agent instances SalesDeptImpl, RollingMillImpl, etc.

4.2 Generating the Agent-Based Design

The Pim4Agents output model, we will examine in the following, bases on the
Saarstahl use case previously introduced by utilizing the model transformation
from SoaML to Pim4Agents to obtain a Pim4Agents model of the use case.
Due to space restrictions, we only focus on the organizational parts of the full
Pim4Agents model, which is depicted in Fig. 3.

For visualization reasons, several participants and interactions are omitted.
The purpose of the diagram is to give the reader an idea of how the transforma-
tion generates the corresponding MAS. In Pim4Agents, the internal architec-
ture of SaarstahlArchitecture is specified by binding the transformed participants
e.g. Order via domain roles to their responsibilities. The organizations in the dia-
gram are created by mapping rule 2. Furthermore, the service contracts instanti-
ated by SaarstahlArchitecture in the SOA have been transformed to interactions
which are used by the SaarstahlArchitecture to coordinate its members. The di-
agram also shows a number of plans that are used by the organizations. These
plans are generated from owned behaviors and activity partitions that are typed
by roles the participant can perform.

Enhancing the Interoperability between Multiagent Systems 97

Fig. 3. Organization diagram of the Saarstahl supply chain

4.3 Relevance for Saarstahl

Saarstahl identified two major benefits by applying the presented approach.
Firstly, interoperability of existing IT-solutions supporting specified problems
like a short term planning for a steelwork, a detailed planning system for a rolling
mill or some inventory management systems in between is improved. Secondly,
there is a possibility of wrapping existing legacy systems of Saarstahl behind
participants of the Saarstahl SOA. Thus, a SOA is created on top of legacy
systems, the generated MASs allow the flexible orchestration of Web services.
The implemented system, moreover, eases the replacement of legacy systems, as
new IT-solutions can be tested in parallel to legacy systems for a period of time.
Agents encapsulating a legacy system are able to forward requests to the legacy
system as well as to the new systems and thus compare both results.

5 Dsml4Mas as Web Service Execution Engine

MAS are normally not considered as the standard execution architecture for
SOAs. Standard Web service description formats like WSDL (Web Services De-
scription Language) and orchestration engines like BPEL4WS (Business Process
Execution Language for Web Services) might be more appropriate. However,
the SHAPE model transformation architecture proofs that MASs and, in par-
ticular, Dsml4Mas is an interesting option as agent systems, in general, and
Dsml4Mas in particular offer valuable features that are worth to investigate in
the SOA context. From a research transfer point of view, the following lessons
of the model-driven integration of SOAs and MASs could be learned:

98 C. Hahn, S. Jacobi, and D. Raber

– The agent paradigm is not new to SOAs, however, the presented model-
driven approach between SoaML and Dsml4Mas establishes one of the first
proposals combining SOAs and the agent world through a generic model
transformation. This allows to automatically transform the business require-
ments during IT design and development to a MAS that captures the busi-
ness requirements, but additionally supports the execution in an intelligent
manner.

– Pim4Agents is expressive enough to support a generic mapping from
SoaML and necessary parts of UML. Most notably, the service choreog-
raphy and orchestration described by SoaML can nicely be mapped to
Pim4Agents, which allows representing service architecture from the ex-
ternal and internal perspective. BPEL4WS as the most known Web service
orchestration engine lacks this expressivity.

– In its current version, SoaML offers only a kind of semantics expressed in nat-
ural language. Through the model transformation to Dsml4Mas, the mod-
eling constructs are grounded into analog concept of Pim4Agents whose
semantics is clearly defined through the formal Object-Z specification given
in, for instance, [7]).

6 Conclusion

This paper presented a model-driven framework to automatically transfer SOAs
into MASs. The model transformation architecture bases on a mapping between
SoaML and Pim4Agents–representing the abstract syntax of Dsml4Mas. The
resulting agent-based design can be generically transformed to an executable
JADE implementation. The approach has been validated by modeling a real
industrial use case from the steel industry. The mapping between SoaML and
Dsml4Mas is a necessary step in order to build interoperable agent systems on
the PIM level. This is an important result towards bringing MASs into industry
as any service description built upon SoaML can be automatically transformed
to make use of the advantages the supported agent platforms offer.

References

1. Alonso, G., Casati, F., Kuno, H.A., Machiraju, V.: Web Services - Concepts, Ar-
chitectures and Applications. In: Data-Centric Systems and Applications (2004)

2. Dickinson, I., Wooldridge, M.: Agents are not (just) Web services: Considering BDI
agents and Web services. In: Proceedings of the Workshop on Service-Oriented
Computing and Agent-Based Engineering, SOCABE 2005 (2005)

3. Endert, H., Hirsch, B., Küster, T., Albayrak, S.: Towards a mapping from BPMN to
agents. In: Huang, J., Kowalczyk, R., Maamar, Z., Martin, D., Müller, I., Stouten-
burg, S., Sycara, K. (eds.) SOCASE 2007. LNCS, vol. 4504, pp. 92–106. Springer,
Heidelberg (2007)

4. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

Enhancing the Interoperability between Multiagent Systems 99

5. Hahn, C., Madrigal-Mora, C., Fischer, K.: A platform-independent metamodel for
multiagent systems. International Journal on Autonomous Agents and Multi-Agent
Systems (JAAMAS) 18(2), 239–266 (2008)

6. Hahn, C.: A domain specific modeling language for multiagent systems. In:
Padgham, L., Parkes, D.C., Müller, J., Parsons, S. (eds.) Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2008), vol. 1, pp. 233–240. IFAAMAS (2008)

7. Hahn, C., Fischer, K.: The formal semantics of the domain specific modeling lan-
guage for multiagent systems. In: Luck, M., Gomez-Sanz, J.J. (eds.) AOSE 2009.
LNCS, vol. 5386, pp. 145–158. Springer, Heidelberg (2009)

8. Johnston, S.: UML 2.0 profile for software services. Technical report, OMG, sub-
mitted to OMG ABSIG on SOA at 4/15 meeting in St. Louis (April 2006)

9. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley, Reading (2007)

10. Nguyen, X.T., Kowalczyk, R.: WS2JADE: Integrating Web Service with Jade
agents. Technical Report SUTICT-TR2005.03, Information and Communication
Technologies Centre for Intelligent Agents and Multi-Agent Systems (2006)

11. Padgham, L., Liu, W.: Internet collaboration and service composition as a loose
form of teamwork. J. Netw. Comput. Appl. 30(3), 1116–1135 (2007)

12. Payne, T.R.: Web Services from an agent perspective. IEEE Intelligent Sys-
tems 23(2), 12–14 (2008)

13. Sadovykh, A., Hahn, C., Panfilenko, D., Shafiq, O., Limyr, A.: SOA and SHA tools
developed in SHAPE project. In: Vogel, R. (ed.) Fifth European Conference on
Model-Driven Architecture Foundations and Applications: Proceedings of the Tools
and Consultancy Track. CTIT Proceedings Series, vol. 09-12, p. 113. University of
Twente, Enschede (2009)

14. Singh, M., Huhns, M.: Service Oriented Architecture: Semantics, Processes, Agents.
Wiley John & Sons, Chichester (2005)

Unifying Agent and Component Concepts
Jadex Active Components

Alexander Pokahr, Lars Braubach, and Kai Jander

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

{pokahr,braubach,jander}@informatik.uni-hamburg.de

Abstract. The construction of distributed applications is a challenging
task due to inherent system properties like message passing and con-
currency. Current technology trends further increase the necessity for
novel software concepts that help dealing with these issues. An analysis
of existing software paradigms has revealed that each of them has its
specific strengths and weaknesses but none fits all the needs. On basis of
this evaluation in this paper a new approach called active components is
proposed. Active components are a consolidation of the agent paradigm,
combining it with advantageous concepts of other types of software com-
ponents. Active components, like agents, are autonomous with respect
to their execution. Like software components, they are managed entities,
which exhibit clear interfaces making their functionality explicit. The
approach considerably broadens the scope of applications that can be
built as heterogeneous component types, e.g. agents and workflows, can
be used in the same application without interoperability problems and
with a shared toolset at hand for development, runtime monitoring and
debugging. The paper devises main characteristics of active components
and highlights a system architecture and its implementation in the Jadex
Active Component infrastructure. The usefulness of the approach is fur-
ther explained with an example use case, which shows how a workflow
management system can be built on top of the existing infrastructure.

1 Introduction

Building distributed applications is a demanding and complex task that nat-
urally leads to new problems due to inherent system properties like message
communication, concurrency and also non-functional challenges like scalability
and fault-tolerance. In addition to these inherent properties current technology
trends further increase the demand for novel software technical concepts help-
ing to cope with these issues. Among the most prominent trends are increasing
hardware concurrency and delegation of tasks to computer programs (cf. [12,16]),
which will be discussed with respect to their software technical requirements.

Increased hardware concurrency results from the tendency of chip manufactors
to increase processing power by creating multi-core processors with steadily more
cores. This leads to the challenge on the software level of how to cope with and

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 100–112, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Unifying Agent and Component Concepts 101

especially exploit this newly available degree of parallelism. Traditional rather
sequential software products cannot profit much from multi-core technology ex-
cept when multiple applications are run at the same time. In order to make
use of the hardware resources it is necessary to provide conceptual means on
the design and programming level and build massively concurrent applications
that go beyond simply parallelizing for-loops. Otherwise performance gains will
remain decent, because following Amdahl’s law “the speedup of a program using
multiple processors in parallel computing is limited by the time needed for the
sequential fraction of the program”.1 Therefore, concepts for self-acting entities
are required for embracing concurrency as a first-class design principle.

Delegation of work to computer programs is a trend that can be observed
since a long time and is applied even in very complex and sensible domains
today [16]. Building such complex and sensible application has several impli-
cations for the underlying software concepts. On the one hand the complexity
demands rich possibilities for realizing software entities and also for the ways
they can interact. Depending on the application scenario that is considered dif-
ferent kinds of entities (e.g. workflows or tasks) and also interaction styles (e.g.
message based or method calls) may be appropriate. On the software level this
diversity should be reflected by facilitating multiple entity and communication
styles. In addition, when business critical domains are considered, the support of
non-functional criteria like persistency, transactions and scalability is indispens-
able. These aspects are concerns that are orthogonal to business functionality
and require that entities are under strict control of the execution infrastructure
(typically named “managed” entities). Without such a management infrastruc-
ture it is very hard not to say impossible to realize the required non-functional
mechanisms.

These requirements should be addressed as much as possible already on the
underlying software paradigm level to avoid rebuilding solutions on the applica-
tion level. The systematic realization of an application requires in addition to the
conceptual properties of modelled entities also adherence to established software
engineering principles. The summarized requirements for a software paradigm
being able to build complex distributed applications are shown below:

1. support software engineering principles (e.g. de/composition and reusability)
2. exhibit different kinds of entity behavior (e.g. agent, workflow)
3. having rich interaction styles (e.g. messages, method invocation)
4. can act on their own (autonomously)
5. support non-functional characteristics (e.g. scalability and persistency)

Object orientation, although it has been conceptually extended with remote
method invocation, fails in addressing these demands, because it has been con-
ceived with a sequential non-distributed application view in mind. Hence, further
paradigms like agents, active objects, components, and services have been de-
vised building on basic object-oriented concepts. These paradigms have specific
strengths and weaknesses but none of them is able to address the full range
1 http://en.wikipedia.org/wiki/Amdahl’s_law

http://en.wikipedia.org/wiki/Amdahl's_law

102 A.Pokahr, L. Braubach, and K. Jander

of problems in distributed systems. The idea of this paper is integrating the
strengths of promising paradigms into a new one called active components.

The next Section 2 provides an analysis of promising software engineering
paradigms and lays down the foundations for the design choices of active com-
ponents. Thereafter, in Section 3, the basic concepts of active components are
described and in Section 4 their implementation and runtime infrastructure is
presented. Highlighting the usefulness of the approach, Section 5 presents an ex-
ample application, which realizes a workflow management systems using active
components. Section 6 discusses related work and Section 7 concludes the paper.

2 Paradigms for Complex Distributed Systems

The work presented in this paper is a unification of the concepts of active objects,
agents and components. These three paradigms have been selected, because they
exhibit interesting technical properties with respect to the development of com-
plex distributed systems. The paradigms will be analyzed with respect to the
criteria elicited in the introduction. Other paradigms, such as service-oriented
computing, may offer additional beneficial properties, but the inclusion of these
properties is left to future work.

For mapping the criteria to technical properties of the paradigm entities, the
categories structure, interaction and execution have been introduced. The struc-
ture category deals with the inner workings of an entity. The hierarchical aspect
of structure addresses criteria 1 (software engineering principles) and demands
that entities may need to be decomposed into smaller entities themselves. The
second important aspect of entity structure are so called internal architectures,
which conceptually capture different kinds of entity behavior as suggested by
criteria 2. Criteria 3 requires supporting rich interaction styles as represented
in the interaction category. With message-based interaction and object-oriented
method invocation, the two most important interaction styles have been included
as sub-properties in this category. The execution category considers how entities
are embedded into a runtime environment. On the one hand, entities should be
able to act autonomously as stated in criteria 4. On the other hand, the non-
functional characteristics of criteria 5 (e.g. persistence and scalability) can only
be achieved when entities are managed by an infrastructure.

2.1 Software Agents and Multi-Agent Systems

Software agents are a paradigm for open, distributed and concurrent systems
[12]. An agent is commonly characterized as being autonomous (independent
of other agents), reactive (advertent to changes in the environment), proactive
(pursues its own goals), and social (interacts with other agents) and may be
realized using mentalistic notions (e.g. beliefs and desires)[16]. Typically, an
agent-based software application is realized as a multi-agent system (MAS),
which is a set of agents that interact using explicit message passing, possibly
following sophisticated negotiation protocols.

Unifying Agent and Component Concepts 103

Advantages of the agent paradigm for building complex distributed systems
can be found on the intra- and inter-agent level. Intra-agent level concepts al-
low defining the behavior of a single agent. Agents naturally embrace concur-
rency, as each agent is autonomous and can decide for itself about its execution.
Moreover, many agent architectures have been developed [4], partially based on
theories from disciplines such as philosophy and biology. They provide ready-
to-use solutions for defining system behavior, that fit well to different problem
settings (e.g. simple insect-like agents vs. complex reasoning agents). The inter-
agent level deals with concepts to describe interactions among agents in a MAS.
Agent interaction is primarily message-based, although other forms exist, such
as environment-based interaction (e.g. pheromones for ant-like agents). Regard-
ing message-based interaction, agent research has defined many ready-to-use
interaction patterns for open distributed systems (e.g. for negotiation).

Limitations of the agent paradigm can be found in conceptual as well as techni-
cal aspects. An obvious conceptual limitation is that message-passing communica-
tion is not well suited for all application areas. Building such applications
using message-oriented agents leads to cumbersome design with poor performance
and maintainability. On the technical level, many existing frameworks provide no
management infrastructure and therefore do not address non-functional proper-
ties. Moreover, often no sophisticated concepts for modularization on the intra-
agent level are available.

2.2 Active Objects

Active objects [10] are a design pattern in the context of object-oriented software
development, addressing issues of multi-threading and synchronization. The ac-
tive object is an abstraction concept for concurrency. A scheduler in the active
object manages the execution of method calls on the object’s own thread. The
pattern increases the concurrency of an application and also avoids synchroniza-
tion issues, because local data is always accessed from the same thread.

The active object pattern excels at providing method-based interaction. From
a developers perspective it may even be transparent, if a method is called on an
active object or a conventional passive object. Additionally, the pattern provides
some autonomous execution. The pattern decouples caller from callee and lets
the active object decide, in which order requests are processed.

The pattern is not a fully-fledged paradigm for distributed computing and
thus does not address the other properties. While it seems reasonable to have
a hierarchical decomposition of active objects and also to equip active objects
with message-based interaction capabilities, it is not obvious how internal archi-
tectures or a managed execution could be incorporated into the metaphor.

2.3 Software Components

The component metaphor [15] is inspired from the manufacturing industry,
where preproduced components (potentially provided by an external supplier)

104 A.Pokahr, L. Braubach, and K. Jander

structure interaction execution
hierarchical int. arch. msg-based meth.call auton. managed

agents partially yes yes no yes partially
active objects no no no yes yes no
components yes no yes yes no yes

Fig. 1. Technical properties of paradigm entities

are assembled into a complete product. From a technical viewpoint software com-
ponents facilitate forming a software application by composing independently
developed subsystems on top of some substrate (component platform).

Regarding interaction, component models support message- as well as method-
based interaction styles. Existing component platforms further simplify system
implementation by providing a ready-to-use component management infrastruc-
ture. In this respect, many component platforms such as Java EE application
servers address non-functional properties like persistence and replication, which
easily allows achieving robustness and scalability of implemented systems.

A major drawback of using software components for distributed systems is
the lack of a concept for representing concurrency. Most component models
regard component instances as passive (i.e. non-autonomous) entities that only
act on request (e.g. when a user performs an action through a web interface).
Some infrastructures such as Java EE even prohibit the use of threads by the
developer, as this would break transaction or replication functionality. Moreover,
component models focus on the interfaces of components and do not address the
internal structure apart from a hierarchical decomposition.

2.4 Summary

In Figure 1 it can be observed that each of the analyzed approaches handles the
criteria, which have been set out in the introduction, to a different extent. On
the one hand, agents and components are conceptually rich metaphors with only
a few weaknesses. Agents have some weaknesses with respect to hierarchical de-
composition and management infrastructure and do not support object-oriented
method interaction. Components lack sophisticated internal architectures and do
not support autonomous execution. On the other hand, active objects are not
as conceptually rich as the other approaches. Yet, active objects are interesting,
because they achieve a combination of method call interaction with autonomous
execution. The analysis result motivates the unification of the paradigms into a
new conceptual framework as described in the next section.

3 Active Component Concepts

In the following the main concepts for the active components approach will be
laid down according to the earlier introduced categories execution, interaction

Unifying Agent and Component Concepts 105

Fig. 2. Active Components (AC) architecture

and structure. The overall architecture is depicted in Figure 2 and consists of
a management infrastructure containing infrastructure services and the active
components themselves. In this respect the management infrastructure repre-
sents a container for all active components and is responsible for their operation.

The characteristics of autonomous and managed entities seem to be contra-
dicting at first. Autonomous components are entities that want to decide on their
own about their execution while the management infrastructure needs to have
control about which and when components are executed. This means a man-
agement infrastructure always imposes the inversion of control principle (IOC),
which puts the control flow responsibility to the infrastructure layer. For bringing
together autonomy and management, active components need to follow implic-
itly the IOC principle by announcing execution requests to the infrastructure
layer. Thus, for the programmer IOC is not visible as components can act au-
tonomously, but internally are managed and follow the IOC of the platform.

The interaction of components can be message-based as well as method-call-
based. Message based interaction is asynchronous (possibly remote) and uses
unique component identifiers for addressing receiver components. Hence, it is
very similar to agent based communication with the exception that no specific
message format is imposed by the infrastructure. As result message formats can
follow agent related specifications such as FIPA ACL2 as well as other formats.
For synchronization of method-call-based interaction, active components employ
a similar scheme as active objects and provide a decoupling layer called external
access. The layer separates the execution from the calling component and thus
avoids inconsistent component states and reduces the possibility of deadlocks.

The behavior of an active component is determined by its internal architecture
while the structure may include a hierarchical decomposition into subcomponents.
Internal architectures allow making use of different active component types, thus
letting the developer choose for each part of an application, which component type
may be a good fit for the desired business functionality. Therefore heterogeneous
applications consisting of a mix of component types can be built and interaction
between these is easily possible due to the standard interaction means for all active

2 http://www.fipa.org/specs/fipa00061/

http://www.fipa.org/specs/fipa00061/

106 A.Pokahr, L. Braubach, and K. Jander

Fig. 3. Elements of the Jadex AC platform

components. Any component may further contain an arbitrary number of child
components, which may follow the same or different internal architectures than
their parent component. The hierarchy does not impose an execution policy such
that child components are concurrent to all other entities. One key benefit of hier-
archical components is that management commands can be applied to the whole
hierarchy of a component allowing e.g. the termination or suspension of an appli-
cation as a whole.

In summary, active components integrate successful concepts from agents,
components as well as active objects and make those available under a common
umbrella. Active components represent autonomous acting entities (like agents)
that can use message passing as well as method calls (like active objects) for
interaction. They may be hierarchically structured and are managed by an in-
frastructure that ensures important non-functional properties (like components).

4 Active Components Infrastructure

The active component concept has been realized in the Jadex AC (active compo-
nents) platform. The implementation distinguishes the basic execution platform
from the kernels, which represent different internal architectures. This separa-
tion allows developing kernels independently of the execution environment and
also providing different execution environments that suit different application
contexts. Figure 3 depicts the elements of the platform. The platform provides
the infrastructure services (cf. Section 3) to the component instances. Different
platform implementations are already available that allow executing components
in a Standalone Java application as well as on top of the well-known JADE agent
framework [2]. Furthermore, a platform for executing active components in Java
EE application servers is currently under development.

4.1 Kernels

Several different internal architectures have already been realized as kernels,
which can be categorized into agent kernels, process kernels and other kernels.
The BDI kernel supports the development of complex reasoning agents, that
follow the belief-desire-intention model [14]. Additionally, for insect-like agents,

Unifying Agent and Component Concepts 107

Fig. 4. Modeling tools (left) and runtime tools (right)

a so called micro-kernel is provided, which provides a simple programming style
and supports the execution of large numbers of agents (>100000 in a desktop
Java VM) due to a very low memory footprint. The Task kernel is in between
the other agent kernels in terms of programming constructs and memory con-
sumption and is best suited for agents performing a fixed set of tasks.

The execution of workflows modeled in the business process modeling nota-
tion (BPMN) is realized by a corresponding BPMN kernel. Moreover, the GPMN
kernel interprets the so called goal process modeling notation, which is a unifica-
tion of BDI agent and BPMN process concepts [6]. Finally, an application kernel
is provided, that features configuration mechanisms for subcomponents as well
as extension points for non-component functionality; so called spaces [13]. As in-
dicated by the m:n-relation between kernel and platform, each kernel may run on
any platform and each platform is capable of executing components based on any
kernel. This facilitates building heterogeneous systems with different component
kinds that interoperate seamlessly.

The right side of the figure represents the domain components, i.e. that a
developer builds for a specific application. Each domain component is based
on exactly one kernel as indicated by the 1:n-relation. Moreover, components
may have an arbitrary number of subcomponents of any kernel. For example,
an application based on Jadex AC allows seamless interaction between a Sales
Assistant implemented as BDI agent and an Order Process modeled in BPMN.

4.2 Tool Support

Developing applications with the Jadex active component platform is supported
by a suite of tools that can be coarsely divided into modelling and runtime
tools (see Figure 4). Programming agents can be done using the Java and XML

108 A.Pokahr, L. Braubach, and K. Jander

support of a standard development environment, while modeling workflows is
supported by particular tools. For BPMN as well as GPMN diagrams, two
eclipse-based editors are available. The BPMN Modeller is based on an existing
eclipse BPMN plugin3, and adds a custom properties view for specifying Jadex
specific settings of diagram elements. The GPMN Modeller is a custom devel-
opment for supporting the goal process modeling notation, and is based on the
EMF/GMF framework like the BPMN modeller for a consistent look and feel.

Runtime tools are combined in the so called Jadex control center (JCC), which
allows managing the components on a running platform. The JCC is built up by
separate plugins, each of which addresses a specific tool need. All of the tools
can be used for any of the previously described kernels. For space reasons, only
some of the available tools are presented. The Starter (not shown) allows browsing
existing component models and is used for creating component instances. More-
over, existing component instances are shown and may be stopped (destroyed) as
well as suspended/resumed. The ComAnalyzer monitors and visualizes ongoing
message-based communication among components and is a powerful tool for an-
alyzing complex interactions. Recorded messages can be shown in different views
(table, sequence diagram, 2D graph, bar/pie chart) and filtered according to rules
entered by the developer. Finally, the Debugger supports stepwise execution of
components as well as specifying execution breakpoints. Additionally, the differ-
ent kernels provide specific extensions to the debugger allowing detailed compo-
nent introspection, such as current activities of a BPMN process or current goals
of a BDI agent. Descriptions of further tools can e.g. be found in [14].

4.3 Usage

The complete Jadex active component platform including kernels, tools and
example applications is available as open source software via the project home
page4. At the University of Hamburg, the platform is currently used in two
externally funded DFG research projects as well as in a teaching course. The
next section describes an example application from one of the research projects.

5 Example Application

An interesting research area is the application of agent concepts to implement
and improve workflow concepts. Workflows often require a workflow management
system (WfMS) for interaction with workflow participants and software they use,
such as CAD applications and word processors. Since the users generally have
their own workstations, the interaction with the workflow management system
must be able to interact with the client software remotely using message pass-
ing. Such a WfMS was developed as part of the DFG project “Go4Flex”, which
deals with flexible workflows in areas like change management and production
in cooperation with Daimler AG. The WfMS architecture is largely based on the
3 http://www.eclipse.org/bpmn/
4 http://jadex.informatik.uni-hamburg.de/

http://www.eclipse.org/bpmn/
http://jadex.informatik.uni-hamburg.de/

Unifying Agent and Component Concepts 109

Fig. 5. The basic structure of the workflow management system

reference model of the Workflow Management Coalition and uses three kinds of
active components as can be seen in Figure 5.

The system is based on three BDI agents each providing an interface expos-
ing a specific subset of the WfMS functionality. The first agent provides access
to stored workflow models and allows a user to add and remove models that
are available to the WfMS. Workflow tasks which require user interaction (work
items) are generated by the active workflows and are managed by the Client
Application Interface Agent. The third agent provides monitoring and adminis-
trative capabilities.

The functionality of the agents is accessed by a workflow client using its own
active component to exchange messages with the aforementioned agents. This
active component can be of any type as long as it adheres to the communication
protocol, which employs FIPA ACL messages and FIPA interaction protocols,
like the FIPA Request Protocol for requesting a new workflow instance and
the FIPA Subscribe Protocol to be informed about new work items. The use
of messages and protocols allows a workflow client to be distributed and inter-
act with the WfMS remotely. The current standard client is based on a BDI
agent, however, using a different active component such as a micro-agent or a
BPMN workflow would be possible. Using agents as workflow clients allows the
implementation of features like cooperation between multiple workflow clients.

Due to the active component concept, the creation of new workflow instances
can be delegated to the component management service of the Jadex platform so
that the WfMS can handle any kind of workflow regardless of the concrete type.
As a result, the WfMS automatically supports all types of workflows for which
active component implementations are available, which currently includes both
BPMN and GPMN workflows, but can be extended with additional workflow
models like BPEL by simply providing a corresponding kernel.

The active component approach enables the workflow management system to
use seemingly disparate concepts like agents and workflows seamlessly, allowing
interesting new approaches of interaction between workflows and agents. The
WfMS itself uses such interactions to implement functionality like passing of
work items from workflows to the managing agent and finally to the application
component where it will be processed. In addition, the use of active compo-
nents allows the WfMS to abstract from the workflow type, thus allowing easy
extensibility and avoiding explicit management of separate workflow engines.

110 A.Pokahr, L. Braubach, and K. Jander

6 Related Work

In the literature several attempts that aim at an integration of agent concepts
with other paradigms can be found, whereby especially components and ser-
vices have been considered. In this paper we focus on components so that first
general comparisons of component and agent approaches will be taken into ac-
count. Thereafter, concrete integration attempts will be discussed. These have
been structured according to their primary underlying paradigm, i.e. extending
component approaches with agent ideas and vice versa.

One of the first discussions about components and agents can be found in
[8]. It basically considers agents as next generation software components and
explains potential advantages of multi-agent system technology. A deeper look
into both paradigms has been revealed by Lind in [11], who compares them
according to key characteristics of the conceptual entities, the interaction modes
as well as the problem solving capabilities. The paper advocates that agent
technology provides advantages with respect to flexibility and loosely-coupled
interactions and can profit from component orientation by adopting software
technical development ideas and execution infrastructure.

With respect to approaches that extend component concepts with agent ideas
first Fractal [5] will be discussed. The framework itself provides sophisticated
means for realizing hierarchical components distinguishing between client and
server interfaces and providing a membrane metaphor that shields internals of a
component from the outside. For parallel and distributed component execution
Fractal has been extended in the Dream5 and ProActive [1] projects, which aim
at the integration of active object ideas. All Fractal programming principles
are also valid within the extensions and the interaction style remains based
on method-calls. The decoupling between caller and callee is achieved by using
futures in the method signatures. The approaches are promising, but have some
limitations due to the exclusive use of method-based interactions, making it hard
to realize application cases that e.g. require negotiation mechanisms.

Another strand of development is targeted at the technical integration of
components with agents. The main objective consists in executing normal agent
software in a component infrastructure. A core advantage of this approach is that
agent applications become managed software entities and thus inherit the non-
functional properties from the underlying component execution environment.
Companies like Whitestein [3] and Agentis6 have built their commercial agent
platforms on basis of such a proven infrastructure, which additionally alleviates
the barriers of agent technology adoption. It has to be noted that this form of
technical integration does not contribute much to a conceptual combination of
both paradigms as agents remain the only primary entity form.

True conceptual integration approaches have been conducted in [9] and [7].
The first proposes so called AgentComponents, which represent agents inter-
nally built out of components. Externally, agents are slightly componentified

5 http://dream.ow2.org/dreamcore/
6 The company does no longer exist.

http://dream.ow2.org/dreamcore/

Unifying Agent and Component Concepts 111

by wiring them together using slots with predefined communication partners,
whereby communication is only handled using message passing. Other important
aspects of component models regarding hierarchical composition or method-call
based interaction forms have been neglected. In SoSAA [7] the architecture con-
sists of a base layer with some standard component system and a superordinated
agent layer that has control over the base layer. Typical reflective mechanisms of
the component layer, like explicit binding controllers, facilitate the way the agent
layer may exert changes on the components of the lower layer e.g. for perform-
ing reconfigurations. Although the overall combined architecture of components
and agent contributes to promoting the strengths of both paradigms the ap-
proach treats components and agents as completely distinct entities and does
not contribute much in consolidating both.

In summary, the possible positive ramifications of combining ideas from
components and agents have already been mentioned in early research works.
Despite this fact, only few concrete conceptual integration approaches have
been presented so far. On the one hand, approaches that enhance component
frameworks with active objects only support simple method-based interaction
styles. On the other hand approaches leveraging agents with component concepts
fail until now in providing a unified view on an agent-component software
entity.

7 Summary and Outlook

In this paper paradigms for developing complex distributed systems have been
analyzed. Agents, components and active objects have been contrasted with
respect to their properties in the categories structure, interaction and execu-
tion. The notion of an active component has been proposed as a combination
of the properties, which are deemed advantageous for building complex dis-
tributed systems. Most importantly, an active component combines autonomous
acting (like an agent) with managed execution (like a component). Further-
more, active components support message-based and method call-oriented in-
teraction and allow hierarchical decomposition as well as elaborated internal
architectures. The Jadex active component platform has been presented as a
freely available implementation of the active component concept. As an ex-
ample application, a WfMS has been put forward, which is based on the dif-
ferent active component types and is developed in cooperation with Daimler
AG.

Future work on the technical level will target the integration of the Jadex AC
platform into Java EE application server environments. On the conceptual level,
the active component concept can be extended in several directions by includ-
ing properties of other paradigms, e.g. looking at the area of service oriented
computing or considering extensibility as prevalent in plugin systems.

112 A.Pokahr, L. Braubach, and K. Jander

References

1. Baude, F., Caromel, D., Morel, M.: From distributed objects to hierarchical grid
components. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) CoopIS 2003, DOA
2003, and ODBASE 2003. LNCS, vol. 2888, pp. 1226–1242. Springer, Heidelberg
(2003)

2. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent systems with
JADE. John Wiley & Sons, Chichester (2007)

3. Brantschen, S., Haas, T.: Agents in a J2EE World. White paper, Whitestein Tech-
nologies (2002)

4. Braubach, L., Pokahr, A., Lamersdorf, W.: A universal criteria catalog for evalua-
tion of heterogeneous agent development artifacts. In: Proc. of AT2AI-6, IFAAMAS
(2008)

5. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.: The fractal
component model and its support in java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. Exper. 36(11-12), 1257–1284 (2006)

6. Burmeister, B., Arnold, M., Copaciu, F., Rimassa, G.: Bdi-agents for agile goal-
oriented business processes. In: Proceedings of AAMAS’08 (2008)

7. Dragone, M., Lillis, D., Collier, R., O’Hare, G.M.P.: Sosaa: A framework for in-
tegrating components & agents. In: Proc. of SAC 2009. ACM Press, New York
(2009)

8. Griss, M.: Software Agents as Next Generation Software Components (2001)
9. Krutisch, R., Meier, P., Wirsing, M.: The agent component approach: Combining

agents, and components. In: Schillo, M., Klusch, M., Müller, J., Tianfield, H. (eds.)
MATES 2003. LNCS (LNAI), vol. 2831, pp. 1–12. Springer, Heidelberg (2003)

10. Lavender, G., Schmidt, D.: Active object: An object behavioral pattern for con-
current programming. In: Pat. Languages of Prog. Design, vol. 2, Add.-Wesley,
Reading (1996)

11. Lind, J.: Relating agent technology and component models (2001)
12. Luck, M., McBurney, P., Shehory, O., Willmott, S.: Agent Technology: Computing

as Interaction (A Roadmap for Agent Based Computing). AgentLink (2005)
13. Pokahr, A., Braubach, L.: The notions of application, spaces and agents — new

concepts for constructing agent applications. In: Proc. of MKWI’10 (2010)
14. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI Reasoning Engine.

In: Multi-Agent Programming: Languages, Platforms and Applications. Springer,
Heidelberg (2005)

15. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming, 2nd edn. ACM Press and Addison-Wesley (2002)

16. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons,
Chichester (2001)

Impact of Competition on Quality of Service in
Demand Responsive Transit

Ferdi Grootenboers1, Mathijs de Weerdt1, and Mahdi Zargayouna2

1 Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands

2 INRETS Institute, Gretia laboratory, Building “Descartes II”,
2 rue de la Butte Verte, 93166 Noisy le Grand Cedex, France

fgrootenboers@gmail.com, M.M.deWeerdt@tudelft.nl, zargayouna@inrets.fr

Abstract. Demand responsive transportation has the potential to pro-
vide efficient public door-to-door transport with a high quality. In cur-
rently implemented systems in the Netherlands, however, we observe a
decrease in the quality of service (QoS), expressed in longer travel times
for the customers. Currently, generally one transport company is respon-
sible for transporting all customers located in a specified geographic zone.
In general it is known that when multiple companies compete on costs,
the price for customers decreases. In this paper, we investigate whether
a similar result can be achieved when competing on quality instead. To
arrive at some first conclusions, we set up a multiagent environment to
simulate the assignment of rides to companies through an auction on
QoS, and the insertion of allocated rides in the companies’ schedules
using online optimization. Our results reveal that this set-up improves
the quality of the service offered to the customers at moderately higher
costs.

Keywords: Dial-a-ride, multi-company, quality of service, auction.

1 Introduction

Demand-Responsive Transit (DRT) services are a form of transport that is a
compromise between public transportation and individual taxis. The principle
of these systems is to define the itineraries and schedules of the vehicles based on
the requests of the users. Customers are thus provided with relatively cheap door-
to-door transportation insofar as they accept to share their ride with others and
tolerate a certain detour from their direct trip. The main problem with current
DRT services as organized in the Netherlands is that the quality of service (QoS)
cannot be guaranteed over longer periods of time. A strong competition for the
right to serve for a period of usually three years promises a reasonable quality
at a low price, but has the effect that a company that is too optimistic in the
contracting phase receives the assignment, but subsequently cannot meet the
quality objectives without incurring serious losses. Heavily penalizing such a
company for a low QoS will soon lead to bankruptcy, and therefore an even
lower QoS until a new company has been found.

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 113–124, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

114 F. Grootenboers, M. de Weerdt, and M. Zargayouna

QoS is usually not specifically addressed in the allocation of rides. The min-
imization of company’s costs is treated as a primary objective, while imposing
a minimal QoS [1]. The idea put forward in this paper is to let companies com-
pete on QoS on a day to day basis given a price per kilometer that is fixed in
advance. Given known results that competition can reduce the total costs, the
question is can we use it to improve the QoS instead, and at what costs? Here
we divert from research on using auctions and other price-based mechanisms for
task allocation in that not the company with the lowest price receives the task,
but the company that guarantees the highest QoS. Our main hypothesis is that
this approach significantly increases the QoS without much additional costs.

To test our hypothesis, we implement the proposed approach in a multiagent
environment (see Section 3), simulate series of requests, simulate the bidding and
scheduling process of the companies (in Section 4), and compute the resulting
costs and QoS in Section 5. We compare these results to a single-company setting
where the company optimizes costs with and without a guaranteed QoS level.

2 Background

DRT services are usually modeled as a Dial-a-Ride Problem with Time Windows
(DARPTW), an extension of the Vehicle Routing Problem. A DARPTW is
defined by a set of customers and a fleet of vehicles. Each customer desires to
be transported from an origin location to a destination. Customers can impose
a time window which includes the earliest possible time and the latest possible
time they can be either picked up or delivered. The dynamic DARPTW (D-
DARPTW) is NP-hard, which can be proven by a translation from the Traveling
Salesman Problem (TSP) [2]. The problem can be solved exactly by modeling
it as a Mixed Integer Program (MIP) [3], or by applying heuristics [4]. The
disadvantage of using exact algorithms in a dynamic environment is that these
algorithms take too much computation time. The disadvantage of using heuristics
is that in some cases the solutions are significantly far from the optimal solution.

In a technique called on-line optimization the optimal solution is searched for
with exact algorithms, but only taking into account that part of the problem that
is relevant for the moment [5]. For instance, when searching for the best departure
times of the locations of a request to insert into a current schedule, only that part
of the current schedule that can be influenced by inserting the new request needs
to be considered in the solution process. This results in smaller problems as input
for exact algorithms, which implies less computation time. In our simulations
of the multi-company environment we apply this online optimization for the
insertion of a ride into the schedule of one of the companies.

3 The Multi-company DARPTW

In this section, we define a DARPTW where multiple companies compete for
requests. The general principle is that the companies announce an offer to the
customer, who chooses the company that will serve its request. Conditioned on

Competition and Service Quality 115

some negotiated constraints, the winning company can then insert the request
into its schedule.

3.1 Problem Definition

The DARPTW can be represented by a directed graph of locations and rides
between these locations, G = (L, R). The set of locations L contains two vehi-
cle depots for each company, that serve as start and end vertex of all vehicles
(denoted by 0 and 2n + 1), n pickup locations P = {1, . . . , n}, and n delivery
locations D = {n + 1, . . . , 2n}. This implies that L = {0, 2n + 1} ∪ P ∪ D.

A request is a combination of a pickup location i ∈ P and a delivery location
n + i ∈ D. Time windows are associated with a location i as [si, ei], with si the
earliest possible time the request can be served at that location (either pickup or
delivery), and ei the latest possible time the request can be served. Each location
i has an associated load qi, which denotes the number of passengers that are to
be pickup up or delivered at that location. We define q0 = q2n+1 = 0, q ≥ 0 for
i = 1, . . . , n, and qi = −qi−n for i = n + 1, . . . , 2n. Each company has a set of
vehicles denoted by K, and with each vehicle k ∈ K a maximal capacity Qk and
a maximal route duration Tk are associated. The cost of a ride from location i
to j with vehicle k is denoted by ck

ij , and the travel time of a ride between i and
j is denoted by tij . To account for service time at locations (i.e. time to get in
and out the vehicle), we associate with every location i a service duration di ≥ 0
and d0 = d2n+1 = 0.

3.2 Mechanism Overview

A customer announces its request to the center, and this is forwarded to all
known companies. Once a company receives a new request, it checks whether it
is possible to insert it into one of its vehicle schedules. If it is not possible to
insert the request into one of the company’s vehicle schedules, the company will
not place a bid in the current auction. Otherwise, a bid value is calculated for this
request. When the center has received all bids, it determines the best one (the
highest QoS) and sets the conditions that have to be met by the winning company
in serving the request. The winning company is informed of the determined
conditions, and all other companies are sent a message that they have not won
the auction. The winning company then inserts the request into the schedule
of one of its vehicles. We assume there is always the possibility to have the
request served by a taxi company outside the system at a (usually high) so-called
reservation price. This is done when no bid is offered below this reservation price.
The following subsections detail the elements of this process, starting with the
computation of the QoS calculation.

3.3 Bidding Service Quality

Usually, the additional costs needed to serve a request is used as a bid [6], and to
minimize overall costs, the request is assigned to the vehicle that has announced

116 F. Grootenboers, M. de Weerdt, and M. Zargayouna

the bid with the lowest additional costs. In our work, we let the companies
compete on the QoS for an incoming request. Therefore, the bid value in our
setting contains the QoS that a company promises to provide. We define QoS as
the ratio of the actual ride time to the direct ride time. For instance, when the
time to travel from A to B directly (i.e. with no detours) is equal to 5 minutes,
and the vehicle drives from A to B via C, in 7 minutes, then the QoS is 5

7 .
For customers, this measure emphasizes one of their biggest complaints, namely
large detours. For companies, this ratio is a measure of how efficiently different
rides are combined.

A vehicle’s route is modeled by a sequence of locations i with associated service
times di and departure times ti. Furthermore let the minimal time needed to
drive from location i to location j be denoted by tij . The QoS for a request with
pickup location i and delivery location j can then be calculated as follows:

QoSij =
tij + di + dj

tj − ti
(1)

3.4 Auction on QoS and Pre-determined Payments

The mechanism that we propose is based on a reversed sealed-bid second-price
auction, using QoS instead of prices. In such an auction, each bid is private
to the company that submits it, and the winner of the auction has to meet the
details of the second-highest bid value. The auction is reversed, because there are
multiple sellers (the companies) and a single buyer (the customer). This single
buyer announces the details of its request, and then the companies can determine
a bid value. The winning company is the company that announces the highest
QoS, and if multiple companies announce the same highest bid, one of these
companies is arbitrarily selected as winner. The request that has been auctioned
is allocated to the winning company, which then has to serve the request with
the amount promised by the second-highest bidder.

In our setting, the payment for the service is not defined by the auction, but
must be set on forehand. We set the payment equal to a price per kilometer Ckm

multiplied by the direct distance between the pickup and the delivery location
of the customer’s request. The profit of a company is then defined as the total
income a company receives from serving requests minus the total costs needed
to serve these requests. Clearly, Ckm essentially determines the income of the
companies.

Let for each request (i, j) ∈ R the direct distance tij be given. For this prob-
lem, we define solutions for two hypothetical situations with complete knowl-
edge of the requests during the day (in advance). We let OPT (R) denote the
transportation costs when all rides are optimally combined (in hindsight), and
OPT 1.0(R) denote the transportation costs when each request is served with a
QoS of 1.0.
Proposition 1. If an auction on QoS is used for multiple companies, and the
(fixed) price per kilometer Ckm is below OPT (R)∑

(i,j)∈R ti,j
few people will be transported.

If Ckm is above OPT 1.0(R)∑
(i,j)∈R ti,j

, everyone will be transported separately.

Competition and Service Quality 117

Proof. The lower bound for Ckm is the minimal total costs needed to serve all
requests divided by the total direct distance traveled by all customers. When
Ckm is set below this value, companies have more costs than income, except
when a ride largely overlaps with an existing ride (which is never the case when
the schedule is still empty). Companies will thus not bid in the auction. Therefore
few people will be transported. On the other hand, when Ckm is set above the
average cost of transporting everyone separately, every company makes a net
profit for each customer. Therefore, every company will bid a QoS of 1.0 for
every request, because it then has the highest chance to win the auction. Since
this holds for all companies, all requests have to be served with QoS 1.0.

4 Computations for the Companies

The computations of the transport companies are based on online optimization
for the insertion of rides, and for bid determination use a look-ahead on possible
future requests via a Monte Carlo simulation in combination with an insertion
heuristic. Both approaches are detailed below.

4.1 Online Optimization

Every company has to solve a DARPTW problem to find the set of routes for
their vehicles. We define a planning horizon H , which is the time period for which
the routes are planned. A solution for one company is represented as follows. Let
uk

i be the time at which vehicle k starts servicing at a location i, wk
i the load of

vehicle k upon leaving location i, and rk
i the ride time of a customer that places

the request to travel from i to n + i. In the model that follows, xk
ij is equal to 1

if and only if a ride from location i to j is allocated to vehicle k.
In Figure 1 the entire model is given, in which the objective function is to

minimize total routing costs (see Equation 2). Constraint 3 ensures that all
requests are served only once and Constraint 4 ensures that every vehicle will
once drive to the start and end depot. Together with 5 and 6 this guarantees that
every request is served once by the same vehicle and that each vehicle starts and
ends its route at a depot. Constraint 7 states that the arrival time at a location
must be higher or equal to the start time of servicing at the starting location,
plus the service duration at that location, plus the time of the ride from start
to end location. It is also obvious that the load of a vehicle at the end location
of a ride is higher than or equals the load of that vehicle at the start location
(Constraint 8).

The travel time of a user is higher than or equals the time the vehicle is at his
delivery location minus the time he picked up the user and minus the duration of
servicing at the pickup location; this is ensured by Constraint 9. Constraint 10
states that the duration of a vehicle to drive from the start depot to the end
depot must be less than or equal to the total route duration specified for that
vehicle, while Constraint 11 ensures that every location is visited within the
specified time horizon. The ride time of a passenger is specified to be at least as

118 F. Grootenboers, M. de Weerdt, and M. Zargayouna

Minimize ∑
k∈K

∑
i∈L

∑
j∈L

ck
ijx

k
ij (2)

subject to ∑
k∈K

∑
j∈L

xk
ij = 1 (i ∈ P), (3)

∑
i∈L

xk
0i =

∑
i∈L

xk
i,2n+1 = 1 (k ∈ K), (4)

∑
j∈L

xk
ij −

∑
j∈L

xk
n+i,j = 0 (i ∈ P, k ∈ K), (5)

∑
j∈L

xk
ji −

∑
j∈L

xk
ij = 0 (i ∈ P ∪ D, k ∈ K), (6)

uk
j ≥ (uk

i + di + tij)xk
ij (i, j ∈ L, k ∈ K), (7)

wk
j ≥ (wk

i + qj)xk
ij (i, j ∈ L, k ∈ K), (8)

rk
i ≥ uk

n+i − (uk
i + di) (i ∈ P, k ∈ K), (9)

uk
2n+1 − uk

0 ≤ Tk (k ∈ K), (10)

si ≤ uk
i ≤ ei (i ∈ L, k ∈ K), (11)

ti,n+i ≤ rk
i ≤ H (i ∈ P, k ∈ K), (12)

max{0, qi} ≤ wk
i ≤ min{Qk, Qk + qi} (i ∈ L, k ∈ K), (13)

xk
ij = 0 or 1 (i, j ∈ L, k ∈ K). (14)

Fig. 1. Mixed Integer Program formulation to allocate requests to vehicles within a
company. The objective function minimizes costs.

big as the time of a direct ride between its pickup and delivery location and at
most as big as the planning horizon (Constraint 12). The load of a vehicle can
never be higher than the highest possible load specified. Note that the load of a
vehicle increases at a pickup location and decreases at a delivery location, so we
can state Constraint 13. The last constraint ensures that we deal with binary
variables, so that a variable denotes whether a ride is allocated to a vehicle or
not, and we cannot specify that half of that ride is allocated to another vehicle.
For the insertion of requests by a company, we use the mathematical model that
we have just defined. This formulation evolves over time ignoring (previously
inserted and) serviced requests.

4.2 Bid Calculation

To check whether an incoming request can be inserted, we use the insertion
heuristics developed by Jaw et al. [4] and Solomon [7]. This is done before a bid

Competition and Service Quality 119

value is calculated, and can save expensive computation time. If the request is
feasible, the company can propose a bid to the customer.

A company wants to maximize its profit, defined as income minus costs. The
company can gain income by serving requests (winning auctions) and it can
decrease costs by combining requests. Combining requests often leads to a lower
QoS (because there are less direct rides), which can lead to winning less auctions.
Promising a higher QoS results in a higher probability to win the auction, but
decreases the flexibility to insert future requests.

There are different costs associated with the different QoS values that a com-
pany can bid. In general, a company can bid a low QoS for low internal costs,
or a high QoS for higher internal costs. For a single-shot second-price auction, it
can be shown that it is optimal to bid the highest price possible. However, this
is not the case in our (repeated) auction on quality.

Proposition 2. If each company bids the highest QoS possible, all rides will be
transported at QoS of 1.

Proof. When a company bids the highest QoS possible for the first request, this
bid will be a QoS of 1, since its vehicles have empty routes so far. When all
companies follow this behavior, the second “price” will also be a QoS of 1, so
the ride is accepted at a QoS of 1. When a route contains only rides with a QoS
of 1, a next ride cannot be combined, so the highest QoS possible will also be 1.
With induction, all rides will be transported at a QoS of 1.

To avoid this side effect of using QoS as a bid for the companies, we allow them to
incorporate knowledge about future requests in their bid calculation. This way,
they reason about the future possible combinations of the current request while
bidding the promised QoS, instead of reasoning only about the current request.
To incorporate the expected profit of future requests, the companies must have
some knowledge about the distribution in time and space of future requests.
From this distribution, they can calculate the expected profit for an incoming
request, based on future requests that can give the companies possibilities to
combine rides and lower costs. To this end, we use a Monte Carlo [8] simulation
in combination with an insertion heuristic.

Estimating expected profit. The idea is to estimate the expected profit that
a company would make assuming that the current request is inserted into the
schedule. To calculate the expected profit, a distribution has to be known on the
arrival location and time of future requests. With the help of these distributions,
a set of possible future requests can be generated and inserted into the schedule.
Once this is done, the total costs needed to insert these requests, and the total
income gained by inserting them can be calculated. This expected profit is cal-
culated by using an insertion heuristic based on the works of Jaw et al. [4] and
Solomon [7].

Monte Carlo simulations. The specific set of generated future requests can
have a big influence on the calculated expected profit. Therefore, a Monte Carlo

120 F. Grootenboers, M. de Weerdt, and M. Zargayouna

simulation [8] is performed. The above algorithm is repeated a number of times,
and the final expected profit is taken as the average expected profit of these
repetitions. To obtain the highest QoS level for the current request, taking into
account future requests, Monte Carlo simulations are performed for different
levels of QoS. The level for which the expected profit is closest to zero is taken
as the bid value.

5 Experiments and Results

The main hypothesis to be tested is the following.

Hypothesis 1. When multiple companies compete on QoS, the average QoS is
higher than in a situation with a single company which minimizes costs. Trans-
portation costs are also higher.

But also for a single company we expect that transportation costs are higher
when the QoS is higher:

Hypothesis 2. A higher required QoS is more expensive (for a single company).

As discussed before, requiring a higher QoS from a single company fails in prac-
tice, because in general, a higher QoS is more expensive, and for example penal-
ties are not sufficient to incentivize a company to meet the agreed QoS. Our
main thesis is that competition can be used to realize a higher QoS, and we
expect that this can be done at approximately the same additional cost as for a
single company, leading to a third hypothesis.

Hypothesis 3. When multiple companies compete on QoS, the costs are not
significantly higher than in a situation with a single company which minimizes
costs with the same average QoS.

5.1 Experimental Setup

To test these hypotheses, we run the mechanism and algorithms proposed in the
previous section on a set of benchmarks. The size of these benchmark problems
is chosen such that each one takes at most about 1 hour computation time to
solve. This decision resulted in a set of 100 problem instances, each containing
16 customers, in which the coordinates and the pickup and departure times of
the requests are distributed following a uniform distribution. We consider these
instance over a planning period of 4 hours. The considered network is a contin-
uous map, defined by a square area of 20 by 20 km with a node on every km.
To make the problem instances dynamic, we add to each customer the moment
at which it becomes available to the system. This is done by randomly choos-
ing a number in the interval [ei − 90, ei − 60] (i.e. between 90 and 60 minutes
before the earliest pickup or delivery time). We choose these values because we
want the instances as dynamic as possible. This means that customers announce
their requests quite late, but such that vehicles are able to respond to schedule

Competition and Service Quality 121

0.6 0.7 0.8 0.9 1.0

20
0

25
0

30
0

35
0

40
0

45
0

20
0

25
0

30
0

35
0

40
0

45
0

Service quality

To
ta

l c
os

ts

Service quality versus total costs

all served, multiple companies
all served, single company (min costs)
not all served, multiple companies
not all served, single company (min costs)

Fig. 2. QoS versus total costs for a multiple company setting and a single company

changes. The maximum capacity for each vehicle is set to 3 passengers. All
the experiments have been performed in Java and Java Agent DEvelopment
Framework (JADE) [9] on an Intel Xeon E5345 2.33GHz with 16 Gb RAM.
Each company uses the MIP-solver SCIP to insert assigned requests. SCIP is
one of the fastest non-commercial solvers [10].

To test the hypotheses, we run the system two times for each problem instance.
The first time two companies have two vehicles each and compete on QoS. The
second time, there is only a single company, having four vehicles and minimizing
costs. In a single-company setting, the company does not have any incentive to
bid high QoS, because it knows already that it contractually gets assigned all
the requests.

5.2 First Experiment

In Figure 2, a plot is given for the comparison of QoS and total costs between a
situation with a single and a situation with multiple companies. Two clouds of
points can be distinguished. The cloud of points of instances with multiple com-
panies is situated with relative high QoS and high total costs. The other cloud
of points has less quality and less total costs and mainly contains instances with
a single company. A paired t-test is performed for both average QoS and total
costs. The mean difference for QoS is 0.097 with a higher quality in the multi-
company setting. The confidence interval is [0.071, 0.122] and the probability
that these results are obtained assuming that there is no difference between the
two settings is 5.98×10−10. A t-test gives us a mean difference of 37.5 higher to-
tal costs for the multi-company setting with a confidence interval of [25.3, 49.8],
and a p-value of 1.25 × 10−7.

122 F. Grootenboers, M. de Weerdt, and M. Zargayouna

0.0 0.2 0.4 0.6 0.8 1.0

26
0

27
0

28
0

29
0

30
0

31
0

32
0

Minimal service quality

To
ta

l c
os

ts
Total costs with minimal service quality

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Minimal service quality

A
ve

ra
ge

 s
er

vi
ce

 q
ua

lit
y

Average service quality with minimal service quality

Fig. 3. Average total costs (left) and QoS (right) for instances with a minimal QoS

In conclusion, we have discovered that total costs are about 13% higher in
the multi-company setting than in the single-company setting. The fact that
companies in a multi-company setting have the incentive to bid higher service
quality instead of minimizing costs, results in a higher average service quality.
This follows from the results of the paired t-test showing that the QoS of the
multi-company setting is 12% higher. Both differences are (very) significant,
confirming Hypothesis 1.

5.3 Second Experiment

In the previous experiment, the single company did not take any required level
of QoS into account. However, to make a fair comparison of costs (to establish
the second hypothesis), we would like to have the same average QoS for the
single company as the multiple companies obtain by competition. To arrive at
a certain average QoS, we ensure that each ride of the single company has a
certain minimal QoS. To determine how to set the required QoS to arrive at such
a desired average QoS, we first run the experiments for a single company for a
required QoS of {0.00, 0.05, . . . , 1.00}. We then investigate the relation between
these required QoS levels and the average QoS, and at the same time the relation
between the required QoS levels and the total costs, to test Hypothesis 2.

In Figure 3 (left), it is shown that the average total costs are increasing as
from a QoS level of 0.4, with a slight decrease at level 1.0. This last decrease
of average total costs can be interpreted by the fact that if the minimal QoS
level is 1.0, less requests can be served, which leads to lower total costs. The
non-increasing part of the figure (from level 0.0 to 0.4) can be explained by the
fact that the levels do not influence the outcome, because even when a single
company minimizes costs, it still serves requests with an average QoS of about
0.66. This is also shown in Figure 3 (right), in which we see no increase in QoS
at this interval.

Competition and Service Quality 123

0.6 0.7 0.8 0.9 1.0

20
0

25
0

30
0

35
0

40
0

45
0

20
0

25
0

30
0

35
0

40
0

45
0

Service quality

To
ta

l c
os

ts

Service quality versus total costs

all served, multiple companies
all served, single company (min level = 0.77)
not all served, multiple companies
not all served, single company (min level = 0.77)

Fig. 4. QoS versus total costs for a multiple company setting and a single company
setting in which the single company acts like a company in a multi-company setting

Besides these two exceptions, overall there is a strong correlation between
total costs and minimal QoS. The correlation coefficient over the complete range
0.93, confirming Hypothesis 2. When we take only the interval from 0.40 to 0.95
into account, the correlation coefficient is even 0.99. The minimal QoS level
that is needed in order to let the company in the single-company setting serve
requests with an equal average QoS as in the multi-company setting is derived
by searching in Figure 3 (right) for the corresponding level. The average QoS
over all instances in the multi-company setting is 0.93 and when we search for
the corresponding minimal QoS level we find a value of 0.77.

Subsequently, we run the first experiment again, but now requiring a QoS of
0.77 for the single company. In Figure 4 a scatter plot is shown in which QoS is
plotted against total costs, for the multi-company and single-company setting.
From this we observe that the costs are somewhat higher in the multi-company
setting, but the points in the plot are too close to each other to give a proper
judgment about this measure. The paired t-test gives us a mean difference of 23.5
total costs, a 95%-confidence interval of [11.9, 35.0], and a p-value of 1.71×10−4,
with higher total costs in the multi-company setting. Another paired t-test is
performed to verify that the difference in average QoS between the two settings
is not significant. The results of this test confirm this with a mean difference of
0.0013 (higher in the multi-company setting), and a p-value of 0.92.

We thus conclude that compared to the multi-company setting, the total costs
in a single-company setting are less, even if this single company provides equal
QoS, rejecting Hypothesis 3.

124 F. Grootenboers, M. de Weerdt, and M. Zargayouna

6 Discussion

We conclude that if the price per kilometer is fixed within a reasonable range
(Proposition 1), and expectations about the future are somehow taken into ac-
count (see also Proposition 2), it is indeed possible to obtain a higher QoS in
door-to-door transportation by letting multiple companies compete on QoS (Hy-
pothesis 1). However, in our experiments, the costs are about 7% higher than in
the idealistic case where a single company always meets a required QoS while
minimizing costs.

For future work, we aim to study other definitions of QoS. For instance, we
are thinking about taking into account deviations from desired departure/arrival
time. We also plan to consider more realistic generation of requests, based on
real data. Besides, we plan to define mechanisms where companies compete both
on QoS as well as on costs. In addition, we believe better results can be obtained
if the mechanism allows for bidding on combinations of requests. Finally, this
paper focused mainly on an experimental evaluation of the idea of competing on
quality. It would be very interesting to also provide a theoretical analysis. This
is particularly challenging, since the mechanism is in fact a sequential auction.

References

1. Cordeau, J.F.: A branch-and-cut algorithm for the dial-a-ride problem. Operations
Research 54, 573–586 (2006)

2. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972)

3. Ropke, S., Cordeau, J.F., Laporte, G.: Models and branch-and-cut algorithms for
pickup and delivery problems with time windows. Networks 49, 258–272 (2007)

4. Jaw, J.J., Odoni, A.R., Psaraftis, H.N., Wilson, N.H.M.: A heuristic algorithm for
the multi-vehicle advance request dial-a-ride problem with time windows. Trans-
portation Research Part B: Methodological 20, 243–257 (1986)

5. Mahr, T., Srour, J., de Weerdt, M.M., Zuidwijk, R.: Can agents measure up?
a comparative study of an agent-based and on-line optimization approach for a
drayage problem with uncertainty. Transportation Research: Part C 18, 99–119
(2010)

6. Mes, M.: Sequential Auctions for Full Truckload Allocation. PhD thesis, Univer-
siteit Twente, Enschede, The Netherlands (2008)

7. Solomon, M.: Algorithms for the vehicle routing and scheduling with time window
constraints. Operations Research 15, 254–265 (1987)

8. Metropolis, N., Ulam, S.: The monte carlo method. Journal of the American Sta-
tistical Association 44, 335–341 (1949)

9. Bellifemine, F., Poggi, A., Rimassa, G.: JADE - a FIPA-compliant agent frame-
work. In: Proceedings of the Practical Applications of Intelligent Agents (1999)

10. Achterberg, T.: SCIP - a framework to integrate constraint and mixed integer
programming. Technical Report 4-19, Zuse Institute Berlin (2004)

Towards Distributed Agent Environments for
Pervasive Healthcare

Stefano Bromuri1, Michael Ignaz Schumacher1, and Kostas Stathis2

1 Institute of Business Information Systems
University of Applied Sciences Western Switzerland (HES-SO)

TechnoArk 3, CH-3960 Sierre, Switzerland
{stefano.bromuri,michael.schumacher}@hevs.ch

2 Department of Computer Science
Royal Holloway University of London (RHUL)

Egham, UK
kostas.stathis@rhul.ac.uk

Abstract. In this paper we present a prototypical pervasive health care
infrastructure, whose purpose is the continuous monitoring of pregnant
women with gestational diabetes mellitus. In this infrastructure, patients
are equipped with a body-area network made of sensors to control blood
pressure and glucose levels, where the sensors are connected to a smart
phone working as a hub to collect the data. These data is then fed to
a pervasive GRID where abductive agents provide a diagnosis for the
actual reading of the sensors and contacting health care professionals if
necessary. We also show how, by applying the concept of agent environ-
ment, we are facilitated in defining a pervasive GRID for roaming agents
that monitor continuously the health status of the patients.

1 Introduction

If current trends in mobile phone technologies, personal digital assistants, and
wireless networking are indicative of the way people will interact between them in
the future, then our everyday activities is likely to be based upon an abundance
of devices and applications providing the computational resources of a complex
ubiquitous computing environment. Although the potential of combining these
numerous applications and devices is very promising, many different current
applications leave the environment’s functionalities unexplored and only a small
fraction of the environments potential is utilised.

Of particular relevance to the intelligent environment area is the problem of
healthcare monitoring using ICT. As cures for life threatening conditions are
being discovered, life expectancy increases significantly. As a consequence, the
cost for healthcare will grow significantly due to the rise of the number of people
that have permanent or chronic health conditions.

Diabetes is a very common chronic illness that is the fourth leading cause of
death in most developed countries [1]. Amongst all the conditions related to di-
abetes, the case of gestational diabetes mellitus (GDM) is of particular interest

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 125–137, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

126 S. Bromuri, M.I. Schumacher, and K. Stathis

as it occurs during pregnancy due to increased resistance to insulin but the pre-
cise mechanisms underlying it remain unknown. About 4% of pregnant women
incur in this sort of complication. The current approach includes a planned diet,
exercise and self-blood glucose monitoring tests that can be administered at
home. In several cases the doctor requires that the patient visits the dietitian
twice per week. However, often two checks every week are not enough: as if the
hyperglycemia last for more than one day, this may cause macrosomia (exces-
sive growth of the foetus). Thus, in these cases it is important to act as fast
as possible to prevent any serious complication to the mother and the baby, by
normalising the blood pressure and glucose levels with appropriate and quick
treatments.

To achieve continuous monitoring, we propose a prototypical pervasive health-
care infrastructure, to collect data, monitor and alert GDM patients and inform
their caretakers with historical values. Our primary goal is to break the bound-
aries of the hospital care, allowing patients to be monitored while living their
day-to-day life and to keep in touch with healthcare professionals. The impor-
tance and significance of the proposed study is to show how by using the mech-
anisms proposed by distributed agent environments, we can model a distributed
infrastructure to provide continuous monitoring to GDM affected women, by
means of situated cognitive agents programmed using abductive logic program-
ming. It is important to say that the focus of this study is not on creating a
new cognitive model for agents, rather than showing how to model pervasive
healthcare applications by means of distributed agent environments. In partic-
ular, this paper proposes an early stage prototype of the infrastructure. A first
in-lab prototype has been developed, defining the agents functionalities, run-
ning simulators of sensors, using Android [9] and testing on single computer.
The evaluation of the prototype in real settings and its extensions are subject
of future work.

The reminder of the paper is structured as follows: Section 2 presents a back-
ground on the problem of GDM; Section 3 is a description of the system we
developed; Section 4 presents the relevant related work; finally Section 5 con-
cludes this paper and draws the lines for future work.

2 Motivating Scenario: Gestational Diabetes Mellitus

During pregnancy, some women have such high levels of glucose in their blood
that their body cannot produce enough insulin to absorb it all [15]. As specified
in [18], GDM affects approximately 4% of pregnant women. GDM is frequently
associated with age, pregnancy weight, family history and ethnicity. GDM can
increase the risk of health problems developing in an unborn baby, so it is im-
portant that the glucose levels in the pregnant woman blood are under control.
If untreated or poorly controlled, GDM can cause the baby to: have macrosomia
(excessive weight at birth); develop hypoglycemia at birth; develop jaundice (yel-
low skin); develop respiratory distress syndrome; die after week 28 of pregnancy;
die in infancy. As Van Wootten and Turner specify in [18], it is estimated that

Towards Distributed Agent Environments for Pervasive Healthcare 127

in normal pregnancies the rate of macrosomia occurrence is about 10%, while
in pregnancies where GDM is involved, this rate is around 44% [17], but when
a woman with GDM has some sort of basic nutrition counseling with glucose
monitoring, this rates drops to 14%-18%.

In GDM, if the blood pressure keeps high for a long time and the patient
experiences stomachache, headache or oedema, there is a high risk of preeclamp-
sia which is a pregnancy induced hypertensive state. Preeclampsia may develop
from the 20th week of gestation and it is characterised by high blood pressure
and about 300 mg of proteins in the urine in a 24h sample, a condition called
protenuria. Preeclampsia is different from a condition called Pregnancy Induced
Hypertension (PIH), which involves developing high blood pressure without pro-
tenuria. Preeclampsia is generally asymptomatic but it may evolve to eclampsia,
a life-threatening complication characterised by seizures and eventually coma
or death. Both preeclampsia and PIH are considered very serious conditions to
keep under control [12].

It is clear that in the scenario of GDM, having a system that allows for con-
tinuous monitoring would be of great benefit to reduce the rates of macrosomia
in women affected by GDM and to reduce the risks of preeclampsia, but there
are some assumptions that is necessary to make and some requirements that it is
necessary to consider: (a) pregnant women are usually young and they are used
to technologies such as smart phones; (b) pregnant women want to maintain their
lifestyle and carry on their day-to-day activities; (c) GDM is characterised by
blood pressure, glycemia, body weight and a set of symptoms and complications
that are inter-related between each other.

3 The Pervasive Healthcare Infrastructure

As the basis for the definition of our prototype, we utilised a pre-existing dis-
tributed agent platform called GOLEM [3,4,6,5] which is based on the concept
of agent environment. First of all it is better to specify what we mean with agent
environment and environment. In general with the term environment we mean
the world that is external to the agents and that the agents can inspect by using
the agent environment. On one hand we define the agent environment as an
entity that mediates the interaction between the agents and resources deployed
in the system, working as medium of interaction. On the other hand the agent
environment hides to the agents the complexity of dealing with the state of the
environment, by providing standard interfaces and standard descriptions to the
resources in the external environment. In the scope of this paper we use envi-
ronment in terms of a place or a set of places delimited by borders defined in
terms of longitude and latitude in the real environment, and that are mapped
to a distributed agent environment for monitoring purposes, where every node of
the distributed agent environment has an assigned area of the real environment.

As specified in [4], the GOLEM platform models a distributed environment in
terms of the patterns proposed by distributed event based systems (DEBS) [2].
Thus, the advantage of GOLEM is that we can utilise a platform that handle the

128 S. Bromuri, M.I. Schumacher, and K. Stathis

dispatching of events in a distributed environment where the entities deployed
on top of the platform are publishers and subscribers of events. GOLEM models
four main entities which are objects, agents, avatars and containers.

Objects are passive reactive entities that encapsulate a service. Such objects
can be used by agents, which represent the cognitive part of the agent environ-
ment. Avatars are particular kind of agents that represent users in the agent
environment. Agents, objects and avatars are deployed within containers. Con-
tainers represent a portion of the distributed agent environment and they work
as mediators for the interaction happening between agents and objects in the
distributed settings. The container behaviour in GOLEM can be defined declara-
tively by means of the Ambient Event Calculus (AEC). The AEC is a particular
dialect of Event Calculus [11] that allows to handle the concurrent modification
of objects states and agent states in distributed settings.

The AEC also allows to define topologies of GOLEM containers in terms of
neighbours containers and super and sub containers. The purpose of the perva-
sive healthcare environment we deployed is to deliver continuous monitoring to
GDM patients outside the boundaries of hospital care, allowing healthcare pro-
fessionals to keep in touch with the patients and allowing the patients to keep
their life style. The pervasive healthcare infrastructure is associated to a real
environment where the patients can move using a mobile phone to connect to
GOLEM containers in form of avatars. Every GOLEM container in the network
represents a different area of the city where the patient resides. For example Fig.
1(a) shows a portion of a network associated to an area of the city of Lausanne,
around the Centre Hospitalier Universitaire Vaudois (CHUV).

Fig. 1. a) Intelligent Environment fo Diabetes Monitoring b) and c) show how mobility
of avatars and agents take place due to the mobile phone changing location in the real
environment

Towards Distributed Agent Environments for Pervasive Healthcare 129

Utilising an agent environment to communicate with a smartphone brings a
set of advantages with respect to smartphone-only based solutions. First of all
despite the fact that modern smart phones have a lot of computational power,
computation and communication intensive applications tend to consume their
battery very quickly, while in our case we only have to deal with communica-
tion with the network. Secondly, having an agent environment at support of the
application allows us to introduce new and personalised services at runtime, de-
coupling the analysis of the data from its production. Thirdly, we can decouple
the reasoning, embedded in the agents, from the actual services, embedded in
the objects available to the agents in a particular location. Finally, modelling the
pervasive healthcare environment as a distributed agent environment, allows us
to reuse the mediation capabilities of the agent environment to define coordina-
tion and communication patterns between the agents when needed, while with
a hub only based solution this kind of interaction would be technically difficult
to support.

To represent the state of a GOLEM container, such as the ones shown in Fig.
1(b) and Fig. 1(c) we use the object-based notation of C-logic, a formalism that
describes objects as complex terms that have a straightforward translation to
first-order logic [7] and can be queried using the AEC. For example the following
C-logic term specifies that

pervasive golem node:c1[
uri ⇒ “container://one@134.219.7.1:13000”, type ⇒ open,
latitude ⇒ 46.5253, longitude ⇒ 6.6438,
location name ⇒ ’Centre Hopitalier Universitaire Vaudois Lausanne’,
neighbours ⇒ { pervasive golem node:c2, pervasive golem node:c3},
entities ⇒ { agent:a1, agent:a2}]

a GOLEM container c1 has been deployed, it is identified by the URI con-
tainer://one@134.219.7.1:13000, is an open container, it is associated with a cer-
tain latitude and longitude in the real environment, it represents the location
named ’Centre Hopitalier Universitaire Vaudois Lausanne’ and it has a set of neigh-
bours in the distributed agent environment. To deal with the distributed topol-
ogy presented in Fig. 1(a) we use the predicates of the AEC. For example, the
following two AEC rules (see [4] for a more detailed description):

happens(Event,T)← attempt(Event,T), possible(Event,T).
happens(Event, T)← attempt(Event, T), necessary(Event, T).

specify that an action in the GOLEM agent environment happens only if it has
been attempted and it is possible or necessary, where possible/2 and necessary/2
rules are application dependent rules. In other words, possible/2 rules specify
what are the actions that is possible to perform in the environment given its
current (possibly distributed state), while the necessary/2 rules specify what are
the actions that happens as a consequence to previous events.

Moreover, to provide the mediation necessary tohandle events in the distributed
setting in [4] we presented the locally at/8, neighbouring at/9 and regionally at/9
primitive predicates to link the state of distributed containers, following a logic
programming approach. Briefly, the definition of locally at is as follows:

130 S. Bromuri, M.I. Schumacher, and K. Stathis

locally at(CId, Path, Path∗ , Id, Cls, Att, V, T)← locally at(CId, Path, Path∗, Id, Cls, Att, V, T)←
holds at(CId, container, entity of, Id, T), instance of(SCId, container, T),
holds at(Id, Cls, Att, V, T), holds at(SCId, container, super, CId, T),
append(Path, [CId], Path∗). append(Path, [CId], NewPath),

locally at(SCId, NewPath, Path∗, Id, Cls, Att,V,T).

The definition of locally at/8 states that the state of an entity can be inferred ei-
ther from the top-level container or from a sub-container. If the states is inferred
in the top-level container, then the predicate holds at/5 is applied to infer the
attribute Att of value V of an entity of class Cls and identifier Id. If the first pred-
icate fails, then the second predicate moves the computation in a sub-container.
In this way containers can be recursively embedded inside other containers as
objects, according to the topology needed, and deployed on different hosts. The
neighbouring at/9 and the regionally at/9 predicates have a similar behaviour but
allow to query adjacent and super-containers respectively. Finally, to specify how
the state of an entity modifies over time, we utilise initiates/5 and terminates/5
rules. For example, the following initiates/5 rule specifies when the position of
an agent changes to the one the agent moves to:
initiates(E, avatar, A, position, Pos) ← do:E [actor ⇒ A, act ⇒ move:M [destination⇒ Pos]].

The complete description of the event’s effects also requires to terminate the
attribute holding the old position of the agent by means of a terminate/5 rule.
In the current prototype the agent environment takes care of pairing agents and
avatars as well as defining the mobility rules (i.e. what are the conditions that
move an agent from one container to another) that implement the behaviour
shown in Fig. 1(b) and Fig. 1(c). We define the following rules for mobility
purposes:
possible(E,T)← possible(E,T)←

move:E[actor⇒avatar:A, move ⇒ Pos], instance of(Id,topology,T),
instance of(Id,topology,T), holds at(Id,topology,borders,Borders,T),
holds at(Id,topology,borders,Bdr,T), outside borders(Bdr, Pos),
inside borders(Bdr, Pos). neighbouring at(this, [], [C], 1, Id, topology, borders, Bdr, T),

inside borders(Bdr,Pos).

The first one states that it is possible to move in the space represented by
a container only if this space is within the borders controlled by the container.
Otherwise, the second rule specifies that it is possible to move outside the borders
only if there is another container that is responsible for a certain area where the
patient is currently moving. The following AEC rules:
necessary(E, T)← necessary(E, T)←

happens(E∗, T), happens(E∗, T),
deploy:E∗ [deploy⇒avatar:Av], disconnect:E∗ [actor⇒A, new container ⇒ C],
not neighbouring at(this, [], [C], 1, Av, caretaker, , T), holds at(A,avatar,caretaker,Id,T),
deploy:E[agent⇒caretaker:A]. physical act:E[move to⇒ C agent⇒ Id].

State respectively that whenever an avatar is deployed in the agent environment
(event E∗), also its caretaker agent is deployed (event E), and that whenever an
avatar disconnects from the agent environment to connect to a new container, the
agent associated to the avatar is also serialised and moved to the new container.
Finally, a further necessary/2 rule defines that an avatar is moved to a different
container when outside the boundaries of the current container, but we omit the
details as it is simpler than the ones presented above.

Towards Distributed Agent Environments for Pervasive Healthcare 131

3.1 The Body-Area Network

In addition to objects and agents, GOLEM allows the embodiment of users by
means of avatars in the distributed agent environment. In this prototype every
patient is equipped with a smart phone loaded with a software capable to read
the data produced by the sensors worn by the patient. The smart phone then
allows the patient to interact with the GOLEM agent environment by means of
their avatar as shown in Fig. 2.

Fig. 2. The BAN Architecture

Users of the network have a wearable body-area network (BAN) that monitors
periodically the blood pressure and the glucose levels of the patient. In the
current prototype, the sensors are simulated and the values are entered directly
by the patients, but in the future BAN will be built in term of Bluetooth sensors
that monitor the physiological signs of the patient. In more details, the BAN
monitors the variation in time of three values which are systolic blood pressure,
diastolic blood pressure and glucose levels.

Moreover the terminal allows the patient to specify the symptoms that are
being experienced during the day, through the interface shown in Fig. 3.

Thanks to the fact that the users are embodied in the agent environment as
avatars, they can produce events in the agent environment as the following one:

pressure reading:e1[avatar ⇒ avid1, caretaker agent ⇒ ag1,systolic pressure ⇒ 120, diastolic pressure ⇒ 80].
location:e2[avatar ⇒ avid1,latitude ⇒ Lat, longitude ⇒ Lon].

The event specified above is pressure reading event with identifier e1, produced
by the avatar avid1 for the caretaker agent ag1, and it contains a systolic pressure
value of 120 and a diastolic pressure value of 80, while the event e2 is used by
the system to keep track of the patient in the real environment and to move her
from one container to another when the necessary/2 rules previously explained
are triggered.

132 S. Bromuri, M.I. Schumacher, and K. Stathis

Fig. 3. The Smart Phone UI

3.2 The Caretaker Abductive Agents

In this paper we focus on agents that can diagnose the current condition of a
GDM affected patient by means of abuctive logic programmed agents, differently
from [6], where we focused on the navigation in the environment. In particular in
this section we will describe the current prototypical cognitive model, exempli-
fying the behavior of the agent given a particular situation or event by showing
extracts of the agent mind code.

Abductive logic programming (ALP) is a high level knowledge-representation
framework that can be used to solve problems declaratively based on the idea
that a set of seemingly unrelated observed facts (results), are somehow connected
according to well known laws, thus offering an explanation of what might be true.
As defined in [10], given a background theory T , and an observation G, the task
of ALP is to compute a set of ground atoms Δ called explanation, and a ground
substitution θ such that Δ ∪ T |= Gθ. Moreover, the set of atoms contained in
Δ belongs to a set of predicates A, also called abducibles that are predicates
for which there is not complete information. More formally we can say that an
abductive framework is expressed in terms of a tuple < T, Δ, IC > where T is a
knowledge base, Δ a set of abducibles and IC a set of integrity constraints on
the abducibles. We utilise the abductive locic agent mind architecture depicted
in Fig. 4.

Such an agent mind is based on the following cycle, which is an extension of
the model presented in [5]:

cycle(T)← see(Percept, T), revise(Percept, T), choose(Action, T), execute(Action, T), now(Tn), cycle(Tn).

Briefly, the see/2 stage takes a percept out of the queue of percepts at a certain
time T and it passes it to a revise/2 stage which in turns updates an event
calculus database keeping the state of the world that is of interest for the agent
(in this case the patient status). The most important stage is the choose/2 stage,
of which we show the specification below:

Towards Distributed Agent Environments for Pervasive Healthcare 133

Fig. 4. Abductive Agent Mind Cycle

choose(Action, T)← higher priority(ActList, Act, T)←
instance of(AvatarID, avatar, T), member(Act, ActList), priority(Act, P, T),
findall(S, holds at(AvatarID,symptom,S,T), Symptoms), not (member(ActX, ActList), not ActX = Act,
findall(A, select(Symptoms,A,T), Acts), priority(ActX, PX,T),
higher priority(Acts, Action, T). PX > P).

The choose stage selects a possible action by means of the select/3 and higher priority/3
predicates. The select/3 predicate chooses then the best action to perform (such
as contacting a doctor), given a diagnosis produced by the abductive module.
For example a subset of the rules for GDM within the abductive module of the
agent mind, can formalised as follows:

DomainKnowledge :

oedema←preeclampsia(yes), protenuria(yes).

blood pressure(S,D)← preeclampsia(yes), protenuria(yes), pih(no), sys(160, S, 240), dias(100, D,150).
blood pressure(S,D)← preeclampsia(no), protenuria(no), pih(yes), sys(160, S, 240), dias(100, D,150).

glucose(G)← macrosomia(yes), G > 150.
glucose(G)← hypoglicemia(yes), G < 80.
bmi(BMI)← macrosomia(yes), BMI >30.

IC :

← preeclampsia(yes), protenuria(no).
← preeclampsia(yes), pih(yes).
← pih(yes), protenuria(yes).

where the head of the rules in the domain knowledge represents the symptoms
observed, while the body represents the abducible predicates that are part of
the explanation associated to the symptoms observed.

The select/3 rules define the best action to take given a certain diagnosis
produced by the demo/2 predicate, that queries the abductive module. The
implementation of demo/2 predicate is based on Prologica [13] and it takes the

134 S. Bromuri, M.I. Schumacher, and K. Stathis

symptoms, which correspond to the observations set G in ALP, to find an expla-
nation, that corresponds to Δ in ALP. The knowledge base T of ALP is implicitly
represented by the domain knowledge and the integrity constraints queried by
the demo/2 predicate. For instance, we can define the following select/3 rule for
the case when pre-eclampsia is diagnosed with very high blood pressure (which
means that there is a high risk of eclampsia):

select(Symptoms, A, T)←
demo(Symptoms, Explanation),
M = m[diagnosis ⇒ eclampsia, diastolic ⇒ D, systolic ⇒ S, patient ⇒ ID, location ⇒ Loc],
A = email:act1[actor ⇒ AID,doctor email ⇒ DE, message ⇒ M, priority ⇒ 10],
subset of([preeclampsia(yes),sys(160, S, 240), dias(100, D,150)], Explanation),
instance of(ID,patient, T), holds at(ID, doctor email, DE, T),
holds at(ID, current location, Loc, T),
myID(AID).

The rule above specifies that, given a diagnosis of pre-eclampsia with high blood
pressure (D stands for diastolic, S stands for systolic), the action to perform is
to send an email to the current doctor of the patient for which the agent is in
charge, specifying the current diagnosis.

4 Related Work

There have been several attempts to deal with the issues here presented. For ex-
ample, Schaeffer-Filho et al. [14] define the concept of Self Managed Cell (SMC).
Schaeffer-Filho defined the concept of SMC as a recursive structure that goes
from the body-area network for health monitoring of the patient to the SMC to
handle the household of the patient to the SMC of the healthcare professionals
in charge of the patient. Such SMCs are structured with an event bus designed
to follow the publisher/subscriber pattern [2]. The BAN is modelled as a virtual
complex node that abstracts a set of sensors and publish events in the form of
health records in the upper level SMC. The doctor SMC works as a subscriber
for the events produced by the BAN. Thus, it could happen that the events
published by the SMC are then retrieved by the doctor SMC to have a better
view on the condition of the patient. From a certain perspective we can relate
the concept of SMC to the concept of agent environment. As shown in our pro-
totype, SMCs are based on DEBS patterns for the notification and dispatching
of events. The most relevant difference between the approach proposed by SMCs
and ours is that we utilise cognitive agents to prefilter the data produced by the
BAN and that we model the behaviour of the agent environment as a declarative
structure that evolves over time.

Another attempt to model an infrastructure for pervasive healthcare is pre-
sented by Wagner and Nielsen in [16]. Wagner and Nielsen envision an architec-
ture based on 4 logic tiers: Public Tier, Central Tier, Home Tier and Mobile Tier.
The Public Tier is publicly available as a SOA-based infrastructure which com-
prises a set of services for professional caretakers, nurses and doctors. The central
tier models the domain model, specifying how the data are exchanged/accessed

Towards Distributed Agent Environments for Pervasive Healthcare 135

by the various actors of the system. The Home Tier is represented as a touch
screen available in every house that the patient can use and a Mobile Tier take
care of those situations when the patient leaves his house. With respect to Open-
Care, our infrastructure embeds cognitive agents that can be programmed to
monitor the patients according to the condition affecting them. Moreover, the
use of the GOLEM infrastructure allows us to define a clear topology for the
environment, which is missing from the OpenCare project.

In [8] Ciampolini et al. present a distributed MAS based on the ALIAS lan-
guage to deal with distributed diagnosis. The agents of such a system are pro-
grammed according to the principles of abductive logic programming. Of partic-
ular relevance is the fact that Ciampolini et al. define a procedure to combine the
results of different diagnosis produced by multiple expert agents in a single com-
bined diagnosis. Moreover, in Ciampolini’s approach the diagnosis is provided in
term of probabilities. With respect to the work proposed by Ciampolini et al. we
have a simpler reasoning procedure as we do not combine the diagnosis proposed
by multiple agents. The contribution of our prototype with respect to the work
proposed by Ciampolini is the introduction of the agent environment to foster
continuous monitoring of the patients and to coordinate the interaction between
the user and the agent environment to allow the agent to produce complex ac-
tions, such as sending an alert to the patient and to healthcare professionals
when needed.

5 Conclusion

In this paper we presented a novel prototypical pervasive healthcare infrastruc-
ture to monitor patients affected by GDM in their day-to-day activities. The
protype is defined in terms of a Body-Area Network based on a smart phone
and on a set of sensors to check the physiological signs of a patients. Such physi-
ological signs are then sent as events to the GOLEM agent infrastructure where
roaming mobile agents, capable to perform abductive reasoning, check the events
produced in the agent environment. Thus, if a critical situation occurs, the agents
notify the healthcare professionals in charge of the patient.

One of the advantages of our simulated infrastructure using the GOLEM and
Android mobile phone platforms is that it can be deployed in a real setting by
further extending the knowledge of the agents, the topology of the containers,
and the body sensor network functionalities. In such a setting, an important
issue is how to store and retrieve the information produced in the pervasive
healthcare agent environment. Such information is of medical importance as the
data retrieved could help to uncover unknown patterns of certain illnesses, thus
storing it in an appropriate manner is an important direction for future work.
The next steps of the project include: (a) substitute the simulated sensors with
real ones; (b) deploy the infrastructure in real settings; (c) evaluate the platform
with a pilot study at CHUV.

136 S. Bromuri, M.I. Schumacher, and K. Stathis

Acknowledgement

This work was partially supported by the COST Action on Agreement Tech-
nologies. The authors would like to thank Dr Ruiz and the Department of En-
docrinology and Diabetes at CHUV for the support during the definition of the
prototype.

References

1. The effect of intensive treatment of diabetes on the development and progression
of long-term complications in insulin-dependent diabetes mellitus. The Diabetes
Control and Complications Trial Research Group. N. Engl. J. Med. 329, 977–986
(September 1993)

2. Blanco, R., Wang, J., Alencar, P.: A Metamodel for Distributed Event-based Sys-
tems. In: DEBS ’08: Proceedings of the Second International Conference on Dis-
tributed Event-Based Systems, pp. 221–232. ACM, New York (2008)

3. Bromuri, S., Stathis, K.: Situating Cognitive Agents in GOLEM. In: Weyns, D.,
Brueckner, S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS (LNAI), vol. 5049,
pp. 115–134. Springer, Heidelberg (2008)

4. Bromuri, S., Stathis, K.: Distributed Agent Environments in the Ambient Event
Calculus. In: DEBS ’09: Proceedings of the Third International Conference on
Distributed Event-Based Systems. ACM, New York (2009)

5. Bromuri, S., Urovi, V., Stathis, K.: Game-based E-retailing in Golem Agent Envi-
ronments. Journal of Pervasive and Mobile Computing 5(4) (2009) (in Press)

6. Bromuri, S., Urovi, V., Stathis, K.: iCampus: A Connected Campus in the Ambient
Event Calculus. International Journal of Ambient Computing and Intelligence 2(1),
59–65 (2010)

7. Chen, W., Warren, D.S.: C-logic of Complex Objects. In: PODS ’89: Proceed-
ings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pp. 369–378. ACM Press, New York (1989)

8. Ciampolini, A., Mello, P., Storari, S.: Distributed medical diagnosis with abductive
logic agents. In: ECAI 2002 Workshop on Agents in Healthcare, Lione (2002)

9. Google Inc. What is Android? (2008), Home Page,
http://code.google.com/android/what-is-android.html

10. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Com-
put. 2(6), 719–770 (1992)

11. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1),
67–95 (1986)

12. Petit, P., Top, M., Chantraine, F., Brichant, J.F., Dewandre, P.Y., Foidart, J.M.:
Treatment of severe preeclampsia: until when and for what risks/benefits? Rev.
Med. Liege. 64, 620–625 (2009)

13. Ray, O., Kakas, A.: Prologica: a practical system for abductive logic programming.
In: Dix, J., Hunter, A. (eds.) 11th International Workshop on Non-Monotonic Rea-
soning, pp. 304–312 (May 2006)

14. Schaeffer-Filho, A., Lupu, E., Sloman, M.: Realising management and composition
of self-managed cells in pervasive healthcare, pp. 1–8 (April 2009)

http://code.google.com/android/what-is-android.html

Towards Distributed Agent Environments for Pervasive Healthcare 137

15. Serlin, D.C., Lash, R.W.: Diagnosis and management of gestational diabetes mel-
litus. Am. Fam. Physician 80, 57–62 (2009)

16. Wagner, S., Nielsen, C.: OpenCare project: An open, flexible and easily extendible
infrastructure for pervasive healthcare assisted living solutions, pp. 1–10 (April
2009)

17. Warren, J.M.: Pregnancy outcomes in women with gestational diabetes compared
with the general obstetric population. Obstet. Gynecol. 91, 638–639 (1998)

18. Van Wootten, W., Elaine Turner, R.: Macrosomia in neonates of mothers with
gestational diabetes is associated with body mass index and previous gestational
diabetes. Journal of the American Dietetic Association 102(2), 241–243 (2002)

Context-Aware Route Planning

Adriaan W. ter Mors, Cees Witteveen, Jonne Zutt, and Fernando A. Kuipers

Delft University of Technology, The Netherlands

Abstract. In context-aware route planning, there is a set of transporta-
tion agents each with a start and destination location on a shared infras-
tructure. Each agent wants to find a shortest-time route plan without
colliding with any of the other agents, or ending up in a deadlock situ-
ation. We present a single-agent route planning algorithm that is both
optimal and conflict-free. We also present a set of experiments that com-
pare our algorithm to finding a conflict-free schedule along a fixed path.
In particular, we will compare our algorithm to the approach where the
shortest conflict-free schedule is chosen along one of k shortest paths. Al-
though neither approach can guarantee optimality with regard to the to-
tal set of agent route plans — and indeed examples can be constructed to
show that either approach can outperform the other — our experiments
show that our approach consistently outperforms fixed-path scheduling.

1 Introduction

Consider a transportation problem in which each agent wants to reach its desti-
nation location in the shortest possible time, while avoiding collisions and dead-
locks involving other agents. This problem arises in the deployment of Automated
Guided Vehicle Systems (AGVSs), for instance in manufacturing where the vehi-
cles carry materials between production stations, or at container terminals such
as Hamburg and Singapore, where they carry containers to and from ships [1].
Another application domain of multi-agent transportation is taxi routing at air-
ports [2,3], where aircraft have to taxi, e.g. from a runway to a gate, while avoiding
close proximity with other aircraft.

Avoiding collisions and deadlocks can be achieved by constructing a set of
conflict-free route plans1. A route plan for a single agent specifies which infras-
tructure resources (such as roads and intersections) the agent will visit, and at
which times it will visit these resources. The set of agent route plans should
ensure that there are never more agents in a resource than its capacity allows.
Finding an optimal set of conflict-free route plans is an NP-hard problem [4],
and optimal centralized approaches have difficulty finding plans for more than
a handful of agents (four agents, in [5]). Fortunately, there exist ways to trade
off plan quality for reduced computation times.

1 Other ways of preventing collisions and deadlocks, such as assigning agents to non-
overlapping parts of the infrastructure, are described in the AGV survey paper by
Vis [1].

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 138–149, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Context-Aware Route Planning 139

In context-aware route planning (CARP), agents plan one after another, with
agent n finding an optimal (shortest-time) route that does not create a conflict
with any of the n − 1 existing plans (the context). Kim and Tanchoco [6] pre-
sented a context-aware route planning algorithm with a worst-case complexity
of O(|A|4|R|2) (i.e., for a single agent), where A is the set of agents that already
have a plan and R is the set of roads and intersections from the infrastructure. A
further trade-off between plan quality and computation time can be achieved by
finding an optimal schedule along a fixed path. In fixed-path scheduling (FPS), an
agent has one or more pre-determined paths from its start location to its destina-
tion location, and it will choose the path along which it can find the shortest-time
conflict-free schedule. Hatzack and Nebel [2] presented a fixed-path scheduling
algorithm which they applied in an airport taxi routing scenario, with each agent
always choosing the shortest path (i.e., the shortest-distance path) from start to
destination. Lee et al. [7] suggest finding a conflict-free schedule along one of k
shortest paths, determined using Yen’s algorithm [8]. The fixed-path scheduling
approach cannot guarantee individually optimal route plans, because it may be
faster to take a longer but less congested path.

In this paper we present a context-aware routing algorithm with a signifi-
cantly lower worst-case complexity of O(|A||R| log(|A||R|) + |A||R|2). Although
no complexity results have been published for fixed-path scheduling approaches,
we can convert our own CARP algorithm to an FPS algorithm, and the resulting
worst-case complexity is O(|A||R| log(|A||R|)). Hence, fixed-path scheduling is
faster, but it is not easy to rank both approaches in terms of plan quality, espe-
cially if we consider global plan cost, i.e., the cost of a set of agent plans. In this
paper we will therefore present a set of experiments that show the performances
of both methods on a variety of inputs.

This paper is organized as follows. In section 2, we present a model for the
multi-agent route planning problem. The main idea is that the infrastructure is
a graph of resources, each with a capacity that specifies how many agents may
simultaneously occupy a resource. In section 3 we will present our route planning
algorithm, which is based on the idea of performing a search through a graph
of free time windows. Section 4 describes experiments that try to determine
the relative performances of context-aware routing and fixed-path scheduling on
a variety of infrastructures, including a realistic airport taxi routing scenario.
Finally, section 5 concludes this paper.

2 Model

We assume a set A of agents that each have to find a quickest-time path from
one location in the infrastructure to another. We model the infrastructure as a
resource graph GR = (R, ER), where resources in R can be roads, intersections,
or interesting locations that the agents can visit. An agent can directly go from
resource r ∈ R to resource r′ ∈ R if the pair (r, r′) is in the successor relation
ER ⊆ R×R. A resource r has a capacity c(r), denoting the maximum number of
agents that can simultaneously make use of the resource, and a duration d(r) > 0

Context-Aware Route Planning 141

An agent that wants to go from resource r to (adjacent) resource r′ should
find a free time window for both of these resources. By definition 1 of a route
plan, the exit time out of r should be equal to the entry time into r′. Hence, for
a free time window w′ on r′ to be reachable from free time window w on r, the
entry window of w′ should overlap with the exit window of w.

Definition 4 (Free time window graph). The free time window graph is
a directed graph GW = (W, EW), where the vertices w ∈ W are the set of free
time windows, and EW is the set of edges specifying the reachability between
free time windows. Given a free time window w on resource r, and a free time
window w′ on resource r′, it holds that (w, w′) ∈ EW if: (i) (r, r′) ∈ ER, and
(ii) τexit(w) ∩ τentry(w′) �= ∅.

The free time window graph encodes the relevant information of the plans of the
first n−1 agents (allowing agent n to plan its route), but it does not contain any
information on the possible movements of agents n + j, j ≥ 1. To ensure that
agent n will not make a plan that will make it impossible for any subsequent
agent to find a plan, we need to make some simplifying assumptions regarding
the start and destination locations of each agent: these locations must either
have sufficient capacity to hold all the agents that might need it, or we need
to assume that agents arrive and depart from the infrastructure, like airplanes
landing on and taking off from an airport.

3 Route Planning Algorithms

In classical shortest path planning, e.g. using Dijkstra’s algorithm, if a node v
is on the shortest path from node s to node t, then a shortest path to v can
always be expanded to a shortest path to t. This implies that once we have
found a shortest path to v, then no other paths to this node need be considered.
In context-aware route planning, it is not the case that a shortest route to an
intermediate resource can always be expanded to the destination, as illustrated
in figure 1. In figure 1 we see an agent A1 that wants to go from r1 to r5, and an
agent A2 with source-destination pair r5, r3. All resources have unit capacity.
Let us assume that A2 has already made a plan, and now A1 wants to find a
plan. If the minimum traversal times of all resources are the same, then A1 could
reach r2 before A2 needs it. However, this shortest partial plan to r2 cannot be
expanded, because then the agents would meet head on. Agent A1 must therefore
find an alternative route to r2, which is to wait in r1 until A2 has reached r3.
Hence, multiple route plans to an intermediate resource must be considered. A
naive approach that would try all different routes to an intermediate resource
would require exponential time to execute. The idea behind our algorithm is
that we only need to consider shortest partial plans to the free time windows on
a resource: if we have a partial plan that arrives at resource r at time t that lies
within free time window w, then all other partial plans to r that arrive at time
t′, (t′ ≥ t) ∧ (t′ ∈ w), can be simulated by waiting in resource r from time t to
time t′. This waiting is possible because no conflict will be introduced as long
as the agent exits r before the end of w.

140 A.W. ter Mors et al.

which represents the minimum time it takes for an agent to traverse the resource.
An agent’s plan consists of a sequence of resources, and a corresponding sequence
of intervals in which to visit them.

Definition 1 (Route Plan). Given a start resource r, a destination resource
r′, and a start time t, a route plan is a sequence π = (〈r1, τ1〉, . . . , 〈rn, τn〉),
τi = [ti, t′i), of n plan steps such that r1 = r, rn = r′, t1 ≥ t, and ∀j ∈ {1, . . . , n}:
(i) interval τj meets interval τj+1 (j < n), (ii) |τj | ≥ d(rj), (iii) (rj , rj+1) ∈ ER.

The first constraint states that the exit time of the jth resource in the plan must
be equal to the entry time into resource j + 1. The second constraint requires
that the agent’s occupation time of a resource is at least sufficient to traverse
the resource in the minimum travel time. The third constraint states that if two
resources follow each other in the agent’s plan, then they must be adjacent in
the resource graph. The cost of a single agent’s plan is defined as the difference
between the start time and the end time. For the cost of a set of agent plans,
we define two measures. The makespan is the difference between the earliest
starting time and the latest finish time; the joint agent plan cost is simply the
sum of the individual agents’ plan costs.

In sequential route planning, an agent must respect the plans of all the agents
that came before it. From the set of existing agent plans, we can infer how many
agents will be in each of the resources for each point in time.

Definition 2 (Resource load). Given a set Π of agent plans and the set
of all time points T , the resource load λ is a function λ : R × T → N that
returns the number of agents occupying a resource r at time point t ∈ T :
λ(r, t) = |{〈r, τ〉 ∈ π |π ∈ Π ∧ t ∈ τ}|
An agent may only make use of a resource in time intervals when the resource
load is less than the capacity of the resource. In such a free time window, an
agent can enter a resource without creating a conflict with any of the existing
agent plans.

Definition 3 (Free time window). Given a resource-load function λ, a free
time window on resource r is a maximal interval w = [t1, t2) such that: (i)
∀t ∈ w : λ(r, t) < c(r), (ii) (t2 − t1) ≥ d(r).

The above definition states that for an interval to be a free time window, there
should not only be sufficient capacity at any moment during that interval (condi-
tion (i)), but it should also be long enough for an agent to traverse the resource
(condition (ii)). Within a free time window, an agent must enter a resource,
traverse it, and exit the resource. Because of the (non-zero) minimum travel
time of a resource, an agent cannot enter a resource right at the end of a free
time window, and it cannot exit the window at the start of one. We therefore
define for every free time window w an entry window τentry(w) and an exit win-
dow τexit(w). The sizes of the entry and exit windows of a free time window
w = [t1, t2) on resource r are constrained by the minimum travel time of the
resource: τentry(w) = [t1, t2 − d(r)), and τexit(w) = [t1 + d(r), t2).

142 A.W. ter Mors et al.

2
1

r1 r2 r4 r5

r3

Fig. 1. If A1 respects the plan of A2, then the earliest route to r2 cannot be expanded

Our route planning algorithm performs a search through the free time window
graph that is similar to A*: In each iteration, we remove a partial plan from an
open list of partial plan plans with a lowest value of f = g + h, where g is
the actual cost of the partial plan, and h is a heuristic estimate of reaching the
destination resource. We cannot directly apply an algorithm like A* to GW ,
because the existence of a pair (w, w′) ∈ EW does not guarantee that a partial
plan, ending in w, can be expanded to free time window w′. The reachability of
w′ from w implies that there exists a time point t ∈ (τexit(w) ∩ τentry(w′)), not
that all time points in τexit(w) are also in τentry(w′). Hence, when expanding a
plan that ends in window w = [t1, t2) at time t to free time window w′, we must
verify that [t, t2) ∩ τentry(w′) �= ∅. We will write ρ(r, t) to denote the set of free
time windows (directly) reachable from resource r at earliest exit time t.

In line 1 of algorithm 1, we check whether there exists a free time window on
the start resource r1 that contains the start time t. If there is such a free time

Algorithm 1. Plan Route
Require: start resource r1, destination resource r2, start time t; free time window

graph GW = (W, EW)
Ensure: shortest-time, conflict-free route plan from (r1, t) to r2.
1: if ∃w [w ∈ W | t ∈ τentry(w) ∧ r1 = resource(w)] then
2: mark(w, open)
3: entryTime(w) ← t

4: while open = ∅ do
5: w ← argminw′∈open f(w′)
6: mark(w, closed)
7: r ← resource(w)
8: if r = r2 then
9: return followBackPointers(w)

10: texit ← g(w) = entryTime(w) + d(resource(w))
11: for all w′ ∈ {ρ(r, texit) \ closed} do
12: tentry ← max(texit, start(w′))
13: if tentry < entryTime(w′) then
14: backpointer(w′) ← w
15: entryTime(w′) ← tentry

16: mark(w′, open)
17: return null

Context-Aware Route Planning 143

window w, then in line 2 we mark this window as open, and we record the entry
time into w as the start time t. In line 5, we select the free time window w on
the open list with the lowest value of f(w). As in the original A* algorithm, the
function f(w) = g(w) + h(w) is a combination of the actual cost g(w) of the
partial plan to w, plus a heuristic estimate h(w) to reach the destination from
w. If the resource r associated with w equals the destination resource r2, then
we have found the shortest route to r2, for the following reason: all other partial
plans on Q have a higher (or equal) f -value, and if the heuristic is consistent2,
expansion of these partial plans will never lead to a plan with a lower f -value.
We return the optimal plan in line 9 by following a series of backpointers.

If r is not the destination resource, we prepare to expand the plan. First,
in line 10, we determine the earliest possible exit time out of r as the cost of
the partial plan: g(w) = entryTime(w) + d(r). Then, in line 11, we iterate over
all reachable free time windows that are not closed. When expanding free time
window w to free time window w′, we determine the entry time into w′ as the
maximum of the earliest exit time out of resource r, and the earliest entry time
into w′. We only expand the plan from w if there has been no previous expansion
to free time window w′ with an earlier entry time (initially, we assume that the
entry times into free time windows are set to infinity). In line 14, we set the
backpointer of the new window w′ to the window w from which it was expanded.
Then, we record the entry time into w′ as tentry, and we mark w′ as open. Finally,
in case no conflict-free plan exists, we return null in line 17.

The worst-case complexity of algorithm 1 is O(|W | log(|W |)+|EW |): the while-
loop in line 4 runs for at most |W | iterations (every free time window is expanded
at most once), and removing the smallest element from a priority queue can be
done in O(log(W)) time. All other operations between lines 4 and 10 can be
performed in constant time. The for loop in line 11 could inspect every con-
nection between two free time windows exactly once, so lines 12 to 16 can run
at most |EW | times. If we assume that agents are not allowed to make cyclic
plans, then one resource can hold at most |A| reservations, and consequently
|A|+1 free time windows. Hence, W ≤ (|A|+1)|R|, and the complexity of algo-
rithm 1 is O(|A||R| log(|A||R|) + |A||R|2), which has been proved in [4], where
the correctness is also proved3.

3.1 Fixed-Path Scheduling Algorithms

Algorithms to find a shortest-time schedule along a fixed sequence of resources
can be found in [2] and [7]. It is also possible to use algorithm 1 to schedule along
a fixed path, by presenting it with a reduced version of the free time window

2 Because we make use of a closed list, it is not sufficient to require that the heuristic
is merely admissible (i.e., that it would never overestimate the cost of reaching the
destination). For a consistent heuristic, it should hold that h(w) ≤ g(w,w′)+h(w′),
where g(w,w′) is the actual cost of getting from w to w′.

3 Complexity analysis and correctness proof of an earlier version of algorithm 1 can
be found in [9].

144 A.W. ter Mors et al.

graph. In particular, the set of edges EW should only contain a pair (w, w′) in
case the respective resources r and r′ are successors in the path along which we
want to find a conflict-free schedule. The complexity of running algorithm 1 on
such a reduced free time window graph is O(|A||R| log(|A||R|)). The reduction
in complexity is achieved because a partial plan is only expanded to a single
successor resource, rather than considering expansion to all adjacent resources.
As a result, the for-loop in line 11 runs only for a single iteration (per partial
plan). The while loop from line 4 runs for at most |A||R| iterations, and none of
the lines in the algorithm contribute more than O(log(|A||R|)) time.

3.2 Examples

We will now present two examples to compare the context-aware approach to the
fixed-path scheduling approach. The first example shows how a central resource
can become a bottleneck in the fixed-path approach, while the second example
demonstrates that a context-aware planner can sometimes select plans that make
it harder for subsequent agents to find efficient plans. In figure 2 we see an
infrastructure with a central resource rc, and agents Ai with respective start
locations ri

s and destination locations ri
d. For each agent, the shortest path from

start to destination is via the central resource rc. Each agent also has the option
of taking a path that is one resource longer. A fixed-path scheduling approach
(with k = 1) will select the shortest path for each agent, resulting in tremendous
congestion on the central resource. A context-aware approach will result in one
or two agents using rc, while the other agents will take the alternative route.

In figure 3 we see an infrastructure with two long corridors of resources. Three
agents in resource rs,1 want to go to resource rd,1, while the three agents in
resource rs,2 want to go to resource rd,2. All locations, except for the start and

2

3

4

1
8

7

6 5

r
7
b

r
7
d

r
7
sr

7
a

r
3
s r

3
a

r
3
b

r
3
d

r
1
s

r
1
a

r
1
b

r
1
d

r
5
s

r
5
a

r
5
d

r
5
b

rc

Fig. 2. FPS, with k = 1, always makes use of rc, which leads to congestion

Context-Aware Route Planning 145

rd,1

rs,2

rs,1

rd,2

Fig. 3. An optimal multi-agent plan is for all agents to stay in their respective corridors

destination locations, have capacity one. The shortest path for each agent is to
travel to its destination along its initial corridor. The fixed-path approach with
k = 1 will therefore direct each agent along its initial corridor, which will result
in the optimal multi-agent plan. The behaviour of the context-aware approach
depends on the order in which the agents plan. If all agents from one group
are allowed to plan first, then for either the second or the third agent it will be
fastest to select the other corridor; then all agents from the other group must
wait until a corridor is empty.

4 Experiments

In this section we will compare the global plan cost resulting from k-shortest
path scheduling and context-aware routing, and see how they compare to lower
bounds on the cost of an optimal global plan. A lower bound on the makespan is
the longest of the shortest paths between any of the agents’ source-destination
pairs, while a lower bound on joint plan cost is the sum of the lengths of the
shortest paths between the agents’ source-destination pairs.

One problem instance consists of an infrastructure, a set of agents each with
randomly chosen start and destination locations, and a random ordering of the
agents in which they will plan (in section 3.2, we saw that agent orderings can
have an impact on global plan quality). In our experiments we varied the num-
ber of agents from 50 to 500, with steps of 50, and for each number of agents
400 different problem instances: 20 different sets of agent start and destination
locations, and 20 different agent orderings for each ‘task set’.

The first infrastructure we used is a model of Amsterdam Schiphol airport
(see figure 4(a)), on which the start location of each agent was a gate (or a
runway), and the destination location a runway (or a gate). Of the six runways
available at Schiphol, three were randomly chosen to be departure runways, the
remaining three arrival runways4. There are a total of around 200 gates in the
Schiphol infrastructure, and around 800 taxiway resources, for a total of a little
over 1000 resources. We generated two types of infrastructures: lattice networks,
which are like grids only with variable-length connections between intersections,
and random graphs, which are constructed by first creating a random spanning

4 At Schiphol airport, runways are not operated in mixed mode, which is to say they
are never used for departure and arrival at the ‘same’ time.

146 A.W. ter Mors et al.

(a) Schiphol airport (b) Random graph on 21 nodes and
39 edges

Fig. 4. The thicker lines indicate the 5 shortest paths between two locations

tree5, and then adding edges between randomly chosen, as yet unconnected
nodes (until the desired number of edges in the graph has been reached). See
figure 4(b) for an example of a random graph. The minimum travel times of the
resources were determined by setting the length of the median-length resource to
150 meters, and setting the maximum agent speed to 40km/h (as in the airport
experiments). In figure 4, we see two examples of the kind of paths that the
k-shortest paths algorithm returns. Figure 4(a) shows a section of the Schiphol
infrastructure, and we can see that all five paths have much in common with
the shortest paths: two alternative paths take a parallel taxiway, while two other
paths make a very small detour. In figure 4(b), we see that the five paths found
on a random graph are significantly different from each other, and they might
constitute alternatives for an agent that tries to avoid congested roads.

4.1 Results

In figure 5, we can see that although fixed-path scheduling is faster, context-
aware routing still manages to find plans for all 500 agents within half a second
of computation time, when planning on random graphs6. On the larger Schiphol
infrastructure, finding all 500 agent plans required around 5 seconds. Figure 6
shows the results from the comparison between context-aware routing and fixed-
path scheduling on the Schiphol infrastructure. The most important conclusion

5 We create a random spanning tree by iterating through the set of nodes, and in
iteration i we connect the node with index i with a randomly chosen node with
index smaller than i.

6 All experiments were run on 4GB dual-CPU 2.4 GHz AMD Opteron machines.

Context-Aware Route Planning 147

100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

number of agents

co
m

pu
ta

tio
n

tim
e

(m
ill

is
ec

on
ds

)

K = 1
K = 2
K = 3
K = 4
K = 5
CA

Fig. 5. CPU times for CARP and FPS (k = 1, 2,...,5) on random infrastructures

100 200 300 400 500

10
0

15
0

20
0

25
0

30
0

35
0

number of agents

jo
in

t p
la

n
co

st
 a

s
pe

rc
en

ta
ge

 o
f l

ow
er

 b
ou

nd
 (

%
) k = 1

k = 2
k = 3
k = 4
k = 5
CA

(a) Joint plan cost

100 200 300 400 500

10
00

20
00

30
00

40
00

number of agents

m
ak

es
pa

n
(s

ec
on

ds
)

k = 1
k = 2
k = 3
k = 4
k = 5
CA

(b) Makespan

Fig. 6. Global plan cost of CARP and FPS on the Schiphol infrastructure

we can draw from figure 6 is that context-aware routing outperforms fixed-path
scheduling, for all k between 1 and 5, for both makespan and joint plan cost.
Figure 6 also shows that for k = 1 (i.e., when agents always choose the shortest
path), fixed-path scheduling can perform quite badly. Apparently, if each agent
chooses the shortest path, then some resources become overused, resulting in
long waiting times, even if alternative routes are available, which a context-
aware planner would choose. The reason that for higher values of k fixed-path
scheduling still does not approach the performance of context-aware is that, on
the Schiphol infrastructure, a standard k-shortest path algorithm does not find
useful alternatives, as we can see in figure 4(a). A second conclusion that we
can draw is that context-aware routing stays quite close to the lower bounds
on global plan cost. For 500 agents, the cost of the multi-agent plan (whether
measured in makespan or in joint plan cost) is only 30% more expensive than the
lower bounds. Figure 7 shows the results in terms of joint plan costs for the other
types of infrastructures. A quick glance reveals that fixed-path scheduling fares

148 A.W. ter Mors et al.

100 200 300 400

11
0

12
0

13
0

14
0

15
0

16
0

number of agents

jo
in

t p
la

n
co

st
 a

s
pe

rc
en

ta
ge

 o
f l

ow
er

 b
ou

nd
 (

%
)

k = 1
k = 2
k = 3
k = 4
k = 5
CA

(a) Random graphs on 180 nodes and 300
edges

100 200 300 400 500

10
0

15
0

20
0

25
0

number of agents

jo
in

t p
la

n
co

st
 a

s
pe

rc
en

ta
ge

 o
f l

ow
er

 b
ou

nd
 (

%
)

k = 1
k = 2
k = 3
k = 4
k = 5
CA

(b) Lattice graphs of around 450 resources

Fig. 7. Joint plan cost for CARP and FPS, on lattice and random infrastructures

no better on the generated instances. Because of space considerations, we only
show the joint plan cost results here, but for the makespan measure the same
holds as for the Schiphol infrastructure: fixed-path scheduling performs even
worse than for the joint plan cost measure. It seems that fixed-path scheduling
is unable to find useful alternative paths, because the nature of Yen’s [8] k-
shortest path algorithm is such that all shortest paths are found by making
minimal deviations from the same shortest path.

5 Conclusions

In this paper we presented our context-aware route planning algorithm, which
finds an optimal (shortest-time) route plan that is conflict-free with regard to a
set of existing agent plans. We compared our algorithm to an approach that finds
an optimal schedule along a fixed path. The advantage of fixed-path scheduling
is that it requires less computation time than context-aware routing. In practice,
however, this may not be of great importance, as context-aware routing can often
find plans for hundreds of agents within a second.

With regard to the global plan cost resulting from the application of either
context-aware routing or fixed-path scheduling, in our experiments context-
aware routing consistently outperforms fixed-path scheduling. The fixed-path
scheduling approach, in which we can choose from one of k shortest paths, seemed
to suffer from the fact that the k shortest paths returned by Yen’s algorithm [8]
(which was also used by the fixed-path scheduling approach of Lee et al. [7])
are too similar. Using the k shortest disjoint paths (cf. [10]) can remove that
concern, but there may not always be many disjoint paths.

Given the speed of context-aware routing, we do not believe, however, that
trying to revive fixed-path scheduling by finding alternative sets of k paths is the
most fruitful direction of future research. Instead, we could focus on determining
which routes a context-aware route planner should not take. From our examples

Context-Aware Route Planning 149

we know that context-aware route planners sometimes select routes that make it
very difficult for subsequent agents to find good plans. In analogy to Stackelberg
games (cf. [11]), if the first few agents select routes that are beneficial to others,
then subsequent agents may join existing flows of agents on the infrastructure,
which might lead to efficient global plans.

References

1. Vis, I.F.: Survey of research in the design and control of automated guided vehicle
systems. European Journal of Operational Research 170(3), 677–709 (2006)

2. Hatzack, W., Nebel, B.: The operational traffic problem: Computational complex-
ity and solutions. In: ECP’01, pp. 49–60 (2001)

3. Trüg, S., Hoffmann, J., Nebel, B.: Applying automatic planning systems to airport
ground-traffic control - a feasibility study. In: Biundo, S., Frühwirth, T., Palm, G.
(eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 183–197. Springer, Heidelberg (2004)

4. ter Mors, A.W.: The world according to MARP: multi-agent route planning. PhD
thesis, Delft University of Technology (March 2010)

5. Desaulniers, G., Langevin, A., Riopel, D., Villeneuve, B.: Dispatching and conflict-
free routing of automated guided vehicles: An exact approach. International Jour-
nal of Flexible Manufacturing Systems 15(4), 309–331 (2004)

6. Kim, C.W., Tanchoco, J.M.: Conflict-free shortest-time bidirectional AGV route-
ing. International Journal of Production Research 29(1), 2377–2391 (1991)

7. Lee, J.H., Lee, B.H., Choi, M.H.: A real-time traffic control scheme of multiple
AGV systems for collision-free minimum time motion: a routing table approach.
IEEE Transactions on Man and Cybernetics, Part A 28(3), 347–358 (1998)

8. Yen, J.Y.: Finding the K shortest loopless paths in a network. Management Sci-
ence 17(11), 712–716 (1971)

9. ter Mors, A.W., Zutt, J., Witteveen, C.: Context-aware logistic routing and
scheduling. In: ICAPS, pp. 328–335 (2007)

10. Suurballe, J.: Disjoint paths in a network. Networks 4(2), 125–145 (1974)
11. Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving network optima using Stackelberg

routing strategies. IEEE/ACM Transactions on Networking 5(1), 161–173 (1997)

Social Conformity and Its Convergence for
Reinforcement Learning

Juan A. Garćıa-Pardo, J. Soler, and C. Carrascosa

Universidad Politécnica de Valencia
Camino de Vera s/n. 46022 – Valencia, Spain

{jgarciapardo,jsoler,carrasco}@dsic.upv.es

Abstract. A dynamic environment whose behavior may change in time
presents a challenge that agents located there will have to solve. Changes
in an environment e.g. a market, can be quite drastic: from changing
the dependencies of some products to add new actions to build new
products. The agents working in this environment would have to be ready
to embrace this changes to improve their performance which otherwise
would be diminished. Also, they should try to cooperate or compete
against others, when appropriated, to reach their goals faster than in an
individual fashion, showing an always desirable emergent behavior. In
this paper a reinforcement learning method proposal, guided by social
interaction between agents, is presented. The proposal aims to show that
adaptation is performed independently by the society, without explicitly
reporting that changes have occurred by a central authority, or even by
trying to recognize those changes.

1 Introduction

Learning is in general desirable since it will allow an agent to fit better in the
environment, either because by design they were not 100% accurate in their
parameters and they had to adjust them, or just because some of the parameters
of the environment were unknown or vary through time.

When talking about learning in multi-agent systems there are some situations
in which there is no other way to know how the environment is going to react to
agents’ actions but to actually perform them. In these cases multi-agent learning
(MAL) reinforcement learning (RL) techniques [1] are useful to discover how
the universe in which the MAS is located works. This phase aims to learn the
parameters which steer the mental model of the universe, and usually ends when
some error measure between the real behavior of the universe and the expected
or modeled one is small enough to neglect it. The learning phase can stop after
this, and the exploitation phase can mainly be used from this point on.

One approach to RL in the MAL community is taken from the Game Theory
framework [2,3], in which the agents in the system act rationally to achieve
their goals. The algorithms found in the research papers from this area usually
focus on the equilibrium (Nash-equilibrium) of the solution, i.e. the solution
is good enough for all the parties involved (cooperating or competing). One of

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 150–161, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Social Conformity and Its Convergence for Reinforcement Learning 151

the problems of these kind of approaches is the consideration of rationality of
the agents, which may not be true [4]. In fact, humans do not usually behave
rationally [5], in the sense described by Nash [6] equilibrium.

On the other side, there are cooperative learning algorithms which allow to
obtain an optimal policy common to the whole set of learning agents (e.g. see
[7]), with no need from them to behave rationally in the Nash sense, but the
algorithm must know the whole set of agents which are learning the policy under
discussion, and has some other constraints. The environment covers the mechan-
ical part (the one which is independent to the MAS) and also the social part
(actually, the MAS itself, including every agent capable of performing changes
in the environment, both social or mechanical).

When the environment is dynamic learning is going to be essential. The
agents will require to learn a set of parameters which were not present at de-
sign time. Changes in the environment usually require them to learn again. But
some changes require something beyond a parameter estimation. They require
adaptation by the agents. An example of this adaptation would appear in some
self-healing systems [8].

If the agents could self-adapt to the environment, depending only on the
interactions with the agents that inhabit in the same universe, and re-adapt every
time significant changes would appear, the system would auto-control itself, and
would not need a centralized logic trying to figure out whether there was a
significant change or not, and which actions would be the most appropriate to
take to improve the outcome.

Our goal in this paper is to study the behavior of self-adaptive agents immerse
in an unknown dynamic environment, which is open and heterogeneous. Enabling
self-adaptation through social interaction between certain agents will show that
it is possible to have adaptive agents with no central control at all.

The rest of the paper is structured as follows: Section 2 presents the for-
mal basis behind reinforcement learning and its limitations. Section 3 presents
an introduction to the problematic of adapting in dynamic systems and a pro-
posal based on social reinforcement to tackle the problem of detecting significant
changes. Section 4 proves the convergence of Q-learning using that approach. Sec-
tion 5 introduces the testbed used to check the feasibility of such approach, with
some results made in simulation. Lastly, Section 6 presents the evaluation of the
results and indications of which is going to be the next steps in this research.

2 Theoretical Background

Learning how environment behaves through interaction is a well studied method
to obtain policies that yield optimal behaviors. Reinforcement Learning tech-
niques [1] allow precisely to obtain optimal policies once the agents are trained
enough time in the environment. These techniques are in the classical view lim-
ited to its use in centralized control systems. In this case, the environment does
not take into account the rest of agents that may interact simultaneously while
our agent is exploiting the values it has learned so far.

152 J.A. Garćıa-Pardo, J. Soler, and C. Carrascosa

For each time instant t, we will call st, st ∈ S the state of the universe, at, at ∈
A the action which is executed by the agent, and r(st, at), r : {S, A} → R the
reward (or feedback from the system) obtained by executing at while being in
the state st. All of them in a discrete time model.

The agent must learn the optimal action policy π∗ only through the rewards
over time. A policy π is just a function π : S → A which indicates the agent
which is the action with the best accumulated reward over time, taking into
account the rewards and the transitions to other states. The policy π has a
cumulative reward value V π

V π ≡ rt + γrt+1 + γ2rt+2 + . . . =
∞∑

i=0

γirt+i (1)

being rt ≡ r(st, at), the reward of the universe at moment t and rt+1 ≡ r(st+1,
at+1) the reward at the next discrete temporal instant (time step), st+1 being
determined by the transition δ as st+1 = δ(st, at). Policy π determines which
actions to take at every state, π(st) = at. The symbol γ is called the discount
factor, 0 ≤ γ < 1, usually constant ∀t; the closer γ to 1 the greater emphasis
future rewards are given with respect to immediate rewards.

The most used algorithm for implementing reinforcement learning is called
Q-Learning [9,1]. π∗ would be the optimal policy:

π∗(s) = argmax
a

V π(s) = argmax
a

[r(s, a) + γ V ∗(δ(s, a))] = argmax
a

Q(s, a) = π∗(s)

being Q a matrix holding the values or rewards for state-action pairs.
It has to be taken into account also that the reinforcement learning agents go

through a learning stage, in which they estimate the Q-values, and another stage
of exploiting the computed optimal policy. One way to split these two different
stages is by means of a stochastic function which determines the probability of
executing an action from the current optimal policy or a random action.

p(a|s) = k ; π∗(s) �= a ; 0 ≤ k ≤ 1

The parameter k indicates the probability of an agent choosing randomly an
action from the ones it has available, instead of executing the computed one
corresponding to π∗ according to its Q-table. This way, if k → 0 it is said that
the agent is in the exploiting stage of the π∗ policy, and analogously, if k → 1
the agent is in the exploration stage, exploring the Q-values of the universe.

Of course, the value of k does not have to be constant, and can be given by
a function of different variables, although the most usual is to be a function
of time, satisfying limt→∞ k = 0 or some other constant near 0. This way, the
agent starts initially in the exploration stage, remains with this behavior for
some time (hopefully enough to compute the right Q-values) and later exploits
the computed π∗ policy through these Q-values.

It has to be noted that in the case of a multi-agent system, the transition
function δ(s, a) : {S, A} → S does not behave as before: the rest of the agents,
while interacting simultaneously with the environment, have modified the orig-
inal state s, and now it is necessary to compose all the actions from all the

Social Conformity and Its Convergence for Reinforcement Learning 153

agents who have executed them, in the right order, to describe the new tran-
sition δ(δ(. . . δ(s, a) . . . , ai), aj). Following this idea, it would be necessary to
model the universe around each agent also taking into account the state of each
of the remaining agents [7], and the actions now would be a tuple of n indi-
vidual actions, one for each of the n agents in the MAS. Computational cost
of this approach increases exponentially with the number of agents (in the gen-
eral case), which implies the intractability of the problem when the number of
agents is high. Another constraint that must be borne in mind is that each agent
should be able to observe the action performed by each of the other agents in
the environment, fact that may not be realistic in some environments.

But in environments where the execution of the actions of other agents do not
change the state that the transition function would obtain, or the reward, with
high probability, the convergence would still be guaranteed, and the agent would
be able to obtain the optimal policy. In order to accomplish that it would be
of paramount importance the choice of the representation for the states of the
universe. It is necessary to maintain a commitment between the ability of expres-
siveness of the states of the universe [10] (which may be infinite, but enumerable
[11]) and the aggregation property which may allow agents to use algorithms for
Q-learning not explicitly designed for multi-agent environments, but obtaining
near optimal policies. A method called Soft State Aggregation (SSA) [12] tries to
join different states of the universe so that after the transformation the states
that are semantically similar get mapped near. Some other approaches, such as
using fuzzy-ART networks [13] bring us the possibility of describing a continuous
universe, potentially infinite.

3 Adaptation in Highly Dynamic Systems: Social
Reinforcement

In any open multi-agent system that allows heterogeneous agents, the adaptation
of part or the whole society is a difficult task [14]. Adaptation should occur when
changes that arise are significant enough to yield losses higher than the cost of the
adaptation itself to the new conditions. Detection of the importance of changes
in the environment is not naive, since the optimal policy is unknown a priori,
without which we can not obtain reference values to compare both the individual
behavior of each agent and the one of the whole society.

For all non-static environments, we can say that there are certain changes
that require dynamism and adaptability of agents. The changes that could lead
to an adaptation of the agents can be divided into the following taxonomy:

– Mechanical Changes: they happen in the environment, such as changes in
rules or characteristics of the environment where agents are located.

– Social Changes: they happen in the organization (in the agents):
• A new intelligent agent appears
• An existing intelligent agent disappears
• A new non-deterministic agent appears
• An existing non-deterministic agent disappears

154 J.A. Garćıa-Pardo, J. Soler, and C. Carrascosa

We will give the name Self-adaptive Intelligent Agents to those which have been
prepared to automatically adapt themselves to the changes, in an autonomous
way, and give the name Non-deterministic Agents to the rest, whether they
are human controlled or [partially] autonomous, but not self-adaptive. Even
though changes in the environment include a variety of situations [15], all pos-
sible changes in the system are compositions of the changes mentioned above.

Changes in the transition function and in the rewards can happen, despite
our efforts to find a suitable representation, particularly when the environment
changes. For example, in a market there may constantly appear new ways to
build new products, such as by introduction of new objects (functions) which
allow actions unknown until that moment, or by changing prices or dependencies.
All this mechanical changes will have an effect.

Trying to adapt a multi-agent system in a bottom-up way, so, trying to exhibit
emergent behavior through the design of the individuals has been always desir-
able, as long as the the system as a whole gets adapted. We will try to address
the problem of detecting significant changes in the system, in an autonomous
way, through the social reinforcement (RΣ).

Each agent would care only of maximizing its own benefit until asked to review
its behavior. The agent, we expect, will find a niche in the system because there
is a need in the organization, which has to be fulfilled, and it is convenient for
both the organization and the individual agent (at least in our study case, where
the game is collaborative). There would be no “central authority” managing the
adaptation: the social reinforcement would take care of this. By having an agent
that is capable of observing the outcome of their actions in the universe, and
providing this agent with social reinforcement —the latter significant of the
opinion that the rest of the organization has about its actions— we can take
advantage of the received information, which could show us the social approval
with respect to the actions taken by the agent, as an indicative value of the
utility of this agent to the society.

These socially sensible agents would use social approval (or disapproval) to
determine whether to change its behavior or to continue with the policy which
they consider the optimal one, π∗. The parameter of exploration k can be mod-
ified from the social reinforcement, being now function of a set of values, which
in turn are function of the reinforcements of the environment:

K : {RΣ} → R ; RΣ : R → R (2)

We need to define the social reinforcement in order to compute the exploration
probability. The social reinforcement is computed as shown in (3).

rΣ,t(st, at) =
∑

a

ρa τa rΣ,t,a(st, at) (3)

This definition the social reinforcement value is not bounded. The parameter τa

represents the trust that this agent has in agent a being proper and correct in its
reinforcement. Usually 0 ≤ τa ≤ 1. The parameter ρa represents the reputation
of agent a according to the society. Depending on the value of ρa and τa the
opinion of agent a will be more important or not, for each agent a in the society.

Social Conformity and Its Convergence for Reinforcement Learning 155

Fig. 1. Evolution of kt (z-axis) as time (x-axis) and Σ (y-axis) change. k0 = 0.8.

A proposal for the k evaluation function, which takes into account the social
reinforcements both positive and negative, is shown in equation (4). The calcu-
lation of the exploration parameter k is now done using a series similar to the
sigmoid function:

kt+1 =
kt

kt + 2kt(rΣ,t(st,at)−2) (4)

Which is bounded between 0 and 1.
The series expressed in equation 4 converges for monotonic values of rΣ,t as

shown in Sec. 4.
The effect of this k function coupled with the optimal policy π∗ searching

algorithm is shown by simulation, in Sec. 5. A picture the behavior of the kt

series is shown in Fig. 1.

4 Convergence of Learning

Convergence of the learning process is proven under some assumptions:

– The agent can represent the universe without taking into account other
agents. Al least the agent has function of representation which can rep-
resent the universe with no ambiguity with a high probability, probability
that increases with time.

– The agent knows the set of actions that are available at any time.
– The agent can observe the response of the system to its actions.

To prove that the Q-learning algorithm converges now, the kt series has to con-
verge as well. Being the kt series convergent, the Q-learning algorithm will behave
as usual, thus converging to the optimal policies (under the former assumptions)
if all the states are visited enough. Lets write (4) using σ ≡ rΣ,t(st, at) for the
sake of clarity:

kt+1 =
kt

kt + 2kt(σ−2) (5)

156 J.A. Garćıa-Pardo, J. Soler, and C. Carrascosa

�1.0 �0.5 0.5 1.0
x

0.2

0.4

0.6

0.8

y

Fig. 2. Convergence of the kt series (in the y axis) as σ changes (in the x axis)

In the limit when t → ∞ we expect kt+1 = kt, thus

kt =
kt

kt + 2kt(σ−2)

1 = (1 − kt)2−kt(σ−2)

2σ−2(σ − 2) = 2σ−2(σ − 2)2−kt(σ−2)(1 − kt)
2σ−2(σ − 2) = 2(1−kt)(σ−2)(1 − kt)(σ − 2)

ln(2)2σ−2(σ − 2) = e(1−kt)(σ−2)ln(2)(1 − kt)(σ − 2)ln(2)
(1 − kt)(σ − 2)ln(2) = W (ln(2)2σ−2(σ − 2))

kt = 1 − W (ln(2)2σ−2(σ − 2))
(σ − 2)ln(2)

(6)

In (6) the W (x) stands for the Lambert-W function such that for every number
x ∈ R, x = W (x)eW (x).

In Fig. 2 the convergence of kt is shown for −1 ≤ σ ≤ 1 in a graphical way.
Note that approximately when σ > 0.55 the value of kt drops to zero and stays
there. This allows for systems with a high probability of exploitation as long as
the social reinforcement is positive and not too small (> 0.55).

Since the convergence of the exploration probability is proven, the convergence
of the Q-learning algorithm follows easily:

An agent will cast a ballot in the range [−1, +1] depending on the rewards
obtained by the mechanical part of the universe. Using for example the following
rule while in a given state s and after executing action a: When Qn+1 > Qn cast
+1; when Qn+1 < Qn cast −1; in case Qn+1 = Qn: cast +1 if δn+1 = δn and
cast −1 otherwise. This all in the case the environment is deterministic. When it
is not, and has an stochastic transition function, the expressions δn+1 = δn have
to be replaced by the corresponding ones p(δn+1|δn). The higher the probability
of the transition, the closer the value would be to +1.

5 Study Case

To study the effects of social learning on a practical level we have proposed a
simple collaborative game: a market economy in which the production line has

Social Conformity and Its Convergence for Reinforcement Learning 157

different types of units, and the agents should build some or consume certain
products for their survival. In this scenario the agent competes with other for
survival, or by obtaining as many points as possible. These points may be named
life, since below 0 agents disappear. In the event of a player disappearance, the
market automatically removes all products which were unsold and belong to that
player. If the agent reenters the market, it spawns with the initial values of life
and money. The market hosts the products that the agents build. Any product
can have dependencies of ni, i ∈ [0, m] units of m different products, and need
some specific time to be built. This base time can be slightly modified depending
on each agent features, but not the dependencies.

Finally, the price of the products is fixed by each one of the agents. To get a
product from the market the player must pay in advance. Negative balances are
not allowed, but agents are able to modify the price of the products they built
even when they are already on the market.

In this environment the actions of other players are not observable, but its
results may be: they cannot tell if an agent is making a product, but they notice
the agent did build it when it puts it on sale on the market.

The system (the market) may change the production rules of the system
at any time. The variations allowed are the creation and deletion of product
types, changes on the dependencies (both the amount and the type) and the
modification of the base time needed for production. Also the possibility of
agents entering and leaving the market at any time.

The environment can simulate supply chain processes, where demand can
vary and rules can be altered. This way, a good agent would adapt itself to the
variations automatically and, with some time, come back with a good behavior
competing and collaborating with other agents inside the environment.

5.1 Simulation

Different techniques of intelligence can get different strategies to follow: col-
laborate to eliminate certain players so that there are less competitors, control
prices according to some strategy, estimate and predict the behavior of other
agents. . . Since it is an open and heterogeneous system, some techniques such as
finding the Pareto-optimal equilibrium or Nash equilibriums are not (theoreti-
cally, but not tested in this paper) the appropriate ones [16,17]: each agent may
act in a non rational way, and may follow very particular policies.

As seen in section 2, reinforcement learning in a multi-agent system cannot
be applied unless some conditions are given. For the simulation the agents use
a well-known technique for grouping states (Soft State Aggregation, or SSA)
which allow them to represent an infinite space of continuous values, with D′

dimensions, in a D-dimensional finite space (clusters) [12]. For the exposed study
case this space is seen as a D-dimensional matrix, grouping the states (∈ R

D)
in an exponential way. The discrete position (or index of the cluster) i for the
continuous variable x is computed as:

i = log2(x + 2s) → log2(x + 1) (7)

158 J.A. Garćıa-Pardo, J. Soler, and C. Carrascosa

Bounding i on some number (ω) which is to be considered near to the maximum
that is to be seen for that variable, for D dimensions that are taken into account
for the environment representation. Therefore the total set of states which every
agent must represent is ωD × |A|. The number of actions |A| is known by every
agent (although may change with time).

Two different types of agents will be differentiated; those who can receive and
understand social reinforcement and those which not. It is expected to observe
a better adaptation of the social-aware agents compared to the non-social ones
(traditional reinforcement learning).

Three types of products where loaded: Wheat, with no dependencies and need-
ing 1 cycle. Flour, requiring 2 units of flour and 2 cycles. And Bread, eatable,
providing 10 units of life, requiring 2 units of flour and 2 cycles.

Learning of the Q-table was done individually for both the social-aware agents
and the non-social. Parameter ω was fixed at 4, which means that the last state
for each dimension will represent values of x ∈ [7, +∞]. The dimensions (or
variables) taken into account to represent the environment are the number of
products of each kind in the market plus agent’s life and balance.

The actions available to the agents are the creation of any kind of the products
plus another one called eating. The total space of representation needed by each
agent is only of (4)(3+2) × 4 = 4096 states. Learning stage has taken 1, 000, 000
cycles, with a probability of exploration ≈ 1, hopping to explore as many states
as possible, as many times they could. Every agent starts with exactly the same
Q-matrix at the beginning of the simulation. Four different experiments were
carried out: (1) No changes in the environment. (2) One of the products loses
dependencies. (3) One of the products increases its dependency constrains. (4)
A mixture between 2 and 3.

5.2 Results

Since the target for this study was adaptability, the work has been concentrated
around this issue. The cases involved changes in the environment, one was pre-
pared to test adaptation when easing the production process (thus a human
would be happily adapting), the second one was carried out testing agents when
the environment hardens quite a lot and the last one was a mixture, to check
the relationship between the former two. Results are partially as we expected.

The test results are shown for the simulation of two different multi-agent soci-
eties: one formed by agents not social-aware, thus, not self-adaptive (in this sim-
ulation, called non-social), and another one formed by the agents under study,
social-aware ones (called social). Values inside the tables represent the amount
of re-spawns (deaths and reentries) that the agents have required, for every 1000
cycles, per agent (the less the better). Generally speaking the results are encour-
aging (see table), although the fact that every re-spawn means in a real system
the agent to be thrown out by non compliance of the rules.

We can see at table 1 how the social agent is more likely to adapt than the
non-social one. Adaptation in the first case (with the title No variation) is needed
as the other agent may interact with the environment, modifying partially the

Social Conformity and Its Convergence for Reinforcement Learning 159

Table 1. Re-spawns of the agents for every adaptation case

Case # of Agents Steps Non-social Social

(1) No variation
2 10000 7.05 3.6
4 10000 10.55 2.38

(2) Small variation
2 10000 7.4 1.85
4 10000 14.05 1.35

(3) Mild variation

2
10000

14.35 12.6
4 19.23 11.53
2

100000
18.91 12.37

4 18.42 11.59

(4) Combination
2 10000 16.85 11.15
4 10000 17.28 10.6

sequence of actions of our π∗ (as seen in section 2 it must hold limt→∞ p(a|s) ≈
0 ; π∗(s) �= a for every agent, and in this simulation the grouping function (7) is
just not robust enough, they collide when positioned on states with low index).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
ea

th
s/

10
00

*a
ge

nt

Simulator Cycle

Evolution of both agents

Non-Social
Social

Fig. 3. Evolution of the re-spawn of both agents when Flour changes to no dependencies

We can see as well how the result improves when the number of social-agents
increases. This is due to the increase of the social reinforcement, as there are
more agents to reward others.

Case 2 shows that what it is supposed to be a relaxation of the requirements for
the system, disturbs a lot the learned policies. Agents do not need to go through
the states which pointed the existence of the product Wheat, but they still try
to produce it, even though Wheat is now an useless product, and should not
be built and non-social agents will follow this behavior unaware of the existing
change.

Detail of the evolution of the re-spawns along time is also included (figure 3) in
order to observe how non-social agents cannot amend the policy they were using,

160 J.A. Garćıa-Pardo, J. Soler, and C. Carrascosa

while the social agents find very quickly an equilibrium which they manage to
hold. Furthermore, since now the rules for food creation are less tight they have
even better score than before evolution of the environment.

Case 3 shows an odd result: we expected to see the social aware agents to
improve its score while staying longer on the system, supposedly learning new
policies. It came out that it did not improve at all its behavior. The restrictions
imposed were squeezing too much the agents, since they do not have time to
actually build all the required products using less life that the one that the
Bread will gave them back. Anyway we see a better performance as the number
of social-aware agents increase in the society, making it easier to adapt faster to
the new (squeezing) conditions.

Case 4 shows that the mixture of the two previous experiments do not average
results on the scores. Adaptation is a bit more complicated than that. The policy
that was learned for the experiment in case 2 is not the same as the one in this
experiment, nor the one in case 3.

Still, in all cases the social-aware agents have perform better when there were
more of them that with a small population, which supports the assumption that
social-aware agents behave better as their number grow.

6 Conclusions and Future Work

The results of these experiments, although do not prove better performance in
adaptation of the social-aware agents for the general case, are very encouraging.
The case of study was chosen independently as part of another ongoing work,
meaning that was not prepared for these new agents to perform better. We can
see that with very little modifications to a well-known algorithm the agents have
achieved self-adaptation in this case of study without any central control.

Our aim to design an intelligent agent who can adapt itself to the environ-
ment seems to be achievable in the medium term. Further simulation with other
mapping functions will have to be carried on to ensure that the state space is
representable by a social reinforcement learning agent. In order to achieve this
medium term goal, the future work mentioned below should be carried out:

• Special interest, we believe, is to take in the search for different methods
of state aggregation, stochastic ones (as SSA) or not, and to study if the use of
such mapping functions is going to be powerful enough by itself, and under what
circumstances, to apply individual reinforcement learning in multiagent systems.

• The simulation did not use any particular algorithm to adapt the Q-matrix.
Instead, the agents kept the wrong values for some time (the non-social ones for
a very long time), but the creation of new policies could have been speeded up
if an adaptation of the values would have been made. Finding algorithms able
to adapt this values in this fashion would be very desirable.

• We have no real knowledge of which proportion of social-aware agents needs
the system to work in a proper way. There is the chance that the agents can be
fooled by some other agents which know about the way they work to be adaptive.
Research in this direction could show interesting results in terms of robustness
and, in the end, adaptability of the system as well.

Social Conformity and Its Convergence for Reinforcement Learning 161

Acknowledgements

This work has been partially funded by TIN2009-13839-C03-01, TIN2008-04446,
PROMETEO/2008/051,GVPRE/2008/070 projects, CONSOLIDER-INGENIO
2010 under grant CSD2007-00022.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement learning i: Introduction (1998)
2. Vidal, J.: Learning in multiagent systems: An introduction from a game-theoretic

perspective. Adaptive Agents and Multi-Agent Systems, 562–562
3. Akchurina, N.: Multiagent reinforcement learning: algorithm converging to nash

equilibrium in general-sum discounted stochastic games. In: AAMAS ’09: Proceed-
ings of The 8th International Conference on Autonomous Agents and Multiagent
Systems, pp. 725–732 (2009)

4. Shoham, Y., Powers, R., Grenager, T.: Multi-agent reinforcement learning: a criti-
cal survey. In: AAAI Fall Symposium on Artificial Multi-Agent Learning, Citeseer
(2004)

5. López-Paredes, A., Hernández-Iglesias, C., Gutiérrez, J.P.: Towards a new ex-
perimental socio-economics: Complex behaviour in bargaining. Journal of Socio-
Economics 31(4), 423–429 (2002)

6. Hu, J., Wellman, M.P.: Nash Q-learning for general-sum stochastic games. The
Journal of Machine Learning Research 4, 1039–1069 (2003)

7. Melo, F.S., Ribeiro, M.I.: Coordinated learning in multiagent MDPs with infinite
state-space. Autonomous Agents and Multi-Agent Systems, 1–47

8. Ghosh, D., Sharman, R., Raghav Rao, H., Upadhyaya, S.: Self-healing systems–
survey and synthesis. Decision Support Systems 42(4), 2164–2185 (2007)

9. Hu, J., Wellman, M.P.: Multiagent reinforcement learning: Theoretical framework
and an algorithm (1998)

10. Tsitsiklis, J.N., Van Roy, B.: Feature-based methods for large scale dynamic pro-
gramming. Machine Learning, 59–94 (1994)

11. Gordon, G.J.: Stable function approximation in dynamic programming (1995)
12. Singh, S.P., Jaakkola, T., Jordan, M.I.: Reinforcement learning with soft state

aggregation. In: Advances in Neural Information Processing Systems, vol. 7, pp.
361–368. MIT Press, Cambridge (1995)

13. Tateyama, T., Kawata, S., Shimomura, Y.: A Reinforcement Learning Algorithm
for Continuous State Spaces using Multiple Fuzzy-ART Networks. In: International
Joint Conference on SICE-ICASE, pp. 2445–2450 (2006)

14. Helleboogh, A., Vizzari, G., Uhrmacher, A., Michel, F.: Modeling dynamic environ-
ments in multi-agent simulation. Auton. Agents Multi-Agent Syst. 14(1), 87–116
(2007)

15. Dignum, V., Dignum, F., Sonenberg, L.: Towards dynamic reorganization of agent
societies. In: Proceedings of Workshop on Coordination in Emergent Agent Soci-
eties, pp. 22–27 (2004)

16. Hu, J., Wellman, M.P.: Multiagent reinforcement learning in stochastic games
(1999), citeseer.ist.psu.edu/hu99multiagent.html

17. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative
multiagent systems. In: Proceedings of the Fifteenth National Conference on Arti-
ficial Intelligence, pp. 746–752. AAAI Press, Menlo Park (1998)

citeseer.ist.psu.edu/hu99multiagent.html

COLYPAN: A Peer-to-Peer Architecture for a
Project Management Collaborative Learning

System

Hanaa Mazyad and Insaf Tnazefti-Kerkeni

Laboratoire d’Informatique, Signal et Image de la Côte d’Opale,
Université de Lille Nord de France

50 rue Ferdinand Buisson BP 719, 62228 Calais Cedex, France
{mazyad,kerkeni}@lisic.univ-littoral.fr

Abstract. In this paper, we present a project management collaborative
learning system that tries to respond to the requirements of a motivating
learning process. In this system, learner, group learners and tutors are in
an environment where each one teaches and learns, by interacting with
others. Peer-to-peer (p2p) network reflects and supports this relationship
between users in a collaborative learning community. We propose a p2p
agent-based system for their management and sharing.

Keywords: Collaborative learning communities, Knowledge manage-
ment, Peer-to-Peer, Agent-oriented architecture.

1 Introduction

The evolution of Information and Communication Technology (ICT) helped in
the development of systems dedicated to learning. Today, the computer became
a simple element of a more complex system involving the cooperation of various
human and artificial entities that share a set of teaching resources.

Recently, we have been interested, in our laboratory, in the field of collabo-
rative learning. Collaborative learning is a learning process for the progressive
acquisition of knowledge within a group in an appropriate environment. This
work resulted in the definition of a teaching method called MAETIC equipped
with ICT [1]. The main purpose of the deployed pedagogy is to provide real
support to knowledge acquisition while doing a project by a group of learners.
To this end, our objective is to develop a learning platform that offers learners
a support for their projects development and progress monitoring by the tutor.

In the context of e-Learning, it is essential to avoid the failure and/or desertion
of learners. So, it is important to propose for tutors automatic or semiautomatic
tools, with assistance and decision support. These tools help to keep traces of all
interactions related to learners belonging to a given group and report the indi-
cators of progression status in this learners group and its durability. Multi-agent
systems (MAS) come as a solution for knowledge organization and exploitation
problems and also for problems of the coordination and communication in such
environments.

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 162–172, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

COLYPAN: A P2P Architecture for a Project Management 163

This paper presents COLYPAN, a web-based peer-to-peer system that sup-
ports collaboration among learners, learners groups and tutors. This system al-
lows the implementation of additional functionalities in order to keep a detailed
history of all groups’ actions when learners access their accounts in order to as-
sess the group’s life and its evolution. Thus, COLYPAN allows students to learn
while collaborating in order to achieve their projects and provides tutors with
tools to trace the activity of their students. In this paper, we start, in section
2, by briefly introducing the MAETIC method before discussing some related
works. In section 3, we describe the Peer-to-peer architecture proposed for a
project management collaborative learning system. A case study is presented in
section 4 to illustrate our architecture. Finally, some directions for future work
and conclusions are presented in section 5.

2 MAETIC Method

2.1 Description of the Method

MAETIC (from french “Méthode pédAgogique InstrumentEe par les TIC”: a
pedagogic method instrumented by the ICT) is a teaching method which, as
part of pedagogy for project learning, describes a set of formalized and applied
procedures according to defined principles. Thus, the objective of MAETIC is to
allow a learner to develop requested knowledge and skills by the implementation
of a developing process of a “product” and lead to technical project management.
For the tutors, MAETIC’s objective is to promote the establishment of a process
that will facilitate their educational activities.

MAETIC is based on five stages commonly adopted in the process of project
management [2]: the initialization, the preparation, the planning, the project
monitoring and the revenue. Each stage establishes activities, requires the pro-
duction of one or more deliverables, and takes place over one or several sessions.
Since the work is collective, MAETIC advocates the establishment of an organi-
zation in the group project (description of roles) that promotes the acquisition
or enforcement of transversal skills needed for teamwork. The fact of making the
group produce deliverable develops qualities related to the written production.

Thus, each project team must establish its weblog. This weblog aims to de-
scribe the life of the project. Besides the general information on the project (sub-
ject, members), it is responsible of storing all the notes concerning the project’s
life and is also responsible for collecting developed deliverables.

The learning activity in this device is defined by the tutor. Learners must
join groups to accomplish this activity. Learners in each group have the same
responsibility: the commitment to finish the work, time management and the
respect of deadlines. There are no predefined roles or division of tasks.

2.2 Contribution of Multi-agents System

Contrasting with traditional education practices, which view tutors as producers
and learners as consumers of knowledge, in collaborative learning, both tutors

164 H. Mazyad and I. Tnazefti-Kerkeni

and learners are seen, at the same time, as producers and consumers, gathered in
an environment where everyone has something to teach and something to learn.
This way, instead of playing the role of detaining and transmitting knowledge,
the tutor assumes other functions, such as those of motivator, guide and collabo-
rator. Meanwhile, the learners become more active and responsible for their own
learning.

There is a critical need, in such context, for tools : (1) supporting collabo-
ration among distributed users with similar interests, or who are part of the
same workgroup; (2) organizing information for facilitating access in various
contexts; (3) managing traces of all interactions related to learners belonging
to a given group and report the indicators of progression status in this learn-
ers group and its durability. Multi-agent systems (MAS) are involved in the
modelling of interactions in complex societies of artificial or human individuals.
They bring an interesting resolution for knowledge organization and exploita-
tion problems and also for problems of the coordination and communication
mechanisms.

2.3 Related Works

Before discussing the proposed architecture, we review the approaches presented
in the literature that provide multi-agents platforms for collaborative learning.
In the field of Artificial Intelligence and education, several approaches have been
developed. For example, Guizzardi and al. [3] have developed a Peer-to-peer sys-
tem called “Help & Learn”. This system was modeled using an agent-oriented
language called AORML [4]. It is an open system that is designed to support the
extra-class interactions between learners and tutors. “Help & Learn” is limited to
providing assistance to learners who request it. Other systems have been devel-
oped. Fougeres and Ospina [5] have proposed a based-agent mediation system
for the project management platform called iPédagogique. This system, mod-
eled in AUML, serves as an interface between the human and the application to
enhance their relationship and is used to promote collaboration among users. Re-
cently in [6], the authors presented a model for an adaptative multi-agent system
for dynamic routing of the grant’s activities from a learning environment. This
model allows the assignment of activities taking into account the specialization
of learners, their experience and the complexity of activities already taken. None
of these three systems cares of monitoring learning and therefore, cannot trace
user’s activities.

Mbala and al. [7] have developed a multi-agent system called SIGFAD to sup-
port users in remote education. SIGFAD is modeled using the MASE methodol-
ogy and uses the JAM model for building agents. It is interested in monitoring
learning. However, it is not sufficiently independent and does not start up alerts
to prevent tutors if there’s a problem with a learner or group.

Hereafter, we present the project management collaborative learning system
COLYPAN.

COLYPAN: A P2P Architecture for a Project Management 165

3 COLYPAN : A Multi-agent Architecture for Modeling
a Collaborative Learning System

COLYPAN (COllaborative Learning sYstem for Project mANagement) is a sys-
tem dedicated to project management. It provides users tools to accomplish
their project. The users of this system are learners and tutors. In COLYPAN,
the learning activity is defined by the tutor. Learners must join groups to ac-
complish their activities.

In each group, learners have the same responsibility: the commitment to finish
the work, time management and the respect of deadlines. There are no predefined
roles or division of tasks.

COLYPAN is also a collaborative learning system where users exchange their
information and skills and thus learn from each others. The knowledge resources
exchanged in the COLYPAN environment isn’t differentiated from those ex-
changed for other purposes :

– There is a share of physical resources, such as: books, articles, and other
educational artifacts;

– With the growing use of information technology and the Internet in these
settings, there are plenty of electronic documents, references, and web links;

– There is also tacit knowledge, i.e. knowledge found in people’s minds and
that is usually informally exchanged among them by different means, for
instance for persons, through messages, or via Internet communication tools
integrated in virtual learning environments.

Another objective of COLYPAN is to provide tutors with tools to enable them
to determine the activity level in groups and startup needed mechanisms for
remediation and assistance [8]. These objectives can be divided into two cate-
gories: those related to user support and objectives dedicated to save and extract
interaction data. The aim of the second category of objectives is to review au-
tomatically the interaction data in order to alert users when the progress of the
work session is not satisfactory or that the group risks a burst.

3.1 Peer-to-Peer Architecture for a Collaborative Learning System

In a collaborative learning system, each member must manage and exchange
his knowledge and cooperate with others in order to achieve his goals. Com-
pared to these aspects, a Peer-to-peer system is particularly suitable to develop
a collaborative learning system since depicted with the following capabilities :

– Supports autonomy: each member of the system is seen as a peer that man-
ages and has control over a set of local technologies, applications and services;

– Is decentralized : the community of peers is able to achieve its goal indepen-
dently from any specific member or component;

– Is cooperative : in order to join and use the system, each member must
provide resources or services to the others;

– Is dynamic : peers and resources can be added or removed at any time.

In this P2P application, each human is considered as a peer.

166 H. Mazyad and I. Tnazefti-Kerkeni

We adopted also an agent-oriented design and development approach. Indeed,
the multi-agent system (MAS) is an appropriate framework for realizing a P2P
application. The characteristics that they have, especially (a) their capability
to allow the sharing or distribution of knowledge, and (b) that they assemble
a set of agents and coordinate their actions in an environment to accomplish a
common goal, are needed in this P2P application.

Thus, COLYPAN is an oriented-agent system, in which several groups of
learners interact and collaborate to achieve a given project. System’s agents are
responsible for managing knowledge exchanged among peers. We have chosen
to deploy the system on the multi-agents platform Madkit [9]. This choice is
taken owing to the fact that MadKit is intended for the development and the
execution of multi-agents systems and more particularly for multi-agents systems
based on organizational criteria (groups and roles). However, MadKit does not
impose any particular architecture to the agents. We describe below the system
agents.

3.2 The Different Agents of the System

We have two types of agents in the system: human and artificial agents (Figure 1).

1. Human agents are Tutors and learners. They are called Peers.
2. Artificial agents are :

– a TEACH: the tutor’s assistant, it gives him information concerning the
data related to the interactions and the tasks to be made.

– a LEARN: the learner’s assistant, it gives him information concerning
the interactions’ data and the tasks to be made.

– a ACTIV: Supervises actors’ activities during a session. It provides statis-
tics concerning the progression of each activity. It reminds learners about
deadlines and notifies the late groups by sending alerts.

– a GROUP: Supervises groups’ space during a session. It dresses a list of
present, absent agents in a group. The a GROUP has a list of all the
group members and information about each one like, skills and especially,
the other groups to which each peer belongs. This way, if one member p
of the group a needs to communicate with another group b, the a Group
agent can find which peer x belongs to both of groups a and b and thus
the peer x can help the peer p by joining the group b.

– a KB: Manages the knowledge base of the group. Each group has its
own knowledge base (KB). The KB contains information about the group
members and the project. the a KB is also responsible of the interactions
with the global database.

– a TOOL: Supervises the use of tools. It must provide statistics about the
use of groups and tutors space tools (Email, Chat, Forum, Weblog...).
With each use of the system tools, interactions are sent to the a KB.

– a DB: manages the database and users accounts.

COLYPAN: A P2P Architecture for a Project Management 167

Fig. 1. The System Agent

3.3 The Groups Working Way

In COLYPAN, groups are independent of each other. Each group works on its
own project and has its own resources and its own artificial agents. Each group
has an agent for each learner “a LEARN”; an agent supervisor of activities
“a ACTIV”; an agent supervisor of space group “a GROUP”; an agent super-
visor of tools “a TOOL”; an agent supervisor of knowledge base “a KB”. Only
two agents are common to all the groups : the tutors agent “a TEACH” and the
database supervisor agent “a DB”.

Each peer knows only the peers that belong to his/her group and therefore
he/she can communicate with them. Thus, groups can communicate or share
information only if they have at least one member in common (Figure 2). In
fact, there is an overall view of all the groups in the system. Each group knows
the number of existing groups, their knowledge and skills. However, there is no
direct link between the groups.

Each group has a goal and all the group members must work together in order
to achieve it. Collaborative work requires that the members contribute equally
for realizing the work. Thus, all of the members must be active for achieving the
group’s goal. The inactive members affect the group and delay the objectives

168 H. Mazyad and I. Tnazefti-Kerkeni

Fig. 2. Intra-group and inter-group communication

achievement. So to ensure the activity of all groups, each inactive group (more
than half of its members are inactive) receives first a warning notification sent
automatically to all of its members. If after a period determined by the tutor the
group remains inactive, the group must stop its inactive members and send a join
request to other members or break up the group and in this case, the members
may request to join other groups. At the end of each project, the group may, if its
members want, start working on another project or the group will be dissolved.

Initially, a person who wants to form a group, sends a join request to all the
members. This person becomes the group initiator. Each peer who wants to join
a group must submit an admission request to this group. Noting that, a peer
can belong to several groups simultaneously.

The group initiator has the right to accept the first member of the group.
Once the group is composed of more than one member, a vote to accept/reject
a new member becomes mandatory. For this, an email is automatically sent to
all the group members and voting will be open after sending the email.

To vote, each member must access his account and accept/reject the candi-
dature. At the vote deadline, the system automatically records the votes. To
consider the vote, at least half of the group members have to vote. Depending
on the vote result, the candidate is admitted or not. In the case of equality of
voices, the group initiator decides to accept/reject the candidate.

Once the groups are formed, tutors suggest different projects. Each group
must choose a project. If several groups choose the same project, they must
negotiate to reach a mutual agreement.

COLYPAN: A P2P Architecture for a Project Management 169

Fig. 3. Tutors support tools interface

The project realisation will be step by step according to the project man-
agement method MAETIC. Tutors specify the deadlines for each stage and the
final deadline. Note that the tutor’s role is to guide and to advice his learners,
in addition to his principal role of monitoring and evaluation.

Each group realizes its project alone. On the other side, it could ask help from
other groups. In fact, the “a group” agent has a list of all its group members
and the other groups to which each peer belongs.

Each group must provide an estimated planning and the final one. By com-
paring them, inactive members could be determined. This will be detailed below
in the scenario.

Figure 3 shows the tutors support tools interface. Tab “Groups Management”
allows tutors to manage learners by providing information on their activities. The
tab “Activities Management” provides tutors with statistics on the achievement
of activities and thus allows them to monitor the progress of learners in their
projects. The tab “Tools Management” provides tutors with statistics on the use
of tools by learners. In effect, this allows the tutor to judge the level of social
interactions of learners.

4 A Case Study

This pedagogic activity is part of a software engineering course in the second year of
computer science. In this activity, 60 learnersmust form groups to realize a project.
To achieve a project, learners have 10 weeks, with one week to join a group and
choose a project. The work is divided into five stages. Learners must submit at the
end of each stage an electronic document to the tutor via the system.

Each learner must create a personal account. Then, the learner may choose
to join one (or more) group or form a new group. In the latter case, he becomes
the initiator of the group.

170 H. Mazyad and I. Tnazefti-Kerkeni

Rudy is one of the learners who have decided to form a group for his database
project. He sends a join request to the candidates and specifies the project topic
that is the databases. Frederick is pleased, he also has a database project to do,
he sends a request to Rudy to join his group. Rudy decides to accept Frederick in
the group. Group 1 is now composed of 2 members. The vote is now mandatory.
The vote must be based on the candidate’s skills and what he can bring to the
group. Once the group is formed, it must choose one of the projects suggested by
the tutors. Group 1 chooses a project entitled “Hospital Management”. Another
group chooses the same project. Both groups must negotiate to resolve this
conflict: Frederick and Mireille from group 1 wanted to work on another subject
and some members from the other group too. So, the group 1 takes the “hospital
management” project, Mireille and Frederick left group 1 for the other group and
Mary and Alexandre left their group to join group 1.

Group 1 is now formed, the initiator organizes a group meeting to start the
work. On the agenda:

– Task identifying
– task assignment to each member
– establishment of an estimated planning.

After this meeting, members must collaborate together to achieve their tasks
within the deadline. Failure to complete a task at time by one member causes
a delay on the work of the whole group and thus, punishes the whole group.
Indeed, in the second stage of the project, Mary had to make a graphic charter
to be respected in all documents. However, Mary didn’t finish this task at time
despite a deadline reminder sent by the system. So, the agent a ACTIV (Figure
4) sends a warning to all the group members. If such delay occurs, the group
may be dissolved.

In the first meeting, an estimated planning had been established. This plan-
ning should be modified to produce a real planning at the end of each stage.
Thus, it is possible to verify the work done by each learner. The periodically
connection to the system is not a sufficient criterion for judging the work of each
member. A learner may connect just to check mail or to chat.

At each project stage, the tutor is present to guide and advise learners but
he doesn’t intervene on the group work and tasks division. He provides learners
with documents and resources necessary to accomplish the tasks. Only at the
end of each stage, he evaluates the learners.

Tutors and learners must keep a weblog. Learners should consult the tutor
weblog before each stage. This allows them to be aware of work progress, tutor
comments but also to download documents added by the tutor and needed to
carry out further work.

The learner weblog allows learners to upload their documents but also to
discuss, ask questions and exchange their information. Each group has its own
weblog. Thus, the group is informed of the work of the others members.

Learners and tutors can use private messages or the chat to communicate.

COLYPAN: A P2P Architecture for a Project Management 171

Fig. 4. The a ACTIV notification for late group

5 Conclusion and Future Work

In this paper, we proposed an agent-based architecture that allowed the imple-
mentation of the collaborative project management method : MAETIC. Indeed,
our system consists of a population of autonomous agents in interaction where
each agent has communication, coordination and collaboration capabilities. How-
ever, we need a network to establish communication between agents so, we chose
to use the P2P approach to link up agents between them. This choice comes from
the fact that in a Peer-to-Peer system, each peer has a significant autonomy and
a peer can join different Peers groups to achieve different goals. In addition,
some P2P concepts, like peer group and autonomy are typical multi-agent sys-
tems concepts. Finally, the concept of a Peers group is adequate to support the
dynamic aspect of social organizations in multi-agent systems. So it is appro-
priate in our work, to suggest the P2P approach in the deployment of an open
multi-agent system.

Our system is an opened system that supports the interaction between learn-
ers, groups of learners and tutors. It provides users with tools for the project
management and allows tutor :

– To know the level of productivity of each learner in terms of realization of
pedagogic activities, and its level of communication with the other members
of the group;

– To know the progression of each group compared to the realization of the
activities and also the present, absent, inactive members;

– To know the levels of realization of the activities by all groups and thus to
adjust the calendar if needed.

172 H. Mazyad and I. Tnazefti-Kerkeni

In addition, it is interesting to note that our system notifies the inactive groups
which is not the case of the systems described in section 2. We illustrated our
architecture by a case study that describes the behavior of the supervisor agent
of activities “a ACTIV”.

One of the main assumptions of multi-agent systems is that their underlying
network infrastructure is steady, that is the nodes of the network on which agents
are deployed are known, and that there is no break in the execution of agents’
protocols. Oppositely, P2P networks define a framework particularly character-
ized by the fact that the nodes that are dedicated to agents deployment may
appear or disappear dynamically in the network or even become unavailable,
due to many reasons such as the mobility of the user in its environment or his
disconnection. These changes in the system configuration create unusual circum-
stances that make the current mechanisms of agents reasoning inappropriate. For
example, how can we manage the protocols interruptions, the disappearance of
a set of agents (and thus of competences), the migration of data according to the
context [10],[11]. Thus, our purpose is to develop a scalable negotiation-oriented
coalition formation method specifically tailored for large-scale distributed sys-
tems where nodes may crash and every agent has a partial view of the system
and can only communicate with the agents in its own view, i.e., its neighbors.

References

1. Talon, B., Leclet, D.: Dispositif pédagogique pour un apprentissage de savoir-faire.
Revue Internationale des technologies en pédagogie universitaire 5(2), 58–74 (2008)

2. Marchat, H.: Kit de conduite de projet. Organization editions, Paris (2001)
3. Guizzardi-Silva, R., Aroyo, L.M., Wagner, G.: Help&Learn: A peer-to-peer archi-

tecture to support knowledge management in collaborative learning communities.
Revista Brasileira de Informatica na Educaçao 12(1), 29–36 (2004)

4. Wagner, G.: The Agent-Object-Relationship Meta-Model: Towards a Unified View
of State and Behavior. Information Systems 28(5), 475–504 (2003)

5. Fougères, A.J., Canalda, P.: iPédagogique: un environnement intégrant la gestion
assistée de projets d’étudiants. In: Colloque TICE 2002, Lyon (2002)

6. Simian, D., Simian, C., Moisil, I., Pah, I.: Computer Mediated Communication and
Collaboration in a Virtual Learning Environment Based on a Multi-agent System
With Wasp-Like Behavior in Large-Scale Scientific Computing book, pp. 618–625
(2008)

7. Mbala, A., Reffay, C., Chanier, T.: SIGFAD: un système multi-agents pour soutenir
les utilisateurs en formation à distance (2003)

8. Mazyad, H., Kerkeni, I.: A Multi-Agents Approach For Modeling a Collaborative
Learning System. To appear in WBE 2010 Proceeding, Sharm el-Sheikh (2010)

9. http://www.madkit.org

10. Aknine, S., Mir, U., Arantes, L.B.: Multi-agent Coordination in ad’hoc networks
based on coalition formation ICAART, vol. (1), pp. 241–246 (2010)

11. Mazyad, H., Kerkeni, I., Ajroud, H.: Multi-Agent System Architecture for Manag-
ing the Coordination in Peer-to-peer Systems. In: ICTTA 2008, DAMAS (2008)

http://www.madkit.org

Preference Generation for Autonomous Agents

Umair Rafique and Shell Ying Huang

School of Computer Engineering
Nanyang Technological University, Singapore

{umai0001,assyhuang}@ntu.edu.sg
http://www.ntu.edu.sg

Abstract. An intelligent agent situated in an environment needs to
know the preferred states it is expected to achieve or maintain so that it
can work towards achieving or maintaining them. We refer to all these
preferred states as “preferences”. The preferences an agent has selected
to bring about at a given time are called “goals”. This selection of pref-
erences as goals is generally referred to as “goal generation”. Basic aim
behind goal generation is to provide the agent with a way of getting
new goals. Although goal generation results in an increase in the agent’s
knowledge about its goals, the overall autonomy of the agent does not
increase as its goals are derived from its preferences (which are pro-
grammed). We argue that to achieve greater autonomy, an agent must
be able to generate new preferences. In this paper we discuss how an
agent can generate new preferences based on analogy between new ob-
jects and the objects it has known preferences for.

Keywords: Autonomous Agents, BDI, Goal Generation, Preference
Generation.

1 Introduction and Related Work

Any autonomous agent situated in an environment needs to know the preferred
states it is expected to achieve or maintain so that it can work towards achiev-
ing or maintaining them. In approaches centered around BDI model of agency
[2], this information is provided in the form of desires, norms and obligations.
Desires are the preferred states because of the agent’s own preferences, norms
are the preferred states because of the social standards the agent has to obey
and obligations are the preferred states because of the responsibilities assigned
to the agent [7]. We refer to all these different types of preferred states collec-
tively as “preferences”. The preferences an agent has selected to bring about at a
given time are called “goals” which are defined as “the preferred states an agent
wants to put effort into bringing about” [18]. Having a set of goals, the agent
would deliberate about them (called “goal deliberation” [13]) to determine how
(in what order) these should be achieved.

Goals are distinguished from preferences in the sense that goals have to be
realistic and mutually consistent while preferences need not be. Hence goals
are generally considered as refined preferences. [14] refine preferences (desires in

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 173–184, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.ntu.edu.sg

174 U. Rafique and S.Y. Huang

their case) for getting goals by resolving conflicts among desires using priority
rules. [17] and [6] refine preferences (desires) by prioritizing beliefs over desires
whenever a conflict among the two occurs so that the resulting goals are “re-
alistic”. [3] and [7] include obligations and norms into the process and resolve
conflicts among desires, norms, obligations and beliefs based on agent types (i.e.
realistic, selfish, stable and social agents). Each agent type is the result of giving
priority to a specific mental attitude. For example the agent giving the highest
preference to its beliefs while solving conflicts among its mental attitudes is a
“realistic” agent. This process of refining preferences into goals is called “goal
generation” [3] [7].

The basic aim behind goal generation is to provide the agent with a way of
getting new goals. In other words such a process should increase the agent’s
knowledge about its goals. Keeping in view only the set of goals the agent has,
the above mentioned approaches certainly result in an increase in its goals. How-
ever the agent’s goals are based on its preferences and since these preferences
are programmed, goal generation as discussed above does not result in an overall
increase in the agent’s knowledge about its goals. An agent using such an ap-
proach cannot identify goals beyond its programmed preferences and hence has
limited autonomy. This ability to generate new goals beyond its programmed
knowledge can be crucial in certain domains. We are working with one such do-
main called “Intelligent Assistance in Smart Homes”. Smart Homes are hi-tech
home environments where various technologies, including Artificial Intelligence,
are used to improve quality of living for the inhabitants [12]. Intelligent Assis-
tance is an important feature in this setting where an intelligent agent assists
Smart Home inhabitants in daily life activities and may suggest different activ-
ities that it deems appropriate for the inhabitants [9]. These activities can be
related to maintenance of the home (e.g. suggesting to get the fan repaired, floor
cleaned, carpet dried etc.) as well as about the well being of the inhabitants
(e.g. suggesting to go for a walk). Such an agent can be initially programmed
with preferences the programmer can foresee the agent coming across and so it
can generate goals based on these preferences. However the situations such an
agent is expected to encounter are so diverse that it is impossible to cover all of
them in advance. Without the ability to increase its knowledge about its goals
and preferences, any such agent is of limited usability. Hence to achieve greater
autonomy, such an agent must have the ability to increase its knowledge of pref-
erences and must be capable of “preference generation”. This means generating
new desires, norms and obligations.

To address preference generation, we focus on the question, “where preferences
come from?”. For example why would an agent prefer floor to be clean and not
dirty? Studies in the field of Psychology provide the answer in the form of “mo-
tivations”. “Motivations are reasons people hold for initiating and performing
voluntary behavior” [10]. Motivations are only desired for their own sake and
there is no other reason for them. For example a human may have a motivation
to gain social status. Human behavior can be described in terms of completing
the “behavior chain” where humans perform acts to satisfy their motivations.

Preference Generation for Autonomous Agents 175

Hence at the end of every behavior chain, there is a motivation [10]. This basic
idea of motivations being at the core of human behavior is well established in
the field of Psychology (see for example [8]) and there is significant amount of
work on determining the set of primitive motivations humans may have (e.g. [10]
propose a list of 16 motivations). Motivations can also affect a person’s percep-
tion, cognition, emotion and behavior (for example [11] considers their role in
controlling attention). In this paper however we are only concerned about role
of motivation in determining behavior.

Considering motivations as the reason behind preferences answers the ques-
tion we mentioned above. Hence an agent would prefer a clean floor and not
a dirty one because clean floor contributes towards its motivation of, say, “Or-
der and Cleanliness”. To highlight our interpretation of preferences as satisfying
motivations, we refer to them as motivational preferences. Generation of mo-
tivational preferences in humans can be seen as “identifying” those states as
preferred which satisfy their motivations where determining what satisfies their
motivations is linked to their feelings. For example a person can feel that a dirty
floor is not satisfying. This feel can be different for different people depending
upon their personality as for example a cleanoholic person will be more affected
by preferences about cleaning than a social person. However as artificial agents
cannot “feel” (at least until now) the effect of different states, they cannot gen-
erate preferences in the same way as humans do.

Although it may not be possible for artificial agents to generate new prefer-
ence from scratch, it is possible for them to learn new preferences based on their
existing preferences. Existing (programmed) preferences of an agent can be seen
as providing it with the information on what satisfies its motivations. For ex-
ample if an agent has a preference of keeping the floor clean, it implicitly means
that this preference satisfies its motivations (that is why it has this preference).
Based on this information provided by the existing preferences, we propose that
preferences can be generated about new (unknown) entities based on preferences
the agent has about objects which are similar to this new one. In other words if
keeping an entity in a certain state based on some known motivational prefer-
ence contributes towards satisfying an agent’s motivations, then keeping another
similar entity in that state would also contribute towards satisfying the agent’s
motivations. For example if the agent prefers clean floor then it would also prefer
clean table top since both are similar in this respect (both have surfaces).

This paper is organized as follows. In Section 2 we discuss our proposed pref-
erence generation mechanism in detail. In Section 3 we propose an approach
for learning new preferences with its experimental evaluation using the domain
of Intelligent Assistance in Smart Homes in Section 4. The paper ends with
conclusion and future work in Section 5.

2 Preference Generation

We choose to represent entities in the world as “objects” where an object is iden-
tified with the name of the real world entity it represents and is described using

176 U. Rafique and S.Y. Huang

attributes. An attribute represents a property of the object (e.g. ‘temperature”
represents a property of the object “water”) and has a value (e.g. temperature
of an instance of water can be at 40C). Some example objects are given below
in the format <Object ID; Attributes(Attribute ID:Value)>.

<sofa seat;price:200,color:black,material:leather,usage:sitting,surface state:dry>
<coffee table;surface type:wood,location:living room,cleaning method:wet cloth>
<milk;volume:1,usage:drinking,uht treatment:no,temp to keep:4>

Based on this representation, motivational preferences can be defined as
follows.

Definition 1. A motivational preference represents the agent’s preferred value
for an attribute of some object which the agent prefers because this preferred
value contributes towards satisfying its motivations.

Motivational preference for an object depends on the context the object is in.
For example an agent may prefer the table in its living room to be clean but
may not worry about keeping the table in its store room clean. This context of
an object will be captured by its attributes. For example to distinguish between
tables in the example above, an attribute “location” can be used which will have
different values for both tables (“living room” and “store room” respectively).

Achieving motivational preferences would contribute towards satisfying the
agent’s motivations. The set of motivations an agent may have is likely to be
small (as for example [10] argues in favor of only 16 basic motivations for hu-
mans) and hence can be easily programmed. The agent can also be programmed
with motivational preferences about the objects which the programmer can fore-
see the agent coming across. However an agent working in a real environment
can be expected to encounter many new objects and must be able to generate
preferences for them. Our idea for preference generation is that if keeping an
object in a particular state (based on some motivational preference) contributes
towards satisfying some motivation, then keeping another “similar” object in the
same state will also contribute towards satisfying that motivation. We call this
approach of generating new preferences as “Preference Learning”.

We assume that satisfaction level of a motivation is represented by a number in
the range [0,1] where a motivation is fully dissatisfied when its satisfaction level
is 0 while fully satisfied when it is 1. cpm stands for “Contribution of preference p
towards satisfying motivation m” and represents how much p contributes towards
satisfying m. cpm is also in the range [0,1].

Two different types of motivational preferences, “reactive” and “proactive”,
can be identified based on the way a motivational preference affects the moti-
vation it contributes towards satisfying. A “reactive motivational preference” is
the one which contributes towards satisfying m with cpm as long as it holds.
For example a preference representing that floor must be clean contributes to-
wards the motivation of “Cleanliness” as long as it holds and ceases to contribute
when it stops to hold (i.e. the floor becomes dirty). We call it reactive because it
requires “reaction” from the agent if the agent wants to satisfy the corresponding

Preference Generation for Autonomous Agents 177

motivation. A “proactive motivational preference” is the one which contributes
towards m with cpm every time it is achieved. For example a preference rep-
resenting the state when the agent has met a friend contributes towards the
motivation of “Socialization” is proactive. We call it proactive because the agent
can choose to make this preference true “proactively” if it wants to satisfy the
corresponding motivation.

An agent can learn both these types of preferences and simply add them to
its existing set of preferences. At first it may seem that learning proactive mo-
tivational preferences in this way will result in an agent generating a preference
for every object similar to the one it already has a preference for (for example
generating the preference to buy another car if it already has a preference to
buy a similar car). However it is not the case. Motivational preferences simply
represent what the agent prefers, they are not “goals”. A motivational prefer-
ence becomes a goal only when the agent selects it to be brought about. We
call this process “Preference Selection”1. For example a motivational preference
may require that the agent owns a certain car but it becomes a goal only when
the agent selects it to be achieved. Achieving a preference essentially means that
the agent would execute a plan that will make this preference hold (e.g. exe-
cuting the plan of buying the car). Apparently it does not matter how many
preferences about buying cars the agent has, what matters is how many cars the
agent wants to buy at a given time. In other words it depends on the preference
selection strategy, and not on the set of preferences. Hence it is safe to learn
new preferences in this way. Details of this preference selection mechanism are
beyond the scope of this paper.

We represent motivational preferences by the tuple <type, obj, attr, dValue,
motivation, cmp>. For reactive motivational preferences, type is “MR” and is
“MP” for proactive motivational preferences. obj represents the object this pref-
erence is for and dValue is the desired value for obj ’s attribute attr. motivation
represents which motivation this preference contributes towards satisfying and
cmp represents how much this contribution is. The attributes for which the agent
may not like to have a specific desired dValue, dValue will be “DC” (Don’t Care)
meaning the agent does not care whatever value this attribute may get. Some
example preferences are given below.

<MR, Floor, Surface, Clean, Cleanliness, 0.5>
<MP, Movie1, Status, Watched, Entertainment, 0.7>
<MP, Movie2, Status, Watched, Entertainment, 0.7>

A motivational preference represents the state when attribute of the object is
at the value suggested by this preference. For example if object refers to a movie
and its attribute is “watched” then value “yes” represents the state when the
agent has watched the movie. [7] refers to such representation of preferences as
“state based” (see [7], Section 2).

1 This selection of preferences as goals is the same thing what existing approaches call
“goal generation” as we discussed in Section 1. However we refer to it as “preference
selection” to emphasize that it is mere selection of preferences not generation of
something new.

178 U. Rafique and S.Y. Huang

Having a set of goals (which are essentially the preferences selected to be
achieved at a given time) the agent can deliberate about them during “Goal
Deliberation” to determine in what order these should be achieved. The basic
aim is to achieve as many of these goals as possible and as soon as possible given
the agent’s limited resources. [4][15][16] discuss different mechanisms to schedule
goals keeping in consideration conflicts between plans that are used to achieve
these goals. Although goal deliberation is not our focus in this paper, one aspect
of it is related to our work on preference learning. We have mentioned above
that goals are achieved using plans. Most of the existing approaches allow for
more than one plan to be represented for the achievement of a goal so that the
agent can choose the one it finds more appropriate in a given situation. In the
same way as an agent prefers a certain state of an object over another because
it satisfies its motivations, we argue that an agent may “prefer” a certain plan
over another also because it contributes towards satisfying its motivations. For
example an agent may prefer plans costing least resources because consuming
less resources is what satisfies the agent. Another agent (who is rich) may prefer
plans providing it more comfort as resources are less important to such an agent.
The preferences like “dry-cleaning delicate cloths” (since it would protect them),
“vacuum-cleaning carpet” (since it cleans better) or “eating bananas instead of
apples” (since bananas taste better) are all examples of cases when an agent
prefers certain plan over others since these preferred methods provide the agent
with more satisfaction. We call such preferences towards doing an action (or
treating an object) in a certain way as Task Preferences. “Execution Advice”
used by [13] also seems to serve the same purpose.

These preferred ways of achieving a goal can also be represented as attributes
of the object. For example “Cleaning Method” can be an attribute of object “car-
pet” with the preferred value “vacuum-cleaning”. Then the preference learning
mechanism we discussed above for motivational preferences can also be used to
learn these task preferences. Task preferences have the same basic representation
as that of motivational preferences which we discussed above. However type in
this case will be “T” while cpm is not relevant. Some examples of task preference
are given below.

<T, Floor, Cleaning Method, Mop-Cleaning, Cleanliness, NA>
<T, Chicken, Cooking Method, Roasting, Taste, NA>

Figure 1 provides the summary of our discussion in this section. In the next
section we discuss how preferences can be learnt.

3 An Approach for Preference Learning

Preference Learning (PL) works in the same way for both motivational and task
Preferences and hence we refer to them as only “preference” in this Section. We
denote the new object for whose attribute the agent wants to learn a preference
as Objectobs , the attribute as AttrPL and this new, to be learnt preference as
newPref . We denote the set of all objects the agent knows about as ObjectsAll

and the set of its known preferences as Preferences . Our approach is to identify

Preference Generation for Autonomous Agents 179

Executing
Goal

Preference
Selection

Perceptions

Plans

Trigger

Attribute
Weighting Rules

Preference
Learning

Motivational Preferences
(Programmed + Learned)

Goals

Task Preferences
(Programmed + Learned)

Goal Deliberation

Fig. 1. A Framework for Goals

the most similar object to Objectobs from ObjectsAll that has a known preference
for AttrPL and then to use information from this preference to learn newPref .

One approach can be to have ObjectsAll divided into different classes and
then see which class Objectobs belongs to whenever a new Objectobs is found.
However this approach is not feasible for PL. In case of PL our purpose is not
only to find the most similar object to Objectobs but also to find it in the context
of AttrPL. Only those objects from ObjectsAll should be considered for finding
object similar to Objectobs which have AttrPL as an attribute. Hence different
AttrPL of the same Objectobs would lead to the consideration of different objects
for finding the one most similar to Objectobs and so general purpose classes
where all broadly similar objects are put together will not work. For example
a chair with a leather seat can be seen as belonging to class of chairs. But if
we want to find most appropriate cleaning method for its seat, a leather sofa
is more relevant than other type of chairs in the class of chairs (e.g. wooden
chair). Making context specific classes, where objects that are similar only in a
particular context are put together, is also not feasible as it is not possible to
foresee all different type of objects an agent working in some real environment
would come across. Hence we do not pre-classify ObjectsAll and choose to find
the most similar object to Objectobs whenever a new newPref is to be learned.

The approach of Instance Based Learning (IBL) algorithms [1] suits our pur-
pose well. Here specifically we use the basic idea from a well known IBL algo-
rithm, Nearest Neighbor Algorithm [5]. Nearest Neighbor Algorithm classifies a
new sample based on the class of the training sample most similar to it. The
similarity between the two samples is found by measuring their distance in the
feature space created by their attributes. We use this idea of finding similar-
ity in the feature space for finding the object most similar to Objectobs from
ObjectsAll . As main consideration here is to learn a value for AttrPL, an object
from ObjectsAll is useful only if it has AttrPL as an attribute. This acts as a
filter condition and those objects from ObjectsAll which satisfy this condition
are identified during the first step. We call them “neighbors” of Objectobs . The
next step is to find the distance between each of these neighbors and Objectobs
so that the most similar, or “nearest”, neighbor of Objectsobs can be chosen.

180 U. Rafique and S.Y. Huang

Many distance measures have been proposed in literature (see for example
[20] for a discussion). These measures can be divided into two broad categories
as those which use some parameters derived from training data (like for example
Mahalanobis, Correlation, Chi-square, Value Difference Metric), and the ones
without such parameters (like Euclidean, Manhattan, Camberra) which rely on
simple difference calculations between the two samples. The former tend to show
higher accuracy but these cannot be used for PL due to lack (rather absence)
of training data. Hence we resort to the measures which do not require any
training data. Such a measure should be able to work both for nominal as well as
continuous attributes as during PL we encounter both. Heterogeneous Euclidean-
Overlap Metric (HEOM) [20] is one such measure.

Using HEOM the distance between two objects, X and Y , in the feature space
of their attributes can be measured as,

D(X ,Y) =

√√√√ m∑
a=1

da(aX , aY)2 (1)

where m is number of attributes of X (or Y) and da(aX , aY) is the difference
between the values of X and Y for attribute a. da(aX , aY) is defined as,

da(aX , aY) =

⎧⎪⎨
⎪⎩

1 if aX or aY missing
overlap(aX , aY) if a is nominal
diffa(aX , aY) if a is numeric

overlap(aX , aY) =

{
0 if ax = aY

1 otherwise

diffa(aX , aY) = |aX−aY |
maxa−mina

HEOM as described above can be used when both X and Y have same attributes
(as generally is the case in classification). da(aX , aY) = 1 hence is used to cater
for missing data. However in case of PL the distance is to be measured between
different objects which can have different attributes. If the distance between two
Objects X and Y is measured in the feature space created by the union of their
attributes using da(aX , aY) = 1 when aX or aY is missing, the distance measure
is not very reliable as it will be hugely affected by the absence of attributes for
one object or the other and the distance because of difference in attribute values
will not be so prominent. Nonetheless considering similarity between two objects
because of number of common and different attributes is also very important. If
an object X shares more attributes with Y than with Z , then X and Y can be
considered more similar as they have more properties in common. On the other
hand if X has more attributes different from Y than from Z , then intuitively X
is less similar to Y than it is to Z . Hence both, distance because of difference
in attribute values and similarity or dissimilarity because of number of common
or different attributes, are important in case of PL.

Preference Generation for Autonomous Agents 181

We choose to keep these two measures separate. For measuring the distance
because of difference in attribute values, we modify HEOM so that the distance
between two objects is measured in the feature space of their common attributes.
Similarity and dissimilarity because of common and different attributes we han-
dle separately as we discuss below (Equation 4). Our modified D(X,Y) is,

D(X ,Y) =

√√√√ k∑
a=1

da(aX , aY)2/k (2)

where k is number of common attributes between X and Y . While determining
k, we exclude AttrPL which although Objectsobs shares with its neighbors, it does
not have a value for it. We normalize this distance with k so that the distances
measured between different pairs of Objects with different k are comparable.

It is well known that when comparing two objects in different respects, differ-
ent attributes have different significance (see for example [19]). For example if
we compare seat of a car with seat of a sofa for determining the preferred state
of the seat, attributes like price, color and size of the seats are not relevant while
the attribute “used for” is highly relevant. On the other hand if a car seat is
to be compared with another car’s seat to see which one should be purchased,
price, color and size become relevant while “used for” is not relevant any more.
To handle this we use “Attribute Weighting Rules” which provide information
on significance of an object’s attributes for determining the value of another
attribute of this object. For example if the object is “car seat” and the attribute
under consideration is “owner”, the Attribute Weighting Rule will describe how
significant other attributes of “car seat” are for determining the value of its at-
tribute “owner” (which can be ‘yes’ or ‘no’). The sum of all the weights assigned
to an object’s attributes for each Attribute Weighting Rule is 1. The reason for
using these rules instead of standard methods of Feature Weighting, like the ones
discussed in [19], is that in case of PL there is no training data available while all
such Feature Weighing methods work based on training data. Hence we further
modify D(X ,Y) as,

Dc(X ,Y) =

√√√√ k∑
a=1

wc
a × da(aX , aY)2/k (3)

where Dc(X ,Y) is the distance between X and Y , when being compared in the
context c (which essentially is represented by AttrPL). wc

a is the weight assigned
to attribute a and represents the significance of this attribute for determining
the value of AttrPL.

We also modify diffa (aX , aY) (for (1), (2) and (3)) as,

diffa (aX , aY) = |aX−aY |
max(aX ,aY)

because in case of PL attribute a may not have many values (i.e. not many
objects may have a as an attribute). If it is shared only between X and Y
(which is quite likely), the range (maxa−mina) will be the same as the difference
between their values which would result in diffa (aX , aY) = 1 always.

182 U. Rafique and S.Y. Huang

To handle the similarity because of number of common attributes and the
dissimilarity because of number of different attributes between a pair of objects
we define a measure of similarity between two objects X and Y (represented as
Sim(X ,Y)) as,

Sim(X ,Y) =
[
AttrCm(X ,Y)
TotAttr(X ,Y)

− AttrDiff (X ,Y)
TotAttr(X ,Y)

]
(4)

where AttrCm(X ,Y) represents the number of common attributes between X
and Y , AttrDiff (X ,Y) represents the number of attributes different between X
and Y while TotAttr(X ,Y) is number of attributes in the union of X and Y .

Equation 3 represents distance because of difference in attribute values while
Equation 4 represents similarity because of number of common and different
attributes between X and Y . We combine Sim(X ,Y) with Dc(X ,Y) to get our
final measure of similarity between two objects X and Y , denoted as S (X ,Y).

S (X ,Y) = Sim(X ,Y) − Dc(X ,Y) (5)

Using this measure, Objectobs ’s similarity with each of its neighbors will be de-
termined and the most similar one will be declared as the “nearest neighbor” of
Objectobs . The reason for using only the nearest neighbor of Objectobs , and not
k-nearest as is done in K-Nearest Neighbor Algorithm [5], is that the agent can
intentionally have different preferences for slightly different objects. For example
the agent may prefer to own a car with 4 doors and not to own the one with 2.
In the last step the information from the preference this nearest neighbor has
about AttrPL will be used to get values of type, dValue and cpm for newPref .

4 Evaluation

In this section we evaluate the approach of preference learning we proposed in
Section 3. Due to the unavailability of any standard data set that has differ-
ent objects described using attributes, we have constructed a set of 60 objects
ourselves. These are the objects a Smart Home agent may normally encounter.
These are referred to as “Known Objects”. The agent has a corresponding set of
“Preferences” for these objects and a set of “Weights” which describe the signifi-
cance of an object’s attributes for determining the value of a specific attribute. A
fourth set, “Perceptions” contains 50 objects that the agent has perceived from
the environment. These are the objects whose preference attributes the agent
wants to learn preferences for. We have constructed a set of “correct” prefer-
ences for these objects, in the same way as we have done for “Known Objects”,
and use it for evaluating the learnt preferences.

We have tried to include a reasonable number of attributes for each object,
mixing nominal and numeric attributes, so that a fair evaluation can be per-
formed. Using this data, we evaluate all five measures we mentioned in Section 3
(i.e. Equation 1 to 5). The purpose is to support the line of reasoning we adopted
in the previous section. Summary of the results of our evaluation is given in the

Preference Generation for Autonomous Agents 183

table below. The number of objects in each case is 50 (i.e. number of Objects in
set Perceptions).

Measure Used Preferences Learnt Correctly (out of 50)

(1) 37
(2) 32
(3) 30
(4) 30
(5) 50

(1) and (2) fail mainly when attributes that do not play any role in deter-
mining the value of a given preference attribute are different for similar objects.
However (1) gives better results than (2) since it includes similarity and dis-
similarity because of number of common and different attributes. (3) includes
weights describing significance of attributes and hence is not affected by irrele-
vant attributes. But since it only includes distance because of attribute values
and does not include similarity and dissimilarity because of common and dif-
ferent attributes, it can consider very different objects as similar if they have
some common attributes. (4) only takes into account similarity and dissimilarity
because of number of common and different attributes and does not consider the
difference between attribute values. Hence it cannot distinguish between differ-
ent objects of the same type and considers all of them as equally similar to each
other. Any one of them can be picked randomly as the most similar. Hence al-
though an object found as most similar using this measure is of the right type, it
may not be the right object. (3) alone is not adequate as it does not include sim-
ilarity and dissimilarity because of number of common and different attributes
while (4) alone is also not adequate as it does not take into account distance
because of attribute values. Combining (3) and (4) into (5) cures both these
problems and can correctly learn preferences for all of the perceptions. Based
on this preliminary evaluation we can say that (5) is a good starting point as a
measure for Preference Learning. However only a thorough evaluation on a real
dataset would make it clear how good it is in a real life scenario.

5 Conclusion and Future Work

We have proposed an approach to preference generation that allows an agent to
learn new preferences about an object (which can be about its preferred state
or about preferred way to achieve such a state) based on its existing preferences
about similar objects. Using this approach an agent can learn new preferences
beyond its programmed knowledge and hence achieve greater autonomy. One
main issue with the usage of this approach is that of describing objects using
attributes. An interesting development in this regard can be the development
of automated solutions that can construct a database of objects where these
objects are described using attributes. It would require some complex analysis
of sentences to see what properties are normally ascribed to an object. We take
it as part of our future work.

184 U. Rafique and S.Y. Huang

References

1. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine
Learning 6(1), 37–66 (1991)

2. Bratman, M.: Intention, plans, and practical reason. Harvard University Press,
Cambridge (1987)

3. Broersen, J., Dastani, M., Hulstijn, J., van der Torre, L.: Goal generation in the
BOID architecture. Cognitive Science Quarterly 2(3-4), 428–447 (2002)

4. Clement, B.J., Durfee, E.H.: Theory for coordinating concurrent hierarchical plan-
ning agents using summary information. In: Proceedings of AAAI, pp. 495–502
(1999)

5. Cover, T., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transactions
on Information Theory 13(1), 21–27 (1967)

6. da Costa Pereira, C., Tettamanzi, A.G.B.: Goal generation with relevant and
trusted beliefs. In: Proceedings of AAMAS’08, pp. 397–404 (2008)

7. Dignum, F., Kinny, D.: From desires, obligations and norms to goals. Cognitive
Science Quarterly 2 (2002)

8. Maslow, A.: Motivation and Personality. Harper & Row, New York (1954)
9. Rafique, U., Huang, S.Y.: A new action description scheme for informal reasoning.

In: Arabnia, H.R., de la Fuente, D., Olivas, J.A. (eds.) Proceedings of ICAI’09,
vol. II, pp. 582–588 (2009)

10. Reiss, S.: Multifaceted nature of intrinsic motivation: The theory of 16 basic desires.
Review of General Psychology 8(3), 179–193 (2004)

11. Simon, H.: Motivational and emotional controls of cognition. Psychological Re-
view 74(1), 29–39 (1967)

12. Simpson, R., Schreckenghost, D., LoPresti, E., Kirsch, N.: Plans and planning
in smart homes. In: Augusto, J.C., Nugent, C.D. (eds.) Designing Smart Homes.
LNCS (LNAI), vol. 4008, pp. 71–84. Springer, Heidelberg (2006)

13. Thangarajah, J., Harland, J., Yorke-Smith, N.: A soft COP model for goal delib-
eration in a BDI agent. In: CP’07 Workshop on Constraint Modelling and Refor-
mulation (2007)

14. Thangarajah, J., Padgham, L., Harland, J.: Representation and reasoning for
goals in BDI agents. Australian Computer Science Communications 24(1), 259–265
(2002)

15. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting & exploiting positive goal
interaction in intelligent agents. In: Proceedings of AAMAS’03, pp. 401–408. ACM,
New York (2003)

16. Thangarajah, J., Padgham, L., Winikoff, M.: Detecting and avoiding interference
between goals in intelligent agents. In: Proceedings of the International Joint Con-
ference on Artificial Intelligence, pp. 721–726. Academic Press, London (2003)

17. Thomason, R.H.: Desires and defaults: A framework for planning with inferred
goals. In: Proceedings of KR 2000, pp. 702–713 (2000)

18. Birna van Riemsdijk, M., Dastani, M., Winikoff, M.: Goals in agent systems: a
unifying framework. In: Proceedings of AAMAS’08, pp. 713–720 (2008)

19. Wettschereck, D., Aha, D.W., Mohri, T.: A review and empirical evaluation of fea-
ture weighting methods for a class of lazy learning algorithms. Artificial Intelligence
Review 11, 273–314 (1997)

20. Randall Wilson, D., Martinez, T.R.: Improved heterogeneous distance functions.
Journal of Artificial Intelligence Research 6, 1–34 (1997)

Evaluation of Techniques for a Learning-Driven
Modeling Methodology in Multiagent Simulation

Robert Junges and Franziska Klügl

Modeling and Simulation Research Center
Örebro University, Sweden

{robert.junges,franziska.klugl}@oru.se

Abstract. There have been a number of suggestions for methodolo-
gies supporting the development of multiagent simulation models. In
this contribution we are introducing a learning-driven methodology that
exploits learning techniques for generating suggestions for agent behav-
ior models based on a given environmental model. The output must be
human-interpretable. We compare different candidates for learning tech-
niques – classifier systems, neural networks and reinforcement learning
– concerning their appropriateness for such a modeling methodology.

1 Motivation

Methodological questions are more and more in the focus of research on agent-
based simulation. The central question hereby concerns what behaviors do we
have to create on the agent level so that the intended outcome is produced.
However, if it is not fully known which local behavior need to be included in
the model, designing and implementing the simulation model might be painful
and result in some try-and-error process: modifying the local agent behavior,
running and analyzing the simulation, followed by modifying the local behavior
again. Such a procedure might be feasible for an experienced modeler who knows
the critical starting points for behavior modifications, but not so experienced
modelers might get lost.

In this contribution we are addressing this search for the appropriate agent-
level behavior by using agent learning. The vision is hereby the following pro-
cedure: the modeler develops an environmental model as a part of the overall
model, determines what the agent might be able to perceive and to manipulate
and describes the intended outcome. The agents then use a learning mechanism
for determining a behavior program that generates the intended overall outcome
in the given environment. In this contribution we are testing three well-known
techniques for their suitability in such learning-driven model development pro-
cess: Learning Classifier Systems, Reinforcement Learning and Neural Networks.

In the next section we will review existing approaches for learning agent tech-
niques in simulation models explaining why we particularly selected these three
techniques. This is followed by a more detailed treatment of the learning-driven
methodology and a presentation of the candidate techniques. In section 4 and 5 we

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 185–196, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

186 R. Junges and F. Klügl

describe the used testbed and the experiments conducted with it. The results are
then discussed. The papers ends with a conclusion and an outlook to future work.

2 Learning Agents and Simulation

Many different forms of learning have shown to be successful when working with
agents and multiagent systems. Unfortunately, we can not cover all techniques
for agent learning in this paper, the following paragraph shall give a few general
pointers and then give a short glance on related work. In general our contri-
bution is special concerning the objective of our comparison: not mere learning
performance but its suitability for a usage in a modeling support context.

Reinforcement learning [1], learning automata [2], evolutionary and neural
forms of learning are recurrent examples of learning techniques. Besides that,
techniques inspired by biological evolution have been applied in the area of
Artificial Life [3], where evolutionary elements can be found throughout the
multiagent approach. An example of a simulation of a concrete scenario is [4], in
which simulated ant agents were controlled by a neural network that was actually
designed by a genetic algorithm. Another approach similar to a learning classifier
system (LCS) can be found in [5], where a rules set was used and modified by a
genetic algorithm. The interesting point in this last case, is that rule conditions
are based on situation descriptions.

Related work approaches the behavior modeling task also from the point of
view of usability. This can be seen in [6], where an evolutionary algorithm is ap-
plied to behavior learning of an individual agent in multiagent robots. Another
example, from [7], describes a general approach for automatically programming
a behavior-based robot. Using Q-Learning algorithm, new behaviors are learned
by trial and error using a performance feedback function as reinforcement. In
[8], also using reinforcement learning, agents share their experiences and most
frequently simulated behaviors are adopted as a group behavior strategy. Per-
formance is also analyzed for instance in [9], where reinforcement learning and
neural networks are compared as learning techniques in an exploration scenario
for mobile robots. The authors conclude that learning techniques are able to learn
the individual behaviors, sometimes outperforming a hand coded program, and
behavior-based architectures speed up reinforcement learning.

3 A Learning-Driven Methodology

The basic idea behind a methodology using a learning-driven approach con-
sists in the transfer of agent behavior design from the human modeler to the
simulation system. Specially in complex models, a high number of details can
be manipulated. This may make a manual modeling and tuning process cum-
bersome specially when knowledge about the original system or experience for
implicitly bridging the micro-macro gap is missing. Using self-adaptive agents
might be a good idea for supporting the modeler in finding an appropriate agent
behavior model. Before we continue with candidates, we give a short idea of the
basic modeling process for such a learning-driven development.

Evaluation of Techniques for a Learning-Driven Modeling Methodology 187

3.1 Basic Modeling Process

The starting point of this learning-driven modeling process is the environmental
model. In [10] we denoted a more general version of this approach as “environment-
driven” design is an analysis of the environmental structure. Based on this, the
agent interface and its behavior definition are determined. The steps are in
particular:

1. Identify relevant aspects (global status, global dynamics and local entities);
2. Determine the primitive actions of the agent and the reaction of the envi-

ronmental entities to these;
3. Determine what information from the environment must be given to an

agent;
4. Decide on a learning technique that is apt to connect perceptions and actions

of the agent appropriately for actually producing the agents behavior;
5. Determine the feedback function for the agents. This reward has to measure

performance of the agents in the given environment and is ideally derived
from a description of the overall objective or observed aggregate behavior;

6. Implement the environmental model including reward function if needed;
7. Specify and implement the agents behavior program or agent interfaces in

combination with the chosen learning mechanism;
8. Test and analyze the overall outcome, the simulation results and individual

trajectories carefully for preventing artifacts that come from an improper
environmental or reward model or weak interfaces.

After this process ended, ideally a description of the agent behavior is available
that fits to the environmental model and the reward given and thus produces
the aggregate behavior intended. Analysis of this model – as indicated in the
last step – is essential.

There is a variety of possible learning agent techniques that might be suit-
able for the aim presented here and requirements such as general applicability or
accessibility of the resulting model identified. We selected three standard tech-
niques for further examination: Learning Classifier Systems, Q-Learning and a
Feed Forward Neural Network, which we will describe in the next paragraphs.

3.2 Learning Classifier Systems: XCS

The accuracy-based learning classifier system XCS is an iterative online learn-
ing system [11]. Behavioral knowledge in XCS is represented by a fixed-size
population of condition-action-prediction classifiers. Each classifier predicts the
consequences (reward) of executing the specified action given that the conditions
are satisfied. This basic framework provides means to represent the knowledge in
a way that we can clearly identify the agent behavior model - the conditions and
the actions. It is possible to determine the quality of a rule based on the predicted
reward and the additional evaluation of the accuracy of this prediction. Condi-
tions are represented using three values: true, false and don’t care – allowing for
generalized situation descriptions with concentration on the relevant aspects.

188 R. Junges and F. Klügl

XCS has a built-in evolutionary rule discovery component. It approximates pre-
diction values by means of credit assignment mechanisms. A successful learning
process in XCS, however, requires two conditions to be satisfied: the underly-
ing problem has to be approximately Markov and random exploration during
learning should sufficiently ensure complete problem coverage.

3.3 Q-Learning

Q-Learning [12] is a well-known reinforcement learning technique. It works by
developing an action-value function that gives the expected utility of taking
a specific action in a specific state. The agents keep track of the experienced
situation-action pairs by managing the so called Q-Table, that consists of situa-
tion descriptions, the actions taken and the corresponding expected prediction,
called Q-Value. Q-Learning is able to compare the expected utility of the avail-
able actions without requiring a model of the environment. Nevertheless, the use
of the Q-Learning algorithm is constrained to a finite number of possible states
and actions. As a reinforcement learning algorithm, it also is based on modeling
the overall problem as a Markov Decision Process.

3.4 FFNN - Feed Forward Neural Networks

A Feed Forward Neural Network (FFNN) is an artificial neural network where the
information moves in only one direction, forward, from the input nodes, through
the hidden nodes and to the output nodes [13]. FFNN is usually using supervised
training, yet the application situation here is designed for online reward-based
learning in a given environment. Therefore, we modified the overall learning
process for producing an appropriate setting for the FFNN. There are three
phases that are repeatedly executed. The first phase is an explore simulation
with randomly selected actions in given situations. These situation-action pairs
are recorded with the reward they produced. After a number of steps, a neural
network is trained using the best n situation action pairs. The so trained FFNN
is then used in a exploit simulation. The rewards of the selected actions during
this exploit phase are recorded in the table. After every explore phase, a new
FFNN is trained. We had to notice that the influence of the first weak situation
action samples was too high, when barely retraining the network. The results of
the explore phase are cumulated.

As a FFNN is a black box, the extraction of the behavioral knowledge is
non trivial. There are basically two options. During the exploit run, situation
and action pairs are recorded and analyzed. Alternatively – if the number of
hidden nodes is not too high – the activation state of the different node can be
analyzed showing which particular perceived situation elements were responsible
for selecting the action.

This is clearly a very restrictive selection of just three techniques that must
be extended in future work using other forms of learning such as evolutionary
programming support vector machines, other forms of reinforcement learning,
respectively learning automata, etc.

Evaluation of Techniques for a Learning-Driven Modeling Methodology 189

4 Testbed

The scenario we use for evaluating the learning approaches is the same as in [14]
where we already describe the integration of XCS-based agents into the agent-
based modeling and simulation platform SeSAm. This pedestrian evacuation
scenario is a typical application domain for multiagent simulation, and albeit the
employed scenario may be oversimplified, we expected that its relative simplicity
will enable us to evaluate the potentials of each learning technique as well as to
deduce the involved challenges.

4.1 Environmental Model

The main objective of the simulation concerned the emergence of collision-free
exiting behavior. Therefore, the reward and interfaces to the environment were
mainly shaped to support this.

The basic scenario consists of a room (20x30m) surrounded by walls with
one exit and a different number of column-type obstacles (with a diameter of
4m). In this room a number of pedestrians have to leave as fast as possible
without hurting themselves during collisions. We assume that each pedestrian
agent is represented by a circle with 50cm diameter and moves with a speed of
1.5m/sec. One time-step in the discrete simulation corresponds to 0.5sec. Space
is continuous. We tested this scenario using 1, 2 and 5 agents, and the number
of obstacles was set to 1, 5, and 10. At the beginning of a test-run, all agents
were located at given positions in the upper half of the room.

Reward was given to the agent a immediately after executing an action at
time-step t. It was computed in the following way:

reward(a, t) = rewardexit(a, t)+rewarddist(a, t)+feedbackcollision(a, t) with
rewardexit(a, t) = 200, if agent a has reached the exit in time t, and 0 otherwise;
rewarddist(a, t) = β × (dt(exit, a) − dt−1(exit, a)) with β = 5; feedbackcollision

was set to 100 if a collision free actual movement had been made, to 0 if no move-
ment happened, and to −100 if a collision occurred. The different components
of the feedback function stress goal-directed collision-free movements.

4.2 Agent Interfaces

As agent interfaces, the perceived situation and the set of possible actions have
to be defined. Similar to [14], the perception of the agents is based on their
basic orientation, respectively its movement direction. The overall perceivable
area is divided into 5 sectors with a distinction between areas in two different
distances. For every area two binary perception categories were used. The first
encoded whether the exit was perceivable in this area and the second encoded
whether an obstacle was present - where an obstacle can be everything with
which a collision should be avoided: walls, columns or other pedestrians.

The action set is shaped for supporting the exiting behavior allowing the
agent to ignore the navigation task. We assume that the agents are per de-
fault oriented towards the exit. Thus, the action set consists of A = {moveleft,

190 R. Junges and F. Klügl

moveslightlyLeft, movestraight, moveslightlyRight, moveright, noop, stepback}. For
every of these actions, the agent turns by the given direction (e.g. +36 degrees
for moveslightlyRight), makes an atomic step and orients itself towards the exit
again. This allows concentrating the learning on the collision avoidance giving
the scenario the Markov property.

4.3 Techniques Configuration

The testbed was implemented using SeSAm (www.simsesam.de). Due to an exist-
ing integration of XCS as an alternative agent architecture [14] the implemen-
tation of a XCS agent in the testbed was basically consisting in assigning the
perceptions and actions defined in the testbed implementation to bit string ele-
ments of the rule description. The Q-Learning could be implemented by means
of the standard high-level behavior language in SeSAm. For the FFNN imple-
mentation we used the Joone API (www.joone.org), integrating the management
and usage of neural networks as additional primitive language constructs to the
SeSAm modeling language.

The XCS comes with a number of 21 configuration parameters ranging from
the size of the rule population, via thresholds for the application of the genetic
algorithm or diverse initial values for offsprings to discount factors in multistep
mode. As in [14], we did not modify these settings, but used the values of the
original implementation of XCS [15] following the advice of its developer. This
setting of parameters appeared to be reasonable, but might be discouraging the
usage of this learning technique.

The Q-Learning technique assumed an initial Q-Value of 0 for all untested
situation-action pairs. Additionally, only two parameters have to be settled: we
set the learning rate to 1 and the discount factor to 0.5.

The configuration of the FFNN basically concerned the particular setup of
the network itself. We use 20 neurons in the input layer (corresponding to the
number of elementary perceptions), 10 neurons in the hidden layer, and 7 neurons
in the output layer (corresponding to the number of possible actions). The input
layer is a linear layer, and the hidden and output layers are sigmoid layers. After
each explore phase, the network for 2000 epochs or until the root mean squared
error is lower than 0.01. The training set was consisting of the best rule for each
situation presented.

5 Experiments and Results

All experiments alternated between explore and exploit phases. During the ex-
plore phase, the agents randomly execute an action. In exploitation trials, the
best action according to the used learning technique was selected in each step.
Every phase consists of 250 iterations. Every experiment took 100 explore-exploit
cycles. In contrast to [14], we did not test a large variety of configurations as it
was not our goal to find an optimal one, but a more modeling-oriented evaluation
of the different techniques.

www.simsesam.de
www.joone.org

Evaluation of Techniques for a Learning-Driven Modeling Methodology 191

Table 1. Mean number of collisions - Columns represent the number of agents and
number of obstacles

1 - 1 2 - 1 5 - 1 1 - 5 2 - 5 5 - 5 1 - 10 2 - 10 5 - 10

XCS
0.59 1.1 7.22 0.56 0.89 6.63 0.1 1.79 7.25
±0.79 ±1.23 ±2.58 ±0.84 ±0.82 ±3.15 ±0.32 ±1.46 ±3.05

Q-L.
0.22 0.98 8.1 0.75 0.53 8.17 0.14 1.77 9.19
±0.5 ±0.96 ±3.71 ±0.78 ±1 ±4.61 ±0.38 ±1.51 ±4.94

FFNN
1.02 1.56 8.59 0.77 1.35 9.51 0.95 1.37 7.83
±1.79 ±1.33 ±3.42 ±0.95 ±1.57 ±4.4 ±1.19 ±1.53 ±4.41

In the following we analyze the results of the simulations, first with respect to
learning performance and then concerning the usability of the actually learned
behavior control for the proposed methodology.

5.1 Performance Evaluation

The metric used for evaluating learning performance is the number of collisions.
As we consider a small room for this evacuation scenario, the time to reach
the exit does not vary significantly. A collision is not influencing the behavior
directly, but the reward the agent got.

Table 1 presents the mean number of collisions for each agent class, at the end
of the simulation of each test case. The values are aggregated only over the last
50 exploit iterations (after warm-up period of 10000 steps) to avoid the inclusion
of any warm-up data. Means and standard deviation refer to variation within
the single runs. One can see that there is no clear tendency that one technique
performs better in all scenarios.

Concerning adaptation speed we could observe in all three learning techniques
similar dynamics: the number of collisions decreases fast in the beginning, but
then the behavioral knowledge converges quite fast.

To have a better illustration of what this means in each technique, we show
in figure 1 the trajectories of the agents in exploit phases after a) 10, b) 50 and
c) 100 exploit trials. We can see that, since the early exploit trials, XCS and
Q-Learning agents already presents a well defined exit-oriented pattern - with
small inefficiencies on the way (Q-Learning). The FFNN agents requires more
trials to develop such patterns. This happens because the FFNN agent, when
facing a collision situation (e.g. in front of an obstacle), must have experienced
by exploration, a good solution (positive reward) to avoid that collision. This
is not the same case for the XCS and Q-Learning agents, because even if they
don’t know what is the best action, they know which one to avoid as they also
learn from negatively rewarded actions.

5.2 Behavior Learning Outcome

The second objective of this evaluation is the behavior model as the result of
the learning process. We base the following analysis on one randomly selected
experiment with 5 agents and 10 obstacles.

Evaluation of Techniques for a Learning-Driven Modeling Methodology 193

Table 2. Best XCS rules for an exemplary run with 5 agents and 10 obstacles
(F=Fitness and E=Experience)

Condition (bit string) Condition Interpretation Action F E

******0******0****** No obst. imdtly. right
moveslightlyRight 0.71 61

No obst. near left

****0*0******0****** No obst. imdtly. ahead or right
movestraight 0.58 61

No obst. near left

00*0*0***0*0*0** No obst. imdtly. left
moveslightlyLeft 0.56 81

No exit near left, right or ahead

0**0*******00**010**
No obst. or exit left

moveleft 0.69 24No exit ahead or right
Obst. near right

generalization has a good impact on the performance, the uncertainties on the
reward prediction impact the fitness evaluation. As one can notice from the
conditions, the rules are shaped for the particular example agent according to
its starting position in the upper right part.

Q-Learning Agent. A Q-Learning agent maintains a table with 1961 situation-
action (rule) entries without generalization. In the case with 5 agents and 10
obstacles 44% of the rules either have no experience (they have never been used)
or have no reward. Figure 3 shows the distribution of the reward prediction,
Q-Value, over the rules set. One can see that there are only a few rules with
a high Q-Value. Clearly, the Q-Value alone cannot be a selection criteria for
rules forming a behavior model as the ones with the highest Q-Value naturally
contain situations where the agent directly perceives the exit. Thus, rules have
to be considered for all potentially relevant situations. Although not generalized,
the single rules are in principle readable by a human modeler.

FFNN Agent. In the FFNN implementation, the access to the behavior model
of the agent is more challenging. There are two possibilities: either analyzing the

Fig. 3. Q-Learning value distribution for an exemplary run with 5 agents and 10 ob-
stacles

194 R. Junges and F. Klügl

(a) Neural network deci-
sion situation

(b) Corresponding Neural network activation

Fig. 4. FFNN exemplary run with 1 agent, 5 obstacles

best rules of final training set – without considering the generalization done by
the FFNN or by manually analyzing the activation relations in the net.

The training rules set – in the example containing 45 rules – contains only rule
representing a high positive reward which is collected during both explore and
exploit phases. In the latter, situation-action combinations used by the FFNN are
recorded. Considering the fitness of all rules observed, their fitness is naturally
high for all.

More interestedly, yet more effortful to access is the activation state of the
network. In figure 4(b), we illustrate the activation for all layer in an example
situation. All neurons of one layer are fully connected to the neurons in the next,
activation is indicated by (dark) color. This used situation is presented in figure
4(a), where the agent is near the obstacle and can perceive it in the right and
front sectors of its perception field. The neural network selects action moveleft.

6 Discussion

The main motivation for this work is investigate the possibilities of creating
a learning-based methodology for the design of a multiagent simulation model
avoiding a time consuming trial and error process when determining the details
of agent behavior. Using a learning technique transfers the basic problem from
direct behavior modeling to designing the agent interface and environment re-
ward computation. To do so successfully, a general understanding of scenario
difficulties and the available machine learning techniques is necessary.

XCS provides a better interpretability of the rules. For each situation we
are able to predict the reward from executing a specific action, how accurate
this prediction is (based on the prediction error) and how many times we have
executed that action. Combined, these three numbers give relevant information

Evaluation of Techniques for a Learning-Driven Modeling Methodology 195

on quality of rules. Besides that, XCS is able to generalize the representation of
the rules based on don’t care bits in the representation of the perceptions.

Q-Learning showed a good overall performance. It requires less time, which
means less explore trials, to learn the possible situations in this scenario. The
standard implementation of Q-Learning, used in this paper, offers us only the es-
timated reward for each possible condition-action pair. This full behavior model
for the Q-Learning is only partially helpful as a guidance for modeling.

The Feed Forward Neural Network as supervised learning requires good be-
havior examples, e.g. a proper set of situation-action pairs to train the network.
An issue of our integration into a reward-based setting is that only the best
rules were used to train the network. Thus negative experience is lost. The neu-
ral network will not learn to avoid actions. However, here the reward contained
positive and negative elements thus being not fully appropriate for the FFNN
approach.

7 Conclusion and Future Work

In this paper we started our investigation towards a learning-driven methodology
by evaluating three well-known learning agent techniques. In a simple evacuation
scenario, we showed that all the employed learning techniques can produce plau-
sible behavior without one technique showing the superior performance. Yet, the
XCS technique outclasses the two others when it comes to the accessibility and
usability of the learned behavior model.

Our next steps include the analysis of more elaborate perception and actions,
such as including the distance to the exit or splitting actions into turn and
move primitives. Thus, to the collision avoidance task the agents have to learn
navigation-related activities. An additional plan is to use the best rules to di-
rectly construct a new agent model – supporting the evaluation of techniques
and finally we will apply learning-based post-processing techniques for working
with the situation-action pairs improving the generality of the rules. Beyond
that, we will pursue further self-modeling agent experiments: we are considering
the application of these learning techniques in other scenarios, such as an evac-
uation of a train with about 500 agents, complex geometry with exit signs and
time pressure. We are also interested in a scenario where cooperation is required,
in order to investigate the possible emergence of the cooperation.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

2. Nowe, A., Verbeeck, K., Peeters, M.: Learning automata as a basis for multi agent
reinforcement learning, pp. 71–85 (2006)

3. Adami, C.: Introduction to artificial life. Springer, New York (1998)
4. Collins, R.J., Jefferson, D.R.: Antfarm: Towards simulated evolution. In: Artificial

Life II, pp. 579–601. Addison-Wesley, Reading (1991)

192 R. Junges and F. Klügl

Fig. 1. Exemplary trajectories during exploit trials, for 5 agents and 10 obstacles

XCS Agent. At the end of the experiment, the XCS agent has a rules set with
160 rules, representing his experience after 100 explore and exploit cycles. In this
case 71.25% of the rules have a strength value higher than 0, which means that
they represent a positive reward experience. Figure 2(a) depicts the strength
distribution over the example rule set. Rule strength is hereby a measure of the
prediction and fitness, given by: strength = prediction × fitness. Figure 2(b)
depicts the experience distribution over the rules set. It presents a small group
of experienced rules. This is an effect of the generalization. This small group
represents rules that are frequently selected because they generalize the most
common situations in this scenario, and therefore are more fitted, which means
their reward prediction is more accurate.

Directly considering the rules learned, table 2 outlines the four best XCS
rules of an example agent, giving also the fitness and experience information
(and the bit string representation of the condition). However, even though the

Fig. 2. XCS strenght and experience distribution for an exemplary run with 5 agents
and 10 obstacles

196 R. Junges and F. Klügl

5. Denzinger, J., Fuchs, M.: Experiments in learning prototypical situations for vari-
ants of the pursuit game. In: Proceedings on the International Conference on Multi-
Agent Systems (ICMAS-1996), pp. 48–55. MIT Press, Cambridge (1995)

6. Maeda, Y.: Simulation for behavior learning of multi-agent robot. Journal of In-
telligent and Fuzzy Systems, 53–64 (1998)

7. Mahadevan, S., Connell, J.: Automatic programming of behavior-based robots us-
ing reinforcement learning. Artificial Intelligence 55(2-3), 311–365 (1992)

8. Lee, M.R., Kang, E.K.: Learning enabled cooperative agent behavior in an evo-
lutionary and competitive environment. Neural Computing & Applications 15,
124–135 (2006)

9. Neruda, R., Slusny, S., Vidnerova, P.: Performance comparison of relational rein-
forcement learning and rbf neural networks for small mobile robots. In: Proceed-
ings of FGCNS ’08, Washington, DC, USA, pp. 29–32. IEEE Computer Society,
Los Alamitos (2008)

10. Klügl, F.: Multiagent simulation model design strategies. In: MAS& S Workshop at
MALLOW 2009, CEUR Workshop Proceedings, Turin, Italy, vol. 494 (September
2009)

11. Wilson, S.W.: Classifier fitness based on accuracy. Evolutionary Computation 3(2),
149–175 (1995)

12. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3), 279–292 (1992)
13. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
14. Klügl, F., Hatko, R., Butz, M.V.: Agent learning instead of behavior implemen-

tation for simulations - a case study using classifier systems. In: Bergmann, R.,
Lindemann, G., Kirn, S., Pěchouček, M. (eds.) MATES 2008. LNCS (LNAI),
vol. 5244, pp. 111–122. Springer, Heidelberg (2008)

15. Butz, M.V.: XCSJava 1.0: An implementation of the XCS classifier system in
Java. Illigal report, Illinois Genetic Algorithms Laboratory, University of Illinois
at Urbana-Champaign (2000)

Price Prediction in Sports Betting Markets�

Juan M. Alberola��, Ana Garcia-Fornes, and Agustin Espinosa

Departament de Sistemes Informàtics i Computació,
Universitat Politècnica de València, Camı́ de Vera s/n. 46022, València, Spain

{jalberola,agarcia,aespinos}@dsic.upv.es

Abstract. The sports betting market has emerged as one of the most
lucrative markets in recent years. In this kind of prediction market, par-
ticipants trade assets related to sports events according to their expecta-
tions. Prices in sports betting markets continually change depending on
what is happening in the event. In this paper we propose an approach fo-
cused on predicting price movements in order to make benefits regardless
of the final result.

We develop an agent who participates in the market focused on the
task of learning the price movements in order to make predictions of
future prices. Our approach is based on identifying and learn pattern
price movements in order to predict the price movements of new events
by using an underlying Case Based Reasoning system.

1 Introduction

Prediction markets are speculative scenarios where participants make predictions
about future events. Assets regarding all of the possible outcomes of the event
are created, and the price of these assets is related with the probability of each
outcome. Participants exchange these assets according to their expectations with
other participants or with a bookmaker.

In the last few years, sport betting markets have emerged as one of the sce-
narios in which the most money is exchanged everyday. Sport betting markets
are a specific kind of prediction markets where the traded assets are referred
to sporting events. Therefore, the attraction of betting on sporting events and
the growth in popularity it has experienced, has meant that millions of users
make more exchanges in sports betting markets in an average day than other
exchanges scenarios such as other financial markets[1].

Sports betting markets usually have a short or very-short duration in compar-
ison with other prediction markets, such as political markets. Markets regarding
the probability of landing on Mars in ten years or the probability of a partic-
ular candidate becoming the next US president can last months or even years.
However, markets regarding the winner of a soccer game or a horse race usually
� This work has been partially supported by CONSOLIDER-INGENIO 2010 under

grant CSD2007-00022, and projects TIN2008-04446 and PROMETEO/2008/051.
�� Juan M. Alberola has received a grant from Ministerio de Ciencia e Innovación de

España (AP2007-00289).

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 197–208, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

198 J.M. Alberola, A. Garcia-Fornes, and A. Espinosa

last a few hours or minutes. Therefore, prices usually tend to change quickly
according to every influential factor related to the event.

Studying how probabilities, and therefore prices, change during the sporting
event will allow us to approach sports betting markets in a new fashion more
similar to the financial markets. As financial traders buy and sell assets according
the prices and their expectations of price increases or decreases, assets regarding
sporting events can be traded at a given price in order to make an opposite trade
later at a better price, with the goal of making profits regardless of what the
final outcome is. Thus, in these markets it is important to predict future price
in order to identify the best trading decisions.

Price movements are made by the participants of the sports betting market
according the probabilities of the outcomes change during the event. Therefore,
participants change prices in a specific sporting event according to what happens
in the event.

Based on this idea, we are interested in identifying price movement patterns
that can be repeated in different events under the same underlying circum-
stances. To achieve this goal we develop an agent with an underlying Case-Based-
Reasoning (CBR) [8] in which by means of observing past sporting events, the
agent is able to predict future price movements for an unknown sporting event
and therefore, drawing a price evolution over time.

The rest of the article is organized as follows. Section 2 presents previous
works related to our proposal. Section 3 describes the Sports Betting Markets
and the trading possibilities according to price movements in order to make
profit. Section 4 details the market structure. Section 5 describes the structure
of the CBR-agent. In section 6 we evaluate the prediction accuracy of the CBR-
agent with real data. Finally, section 7 discusses the contributions of the paper
and future work.

2 Related Work

Prediction markets have been studied as powerful mechanisms for predicting
the probabilities of future events [5]. Most of the research on prediction markets
is focussed on pricing, that is, assessing the most accurate price according the
probability of the event. Studies regarding prediction markets, such as the Iowa
Electronic Markets, the Foresight Exchange or the Hollywood Stock Exchange
demonstrate than these markets provide very accurate probability predictions of
future outcomes [11,2]. Other works are focused on stuyding how information is
incorporated into the market and therefore, influences the prices [3]. However,
to our knowledge little effort has been made towards studying price evolution
in prediction markets, with the aim of making a profit regardless the correct
outcome.

The problem of predicting future prices and price movements has been broadly
studied in the economic field. Since the introduction of computational tools for
modeling financial and economic markets, several works have modelled stock
markets as time series and have studied the evolution of the assets over time,

Price Prediction in Sports Betting Markets 199

trying to predict future prices [9,6,12]. However, price evolution in financial
markets is not depending on probabilities of specific outcomes.

From the point of view of the use of techniques based on CBR for predicting
future prices whatever the context of the problem, few works have been carried
out. CBR-based techniques have also been used in a broad range of applications
[4,10] but have hardly been applied for the prediction of future prices in financial
markets. However, sports betting markets has a critical temporal component
which differentiates them from other financial markets and therefore, a CBR
approach could identify similar price movement patterns that are repeated in
different events, under similar circumstances.

The agent paradigm has been widely used in other competitive scenarios such
as the Trading Agent Competition [14], a Fishmarket [13] or artificial stock
markets [7]. In these scenarios agents can learn, collaborate and evolve their
different strategies in order to compete with other participants. Sports betting
markets are scenarios which also require competitiveness and in which the use of
agent-based approaches can be very helpful in order to improve the performance
of human participants.

3 Sports Betting Markets

Sports betting markets are speculative scenarios about sporting events, where
participants exchange assets regarding a specific outcome of the event. For a
specific event, there are several markets regarding the winner, the final score,
the number of goals or points, handicap markets, etc. Each market has n possible
outcomes and each bet can be seen as an n−way bet. The prices of the exchanged
assets are related to the probability of the specific outcome happening. Price and
implicit probability of an outcome are related by price = 1/probability, where
probability is represented from 0 to 1.

Trades are made between participants at a given price because they have
different expectations about the event. In sports betting markets, users can bet
on an outcome (win if this is the final outcome) or against it (win if any of the
other outcomes is the final one). Betting on a specific outcome is called back
and betting against it is called lay.

The bookmaker is in charge of receiving the offers of the traders. If a back offer
and a lay offer are compatabile in terms of price and stake (full or partial), the
bookmaker matches both offers. If a received offer is not compatible it remains
waiting until a compatible offer is received, or until it is deleted by the user or
because the market is closed. Therefore, the bookmaker also maintains a list
of waiting offers, and continuously shows the best back and lay prices of these
waiting offers in order to allow interested users make offers at these prices.

Let us suppose that user Alice wants to bet μ units on placing a back bet on a
selection (an individual, a team, horse, etc.). This user is betting that the selection
will win. Alice can accept the best waiting lay offer (the lay offer which price is the
lowest one) or can choose his own price ρ. When user Bob wants to place a lay bet
on this selection (against the selection of Alice, that is, the individual will not win),
he can also choose his own price or accept the offer of Alice.

200 J.M. Alberola, A. Garcia-Fornes, and A. Espinosa

If Bob accepts Alice’s offer, Bob is placing a lay bet on the seletion at price
ρ. When the event is over, if Alice wins the bet, Bob has to pay ρ − 1 units for
each unit bet on. If Bob wins the bet, he keeps the μ units of Alice:

profit(Alice) =
{

μ*(ρ-1) if Alice wins the bet
−μ if Alice loses the bet

profit(Bob) =
{−μ*(ρ-1) if Alice wins the bet

μ if Alice loses the bet

3.1 Trading on Sports Betting Markets

Sports betting markets are traditionally used for eliciting the probabilities of
final outcomes before the event is started, but can also be approached while
the event is being played. As an example, when a soccer match starts it has
associated a price ρ for the outcome 0-0 as a final score because users estimate
that the probability of this outcome is φ, where ρ = 1/φ. As the match draws
to a close and the score remains 0-0, the probability increases and therefore, the
price decreases. As sport betting markets have a short or very short duration,
the prices change rapidly during the event.

From the point of view of a sports betting market trader, similar to an eco-
nomic trader, the underlying sporting event and its final outcome is not impor-
tant, because its goal is to make profits whatever the final outcome is.

In this approach, a sports betting market is seen as a market where the cur-
rent price of a specific outcome is going to change over time and therefore, the
importance relies on detecting if the price will move up or down, how much it
will move up or down, when it is going to move and how fast. Therefore, the goal
of a sports betting markets trader is to bet on one outcome at a higher price
and to bet on the opposite outcome at a lower price.

A trader can make a bet by risking μ units whilst making a back bet at a
price of ρ1 for a specific outcome ω. As explained in Section 3, if the bet is finally
won, the trader wins μ∗ (ρ1−1) units, and loses the μ units if the other outcome
is the final one. This trader can make profits if he covers all the bases by betting
on the opposite outcome when prices change. In this example the trader can bet
μ on the lay side at a price of ρ2. When ending the event, if the final outcome
is ω, the trader will win μ ∗ (ρ1 − 1) because his first bet has won, but he loses
μ ∗ (ρ2 − 1) units bet on the second one.
As we can observe, if the price of the back bet (ρ1) is higher than the price of
the lay bet (ρ2) the resulting profit will be positive:

μ ∗ (ρ1 − 1) − μ ∗ (ρ2 − 1) = μ ∗ (ρ1 − ρ2)

Nevertheless, if the ω outcome is not the final one, the trader will not lose any
units, because he loses the μ units risked in the first bet but wins μ units from
the second one. Thus, regardless whether ω is the final outcome or not, the trader
will not lose any unit:

profit =
{

μ*(ρ1-ρ2) if ω is the final outcome
0 otherwise

Price Prediction in Sports Betting Markets 201

The same operations can also be made in the inverse order and also the trader can
also split the profits between the different outcomes. Due to space restrictions,
we do not detail these operations.

As we can observe, the difference in the prices of both trades indicates the
amount of profit. Detecting price tendencies and therefore, predicting future
prices is the key issue for making profits in these markets.

4 The Market Model

Sports betting markets represent a multilateral market model in which traders
send their bets at their own price to the mediator who matches compatible bets.
Orders compete for the best back and lay offers. Therefore, the offers which
cannot be matched remain waiting until they can be matched or are cancelled.
One of the tasks of the bookmaker is to also show at anytime the best back and
lay prices of these waiting offers. For a specific market there is a list of all the
currently back and lay bids currently waiting, ordered from the highest prices
to the lowest.

In this work we use Betfair1 as the sport betting market studied. Betfair is
the world’s biggest prediction exchange. According to [1] Betfair processes more
than 6 million transactions in an average day (more than all of the European
stock exchanges combined). Betfair is based on the New York Stock Exchange
model and allows punters to bet at odds set by other punters rather than the
bookmaker.

The Continous Double Auction (CDA) is a typical institution of real world
exchange markets, such as financial assets, foreign exchange, energy, etc. In this
institution, buyers and sellers place their offers at anytime. When a participant
accepts a buy or a sell offer, a transaction is made. For modeling a sports betting
market, we define a CDA institution where agents can interact for obtaining
information of the market at a given moment and also, for placing bets.

In our model, Betfair acts as the mediator between users, matching the com-
patible bets and showing the best back and lay prices at a given time. As a
wrapper of Betfair, we define the bookmaker agent which acts as a gateway be-
tween Betfair and the agents. Therefore, when a agent wants to request prices
or wants to place offers, it needs to communicate with the bookmaker agent.
If agents send offers, these will be matched by Betfair or will be queued in the
waiting offers queue. If agents are requesting the current prices, the bookmaker
agent will retrieve them by accessing Betfair. Therefore, from the point of view
of other users they do not know if they are trading with humans or agents.

5 The CBR Agent

We can observe that in a tennis match each time the favorite player wins a set,
the price of the outcome winner of the match gets lower, due to the fact that

1 http://www.betfair.com

http://www.betfair.com

202 J.M. Alberola, A. Garcia-Fornes, and A. Espinosa

the probability of winning is higher. Similarly, the prices of the the winner of
a basketball match decrease if the favourite team increases the score difference
over time. In light of these repeated patterns and the similar movements of
prices regarding the state of a sporting event, we propose an agent with an
underlying CBR system which captures some features of a current event and
finds similarities with other past events. Then, observing the price evolution in
these historical events, the agent will be able to predict the more accurate future
prices depending on what happens during the event from now on. From now on,
we reference this agent as CBR-agent.

We can summarize the tasks that the CBR-agent carries out as follows:

Data acquisition and creation of the case base: the first step is the data
acquisition according the requirements of the problem. The CBR-agent interacts
with the bookmaker agent in order to receive information about sport events.
Then, after a data filter process (for excluding samples which may not reveal a
real probability at a given moment), the CBR-agent creates the case base which
will be used in the CBR cycle.

CBR cycle: once the CBR-agent has created the case base, this is used for
solving an unknown problem (in our case predict future prices) given similar
past problems. The CBR-agent interacts with the bookmaker agent to obtain
the information of a sporting event (unknown problem), then the CBR cycle
measures the similarity between this problem and a similar past one (one or
more). Then, according the future prices of the past problem, future prices are
predicted for the unknown problem by adapting the solution of the past one.

In following sections we show an example about prediction in soccer events.
By means of this example we detail the processes described above and then we
show some results about the system accuracy prediction.

5.1 Experiments

We have carried out the experiments using a real data set from soccer matches
played in the 2008-2009 season in the Barclays Premier League. We analyzed
this competition because it is one of the most important soccer leagues in the
world. Moreover, the large amount of traders that exchange bets at these events
means that each event has very high liquidity, and this is important for obtaining
more reliable results.

We focus on the price prediction for markets that are the under/over 2.5 goals.
These markets show the probability assessed by the participants for scoring in a
soccer event less than 2.5 goals (0, 1, or 2) or more than 2.5 goals (3 or more),
respectively. We want to learn how the prices evolve depending on the current
features of a current game.

5.2 Data Acquisition and Creation of the Case Base

There are several markets that are directly related to the under/over 2.5 goals,
whose price evolution should be proportional to the markets studied since they

Price Prediction in Sports Betting Markets 203

refer to similar final outcomes. These markets are, for example, the markets
regarding the exact final score or other markets regarding under/over goals (such
as 1.5, 3.5, or 4.5 goals). Other markets are indirectly related to under/over 2.5
goals such as the match odds markets (the winner of the game or a draw) or the
next-goal-minute markets. Although the price evolution in these markets may
not be proportional to the studied markets (under/over 2.5 goals), it is related
to the prices of the markets studied. Finally, other markets such as the number
of yellow cards in the game, the number of corners, or the injury time of the
event are not related to the studied markets.

Although all the soccer events are completelly different from each other (differ-
ent players, different teams, weather conditions, dates, and so on), if we consider
the prices of the outcomes of different markets, we can find some similarities
between an unknown event and a past one. In the example presented in this
paper, we define the state of a soccer event at a specific moment according to
the next properties:

– The exact moment of the game (in minutes).
– The current score of the game at that particular moment.
– The prices of the under/over 2.5 markets. These show the back and lay prices

for both the under and the over 2.5 goals outcomes.
– Match odds prices. These show the back and lay prices for the home wins,

visitor wins and draw wins.

Taking into account these properties, we can find similarities for two different
soccer events and predict future prices.

Every 60 seconds the CBR-agent requests the current values of these proper-
ties from the bookmaker agent, and then, the CBR-agent stores this information
as a sample. Thus, we obtain some samples for a single soccer event. A sample
is a quintuple which is described as 〈m, s, h, v, d, u, o〉 where:

– 0 ≤ m ≤ 45 represents the minute of the game. For reasons of simplicity, we
study the price evolution in the first half of the event (45 minutes). Thus,
this component is an integer.

– s ∈ {0-0, 1-0, 0-1, 1-1} represents the current score of the game. For reasons
of simplicity, we only take into account soccer events that have these current
scores.

– h, v, and d are respectivelly the prices refering to the home wins, the visitor
wins, and the draw wins from the match odds market.

– u and o are the prices refering to the under outcome and the over outcome
from the under/over 2.5 goals market.

Each h, v, d, u and o has two real values 〈b, l〉 that represent the back and lay prices
for the specific outcome. Each back price must be lower than the corresponding lay
price at any given moment. Otherwise, there would be a possible trade.

The maximum difference allowed between back and lay prices is represented
by ε. Therefore, each pair of back and lay values 〈b, l〉 fulfills b < l ≤ b + ε. This
ε is a specific threshold that we use in order not to consider samples in which at
least one pair of back and lay prices differs more than ε.

204 J.M. Alberola, A. Garcia-Fornes, and A. Espinosa

Since samples are taken every 60 seconds, we create a sequence of samples
x1, x2, x3, . . . xn for each different event. To simplify notation, if xi = 〈m, s, h, v, d
, u, o〉, we write mi to refer to m, and similarly for other components of xi. It is
assumed that the samples are ordered by time, i.e., mi < mj whenever i < j.

In order to predict the prices of an unknown event in the next δ minutes, we
need to find similarities with other past events whose prices are known both at a
specific time and after δ minutes. Therefore, we, we need to represent information
as a problem description and its solution. In our case, the problem description
is each one of the stored samples of a single event and the solution is the state
of this event after δ minutes. In the example presented in this paper, we make
predictions for the next, 5, 10 and 15 minutes (δ = {1, 5, 10, 15}).

Thus, given two different samples of the same eventxi = 〈mi, si, hi, vi, di, ui, oi〉
and xj = 〈mj , sj, hj , vj , dj , uj , oj〉, such that mj −mi = δ, we define a case of the
case base as:

cδ = 〈mi, si, hi, vi, di, ui, oi, d(ui, uj), d(oi, oj)〉
Each case represents the information of the event in the moment mi (initial
moment) and the information regarding the event after δ minutes, which in our
example is the information regarding the under/over outcomes: d(ui, uj) and
d(oi, oj). We define an operation d on pairs of back and lay values as follows:
d(〈b1, l1〉, 〈b2, l2〉) = 〈| b1 − b2 |, |y1 − y2|〉. Thus, d(ui, uj) and d(oi, oj) represent
the back and lay price variations for the under/over markets.

All cases cδ of all the events that we have two samples xi and xj such that
mj − mi = δ, allow us to create a case base Cδ = {cδ | cδ is defined}. This case
base stores cases of different events, but the information represented in a single
case obvioulsly refers to a specific event.

5.3 The CBR Cycle

The case base for a specific δ represents the information of events and their back
and lay prices for the under/over markets in the next δ minutes. Therefore,
given Cδ and an input problem x = 〈m, s, h, v, d, u, o〉, the CBR cycle predicts
the back and lay prices for the under/over markets in the next δ minutes.

The inference process of the CBR system can be summarized in the following
steps:

Step 1. Retrieve the cases whose score components are the same and also
whose back and lay prices for the under/over markets in the initial moment
are the most similar to the prices of the input problem. For example, given
an input problem x = 〈m, s, h, v, d, 〈bu, lu〉, 〈bo, lo〉〉 and a case of the case base
cr = 〈mr, sr, hr, vr, dr, 〈b′u, l′u〉, 〈b′o, l′o〉, uδ, oδ〉, cr is retrieved if the score is the
same than the input problem and if its values are not different from the values
of the input problem by more than a threshold ω:

s = sr ∧ | bu-b′u |≤ ω ∧ | lu-l′u |≤ ω ∧ | bo-b′o |≤ ω ∧ | lo-l′o |≤ ω

Step 2. From all cases retrieved in Step 1, we select those whose time component
is the most similar. For example, given an input problem x = 〈m, s, h, v, d, u, o〉

Price Prediction in Sports Betting Markets 205

and a case of the case base cr = 〈mr, sr, hr, vr, dr, ur, or, u
δ, oδ〉, we select those

cases where | m-mr |< π.
Step 3. From each case cr selected in Step 2, where:

cr = 〈mr, sr, hr, vr, dr, 〈bu, lu〉, 〈bo, lo〉, 〈b′u, l′u〉, 〈b′o, l′o〉〉

for r = {1, 2 . . .R}, being R the number of selected cases, we calculate price
evolution for the specific price (back,lay) and market (under,over) as follows:

e(b, u) = (bu − b′u); e(l, u) = (lu − l′u); e(b, o) = (bo − b′o); e(l, o) = (lo − l′o)

If a price evolution is positive it means that the specific price is going to decrease
in δ minutes; if it is negative, the price will increase δ minutes.

Then, we calculate an average price evolution from all cases c1, c2 . . . cR, for
the specific price (back,lay) and market (under,over):

A(b, u) =
1
R

R∑
r=1

e(b, u)r; A(l, u) =
1
R

R∑
r=1

e(l, u)r

A(b, o) =
1
R

R∑
r=1

e(b, o)r; A(l, o) =
1
R

R∑
r=1

e(l, o)r

Consider an input problem x = 〈m, s, h, v, d, 〈bu, lu〉〈bo, lo〉〉 and price evolutions
for the specific price (back,lay) and market (under,over): A(b, u), A(l, u),
A(b, o), A(l, o). Then, the predicted back and lay prices for the under/over mar-
kets would be:

predicted(p, k) = pk + A(p, k)

for each p = {b, l} and k = {u, o}.
Step 4. If the predicted prices are similar to the real ones, the case is then

retained in the case base. If one of the four predicted prices is different by more
than a specified threshold, the case is not retained, assuming that this case may
be an anomalous case. If so, storing it could decrease the prediction accuracy of
the entire system. We dynamically change this threshold as the size of the case
base increases.

In Step 1, we used a ω threshold of 0.05 for δ = 1 (predictions for the next
minute). In other experiments (δ = {2, 5, 10}) we used a threshold of 0.20. In
Step 2 we used a π value of 1. That is, we took into account only samples whose
time component was not greater or lower than the time component of the input
problem by more than 1 minute. In Step 1, if no case is retrieved, we increase the
threshold to a maximum of twice the initial threshold. If increasing the threshold
is not enough to retrive a case, we then consider the values of home, visitor, and
draw in order to find similarities with these components. In Step 2, if no case
is selected according to this restriction, we increase the π value until we find a
case.

206 J.M. Alberola, A. Garcia-Fornes, and A. Espinosa

6 Results

In Table 1 we can see the price prediction accuracy depending on the number
of past events observed. The agent predicts the future prices for 100 sporting
events. The table shows in how many of these 100 cases the predicted price was
the real one, with some error rate.

We can see that as the agent increases the number of past observed cases,
the accuracy of the future price prediction is also increased. We can conclude
that future events follow price movement patterns similar to past events. We can
see that with 250 cases in the case base, the precision accuracy is around the
90% for an error rate of 0.05. Moreover, for predictions in the next minute this
accuracy is almost 100% for the same error rate. Prices are represented in cents
and are usually placed between 1.01 and 3 in these markets, thus, this accuracy
is high, and probably gets higher if we increase the number of observed cases.

Table 1. Number of cases in wich the predicted price is the real one with error rates

Error
Rate

50 cases 150 cases 250 cases
Under Over Under Over Under Over
B L B L B L B L B L B L

Prediction for the next minute
±0.02 73 63 71 64 81 75 72 71 83 78 69 73
±0.03 85 78 81 77 89 85 85 80 91 88 83 82
±0.05 93 93 95 90 96 95 95 91 97 97 95 94
±0.1 100 99 99 99 99 99 99 99 100 100 99 99
Prediction for the next 5 minutes
±0.02 44 46 42 44 62 60 50 46 68 68 46 49
±0.03 52 66 56 56 72 70 54 62 74 77 65 71
±0.05 74 80 72 76 82 86 78 80 94 87 94 84
±0.1 96 94 88 96 100 96 88 92 100 100 100 97
Prediction for the next 10 minutes
±0.02 32 41 22 32 54 38 32 35 63 62 44 44
±0.03 43 49 32 41 68 49 43 51 69 67 62 64
±0.05 59 65 41 49 84 73 65 73 91 88 84 80
±0.1 84 86 70 84 100 89 79 95 100 98 96 97
Prediction for the next 15 minutes
±0.02 43 47 17 23 57 57 43 37 64 66 45 42
±0.03 53 50 37 30 73 67 50 43 74 70 61 64
±0.05 67 67 40 47 91 80 60 57 94 89 87 86
±0.1 97 90 63 77 100 93 73 80 100 98 95 97

Predictions for the next 5, 10 or 15 minutes have a similar accuracy, but
predictions for the next minute are slightly more accurate. We can observe that
the accuracy is around 70% with an error rate of 0.03. If the error rate is 0.05
the accuracy is around 95%.

Apart from the accuracy precision, it is important to check the price direction
accuracy when the predictions are made very quick. In order to draw a price
evolution over time we should be able to successfully predict if price increases or
decreases at the short-term. In Table 2 we can see a combination of prediction
intervals and success rates for four different soccer events during 45 minutes. In
this table we show in how many minutes the price direction in the next minute
is successfully predicted for the back price of the under market.

Price Prediction in Sports Betting Markets 207

Table 2. Success rates for price direction prediction in the next minute

Event Price Direction
Accuracy [±0.03] %

Match 1 34 0.77
Match 2 30 0.68
Match 3 39 0.89
Match 4 30 0.68

We can observe that the market behaviour can be learned due to the success
rates for each match are quite accurate. For each different event, the CBR-agent
successfully predicts the price direction in practically the 70% of the minutes
or even more. Therefore a price evolution from minute 0 to 45 should be quite
similar to the real one.

7 Conclusions

In this paper we have seen how sports betting markets can be approached as
trading scenarios for making profits regardless of the final outcome of the event.
The approach seen in this paper is different from the approaches in which pre-
diction markets have been studied. In these markets, it is important to predict
future price in order to identify the best trading decisions.

We focus on predicting future prices by means of detecting future price move-
ments. As the price is related to the probability, and this probability changes as
the sporting event is being played, price movements can follow patterns in dif-
ferent events with similar circumstances. Due to the short duration of sporting
events, sports betting markets display quick exchanges. Our aim is to identify if
the price will move up or down, how much it will move up or down, when it is
going to move and how fast can be learned from past events.

From these features, we present a prediction system based on a CBR approach.
Observing events, we develop a CBR-agent which is able to find the similarities
of a unknown event with other historical ones by using CBR. Therefore, the
agent predicts future prices according to its reasoning.

The accuracy of the predictions has demonstated that despite each event
being different, under similar circumstances some price movement patterns are
repeated. The agent is able to learn these patterns and identifies them in other
uncertain events for predicting future prices.

Although we have presented our experiments using a specific sport, other
sports should also repeat price movement patterns under the same sporting
event circumstances. Thus, the results could be applied to other sports. We also
plan to apply CBR prediction for other sport betting markets.

Another area for future work is to identify the most influential factors on the
price movements. We can retrieve cases according to different similarity functions
and prove which technique make more accurate predictions. The multilateral
market model designed should allow us to compare heterogeneous agents with
different trading strategies.

208 J.M. Alberola, A. Garcia-Fornes, and A. Espinosa

References

1. Betfair Corporate, http://www.betfaircorporate.com
2. Chen, Y., Goel, S., Pennock, D.: Pricing combinatorial markets for tournaments.

In: STOC ’08: Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, pp. 305–314. ACM, New York (2008)

3. Debnath, S., Pennock, D.M., Giles, C.L., Lawrence, S.: Information incorporation
in online in-game sports betting markets (2003)

4. Gayer, I.G.G., Lieberman, O.: Rule-based and case-based reasoning in housing
prices (2004)

5. Guo, M., Pennock, D.: Combinatorial prediction markets for event hierarchies.
In: Proceedings of The 8th International Conference on Autonomous Agents and
Multiagent Systems, pp. 201–208 (2009)

6. Huang, W., Lai, K., Nakamori, Y., Wang, S.: Forecasting foreign exchange rates
with artificial neural networks: A review. International Journal of Information
Technology and Decision Making 3(1), 145–165 (2004)

7. LeBaron, B.: Agent based computational finance: Suggested readings and early
research. Journal of Economic Dynamics and Control (1998)

8. Mantaras, R.L.D., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Falt-
ings, B., Maher, M., Lou, C., Forbus, M.C.K., Keane, M., Aamodt, A., Watson,
I.: Retrieval, reuse, revision and retention in case-based reasoning. Knowl. Eng.
Rev. 20(3), 215–240 (2005)

9. Moody, J.: Economic forecasting: Challenges and neural network solutions. In:
Proceedings of the International Symposium on Artificial Neural Networks (1995)

10. Oh, K., Kim, T.: Financial market monitoring by case-based reasoning. Expert
Syst. Appl. 32(3), 789–800 (2007)

11. Plott, C.: Markets as information gathering tools, pp. 1–15 (2000)
12. Raudys, S., Zliobaite, I.: The multi-agent system for prediction of financial time se-

ries. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC
2006. LNCS (LNAI), vol. 4029, pp. 653–662. Springer, Heidelberg (2006)

13. Rodriguez-Aguilar, J.A., Martin, F.J., Martn, F.J., Noriega, P., Sierra, C., Garcia,
P.: Competitive scenarios for heterogeneous trading agents. In: Proceedings of the
Second International Conference on Autonomous Agents (1998)

14. Wellman, M., Greenwald, A., Stone, P., Wurman, P.: The 2001 trading agent com-
petition. IEEE Internet Computing 13, 935–941 (2000)

http://www.betfaircorporate.com

Modelling Distributed Network Security in a
Petri Net- and Agent-Based Approach

Simon Adameit2, Tobias Betz2, Lawrence Cabac2, Florian Hars1,
Marcin Hewelt2, Michael Köhler-Bußmeier2, Daniel Moldt2, Dimitri Popov2,

José Quenum2, Axel Theilmann1, Thomas Wagner2,
Timo Warns1, and Lars Wüstenberg2

1 PRESENSE Technologies GmbH, Hamburg
2 University of Hamburg, Faculty of Mathematics, Informatics and Natural Sciences,

Department of Informatics
http://www.informatik.uni-hamburg.de/TGI/

Abstract. Distributed network security is an important concern in
modern business environments. Access to critical information and
areas has to be limited to authorised users. The Herold research
project� aims to provide a novel way of managing distributed network
security through the means of agent-based software. In this paper we
present the first models, both conceptual and technical that have been
produced in this project. Furthermore we examine the Paose develop-
ment approach used within the project and how it contributes to Herold.

Keywords: Distributed network security, Software agents, Petri nets,
Agent-oriented methodologies.

1 Introduction

Computer networks have become more and more omnipresent in recent years. Ac-
companying this trend, the need for adequate, versatile and flexible distributed
systems has risen as well. Distributed systems capitalise on the properties of the
different network nodes and use them to provide functionality difficult and inef-
ficient to obtain in classical, centralised systems. A paradigm particularly suited
to design distributed systems is agent-orientation. The use of autonomous enti-
ties, called agents, which use asynchronous messages for communication or can
(to a certain degree) intelligently adapt to unforeseen circumstances makes this
paradigm perfect for modelling and implementing distributed systems.

Of course distributing functionality over open networks introduces security
risks and issues. Questions that arise are how to protect critical data and how
to make sure only authorised users can execute sensitive actions. Classically
networks are protected using a perimeter model in which network security com-
ponents (NSCs) protect the virtual border of the network. The problem with this
� The Herold research project is supported by the German Federal Ministry of

Education and Research (Grant No. 01BS0901). For further information see
http://www.herold-security.de

J. Dix and C. Witteveen (Eds.): MATES 2010, LNAI 6251, pp. 209–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.herold-security.de

210 S. Adameit et al.

approach is that once the perimeter of the network is breached, the attacker can
access the rest of the network almost unimpeded. The Herold research project
follows another approach. Instead of relying on a perimeter to protect a network
we divide the network into multiple subnetworks, called cells, each protected by
their own NSC. The overlapping cells together form the entire network and the
NSCs enforce a network-wide security policy in a cooperative effort. This way,
if one NSC is breached, only part of the network is open to attacks. The other
cells are unaffected.

Further aspects of interest that will be discussed in this paper include for
example the use of abstract, global policies that are automatically translated
into efficient, localised configurations for NSCs.

To implement our prototype we use the Petri net-based agent architectures
Mulan and Capa. Agents within these architectures possess many properties,
like mobility and proactiveness, which make them very versatile and allow and
encourage their use within the context of distributed network security. Addi-
tionally the Paose (Petri net-based and agent-oriented software engineering)
software development approach is especially well suited for these two architec-
tures, so that our work is supported by an elaborate and functional approach.

In this paper we present both a conceptual and technical model of how to
realise part of the overall Herold vision. The technical model we will describe
is one of the first prototypes developed within the Herold Paose cycle and
will serve to show the results of using this approach both in regard to the target
domain as well as to the versatility of the approach. We will also offer an outlook
on possible extensions to our current model.

The paper is structured in the following way. Section 2 distinguishes our ap-
proach from related work. In Section 3 we will outline the theoretical and tech-
nical background of our work. Section 4 describes the conceptual view of the
overall Herold vision and the current Herold model, while Section 5 examines
parts of the implementation. The paper concludes in Section 6 and gives an
outlook on future work.

2 Related Work

Herold lies at the intersection of multi-agent systems, policy-based management,
and network security. Different approaches have been proposed in the literature
that also address these or related domains. Herold differs from previous work
in its unique combination of an agent- and policy-based approach to network
security, the automatic transformation of global policies to NSC configurations
(i.e., “refinements”), and provisioning network security as a cooperative effort.

Different approaches on agent-based network management have been pro-
posed in the literature [7,1,10,5]. In principle, Herold is closely related to such
approaches while, however, focussing on network security and solely relying on
stationary agents. In particular, Herold differs from most previous approaches
for being policy-based, addressing the localisation of policies, and transforming
policies to NSC-specific configurations.

Modelling Distributed Network Security in a Petri Net 211

Closely related to Herold, Uszok et al. [13] have presented an approach to
the representation, conflict resolution, and enforcement of policies for the agent
framework KAoS (Knowledgeable Agent-oriented System) [2]. Besides using a
different policy language, focussing on network security, and having a different
architecture, Herold can be considered a generalisation of this approach as the
KAoS approach does not address refinements of policies.

Ponder2 [12] is a prominent example of a policy-based management system
that supports refinements of policies. In contrast to Herold, it relies on a Peer-to-
Peer architecture instead of an agent-based architecture. Moreover, its concept of
refining policies significantly differs from Herold’s policy transformations: Having
policies defined in terms of hierarchical “domains,” Ponder2 allows to refine
policies by adding additional objects to these domains or by moving policies
down in the domain hierarchy. In contrast, Herold refines policies by mapping
them to NSC-specific configurations defined in a different language than the
policy itself (using NSC-specific transformations).

3 Background

Our agents follow the Mulan architecture described in [11]. Mulan stands for
Multi-agent nets, a name that perfectly describes the main idea behind the
approach. Every aspect of agents in Mulan is modelled with reference nets, a
high level Petri net formalism described in [9]. Following the nets-within-nets
idea examined, for example, in [14], tokens of reference nets can again be ref-
erence nets, thus allowing for a hierarchical nesting of nets, which can interact
with one another. With the help of this formalism it is possible to model the
different layers of the Mulan reference architecture. The lowest level is rep-
resented by agent behaviour. Behaviour is modelled through so-called protocol
nets, which are tokens in the next layer, the agent layer. The agent nets are
located in their runtime environment, the platform nets, which themselves are
located in system nets. This way it is possible to model a complete multi-agent
system using four levels of interacting nets-within-nets. Capa (Concurrent Agent
Platform Architecture) is an extension to Mulan focussing on interoperability
and communication, which was described in [6]. It provides full compliance with
the standards of the Foundation for Intelligent Physical Agents (FIPA). It does
so by providing a standardised message format for the Mulan agents and by
replacing the upper Petri net layers of the Mulan reference architecture. These
layers are now implicitly defined by actual communication relations between dif-
ferent platforms. The Petri net editor and simulator Renew serves as the build-
and runtime environment for systems using Mulan and Capa. A description of
Renew can be found in [9] or on the website www.renew.de.

The Paose approach has been described, for example, in [3] and [4]. The
accompanying development methodology is especially suited for software
development within the Mulan and Capa architectures, but is general enough
to be used in many other contexts. The aspect most relevant for this paper is
rapid prototyping, which gives the approach some agile properties. In general

www.renew.de

212 S. Adameit et al.

Paose exhibits concepts and ideas from many other approaches. First steps
within Paose use subsets of UML to define coarse designs, which are directly
translated into Petri net models. These models only need to be slightly modified
to provide the desired functionality, so that they almost directly correspond to
prototypes within the approach. These prototypes are then recycled in further
iterations. In this way the Paose methodology contains aspects of UML, model
driven approaches and agile software development.

4 Conceptual View

Before going into the details of our conceptual model we must first describe
the overall vision and approach behind Herold. Generally speaking the Herold
project aims to provide a novel, agent-based approach of managing and con-
trolling NSCs, both active (e.g. firewalls) and passive (e.g. intrusion detection
systems). Security attributes and rules are defined in an abstract global policy
that covers the entire network. This policy is enforced locally and cooperatively
by the NSCs under the control of a Herold system. The global policy is created
and maintained by different network administrators cooperatively and is auto-
matically transformed into technical configurations for the NSCs. These technical
configurations only contain the information relevant and necessary for the NSC
they are deployed on. Information and rules that are irrelevant to a certain NSC,
for example information about network events that, due to network topology,
cannot possibly occur within the scope of this NSC, are removed from the con-
figuration for this NSC. This so-called localisation of policies ensures efficiency
in policy enforcement by keeping the policies at the smallest size needed. This
approach entails that the NSCs, which are distributed within the network, are
responsible for the security of their own compartment, or cell, of the network.
This cell-based approach to network security improves security compared to a
more classical perimeter approach, in which NSCs are located at the border of
the supervised network and form a single line of defence against attackers. In
the perimeter approach an attacker that breaches or circumvents one NSC can,
in the worst case, access the entire network. With the cell-based approach an
attacker can only access the (small) part of the network that lies within the cell
of the NSC breached and is controlled by no other NSC.

The control and configuration of the NSCs are handled by autonomous soft-
ware agents, which interact to cooperatively ensure the enforcement of the global
policy. Regarding the NSCs as nodes of a distributed system it is possible to
naturally map agents and agent concepts into the Herold system. These agents
provide means of defining the global policy, allowing different administrators to
edit the global policy concurrently, transforming the abstract global policy into
technical configurations, localising the global policy for each NSC under their
control and finally deploying the localised and technical configurations onto the
NSCs. Basically, the agents are responsible for accepting the global policy as an
input from the administrators, keeping it consistent for all users and transform-
ing and deploying it correctly.

Modelling Distributed Network Security in a Petri Net 213

The ambitious goal of designing and implementing the Herold approach de-
scribed above covers several iterative models. We will now describe the first
complete Herold model in its conceptual idea. Based on this concept and in
accordance to the Paose approach the following section will present how part
of the functionality of our concept has already been implemented in a proto-
type. The model supports the key concepts of managing NSCs through agents
and localising policies for individual NSCs. The localisation is handled with the
concepts introduced in [8] and will not be further discussed in the scope of this
paper. There are three general aspects of our model which have to be described:
the network model, the policy model and the use cases. We will now examine
these three aspects.

Network Model. The model assumes a connected network topology, where each
node has a unique address. While the network topology is not described explic-
itly, the Herold users provide a description of the NSCs that are used to execute
the global policy. The description of a NSC includes its network interfaces, the
associated addresses, a routing table, and information on how to configure the
NSC. This information is used when localising the global policy for the respec-
tive NSC. As the Herold system is not aware of the network topology with
this model, some types of NSCs may not be covered by this model. Handling
such NSCs is deferred to more elaborate models with a network model that in-
cludes information on the topology of the network. Besides the descriptions of
the NSCs, the network description additionally covers groups to organise the
network components and the assignment of network components to groups.

Policy Model. The users of the Herold system share a single, common global
policy that is always active. The policy is defined in terms of 5-tuples with
unique addresses and (logical) groups as defined by the network description. The
tuples consist of two pairs of source and target address and port and the action.
Semantically, the policy contains a rule with an allow or deny action for each
possible 5-tuple. The groups, however, allow to syntactically describe the policy
more concisely. The Herold system localises the global policy for each managed
NSC and transforms the localised policy to a NSC-specific configuration format.
The Herold system then deploys the configurations to the respective NSCs.

Use Cases. The model includes use cases on editing the global policy and net-
work descriptions, on policy transformations and on configuration deployment.
Herold users edit a single global policy and a single network description. Mul-
tiple users may edit the policy and the network description concurrently, which
requires an explicit design decision on how to cope with issues arising from con-
current editing (e.g., the lost update problem). The use cases are:

– Use cases concerning the global policy (View the current list of rules and the
status of the system; add/delete/modify/move a rule)

– Use cases concerning the network description (View the current set
of NSCs; add/delete/modify a NSC; view the current set of groups;
add/delete/rename a group; add/remove network components in a group)

214 S. Adameit et al.

The NSCs, as external systems, are actors that interact with Herold in a single
use case, namely the deployment of the NSC-specific configurations.

As mentioned before this model is just one step on the way to the overall
Herold vision. However it already incorporates the key aspects of Herold: Coop-
erative creation of a global policy, localisation of this global policy and automated
transformation into configurations for NSCs. The core of the Herold approach is
already present within this model and it is possible to extend and enhance this
model towards the overall vision.

A quite interesting aspect of the Herold project in general is how the Paose
approach plays into the development of the Herold system. The approach allows
us to follow a fast iterative process, which produces many prototypes each incre-
menting and enhancing the last one. In a way the conceptual model described
in this section can be seen as only one prototype on the way to the overall
vision. But not only the iterative process naturally supports the development
of Herold. The self-organisational aspects of the approach and the division of
the target context into three dimensions (roles, interactions, ontology) naturally
support the development of systems that have a distributed context, like Herold.

5 Implementation

We will now present the implementation of a subset of the functionality pro-
vided by our conceptual approach. We have chosen this subset of our model for
two main reasons. On the one hand this subset is small and simple enough to
be presented in the scope of this paper, on the other hand the prototype im-
plementing this subset highlights the very important prototyping aspect of our
Paose approach, discussed above. It is the first prototype created for this model
and is referred to as model zero.

Model zero introduces the key functionality of the Herold application, in its
simplest form. The model covers system administrators (acting as users) who
interact with a global policy, described as a list of rules. From these interactions,
the resulting policy is localised and deployed to a NSC.

The network submodel of model zero assumes a space of unique addresses with
subnets with perfect routing, but without any further network topology and no
explicit network description. The network submodel has no concept of network
locations or NSCs and also does not support the grouping of components. The
policy submodel assumes a single, global policy that is always active and that
talks about communication relations that are characterised by protocol, source
and target addresses and source and target ports. Every policy is assumed to
be total, i. e. it implies an allow or a deny judgement for each of the possible
communication relations per protocol. Since it is impossible to specify all
individual rules, the policy may be written as an ordered list of rules where
each rule is written as a pattern that can match many possible communication
relations. The list is evaluated with a “first match wins” semantics. To make the
policy total, there is an implicit last rule that matches everything and specifies

Modelling Distributed Network Security in a Petri Net 215

Fig. 1. Model zero - Use case diagram

a default decision for this policy. Since the network model is non-local, there is
no localisation of policies. In a way the policy can be seen as the configuration
of a single, omnipotent NSC.

For model zero a subset of the overall model containing six use cases has been
identified. Figure 1 depicts the use case diagram.

deploy policy. In this use case the current global policy is configured and de-
ployed into a NSC. This is the only use case in model zero that is not directly
called by an actor, but is included in all of the other use cases that in some
way change the global policy. It is called whenever the global policy has been
successfully changed and before the lock on the global policy is lifted.

add rule. This adds a new rule to the policy at a given evaluation order
position.

delete rule. The delete rule use case removes a rule from the global policy.
modify rule. This use case modifies one rule of the global policy. The param-

eters within this interaction are both the old and new rule.
move rule. The move rule use case can be seen as a special case of the modify

rule use case, in which the actual rule itself is left unchanged and only the
position of the rule within the global policy is modified.

view rules. This use case returns all the rules of the current global policy.

The use cases involve three actors, namely:

Admin Proxy. This represents a system administrator. He has administrative
control over the global policy and can thus initiate the different use cases.

Policy Manager. This actor represents an entity, which is in charge of man-
aging the central list of rules.

NSC Proxy. This actor represents the NSC within the use cases. It is only
involved in the deploy rule use case, since all other operations only work
with the global policy managed by the policy manager.

216 S. Adameit et al.

Fig. 2. Interaction protocol for the add rule use case

From these use cases it is possible to automatically generate the artefacts
needed for the next modelling steps using the Renew toolset. In the case of Mu-
lan and Capa the use cases are realised through interactions between agents,
which themselves correspond to the actors. These interactions are defined through
agent interaction protocols, from which the actual agent behaviour protocols can
be generated. Behaviour outside of these interactions (e.g. internal decision mak-
ing) is modelled through decision components which generally serve as the internal
behaviour of agents. An agent’s knowledge is defined in it’s knowledge base that
is defined during modelling but can change during execution.

We will now exemplary discuss one of these interactions in detail. We have
chosen to illustrate the add rule use case/interaction for this example, since it
shares much of its structure with other use cases, as is discussed below. Figure 2
shows the agent interaction protocol for this use case.

The interaction is started by the AdminProxy DC ui, which represents the
user interface for an administrator. The other two actors in this diagram rep-
resent the agent protocols, which model the behaviour of the agents which cor-
respond to the admin proxy and policy manager actors of the use case. The
first action the AdminProxy addrule protocol executes is to look up and find
the address of the policy manager from the knowledge base. Once this is done
a message is sent to the policy manager containing the request to add a rule,
as well as information about the new rule. This is then passed internally over
to the decision component of the policy manager agent. Within this decision

Modelling Distributed Network Security in a Petri Net 217

Fig. 3. Agent protocol for the admin proxy actor in the add rule use case

Fig. 4. Agent protocol for the policy manager actor in the add rule use case

component the new rule is evaluated and added to the global policy. If this has
succeeded, the deploy rule interaction is called and the new policy deployed in
all known NSCs. The decision component replies to the protocol with either
a failure or done, depending on whether problems occurred at any step. This
result is then sent as either an ActionDone or an ActionFailure message to the
admin proxy protocol and passed to a decision component, which stores the
results of interactions for later inspection. This concludes the interaction/use
case. From this agent interaction protocol the stubs for the agent protocols can
be automatically generated using the Renew toolset. These stubs only need
a minimal amount of change in their inscriptions until they are complete and
model the functionality described above when executed. The resulting final two
protocols can be seen in Figures 3 and 4.

5.1 Assumptions and Simplifications

Mainly, our assumptions and simplifications are related to both the interaction
protocols and the concurrent access to the policy pool.

218 S. Adameit et al.

Even though we did not elaborate on all the use cases, one can straightfor-
wardly see that they all rely on the same pattern: identify a single entity and
make it execute a functionality on your behalf. This pattern is well captured
in the standard FIPA request protocol. A functionality requester, the initiator,
contacts a functionality provider, the participant, to request the provision of a
functionality. After examining the request, the participant first notifies the ini-
tiator of whether it agrees to providing the functionality or not. Also, in case
an error occurs while examining the request, the initiator is notified as well. In
case the participant agrees to executing the functionality, it does so and sends
the initiator the result. The final result can then be communicated either as a
simple notification, a reference to a generated object or a notification of failure.

Given the simplicity of our model, we assumed that an agent enacting the
participant role will always accept a functionality whenever contacted. As well,
we minimised any message examination error. Thus, we shortened the request
protocol and removed the acceptance phase.

Another careful consideration during the modelling exercise is with respect to
concurrency control, i.e., how to provide concurrent access to the global policy.
Indeed, despite the simplicity of the current model, concurrency remains one of
its pillars. Although we pondered over several possible solutions, we finally chose
a pessimistic lock approach for the sake of simplicity. Only write operations (add
rule, move, modify and delete rules) are considered for lock. Thus, at any time
one can view the current set of rules in the policy. The scope of the lock is the
entire policy. In the future, we envision to narrow the scope down to a subset of
rules and if necessary to a single rule. In doing so we will easily cope with, for
example, partial policies, while improving the performance of our models.

5.2 Step-by-Step Modeling

In this section we briefly take the reader through the different steps that led to
the Petri net models, which control the behaviour of the agents. As mentioned
earlier these steps fall into the Paose guidelines.

1. Use cases: Identify the actors and draw the use case diagrams.
2. Ontology objects: Ontology objects help define the concepts referred to in

the content of agent messages.
3. Interaction diagrams: Elaborate on the interactions defined in the use case

diagrams.
4. Interaction models: Using a Renew plugin, we automatically generated the

Petri net models corresponding to the interaction models (agent protocols).
5. Decision components: We draw the nets that support internal decision mak-

ings for each agent.
6. Knowledge Bases: We configure the knowledge base for each agent.

Going through this process as a cycle yields multiple prototypes, each improving
upon the functionality and stability of the previous version. In the model zero
prototype, we packaged the necessary aspects to model the key functionality

Modelling Distributed Network Security in a Petri Net 219

of the Herold application. Note that this model bears many simplifications and
can only serve as a proof of concept. Further prototypes will extend model zero
in various regards, like network modelling, localisation and policy management,
until a satisfactory version of our overall model is achieved.

6 Conclusion

In this paper we presented our work within the Herold research project. We
examined the overall Herold vision and presented our conceptual approach to
realising this vision. We detailed the important aspects of the conceptual model
and then proceeded to describe one of the prototypes implementing a first, im-
portant subset of the overall, conceptual functionality. The description detailed
the submodels and the general use cases of the prototype. For one of these use
cases the actual implementation was exemplarily presented. Afterwards the pro-
totype and some design decisions were discussed.

Further prototypes are already being developed. They incorporate more con-
cepts described in the conceptual model and in the overall vision. Aspects of the
overall vision being addressed are:

– Policies: One aspect lies in handling the global policy. For example the
support of partial policies is planned, which do not cover the entire space
of possible events. These would have to be completed internally, but would
make handling of policies easier for the user. Another point here would be
the provision of a policy pool and policy templates, which would make the
generation of policies easier. The support of obligation policies in addition
to the current authorisation policies and the relationship of the policy model
to the network model are also being examined.

– Network model and localisation: Another aspect regards the network
model and the localisation. The overall vision includes an explicit, expressive
network model in order to localise the global policy in the most efficient
way. This network model needs to be expressive enough to describe realistic
settings, but still easy to use. The network model and the related complex
localisation algorithms are important aspects of the Herold project and will
be addressed in the near future.

– Transformation into configurations: Another aspect that has not been
discussed in detail in this paper is the transformation from the (abstract)
policy to the actual technical configuration files for the NSCs. This affects the
policy model, since the transformation into different specific configuration
languages has to be supported.

By following the Paose development approach the Herold project is supported
by an approach that naturally maps concepts of the target domain into the
development cycle. The fast prototyping encouraged by the approach allows us
to iteratively enhance the produced systems. In conclusion the overall Herold
project aims at providing a surplus within the domain of distributed network
security. The first steps within this endeavour have been presented in this paper.

220 S. Adameit et al.

References

1. Bieszczad, A., Pagurek, B., White, T.: Mobile Agents for Network Management.
IEEE Communications Surveys 1(1), 2–9 (1998)

2. Bradshaw, J.M., Dutfield, S., Benoit, P., Woolley, J.D.: KAoS: toward an
industrial-strength open agent architecture. In: Software Agents, pp. 375–418. MIT
Press, Cambridge (1997)

3. Cabac, L., Dörges, T., Duvigneau, M., Reese, C., Wester-Ebbinghaus, M.: Appli-
cation Development with Mulan. In: Proceedings of the International Workshop
on Petri Nets and Software Engineering (PNSE’07), pp. 145–159 (2007)

4. Cabac, L.: Multi-Agent System: A Guiding Metaphor for the Organization of Soft-
ware Development Projects. In: Petta, P., Müller, J.P., Klusch, M., Georgeff, M.
(eds.) MATES 2007. LNCS (LNAI), vol. 4687, pp. 1–12. Springer, Heidelberg
(2007)

5. Du, T.C., Li, E.Y., Chang, A.-P.: Mobile Agents in Distributed Network Manage-
ment. Communications of the ACM 46(7), 127–132 (2003)

6. Duvigneau, M.: Bereitstellung einer Agentenplattform für petrinetzbasierte Agen-
ten. Diploma thesis, University of Hamburg (2002)

7. Goldszmidt, G., Yemini, Y.: Delegated Agents for Network Management. IEEE
Communications Magazine 36(3), 66–71 (1998)

8. Großklaus, A.: Policybasierte Konfiguration von verteilten Netzwerksicherheit-
skomponenten. Diploma thesis, University of Hamburg (2007)

9. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
10. Puliafito, A., Tomarchio, O.: Using Mobile Agents to Implement Flexible Network

Management Strategies. Computer Communications 23(8), 708–719 (2000)
11. Rölke, H.: Modellierung von Agenten und Multiagentensystemen – Grundlagen

und Anwendungen. Logos Verlag, Berlin (2004)
12. Twidle, K., Lupu, E., Dulay, N., Sloman, M.: Ponder2 – A Policy Environment for

Autonomous Pervasive Systems. In: Proceedings of the 2008 IEEE Workshop on
Policies for Distributed Systems and Networks (POLICY ’08), pp. 245–246. IEEE
Computer Society Press, Los Alamitos (2008)

13. Uszok, A., Bradshaw, J., Jeffers, R., Suri, N., Hayes, P., Breedy, M., Bunch, L.,
Johnson, M., Kulkarni, S., Lott, J.: KAoS Policy and Domain Services: Toward
a Description-Logic Approach to Policy Representation, Deconfliction, and En-
forcement. In: Proceedings of the 4th IEEE International Workshop on Policies for
Distributed Systems and Networks, pp. 93–98. IEEE, Los Alamitos (2003)

14. Valk, R.: On Processes of Object Petri Nets. Technical Report FBI-HH-B-185/96,
University of Hamburg, Department of Computer Science (1996)

Author Index

Adameit, Simon 209
Alberola, Juan M. 197
Amor, Mercedes 3
Argente, Estefania 52
Ayala, Inmaculada 3

Betz, Tobias 209
Billhardt, Holger 64
Botti, Vicent 52
Brandt, Felix 1
Braubach, Lars 100
Broekens, Joost 28
Bromuri, Stefano 125

Cabac, Lawrence 209
Carrascosa, Carlos 150
Centeno, Roberto 64
Criado, Natalia 52

Deliu, Endri 76
de Weerdt, Mathijs 113

Espinosa, Agustin 197
Eymann, Torsten 40

Fuentes, Lidia 3

Garcia-Fornes, Ana 197
Garćıa-Pardo, Juan A. 150
Grootenboers, Ferdi 113

Hahn, Christian 88
Harbers, Maaike 28
Hars, Florian 209
Heitz, Miriam 40
Hewelt, Marcin 209
Hindriks, Koen 28
Huang, Shell Ying 173

Jacobi, Sven 88
Jakob, Michal 2
Jander, Kai 100

Jonker, Catholijn 28
Junges, Robert 185

Klügl, Franziska 185
Köhler-Bußmeier, Michael 76, 209
König, Stefan 40
Kuipers, Fernando A. 138

Laouadi, Mohamed Amin 15

Mazyad, Hanaa 162
Meyer, John-Jules 28
Mokhati, Farid 15
Moldt, Daniel 209
Mors, Adriaan W. ter 138

Ossowski, Sascha 64

Pokahr, Alexander 100
Popov, Dimitri 209
Pěchouček, Michal 2

Quenum, José 209

Raber, David 88
Rafique, Umair 173

Schumacher, Michael Ignaz 125
Seridi-Bouchelaghem, Hassina 15
Soler, Jose 150
Stathis, Kostas 125

Theilmann, Axel 209
Tnazefti-Kerkeni, Insaf 162

van den Bosch, Karel 28

Wagner, Thomas 209
Warns, Timo 209
Witteveen, Cees 138
Wüstenberg, Lars 209

Zargayouna, Mahdi 113
Zutt, Jonne 138

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	Tournament Solutions and Their Applications to Multiagent Decision Making
	Research Challenges in Simulation Aided Design of Complex Multi-agent Systems

	Models and Specifications
	A Model Driven Development of Platform-Neutral Agents
	Introduction
	Motivating Case Study
	Our Approach
	Case Study
	Multi-agent System Design with the DDE Tool

	Generation and Deployment of Malaca Agents
	Generation of a Multi-agent System for VANETs
	Deployment

	Discussion
	Related Work
	Conclusions
	References

	A Novel Formal Specification Approach for Real Time Multi-Agent System Functional Requirements
	Introduction
	Related Works
	Real Time Maude
	Extended Agent UML
	Temporal AUML Use Case Diagrams
	Temporal AUML Class Diagrams

	The Proposed Approach
	Case Study: Supply Chain Management (SCM)
	Translation Process Application
	Generated Description Validation

	Conclusion and Future Work
	References

	Do You Get It? User-Evaluated Explainable BDI Agents
	Introduction
	Related Work
	Explainable Agent Model
	Tree-Based Behavior Log
	Explanation Algorithms

	Experimental Setup
	Results
	Discussion
	Guidelines
	Limitations and Future Work

	Conclusion
	References

	Trust, Norms and Reputation
	Reputation in Multi Agent Systems and the Incentives to Provide Feedback
	Introduction
	Implementing Incentive Setting Reputation Mechanisms in Multi Agent Systems
	Liu and Issarny: An Incentive Compatible Reputation Mechanism for Ubiquitous Computing Environments
	Jøsang and Ismail: The Beta Reputation System
	Buchegger and Boudec: A Robust System for P2P and Mobile Ad-hoc Networks
	Jurca and Faltings: Towards Incentive Compatible Reputation Management

	An Analysis of Incentives in Reputation Models
	Conclusion and Future Work
	References

	Normative Deliberation in Graded BDI Agents
	Introduction
	Background: Multi-context BDI
	BDI Contexts
	Bridge Rules

	Normative Model Proposal
	Normative BDI Architecture
	Recognition Context (RC)
	Normative Context (NC)
	Normative Bridge Rules

	Case Study Execution
	Discussion
	References

	Inducing Desirable Behaviour through an Incentives Infrastructure
	Introduction
	The Model
	The Problem

	Incentives Infrastructure
	Discovering Agent's Preferences
	Selecting the Action to Incentivize
	Testing the Proposed Incentive
	Monitoring and Informing the Agent

	Experimental Results
	Conclusion
	References

	Models, Tools and Architectures
	SONAR/OREDI: A Tool for Creation and Deployment of Organisation Models
	Introduction
	Sonar: A Formal Model of Organisations
	Deploying SONAR Organisations
	Agent Organisations as OPA/OMA Networks
	Deploying SONAR Organisations as OPA/OMA Networks
	Related Work

	Conclusion and Outlook
	References

	Enhancing the Interoperability between Multiagent Systems and Service-Oriented Architectures through a Model-Driven Approach
	Introduction
	Related Work
	Model-Driven Service Integration into Multiagent Systems
	Model Transformation Architecture
	Service-Oriented Architecture Modeling Language
	Domain-Specific Modeling Language for MAS
	Model-Driven Integration of Service Oriented Architectures and Multiagent Systems

	Service-Oriented Supply Chain of the Saarstahl AG
	Saarstahl Architecture on SoaML
	Generating the Agent-Based Design
	Relevance for Saarstahl

	Dsml4Mas as Web Service Execution Engine
	Conclusion
	References

	Unifying Agent and Component Concepts Jadex Active Components
	Introduction
	Paradigms for Complex Distributed Systems
	Software Agents and Multi-Agent Systems
	Active Objects
	Software Components
	Summary

	Active Component Concepts
	Active Components Infrastructure
	Kernels
	Tool Support
	Usage

	Example Application
	Related Work
	Summary and Outlook
	References

	Applications I
	Impact of Competition on Quality of Service in Demand Responsive Transit
	Introduction
	Background
	The Multi-company DARPTW
	Problem Definition
	Mechanism Overview
	Bidding Service Quality
	Auction on QoS and Pre-determined Payments

	Computations for the Companies
	Online Optimization
	Bid Calculation

	Experiments and Results
	Experimental Setup
	First Experiment
	Second Experiment

	Discussion
	References

	Towards Distributed Agent Environments for Pervasive Healthcare
	Introduction
	Motivating Scenario: Gestational Diabetes Mellitus
	The Pervasive Healthcare Infrastructure
	The Body-Area Network
	The Caretaker Abductive Agents

	Related Work
	Conclusion
	References

	Context-Aware Route Planning
	Introduction
	Model
	Route Planning Algorithms
	Fixed-Path Scheduling Algorithms
	Examples

	Experiments
	Results

	Conclusions
	References

	Coordination and Learning
	Social Conformity and Its Convergence for Reinforcement Learning
	Introduction
	Theoretical Background
	Adaptation in Highly Dynamic Systems: Social Reinforcement
	Convergence of Learning
	Study Case
	Simulation
	Results

	Conclusions and Future Work
	References

	COLYPAN: A Peer-to-Peer Architecture for a Project Management Collaborative Learning System
	Introduction
	MAETIC Method
	Description of the Method
	Contribution of Multi-agents System
	Related Works

	COLYPAN : A Multi-agent Architecture for Modeling a Collaborative Learning System
	Peer-to-Peer Architecture for a Collaborative Learning System
	The Different Agents of the System
	The Groups Working Way

	A Case Study
	Conclusion and Future Work
	References

	Preference Generation for Autonomous Agents
	Introduction and Related Work
	Preference Generation
	An Approach for Preference Learning
	Evaluation
	Conclusion and Future Work
	References

	Evaluation of Techniques for a Learning-Driven Modeling Methodology in Multiagent Simulation
	Motivation
	Learning Agents and Simulation
	A Learning-Driven Methodology
	Basic Modeling Process
	Learning Classifier Systems: XCS
	Q-Learning
	FFNN - Feed Forward Neural Networks

	Testbed
	Environmental Model
	Agent Interfaces
	Techniques Configuration

	Experiments and Results
	Performance Evaluation
	Behavior Learning Outcome

	Discussion
	Conclusion and Future Work
	References

	Applications II
	Price Prediction in Sports Betting Markets
	Introduction
	Related Work
	Sports Betting Markets
	Trading on Sports Betting Markets

	The Market Model
	The CBR Agent
	Experiments
	Data Acquisition and Creation of the Case Base
	The CBR Cycle

	Results
	Conclusions
	References

	Modelling Distributed Network Security in a Petri Net- and Agent-Based Approach
	Introduction
	Related Work
	Background
	Conceptual View
	Implementation
	Assumptions and Simplifications
	Step-by-Step Modeling

	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

